

Lecture Notes in Computer Science 6285
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Muhammad Ali Babar Ian Gorton (Eds.)

Software
Architecture

4th European Conference, ECSA 2010
Copenhagen, Denmark, August 23-26, 2010
Proceedings

13

Volume Editors

Muhammad Ali Babar
IT University of Copenhagen
Software Development Group
Rued Langgaards, Vej 7
2300, Copenhagen, S., Denmark
E-mail: malibaba@itu.dk

Ian Gorton
Pacific Northwest National Laboratory
Computational and Information Sciences
PO Box 999, MS: K7-90
Richland, WA, 99352, USA
E-mail: ian.gorton@pnl.gov

Library of Congress Control Number: 2010931870

CR Subject Classification (1998): D.2, D.3, F.3, H.4, C.2, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-15113-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15113-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Welcome to the European Conference on Software Architecture (ECSA), which is the
premier European software engineering conference. ECSA provides researchers and
practitioners with a platform to present and discuss the most recent, innovative, and
significant findings and experiences in the field of software architecture research and
practice. The fourth edition of ECSA was built upon a history of a successful series of
European workshops on software architecture held from 2004 through 2006 and a
series of European software architecture conferences from 2007 through 2009. The
last ECSA was merged with the 8th Working IEEE/IFIP Conference on Software
Architecture (WICSA).

Apart from the traditional technical program consisting of keynote talks, a main re-
search track, and a poster session, the scope of the ECSA 2010 was broadened to
incorporate other tracks such as an industry track, doctoral symposium track, and a
tool demonstration track. In addition, we also offered several workshops and tutorials
on diverse topics related to software architecture.

We received more than 100 submissions in the three main categories: full research
and experience papers, emerging research papers, and research challenges papers. The
conference attracted papers (co-)authored by researchers, practitioners, and academics
from 30 countries (Algeria, Australia, Austria, Belgium, Brazil, Canada, Chile, China,
Colombia, Czech Republic, Denmark, Finland, France, Germany, Hong Kong, Ice-
land, India, Ireland, Israel, Italy, The Netherlands, Poland, Portugal, Romania, Spain,
Sweden, Switzerland, Tunisia, United Kingdom, United States).

Based on the recommendations of the Program Committee, we accepted only 19
full papers out of 75 full papers submitted. The acceptance rate for the full papers was
25.33% for ECSA 2010. In the "Emerging Research" category, we accepted only 2
out of 21 papers submitted. Based on the reviews and quality of the submissions, 18
full papers were invited to be converted into "Emerging Research" papers. For the
"Research Challenges" (Poster) category, 5 out of 10 submissions were accepted. Two
full research papers and three "Emerging Research" papers were invited to be pre-
sented as poster papers. Hence, there were 11 papers in this category. The Tool Dem-
onstration Chairs accepted three out of six submitted papers.

It was a great pleasure to have three eminent keynote speakers at ECSA 2010. The
opening day keynote was delivered by Jan Bosch from Intuit, USA. He spoke on
"Architecture in the Age of Compositionality"; The second keynote was presented by
Philippe Kruchten from the University of British Columbia, Canada, on "Where Did
all This Good Architectural Knowledge Go?" The third and final keynote was deliv-
ered by Jim Webber from Thoughtsworks UK. Jim spoke about "REST Style Archi-
tectures in Practice for Building Very Large Scale Enterprise Systems."

We are grateful to the members of the Program Committee for helping us to seek
submissions and provide valuable and timely reviews. Their efforts enabled us to put
together a high-quality technical program for ECSA 2010. We are also indebted to
members of the Organizing Committee of ECSA 2010 for playing an enormously
important role in successfully organizing the event with several new tracks and

 Preface VI

collocated events. We also thank the workshop organizers and tutorials presenters,
who also made significant contributions to the success of an extended version of
ECSA. A very special thanks is due to Vibeke Ervø for her enormous help in putting
these proceedings together. The ECSA 2010 submission and review process was
extensively supported by the EasyChair Conference Management System. We ac-
knowledge the prompt and professional support from Springer, who published these
proceedings in printed and electronic volumes as part of the Lecture Notes in Com-
puter Science series. Finally, we are grateful to the management team of the IT Uni-
versity of Copenhagen, Denmark, for providing its facilities and professionally
trained staff for the organization of ECSA 2010.

June 2010 Muhammad Ali Babar
Ian Gorton

Organization

ECSA 2010 was hosted by the IT University of Copenhagen, Denmark.

Organizing Committee

General Chair: Ian Gorton (Pacific Northwest Laboratory, USA)
Program Chair: Muhammad Ali Babar (IT University of Copenhagen,

Denmark)
Industry Chairs: Ronny Kolb (Honeywell, Switzerland)

Martin Naedele (ABB Corporate Research,
Switzerland)

Workshop Chairs: Rafael Capilla (Rey Juan Carlos University, Spain)
Danny Weyns (Katholieke Universiteit Leuven,

Belgium)
Tutorial Chairs: Kasper Østerbye (IT University of Copenhagen,

Denmark)
Juha Savolainen (Nokia, Finland)

Tool Demo Chairs: Andrzej Wasowski (IT University of Copenhagen,
Denmark)

Michel Wermelinger (The Open University, UK)
Doctoral Symposium

Chairs:
Eila Ovaska (VTT Technical Research Centre,

Finland)
Claudia Raibulet (University of Milano-Bicocca Italy)

Publicity Chair: Jennifer Perez Benedi (Technical University of
Madrid (UPM), Spain)

Local Organizing Chairs: Pia Dyrhagen (IT University of Copenhagen,
Denmark)

Yvonne Dittrich (IT University of Copenhagen,
Denmark)

Digital Media Chair: Hataichanok Unphon (IT University of Copenhagen,
Denmark)

Program Committee

Eduardo Santana de
 Almeida

Federal University of Bahia, Brazil

Yamine Ait Ameur ENSMA, France
Paris Avgeriou University of Groningen, The Netherlands
Jesper Andersson Växjö University, Sweden
Dharini Balasubramaniam University of St. Andrews, UK
Thais Batista University of Rio Grande do Norte - UFRN, Brazil

 Organization VIII

Marco Bernardo University of Urbino, Italy
Antoine Beugnard ENST Bretagne, France
Jan Bosch Intuit, USA
Alan W. Brown IBM Rational, USA
Sorana Cîmpan University of Savoie, France
Ivica Crnkovic Mälardalen University, Sweden
Carlos Cuesta Rey Juan Carlos University, Spain
Paulo Roberto F. Cunha Federal University of Pernambuco, Brazil
Rogerio De Lemos University of Kent, UK
Khalil Drira LAAS-CNRS, University of Toulouse, France
Laurence Duchien INRIA and University of Lille, France
Katrina Falkner University of Adelaide, Australia
John Favaro Intecs, Italy
Régis Fleurquin University of South Brittany - VALORIA/INRIA

Rennes - Bretagne Atlantique, France
Cristina Gacek City University, London, UK
David Garlan Carnegie Mellon University, USA
Holger Giese University of Potsdam, Germany
Paul Grefen Eindhoven University of Technology, The Netherlands
Volker Gruhn University Duisburg-Essen, Germany
Wilhelm Hasselbring University of Oldenburg, Germany
Klaus Marius Hansen University of Iceland, Iceland
Juan Hernández University of Extremadura, Spain
Paola Inverardi University of L'Aquila, Italy
Rick Kazman University of Hawaii, USA
Kai Koskimies Tampere University, Finland
Gerald Kotonya Lancaster University, UK
René Krikhaar VU University Amsterdam, The Netherlands
Patricia Lago VU University Amsterdam, The Netherlands
Frédéric Lang INRIA Rhône-Alpes, France
Nicole Levy University of Versailles St-Quentin en Yvelines -

PRiSM, France
Anna Liu University of New South Wales, Australia
Antonia Lopes University of Lisbon, Portugal
Leszek Maciaszek Macquarie University, Australia
Sam Malek George Mason University, USA
Esperanza Marcos Rey Juan Carlos University, Spain
Tomi Männistö Aalto University, Finland
Robert L. Nord Software Engineering Institute, USA
Flavio Oquendo University of South Brittany - VALORIA, France
Mourad Oussalah University of Nantes - LINA, France
Claus Pahl Dublin City University, Ireland
George A. Papadopoulos University of Cyprus, Cyprus
Dewayne Perry University of Texas at Austin, USA
Paulo de Figueiredo Pires University of Rio Grande do Norte - UFRN, Brazil
Frantisek Plasil Charles University, Czech Republic
Amar Ramdame-Cherif LISV - University of Versailles , France

 Organization IX

Isidro Ramos Polytechnic University of Valencia, Spain
Ralf Reussner University of Karlsruhe, Germany
Raghu Sangwan Penn State University, USA
Clemens Schäfer IT factum GmbH, Germany
Bradley Schmerl Carnegie Mellon University, USA
Judith Stafford Tufts University, USA
Clemens Szyperski Microsoft Research, USA
Miguel Toro University of Sevilla, Spain
Brian Warboys University of Manchester, UK
Claudia Maria Lima Werner Federal University of Rio de Janeiro, Brazil
Eoin Woods BlackRock, UK
Uwe Zdun Technical University of Vienna, Austria

ECSA Steering Committee

Flavio Oquendo (Chair) University of South Brittany - VALORIA, France
Carlos E. Cuesta Rey Juan Carlos University, Spain
Esperanza Marcos Rey Juan Carlos University, Spain
John Favaro INTECS, Italy
Volker Gruhn University Duisburg-Essen, Germany
Ron Morrison University of St. Andrews, UK
Mourad Oussalah University of Nantes - LINA, France
George A. Papadopoulos University of Cyprus, Cyprus
Brian Warboys University of Manchester, UK

Subreviewers

Achilleas Achilleos
Abdelkrim Amirat
Samuil Angelov
Fadila Aoussat
Marco Autili
Vlastimil Babka
Paul Bannerman
Matthias Book
Ismael Bouassida Rodriguez
Tobias Brückmann
Erik Burger
Trosky B. Callo Arias
Fernando Castor
Pericles Cheng
Jose Maria Conejero
Rafael Corchuelo
Flavia Delicato
Davide Di Ruscio

Zoya Durdik
Rik Eshuis
Sören Frey
Gregor Gabrysiak
Jean-Marie Gilliot
Qing Gu
Stephan Hildebrandt
Anthony Hock-koon
Thomas Hubbard
Pavel Jezek
 Lucia Kapova
Ali Khalili
Klaus Krogmann
Olivier Le Goaer
Marcos Lopez-Sanz
Francisca Losavio
Andréa Magdaleno
Julien Mallet

 Organization X

Michal Malohlava
Tiago Massoni
Radu Mateescu
Silvia Mazzini
Christos Mettouris
Mohamed Nadhmi Miladi
Amparo Navasa
Stefan Neumann
Alex Norta
José Antonio Parejo Maestre
Patrizio Pelliccione
Tomas Poch
Stefano Puri
Sakkaravarthi Ramanathan
Chris Rathfelder
Maryam Razavian

Antonia M. Reina-Quintero
Gwen Salaun
German Sancho
André L. Santos
Rodrigo Santos
Ricardo Seguel
Ondrej Sery
Mark Staples
Dan Tofan
Uwe van Heesch
Andre van Hoorn
Sylvain Vauttier
Thomas Vogel
Hiroshi Wada
Jan Waller
Bechir Zalila

Table of Contents

Keynote Talks

Architecture in the Age of Compositionality . 1
Jan Bosch

Where Did All This Good Architectural Knowledge Go? 5
Philippe Kruchten

REST in Practice . 7
Jim Webber

Full Research Papers

An ADL-Approach to Specifying and Analyzing Centralized-Mode
Architectural Connection . 8

Guoxin Su, Mingsheng Ying, and Chengqi Zhang

Naive Architecting - Understanding the Reasoning Process of
Students: A Descriptive Survey . 24

Uwe van Heesch and Paris Avgeriou

Towards Architecture-Centric Software Generation 38
Chung-Horng Lung, Balasangar Balasubramaniam,
Kamalachelva Selvarajah, Poopalasinkam Elankeswaran, and
Umatharan Gopalasundaram

An Architectural Blueprint for Model Driven Development and
Maintenance of Business Logic for Information Systems 53

Tobias Brückmann and Volker Gruhn

A Model for Dynamic Reconfiguration in Service-Oriented
Architectures . 70

José Luiz Fiadeiro and Antónia Lopes

Integrating Requirements and Design Decisions in Architecture
Representation . 86

Rainer Weinreich and Georg Buchgeher

Flexible Working Architectures : Agile Architecting Using PPCs 102
Jennifer Pérez, Jessica Dı́az, Juan Garbajosa, and Pedro P. Alarcón

Lightweight and Continuous Architectural Software Quality Assurance
Using the aSQA Technique . 118

Henrik Bærbak Christensen, Klaus Marius Hansen, and
Bo Lindstrøm

XII Table of Contents

An Architectural Approach to Composing Reputation-Based
Distributed Services . 133

Suronapee Phoomvuthisarn, Yan Liu, and Liming Zhu

Automated Detection of Least Privilege Violations in Software
Architectures . 150

Riccardo Scandariato, Koen Buyens, and Wouter Joosen

Architecting a Model-Driven Aspect-Oriented Product Line for a
Digital TV Middleware: A Refactoring Experience 166

Diego Saraiva, Lucas Pereira, Thais Batista, Flávia C. Delicato,
Paulo F. Pires, Uirá Kulesza, Rodrigo Araújo, Tássia Freitas,
Sindolfo Miranda, Ana Liz Souto, and Roberta Coelho

Impact Evaluation for Quality-Oriented Architectural Decisions
regarding Evolvability . 182

Stephan Bode and Matthias Riebisch

Functional Architecture Modeling for the Software Product Industry . . . 198
Sjaak Brinkkemper and Stella Pachidi

Experiences from Scenario-Based Architecture Evaluations with
ATAM . 214

Ville Reijonen, Johannes Koskinen, and Ilkka Haikala

Feature-Based Composition of Software Architectures 230
Carlos Parra, Anthony Cleve, Xavier Blanc, and Laurence Duchien

Linking Design Decisions to Design Models in Model-Based Software
Development . 246

Patrick Könemann and Olaf Zimmermann

Customer Value in Architecture Decision Making . 263
Ana Ivanović and Pierre America

A Formal Approach to Enforcing Consistency in Self-adaptive
Systems . 279

Najla Hadj Kacem, Ahmed Hadj Kacem, and Khalil Drira

Architecture-Centric Component-Based Development Needs a
Three-Level ADL . 295

Huaxi (Yulin) Zhang, Christelle Urtado, and Sylvain Vauttier

Emerging Research Papers

Dynamic Architectural Constraints Monitoring and Reconfiguration in
Service Architectures . 311

Jose John, MingXue Wang, and Claus Pahl

Table of Contents XIII

Using Domain Knowledge to Boost Software Architecture Evaluation . . . 319
Veli-Pekka Eloranta and Kai Koskimies

Independently Extensibile Contexts . 327
Martin Rytter and Bo Nørregaard Jørgensen

Mediating Connector Patterns for Components Interoperability 335
Romina Spalazzese and Paola Inverardi

Assessing the Impact of AOSD on Layered Software Architectures 344
Juliana Saraiva, Sérgio Soares, and Fernando Castor

Explaining Architectural Choices to Non-architects 352
Diego Bernini and Francesco Tisato

Reference Models and Reference Architectures Based on
Service-Oriented Architecture: A Systematic Review 360

Lucas Bueno Ruas de Oliveira, Katia Romero Felizardo,
Daniel Feitosa, and Elisa Yumi Nakagawa

A Classification of Value for Software Architecture Decisions 368
Ulrik Eklund and Thomas Arts

BeeEye: A Framework for Constructing Architectural Views 376
Hervé Verjus, Sorana Cı̂mpan, Azadeh Razavizadeh, and
Stéphane Ducasse

Facilitating the Selection of Architectural Patterns by Means of a
Marked Requirements Model . 384

Javier Berrocal, José Garćıa-Alonso, and Juan Manuel Murillo

Modelling Changes and Data Transfers for Architecture-Based Runtime
Evolution of Distributed Applications . 392

An Phung-Khac, Jean-Marie Gilliot, Maria-Teresa Segarra,
Antoine Beugnard, and Eveline Kaboré

Mining Relationships between the Participants of Architectural
Patterns . 401

Ahmad Waqas Kamal and Paris Avgeriou

Software Architecture Recovery Process Based on Object-Oriented
Source Code and Documentation . 409

Sylvain Chardigny and Abdelhak Seriai

Ontological Analysis for Generating Baseline Architectural
Descriptions . 417

Arvind W. Kiwelekar and Rushikesh K. Joshi

Experiences in Making Architectural Decisions during the Development
of a New Base Station Platform . 425

Juha Savolainen, Juha Kuusela, Tomi Männistö, and Aki Nyyssönen

XIV Table of Contents

On the Role of Architectural Styles in Improving the Adaptation
Support of Middleware Platforms . 433

Naeem Esfahani and Sam Malek

Context-Aware Quality Model Driven Approach: A New Approach for
Quality Control in Pervasive Computing Environments 441

Adel Alti, Abdellah Boukerram, and Philippe Roose

Many to Many Service Discovery: A First Approach 449
Anthony Hock-koon and Mourad Oussalah

Communicating Architectural Knowledge: Requirements for Software
Architecture Knowledge Management Tools . 457

Widura Schwittek and Stefan Eicker

Specifying Loose Coupling from Existing Service Composition
Approaches . 464

Anthony Hock-koon and Mourad Oussalah

Research Challenges Papers

Dynamic Adaptive Service Architecture – Towards Coordinated Service
Composition . 472

Claus Pahl

Identity Management Mismatch Challenges in the Danish Municipality
Administration System . 476

Mads Schaarup Andersen and Henrik Bærbak Christensen

From Web Components to Web Services: Opening Development for
Third Parties . 480

Chouki Tibermacine and Mohamed Lamine Kerdoudi

Learning from the Cell Life-Cycle: A Self-adaptive Paradigm 485
Antinisca Di Marco, Francesco Gallo, Paola Inverardi, and
Rodolfo Ippoliti

Toward an Aspect Oriented ADL for Embedded Systems 489
Sihem Loukil, Slim Kallel, Bechir Zalila, and Mohamed Jmaiel

On the Need of Safe Software Product Line Architectures 493
Roberto E. Lopez-Herrejon and Alexander Egyed

Expert Activities Automation through Enhanced Business Services
Orchestration . 497

Asta Krupaviciute and Jocelyne Fayn

Architecture Decision-Making in Support of Complexity Control 501
Andrzej Zalewski and Szymon Kijas

Table of Contents XV

Software Architecture Constraints as Customizable, Reusable and
Composable Entities . 505

Chouki Tibermacine, Christophe Dony, Salah Sadou, and
Luc Fabresse

A Framework for Dynamic Self-optimization of Power and
Dependability Requirements in Green Cloud Architectures 510

Rami Bahsoon

Identifying Architectural Connectors through Formal Concept Analysis
of Communication Primitives . 515

Arvind W. Kiwelekar and Rushikesh K. Joshi

Tool Demo Papers

MDA Tool for Telecom Service Functional Design . 519
Ankit Ahuja, Jacques Simonin, and Rémi Nedelec

A NUI Based Multiple Perspective Variability Modeling CASE Tool 523
Rabih Bashroush

ByADL: An MDE Framework for Building Extensible Architecture
Description Languages . 527

Davide Di Ruscio, Ivano Malavolta, Henry Muccini,
Patrizio Pelliccione, and Alfonso Pierantonio

Author Index . 533

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 1–4, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Architecture in the Age of Compositionality

Jan Bosch

Intuit, Mountain View, CA
Jan@JanBosch.com

Abstract. The nature of software engineering is changing. Whereas building
systems was the predominant activity, more recently the focus has shifted to-
ward composing systems from open-source, commercial and proprietary
components and to only build the functionality that truly is competitively dif-
ferentiating. In addition, the way software is developed has changed as well,
especially focusing on short development cycles and frequent, or even continu-
ous, deployment. Because of these requirements, often teams are organized
around features, rather than components, and can change all components in the
system, including their interfaces. A third trend is the increasing adoption of
software ecosystems, where significant development of functionality relevant
for customers occurs outside the platform organization. Obviously, however,
the quality attributes that are necessary for system success remain important as
well as the ability to easily incorporate new requirements in the system in a cost
effective fashion. Because of the above, the role of software architecture and in
particular the software architects is more important in this new world, but there
is significant evolution in the implementation of the role. The paper starts by
characterizing the new approach to software engineering and the role of compo-
sitionality. It then explores the implications for software architecture and the
role of the software architect, Finally, it defines a number of research chal-
lenges for the ECSA community to explore.

Keywords: Software architecture, compositionality.

1 Setting the Context

Software engineering continues to evolve at an enormous rate, both in terms of the
size of systems built as well as the speed at which these systems are deployed and
evolve. This requires software engineering practitioners, including architects, to con-
tinuously develop new approaches to manage the consequent implications for the
complexity of software.

For large classes of systems, this now means that most software development is
more concerned with composition of existing open-source, commercial and internally
developed components in creative configurations than with the creation of significant
amounts of new software. The new software development is constrained to the truly
differentiating functionality that definesthe competitive advantageforthe system. The
consequence of this is obviously that easy composition of software assets increases
in importance.

2 J. Bosch

A second major transition in the software engineering industry is the adoption of
lean and agile development approaches. The principal elements of these approaches
include small teams, short development iterations and frequent or continuous de-
ployment. As these approaches increasingly are deployed in the context of medium
to large-sized systems, the consequence is that multiple teams are working in parallel
on the same system. These teams often have responsibility for components of the
system and that again increases the need for compositionalityas for these teams to be
successful, they need to be as decoupled in their work as possible.In response to
the latter, increasingly teams are organized around features instead of components,
can make changes to all code in the system and integrate their branches during the
integration stage.

The third trend is concerned with the increased adoption of a software ecosystem
approach by companies that have successful software systems or software product
lines. As companies increasingly aim to reposition as networked organization and
reduce their own headcount, outside partners perform significant parts of develop-
ment. In addition, companies are introducing app-store styled approaches to increase
the richness of functionality provided to their customers. However, it is difficult, if
not impossible, to enforce process on external companies, and consequently the part-
ners and third party developers need to be able to deploy independently. This requires
increased compositionality of the system and the architecture of the system presents a,
if not the, key enabler for achieving compositionality.

2 Role of Architecture and the Architect

With the evolution of software engineering, there are implications to the role of soft-
ware architecture as well as the software architect. Research attention has mostly been
directed to the early stages of designing for a green-field system and stressed the
importance of designing architectures carefully as the cost of re-architecting was
considered to be prohibitively high. In practice, most software architects spend all
their time in existing systems and focus on re-architecting and the addition of new
functionality against the lowest investment. The adoption of lean and agile ap-
proaches even further deemphasizes the initial design stage.

The role of the architect in this modern world can be viewed as focused on three
main responsibilities:

• Define and enforce end-to-end quality requirements: As multiple, largely inde-
pendent, teams work in the context of the evolving system, there is a need for a
central authority to define and enforce end-to-end quality requirements. Especially
operational quality requirements such as response times, performance and reliabil-
ity do not have a logical owner in a highly distributed and composition-oriented
world. The architect or architects have a responsibility to evaluate the impact of
ongoing development efforts on the quality attributes.

• Evolve the architecture and fight design erosion: Component teams, but espe-
cially feature teams, are strongly focused on adding new functionality to the system.
This requires additions and changes to the interfaces between components and, as a
consequence, over time the design of the system starts to erode. The architect has a
role to work with teams to steer interface evolution in the right direction to

 Architecture in the Age of Compositionality 3

minimize erosion. In addition, the formulation and execution of refactoring efforts
also needs to be initiated and, potentially, executed by the architect team.

• Decoupling: Lean, agile development demands that teams can perform their work
with minimal dependency on other teams. Only in this way, the main inefficiency,
dependencies between components and between teams and the consequent coordi-
nation cost can be avoided.Consequently, the architect has to strife for simplicity
and backward compatibility of subsequent versions of components. In many
systems, architectural simplicity is not sufficiently prioritized, causing inefficiency
as teams need to understand too much about the context in which their software
will operate.

3 Research Challenges

The evolution of the approach to software development as described earlier in the
paper, as well as the implications for software architecture and the architect, results in
a number of research challenges. These challenges mirror the changes in the role of
architecture and the architect discussed in the previous section.

• Define and architect end-to-end qualities into the system: The architect needs to
formulate end-to-end qualities for the system, often in collaboration with product
management. However, it is not trivial how to identify, define, architect and en-
force the qualities.

• Design erosion: Especially with multiple, independent teams, the architecture will
erode over time, requiring effort to assess, prioritize and address design erosion.
Some teams use very pragmatic approaches, such as a list in a document or on a
whiteboard, to identify when shortcuts are taken and priority of fixing the erosion.
However, ways to quantify design erosion as well as its life time cost and the ROI
of refactoring efforts still have not been broadly adopted in industry.

• Managing architecture in an ecosystem context: In the case of a software ecosys-
tem, the normal approaches employing software process as a mechanism to control
and coordination no longer work as the external partners and third party developers
cannot be subjected to these processes. Consequently, the architecture of the system
needs to shoulder this responsibility and help independent and mostly decoupled
teams evolve their part of the system without causing major issues as well.

Finally, I would like take this opportunity to call on the research community to refo-
cus efforts on the industrial application of research results. Of course we need the
development of new techniques and approaches, but these should be developed in
response to problems that companies actually experience and then validated in the
context of those companies to determine whether the proposed approach actually
delivers a benefit.

Reflecting on the progress of the software architecture community, that I have been
a part of for more than 15 years, I worry about the increasing dichotomy between
industrial practice and academic research. Academics may feel that the techniques and
approaches that industry would benefit from have already been developed over the
last decade and all that is needed is the adoption of these techniques. Industry,
however, will not adopt a technology until it is clear that it provides a real and clear

4 J. Bosch

benefit to the organization and, unfortunately, not all technologies proposed by aca-
demia provide that benefit.

The second reason that I feel it is so important for academia and industry to
strengthen their interactions is that in many ways practice leads research. Many new
research areas start from new problems identified by companies and solved in an ad-
hoc fashion that addresses the immediate needs of the organization. When multiple
companies run into the same issue, the next step is the identification of the generic
problem area and research becomes involved. However, as researchers, we have the
responsibility to go full circle and make sure that our solutions really do improve on
the original problem in its specific industrial context.

Finally, I want to stress that software architecture research falls under software en-
gineering and not computer science. Whereas science can drive activities that have no
apparent benefit or relevance, engineering research should not only prove feasibility
but also relevance. Relevance can be achieved by several means, but typically
requires that the research results improve the current practice through, for example,
productivity improvement, reduction in time-to-market or improved customer satis-
faction. Consequently, software architecture research has an obligation to provide
satisfactory qualitative or quantitative evidence of the benefit.

Concluding, I would like to encourage all members of the software architecture re-
search community to continuously work to decrease the dichotomy between research
and industrial practice and to seek validation of research results in industrial contexts.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 5–6, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Where Did All This Good Architectural Knowledge Go?

Philippe Kruchten

Electrical and Computer Engineering
University of British Columbia

2332 Main mall, Vancouver BC V6T1Z4 Canada
pbk@ece.ubc.ca

Abstract. Software architecture represents a significant intellectual asset. But
much of the architectural knowledge in organizations is still tacit knowledge.
Different parties involved in software development have different needs in
terms of architecture at different point in time, not limited to the architects
themselves. How can we deliver the right information at the right time to the
right person, as schedules are compressed? And where would the information
be coming from? And how good is it? Various strategies have been tried, from
central, bureaucratic accumulation of data--codification strategies, to simply
giving access to the right person--personalization strategies, and a few hybrid
strategies in between. This goes beyond mere software documentation, we need
to effectively support the reasoning of the architects and developers.

Keywords: software architecture, knowledge management.

1 Beyond Mere Architecture Documentation…

Organizations developing large software-intensive software have slowly realized that
software architecture represents a significant intellectual asset [1]. But as Rus &
Lindvall stated, “the major problem with intellectual capital is that it has legs and
walks home every day” [2]. Indeed, much of the architectural knowledge we have still
resides mostly in peoples’ head. The different parties involved in software develop-
ment have different needs in terms of architecture information at different points in
time, and this is not limited to the architects themselves.

How can we deliver the right information at the right time to the right person, as
schedules are compressed? And where would the information be coming from? And
how good is it?

Various strategies have been tried, from central, bureaucratic accumulation
of data—codification strategies, to simply giving access to the right person—
personalization strategies, and a few hybrid strategies in between. The problem is
getting more complicated as we move to software product lines and software “eco-
systems” [3], involving many more parties, across multiple organizational boundaries.
But there is more than just architectural documentation [4].

6 P. Kruchten

2 Tools and Processes for Architectural Reasoning

Beyond the mere documentation of the architecture of a given system, or reusable
recipes, tactics, methods on how to develop an architecture for a software-reliant
system, we need ways to support (and reuse) reasoning about the evolving architec-
ture of such systems: guidance that would increase the efficiency of the software
architects while designing an architecture.

The focus of our community has shifted over the last few years from software
architecture as a variant or subset of software design to software architecture as a
decision-making process. By making architectural decisions first-class citizens, we
have also raised up the bar, as well as the expectations, in process, methods, tools, and
techniques to support and exploit reasoning. Guiding people in decisions making is
not easy, and trying to do this with tools maybe even harder than educating people in
software architecture.

We are still far from a solution to these issues; the tools and processes that have
been proposed so far [4] are difficult to scale up, and to effectively transfer to practi-
tioners. The point solutions to various problems cited above are hard to integrate.

We’ve done tremendous progress in the last 20 years in understanding software ar-
chitecture. But we are hardly keeping up with the challenges ahead of us. How can we
put all this good architectural knowledge effectively to work?

References

1. Ali Babar, M., Dingsøyr, T., Lago, P., van Vliet, H. (eds.): Software Architecture Knowl-
edge Management: Theory and Practice. Springer, Berlin (2009)

2. Rus, I., Lindvall, M.: Knowledge Management in Software Engineering. IEEE Software 19,
26–38 (2002)

3. Bosch, J.: From Software Product Lines to Software Ecosystems. In: Muthig, D., McGregor,
J.D. (eds.) 13th International Software Product Line Conference (SPLC 2009) San Fran-
cisco, CA, pp. 111–119. ACM, New York (2009)

4. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures: Views and Beyond. Addison-Wesley, Boston (2002)

5. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Ali Babar, M.: A comparative study of archi-
tecture knowledge management tools. Journal of Software and Systems 83, 352–370 (2010)

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, p. 7, 2010.
© Springer-Verlag Berlin Heidelberg 2010

REST in Practice

Jim Webber

ThoughtWorks, 168-173 High Holborn, London, United Kingdom, WC1V 7AA
Jim.Webber@ThoughtWorks.com

Abstract. The Web has emerged as a viable platform for building distributed
systems beyond its traditional scope as a scalable means of sharing and
disseminating information. In this paper I present observations from recent
industrial development projects where commodity Web infrastructure and com-
mon patterns have been used to create large, scalable, and dependable computer
systems.

Keywords: Dependability, ESB, REST, Scalability, SOA.

1 Introduction

Over the years we've seen many systems architecture approaches come and go as
we've worked hard in IT to keep up with the pace of business change. While agile
delivery methods have helped enormously on a project-by-project basis, enterprise
system portfolios remain notoriously resistant to change.

Although we've seen significant progress in the way we analyze and govern enter-
prise systems through business-aligned SOA, the technology choices we make all too
often undermine those efforts. But for almost two decades the enterprise architecture
most of us have dreamed of has been sitting in plain sight. The Web has become the
world's foremost example of a scalable, resilient, and loosely coupled system of sys-
tems, which are precisely the characteristics we want in enterprise solutions.

In contrast the Web succeeds by avoiding inappropriate technology choices, which
bow to vendor pressure over business imperatives, while delivering all of the "ilities"
that we demand from enterprise-grade systems. Not only is the Web more than a
match for traditional middleware from a technology perspective, but from a cost per-
spective too. The keynote talk affiliated with this paper addresses financial and risk in
software architecture using case studies from recent projects.

Acknowledgments. The author would like to thank Ali Babar and Ian Gorton for the
opportunity to deliver these observations to ECSA and to the delivery teams at
ThoughtWorks for sharing their delivery experiences.

An ADL-Approach to Specifying and Analyzing
Centralized-Mode Architectural Connection

Guoxin Su1, Mingsheng Ying1,2, and Chengqi Zhang1

1 Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering
and Information Technology, University of Technology, Sydney, NSW 2007, Australia

2 State Key Laboratory of Intelligent Technology and Systems, Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China

{guoxin,mying,chengqi}@it.uts.edu.au

Abstract. A rigorous paradigm coordinating components is important in the de-
sign stage of large-scale software engineering. In this paper we propose a new
Architecture Description Language, called ACDL, to represent the centralized-
mode architectural connection in which all components are linked by a single
connector. Following one usual approach to architectural description, in which
component types and components are distinguished, and connectors integrate
behaviors of components by specifying their coordination protocols, ACDL de-
scribes connectors in such a way that connectors are insensitive to the numbers
of attached same-type components. Based on ACDL, we develop analytic tech-
niques to facilitate the system checking of temporal properties of an architecture.
In particular, our method shows to what extent one can add, delete and replace
components without making the whole system lose desired temporal properties,
and improves the system checking in several ways, for example enhancing the
use of previous checking results to deal with new checking problems.

1 Introduction

As the complexity of software designs increases, apart from algorithmic and data-
structure-related problems, attention is focused on how to compose subsystems into
an overall system [1]. A rigorous paradigm coordinating components is important in
the design stage of large-scale software engineering.

Many approaches exist in the literature, from application-oriented to theory-empha-
sized, to deal with issues related to component-based engineering [2]. Architecture De-
scription Languages (ADLs) emerged as a promising way to formally describe some
essential features of an architecture. Although the software architecture community
agrees, more or less, that a description of an architecture should consist of three parts,
i.e. components, connectors, and architectural configuration [3], each ADL has its own
modeling focus, fleshing out features of an architecture from its own viewpoint. We
consider components as interfaces performing running-time behaviors, i.e. sequences
of input, output and internal actions, and connectors as a special kind of components
whose functionality is to integrate components, and whose interfaces can be seen as
protocols coordinating behaviors of components. Similar understanding of components
and connectors can be found in ADLs such as Wright [4] and π-ADL [5].

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 8–23, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Specifying and Analyzing Centralized-Mode Architectural Connection 9

In this paper we propose a new ADL, called ACDL (an acronym for Architectural
Connection Description Language), in which component types and components are dis-
tinguished, and connectors are described to be insensitive to the numbers of attached
same-type components. ACDL provides a suitable formal specification for both the
structural and the behavioral features of centralized-model architectural connection in
which components are linked by a single connector. Centralized-mode architectural
connection emphasizes the central status of connectors in star-topology architectures.
Advantages of such architectural topology have been recognized in the literature, such
as [6] in which it was called coordinator-based architecture style.

Based on ACDL, we develop analytic techniques to facilitate the system checking
of temporal properties of an architecture. The compositional analyses use a partition
to divide the whole set of components in an architecture into parts, and allow to check
each part against the central connector to obtain the correctness of the architecture.
The type-based analyses allow to do the checking on the architecture-type level instead
of the individual-architecture level, and show to what extent one can add, delete and
replace components without making the whole system lose desired temporal properties.
Together, these techniques can improve the system checking in four ways:

– Our method enhances the use of previous checking results to deal with new check-
ing problems;

– It helps identify the part of an architecture leading to an undesired property;
– It reduces the complexity of checking by safely skipping over some components;
– It facilitates the reusability of ACDL-specifications by showing to what extent the

system checking can be carried out in the type level.

1.1 Novelty

This paper is novel in the way that ACDL describes architectures, in particular, con-
nectors. The idea that connectors integrate components by specifying the coordination
protocols for their behaviors is not new, but connectors described in ACDL are struc-
turally flexible in the sense that protocols implemented in them have no restriction on
the numbers of attached same-type components. This structural flexibility of connectors
is achieved by allowing some components to send information to inform the connector
what components are involved in the interactions. Therefore ACDL need not distinguish
connector types and instances as Wright does. The formal descriptions of connectors in
ACDL provides the centralized-mode architectural connection a generic representation,
which is important both in theory and in practice (see Sect. 2).

Another innovation is the analytic techniques of temporal properties of an archi-
tecture, which are developed based on ACDL. By employing π-calculus [7] to be its
formal semantics, ACDL allows reasoning about temporal properties of the system. We
show how it deals with deadlock-freedom and an important liveness property called
interaction-liveness. Interaction-liveness formulates the property of a system that, at
each stage during the running-time of the system, each component is able to get in-
volved into the interaction with the rest of the architecture at some future time, or alter-
natively, the system will never proceed to a situation in which some of its components
can no longer interact with the environment. The idea of using Process Algebras rea-
soning about properties of an architecture is not new and has been carried out in the

10 G. Su, M. Ying, and C. Zhang

previous literature, such as [4] and [8]. But the main novelty of our method is that,
firstly, more general than the acyclic/cyclic sharp division in [8], it uses a partition on
the whole set of components in architecture to achieve the finest-grain of the composi-
tional analyses, and secondly, it allows to do the checking on the architecture-type level
and shows to what extent one can add, delete and replace components in an architec-
ture without making the system lose the desired properties. On the other hand, although
some ADL-relevant works like [9] and [10] did indicate that their methods apply to the
analysis of liveness properties, ours, which seriously deals with interaction-liveness, is
still enlightening.

1.2 Other Related Works

The architectural topology that we consider, i.e. centralized-mode architectural connec-
tion, is close to the coordinator-based architecture style investigated in [6], in which
the authors were motivated by the following problem: how to assemble a set of off-the-
shelf software components into an overall system which enjoys desired properties. They
achieved this goal by delegating the interactions of components to a single coordinator
which restricts the interaction-patterns of components.

Related ADLs includes Darwin [11], which also employs π-calculus as its seman-
tics. But Darwin considers components as interfaces for providing and requesting (ref-
erences of) services, and does not explicitly model a connector as a first-class entity in
an architecture. π-ADL [5] is a powerful formal specification language based on the
high-order typed π-calculus, and is equipped with the analysis language π-AAL [12]
which is able to express safety and other temporal properties. However, despite of their
expressive and analytic power, π-ADL and π-AAL do not aim to facilitate the system
checking and the reusability of specifications by providing a suitable representation of
centralized-mode architectural connection, which is the primary goal of our approach.

The remainder of this paper is organized as follows: In Sect. 2 we use client-server
systems as examples to motivate our modeling approach. In Sect. 3 we recall relevant
definitions of π-calculus. In Sect. 4 we present the structure of our description language
ACDL and a complete textual notation of a client-server system which is treated as the
working example in the sequel. In Sect. 5 we describe the translation of expressions in
ACDL into processes in π-calculus. In Sect. 6 we present several theorems dealing with
analyses of architectural properties based on the description of ACDL and illustrate
their significance by the working example. Finally, in Sect. 7 we conclude our paper
and report the future work. The proofs of the theorems are provided in the Appendix.

2 Motivating Examples

We motivate our modeling approach by considering the simple client-server system
shown in Fig. 1(a), which consists of two clients and one server linked by a black-box
middleware embodying the functionality of procedure-callings from the clients to the
server. One modeling viewpoint considers this system as a composition of two subsys-
tems as shown in Fig. 1(b). In other words, two clients are linked to the server via two

Specifying and Analyzing Centralized-Mode Architectural Connection 11

C1

 S

C0 C0

 (a) (b) (c)

 S

C1

 S

C0C1

Fig. 1. Client-Server Systems

independent procedure-call connectors. We call this kind of connection the dispersed-
mode connection. An obvious advantage of dispersed-mode connection is that, be-
cause each links one client and one server only, two connectors can be formally de-
scribed as instances of the same connector type in ADLs such as Wright and PADL [8].
The dispersed-mode connection also applies to multi-client-server cases. However, this
model disperses the connected middleware, and hence, is unable to implement within
the connectors some global strategies of coordination of clients and servers, for exam-
ple, a fairness strategy for access of clients to a server. The implementation of such
coordination strategies in a connector is particularly desirable if we consider a connec-
tor as a first-class entity in an architecture, whose advantages have been increasingly
recognized [13].

Given the above considerations, it is reasonable therefore to adopt another modeling
viewpoint, i.e. the centralized-mode connection (as contrary to dispersed-mode con-
nection), in which (take our client-server system for example) both clients are linked
to the server via a single procedure-call connector, as shown in Fig. 1(c). However, one
obvious difficulty for the centralized-mode connection is how to find a generic repre-
sentation of connectors that are able to be attached to different numbers of clients (and
servers). The significance of such a representation is two-fold. It is theoretically inter-
esting. For example, the three connectors in Figure 1(b) and (c) can be seen as three in-
stances of such a representation. On the other hand it favors the implementing practices.
For example, the applicability of this representation in other client-server systems with
different numbers of clients and servers advocates the reusability principle in software
architecture [14] [15]. In this paper we offer a solution to this problem by developing
ACDL to formally describe connectors in a manner where they are insensitive to the
number of attached same-type components.

3 π- Calculus

In this section we summarize relevant definitions of a version of π-calculus, which is
treated as the semantics of ACDL. For a reference to π-calculus we refer to [16].

We assume an infinite set of names, ranged over by a, b, c, x, y and z. The π-calculus
syntax is given by the following grammar:

P ::= π.P | 0 | P + Q | P‖Q | P\N | I

12 G. Su, M. Ying, and C. Zhang

Table 1. SOS of π-calculus

a(x).P
a〈y〉−→ P{y/x} α.P

α−→ P if α �= a(x)

P
α−→ P ′

P + Q
α−→ P ′

P
α−→ P ′

Q + P
α−→ P ′

P
α−→ P ′

P‖Q α−→ P ′‖Q
P

α−→ P ′

Q‖P α−→ Q‖P ′

P
a〈x〉−→ P ′ Q

a〈x〉−→ Q′

P‖Q τ−→ P ′‖Q′
P

a c−→ P ′ Q
a c−→ Q′

P‖Q τ−→ P ′‖Q′

P
α−→ P ′, ch(α) �= N

P\N α−→ P ′\N
P

α−→ P ′, I
def
= P

I
α−→ P ′

where P is called a process, π is called a prefix and ranges over a〈x〉, a(y), a c, a c and
τ (the silent action), N is called a channel and ranges over a and a c, and I ranges over
process identifiers.

An action α ranges over π and a〈x〉. The structural operational semantics (SOS) of
π-calculus is a set of derivative rules defining a relation called transition O ⊆ Process
× Action × Process. We write P

α−→ Q if (P, α, Q) ∈ O. The SOS of our π-calculus
is given in Table 1.

The SOS compiles a π-calculus process P into a Labeled Transition System (LTS)
called the LTS of P . A transition path ϕ (of the LTS) of P is a maximum concatenation
of transitions, i.e., either an infinite concatenation of transitions or a finite concatenation
of transitions such that the last process has no more transitions. Q is reachable from
P if there is a finite concatenation of transitions from P to Q. Furthermore, ch(α)
refers to the channel of α. Ch(P) denotes the set of channels of actions labeled in the
transition paths of the LTS of P . P

α−→ means P
α−→ P ′ for some P ′. Given a specific

occurrence of P in Q, P
α−→ in Q means that, P

α−→ P ′ for some P ′ and, in addition,

this transition is a primitive of the derivation of Q
β−→ Q′ for some Q′, β according

to the SOS in Table 1.1 For example, ā〈b〉.P ā〈b〉−→ in (ā〈b〉.P‖a(x).Q)\a. Let I =
{N0, . . . , Nn}, P\I abbreviates P\N0 · · · \Nn; (π + π′).P abbreviates π.P + π′.P .

Definition 1. P is deadlock-free, if there is no finite transition path of P .

Definition 2. P is strongly deadlock-free, if P is deadlock-free and all its transition
paths contain infinite non-silent actions, i.e. α’s such that α �= τ .

Strong deadlock-freedom means processes interact with the environment infinitely
often.

Definition 3. P1, . . . , Pn are mutually interaction-live against (the restriction of) I,
if for each Q = (Q1‖ · · · ‖Qn)\I reachable from P = (P1‖ · · · ‖Pn)\I and each
i ∈ [1, n], there is R = (R1‖ · · · ‖Rn)\I reachable from Q such that Ri

α−→ in R for
some α �= τ where ch(α) ∈ I.

1 Throughout this paper when P
α−→ in Q is written, the specific occurrence of P in Q is clear

in the context.

Specifying and Analyzing Centralized-Mode Architectural Connection 13

When P1, . . . , Pn represent all components (including the connector) of a system, and
I is the set of communication channels of the system, interaction-liveness formulates
the property that, this system will not proceed to a situation in which some of its com-
ponents can no longer interact with the rest of the system.2

4 Specifying Architectural Connection

In this section we present the architecture description language ACDL and a working
example throughout the remainder of this paper. A textual notation in ACDL consists of
two parts: an architecture type and an architecture. The former specifies the component
types and the connector; the latter specifies the components of corresponding types. The
structure of ACDL is given in the following template:

ArchitectureType {"name"}
ComponentType {"name"}
Input {...}
Output {...}
Control {...}
Behavior {...} %in Process-Algebra form%

Connector {"name"}
Protocol {...} %in Process-Algebra form%

Architecture {"name"}
Configuration {"Component : ComponentType"}

A ComponentType is defined as a function of Input, Output, Control and Behavior. El-
ements in Input and Output are indexed by their component-type name, and elements
in Control convey component-type names (their own and others). Behavior of a Com-
ponentType is specified in the Process-Algebra form and its prefixes are the elements in
Input, Output and Control. A Connector is defined as a function of Protocol, which is
also specified in Process-Algebra form and whose prefixes are derived from elements
in Input, Output and Control of every ComponentType in this way: if act name is in
Input or Output of some ComponentType, then act x is a possible prefix of Protocol;
if act〈name〉 is in Control of some ComponentType, then act(y) is a possible prefix of
Protocol. Note that act(y) binds variable y. We further require that no free occurrence
of variables appears in Protocol.

Our working example is the complete textual notation of a simple client-server sys-
tem named SimpleCS, in which three clients, Client0, Client1 and Client2, and two
servers, Server0 and Server1, are linked by a procedure-call connector ProCall:

Architecture Type {Client-Server}
ComponentType {C} %for Client%
Input {result_C}
Output {request_C}
Control {log<C>, target<S>}

2 Note that the interaction-liveness is strictly weaker than that each component will interact with
other components in the system infinitely often. In our working example, the latter property is
not desirable.

14 G. Su, M. Ying, and C. Zhang

Behavior {Client = internalCompute.log<C>.
target<S>.request_C.result_C.Client}

ComponentType {S} %for Server%
Input {involve_S}
Output {return_S}
Behavior {Server = involve_S.internalCompute.

return_S.Server}
Connector {ProCall}
Protocol {ProCall = log(x).target(y).request_x.

involve_y.return_y.result_x.ProCall}
Architecture {SimpleCS}

Configuration {C0,C1,C2:C; S0,S1:S}

There are three important points to be observed. First, behaviors of components are
derived from Behavior of their types, so we need not specify them in the textual no-
tation. Secondly, the connector ProCall obtains its knowledge of involved components
from the information conveyed in log and target, and consequently, the specification of
architecture type Client-Server need not have any restriction on the number of compo-
nents, i.e. instances of Client and Server. In this way, a component-number-insensitive
connector ProCall is formally described. This is the main feature of ACDL. Finally, the
architecture type/instance separation in ACDL implies that the specification of Client-
Server may be reused when describing other architectures of the same type.

5 Formal Semantics

In this section, we bridge ACDL and π-calculus. For the convenience of discussion, we
set down some notations in Table 2.

Table 2. Notation Convention

STRUCTURES NOTATIONS SEMANTICS

architecture type A -
architecture A [A]

component type E -
component E [E]

connector G [G]

The semantics [E] of component E is the process identifier whose recursive definition
is naturally obtained from the behavior of E (not its component type) according to
the input-, output- and silent-nature of the prefixes (elements in Control are output-
nature). Similar treatment applies to the semantics [G] of a connector G. But prefixes
in [G] are dual to prefixes in some [E] provided that E ,G are in one architecture. As
an example, Table 3 gives the semantics of the components Client0, Server0 and the
connector ProCall in the SimpleCS system.

In the sequel, we assume that E1, . . . , En list all components in A, and G is the
connector in A. Let IEi , called the set of channels of Ei, be the set of channels in Input,

Specifying and Analyzing Centralized-Mode Architectural Connection 15

Table 3. Semantics Samples

[Client0] = τ. log〈C0〉. (target〈S0〉 + target〈S1〉). request C0. result C0. [Client0]
[Server0] = involve S0. τ. return S0. [Server0]

[ProCall] = log(x). target(y). request x. involve y. return y. result x. [ProCall]

Output and Control of Ei. For example, IC0 = {log, target, request C0, result C0}.
The semantics of A is defined by

[A] = ([E1]‖ · · · ‖[En]‖[G])\IA ,

where IA =
⋃n

i=1 IEi . Note that the positions of [E1], . . . , [En] and [G] do not affect
the analyses of temporal properties of A. The following propositions formulate some
neccessary properties of ACDL to formulate or prove the theorems later. Let i, j, k ∈
[1, n].

Proposition 1. If Ei, Ej and Ek are of the same type, then (i) IEi ∩ IEj = IEi ∩ IEk
,

and, (ii) IEj = {N{b/a} : N ∈ IEi} and [Ei] = [Ej]{b/a}, where a, b are the names
of Ei, Ej , respectively.

Proposition 1 formalizes that same-type components share the same Control and that
their Input and Output are parameterized on their names.

Proposition 2. (1) Ch([Ei]) ⊆ IEi for each Ei . (2) For each P = (P1‖ · · · ‖Pn‖Pn+1)
\IA reachable from ([E1]‖ · · · ‖[En] ‖[G])\IA, if Pn+1

α−→ in P , then either α = τ or
ch(α) ∈ IA.

The first clause of Proposition 2 justifies the name of IEi , i.e. the set of channels of Ei.
The second clause justifies the definition of [A] above by showing all channels of G are
in IA, and implies that G indeed functions to coordinate behaviors of components in
A only.

6 Analyzing Architectural Properties

In this section we develop formal techniques to analyze deadlock-freedom and interac-
tion-liveness based on the framework of ACDL. To improve the readability we put all
the proofs of theorems in the Appendix. The utilities of the theorems are illustrated by
the working example – the SimpleCS system.

We say A, E or G, respectively, is deadlock-free, if [A], [E] or [G], respectively, is
deadlock-free; E ′

1, . . . , E ′
m (selected from E1, . . . , En) and G are mutually interaction-

live against (the restriction of) I, if [E ′
1], . . . , [E ′

m] and [G] are mutually deadlock-
free against I; A is interaction-live if E1, . . . , En and G are mutually interaction-live
against IA.

We still need to formulate one property expressing that the connector fits the compo-
nents:G is compatible with {E ′

1, . . . , E ′
m} againstI, if each transition path of ([E ′

1]‖ · · · ‖
[E ′

m]‖[G])\I contains infinitely many processes P = (P1‖ · · · ‖ Pm‖Pm+1)\I such
that: if Pm+1

α−→ and ch(α) ∈ I, then Pm+1
α−→ in P .

16 G. Su, M. Ying, and C. Zhang

6.1 Compositional Analyses

For convenience, we use the collection of the elements in the architecture A to denote
A itself, i.e. A = {E1, . . . , En,G}. To carry out the compositional analyses, we need
an auxiliary definition. Let P be the finest partition on A − {G} such that Ej ∈ P(Ei)
whenever IEj ∩ IEi �= ∅. We let

A− {G} = {E1
1 , . . . , Ek1

1 , . . . , E1
m, . . . , Ekm

m } ,

where
∑m

i=1 ki = n and P(E1
i) = {E1

i , . . . , Emi

i }, and let IP(Ei) =
⋃

Ej∈P(Ei)
IEj .

Note that by Proposition 1 either P(E1
i) = {E1

i } or P(E1
i) is the super set of the set of

same-type components including Ei. This partition sets the stage for the compositional
analyses: analyses of the architecture are decomposed into analyses of parts accord-
ing to the partition, while “finest” refers to the possibly finest-grained decomposition.
This renders our compositional analytic method (for deadlock-freedom, i.e. Theorem
1) more general than that in [8] where components in an acyclic-topology architecture
share no channels due to the definition of PADL.

Theorem 1. If G is deadlock-free and compatible with P(E1
i) against IP(E1

i) for each
i ∈ [1, m], then A is deadlock-free.

The proofs of Theorem 1 and other theorem below are given in the Appendix. Theorem
1 allows us to reduce the checking of the deadlock-freedom of A to the checking of
the deadlock-freedom of G and compatibility of G with parts of A, i.e. {E1

i , . . . , Emi

i }
where i ∈ [1, m]. For the SimpleCS system, to check the deadlock-freedom of the
whole system, it suffices to check: (1) the deadlock-freedom of ProCall, and, (2) the
compatibility of ProCall with {Client0, Client1, Client2} against Ic0 ∪ Ic1 ∪ Ic2, with
{Server0} against Is0, and with {Server1} against Is1, respectively. By decomposing
the analyses, we may be able to use previous checking results to check other similar
architectures, and detect which part of an architecture is responsible for deadlocks (if
any) and hence, make diagnoses.

Theorem 2. IfA satisfies the conditions in Theorem 1, all components inA are strongly
deadlock-free, and G is mutually interaction-live against IP(E1

i) for each i ∈ [1, m],
then A is interaction-live.

If A satisfies the conditions in Theorem 1, Theorem 2 licenses us to reduce the check-
ing of the interaction-liveness of A to the checking of the following two: the strong
deadlock-freedom of each component in A, and the mutual interaction-liveness of
E1

i , . . . , Eki

i ,G against IP(E1
i) for each i ∈ [1, m]. For the SimpleCS system, to check

the mutual interaction-liveness of A, it suffices to check: (1) the strong deadlock-
freedom of all clients and servers, and, (2) the mutual interaction-liveness of Client0,
Client1, Client2 and ProCall against Ic0∪Ic1∪Ic2, of Server0 and ProCall against Is0,
and of Server1 and ProCall against Is1, respectively. The significance of Theorem 2 is
similar to Theorem 1, as described above. Theorem 2 also shows that the checking of
interaction-liveness can be based on the checking of deadlock-freedom according to
Theorem 1.

Specifying and Analyzing Centralized-Mode Architectural Connection 17

Theorem 3. If Ei and Ej are of the same type and IEi ∩ IEj = ∅, then (1) G is com-
patible with {Ei} against IEi if and only if G is compatible with {Ej} against IEj ,
(2) Ei is strongly deadlock-free if and only if Ej is strongly deadlock-free, and, (3) Ei

and G are mutually interaction-live against IEi if and only if Ej and G are mutually
interaction-live against IEj .

In the SimpleCS system, according to Theorem 3 we have that, for example, Procall
is compatible with {Server0} against Is0 if and only if Procall is compatible with
{Server1} against Is1, and Server0 is strongly deadlock-free if and only if Server1

is strongly deadlock-free. With this theorem we can safely skip over the checking of
some parts of an architecture.

6.2 Type-Based Analyses

The compositional analyses are carried out in the level of architecture instance. We now
develop analytic techniques in the level of architecture type.

Similar to an architecture, we treat an architecture type A as a collection of compo-
nent types, together with a connector. In this section we assume E ∈ A. Note that E is
disjointed if and only if P(EE) = {EE} for some P . Let EE refer to a component of type
E and AA an architecture of type A. We say A is open for deadlock-freedom on E, if
AA∪{EE} and AA−{EE} are deadlock-free wheneverAA is deadlock-free;3

A is open
for interaction-liveness on E, if the proposition of the same form holds for interaction-
liveness. Informally, if A is open for deadlock-freedom on E, then every new archi-
tecture obtained from a deadlock-free architecture of type A via adding, deleting and
replacing instances of E is also deadlock-free, and if A is open for interaction-liveness
on E, then every new architecture obtained from an interaction-live architecture of type
A via adding, deleting and replacing instances of E is also interaction-live. We are go-
ing to set down some reasonable conditions on component types to ensure these two
properties hold.

We say E is disjointed, if IEE

1
∩ IEE

2
= ∅ for any components EE

1 , EE

2 ; E is excluded,

if for any component EE

1 , EE

2 the following holds: for each P = (P1‖P2‖P3)\IEE

1
∪

IEE

2
reachable from ([EE

1]‖[EE

2]‖[G])\ IEE

1
∪ IEE

2
, there is α �= τ such that Pi

α−→
in P for each i ∈ {1, 2}, only if Pj where j = 3 − i is reachable from [EE

j] via a
finite concatenation of transitions labeled by τ only. Informally, a component type is
disjointed if and only if its Control is empty. The definition of “excludedness” implies
the following lemma which says, informally, that each component of that type must
not start its interaction if any other component of the same type is in the middle of
interaction, and whose proof follows immediately from the definition of excludedness.

Lemma 1. Suppose E ′
1, . . . , E ′

m (m ≥ 2) are all instances of E in AA, and E is ex-
cluded, then: For each P = (P1‖ · · · ‖Pm‖Pm+1)\

⋃m
i=1 IP(E′

i)
reachable from

([E ′
1]‖ · · · ‖[E ′

m]‖[G])\
⋃m

i=1 IP(E′
i)

, Pi
α−→ in P where α �= τ for each i ∈ [1, m],

only if Pj where j ∈ [1, m] − {i} is reachable from [E ′
j] via a finite concatenation of

transitions labeled by τ only.

3 For AA − {EE} we have to suppose AA has more than one instances of type E, for there must
be at least one instance for each component type in an architecture.

18 G. Su, M. Ying, and C. Zhang

We now demonstrate the relationship between disjointedness, excludedness, deadlock-
freedom and interaction-liveness.

Theorem 4. If E is disjointed, then A is open both for deadlock-freedom and for
interaction-liveness on E.

Theorem 4 allows us to add and delete components of disjointed types without mak-
ing the architecture lose deadlock-freedom and interaction-liveness, if the architecture
enjoyed these two properties originally. We illustrate the application of Theorem 4 by
our working example – the SimpleCS system. Since the the component type Server
does not have any Control actions, it is not hard to prove that Server is disjointed. If
we have already obtained the result that SimpleCS is deadlock-free (resp. interaction-
live), then we can build new systems based on SimpleCS that are also deadlock-free
(resp. interaction-live), such as:

MultiServerCS = SimpleCS ∪ {Server2, . . . , Servern} − {Server0, Server1} .

If we do not know the deadlock-freedom and interaction-liveness of SimpleCS, we
check the following simpler system with one server only:

SingleServerCS = SimpleCS − {Server1} .

Theorem 5. If E is excluded, then A is open both for deadlock-freedom and for interac-
tion-liveness on E.

The significance of Theorem 5 is just like Theorem 4 in that it allows us to add and
delete components of excluded types without making the architecture lose deadlock-
freedom and interaction-liveness, if the architecture enjoyed these two properties orig-
inally. In the SimpleCS system, since the log actions in each Client instance has to
synchronize with the log actions in the connector ProCall, it is not hard to verify that
component type Client is excluded. As above, if we already have the result that Sim-
pleCS is deadlock-free (resp. interaction-live), then we can build new systems based on
SimpleCS that are also deadlock-free (resp. interaction-live) (combining Theorem 4),
such as:

MultiCS = MultiSeverCS ∪ {Client3, . . . , Clientm} − {Client0, Client1, Client2} .

If we do not know the deadlock-freedom or interaction-liveness of SimpleCS, we check
the following elementary system with one client and one server only (combining Theo-
rem 4):

SingleCS = SingleServerCS − {Client1, Client2} = {Client0, Server0, ProCall} .

In total, what Theorem 4 and Theorem 5 tell us is when and to what extent the checking
of deadlock-freedom and interaction-liveness of an architecture can be carried out in the
type level. A final point worthy to be noticed is that, combining with the compositional
analytic techniques (Theorem 1 and 2), the checking of SingleCS can be splitted into
the checking of the following two subsystems:

SingleCSC = {Client0, ProCall}, SingleCSS = {Server0, ProCall} .

Specifying and Analyzing Centralized-Mode Architectural Connection 19

6.3 Discussions

We have shown how our analytic techniques, i.e. the compositional analyses and the
type-based analyses, deal with the deadlock-freedom and the interaction-liveness of an
architecture. We now summarize how these techniques improve the system checking in
the following four ways and explain them by examples.

– First, our method enhances the use of previous checking results to deal with new
checking problems. For example, if we already know that ProCall is compatible
with Server0 against Is0 , then we can deduce that ProCall is compatible with
Server1 against Is1 .

– Secondly, our method helps make diagnoses of those architectures failing to satisfy
a desired property. This is due to the compositional nature of our first analyses. Sup-
pose a client-server architecture BadCS contains a deadlock and we detect that the
ProCall is not compatible with the client type, say, BadClient. By fixing BadClient
we may obtain a deadlock-free architecture.

– Thirdly, our method reduces the complexity of system checking. For example, we
can reduce the checking of deadlock-freedom and interaction-liveness of the system
SimpleCS to the checking of those properties of the system SingleCS.

– Finally, while the architecture-type/instance distinction in ACDL makes the reusa-
bility of architecture-type specifications to describe new architectures possible, our
type-based analyses facilitate this reusability by showing when and to what extent
the system checking of some properties can be undertaken in the type level.

7 Conclusions and Future Work

In this paper we consider components in software-intensive systems as interfaces per-
forming behaviors of input, output, and internal actions, and connectors as a special
kind of components that glue components by specifying coordination protocols for their
behaviors. Our focus is the centralized-mode architectural connection in which all com-
ponents are linked by a single connector. We have proposed a new ADL called ACDL,
the key feature of which is that it describes connectors in such a way that they are
insensitive to the numbers of attached same-type components. We develop two kinds
of analytic techniques customizing ACDL, i.e. compositional analyses and type-based
analyses, to improve the system checking of temporal properties, such as deadlock-
freedom and interaction-liveness, of an architecture. The latter property is a liveness
property formulating that, during the running-time of the system, each component will
never be trapped in a situation where no future interactions with the rest of the system
is possible.

Our future work will follow two directions. First, the interaction-liveness is only one
kind of liveness properties, but we foresee that our method applies to other liveness
properties. Therefore one challenging problem is to find out what range of liveness
properties can be dealt with by our method, and to give them a formal definition.

The other important direction is the tool support for ACDL. A tool-set accompanying
an ADL is, strictly speaking, not part of the language itself, but the purpose of devel-
oping formal languages for architectural description is because their formality implies

20 G. Su, M. Ying, and C. Zhang

their suitability to be manipulated by software tools [3]. However, until now we have
not offered (in this paper or elsewhere) any tool support for ACDL, such as a parser
which analyzes the syntactic correctness of a piece of written ACDL textual notation,
and this renders ACDL rather conceptual. A “shortcut” to overcome this shortcoming
is mapping a conceptual language like ACDL to a standard language equipped with a
well-developed toolkit such as UML (currently UML2.0 [17]), so an ACDL user can
leverage the tools customizing UML like a code-generator and be favor of the theoretic
merits of ACDL in practice. Nonetheless, the applicability of the mapping depends
on whether and to what extent UML supports modeling the abstractions formally de-
scribed by ACDL, especially given the fact that UML is a semi-formal language. Op-
timistically, UML has an extension mechanism permitting one use Object Constraint
Language (OCL) [18], which is based on set theory and predicate logic, to provide a
precise description of the information unable to be expressed in standard UML dia-
grams. The general applicability of using UML to model software architectures as sev-
eral representatives of ADLs do has been evaluated in the literature [19]. In our case,
however, a thorough examination is needed.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments to
improve the draft of this paper.

References

1. Garlan, D., Shaw, M.: An introduction to software architecture. Technical report, Pittsburgh,
PA, USA (1994)

2. Sifakis, J.: A framework for component-based construction. In: Proceedings of the 3rd IEEE
International Conference on Software Engineering and Formal Methods (2005)

3. Medvidovic, N., Taylor, R.: A classification and comparison framework for software ar-
chitecture description languages. IEEE Transactions on Software Engineering 26(1), 70–93
(2000)

4. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transactions on
Software Engineering and Methodology 6(3), 213–249 (1997)

5. Oquendo, F.: π-ADL: an architecture description language based on the higher-order typed
π-calculus for specifying dynamic and mobile software architectures. ACM SIGSOFT Soft-
ware Engineering Notes 29(3), 1–14 (2004)

6. Tivoli, M., Inverardi, P.: Failure-free coordinators synthesis for component-based architec-
tures. Science of Compututer Programming 71(3), 181–212 (2008)

7. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and Compu-
tation 100(1), 1–77 (1992)

8. Bernardo, M., Ciancarini, P., Donatiello, L.: Architecting families of software systems with
process algebras. ACM Transactions on Software Engineering and Methodology 11(4), 386–
426 (2002)

9. Inverardi, P., Wolf, A.L., Yankelevich, D.: Static checking of system behaviors using de-
rived component assumptions. ACM Transactions on Software Engineering and Methodol-
ogy 9(3), 239–272 (2000)

Specifying and Analyzing Centralized-Mode Architectural Connection 21

10. Aldini, A., Bernardo, M.: On the usability of process algebra: An architectural view. Theo-
retical Computer Science 335(2-3), 281–329 (2005)

11. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software architectures.
In: Proceedings of the 5th European Software Engineering Conference, pp. 137–153 (1995)

12. Mateescu, R., Oquendo, F.: π-AAL: an architecture analysis language for formally spec-
ifying and verifying structural and behavioural properties of software architectures. ACM
SIGSOFT Software Engineering Notes 31(2), 1–19 (2006)

13. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, NJ (1996)

14. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers. In: Pro-
ceedings of the 25th International Conference on Software Engineering (2003)

15. Giesecke, S.: Taxonomy of architectural style usage. In: Proceedings of the 2006 Conference
on Pattern Languages of Programs (2006)

16. Sangiorgi, D., Walker, D.: π-calculus: A Theory of Mobile Processes. Cambridge University
Press, NY (2001)

17. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide, 2nd edn.
Addison-Wesley Professional, Reading (2005)

18. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA. Addison-Wesley, Boston (2003)

19. Medvidovic, N., Rosenblum, D.S., Redmiles, D.F., Robbins, J.E.: Modeling software ar-
chitectures in the unified modeling language. ACM Transaction on Software Engineering
Methodology 11(1), 2–57 (2002)

Appendix

Proof of Theorem 1. To improve readability we use {[E1
i]} refering to [E1

i]‖ · · · ‖[Eki

i],
for each i ∈ [1, m]. Hence [A] = ({[E1

1]}‖ · · · ‖{[E1
m]}‖[G])\IA. We decompose the

proof of Theorem 1 into the following three lemmas.

Lemma 2. If P = (P1‖ · · · ‖Pm‖Pm+1)\IA is reachable from [A] = ({[E1
1]}‖ · · · ‖

{[E1
m]}‖[G])\IA, then (Pi‖Pm+1)\IP(E1

i) is reachable from ({[E1
i]}‖[G])\IP(E1

i) for
each i ∈ [1, m].

Proof. The proof is by induction on the number of transitions from [A] to P . Suppose
Q = (Q1‖ · · · ‖Qm‖Qm+1)\IA, Q

α−→ P , and Q is reachable from [A]. W.r.t. Propo-
sition 2 and the partition P , there are only two cases on the derivation of Q

α−→ P . (1)
Suppose Q

α−→ P is derived from Qi
τ−→ Pi for some i ∈ [1, m + 1]. Then clearly

(Qj‖Qm+1)\IP(E1
j) for each j ∈ [1, m]. By induction hypothesis we are done. (2)

Suppose Q
α−→ P is derived from Qj

β−→ Pj for some j ∈ [1, m] and Qm+1
β′
−→

Pm+1 where β′ is dual to β. Then (Qj‖Qm+1)\IP(E1
j)

β−→ (Pj‖Pm+1)\IP(E1
j), (Qk‖

Qm+1)\IP(E1
k)

β−→ (Qk‖Pm+1)\IP(E1
k), and Qk = Pk where k ∈ [1, m] − {j}. By

induction hypothesis, we have the result.

Lemma 3. If G is compatible with P(E1
i) for each i ∈ [1, m], then G is compatible with

A− {G} against IA.

22 G. Su, M. Ying, and C. Zhang

Proof. Suppose P = (P1‖ · · · ‖Pm‖Pm+1)\IA is reachable from [A], and Pm+1
α−→

for some α. By Proposition 2, ch(α) ∈ IP(E1
i) for some i ∈ [1, m]. By Lemma 2,

(Pi‖Pm+1)\IP(E1
i) is reachable from ([Ei]‖[G])\IP(E1

i). Since G is compatible with

P(E1
i), Pm+1

α−→ in ({[E1
i]}‖[G])\IP(E1

i). Therefore Pm+1
α−→ in [A].

Lemma 4. If G is deadlock-free and compatible with A − {G} against IA, A is
deadlock-free.

Proof. The result is obvious by the definitions.

Proof of Theorem 2. We first show a small lemma:

Lemma 5. Ei and Ej are strongly deadlock-free, the [Ei]‖[Ej] is strongly deadlock-free;
and this can be generalized to any number of components.

Proof. This lemma can be proved by show that if [Ei]‖[Ej] has a finite transition path or
a infinite path failing the satisfying the non-silent-label requirement, then one of Ei and
Ej must be failed; this can be easily generalized to any finite number of components.

Then we prove Theorem 2:

Proof. Suppose A satisfies the conditions in Theorem 1, and {[Ej]} is strongly
deadlock-free for each j ∈ [0, m], we show that if for some i ∈ [1, m] there is an
infinite transition path ϕ of [A] containing only finitely many P such that there is Q

reachable from P and Qi
α−→ in Q for some α �= τ , then there is an infinite transition

path ψ of ({[E1
i]}‖G)\IP(E1

i) containing only finitely many P ′ such that there is Q′

reachable from P ′ and Q′
i

α−→ in Q′ for some α �= τ , and hence prove the theorem.
More specifically, ψ is constructed in the following procedure: Suppose P is reachable
from [A] via n transitions in ϕ and also P

α−→ Q is in ϕ, and let ψ̂n be a finite concate-
nation of transitions starting at ({[E1

i]}‖G)\IP(E1
i) and ending at (Pi‖Pm+1)\IP(E1

i),

1. ψ̂0 = ({[E1
i]}‖G)\IP(E1

i) ;

2. If P
α−→ Q is derived from Pi

τ−→ Qi (thus α = τ), then ψ̂n+1 = ψ̂n
τ−→

(Qi‖Qm+1)\IP(E1
i) where Qm+1 = Pm+1;

3. If P
α−→ Q is derived from Pi

β−→ Qi and Pm+1
β′
−→ Qm+1 where β′ are dual to

β (thus α = τ), then ψ̂n+1 = ψ̂n
τ−→ (Qi‖Qm+1)\IP(E1

i) ;

4. If P
α−→ Q is derived from Pj

β−→ Qj where j �= i ∈ [1, m] and Pm+1
β′
−→ Qm+1

where β′ are dual to β, then ψ̂n+1 = ψ̂n
β′
−→ (Qi‖Qm+1)\IP(E1

i) where Qi = Pi;

5. If P
α−→ Q is derived from Pj

τ−→ Qj where j �= i ∈ [1, m] (thus α = τ), then
ψ̂n+1 = ψ̂n .

The strong deadlock-freedom of each {[Ej]} guarantees that there are only finitely many
k1’s and k2’s such that k1 �= k2 and ψ̂k1 = ψ̂k2 . Therefore it not hard to verify that
limn→∞ ψ̂n is the ψ we want.

Specifying and Analyzing Centralized-Mode Architectural Connection 23

Proof of Theorem 3. Clause (1) and (3) in Theorem 3 immediately follow from Theorem
4 (see below) and Clause (2) is obvious.

Proof of Theorem 4. We decompose the proof of Theorem 4 into the following three
lemmas.

Lemma 6. Provided E is disjointed, P = (P1‖P2)\IEE

1
is reachable from R = ([EE

1]‖
[G])\IEE

1
if and only if P ′ = (P1σ‖P2σ)\IEE

2
is reachable from R′ = ([EE

2]‖ [G])\IEE

2
,

where σ = {p, q/q, p} and p, q are the IDs of E1, E2, respectively.

Proof. Note that by Proposition 1, we have that P ′ = Pσ and R′ = Rσ, and that α ∈
IEE

1
iff ασ ∈ IEE

2
. We firstly consider the direction from left to right. The proof is by in-

duction on the number of transitions from R to P . Suppose Q = (Q1‖Q2)\IEE

1
is reach-

able from R and Q
α−→ P . By induction hypothesis Q′ = Qσ = (Q1σ‖Q2σ)\IEE

2
is

reachable from R′. Similar to the proof of Lemma 2, we proceed by two cases on the
derivation of Q

α−→ P . (1) Suppose Q
α−→ P is derived from Q2

α−→ P2 and α /∈ IEE

1
,

then Qσ
ασ−→ Pσ is derived from Q2σ

ασ−→ P2σ for ασ /∈ IEE

2
. (2) Suppose Q

α−→ P is

derived from Q1
τ−→ P1 (thus α = τ), then Qσ

τ−→ Pσ is derived from Q1σ
τ−→ P1σ.

(3) Suppose Q
α−→ P is derived from Q1

β−→ P1 and Q2
β′
−→ P2 where β′ is dual to

β (thus α = τ), similarly we have the same result. Hence P ′ = Pσ is reachable from
R′. By symmetric of substitution we complete the proof.

Lemma 7. Provided E is disjointed, G is compatible with {EE

1 } against IEE

1
if and only

if G is compatible with {EE

2 } against IEE

2
.

Proof. Lemma 7 is based on Lemma 6 in the same vein that Lemma 3 is based on
Lemma 2.

Lemma 8. Provided E is disjointed, EE

1 and G are mutually interaction-live against
IEE

1
if and only if EE

2 and G are mutually interaction-live against IEE

2
.

Proof. Let σ = {p, q/q, p} where p, q are the IDs of E1, E2, respectively. We show that
if P = (P1‖P2)\IEE

1
is reachable from ([E1]E‖[G])\IEE

1
and Pi

α−→ in P (i = 1, 2),

then Pσ = (P1σ‖P2σ)\IEE

2
is reachable from ([E2]E‖[G])\IEE

2
and Piσ

ασ−→ in Pσ.
The proof is similar to the proof of Lemma 6.

Proof of Theorem 5. The proof of Theorem 5 is decomposed into three lemmas below
whose proofs are similar to those of previous lemmas.

Lemma 9. Provided E is excluded, if G is compatible with {EE

i } against IEE

i
for some

i ∈ [1, m], then G is compatible with {EE

1 , . . . , EE

m} against
⋃m

i=1 IEE

i
.

Lemma 10. If [EE

1] is strongly deadlock-free, then [EE

1]‖ · · · ‖[EE

m] is strongly deadlock-
free.

Lemma 11. Provided E is excluded, if EE

i and G are mutually interaction-live against
IEE

i
for some i ∈ [1, m], then EE

1 , . . . , EE

m and G are mutually interaction-live against⋃m
i=1 IEE

i
.

Naive Architecting - Understanding the
Reasoning Process of Students

A Descriptive Survey

Uwe van Heesch1,2 and Paris Avgeriou1

1 University of Groningen, The Netherlands
2 Fontys University of Applied Sciences Venlo, The Netherlands

uwe@vanheesch.net, paris@cs.rug.nl

Abstract. Software architecting entails making architecture decisions,

which requires a lot of experience and expertise. Current literature con-

tains several methods and processes to support architects with archi-

tecture design, documentation and evaluation but not with the design

reasoning involved in decision-making. In order to derive a systematic

reasoning process we need to understand the current state of practice

and propose ways to improve it. In this paper we present the results of a

survey that was conducted with undergraduate software engineering stu-

dents, aiming to find out the innate reasoning process during architect-

ing. The results of the survey are compared to the existing architecture

literature in order to identify promising directions towards systematic

reasoning processes.

1 Motivation

One of the responsibilities of software architects is to make decisions, which are
usually called architectural decisions [4,12,29] and determine the overall struc-
ture and behavior of the system. Making architectural decisions involves un-
derstanding and addressing relevant requirements, business goals and issues,
identifying and choosing among alternative solutions while adhering to con-
straints and mitigating risks. Architectural decisions form the basis for all other
detailed decisions and are crucial for the success or failure of the whole project.
This decision-making process is one of the major challenges during architecting
since it requires a lot of experience and expertise by the architect.

Various methods exist to support software architects in their work. Hofmeister
et al. derived a common model for architecture design from five industrial ap-
proaches [10], including the Rational Unified Process [21] and Attribute-Driven
Design [3]. Other approaches deal with documenting the architecture in terms of
multiple architectural views or with the help of architecture frameworks [2,7,16].
Furthermore, different methods exist to support the systematic evaluation of
architectures [14,18,19]. More recently some approaches propose the documen-
tation of the actual decisions as first-class entities by defining their attributes
and relations [4,27]. However, all of these approaches deal with the core part of

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 24–37, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Naive Architecting - Understanding the Reasoning Process of Students 25

architecting: prioritizing architecturally significant requirements, selecting archi-
tecture patterns, styles and tactics, partitioning the system into components and
connectors, assessing the design and documenting the result with architectural
views, frameworks and architecture description languages. In contrast, there has
been very little research on the reasoning part of the decision-making process;
one can only find fragments about sound reasoning in the literature.

Recent work emphasizes the importance of design reasoning and design ratio-
nale [4,23]. Ideally a systematic reasoning process can shorten the gap between
experienced and inexperienced architects: design reasoning can support design-
ers step-by-step in making sound decisions and subsequently documenting the
rationale behind them as first class entities. However, so far, architects are not
trained on how to reason: making architectural decisions is often described as an
ad-hoc creative process [5,32,33] that relies heavily on the personal experience
and expertise of the architect. Research is required to explore the current state
of practice in design reasoning and subsequently to find ways to enhance it.

Our work is towards this direction: investigating how the reasoning process
takes place and identifying potential areas for improvement. This can be done
either by studying beginners (bottom-up) or experienced architects (top-down).
In the former case one can establish the baseline reasoning process that is based
on common sense instead of experience. In the latter case one can discover best
practices in successful architecting examples and synthesize them into an ideal
reasoning process. Eventually one can propose an approach to close the gap
between the baseline and the ideal process and package it appropriately to train
current or future architects.

This paper deals with the former case; we leave the latter case as future work.
In particular we have studied the most inexperienced subjects: students of soft-
ware engineering. We asked 22 students to design an architecture for a large web
application and carefully observed their reasoning during this process. After that,
the students were interviewed about the way they thought and acted to come
up with a software architecture. As a result, we identified the basic reasoning
process of inexperienced designers, which we compared to established architect-
ing processes in the literature in order to come up with promising directions for
improvement.

The rest of this paper is organized as follows. Section 2 presents related Work.
In Sect. 3, the design of the study is introduced. The next section presents an
analysis of the results, which are interpreted in Sect. 5. The paper ends with
conclusions and directions for further work.

2 Related Work

The survey presented in this paper is related to the software architecture research
field, namely architecting processes, architecting practice in the industry and
design reasoning.

Hofmeister et al. derive a general model of architecture design from five
industrial approaches [10]. They identify the following common activities:

26 U. van Heesch and P. Avgeriou

Architectural analysis is concerned with identifying architecturally significant re-
quirements from architectural concerns and system contexts; Architectural syn-
thesis is the activity of finding candidate solutions for architecturally significant
requirements; Architectural evaluation makes sure that the candidate solutions are
the right ones.

Jansen et al. specialize this generic model from the perspective of architec-
tural decisions [13]. They describe the architecting process as a cycle of activities
that are followed iteratively until the architecture is complete. In accordance
with Hofmeister et al.’s categorization, in architectural analysis, the problem
space is scoped down to problems that can be solved by single architectural de-
cisions. Candidate decisions are proposed during architectural synthesis, while
decisions are chosen during architectural evaluations, which also entails modify-
ing and describing the architecture in multiple architectural views. In addition
to Hofmeister et al.’s approach, which focuses mainly on architecting activities
and artifacts, Jansen et al. indicate reasoning processes within the activities.

Various studies have attempted to define the role of software architects in the
industry [8,9,17,31]. Clerc et al. have conducted survey-based research [8] to gain
insights in the daily working processes of architecture practitioners. They found
out that architecture use cases [28] concerning risk assessment and requirements
trade-off analysis are not regarded as particularly important by the architects.
In contrast, use cases concerned with requirements, architecture design and im-
plementation, and the traceability among these were rated as important. The
authors reckon that the architects’ workflow follows a linear (i.e. non-iterative)
approach to designing architecture that satisfies the requirements subsequently.
In a different survey, Farenhorst et al. [9] describe that more experienced archi-
tects (in terms of working years) are more often involved in auditing activities
and quality assurance. Kruchten defines the typical roles and responsibilities that
architects should take in software projects [17]. Besides making architectural de-
cisions, other central activities of architects include maintaining the architectural
integrity, risk assessment and risk mitigation. Finally, Clements et al. compare
duties, skills, and knowledge of software architects from the perspectives of lit-
erature, education and practice [31]. They found that architecture evaluation
and analysis are regarded as less important in architecture practice, whereas
knowledge of technologies and platforms, as well as technology-related duties
are regarded more important in architecture practice than in the literature and
education. We will revisit these results on architecting practice and relate them
to our findings in Sect. 6.

The significance of design reasoning in software architecture has been recently
emphasized. Tang and Lago describe design reasoning tactics [24] to support ar-
chitects in structuring architectural problems and extracting design issues. In his
previous work [23,25], Tang declares the importance of design reasoning and de-
sign rationale in the area of software architecture. It supports architects in making
well-founded decisions and provides guidance to explore and manage the solution
space. They state that the use of a reasoning approach significantly improves the
quality of architectural design, especially for inexperienced architects [23].

Naive Architecting - Understanding the Reasoning Process of Students 27

3 Design of the Study

3.1 Goal

The goal of the study is to get insight into the innate reasoning that students
follow while they are architecting. To make this goal more concrete we need to
consider the fundamental reasoning activities that take place during the archi-
tecting process. As a reference architecting process, we use the one defined in
our previous work [13], which explicitly takes into account the reasoning aspects
and maps onto the process of Hofmeister et al. (see Sect. 2). We thus refine our
research goal into the following three research questions:

RQ1: How do students scope and prioritize the problem space during architec-
tural analysis?

RQ2: How do students propose solutions during architectural synthesis?
RQ3: How do students choose among solutions during architectural evaluation?

RQ1 is concerned with finding out how students scope and prioritize require-
ments and issues to define concrete problems that are small enough to be ad-
dressed by one architectural decision. RQ2 applies to finding candidate solutions
based on the problems identified in the previous step. Finally, the aim of RQ3 is
to discover how students make choices between the candidate solutions and how
they evaluate their choices with respect to previously made decisions. It is noted
that the requirements engineering activity, though closely related, is performed
before the architecting process and is therefore out of the scope of this study
(an initial set of requirements was made available to the students). Furthermore
the activity of modifying and describing the architecture (see [13]) was omitted,
because of time constraints in conducting the study.

3.2 Study Design and Execution

To find answers to the research questions, a descriptive survey [30] was con-
ducted with students from the seventh semester, in a four-year software en-
gineering programme of study at the Fontys University of Applied Science in
Venlo, The Netherlands. At that time, the students had at least 3 years of OO-
programming experience from small software development projects withing the
study programme. Some of them had additional experience from side jobs. They
had followed two lectures (three hours in total) specifically on software archi-
tecture. The following topics were covered in this course: the 4+1 architectural
views [16], the recommended Practice for Architectural Description of Software-
Intensive Systems [2], the concept of architectural decisions mainly using the
template by Tyree and Akerman [27] and software architectural patterns [6]. In
total, 22 students took part, who were divided into 11 pairs.

To produce an architecting experience, we asked the students to create a new
software architecture of a non-trivial software system (later referred to as phase
one). Right after that, the students were asked to fill in a questionnaire, in
order to report about their individual architecting experiences (phase two). The
questionnaire was designed and evaluated according to [20].

28 U. van Heesch and P. Avgeriou

The architecting case used in phase one was a document describing architec-
turally relevant functional and non-functional requirements for an online selling
platform comparable to Amazon.com [1]. The case study included requirements
for user management, selling books, multimedia and other products, searching
for products, notification of sellers and buyers. The non-functional requirements
included interoperability, availability, performance and security. In total, nine
functional and nine non-functional requirements were given. The students were
explicitly allowed to supplement or modify the given requirements, for example
because of specific trade-offs, if they could justify why.

The architecting activity (phase one) in the experiment took 60 minutes. The
students were asked to make all necessary architectural decisions and to docu-
ment the process of decision making in a mind map. The purpose of the mind
map (created on flip charts) was to conserve as much reasoning and as many
thoughts of the participants during the decision making process as possible. No
architecting method was imposed on them, nor did they have knowledge about
any existing systematic approach. The students were also asked to document
design options and design decisions using a minimal template. Laptops with an
internet connection were allowed to search for arbitrary information, e.g. to find
design options like software patterns or technologies. To gather data in phase

Table 1. Question Mapping

Code Question RQ1 RQ2 RQ3

Q1 Have you understood and considered the given requirements? X

Q2 Have you reasoned about the most challenging requirements? X

Q3 Have the quality attribute requirements played a prominent

role during the design?

X

Q5 Have you considered alternatives for the decisions you made? X

Q6 Have you relaxed requirements to have more design options? X X

Q7 Have you thought about the pros and cons of each alternative

that you have considered?

X

Q9 Have you preferred well-known solutions rather than search-

ing for better alternatives?

X

Q10 Have you sometimes made multiple decisions at the same

time?

X X

Q11 Have you rejected decisions? X

Q12 Have you made trade-offs, while making decisions, between

multiple requirements?

X X

Q13 Have you come across dependencies between decisions? X X

Q14 How long did it take since you had a first architectural vision

in mind?

X

Q15 Does the final architecture significantly differ from your ini-

tial vision?

X

Q16 How have you come from one decision to the next decision? X X X

Q17 What has gone on in your head when you have thought about

the architecture?

X X X

Naive Architecting - Understanding the Reasoning Process of Students 29

two of the experiment, a group-administered questionnaire (see [26]) was handed
out to the students right after they finished phase one. The students used their
documented decisions and the mind map as help to reflect on the process while
answering the questions. The questionnaire contained a mix of structured and
un-structured questions. The structured questions had a five-point interval-level
response format, also referred to as Likert-scale [26]. To mitigate the risk of am-
biguous or poorly understood questions that comes along with questionnaires
[20], an instructor explained the questions to the participants one by one. That
way the students could clarify questions before answering. Table 1 shows a map-
ping of the questionnaire questions to the research questions formulated in Sect.
3.1. Some questions have a relation to more than one research question; in these
cases, the bold-faced ’X’ denotes the most relevant research question (except for
Q16 and Q17 where all three research questions are relevant). Additionally, two
more questions were asked, which do not directly map to the research questions:
“Do you have the skills to design and program the given system?” (Q4) and “Are
you confident that your decisions and the resulting design are sound?” (Q8).

The participation in the study was mandatory. The students received grades
for the architecture documentation on the flip charts. It was clearly communi-
cated to the students that the answers in the questionnaire in phase two were
not taken into consideration for the grading. This issue will be further discussed
in Sect. 5.1.

4 Analysis

We use descriptive statistics to visualize the collected data in the analysis.
This section contains one subsection for every research question. Subsection 4.4
presents results concerning all three research questions. There are eleven valid
datapoints for each question, one for each student pair.

4.1 RQ1 - Architectural Analysis

Questions Q1,Q2 and Q3 from the questionnaire are primarily related to the
treatment of architecturally relevant requirements during architectural synthesis.
Figure 1 shows a stacked bar chart presenting cumulative percentaged frequen-
cies of answers to the respective questions. The vast majority of the participants
(> 90%) affirmed that they understood and considered the given requirements
(Q1). The median answer was ‘affirmation’. The answers to question two, con-
cerning the reasoning about the most challenging requirements, do not show
a clear trend (Q2, median ‘neutral’). More than 80% affirmed that quality at-
tribute requirements played a prominent role during the design (Q3, median
‘strong affirmation’).

4.2 RQ2 - Architectural Synthesis

Figure 2 shows the frequencies of answers to questions Q5,Q6 and Q9, related to
finding candidate solutions during architectural synthesis (RQ2). More than 70%

30 U. van Heesch and P. Avgeriou

Fig. 1. Cumulative frequencies of answers to questions related to RQ1

Fig. 2. Cumulative frequencies of answers to questions related to RQ2

of the participants affirmed that they considered alternatives for the decisions
they made (Q5, median ‘affirmation’). The majority of participants did not relax
requirements to have more design options (Q6, > 90%, median ‘strong negation’)
and, without any negations, more than 70% of the participants affirmed that they
preferred well-known solutions rather than searching for better alternatives (Q9,
median ‘affirmation’).

4.3 RQ3 - Architectural Evaluation

Questions Q7, Q10-Q15 refer to the making of choices between candidate solu-
tions and the evaluation of the choices with previously made decisions. Figure 3
shows the frequencies of answers. The answers to Q7, referring to the consider-
ation of pros and cons of alternative solutions, show a clear tendency towards
affirmation (median ‘affirmation’). Q10, related to the making of multiple de-
cisions at the same time, does not receive a clear result. Although the most

Naive Architecting - Understanding the Reasoning Process of Students 31

Fig. 3. Cumulative frequencies of answers to questions related to RQ3

frequent answer was ‘affirmation’, the median answer was ‘neutral’. 100% of
the participants negated the question about rejecting decisions (Q11, median
‘strong negation’). The students also did not consciously make trade-offs be-
tween requirements (Q12, > 60%, median ‘negation’). The answers to question
13 concerning dependencies between decisions do not show a clear tendency (me-
dian ‘neutral’). Question 14 did not have predefined answers. The participants
were asked how long it took in minutes since they had a first architectural vision
in mind (Q15 refers to this vision). On average, the participants took 13,36 min-
utes for a first vision. The standard deviation is 9,067 (min: 5min, max: 30min).
Finally, without a single affirmative answer, more than 70% negated that the
final architecture significantly differed from the initial architectural vision (Q15,
median ‘negation’).

4.4 Open Questions Concerning the Whole Architecting Process

Besides structured questions, we asked the participants to answer two open ques-
tions (Q16 and Q17) that concern all three research questions.

In question 16, we asked the students to describe how they got from one
decision to the next decision. Four of the pairs stated that they made decisions
along the requirements (e.g. “Reading requirements one by one”). Two groups
mentioned that they used common combinations of technologies as orientation
in the decision making process (e.g. Spring as web framework, then Hibernate
as object-relational mapper), one group explicitly stated that they first created
a list of things to be decided and then made the decisions one by one.

In question 17, the students were asked to freely describe what went on in their
heads when they thought about the architecture. The following workflow of deci-
sion making can be derived from the given answers: Analyze requirements, find
candidate solutions based on own experience, search for alternative solutions,
evaluate pros and cons of all candidate solutions, make decision. Exemplary ver-
batim answers are: “We started with own knowledge and experience, then we

32 U. van Heesch and P. Avgeriou

thought about alternatives and made pros and cons lists.”, “We thought about
what was necessary to fulfill requirements, we thought about known technolo-
gies, we tried to find some alternatives for these”, “Based on the requirements we
think about the decisions to take. Then we think of known solutions/technologies
and research on further solutions. Finally we evaluate the different possibilities
and make the decisions”.

5 Interpretation

In this section, the behavior of the students is interpreted and compared to exist-
ing approaches in the architecture literature. The section is organized according
to the three architecting activities. Findings on Q16 and Q17 that concern all
three activities are mentioned where appropriate.

Architectural Analysis. Architectural analysis involves articulating [10] and
scoping down [13] architecturally significant requirements (ASR). The quality
attribute requirements play a prominent role in this activity [3,11]. Usually the
ASRs are further prioritized [13] to identify key issues or problematic require-
ments [11,21] that require special attention, because they are critical for the
architecture. They sometimes become risks [21].

The analysis of the students’ results showed that most of them intuitively
followed these activities. They tried to understand and consider the ASRs and
put emphasis on the quality attribute requirements. The only discrepancy is that
many students did not identify the most challenging requirements, nor did they
prioritize them. It is noticeable that the students do not seem to be aware of
risks and consequently do nothing to mitigate them. However, two student pairs
strongly affirmed that they did think about the most challenging requirements.
A correlation analysis (Kendall’s tau [22]) showed that students who affirmed the
statement also had strong confidence in the soundness of their resulting designs
(Q8) (corr.-coefficient 0,618, sig. 0,023), which allows the conclusion that risk
assessment leads to higher confidence in the quality of the architecture.

Architectural Synthesis. Architectural synthesis is the process of finding can-
didate architectural solutions that (partially) address the distilled ASRs [10,13].
This activity requires the architect to identify and distill relevant knowledge
from own experience and external knowledge repositories [10,24], needed to cre-
ate design solutions. To have more design options, it is sometimes advisable to
relax requirements that put too many constraints on possible solutions [24].

In the study, the students affirmed that the identification of design options
was driven by the requirements. However, they did not relax requirements to
have more design options and they also declared that they preferred well known
solutions in favor of unknown alternatives. Also, they do not seem to be aware
of limitations and constraints that solutions impose on other decisions. Their
answers to the open questions reflect that the requirements were used as a kind
of checklist to ensure that all of them are covered by at least one solution without

Naive Architecting - Understanding the Reasoning Process of Students 33

taking into account the relationships and dependencies between decisions. A
similar behavior was also observed for practising architects by Clerc et al., who
state that the architects’ workflow follows a linear approach that satisfies the
requirements sequentially [8].

Architectural Evaluation. During architectural evaluation the candidate so-
lutions are weighed against the ASRs [10] to make a design decision. Therefore,
the pros and cons of each design option have to be considered [13,24]. Choosing
solutions can entail making trade-offs [10,13] between requirements. This activ-
ity also involves identifying and documenting constraints that decisions impose
on future decisions [3]. Evaluation further ensures that a decision does not vio-
late previously made decisions. Therefore the architecture is regularly evaluated
as a whole after a few iterations [11]. Some approaches emphasize the need of
risk assessment during architectural evaluation [21,24] to ensure that no hidden
assumptions or constraints behind decisions exist and to assess if additional risks
are introduced by a decision.

The study shows strong deviation of the students’ behavior from these activ-
ities. Although they weighted pros and cons for the design options, they did not
consciously make trade-offs between requirements and also neglected to validate
the decisions against each other. This explains why the students did not reject
decisions. They do not seem to be aware of dependencies and relationships be-
tween architectural decisions. Only few students stated that they came across
dependencies. In line with these observations, the students quickly came up with
a first architectural vision (13mins) and did not significantly deviate from this
vision any more. This is another indicator that students do not critically eval-
uate their decisions. This is not very surprising. As mentioned in Sect. 2, Clerc
et al. [8] found out that even practising architects do not regard risk assessment
and requirements trade-off analysis as particularly important.

Additionally, it was observed that no clear statement was made about the
question if they made multiple decisions at the same time. Some students de-
scribed that they used a kind of reference architecture they knew from compa-
rable projects as a basis, others started from scratch and made decisions strictly
sequentially. A correlation analysis (Kendall’s tau [22]) showed that students
who made multiple decisions at the same time also relaxed requirements to have
more design options (corr.-coefficient 0,584, sig. 0,045).

5.1 Threats to Validity

In this section, possible limitations of the study are presented by discussing
internal validity, construct validity and external validity [15,22].

With respect to internal validity, the questionnaire design and the fact that an
instructor verbally explained the questions before they were answered ensured
that the questions were unambiguous and focused on the research questions.
Furthermore, the fact that the study was done as a classroom assignment intro-
duces a potential risk. The students received grades for the performance in phase
one of the study. Although the questionnaires were not taken into consideration

34 U. van Heesch and P. Avgeriou

for the grading, some students might have tried to impress the lecturer by giv-
ing specific answers. This risk, however, is considered rather low: no evidence in
favor of it could be found in the results; and it was not possible to determine
which answer would be rated positively or negatively.

Concerning construct-validity, the fact that only one specific architecting ex-
perience was used as a basis for the study introduces the risk that the cause
construct was under-represented. The architecting process could be different for
other architecting case studies. In this study, the students already had experi-
ence building simple web applications. In totally unknown domains, they would
have been forced to uncover design options they did not know before. However,
the risk is regarded as rather low as working in unknown domains is unrealistic
especially for inexperienced designers. It can further be assumed that the ar-
chitecting process for the used system is representative for those of large and
medium-size software projects. We also used multiple variables to cross-check
the results concerning the research questions. The risk of researchers bias was
mitigated for the most part, as the structured questions with pre-defined an-
swers do not leave space for interpretation. However, some open questions do
exist that were interpreted by the researchers.

With respect to external validity, the subject population in the study might
not be representative for the larger population of inexperienced software archi-
tects. The participants of the study were undergraduate students in the last year
of a software engineering study programme. Their state of knowledge is compa-
rable to the lowest level of architecture knowledge that software architects in
practise have. Thus, it can be assumed that this risk is mitigated.

The instrumentation used in phase one of the study might have been unrealis-
tic or old-fashioned. This risk was mitigated by creating a working environment
that corresponds to those of practicing architects. The students were allowed to
use laptops with internet connections without any restrictions and they could
discuss all issues with their partners. In real software projects however, additional
constraints (e.g. time, cost, corporate culture, politics) exist that can hardly be
simulated in a classroom environment.

6 Conclusions and Future Work

To gain insights into the innate reasoning processes of students during architec-
tural design, we conducted a descriptive survey with software engineering stu-
dents. The architecting process the students followed was compared to existing
architecture practices in the literature.

The comparison showed that the students’ activities during architectural anal-
ysis closely match with the activities advocated in existing architecture ap-
proaches. However, during architectural synthesis and architectural evaluation
large discrepancies were observed. As pointed out, some of these were also ob-
served in studies with professional architects, which leads to the conclusion that
the problems do not only result from the low level of experience. To move to-
wards a systematic reasoning process, we list the areas that need to be improved

Naive Architecting - Understanding the Reasoning Process of Students 35

and invite the research community to work on providing the necessary method-
ological and tooling support:

– Prioritize requirements [13] and identify risks in terms of the most challeng-
ing requirements [11,21] that are hard to fulfill.

– Relax requirements to have more design options, where required [24].
– Search for alternatives, even if known solutions exists that seem to solve the

design issue.
– Document why one option was chosen over another one [24] to ensure that

design options were not only chosen because of personal bias towards known
solutions.

– Reason about possible limitations and constraints that solutions impose on
future decisions [3].

– Actively consider relationships and dependencies between decisions [11,12].
– Identify situations, in which decisions cannot satisfy two requirements at

the same time. Try to find optimal trade-offs between the requirements
[10,13,14].

– Determine constraints that decisions impose on future solutions [3].
– Assess and actively mitigate risks throughout the architecting cycle [17].

We hypothesize that systematic support in these areas can verifiably improve
the reasoning process and we plan to conduct controlled experiment to test these
hypotheses. As mentioned in the introduction, we also plan to study the reason-
ing practices of successful architects, in order to derive an ideal reasoning process
and compare it with the aforementioned areas. However one major issue remains:
finding and identifying suitable design options during architectural synthesis is a
task that requires the combination of experience and personal design knowledge
with new knowledge and unknown design solutions. This task is highly creative
and dependent on personal skills and experience and we doubt whether it can
be fully supported by systematic architecting approaches.

Acknowledgements

We would like to thank the students from the JEE course 2009 at the Fontys
University of Applied Sciences Venlo for taking part in the study.

References

1. Amazon.com. http://www.amazon.com, 2010.

2. IEEE-Std-1471-2000. Recommended Practice for Architectural Description of

Software-Intensive Systems. Technical report, IEEE, 2000.

3. L. Bass, P. Clements, and R. Kazman. Software architecture in practice. Pearson

Education, 2003.

4. J. Bosch. Software architecture: The next step. Lecture notes in computer science,
Springer, pages 194–199, 2004.

36 U. van Heesch and P. Avgeriou

5. J. Bosch and P. Molin. Software architecture design: evaluation and transformation.

In IEEE Conference and Workshop on Engineering of Computer-Based Systems,
1999. Proceedings. ECBS’99, pages 4–10, 1999.

6. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley &

Sons, Inc. New York, NY, USA, 1996.

7. P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little.

Documenting software architectures: views and beyond. Pearson Education, 2002.

8. V. Clerc, P. Lago, and H. Van Vliet. The Architect’s Mindset. In Software Archi-
tectures, Components, and Applications, Springer, pages 231–249, 2007.

9. R. Farenhorst, J. F. Hoorn, P. Lago, and H. V. Vliet. The Lonesome Architect. In

Joint Working IEEE/IFIP Conference on Software Architecture & European Con-
ference on Software Architecture (WICSA/ECSA 2009), Cambridge, UK, Septem-

ber 14-17, 2009.

10. C. Hofmeister, P. Kruchten, R. Nord, H. Obbink, A. Ran, and P. America. General-

izing a Model of Software Architecture Design from Five Industrial Approaches. In

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture,
IEEE Computer Society, 2005.

11. C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture. Addison-

Wesley Professional, 2009.

12. A. Jansen and J. Bosch. Software architecture as a set of architectural design

decisions. In Proceedings of the 5th Working IEEE/IFIP Conference on Software
Architecture, pages 109–120., 2005.

13. A. Jansen, J. Bosch, and P. Avgeriou. Documenting after the fact: Recovering archi-

tectural design decisions. The Journal of Systems & Software, Elsevier, 81(4):536–

557, 2008.

14. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The

architecture tradeoff analysis method. In: ICECCS, Published by the IEEE Com-

puter Society (1998)

15. B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El Emam, and

J. Rosenberg. Preliminary guidelines for empirical research in software engineering.

IEEE Transactions on Software Engineering, 28:721–734, August 2002.

16. P. Kruchten. The 4+ 1 view of architecture. IEEE software, 12(6):45–50, 1995.

17. P. Kruchten. What do software architects really do? Journal of Systems and
Software, 81:2413–2416, 2008.

18. Kazman, R., Bass, L., Webb, M., Abowd, G.: SAAM: A method for analyzing

the properties of software architectures. In: Proceedings of the 16th international

conference on Software engineering, IEEE Computer Society Press (1994) 81–90

19. Williams, L., Smith, C.: PASA SM: a method for the performance assessment

of software architectures. In: Proceedings of the 3rd International Workshop on

Software and Performance, ACM (2002) 189

20. T. Lethbridge, S. Sim, and J. Singer. Studying software engineers: Data collection

techniques for software field studies. Empirical Software Engineering, 10(3):311–

341, 2005.

21. P. Kruchten. The Rational Unified Process An Introduction. Addsion-Wesley
Publishing Company, 2000.

22. F. Shull, J. Singer, and D. Sjøberg. Guide to Advanced Empirical Software Engi-
neering. Springer-Verlag New York, Inc. Secaucus, NJ, USA, 2007.

23. A. Tang, M. Babar, I. Gorton, and J. Han. A survey of architecture design rationale.

Journal of systems and software, Elsevier, 79(12):1792–1804, 2006.

Naive Architecting - Understanding the Reasoning Process of Students 37

24. A. Tang and P. Lago. Notes on design reasoning tactics. Technical report, Swin-

burne University of Technology, 2009.

25. A. Tang, M. Tran, J. Han, and H. Vliet. Design reasoning improves software design

quality. QoSA 2008, LNCS, 5281:28–42, 2008.

26. W. Trochim. The Research Methods Knowledge Base. Atomic Dog Publishing,

2001.

27. J. Tyree and a. Akerman. Architecture Decisions: Demystifying Architecture. IEEE
Software, 22:19–27, 2005.

28. J. Van Der Ven, A. Jansen, P. Avgeriou, and D. Hammer. Using architectural

decisions. 2nd International Conference on the Quality of Software Architectures
(QoSA 2006), Väster̊as, Sweden, 2006

29. J. Van Der Ven, A. Jansen, J. Nijhuis, and J. Bosch. Design Decisions: The Bridge

between Rationale and Architecture. Rationale management in software engineer-
ing, Springer, pages 329–348, 2006.

30. C. Wohlin, M. Host, and K. Henningsson. Empirical research methods in software

engineering. Empirical Methods and Studies in Software Engineering, Springer,

pages 145–165, 2003.

31. P. Clements, R. Kazman, M. Klein, D. Devesh, E. Reddy, P. Verma. The Duties,

Skills, and Knowledge of Software Architects. in Proceedings of the Sixth Working
IEEE/IFIP Conference on Software Architecture, 2007.

32. U. Zdun. Systematic pattern selection using pattern language grammars and de-

sign space analysis. Software Practice and Experience, John Wiley & Sons, Inc.,

37(9):1016, 2007.

33. O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann. Combining Pattern

Languages and Reusable Architectural Decision Models into a Comprehensive and

Comprehensible Design Method. Seventh Working IEEE/IFIP Conference on Soft-
ware Architecture (WICSA 2008), pages 157–166, 2008.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 38–52, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Towards Architecture-Centric Software Generation

Chung-Horng Lung1, Balasangar Balasubramaniam2, Kamalachelva Selvarajah1,
Poopalasinkam Elankeswaran2, and Umatharan Gopalasundaram2

1 Department of Systems and Computer Engineering
Carleton University, Ottawa, Ontario, Canada
2 Nortel Networks, Ottawa, Ontario, Canada

chlung@sce.carleton.ca

Abstract. Architecture-centric software generation has the potential to support
flexible design and large-scale reuse. This paper describes the development of
an architecture-centric framework that consists of multiple architecture alterna-
tives, from which the architect can select and generate a working prototype in a
top-down manner through a user interface rather than building it from scratch.
The framework is primarily built with well-understood design patterns in
distributed and concurrent computing. The development process involves ex-
tensive domain analysis, variability management, and bottom-up component
engineering effort. The framework enables the architect or designer to effec-
tively conduct upfront software architecture analysis and/or rapid architectural
prototyping.

Keywords: domain analysis, variability management, architecture-centric
development, generative technique, patterns, concurrency.

1 Introduction

In today’s highly competitive age, the success or failure of a product could be deter-
mined by the time taken to develop the software. Architecture-centric software gen-
eration has the potential to support rapid development and/or evaluation of target
systems. In addition, software architecture captures the design decisions at an early
stage, which is difficult to change and has far-reaching effects on downstream devel-
opment. Unfortunately, software development time often runs over schedule in
practice. Another challenging issue often faced at the architecture level is estimating
software qualities, such as software performance. Software Performance Engineering
(SPE) [21, 26] has been recognized as a vital approach for addressing this issue. It is
generally accepted that SPE should be conducted early in the life cycle. Unfortu-
nately, conducting SPE, especially at the early stages of the development, is difficult
and requires a high skill level. To perform SPE effectively, the architect has to have
extensive knowledge and experience in the application domain, software design, and
performance engineering, which is often scarce.

The performance or even general quality-of-service (QoS) issue becomes even
more challenging for systems with high complexity, such as distributed systems and
increasing hardware complication due to threading and parallelism. Many design

 Towards Architecture-Centric Software Generation 39

patterns in distributed and concurrent systems have been captured and documented
[20]. However, those patterns in distributed and concurrent areas are specialized and
may not be easy to understand or implement. In addition, designers may want to focus
primarily on the application level rather than the lower-level base system.

As an example, consider a real industrial case of which one of the authors was a
team member. The project was a study of an advanced network routing technique to
support network traffic engineering. Some features of the traffic engineering included,
among others, network protocols, load balancing, QoS, resource utilization, and path
protection and restoration. When the project started, there were no suitable simulation
tools available and the customers requested a working prototype for concept demon-
stration. A lot of efforts were spent on software solutions involving three and a
half designers to facilitate the traffic engineering applications which along took three
designers.

We also learned from the re-architecting experience that it can be a time-
consuming task [15]. In another case study, a system needed to be restructured
to support additional QoS requirements. The existing system was limited due to its
original architecture: messages received from the network were processed non-
preemptively. The Half-Sync/Half-Async (HS/HA) architectural pattern [20] was a
natural fit for the restructuring. However, due to complicated concurrency controls
and interactions among various parts and with the application level, the restructuring
itself took much longer than expected, even though the new design was well-
understood and documented in the pattern literature. Further, the re-architected
system requires tremendous efforts for verificatin and it may not perform better than
the original one.

The research presented in this paper was originally motivated by asking the follow-
ing question. “How can we help the architect or designer rapidly or incrementally
develop, and subsequently evaluate the software architecture effectively?” The ques-
tion can also be stated in another way: “How can we provide the architect robust al-
ternatives, so that she/he can choose and experiment with those alternatives for rapid
development or effective evaluation?”

The approach adopted in this research is to study the feasibility of an architecture-
centric generative framework. A framework in this paper is meant to provide an infra-
structure to build an executable architectural prototype. To support this goal, our
approach is to incorporate multiple architectural alternatives into the framework
through a variability management process. Those alternatives are built with robust
software components based on recognized patterns and existing solutions. The
framework can then be used to instantiate specific types of software architecture, as
selected by the user. The architect or designer can then conduct experiments to gather
specific quality information for the selected alternative or the application.

Such a framework facilitates reuse of previous domain analysis and domain engi-
neering effort to support rapid prototype development at the architecture level for
more effective architecture evaluation or alternatives comparison early in the life
cycle. Rapid software prototyping in general can also support requirements validation
and communication between stakeholders, because it can generate quantitative and
concrete operational information, or collect more accurate or realistic data such as
workloads, throughput, processing delay, and packet losses.

40 C.-H. Lung et al.

The structure of the rest of the paper is as follows: Section 2 discusses the devel-
opment process of the generative framework. Section 3 demonstrates the components
and structure of the framework. Section 4 shows how the framework can be used to
support of new application development. Section 5 is an evaluation of the framework.
Section 6 describes the related work. Finally, Section 7 contains the summary.

2 Development of the Architecture-Centric Generative Framework

The framework was not developed totally from scratch. Before the framework was
developed, we had re-engineered existing working systems with well-known patterns
in networked systems. Specifically, we restructured the systems from the single thread
(ST) approach in C++ to HS/HA and Leader-Followers (LFs), separately [1, 14, 15].
The size of the original system was about 30 KLOCs, not including the user interface,
third party software or underlying lower level protocols. The main part that was reen-
gineered had about 10 KLOCs. Furthermore, other relevant patterns at lower levels,
e.g., Monitor Object, Scoped Locking idiom, Reactor, Connector, and Acceptor [20],
were selected and implemented.

The first re-engineered software system was a peer-to-peer (P2P) network routing
system. The other two working systems were mainly used to study the server side
software of the client-server model. These two client-server systems were imple-
mented based on an industrial pre-paid phone system by different groups for a course
project. Extensive studies and evaluations of these systems and relevant well-
recognized patterns in this field [Schmidt00] were conducted. These systems were
re-engineered [1, 14, 15] using various architectural and design patterns, including
HS/HA and LFs.

A framework was then developed based on those previous studies and working sys-
tems. Two core technical areas are variability management of architectural alternatives
and construction of components and the subsequent framework. These two key areas
are discussed in the following.

2.1 Variability Management

Each architectural variation has a set of features which in turn may consist of variation
points at lower level and their associated variations. On the other hand, some features
or components may be common or only slightly different among architecturally differ-
ent alternatives or variations. Those features or components have been captured and
built in a way that is reusable across variations. The variability modeling process con-
sists of the following steps.

• Identify variations at the architecture level
• Identify variation points at lower layers and potential variations for each variation

point
• Identify components and their relationships for each architectural variation
• Identify component composition rules for each architectural variation
• Identify commonalities and differences of components that are shared by different

architectural variations

 Towards Architecture-Centric Software Generation 41

Note that the process is iterative and incremental in nature; some steps may even been
conducted in parallel. Each step is illustrated in more detail as follows:

The first step is to identify architectural variations, since the variation point is
raised to the architecture level for our study. For our target domain, for instance, three
basic architectural alternatives are selected from the concurrency management
perspective. They are the traditional single thread (ST) approach using the Reactor
pattern, HS/HA, and Leader/Followers (LFs) [20]. ST was selected, primarily due to
its simplicity and, further, because it was the style originally used in the existing soft-
ware under study. The other two alternatives were included mainly due to their accep-
tance in this field [20]. Dynamic creation/termination of threads based on requests is
another variation; however, it was not included in the study due to its high overhead.
The variability is open [6]; in other words, other possible architectural variations can
be analyzed and added to the framework if appropriate.

Figure 1 displays these three alternatives: ST, HS/HA, and LFs, at the Architecture
Patterns layer. (See Section 2.2 for detailed description of the figure.) Selection of ST
often leads to scalability concerns. This can be improved using either HS/HA or LFs
pattern as the overall architecture. In LFs, multiple threads function similarly to that in
the ST example and synchronization of those threads is provided. However, only one
thread at a time—the leader—waits for an event to occur. Other threads—the follow-
ers—can queue up, waiting for their turn to become the leader. Once the leader detects
an event, it promotes one of the followers to be the leader. The previous leader then
becomes a service-processing thread. HS/HA, on the other hand, divides the system
into three layers: asynchronous layer, queuing layer, and synchronous layer. The asyn-
chronous layer reads messages and stores them in the queuing layer. Multiple worker
threads will read messages from the queue in a synchronous fashion and handle those
messages subsequently. Readers are referred to Schmidt et al. [20] for detailed descrip-
tions of those patterns and their benefits and limitations.

Fig. 1. Structure and Reusable Components of the Generative Framework [17]

42 C.-H. Lung et al.

The second step is to identify possible variation points and their variations at lower
levels. This step involves identification of features and their relationships or interac-
tions. The selection of one variation or feature may enable or disable the selection of
other features or variations. For instance, selecting HS/HA means that a queuing layer
is required. Furthermore, the selected feature may consist of more variations. The
queuing layer, for example, could consist of a single queue or multiple queues, each for
one priority type for various QoS requirements. TABLES 1 and 2 demonstrate
the main features that were identified from various systems. Detailed design of each
component can be found in [1].

The third step is to model the components and their connections for each architec-
tural variation, including its associated lower layer variations. This step is an extension
of traditional architecture analysis and design. It also shares concepts with product line
architecture modeling, see section 4 for more descriptions on related work. For our
target domain, the basic components and their relationships have been well docu-
mented in the patterns community. Hence, a similar description is not repeated here. In
addition, each architectural variation also serves as a base architecture which consists
of variation points and their associated variations at various levels of abstraction.

Considering the HS/HA pattern as an illustration, one of the variation points is the
queuing layer as described in the previous step. Different queuing disciplines have
different components and connections; additional components may also be needed
for some variations. Fair share queuing, for instance, needs a component to dynami-
cally monitor the resource (system and/or bandwidth) usage for different message
types or service level agreements (SLAs). Another simple variation point for HS/HA
is the number of threads in the synchronous layer. A more detailed example is that a

Table 1. Abstracted Features from the Client/Server Systems – Server Side

ST HS/HA LFs
Socket setup Socket setup Socket setup
Initial buffer setup Initial buffer setup Initial buffer setup
Thread creation
• Main thread

Thread creation
• Main thread
• Worker threads

Thread creation
• Leader/Followers threads

No queue Queuing layer (one or
multiple queues)

No queue

No thread management No Join/Promote thread
management

Thread management for
Join/Promote

Message processing:
 Exchange messages and
process data

Message processing:
Exchange messages and
process data (Synchronizing
worker threads and the main
thread)

Message processing:
Exchange messages and
process data (processing
threads or Followers)

Main functionalities:
Insert/ Retrieve/ Remove
msgs

Main functionalities:
Insert/ Retrieve/ Remove
msgs

Main functionalities:
Insert/ Retrieve/ Remove
msgs

Application: transaction-
oriented computations

Application: transaction-
oriented computations

Application: transaction-
oriented computations

 Towards Architecture-Centric Software Generation 43

Table 2. Abstracted Features from the P2P Systems

ST HS/HA LFs

Socket setup Socket setup Socket setup

Thread creation
• Destination threads
• Statistics thread

Thread creation
• Destination threads
• Statistics thread
• Worker Threads

Thread creation
• Destination threads
• Statistics thread
• LFs threads

No queue Multiple queues for QoS No queue
No thread management No thread management

for Join/Promote
Thread management for

Join/Promote
Main functionalities:
Perform network emulation
tasks

Main functionalities:
Perform network emulation
tasks and synchronize
worker threads and the
main thread

Main functionalities:
Perform network emulation
tasks (Processing Threads)

Other functionalities:
Supporting functionalities

Other functionalities:
Supporting functionalities

Other functionalities:
Supporting functionalities

Application: traffic engineering Application: traffic
engineering

Application: traffic
engineering

variation related to the thread scheduling at the synchronous layer could consist of a
dedicated thread for a particular queue in a multi-queue system for quality-of-service
(QoS) requirements.

The fourth step is to determine composition rules that bind components and vari-
ants at lower levels of abstraction to realize variation points at higher levels. Similar
to feature selection, selection of one component may enable or disable the selection of
other components. This step is repeated from the base components and up until it
reaches the architecture level. The concept is similar to that of parameterization and
GenVoca [3]. To continue the previous example, a particular queuing approach in
HS/HA may consist of a set of components and the queuing layer also interacts with
components in two other layers. Subsequently, lower level components are first
grouped together to form the queuing layer which is then associated with components
in synchronous and asynchronous layers. If there is a dedicated thread for the queuing
layer for a critical queue or a particular message type or customer due to high QoS
requirements, the association rules of relevant components also need to be specified.

Currently, component composition for our framework primarily relies on manual
efforts at the feature analysis and design stages. There are a few reasons: First, the
number of architectural variations usually is small and the variations are mostly sta-
ble. Next, it is easier to identify high-level domain constraints or design rules that
govern the compatibility of features or legal composition of components. In other
words, the architecture has already captured the main components and their relation-
ships. For instance, if HS/HA is selected, a queuing layer is automatically included
based on the nature of the architecture. Similarly, if LFs system is the choice, a fea-
ture to manage the Leader and Followers threads is a must. Third, this framework is
mainly for proof-of-concept and feasibility study. This phase could be improved if the

44 C.-H. Lung et al.

number of variations becomes large or the components mostly are at the implementa-
tion-level. Thaker, et al [23] advocate algebraic equations to specify legal combina-
tions of implementation-level features or components. Research is still needed to
investigate propagating feature selections in a feature model into other development
artifacts, including requirements, architecture, and code modules [23].

The last step of the modeling process is to identify commonalities and differences
in various architectural variations. Some lower level components may be common or
only slightly different even though the high-level architectural variations are diverse.
The components that are common could be directly reused across multiple architec-
tural variations. On the other hand, techniques such as parameterization or inheritance
could be used for components that only vary a little. For example, some parts, e.g., the
Reactor pattern [20], are common to all three architectural alternatives.

However, slight differences may exist among some elements for those alternatives.
A specific example is the difference of dispatching feature (Dispatcher pattern [20])
between ST and LFs. Using the ST approach, a message is read in from the lower
level and processed by the same thread sequentially. With LFs, however, after a mes-
sage is read, the leader will elect a follower to be the leader before it processes the
message. For HS/HA, the message received is stored in the queue first and will be
processed by another worker thread. The components that realize the dispatching
feature for these three patterns share similarities and differences. Identification of
commonalities and differences can support the development of reusable components
and the framework. Further, maintenance effort could be reduced if components that
are common could be captured and designed. Otherwise, same or similar modifica-
tions to multiple architectural alternatives need to be made if there are any changes.
Section 3 illustrates this point in more detail.

2.2 Construction of Reusable Components and the Framework

The main extension of our work is integrating different software architectural patterns
into one framework. In other words, in our approach the variation point or variability
modeling starts at the architecture level. Variation points can occur at different levels,
e.g., architecture, design, and code, and represent the binding time when a system is
configured. There are tradeoffs between those levels. Variation points at the finer-
grain component level or later in the binding time could result in larger footprints or
more alternatives. On the other hand, variant selection at the architecture level occurs
at design time, which can support a more flexible design and could be more effective
for specific requirements. In addition, a framework that provides high-level alterna-
tives does not preclude it from supporting lower level variations, as advocated in
step 2 of the modeling process.

The next major phase is to build the framework from reusable components that are
developed based on patterns (both architectural and design patterns) and variability
analysis, if appropriate. Different types of patterns were adopted, as described earlier.
The reusable components are mainly developed based on features at lower layers,
which are shared among different architectural variations. In addition, the association
or composition rules discovered in the variability modeling phase provide guidelines
to select components at lower levels of abstraction.

 Towards Architecture-Centric Software Generation 45

Figure 2 demonstrates the overall concept and structure of the framework. The
framework itself is organized as layers. The focus of this research is feasibility study
and the development of the framework to support architectural prototyping. But
applications for validation purposes had been added through the Service Handler
(component E shown in Figure 2). The component basically is an interface to the
application level. Other applications can also be integrated using the Service Handler.

The GUI on top of Figure 1 is an optional interface through which the user can se-
lect an architectural style and an architectural pattern. Distributed applications could
be either client-server or P2P style. Each style can be built using any of the three
architectural patterns: ST, HS/HA, or LFs.

The architectural style and pattern selection is made through the GUI. However,
the association of an architectural pattern and lower-level design patterns is performed
at design time as a result of the variability modeling and framework development
process. During the modeling process, component composition rules have been identi-
fied, which are used to glue components together to realize an architectural alterna-
tives or variations. The architectural patterns layer shown in Figure 1 includes the
component composition policy. For this framework, all three architectural variations
are derived from patterns, which may not be true in other cases as new alternatives
could be developed and incorporated into the framework.

Each architectural alternative is made up of generic, reusable components (repre-
sented by the letters A, B, C, and D in Figure 1) plus, if necessary, a specific
component X for HS/HA. The ‘+’ signs shown in Figure 1 represent composition of
components. For instance, the ST architectural variation is made up of components A,
B, C, E, and Y, e.g., A+B+C+E+Y. Figure 1 also illustrates that the LFs architectural
pattern is created using generic components A’ (a slight variation of A), B, and C, and
other components specific to an application (E and Y), as described below.

Considering the LFs, as an example, once it has been selected, the GUI will invoke
a method in the LFs package to start the LFs application. The start method for LFs in
turn will establish connection(s) with other node(s) (generic to all three different
alternatives) and create a thread pool (specific to LFs). The thread pool will also man-
age the promotion of a follower to be the leader in cooperation with the Dispatcher
component.

There could be more variations at the architecture level, e.g., dynamic thread crea-
tion upon a request. Additional variations could be added to the framework. The
framework is built in a way that it is expandable to include those variations as well.
However, in practice, not all variations may be practically useful if there are no evi-
dent advantages or special requirements. A framework that is very generic, to support
many varieties, may have a negative impact on the usage. That is, the user may be
confused, or it may be tedious for the user to go through all the steps. Further, there
may be extra execution overhead.

3 Usage of the Framework

Using the framework with the GUI is straightforward. The user simply goes through
the interface, chooses the desired architecture model and pattern, and inputs network
data (machine names or IP addresses, for example) to set up the connection. After
those steps, an operational prototype is built instantaneous.

46 C.-H. Lung et al.

Fig. 2. Network Router Emulation Application Using the P2P Model and the Leader/Followers
Pattern for the “Server” Side

Figure 2 shows a screen shot of the network router emulation application using the
P2P model and the Leader/Followers pattern (shown at the top). The highlighted Node
option under Application Type indicates that this particular node serves as a “server.”
The Link option under the Application Type is selected for the corresponding client
counterpart. A network of routers can be set up using different architecture alterna-
tives, which can facilitate the comparison of those alternatives.

Once an architectural style (client-server or P2P) and an architectural pattern have
been chosen, and the configuration of a network is completed, a working network
system can be generated immediately. Figure 2 demonstrates that data packets have
been generated (Source Node) and forwarded (Destination Node) to the routers. The
figure also shows which thread (I.D.: 4) is selected as the Leader during the execu-
tion. Note that this figure is only for the network connections rather than the output of
the application level.

A text-based domain-specific configuration support is also available for network
generation. The main usage of the text-based approach is to eliminate repetitive
creations of the same network topology or to support large network topologies for
evaluation purpose.

The designers can validate application requirements using the framework by add-
ing features or modifying existing ones in the top application-level Service Handler
(component E), shown in Figure 1. The Service Handler can be used to validate
functional and/or evaluate non-functional requirements. Validation of functional re-
quirements can be enhanced using the tool to generate an executable prototype for
proof-of-concept or to facilitate communications among stakeholders.

 Towards Architecture-Centric Software Generation 47

Evaluation of non-functional aspect could also be improved by collecting realistic
performance data. Examples of performance data that were monitored in the systems
under study include throughput, packet delay and jitter, packet loss, resource utiliza-
tion, failure detection and switchover time. Other performance data could be easily
collected by adding appropriate instrumentation in the code. The data can be used
together with or without a modeling tool for further scalability analysis or planning.

This paper focuses on the development of the framework instead of the actual per-
formance of a specific application based on the framework. Detailed performance
evaluation of a routing application on different architectural patterns was conducted
earlier in [1, 12].

The performance overhead of the framework compared to the baseline systems
mainly lies in the initial user selection stage in order to associate current components.
After a final architectural variation is selected, a program will be synthesized by
combining appropriate executable components only once, from which point on archi-
tectural variations do not play any role or have any impact on performance. In other
words, composition of components is primarily decided in the analysis and design
stages. Hence, performance overhead of the framework is negligible.

The main emphasis is to advocate the idea of raising the level of abstraction and
the development of a framework using proven software patterns. The framework can
be used to instantiate specific architectural alternatives. Moreover, more realistic or
precise data and a working system can provide more insights for supporting quantita-
tive software architecture evaluation. The point is essential for some qualities such as
performance for scalability analysis or availability for reliability evaluation. A
framework that can be used to generate multiple architectural prototypes also provides
key insights for supporting learning and finding a better architectural fit.

Table 3. Average Response Time of Three Architectural Alternatives: an Illustration

of Clients ST HS/HA, 5 worker threads LFs, 5 threads

2 1024,484 1019,226 1036,773

3 1043,425 1020,871 1046,862

4 1068,592 1022,428 1054,467

5 1078,578 1025,483 1084,914

TABLE 3 depicts a performance comparison (in ms) of three architectural alterna-

tives instantiated from the framework with a simple client/server messaging applica-
tion. In this application, clients send messages to the server. Upon receiving a
message, the server does a table lookup and sends a reply message back to the sender.
The example demonstrates how quantitative evaluation of architectural alternatives
using a generative approach can be efficiently realized. For a new application, only
the Service Handler has to be tailored once. Then, a quantitative evaluation of differ-
ent alternatives can be collected. The results in TABLE 3 are average response times
of each client sending 10,000 messages to the server using systems with Intel Core2
2.0GHZ Duo processor and 1022MB memory in a lab environment. The inter-arrival
time between two consecutive messages is 0.1 second. In this particular case, the

48 C.-H. Lung et al.

results reveal that the performance of HS/HA is steadier with respect to the number of
clients than the other two options; hence, it is more likely to scale well. Performance
of LFs is the worst, which is contrary to what is generally believed [20]. Though the
difference is not significant for a small number of clients, the results could show
higher discrepancy for large number of clients or high arrival rates. It is not our inten-
tion to claim that a system based on the LFs pattern always has the worst performance
just from this simple case study. However, the experiment outcome does demonstrate
the potential challenge of SPE that we have described earlier.

4 Related Work

This paper is an extension of our earlier workshop paper [17] which focused on de-
sign recovery and re-engineering of existing systems. Additions in this paper include
detailed discussions on variability management which serves as a more general
model, component composition, actual performance measurements, and broader
discussions on related work. This following describes related work in domain engi-
neering, generative programming, software architecture prototyping and evaluation,
and software architecture and performance modeling.

4.1 Domain Engineering and Generative Programming

Since the 1980s, the concept of the generative approach has been discussed exten-
sively in the areas of domain analysis and engineering and has been adopted in
many application domains. The generative approach will potentially become more
popular [4, 7] and practical in the future as more applications are becoming mature for
automation.

Model Integrated Computing (MIC) [22] has had success in system synthesis in
embedded applications. Application developers use this approach to facilitate analysis
of the models and to automatically synthesize applications from the models. However,
MIC has less success in areas of classical software applications [4].

GenVoca [Batory97] is a composition model used for program generation. The
main commonality of our approach and GenVoca is the idea of component composi-
tion. However, GenVoca is based on the concept of feature modularity to support
programming-by-difference. In our case, the differences or variations have been iden-
tified and built into the framework. Those variations become options for the user.
Another difference is that the level of abstraction discussed in GenVoca generally is
lower than the architecture, as advocated in our approach. AHEAD [4] extends Gen-
Voca to express diverse representations, such as code, rule, and makefile. AHEAD
offers an infrastructure to modularize problem domains by features and a mechanism
to generate applications by composing features.

The concept of product line architecture [5, 6, 19] is another area that shares simi-
larities with our approach. Typically, a product line approach starts with some kind of
base product architecture which is used to establish the base for the commonality and
variability analysis. The variabilities for product line architecture are often captured at
a lower level than architecture, e.g., component, class, method, and even variables.

 Towards Architecture-Centric Software Generation 49

In addition, Batory [5] argues that several technologies are emerging, including
generative techniques, product line architecture, and metaprogramming. Metapro-
gramming is proposed to raise the level of abstraction in software development with
large pieces or components [24]. Trujilo et al [25] introduce the concept of generative
metaprogramming which is an approach to metaprogram generation that will synthe-
size a target program of a product line. The main idea is to accelerate the development
of metaprograms by generating them rather than implementing them from abstract
specifications.

4.2 Software Components, Architecture Prototyping and Evaluation

Overall, the approach proposed in this paper is distinguished from most other genera-
tive approaches in that their aim is primarily to generate a system or develop a
program—in some cases, the “final” system. Our framework is primarily used to
support rapid or incremental architecture development by providing executable sys-
tems (infrastructure rather than the final system), using different architecture alterna-
tives from which the architect can build specific applications. The approach can
support the comparison of architectural alternatives and evaluation against quality
attributes by instantiating working systems using different architectures. Architecture
tradeoff or sensitivity analysis [11, 13] has been discussed extensively. One challenge
in this area is that more concrete information is often needed to provide more precise
evidence for various quality attributes. Our approach can have a complementary role
by providing quantitative or more concrete information to support architecture trade-
off or sensitivity analysis, especially in performance, scalability, and availability.

Based on our experience, it is often necessary to actually build a low-cost executa-
ble system that reflects the critical architectural elements and qualities of the target
system [16], which is also the main theme of architectural prototyping advocated by
Bardram et al. [2] and Martensson et al. [18]. Architectural prototyping allows the
architect to explore different alternatives and receive concrete feedback, which could
provide valuable information for balancing qualities and evaluating architecture.

Component-based software engineering (CBSE) [9] is also related to our approach.
One main difference between CBSE or even a catalog of well-documented patterns
and the proposed approach is that our approach emphasizes the problem on the archi-
tecture perspective. CBSE does not address software architecture explicitly. There
may be many ways to glue the components. Without architecture or high-level design
rules, composition of components may not be trivial.

From the performance modeling perspective, the framework can play a comple-
mentary role. Performance modeling, e.g., Layered Queuing Networks [8] or Stochas-
tic Process Algebras [10], can be adapted more easily to a variety of applications and
is useful for scalability analysis. On the other hand, each performance modeling tech-
nique has limitations, such as modeling of lost messages or packets, failure scenarios,
or state explosion. Secondly, performance modeling often depends on realistic estima-
tions, such as execution time or probabilities for diverse decision points for different
execution paths, and it may be difficult or time-consuming to obtain these for compli-
cated system interactions within an application or between the application and the
computing resources. By quickly generating a working system, the data from various

50 C.-H. Lung et al.

working prototypes can be measured much more efficiently and precisely. The data
could be stored in a performance knowledge base [27] and fed into performance mod-
els for further sensitivity or scalability analysis. Woodside et al. [27] also advocate
describing the system with different values of factors, including variations in design.

5 Conclusion and Future Work

Software architecture has been recognized as a crucial factor in successful software
development. Practicing architects, unfortunately, have few tools available to them for
conducting front-end analysis. Evaluations of architectures are often performed
on high-level descriptions. This paper advocated an architecture-centric generative
approach to support software architects in requirements gathering, evaluating archi-
tecture qualities, and developing a system stepwise. A trend of software development
is to raise the level of abstraction; as the level increases, so does the degree of soft-
ware automation and generation [5].

The paper also reported our empirical experience in the development of such a
generative framework in distributed and concurrent applications. The framework was
primarily built using well-understood design patterns and through reengineering exist-
ing robust systems. As a result, the framework consists of robust reusable components
and practically useful architecture or design alternatives.

The framework can be further expanded to support other new design alternatives or
adapted to other problem domains. For instance, multi-core systems have become
popular. New design techniques may be developed to make better use of parallelism.
Hence, new patterns may be discovered in the future, which could be added to the
framework. New patterns can be inserted into the framework as a totally separate
entity. But similarities may be present between the new pattern and existing pat-
tern(s). With variability management (as discussed in Section 2.1), common compo-
nents can be identified to reduce maintenance efforts. For a new application domain,
similar concept or process, e.g., variability management (Section 2.1) and construc-
tion of reusable components and the framework (Section 2.2) could be applied.

Another point is that the proposed framework needs to be modeled only once and
then it can be used repeatedly. In other words, more effort needs to be spent on the
front-end analysis by incorporating multiple alternatives into a framework and identi-
fying commonalities and variabilities of components. The concept is similar to
domain analysis or development for reuse. The proposed approach is better suited for
environments where systems in an area are repeatedly needed to be built (e.g.,
the communication framework that will be repeatedly used for different service appli-
cations) or for third party evaluators who provide services to other companies or
organizations.

A GUI-based interface was used in the experiment for network topology creation
and alternative selection. GUI is easy to use, but is not effective if the network
becomes large. A text-based domain-specific configuration support can be used to
eliminate repetitive creations of the same network topology or to support large network
topologies for evaluation purposes. A text-based domain-specific support is also useful
for automation.

 Towards Architecture-Centric Software Generation 51

Acknowledgements

We would like to thank Nortel Networks for providing us with a network routing
software system for research and education. The project is partially funded by
NSERC (National Sciences and Engineering Research Council) of Canada.

References

1. Alhussaini, A., Balasubramaniam, B., Chandrabose, P., Kasinathan, A.: Software Restruc-
turing and Performance Evaluation, Project Report, Department of Systems & Computer
Eng., Carleton University (2004)

2. Bardram, J.E., Christensen, H.B., Hansen, K.M.: Architectural Prototyping: An Approach
for Grounding Architectural Design and Learning. In: Proc. of the 4th Working IEEE/IFIP
Conf. on Software Architecture, pp. 15–24 (2004)

3. Batory, D., Chen, G., Robertson, E., Wang, T.: Design Wizards and Visual Programming
Environments for GenVoca Generators. IEEE Trans. on Soft. Eng. 26(5), 441–452 (2000)

4. Batory, D., Sarvela, J.D., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE Trans.
Soft. Eng. 30(6), 355–371 (2004)

5. Batory, D.: Multi-Level Models in Model Driven Development, Product-Lines, and
Metaprogramming. IBM Systems Journal 45(3), 1–13 (2006)

6. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product-
Line Approach. Addison-Wesley, Reading (2000)

7. Czarnecki, K., Eisenecker, U.W.: Generative Programming Methods, Tools, and Applica-
tions. Addison Wesley, Reading (2000)

8. Franks, G., Al-Omari, T., Woodside, M., Das, O., Derisavi, S.: Enhanced Modeling and
Solution of Layered Queueing Networks. IEEE Transactions on Software Engineer-
ing 35(2), 148–161 (2009)

9. Heineman, G.T., Councill, W.T.: Component Based Software Engineering: Putting the
Pieces Together. Addison-Wesley, Reading (2001)

10. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press, Cambridge (1996)

11. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The Architec-
ture Tradeoff Analysis Method. In: Proc. of the 4th Int’l. Conf. on Eng. of Complex Comp.
Sys., pp. 68–78 (1998)

12. Lee, J.-C., Zhang, X.: Performance Investigation of a Network System on Different Linux
Kernels. Project Report 2004, Dept. of Systems & Comp. Eng., Carleton University (2004)

13. Lung, C.-H., Kalaichelvan, K.: A Quantitative Approach to Software Architecture Sensi-
tivity Analysis. Int’l. Journal of Software Eng. and Knowledge Eng. 10(1), 97–114 (2000)

14. Lung, C.-H., Zhao, Q., Xu, H., Mar, H., Kanagaratnam, P.: Experience of Communications
Software Evolution and Performance Improvement with Patterns. In: Proc. of IASTED
Software Engineering, Feburary 2004, pp. 321–326 (2004)

15. Lung, C.-H., Zhao, Q.: Pattern-Oriented Reengineering of a Network System. Journal of
Systemics, Cybernetics and Informatics 2(5) (2004)

16. Lung, C.-H., Zaman, M., Goel, N.: Reflection on Software Architecture Practices – What
Works, What Remains to Be Seen, and What Are the Gaps. In: Proc. of the 5th Working
Conf. on Software Architecture (2005)

17. Lung, C.-H., Balasubramaniam, B., Selvarajah, K., Elankeswaran, P., Gopalasundaram,
U.: Architecture-Centric Software Generation: An Experimental Study on Distributed

52 C.-H. Lung et al.

Systems. In: Proc. of Generative Programming and Component Engineering for QoS Pro-
visioning in Distributed Systems (October 2006)

18. Martensson, F., Grahn, H., Mattsson, M.: Prototype-based Software Architecture Evalua-
tion – Component Quality Attribute Evaluation. In: Proc. of the 4th Conf. on Software
Engineering Research and Practice, Sweden, pp. 11–17 (2004)

19. Northrop, L.M., Clements, P.C.: A Framework for Software Product Line Practice, Ver-
sion 5.0. Software Engineering Institute, Carnegie Mellon University (2005)

20. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architec-
ture: Patterns for Concurrent and Networked Objects. Wiley, Chichester (2000)

21. Smith, C.U., Williams, L.G.: Performance Solutions A Practical Guide to Creating
Responsive and Scalable Software. Addison-Wesley, Reading (2001)

22. Sztipanovits, J., Karsai, G.: Generative Programming for Embedded Systems. In: Proc. of
the 1st Conf. on Generative Programming and Component Eng., pp. 32–49 (2002)

23. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe Composition of Product Lines. In:
Proc. of the 6th Int’l. Conf. on Generative Programming and Component Eng., pp. 95–104
(2007)

24. Trujillo, S., Batory, D., Diaz, O.: Feature Oriented Model Driven Development: A Case
Study for Portlets. In: Proc. of the 29th Int’l. Conf. on Software Eng., pp. 44–53 (2007)

25. Trujillo, S., Azanza, M., Diaz, O.: Generative Metaprogramming. In: Proc of the 6th
Int’l Conf. on Generative Programming and Component Engineering, October 2007,
pp. 105–114 (2007)

26. Williams, L.G., Smith, C.U.: PASA: An Architectural Approach to Fixing Software
Performance Problems. In: Proceedings of CMG (2002)

27. Woodside, C.M., Franks, G., Petriu, D.C.: The Future of Software Performance Engineer-
ing. In: Proc. of the 29th International Conference on Software Engineering, pp. 171–187
(2007)

An Architectural Blueprint for Model Driven
Development and Maintenance of Business Logic

for Information Systems

Tobias Brückmann1 and Volker Gruhn2

1 University of Leipzig, Klostergasse 3, 04107 Leipzig, Germany
brueckmann@ebus.informatik.uni-leipzig.de

2 University of Duisburg-Essen, Schützenbahn 70, 45127 Essen, Germany
volker.gruhn@uni-due.de

Abstract. Despite of ongoing development of model-driven develop-
ment approaches in industry and academia, we believe that in partic-
ular for business logic aspects of information systems there is a lack
of integrated support considering all phases of a model driven software
process, from analysis until code generation. In our work we developed a
framework consisting of meta-models, model transformations and tools
that address a consistent support of development and maintenance tasks.
As contribution of this article, we present an architecture for generated
business logic code as part our infrastructure blueprint. We aim at the
generation of robust business logic layers and consider particularly main-
tenance and integration issues of complex information systems with ex-
ternal dependencies. For this purpose, our infrastructure supports the
specification of global domain states and local conditions in visual soft-
ware models and generates corresponding code artifacts which assure
these conditions automatically.

1 Introduction

Model driven software engineering is a software engineering approach that con-
siders software models as “first class citizens”[6]: They are the premiere artifacts
in a software process and used to provide a tool for structured descriptions of
systems [18] or aspects of a reality [15]. Through the application of automated
model processing tasks, model driven approaches aim at the automated execu-
tion of former manual actions, such as translating a model into another modeling
language or producing program code. We believe that for utilizing the poten-
tial strengths of model driven software engineering a consistent support of all
phases of a software process is needed from early analysis and design until imple-
mentation and maintenance. For this purpose, the following aspects have to be
considered by a project infrastructure that supports a consistent model driven
software process:

– Visual software models have to support different levels of detail considering
all phases from analysis models until detailed design models as well as all

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 53–69, 2010.
© Springer-Verlag Berlin Heidelberg 2010

54 T. Brückmann and V. Gruhn

required modeling paradigms, such as structural, state, scenario, or process
modeling;

– Quality assurance tasks for complex visual software models have to support
modelers in preventing a faulty and inconsistent set of requirements;

– A clear interface between visual software models and code generators is
needed, in particular if several visual modeling languages and several code
generators are deployed;

– With regard to the integration of generated code artifacts and handcrafted
code, the architecture of the generated program code has to support devel-
opers in manual integration tasks; and

– With regard to maintenance and modification tasks, modelers and developers
have to be supported in impact analysis and program understanding tasks.

As a consequence, a proper technical infrastructure is needed that provides meta
models, modeling tools, model verification, and model processing rules under
consideration of project specific requirements. As part of our work, we developed
an architectural blueprint that supports a consistent model driven development
process of business logic for information systems. This blueprint is structured
in several architectural layers. Each layer supports specific tasks, such as visual
modeling, impact analysis, model verification, and code generation. These tasks
are performed on different levels of abstraction: starting with a general purpose
software model, followed by a domain specific model, and a formal representation
and finally resulting in generated code artifacts.

In our work, we focus on business logic aspects of web-based information sys-
tems. In contrast to reactive systems, which are used to control time-critical or
live-critical physical machines, information systems support industrial business
processes. In the following, we use the term business logic to address parts of an
information system that connect user interfaces (presentation layer) with storage
systems (persistency layer). The business logic layer (application layer) provides
the implementation of business processes and contains processing instructions
for business data. We consider page flow and navigation logic as part of the
presentation layer and not as part of the business logic layer. Based on the fol-
lowing two assumptions, we explicitly address not only the initial development
process of systems but rather reoccurring modification and maintenance tasks:
First, we assume that the business logic of industrial information systems often
depends on external functions or systems such as internal and external web ser-
vices, public APIs, or further systems of an enterprise application landscape. As a
consequence, possibly unsafe program code that was not generated automatically
has to be connected manually to critical parts of a system. Second, a complex
system (or a landscape of systems) supporting complex and probable critical
business processes has to be developed and maintained over several years and
with changing project teams. Parts of the original system are reworked, added,
or removed due to changed domain requirements and documentation artifacts
often lack and are not up to date so that code maintenance becomes a complex
and risky task. It can easily happen that during work on a minor change request
important domain constraints become accidentally violated. In such a case the

An Architectural Blueprint for Model Driven Development 55

consequences are not easily predictable and may lead to inconsistencies in the
data base or unexpected behavior in business critical systems. Both assumptions,
need for integration as well as long-term operation, led us to the conclusion that
a project infrastructure for the development and maintenance of business logic
must particularly consider specific requirements:

– The generated code artifacts that implement defined business processes con-
tain business critical control structures;

– External systems as well as persistency layer and presentation layer have to
be connected to the generated critical business logic code; and

– Despite of dependencies and interconnections to further subsystems, the
business logic has to assure that business processes are supported as spec-
ified. Any inconsistency in the domain data set, which probably has to be
shared with other applications, has to be avoided.

The contribution of this article is to introduce robustness features that are in
particular relevant for generated business logic artifacts and to provide an archi-
tecture for generated business logic layers of information system that considers
the above outlined assumptions. Moreover, we show how specific robustness fea-
tures are supported in each layer of our proposed architectural blueprint.

The remainder of this article is structured as follows: After the discussion
of related work in Sect. 2, we provide a brief introduction of our architectural
blueprint in Sect. 3. Afterwards an example model for business logic is presented
in Sect. 4, before we introduce concrete robustness criteria in Sect. 5. Sect. 6
discusses architectural details of a generated business logic layer for industrial
information systems, followed by concrete implementation examples in Sect. 7,
before we conclude in Sect. 8.

2 Related Work

For the study of related work, we started with a focus on architectures and tool
chains that address modeling, model verification, and code generation of infor-
mation systems. Compared to the presentation and persistency layer, existing
approaches for automation of business logic layer development usually do not
support a comparable level of automation considering all phases of a software
process from analysis until maintenance. Hence, we also examined approaches
from the embedded systems domain. Concluding the analysis of the related work,
we found no approach covering all aspects that have to be addressed for a consis-
tent support of the development and maintenance of business logic. They either

– Do not support process modeling concepts as required for large business
logic models (Mohan et al. [11], Schattkowsky et al. [17], Fleurey et at. [5],
Konrad et al. [10], Engels et al. [4], Meier et al.[19]); and/or

– Do not consider model quality analysis tasks (Köhler et al. [9], Schattkowsky
et al. [17], Fleurey et at. [5]); and/or

56 T. Brückmann and V. Gruhn

– Support code generation only for proprietary platforms (Mohan et al. [11],
Köhler et al. [9], Schattkowsky et al. [17]) or do not support code generation
(Engels et al. [4], Jurack et al. [7]); and/or

– Focus only on the reactive (embedded) systems domain and not on informa-
tion systems (Engels et al. [4], Konrad et al. [10], Meier et al. [19]).

Mohan et al. present in [11] “a state machine based work flow system (FlexFlow)
which formally describes internet applications using statecharts” and implement
an engine that uses these descriptions to control the execution of web applica-
tions. Mohan et al. address the application logic of information systems consid-
ering the logical connection to the user interface layer. They use state charts
as visual modeling paradigm under consideration of the whole live cycle from
design until maintenance. As a difference to Mohen et al., our visual model is
used to cover all required concepts as needed to generate business logic artifacts
(including user and systems functions) and not only abstract navigation paths
through user interface artifacts. A further difference is that Mohen et al. only
support a proprietary execution engine.

Koehler et al. introduces their Business-Driven Development (BDD) approach
in [9]. It is focused on business processes and applies visual business process mod-
els that are transformed into executable business process languages as part of
a consistent service-oriented environment. Compared to our work, the Business-
Driven Development approach considers all phases of the development process
of an information system, from analysis and design until code generation. The
visual model as used by Koehler et al. is provided by the IBM Websphere
Business Modeler tool and the target platform for generated code artifacts is
BPEL/WDSL. Further visual modeling languages and target platforms, such as
J2EE, are not supported.

Schattkowsky and Müller presented in [17] a model-driven development and
maintenance process for embedded systems that addresses design and execu-
tion of UML models for embedded systems. They developed a virtual machine
for UML (UVM) that executes UML models directly. Compared to our work
Schattkowsky and Müller support structural and behavioral modeling concepts.
However, they support only sequence and state diagrams as behavioral diagrams,
which are the common supported types of diagrams in the context of embedded
systems. Moreover, Schattkowsky and Müller aim at the direct execution of the
model and do not consider code generation and integration tasks.

Bordbar et al. address in [1] robust system maintenance for data-centric ap-
plications considering maintenance issues. They provide a project infrastructure
consisting of a visual software model and its automated processing. However,
Bordbar et al. focus only on the persistency layer without any consideration
of business logic or integration purposes of the persistency layer and business
logic. Fleurey et al. developed in [5] a model-driven approach for the modern-
ization and migration of information systems. They support the whole process
from processing the old code base into an abstract model until code generation
of the target platform. Fleurey et al. strongly focused on code migration projects,

An Architectural Blueprint for Model Driven Development 57

where running systems have to be migrated into another platform, for example,
from CORBA into J2EE. Our proposed infrastructure blueprint also comprises
different models and model processing tasks. Instead of code migration, we focus
on changed domain requirements related to the business logic.

Model driven development platforms, such as openMDX (www.openmdx.org)
or AndroMDA (www.andromda.org), provide code generation environments that
can be used as technical frameworks supporting the code generation step. How-
ever, they do not consider visual modeling tasks and do not provide native sup-
port for robustness features of business logic layers as proposed by our approach.

3 Architectural Blueprint of an Amabulo Infrastructure

For the development and maintenance of business logic for information systems,
we developed an architectural blueprint consisting of meta models, tools, and
a method support for model driven development and maintenance of business
logic (from analysis to code generation). This blueprint, which we call “Amab-
ulo infrastructure”, provides concepts and tools to set up and apply concrete
infrastructures for model driven development projects. Modeling languages can
be applied as needed. In this paper, we focus on business logic layers of J2EE
application. However, concrete code generation rules can be easily adapted for
different target platforms.

Visual Model

Amabulo-Model

Model Transformation

Meta Model
instance of

Amabulo-
Meta Model

instance of

Coloured Petri
Net

Specific-Code
Generator

Code Comparison
Tool

Model Comparison
Tool

Generated-
Application

Formal Specification Output

Input Model

use

use

use

use

provide input

compare

analyse
and

simulate

Modeling Tool
exports

Coloured Petri Net
 Definiton

instance of

use

use

Code Generation

Target Platform
Specification

instance of

CPN Analysis Tool

Development
Tool

edit

 Tool/
Concept

Modeler

QA-
Manager

Software
Developer

Visual
Model
Layer

Abstract
Model
Layer

Abstract
System
Layer

Code
Generation

Layer

Application
Layer

control

Dependency

Fig. 1. Overview of Amabulo Infrastructure Blueprint

58 T. Brückmann and V. Gruhn

An Amabulo infrastructure consists of five different layers (see Fig. 1): The Vi-
sual Model Layer is responsible for all visual modeling tasks of a
development process. For this purpose, the visual modeling language and the
modeling tool of this layer are used by human modelers to specify domain and
technical requirements. Depending on actual requirements, yet existing modeling
languages (such as UML [12], BPMN [13], or EPC [8]) and tools can be reused.
If needed, multiple Visual Model Layers can be part of one concrete project
setup and modelers can switch between them. To illustrate this point, at the
very beginning of a project, when talking to domain experts, a business process
modeling language (such as EPC) can be the best choice for visual modeling.
Afterwards, when the domain requirements are complete and a technical mod-
eling language is needed, the visual model layer can be switched to the Unified
Modeling Language (UML).

The Abstract Model Layer provides an abstract (non-visual) view onto the
business logic model in the form of a domain specific modeling model (Amabulo
model), as introduced in [2]. It is reduced to pure logical information concern-
ing business logic aspects and focused on information that is relevant for code
generation. For this purpose, an Amabulo model integrates concepts for process
modeling, state modeling, and structural modeling. It is used as a common inter-
face between visual modeling languages and code generators. Moreover, it helps
to reduce the complexity of the interface between models and code generators.
Compared to UML with its more than 250 defined elements, an Amabulo model
consists only of 13 precisely defined elements. This layer also provides a model
comparison tool that is used to assist users in comparing different versions of
the same model and exploring semantic changes between them.

The Abstract System Layer provides a formal view onto the system in the
form of a Coloured Petri Net (CPN). A Coloured Petri Net representation of the
modeled business logic is a formal structure that is independent of the actual
business logic implementation. It can be analyzed and simulated by quality as-
surance managers with suitable analysis and simulation tools, such as CPNTools.
The Abstract System Layer is an optional layer. It is only needed if automated
quality assurance is relevant for a project.

The Code Generation Layer is responsible for code generation, which
means transforming an abstract model automatically into program code. Re-
quirements of code generators are very specific and differ from project to project.
Hence, concrete implementations of the code generation layer will be unique. A
concrete Code Generation Layer implements two concepts: A code generator that
creates specific code artifacts based on an abstract model as input parameter
for the generation process, and a generator specific code comparison tool that
supports software developers during impact analysis and program understanding
tasks.

The Application Layer is the target layer of an Amabulo infrastructure and
comprises generated code artifacts. These artifacts are instances of a specific
target platform specification, and they can be modified for integration purposes
with development tools.

An Architectural Blueprint for Model Driven Development 59

4 Example Model

The UML model in Fig. 2 provides an example for a business logic model as cre-
ated with a concrete Visual Model Layer that defines an UML profile for business
logic as described in [2]. This model specifies a detailed part of an industrial four
eyes decision process. It comprises three different diagrams: A process view, a
structural view, and a state view. In general, we use the state modeling paradigm
to refine structural entities at property scope as described in [3]: The attribute
“decision” of the business object “Offer” is refined by the state view. The state
view defines four different states and transitions between them. Using only the
structural view together with the state view, a modeler gets an overview of the
relevant steps of the live cycle of an “Offer”. The process view provides a com-
plementary view. As modeled in the activity diagram, two “UserActions” have
to be supported: During the “first decision” action a first manual decision has to
be made. This action requires and modifies an instance of “Offer” and a precon-
dition forces the incoming offer to be in the state “undecided”. Additionally, a
postcondition requires the outgoing offer to be either in the state “declined” or in
the state “firstDeciderAccepted”. Afterwards, if the offer was declined, the action
“send declinature message” is called. This action is executed automatically (it
is stereotyped “SystemAction”) and requires an offer to be started (modeled as
InputPin). In contrast to “first decision” action the “send declinature message”
action does not modify an offer (“Offer” is modeled only as InputPin). During
the execution of this system action, an internal implemented function or an ex-
ternal integrated function is called and no user input is necessary. If the first
decider accepts the user action “second decision” is called. After finishing the
“second decision”, a further control flow decision has to be made depending on
the current state of the offer. If the offer was declined, the above mentioned “send
declinature message” is called. Otherwise, the “send acceptance message” action
is executed automatically.

5 What Robustness Means

As described above, the robustness of complex business information systems
that are part of application landscapes is an important concern in particular for
business logic implementations, because critical code artifacts have to provide
interfaces to external functions and subsystems. For supporting developers in
development and maintenance tasks, our architectural blueprint considers three
main aspects of robust, generated business logic code:

5.1 Assurance of Local Conditions

Whenever a system reuses implemented functionality of other systems it has to
be assured that external data input does not violate internal domain constraints.
This class of errors (improper input validation) is listed as “one killer of healthy
software” in the SANS List of Top 25 Most Dangerous Programming Errors

60 T. Brückmann and V. Gruhn

Activity Diagram - Four Eyes Decision

«UserAction»
first decision

«UserAction»
second
decision

«SystemAction»
send

declinature
message

«SystemAction»
send

acceptence
message

[Offer.decision == firstDeciderAccepted]

[Offer.decision == declined]

[Offer.decision == accepted]

[Offer.decision == declined]

Offer

Offer

Offer

Offer

Offer

Offer

«precondition»
Offer.decision == undecided

«postcondition»
Offer.decision == (declined ||
firstDeciderAccepted)

«precondition»
Offer.decision ==
firstDeciderAccepted

«postcondition»
Offer.decision == (declined ||
accepted)

«precondition»
Offer.decision == accepted

«precondition»
Offer.decision == declinded

State Diagram - Offer.decision

Class Diagram - Offer

firstDecider : String
secondDecider : String
decision : String

Offer

declined

firstDeciderAccepted

undecided

accepted

Fig. 2. Four Eyes Decision Process, UML Model

[14]. For example: A function X is called by function Y and expects either the
value A or B as results of function X. Now, if function X returns a value C, an
exception handling routine has to be started in Y. This seems to be a trivial use
case, but considering that systems run several years and complex result types of
integrated external functions may change due to maintenance tasks after running
several months, it is important to guarantee that reused external functions never
cause internal errors. Therefore, the specification of local conditions for each
function is a modeling concept to prevent faulty behavior at a local scope of
single processes or functions. By the use of preconditions and postconditions, the
modeler can specify domain conditions, which have to be asserted automatically
by the generated system. Considering the detailed model example as introduced
in Fig. 2, each function comes with a specified precondition and two functions
have also defined postconditions. If a condition is not satisfied, an exception
handling routine has to be executed, and the control flow has to be stopped.
Moreover, it has to be prevented that probable inconsistent data sets are stored
in the persistency layer.

5.2 Assurance of Global Domain States

Beside local conditions, which are modeled as preconditions and postconditions,
domain states of business objects can often be identified. Such domain states are
interpreted as domain constraints and must not be violated by the supporting
system. Domain states are modeled as the refinement of attributes of business
objects. If an attribute is related to a state chart, the business logic layer abode
by the following rules:

An Architectural Blueprint for Model Driven Development 61

– The values of the attribute are restricted to elements of the set of defined
states.

– If a new instance of a business object is created, the value of all state chart
refined attributes is restricted to one of the possible initial states.

– If an object is going to be modified it has to be assured that the values of all
attributes that are refined by a state chart follow the modeled transitions of
the corresponding state chart. Attributes may remain unchanged. However,
if an attribute value is changed, it has to be assured that the new value is a
valid successor of the previous value of the attribute.

If any of this rules is violated by business logic implementations, the control
flow has to be stopped. These rules overrule even modeled local conditions. (An
inconsistent specification of local conditions and global domain states can lead
to unexpected system behavior. We are currently working on the automated de-
tection of such inconsistencies through an automated transformation of visual
models into CPN and a tool-supported automated analysis as part of the Ab-
stract System Layer of our infrastructure, which is not considered in this paper.)
When during a maintenance task a developer implements a function or a pro-
cess that executes a domain state transition that is not specified, this violation
is detected and handled automatically. Providing an example with regard to the
example model in Fig. 2: if the user function “first decision” tries to change the
value of the attribute “decision” to “accepted”, which is not allowed when follow-
ing the state chart, a domain state violation handling routing has to be invoked
and the process has to be stopped.

5.3 Clear Separation of Concerns

As motivated above, generated business logic artifacts usually have to be inte-
grated with further code artifacts, such as handcrafted code, otherwise generated
code, or legacy code. On the one hand, a reliable and robust implementation of
modeled domain requirements has to be guaranteed: Manual additions to gener-
ated parts of an application are not allowed everywhere. Critical code fragments,
such as the assurance of modeled conditions or domain constraints, must not be
modified after generation. On the other hand, there should be no artificial hur-
dles for developers performing manual integration tasks. As a consequence, the
generated business logic code consists of parts that are critical and that have to
be protected. Furthermore, it contains parts that have to be modified manually
by developers. For integration as well as for tracking and versioning purposes it
is essential to separate both types of code fragments at file level. As described
in Sect. 6: we recommend to generate a single file for each part of the system
that has to be edited by developers and to integrate the handwritten code using
object-oriented design concepts and patterns, such as delegation and interfaces.
Using the results of the code comparison tool from the Code Generation Layer,
the code generator produces only code that is needed to reflect actual model
changes and not the entire business logic. It does not delete or overwrite man-
ually modified files without an explicit confirmation by the developer. If the

62 T. Brückmann and V. Gruhn

developer chooses not to overwrite existing sources and the scheduled changes
affect structural aspects for the program code, such as the addition of attributes,
compiler errors provide a help to identify and fix updates manually.

6 Architecture of Business Logic Layers of Generated
J2EE-Applications

The architecture of business logic layers generated by an Amabulo infrastructure
is discussed with regard to robustness supporting aspects as introduced in the
previous section. If the design of generated business logic layers as introduced in
this section is considered during the design and implementation of its code gener-
ator, the generator output will satisfy our robustness features and support later
integration and maintenance tasks. Focusing on web-based information systems,
we focus on business logic layers of J2EE applications, which also include simple
code artifacts of the persistency layer and the presentation layer. The result of
the generation process is a J2EE application that implements standards such
as Java Beans, Enterprise Java Beans (EJB), and Java Server Faces (JSF). It
reuses the Seam Framework [16] and can be deployed directly on a JBoss ap-
plication server. Fig. 3 provides an architectural overview of a generated J2EE
application: The business logic layer contains Session EJBs for processes that
implement the modeled control flow including all decisions and constraints, and
it contains Session EJBs for system functions that provide the actual imple-
mentation of a function. Business objects are accessible as JavaBeans, which
also implement the domain state assurance logic. The presentation layer is im-
plemented by JavaServerFaces and supports all modeled user functions. Entity
EJBs are used for the persistency layer implementation. Additionally, the rows
in Fig. 3 indicate whether a component is a critically generated code artifact that
must not be modified manually or a component that is expected to be modified
manually.

«Java Bean»
Business Object

«Entity EJB»
Business Object

«Session EJB»
Process

«Java Server
Faces»

UserFunction

«Session EJB»
SystemFunction

calls

calls

calls

calls

creates

Presentation Layer Business Logic Layer Persistency Layer

calls

Generated Critical
Code Artifacts

Manual Modified
Code Artifacts

Fig. 3. Application Tier Overview

An Architectural Blueprint for Model Driven Development 63

6.1 Business Objects

For each modeled business object a corresponding triple is generated: an unique
interface, a Java Bean, and an Entity Enterprise Java Bean (see Fig. 4 at the
top). The generated interface provides all required functions of a business ob-
ject, such as getter and setter functions, as well as administrative attributes, such
as identifiers. The interface is implemented by both, the Entity Bean and the
Java Bean. The Java Bean is used as data transfer object. It is a critical code
artifact and must not be modified manually. Implemented (system and user) ac-
tions access business objects only through transfer objects that are managed by
process implementations. Moreover, the generated transfer objects are respon-
sible for domain-state assertions (as introduced in Sect. 5.2): If attributes are
modeled with a refining state chart, the transfer object assures that only defined
state transitions are processed when the value of an attribute is changed. By the
support of the domain-state assertion logic, no invalid state transition can be
executed or passed to any persistent object in any function of the business logic.
This prevents inconsistent application data, even if the business logic depends on
several external systems that modify business objects. The Entity Enterprise
Java Bean (Entity EJB) connects business logic with persistency layer and
contains information about object-relational data mapping in form of standard-
ized annotations. If needed, the Entity EJB can be completely rewritten, for
example, to support bean-managed persistence. However, to keep the modified
Entity EJB integrated with the generated code artifacts, it has to keep its name
and has to provide a valid implementation of the generated interface.

6.2 Processes

For each modeled process a Session EJB and its Local Session EJB Interface
is generated, see Fig. 4 at the bottom left. The implementation of the mod-
eled process is generated as a Session EJB. It contains all the control flow
logic of the process, which determines initial and final functions, sub-processes,
and succession relations. The actual order of called functions or sub-processes

«Interface»
ObjectInterface

«Entity EJB»
Object

«Java Bean»
ObjectPojo

«Local Interface»
Process

«Session EJB»
ProcessAction

«Local Interface»
SystemFunction

«Session EJB»
SystemFunctionAction

«Java Server Faces»
UserFunction

Business Object

Process User Function System Function

Fig. 4. Generated Business Object Triple, Generated Processes and Actions

64 T. Brückmann and V. Gruhn

is processed at runtime depending on modeled succession relations between the
model elements and the current state of the data model. Moreover, the process
implementation provides connections to the persistency layer: It loads all needed
business objects that are needed during process execution from the persistency
layer into transfer objects and stores the modified objects back in the persistency
layer. Session EJBs generated for processes are the most critical and most com-
plex generated artifacts: They must not be edited manually. Beside control flow
decisions, they are responsible for condition evaluation (as introduced in Sect.
5.1): Each modeled precondition and postcondition has to be assured by the
process implementation. If a condition is violated, a defined exception handling
starts and interrupts the current executed process to prevent an inconsistent
data model.

6.3 System Functions

For each system function, a Session EJB stub including its local interface is
generated, see Fig. 4 bottom right. The generated code for a system function pro-
vides a connection to the handwritten program code and enables the integration
of external functions, applications, and legacy systems. Therefore, the generated
Session Bean consists of one method with an empty body and has to be ex-
tended manually for integration purposes. All required parameters are accessible
through class attributes, which are provided by “bijection” mechanisms of the
Seam Framework. Additionally, as part of its containing process, a call-method
is generated for each system function. This call-method is part of the Session
EJB that is generated for the parent processes containing the system function. A
call-method prepares all required business objects (input parameters) and is re-
sponsible for the precondition assurance. Then, it calls the (manually modified)
implementation of the system function and is responsible for postcondition as-
surance. Moreover, it also passes changed objects back to the persistency layer.
Fig. 5 illustrates a scenario of a successful call and return of a System Function:
If the process implementation Process.findNext() decides to invoke a system
function, the system function implementation SystemFunctionCall() is called.
This function prepares all required input parameters from the persistency con-
nection BusinessObjectEJB and is responsible for the assurance of precondi-
tions. Then, the actual system function implementation SystemFunction.java
is processed. After the collected data were returned to the SystemFunctionCall()
method, specified postconditions are assured and output parameters are stored
in the persistency layer. Finally, the control flow is handed over to the process
implementation.

6.4 User Functions

A modeled user function is generated as a simple Java Server Faces (JSF)
file, see Fig. 4, bottom center. The internal state of all required business objects
(input parameters) is rendered in a read-only view, so that all attributes and their
current values can be seen by the user. Moreover, the internal state of all created

An Architectural Blueprint for Model Driven Development 65

sd Call of a System Function

Process.findNext() SystemFunctionCall()

call UserFunction

Assure
Preconditions

SystemFunction.java

Call System Action
Implementation

Return
Assure
Postconditions

Collect
Systems Input

Store Output Parameter

BusinessObjectEJB

Query Input Parameter

Return Business Objects

Acknowledge

Return

Fig. 5. UML Sequence Diagram: Call of a User Function

or modified business objects (output parameters) can be edited by the user in
the user interface. After the user decides to finish the current action, the control
flow is passed back to the business logic layer. Depending on project specific
needs, the generated UI implementation can be modified or completely replaced,
for example by otherwise generated or hand-written UIs, which is particularly
relevant for industrial information systems. Comparable to system functions,
specific methods that manage the connections to the persistency layer and assure
all modeled conditions are generated for each user function.

7 Robustness at Code Level

For validation purposes we implemented a concrete Amabulo infrastructure with
UML as visual modeling language, Coloured Petri Nets for quality assurance,
and J2EE/JBoss-Seam as target platform. Subsequently, we applied it in an in-
dustrial scenario, which was derived from project experiences with our industrial
partners. With regard to the contribution of this paper, this section focuses on
robustness features at code level. The subsequently described listings contain ex-
cerpts from the generated business logic layer that was generated from the UML
model of Fig. 2. This model is part of a complex offer negotiation process as sup-
ported by e-business systems of our partners from the insurance and reinsurance
business. List. 1 shows a generated ”call-method” sendAcceptenceMessage()
related to the modeled system action “SendAcceptanceMesssage” of Fig. 2. This
method is part of the generated control flow logic and must not be modified
manually after generation. The actual implementation of the system function is

66 T. Brückmann and V. Gruhn

provided by a session bean (referred as sendAcceptanceMessage object) that
implements the generated session bean interface as described in Sect. 6.

Listing 1. Generated Integration Code of “SendAcceptanceMessage” Action

1private String sendAcceptanceMessage () throws
2SystemFunctionExcecutionException ,ViolatedConditionException {
3em.find(Offer.class , offer.getId ());
4offer.merge(offerEJB , offer);
5if (!(evaluateExpression ("offer.decision==’accepted ’"))) {
6throw new ViolatedConditionException ("
7Violated precondition(offer.decision==’accepted ’)
8in function bindContract ");}
9sendAcceptanceMessage.sendAcceptanceMessage ();
10return findNextFunction (" sendAcceptanceMessage "); }

After preparing an offer object from the persistency layer (LOC 3+4), the
modeled preconditions have to be assured. The decision attribute of contract
has to be accepted. Otherwise, a constraint violation is detected an a proper
exception has to be raised (LOC 5-8). Then an accepted offer will be handed
over to the manual implementation or integrated functionality (the session bean
sendAcceptanceMessage) in LOC 9. The data transfer object offer is accessible
through the session context of the application. Postcondition assurance and stor-
age functions are not needed in this function, because the offer was modeled read-
only. Read-only means that only an InputPin was defined at Visual Model Layer
indicating that an object must not be modified. Finally, the control flow is passed
back to the process implementation (LOC 10). As mentioned above, the actual
modification of the offer object is done in the data transfer object offer. Follow-
ing the design of Sect. 6, this object implements the domain state assurance logic
for its attribute state as specified in the state diagram (see Fig. 2) List. 2 shows
the generated setDecision(String state) method of Offer: Depending on
the current value of state, the new value of state is checked against the mod-
eled transitions. For example, in the user action “Second Decision”, the decision
has to be switched from firstDeciderAccepted into accepted or declined.
The domain state assurance for state firstDeciderAccepted starts in LOC 9.
Only accepted or declined are accepted new states of decision. Any further
state would lead to an IllegalArgumentException.

Listing 2. Generated Domain State Assurance Logic for Attribute “Offer.decision”

1public void setDecision(String state) throws
IllegalArgumentException {

2boolean isValid = false;
3if (state.equals(this.state)) isValid = true;
4else if (this.state.equals ("")) {
5if (" undecided ". equals(state)) isValid = true;
6}
7else if (" accepted ". equals(this.state)) {

An Architectural Blueprint for Model Driven Development 67

8}
9else if (" firstDeciderAccepted ".equals(this.state)) {
10if (" accepted ". equals(state)) isValid = true;
11if (" declined ". equals(state)) isValid = true;
12}
13else if (" declined ". equals(this.state)) {
14}
15else if (" undecided ". equals(this.state)) {
16if (" declined ". equals(state)) isValid = true;
17if (" firstDeciderAccepted ". equals(state)) isValid = true;
18}
19if (isValid) this.state = state;
20else throw new IllegalArgumentException ("No valid value for

Contract.state. Current state: "+this.state+",
Proposed new state: "+ state + "."); }

8 Conclusion

As part of our work, we developed an architectural blueprint that supports a
consistent model driven development process of business logic for information
systems. Each layer of the blueprint supports specific tasks, such as visual mod-
eling, model verification, and code generation. As contribution of this article
we introduced an architecture for generated business logic code, which is part
of the Code Generation Layer of our architectural blueprint. We assumed, that
external functions have to be connected manually to generated critical parts of
a system and that complex systems are developed and operated over several
years and with changing project teams and reoccurring modification and main-
tenance tasks. For this purpose, we considered particularly maintenance and
integration issues and focused on the generation of robust business logic layers.
Therefore, our infrastructure supports the specification of global domain states
and local conditions in visual software models and generates corresponding code
artifacts, which assures these conditions automatically. Moreover, manual inte-
gration tasks are supported through a consistent separation of generated critical
code artifacts and code that was modified manually at file level.

We demonstrated the robustness features with a sample implementation of
an Amabulo infrastructure and their application in an industrial scenario. The
experiences with our sample implementation show that a consistent support of a
model driven development and maintenance process for the business logic of in-
formation systems requires huge initial efforts. Its application is only reasonable
for long-term operated systems, where the initial setup as well as the mainte-
nance of the project infrastructure demands less efforts than the n-times manu-
ally executed development process. Moreover, only if future changes of domain
requirements can be classified and expressed by a software model and corre-
sponding code generation rules can be implemented, a model driven approach

68 T. Brückmann and V. Gruhn

provides an alternative to conventional software development without automated
model processing.

References

1. Bordbar, B., Draheim, D., Horn, M., Schulz, I., Weber, G.: Integrated model-based
software development, data access, and data migration. In: Briand, L.C., Williams,
C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 382–396. Springer, Heidelberg
(2005)

2. Brückmann, T., Gruhn, V.: Amabulo-a model architecture for business logic. In:
ECBS 2008. 15th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (2008)

3. Brückmann, T., Gruhn, V.: Modellierung und Qualitätssicherung von UML-
Modellen der Geschäftslogik von Informationssystemen (in German). Software En-
gineering 143 (2009)

4. Engels, G., Küster, J.M., Heckel, R., Groenewegen, L.: A methodology for specify-
ing and analyzing consistency of object-oriented behavioral models. In: European
Software Engineering Conference, ESEC/FSE (2001)

5. Fleurey, F., Breton, E., Baudry, B., Nicolas, A., Jézéquel, J.-M.: Model-driven
engineering for software migration in a large industrial context. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 482–497. Springer, Heidelberg (2007)

6. Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise Computing.
John Wiley and Sons, Inc., Chichester (2002)

7. Jurack, S., Lambers, L., Mehner, K., Taentzer, G.: Sufficient criteria for consistent
behavior modeling with refined activity diagrams. In: Czarnecki, K., Ober, I., Bruel,
J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 341–355.
Springer, Heidelberg (2008)

8. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozessmodellierung auf der
Grundlage ”Ereignisgesteuerter Prozessketten (EPK)”. Veröffentlichungen des In-
stitutes für Wirtschaftsinformatik, Universität des Saarlandes (1992)

9. Koehler, J., Hauser, R., Küster, J., Ryndina, K., Vanhatalo, J., Wahler, M.: The
Role of Visual Modeling and Model Transformations in Business-driven Devel-
opment. Graph Transformation and Visual Modeling Techniques, GT-VMT 2006
(2006)

10. Konrad, S., Goldsby, H.J., Cheng, B.H.C.: i2MAP: An Incremental and Itera-
tive Modeling and Analysis Process. In: Engels, G., Opdyke, B., Schmidt, D.C.,
Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 451–466. Springer, Heidelberg
(2007)

11. Mohan, R., Cohen, M., Schiefer, J.: A State Machine Based Approach for a Process
Driven Development of Web-Applications. In: Pidduck, A.B., Mylopoulos, J., Woo,
C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, p. 52. Springer, Heidelberg
(2002)

12. Unified Modeling Language (UML): Superstructure, Version 2.1.2. Object Man-
agement Group, OMG (2007)

13. Business Process Modeling Notation (BPMN) 1.2. Object Management Group
(OMG) (January 2009)

An Architectural Blueprint for Model Driven Development 69

14. Paller, A., Martin, B., Brown, M., Christey, S.: 2009 CWE/SANS Top 25 Most
Dangerous Programming Errors. Technical report, SANS Institute (2009)

15. Pohl, K.: Requirements Engineering - Grundlagen, Prinzipien, Techniken.
dpunkt.verlag (2007)

16. Red Hat, Inc. Seam framework (2009-02-11), http://www.seamframework.org
17. Schattkowsky, T., Müller, W.: Model-based design of embedded systems. In: 7th

IEEE International Symposium on Object-Oriented Real-Time Distributed Com-
puting (ISORC 2004), Vienna, Austria (2004)

18. Seidewitz, E.: What models mean. IEEE Software 20(5), 26–32 (2003)
19. Seybold, C., Meier, S., Glinz, M.: Scenario-driven modeling and validation of

requirements models. In: 5th Intl.Wworkshop on Scenarios and State Machines,
SCESM (2006)

http://www.seamframework.org

A Model for Dynamic Reconfiguration in
Service-Oriented Architectures

José Luiz Fiadeiro1 and Antónia Lopes2

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

jose@mcs.le.ac.uk
2 Faculty of Sciences, University of Lisbon
Campo Grande, 1749–016 Lisboa, Portugal

mal@di.fc.ul.pt

Abstract. The importance of modelling the dynamic architectural characteris-
tics of software systems has long been recognised. However, the nature of the
dynamic architectural characteristics of service-oriented applications goes be-
yond what is currently addressed by existing architecture description languages
(ADLs). At the heart of the service-oriented approach is the logical separation of
service need from the need-fulfillment mechanism, i.e., the service provider: the
binding between the two is deferred to runtime and established at the instance
level, i.e. each time the need for the service emerges. In this paper we present
an architecture-oriented model for dynamic reconfiguration that paves the way
for the definition of ADLs that are able to address the specification of dynamic
architectural characteristics of service-oriented applications.

1 Introduction

Several architectural aspects arise from service-oriented computing (SOC), loosely un-
derstood as a paradigm that supports the construction of complex software-intensive
systems from entities, called services, that can be dynamically (i.e. at run time) discov-
ered and bound to applications to fulfil given business goals. On the one hand, we have
so-called service-oriented architecture (SOA), normally understood as a (partially) lay-
ered architecture in which business processes can be structured as choreographies of
services and services are orchestrations of enterprise components. SOAs are supported
by an integration middleware providing the communication protocols, brokers, iden-
tification/binding/composition mechanisms, and other architectural components that
support a new architectural style. This style is characterised by an interaction model
between service consumers and providers that is mediated by brokers that maintain reg-
istries of service descriptions and are capable of binding the requester who invoked the
service to an implementation of the service description made available by a provider
that is able to enter into a service-level agreement (SLA) with the consumer.

On the other hand, this new style and form of enterprise-scale IT architecture has a
number of implications on the nature of the configurations (or run-time architectures)
of the systems that adhere to that style (what we will call service-oriented systems).
If we take one of the traditional concepts of architecture as being “concerned with

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 70–85, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Model for Dynamic Reconfiguration in Service-Oriented Architectures 71

the selection of architectural elements, their interactions and the constraints on those
elements and their interactions necessary to provide a framework in which to satisfy the
requirements and serve as a basis for the design” [30], it is possible to see why service-
oriented systems fall outside the realm of the languages and models that we have been
using so far for architectural description: for service-oriented systems, the selection of
their architectural elements (components and connectors) is not made at design time; as
new services are bound, at run time, to the applications that, in the system, trigger their
discovery, new architectural elements are added to the system that could not have been
anticipated at design time. In other words, the new style is essentially ’dynamic’ in the
sense that it applies not only to the way configurations are organised but, primarily, to
the way they evolve.

For example, a typical business system may rely on an external service to supply
goods; in order to take advantage of the best deal available at the time the goods are
needed, the system may resort to different suppliers at different times. Each of those
suppliers may in turn rely on services that they will need to procure. For instance, some
suppliers may have their own delivery system but others may prefer to outsource the
delivery of the goods; some delivery companies may have their own transport system
but prefer to use an external company to provide the drivers; and so on. In summary,
the structure of a service-oriented system, understood as the components and connec-
tors that determine its configuration, is intrinsically dynamic. Therefore, the role of
architecture in the construction of a service-oriented system needs to go beyond that of
identifying, at design time, components and connectors that developers will need to im-
plement. Because these activities are now performed by the SOA middleware, what is
required from software architects is that they identify and model the high-level business
activities and the dependencies that they have on external services to fulfil their goals.

Run-time architectural change is itself an area of software engineering that has de-
served a lot of attention from the research community [3,19,26,27,29,32], mainly as
a response to the need for mechanisms for enhancing adaptability and evolvability of
systems in the face of changing requirements or operating conditions. Although the dy-
namic nature of the architecture of service-oriented systems could be thought to fall
within this general remit, there are a number of specificities that suggest that a more
focused and fundamental study of dynamic reconfiguration in SOA is needed. Indeed,
dynamic reconfiguration is clearly intrinsic to the computational model of SOC, i.e. it is
not a process that, like adaptability or evolvability, is driven by factors that are external
to the system. Naturally, self-adaptation is a key concern for many systems but, essen-
tially, this means reacting to changes perceived in the environment in which the system
operates. In the case of services, the driver for dynamic reconfiguration (through change
of the source of provision each time a service is required) is not so much the need to
adjust the behaviour in response to changes in the environment: it is part of the way sys-
tems should be designed to meet goals that are endogenous to the business activities that
they perform. In both cases, the aim is to optimise the way quality-of-service require-
ments are met. However, while in architectural-based approaches to self-adaptation the
optimisation process is programmed in terms of reconfiguration actions, in the case of
services the optimisation process is determined by quality-of-service requirements that
derive from business goals.

72 J.L. Fiadeiro and A. Lopes

Our purpose in this paper is to put forward a mathematical model that can be used as
a semantic domain for service-oriented architectural description languages. Our starting
point is the graph-based approach that we and other authors have used for architectural
reconfiguration [12,32]. Essentially, we introduce a mechanism of reflection (as used
in other approaches to dynamic reconfiguration [14,21]) by which configurations are
typed with models of business activities and service models define rules for dynamic
reconfiguration. This mathematical model was used in the SENSORIA project to define
the dynamic semantics of the language SRML [18]. A full definition of the model itself
cannot be provided here; a more detailed account can be found in [17]. For illustrating
our approach, we use the financial case study developed in SENSORIA.

The paper is organised as follows. In Section 3, we define a model for business-
reflective configurations of systems. In Section 4, we put forward a model of services
as rules for the dynamic reconfiguration of systems and we outline an operational se-
mantics for the rules defined by services. We discuss related work in Section 5 and
conclude in Section 6 by pointing to other aspects that are being investigated.

2 Motivation and Example

At a certain level of abstraction, configurations of service-oriented applications can
be seen to be a particular case of component-connector architectural configurations: a
graph of components (applications deployed over a given execution platform) linked
through wires (interconnections between components over a given network)1. We de-
note by COMP and WIRE the universes of components and wires, respectively.

As it often happens in the presence of dynamic reconfiguration, it is necessary to
consider the execution state of the configuration elements as well. Every component
c∈COMP and wire w∈WIRE of a configuration may be in a number of states (e.g. val-
uations of local state variables), the set of which is denoted by STATEc and STATEw ,
respectively. We denote by STATE the corresponding indexed family of sets of states.

Definition 1 (Configuration and State Configuration)

– A configuration is a simple graph G such that nodes(G)⊆COMP (i.e. nodes are
components) and edges(G)⊆WIRE (i.e. edges are wires). Each edge e is associ-
ated with a (unordered) pair of nodes that we denote by e : n ↔ m.

– A state configuration F is a pair 〈G,S〉, where G is a configuration and S is a
configuration state, i.e., a mapping that assigns an element of STATEc to each
c∈nodes(G) and an element of STATEw to each w∈edges(G).

Configurations of service-oriented applications change as a result of the creation of new
business activities and the execution of existing ones: new components or wires may
be added to a configuration because the execution of a business activity triggered the
discovery of and binding to a service that is required. In order to illustrate our approach,
we use a (simplified) scenario in which there is a financial services organisation that
offers a mortgage-brokerage service MORTGAGEFINDER that, in addition to finding

1 In SOC, message exchanges are essentially peer-to-peer and, hence, for simplicity, we take all
connectors to be binary.

A Model for Dynamic Reconfiguration in Service-Oriented Architectures 73

the best mortgage deal for a mortgage request, opens a bank account associated with a
loan (if the lender does not provide one) and procures an insurance policy (if required
by either the customer or the lender). The provision of this service depends on three
other services — a Lender, a Bank, an Insurance — that are assumed to be provided
by other organisations and procured at run time, each time they are needed, according
to the profile of the customer and market availability.

In this context, let us consider a situation in which there is a business activity ABob

processing a mortgage request issued through a user interface BobHouseUI on be-
half of a customer (Bob), and that this activity is being served by MORTGAGEFINDER.
Suppose that the active computational ensemble of components that collectively pursue
the business goal of this activity in the current state is as highlighted (through a dotted
line) on the left-hand side of Figure 1 — the component BobMortAg is orchestrating
the delivery of MORTGAGEFINDER, which requires it to interact with the component
BobEstAg that is acting on behalf of Bob (who is using the interface BobHouseUI),
and a database MortRegistry of trusted lenders. Other components may be present
in the current configuration that account for other business activities running in par-
allel with ABob, say activities processing other mortgage requests that share the same
database MortRegistry or, as depicted in Figure 1, updating that registry with new
lenders. That is, ABob is in fact a sub-configuration of a larger system.

Let us further imagine that the discovery of a provider of the service Lender is trig-
gered by BobMortAg. As illustrated in the right-hand side of Figure 1, as a result of the
execution of the discovery and binding process, a new component — RockLoans —
is added to the current configuration and bound to the component BobMortAg that is
orchestrating the delivery of MORTGAGEFINDER. This new component is responsible
for the provision of the service by the selected provider of Lender.

RockLoans

BobMortAg

bcl

BobHouseUI

BobEstAg

bea

bam

MortRegistry

BobMortAg

BobHouseUI

BobEstAg

bea

bam

MortRegistry

AliceManag

AliceRegUI

AliceManag

AliceRegUI

bcr

arm

amr

bcr

arm

amr

Fig. 1. Two configurations that shows the sub-configuration that corresponds to the business
activity ABob before and after the discovery of a provider of the service Lender, respectively

74 J.L. Fiadeiro and A. Lopes

This example illustrates why, in order to capture the dynamic aspects of SOC, we
need to look beyond the information available in a state — configurations account only
for which components are active and how they are interconnected, not why they are
active and interconnected in that way. Therefore, we need to have available information
that accounts for the dependencies that the activity has on externally provided services,
the situations in which they need to be discovered, and the criteria according to which
they should be selected. The approach that we developed achieves this by making con-
figurations business reflective, i.e. by labelling each sub-configuration that corresponds
to a business activity with a model of the workflow that implements its business logic.
The models that we propose for this effect are called activity modules, whose opera-
tional semantics defines the rules according to which service-oriented systems are dy-
namically reconfigured. We discuss this form of reflection in Section 3.

3 Business-Reflective Configurations

Activity modules are specification artefacts that we use for typing the sub-configurations
that, in a given state, execute the business activities that are running. Figure 2 depicts the
activity module that types the configuration of the activity ABob on the left-hand side
of Figure 1, i.e. before the discovery of a provider of the service Lender. The different
elements of an activity module are:

– Component-interfaces: the specifications that type the components that, in the
sub-configuration, execute the business activity. For example, MA is a component-
interface declared to be of type MortgageAgent .

– Serves-interface: the specification of the interface (HUI in the example) that the
activity uses to interact with users.

– Uses-interfaces: the specification of the interactions that the activity performs with
persistent components (MR of type Registry in the example).

– Wire-interfaces: the connectors — roles and glue, in the sense of [4] — that spec-
ify, through the glue, the protocols that are executed by the wires and the maps from
the roles of the connectors to the component specifications.

– Requires-interfaces: the specifications of the external services that may be re-
quired during the execution of the activity. For instance, the activity module in
Figure 2 declares three ‘requires-interfaces’ — LA of type Lawyer, IN of type
Insurance, LE of type Lender and BA of type Bank. These types are specifi-
cations of the behaviour that is required of external services. They are used for the
selection of providers when the discovery of the services is triggered.

– Internal configuration policies: these are state conditions associated with compo-
nent interfaces that specify how they should be initialised, and triggers associated
with requires-interfaces that determine when external services need to be discov-
ered. Graphically, these policies are identified by the clocks.

– External configuration policies: these are the SLA constraints that apply to the
discovery and selection of external services. Graphically, these policies are identi-
fied by the rulers.

A Model for Dynamic Reconfiguration in Service-Oriented Architectures 75

BA:
Bank

intBA

LA:
Lawyer

SLA_1

EA:
EstateAgent

intLA

eal: EL

HUI:
House

Application

ea: HE
intEA

MR:
Registry

MA:
MortgageAgent

IN:
Insurance

intIN

cr:ME

cl:ML

mi:MI

mb: MB

intMA

am:CM LE:
Lender

intLE

Fig. 2. The activity module that types the sub-configuration that corresponds to ABob as shown
on the left-hand side of Figure 1

The nature of the specifications used for defining the interfaces is not relevant for
the purpose of this paper. In [18] we have used both a declarative language and an
extension of UML statecharts for component-interfaces, and temporal logic for requires-
interfaces, but other formalisms could be used. For generality, we assume that all spec-
ifications belong to a universe SPEC. We distinguish between the different kinds of
interfaces because they have different roles in the dynamic re-configuration of the ac-
tivity as explained further on. We also abstract from the nature of the connectors that
are used in wire-interfaces and work over a generic universe CNCT. Details on the kind
of connectors that we have found useful for service modelling can be found in [1].

The specific language used for specifying initialisation conditions and triggers is also
of no particular importance for this paper, so we assume that we have available a set
STC of conditions over STATE. Finally, we adopt so called ’soft constraints’ for ex-
pressing SLA constraints. These generalise the notion of constraint: while a constraint
is a predicate over a certain set of variables X and, hence, divides the set of valua-
tions of X in two disjoint subsets (those that satisfy the constraint and those that do
not), a soft constraint is a function mapping each valuation of X into some domain
D (e.g., the interval of real numbers [0, 1]) that captures different degrees of satisfac-
tion. Soft constraints are commonly used for describing problems where it is neces-
sary to model fuzziness, preferences, costs, inter alia. In particular, they have shown
to be useful for supporting the negotiation of service-level agreements [7]. Some well-
known soft constraint formalisms are Valued Constraint Satisfaction Problems [16] and
Semiring-based Soft Constraints [6]. The particular formalism that is adopted is not
relevant for this paper; in SRML [18], we adopted [6].

In summary, an activity module includes all the information that defines the business
aspect of the activity on a particular state. This includes the specifications of the compo-
nents and connectors that execute the activity on that state but also the dependencies on

76 J.L. Fiadeiro and A. Lopes

external services that determine how that configuration may change. Activity modules
are also formalised as graphs:

Definition 2 (Activity Module). An activity module M consists of

– A simple graph graph(M); we use nodes(M) to denote the set of its nodes.
– A set requires(M)⊆nodes(M).
– A set uses(M)⊆nodes(M)\requires(M).
– A node serves(M)∈nodes(M)\(requires(M) ∪ uses(M)).

We use components(M) to denote the set of all remaining nodes.
– A labelling function labelM such that

• labelM(n)∈SPEC for every node n.
• labelM(e : n ↔ m)∈CNCT for every edge e.

– A pair intP lc(M) of mappings 〈triggerM , initM〉 such that triggerM assigns a
condition in STC to each n∈requires(M) and initM assigns a condition in STC
to each n∈components(M).

– A pair extP lc(M) consisting of a soft constraint system cs(M) and a set sla(M)
of soft constraints over cs(M).

We denote by body(M) the (full) sub-graph of graph(M) that forgets the nodes in
requires(M) and the edges that connect them to the rest of the graph.

We can now also formalise the typing of state configurations with activity modules mo-
tivated before, which makes configurations business-reflective. We consider a space A
of business activities to be given, which can be seen to consist of reference numbers (or
some other kind of identifier) such as the ones that organisations automatically assign
when a service request arrives.

Definition 3 (Business Configuration). A business configuration is a triple 〈F ,B, C〉
where

– F is a state configuration.
– B is a partial mapping that assigns an activity module B(a) to each activity a ∈ A

— the workflow being executed by a in F . We say that the activities in the domain
of this mapping are those that are active in that state.

– C is a mapping that assigns an homomorphism C(a) of graphs body(B(a)) → F to
every activity a∈A that is active in F . We denote by F(a) the image of C(a) — the
sub-configuration of F that corresponds to the activity a.

A homomorphism of graphs is just a mapping of nodes to nodes and edges to edges that
preserves the end-points of the edges. Therefore, the homomorphism C of a business
configuration types the nodes (components) of F(a) with specifications of the roles
that they play in the activity — i.e. C(a)(n) : labelB(a)(n) for every node n — and the
edges (wires) with connectors — i.e. C(a)(e) : labelB(a)(e) for every edge e.

In Figure 3, we represent a business configuration for the state configuration depicted
on the left-hand side of Figure 1. For simplicity, we only show the node mappings of
the homomorphisms. In addition to the business activity ABob that we have been dis-
cussing, Figure 3 reveals another business activity — AAlice — in which the registry of
trusted lenders MortRegistry is also involved. The activity module that types AAlice

A Model for Dynamic Reconfiguration in Service-Oriented Architectures 77

MortRegistry

BobMortAg

BobHouseUI

BobEstAg bam

AliceManag

AliceRegUI
SLA_UR

RE:
Registry

MC:
Management
Coordinator

CA:
Certification

Autority

intCA

cr:MR

am:MA

RUI:
Registry
Manager

rm:RM

intMC

BA:
Bank

intBA

LA:
Lawyer

SLA_1

EA:
EstateAgent

intLA

eal: EL

HUI:
House

Application

ea: HE
intEA

MR:
Registry

MA:
MortgageAgent

IN:
Insurance

intIN

cr:ME

cl:ML

mi:MI

mb: MB

intMA

am:CM

HUI := BobHouseUI
EA := BobEstAg
MA := BobMortAg
MR := Registry

RUI := AliceRegUI
MC := AliceManag
RE := Registry

LE:
Lender

intLE

bea

arm

amr

bcr

Fig. 3. A business conguration that shows the sub-congurations that correspond to the business
activities ABob (top part) and AAlice (bottom part) and the activity modules that type them

defines that the business goal of this activity is to update the registry with new lenders;
in the particular state being depicted, this activity still requires an external service to be
discovered that can certify the new lender.

The fact that the homomorphism is defined over the body of the activity module
means that the requires-interfaces are not used for typing components of the state con-
figuration. Indeed, as discussed above, the purpose of the requires-interfaces is for
identifying dependencies that the activity has, in that state, on external services. In
particular, this makes requires-interfaces different from uses-interfaces as the latter are
indeed mapped, through the homomorphism, to a component of the state configuration.

In summary, the homomorphism makes state configurations reflective in the sense of
[14] as it adds meta (business) information to the state configuration. This information is
used for deciding how the configuration will evolve (namely, how it will react to events
that trigger the discovery process). Indeed, reflection has been advocated as a means of
making systems adaptable through reconfiguration, which is similar to the mechanisms

78 J.L. Fiadeiro and A. Lopes

through which activities evolve in our model. The reconfiguration process, as driven by
services, is discussed in the next section.

4 Service Binding as a Reconfiguration Action

As already mentioned, business configurations change whenever the execution of an
activity requires the discovery of and binding to a service. It remains to formally define
this process, which starts with the discovery of potential providers of the service and
the selection of one service provider among these.

We start by providing a formal notion of service, which we developed in SENSORIA
[18] inspired by concepts proposed in the Service Component Architecture (SCA) [25].
We model services through service modules, which are similar to the activity modules
that we introduced in the previous section except that, instead of a serves-interface to the
user of the activity, they include a provides-interface through which activities can con-
nect to the service (identified through a requires-interface). Such interfaces are labelled
by specifications (business protocols) that describe the properties that a customer can
expect from the interactions with the service. Uses-interfaces and requires-interfaces
can be included in service modules in the same way as in activity modules.

Definition 4 (Service Module). A service module M consists of

– A simple graph graph(M).
– A set requires(M)⊆nodes(M).
– A set uses(M)⊆nodes(M)\requires(M).
– A node provides(M)∈nodes(M)\(requires(M) ∪ uses(M)).
– A labelling function labelM such that

• labelM(n)∈SPEC for every node n.
• labelM(e : n ↔ m)∈CNCT for every edge e.

– An internal configuration policy intP lc(M) as in definition 2.
– An external configuration policy extP lc(M) as in definition 2.

In Figure 4 we present the structure of the service module that models the mortgage-
brokerage service MORTGAGEFINDER described before. A complete definition of this
service using the modelling language SRML, including all the specifications involved,
is presented in [18]. The module specifies that the service is provided through an
interface CR and wire CC that can bind to any activity that requests an external
service through a requires-interface that is matched by the specification Customer.
The orchestration of the provision of the service is specified through the component-
interface MA of type MortgageAgent which may require external services that match
the requires-interfaces LE of type Lender (for securing a loan), BA of type Bank (for
opening a bank account), and IN of type Insurance (for procuring an insurance). The
orchestration also requires the binding to a persistent component RE of type Registry
(that stores information about trusted lenders).

In order to formalise the processes of discovery and binding, let r be a requires-
interface of an activity a. The discovery of services to which r can be bound involves
finding services M that (i) through their provides-interface p are able to satisfy the

A Model for Dynamic Reconfiguration in Service-Oriented Architectures 79

MORTGAGEFINDER
SLA

RE:
Registry

MA:
MortgageAgent

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CR:
 Customer

cr:ME

cl:ML

mi:MI

mb: MB

cc:
CM

Fig. 4. The structure of a service module that models MORTGAGEFINDER

specification associated with r, and (ii) through their external configuration policies
offer SLA constraints that are compatible with those of a and, therefore, make it possi-
ble to reach a service-level agreement. For simplicity, we limit our attention to service
modules where there is exactly one component-interface connected to the provides-
interface and to activity modules where each requires-interface is connected to a single
component-interface (the formulation of the general case can be found in [17]).

For the formulation of condition (i) above we assume that the universe SPEC of
specifications is equipped with a notion of refinement such that ρ : r → p means
that the behavioural properties offered by p entail the properties required by r, up to
a suitable translation between the languages of both. For example, if using temporal
logic for specifying the business protocols associated with r and p as in [18] refinement
corresponds to entailment (logical consequence).

The formulation of condition (ii) above relies on a composition operator ⊕ that is
applicable to soft constraint systems that are compatible (see [6] for an example) and
to sets of constraints over compatible constraints systems. Soft constraint systems also
provide a notion of best level of consistency that assigns a non-negative numerical value
blevel(C) to each set of constraints C — the degree of satisfaction that we can expect
for C. A set of constraints is said to be consistent if and only if blevel(C) > 0. If C is
consistent, a valuation for the variables of C is said to be a solution of C.

Definition 5 (Service matching). Let A be an activity module and r∈requires(A).
We denote by match(A, r) the set of pairs 〈M, ρ〉 such that:

– M is a service module such that the constraint systems cs(M) and cs(A) are com-
patible and blevel(sla(M)⊕sla(A)) > 0;

– ρ is a refinement mapping from labelA(r) to labelM(provides(M)).

That is, the matching process for an activity module and one of its requires-interfaces
returns all service modules whose provides-interface refines the requires-interface of the
activity module and whose constraint systems are compatible and whose constraints are
consistent.

Definition 6 (Service Discovery). Let A be an activity module and r∈requires(A).
We denote by discover(A, r) the set of triples 〈M, ρ, Δ〉 such that:

80 J.L. Fiadeiro and A. Lopes

– 〈M, ρ〉 ∈ match(A, r);
– Δ is a solution for sla(M)⊕sla(A) such that bvalue(sla(M)⊕sla(A)) is maximal

for match(A, r), i.e. Δ maximises the degree of satisfaction for the combined set
of SLA constraints.

That is, the discovery process returns the set of service modules that offer the best
possible service available, the solution Δ being the corresponding SLA agreement.

Consider now a business configuration L = 〈〈G,S〉,B, C〉, a an active business
activity in L and r∈requires(B(a)) such that triggerB(a)(r) evaluates to true in S.
The reaction to this trigger is a reconfiguration of the business configuration, which
results in a new business configuration obtained by binding an element 〈M, ρ, Δ〉 of
discover(B(a), r) to a. We now define this binding process.

Definition 7 (Service Binding). Let L = 〈〈G,S〉,B, C〉 be a business configuration, a
an active business activity in L, r∈requires(B(a)), M a service module, ρ a refinement
mapping from r to provides(M) and Δ a constraint. Binding 〈M, ρ, Δ〉 to r induces a
business configuration 〈〈G′,S′〉,B′, C′〉 such that:

– B′(x) = B(x), if x �= a.
– B′(a) is an activity module M ′ such that:

• graph(M ′) is obtained from the sum (disjoint union) of the graphs of B(a) and
M by identifying r with the node of M to which provides(M) is connected and
identifying the corresponding edges.

• requires(M ′)= requires(M)∪requires(B(a))\{r}, i.e. we eliminate r and
add the requires-interfaces of M .

• uses(M ′)=uses(M)∪uses(B(a)), i.e. we add to B(a) the uses-interfaces of
M .

• serves(M ′)=serves(M), i.e. we keep the serves-interface.
• the labels provided by label′M are those that are inherited from the graphs of
B(a) and M . The edge that connected r is now labelled with the label of the
edge that connects provides(M) in M .

• intP lc(M ′) has the triggers and initialisation conditions that are inherited
from B(a) and M .

• extP lc(M ′) = 〈cs(M)⊕cs(B(a)),sla(M)⊕sla(B(a))∪ {Δ}〉.
– G′ is obtained from G by adding:

• For each node n of components(M), a component cn in COMP that imple-
ments the specification labelM(n) and, for each edge connecting n, a wire that
implements the connector that labels the edge.

• For every node n of uses(M), a component cn of G that implements the spec-
ification labelM(n) is selected and, for every edge connecting n in M , a wire
that implements the connector that labels the edge is added to G.

That is to say, implementations of component-interfaces of M are added to the
graph and existing components are chosen for uses-interfaces. Wires are added
that implement the connectors specified in M .

– S′ coincides with S in the nodes of G and assigns, to every new node cn where
n∈components(M), a state that satisfies initM(n).

A Model for Dynamic Reconfiguration in Service-Oriented Architectures 81

– C′ is the homomorphism that results from updating C with the mappings defined
above, i.e. for each node n of body(M), C′(n) = cn, and similarly for the edges.

In order to illustrate how binding works, consider the business configuration in Figure 5,
which shows ABob at an earlier stage of execution (i.e. earlier than the configuration de-
picted in the left-hand side of Figure 1). Assume that, in the current state, the trigger
intMG is true and that the service module shown in Figure 4 is returned by the discov-
ery process described in Definition 6 for the requires-interface MG. A possible result
of the binding is depicted in Figure 3.

Note that a new component — BobMortAg — is added to the configuration of
ABob as an instance of MortgageAgent, but that the uses-interface RE of MORT-
GAGEFINDER does not give rise to a new component: it is mapped to MortRegistry.
This is the means through which effects of services can be made ‘persistent’, i.e. the
execution of the service can interfere with other activities in the current configuration.
For instance, if AAlice registers a new lender, ABob will be able to consider that lender
when discovering an external service that responds to the trigger intLE of the requires-
interface LE of type Lender. On the other hand, the serves-interface of the activity

SLA_UR

RE:
Registry

MC:
Management
Coordinator

CA:
Certification

Autority

intCA

cr:MR

am:MA

RUI:
Registry
Manager

rm:RM

intMC

HUI := BobHouseUI
EA := BobEstAg

RUI := AliceRegUI
MC := AliceManag
RE := Registry

LA:
Lawyer

SLA_0

EA:
EstateAgent

intLA

eal: EL

HUI:
House

Application

ea: HE
intEA

MG:
Mortgage

intMG

mi:MI

MortRegistry

BobHouseUI

BobEstAg

AliceManag

AliceRegUI

bea

arm

amr

Fig. 5. A business conguration that precedes that of Figure 3

82 J.L. Fiadeiro and A. Lopes

module remains invariant through the evolution of the business configuration. This cap-
tures the fact that the activity relies on the same interface to interact with its user. Also
notice that the new activity module that types ABob acquires the requires-interfaces of
MortgageAgent, i.e. the business activity evolves both at the level of its configuration
and its type.

5 Related Work

In the last decade, different approaches to architectural specification have been pro-
posed that permit the representation of dynamic architectures [3,5,12,29,32,33]. The
focus of these approaches is on the description of a control (reconfiguration) layer on
top of a managed system. The dynamic architectural changes that have to be performed
in the managed system are specified explicitly, for instance in terms of reconfiguration
rules [5,12,32], configurator processes [3] or reconfiguration scripts [29,33]. Although
different semantic domains have been used in those aforementioned works, their under-
lying mechanisms can be defined in terms of operations that rewrite state configurations
in the sense of Definition 1. The work that we presented in this paper follows on this tra-
dition but offers a more structured approach (based on reflection) that targets the forms
of reconfiguration that arise, specifically, in SOC.

A different direction was taken by Darwin [24], π-ADL [27] and ARCHWARE [26],
which explore the expressive power of the π-calculus — a calculus developed precisely
for concurrent systems whose configurations may change during computation. As a
result, these ADLs do not promote the separation between the management of the com-
putational aspects of systems and of their architecture (configuration); by borrowing
primitives from the π-calculus, they include instantiation, binding and rebinding as part
of the behaviour of system components. From our point of view, the separation that
the approaches mentioned in the previous paragraph (including ours) promote between
the two levels (computation and reconfiguration) has clear advantages for managing the
complexity that arises in modern software-intensive systems, especially when, like in
SOC, their architecture is highly dynamic. The expressive power of the π-calculus has
also been explored within SOC: several service calculi have been proposed to address
operational foundations of SOC (in the sense of how services compute) [13,15,22,23] as
well as to capture the dynamic architectures of service-oriented systems [28,31]. Here
again, a clear separation between the aspects that belong to the SOA middleware and
those that derive from the application domain seems to be essential for the definition of
ADLs that can effectively support high-level design.

Therefore, the reason that led us to propose a different model for dynamic architec-
tures specifically targeted for SOC is not the lack expressiveness of existing models but,
rather, the lack of models that capture the ‘business’ aspects of SOC at the ‘right’ level
of abstraction. To our knowledge, ours is the first proposal in this direction.

Indeed, the definition of models is intrinsically associated with abstraction. For ex-
ample, operational models of sequential programming are typically defined in terms of
functions (called states) that assign values to variables, which abstract from the way
memory is organised and accessed in any concrete conventional computer architec-
ture. Paradigms such as SOC superpose further layers of abstraction (creating a richer

A Model for Dynamic Reconfiguration in Service-Oriented Architectures 83

middleware) so that systems can be built and interconnected by relying on a software
infrastructure that adds to the basic computation and communication platform a num-
ber of facilities that, in the case of SOAs, support service publication, discovery and
binding. This means that designers or programmers working over a SOA do not need
to implement these mechanisms: they can rely on the fact that they are available as
part of the abstract operating system that is offered by the middleware. Just like any
Java programmer does not need to program the dynamic allocation, referencing and de-
referencing of names, a programmer of a complex service should not need to include
the discovery, selection and binding processes among the tasks of the orchestrator.

This is why we perceive that the architectural aspects of SOC are best handled over
graph-based representations that separate computation from reconfiguration such as the
ones proposed in this paper. Drawing an analogy with the semantics of programming
languages, we could say that we proposed a notion of (typed) state and state transition
for such dynamic aspects of SOC: states are graphs of components and connectors that
capture configurations that execute business activities, and transitions are reconfigura-
tions that result from binding to selected services. Our model captures the nature of
SOA-middleware approaches and generalises them, offering a more abstract level of
modelling in which the business aspects that drive reconfiguration can be represented
explicitly and separately from the orchestration of the interactions through which ser-
vices are delivered.

6 Concluding Remarks

In this paper we presented a mathematical model that can be used as a semantic do-
main for service-oriented architectural description languages. The static aspects of our
model were inspired by the concepts proposed in the Service Component Architecture
(SCA) [25] towards a general assembly model and binding mechanisms for service
components and clients that may have been programmed in possibly many different
languages, e.g. Java, C++, BPEL, or PHP. We have transposed those concepts to a more
abstract level of modelling and enriched them with primitives that address the dynamic
aspects (run-time service discovery, selection and binding) of service-oriented systems.
This model paves the way for the definition of ADLs that are able to address the spec-
ification of dynamic architectural characteristics of service-oriented applications and,
moreover, contribute to overcome the lack of models that capture the ‘business’ aspects
of SOC.

The advantages of this approach have been explored in the language SRML that we
defined in SENSORIA [18] but our model is general enough that it can be used to sup-
port other ADLs. For example, at a methodological level, we have extended the tradi-
tional use-case method to define the structure of both activity and service modules from
business requirements [9], which was validated in a number of case studies, including
automotive [10] and telco systems [1] in addition to more classical business-oriented
domains such as the one used in the paper. Another advantage of the separation of re-
configuration from computation is that different orchestration languages can be used for
modelling the components and connectors through which services are provided without
affecting the way activities or services are structured in modules: for example, trans-
formations were defined from BPEL to SRML [11], UML state machines were used

84 J.L. Fiadeiro and A. Lopes

for supporting model-checking [2], and transformations to PEPA [20] were used for
supporting quantitative analysis [8].

Acknowledgments

We would like to thank our colleagues in the SENSORIA project for many useful dis-
cussions on the topics covered in this paper, in particular João Abreu and Laura Bocchi
for their contribution to the definition of SRML.

References

1. Abreu, J., Bocchi, L., Fiadeiro, J., Lopes, A.: Specifying and Composing Interaction Pro-
tocols for Service-Oriented System Modelling. In: Derrick, J., Vain, J. (eds.) FORTE 2007.
LNCS, vol. 4574, pp. 358–373. Springer, Heidelberg (2007)

2. Abreu, J., Mazzanti, F., Fiadeiro, J., Gnesi, S.: A Model-Checking Approach for Service
Component Architectures. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS
2009. LNCS, vol. 5522, pp. 219–224. Springer, Heidelberg (2009)

3. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software architec-
tures. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 21–37.
Springer, Heidelberg (1998)

4. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans. Softw. Eng.
Methodol. 6(3), 213–249 (1997)

5. Batista, T., Joolia, A., Coulson, G.: Managing dynamic reconfiguration in component-based
systems. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp. 1–17.
Springer, Heidelberg (2005)

6. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimiza-
tion. Journal ACM 44(2), 201–236 (1997)

7. Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language for sla negoti-
ation. ENTCS 236, 147–162 (2009)

8. Bocchi, L., Fiadeiro, J., Gilmore, S., Abreu, J., Solanki, M., Vankayala, V.: A formal ap-
proach to modelling time properties of service oriented systems (submitted, 2009)

9. Bocchi, L., Fiadeiro, J., Lopes, A.: A Use-Case Driven Approach to Formal Service-Oriented
Modelling. In: Leveraging Applications of Formal Methods, Verification and Validation.
CCIS, vol. 17, pp. 155–169. Springer, Heidelberg (2008)

10. Bocchi, L., Fiadeiro, J., Lopes, A.: Service-oriented modelling of automotive systems.
In: The 32nd Annual IEEE International on Computer Software and Applications, COMP-
SAC 2008, pp. 1059–1064. IEEE, Los Alamitos (2008)

11. Bocchi, L., Hong, Y., Lopes, A., Fiadeiro, J.: From bpel to srml: a formal transformational
approach. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 92–107.
Springer, Heidelberg (2008)

12. Bruni, R., Bucchiarone, A., Gnesi, S., Hirsch, D., Lluch Lafuente, A.: Graph-based design
and analysis of dynamic software architectures. In: Degano, P., De Nicola, R., Meseguer, J.
(eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 37–56. Springer, Heidelberg
(2008)

13. Carbone, M., Honda, K., Yoshida, N.: A calculus of global interaction based on session types.
ENTCS 171(3), 127–151 (2007)

14. Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama, J., Sivaharan, T.: A
generic component model for building systems software. ACM Trans. Comput. Syst. 26(1),
1–42 (2008)

A Model for Dynamic Reconfiguration in Service-Oriented Architectures 85

15. Boreale, M., et al.: Scc: A service centered calculus. In: Bravetti, M., Núñez, M., Zavattaro,
G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidelberg (2006)

16. Fargier, H., Lang, J., Martin-Clouaire, R., Schiex, T.: A constraint satisfaction framework
for decision under uncertainty. In: Proc. of the 11th Int. Conf. on Uncertainty in Artificial
Intelligence, pp. 175–180 (1996)

17. Fiadeiro, J., Lopes, A., Bocchi, L.: An abstract model of service discovery and binding,
http://www.cs.le.ac.uk/people/jfiadeiro

18. Fiadeiro, J., Lopes, A., Bocchi, L., Abreu, J.: The Sensoria reference modelling language,
http://www.cs.le.ac.uk/people/jfiadeiro

19. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-
based self-adaptation with reusable infrastructure. Computer 37(10), 46–54 (2004)

20. Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process Algebra-based
Approach to Performance Modelling. In: Haring, G., Kotsis, G. (eds.) TOOLS 1994. LNCS,
vol. 794, pp. 353–368. Springer, Heidelberg (1994)

21. Kon, F., Costa, F., Blair, G., Campbell, R.H.: The case for reflective middleware. Communi-
cations ACM 45(6), 33–38 (2002)

22. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)

23. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for ws-bpel. Journal of Logic and
Algebraic Programming (2005)

24. Magee, J., Kramer, J.: Dynamic structure in software architectures. SIGSOFT Softw. Eng.
Notes 21(6), 3–14 (1996)

25. Beisiegel, M., et al.: Service Component Architecture Specifications (2007)
26. Morrison, R., Kirby, G., Balasubramaniam, D., Mickan, K., Oquendo, F., Cmpan, S., War-

boys, B., Snowdon, B., Greenwood, R.: Support for evolving software architectures in the
ArchWare ADL. In: 4th Working IEEE/IFIP Conference on Software Architecture (2004)

27. Oquendo, F.: π-adl: an architecture description language based on the higher-order typed π-
calculus for specifying dynamic and mobile software architectures. SIGSOFT Softw. Eng.
Notes 29(3), 1–14 (2004)

28. Oquendo, F.: Formal approach for the development of business processes in terms of service-
oriented architectures using pi-adl. In: SOSE, pp. 154–159 (2008)

29. Oreizy, P., Taylor, R.: On the role of software architectures in runtime system reconfiguration.
IEEE Proceedings- Software Engineering 145(5), 137–145 (1998)

30. Perry, D., Wolf, L.: Foundations for the study of software architecture. SIGSOFT Softw. Eng.
Notes 17(4), 40–52 (1992)

31. López-Sanz, M., Qayyum, Z., Cuesta, C.E., Marcos, E., Oquendo, F.: Representing service-
oriented architectural models using pi-adl. In: Morrison, R., Balasubramaniam, D., Falkner,
K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 273–280. Springer, Heidelberg (2008)

32. Wermelinger, M., Fiadeiro, J.: A graph transformation approach to software architecture re-
configuration. Sci. Comput. Program. 44(2), 133–155 (2002)

33. Wermelinger, M., Lopes, A., Fiadeiro, J.: A graph based architectural (re)configuration lan-
guage. In: ESEC/FSE-9, pp. 21–32. ACM, New York (2001)

http://www.cs.le.ac.uk/people/jfiadeiro
http://www.cs.le.ac.uk/people/jfiadeiro

Integrating Requirements and Design Decisions
in Architecture Representation

Rainer Weinreich1 and Georg Buchgeher2

1 Johannes Kepler University Linz, Austria

rainer.weinreich@jku.at
2 Software Competence Center Hagenberg, Austria

georg.buchgeher@scch.at

Abstract. It has been proposed to make architectural design decisions

first-class entities in software architecture representation. The actual

means of capturing, representing, and managing architectural design

decisions is still an open issue of research. We present an approach

for capturing requirements and design decisions during design and de-

velopment. We integrate design decisions, requirements, scenarios, and

their relationships along with other architectural elements directly in a

single, consistent, and formally defined architecture model. Capturing,

visualizing, and tracing of architectural knowledge are supported by an

integrated set of tools working on this model. The approach supports

comprehensive tracing between requirements, design decisions, other ar-

chitectural elements, and implementation artifacts, impact analysis, and

architecture analysis and evaluation.

Keywords: Software Architecture Models, Design Decisions, Software

Architecture Tools, Software Architecture Knowledge Management.

1 Introduction

Design decisions are an important element in software architecture. An early
definition of the term software architecture provided by Perry and Wolf [20]
already includes rationale in addition to elements and form. According to Perry
and Wolf rationale “captures the motivation for the choice of architectural style,
the choice of elements, and the form”.

Though rationale has already been identified early in the history of software
architecture research, it has been neglected in software architecture represen-
tation. As Kruchten [16] points out, research in this area has concentrated on
representing and documenting a system’s architecture from different perspec-
tives, called architectural views. While architectural views and corresponding
view frameworks are an important means for documentation, they focus on the
result of the design process and lack information about the actual decisions and
their rationale [26]. If design decisions are not documented, they remain tacit
knowledge [12], which is easily lost [5,26]. Bosch [5] identified the resulting knowl-
edge vaporization as the key problem of design erosion [13] and was one of the

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 86–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Integrating Requirements and Design Decisions 87

first to point out the importance of design decisions in software architecture. He
proposed to view software architecture as a composition of design decisions and
demanded a first class-representation of design decisions [5].

While capturing design decisions and rationale provides a number of benefits
[25], the means for capturing this information is still an open issue of research.
Approaches for rationale management exist [11] but suffer from a number of
problems. Van der Ven et al. [26] provide some examples like the overhead in-
volved in capturing the required information, and the missing connection be-
tween design decisions and architectural elements. In addition, design decisions
are closely related to requirements [4,18,21,26]. And requirements, as well as
design decisions, are central to many architectural analysis methods [16].

We present an approach for capturing requirements and design decisions and
for integrating them in a formally defined architecture representation. A con-
sistent model for requirements, design decisions, and scenarios - called archi-
tectural issues in our approach - supports architecture knowledge activities like
impact analysis and tracing from requirements to architecture elements and im-
plementation artifacts. The same model can be used for architecture analysis and
evaluation by connecting architectural issues with analysis state and analysis
data. Capturing issues and their relationships is supported as an integrated ac-
tivity in design and development. The main benefits of our approach are the deep
integration of support for architectural issues in design and development, the us-
age of the same model for architecture knowledge management and architecture
analysis, and the integration into a consistent architecture representation, which
supports system evolution and enables tracing from requirements to architecture
and implementation.

The remainder of this paper is structured as follows: In Section 2 we comment
on previous work that has been used as the basis for the work presented in this
paper. The section includes an overview of the LISA model, a meta-model for ar-
chitecture description, and the LISA toolkit. The section also includes references
to previous work where appropriate. In Section 3 we give a conceptual overview
of our approach. This includes a conceptual model of requirements, design de-
cisions, and scenarios, their relationships to each other, as well as relationships
to other architectural elements. In Section 4 we describe tool support for three
important aspects of our approach in more detail: capturing, visualizing, and
analyzing requirements, design decisions, and scenarios. Section 5 describes the
steps we have taken to validate our approach. In Section 6 we present related
work. Section 7 summarizes the main aspects of our work.

2 Previous Work

The work presented in this paper is part of the Software Architecture Engineering
project for supporting architecture-centric software development [7]. The project
aims at supporting architecture-related activities like modeling, documenting,
and analyzing software architectures in an integrated and incremental way. Inte-
grated means that architecture-related activities are integrated seamlessly in all

88 R. Weinreich and G. Buchgeher

software development activities, from analysis to design, and implementation.
Incremental means that we aim to provide support for both agile and non-agile
project settings with potential interleaved analysis, design, and implementation
activities.

The main results of the project are the LISA model, a meta-model for software
architecture representation, and the LISA toolkit, which is a set of tools for
working on LISA architecture models.

The LISA model has been designed for ease of integration and synchroniza-
tion with a system’s implementation to prevent architectural erosion and archi-
tectural drift. It provides not only components and connectors for describing
dynamic system structures and configurations, but also lower-level abstractions
for describing packages, classes, and modules. These parts of a LISA model can
be extracted from and easily synchronized with a system implementation and
enable us to support dependency analysis as provided by typical software ar-
chitecture management tools (AMTs) like Lattix, SonarJ, and Structure101. In
this sense LISA combines the concepts of lower-level AMTs, i.e., strong tool
support and tight implementation integration, with the concepts of higher-level
architecture representation and analysis as supported by architecture description
languages (ADLs).

The LISA toolkit is integrated in the Eclipse IDE. Architecture modeling,
analysis, and implementation can be performed incrementally and interleaved
[27]. The toolkit supports multiple architectural views, which are derived from
a single, consistent LISA-based architecture model. Using a single model avoids
inconsistencies among views. Architecture/implementation synchronization is
supported through continuous forward and reverse engineering [6]. Developers
always have an up-to-date architecture description available, which acts as a
blueprint for the implementation.

Technology independence is achieved through technology-specific binding
models [6]. Currently we support bindings for languages like Java and C# and
for component models and technologies like Spring, OSGi, EJB, and SCA.

Both the LISA model and the LISA toolkit are extensible. The LISA model
is based on XML-Schema and can be extended with additional sub-models. In
this sense it is similar to xADL [9]. The LISA toolkit can be extended with
additional architectural views for documentation and visualization, with addi-
tional constraints for architecture analysis and validation, and with additional
components for architecture/implementation synchronization.

The approach has been developed to support different analysis approaches in
one single consistent environment. This includes automatic analysis approaches
as offered by ADLs and architecture management tools, and manual analysis
techniques like scenario-based evaluation methods.

3 Conceptual Overview

A LISA-based architecture description is organized in modules. Modules are the
units of deployment and versioning. LISA-modules can be bound to and deployed

Integrating Requirements and Design Decisions 89

with implementation modules in different implementation technologies. This way
an architecture representation can be deployed with an implementation.

LISA modules contain architectural elements and relations between these ele-
ments. Examples for architectural elements are classes, components, ports, con-
nections, layers, features, configurations, and systems. Architectural elements can
have assigned attributes, which are a kind of high-level specification of semantics
that is necessary for validation and verification of certain system properties. Archi-
tectural elements can be bound to implementation artifacts through technology-
specific implementation bindings. The synchronization engine of the LISA toolkit
uses these implementation bindings for keeping architecture description and im-
plementation synchronized. Synchronization is performed incrementally, at each
change to either the architecture description or the implementation.

Following the model described above, design decisions, requirements, and their
relations are also architectural elements in our model and are part of LISA
architecture modules. This means that requirements and design decisions are
captured as first-class elements of the architecture representation.

Fig. 1 shows design decisions and requirements in the context of the LISA
approach. The LISA toolkit provides different editors and views on a LISA ar-
chitecture model. The model can be bound to an implementation. As shown in
the figure, requirements and design decisions are captured as part of a LISA ar-
chitecture model. We will describe later how requirements and design decisions
are represented in the LISA model, and how requirements and design decisions
can be captured and described. For now, we will focus our description on how
requirements and design decisions can be related to other architectural elements
of a LISA architecture description. As shown in Fig. 1, the starting point for ar-
chitectural decisions are usually architecturally significant requirements (ASRs).
Architecturally significant requirements are requirements upon a software sys-
tem, which influence its architecture [19]. Like other requirements on a software
system, ASRs are typically captured during requirements analysis. Nuseibeh [18]
and Pohl/Sikora [21] point out that it may also make sense to capture require-
ments incrementally and interleaved with architecture design for certain kinds of
systems, particularly for innovative systems. We support both scenarios. We sup-
port importing requirements from issue management systems for requirements
that have been captured beforehand with other tools. For incremental analy-
sis and design we support capturing requirements and design decisions during
design and implementation.

As shown in Fig. 1 requirements may lead to design decisions, which may lead
to subsequent design decisions. In fact, design decisions may act as requirements
for subsequent decisions, which blurs the line between requirements and design
decisions. De Boer and van Vliet [4] discuss the similarity between requirements
and architectural design decisions and even state: “architecturally significant
requirements are architectural design decisions and vice versa”. In our model,
requirements and design decisions are both modeled as special kinds of issues.
The difference is mainly the kind of description and the source of the issue.
Requirements are usually the result of analyzing the problem space, while design

90 R. Weinreich and G. Buchgeher

LISA Model

Issue Model

Component Model Basic Structure Model

Environment ModelConfiguration Model

R D

R

DD D

R ... Requirement (ASR)
D ... Design Decision
S ... Scenario

System Implementation

LISA Toolkit - Editors and Views

Static Relations ConfigurationIssues Environment Modules

R S

C

C ... Component
P ... Port

I

S ... System
I ... Instance
C ... Connection

N

R

E ... Environment
N ... Node
R ... Runtime

I

C

M

M ... Module
L ... Language Element

P
C

P ... Package
C ... Class

L

S

P

N

R

L

C

E

Issue Relationship
Architecture Element Reference
Structural Relationship
Implementation Binding

Fig. 1. Requirements and Design Decisions in LISA

decisions are the result of exploring the solution space. As can be seen from Fig. 1,
design decisions may also uncover new requirements. For this reason, there may
exist a directed relationship from design decisions to requirements in our model.

The defined relationships allow comprehensive tracing. As shown in Fig. 1
requirements and design decisions can be traced to other architectural elements,
and through implementation bindings, even to potential implementation arti-
facts. This depth of integration of requirements and design decisons is also re-
flected in our toolkit, which supplies markers in an implementation indicating
requirements and design decisions that would be affected by changing a partic-
ular implementation artifact (see Section 4). Implementation artifacts are not
only code fragments but also configuration files [6].

Fig. 2 shows in more detail how requirements and design decisions are mod-
elled in our approach. The central abstraction for representing both requirements
and design decisions is an architectural issue. Requirements and design decisions
are just special kinds of issues. This reflects the close relationship between re-
quirements and design decisions mentioned before. As can be seen from the
figure, issue kinds have not been modelled as subclasses but as attributes of the
issue class. This has only technical reasons and facilitates changing an issue kind
at run-time without compromising already existing dependencies.

Issues have a summary attribute providing a short description of the issue. The
summary is essentially the issues logical name. More detailed descriptions and ra-
tionale can be provided as part of specific issue kinds. Issues can be architecturally

Integrating Requirements and Design Decisions 91

summary:String
category:IssueCategory
isArchitecturallySignificant:boolean
archStatus:AnalysisStatus
implStatus:AnalysisStatus

Issue

uuid:UUID
...

AbstractArchitecture
Element

Open
Addressed
Ignore
Verified
NeedsRework
Later

AnalysisStatus
<<Enumeration>>

Constraints
Forbids
Enables
Subsumes
ConflictsWith
Overrides
Comprises
IsBoundTo
IsAlternativeTo
IsRelatedTo
TracesTo
DoesNotComplyWith

IssueRelationship
<<Enumeration>>

kind:IssueRelationship
reference:ArchitectureElementReference

IssueReferencerelated
Issues

0..*

mainCategory:String
subCategory:String

IssueCategory

uuid:UUID
moduleName:String
version:Version

ArchitectureElement
Reference

affected
Elements

0..*

description: String
documentID:String

Requirement

Issue
Kind

1kind

rationale: String
...

Design Decision
stimulus:String
environment:String
response:String

Scenario

Analysis
Data

0..*

analysisData

importance:int
difficulty:int

ATAMData

effort:int
directScenario:boolean

SAAMData

...
...

assigned
Issues

0..*

Fig. 2. Requirements Sub-Model

significant. We introduced this field because we also support capturing and de-
scribing requirements and design decisions that are not architecturally significant
- though the focus of our work lies on ASRs and ADDs. Issues can be assigned to a
category, which consists of a main category and a sub category. The category can
be used for sorting issues and for automatically building a utility tree as provided
by the Architecture Tradeoff Analysis Method (ATAM).

All issues support references to related issues and references to affected archi-
tectural elements. References to related requirements and design decisions have
been identified as an important element of design decisions [25]. As shown in
Fig. 2 we support different kinds of relationships, which are essentially modelled
after a taxonomy for design decisions and requirements that has been proposed
by Kruchten in [17]. Relations are also used for capturing potential alternative
decisions. Capturing alternative design decisions is important for preserving ar-
chitectural knowledge. Van der Ven et al. [26] even define design decisions as
“A description of the choice and considered alternatives that (partially) realizes
one or more requirements”. Dingsøyr and van Vliet [10] also list alternatives as
an important element of a design decision. The second kind of reference that is
visible in the model are references to architectural elements that are affected by
a change of a requirement or a decision. These references are used for tracing
and impact analysis as described above.

A third kind of issue shown in Fig. 2 is Scenario. A scenario is a special kind of
requirement that enforces a specific description. Kazman [15] defines a scenario
as “a brief description of a single interaction of the stakeholder with a system”.
A scenario is similar to a use case but encompasses the interactions of multiple

92 R. Weinreich and G. Buchgeher

stakeholders as opposed to the user only. Scenarios may encompass many re-
quirements [15] and requirements may be derived from scenarios. Scenarios are
particularly useful for architecture evaluation [3]. Since scenarios are a special
kind of issue, relations from scenarios to other issues and architectural elements
can be defined to support tracing and impact analysis.

All three kinds of architectural issues can be used for architecture analysis
and evaluation. For this reason, each issue can have associated analysis data and
analysis state. Analysis data is used for associating analysis-specific attributes
with an architectural issue, like priority and cost. Specific analysis data types
can be provided for different architectural analysis methods like SAAM and
ATAM as shown in Fig. 2. Each issue has two kinds of analysis state, since
evaluating architectural issues is a two-step process. First, it has to be checked
that a requirement, design decision, or scenario has been addressed correctly
in the architecture. A second step is used for checking the implementation. The
initial state of each issue is “open”. If an issue has been addressed in architecture
or implementation, its status is changed to “addressed”. A manual or automatic
analysis step ensures that the issue has been addressed correctly. If it has been
addressed correctly, the status is changed to “verified”.

Currently we support mainly manual analysis. This means that status up-
dates have to be provided by hand. We are currently working on integrating
automated analysis on the basis of configurable rules and predefined architec-
tural knowledge. The aim is to provide a combined approach and to enhance
and replace manual analysis through automated analysis where possible.

4 Tool Support

Capturing and visualizing architectural issues is supported by the LISA toolkit.
The toolkit provides a set of plug-ins that integrates seamlessly with the Eclipse
IDE. Editors for defining and visualizing architectural issues are presented in the
same environment as other architecture and implementation editors as shown in
Fig. 3. The central architecture dashboard shows the modular organization of
a LISA-based architecture representation and is depicted in the lower left part
of Fig. 3. The main area depicts a form-based editor for capturing information
about a particular architectural issue. The lower right part of the figure shows
a global or context-specific list of requirements and design decisions, along with
issue life-cycle information.

4.1 Capturing Architectural Issues

We provide several options for capturing architectural issues. A central aim has
been to support capturing as an integrated activity during design and implemen-
tation without the need for switching tools. In the following, we briefly describe
the supported means for capturing requirements, design decisions, and their
relationships.

Importing Issues from Issue Management Systems. Requirements that have
been defined during requirements analysis and specification can be imported

Integrating Requirements and Design Decisions 93

Fig. 3. Issue Views and Editors in the LISA toolkit

from issue management systems. We have implemented an import component for
Eclipse Mylyn, which acts as a front-end for multiple issue management systems
like JIRA and Bugzilla. Currently, only importing requirements is supported. A
synchronization component supporting two-way synchronization between issue
management systems and architecture description is a topic of future work.

Creating Issues Manually. Issues can be created and edited using the form-
based editor shown in Fig. 3. The editor is used for manually entering attributes
like summary, description/rationale, and category. It can also be used for explic-
itly defining relationships between issues and between issues and other architec-
tural elements, like components and modules.

Defining Relationships. Relationships can easily be created by dropping re-
lated elements onto the corresponding fields in the issue editor. An issue can
also be created directly for an architectural element by selecting the element
and choosing the “create issue” entry from the provided context menu. This im-
plicitly creates a relation between architectural element and issue and eliminates
the need for creating this relationship explicitly. Once an architecture element
has been assigned to an issue - be it a requirement, design decision, or scenario -
the toolkit also automatically proposes relations to other architecture elements
that might be affected by this issue. The proposed elements are determined by
analyzing existing relationships between architecture elements.

94 R. Weinreich and G. Buchgeher

Fig. 4. Creating Issues from Design Activity Logs

Creating Issues from Design Activities. During architecture design, all mod-
ifications of the architecture representation are logged. Log entries contain a
description of the modification and a list of the architecture elements that are
affected by the modification. New requirements and design decisions can be cre-
ated from the logged activities as shown in Fig. 4. Information about the logged
activities is added as part of the description of the new issue and architectural
elements that are part of the performed modifications are automatically associ-
ated with the new issue. Information from logged activities can also be added to
existing issues.

4.2 Visualizing Architectural Issues

Kruchten [16] shows some options for visualizing a set of design decisions, in-
cluding tables and graphs. Tables lack information about relationships among
decisions and graphs may easily become very complex, even for a small set of de-
cisions. For this reason, mechanisms for dealing with this complexity like eliding,
filtering, focusing, and sequencing are necessary [16]. In our case, not only design
decisions and their relationships are visualized but also requirements, scenarios,
and relations to other architecture elements. However, the main challenges of
reducing the inherent complexity remain the same. In the following, we provide
a short overview of the means for visualizing and editing architectural issues and
their relationships in our approach.

Issue Dashboard. The issue dashboard (see Fig. 3) shows all issues that have
been defined in the architecture description. Issues can be sorted by name, type,
containing module or category. It is also possible to search for specific issues
(filtering). A global issue list shows for each issue the relationships to other

Integrating Requirements and Design Decisions 95

Fig. 5. Dependency Graph

issues. The dashboard can also be configured to show only issues for currently
selected architecture elements (focusing). When a user selects an architecture
element in one of the architecture diagrams, the dashboard shows all issues that
have been assigned to this element. New issues can also be created for selected
elements and are automatically assigned to the selected element. The dashboard
can also be used for changing the analysis status of an issue without opening the
editor for this issue.

Dependency Graph. The issue editor contains an extra page for visualizing the
relationships between issues as a directed graph as shown in Fig. 5. This way it
is possible to explore the relationships from the viewpoint of a particular issue
(focusing) instead of viewing a global relationship graph.

Issues as Part of Architecture Diagrams. Architecture elements that have
assigned issues are annotated with a note marker that informs the user that
issues have been assigned to that element (see Architecture Dashboard in Fig.
3). The marker also shows the number of assigned issues. Information about the
assigned issues is shown as a tool tip.

Resource Markers. Issues can be linked to architecture elements. In turn, ar-
chitecture elements can be bound to implementation artifacts like source and
configuration files through implementation bindings. This enables tracing issues
to implementation artifacts. Issues that are related to an implementation ar-
tifact are shown as markers in implementation editors. For example, markers
are shown in source code editors as icons with tool tips and inform develop-
ers about requirements and design decisions that apply to the currently edited
implementation.

4.3 Analyzing Architectural Issues

Architectural issues are also the basis for certain kinds of architectural analysis.
We mentioned in Section 2 that we integrate multiple approaches for architecture
analysis in one consistent environment. Analysis of architectural issues is typically

96 R. Weinreich and G. Buchgeher

used for two kinds of analysis: for continuously analyzing and validating that is-
sues are addressed correctly in architecture and implementation and for scenario-
based architecture evaluation using architecture evaluation methods like ATAM
and SAAM. In general, we aim at supporting incremental and continuous analy-
sis. While dependency analysis and analysis of architecture/implementation con-
formance are performed automatically, analysis of architectural issues is currently
not automated and has to be performed manually.

As described in Section 3, analysis and validation of architectural issues is
supported through life-cycle attributes and through analysis data that can be
attached to architectural issues.

Life-cycle attributes indicate the analysis status of an issue in the architecture
on the one hand and in the implementation on the other hand. The status of
analysis in both architecture and implementation is shown in the issue editor
and in the issue dashboard. Issues that have not been addressed and issues that
have not been addressed correctly are visualized as architecture problems in the
architecture diagrams provided by the LISA toolkit.

Analysis data is used for supporting particular architecture evaluation meth-
ods. Analysis data can be captured in separate panes for each issue. Additional
views can be added for method-specific visualizations. For example, for ATAM
we support capturing importance and difficulty, which are used for prioritizing
scenarios. The architecture utility tree can be generated automatically based
on the defined scenarios and their categories. We also support partly automated
analysis like the detection of possible sensitivity and tradeoff points by analyzing
architecture elements that have multiple scenarios assigned.

We are currently working on support for automatic analysis of architectural
issues on the basis of user-defined element attributes and constraints. The main
idea is to support a user in defining issue-specific validation criteria using role-
attributes that are assigned to architectural elements.

5 Validation

The benefit of connecting requirements, design decisions, solution structures, and
implementation, has been argued widely and is also shown in several approaches
and case studies (see section on related work). Main questions that remain are
how the required information is captured efficiently and how the captured in-
formation can be made easily accessible. We view the main contribution of our
approach in reducing the overhead of capturing architectural knowledge and the
required relations through integration in one consistent model and environment
and in ensuring the consistency of architectural knowledge, representation, and
implementation. Therefore, the main aim of validation has been to check the
usefulness and usability of the presented approach in practice.

In order to validate the approach we used LISA in a small industrial project
for the development of a medical information system. The project was sched-
uled for one and a half person years, included three developers, and followed a
SCRUM/XP process. At the beginning of the project we briefed the users (de-
velopers, project leader/architect) in using the toolkit. We gave an overview of

Integrating Requirements and Design Decisions 97

the provided functionality and its intended use. We focused on the supported
means for capturing and analyzing requirements and design decisions. We also
supported the users during the development process by answering their ques-
tions. In order to collect relevant information we observed the usage of LISA
with a dedicated monitoring plug-in that logged user interactions in terms of is-
sues captured, including capturing time and owner. Additionally, we conducted
interviews with the users to find out about their experiences and the perceived
usefulness of our approach. Finally, we reviewed the created architecture descrip-
tion to determine the kind of information captured by users.

Findings. Initially developers had reservations regarding the usefulness of our
approach. A particular concern was the additional effort involved in capturing
requirements and design decisions. This applied especially for requirements that
had already been specified in a separate requirements document. After using the
tool for some time this attitude changed and parts of our approach were consid-
ered useful. The central benefit perceived was the linking of issues to architecture
elements. Capturing requirements and design decisions gave additional meaning
to architecture elements. It turned out that users often captured requirements
after they had created corresponding architecture elements.

The users doubted the usefulness of defining relationships between issues.
Even more, they did not see any benefit from specifying these relationships. They
also did not understand the different relationship kinds. One user complained
that there “are too many of them and one does not know which to choose”. Ana-
lyzing the captured requirements and their relationships revealed that primarily
functional requirements had been captured. Relationships were typically used for
splitting coarse-grained requirements into multiple smaller requirements. In ad-
dition, users were unsure about the difference between requirements and design
decisions.

What was good? The users particularly liked the seamless integration into
the IDE, which facilitated the capturing of requirements and design decisions
(as well as the creation and maintenance of the entire architecture description).
The issue editor was perceived similar to existing issue management systems,
which raised its acceptance among the project team. The general usability of
the toolkit was perceived as good with some space for future improvements.

What needs to be improved? The users asked us to provide additional diagrams
for visualizing and analyzing the relationships between issues and architecture
elements. Particularly they asked for a diagram showing which architecture ele-
ments are affected by a set of issues. Currently we only support tracing from one
issue to related elements. The users missed additional fields for defining refer-
ences to other artifacts like existing requirement documents, project guidelines
and issues/bugs-ids.

Observations of the research team. IDE integration and traceability from re-
quirements to architectural artifacts have been viewed as the main benefit by the
users in the conducted case study. Despite our efforts in reducing the overhead
in capturing information, users neglected the knowledge management features.
We attribute this mainly to the lack of immediately perceived value in capturing

98 R. Weinreich and G. Buchgeher

this information. We think that additional research in making these benefits more
clearly might raise the acceptance for such an approach. The support for architec-
ture analysis has not been examined in the described case study.

6 Related Work

Our work combines aspects of architecture description languages (ADLs), soft-
ware architecture management tools (AMTs), and of tools for software architec-
ture knowledge management (AKM).

ADLs and AMTs focus on automatic architecture analysis. Typical ADL-
based approaches lack the level of implementation and IDE integration that
is provided in our approach [6]. AMTs provide this integration, but they lack
higher-level architectural abstractions and support for analyzing particular qual-
ity attributes as supported by ADLs. Representatives of both approaches usually
provide no support for capturing and managing requirements and design deci-
sions. The main topics presented in this paper, i.e., capturing and managing
requirements and design decisions, support for tracing and impact analysis, and
support for scenario-based architecture analysis and architecture evaluation are
usually offered by architecture knowledge management tools. A variety of AKM
tools exist. Most of them are research prototypes.

PAKME [1] is a web based architecture knowledge management tool, which
supports capturing of design decisions and scenarios. It also supports scenario-
based architecture analysis. Contrary to our approach, requirements and design
decisions are managed independently from architecture representation. Also,
PAKME provides no integration with other kinds of analysis and is not inte-
grated in an IDE. The lack of integration leads to overhead for capturing and
keeping captured information synchronized with architecture description and
implementation. The additional workload through duplication of requirements
has been identified as potential problem in using PAKME [2].

Archium [14] also integrates design decisions with architecture description
and implementation. Aside from capturing design decisions as first-class entities
to prevent knowledge vaporization, the approach also aims at keeping archi-
tecture and architectural knowledge consistent during system evolution. This is
achieved by integrating a design decision model, an ADL-like architecture model,
a composition model, and an implementation in one language (an extension to
Java). Archium provides a textual representation, a compiler and a runtime
system. This is already an important difference to our approach, which binds
and synchronizes an architecture model with an implementation but is indepen-
dent from particular implementation technologies and run-time systems. From a
conceptual viewpoint Archium takes current definitions of software architecture
literally; it requires designing software systems by composing design decisions
and thus requires a new way of thinking during design. We integrate design deci-
sions differently. Rather than composing a design from design decisions, we bind
design decisions to design solutions. Support for architectural analysis and IDE
integration as supported in our approach is not available in Archium.

Integrating Requirements and Design Decisions 99

SEURAT [8] is an approach for rationale management in software develop-
ment, which also provides integration in the Eclipse IDE. Rationale is captured
in a semi-formal representation (RATSpeak), which supports the description of
decisions, alternatives, and relations to requirements and implementation. The
approach supports traceability from requirements and decisions to code. Con-
trary to our approach, SEURAT provides no architecture representation but
connects rationale directly with source code. The authors mention integration
with UML as a topic of future work to support rationale management in other
software development phases.

AREL [22,24] is an extension to UML. It adds stereotypes for representing
architecture elements (AE) and architecture rationale (AR) to UML diagrams.
This way rationale and relations to architectural elements are directly modeled
in UML using a standard UML tool. Forward and backward traceability is sup-
ported through an additional tool, which is implemented in .NET. AREL lacks
the deep integration of support for architectural knowledge management into
development and design tools that is supported by our approach. This is mainly
due to the use of a standard UML tool ([23] p. 201). Also, the combination of ar-
chitectural knowledge with architectural analysis and validation is not provided.

7 Conclusion

Our approach integrates requirements and architecture design decisions with
single consistent architecture representation, the LISA model. A LISA architec-
ture model is continuously checked for consistency and supports continuous syn-
chronization with a potential system implementation. Therefore, the approach
supports consistency of the captured requirements and decisions with archi-
tectural structures and implementation. Support for consistency is important
in wake of incremental development and system evolution. The approach also
supports forward and backward tracing from requirements to architecture and
implementation and vice versa. We aimed at reducing the overhead in capturing
architectural knowledge through IDE integration, through support for defining
issue relations by capturing information from design activities, and by suggesting
additional relations on the basis of existing ones. Visualization of architectural
issues is supported through specific views with support for focusing and filtering.
Architectural issues are also presented in other views on architecture and im-
plementation creating an ongoing awareness of related requirements and design
decisions during design and development. We have also integrated support for
analysis and validation of captured architectural issues and for scenario-based
architecture evaluation in our model and toolset. Finally, we have conducted a
case study for validating the approach in an industrial project. Integration of ar-
chitectural issues with architecture representation and implementation and the
support for tracing have been well received. Other knowledge management fea-
tures, like capturing more complex relations between architectural issues, failed
to show immediate value to users of the approach. Making the benefits of par-
ticular relations more explicit is a necessity for raising the acceptance of such
an approach.

100 R. Weinreich and G. Buchgeher

References

1. Babar, M.A., Gorton, I.: A tool for managing software architecture knowledge.

In: SHARK-ADI 2007: Proceedings of the Second Workshop on SHAring and

Reusing Architectural Knowledge Architecture, Rationale, and Design Intent,

p. 11+. IEEE Computer Society, Washington (2007)

2. Babar, M.A., Northway, A., Gorton, I., Heuer, P., Nguyen, T.: Introducing tool

support for managing architectural knowledge: An experience report. In: IEEE

International Conference on the Engineering of Computer-Based Systems, vol. 1,

pp. 105–113. IEEE, Los Alamitos (2008)

3. Babar, M.A., Zhu, L., Jeffery, R.: A framework for classifying and comparing soft-

ware architecture evaluation methods. In: ASWEC 2004: Proceedings of the 2004

Australian Software Engineering Conference, p. 309+. IEEE Computer Society,

Washington (2004)

4. de Boer, R., van Vliet, H.: On the similarity between requirements and architecture.

Journal of Systems and Software (November 2008)

5. Bosch, J.: Software architecture: The next step. In: Oquendo, F., Warboys, B.C.,

Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidel-

berg (2004)

6. Buchgeher, G., Weinreich, R.: Connecting architecture and implementation. In:

Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS,

vol. 5872, pp. 316–326. Springer, Heidelberg (2009)

7. Buchgeher, G., Weinreich, R.: Software Architecture Engineering. In: Buchberger,

et al. (eds.) Hagenberg Research, pp. 200–214. Springer, Heidelberg (2009)

8. Burge, J.E., Brown, D.C.: Seurat: integrated rationale management. In: ICSE

2008: Proceedings of the 30th international conference on Software engineering,

pp. 835–838. ACM, New York (2008)

9. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A comprehensive approach for the

development of modular software architecture description languages. ACM Trans.

Softw. Eng. Methodol. 14(2), 199–245 (2005)

10. Dingsøyr, T., Vliet, H.: Introduction to software architecture and knowledge man-

agement. In: Ali Babar, M., Dingsøyr, T., Lago, P., Vliet, H. (eds.) Software Ar-

chitecture Knowledge Management, ch. 1, pp. 1–17. Springer, Heidelberg (2009)

11. Dutoit, A.H., McCall, R., Mistŕık, I., Paech, B. (eds.): Rationale Management in

Software Engineering: Concepts and Techniques. Springer, Heidelberg (2006)

12. Farenhorst, R., Boer, R.C.: Knowledge management in software architecture: State

of the art. In: Ali Babar, M., Dingsøyr, T., Lago, P., Vliet, H. (eds.) Software

Architecture Knowledge Management, ch. 2, pp. 21–38. Springer, Heidelberg (2009)

13. van Gurp, J., Bosch, J.: Design erosion: problems and causes. Journal of Systems

and Software 61(2), 105–119 (2002)

14. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-

sions. In: 5th Working IEEE/IFIP Conference on Software Architecture, WICSA

2005, pp. 109–120. IEEE Computer Society, Washington (2005)

15. Kazman, R., Carrière, S., Woods, S.: Toward a discipline of scenario based archi-

tectural engineering. Annals of Software Engineering 9(1), 5–33 (2000)

16. Kruchten, P.: Documentation of software architecture from a knowledge manage-

ment perspective design representation. In: Ali Babar, M., Dingsøyr, T., Lago, P.,

Vliet, H. (eds.) Software Architecture Knowledge Management, ch. 3, pp. 39–57.

Springer, Heidelberg (2009)

Integrating Requirements and Design Decisions 101

17. Krutchen, P.: An ontology of architectural design decisions in software inten-

sive systems. In: 2nd Groningen Workshop Software Variability, October 2004,

pp. 54–61 (2004)

18. Nuseibeh, B.: Weaving together requirements and architectures. Computer 34(3),

115–117 (2001)

19. Obbink, H., Kruchten, P., Kozaczynski, W., Hilliard, R., Ran, A., Postema, H.,

Lutz, D., Kazman, R., Tracz, W., Kahane, E.: Report on software architecture

review and assessment, SARA (2002)

20. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-

SOFT Softw. Eng. Notes 17(4), 40–52 (1992)

21. Pohl, K., Sikora, E.: COSMOD-RE: Supporting the co-design of requirements and

architectural artifacts. In: IEEE International Conference on Requirements Engi-

neering, pp. 258–261 (2007)

22. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design trace-

ability and reasoning. Journal of Systems and Software 80(6), 918–934 (2007)

23. Tang, A.: A rationale-based model for architecture design reasoning. Ph.D. thesis

(2007)

24. Tang, A., Han, J., Vasa, R.: Software architecture design reasoning: A case for

improved methodology support. IEEE Software 26(2), 43–49 (2009)

25. Tyree, J., Akerman, A.: Architecture decisions: Demystifying architecture. IEEE

Software 22(2), 19–27 (2005)

26. van der Ven, J., Jansen, A., Nijhuis, J., Bosch, J.: Design decisions: The bridge

between rationale and architecture. In: Dutoit, A.H., McCall, R., Mistŕık, I., Paech,

B. (eds.) Rationale Management in Software Engineering, ch. 16, pp. 329–348.

Springer, Heidelberg (2006)

27. Weinreich, R., Buchgeher, G.: Paving the road for formally defined architecture

description in software development. In: 25th ACM Symposium on Applied Com-

puting (SAC), Sierre, Switzerland, March 22-26. ACM, New York (2010)

Flexible Working Architectures: Agile
Architecting Using PPCs

Jennifer Pérez, Jessica Dı́az, Juan Garbajosa, and Pedro P. Alarcón

Technical University of Madrid (UPM), E.U. Informática, Madrid, Spain

jenifer.perez@eui.upm.es, yesica.diaz@upm.es,

{jgs,pedrop.alarcon}@eui.upm.es

Abstract. Software systems need software architectures to improve their

scalability and maintenance. However, many agile practitioners claim

that the upfront design of software architectures is an investment that

does not pay off, since customers can rarely appreciate the value deliv-

ered by architectures. Furthermore, conventional architectural practices

may be considered unacceptable from the Agile values and principles

perspective. In this paper, the development of working architectures in

agile iterations is presented as an attempt to solve the problem of de-

signing software architectures in Agile. This contribution is based on the

new concept of Plastic Partial Component (PPC). PPCs are highly mal-

leable components that can be partially described, what increases the

flexibility of architecture design. PPCs based architectures let reinforce

some of the agile values and principles. Our experience of putting this

contribution into practice is illustrated through the agile development of

a Testing Framework for Biogas Plants.

1 Introduction

It is a well accepted fact in Software Engineering that architectures make soft-
ware systems simpler and more understandable. Software architectures describe
the structure of a software system by hiding the low-level details and abstract-
ing the high level important features [1]. Software architectures also accommo-
date non-functional requirements. The design, specification, and analysis of the
structure of software-intensive systems have become critical issues in software
development [2]. As a result, software architectures emerged as a solution for the
design and development of large and complex software systems.

The Agile Manifesto [3] is the basis of agile methodologies. It establishes the
following two principles: ”Working software is the primary measure of progress”
and ”Delivering working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale”. These two agile principles
imply that, the limited time that the development of a working product takes
the developers, should be mostly invested in coding to satisfy the delivery dead-
line. Therefore, agile practitioners often consider that the upfront design and
definition of software architectures is an investment in time and effort that is
not paid off.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 102–117, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Flexible Working Architectures: Agile Architecting Using PPCs 103

Literature is full of references that advocates against architecture in Agile, as
customers rarely can appreciate the value that architecture delivers. A common
belief is that “If you are sufficiently agile, you don’t need an architecture - you
can always refactor it on the fly”. However, it has been argued that an inaccu-
rate architectural design leads to the failure of large software systems and large
refactoring might create significant defects [4]. As it is illustrated by Dyb̊a and
Dingsøyr in [5], several authors advocate that the lack of focus on architecture
is bound to engender suboptimal design-decisions. This lack is in contradiction
with an Agile principle that establishes that “Continuous attention to techni-
cal excellence and good design enhances agility”. In addition, according to Babar
and Abrahamsson [6] software architectures may be also essential to improve and
scale up Agile Software Development1 in large software-intensive systems. Cock-
burn [7] claims that the issue with architecture in Agile is not either architecture
yes or architecture no: he thinks that the issue is how much effort should be in-
vested in architecture, assuming that (architecture) practices can be valuable for
the customer. Kruchten concludes in [8] that in software architectures there are
cost and value, also for agile. Then, the key question is: “Are we able to avoid the
obstacles that hamper agile practitioners to design software architectures without
renouncing their values and principles?”. There are some works [7,8,9,10,11] that
intend to harmonize Agile and architecture by outlining high level approaches or
organizational guidelines, but do not provide specific techniques or practices to
design architectures that favor agile values and principles. Our understanding is
that having flexibility at the time of defining software architectures is essential,
so that, practices can be aligned with Agile values and principles.

In this paper, we deal with the problem of designing software architectures in
Agile. From the wide-scope of tasks that software architectures comprise: (i) to
analyze and describe the properties of systems at a high level of abstraction; (ii)
to validate software requirements; (iii) to estimate the cost of the development
and maintenance processes; (iv) to reuse software; and (v) to establish the bases
and guidelines for the design of large complex software systems [1]. Our contri-
bution is focused on the structural viewpoint of software architectures, i.e. the
description of software architectures.

We present our experience using Plastic Partial Components (PPCs) [12] to
specify software architectures in an Agile context. A Plastic Partial Component
(PPC) is a new concept to support internal variation of architectural components
by hooking crosscutting and non-crosscutting concerns (aspects and features) that
are unaware of the linking context. Despite the fact that PPCs were originally
defined for Software Product Lines (SPLs) [13], we have taken advantage of their
extension mechanisms for designing software architectures in Agile. Using PPCs,
architectural components can be iteratively and incrementally developed in each
iteration and, by extension, the software architecture that they make up. This ar-
chitecture is incrementally and iteratively designed in each iteration by adding/
removing: (i) aspects and/or features to/from its PPCs, and (ii) components and
connections to/from the architecture. From this proposal, a new concept in

1 In this article we will use the term Agile representing Agile Software Development.

104 J. Pérez et al.

software architectures emerges, called working architecture. A working architec-
ture is the architecture that is obtained along with each working product in each
agile iteration. We illustrate our proposal of using PPCs in Agile through our ex-
perience of developing a framework, in cooperation with industrial partners, for
monitoring, testing and operating biogas power production plants.

It is necessary to emphasize that our contribution is focused on the structural
viewpoint of software architecture, i.e. the description of software architectures.
Software architectures address: (i) the description of systems properties at a high
level of abstraction; (ii) validation of software requirements; (iii) estimation of
the cost of the development and maintenance processes; (iv) software reusability;
and (v) establish the bases and guidelines for the design of large complex software
systems [1].

The structure of the paper is as follows: Section 2 introduces the main no-
tions of agile and PPCs. In addition, it explains the agile methodology SCRUM.
Section 3 discusses related works about software architecture practices in Agile.
Section 4 explains why and how PPCs fit for use with Agile. It also explains our
proposal about how to specify working architectures. Section 5 presents a case
study that is used to illustrate our contribution, and exemplifies the use of PPCs
in Agile. Finally, conclusions and further work are presented in section 6.

2 Background

2.1 Agile Software Development

Agility is just an umbrella term for a variety of methods structured into values,
principles and practices, with a common reference in the Agile Manifesto [3].
Shore et al. [14] define values as ideals, principles as the application of these
ideals to the industry, and practices as principles applied to a specific type of
project. The relevance of values and principles is increasing as long as large orga-
nizations are requiring their application [15]. Some of these agile principles are:
customer satisfaction through early and continuous delivery of valuable software;
continuous attention to technical excellence; or welcome changing requirements,
even late in development. Some common Agile methods are eXtreme Program-
ming (XP) [16], Lean Development [17], and Scrum [18], the one used within
this work.

Scrum implements an iterative and incremental life cycle (see Figure 1). Three
roles, the Product Owner, Team, and ScrumMaster make up all together the
Scrum Team [18]. The Product Owner represents the key stakeholder interests.
The Team is in charge of developing the product functionality and the customer
is often a membership of the team. The Scrum process is responsibility of the
ScrumMaster. Requirements are captured as User Stories (USs) by the customer
together with the rest of the Scrum Team members during the pre-game phase,
at the beginning of the project. The list of USs is stored in the product backlog.
Later on in the process, USs are prioritized and divided into short time-framed
iterations called sprints. A sprint is a 2-4 weeks period of development time. The
scope and goals of each sprint are agreed at its beginning by the Product Owner

Flexible Working Architectures: Agile Architecting Using PPCs 105

Fig. 1. Scrum Lifecycle

and the Team at the sprint planning meeting. The output from this meeting is
stored in the sprint backlog. Each sprint should deliver a valuable increment of
the final product functionality. During the execution of each sprint, the Team
will meet daily in a 15-minute meeting to track work progress. At the end of
each sprint, the sprint review and retrospective meetings will be held. In the
sprint review meeting the Product Owner will communicate whether goals were
met, and might introduce changes into the USs. In the retrospective meeting the
Team and ScrumMaster discuss what went well, and what could be improved
for the next sprint, and works as an estimation and tracking activity to put into
practice continuous improvement.

2.2 An Overview of Plastic Partial Components (PPCs)

The notion of Plastic Partial Component (PPC)2 was originally defined for Soft-
ware Product Lines Engineering (SPLE) [13]. SPLE adoption requires explicitly
to specify the commonalities and variabilities of SPLs at the architectural level.
This implies not only to specify variants for modifying the configuration of soft-
ware architectures, but also to define variations inside components. PPCs are a
solution to support the internal variation of architectural components.

PPCs variability mechanisms are based on Invasive Software Composition
Principles [19]. Invasive Software Composition defines components as fragment
boxes that hook a set of reusable fragments of code. Specifically, these fragments
of reusable code can be aspects making components easier to be maintained
and by extension software architectures. The variability of a PPC is specified
using variability points, which hook fragments of code to the PPC. These frag-
ments of code are specific features of a software product, which can crosscut
the software architecture or not. For this reason, we classified these features
into: crosscutting-features and non-crosscutting-features. A crosscutting-feature
is a common feature of the software architecture, which is encapsulated into a
separate entity called aspect. Whereas, a non-crosscutting-feature is the specific
functionality of a component, which is encapsulated into a separate entity called
feature. Therefore, variability points can hook aspects or features to the PPC.
A PPC is defined by specifying: (i) its variability points; (ii) the aspects and/or
2 This section presents just an overview of PPCs. A broader description with additional

references to literature sources can be found in [12].

106 J. Pérez et al.

Fig. 2. a) Linking Plastic Partial Components and Variability Points. b) Variability

Points and Variations (Aspects and Features).

features that are necessary to complete the definition of the component for any
software product; and (iii) the hooks between the variability points and the as-
pects and/or features. As a result, the complete definition of a PPC for a specific
product is done by means of the selection of aspects and/or features through the
variability points.

A PPC is a specialization of a component and inherits all the properties and
behavior of a component. A PPC is characterized by the definition of a set of
variability points, i.e. the place where the different variants are hooked to the
PPC (see Figure 2.a). A variability point of a PPC is characterized by three
properties: (i) the kind of variation, (ii) the type of variability point depending
on the variants that it offers to be selected (i.e. crosscutting or non-crosscutting
features), and (iii) the weaving between variants and the component.

The kind of variation is based on the variability management of software
architectures that Bachmann and Bass set out [20]. This property is provided
to support variability, and it defines the number of variants of a product family
that must be selected (mandatory) or can be selected (optional) for developing
a specific product of the family. The kind of variation is specified as cardinality
(0..1, 1..1, 0..n, 1..n, m..n).

There are two types of variability points (see Figure 2.b): (i) those that permit
the selection of variants that are crosscutting-features (aspects); (ii) and those
that permit the selection of variants that are non-crosscutting features (features).
An Aspect Variability Point (AVP) can only offer aspects to be selected; and a
Feature Variability Point (FVP) can only offer features to be selected. It is
important to emphasize that both aspects and features can be linked to more
than one variability point to facilitate reuse.

Variability points allow us to specify the weaving between the PPC and the
variant. The weaving principles of Aspect-Oriented Programming (AOP)[21] pro-
vide the needed functionality to specify where and when extending the PPCs
using variants. Therefore, AOP weaving primitives (pointcuts, weavings and as-
pects) are applied to weave a PPC with both, aspects and features. The pointcut
definition consists of defining where to insert the code of the variant. An exam-
ple of pointcut could be calling a service that the PPC provides. The definition
of the weaving operator consists of establishing when to insert the code of the
variant with regard to the pointcut: before, after or instead of (around). In our

Flexible Working Architectures: Agile Architecting Using PPCs 107

proposal, it will be before, after or insteadOf the call of the service of the PPC.
Thereby, the PPC, the pointcut, the weaving operator and the variant are the
elements that define a weaving.

However, there are some differences between our definition of aspects and
weavings and those AOP provides. In our proposal, the pointcut and the weaving
operator are specified outside the aspects and features, and inside variability
points. As a result, unlike AOP, our aspects and features are unaware of the
linking context, and they are completely reusable.

The description of working architectures using PPCs is supported by a graph-
ical modeling tool called Flexible-PLA. Flexible-PLA has been developed follow-
ing the MDD approach [22,23] to take advantage of its metamodel definition and
its corresponding graphical metaphor [12]. It has been automatically generated
from the metamodel and the graphical metaphor. It was possible because they
were specified using the Eclipse Modeling Framework (EMF) and its Graphical
Modeling Framework(GMF) [24]. As a result, Flexible-PLA is an open-source
tool that is available for the research community.

3 Related Work

To make come true agile software architectures, it is necessary: (i) to provide
mechanisms to flexibly describe them and (ii) to define how they should be
designed throughout the Agile software life cycle, i.e, how to perform agile ar-
chitecting. In any case, Agile values and principles should be respected.

On the one hand, with regard to software architecture description, Scott Am-
bler in [25] proposes a model based on views and concerns for designing software
architectures in Agile. We take a step forward and define a specific formalism to
systematically introduce crosscutting and non-crosscutting features in the Agile
Software Development of architectures. This is due to the fact that we real-
ized that it is necessary to be flexible enough for supporting not only external
changes (modification of the architectural configuration by adding or remov-
ing components or connections), but also internal changes (modification inside
components). It is important to keep in mind that these internal changes must
preserve abstraction and encapsulation (black boxes) of software architectures
and Agile flexibility requirements. So, internal changes are treated as crosscut-
ting and non-crosscutting features that are easily added and removed to/from
agile software architectures.

On the other hand, with regard to agile architecting, one of the main Agile
issues is to improve the scalability of their products by designing their software
architectures. Several proposals have been outlined to fix this issue [9,10,11].
Most of them agree with the idea that Agile should incorporate architectural
information when it is applied to develop large-scale software-intensive systems.
However, the proposed approaches are rather ”high-level”. Cockburn [7] proposes
to start with a simple architecture that handles all the big rocks. Then, it can
be evolved or refactored as other requirements appear; but it should not be an
objective to get the architecture at the end of the project. Boehm and Turner [9]

108 J. Pérez et al.

recognize that hybrid approaches to balance agile and plan-driven approaches
are necessary; McMahon [10] recommends employing in agile architectures two
levels. The first level develops a high-level agile architecture including the major
system components, assumptions, and a brief description of each component.
The second level focuses on the high-risk areas for each iteration (big rocks).
M. Ali Babar et al. [11] analyze the role of the architecture in Agile through a
case study by integrating software product lines and agile practices, and carry
out a description of the organizational processes. All these works recognize and
recommend the role of architectures in Agile but the practices they provide are
rather general.

From our point of view, it is not necessary to create new mechanisms from
scratch to design software architectures in Agile. We can adopt existing mech-
anisms that assists architects to flexibly develop software architectures. This
flexibility can be obtained from mechanisms that allow us to specify variability.
Agile methodologies can take advantage of variability mechanisms to flexibly
adapt software architectures and to incrementally develop them together with
the working product. In fact, our proposal uses PPCs [12] to incrementally design
software architectures in Agile.

4 Flexible Working Architectures

Agile establishes an iterative and incremental software development, in which
iterations are short time-framed and always deliver valuable software (working
product). When Agile Methodologies are applied to develop large-software inten-
sive systems, software architectures are required to scale their working and final
products. Software architectures bridge the gap between requirements and imple-
mentation [1], and by extension between USs and the implementation. Therefore,
mechanisms for designing flexible architectures along with the working product
in each agile iteration are required to deal with the obstacles that hamper agile
practitioner to design software architectures. These mechanisms must support
for easily adding/removing components and connections (external variation) and
adding/removing features and aspects inside components (internal variation),
considering variation like incremental steps in software development.These as-
sumptions and PPCs are the base of our proposal for developing software prod-
ucts in Agile by designing their software architectures and preserving the Agile
values and principles. In this section, it is explained how PPCs can help us to
flexibly build working architectures throughout the ASD life cycle.

4.1 Plastic Partial Components in Agile

PPCs variability mechanisms are successfully applied to SPLs to support internal
variation of architectural components among the products of a SPL. However,
in Agile, variability mechanisms are not used to define variations (aspects and
features) among products. On the contrary, they are used to flexibly add, re-
move and modify aspects and/or features throughout the iterations of an Agile

Flexible Working Architectures: Agile Architecting Using PPCs 109

lifecycle. Variability mechanisms behave as extensibility mechanisms to flexibly
compose pieces (aspects, features, components) of software as if we were building
a puzzle. As a result, PPCs get closer and closer to customer needs by means
of specifying the aspects and features only when they are strictly required by a
working product. From the PPC definition it is possible to conclude that PPCs
facilitate to meet the agile principle and values:

– Partial: PPCs are Partial because they can be incompletely specified. They
can be working components delivered and refined each iteration as part of the
working product. Therefore, PPCs allow us to incrementally develop archi-
tectural components by only taking into account the required functionality
for each iteration, and to construct them in time to the working product.

– Plastic: PPCs are Plastic because they are highly malleable. This is thanks
to their extensibility mechanisms, which allow us to flexibly adapt software
components by easily adding or removing fragments of code. As a result,
they are ready to be extended or modified at any moment.

PPCs are always composed of mandatory aspects or features and every vari-
ability point of a PPC is either mandatory and unique or mandatory multiple
and multiple. In agile, aspects and features of PPCs are mandatory unless they
will be removed over iterations. So, the kinds of variation are constrained to the
following cardinalities:

- 1..1: mandatory and unique: it is mandatory to select the unique aspect or
feature of the variability point.

- m..n: mandatory and multiple: variability point is not used in Agile as a
point of decision, therefore it is mandatory to select the multiple features or
aspects of the variability point. For this reason, the number of selections m is
equals to the number of variants n, and the cardinality is n..n.

Therefore, when PPCs are applied in Agile, the two types of variability points
are characterized by the kind of addition, update or deletion, not by the kind
of selection that performs. An Aspect Variability Point (AVP) can only add,
modify or remove aspects; and a Feature Variability Point (FVP) can only add,
modify or remove features.

4.2 Agile Architecting

In this section, we present our experience of applying PPCs in Agile. In our pro-
posal, all the components of the architecture are PPCs, that are incrementally
developed in time to the working product. They constitute the new concept of
working architecture. A working architecture is the architecture that is iteratively
and incrementally designed together with the working product. This idea was
also proposed in [26,27,28] as continuous architecting. Continuous architecting
allow us to tackle architecture degradation and keep the system in sync with
changing conditions. In addition, successful agile architecting requires to define
the role of the architect in an Agile team. The architecture team is part of the
Agile team and interacts with the rest of members at the making-decision process
by tracking architectural concerns and balancing them with business priorities.

110 J. Pérez et al.

Thereby, architecture can also support one of the agile values, communication
[29]. Next, from our experience we explain how to develop agile working architec-
tures using PPCs. We make a distinction between the first performed iteration
and the others.

– First Iteration

Once the architecture team, the development team, and the customer have de-
fined the USs of the software product, the customer selects the USs for being
developed in the first iteration. This selection is performed taking into account
the priorities of the customer and the advice and recommendations of the devel-
opment and architecture teams. Next, the development and architecture teams
can start the architecture design and implementation of the selected USs. Before
implementing USs, it is important to analyze them to identify candidate com-
ponents for a working architecture of the working product. Whereas traditional
software development classifies requirements into functional and non-functional,
Agile does not make this distinction in USs. In fact, most USs are related to func-
tional requirements due to the fact that they are those requirements that the
customer perceives as the result he/she requires. However, it often happens that
non-functional requirements, such as distribution or security, have to be implic-
itly considered and implemented to meet the functional requirements, i.e. cus-
tomer needs. As a result, the architecture team must keep in mind non-functional
requirements to identify them in the USs. In consequence, we understand that
the architecture team must analyze USs to identify:

1. PPCs: Units of basic functionality, also known as major software compo-
nents [10]. They are candidate components of the software architecture of
the working product. They make up the working architecture.

2. Features: Features represent non-crosscutting features (see section 2.2). They
are usually functional requirements that are not relevant enough for being
major software components. They constitute additional functionality of the
final product, which is susceptible of being removed over time. Thus, they
are part of the functionality that a PPC provides.

3. Aspects: Aspects represent crosscutting features (see section 2.2). They are
usually non-functional requirements. They are part of the functionality that
one or more PPCs provide.

4. Architectural Connections : Connections to coordinate PPCs and configure a
working architecture.

From this iteration, a first version of the working architecture is obtained.

– Subsequent Iterations

As in the first iteration, the customer, the architecture and development teams
select the USs that are going to be developed during the current iteration. How-
ever, in this case the selection can be also guided and supported by the working
architecture obtained from the previous iteration. This is due to the fact that

Flexible Working Architectures: Agile Architecting Using PPCs 111

software architectures not only can help us study the feasibility of the develop-
ment of software systems, but also can help us determine which requirements
are reasonable and viable [30], and by extension which USs could be selected.
There are different criteria of selection that can be assisted by the architecture
knowledge such as scalability, reusability or the impact of changes. Therefore, the
knowledge of a working architecture is a value which may enrich the agile process.

Once the customer, architecture and development teams have selected the
USs for the iteration, the architecture and development teams can start the
architecture design and implementation of the selected USs as in the first itera-
tion. Finally, after completing the last iteration, a final software architecture is
obtained as part of the final product.

It is important to emphasize that the unique difference among the first itera-
tion and the rest of them is the fact that the first iteration starts from scratch the
software architecture. We do not define a ZFR (Zero Feature Release) where the
customer does not participate as other approaches propose [16,10]. We consider
that the investment of time and cost in this ZFR does not guarantee that the
decisions taken will be definitive and the ZFR architecture will be preserved. So,
our first iteration is just one more, where the customer participates. In each it-
eration, PPCs, Aspects, Features or Connections from the software architecture
are updated, added and removed in a flexible way and without any restriction.

4.3 Analysis of PPCs and Working Architectures from the Agile
Perspective

PPCs facilitate to meet the agile principles and values and to carry out some of
the agile practices. PPCs and working architectures match with the four agile
values: (i) Individuals and interactions over processes and tools : The architec-
ture team is part of the Agile team and participates in its meetings; (ii) Working
software over comprehensive documentation: PPCs are part of a working archi-
tecture, which is software that is delivered in each working product; (iii) Cus-
tomer collaboration over contract negotiation: The architecture team interacts
with the customer throughout the agile process; and (iv) Responding to change
over following a plan: PPCs easily accept changes by adding or removing fea-
tures and/or aspects and they are connected between them to configure working
architectures.

With regard to the twelve agile principles, next we detail those that could be
enriched with our proposal.

– (P1). Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software: PPCs help get closer and closer to
customer needs over iterations, and by extension the working architecture.

– (P2). Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage: PPCs are
plastic. They are ready to be extended or modified at any moment.

– (P3). Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale: Working architectures
are part of the delivery.

112 J. Pérez et al.

– (P4). The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation: The architecture
team participates in every meeting of the project and is welcome to the
new customer needs. The architecture team shares architectural information
among its members and with all others in every scheduled meeting. The
architecture team is open minded to the changes that their feedback may
imply. This is thanks to the adaptation facilities that PPCs and working
architectures provide.

– (P5). Working software is the primary measure of progress: the working
architecture is part of the working software that is delivered in each iteration.

– (P6). Continuous attention to technical excellence and good design enhances
agility: PPCs supports to intuitively modularize and scale software by using
its variability mechanisms, which can be advantageously used for adding or
removing pieces of software throughout the different iterations that comprise
the development of a working product. In addition, PPCs help us to easily
apply a major technique used in Agile to cope changes: refactoring. Refac-
toring is a process and a set of techniques to reorganize code while preserving
the external behavior of a working system [31]. PPCs help us to extend and
reorganize code by its encapsulation into features and aspects, which avoids
the inherent tangled-code that crosscutting concerns generate.

5 Applying PPC for the Agile Development of a Testing
Framework for Biogas Plants

In this section, we illustrate the use of PPCs in Agile through our experience
of developing a framework for monitoring, testing and operating biogas power
plants. This development has been performed following SCRUM [18] and in
cooperation with the software company Answare-Tech, which is operating in the
software and system engineering arena. This industrial collaboration has taken
place within FLEXI ITEA2 project, in which both UPM and Answare-Tech have
worked closely together.

5.1 A Test and Operation Framework for Biogas Plants

Biogaspower plants produce electric energy from the anaerobic digestion of the an-
imal meat/vegetable waste. The process of biogas production is composed of four
main stages: shredding, pasteurization, homogenization, and anaerobic digestion.
Each stage is performed in tanks that must be monitored, tested and controlled.

It is common that customers monitor and control several biogas plants dis-
tributed in a geographical area. In addition, they require that the language and
framework to monitor, test and operate the plant will be specific of the biogas
domain. To satisfy these needs, we decided to evolve an existing domain-specific
framework for testing and operating environments, called TOPENprimer [32].
TOPENprimer is devised for testing and operating systems from various do-
mains. Therefore, UPM and Answare-Tech work together to update TOPEN-
Primer to test biogas plants, i.e. TOPEN Biogas.

Flexible Working Architectures: Agile Architecting Using PPCs 113

5.2 Developing a Flexible Architecture for TOPEN Biogas

TOPEN Biogas was developed through 6 SCRUM sprints during 15 weeks (see
P3, section 4.3). The Scrum Team was composed of 10 engineers: a Product
Owner, a Scrum Master, two architects (architecture team), and six developers
(development team). During Pre-game phase, we created the Product Backlog
with the USs identified by the customer (see P4, section 4.3). Later in the process,
the USs were prioritized in each sprint in a Sprint Backlog. The development
results of 3 sprints are described below.

– Sprint 1: The Sprint 1 was focused on the TOPEN Biogas main function-
alities. Following, some selected USs from the Sprint Backlog:

(US1). Test engineers specify a test case utilizing a user interface and with
the biogas plant specific language.

(US2). Test engineers compile and execute a test case from the user interface.
The results of the test case executions must be shown to them.

(US3). Test engineers remotely test/monitor the biogas plant.

Fig. 3. Topen Biogas Working Architecture of the First Sprint

From these USs, the architecture team identified some non-functional require-
ments with regard to the distribution, security and the critical nature of the
data. The architecture team decided on a distributed architecture and identi-
fied 4 PPCs, i.e. 4 incomplete components that had to be completely defined
in following sprints. These PPCs are: kernel functions (TopenEngine), graphical
user functions (GUI), data management (MIB), and the communication with
the biogas plant (Gateway), as shown in Figure 33 (see P1 and P6, section 4.3).
From now on, our focus will be the PPC TopenEngine to illustrate how a PPC
can be iteratively updated by considering each sprint working architecture. In
the first sprint, to support distributed communication among components, the
use of Java Remote Method Invocation (RMI) was decided. As a result, the
architecture team defined a crosscutting feature (aspect), which implemented a
distribution concern based on RMI. In addition, it was implemented an AVP,
which hooked the aspect to the TopenEngine (see Figure 4.a).
3 Figures 3 and 4 are snapshots of Flexible-PLA tool.

114 J. Pérez et al.

Fig. 4. Topen Engine PPC Adaptation through Sprints

– Sprint 2: The Sprint 2 was focused on supporting the operation of the
biogas plant. Below, some selected USs from the Sprint Backlog:

(US4). Test engineers operate biogas tanks and modify the value of their
properties. As a result of this US, the properties and operations supported by
each tank were developed. This US was divided into sub-USs as:

(US42). Test engineers switch on/off a tank, and/or modify the tank prop-
erties value by sending commands.

(US44). Test engineers be notified about temperature excess in tanks by means
of alarm reception.

From these USs, the architecture team decided to add two features to the
TopenEngine PPC. One feature implements the lexical-syntactic parser to an-
alyze the commands/alarms that test engineers send/receive to/from the tanks
of a biogas plant (e.g. parsing of references to tanks, properties and operations).
The other feature implements the semantic parser to provide of meaning to these
commands/alarms (see Figure 4.b). These parsings validate both lexically and se-
mantically the commands and alarms that test engineers send or receive to/from
the tanks of a biogas plant. Adding these new User Stories by means of adding
new features that hook the TopenEngine PPC implies more effort in specifying
the pointcuts and the weaving operators. However we gain in code modularity,

Flexible Working Architectures: Agile Architecting Using PPCs 115

scalability and reusability because these fragments of code are unaware of the
linking context (see P5 and P6, section 4.3).

– Sprint 3: The Sprint 3 was focused on the physical communication with the
biogas plant.

Since the Gateway had a Service Oriented Architecture based on Web Services
technology, TopenEngine had to be changed to support Web Services (see P2,
section 4.3) . Therefore, the TopenEngine supported both RMI communication
with the GUI and MIB, and Web Services communication with the Gateway
(see Figure 4.c). This new requirement was solved by hooking a new distribution
aspect, which provided Web Services technology. It is important to emphasize
that this aspect was not only hooked to the PPC TopenEngine, but also to all the
PPC components that needed to communicate with the Gateway. As a result,
the distribution of our application was modified just by adding a new single
fragment of code. We did not need search in all the components the scattered
distribution capabilities of the components previously implemented to modify
them. The incremental design of the architecture in subsequent sprints by means
of the use of PPC allowed us to flexibly modify the distribution capabilities with
the minimum impact both in cost and effort, and to inherently refactor the
distribution code (see P5 and P6, section 4.3).

6 Conclusions and Further Work

The deployment of PPCs is an attempt to provide a solution for architectural de-
sign of large software systems in Agile. They are malleable components that we
have advantageously used for adding or removing pieces of software throughout
the different iterations that comprise the development of our working product.
As a result, we realized that PPCs were working components of a working ar-
chitecture that was designed in time to our working framework for testing and
operating biogas power production plants.

In cooperation with our industrial partners we have managed to show that it
is possible to focus on architecture without suffering from practices that move
away the customer from the architecture and development teams. In addition,
we realized that non functional requirements can be allocated into the architec-
ture while the discussion/communication with the customer is mainly focused
on the set of functional requirements. Therefore, the impact of introducing non-
functional requirements in Agile is minimized. From an architectural technical
point of view, scaling up can be achieved and, as important, the need of refac-
toring was sized down: the impact of introducing new features was often less
dramatic thanks to the flexibility and reusability provided by PPCs.

As future work, we plan to work in larger size projects to understand what
is still missing and to obtain measures and empirical results. Systematization
of use of PPCs and automation are two issues that will have to be faced for
the approach deployment. Together with Answare-tech we intend to use PPCs
in a project for security and safety of intelligent buildings and IT for energy

116 J. Pérez et al.

management systems. In addition, it is necessary to analyze how the use of
PPCs can facilitate the maintenance and evolution of software architectures.

Acknowledgments

The work reported here has been partially sponsored by the Spanish MEC
(DSDM TIN2008-00889-E), MICINN (INNOSEP TIN2009-13849), and MITYC
(FLEXI ITEA2 6022 FIT-340005-2007-37 TSI-020400-2009-066) and by UPM
(Researcher Training program). Authors are indebted to Answare-tech and Bio-
gasFuelCell SA for their participation and support during the development of
the project.

References

1. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture.

SIGSOFT Softw. Eng. Notes 17(4), 40–52 (1992)

2. Garlan, D.: Software architecture. In: Wiley Encyclopedia of Computer Science

and Engineering (2001)

3. Beck, K., et al.: The Agile Manifesto (2001), http://www.agilemanifesto.org

(accessed July 2010)

4. Bowers, J., May, J., Melander, E., Baarman, M., Ayoob, A.: Tailoring xp for large

system mission critical software development. In: Proceedings of the Second XP

Universe and First Agile Universe Conference on Extreme Programming and Agile

Methods - XP/Agile Universe 2002, London, UK, pp. 100–111. Springer, Heidelberg

(2002)

5. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-

tematic review. Inf. Softw. Technol. 50(9-10), 833–859 (2008)

6. Babar, M.A., Abrahamsson, P.: Architecture-centric methods and agile approaches.

In: Agile Processes in Software Engineering and Extreme Programming (XP 2008),

pp. 242–243 (2008)

7. Cockburn, A.: Agile Software Development. The Cooperative Game, 2nd edn.

Addison-Wesley Professional, Reading (2006)

8. Kruchten, P.: On software architecture, agile development, value & cost. Keynote

SATURN, Pittsburgh, Pennsylvania, USA (2008),

http://www.sei.cmu.edu/architecture/saturn/2008/keynotes.html

9. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Per-

plexed. Addison-Wesley, Reading (2004)

10. McMahon, P.: Extending agile methods: A distributed project and organizational

improvement perspective. CrossTalk: The J. Defense Software Eng. 18(5), 16–19

(2005)

11. Babar, M.A., Ihme, T., Pikkarainen, M.: An industrial case of exploiting prod-

uct line architectures in agile software development. In: Software Product Lines

Conference, SPLC (2009)

12. Pérez, J., Dı́az, J., Costa-Soria, C., Garbajosa, J.: Plastic partial components:

A solution to support variability in architectural components. In: WICSA 2009:

Joint Working IEEE/IFIP Conference on Software Architecture and European

Conference on Software Architecture, ECSA (2009)

http://www.agilemanifesto.org
http://www.sei.cmu.edu/architecture/saturn/2008/keynotes.html

Flexible Working Architectures: Agile Architecting Using PPCs 117

13. Pohl, K., Böckle, G., Linden, F.: Software Product Line Engineering: Foundations,

Principles and Techniques. Springer, Germany (2005)

14. Shore, J., Warden, S.: The Art of Agile Development. O’Reilly Media, Inc., Se-

bastopol (2007)

15. Vilki, K.: Juggling with the paradoxes of agile transformation. Flexi Newslet-

ter 2(1), 3–5 (2008)

16. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd

edn. Addison-Wesley Professional, Reading (November 2004)

17. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development:

From Concept to Cash. Addison-Wesley Professional, Reading (2006)

18. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall,

Englewood Cliffs (2002)

19. Assmann, U.: Invasive Software Composition. Springer, New York (2003)

20. Bachmann, F., Bass, L.: Managing variability in software architectures,

pp. 126–132. ACM Press, New York (2001)

21. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An

overview of aspectj, pp. 327–353. Springer, Heidelberg (2001)

22. Beydeda, S., Book, M., Gruhn, V.: Model-Driven Software Development. Springer,

Heidelberg (2005)

23. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. In: Model-

Driven Engineering (2006)

24. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework 2.0. Addison-Wesley Professional, Reading (2009)

25. Ambler, S.W.: Agile architecture: Strategies for scaling agile development,

http://www.agilemodeling.com/essays/agileArchitecture.htm (accessed July

2010)

26. Kruchten, P.: Software architecture and agile software development an oxymoron?

Keynote Software Architecture Challenges in the 21st Century, USC (June 8, 2009)

27. Erdogmus, H.: Architecture meets agility. IEEE Software 26(5), 2–4 (2009)

28. Madison, J.: Agile architecture interactions. IEEE Software PP(99), 41–48 (2010)

29. Kornstadt, A., Sauer, J.: Tackling offshore communication challenges with ag-

ile architecture-centric development. In: WICSA 2007: Proceedings of the Sixth

Working IEEE/IFIP Conference on Software Architecture, Washington, DC, USA,

p. 28. IEEE Computer Society, Los Alamitos (2007)

30. Andrade, L.F., Fiadeiro, J.L.: Architecture based evolution of software systems.

In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 148–181.

Springer, Heidelberg (2003)

31. Fowler, M., et al.: Refactoring: Improving the Design of Existing Code. Addison-

Wesley, Reading (1999)

32. Magro, B., Garbajosa, J., Perez, J.: A software product line definition for validation

environments. In: Software Product Lines Conference (SPLC), pp. 45–54 (2008)

http://www.agilemodeling.com/essays/agileArchitecture.htm

Lightweight and Continuous Architectural
Software Quality Assurance Using the aSQA

Technique

Henrik Bærbak Christensen1, Klaus Marius Hansen2, and Bo Lindstrøm3

1 Department of Computer Science, Aarhus University, Aarhus, Denmark

hbc@cs.au.dk
2 Department of Computer Science, University of Iceland, Reykjav́ık, Iceland

kmh@hi.is
3 Systematic A/S, Aarhus, Denmark

blm@systematic.com

Abstract. In this paper, we present a novel technique for assessing

and prioritizing architectural quality in large-scale software development

projects. The technique can be applied with relatively little effort by soft-

ware architects and thus suited for agile development in which quality

attributes can be assessed and prioritized, e.g., within each development

sprint. We outline the processes and metrics embodied in the technique,

and report initial experiences on the benefits and liabilities. In conclu-

sion, the technique is considered valuable and a viable tool, and has

benefits in an architectural, technical, context, as well as in a business

and people context.

1 Introduction

Software architecture is a major concern in any large scale software development
and therefore a central concern for successful IT companies. One particular task
that rests heavily on a software architect’s shoulder is architectural quality as-
sessment, prioritization, and conformance checking. It is well established that
different architectural qualities often compete, the classic trade-off between per-
formance and maintainability being one example, and that implementations of
architecture may drift away from the architect’s stated design due to, e.g., mis-
understandings, communication problems, and developers’ skill sets. Software
architects are thus in need of models, techniques, and tools to help in facing
these challenges. Researchers and practitioners have responded by developing
different architectural quality frameworks and evaluation techniques, a short
outline is presented in the related work section of this paper. However, most of
these techniques are characterized by being rather heavyweight and costly to
perform (e.g. scenario-based techniques such as the Architecture Trade-off Anal-
ysis Method (ATAM; [17]) and/or resulting in quality measurements that are
difficult to compare and thus form a poor basis for prioritizing effort (e.g. spe-
cific measurements as defined by ISO/IEC 9126 [13]). Thus they are less than

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 118–132, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Lightweight and Continuous Architectural Software Quality Assurance 119

optimal for software architects to apply continuously in agile development as
well as less than optimal for prioritizing components and qualities to focus on
during the next iteration.

The architectural Software Quality Assurance technique (aSQA), has been de-
veloped by software architects in Systematic A/S as a lightweight technique for
continuous quality assessment and prioritizing in software architecture and de-
velopment work. Systematic A/S [21] is a privately owned software development
company in Denmark, employing approximately 500 people, 50 of these in the
UK, Finland, and USA. Systematic is certified with respect to process maturity
at Capability Maturity Model Integration (CMMI; [11]) level 5 and combines
CMMI with lean development [19,14], specifically the Scrum method [20].

The main contribution of this paper is the description and presentation of
aSQA as a novel and viable technique for continuously assessing, controlling, and
balancing quality attributes in a development project. A second contribution is
experience reports from using the technique, primarily in the company in which
it was developed, with additional comments from two other companies that
have made initial tests of it. Though we cannot claim a rigorous evaluation, the
experience reports generally support the claims of the method as a lightweight
and effective way of assessing and prioritizing software quality.

The paper is organized as follows. In section 2 we describe the aSQA tech-
nique, presenting experience from using aSQA in Systematic, and Section 3
presents initial observations from two other companies. Section 4 compares with
alternative software architecture evaluation techniques. We discuss our findings
in section 5 before we conclude in section 6.

2 The aSQA Technique

Systematic combines CMMI with the Scrum method for agile development of
its software systems. Scrum is inherently a feature-oriented method focusing on
adding user-oriented functionality in each iteration (or “sprint”) for the customer
to evaluate. Nevertheless, the quality of the software architecture is essential in
the products of Systematic in order to support both customer-dictated quality
requirements (typically performance and reliability) as well as more engineering-
related quality requirements (such as maintainability). This is basically a con-
flict: a feature-oriented process that measure success and progress in terms of
functionality on one hand, and the wish for a sound architecture that to a large
extend is orthogonal to functionality on the other [8].

The aSQA evolved as a software architect’s technique to support an architec-
tural focus even in the face of a feature-oriented process. A central requirement
of the technique was therefore that it should allow continuous quality assess-
ment. It should be lightweight meaning efficient to perform in terms of spent
person hours for the software architect as well as central stakeholders of the
project. The technique should be efficient enough to be performed at the end of
each sprint to ensure architectural issues and tasks can be added to the sprint
backlog for handling during the next or future sprints.

120 H.B. Christensen, K.M. Hansen, and B. Lindstrøm

Another requirement was that it should allow software architecture quality
attributes to be quantified. In projects much focus is on easy quantifiable and
measurable parameters such as cost, schedule and functionality. However, many
architectural aspects of quality are much more difficult to measure, like testabil-
ity or maintainability. This makes it difficult to manage quality not only with
respect to defining and communicating a goal for the quality of the product but
also with respect to controlling if the intended quality goal is obtained. This ne-
cessitated defining a way of quantifying quality attributes as well as championing
a set of quality attributes to consider.

The third and final requirement was that aSQA should allow software ar-
chitecture quality attributes to be prioritized. During development the software
architect has to prioritize certain quality attributes in certain components before
others to ensure costly development time is invested wisely. However, the metrics
used for quality attributes vary greatly and this makes comparisons highly dif-
ficult: is achieving 5,000 transactions per second better than lowering estimated
time to introduce a new taxation policy to 16 staff hours? This necessitated
defining a uniform scale across quality attributes.

The latter two requirements are indirect consequences of the wish for a
lightweight technique. By mapping relevant software architecture quality at-
tributes into a consistent and uniform scale, they can be documented and traced
using a spreadsheet or similar tools (see Figure 3), which again lowers the effort
spent on documentation and tracking evolution.

2.1 The aSQA Steps

The activities of aSQA are shown in Figure 1 and outlined below. The first two
steps are preparation steps while steps 3–7 are iteration steps that are considered
or performed as part of each sprint. While the full seven steps of the aSQA
technique rigorously speaking are carried out for each new project much of the
work associated with the preparation steps can be reused across projects once
the technique is mastered.

Step 1: A central aspect of aSQA is to get stakeholders to agree on which
software architecture quality attributes to consider for the project as well as agree
on what they mean. An obvious way is to choose an existing quality framework
like the ISO/IEC 9126 standard [13] or Bass et al. [4]. Systematic has chosen the
ISO/IEC 9126 standard for all projects and have internal introductory courses
on the standard as well as on the aSQA to ensure a common understanding of its
quality attributes between internal stakeholders (architects, testers, developers,
business, etc.) For external stakeholders the experience is that quality attributes
are too abstract and definitions are therefore translated to concrete cases and
scenarios to be discussed. Then the conclusions of these discussions are then
mapped back into the ISO qualities.

Step 2: A crucial step in aSQA is to define a mapping of quality measurements
to aSQA levels. In aSQA an ordinal scale of values ranging from 1 to 5 (a refer-
ence interval scale) is used ubiquitously to measure all quality attributes as this
allows a coarse and manageable comparison of values across quality attributes.

Lightweight and Continuous Architectural Software Quality Assurance 121

1: Define Metrics

4: Evalutate

5: Analyse

6: Define Initiatives

7: Improve

2: Define Levels

3: Define Components

[Project finished]
[Project running]

Fig. 1. Steps of the aSQA Technique

On this scale level 1 is always “worst” (or “least”) and level 5 is always “best”
(or “most”) to avoid confusion. At Systematic levels have been uniformly defined
across all projects and are defined in terms of stakeholders’ perception. This is
exemplified below showing levels 1, 3 and 5:

1: Unacceptable: Important stakeholders find the system unacceptable because
of the value of the quality attribute in question.

3: Acceptable: No relevant stakeholder finds the system unacceptable because
of the value of the quality attribute in question.

5: Excellent: All relevant stakeholders are highly satisfied by the value of the
quality attribute in question

As an example, consider the performance quality attribute of some component
of a system, and that around 20,000 transactions per second is required by some
system stakeholder for the given component. Measurements or analyses by the
software architects indicate the performance to be around 25,000 transactions
per second, which would lead to an aSQA value of 3 (acceptable) or perhaps 4

122 H.B. Christensen, K.M. Hansen, and B. Lindstrøm

(above acceptable) for the performance quality attribute. As another example,
consider the maintainability quality attribute of the same component. If some
stakeholder requires that the storage model could be changed in 15 person days
but estimates by the architects indicate it will take about 30 person days then the
aSQA value would be set to 1 (unacceptable) or perhaps 2 (below acceptable).

In the way that Systematic uses it, the aSQA technique can be classified as a
metrics-based measuring technique according to the framework of Clements et
al. [9], but it is also possible to use quality attribute scenarios [4] as a basis for
evaluation, though this has not been pursued by Systematic.

Note how the two preparation steps force stakeholders to agree both on which
quality attributes to consider as well as force a uniform scale across attributes
which supports comparisons. aSQA level 4 for performance is fine while level 2
for maintainability calls for attention. The obvious conclusion of the software
architect would be to focus on the maintainability quality in the next iteration
while to waste no more effort on performance tuning.

Step 3: A prerequisite for using the evaluation part of aSQA is the existence
of (a design of) components for a software system. This definition is usually
made in an iterative and possible incremental process in which the set of com-
ponents may change. It should be meaningful to assign a level of quality to that
component—if the granularity of components gets too small it is difficult to
assign a quality attribute, like e.g. performance, to it, and the number of com-
ponents to assess quality for becomes overwhelming. At Systematic, experience
has shown that 5–10 components often is a good number. Furthermore, to ease
historical comparisons of evaluations, the component structure and scope should
preferably be stable.

Step 4: The evaluation step involves assessing target and current aSQA levels
for all components for all considered quality attributes and results in a table that

What is the current
quality level?

4.2: Current Level

What is the desired
quality level?

4.1: Target Level

Where are the largest
quality problems?

4.3: Health

How important is it to
move from current to
target level?

4.4: Importance

Where are the largest
and most important
quality problems?

4.5: Focus

Fig. 2. aSQA Evaluation Sub-steps

Lightweight and Continuous Architectural Software Quality Assurance 123

highlight architectural issues that require attention by the software architects. It
is carried out in several sub-steps (cf. Figure 2). These sub-steps are carried out
for each component and for each considered quality attribute. In Step 4.1 a target
level is set for each component. The target is set according to what is currently
seen as the needed quality level for the specific component for the specific quality
attribute. In Step 4.2 the current quality level is measured/assessed (using the
criteria set up in Step 2). Step 4.3 is a computation step as the current health is
calculated using the following formula:

health = 5 − max(0, (target − current))

This formula assigns health from 1 to 5 with 5 being excellent health, i.e. the
target level has been achieved. Once the health has been calculated for all com-
ponents and all quality attributes the architects can readily overview which
architectural aspects are sound (those at level 5) and which aspects may require
more attention (below level 5). However, no priority has been assigned between
those components and quality attributes that require attention: which issues
are the most important to address in the next sprints and which issues may be
postponed or even neglected? Therefore aSQA adds two more sub-steps.

In Step 4.4 the importance levels are defined i.e. stakeholders’ assessment of
which quality attributes of which components should be prioritized. Returning
back to the initial example, stakeholders may consider performance much more
important (giving it importance level 5) than maintainability (giving it impor-
tance level 2) for the given component.

The last step is Step 4.5 that again is a pure computation step that combines
health and importance to determine the focus level of each quality attribute of
each component. The focus level is calculated as:

focus = ceil((6 − health)× importance/5)

Thus the lower the health level is and the more higher the importance level is,
the higher the focus level will be, and thus highlighting that raising the level of
the quality attribute for the component is important.

The cumulative result of step 4 is a table or spreadsheet showing target, cur-
rent, health, importance, and focus levels for each quality attribute for each
component. Figure 3 shows an example of calculating levels for an imaginary
Point-of-Sales architecture containing three components, Terminal, Scanner, and
Application Server, and using the six system quality attributes defined by Bass
et al. [4].

In the example, the table warns the architects that particular focus should be
put on performance for the Application Server (since its focus level is 5), followed
by focus on performance in the Terminal component (focus level 4), etc. Thus
the resulting table of aSQA levels for target, current, health, importance, and
focus, provides a compact overview of quality levels as well as a prioritization of
components and quality attributes that need attention.

Note that for the health, importance, and focus levels, the scale is just an ordi-
nal scale where level 5 is “important/best” and level 1 is “unimportant/worst”.

124 H.B. Christensen, K.M. Hansen, and B. Lindstrøm

Terminal Scanner App Server
t c h i f t c h i f t c h i f

Availability 4 4 5 1 1 3 3 5 1 1 4 4 5 1 1
Performance 5 2 2 5 4 5 3 3 5 3 5 1 1 5 5
Modifiability 4 4 5 2 1 3 4 5 2 1 5 5 5 2 1
Testability 4 4 5 2 1 3 4 5 2 1 5 4 4 2 1
Security 4 4 5 2 1 3 3 5 2 1 5 2 2 3 3
Usability 5 1 1 2 2 5 2 2 2 2 3 3 5 2 1

Fig. 3. aSQA Levels Example. Shown are target (t), current (c), health (h), importance

(i), and focus (f) levels.

It is only the target and current levels that are defined in terms of the stake-
holder metrics defined in step 2 of the technique. Note also that once the project
is under way, the target and importance levels are usually rather stable and as
health and focus are computed values, the only real assessment that demands
some effort from the software architects are finding the current level. As sprint
objectives are clearly defined in terms of stories or features to implement, even
this assessment can be made fast as all untouched components and postponed
architectural tasks most often do not influence on current levels.

Step 5: The analysis step is basically to overview the table, and based on that
define initiatives to improve quality. In Step 6, these initiatives will typically
lead to items being added to the product backlog and planning these for later
sprints. Finally Step 7 is the improving step which is the concrete work by the
team to increase the quality attributes in the particular components.

The computation sub-steps and the spreadsheet nature of the evaluation
step of course calls for a tool, and Systematic has developed one that presents
overview in tabular format as exemplified by figure 3, and moreover keeps track
of the evolution keeping snapshots of the spreadsheet for each iteration.

2.2 Discussion

In this section we will argue why the aSQA technique is viable for software
architects in agile development. Its viability is further argued by the experience
reports, described in the next section.

The three main requirements of the aSQA technique were:

– Allow continuous quality assessment which is essentially that the technique
must not be demanding in terms of invested person hours.

– Allow quality to be quantified which is essentially that the technique must
allow all architectural quality attributes to be measured and represented by
numerical values.

– Allow quality to be prioritized which is essentially that all numerical values
can readily be compared.

The two latter requirements, quantification and prioritization of quality, are
fulfilled by Step 2 and Step 4 of the technique. Step 2 introduces a suitable,

Lightweight and Continuous Architectural Software Quality Assurance 125

common, metric across all quality attributes, in Systematic’s case by means of
the aSQA levels 1 to 5 which is a grading based on stakeholders’ perceptions.
Step 4 results in the calculation of health and focus levels which directly defines
a prioritization of both quality attributes and components to address.

Regarding requirement one, that the technique should be lightweight in terms
of invested person hours, we have to draw upon the experiences from Systematic
in general and the author who is presently software architect at Systematic in
particular.

Step 1 and 2 are preparation steps and potentially performed for every project.
In practice this is neither cost-efficient nor necessary. At Systematic these steps
are now part of the internal and required training to become software architect.
The quality metrics and aSQA level definitions are thus standardized across the
organization. However, special needs of a particular project may require tailoring
ISO definitions to stress a specific aspect of a system. Thus an estimated two
hours is spent on average for a project at reviewing the quality framework and
the levels and potentially tailor these.

Regarding the effort invested in steps 3–7 (performed once in each sprint) the
by far most demanding task is finding the current values of the architecture in
step 4. An estimated 80% of the effort invested in aSQA during a sprint is in-
vested here. It mainly just involves the software architects but other stakeholders
may be consulted.

The target level is only revisited if the scope of the project has changed which
in fixed-scope projects happens rarely. However, in projects where the concrete
scope of the project is defined during the project, the target level may change
slightly more often. When changing the target the architect will typically involve
consultance with the project manager—in order to discuss the trade-offs among
quality, project costs, schedule, and functionality.

Importance is adjusted periodically when priorities changes in the project.
For example, it may become more important to reach the target level of the
ISO time behaviour quality attribute than obtaining better maintainability in
a release if this issue has political focus by the customer. This attribute will
typically be adjusted by the achitect, possibly based on an agreement with the
project manager.

Regarding Step 3: Define Components, the experience is that effort is invested
in the first sprint to define approximately 5–10 components (this effort does of
course not include designing the architecture). It takes approximately two hours
for a full project to decide and define components. The architect is typically
the only person involved in this step. When using components corresponding to
subsystems it is rare that new components are defined during a project and thus
this step impose little effort in the following sprints.

Steps 5 and 6, Analyse and Define Initiatives, are performed by the architect
and the invested time depends on severity of issues, approximately one to two
hours. These issues are sent to the project manager which includes the issues in
the next or following sprints.

126 H.B. Christensen, K.M. Hansen, and B. Lindstrøm

The total time for completing steps 3–7 for the full project is typically less
than five hours if the architect has experience with aSQA, bases the evaluation
on his existing knowledge, and makes the evaluation no more frequent than
once a month. However, if the evaluation is made more frequently the time per
evaluation will be lower as fewer aspects change between evaluations.

Thus we conclude that once the learning curve has been climbed, the aSQA
is a lightweight technique as the required effort per sprint is usually below five
hours and aSQA can thus keep up with the pace of agile development.

3 Experience Outside Systematic

Systematic A/S participated in the research project, Software Architecture at
Work (SA@Work) [7], a one and a half year research collaboration between two
of the authors and four Danish IT companies, focusing at software architects
work in the respective companies. Two of the participating companies in the
SA@Work project made initial tests of the aSQA technique within their own
context. The two companies were:

1. Bang & Olufsen (BeO). BeO produces high-end audio products, television
sets, and telephones.

2. Jyske Bank (JB). JB is the second largest independent Danish bank, em-
ploying some 4,000 people in 119 Danish branches.

Due to resource constraints on behalf of the researchers, the two companies tested
the aSQA technique on a project on their own choosing with little guidance and
their evaluations were concluded by qualitative interviews, see [6] for further
details.

Both companies chose to test aSQA on only a single component, only had
time for a single “iteration” of the technique steps, and both simply used the
quality framework (ISO 9126) and metric definitions (aSQA levels 1–5) of Sys-
tematic. Thus Step 1 and 2 were largely avoided simply by adoption. This was,
however, only partially successful. BeO reported that assessment of current level
for the component in question lead to very different assessed levels by different
developers and architects and next to heated discussions amongst these people
concerning how to interpret the ISO quality definitions as well as how to use
the aSQA levels. We conjecture that the preparation steps of aSQA require a
substantial investment in order to get a common understanding of quality frame-
work as well as the aSQA levels. On the other hand BeO reported these intense
discussion as being highly important to ensure a common understanding within
the team and with stakeholders. Thus it can be seen as an investment to ensure
architectural conformance between as-designed and as-built architecture.

JB reported an interesting application of the technique. The bank was in the
process of buying a third party banking system and had two competing systems
to choose from. Architecturally, the two systems were very different, one being
SOA based and open which was valued high, the other being “black-box” but
cheaper and with a better graphical user interface. The lead architect used a

Lightweight and Continuous Architectural Software Quality Assurance 127

modified aSQA to structure the architectural assessment of the two systems. In
Step 4 of aSQA, the current level was reinterpreted as the “supplied” level from
the third party system, while target level was reinterpreted as the “ideal” level
as seen from JB. Technical staff from the two companies collaborated with the
JB architect to determine the “supplied” values of the quality attributes. Then
the architect could calculate the health for each quality attribute to provide a
basis for make a sound choice of system as seen from the software architect’s
perspective.

4 Related Work

Much work has been done on techniques for evaluation of software architec-
ture [12,10]. Dobrica and Niemelä [12] surveyed eight software architecture anal-
ysis methods all focusing on predicting the effects on software quality on choosing
a specific software architecture design. They categorize evaluation methods as
(following [1]) either being “questioning techniques”, based on qualitative, often
software quality-independent questions to be asked of an architecture, or “mea-
suring techniques”, based on quantitative, often software quality-dependent mea-
surements to be made on an architecture. In this spectrum, aSQA is somewhat
agnostic in that it focuses on software qualities, but allows for both questioning
and measuring techniques in analyzing a software architecture/system under de-
velopment with respect to a given quality. In practical use, aSQA has typically
been used with qualitative techniques.

Arguably, the most prominent techniques for software architecture evaluation
are scenario-based following or based on SAAM [16] and ATAM. Babar and
Gorton [2] compare four such methods and present a framework for comparing
evaluation methods. The framework contains the components of context (e.g.,
goal of the method, quality attributes covered, development phase), stakeholders
(e.g., stakeholders involved, process support, resources required), contents (e.g.,
activities and approaches), and reliability (maturity and validation). The aSQA
technique has as a goal to make decision makers aware of the quality status of a
software system throughout development, focusing on the quality attributes of
a chosen quality framework. In particular, the focus on continuous assessment
distinguishes it from other architecture evaluation methods. The technique is
supported by a defined set of activities, a database-backed tool, and requires few
resources to perform (see Section 2). Finally, the technique has been used for
several years at Systematic and has matured in that way and has been evaluated
through studies at other companies (see Section 3).

Comparing aSQA and ATAM have resemblence to comparing agile to more
traditional development methods. aSQA focuses on an iterative and evolving
evaluation within each sprint while ATAM in the onset focuses on an early and
thorough evaluation and not on constant follow up during development and is
as such necessarily time-consuming ([5], e.g., reports on time consumption of
around 100 hours excluding preparation and follow-up). ATAM uses a (drilled-
down) version of system wide quality attribute scenarios and uses stakeholder

128 H.B. Christensen, K.M. Hansen, and B. Lindstrøm

voting for prioritization of quality attributes. aSQA does not assess individual
scenarios but focus on quality attribute statements on a per-component basis and
computes prioritization based upon the assigned target and importance levels.
Stakeholders’ influence is thus indirect through the value they put on these lev-
els. ATAM puts emphasis on discussing and analyzing architectural decisions,
in aSQA this is captured in Step 5 and 6: Analyse and Define Initiatives. As
such, aSQA complements ATAM, especially for agile projects. ATAM can fruit-
fully evaluate an initial architecture, and aSQA used to monitor architectural
evaluation during development. We envision that aSQA could be tailored to use
metrics and levels closer to those proposed by ATAM (utility tree scenarios,
and simple prioritization) in the Step 1 and 2 of aSQA, but this has not been
explored so far.

The Cost Benefit Analysis Method (CBAM; [15]) provides an economic-based
approach for prioritizing architectural design decisions. The prioritization is
based on the “return on investment” (in CBAM ratio of benefit and cost) for the
selection of each available design decision. In aSQA, focus levels are decided in
an analogous way: the attribute (and component) for which the health level can
potentially be improved the most (subject to importance), is suggested to be the
focus of the next iteration. Furthermore, CBAM couples stakeholder prioritiza-
tion with utility improvement to derive benefits of applying a decision whereas
aSQA uses importance levels to produce focus levels. While aSQA has a differ-
ent goal than CBAM, this suggests that Step 4 of the aSQA technique could be
supplemented (or replaced) by a CBAM-like step, taking potential architectural
decisions into account.

Recently, focus has been put on the ability for architecture evaluation meth-
ods to scale [22,3] particularly in the context of Ultra-Large-Scale systems [18].
Zhu et al. [22] describe how to scale methods by combining process compo-
nents from existing methods and Babar et al. investigate distributed evaluation
(through distributed involvement of stakeholders). The aSQA technique is, first,
lightweight and can, secondly, be applied in a hierarchical manner, both of which
contribute to scalability. Furthermore, the technique has been validated (and de-
veloped) in the context of large systems in the health-care and military domains.

5 Discussion

Concerning the cost of applying the method, it is important to define an ap-
propriate granularity of the selected components. Too fine-grained components
implies that the cost of the evaluation is too high compared to the overall effect
of the evaluation. Too coarse-grained components implies that it is difficult to
use the information for adjusting focus on a given quality attribute during soft-
ware development process in a sufficiently precise manner. The granularity also
depend on the size of the system that is being developed and what the evaluation
results and insights will be used for. For high-level management, coarse-grained
components will often be sufficient, e.g. sub-systems of a large solution, while de-
velopers need information on a finer granularity, e.g. sub-components constitut-
ing a sub-system. In other words, the granularity of the components will depend

Lightweight and Continuous Architectural Software Quality Assurance 129

on what level the system is managed. A solution architect who is responsible for
a portfolio of systems will most likely not be interested in internal components
within each system, but only consider the dominant components of each system.
A system architect who is responsible for a single system (or application) will
need to divide the system into relatively fine-grained components which gives
sufficient information to make him able to lead the developers to focus on small
parts of the system. At Systematic, the experience is that around five to ten
components seems to be a reasonable number of components which keeps the
application of aSQA manageable with respect to the cost-benefit balance.

It is necessary for the parties being involved in analysing and understanding
the results of aSQA to have a common agreement on the complete scope of the
components. For example, a product or project being developed over several
years may change its scope over time. As the scope of the project (and thereby
the components) may gradually be redefined it is often necessary to redefine
the goals periodically in order to be aligned with the changing scope. This may
lead to some confusion on what functionality is actually within the scope of the
components. Essentially, it is a matter of change management – but in practice
it turns out to be difficult to grasp changing scope during quality assessments.

The external companies reported benefits from Step 1: define metrics. The
very premise of aSQA is to force stakeholders to evaluate and prioritize a set of
quality attributes in some quality model, like ISO 9126 or similar frameworks. In
the external studies this process led stakeholders into heated discussions about
“what quality attribute X really means!” If stakeholders have different percep-
tions of a quality (and often they have) they will assign different levels. Getting
to an agreement on a specific current, target, or importance level, simply force
stakeholders into deep discussions on how to understand qualities and force a
common understanding. This common understanding is vital in a team and im-
portant to avoid architectural mismatch.

Another aspect of the technique that all the software architects reported and
valued high (even though it is more of a people issue than purely technical is-
sue) is the compelling argument of numbers in spreadsheets. Business decision
makers are used to convincing arguments in the arena of economy, budgets, and
project management in the form of spreadsheet accounts. Software architects
primarily communicate by other means, whether it is graphical design diagrams,
quality attribute scenarios, or similar. However, aSQA’s output is a scoring of
quality attributes and prioritizing in the form of spreadsheets like that shown
in figure 3. This communication medium is simply much more similar to the
language of business decision makers. Though unintentional, architects within
Systematic report this a major benefit of the technique as their opinions sim-
ply are given much more weight when deciding resources. Furthermore, a low
number of components, coupled with the spreadsheet representation of results,
also enable management to get a quick overview of project quality status. In
particular, at Systematic, a strategy of colour-coding (with green, yellow, red)
has proved effective in communicating quality status and issues.

130 H.B. Christensen, K.M. Hansen, and B. Lindstrøm

Regarding the future, Systematic is currently investigating if it is better to
consider functionalities (or services) as the ones being monitored instead of
the inner architectural components in the context of projects using Scrum and
feature-driven development (where functionality is added as vertical slices to a
system). Focusing on end-user functionality may make it easier to communicate
and discuss quality aspects with non-technical stakeholders than if the basis is
the more technical components.

6 Conclusions

This paper has described a new lightweight and continuous architecture-software
quality assurance technique called aSQA. The technique is defined in terms of a
seven-step, iterative process in which software architects select a set of compo-
nents whose quality attributes are considered important to assess and control.
The technique is based upon selecting a quality model, such as ISO/IEC 9126,
and defining a uniform, coarse-gained metric for evaluating quality based upon
stakeholder perception. Within each iteration and thus assessment, architects
evaluate each component’s current level for each quality attribute in question,
and the aSQA model then yields a prioritization of which quality attributes for
which components should receive the most attention.

The paper has outlined experiences with the aSQA technique both from within
the company that invented the technique, Systematic A/S, as well as two other
Danish companies. This data suggests that the technique is a viable and valu-
able tool for software architects; that it can be executed with a relatively low
investment in time, especially if the selection of components and their granular-
ity is made with care; that it support getting a common understanding between
stakeholders of architectural quality issues; and that it helps in making the in-
evitable prioritizing of which quality attributes that should receive the greatest
attention.

This said, it would be highly interesting to get more data from other com-
panies and/or research institutions testing the technique. We therefore invite
the research community to try it out and thereby explore further aspects and
refinements of the technique.

Acknowledgments

The aSQA technique was a team effort and many people have contributed. How-
ever, the principal designers are Bo Lindstrøm, Dennis Pedersen, Henrik Kjær,
and Søren Skovsen from Systematic A/S.

The research presented in this article has been funded by Systematic A/S
and the ISIS Katrinebjerg competency centre, Aarhus, Denmark (http://www.
isis.alexandra.dk). We thank the companies and software architects that par-
ticipated in the SA@Work project.

http://www.isis.alexandra.dk
http://www.isis.alexandra.dk

Lightweight and Continuous Architectural Software Quality Assurance 131

References

1. Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., Zaremski, A.: Rec-

ommended best industrial practice for software architecture evaluation. Software

Engineering Institute Technical Report, CMU/SEI-96-TR-025 (1996)

2. Babar, M.A., Gorton, I.: Comparison of scenario-based software architecture eval-

uation methods. In: 11th Asia-Pacific Software Engineering Conference 2004,

pp. 600–607 (2004)

3. Babar, M.A., Kitchenham, B., Jeffery, R.: Comparing distributed and face-to-face

meetings for software architecture evaluation: A controlled experiment. Empirical

Software Engineering 13(1), 39–62 (2008)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.

Addison-Wesley, Reading (2003)

5. Boucké, N., Weyns, D., Schelfthout, K., Holvoet, T.: Applying the ATAM to an ar-

chitecture for decentralized control of a transportation system. Quality of Software

Architectures, 180–198 (2004)

6. Christensen, H.B., Hansen, K.M., Lindstrøm, B.: aSQA: Architectural Software

Quality Assurance. Technical report, Computer Science Department, Aarhus

University (2010)

7. Christensen, H.B., Hansen, K.M., Schougaard, K.R.: SA@Work - A Field Study

of Software Architecture and Software Quality at Work. In: Proceedings of Asia-

Pacific Software Engineering Conference, APSEC 2008, Beijing, China, December

2008, pp. 411–418 (2008)

8. Christensen, H.B., Hansen, K.M., Schougaard, K.R.: An Empirical Study of Soft-

ware Architects’ Concerns. In: Proceedings of the 16th Asia-Pacific Software En-

gineering Conference, APSEC, pp. 111–118 (2009)

9. Clements, P., Kazman, R., Klein, M.: Evaluating software architectures: methods

and case studies. Addison-Wesley, Reading (2002)

10. Clements, P., Kazman, R., Klein, M.: Evaluating software architectures: methods

and case studies. Addison-Wesley, Reading (2006)

11. CMMI Product Team. Cmmi for development. version 1.2. Technical report,

CMU/SEI (2006)

12. Dobrica, L., Niemelä, E.: A survey on software architecture analysis methods. IEEE

Transactions on software Engineering, 638–653 (2002)

13. ISO/IEC. Software engineering – Product quality – Part 1: Quality model.,

ISO/IEC 9126-1:2001 (2001)

14. Jakobsen, C.R., Johnson, K.A.: Mature Agile with a Twist of CMMI. In: AGILE

Conference, pp. 212–217 (2008)

15. Kazman, R., Asundi, J., Klein, M.: Quantifying the costs and benefits of archi-

tectural decisions. In: ICSE, pp. 297–306. IEEE Computer Society, Los Alamitos

(2001)

16. Kazman, R., Bass, L., Webb, M., Abowd, G.: SAAM: A method for analyzing

the properties of software architectures. In: Proceedings of the 16th international

conference on Software engineering, pp. 81–90. IEEE Computer Society Press, Los

Alamitos (1994)

17. Kazman, R., Klein, M.H., Barbacci, M., Longstaff, T.A., Lipson, H.F., Carrière,

S.J.: The architecture tradeoff analysis method. In: ICECCS, pp. 68–78. IEEE

Computer Society, Los Alamitos (1998)

132 H.B. Christensen, K.M. Hansen, and B. Lindstrøm

18. Northrop, L., Feiler, P., Gabriel, R., Goodenough, J., Linger, R., Longstaff, T.,

Kazman, R., Klein, M., Schmidt, D., Sullivan, K., et al.: Ultra-large-scale systems:

The software challenge of the future. Software Engineering Institute (2006)

19. Poppendieck, M., Poppendieck, T.: Software Development: An Implementation

Guide. Addison-Wesley, Reading (2006)

20. Sutherland, J., Jakobsen, C.R., Johnson, K.: Scrum and CMMI Level 5: The Magic

Potion for Code Warriors. In: AGILE Conference, pp. 272–278 (2007)

21. Systematic A/S Web site, http://www.systematic.com/ (accessed, June 2010)

22. Zhu, L., Staples, M., Jeffery, R.: Scaling Up Software Architecture Evaluation Pro-

cesses. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007,

pp. 112–122. Springer, Heidelberg (2008)

http://www.systematic.com/

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 133–149, 2010.
© Springer-Verlag Berlin Heidelberg 2010

An Architectural Approach to Composing
Reputation-Based Distributed Services

Suronapee Phoomvuthisarn1,3,4, Yan Liu2,3, and Liming Zhu1,3

1 National ICT Australia (NICTA), Australia
2 Pacific Northwest National Laboratory, USA

3 School of Computer Science and Engineering, University of New South Wales, Australia
4 Mahanakorn University of Technology, Bangkok, Thailand

{suronapee.phoomvuthisarn,liming.zhu}@nicta.com.au,
yan.liu@pnl.gov

Abstract. Reputation-Based Trust (RBT) model with embedded incentive
mechanisms provides an accurate quantitative measurement for services choosing
their partners based on fair ratings accumulated from users. These mechanisms
stimulate services to offer ratings truthfully, otherwise they lose their gains or
even receive penalties. However, leveraging such mechanisms in distributed
environments is a challenging task by its centralized nature. In this paper, we
propose a new architecture development that combines relevant architectural
components to make trust systems highly scalable with the auction mechanisms’
capability to prevent lie. In this architecture we define an auction-based trust
negotiation protocol that guides the interactions of distributed services and real-
ize it in the distributed trust framework. Our architecture scales efficiently for

increasing numbers of services interacting with the system, while still achieving
protection against untruthful incentives even when a majority of ratings are un-
fair. An example of a supply chain is devised with empirical evidence collected.

1 Introduction

Service oriented applications are highly distributed and loosely coupled with less
central authority over participating for services. Such decentralized architectures are
given a high degree of autonomy [13] and hence are susceptible to potential attacks
caused by malicious services1. As a result, other services within the same architecture
are at risks for being affected with quality degradation or even failure. Trust helps
services to minimize the risk of future interactions, especially when services have no
prior interaction with others. One of the trust mechanisms commonly used is the
Reputation-Based Trust (RBT) [1]. Such mechanism assumes that services can pro-
vide ratings for others. These ratings are then aggregated into a meaningful reputation
that can assist services to choose other services for their cooperation.

However, acquiring such reputation is not robust against cheating behavior. This is
because the reputation itself relies on each rating given by an individual service. Ra-
tional services might behave strategically to provide ratings based on how they can

1 We assume that all services follow common rationality and irrational behavior is not considered.

134 S. Phoomvuthisarn, Y. Liu, and L. Zhu

benefit from rating others. For example, a service might rate other services negatively
since its own reputation would be increased with respect to the average of others, or
purposely overstate the ratings of members within the group of their own interest.
Hence, the reputation gathered from these ratings can be compromised and not cor-
rectly use to determine the trustworthiness of individual services.

In [17], we utilized the Vickrey Auction Mechanism (VAM), which has been
widely accepted to help eliciting truthful information from participants, by incorporat-
ing it into the trust framework [5]. In a nutshell, our approach allows services to
retrieve other services’ reputation through auctions. Once receiving an enquiry about a

service’s reputation, the trust framework generates an auction service to elicit ratings
from raters (i.e., services providing ratings for others). These ratings submitted can be
aggregated into a reputation, which is returned to the enquiring service. By utilizing
the VAM capability, the trust framework can manipulate the auctions so that all raters
would not deviate from reporting ratings truthfully. Our approach ensures truthful
incentives for raters even when the majority of them lie.

Leverage such technique within distributed systems is challenging due to several
issues. One is to achieve high scalability. In [17], the existing technique relies on the
centralized trust system taking care of all auctioning computation. Such a system
provides a common interface by which raters can issue their bids through auctions.
Consequently, concurrent raters are either blocked when they issues their bids simul-
taneously or cannot process other tasks until the auctioning process is completed. As a
result, such system cannot scale up to handle the increased load of raters. Hence, this
method is not suitable for ultra-large scale distributed environments where the number
of potential services is huge [18]. This necessitates the need for distributed trust sys-
tems that can handle bids from multiple raters independently and asynchronously so
that raters are not blocked while their bids are executed in the auctioning process. The
second issue is to capture the VAM’s truth-telling property in the deployed trust-
based scenario. Since raters can participate in multiple auctions, and such a distrib-
uted environment lacks of the overall knowledge of individual’s budgets, services
may take underbidding strategies to gain remote resources. As a result, the auction

property to prevent lying may be broken. Finally, to report the VAM outcome, explicit
polling by the VAM for notification is not feasible since raters are dynamic, i.e., not
known a priori or changing their identities over time.

In this paper, we describe our new architecture development in distributed systems
to prevent cheating behavior. Extending our previous work [17], we introduce new
architectural components to facilitate the integration of the VAM in distributed sys-
tems that enforce participants to reveal their budget information. Our approach in-
volves defining an auction-based trust negotiation protocol that guides the interactions
of distributed services, each of which is integrated with the VAM. This protocol is
further realized by relevant components of the distributed trust framework.

We evaluate the overall architecture using an example on a supply chain scenario.
Unlike other preventive mechanisms that prevent cheating behavior, our architecture
demonstrates that distributed services will not gain their own benefits when they lie
about their ratings, especially when the majority of ratings are unfair. Our approach
also scales well for a very large number of raters interacting with the system. Our
approach enables efficient trust-based communication among services, especially
when it is hard to detect cheating behavior.

 An Architectural Approach to Composing Reputation-Based Distributed Services 135

The structure of this paper is as follows: Section 2 discusses the background and
introduces the motivating case study that the VAM is applied. Section 3 proposes the
architecture that supports the VAM in distributed environments. Section 4 demonstrates
our approach via an example on a supply chain and evaluates the overall architecture
with experiments. Section 5 describes related works. The paper concludes in Section 6.

2 Background

2.1 Trust Level Calculation

The degree of trust is usually represented as the trust level, which is a collective
measure of an entity’s trustworthiness. The trust level can be calculated from the
summation of the weighted direct trust (i.e., Beta value ε [0..1] (a real number between
0 and 1) [6]) that one entity has on a targeted entity and the targeted entity’s reputa-
tion as shown in Eq.1.

Trust Level= (α × Direct trust) + (β × Reputation) (1)

where α and β represent weights ε [0..1], which is subjectively determined by the
entity depending on how important each source of trust is (α + β = 1.0).

One entity can acquire the reputation of a targeted entity by collecting ratings from
other entities that have previously interacted with the targeted entity. The reputation
of one targeted entity can be calculated by aggregating all values of ratings submitted
into one percentage measure Reputation ε [0..1], each of which is weighted by its
rater’s reputation as shown in Eq.2.

∑

=

×
n

1i

ii rating w = Reputation (2)

where wi represents a weighted reputation ε [0..1] of a rater, ratingi represents a
rating rated by a rater i, and n represents a number of raters.

2.2 The VicKrey Auction Mechanism (VAM)

The VAM is a specific type of auction and known as the second-price sealed-bid
auction in which bidders place their bid on the items and hand them to the auctioneer
[4]. The winner of the auction is the individual who places the highest bid, and pays a
price equal to the exact amount of the second-highest bid. The utility gain for each
bidder is the difference between the true value each bidder places on an item and his
payment (i.e., a monetary value each bidder gains after auction) as follows:

jiji
i

b b if b - v
otherwuse o

ijMaxijMax
 u ≠≠=

> {

 (3)

where vi represents bidder i ’s true value for an item, bi represents bidder i ’s bid for
an item.

According to Eq.3, the winner gets a utility which is equal to the difference be-
tween its true valuation and the second highest bid, while the losers gain nothing (i.e.,
utility = 0). This VAM rules govern the interaction of self-interested participants with

136 S. Phoomvuthisarn, Y. Liu, and L. Zhu

preferences to obtain limited resources through auction and guarantee that individuals
not telling the truth would not gain [4]. This principle ensures that bidding something
other than the bidder’s true value is never beneficial and sometimes was detrimental
with penalties.

2.3 Motivating Example

In this section, we illustrate the problem of unfair ratings in distributed environments,
which motivates the need for the VAM within distributed services’ architecture.

Consider the case of a supply chain, where a consumer submits an order consisting
of line items to a retailer service. Each line item identifies a product and the corre-
sponding quantity to be ordered. To fulfill orders, the retailer goes through each line
item and finds a warehouse service with sufficient stock to ship them. The warehouse
then ships the line item to the customer. To manage stock levels in the warehouse,
each warehouse needs to restock from the relevant manufacturer service’s inventory
whenever inventory levels fall below the minimum of inventory levels for a particular
product. To enable the exchange of information, as well as fast propagation of ser-
vices offered, each service is connected with others in a peer-to-peer fashion. A key
challenge lies in how to choose the best deals available among all retailers, ware-
houses and manufacturer services offering the same function.

Quality of service (QoS) is a major factor of making decisions in service oriented
environments [1]. It helps services to differentiate the best candidate service from
others that meets their requirements in terms of performance, reliability, and availabil-
ity. In this decentralized scenario, the customer encounters unknown retailers, each of
which is often established dynamically with warehouses which are also unknown.
Moreover, each warehouse needs to manage its inventory level with unknown manu-
facturers. Hence, each service’s interaction has some risk of failure, such as not reach-
ing customer satisfaction in terms of not providing a service in a promised time, or
failing to provide a service at all. Therefore, the overall QoS attributes including
delivery time and availability can be used by all requesting services (or requesters)
including customers, retailers, and warehouses to select relevant providing services
(or providers) including potential retailers, warehouses, and manufacturers offering
comparable functions.

The QoS properties advertised by the providers are then used as a selection factor
for the requesters. To ensure that these QoS properties are delivered as described, the
trust level of each provider can be used to determine the probability that they
will fulfill its guaranteed QoS [1]. Each provider’s trust level can be based on the
requesters’ past personal experience (or historical records) with them. However, in
distributed systems where the requesters do not have much history interacting with all
the providers, the requesters need additional advice from other services that can pro-
vide their opinion about these providers’ QoS information. To acquire such opinion,
the requesters collect QoS ratings from others that have previously interacted with the
providers into a collective evaluation of a group opinion called reputation.

For simplicity without losing generality, we nominate the term “QoS rating” ε
[0..1] to represent the average value of QoS attributes submitted by each rater, includ-
ing delivery time ε [0..1] and availability ε [0..1], such that a quality of 1 denotes the
best possible service as shown in Eq.4.

 An Architectural Approach to Composing Reputation-Based Distributed Services 137

QoS rating = (delivery time + availability) /2 (4)

The problem then arises when the reputation relies on the aggregation of each QoS
rating given by an individual rater. Some raters might provide unfairly high or low
QoS ratings for their own benefits (e.g., boosting their partners), resulting in the repu-
tation compromised due to the unfair ratings captured. This unreliable reputation
would lead the requesters to interact with some providers, which indeed are com-
pletely untrustworthy. Hence, the requesters might experience some unexpected QoS
(e.g., slow response time), which itself leads to an unwanted service or even failure.
To solve this problem, some mechanisms need to be integrated with each requester’s
trust manager to ensure the robustness and accuracy of the ratings accumulated. The
integrated mechanisms should force raters to gives only fair ratings.

The VAM comes into play in this context. The VAM can motivate each rater to re-
veal its fair rating. In the supply chain (see Fig. 1), the customer would invoke its trust
manager to evaluate each retailer’s trustworthiness before sending the list of line
items. Once having taken a decision for choosing one retailer, the chosen retailer then
invokes its trust manager to evaluate each warehouse’s trustworthiness before order-
ing a shipment from a warehouse. If a warehouse’s stock is needed to be refilled, the
warehouse then invokes its trust manager to evaluate each manufacturer’s trustwor-
thiness before ordering a product from the manufacturer. To ensure that each
requester selects a trustworthy provider to interact with, a requester’s trust manager is
integrated with the VAM in order to acquire truthful QoS ratings from raters through
auctions. To acquire such ratings, the trust managers generates auction services (one
per each provider requested) to get fair ratings from others that have previously inter-
acted with them. The QoS ratings submitted can be interpreted as the resources in
terms of current bidding reputation (measured as credits) of each rater. These QoS
ratings accumulated are then used to calculate the reputation of providers. By utilizing
the VAM capability, trust managers can manipulate auctions so that raters would not
deviate from reporting truthful ratings for the providers. This is achieved by using a
reputation as the measure of gains. At the end of the auction, the winning rater will
enhance (or degrade) his reputation proportional to the utility gain/loss, which is
accumulated with the winning rater’s existing reputation stored in the reputation
repository as a reference for future encounters.

Fig. 1. The Problems of Unfair Ratings

138 S. Phoomvuthisarn, Y. Liu, and L. Zhu

However, integrating the VAM with trust managers in distributed environments
poses a number of challenges from the architecture point of view as previously men-
tioned in the introduction section. In the next section, we discuss the architectural
solutions as well as their relevant components that address those challenges.

3 The Architecture

This section presents the architecture with key components designed to accommodate
the VAM in a distributed peer to peer environment. An auction-based trust negotiation
protocol is proposed that guides the interactions amongst these key components.
Through our architecture design experience, the challenges of integrating the VAM
with the rest of distributed services’ architecture are discussed at the end of this section.

3.1 Architecture Layers

The overall architecture consists of distributed services built on top of the P2P net-
work as depicted in Fig. 2. This P2P network stores trust data across the network and
thus the communication requires the trust manager for each service to (1) aggregate
relevant trust data in order to make their decisions on a calculated trust level and (2)
to submit its feedback when other services enquire about specific services’ ratings.
Consequently, the trust manager’s architecture has four layers, namely application
layer, queuing layer, trust layer and service metadata layer.

Fig. 2. The Architecture of Distributed Services

The application layer interacts with other services for feedback submission through
the data disseminator and feedback aggregation through the data collector.

The queuing later mediates the communication between the application layer and
the trust layer. It consists of the queue list and the scheduler engine. The queue list

 An Architectural Approach to Composing Reputation-Based Distributed Services 139

stores the ratings of raters when the application cannot process them immediately,
while the scheduler engine schedules the execution of these ratings according to a spe-
cific set of constraints, such as priorities or deadline.

The trust layer incorporates components that enable the prevention of unfair ratings
accumulated. This layer is composed of two key components: the trust engine to cal-
culate a trust level and the reputation engine to produce a robust reputation. The trust
engine employs the credential manager to check the existence and validity of raters’
credentials, such as whether it has sufficient trust to provide ratings to others. The
trust engine also computes the trust level of certain services (using Eq.1) requested
through the trust computation. Finally, it encapsulates the feedback submission’s
functionalities to retrieve ratings from the trust repository through the feedback provider.

In the trust layer, the reputation engine computes the reputation (using Eq.2) and
outputs it to the trust engine. The function of the reputation engine uses the reasoning
manager to provide a reputation and updates the newly raters’ reputations to the repu-
tation repositories. The VAM logic is encapsulated by the auction engine. The con-
troller captures the ratings provided by raters as well as to dispatch the monitoring
service for monitoring the true value of the rating submitted by the winning rater,
which is required to calculate the utility function (see Eq. 3).

The service metadata layer stores trust data in the system. The trust repository stores
a calculated trust level and historical ratings of services. The reputation repositories
store a rater‘s reputation, which represents the reward and punishment made to raters.
Without a central coordinator in distributed environments, each service itself needs to
calculate and share services’ reputation to others. Hence, the reputation repositories
consist of both the local reputation repository and the global reputation repository.
The local reputation repository stores the reputation of raters in which itself is respon-
sible for these raters’ reputations, while the global reputation repository stores the
reputation of other raters organized by its set of trusted neighbors. The global reputa-
tion repository provides an interface for services to either store or retrieve raters’
reputations from their trusted neighbors globally.

3.2 Key Components

The key elements to support distributed environments are structured in the queuing
layer and the service metadata layer. The components in the queuing layer make the
application scalable in terms of a number of interacting raters, while the components
in the service metadata layer coordinate with others to store and retrieve raters’ global
reputations. The architecture also has new helper components in the application layer
and the trust layer to enable each distributed service to both calculate and share ser-
vices’ reputation to others when a central coordinator in distributed environments
does not exist. The details of each component are shown in the architecture (see Fig. 2).

The data disseminator is an application’s interface for submitting application mes-
sages such as ratings to others. It routes the data to appropriate services in the net-
work. It works with the feedback provider to submit specific services’ ratings upon
request. Without a central coordinator to evaluate a service’s trust level, services need
to pay their participation by contributing feedback to each other. To report such feed-
back to others, the credential manager component is first used to authenticate a re-
quester whether it has sufficient trust to elicit requested services’ trust level. After the

140 S. Phoomvuthisarn, Y. Liu, and L. Zhu

authentication process is completed, the feedback provider queries the requested ser-
vices’ rating from its trust repository and reports back to the requester.

The data collector is a publicly accessible interface for collecting data from others.
In particular, it receives ratings from raters to conduct auctions for evaluating a cer-
tain service’s trustworthiness. To receive ratings simultaneously, the data collector
interface is exposed its corresponding implementation of the trust manager to each
rater’s thread. As a result, each rater can invoke the trust manager’s service within its
own thread without blocking itself or others. Therefore, raters can issue their ratings
simultaneously without blocking, process with other tasks such as submitting ratings
in another auction, and access results whenever the auctioning process is completed.
The data collector works with the queue list to stored submitted ratings that arrive
faster than they can be processed as pending ratings. The queue list is structured with
appropriately sized queue to buffer submitted ratings. To process pending ratings in the
queue, the scheduler engine schedules the execution of these ratings received according
to a set of given constraints. The scheduler engine also monitors the queue list to identify
raters’ ratings that become executable, remove the ratings submitted from underbidding
strategies, and send all excluded ratings to the auction engine through the controller.

The database proxy serves as the explicit interface of the global reputation reposi-
tory to separate the repository’s public contract from its realization. It performs ac-
cessing and manipulating raters’ budget (e.g. reputations measured as credits) shared
by all services. It also supports the coherent integration of applications that operate on
the same data. To propagate changes among shared data, the database proxy offers an
observer-based changes notification mechanism in which the global reputation reposi-
tory is the subject and each requester’s trust manager as the observer. The database
proxy also supports trust managers to detect underbidding strategies. By maintaining
the state of each rater’s budgets within the global reputation repository, the database
proxy can trigger the trust manager to be notified about the changes of raters’ budget

when they participate in multiple auctions through the reasoning manager.

3.3 Auction-Based Trust Negotiation Protocol

To enable this architecture to prevent cheating behavior from unfair raters, the steps
of the VAM are embedded in the trust negotiation protocol, which guides the interac-
tions between layers in this architecture. This protocol is realized by key components
across four service layers. The protocol consists of the following four stages: initia-
tion, interrogation, negotiation, and interaction that realize the interaction of a re-
quester to choose its partner to interact with. Each requester in the line of distributed
applications uses the same protocol correspondingly.

At stage one initiation, a requester broadcasts a query message to a set of services
it is directly linked in the network for requested services. When a service receives a
query message, it first checks whether its offered services can meet the requester’s
functional requirements contained in the query message. If yes, the service then sends
the requester a respond message for its acknowledgement to provide the required
services. Otherwise, it forwards the query to other services it is directly linked.

At stage two interrogation, once receiving the answer messages, the requester can
get a list of potential services that can offer the service requested. If the requester has
enough experience with those services, it can choose one or a set of services that it

 An Architectural Approach to Composing Reputation-Based Distributed Services 141

trusts most. Otherwise, the requester requests raters their opinions about these poten-
tial services’ reputations. To compute these reputations, the reasoning manager
instructs the auction engine to initialize auction services to gather all values of ratings
from raters. Upon receiving an auction request, if a rater has past history of these
services and such a rater wants to participate in auctions, it then sends an acknowl-
edgement message containing ratings to the requester. These ratings submitted are
stored in the queue list waiting for the execution of the auctioning process.

To exclude unfair ratings from underbidding strategies, the reasoning manager first
instructs the controller to dequeue pending ratings from the queue list. These ratings
are then checked with corresponding raters’ reputations whether the credits’ condition
of these raters is limited. Since raters can participate in multiple auctions and each
distributed service lacks of the overall knowledge of individual’s budgets, the data-
base proxy thus helps the reasoning manager to check for the raters’ spending credits
in their currently active auctions. The database proxy deducts the raters’ credits a
priori whenever they put their bids in auctions. If a rater submits his rating as exactly
the same as the credit they actually have in the repository, the reasoning manager is
then notified by the database proxy to verify suspicious ratings using the controller’s
monitoring services. If the monitored rating’s true value is not the same as the rating
the rater put in the auction, this rating is removed from the queue list by the scheduler
engine. After terminating auctions, all the rest of the ratings in the queue list are sent
to the auction engine for computing the auction’s results through the controller.

The auction-based calculation steps (see Fig. 3) are as follows: (1) the auction en-
gine initiates a new auction round (for each potential service) by setting an auction
time and aggregating ratings from raters; (2) the auction engine terminates auction;
(3) the reasoning manager sends all values of ratings already excluded to the auction
engine; (4) the auction engine finds the winning rater and instructs the controller to
monitor the winner’s true value; (5) the controller then monitors the winning rater’s
true value; (6) the auction engine instructs the VAM component to perform utility
computation; (7) the auction engine announces the winning rater and its utility
through the reasoning manager; (8) the reasoning manager perform the reward and
punishment process and update the newly raters’ reputations to the local or global
reputation repository; (9) the reasoning manager then calculates a service’s reputation.

Fig. 3. Auction-based Trust Negotiation Protocol

142 S. Phoomvuthisarn, Y. Liu, and L. Zhu

After calculating potential services’ reputations, the trust engine then uses these
reputations to calculate the services’ trust level, which is used to determine whether
each service’s trust level exceeds the requester’s trust threshold to further negotiate with.

At stage three negotiation, once having taken the decision of choosing services, the
requester then establishes a trust negotiation with the chosen providers directly to get
their services. At this stage, the chosen provider is in turn a requester’s role to broad-
cast a query message to all services it is directly linked as in stage 1.

At stage four, interaction, after the trust negotiation is established, the requester
then gets the chosen providers’ services. Once terminating the service, the requester
evaluates the service’s rating it has experienced and updates it in its trust repository.

3.4 Discussion

The architecture is designed to address the integration of the VAM within the distrib-
uted trust framework. The VAM is encapsulated in the auction engine, which interacts
with the rest of the architecture through the reputation engine. The main advantages
of our architectural design are threefold.

First, the separation of each requesting service’s interface through data collector
enables a scalable architecture handling a large amount of raters interacting with the
distributed systems. The cooperation of these services follows a divide and conquer
model, in which each service is specialized for solving a particular part of the overall
task and all works together on the solution. With the use of structured peer-to-peer
overlays as the service repository network, this solution can be built by integrating a
result of each service, which in turn sends back to an initiating service (e.g., cus-
tomer) that floods the request. Hence, the architecture is highly scalable in terms of
huge raters involved in the system. In addition, the decoupling between service invo-
cation and service execution makes it possible for each requester to handling multiple
requests simultaneously. By using the queue list and the scheduler engine, the raters
and its interacting trust manager can interact asynchronously using them as the media-
tor to store and manipulate raters’ ratings. As a result, raters can issue their ratings on
the distributed application without blocking itself or other raters.

Second, the architecture makes it possible for the reasoning manager to capture
underbidding strategies so that the desired property of the VAM is maintained. Tradi-
tional VAM is suitable for the class of problems where the budget of each bidder is
unlimited. Without worrying about their money, bidders always submit the bids they
truly value the item, which lead their behavior to tell the truth. However, if raters have
limited budgets, they might submit the bids they actually have instead. This is because
all bidders’ bids are strictly tracked and controlled by the auctioneer which they have
to register themselves with before participating in the auction. To submit bids more
than the bidders can actually afford would result in some penalties. Consequently, the
VAM desired property is violated since the underbidding is much more preferable
than reporting truthful ratings. By loosely coupling between the reasoning manager
and the global reputation repository using the database proxy as a mediator, the en-
capsulation of the repository variation behind the proxy database makes it possible to
notify the corresponding reasoning manger about the state changes of a set of shared
data without becoming dependent on each other. As a result, the reasoning manager
can dynamically detect underbidding strategies at runtime and therefore react

 An Architectural Approach to Composing Reputation-Based Distributed Services 143

immediately to exclude ratings from raters who have scarce resources before starting
auctions. Also, the application is simplified by using the database proxy as a modular
component that shields them from the details of their application’s functionalities
making it reusable when porting to another distributed environment.

Finally, the architecture delivers the VAM’s desired property through the auction
engine, which interacts with other components according to the VAM logic embedded
in a trust negotiation protocol. The VAM outcome is communicated by the reasoning
manager in the publisher-subscriber model, which uses asynchronous message
communication to send out the result to a number of subscribers (e.g., raters). This
asynchronous communication makes our architecture much more efficient when per-
forming an auction amongst dynamic raters whose availability might not be known.

4 Case Studies and Evaluation

In this section, the supply chain scenario derived from section 2.3 is used to demon-
strate our architecture. The architecture and the key components presented in section
3 are now applied to process ratings to ensure (1) the effectiveness of the VAM to
prevent the benefits gained by unfair raters when they simply lie, and (2) the scalabil-
ity of the VAM approach in terms of the performance overhead it incurs when the
number of raters interacting with distributed systems is huge.

4.1 Testbed Setup

The architecture of the supply chain application has been implemented as a set of
Web services (see Fig.4) deployed on JXTA distributed environment, which includes
a set of open peer-to-peer protocols. All services including customers, retailers, ware-
houses, manufacturers are built using nodes from JXTA, each having its own trust
manager hosted by the Apache AXIS 1.0 Web Server. These services interact with a
rater’s service through auctions processed by their associated trust managers that
receive ratings or any service requests, and sends responses from the application.

Fig. 4. Supply Chain Deployment Fig. 5. Trust Manager (TM)

144 S. Phoomvuthisarn, Y. Liu, and L. Zhu

The components of the trust managers (TM) in Fig. 5 are developed as Java EJBs
and deployed as the single trust-based applications hosted by the Tomcat Application
Server. This Application Server processes requests from the Web Server and sends
responses back to the Web Server. The Application Server implements the auction-
based trust negotiation protocol. It communicates with services using SOAP messages
and connects to all repositories using the JDBC driver. The reputation repositories
implements LDAP components to support service registration. The test environment
includes two identical Windows XP machines with 3GHz Core 2 Duo processors.
One is used for hosting raters’ services, and the other hosts the rest of the applications.

4.2 The Experimental Results

The VAM Property Test. The purpose of this experiment is to examine how practi-
cal usage of the architecture can effectively prevent benefits gained by unfair raters
when they lie about their ratings. Unfair raters should gain nothing or even get a pen-
alty, especially when the majority of ratings are unfair. The gain can be measured by
the effect of changes in the average reputation of unfair raters when they constantly
provide unfairly high or low ratings to potential services. We then observe and com-
pare the results of changing in all raters’ reputation when the number of the services
being rated increases.

We build a simulation operating with our prototype. We performed a series of ex-
periments by varying the number of unfair raters from 10% to 90%, with 10% incre-
mental per experiment. Each experiment involved 100,000 raters, each of which had
to rate QoS ratings of providing services including retailers, warehouse, and manufac-
turers (i.e. delivery time and availability) requested by requesting services (i.e.,
customers, retailers, and warehouse respectively). The credit that a rater can spend for
the auctions can be calculated by the multiplication of the rater’s current reputation
(i.e., a percentage measure between 0 and 1) stored in the reputation repository and its
total number of transactions previously conducted. To simplify our problem, we con-
sider the case where all raters have past experience with a certain providing service
with 70% probability. Each of them has to rate each provider with 50% probability. A
fair rater offers QoS ratings to a providing service exactly the same as it perceived
while an unfair rater randomly offers QoS ratings above or below it perceived. A total
of 10, 300, and 500 auction rounds (equal to the number of the providers rated) have
been executed with 1 minute per auction to observe the effect of changes in the aver-
age reputation of raters. At the end of each auction, a rater’s reputation is updated
based on the utility gain/loss calculated by Eq.3. To update a rater’s reputation with
these calculated utility gains, a rater’s newly updated reputation is calculated by ac-
cumulating the rater’s utility gain with the rater’s current reputation, each of which is
weighted by their total number of previous transactions (The number of transactions
for one auction is equal to 1). To make these newly updated reputations publicly
known to others in distributed environments, we use Distributed Hash Tables (DHT)
techniques to store index reputation [1] amongst a set of trusted services (or
neighbors). This method uses multiple hash functions to map a single service ID to
several positions where corresponding services will calculate and store this service ‘s
reputation individually. DHT also provides a basic operation for retrieving a specific
service’s reputation. When other services need some services’ reputation, they can

retrieve them using DHT operation with service ID as a parameter.

 An Architectural Approach to Composing Reputation-Based Distributed Services 145

In our setting, we initially set the reputation of unfair raters to any random numbers
between 5 to 15 percents while for the fair raters is between 10 to 20 percents based
on 100 transactions previously conducted. To make a trust decision, each requesting
service chooses one of the providing services whose reputation is the highest to inter-
act with. Fig. 6 shows that the unfair raters’ reputation decreases when the number of
raters lying increases. This is because when the majority of raters are unfair, the un-
fair raters have more chance to win the auction, however their gains of reputation are
impaired by the punishment made to these unfair winning raters by the VAM. In con-
trast, we can see that the reputation of fair raters increases as the result of the reward
granted by the VAM process.

The results clearly demonstrate that The VAM can help preventing cheating behav-
ior by ensuring that unfair raters would not gain any benefits when they simply lie.
This is evident by the significantly decrease in the reputation of unfair raters, espe-
cially when the majority of ratings are unfair. These VAM-based rating results are in
clear contrast to existing preventive mechanisms that fail to motivate raters to report
truthful ratings when the majority of raters lie. Also, our approach promotes a direct
incentive for fair raters participating in an auction due to the increasing of reputation
when they give fair ratings.

Fig. 6. The Effect of Changes in the Average Reputation of Raters

Scalability Test. In this experiment, we intend to observe what extent the
decentralized supply chain can scale when integrating with the VAM. We measured
the performance overhead in terms of application response time (second) with and
without the VAM by varying a number of raters from 10 to 1,000,000. Experiments
were performed with 5 auction rounds conducted by each requesting service. The
results show that no significant performance overhead for 1,000,000 raters (see Fig. 7)
regardless of using the VAM.

We also compared our result with the equivalent centralized supply chain as shown
in Fig. 8. From the graph, we can notice that the response time is initially identical
between both infrastructures when a number of customer’s requests are at the early
stage. This can be linked to the sequential chain of applications. Each requesting
service needs to choose one of the providing services first before delegating these
services to conduct auctions. Hence, each service’s task cannot be performed in parallel
because they have to call others until completing the overall process. Nevertheless,

146 S. Phoomvuthisarn, Y. Liu, and L. Zhu

the response time of the decentralized supply chain is still slightly better than the
corresponding centralized one due to the separation of design for the explicit interface
that is exposed to each rater’s thread making the system receive ratings simultaneously.

When the number of customer’s requests increases, the centralized supply chain‘s
performance overhead is approximately 3 times higher than the decentralized one with
the performance without the VAM as a benchmark. This is due to the fact that all
services in the line of supply chain can serve different requests from different ser-
vices. Hence, these services can have an opportunity to perform their tasks separately at
the same time without only waiting for specific sequential lines of orders.

The plot demonstrates that the distributed trust framework is more much scalable
handling a very large number of raters compared to the centralized infrastructure.

Fig. 7. Performance Variation

Fig. 8. Scalability Variation

5 Related Work

Much previous research in P2P communities has been applied statistical methods to
handle the problems of unfair ratings. These approaches detect and exclude unfair
ratings based on the analysis of statistical data from former transactions. Aberer et al.
[13] propose the reputation model that allows peers to file a complaint to other
malicious peers after each transaction. This model takes a majority of accumulated
complaints to identify malicious peers. Kamvar et al. [14] proposed EigenTrust that
can uniquely identifies each peer’s global trust value, which is calculated from the

 An Architectural Approach to Composing Reputation-Based Distributed Services 147

experience of other peers in the network. EigenTrust takes into account the majority
of voting from pre-trusted peers to check fake reputation scores reported. Peertrust
[15] evaluates the trustworthiness of a peer by considering the quality of feedbacks
based on five important parameters. This framework can eliminate dishonest feedback
using the similarity between two different groups.

Although these detective techniques provide a promising approach to predict the
trend of unfair ratings, they still suffer from one major drawback – lack of sufficient
ratings. The main reason is that the raters might not have a direct incentive to provide
ratings for others. This is because providing ratings for others requires some effort,
which might end up with losing business profits due to wasting time or decreasing the
bandwidth of raters’ running services. As a result, the trends of untruthful behavior
cannot correctly be used to detect unfair ratings or even can misrepresent one ser-
vice’s reputation due to insufficient ratings captured.

The limitations of detective mechanisms have thus drawn intensive research activi-
ties on developing incentive techniques to either eliminate or prevent incentives to lie.
Such mechanisms are devised and embedded into a reputation model to stimulate
services to not only provide ratings but truthfully offer ratings. Unlike statistical ap-
proaches to detect unfair ratings, preventive approaches aim to make sure ‘lie does
not gain’. This property makes it in the best interest of one participant to report the
truth so that truthful reporting maximizes their expected revenue. However, no incen-
tive mechanisms can claim their victory. They still have some limitations.

Payment mechanisms offer side payment to raters that fairly rate others. These
mechanisms guarantee that lying is not in the best interest of the raters. Dellarocas
[12] proposes “Goodwill Hunting” mechanism that encourages sellers to truthfully
reveal their qualities of product by rebating some payment to sellers based on the
similar quality of transactions among the whole communities. Jurca et. al. [11] de-
scribes incentive compatible payment scheme organized through a set of distributed
broker agents. These agents buy feedback and sell reputation information aggregated
from the feedback. The author makes faithful reporting an optimal strategy by devis-
ing a payment scheme that pays a submitted report if it has the same value of ran-
domly chosen report.

However, the side payment scheme cannot ensure truthful reporting when the ma-
jority of raters lie. This is because these approaches assume the majority of ratings
provided must be fair, and unfair ratings are in the minority as outliers and reward a
rater a side payment only if its rating is the same as the next rating of the same rated
service provided by another rater. Therefore, if the majority of ratings are unfair, this
opens up the possibility for dishonest raters to gain benefits from the payment given
to similar ratings as many others, which is unfair. Hence, embedding such mechanisms
into distributed systems could lead to ineffective solutions to prevent cheating behavior.

In addition to the limitations of the mechanisms itself, very little attention has been
devoted to the exploration of how these mechanisms can be composed in distributed
systems. This is because these approaches either assume the existence of an infra-
structure or some trusted centralized party that maintains the digital currency or
reputation of participants for rewarding or charging. As a result, computation is all
centralized in the trust framework, which imposes the research questions in terms of
their extension to support distributed environments.

148 S. Phoomvuthisarn, Y. Liu, and L. Zhu

6 Conclusion

In this paper, we presented the trust-based architecture with the Vickrey Auction
Mechanism (VAM) integrated in distributed environments. The VAM is encapsulated
with each distributed service’s architecture and embedded in an auction-based trust
negotiation protocol realized in relevant components. These components interact with
trust components in our architecture to prevent cheating behavior. An example on a
supply chain is implemented to validate our approach when raters give unfair ratings.

Our architecture integrating with the VAM induces an effective trust negotiation
by preventing the distributed trust framework from being exploited by unfair raters,
especially when the majority of them lie about their ratings. Our architecture also

ensures that the system is highly scalable compared to the centralized infrastructure.
One drawback, however, is that when a number of participating services involved

in distributed systems is very high, a lot of flooding searches might induce a large
volume of traffic overhead. This imposes the research questions in the architectural
design that leverages the VAM’s benefit of preventing cheating behavior with opti-
mized search efficiency. Future work involves optimizing architectural solution to
support a hybrid trust framework with the VAM capability. The resulting architecture
will be optimized using centralized registries as super peers to maintain a global re-
source index of distributed services’ group to reduce traffic overhead significantly.

Acknowledgments. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

References

1. Jøsang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for Online
Service Provision. Decision Support Systems (2005)

2. Dellarocas, C.: Immunizing Online Reputation Reporting Systems Against Unfair Ratings
and Discriminatory Behavior. In: Proceedings of the 2nd ACM Conference on Electronic
Commerce (EC), Minneapolis, MN (2000)

3. Sen, S., Sajja, N.: Robustness of Reputation-based Trust: Boolean Case. In: Proceedings of
the 1st International Joint Conference on AAMAS. ACM, New York (2002)

4. Klemperer, P.: Auctions: Theory and Practice. Princeton University Press, Princeton
(2004)

5. Phoomvuthisarn, S.: Trust and Role Based Access Control for Secure Interoperation
(“TracSI”). In: ISCIT (2007)

6. Withby, A., Jøsang, A., Indulska, J.: Filtering Out Unfair Ratings in Bayesian Reputation
Systems. In: Proceedings of the Third International Joint Conference on Autonomous
Agents and Multi Agent Systems, New York, pp. 106–117 (2004)

7. Sicard, S., Boyer, F., Palma, N.D.: Using Components for Architecture-Based Manage-
ment: the self-repair case. In: Proceeding of the 30th International Conference on Software
Engineering, Leipzig, Germany (May 2008)

8. Wang, Y., Vassileva, J.: Toward Trust and Reputation Based Web Service Selection: A
Survey. In: 5th The International Social Work & Society’ Academy, Italy (2007)

 An Architectural Approach to Composing Reputation-Based Distributed Services 149

9. Braynov, S., Sandhome, T.: Incentive Compatible Mechanism for Trust Revealation.
In: Proceedings of the 1st International Joint Conference on AAMAS, Italy (2002)

10. Liu, J., Issarny, V.: An Incentive Compatible Reputation Mechanism for Ubiquitous Com-
puting Environments. International Journal of Information Security (2007)

11. Jurca, R., Faltings, B.: An Incentive-Compatible Reputation Mechanism. In: Proceeding of
the IEEE Conference on E-Commerce, Newport Beach, CA, USA (2003)

12. Dellarocas, C.: Goodwill Hunting: An Economically Efficient Online Feedback Mecha-
nism for Environments with Variable Product Quality. In: Padget, J.A., Shehory, O.,
Parkes, D.C., Sadeh, N.M., Walsh, W.E. (eds.) AMEC 2002. LNCS (LNAI), vol. 2531,
pp. 238–252. Springer, Heidelberg (2002)

13. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-2-Peer Information System. In: Pro-
ceedings of the 10th international Conference on information and Knowledge Manage-
ment, Atlanta, Georgia, USA (October 2001)

14. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust Algorithm for Reputa-
tion Management in P2P Networks. In: Proceedings of the 12th international Conference
on World Wide Web, Budapest, Hungary (2003)

15. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Elec-
tronic Communities. In: Knowledge and Data Engineering (July 2004)

16. Vu, L.-H., Hauswirth, M., Aberer, K.: QoS-Based Service Selection and Ranking with
Trust and Reputation Management. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS,
vol. 3760, pp. 466–483. Springer, Heidelberg (2005)

17. Phoomvuthisarn, S., Liu, Y., Hun, J.: An Architectural Approach to Composing Reputa-
tion-based Trustworthy Services. In: ASWEC, Auckland, New Zealand (2010)

18. Zhu, L., Staples, M., Tosic, V.: On Creating Industry-Wide Reference Architectures.
In: 12th IEEE International EDOC Conference, Munich, Germany (2008)

Automated Detection of Least Privilege
Violations in Software Architectures

Riccardo Scandariato, Koen Buyens, and Wouter Joosen

IBBT-DistriNet

Katholieke Universiteit Leuven

3001 Leuven, Belgium

first.last@cs.kuleuven.be

Abstract. Due to the lack of both precise definitions and effective soft-

ware engineering methodologies, security principles are often neglected

by software architects, resulting in potentially high-risk threats to the

systems. This work lays the formal foundations for the understanding of

the least privilege (LP) principle in software architectures and provides a

technique to identify LP violations. The proposed approach is supported

by tools and has been validated in four case studies, one of which is pre-

sented in detail in this paper.

Keywords: security, least privilege, architectural analysis.

1 Introduction

Security design principles, like least privilege and complete mediation, have sur-
vived the test of time since they have been introduced by the seminal work of
Saltzer and Schroeder [16]. Their value in secure engineering processes is now
widely acknowledged, e.g., in Microsoft’s Security Development Lifecycle [9].
However, the concrete implementation of these principles in a software design is
often problematic due to the lack of a precise definition. This is particularly true
for the architectural design [5]. Because of the key role played by the architecture
in the development process, failing to support sound security principles at this
level could jeopardize the entire software project and could result in severe costs
to fix the vulnerabilities afterwards. Therefore, ways of expressing and reasoning
about security principles in software architectures are needed [21].

The main goal of this paper is to improve the support for the least privilege
(LP) security principle in software architectures by providing a precise definition
of LP violations. Such definition enables formal, automated analysis of architec-
tural design models.

As highlighted in a previous study, LP is a well recognized principle [5]. In the
literature (e.g., [19]), least privilege is given the following informal definition. In
a particular abstraction layer of a computing environment, every principal (i.e.,
a user or a computer process executing on behalf of a user) must be able to
access only those computing resources and information that are necessary to
complete its tasks. A task is generally comprised by a sequence of smaller steps,

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 150–165, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automated Detection of LP Violations 151

Fig. 1. Overview of the proposed approach

namely actions. In this context, a permission represents the right for a principal
to execute an action.

As an example of LP violation, consider a Unix utility program (e.g., kill)
that might need elevated privileges to execute. One strategy is to give the “root”
password to the users that need to use that utility program. This way, the users
can execute the program via the su command. Clearly, this is a violation of the
least privilege principle, as the users have too many, unnecessary rights. A better
strategy is to use sudo, which allows to assign finer-grained permissions. This
work addresses the same concern, although at the level of software architectures.

The correct enforcement of the LP principle prevents popular vulnerabilities
related to elevation of privilege and task interference. The former are vulnerabil-
ities that can be exploited by an attacker to gain access to resources that would
have normally been shielded. The latter are vulnerabilities that can be exploited
by an attacker to subvert the planned outcome of a task.

Approach. As depicted in Figure 1, the approach presented in this paper con-
sists of two phases: preparation and analysis. As shown in the left-hand side of
the figure, the approach uses a conventional architectural description to identify
violations. Indeed, the architecture is expected to be documented via a logical
view, a process view, and the interaction scenarios, e.g., in UML. In an archi-
tectural description, the logical view typically decomposes the system into a
set of key abstractions, called components. Every component can be described
in terms of the actions (commonly known as operations) of its interfaces. The
process view specifies which runtime element (thread or process) executes the
components identified in the logical view. The view also relates these runtime
elements to the principals that execute them. These principals can be end users
(e.g. John) or system accounts (e.g. the web server). The scenarios show how
the architectural elements work together by means of tasks (commonly known
as use cases), which consist of a sequence of temporally ordered invocations of
actions. This minimal documentation set can be safely assumed to be available
in all software projects where an explicit architectural design effort has been
carried out.

In preparation for the analysis step, a so-called Task Execution Model is au-
tomatically derived from the above documentation and thence used for formal

152 R. Scandariato, K. Buyens, and W. Joosen

analysis. The Task Execution Model brings forward all the elements of an archi-
tecture (like tasks) that are key for the sake of LP analysis and hides the unnec-
essary details. The formal analysis also leverages the security policy describing
the assigned permissions in the system. The analysis technique is orthogonal
to the many ways the policy can be defined. In the ideal case, such policy is
explicitly articulated by the software architect based on input from the relevant
stakeholders (including the security expert) and, possibly, the company-wide
rules. Alternatively, provided that the permissions have not been documented,
a realistic security policy can be inferred via a tool (cf. Section 2.2).

During the analysis phase, a tool leverages a formally-based technique to
analyze both the Task Execution Model and the security policy. The analysis
technique identifies three important classes of violations and pinpoints the places
in the architecture where each violation occurs (cf. Sections 3.1 and 3.2). More
potential violations can be detected by applying heuristics-based techniques (cf.
Section 3.3).

The identified violations can be tackled by means of architectural refactoring
rules, which are part of previous work and are not covered here [4]. However, this
paper provides a theoretical framework that enables a more informed selection
of the appropriate refactoring rule depending on the class of LP violation that
has been identified.

Contribution. The contribution of this work is twofold: (i) this paper provides
a precise definition of least privilege in a software architecture and (ii) describes
a formal analysis technique to identify three classes of LP violations. In this
work, a collection of views are jointly interpreted. Further, the analysis uses a
model that realistically captures important aspects of real world-systems, e.g.,
the delegation relationships among principals cooperating in the completion of
a task. Finally, a complete tool chain is provided.

The rest of this paper is structured as follows. The preparation phase is de-
scribed in Section 2 while the analysis phase is presented in Section 3. Section 4
describes the validation of the presented approach by means of four case studies,
one of which is illustrated in detail. Finally, Section 5 compares the approach to
the related work and Section 6 presents the concluding remarks.

2 Preparation Phase

This section presents the formal definition of the Task Execution Model and
describes the type of security policy that is expected to be documented for the
system under analysis. The definitions given here are then used in Section 3.

2.1 Task Execution Model

The Task Execution Model can be derived from three established architectural
views. As an example, consider the simple architecture of a software maintenance
system documented in Figure 2. Figure 2(a) contains the logical view (compo-
nents, interfaces, connectors) and the processes (see the dashed circles). Due to
space limitations, the two views have been overlaid. Figure 2(b) depicts three

Automated Detection of LP Violations 153

(a) Components and processes. (b) Scenarios.

Fig. 2. Sample architectural description

Fig. 3. Sample Task Execution Model

scenarios. The system allows the field users of a given software package to pro-
vide feedback to the developers, e.g., in order to request new features (task T1).
The feedback is stored in the Feedback Repository via the addFeedback action
of the IAddFeedback interface. Feedback reports are processed internally within
the Feedback Repository component and whenever many similar reports have
been submitted, e.g., requesting the same feature, a maintenance job is added to
the Jobs Repository component via the addJob action of the IAddJob interface.
Testers also add maintenance jobs to the repository whenever they discover a
bug (task T2). This functionality is also enabled for the bugs discovered by field
users (task T3). Each front-end client runs in a separate process. The Web Client
is executed by the field user and the Tester Client by the tester. The back-end
components run as a single process under the web server server principal (i.e.,
the back-end is a web application).

Note that the above example is not meant to describe a real-world system.
It is introduced for illustrative purposes only. As such, it is very small and the
functionality has been decomposed in an ad-hoc way so that violations can be
visible at a glance. More sophisticated examples are presented in Section 4.

The Task Execution Model relates the architectural concepts (e.g., compo-
nents, processes, and so on) to LP concepts (e.g., principals, tasks, delegation
relationships, and so on). This model is partially inspired by the Business Process

154 R. Scandariato, K. Buyens, and W. Joosen

Modeling Notation [20]. Figure 3 depicts the Task Execution Model that has been
automatically derived from the architectural description of Figure 2. In general,
all processes running under the same principal are merged and represented as a
single “swim lane” (the term is borrowed from process flow diagrams). Actions
that belong to (the interfaces of) the components executed by the processes of a
given principal are placed in the corresponding swim lane. In the simple exam-
ple presented above, there are only two actions and they both belong to the web
server swim lane. Tasks are represented as flows of actions by means of labeled
arrows. Furthermore, tasks have a starting event, which is considered an action
as well. From the Task Execution Model, it is easy to identify the actions each
principal completes personally (they are within the corresponding swim lane),
the actions it delegates to other principals (arrows across swim lanes), and the
dependencies between actions (arrows between actions).

Formal Definition. More formally, the following sets are defined:

– A countable set P of named principals, which are denoted by pi. These
correspond to the swim lanes.

– A countable set A of named actions, which are denoted by ai. Actions (in-
cluding the start events) are associated with the corresponding swim lanes
via the PA relationship, which is introduced later on.

– A countable set T of named tasks, which are denoted by ti. Tasks are rep-
resented as directed graphs. Nodes are actions and they are interconnected
in the order they are performed. Tasks are represented as graphs so that the
parallel execution of multiple sequences (of actions) can be modeled. Tasks
are associated with the principals that initiate them via the PT relationship,
which is introduced later on.

The principal-action relationship is introduced to associate a principal p to any
action a that is in a component that runs in a process executing under that
principal. It is defined as follows: PA ⊆ P × A | (p, a) ∈ PA ⇔ p ∈ P offers
a ∈ A. The above relationship can be derived via the principal-process and
process-component relations (process view) combined with the component-action
relations (logical view). This is intuitive and is not shown here. For conciseness,
the start events are not mentioned in the above definition.

The principal-task relationship is introduced to associate a principal p to any
task t that is initiated by that principal. It is defined as follows: PT ⊆ P × T |
(p, t) ∈ PT ⇔ p ∈ P initiates t ∈ T .

The set of actions in a task can be obtained via the operator actionsOf(t).
Concerning the actions, two additional operators are defined:

– follows returns true when an action is immediately invoked after another in
a task.
follows : A×A× T → {true, false} :
follows(ai, aj, t) �→ true ⇔ ∃ directed edge from ai to aj in t

Automated Detection of LP Violations 155

– after returns true when an action is eventually invoked after another in a
task.
after : A×A× T → {true, false} :
after(ai, aj, t) �→ true ⇔ ∃ path from ai to aj in t

With respect to the above definitions, a principal is directlyResponsible for an
action if it “must execute” that action to complete a task or if it “must delegate”
the execution of that action to another principal (1 hop) who completes a part
of the task. I.e.:
directlyResponsible(p, a) : P ×A → {true, false} :
(p, a) �→ true ⇔ mustExecute(p, a) ∨ mustDelegate(p, a)

A principal mustExecute an action if that action is part of a task and it is
executed in one of the processes that run under that principal. I.e.:
mustExecute(p, a) : P ×A → {true, false} :
(p, a) �→ true ⇔ a ∈ PAp ∧ (∃t ∈ T | a ∈ actionsOf(t))

The set of actions a principal p must execute is represented by mustExecutep

= {a ∈ A | mustExecute(p, a)}
Note that the relationship mustExecutep ⊆ PAp holds, as there could be

actions that are not used in any task.
A principal mustDelegate the execution of an action to another principal if

that action is part of a task he must complete and it is executed by another
principal (1 hop). I.e.:
mustDelegate(p, a) : P ×A → {true, false} :
(p, a) �→ true ⇔ a /∈ PAp ∧ (∃a′ ∈ A , ∃t ∈ T | a′ �= a ∧ a′ ∈ PAp ∧
follows(a′, a, t))

The set of actions a principal p must delegate is represented by mustDelegatep

= {a ∈ A | mustDelegate(p, a)}

Definition 1. The set of actions a principal p is directly responsible for is rep-
resented by Dp = {a ∈ A | directlyResponsible(p, a)}

Further, a principal is indirectlyResponsible for an action if that action is after
another action (in the same task) that the principal has delegated. I.e.:
indirectlyResponsible(p, a) : P ×A → {true, false} :
(p, a) �→ true ⇔ a /∈ PAp ∧ (∃a′ ∈ A , ∃a′′ ∈ A , ∃t ∈ T | a �= a′ �= a′′ ∧
a′ /∈ PAp ∧ a′′ ∈ PAp ∧ follows(a′′, a′, t) ∧ after(a′, a, t))

Definition 2. The set of actions a principal p is indirectly responsible for is
represented by Ip = {a ∈ A | indirectlyResponsible(p, a)}

2.2 Security Policy

Together with the tasks, the permissions are the second pillar of the architectural
analysis of LP violations. The permissions represent the right for a principal to
invoke the interface actions. The assigned permissions embody the access control
policy of the system. Many policy models and languages can be used to specify
the assigned permissions. For instance, permissions can be assigned directly to

156 R. Scandariato, K. Buyens, and W. Joosen

principals as it happens in Access Control Lists (ACLs, [12]). Alternatively,
additional levels of indirection can be used to make the permissions assignment
more manageable, e.g., by using Role-Based Access Control (RBAC [17]). In
order to preserve the generality of the approach, this paper does not assume
any advanced feature of the policy language. Hence, this work focuses on a
minimal policy model (similar to ACLs) where a permission is granted to a
principal (subject) to invoke an action on a component (resource). Permissions
that are specified via more advanced policy languages can be mapped to the
model adopted here [1].

Formal Definition. A policy can be represented as a set of principal-action
tuples:
AUT H ⊆ P ×A | (p,a) ∈ AUT H ⇔ p ∈ P is allowed to invoke a ∈ A.

Access to the starting event is considered to be implicitly granted to the
principal initiating the corresponding task. In general, a function is defined to
determine whether a principal is granted permission for an action:
canCall(p, a) : P ×A → {true, false} : (p, a) �→ true ⇔ (p, a) ∈ AUT H

Definition 3. The set of actions a principal p can call is represented by Cp =
{a ∈ A | canCall(p, a)}

The key question of the LP analysis is to determine whether this set is too
large with respect to defined tasks. The answer to that question is provided in
Section 3.

Inferring the Permissions Assignment. In general, the permissions should
be documented and available to the analysis technique. The architect (or the
security specialist) should provide the principals with an initial set of permis-
sions. However, if the permissions assignment is not explicitly documented, an
automated procedure can be used to assign permissions to the principals in a
sensible way. The algorithm (and the supporting tool) assigns each principal p
with the permission to execute the actions in the set resulting from the union
of PAp (the start events and the actions of the principal’s components) and
mustDelegatep (the actions the principal delegates).

3 Analysis Phase

From a helicopter view, there are two broad situations that must be detected.
First, assuming that the tasks structure defined by the architect is correct, no
principal should be able to call more actions than it is minimally necessary
in order to carry out its tasks. Second, the structure of the tasks itself must
be questioned. In particular, no principal must be able to use the permissions
coming from one task to interfere with the execution of other tasks – its own or,
worse, those of other principals. From a methodological perspective, the analysis
technique follows two steps. First, the principals are considered in isolation, and
then, further violations are spotted by considering groups of principals.

Automated Detection of LP Violations 157

(a) Single principal (b) Multiple principals (c) Heuristics

Fig. 4. Least privilege analysis

3.1 Single Principal

For each principal, the intersections of the sets in Figure 4(a) are computed. Dp

represents the set of actions a principal must have permission to call in order
to complete its tasks, given the tasks structure in the Task Execution Model.
Cp represents the set of actions a principal can call, according to the security
policy. If Cp is not a super-set of Dp, the principal does not have sufficient rights
to execute the tasks it is assigned to. Although this is not a LP violation, such
inconsistency in the security policy is detected by the analysis technique as well.

The set of actions that can be safely granted to a principal in isolation (Sp,
in dark gray) is defined as the difference between the sets of directly responsible
and indirectly responsible actions (Sp = Dp \ Ip). Any action in the light gray
area (Vp = Cp \Sp) is considered a violation. As shown in the picture, violations
are classified as type A or B according to the place they may occur.

Type A: One principal is assigned unnecessary permissions. A principal is al-
lowed to call an action, but it is not required to do so in order to complete
its tasks. For instance, consider the example introduced in Figure 3. Suppose
that the architect assigned the tester with the permissions to call the addFeed-
back and the addJob actions. The former action represents a violation, because
addFeedback is not required for its task (see T2 in Figure 3). A cause for this
type of violation (beside inadvertence) could be the incorrect granularity of the
assigned permissions. For instance, given that a role-based access control model
is used, the permissions assigned to some role could be too coarse-grained for the
existing tasks. In order to solve the violations of this type, the unnecessary per-
missions must be removed from the security policy, e.g., by using finer-grained
access rules.

Type B: One principal can shortcut the planned sequence of actions in a task.
Actions in Dp are necessary in order to complete the tasks a principal is re-
sponsible for (by definition). However, actions that are both in Dp and in Ip are
dangerous, because they enable the principal to circumvent the planned interac-
tion with an action that is meant to be invoked via an indirect execution path
only. For instance, consider the example in Figure 3. The addJob action of the
field-user principal represents a violation, because it is an indirect action for task
T1 and a direct action for task T3. Hence, the field user can skip the processing
logic of addFeedback (a feature is added when enough requests are received) and

158 R. Scandariato, K. Buyens, and W. Joosen

demand for a new feature directly via the addJob action. Violations of this type
can be solved by splitting the action in two parts, namely one action with the
direct functionality and one other containing the indirect functionality.

3.2 Multiple Principals

For each couple of principals, the intersections of the sets in Figure 4(b) are
computed. Plainly, S \ mustExecute represents the mustDelegate part of S.

Type C: Two principals are responsible for interacting tasks. A violation exists
if an action in the mustDelegate part of Sp is also in the mustDelegate part of Sp’

(with p′ �= p), but for different tasks. This violation enables a principal to call an
action of another principal’s task and, thus, partially complete a task it is not
responsible for. For instance, consider the example described in Figure 3. The
addJob action belongs to the mustDelegate part of S of both the tester (for task
T2) and the field user (for task T3). Therefore, the field user is able to complete
task T2, which was intended for the tester only. Violations of this type can be
solved by splitting the action in two parts, namely one action for each task.

3.3 Heuristic-Based Techniques

The types of violation mentioned above are most likely going to be sources of
flaws in the end system if they are not resolved, e.g., via the transformations
described in [4]. These violations are sharply identified by means of the formally-
based techniques described so far.

More potential violations can be identified by means of heuristic-based tech-
niques. However, this type of violations should be handled warily. Rather than
being crisp indicators of architectural weaknesses, they represent attention points
for the architect and the implementers.

For instance, the names of the actions and their parameters can be used to
conjecture whether two actions of the same component use some internal shared
state and, therefore, can cause unplanned interactions. E.g., modifyFeedback and
getFeedback will probably access the same attribute. This heuristic estimates
whether the result of an action can be influenced by an external principal that
tampers with the shared state. Violations of this type can be solved by split-
ting the component into smaller (segregated) parts and executing each part by
independent processes (i.e., under different principals).

However, in order to be certain that a real interaction exists, additional infor-
mation must be provided. In case the architecture of an existing system is being
evaluated, the code of the two actions can be analyzed. Alternatively, a formal
specification of the pre- and post-conditions of the two actions must be present.
Unfortunately, this kind of documentation is hardly available for real-world soft-
ware architecture artifacts and, hence, it is not assumed to exist in the context
of this work.

The analysis tool implements heuristics similar to the one mentioned above
and the formal model is used to direct the analysis. The “corners” of the ar-
chitectural design where potential (shared state) interactions can take place are
scoped by means of the model, as shown in Figure 4(c). The actions belonging

Automated Detection of LP Violations 159

to the intersections marked as D are screened against the heuristic-based rules.
This reduces the number of false positives that might be produced if the entire
architecture were evaluated.

3.4 False Positives

It is hard to conceptually assess the number of wrongly detected violations (false
positives) and unidentified violations (false negatives) until the system has been
implemented. However, as a rule of thumb, violations of type C and D are more
likely to contain false positives and, hence, deserve special attention. Indeed, the
implementation logic of the actions causing a violation of type C can ensure that
the principals only follow their legitimate execution path. Hence, the violation
will not become manifest as a flaw in the implemented system. Further, violations
of type D can be false positives if the necessary controls are enforced to prevent
any influence between the actions causing the violation.

4 Validation

The approach presented in this paper has been validated by means of four case
studies, one of which is more extensively presented in this section. The case
studies are, in order of increasing size, (i) a modified version of the chat system
delivered with ArchStudio [6], (ii) a conference management system [13], (iii)
a digital publishing system [11], and (iv) a banking system [7]. The size of the
case studies, in terms of components, actions and tasks is summarized in Table 1.
Note that each component is executed in a stand-alone process running under a
different principal.

Table 2 summarizes the results obtained by analyzing the case studies. Later
in this section, the banking case study is elaborated upon in order to appreciate
the type of problems that can be encountered in practice. However, we first draw
some general observations about the overall trends in the numbers. The authors
have screened the results obtained from the tool and no false positives were

Table 1. Size of the case studies

Chat System Conference System Publishing System Banking System

Components 3 8 13 18

Actions 6 27 82 106

Tasks 2 11 22 22

Table 2. Number of detected violations for the case studies

Chat System Conference System Publishing System Banking System

Type A 0 0 1 28

Type B 2 0 7 9

Type C 0 2 6 13

Type D 2 15 90 6

160 R. Scandariato, K. Buyens, and W. Joosen

Fig. 5. Excerpt of the banking system’s architecture

detected. In general, formally-based violations (type A, B, and C) tend to grow
with the size of the case study, which is not surprising. As far as heuristic-based
violations (type D) are concerned, this pattern has not been observed.

Type A violations (unnecessary permissions) represent the low-hanging fruit.
Therefore, they are a strong indicator of poor architectural coherence, which
becomes manifest with larger case studies. In particular, the violations in the
banking system are caused by the assignment of permissions that are too coarse-
grained, while the violation in the publication system is due to an action that
is not used by any of the defined tasks. Type B violations (shortcut in a task)
are an indicator of missteps made by the architect, typically because a complex
system has evolved over time. Type C violations (interacting tasks) are often due
to “fat” actions that implement multiple functional requirements, or by tasks
interacting with a general-purpose component (e.g., a database). For instance,
the number of these violations is higher in the banking system, because many
tasks use the same data access actions.

4.1 Banking System: Architecture and Permissions

The banking system case study has been chosen because the documentation con-
tains the required views for our analysis, including a partial mapping between
permissions and actions. The system supports two major scenarios: banking em-
ployees use the system in their everyday operations (20 tasks), while customers
can connect from home (2 tasks). The system is able to handle accounts man-
agement and financial transactions such as wire transfers.

As shown in Figure 5, the logical view decomposes the system into four tiers.
The client tier consists of components used by a customer or employee to in-
teract with the web tier (CustomerClient and EmployeeClient, respectively). The
web tier relays user requests to the application logic tier. The application is

Automated Detection of LP Violations 161

Fig. 6. Task Execution Model for a subset of the banking system

responsible for processing the incoming transactions, while the data tier stores
the results of these transactions. The application tier consists of an Authoriza-
tion component handling access control decisions (not shown in the figure), an
AccountManagement component handling account information, and a Financial-
Transaction component providing the logic for processing financial transactions.
The Persistence component is used as proxy for the data tier.

The process view was not defined in the architectural documentation. Hence,
we assume that every component runs in its own process and with its own
principal. The results are comparable to the case of separate principals per tier.

Figure 6 shows a small subset of the complete Task Execution Model. The
figure only contains the following tasks:

– Wire transfer : a customer wants to add a wire transfer to a list of pend-
ing transactions. This task (dashed arrows) is executed in two phases. In a
first phase, the CustomerClient initiates the wire transfer by accessing the
initiateWireTransfer action of the web tier. This tier forwards the request to
the application tier via the prepareWireTransfer action. By interacting with
the Persistence component, the application logic retrieves information about
the customer executing the wire transfer, the customer the money should be
wired to, and the account details for both. In a second phase, the validated
order is presented to the user for the final approval (via the confirmWire-
Transfer).

– Wire transfer for customer : a bank employee executes a wire transfer on
behalf of a customer. This is similar to the previous task and, therefore,
dashed arrows are used.

162 R. Scandariato, K. Buyens, and W. Joosen

(a) Type A and B. (b) Type C.

Fig. 7. Violations of LP in the banking system

– Create new account : an employee creates a new customer. This task (solid
arrows) executes in two phases as above.

The security view was only partially defined in the architectural documentation.
The defined permissions included the modify account permission, which allows
principals to modify account details or pending transactions by accessing both
the doWireTransfer and the createNewAccount actions. Some other permissions
were defined in the documentation, but no mapping to the corresponding ar-
chitectural actions was provided. In this case, the mapping has been manually
added. This was straightforward, as the permission name indicated its relation
to the architectural actions. Finally, the principal-permission assignments were
missing. These have been inferred via the algorithm in Section 2.2.

4.2 Banking System: Analysis

The analysis technique identified all types of violations. However, we dwell on
the formally defined violations only (A, B and C), which represent the core
contribution of this paper.

A first set of violations (type A) is related to the permission granularity (28
violations). For instance, consider the FinancialTransaction principal in Figure 6.
It can call the createNewAccount action but need not to access that action to
complete its tasks. This happens because the modify account permission is too
liberal. This is illustrated in Figure 7(a), where the createNewAccount action is
a violation for the FinancialTransaction principal. As a consequence, an attacker
penetrating into a component running as this principal can create an employee
account and perform the actions an employee is allowed to do. This problem can
be solved by splitting the permission as described earlier.

A second type of violations (type B) is related to shortcuts (9 violations). For
instance, consider the FinancialTransaction principal in Figure 6. The principal
is supposed to ask the CustomerClient for confirmation via the WebFinancial-
Transaction (see the dotted arrow). However, it can skip this step and invoke
the doWireTransfer action directly, as it is responsible for this action itself. This
is illustrated in Figure 7(a), where the doWireTransfer action is a violation for
the FinancialTransaction principal. This violation can be solved by splitting the
FinancialTransaction principal in two principals.

Automated Detection of LP Violations 163

A third type of violations (type C) is related to the action granularity (13
violations). For instance, consider the CustomerClient principal in Figure 6. It
violates LP because the system cannot refrain the CustomerClient from execut-
ing wire transfers on behalf of customers (employee’s task) via the initiateWire-
Transfer web action. As a consequence, a customer and an employee are able
to perform wire transfers on behalf of each other. This is illustrated in Figure
7(b), where the initiateWireTransfer action is a violation for the CustomerClient
and the EmployeeClient principals. To solve this violation, one could introduce
different actions (and permissions) for wire transfers executed by the employee
and the customer, respectively. Alternatively, one could transform the task by
introducing a third party (e.g. a manager) that manually verifies whether the
transaction is allowed.

4.3 Discussion

A number of observations driven by the results of our experiments are worthy
to be discussed further.

Applicability. The class of systems that can be analyzed by the presented ap-
proach are (distributed) systems with support for action level security. Indeed,
the approach depends on the notion of permission as the right to invoke an oper-
ation provided by a component. Applications depending on OS-level permissions
(e.g., for files and sockets), are analyzable at the architectural level on condition
that the list of the used permissions is provided. However, often such list remains
implicit until the system is actually implemented.

Extensions. The presented approach is suitable to analyze the correct en-
forcement of (static) separation of duty policies at the architectural level. A SoD
policy can be specified as (or mapped to) a desired Task Execution Model in-
stance where the task is split over different swim lanes, corresponding to the
different, to-be-separated responsibilities. The analysis tool can be used to check
whether the architecture enforces the SoD policy, as specified.

Limitations. One should carefully interpret the violations identified by the
analysis technique before attempting to solve them. An architect often makes
a trade-off between LP and other security properties (as well as other non-
security qualities). For instance, some security-specific components, like an Audit
Interceptor or a Single Access Point, can be purposely used to implement a full-
mediation strategy. Hence, all tasks are forced to interact with those components.
As a consequence, several (intended) violations of type C are produced. A LP-
specific transformation meant to solve these violations could break the overall
architectural integrity.

5 Related Work

Related work focusses on (i) program separation, (ii) model checking, and (iii)
execution monitoring.

Program separation, a technique to split a program in multiple processes, has
been successfully applied in applications such as qmail to minimize trust [2].

164 R. Scandariato, K. Buyens, and W. Joosen

Our least privilege approach provides a systematic and automated means for
program separation at architectural level. Another more general approach is
privilege separation, which partitions an existing program into two processes:
a privileged monitor and an unprivileged slave [3]. Our approach enhances this
technique by optimizing the number of privileged processes.

Model checking techniques are used to verify whether a design meets certain
security properties. Rubacon is a tool that checks whether an application model
(in UML) and its configuration data (such as security permissions specified as
RBAC rules over SAP transactions) comply to the security policies that arise
from business regulations, like separation of duty [8]. These policies are spec-
ified via a custom GUI and the tool verifies whether the permissions actually
implement the policies. Our work shares a similar spirit (automating the archi-
tectural analysis) but takes a more general perspective. Our goal is to check
the compliance vis-a-vis the security principles. The techniques presented here
can be adapted to the special case of checking compliance to business polices, as
outlined in the discussion section. Jürjens mentions that UMLSec can be used to
formulate LP requirements and verify the system specifications with respect to
them [10]. However, no further details are given about the method to be used.
Secure xADL is a connector-centric approach for architectural access control,
which extends xADL with access control concepts [15]. Our tool chain could
be adapted to process secure xADL descriptions in order to identify authorized
accesses that violate LP.

Execution monitoring is a technique that limits the privileges assigned to a
program. Based on policies, these techniques block system calls, access to file, and
the use of network resources. An examples is Systrace [14]. These mechanisms
have two drawbacks. First it is hard to specify policies in terms of application-
specific resources and functions, because these do not always map to files and
system calls, as illustrated in [18]. Second, these mechanisms limit the number
of privileges at run-time (impacting the run-time performance), while our work
ensures that the privileges are limited by construction.

6 Conclusions and Future Work

This paper proposes a technique that automates the identification of least privi-
lege violations in software architectures. To this aim, the concept of architectural-
level least privilege has been modeled formally. This model has been leveraged
to create a technique that analyzes an architecture for violations starting from
conventional documentation. The approach has been validated by means of four
case studies, one of which has been presented in detail.

In future work, the authors plan to apply the same formal approach to other
security principles and study the interplay (and trade-offs) among the principles.

Acknowledgements. This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science Policy, and by the
Research Fund K.U. Leuven.

Automated Detection of LP Violations 165

References

1. Barkley, J.: Comparing simple role based access control models and access control

lists. In: ACM Workshop on Role Based Access Control, RBAC (1997)

2. Bernstein, D.J.: Some thoughts on security after ten years of qmail 1.0. In: ACM

Workshop on Computer Security Architecture (2007)

3. Brumley, D., Song, D.: Privtrans: Automatically partitioning programs for privilege

separation. In: USENIX (2004)

4. Buyens, K., De Win, B., Joosen, W.: Resolving least privilege violations in software

architectures. In: Workshop on Software Engineering for Secure Systems, SESS

(2009)

5. Buyens, K., Scandariato, R., Joosen, W.: Process activities supporting security

principles. In: International Workshop on Security in Software Engineering, IWSSE

(2007)

6. Dashofy, E., Asuncion, H., Hendrickson, S., Suryanarayana, G., Georgas, J., Taylor,

R.: Archstudio 4: An architecture-based meta-modeling environment. In: ICSE

Companion (2007)

7. Debie, E., De Ryck, P.: Non-repudiation middleware for web-based architectures.

Master’s thesis, Katholieke Universiteit Leuven (2009)

8. Höhn, S., Jürjens, J.: Rubacon: automated support for model-based compliance

engineering. In: ICSE (2008)

9. Howard, M., Lipner, S.: The Security Development Lifecycle. Microsoft Press

(2006)

10. Jürjens, J.: Secure Systems Development With UML. Springer, Heidelberg (2005)

11. Van Landuyt, D., Grégoire, J., Michiels, S., Truyen, E., Joosen, W.: Architec-

tural design of a digital publishing system. Technical Report CW465, Katholieke

Universiteit Leuven (2006)

12. MSDN Library. Access control lists, http://msdn.microsoft.com

13. Morandini, M., Nguyen, D.C., Perini, A., Siena, A., Susi, A.: Tool-supported de-

velopment with tropos: The conference management system case study. In: Luck,

M., Padgham, L. (eds.) AOSE 2007. LNCS, vol. 4951, pp. 182–196. Springer, Hei-

delberg (2008)

14. Provos, N.: Improving host security with system call policies. In: USENIX Security

Symposium (2003)

15. Ren, J.: A connector-centric approach to architectural access control. PhD thesis,

University of California Irvine (2006)

16. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.

Proceedings of the IEEE 63(9), 1278–1308 (1975)

17. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: The protection of infor-

mation in computer systems. IEEE Computer 29(2), 38–47 (1996)

18. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information

and System Security 3(1), 30–50 (2000)

19. Viega, J., McGraw, G.: Building Secure Software. Addison-Wesley, Reading (2002)

20. White, S.A.: Business process modeling notation. BPMI.org (2004)

21. Wing, J.: A call to action: Look beyond the horizon. IEEE Security & Privacy 1(6),

62–67 (2003)

http://msdn.microsoft.com

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 166–181, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Architecting a Model-Driven Aspect-Oriented Product
Line for a Digital TV Middleware: A Refactoring

Experience

Diego Saraiva, Lucas Pereira, Thais Batista, Flávia C. Delicato, Paulo F. Pires,
Uirá Kulesza, Rodrigo Araújo, Tássia Freitas, Sindolfo Miranda,

Ana Liz Souto, and Roberta Coelho

Computer Science Department, Federal University of Rio Grande do Norte (UFRN),
59072-970, Natal – RN, Brazil

{diegosaraiva,lucasilpe,thaisbatista,fdelicato,paulo.f.pires,
uirakulesza,fenrrir,tassiafreitas,

sindolfo.miranda.filho,analiz,souzacoelho}@gmail.com

Abstract. In this paper, we present the experience of refactoring the architecture
of Ginga, the Brazilian Terrestrial Digital TV System (SBTVD) middleware.
The main goal of the Ginga refactoring was to increase its configurability,
through the automatic management of its variabilities. The resultant middleware,
named GingaForAll, is based on a software product line (SPL) architecture,
which encompasses both the middleware commonalities and its specific func-
tionalities. Aspect-oriented techniques were used to improve the modularization
of crosscutting mandatory and variable features from the Ginga SPL architecture.
A model-driven based process was developed to allow the automatic manage-
ment of the common and variable features in a high abstraction level that
supports the management of code assets in terms of configurable models. The in-
tegration of such software engineering techniques have contributed to provide
a flexible and configurable Ginga architecture, which allows the automatic gen-
eration of middleware customizations driven by the devices constraints and
applications needs.

Keywords: architecture refactoring, software product lines, model-driven
development, aspect-oriented development, configurable middleware.

1 Introduction

The development of middleware systems to support digital TV applications has been
facing challenges due to the heterogeneity and resource constraints of the execution
platforms, as well as different requirements of applications that may run in such plat-
forms. In this scenario, the middleware has to be highly configurable in order to be
tailored to meet both the application needs and the constraints of the underlying plat-
form or specific target devices. For instance, if the underlying hardware does not have
an enabled network board, the middleware does not need to include functionality to
receive video via IP (IPTV). In order to adapt the middleware to fit the needs of the

 Architecting a Model-Driven Aspect-Oriented Product Line 167

target customer, platform or device in which it will be deployed, it is necessary to
define different service configurations to the same (base) middleware.

This problem can be addressed by using the software product line approach (SPL)
[9] that supports the creation of a portfolio of similar products using a common soft-
ware infrastructure to assembly and configure parts designed to be reused across
products. SPL approaches identify commonalities of all family members, as well as
features that vary among members of the family, the variabilities. Thus, members of a
family have a basic set of common functions with many variants. A fundamental chal-
lenge in this context is to manage the variabilities by defining the variation points and
the dependencies between them. Aspect-oriented software development (AOSD) [10]
has been recently explored in the development of SPLs since many common and
variable concerns has a crosscutting nature and cannot be suitably modularized with
conventional variability mechanisms, such as conditional compilation or inheritance
[2]. Therefore, AOSD can be used to support improved modularity of crosscutting
concerns, expressing them as aspects that can be added/removed to/from the middle-
ware architecture according to the different underlying platform or application
requirements.

In this paper, we present the experience of refactoring the architecture of Ginga,
the Brazilian Terrestrial Digital TV System (SBTVD) middleware, in order to build a
family of products, named GingaForAll. Such refactoring was built based on the SPL
and AOSD approaches and its main goal was to increase the Ginga middleware con-
figurability, through the automatic management of variabilities. In order to increase
the abstraction level of the SPL development, we developed a model-driven based
approach [11] to allow the automatic management of the common and variable
features at the modelling level, thus supporting the management of assets in terms of
configurable models. Therefore, models are first-class reusable assets in the Ginga-
ForAll development lifecycle.

Initially, this paper presents the Ginga-CC architecture (Section 2) and its main
drawbacks. Next, it presents the GingaForAll architecture (Section 3) composed of
different models that address the middleware commonalities and variabilities. We also
present (Section 4) the model-driven (MDD) process developed to the automatic vari-
ability management. It is implemented by a tool designed to configure and assembly
the architectural middleware components to generate a specific product (an instance
of the GingaForAll middleware). This tool provides a systematic way to automate the
process of generating a specific product. A case study is briefly illustrated in Section
5. Section 6 contains the related work and Section 7 presents the final remarks and
lessons learned.

2 Ginga Common Core Architecture

As in all major terrestrial Digital TV (DTV) Systems, Ginga middleware supports the
execution of both declarative and imperative applications. Ginga architecture is com-
posed of three main modules: (i) Ginga-NCL provides an execution environment for
declarative applications; (ii) Ginga-J provides an execution environment for Java
applications; and (iii) Ginga Common Core (Ginga-CC) provides a set of common
digital TV services for both Ginga-NCL and Ginga-J execution environments,

168 D. Saraiva et al.

allowing such applications to run on a Digital TV set-top box. Since our work aims at
refactoring Ginga-CC, the remaining of this section will focus on its architecture.
Figure 1 shows the main elements of Ginga-CC architecture.

The Tuner component offers an API for TV channels management and it is respon-
sible for selecting a specific source of Transport Stream (TS). When such stream is
selected, it is sent to the TSParser component. TSParser demultiplexes the content of
the selected TS in elementary flows, and sends such flows to the DataProcessing
component. DataProcessing, then, properly processes the information from such ele-
mentary flows, according to the type of the information sent. If such information
comprises an application flow, for instance, DataProcessing may load and run such
application. The Player component comprises content decoder/players for some me-
dia formats such as H264 video and AAC Audio.This component depends on the
System component, which is in charge of managing every data storage requested by
applications. The UpdateManager is responsible for downloading and executing mid-
dleware updates. It establishes the connection to the Internet through the Interaction
Channel component. Finally, the ComponentManager component implements the
Abstract Factory design pattern, and it is in charge of creating every other component
that composes the Ginga-CC architecture.

Fig. 1. The Ginga-CC architecture

The current Ginga-CC architecture presents the following shortcomings: (i) it is
multi-use and designed to satisfy a broad range of DTV applications. A manual cus-
tomization is needed to adapt it to platforms with more stringent resources or specific
applications that do not need a plethora of functionalities. The manual customization
is a time-consuming and error-prone activity; (ii) the presence of crosscutting con-
cerns and a strong coupling between the classes that compose the middleware makes
the customization even harder and after the customization process the resulting archi-
tecture can contain remnants crosscutting concerns; (iii) this architecture is based on
components, but the customization process requires the manual modification of fine-
grained code inside these components. This low level specialization process requires a
lot of reimplementation of the functionality of the original component; and (iv) there

 Architecting a Model-Driven Aspect-Oriented Product Line 169

is no high level representation of the architecture, as a consequence customizations
relies on tailoring the middleware code.

The set of shortcomings aforementioned motivated the refactoring of the original
architecture in order to isolate crosscutting concerns, as well as to define a SPL-based
architecture. SPL provides mechanisms to efficiently manage the variability of an
application domain. However, this technique does not eliminate the problems arising
from the presence of crosscutting concerns. Thus, the aspect-oriented development
was applied to separate and compose crosscutting concerns in terms of features,
allowing to (un)plug these features of the SPL core architecture, and providing the
architecture with a higher capacity for adaptation and better modularization. In addi-
tion, model-driven development (MDD) techniques were used to manage the cus-
tomizations at the modeling level, avoiding manual modifications at code level, thus
improving the traceability and documentation of commonalities and variabilities of
the middleware.

3 Refactoring the Ginga Architecture

In this section, we detail the refactoring of Ginga architecture. Such refactoring was
organized into three activities: (i) identification of the features that appear in Ginga in
order to define the feature model of the GingaForAll SPL (Subsection 3.1); (ii) defini-
tion of the base and the crosscutting models (Subsection 3.2); and (iii) definition of
the variability model to SPL (Subsection 3.3). The definition of the base, crosscutting
and variability models was necessary to provide the automatic management of the
Ginga variabilities, allowing the generation of different customizations (products)
according to the user and plataform needs.

The first activity of the refactoring process was the specification of the feature
model, defining the common and variable features of a family of related products.
This model allows the identification of variabilities as well as dependency and exclu-
sion relationships between the features. The second activity of the process was com-
posed of two steps: (i) the design of the base model - composed of elements that are
common to all products generated by the SPL (in particular for the Ginga-CC, the
base model contains all mandatory features for the reception of TV signals with no
optional feature); and (ii) the aspect-oriented refactoring of the base model – ad-
dressed the modularization of the crosscutting concerns, such as synchronization and
security, which are tangled with other features of the middleware. Finally, the third
activity of the refactoring process received as input the base and the feature model
and produced, as output, the variability model. This activity was divided into two
steps: (i) building the variability model for Ginga – presenting how the optional
and alternatives features identified in the feature model are addressed in the SPL ar-
chitecture; and (ii) the aspect-oriented refactoring of the variability model in order to
modularly manage the variable features. The use of aspects, therefore, allows the
flexible adaptation of the Ginga architecture to particular requirements of each prod-
uct. The ability to extend and adapt the Ginga-CC SPL architecture is directly related
to the flexibility offered by the variation points, since the various combinations and
configurations of these points determine the creation of SPL products Therefore, it is

170 D. Saraiva et al.

essential that the variation points to be generic, extensible and well modularized. The
following sections detail the models created during the refactoring process.

3.1 Feature Model

The first step when using a SPL approach to create a family of products is to perform
the domain analysis, where commonalities and variabilities are specified in terms of
features. A feature is a concept that is prominently visible to any stakeholder involved
in the development of applications [1]. Features are organized in feature models, in
order to explicit the different configuration options of the products.

The specification of variabilities for Ginga starts with the identification of features
of this domain, which are represented by a feature model. In this model, three types of
relationships are found : (i) composed of, when a feature is composed of several sub-
features, (ii) generalization or specification, when a feature is a generalization of
sub-features and (iii) implemented by, when a sub-feature is needed to implement a
feature. Figure 2 illustrates a partial view of the Ginga-CC feature model. Next we
detail the most relevant features raised by the Ginga architecture refactoring.

The Tuner feature is responsible for selecting the physical channel of signal trans-
mission. The transport stream (TS) reception can occur through Terrestrial signal
(Terrestrial feature), Satellite signal (Satellite feature) and over IP (Internet Protocol)
by the IPTV, InternetTV and P2PTV features. InternetTV consists on the retrieval of
the transport stream through the Internet infrastructure. The Application Manager
mandatory feature is responsible for loading, instantiating, configuring, and executing
applications. In addition, it controls the life cycle of applications, and manages the use
of resources and access control. The Resident Applications mandatory feature and its
different optional features represent application platform that can run in the middle-
ware, such as GEM (Globally Executable MHP), JavaDTV and NCL/Lua.

Fig. 2. Ginga-CC’s Feature Model

The Media Processing mandatory feature manages the processing of multimedia
data and makes them available to other components of the middleware. The Video
feature has mandatory support to H.264 (video compression standard) and, optionally,
to MPEG2. The Audio feature has mandatory support to AAC Feature (Advanced
Audio Coding, audio compression standard), MP3, WAV, MIDI. Application,
other optional feature, is responsible for interpreting applications implemented in
XHTML (XHTML feature), NCL (NCL feature), etc. Data Processing is the feature

 Architecting a Model-Driven Aspect-Oriented Product Line 171

responsible for accessing, processing and providing elementary data streams to other
middleware components. Additionally, it is also responsible for notifying other com-
ponents on the occurrence of events, such as updating of applications, synchroniza-
tion, etc. The Input Manager mandatory feature has Remote Control (RC), Keyboard,
Mouse, Cell phone, PDA, Smartphone, Pocket-PC as alternative features, requiring
the choice of at least one. The Return Channel feature is optional and refers to the
technology used in the return channel to connect to the Internet.

In the ISDB-T system (Integrated Services Digital Broadcasting Terrestrial), each
channel has 13 segments. Transport Stream (TS) mandatory feature represents the
type of the selected transport stream. The one-segment stream (1Seg Feature) consists
of a TS stream with low resolution video, filling only one segment. The middleware
can be developed to play only the 1Seg or to play all streams of the channel, repre-
sented by the FullSeg Feature.

Table 1. Features relationships

Feature Sub-feature Relationship Feature
JavaDTV, GEM ou

NCL/Lua
Dependence

Data Processing,Application
Assembly

NCL/Lua
Complementary

Dependence NCL/Lua Basic
Application
Manager

NCL/Lua Basic +
Complementary

Dependence
All the formats specified in the

Media Processing

Exclusion
Return Channel Dial-up,
ADSL, Ethernet, ISDN

Exclusion Input Manager Mouse, RC
Dependence Flow 1Seg

Exclusion
Application Manager

JavaDTV e GEM

Platform Mobile

Dependence Return Channel GPRS

Besides the three types of relationships previously mentioned, the feature model

can also be used to represent two types of relationship constraints: (i) dependence–
the selection of a feature implies the selection of features on which it depends; and (ii)
exclusion– the selection of a feature automatically excludes the selection of other
ones. Table 1 shows the dependency and exclusion constraints among the features.

3.2 Base Model

The base model defines the aspect-oriented (AO) reference architecture of the Ginga
SPL. It consists of the core reusable assets (packages, classes, aspects) that are com-
mon to all products of the product line. In the case of Ginga-CC, the base model
contains all the core assets that address the mandatory features for the reception of the
TV signal. Therefore, the base model has no optional feature. Figure 3 depicts the
GingaForAll base model, showing the packages that compose the base model and
their main classes. Packages containing classes crosscutted by aspects (Synchroniza-
tion, Distribution/Transmission and Resource Manager) include the correspondent
aspect name as stereotypes. The base model encompasses all Ginga-CC components
that support the mandatory set of functionalities.

172 D. Saraiva et al.

In order to discover the crosscutting concerns present in Ginga-CC, we combine
two strategies. Initially, we used the Feature-Oriented Analysis proposed in [8] - to
discover the main features of the product family including both common and variable
assets - and identify the crosscutting concerns [8]. The details of the process of identi-
fying the requirements is out of scope of this work. Secondly, we have adopted a
strategy based on the use of code level metrics. As we only had the source code of
Ginga-CC, the use of well-known software metrics has revealed to be an effective
way to find out the crosscutting concerns. In our analysis, we applied the following
code level metrics: CBO (Coupling Between Objects classes), MPC (Messaging Pass-
ing Coupling) and DAC (Data Abstraction Coupling). CBO is defined as the number
of classes to which a class is coupled (a class is coupled to other if it uses variables or
operations of another class). For a given class, MPC is the number of invocations of
static methods that are not implemented in this class. DAC is the number of attributes
in a class that have another class as their type. The results obtained from the
coupling metrics confirmed the existence of a strong coupling between some Ginga
entities due to the presence of crosscutting concerns in the Ginga-CC source code.
The complete description of metrics and their results can be found in
http://www.dimap.ufrn.br/gingaforall. From the analysis of the existing Ginga-CC
code, we identify the following concerns as being crosscutting: (i) synchronization,
(ii) resource management and (iii) transmission / distribution of information. The
presence of these crosscutting concerns decreases the system modularity and makes
reuse more difficult in the middleware architecture. In general, crosscutting concerns
increases the coupling between entities. Therefore, we applied AO techniques to
modularize the crosscutting concerns of Ginga-CC.

In the new system architecture (Fig. 3), produced as result of the AO refactoring,
we defined the crosscutting concerns from the original architecture as aspects that
crosscut the Ginga-CC classes. We implemented the three aforementioned crosscut-
ting concerns. In this paper, we detail the Synchronization aspect since it is the more
spread and tangled concern identified in the Ginga-CC components.

Fig. 3. Packages and classes affected by the synchronization aspect

 Architecting a Model-Driven Aspect-Oriented Product Line 173

Synchronization aspect. Ginga uses concurrent programming for properly managing
the execution of multiple threads. The synchronization mechanism is based on
mutexes. From the source code analysis, we detected its implementation as a tangled
and spread concern in several system components. The analysis of the synchroniza-
tion concern showed a strong coupling between the components of the gingacc-player
package and the Thread class, which defines synchronization methods using com-
mands from the pthread library. This coupling is due to the need for synchronization
during the execution of various types of players defined in this package. Results of
applying the coupling metrics shown that 9 of 15 classes of the gingacc-player pack-
age were coupled to the Thread class. To reduce this coupling, we characterized
synchronization as a crosscutting concern. There was a strong coupling between gin-
gacc-ic, gingacc-player, and gingacc-system packages and the pthread library due to
the invocation of synchronization commands. Modeling the synchronization concern
as an aspect is straightforward: the aspect must intercept the specific fragments of
code that need to be protected by synchronization mechanisms. After the interception,
the aspect injects the synchronization code into the intercepted elements. The modu-
larization of the synchronization crosscutting concern as an aspect improves the
middleware modularity. It also contributes to a better readability of the source code,
as the classes will contain only the application logic, the synchronization is handled
by aspects.

3.3 Variability Model

The variability model defines extension points on the base architecture to adapt the
SPL to the requirements of each product. The main goal of this model in our approach
is to allow a better management of existing variability in the GingaForAll product
family. We applied the methodology proposed by Braga [3] to determine the modu-
larization approach to be used in the development of features. Optional features are
natural candidates to be modeled as aspects since they can be easily inserted to and
removed from the code. The modularization of optional features depends on the core
SPL architecture and therefore it requires an individual analysis of each optional fea-
ture for determining the best programming paradigm to be applied.

In the implementation of the Ginga-CC variations, the AO approach was employed
with different purposes: (i) to extend the product line core classes to include addi-
tional behavior, such as 3G authentication and persistence; and (ii) to redefine the
behavior of classes in the core product line to adapt them to new requirements that
were not planned during the design phase.

Figure 4 shows the class diagram with the aspects that add optional features to the
core of Ginga-CC. Our variability model is composed by classes and aspects.

The variation points implemented as inheritance and polymorphism were: (i) De-
mux and Platform since their variations depend on the hardware APIs; and (ii)
MediaProcessing since its code is well modularized and is easy to extend. In Me-
diaProcessing, each media player extends the iPlayer interface. Thus, to support new
media formats, we can extend the current MediaProcessing architecture just imple-
menting new classes that inherit from the IPlayerinterface or any of its subclass. We
detail the Tuner and InputManager variation points. The others variations follow the
same approach.

174 D. Saraiva et al.

Fig. 4. Class diagram of Ginga-CC representing variability as aspects

Fig. 5. Modeling the Tuner variation point

Tuner Variation Point. This variation point refers to the selection of the physical
transmission channel. It was mapped to the Tuner component. Figure 5 shows the
design of features related to the Tuner. New classes of data providers should be im-
plemented to provide support to the addition of new features. For example, in Figure
5, PPLiveProvider class was added to implement the PPLive feature. This new class
could be able to retrieve streams using the protocol adopted by the PPLive network
[4]. Obviously, if more than one peer-to-peer protocol is supported, new Provider
classes needed to be implemented. Thus, PPLiveProvider performs adaptation in the
middleware to support different types of peer-to-peer. To allow the easy runtime acti-
vation of the features associated with this variation, one aspect was created for each
associated feature, which acts on the method initializaInterfaces() of the Tuner class.
In Figure 5, the PPLive feature is represented as the PPLiveAspect.

The open-closed principle states that software architecture should be open for ex-
tension, but closed for modification; that is, an entity can allow its behaviour to be

 Architecting a Model-Driven Aspect-Oriented Product Line 175

modified without changing its source code. In the specific case of the Tuner architec-
ture, the opening for extension is supplied by the data provider class hierarchy whose
base class is DataProvider. We decided to keep the original code closed for modifica-
tion, so that only the aspects need to be modified to implement and deal with new
features. Thus, the addition of a new provider will require the implementation of a
new aspect for each new feature, without modifying the base code previously devel-
oped. Figure 5 shows the definition of a new feature called PPLiveAspect.

The Tuner class instantiates and keeps track of all channels created at runtime. It
implements the initializeChannels() method for instantiating the different kinds of
channels supported by the middleware (for example, a file system channel, an IP
channel, etc). Each channel is represented by a different NetworkInterface object,
which is responsible for creating an internal DataProvider object that implements the
data retrieving mechanism for that channel. The method responsible for the creation
of data providers is the createProvider() method of NetworkInterface. It works as a
factory method for different kinds of data providers. The operation of PPLiveAspect is
quite simple. It defines the initializeChannels() pointcut specifying the methods that
performs the channel initialization process. PPLiveAspect acts before the initial-
izeChannel() method to advise it to instantiate a NetworkInterface responsible for
creating a given channel type, in this example, a P2P channel. In addition, it defines
the createProvider pointcut in order to intercept the createProvider() method execu-
tion, allowing this method to create a specific kind of data provider, in this case,
PPLiveProvider. The approach adopted for the PPLive aspect is generic enough to
modularize other alternative features planned for the Tuner variation point (H323,
SIP, Joost, SopCast and HTTP).

Fig. 6. Modeling the input manager variation point

InputManager Variation Point. It supports different mechanisms to receive user
events. We also applied AO modeling to modularize this feature allowing its easy
(de)activation from the Ginga-CC core architecture. Figure 6 shows an aspect that
handles bluetooth input devices. It intercepts the input manager to capture input
events sent by the Bluetooth device. It acts before the addInputEventListener()
method call, where it adds the listener specified in the parameter as its own listener,
through the specification of the pointcut and advice addInputEventListener. Thus, the
call before registering the listener on an InputManager keyboard, now connects the
listener via bluetooth and keyboard. As previously mentioned, each feature should be
implemented as an aspect and if more than one feature is selected, more than one
aspect will act on the addInputEventListener() method adding the listener on their
own listeners list.

176 D. Saraiva et al.

4 Automatic Variability Management

In this section, we present an overview of the MDD approach developed to support
the automatic management of variabilities in the GingaForAll product line architec-
ture. Our approach encompasses a MDD based process composed of systematic
activities that are used to automatically transform and refine the models that define
the GingaForAll architecture. This approach automatically interconnects features and
core assets (classes and aspects) of the architecture. It supports the product derivation
from the set of models previously presented (Section 3) in order to automatically cus-
tomize and derive specific instances of the Ginga middleware.

Figure 7 illustrates the main activities of the proposed process and the different ar-
tifacts (models, metamodels) and transformations used to allow the automatic deriva-
tion of middleware instances (products). The activities presented in Figure 7 are
supported by the GingaForAll tool. It implements the functionalities to create all
models and transformations comprised in the process using the metamodels, which
are also provided by the tool.

Fig. 7. Overview of the Model-Driven Approach

In the first activity - Build the Feature Metamodel two metamodels are produced:
(i) the Feature metamodel that is an Ecore model specified by the domain engineers
using EMF (Eclipse Modeling Framework); (ii) a feature UML profile generated by
a model-to-model (M2M) transformation from the feature metamodel in order to al-
low the creation of different stereotypes that represent all the features in the build the
referenced architecture activity. The feature metamodel contains all possible fea-
tures of Ginga-CC with their respective constraints and relationships. It is used in a
further activity (Generate the product activity) for the definition of the GingaCC
feature model. The feature metamodel allows the instantiation of different feature
model instances, each one describing the configuration of a specific product. The
feature model instance is called product configuration. It is further used by the Gen-
erate the Product activity to select entities (classes, aspects, interfaces, methods, and

 Architecting a Model-Driven Aspect-Oriented Product Line 177

so on) from the referenced architecture related with the selected product. The feature
UML profile allows the use of UML stereotypes in the architectural units (classes
and interfaces) in order to indicate the features that these architectural units are asso-
ciated to. This profile is an UML 2.1 diagram composed of all features specified in
this model.

The Build the Base Architecture activity consists of modeling the GingaForAll
architecture. The artifacts produced in this step are the UML class diagrams that rep-
resent the specification of the architecture for the purpose of generating the base
architecture (presented in Section 3.2) with all elements. The Build the Referenced
Architecture activity consists of annotating the elements of the architecture model,
using the UML profile produced as result of the Build the Feature Metamodel activ-
ity. Each stereotype of the UML profile specified inside an element (class and inter-
faces) indicates the direct relationship between a feature (stereotype) and the element.
The application of the feature UML profile stereotypes in the base architecture gener-
ates a class diagram, called the referenced architecture. This architecture is afterward
used in the Generate the Product activity to identify the desired features for each
product. This artifact is also used by a model transformation (M2T) to generate the
Ginga-CC source code. Futhermore, the Generate the Product activity performs an
aspect weaving over the elements of this model. The weaving integrates the aspects
(of the aspect model) in the referenced architecture.

The Build the Aspect Metamodel activity consists of defining and modeling the
aspects (crosscutting concerns) identified in Ginga-CC. The aspect metamodel is used
to specify the aspect model (aspects and pointcuts). An aspect metamodel specifies
the aspects and pointcuts of a SPL architecture. The Build the Aspect Model activity
consists of defining the aspects pointcuts. The aspect model is built here and it is an
instance of the aspect metamodel. The aspects can also be annotated using UML
stereotypes - in the same way the elements of the architecture model are – indicating
which feature(s) an aspect is related to. The aspect models are used by the Generate
the Product activity to perform aspect weaving over the referenced architecture.

The Build Component model activity consists of selecting the specific deployment
platform to a given product and it includes the instantiation of the platform specific
metamodel (PSM), the component model. The component model is a UML Profile
defining stereotypes to represent concepts of the employed component model. This
profile provides additional information about the component implementation, allow-
ing the automatic generation of the component source code. The Select the variabili-
ties activity consists of a product configuration process in which the optional and
alternative features are selected in order to make explicit the specific product of Gin-
gaForAll that an engineer is interested to generate. The selection of variabilities con-
sists of the instantiation of elements from the feature metamodel - built on Build the
feature metamodel - by selecting features from this metamodel for the generated
product. In this activity, a product configuration is produced. The elements of the
feature model are in accordance with the requirements of the product to be generated.

Finally, the last activity – Generate the Product - consists of generating a product.
This activity receives as input: (i) the platform specific models (PSM) generated as
output of the Build component model activity; (ii) the referenced architecture
produced in the Build the Referenced Architecture activity; (iii) the feature model
instance produced in the Select the variabilities activity; and (iv) the aspect models

178 D. Saraiva et al.

from the Build Aspect Model activity. The GingaForAll tool generates, as result, the
Ginga-CC model of the selected product and also the C++ code. The complete speci-
fication of the tool can be found in: http://www.dimap.ufrn.br/gingaforall

5 Case Study: Ginga IPTV and Ginga Zapper Products

This Section illustrates our approach by presenting two possible software products
(the middleware itself) that can be built using GingaForAll. The first product is called
Ginga IPTV. It includes support for IPTV tuner and for running NCL and Java appli-
cations. The second product, called zapper, includes only basic functionalities and is
not able to execute applications transmitted by the TV broadcasters. Such product is
targeted to low cost set-top box and to limited hardware capabilities, and the underly-
ing middleware needs to be tailored to such constrained environment. Table 2 shows
the features selected for Ginga IPTV and for Zapper.

Table 2. Features for the Ginga Zapper product

 Ginga Zapper Ginga IPTV
Variation Points Variant Variant
Tuner Terrestrial Terrestrial, IPTV
Demultiplexer Hardware Hardware
Application Manager Missing NCL/Lua Basic +

Complementary and JavaDTV
MediaProcessing H264 and AAC All
Data Processing Software Update Software Update and application

builder
Input Manager RC Control RC Control
Return channel Missing Ethernet
Plataform ST ou Broadcom ST ou Broadcom

As previously mentioned, our MDD approach is supported by the GingaForAll tool

that offers a graphical interface where user can require the creation of GingaForAll
artifacts. Using the tool the following steps are needed to generate a product: (i) to
create the four input models (feature model, referenced architecture, aspect model,
and component model) based on the Ginga architecture; (ii) to select the desired fea-
tures of the feature model – the specific configuration of the product; (iii) to execute
the transformations for generating the GingaForAll product.

It is worthwhile to mention that the referenced architecture, the aspect model, and
the component model are developed once, and then reused through the generation of
any other product. Regarding the Tuner component, the Ginga IPTV product model
contains two different stereotypes – <<Tuner>> and << IP >> - representing how
the different modeling elements (classes) are related to the Ginga-CC features. On the
other hand, the Zapper Tuner has only the Tuner class.

In short, using GingaForAll, the process to generate the Zapper product from Ginga
IPTV consists in modifying the feature model to reflect the product configuration. The
GingaForAll tool automatically generates the Ginga Zapper source code. In contrast,
with the original Ginga architecture, adaptations must be manually done and it is

 Architecting a Model-Driven Aspect-Oriented Product Line 179

necessary to change up to 45% relevant classes and also the Ginga-CC configuration
file. For instance, to remove the support for IPTV transmission and maintain the
Terrestrial transmission, it would be needed to remove, from the Tuner package, the
following classes: UnicastProvider, MulticastProvider, and Socket-
Provider. Moreover, it would be necessary to change the implementation of several
methods of the Tuner class. Other packages also needed to be manually changed.

6 Related Work

In this section, we present a set of research work directly related to our work. It is
organized in three categories: (i) approaches for AO refactoring; (ii) approaches for
MDD-based refactorings; (iii) approaches for SPL-based refactorings;

AO Refactoring of Middleware Platforms. The work described in [7] was the first
to perform an AO refactoring of middleware platforms. The authors applied an aspect
mining approach in some middleware platforms and identified a set of crosscutting
concerns. They mentioned that middleware architectures inherently suffer from
coordinating crosscutting concerns. Our work differs from [7] in the way how the
crosscutting concerns were identified. The approach used in our work to identify
crosscutting concerns was twofold. Firstly, some crosscutting concerns were identi-
fied by applying the methodology described in [8] that uses Feature-Oriented Analy-
sis - to discover the main features of the product family including both common and
variable assets as well as non-functional requirements - and identifies the crosscutting
concerns by means of a traceability matrix [8]. Secondly, additional crosscutting con-
cerns were discovered through the application of a set of code level metrics (e.g. cou-
pling and cohesion metrics).

SPL Refactoring. In [6], the traditional notion of refactoring was extended to a SPL
context, focusing on refactoring the feature model (FM). We used refactoring to im-
prove the modularity of Ginga. However, in contrast with [6], that addresses only the
process of building FM, we performed all steps of an SPL development, from the
domain engineering to the application engineering, generating the final product.

MDD-based Refactoring. In [5], a refactoring based on patterns and metamodeling
techniques was proposed. They proposed a rigorous approach to define refactorings as
OCL contracts between meta-patterns, MOF-metamodels that describe families of
instances of refactoring patterns and also identify refactorings by a formal specifica-
tion matching. The main contribution of the work was the definition of refactorings
from metamodel-based transformations that are expressed as OCL contracts. The
formalization ensures that each refactoring maintains the consistency between mod-
els. In contrast, our proposal is not just about using models refactoring techniques.
We created a SPL to customize Ginga according to the resources constraints and plat-
form needs. For this, MDD allows working in a high abstraction level, through the
management of code assets in terms of configurable models.

As we can see, none of the aforementioned approaches combine MDA, AOSD and
SPL as we did. We used refactoring in Ginga in order to increase its configurability,
through the automatic management of its variabilities. We addressed this challenge by
using a SPL architecture, which encompasses both the middleware commonalities and

180 D. Saraiva et al.

its specific functionalities. Our AO refactoring approach was based in the methodol-
ogy described in [8] to identify crosscutting concerns in Ginga and modularizing them
in aspects. We also adopted MDD as the vehicle for mapping architectural abstrac-
tions to implementation.

7 Final Remarks and Lessons Learned

This paper presented our experience on applying SPL, MDD and AOSD concepts in a
refactoring of the Ginga architecture. Some relevant discussion topics are discussed in
the next paragraphs.

MDD Management of Variabilities. We adopted MDD technologies with two main
aims: (i) to allow the automatic variability management of the GingaForAll architec-
ture; and (ii) to enable the automatic generation of source code of different Ginga-
ForAll products through the refinement of models from different abstraction levels
without requiring manual interference of developers. The variability management was
addressed by two strategies: (i) by directly annotating, with feature stereotypes, the
classes and aspects that modularize the commonalities and variabilities of the mid-
dleware architecture in the class diagram model (PIM); and (ii) by defining MDA
transformation rules that assure the different software artifacts are correctly bound
according to each product specification. This strategy has revealed to be easy to im-
plement and enough to the variability management of UML models.

In this work we made extensive use of all the MDA standard mechanisms, such as
metamodeling, UML profiling and transformations. Besides the well-known MDD
benefit of increasing the abstraction level in the building of software systems, the use
of such mechanisms also has proved to be a powerful tool for managing SPL assets,
such as the feature model, the reference architecture and the specification of product
configurations. The use of metamodels along with their implementation support
provided by tools such as EMF provides a common framework for the definition,
verification and documentation of the diferent models needed in a SPL process.
Moreover, the use of MDA transformation rules assures that such models are cor-
rectly synchronized to each other. Finally, since the profiling mechanism is a standard
implemented by any UML compliant tool, our proposed solution can be used in any
UML development environment.

AO Model-Driven Development. One interesting point that we noticed during the
architecture refactoring of the Ginga middleware is that two different transformation
strategies can be used to generate PSM instances from the PIM instances: (i) the ob-
ject-oriented strategy, that processes the base and aspect models and weaves them to
produce a unique UML class diagram model; and (ii) the aspect-oriented strategy that
maps the aspect abstractions from the PIM instances to aspects implemented in any
existing AO programming language. The weaving between classes and aspects in this
case is directly supported by the aspect weaver of the adopted AO language. The first
strategy was adopted in our work, since we are not interested in forcing Ginga devel-
opers to use AspectC++ programming language.

AO Modeling. In our work, we have explored the adoption of AO techniques to
address the existing crosscutting variations during the refactoring of the Ginga
architecture. The modeling of variabilities as aspects have contributed to increase: (i)

 Architecting a Model-Driven Aspect-Oriented Product Line 181

the understanding and maintenance of the architecture core, mainly because most of
variabilities are addressed isolately; and (ii) the understanding of the intrinsic rela-
tionships between the aspects (variabilities) and the core, which are fundamental to
analyze and address future evolution and maintenance scenarios. Thus, the benefits of
the adoption of AO modeling in the Ginga architecture were not restricted only to
improve the modularization of the existing crosscutting concerns and variations but
also to better understand how each of these elements is coupled to the base code.

AO Architecture Refactoring. The refactoring of the Ginga architecture was preceded
by the early analysis and identification of crosscutting concerns and variations. Cou-
pling metrics were collected in the original implementation of Ginga. They were useful
to discover crosscutting concerns and features that are strongly coupled to the base
classes. We identified the synchronization concern, for example, by analyzing all the
classes strongly connected to the Thread class.. After refactoring, we used the method-
ology presented in [8] to analyze the modularization of each middleware component.
We basically built a matrix that shows the relationships between the Ginga features and
components. It allowed us to compare the results obtained with the previous Ginga im-
plementation, whose implementation of common/variable features and crosscutting
concerns are completely diffuse and tangled along the classes of the system core.

Acknowledgments. This work is partially funded by CTIC - Centre for Research and
Development in Digital Technologies for Information and Communications within the
National Network of Education and Research (RNP), project GingaForAll.

References

1. Linden, L.F., Schmid, K., Romes, E.: Software Product Lines in Action: The Best Indus-
trial Practice in Product Line Engineering. Springer, New York (2007)

2. Muthig, D., et al.: Generic Implementation of Product Line Components. In: Aksit, M.,
Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 313–329. Springer, Hei-
delberg (2003)

3. Braga, R., et al.: AIPLE-IS: An Approach to Develop Product Lines for Information Sys-
tems Using Aspects. In: Proc. of the Brazilian Symp. on Comp., Arch. and Software Re-
use, SBCARS (2007)

4. PPLive, http://www.pplive.com/en/
5. Favre, L., et al.: Improving MDA-based Process Quality through Refactoring Patterns.

In: Proc. of the 1st International Workshop on Software Patterns and Quality (2007)
6. Alves, et al.: Refactoring product lines. In: Proceedings of the 5th Int. Conf. on Generative

Programming and Component Engineering, pp. 201–210 (2006)
7. Zhang, C., et al.: Refactoring Middleware with Aspects. IEEE Transactions on Parallel and

Distributed Systems, 1058–1073 (November 2003)
8. Conejero, J., Hernandez, J., Jurado, E., Clemente, P.J., Rodríguez, R.: Early Analysis of

Modularity in Software Product Lines. In: 21st International Conference on Software En-
gineering and Knowledge Engineering (SEKE), Boston, USA (2009)

9. Clements, P., et al.: Software Product Lines Practices and Patterns. Addison-Wesley,
Reading (2002)

10. Filman, R., et al.: Aspect-Oriented Software Development. Addison-Wesley, Reading
(2005)

11. Frankel, D.: Model-Driven Software Development. Business Process Trends Journal in
MDA (2004)

Impact Evaluation for Quality-Oriented
Architectural Decisions regarding Evolvability

Stephan Bode and Matthias Riebisch

Ilmenau University of Technology

P.O. Box 10 05 65, 98684 Ilmenau, Germany

{stephan.bode,matthias.riebisch}@tu-ilmenau.de

Abstract. Quality goals have to be under a special consideration dur-

ing software architectural design. Evolvability constitutes a quality goal

with a special relevance for business critical systems. Architectural pat-

terns can significantly contribute to the satisfaction of quality goals. But

architectural design decisions regarding these goals have to be made in

a systematic, methodical way and concerning the patterns’ influence on

quality properties. Unfortunately, pattern catalogs do not well support

quality goal-oriented design decisions. This paper presents a systematic

refinement and mapping of the quality goal evolvability to properties for

good architectural design. A set of architectural patterns is evaluated re-

garding these properties. Furthermore, a calculation scheme is provided

that enables the evaluation of the patterns to support design decisions.

The results have been developed, revised, and evaluated in a series of

applications based on industrial expertise.

1 Introduction

For the development of many types of software systems, the satisfaction of qual-
ity requirements and the appropriate options for future changes are among the
major goals of software architectures, even more important than functional re-
quirements [12]. Business critical systems demand for the constant provision of
the business services and for a long lifetime for the return of the investment,
while changes have to be performed with a high frequency. As a consequence,
the rank of evolvability often is higher compared to many other quality goals.
Quality attributes have been considered by recent architectural design methods
and approaches, for example QASAR [7], Siemens’ 4 Views [23], ADD [4], and
QADA [28]. Their activities can be classified to the phases architectural analysis,
synthesis, and evaluation [22], of which synthesis creates the candidate solutions
balancing the quality and functional requirements.

According to the importance of quality goals for architectural design, a high
risk is related to them. As a consequence, an effective guidance is needed during
the development, especially for the implementation of goals such as evolvabil-
ity, flexibility, and variability. Quality goals often compete or even conflict with
each other and with functional requirements. A refinement of quality goals to

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 182–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Impact Evaluation for Quality-Oriented Architectural Decisions 183

quality properties eases the resolution of conflicts and the identification of com-
promises [25]. For balancing between functional and quality requirements, the
utilization of patterns [20] or tactics [4] for architectural structuring constitute
an effective way. Architectural decisions between the several solutions have to
be made according to their impact on the quality properties. This shall result in
a goal-oriented way of selecting patterns and tactics.

The architect’s set of solution elements is usually contained in a toolbox repre-
senting a knowledge base of design knowledge. There are suggestions to structure
a toolbox into two parts [30]: (a) a catalog of approved methods and solution
templates (e.g. patterns), as well as (b) a catalog of fundamental technologies
and tools (e.g. frameworks). To enable the intended goal-oriented way of select-
ing solution elements, the impact of the toolbox elements on quality properties
is required as a decision criteria. Usually, pattern catalogs (e.g. [13,18]) provide
descriptions for context, problem, and solution. Influences on quality properties
of the resulting architecture are considered to a lesser extent, and qualitatively
rather than quantitatively. Classification is related to pattern types instead of
quality properties. Therefore, the catalogs do not sufficiently guide the architect
in a pattern selection related to quality goals. Unfortunately, to the best of our
knowledge there is no quantitative evaluation nor classification of architectural
patterns regarding their impact on quality attributes, which is required for a
goal-oriented pattern selection process. This is especially the case for the goal
evolvability.

This paper presents an approach for the quantitative evaluation of the impact
of architectural solution elements on quality goals, which provides all necessary
means for a goal-oriented decision-making for architectural design. As described
in prior works [5,8], we refine quality goals to subcharacteristics to facilitate con-
flict resolution. The quality subcharacteristics are mapped to properties for good
architectural design. Architectural solution elements such as patterns are then
related to these properties, based on evaluations of their impact on the latter. We
utilize our concept of the Goal Solution Scheme [5] to structure these relations
and to form a knowledge base. A sequence of evaluations of the approach has
lead to revisions of previous schemes, thus, achieving a higher degree of maturity.
The results provide the means for the different steps of a goal-oriented design
process, such as refining the goals, prioritizing the quality subcharacteristics, and
providing a ranked list of candidate solution elements during architectural syn-
thesis. The presented work is focused on the quality goal evolvability, however,
it is intended for other quality goals as well.

The results have been developed, revised, and evaluated in a series of appli-
cations based on industrial expertise. Here we explain them with a case study
of a software system for collective orderers, which additionally confirmed and
improved our evolvability model from an earlier work [8].

The rest of the paper is organized as follows. We introduce the fundamentals
for our evaluation in Section 2: the evolvability model with the subcharacteristics
and the quality properties. Section 3 describes our procedure for the evaluation
of the impact of architectural patterns. Then, in Section 4 the results of the

184 S. Bode and M. Riebisch

evaluation are discussed. Section 5 deals with related work. Finally, Section 6
concludes the paper and gives an outlook on further work.

2 Evolvability Subcharacteristics and Design Properties

This section provides the fundamentals for our approach. Three elements form
the base for our approach of goal-oriented decision support on architectural
solutions: (1) A quality model with a refinement of quality goals to subcharac-
teristics and properties, (2) a process for selecting architectural solutions, and
(3) an evaluation of solutions regarding their impact on quality goals—in this
case evolvability. We use a definition of evolvability based on Breivold et al. [9]
and Rowe et al. [32]:

Definition. Evolvability is the ability of a software system throughout its lifes-
pan to accommodate to changes and enhancements in requirements and technolo-
gies, that influence the system’s architectural structure, with the least possible
cost while maintaining the architectural integrity .

Table 1. Evolvability subcharacteristics

Subcharacteristic Description

Analyzability, Ease
of comprehension,
(Understandability)*

The capability of the software product to be diagnosed for deficiencies
or causes of failures in the software and to enable the identification of
influenced parts due to change stimuli (based on [24] and [9]).

Changeability/
Modifiability*

The capability of the software product to enable a specified modification
to be implemented quickly and cost-effectively (based on [24] and [27]).

Extensibility* The capability of a software system to enable the implementation of
extensions to expand or enhance the system with new capabilities and
features with minimal impact to existing system [9].

Variability* The capability of a software system or artifact to be efficiently extended,
changed, customized, or configured for use in a particular context by
using preconfigured variation points (based on [34]).

Portability* The capability of the software product to be transferred from one en-
vironment or platform to another [24].

Reusability* The system’s structure or some of its components can be reused again
in future applications [27].

Testability* The capability of the software system to enable modified software to be
validated [24].

Traceability* The capability to track and recover in both a forwards and backwards
direction the development steps of a software system and the design
decisions made during on-going refinement and iteration in all devel-
opment phases by relating the resulting artifacts of each development

step to each other (based on [19]).

Compliance to
standards*

The extent to which the software product adheres to standards or con-
ventions relating to evolvability (based on [24].

Process qualities Additional process quality characteristics are for example Project Ma-
turity and Community Quality, which are recognized as characteristics
that influence the evolvability of open source software projects [17].

Impact Evaluation for Quality-Oriented Architectural Decisions 185

2.1 The Evolvability Model

Evolvability of a software system is a property referring to the effort concerning
different aspects of its evolution. This effort can be determined by the help of
several subcharacteristics of evolvability, which we define by a quality model.
This model is an extension of the works of Breivold et al. [9,10] and Cook et al.
[15] and was introduced earlier in [8].

For a goal-oriented way of decision-making during architectural synthesis, the
impact of a decision on the quality goal has to be determined or predicted. Ex-
pert estimations constitute an effective way of impact determination. An expert
in this regard should have experience with the implications of architectural pat-
terns on quality properties in a certain class of software systems. The subjective

Table 2. Properties of good architectural design

Property Description

Low complexity* The extent to which the amount/number of elements and their inter-
dependencies are reduced.

Abstraction* The extent to which unnecessary details of information are hidden to
build an ideal model and the extend to which a solution is generalized
(based on [6]).

Modularity* The property of a software system to be decomposed into a set of co-
herent and loosely coupled elements with subsumption of abstractions
(based on [6]).

Cohesion* The strength of the coupling between the internals of an element
(based on [6]).

Loose
coupling*

The extent to which the interdependencies between elements are min-
imized (based on [6]).

Encapsulation* The extent of hiding the internals of an element for example by sep-
aration of interface and implementation (based on [6]).

Separation of
Concerns*

The extent to which different responsibilities are mapped onto dif-
ferent elements with as little as possible overlap, at which ideally one
responsibility is assigned to exactly one specific element. The violation
of this property is called tangling and scattering.

Hierarchy* The arrangement or classification of related abstractions ranked one
above the other according to inclusiveness and level of detail (based
on [6] and [29]).

Simplicity* The quality or condition of being easy to understand or do [29].
Correctness The property of an element to be complete and consistent resulting

in a fulfillment of its responsibilities.
Consistency The absence of contradictions and violations between related ele-

ments.
Completeness The coverage of all relevant responsibilities by an element without

lacking any necessary detail.

Conceptual
integrity

The continuous application of ideas throughout a whole solution, pre-
venting special effects and exceptions (based on [11]).

Proper granularity* The size and complexity of an element is appropriate to its responsi-
bilities and to the particular situation.

Coherent mapping to
concepts*

The way to map elements to ideas and mental pictures so that they
are easy to understand, for example by proper names.

186 S. Bode and M. Riebisch

character of expert estimations can be reduced by performing them on a detailed
level and then aggregating the results.

We discovered that properties for good architectural design provide a proper
refinement of the quality subcharacteristics to determine the impact of archi-
tectural elements on the different aspects of evolution effort. We modeled the
refinement by a mapping between subcharacteristics and properties.

The subcharacteristics of evolvability are described in Table 1. These sub-
characteristics are based on the ISO 9126 [24] and other works on evolvability
[9,10,15]. They also strongly correlate to what Matinlassi et al. [27] call evo-
lution qualities and additional characteristics (e.g. traceabiliy, variability) for
specifying the quality goal maintainability.

The design properties used for refinement are listed in Table 2. The map-
ping between subcharacteristics and design properties is shown in Figure 1 and
Table 3. In the figure we left out some direct dependencies and show the aggre-
gated ones for a better visualization. In Table 3 an existing influence relation
is represented by 1 if positive and by -1 if negative. Indentations in the tables
express the refinements of subcharacteristics and properties. For example mod-
ularity aggregates cohesion and loose coupling. The indentations correspond to
the refinement links in Figure 1.

Many evolvability subcharacteristics can be influenced by the architectural
structure and behavior. However, there are important influence factors on evolv-
ability as for example qualification and motivation of the team members, process

Table 3. Mapping of subcharacteristics to properties

Property \ Subcharacteristic A
n
a
ly

za
b
il
it
y

C
h
a
n
g
ea

b
il
it
y

E
x
te

n
si

b
il
it
y

V
a
ri

a
b
il
it
y

P
o
rt

a
b
il
it
y

T
es

ta
b
il
it
y

R
eu

sa
b
il
it
y

T
ra

ce
a
b
il
it
y

C
o
m

p
li
a
n
ce

Low complexity* 1
Abstraction* 1 1 1 1 1 1
Modularity*

Cohesion* 1 1 1 1 1 1
Loose coupling* 1 1 1 1 1 1

Encapsulation* 1 1 1 1 -1 1
Separation of concerns* 1 1 1 1 1 1 1
Hierarchie* 1 1 1 1 1 1
Simplicity* 1 1 1 1 1 1
Correctness

Consistency 1 1 1 1 1 1 1
Completeness 1 1 1 1

Conceptional integrity 1 1 1 1 1
Proper granularity* 1 1 1 1
Coherent mapping to concepts* 1 1 1 1 1 1 1 1

1 – Positive influence; -1 – Negative influence

Impact Evaluation for Quality-Oriented Architectural Decisions 187

Fig. 1. Graphical representation of the evolvability model

maturity, or quality management activities. The development process with roles,
phases, communication paths, and traceability has a large influence as well. Ar-
chitectural structures cannot control these factors; they will be considered partly
in the calculation scheme in Section 3.3. For the subcharacteristics (Table 1) and
the design properties (Table 2) we marked the ones with a direct influence from
architectural patterns by an * in the first columns. They are applied as evaluation
criteria for the architectural patterns in the sequel.

The mapping relations have been developed in an iterative way, starting with
hypotheses [8] and multiple steps of revision during application in case studies
[31,33]. Meanwhile, the relations and the way of calculating impact values can be
considered as rather mature. As an additional benefit of the evolvability model
the refinement of the quality goals by mapping to properties enables a conflict
resolution between competing quality goals, as discussed earlier in [5].

2.2 The Selection Procedure for Architectural Decisions

Architectural decisions concern design changes or the introduction of architec-
tural solution elements, for example from the architect’s toolbox. In order to
implement a goal-oriented development we embed our approach into a two step
procedure of selecting architectural solutions: (1) Architectural constraints are
used to determine the set of applicable solutions by eliminating all unsuitable
ones. (2) All solutions in the set are evaluated and ranked regarding the relevant
quality goals. According to the ranking the architect selects and implements a
solution. The evaluation needed for step 2 is presented in the next chapter.

188 S. Bode and M. Riebisch

3 Evaluation of Architectural Solution Elements

In this section we describe our approach for the evaluation of the impact of
architectural patterns on evolvability. The concept of the approach is based on
the evolvability model and the evaluation criteria presented in the last section.
The evaluation itself is presented with a case study of a software system for
collective orderers of mail order companies.

Case Study: Collective Ordering System. Mail order companies prefer to
work together with collective orderers, who accumulate orders of several cus-
tomers and submit them as a collective order to the mail order company. The
mail order company delivers the goods in one shipment to the collective orderer,
who in turn distributes them to the customers. There are several advantages: The
collective orderer knows the formalities and processes for rare procedures such as
reshipment, complaint, deferred payment, etc. better than the average customer.
The personal, familiar contact to customers has positive effects on the business
volume. The mail order company can delegate communication activities with cus-
tomers to the collective orderer. These procedures belong to the core business in
the domain and are affected by frequent changes. Therefore, they were chosen
for this case study.

The software system of the company shall enable collective orderers to sub-
mit orders, manage their customers, and deal with complaints. We applied our
approach for the task of enhancing this system. First, we selected some archi-
tectural patterns as explained in Section 3.1. Second, we determined the impact
of the patterns on the properties for good architectural design (Section 3.2).
For evaluation purposes, a suitable part of the collective ordering software was
designed for each of the considered architectural patterns. This architectural de-
sign was used for the impact determination. Based on the results, the impact
on the subcharacteristics was determined as discussed in Section 3.3. Finally, we
aggregated the values to determine the impact on the quality goal evolvability
(Section 3.4). The resulting values are stored together with the patterns in the
architect’s catalog. They can be used for future design decisions regarding this
quality goal.

3.1 Selection of Patterns

For the impact determination regarding the quality goal evolvability, architec-
tural and design patterns with an influence on the software architecture consti-
tute interesting candidates. There is a high number of patterns available. For the
evaluation with this case study we selected a set of patterns from the entirety
which have an influence on the architecture, which are well documented, and
which are expected to have an impact on evolvability. According to step 1 of our
decision procedure, they have to fulfill the constraints of the software system of
the case study. The selected patterns are listed in Table 4.

Impact Evaluation for Quality-Oriented Architectural Decisions 189

Table 4. Selected architectural patterns

Name Sources

Client-Server see Avgeriou&Zdun [1]
Layers/Tiers
Repository
Blackboard
Pipes and Filters
Model View Controller (MVC)
Presentation Abstraction Control (PAC)
Event-Based, Implicit Invocation
Broker
Micro Kernel

Reflection

Facade Gamma et al. [18]
Adapter
Proxy

Plug-in Manolescu et al. [26]

3.2 Determination of the Impact on the Properties

This section explains the determination of the impact values for the selected
patterns in the case study. First, we applied the patterns in an exemplary archi-
tectural design for the case study. The resulting pattern-based design was rated
regarding the impact on the properties for good architectural design. The ratings
were gained through an assessment of the impact for each property by experts.
The value of the impact is expressed by values of -2 (strong negative), -1 (weak
negative), 0 (neutral), 1 (weak positive) and 2 (strong positive).

Case study example for impact discussion. A collective orderer has to enter
orders into the software system, and then the orders have to be transmitted to
the mail order company. Usually this is done via phone but should be supported
by the new software system. As a possible solution in the case study, we utilized
the Client-Server pattern (see Figure 2(a)). The server at the mail order company
is connected to the collective orderer’s client via internet. It provides an interface
for the transmission of orders. The client is structured in three layers as shown in
Figure 2(b). The presentation layer is responsible for the graphical user interface
(GUI). It uses the application layer, which provides functions as calculations for
deferred payment, a search for ordered but not delivered goods, or a reminder
for the deadline for returning the goods. The data layer is responsible for the
data persistence in a databank.

Now we discuss the evaluation of the patterns Client-Server and Layers re-
garding their impact on the properties for good architectural design. They both
have a strong positive impact on several properties. For example they provide
a good abstraction of internal details (rating 2). The resulting architecture is
simple to understand (2). They provide good modularity due to high cohesion

190 S. Bode and M. Riebisch

(a) Client-Server (b) Layers

Fig. 2. Pattern application in the case study example

inside the layers, client, and server (2), as well as a loose coupling between the el-
ements (2) for example for the deferred payment. Unnecessary details are hidden
behind interfaces between the layers. Therefore, the encapsulation is improved
(2). Regarding separation of concerns Client-Server and Layers have a positive
impact, but they cannot completely prevent mixing different concerns (rating
1). Regarding the Hierarchy criteria the two patterns differ in their impact. The
Layers pattern supports the ranking and grouping of abstractions on different
levels very well due to the different layers (2). For the Client-Server pattern this
cannot hold to this extend resulting in a lower rating (1). The same applies for
the coherent mapping to concepts criteria. The Layers pattern has a weak pos-
itive impact on a proper granularity of an architectural design by structuring
into layers instead of one big structural element (1). Overall, the Client-Server
pattern and the Layers pattern reduce the complexity of an architecture through
structuring.

Inside the client’s presentation layer, the Model View Controller (MVC) pattern
can be used to separate the data to be presented (e.g. a customer or order), from
the different views and controlmechanisms. For example there areviews for editing
the customers’ contact information or for collecting and managing the orders.

The support for abstraction and cohesion as well as separation of concerns of
MVC is very good (rating 2) as a result of the strict separation of model, view,
and controller. This improves the simplicity of the design as well (1), although it
is not so easy to use MVC with modern GUI libraries. The encapsulation is also
good because the internals of each element are hidden behind interfaces (1). To
build a hierarchy with MVC is not so well supported (0)—here Presentation Ab-
straction Control (PAC) would be better. Regarding coupling MVC is evaluated
slightly negative (-1). Of course, the views can be decoupled from the model via
a change-propagation mechanism, however, view and controller are coupled very
tightly. Summed up, the complexity resulting from MVC is good but not excel-
lent. The granularity that results from MVC can be quite good (1) if the models
and views are properly designed. However, MVC’s real strength is to provide a
coherent mapping of concepts for the user interaction through the GUI (2).

For the rest of the patterns the evaluation concerning the properties was done
in the same way. It cannot be explained here in detail due to space limitations.

Impact Evaluation for Quality-Oriented Architectural Decisions 191

Table 5. Values for the patterns’ impact on the properties

Property \ Pattern C
li
en

t-
S
er

v
er

L
ay

er
s/

T
ie

rs

R
ep

o
si

to
ry

B
la

ck
b
o
a
rd

P
ip

es
&

F
il
te

rs

M
V

C

P
A

C

Im
p
l.

In
v
o
c.

F
a
ca

d
e

A
d
a
p
te

r

B
ro

k
er

P
ro

x
y

M
ic

ro
K

er
n
el

R
efl

ec
ti

o
n

P
lu

g
-i
n

Low complexity 1,7 1,8 0,8 0,3 1,7 1,1 1,4 0,8 1,3 1,4 1,5 1,5 2 0,3 1,6
Abstraction 2 2 0 0 2 2 2 1 2 2 2 2 2 2 2
Modularity 2 2 0 0,5 0 0,5 0,5 1 1,5 1,5 2 2 2 1 1,5

Cohesion 2 2 1 1 2 2 2 0 1 1 2 2 2 0 2
Loose coupling 2 2 -1 0 -2 -1 -1 2 2 2 2 2 2 2 1

Encapsulation 2 2 1 2 2 1 1 1 2 2 2 2 2 0 2
Separation of concerns 1 1 2 0 2 2 2 0 0 1 1 1 2 0 2
Hierarchie 1 2 0 0 2 0 2 0 0 0 0 0 2 0 0
Simplicity 2 2 2 2 2 1 1 2 2 2 2 2 2 -1 2

Proper granularity 0 1 0 0 2 1 1 0 2 1 0 0 1 0 2
Coherent mapping to concepts 1 2 1 0 2 2 2 0 1 1 2 0 2 0 2

Table 5 shows the determined impacts of all selected patterns on the properties
for good architectural design. The ratings of the aggregated properties modular-
ity and low complexity are calculated by arithmetic mean of the subordinates.

3.3 Calculation of the Impact on Evolvability Subcharacteristics

The patterns’ impact on the quality subcharacteristics is primarily determined
from the impact on the properties, as discussed above. They are considered in the
first step of the calculation. Additional influences on the subcharacteristics—for
example from efforts not related to the properties of good design—are considered
by introducing adjustments in a second step.

We calculated the results in the following way. Let R be the matrix of the
impact ratings for the properties (Table 5) and rp be a column vector of this
matrix for one element p of the set of patterns P . Let M be the mapping matrix
of Table 3 and M∗ be M reduced by the rows for which the properties were not
evaluated (and are not marked with *). Further, let ms be a column vector of
M∗ for one element s of the set of subcharacteristics S. Moreover, let V be the
matrix with the impact values of the patterns on the subcharacteristics. Then,
each element vsp of V is calculated by

vsp = rp · ms/ ‖ms‖1 .

Finally, the matrix V ′ in the top of Table 6 is obtained from V by calculating the
impact values for changeability in row 2 by the arithmetic mean of the values for
extensibility, variability, and portability. In this way we determine the patterns’
impact values on the subcharacteristics from the direct ratings for the properties
(Table 5) by evaluating and normalizing the influences of the interdependencies
described by the mapping in Table 3.

192 S. Bode and M. Riebisch

However, through the calculation there is no discrimination regarding the sub-
characteristics of changeability. The Reflection pattern for example contributes
to extensibility and variability but reduces portability if the base technology
does not support reflection. Furthermore, testability is decreased due to possible
dynamic changes at runtime.

These effects are not represented by the aggregated impact values in V ′ of
the first step. Therefore, we considered offset values osp shown in the middle of
Table 6 for the determination of the patterns’ impact on the subcharacteristics.
To determine these offset values we also incorporated knowledge about conse-

Table 6. Impact values for subcharacteristics and evolvability

Subcharacteristic \ P
a
tt

e
r
n

C
li
en

t-
S
er

v
er

L
ay

er
s/

T
ie

rs

R
ep

o
si

to
ry

B
la

ck
b
o
a
rd

P
ip

es
&

F
il
te

rs

M
V

C

P
A

C

Im
p
l.

In
v
o
c.

F
a
ca

d
e

A
d
a
p
te

r

B
ro

k
er

P
ro

x
y

M
ic

ro
K

er
n
el

R
efl

ec
ti

o
n

P
lu

g
-i
n

Calculated Rating

Analyzability 1,6 1,9 0,8 0,1 1,5 1,1 1,4 0,8 1,3 1,4 1,6 1,4 2,0 0,4 1,6
Changeability 1,4 1,8 0,7 0,2 1,6 1,1 1,3 0,7 1,3 1,3 1,4 1,2 1,9 0,3 1,7

Extensibility 1,4 1,8 0,7 0,2 1,6 1,1 1,3 0,7 1,3 1,3 1,4 1,2 1,9 0,3 1,7
Variability 1,4 1,8 0,7 0,2 1,6 1,1 1,3 0,7 1,3 1,3 1,4 1,2 1,9 0,3 1,7
Portability 1,4 1,8 0,7 0,2 1,6 1,1 1,3 0,7 1,3 1,3 1,4 1,2 1,9 0,3 1,7

Testability 1,4 1,8 0,8 -0,2 1,2 1,0 1,4 0,6 0,8 1,0 1,4 1,0 2,0 0,2 1,4
Reusability 1,5 1,8 0,8 0,3 1,5 1,3 1,3 0,8 1,5 1,5 1,6 1,4 1,9 0,4 1,9
Traceability 1,2 1,6 1,3 0,8 1,9 1,7 1,8 0,3 0,8 1,1 1,5 0,8 2,0 0,1 1,9
Compliance to standards 1,3 2,0 0,3 0,0 2,0 1,3 2,0 0,3 1,0 1,0 1,3 0,7 2,0 0,7 1,3

Offset

Analyzability 0 -1 -1 2 0 1 0
Changeability

Extensibility 1 1 2 -1 2 2 2 2 2 2 2 2
Variability 1 1 2 2 2 2 2 2
Portability 2 2 2 2 2 2 2 -1

Testability -2 -2 -1 2 0 -1 2
Reusability 2 2 2 1
Traceability 2
Compliance to standards 2 0 2

Final Values

Analyzability 1,6 1,9 0,4 -0,4 1,5 1,1 1,4 -0,1 1,6 0,7 1,3 1,4 1,0 0,4 1,6
Changeability 1,4 1,6 0,9 0,0 1,6 1,6 1,7 1,1 1,4 1,7 1,6 1,4 1,9 0,7 1,8

Extensibility 1,2 1,4 1,3 -0,4 1,6 1,6 1,7 1,3 1,7 1,7 1,7 1,2 1,9 1,2 1,8
Variability 1,2 1,4 0,7 0,2 1,6 1,6 1,7 1,3 1,3 1,7 1,4 1,2 1,9 1,2 1,8
Portability 1,7 1,9 0,7 0,2 1,6 1,6 1,7 0,7 1,3 1,7 1,7 1,6 1,9 -0,3 1,7

Testability 1,4 1,8 0,8 -1,1 1,2 1,0 1,4 -0,7 -0,1 1,0 1,4 1,5 1,0 -0,4 1,7
Reusability 1,5 1,8 0,8 0,3 1,5 1,3 1,3 1,4 1,8 1,8 1,6 1,4 1,9 0,7 1,9
Traceability 1,2 1,6 1,3 0,8 1,9 1,7 1,8 1,1 0,8 1,1 1,5 0,8 2,0 0,1 1,9
Compliance to standards 1,3 2,0 0,3 0,0 2,0 1,3 2,0 0,3 1,0 1,0 1,7 0,7 1,0 0,7 1,7

Evolvability 1,4 1,8 0,7 -0,1 1,6 1,3 1,6 0,5 1,1 1,2 1,5 1,2 1,5 0,3 1,8

Impact Evaluation for Quality-Oriented Architectural Decisions 193

-0,2
0

0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2
C

lie
nt

-S
er

ve
r

La
ye

rs
 /T

ie
rs

R
ep

os
ito

ry

B
la

ck
bo

ar
d

Pi
pe

s&
Fi

lte
rs

M
V

C

PA
C

Im
pl

. I
nv

oc
.

Fa
ca

de

A
da

pt
er

B
ro

ke
r

Pr
ox

y

M
ic

ro
 K

er
ne

l

R
ef

le
ct

io
n

Pl
ug

-in

Unadjusted
Rating
Final Rating

Fig. 3. Resulting Impact of Patterns on Evolvability

quences of the pattern application regarding quality properties mentioned in the
literature (e.g. Buschmann et al. [13]). The final impact values are calculated as
follows. Let F be the matrix for the adjusted impact values. Then each element
fsp of F is calculated by

fsp =
{

vsp if osp is undefined
(vsp + osp)/2 otherwise.

The final impact values F ′ for the subcharacteristics including changeability
shown in the bottom of Table 6 again are obtained as for V ′ before.

3.4 Determining the Impact on Evolvability

As the last step the overall impact of the patterns on the quality goal evolvability
is to be determined by aggregating all subcharacteristics with equal weights. The
resulting values of the patterns’ impact on evolvability are shown in Figure 3
and in the lowermost row of Table 6. The experts gave feedback on the results.
This feedback led to a minor revision of the offset values discussed in the last
section. The changes resulting from the offset values can be seen by comparing
the unadjusted and the final values shown in Figure 3. As a consequence of the
evaluation, a plug-in-based architecture was selected as the best solution.

4 Discussion of the Results

The final results of the impact evaluation are illustrated by Figure 3. The chart
shows that the patterns in general do have a positive impact on the quality goal
evolvability. Some patterns turned out to be excellent, for example Layers, Plug-
in, or Pipes and Filters; others are less supportive. However, the impact of the

194 S. Bode and M. Riebisch

patterns on evolvability and on software quality in general is limited if process
aspects are not taken into account. We have considered process qualities only
partly by the adjustments. Traceability constitutes another aspect important for
evolvability which depends on the development process rather than on patterns.

Buschmann et al. [13] argue that a classification of patterns into groups is
necessary to help the architect with the utilization of a system of patterns. We
agree to this argument for general categories like architectural pattern or design
pattern, structural or behavioral pattern, or regarding problems like concurrency
or distribution. However, for effort-related quality properties a quantitative eval-
uation is more effective than a categorization because the impact on effort varies
within an interval. In our decision procedure, step 1 results in a very similar
effect as Buschmann’s categories. The ranking of step 2 supports the architect
in selecting the most appropriate solution element.

The impact values have been derived from a concrete case study. We must
admit that they are subjective by nature because they were determined from
expert opinion. The results of an expert survey also depend on the application
conditions as the experience of the development teams. However, an improve-
ment regarding objectivity is possible by including several experts. The values
shall be applicable and applied in further projects. The degree of universality of
the impact values can be improved by revising them in a series of projects.

The presented results have been developed as hypotheses, later revised, and
evaluated in a series of applications based on industrial expertise. They can be
considered as rather mature. Even if forthcoming revisions might result in smaller
modifications of the impact values, the revisions of the relations for refinement
and mapping (Fig. 1) can be expected to be minor ones.

5 Related Work

There is a lot of literature with works about patterns and their classification in
pattern catalogs, some of which were already mentioned in the preceding sections.
A good start to read are Avgeriou and Zdun [1], Buschmann et al. [13], or the
seminal work of Gamma et al. [18]. Unfortunately, there is no catalog of patterns
for evolvability. For security such a thing exists already for a quite long time [35].

A similar work to ours is the one of Harrison and Avgeriou [21]. They give
an overview about the strengths and liabilities of a set of common architectural
patterns regarding their impact on the qualities of the ISO 9126. They also
present a design method for architectural design, which describes how to select
the appropriate patterns for balancing quality and functional requirements in
[20]. However, they do not discuss the impact of the patterns on the properties
for good architectural design as we do. Furthermore, our work has a strength in
focussing on evolvability.

Architectural tactics discussed in several works by the SEI (e.g. [3], [2]) can
be other means for a proper selection of patterns during architectural design.
They are used for example in the Attribute Driven Design (ADD) method [4].
The tactics give some qualitative hints for choosing patterns concerning several
quality attributes as e.g. modifiability or performance. But they do not consider

Impact Evaluation for Quality-Oriented Architectural Decisions 195

design principles either, only partly deal with evolvability through modifiability,
and cannot be interpreted quantitatively as the ratings in our approach.

POSAAM [16] is a method for quantitative architectural evaluation that re-
lates patterns to quality attributes and design principles in an ontology. In this
it is akin to our approach, though not for architectural synthesis.

Furthermore, the NFR-Framework of Chung et al. [14] has some similarities to
our evolvability model. They link quality goals, so-called softgoals, and their sub-
goals via contribution links and operationalize them with solutions to perform an
evaluation of the quality goals’ satisfaction. However, the NFR-Framework has a
requirements-oriented viewpoint, and therefore, does not consider architectural
design principles or properties important for architectural synthesis.

6 Conclusion and Further Work

In this paper as the major contribution we presented an approach for the quan-
titative selection of architectural elements regarding quality goals. It consists of
a quality model for evolvability as a basis for the evaluation of architectural pat-
terns regarding their impact on the quality goal evolvability. We defined subchar-
acteristics of evolvability and mapped them to properties for good architectural
design in order to be able to determine the impact on evolvability. Addition-
ally, we presented our calculation scheme for the evaluation together with the
results of the evaluation. The evaluation is embedded in a decision procedure
on architectural elements in a toolbox. With a case study we explained how to
determine the patterns’ impact on the properties, to calculate the impact on the
subcharacteristics through our mapping, then to consider additional influences
by offset values to fit expertise knowledge, and finally, to aggregate the ratings to
the final impact values on evolvability. The results show a considerable impact
of architectural patterns on evolvability, although this quality goal cannot be
addressed by merely using architectural patterns.

Another contribution of this work consists in a quantitative evaluation of ar-
chitectural patterns regarding their impact on the quality goal evolvability and
its subcharacteristics. In our opinion this is a valuable mean for supporting the
decision-making process of a software architect. Using the patterns’ impact val-
ues, a software architect can enrich his toolbox and rank the patterns according
to their quality impact. This eases the search and selection of appropriate solu-
tions for quality goals during architectural design. Furthermore, the mapping of
quality goals on subchararcteristics facilitates the resolution of conflicts between
competing quality goals.

In further works, the mapping relations between properties and subcharacter-
istics will be investigated in more detail, to elaborate a weighting of the mapping
relations. Moreover, the results can be combined with knowledge on patterns’
impact on other quality attributes, in addition to evolvability. Furthermore, with
our approach additional solution concepts of an architect’s toolbox can be evalu-
ated, for example architectural refactorings or frameworks. Tool support for the
approach is currently developed.

196 S. Bode and M. Riebisch

References

1. Avgeriou, P., Zdun, U.: Architectural patterns revisited – a pattern language.

In: 10th European Conf. on Pattern Languages of Programs (EuroPlop 2005),

Irsee, pp. 1–39 (2005)

2. Bachmann, F., Bass, L., Nord, R.: Modifiability tactics. Tech. Rep. CMU/SEI-

2007-TR-002, CMU/SEI (September 2007)

3. Bachmann, F., Bass, L., Klein, M.: Deriving architectural tactics: A step toward

methodical architectural design. Tech. Rep. CMU/SEI-2003-TR-004, CMU/SEI

(March 2003)

4. Bass, L.J., Klein, M., Bachmann, F.: Quality attribute design primitives and the

attribute driven design method. In: van der Linden, F.J. (ed.) PFE 2002. LNCS,

vol. 2290, pp. 169–186. Springer, Heidelberg (2002)

5. Bode, S., Fischer, A., Kühnhauser, W., Riebisch, M.: Software architectural de-

sign meets security engineering. In: Proc. 16th Int. Conf. and Workshop on the

Engineering of Computer Based Systems (ECBS 2009), pp. 109–118. IEEE, Los

Alamitos (2009)

6. Booch, G.: Object Oriented Analysis and Design. With Applications. Addison-

Wesley, Longman (October 1993)

7. Bosch, J.: Design and use of software architectures: Adopting and evolving a

product-line approach. ACM Press/Addison-Wesley, New York (2000)

8. Brcina, R., Bode, S., Riebisch, M.: Optimization process for maintaining evolv-

ability during software evolution. In: Proc. 16th Int. Conf. and Workshop on the

Engineering of Computer Based Systems (ECBS 2009), pp. 196–205. IEEE, Los

Alamitos (2009)

9. Breivold, H.P., Crnkovic, I., Eriksson, P.: Evaluating software evolvability. In: Proc.

of the 7th Conf. on Software Engineering Research and Practice in Sweden (SERPS

2007), Göteborg, Sweden, pp. 96–103 (2007)

10. Breivold, H.P., Crnkovic, I., Land, R., Larsson, S.: Using dependency model to

support software architecture evolution. In: 23rd IEEE/ACM International Con-

ference on Automated Software Engineering - Workshops, 2008. ASE Workshops

2008., pp. 82–91. IEEE, Los Alamitos (September 2008)

11. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering. Addison-

Wesley, Reading (1995)

12. Brown, A.W., McDermid, J.A.: The art and science of software architecture. In:

Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 237–256. Springer, Heidelberg

(2007)

13. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-

Oriented Software Architecture: A System of Patterns. John Wiley & Sons, Chich-

ester (1996)

14. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in

Software Engineering. Int. Series in Software Engineering, vol. 5. Kluwer, Dordrecht

(2000)

15. Cook, S., Ji, H., Harrison, R.: Dynamic and static views of software evolution.

In: 17th IEEE International Conference on Software Maintenance (ICSM 2001),

November 2001, pp. 592–601. IEEE, Los Alamitos (2001)

16. da Cruz, D.B.: POSAAM – Eine Methode zu mehr Systematik und Expertenun-

abhängigkeit in der qualitativen Architekturbewertung. Ph.D. thesis, TU München

(2009)

Impact Evaluation for Quality-Oriented Architectural Decisions 197

17. Deprez, J.-C., Monfils, F.F., Ciolkowski, M., Soto, M.: Defining software evolv-

ability from a free/open-source software perspective. In: Proceedings of the Third

International IEEE Workshop on Software Evolvability, October 2007, pp. 29–35.

IEEE, Los Alamitos (2007)

18. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of

Reusable Object-Oriented Softwaresystems. Addison-Wesley, Reading (November

1994)

19. Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceabil-

ity problem. In: Proceedings of the First International Conference on Require-

ments Engineering, Colorado Springs, CO, USA, April 1994, pp. 94–101. IEEE,

Los Alamitos (1994)

20. Harrison, N., Avgeriou, P.: Pattern-driven architectural partitioning: Balancing

functional and non-functional requirements. In: ICDT 2007, IEEE, Los Alamitos

(2007)

21. Harrison, N., Avgeriou, P.: Leveraging architecture patterns to satisfy quality at-

tributes. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 263–270. Springer,

Heidelberg (2007)

22. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: A gen-

eral model of software architecture design derived from five industrial approaches.

Journal of Systems and Software 80(1), 106–126 (2007)

23. Hofmeister, C., Nord, R., Soni, D.: Applied software architecture. Addison-Wesley,

Boston (2000)

24. ISO/IEC: ISO/IEC 9126-1 International Standard. Software Engineering - Product

quality - Part 1: Quality models (June 2001)

25. van Lamsweerde, A.: From system goals to software architectures. In: Bernardo,

M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg

(2003)

26. Manolescu, D., Voelter, M., Noble, J.: Pattern Languages of Program Design, vol. 5.

Addison-Wesley Professional, Reading (2006)

27. Matinlassi, M., Niemelä, E.: The impact of maintainability on component-based

software systems. In: Proc. 29th Euromicro Conf., 2003, pp. 25–32. IEEE, Los

Alamitos (2003)

28. Matinlassi, M., Niemelä, E., Liliana, D.: Quality-Driven Architecture Design and

Quality Analysis Method. A Revolutionary Initiation Approach to a Product Line

Architecture. Tech. Rep. 456, VTT Technical Research Centre of Finland (2002)

29. McKean, E.: The New Oxford American Dictionary, 2nd edn. Oxford University

Press, Oxford (2005)

30. Posch, T., Birken, K., Gerdom, M.: Basiswissen Softwarearchitektur: Verstehen,

entwerfen, wiederverwenden. dpunkt.verlag, 1 edn (2004)

31. Riebisch, M., Bode, S.: Software-Evolvability. Informatik-Spektrum 32(4), 339–343

(2009)

32. Rowe, D., Leaney, J., Lowe, D.: Defining systems architecture evolvability - a taxon-

omy of change. In: Proceedings of the 11th International Conference on the Engineer-

ing of Computer Based Systems (ECBS 1998), pp. 45–52. IEEE, Los Alamitos (1998)

33. Stollberg, R.: Klassifikation von Architekturstilen und -mustern hinsichtlich quali-

tativer Ziele für den Softwarearchitekturentwurf. Bachelor thesis, Ilmenau Univer-

sity of Technology, Ilmenau, Germany (2010)

34. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization tech-

niques. Software: Practice and Experience 35(8), 705–754 (2005)

35. Yoder, J.W., Barcalow, J.: Architectural patterns for enabling application security.

In: 4th Conf. on Patterns Languages of Programs, PLoP 1997 (1997)

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 198–213, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Functional Architecture Modeling for the Software
Product Industry

Sjaak Brinkkemper and Stella Pachidi

Department of Information and Computing Sciences
University of Utrecht

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
{S.Brinkkemper,s.pachidi}@cs.uu.nl

Abstract. Although a lot of research has been carried out on the technical archi-
tecture of software systems, the domain of Functional Architecture in the
software product industry lacks a formalization of the related concepts and
practices. Functional Architecture Modeling is essential for identifying the
functionalities of the software product and translating them into modules, which
interact with each other or with third party products. Furthermore, the Func-
tional Architecture serves as a base for mapping the functional requirements
and planning the product releases. In this paper, we present the Functional Ar-
chitecture Diagrams, a powerful modeling tool for the Functional Architecture
of software products, which comprises: a modular decomposition of the product
functionality; a simple notation for easy comprehension by non-specialists; and
applicability in any line of business, offering a uniform method for modeling
the functionalities of software products.

Keywords: software product, functional architecture modeling, modularity.

1 Towards Functional Architecture Modeling Attuned to Software
Products

The discipline of software architecture, developed mainly during the last 20 years, is
considered to be fundamental for the successful development of software products.
According to Bass, Clements & Kazman [5] software architecture: constitutes a
common language for the stakeholders −architects, product managers, software
engineers, consultants, customers, marketing department− to communicate; captures
design decisions in the early stages of a software product, which enable or inhibit
implementation attributes and are used as reference in the future for managing
change; consists of generalized constructs that can be transferred and reused in other
product lines.

According to IEEE Standard 1471 [14], architecture is defined as “the fundamental
organization of a system embodied in its components, their relationships to each other
and to the environment and the principles guiding its design and evolution”. A lot of
definitions for software architecture have been developed [25], among which we find
interesting the view of Johnson [10], who considers architecture as “the set of design
decisions that must be made early in a project”.

 Functional Architecture Modeling for the Software Product Industry 199

Architecture viewpoints in software products provide guidelines to describe uni-
formly the total system and its subsystems. In the sense that the architecture should
address the concerns of the stakeholders of the system [14][15], a viewpoint can be
understood as a frame that identifies the modeling techniques that should be used to
describe the architecture in order to address a defined subset of these concerns. Fol-
lowing the categorization of concepts by Broy et al. [8], we suggest that architecture
viewpoints could be divided into three abstraction layers: The functional architecture
describes the system by its functional behavior and the interactions observable with
the environment. The logical architecture describes the system's internal structure,
represented as a network of logical components that implement the system's function-
ality. The technical architecture describes how the system is realized, its software
behavior, and its hardware structure.

A view represents the content of a viewpoint applied to a particular system. Ac-
cording to IEEE Standard 1471 description, view is defined as “a representation of the
whole system from the perspective of a related set of concerns” [14]. Numerous sets
of views have developed since 1990, amongst which we distinguish Kruchten's “4+1”
view model of software architecture [17], the Siemens Four View model [23] and the
model proposed by Herzum and Sims [12] in their book Business Component Fac-
tory. Furthermore, frameworks from the area of Enterprise Architecture such as
Zachman's Framework [28] and TOGAF [9] include sets of architectural views that
could also be applied in software architecture.

According to Van Vliet [26], the phase of designing the architecture of a software
product is placed in the product lifecycle between the requirements engineering phase
and the design phase. During the architecture design phase the architectural views are
developed and relevant design decisions are taken with respect to all stakeholders'
concerns and interests [15]. Hence, considering the requirements as triggers and input
for the architecture design phase, we look for a method of capturing the requirements
into the software product architecture. Although many well known techniques have
evolved at a low level (e.g. use case diagrams), we have observed that there is no
formal way of modeling the Functional Architecture at a high level, such that it can
comprise all requirements addressed to the product's functions, and it can be commu-
nicated from product managers and architects to non-technical stakeholders (consult-
ants, marketing, customers, end-users) in an efficient and effective way, and
constitute a basis for the product design and planning. In this context, we have devel-
oped and present here a technique for Functional Architecture Modeling.

We define Functional Architecture (FA) as an architectural model which represents
at a high level the software product's major functions from a usage perspective, and
specifies the interactions of functions, internally between each other and externally
with other products.

The Functional Architecture Model (FAM) includes all the necessary modules and
structures for the visualization of the Functional Architecture of a software product
and its relevant applications in the business domain. Consequently, it constitutes a
standard arrangement of all the product’s functional requirements positioned in mod-
ules, which correspond to functionalities. The Functional Architecture should be de-
signed together with product managers, architects, partners and customers, and should
be expressed in easy to understand diagrams. Referring back to the definition of
viewpoints, we clarify that Functional Architecture addresses mainly the concerns of

200 S. Brinkkemper and S. Pachidi

stakeholders like customers, marketing and sales employees, end-users, i.e. stake-
holders with no technical expertise.

The Functional Architecture Model that we propose, can be used by software
product managers to show the product roadmap to their customers and can constitute
a reference base for the architecture design phase in the software product lifecycle.
Consequently, it can also be used as a basis for managing the product vision for sub-
sequent releases, registering incoming functional requirements and dividing work
amongst development teams [10].

Many organizations already tend to design intuitively the functional architecture of
their software systems. A practical example is the effort to model the functional archi-
tecture of Baan ERP, the main product of Baan, a vendor of enterprise resource
planning software that is currently owned by Infor Global Solutions. In [11], the case
studies indicate an effort to model the product's functionalities, but from a more tech-
nical perspective. Also, in this context, we have noticed the use of reference architec-
tures during the design phase of enterprise solutions [21][3], which provide generic
templates for the functional architecture of applications in a particular line of busi-
ness, such as the IBM Insurance Application Architecture [13] and the Supply Chain
Operations Reference [24].

However, we do not find a scientifically supported way to design the functional ar-
chitecture of a software product irrespective of its domain. Furthermore, we do not
consider the use of other modeling techniques sufficient to serve the aforementioned
usage of Functional Architecture Modeling in software product management proc-
esses. Although Reference Models [2] include the division of functionality combined
with data flow, they are “a characteristic of mature domains” [5] i.e. they model the
functionalities on the level of a particular industry, while their notation varies accord-
ing to the domain. Data Flow Diagrams focus on the flow of data in order to illustrate
the related data stores, and are commonly used for lower levels of abstraction. Com-
ponent Diagrams also focus on lower abstraction levels, by visualizing the intercon-
nections between the components of a software system. In addition, sometimes UML
models are not easily readable by stakeholders with no technical background such as
customers or the marketing department. [4]

In this paper we intend to formalize the existing practices in a uniform modeling
technique that can be used in all domains for the communication of the functionalities
of a software product to the non-specialist stakeholders. This technique has been fol-
lowed in the FA design of approximately 40 software products developed by the stu-
dents of ICT Entrepreneurship course in Utrecht University for the last four years [19].

In the following sections of this paper, we present the structures of the Functional
Architecture, provide guidelines for modeling the functional architecture of a software
product, and finally illustrate this process through an example.

2 Functional Architecture Modeling: Design Principles and
Structures

On our way of modeling the functional architecture of a software product, we get to
notice that architecture is a premier key to the success of the product. A look at well
known software products that have met huge commercial success over the years, such

 Functional Architecture Modeling for the Software Product Industry 201

as the Google search engine, SAP R3 or Linux OS, gives us an insight that a robust
and well designed architecture constitutes a significant factor for the development,
maintenance, usability and performance of a software product. A well designed func-
tional architecture enables the usability of a software system, and should be able to
survive many releases, so that new functionalities can easily be incorporated without
making fundamental changes. These observations lead us to the search of structures
that will enable the design of a high-quality Functional Architecture. Bass et al. [5]
suggest that there is no scientific evidence to decide whether an architecture design is
good or bad, but there are several rules that should be applied in the architecture de-
sign. In table 1, we mention their recommendations adjusted for the construction of a
functional architecture.

Table 1. Principles for Functional Architecture Modeling

Principles for the FA design process Principles for the structure of a FA

One single architect or else a group of a few
architects with an appointed leader to design
the architecture

Featuring of unambiguous modules
following the principles of hiding
information and separating concerns, with
well-defined interfaces

Existence of a list of requirements and
prioritized qualities

Modules should be developed as much
independently from one another as possible

Documentation with notation understandable
by all stakeholders

Architecture independent of technical
changes

Involvement of all stakeholders in the review
of FA

Architecture independent of particular
commercial products

Early inspection for quantitative measures and
qualitative properties that should be followed

Separation of modules that “produce data”
from modules that “consume data”

Forming of a “skeletal system”' that will be
used for the incremental growth and
expansion of the software product

Small number of simple interaction
patterns, in order to increase performance
and enhance reliability and modifiability

The design of a functional architecture is influenced by four main factors[5]: First

of all the requirements set by the stakeholders, functional and non-functional, deter-
mine what kind of functionalities are going to be incorporated, as also technical
restrictions that have to be taken under consideration. Secondly, the developing or-
ganization affects the architecture, with regard to earlier versions of the product, or
available design patterns to be used, or already known data such as an existing data-
base, etc. But also the customer organization has a strong opinion in the division of
functionalities, since they might also be affected by the architectural decisions later
on. Furthermore, the technical environment, which includes software engineering
techniques or industry standards available, available design tools and development
platform, can influence the architectural decisions. Finally, the background and exper-
tise of the architect influence the selection of architectural techniques to be followed.

Based on the aforementioned principles and the influences on architecture, we
distinct three design structures for the functional architecture:

202 S. Brinkkemper and S. Pachidi

• Modularity: According to Anderson [1], modular design is “a design technique in
which functions are designed in modules that can be combined in subsequent de-
signs”. Modularity is related to the decomposition of the software products in sev-
eral components, their positioning in the system and their connectivity. Modularity
in functional architecture has to be given a robust structure, so that each module
incorporates a well-defined functionality and can be developed independent of
other modules [20]. Flexibility is also an important aspect of modularity, in the
sense that the structure should not change often in subsequent releases of the
product, but should easily direct new requirements to its current modules or a new
functionality in a new module.

• Variability deals with the fact that the product might need to run in different
organizational settings and cooperate with multiple products. Consequently, vari-
ability is related to the extent to which the various components can differ. Func-
tional variability includes the product's modules that need to interact with different
functional components; for example an ERP system used in multiple customer or-
ganizations might interact with different products in each organization. We also
recognize technical variability, in the sense that technical features may need to dif-
fer on different platforms.

• Interoperability defines the interfaces that need to be placed between the product's
features and external products. The product should have interfaces adapted to the
specifications of external products in order to enable interaction with them. Care
should be taken to design standard interfaces for optimal flexibility [1]. Further-
more, the decision of positioning these interfaces in the software product needs to
be taken within the interoperability structure.

In the following section, we elaborate the presented design principles and structures in
our suggested approach for modeling the Functional Architecture.

3 Modeling the Functional Architecture of Software Products

The purpose of this paper is to emphasize the need for a uniform technique to model
the Functional Architecture of Software Products. In this section we present the con-
cepts related to Functional Architecture and we propose the Functional Architecture
Model and its corresponding views, which are designed through the Functional Archi-
tecture Diagrams. In the second part of the section, we elaborate on the modular
decomposition of the Functional Architecture.

3.1 Functional Architecture Model

As we mentioned earlier, the Functional Architecture reflects a software product's
architecture from a usage perspective. Evidently, such a model should resemble the
functions performed in the individual user context, or −when we have to do with a
corporate customer− the enterprise functions of the customer organization that are
supported by the software product.

In figure 1 we can see an example of the functional architecture of Baan ERP
Product [6]. Following the principle of modularity, each module in the FA represents

 Functional Architecture Modeling for the Software Product Industry 203

Fig. 1. Functional Architecture of an ERP product

a function in the customer domain (e.g. Requirement Planning, Production, etc). The
flows represent interactions between functions or with external products. The princi-
ple of variability is also reflected in the functional architecture of the ERP Product, as
it should easily run in different operating systems and platforms (technical variability)
and in different customer organizations (functional variability). Finally, the interac-
tions with other products or with the user indicate the interfaces that need to be built
so that the product can interoperate with external factors.

We define the Functional Architecture Model (FAM) as the representation of the
primary functionality of a software product, consisting of its main functions and sup-
portive operations. The purpose of designing the FAM is to identify the main func-
tionalities performed by the software product; show the interactions of these functions
between each other and with external products; and create a clear overview of how
the product should operate to satisfy the user's functional requirements.

In order to model the FA of a software product we borrow the notation and rules of
Enterprise Function Diagrams, which are used in the domain of Enterprise Architec-
ture to model the primary process of an enterprise, its physical and administrative
functions [16]. Consequently, a Functional Architecture Diagram (FAD) will contain
modules that resemble the functions of a software product. A function is defined as a
collection of coherent processes, continuously performed within a software system
and supporting its use. Functions are implemented in a software product by modules.
The interactions between modules are represented in the function diagrams by flows.

In figure 2, we can see the FAD of a collaborative authoring tool. This diagram
visualizes the product's usage context, and could be useful for the phase of product
roadmapping [27] as it indicates which modules need to be developed for each func-
tionality of the product, thus the management can plan the development of the product
releases. Furthermore, such a diagram could be useful for modeling domain compo-
nents of the software product in the context of core assets development in the soft-
ware product line [18].

204 S. Brinkkemper and S. Pachidi

Fig. 2. Usage Context for a Collaborative Authoring Tool

For instance, supposing that the functions of Publishing Strategy, Market Intelli-
gence, Reference Management, Reviewing and Image Handling are left out of the
first release, we can see the product usage scope of the collaborative authoring tool in
figure 3. The boxes (Authoring, Version Management, Templates Management, Pub-
lishing, etc) are called modules, and correspond to the software product parts that
implement the respective functions. In the diagram, we can also see how the modules
interact with each other through information flows, by sending and receiving requests,
documents etc. An interface needs to be implemented in a module, for each informa-
tion flow with other modules or external products.

Fig. 3. Product scope

3.2 Modular Decomposition

The Functional Architecture of a software product is not limited in the product scope
level. Instead, it can be modeled in more layers, supporting the functional decomposi-
tion of the product. A module of the software product represents a set of sub-modules
which correspond to lower level functions that interoperate to implement the corre-
sponding functionality. On a second FA layer, we could consequently model the func-
tional architecture on the module level. In figure 4 we can see the FAD that visualizes

 Functional Architecture Modeling for the Software Product Industry 205

Fig. 4. FAD of the module Authoring

the module scope for the function Authoring. We strongly encourage preserving the
consistency between FADs on different levels. For example, in figure 4 we can notice
the same external interactions for the module Authoring, as the internal flows between
this module and other modules in the FAD of the product scope in figure 3.

From our experience, we have noticed that the functional architecture is usually
modeled in two to three layers. The FADs are designed following the same notation
and rules, which we will see in the next section. On the lowest level, each module is
supported by features, which represent the processes that constitute the respective
function that the module implements. We remind here that functions were defined as
collections of processes. A process is defined as an activity, the start and end of which
are clearly defined and its execution can be described in terms of needed and deliv-
ered data. The features indicate what the software system does and not how it realizes
it. They include lower level of details than the module.

The names of features usually start with a verb, to indicate the process they corre-
spond to. Examples are: “open template”, “send template to”, “select rules”, etc.
Processes are modeled by Feature Models, which constitute a modeling tool for the
process support functionality in a software product. Riebisch [22] has elaborated on
defining feature models for supporting processes in software product lines. The fea-
ture models are considered as a criterion for ending the modular decomposition of the
functional architecture, as we know that by reaching the process level we have created
a sufficient number of views of the functional architecture model.

In this section we presented the Functional Architecture Model, which is reflected
in the different views, visualized by Functional Architecture Diagrams, on different
layers of decomposition. In the next section we will suggest a technique for creating
the FAM in simple and uniform diagrams, applicable for any product domain.

4 An Approach for Designing Functional Architecture Diagrams

We now propose a technique for modeling the Functional Architecture of software
products; we introduce a notation and some conventions for designing the FADs

206 S. Brinkkemper and S. Pachidi

presented in the previous section; we suggest a series of steps for the design; and we
illustrate our approach through an example.

4.1 Notation and Conventions for Functional Architecture Diagrams

One of our goals is to have a simple notation so that functional architecture can easily
be communicated with stakeholders with no specialization on software architecture
[14], such as the customers of the software vendor. The notation of a FAD can be
seen in figures 3 and 4. The following constructs are used:

a) We use boxes to model modules or sub-modules of the product, which represent
functions or processes. For the naming we use substantivized nouns (e.g. Planning
instead of Plan), which need to start with capital letter. The choice of names is criti-
cal: since the diagram will constitute a fundamental means of communication
amongst the stakeholders, precise and determining terms that are well known in the
business domain are preferred. Finally, coloring can be used to categorize the mod-
ules hierarchically or according to their use.

b) Arrows are used to model interactions between modules in the form of informa-
tion flows. Typical examples of information flows include notifications, requests,
feedback to requests, and documents. The names of information flows are all written
in lower case.

c) A rectangle is used to cover the modules of the product (or the sub-modules of
the modules) to indicate the product (or module) scope. The module name should be
stated in the lower-right corner of the rectangle.

It is a convention to position the modules hierarchically in the FADs. Vertically, we
position the modules according to their control, i.e. in a hierarchical order, from high
to low:

• Strategic modules, which implement management related functions, such as Busi-
ness Planning, Product Innovation.

• Tactical modules, which are related to control items, e.g. Requirements Planning.
• Operational modules, which have to do with execution functions, such as Produc-

tion, Assembly.
• Supportive modules, which are related to platform issues, e.g. Warehousing.

Horizontally, we position the modules from left to right according to the flow of
execution:

• Modules that implement input functions (e.g. Purchase) are positioned on the left
side.

• Modules related to processing functions (e.g. Production, Assembly) are placed in
the middle.

• Modules related to output functions (e.g. Sales) are positioned on the right side of
the diagram.

• Third party products are positioned outside the product scope: External products
that provide input to the product's modules are placed on the left side, while exter-
nal products that receive the output of the product's modules are placed on the
right side.

 Functional Architecture Modeling for the Software Product Industry 207

4.2 Creating a Functional Architecture Diagram

In this section we present the basic steps for modeling the Functional Architecture of
a software product with a Functional Architecture Diagram. We illustrate the process
with the example of a Dining Room Management Application. The usage context of
the product consists of all the functions that need to be performed in a restaurant,
from the handling of a reservation, the processing of an order, up to the customer's
payment.

Determine the scope

At first, we need to decide upon the product scope: the scope constitutes the function-
alities of the software product. All external products in the usage environment need to
be identified, with which the product will interact. Furthermore, products with which
the product will possibly be interfaced in the future need to be defined at this stage.
The Product Context Diagram [7] can be a starting point for identifying the third party
applications that will interact with the software product.

For example, if we are architecting a software application for dining room man-
agement in restaurants, the external products would be a labor management applica-
tion, the ERP system of the restaurant, a book keeping application, and possibly in the
future it could also interface with an e-commerce application for restaurant reserva-
tions (figure 5a).

Define request-feedback flows

After determining the scope, we need to define the functional interactions between the
modules of the product and the external products. Most of the times, the interactions
appear in a pair of a request flow and a return arrow that represents the feedback of
the result. This construction is called a request feedback loop. We focus on the main
interactions that are related to the primary functionality of the product.

Referring to the restaurant application example, the defined request-feedback
loops between the product and the third party applications are defined in figure 5b.

(a) Product Scope and external products (b) Request-feedback flows with external applications

Fig. 5. Steps i and ii

Model the operational module flow

The next step consists in modeling the operational module flow, i.e. the flow of the
modules that constitute the implementation of the main functionality of the product.
The operational module flow usually shows the input, the primary process and the

208 S. Brinkkemper and S. Pachidi

output. We identify the steps as module boxes, which are separated by flows that are
usually information flows or waiting queues.

Figure 6 includes the operational modules that are needed for the Dining Room
Management application. The Table Arrangement module includes the related proc-
esses for finding an available table for a new customer request. The Ordering module
consists of the processes related to a customer's meals order. The module Order Proc-
essing corresponds to the processing of orders in the kitchen and updating the status
of each order. The Inventory Control module contains the processes of checking
whether there is enough inventory for preparing a meal and thus realizing the corre-
sponding order. The Order Fulfillment box refers to the functionalities of arranging
the processed orders and delivering them to the tables. The Pricing module is related
to arranging the menu prices. Finally, the Payment Processing module corresponds to
arranging a payment method, executing the payment and printing the invoice. Apart
from these operating modules, we can also see in the diagram the supportive module
Wireless Communications Management, which ensures that all wireless communica-
tions between the PDAs and the central component are functioning correctly. For
reasons of readability we have not added the flows of the supportive module, which
needs to interact with all the operating modules.

Fig. 6. The operational modules

Add control and monitoring modules

Usually, the operational module flow is controlled by one or more control modules,
which in turn are controlled by planning modules. We add the control module that
corresponds to each operational module. The interaction between an operational and a
control module is a request-feedback loop. On top of the control modules, we add the
appropriate planning modules.

In our restaurant application example we can only identify control modules, which
are added in the diagram. The module Reservations Management is handling the res-
ervations request, while the waitlist management arranges all requests that are queued,

 Functional Architecture Modeling for the Software Product Industry 209

either from new reservations or from new customers that have visited the restaurant
directly. The Order Management module schedules and prioritizes the handling of
orders. Finally, the Financial Management module corresponds to the financial man-
agement processes, e.g. registering payments, storing the invoices, etc.

Fig. 7. Adding control and monitoring modules in the Dining Room Management application

Specify external to/from internal interactions

This step is related to the second step, where we had to identify the interactions be-
tween the product and external products. At this point we need to perform further
analysis, to identify which of the modules will need to be interfaced with the external
product for each request-feedback flow. It is possible that we may discover new mod-
ules at this stage which we had ignored in the previous steps. Also, for the sake of
certain interaction we may need to add more interactions also amongst the internal
modules of the product.

In figure 8 we can see the final FAD of the Dining Room Management applica-
tion. All interactions from the external third party applications to the product's
modules and vice versa are modeled in this step. The functions are triggered either by
a new table request, which corresponds to a request of a customer who visits the res-
taurant without reservation, or by a new reservation request, which can be performed
either by a customer directly or through a related e-commerce application.

210 S. Brinkkemper and S. Pachidi

Fig. 8. The complete FAD of the Dining Room Management application

5 Discussion and Conclusions

In this paper, we accentuated the need for modeling the Functional Architecture of
software products. We proposed the Functional Architecture Model which can be
visualized through Functional Architecture Diagrams in different layers of decompo-
sition. We provided a technique for creating FADs and in parallel illustrated the
design process through an example.

The Functional Architecture Model has been introduced in a manner that supports
the design principles and structures for FA discussed in section 2. As far as the prin-
ciples for the FA design process are concerned: The FA can be designed by one
or few architects, based on the existing requirements, which can be mapped on the
product's modules. The notation is easily understandable by non-specialists, thus all
stakeholders (product managers, architects, developers, customers, marketing and
sales, end-users) can be involved in the review of FA. The visualization of FA
through FADs contributes to the identification of bottlenecks and the inspection of
qualitative and quantitative measures. Finally, the suggested modular decomposition
supports the creation of a “skeletal system” that can be expanded in the future by
adding new modules.

Regarding the principles for the structure of FA, first of all the modules in our
FAM separate concerns and support the hiding of information, while the interfaces are
placed only when request-feedback flows between modules and/or external products
are needed. Evidently, since each module corresponds to different functionality, it
is possible to develop modules quite independently from one another, while the focus
on functionalities makes the architecture independent of technical changes and of

 Functional Architecture Modeling for the Software Product Industry 211

particular commercial products, and enables the introduction of few and simple inter-
action patterns that increase performance and enhance modifiability and reliability.
The suggested convention of positioning the modules hierarchically and according
to the flow of execution separates the modules that “produce data” from those that
“consume data”.

The suggested design structures for the FA were followed in our FAM approach.
Modularity is supported by the creation of modules which correspond to different
product functionalities and are later on decomposed in lower levels of abstraction. In
section 3, we inspected the modules of the product scope for a Collaborative Author-
ing Tool and the decomposition of its “Authoring” module into sub-modules. The
FADs are structured in a way that the FA can be adapted in different organizational
settings. For example, the FAD for a Dining Room Management application in figure
8 was constructed for a restaurant environment. However, it could easily be adapted
in other similar environments: certain modules (Ordering, Inventory Control, Order
Processing, Pricing, Payment Processing, Financial Management) are standard for all
organizational settings while the remaining modules are variant according to the envi-
ronment. If we wanted to create the FAD for a fast food restaurant, we could remove
the modules Reservations Management, Waitlist Management, Order Management
and Table Arrangement and insert the module Order Forecasting. Finally, the inspec-
tion of the request-feedback flows enables the identification of all possible interfaces
that will need to be designed so that the product can flexibly interact with different
external products, confirming the interoperability structure.

The Functional Architecture Model can facilitate the system design by describing
the inherent functional structure of the system's modules and their interactions, as well
as the interactions with external applications. The modular decomposition offers a
separation of the system's functionalities, thus it reduces complexity, eases the com-
munication and collaboration among stakeholders, enables managing the product
development by partitioning work into independent tasks, and set off transferrable and
reusable elements of the product.

We suggest that FADs constitute a useful tool for modeling the Functional Archi-
tecture of software products. The notation is simple thus they can easily and quickly
be designed [4], leaving space to the manager to deal with planning the functionalities
of the product in an optimal way and easing the communication with the non-
specialist customers, who can recognize the models without formal training.

FADs can be used to determine the modules of the software product. Although
certain programming languages like Java support hierarchical module structure, other
languages (e.g. PHP) have not developed modularity sufficiently. A module structure
is useful in the design process for a software product, in order to plan and organize the
development work [20].

Moreover, FADs indicate the interactions between the product's modules and the
environment. This is convenient from a development point of view, since we have a
visualization of which interfaces will need to be implemented for the software prod-
uct, as also from a management point of view, to have an indication of which third
party products will interact with the software product.

Finally, our proposed approach for Functional Architecture Modeling can be ap-
plied in any type of business: public sector (healthcare, governmental) and private
sector (manufacturing, financial, services, food and beverage, project industries) [19].

212 S. Brinkkemper and S. Pachidi

In our future research we intend to describe the semantics of FAD formally and
add details to out method. Furthermore, we plan to inspect the incorporation of sce-
narios with the Functional Architecture Diagrams, in order to visualize on a high level
the flow between the product's modules and third party applications for the implemen-
tation of the system's functionalities.

References

1. Anderson, D.M.: Design for Manufacturability. In: Optimizing Cost, Quality and Time-to-
Market. CIM Press, Cambria (2001)

2. Angelov, S., Grefen, P.W.P.J., Greefhorst, D.: A classifcation of software reference
architectures: Analyzing their success and effectiveness. In: Proceedings Joint Working
IEEE/IFIP Conference on Software Architecture & European Conference on Software Ar-
chitecture 2009, pp. 141–150 (2009)

3. Arsanjani, A., Zhang, L.J., Ellis, M., Allam, A., Channabasavaiah, K.: Design an SOA so-
lution using a reference architecture (2007),
http://www.ibm.com/developerworks/library/ar-archtemp/

4. Bajaj, A.: The effect of the number of concepts on the readability of schemas: an empirical
study with data models. Requirements Engineering 9(4), 261–270 (2004)

5. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-Wesley
Longman Publishing Co., Inc., Boston (1998)

6. Brinkkemper, S.: Dynamic enterprise innovation: Establishing continuous improvement in
business. In: van Es, R. (ed.) Baan Business Innovation, pp. 4–15 (1998)

7. Brinkkemper, S., van Soest, I., Jansen, R.L.: Modeling of product software businesses: In-
vestigation into industry product and channel typologies. In: Proceedings of the Sixteenth
International Conference on Information Systems Development (ISD 2007), Springer,
Heidelberg (2007)

8. Broy, M., Gleirscher, M., Merenda, S., Wild, D., Kluge, P., Krenzer, W.: Toward a holistic
and standardized automotive architecture description. Computer 42, 98–101 (2009)

9. Buckl, S., Ernst, A.M., Matthes, F., Ramacher, R., Schweda, C.M.: Using enterprise archi-
tecture management patterns to complement TOGAF. In: EDOC 2009: Proceedings of the
13th IEEE international conference on Enterprise Distributed Object Computing, Piscata-
way, NJ, USA, pp. 32–39. IEEE Press, Los Alamitos (2009)

10. Fowler, M.: Who needs an architect? IEEE Softw. 20(5), 11–13 (2003)
11. van Gurp, J., Brinkkemper, S., Bosch, J.: Design preservation over subsequent releases of

a software product: a case study of baan erp: Practice articles. J. Softw. Maint. Evol. 17(4),
277–306 (2005)

12. Herzum, P., Sims, O.: Business Components Factory: A Comprehensive Overview of
Component-Based Development for the Enterprise. JohnWiley & Sons, Inc., New York
(2000)

13. IBM Insurance Application Architecture, http://www-07.ibm.com/solutions/
sg/insurance/enterprise_aa/summary.html

14. Ieee std 1471–2000, recommended practice for architectural description of software-
intensive systems. Technical report, IEEE (2000)

15. Koning, H.: Communication of IT Architecture. Thesis Dutch Research School for Infor-
mation and Knowledge Systems (2008),
http://igitur-archive.library.uu.nl/dissertations/2008-0908-
200828/koning.pdf

 Functional Architecture Modeling for the Software Product Industry 213

16. Koning, H., Bos, R., Brinkkemper, S.: A lightweight method for the modeling of enterprise
architectures. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp.
375–387. Springer, Heidelberg (2008)

17. Kruchten, P.: The 4+1 view model of architecture. IEEE Softw. 12(6), 42–50 (1995)
18. Moon, M., Yeom, K.: An Approach To Developing Core Assets in Product Line In: 11th

Asia-Pacific Software Engineering Conference (APSEC 2004), pp. 586–588 (2004)
19. Nab, J., Pilot, A., Brinkkemper, S., ten Berge, H.: Authentic competence-based learning in

university education in entrepreneurship. International Journal of Entrepreneurship and
Small Business 9(1), 20–35 (2010)

20. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM 15(12), 1053–1058 (1972)

21. Reed, P.: Reference Architecture: The best of best practices (2002),
http://www.ibm.com/developerworks/rational/library/2774.html

22. Riebisch, M.: Towards a more Precise Definition of Feature Models – Modelling Variabil-
ity for Object-Oriented Product Lines, pp. 64–76. BookOnDemand Publ. Co., Norder-stedt
(2003)

23. Soni, D., Nord, R.L., Hofmeister, C.: Software architecture in industrial applications.
In: ICSE 1995: Proceedings of the 17th international conference on Software Engineering,
pp. 196–207. ACM, New York (1995)

24. Supply Chain Council: What is SCOR? (2010), http://www.supply-
chain.org/about/scor/what/is (Retrieved March 10, 2010)

25. Software Engineering Institute: How Do You Define Software Architecture? (2005),
http://www.sei.cmu.edu/architecture/definitions.html

26. van Vliet, H.: Software engineering: principles and practice, 2nd edn. John Wiley & Sons,
Inc., New York (2000)

27. van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: Towards
a reference framework for software product management. In: IEEE International Confer-
ence on Requirements Engineering, pp. 319–322. IEEE Computer Society, Los Alamitos
(2006)

28. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 26(3),
276–292 (1987)

Experiences from Scenario-Based Architecture
Evaluations with ATAM

Ville Reijonen, Johannes Koskinen, and Ilkka Haikala

Institute of Software Systems

Tampere University of Technology

PL 553, 33101 Tampere, Finland

{vilre,jomppa,ijh}@cs.tut.fi

Abstract. Software architecture may go through many changes during

its existence. Architecture evaluation can point out current problems,

help to anticipate some of the future changes, and also show the absolute

limits of a design. This paper presents experiences from eleven scenario

based architecture evaluations with ATAM. The evaluations were com-

pleted on a tight two day evaluation schedule. This limited time forced

to search for alternative scheduling options. The evaluated system de-

signs had relatively long life cycle up to 30 years and all the designs were

evaluated for the first time. We have learnt that in evaluations current

issues often overshadow the long view of the future. We suggest that ar-

chitecture evaluations should be integrated to the development process

as a tool not only for today but also for tomorrow.

1 Introduction

Software architecture in a product with long life cycle will go through many
changes. New requirements, regulations and laws as well as changing hardware
will push the old architecture to the limits, often slowly breaking it and making
later modifications even more difficult and costly. With architecture evaluation
one can try to peek the near and distant futures of an architecture and see how
well it can fulfill expected and unexpected changes. This information can be then
used to guide the design to an evolutionally sound path. A good design might
be the essential part in reducing overall costs and extending systems lifespan.

An architecture evaluation involves many stakeholders, often takes multiple
days and is therefore costly. Often in business, work that does not immediately
produce results, or profit, is hard to justify. Therefore, extensive amounts of time
cannot be used. After doing eleven scenario based architecture evaluations with
tight schedules, we have gained knowledge how to squeeze as much effective
work as possible into a two day period. The evaluations were done for four
target companies in Finnish machine industry for distributed control systems
with expected life cycle between 20 to 30 years.

We used Architecture Tradeoff Analysis Method (ATAM) as a base for our
evaluations. ATAM is presented in reference [4]. It uses one terse form of scenar-
ios as a tool for inspecting architectures. Unfortunately, there is a steep learn-
ing curve between reading about ATAM and applying it [12]. For example, the

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 214–229, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Experiences from Scenario-Based Architecture Evaluations with ATAM 215

description of ATAM in reference [4] omits many details which probably had
became “obvious” by the time of writing to the authors. Unfortunately, few of
the other experience reports available fill up these holes, usually due to the lim-
ited knowledge gained with analysis of one or two systems. Therefore, the main
purpose of this paper is to fill out this void and help to disseminate knowledge
to diminish the threshold between reading and doing.

Scenario based techniques are one of the oldest, most popular and widely
used tools from futures studies methodology toolbox [2]. For example, scenarios
are regularly used in business as a tool for strategic planning and preparation.
Still, the same level of planning is rare when it comes to software design and
architecture. When software is under construction it is not usual to think its
demise, unlike in our case where the expected life cycle of a whole system is well
known. The strong future studies background of scenario techniques could be
used when architectures are evaluated for long term view. A typical time frame
for future studies is between 15 and 30 years.

This paper proceeds as follows. Section 2 summarizes the ATAM method
and dissects it into more detailed steps. Section 3 discusses the first contact, the
evaluation team, and the first meeting for Phase 0. Section 4 presents an example
evaluation schedule for two day ATAM. In Section 5 presentations and work steps
are summarized for Phase 1. Section 6 discusses Phase 2 and experiences on
utility tree generation, brainstorming and prioritization. Section 7 summarizes
found benefits of architecture evaluations. Section 8 discusses the related work
and finally in Section 9, the experiences are summarized.

2 ATAM Steps Deciphered

In this section, the phases and steps of ATAM are described. This work builds
upon the previous work in references [4,7,8,9,10,11]. For a beginner it would be
advisable to start from Chapter 6 of reference [4] as it contains a good case study
and checklists that are helpful when preparing for the first evaluation along with
this paper.

ATAM, as it is presented by SEI after year 2000, consists of nine steps. These
steps cover the main activities of the ATAM, but as a simplified list, it is also
incomplete and somewhat misleading. The most concerning problem is the omis-
sion of preparation and post-work. To be able to discuss our experiences, a more
dissected list of steps and phases is presented. When referencing to this list later
on, a combination of step group letter and step number is used, e.g. A1. If the
list is compared to the content of Chapter 6 of reference [4], the steps are similar
but more detailed, only the repetition of Phase 1 is dropped and the preparation
phase is more condensed.

Phase 0: Preparation
A Preparation

1. First contact
2. Evaluation team
3. First meeting

216 V. Reijonen, J. Koskinen, and I. Haikala

4. Pre-check of presentations
Phase 1: Evaluation

B Presentations (mainly) for architecture team
1. Evaluation method presentation
2. Business drivers presentation
3. Architecture presentation

C Work with architecture team
1. Identifying architectural decisions
2. Generating utility tree with scenarios
3. Prioritization of scenarios
4. Analyzing scenarios

Phase 2: Verification
D Presentations for stakeholders

1. Evaluation method presentation
2. Business drivers presentation

E Work with stakeholders
1. Brainstorming scenarios
2. Prioritization of scenarios

F Work with architecture team and stakeholders
1. Analyzing scenarios

G Instant feedback
1. Present findings & discussion
2. Collect immediate feedback

Phase 3: Follow-up
H Follow-up and report

1. Retrospective and process improvement
2. Deliver report
3. Experiences from the customer

I Post-report
1. Review the changes introduced by the evaluation
2. Examine the need for re-evaluation

To make sure that presentations are prepared and right people are able to attend,
there should be at least two weeks between Phases 0 and 1. A week between
Phases 1 and 2 has proven to be convenient as it provides time for additional
preparations such as architectural clarifications. In Phase 3, the report can be
delivered as soon as it is finished, which usually takes at least a few weeks. Need
for re-evaluation can be examined, for example, after half an year or when it is
a convenient time for it as a part of iterative software development process.

3 Phase 0: Preparation

A1: First Contact

Everything starts from the first contact. The most important task during this
step is to set a preliminary schedule with required participants for each phase.
The architecture team and someone aware of the business requirements is re-
quired for Phase 1. Additionally, a wide range of stakeholders and the architect

Experiences from Scenario-Based Architecture Evaluations with ATAM 217

team should be available for Phase 2. For the first meeting the project man-
agement and the architecture team is required so that both management and
technical knowledge is present.

During the first contact some general details should be revealed to the evalu-
ators, so that they can decide if an area specialist could provide assistance. For
example, in one evaluation we had an expert on digital systems bridging the gap
in our knowledge. For the first meeting the company personnel has to prepare an
introduction to the domain, the design and the current level of documentation.

A2: Evaluation Team

The evaluation sessions can be managed with just two people but for active
participation at least three evaluators are needed. There can be more active
participants in the evaluation team, but the team members should not be the
ones predominantly discussing. It is important to remember that the evaluation
team works as a catalyst; over time most of the risks would be found even
without evaluation. The evaluation team brings in evaluation process guidance,
outside view and expertise that can help to find risks before they emerge and
cause problems. The architecture team cannot evaluate their own architecture
alone as they are blind to the decisions and their implications.

A scribe is the most important team member. The scribe writes the discussion
down so that it can be viewed from screen by all participants. The record should
be understandable and all participants should agree with recorded details. It is
a bad idea to use company personnel as a scribe or replace the scribe with a
recording equipment. The most important function of the scribe is to prevent
vague explanations from being accepted as is. If the scribe is not able to write
the explanation then the issue has not been explained well enough. Additional
roles should not be set on the scribe as record keeping is often the bottleneck
during the analysis step. We noticed that a custom spread sheet with macros is
helpful in reducing copy-pasting and rewriting. The sheet has its own page for
each work step in Phases 1 and 2. This way architectural decisions, scenarios,
prioritization and analysis are logically separated. Data from previous steps is
readily available from a drop-down menu.

A process enforcer is another required member in a team. The process en-
forcer’s task is to keep the process on schedule by stopping parallel or off-topic
discussions. This is important as the scribe cannot follow multiple discussions
at the same time and off-topic talk cannot be recorded in a systematic way.

A proceedings scribe writes down all the non-architectural problems, issues,
that are discovered during the evaluation. Additionally, the proceedings scribe
can record all questions asked, ask for explanation for unclear abbreviations and
record the general flow of the discussion. To back up the transcript a recording
can be made, if allowed.

Additional roles, which let the people participate in the discussion are eval-
uation leader, questioner and process observer roles. The questioner’s job is to
demand detailed explanations and to dig deep to verify sound design - how and
why the design decision supports the scenario in question. The process observer

218 V. Reijonen, J. Koskinen, and I. Haikala

takes timed notes on the process flow and records encountered problems within
the process. This is important data for process improvements.

A3: First Meeting
On agreed date, a couple of members from the evaluation team will meet with
the company representatives. We have sent the evaluation leader and a scribe
to the first meeting. The meeting usually takes between two and four hours.
During the meeting the evaluation method is presented concentrating on possible
goals, schedule and stakeholder participation. For some of our evaluations it has
been difficult to get stakeholders present for Phase 2. We have found out that
it is important to emphasize that we need the stakeholders, even if only for
brainstorming and prioritization steps (E1 and E2). If both of the evaluation
days are done with the same crew, it is not possible to see if the views of the
architecture team are in alignment with views of the stakeholders. This is the
most beneficial check in ATAM. It will show how well the architecture team is
aware of the issues which are important to those who, for example, sell, use, or
maintain the system. If no stakeholders will be available, Phase 2 will be waste
of time and it might be reasonable to just extend Phase 1 analysis over Phase
2. In any case, architecture team members are needed the whole time.

The first meeting is a opportunity to get to know the system a bit informally.
This will help the scribe as the terminology and the domain will become more
familiar. Sometimes a draft of the architecture presentation is shown, other-
wise suitable questions should be asked to gather domain knowledge and probe
boundaries of the design. Presenters for the architecture and business drivers
presentation should be agreed upon. We have given slide templates on paper to
the presenters, so there should not be any excuses for not following the template.

There should be at least a two-week break between the preliminary meeting
and the first phase so that the presentations can be finalized and additional
participants can be still summoned. If there are problems with the presentations
or participants, a no-go decision can be made to prevent a failure.

A4: Pre-check of the Presentations
We have usually demanded that the slides are sent us for pre-check one week
before the presentation. This way we made sure that presentations are done in
time focusing on right issues. This is important as a bad architecture presenta-
tion can prevent from evaluating the design. By forcing an additional deadline,
the quality of the presentations has vastly risen. This is probably because the
additional deadline “creates” additional time when the presentations can be
thought over. Another issue we observed before the deadline-rule was that the
presentations did not follow the templates. Often it looked like that some older
existing material had been used at the last moment to whip up a presentation.

4 Efficient Two Day Schedule

To carry out the evaluations efficiently, we had to compress the traditional ATAM
into two days. We have found out that by streamlining the ATAM presentation

Experiences from Scenario-Based Architecture Evaluations with ATAM 219

step, considerable time savings can be gained. The saved time should be spent
for analysis, which has the highest importance for the information gathering.

The morning of the first day begins with a short opening where the com-
pany people introduce themselves and the evaluation team leader presents the
evaluation team and their tasks. This is followed by the evaluation method pre-
sentation. We suggest that instead of speaking about the finer details of the
method, only a quick introduction is given and the daily schedule shall keep
the participants aware of the following steps and their time limits. An example
schedule for the first evaluation day is shown is Table 1.

Table 1. Example schedule handout (1st day)

First evaluation day

8.30 Opening

8.45 Evaluation method presentation (B1)
9.00 Business drivers presentation (B2)
9.45 Architecture presentation (B3)

11.15 Lunch

12.00 Identifying decisions (C1)
12.30 Utility tree creation (C2)
13.30 Scenario prioritization (C3)
13.45 Break

14.00 Scenario analysis (C4)
16.30 Free discussion and closing

After the evaluation method presentation, financial incentives are explained
during the business drivers presentation as ATAM suggests. When the partici-
pants are familiar with the business requirements, the architecture is presented
to show the actual design. These presentations are also good for stakeholders
and, in general, to distribute knowledge, so this could be arranged on a larger
venue. After the presentations it is good to have a lunch break. We have noted
that this creates a natural interruption that allows the stakeholders following the
presentation to leave before the afternoon program. As the evaluation days are
exhausting for the evaluation team and for the company participants, at least
one break should be scheduled during the afternoon.

A proposed schedule for the second day is shown in Table 2. The second evalu-
ation day follows quite much the same path as the first day. The main difference
is that the stakeholders have a large influence on the second day outcome. The
first evaluation day is more to see what the architect and the team had planned
whereas the second day is to find out how the stakeholders see the future of the
system and does it match with the visions and ideas of the architecture team.
We have learnt that the second day morning (E1) creates the most of the expe-
rienced customer value. It provides a perfect opportunity for guided discussion,
which there seems to be lack of, especially in larger organizations.

220 V. Reijonen, J. Koskinen, and I. Haikala

Table 2. Example schedule handout (2nd day)

Second evaluation day

8.30 Opening

8.45 Evaluation method presentation (recap) (D1)
8.50 Business drivers presentation (recap) (D2)
9.00 Scenario brainstorming (E1)
10.45 Scenario prioritization (E2)

11.15 Lunch

12.00 Scenario analysis (F1)
15.30 Break for summary preparation

16.00 Summary and Feedback (G1 & G2)
16.30 Free discussion and closing

As the afternoon on the second day consists mainly of technical discussions,
the stakeholders and busy managers might not be so interested to follow the
discussion, at least in our experience. We suggest that the architecture is not
presented again as it would cause havoc with the schedule. This might make it
difficult for new people to participate in the analysis (F1), if they do not know
the architecture beforehand. Therefore, it is better if people are directed from the
beginning of the process to participate in steps B2 and B3 for general knowledge
sharing. For many participants, brainstorming gave the opportunity to share
their thoughts. The awareness that the most important scenarios elicited by the
prioritization will be evaluated, is satisfactory for many stakeholders.

The speed in which the evaluation proceeds depends on the amount of peo-
ple present and especially on the amount of people who are active and taking
part in the conversation during utility tree generation (C2), brainstorming (E1)
and analysis phases (C4 & F1). The amount of time available for the analysis
depends entirely on how well the schedule is kept. With the presented schedule,
there are six hours for analysis when other parts of the process take ten hours
- the overhead is still quite large. However, the overhead is less than with the
traditional ATAM schedule (e.g. [11, p. 43], which contains about the same time
for analysis in three full days). The lower overhead for shorter time ties less
personnel to the process.

The best cost benefit ratio can be gained when the analysis time is maximized.
Still, an adequate amount of time for knowledge sharing and discussions should
be given. Hence, it could be very useful, if the analysis phase could be extended.
We would not recommend extending the evaluation day schedule as the days
are already quite exhausting as is. Instead a better option would be using one
more day for the evaluation. Additional day would more than double the time
used in analysis. Still, three day evaluation might be difficult idea to sell when
even two evaluation days are hard to accept. Instead, if the company personnel
has a feeling that more could or should be done after the second day, additional
analysis day could be suggested. As additional day would only involve architect
and evaluators, it would not require much from the target company.

Experiences from Scenario-Based Architecture Evaluations with ATAM 221

5 Phase 1: Evaluation

B1: Evaluation Method Presentation
We have found out that a detailed method presentation is not necessary for a
successful evaluation. Our short presentation slide set consists from the following
slides: evaluation etiquette, schedule, possible goals for an evaluation, evaluation
phases and stakeholder participation, example utility tree, scenario types and as
last an evaluated example scenario. The presentation does not take more than
15 minutes.

Instead of a detailed walkthrough, a schedule for the day gives people some-
thing they can actually remember for a while. When the daily schedule is first
shown, a basic division to morning and afternoon sessions is explained: in Phase
1, the morning is for presentations and the afternoon is for analysis. In Phase 2,
the morning is for brainstorming and the afternoon is again for analysis. Before
each step a short introduction is given to inform what will be done next.

The etiquette, or ”general instructions” as we have labeled them, tries to guide
how people should behave. For example, we tell the people to close their laptops
while we work, as an open laptop is a distraction and it isolates the person from
the discussion. Additionally, just one person should talk at a time. At last, the
spirit of the evaluation is explained; we are not grading the design, we are here
to help them to improve it.

B2: Business Drivers Presentation
During this step the system and domain are viewed through business drivers.
There is no point of creating features, which nobody pays for, so it is important
to have the business support behind the design. When the presentation follows
a template such as [4, p. 46], the presentation should give a good outlook on the
major business aspects. We have allocated 45 minutes in the schedule for this
presentation. This has been noted to be sufficient time for the presentation on
every evaluation. It is also the same what is recommended by reference [4].

B3: Architecture Presentation
The architect presents the product architecture at an appropriate level of detail.
This step is important, as it will directly affect the depth of the analysis and
the quality of this analysis. The architecture presentation is time-wise the most
volatile step. In few cases the business drivers presentation has been shorter
than the allocated time slot, so there has been more time for the architecture
presentation. It has never occurred that the architecture presentation would have
been shorter than the time allocated for it.

In reference [4], 60 minutes are allocated for the presentation. We have used 1.5
hours for it and we feel that this additional 30 minutes is worthwhile especially
when non-native speakers are giving presentations. If the audience has a lot of
questions and comments, the time might run out even when the presentation
does not proceed. The process enforcer should be observant and stop discussions
which analyze the design or which do not benefit the architecture presentation.
It is good to know the architecture as well as possible, but all the extra time
spent here will be taken away from the analysis time.

222 V. Reijonen, J. Koskinen, and I. Haikala

C1: Identifying Architectural Decisions
Identifying architectural decisions has usually taken in our evaluations less than
twenty minutes. Decisions can be either unconscious or deliberate; hacks forced
by the existing architecture, solutions known to work or designs based on pat-
terns. During the architecture presentation, the evaluation team records noticed
solutions and patterns. During this step the architect is guided to identify de-
cisions made within the architecture. The architect may first be unsure what is
meant by a decision. When some examples are given by the evaluation team,
the architect will soon pick up the lead. If the evaluation team member feels
that something is missing, it can be added when the architect starts to slow
down. After a while some of the decisions might feel unfamiliar if they are made
up from just word or two. Therefore, it might be a good idea to expand and/or
explain the approaches a bit more to cover “what” and “where” and even “why”.

A listed architectural decision should not be too general such as a pattern
name, especially if used more than once in the architecture. A decision should
be concrete. A too general decision may prevent deeper analysis and therefore
the decisions should be more or less on the same level of magnitude. A too
general decision can be noticed quite easily during the analysis, as it is vague
and difficult to grasp. If such a decision is noticed, the decision should be revised
immediately. It is good to remember that the list is not static, it will change and
grow also during the analysis when new decisions are identified.

C2: Generating Utility Tree with Scenarios
During this step a utility tree is created. Quality attributes, such as performance,
form the base of the tree. Each quality attribute is refined by the participants.
For example, a system could have refinement such as latency of the network
under performance. The concrete scenarios are formed under the refinements.
Especially during scenario creation, the discussion easily wanders and turns to
analysis, which cannot be captured systematically during this step. Therefore,
this phase needs strong process enforcement. In our evaluations, the creation
of scenarios has taken three to five times as much time as the creation of the
base of the tree with quality attributes and their refinements. The whole tree
can be constructed in one hour with strong guidance. The tree easily expands
exponentially in those places, which are under longer exposure. It is important
to remember that quantity is not quality.

In the first few evaluations, we did show the quality attribute list from the
ISO 9126-1 standard [6] to help the company personnel to identify the essential
quality attributes. This caused a problem with too many selected attributes.
Consequently, the utility tree was loaded with attributes and this made the
development of the utility tree time consuming. Therefore, it would be better if
most of the quality attributes are taken from the business drivers presentation.
The team should take note of any missing quality attribute, which they think as
essential for this system. It is best to let the company personnel use their own
terms as quality attributes. The terminology does not need to match with any
standard. It is up to the evaluation team to understand and write down what
each term means. A discussion on the correct terminology is waste of time.

Experiences from Scenario-Based Architecture Evaluations with ATAM 223

Often when the quality tree is developed, the people have already some ex-
ample case in mind when the quality attribute is presented. It is a good idea to
write the example down as a stub, as otherwise it will probably be forgotten.
Later on, it can be refined when that particular level of the tree is under work.
Scenario outlines should be well formed – they should have at least a stimu-
lus and a response. As a result the scenario stubs can be understood even if
they need more elaboration later on. The best way to make sure that everybody
tries to create proper scenarios is to explain beforehand the scenario structure.
To tackle this problem, we have given to all participants a paper with scenario
templates and examples of use-case, growth and exploratory scenarios.

In true journalist fashion, a good scenario should be able to answer some of
questions: “who, what, where, when, why and how” (W5H). Simple, fast to use
and well understandable way to write scenarios outlines is the three part format
proposed in reference [4]. Short outline is made out of stimulus, environment
and response parts. Stimulus defines the change causing input to the system;
by “who” and “why” something happens. Environment describes “where” or
“when” the scenario takes place, for example during normal operation or per-
formance peak. Response explains “what” measures are taken to respond to the
stimulus. There are other longer, detailed and more complex formats available
as, for example, six part scenario presented in reference [1, p. 76]. We did not
see that any benefits could be attained from more complex or detailed format,
only more time would be used per scenario outline. The most important thing
for a scenario outline is that when it is much later re-read, it can still be under-
stood and it is unambiguous. The most important question “how” will only get
answered during the analysis.

C3: Prioritization of Scenarios
The prioritization phase takes ten to twenty minutes, if done systematically. We
have used two way prioritization with High-Medium-Low scale for the rating.
This prioritization system is quite simple and so far, it has been accepted without
any questions. The business owner, often the person who presented business
drivers, announces first her opinion for the business value of the scenario (e.g.
”High”) and after that, the lead architect expresses her view on the difficulty of
achieving the scenario (e.g. ”Medium”). After this short, one-word conversation
the next scenario can be rated.

After votes has been given, the scenarios are ordered emphasizing on the
business value when the scales are the same. If a manual system is used to order
the scenarios, you need to have free time in the schedule to do this work. The
risk in the prioritization lies in the architect’s opinion, as some scenarios might
be more difficult to attain than thought. Especially, if the original architect has
left the project, there might not be suitable persons available who could tell the
difficulty of the work needed to make a scenario possible.

The most evident problem in the prioritization method is that the business
value is often rated higher on scenarios that are closer to the sales. This excludes
exploratory scenarios which might have more impact in the long run. In many
cases, a futuristic scenario often reveals similar problems as a scenario based on

224 V. Reijonen, J. Koskinen, and I. Haikala

a sales case. This myopia can only be truly cured when the current issues are
first taken care of and there is no further need to put out fires. The future of the
system can then be adequately prioritized in the business view.

C4: Analyzing Scenarios
The highest ranked scenario is taken first under analysis. For every scenario, a set
of related architectural decisions and sensitivity points are selected. Change in
a sensitivity point is likely to affect the quality attribute, which is the scenario’s
parent in the utility tree. For example, for a scenario under performance, the
sensitivity point could increase or decrease performance. During the analysis,
additional architectural approaches might be identified and added to the list.

The right mindset during analysis is that your job is to break the system.
The architect has to be assumed guilty until proven innocent. It is the job of
the architect to explain how her decisions will help the scenario and the quality
attribute at hand. Every detail in the scenario should be probed and explained.
This is the main task for the questioner. When the first scenario under evaluation
is both important on business value and difficult to attain, it should have several
risks. One guideline which was given to us is to analyze the first scenario until
at least five risks emerge, this could take long, a figure of 1.5 hours was given as
an example [12]. In general, a successful scenario analysis usually takes between
half an hour and an hour.

When a larger quantity of scenarios is created than evaluated, for some people
it might be worrisome that only some of those scenarios are evaluated. This is
easy to understand when one thinks the scenarios as test cases and is thinking of
test coverage. The test metaphor is an easy way to explain the process in familiar
terms – scenario tests if the architecture can meet its demands. The difference is
that the scenarios are just vehicles that allow us to probe the architecture; the
actual target is the discussion and analysis of whatever thoughts and ideas the
scenario brings up, not the scenario itself. In testing there is no discussion, the
code is the target and it either passes or fails.

6 Phase 2: Verification and Phase 3: Follow-Up

D1: Evaluation Method Presentation
On the second day the evaluation method is presented shortly. We have mainly
focused on possible goals, what can be gained from the analysis and how the
process provides a constructive venue where ideas can be exchanged. The daily
schedule can be presented in the same way as in step B1 explaining the division
to morning and afternoon work. It is good to emphasize that scenarios created
and voted topmost, will be the ones that will be analyzed during the afternoon.
The rest are left for the architecture team to handle as they wish.

D2: Business Drivers Presentation
A terse business drivers presentation is sufficient for Phase 2, but a short pre-
sentation has been included in the program to make sure that the participants
understand the business constraints.

Experiences from Scenario-Based Architecture Evaluations with ATAM 225

E1: Brainstorming Scenarios

When Phase 1 results were presented during our evaluations, we felt that it di-
rected the stakeholders too much to the same direction which was taken during
Phase 1. Therefore, we have diverted a bit from mainline ATAM by not present-
ing Phase 1 results to the stakeholders before brainstorming. Additionally, this
way Phase 2 really is a verification for Phase 1. If Phase 1 and Phase 2 scenario
focus has a large discrepancy, a mismatch between stakeholder needs, assumed
business goals and architecture team’s views will be found.

There are many ways to do brainstorming. As an example, we have used
a pair working based method. It does not require any other equipment than
pens and paper. The brainstorming is done in three rounds. For the first round
all participants are given a paper with scenario types (use-case, growth and
exploratory) and basic scenario structure (stimulus-environment-response). Ev-
eryone has roughly five minutes of silent time to think alone and write ideas on
the paper. For the second round adjacent participants are paired up. Their task
is to discuss on existing ideas and generate new ideas for ten minutes. For the
third round, the pairing should be made so that pairs do not know each other
too well to stimulate more diverse idea exchanging for another ten minutes.

After the pair work, scenarios are gathered in round-robin style. One by one,
each participant presents one undiscussed scenario idea, always presenting the
the most important idea for her. The presented idea is written down as a pre-
liminary scenario. The other participants are asked if they have similar ideas,
which could be combined into the same scenario. If there is, a combined scenario
is written down. After a valid scenario has been written, the next scenario is
elected from the next person in the round robin. This is done as long as there
are scenarios left or time runs out. When a large group of stakeholders is present,
more time has to be allocated. The stakeholders might feel left out if they cannot
present all the scenarios, which they feel as important. The round-robin collec-
tion style makes it possible to gather for each participant the most important
scenarios first, so it softens the pain if the time runs out. For the stakeholders
this creates a possibility to share their views with the architecture team and
other stakeholders. As such, it makes most of the stakeholders satisfied even if
they do not participate to the actual analysis step.

E2: Prioritization of Scenarios

Different kinds of voting methods are discussed in reference [4, pp. 192-193].
One method given in the book as one with quite balanced results has two voting
rounds where the second round done in reverse order. We noticed that with a
large group it is too time consuming as only one person at a time is active. As
an alternative, we would suggest similar but a bit disorganized procedure. The
scenarios are printed on paper and taped on the wall. For example, five pens
are available for marking the votes and people go and mark their points freely
when a pen is free. After the participants have voted for one time, the tally is
presented. After this the second round is run. The vote can be run on the average
in half of the time compared to one-at-a-time two round voting.

226 V. Reijonen, J. Koskinen, and I. Haikala

Another voting method we have used is a simultaneous voting using High-
Medium-Low cards. For every scenario, everyone selects privately a paper with
her selection of grade or empty vote. The grades are then revealed at the same
time to all and the tally is counted. The good thing in this is that this method
proceeds almost the same speed even with a large group and all the participants
will be active all the time during the voting. As one can give as many high votes
as she wants, there will not be any accumulation problem as in a completely
blind voting. When H/M/L is used the set is quite small and therefore the total
scale is quite narrow - but still sufficient for this use.

As during Phase 1 prioritization, in this phase the immediate needs often
overshadowed the future. This was especially true when evaluating a new sys-
tem that was going to replace an older dysfunctional system. There were often
scenarios that covered aspects which were fixed in the new architecture. In these
cases, if not always, it might be beneficial to remind the stakeholders that the
problems are well known, but now you as stakeholders have a possibility to point
out what you could think to be important in the distant future.

F1: Analyzing Scenarios

The scenarios that were brainstormed and prioritized high are analyzed in the
same way as in the earlier in step C4. As this time there might be stakeholders
present during the analysis, it will probably add new flavor to the conversations.
If there are new participants, it is important that they were present during the
architecture presentation during Phase 1, otherwise they might feel lost during
the analysis.

G1, G2: Present Findings, Discussion and Immediate Feedback

At the end of Phase 2, preliminary results are presented. The evaluation team
needs some private space to prepare the slides. This can be done in half an hour if
the slide template is ready and the evaluation leader has prepared the result from
Phase 1. While the evaluation team prepares, the participants can prepare to go
home after the summary presentation. At this point, it is good to give feedback
forms for the participants to be filled up while they are waiting. The summary
presentation should start, as all feedback, with some positive points. After this,
the risk themes are processed and finally other found issues are presented. After
the presentation, the participants can discuss on the findings and the team can
collect the feedback forms back.

Phase 3: Follow-Up

After the evaluation, the evaluation team holds a retrospective meeting where
the process observer’s notes are gone through and the process improvements are
considered. After the report is finished, it is delivered to the company. We have
visited the company to return the report. This has made it possible to find out
if there is need for clarifications. After returning the report, a query can be sent
to find out what kind of changes the evaluation and the report had with the
target design.

Experiences from Scenario-Based Architecture Evaluations with ATAM 227

7 Benefits of Evaluation

After evaluations, we have gathered feedback from the participants. Most of the
benefits we have noticed are the same as reported already in reference [4, pp 37-
38] such as articulation on quality goals, prioritization of goals, explication of the
architecture, improved documentation and improved practices. What we found
as most beneficial was that the evaluation gave the excuse to get architects
and stakeholders together to discuss and present their own views on what is
important. For the architects this also gave a lot of material in form of scenarios,
which can be used to aid the further architecture design.

In all the companies which we evaluated, the hardware design was handed
down to the software team. In all the companies, competition was told to be
the reason for cheap hardware designs. The cost analysis rarely reached to the
level of software. As a result, a few cents might be saved on hardware, but tens
or hundreds of thousands of Euros could be spent on the compromised software
design. As the size of the series in the evaluated systems do not run in millions,
the life cycle is tens of years with demands for additional features, one can see
why this can be a problem.

Our evaluations targeted distributed embedded control systems. It should not
be surprising that the embedded nature also made the systems often invisible
as a whole. As one person reported: ”they would be shocked to know that the
system is run by software”. Due to the evaluation and stakeholder participation,
the knowledge of the architecture and its limitations also spread outside of the
software team. As an interesting side effect, the evaluation report was also used
in some cases as a tool in corporate politics. This went from “see we do good
work here!” to “now proven bad, can we finally fix it?”.

8 Related Work

Scenario based analysis is not so well known, studied and used on the software
area as for example in futures studies. The most cited and used book for the area
is ”Evaluating Software Architectures: Methods and Case Studies” from year
2002 [4]. The book discusses on scenario based methods such as SAAM, ATAM
and ARID. Three sections have been used for describe ATAM from which the
last, Section 6, is the best documentation for ATAM freely available. Section 5, an
experience story, has contradictions with the other two sections and presents an
older version of ATAM. Section 5 has been also released previously as technical
report [7].

One of papers sharing more than a few lines of experiences of ATAM based
architecture evaluations in industry is reference [3], where ATAM was applied
to evaluate decentralized control of a transport system. This is quite close to
our domain where we did evaluations. In the paper, applying ATAM provided a
course to finalize the architectural documentation. This is one of the goals which
some of our evaluated companies shared. The modified ATAM described in the
paper was one day Phase 1 with stakeholders. Still it provided valuable in-depth

228 V. Reijonen, J. Koskinen, and I. Haikala

discussion with the stakeholders and distributed knowledge. They noted that
ATAM could not be carried out in one day, whereas we have demonstrated that
it can be carried out in two days when prepared well. As the utility tree was
their way to create scenarios, it was also found important, but the team had
problems when building the tree as first timers. It consumed a lot of time and
good preparation and a chairman was suggested as a remedy.

ATAM was used to review a product line architecture in reference [5]. Qual-
ity attributes were noted to be too vague for analysis whereas scenarios express
important aspects of quality attributes better. They found out that the most
important benefit of ATAM is the stakeholder’s awareness of architectural deci-
sions, tradeoffs and risks. Later on in the paper they note that marketing and
sales did not use the opportunity to participate and only three stakeholders took
part in the process. We have noticed the same issue in many of our evaluations.
It might be that the software department may have difficulties to reach out to
other departments unless the command comes from the top. The ATAM process
increased the quality of architectural documentation and distributed knowledge.
Architecture presentation in a workshop was said to be much more effective than
any documentation can be. Communicating the results to non-participants was
seen difficult.

In [13] Svahnberg et al. present their experiences on a lightweight software
architecture evaluation method derived from SAAM and ATAM. The method is
primarily used in student projects, but they have also used the method together
with industry partners. Even though an evaluation using the method described
in the paper will take only a couple of hours, the experiences and evaluation
guidelines presented can be extended, at least to some extent, to longer evalua-
tions like ours.

9 Conclusions

Running the evaluation in two days is tough, especially when a large group of
stakeholders is present on the second day and when it seems that everybody has
much more to say than there is time. Sometimes flexibility is needed, even if it is
lost in the analysis time. Nevertheless, a tight schedule demands strong process
enforcement and a good writing tool for the scribe. A spread sheet with some
macros proved to be quite helpful in utility tree, prioritization and evaluation
steps, reducing the need for copy-pasting and rewriting. When the tool and
the text are shown on the screen, it is also easy to guide the discussion. The
structured way of analyzing scenarios is a powerful tool in ATAM. It makes it
easier to concentrate on the scenario at hand and it will yield in better analysis
and in the end a better report.

Within two evaluation days, six hours on average were spend for analysis work.
Based on our experiences, six hours are not that much for analysis, especially
when compared to the ten hour of work which has to be done before analysis
on the evaluation days. Still, an adequate amount of time for knowledge sharing
and discussions should be given. Thus, even from the cost perspective, it would
be reasonable to dig bit deeper. For a deep analysis, a third evaluation day

Experiences from Scenario-Based Architecture Evaluations with ATAM 229

would be recommendable, as additional eight hours could be used for analysis
and other discussions. This would be still relatively cheap as only members of
the evaluation and architecture teams would be required.

When an architecture is evaluated for the first time, it is very difficult to think
about the future as the immediate needs shadow the needs of the future. This is
understandable especially when an older product is replaced with a newer one
and all the problems with the older product are still well in mind. Typically this is
visible as low number of exploratory far reaching scenarios voted for evaluation.
When the life cycle of a product is long, also the boundaries of the design have to
be probed and questioned, therefore architecture evaluations should be a part of
a software development toolbox. The best way to gain competitive edge is to go
from reactive to proactive. An evaluation can be the tool to make this happen.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-

Wesley Longman Publishing Co., Inc., Boston (1998)

2. Bell, W.: Foundations of Futures Studies, Human Science for a New Era. Transac-

tion Publishers (1997)

3. Bouck, N., Weyns, D., Schelfthout, K., Holvoet, T.: Applying the ATAM to an

architecture for decentralized control of a transportation system. In: Hofmeister,

C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp. 180–198.

Springer, Heidelberg (2006)

4. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods

and Case Studies. Addison-Wesley Professional, Reading (January 2002)

5. Ferber, S., Heidl, P., Lutz, P.: Reviewing product line architectures: Experience

report of ATAM in an automotive context. In: van der Linden, F.J. (ed.) PFE

2002. LNCS, vol. 2290, pp. 194–197. Springer, Heidelberg (2002)

6. International Organization for Standardization: Software engineering - product

quality - part 1: Quality model, ISO/IEC 9126-1:2001(E) (2001)

7. Jones, L., Lattanze, A.: Using the architecture tradeoff analysis method to evalu-

ate a wargame simulation system: A case study. Tech. rep., Software Engineering

Institute, Carnegie Mellon University (2001)

8. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The

architecture tradeoff analysis method. In: IEEE International Conference on Engi-

neering of Complex Computer Systems, p. 68. IEEE Computer Society, Los Alami-

tos (1998)

9. Kazman, R., Barbacci, M., Klein, M., Carriere, S.J., Woods, S.G.: Experience with

performing architecture tradeoff analysis. In: Proceedings of the 1999 International

Conference on Software Engineering, pp. 54–63 (May 1999)

10. Kazman, R., Klein, M.: Performing architecture tradeoff analysis. In: ISAW

1998: Proceedings of the third international workshop on Software architecture,

pp. 85–88. ACM, New York (1998)

11. Kazman, R., Klein, M., Clements, P.: ATAM: Method for architecture evaluation.

Tech. rep., Software Engineering Institute, Carnegie Mellon University (2000)

12. Reijonen, V., Eloranta, V.P., Leppänen, M., Bachmann, F.: Discussion on ATAM

at Tampere University of Technology (August 2009)

13. Svahnberg, M., Mårtensson, F.: Six years of evaluating software architectures in

student projects. Journal of Systems and Software 80(11), 1893–1901 (2007)

Feature-Based Composition of Software
Architectures

Carlos Parra, Anthony Cleve, Xavier Blanc, and Laurence Duchien

INRIA Lille-Nord Europe, LIFL CNRS UMR 8022,

Université des Sciences et Technologies de Lille, France

{carlos.parra,anthony.cleve,xavier.blanc,laurence.duchien}@inria.fr

Abstract. In Software Product Lines variability refers to the definition

and utilization of differences between several products. Feature Diagrams

(FD) are a well-known approach to express variability, and can be used

to automate the derivation process. Nevertheless, this may be highly

complex due to possible interactions between selected features and the

artifacts realizing them. Deriving concrete products typically involves

the composition of such inter-dependent software artifacts. This paper

presents a feature-based composition approach to automatically derive

a product architecture from a given feature configuration. The proposed

approach relies on the combination of Model-Driven Engineering (MDE)

and Aspect-Oriented Modeling (AOM) techniques. We introduce a meta-

model to reify each feature as a high-level aspect model. Product deriva-

tion is achieved by weaving the set of aspect models corresponding to a

particular feature configuration. The weaving strategy is derived from an

in-depth cross-analysis of both the feature interactions and the aspect

model dependencies.

1 Introduction

One of the most important challenges of Software Product Line Engineering
concerns variability management, i.e., how to describe, manage and implement
the commonalities and variabilities existing among the members of the same
family of software products. A well-known approach to variability modeling is by
means of Feature Diagrams (FD) introduced as part of Feature Oriented Domain
Analysis (FODA) [1] back in 1990. An FD typically consists of (1) a hierarchy
of features, which may be mandatory (commonality) or optional (variability),
and (2) a set of constraints expressing inter-feature dependencies. Nevertheless,
deriving a concrete software product from an FD remains a highly complex
process. The latter starts with the feature configuration step, which aims at
selecting the features to include in the desired product, in strict conformance to
the specified constraints. The product derivation process then necessitates the
composition of the software artifacts corresponding to the selected features. This
second step may be very challenging, since the fact of selecting a single feature
may impact several several places in the product itself.

In order to enable the automated derivation of a product in an SPL, it is
necessary to specify the corresponding artifacts that reify each feature. One way

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 230–245, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Feature-Based Composition of Software Architectures 231

to develop such artifacts is by means of software components. Given a particular
configuration, the artifacts associated with the selected features are to be com-
posed in order to obtain the desired product. In the context of Component-Based
Software Engineering (CBSE) the typical unit of composition is the software
component [2]. Ideally, all components are independent from each other. Never-
theless, in SPLs, each feature may be supported by several components which
means that feature interactions may translate as dependencies and conflicts be-
tween components implementing them.

In this paper we propose an approach for feature-based architecture composi-
tion in component-based software product lines. To fill the gap between features
and software components, we rely on the definition of aspect-like composition
models that link every particular feature with several software components. Ev-
ery model contains the information required for the composition including: (1)
the locations modified by the feature, (2) the elements to be added and (3) the
set of modifications to perform in order to add such elements. Their definition
relies on Aspect Oriented Modeling (AOM), that consists in using the Aspect
Oriented Programming (AOP) principles as part of the Model-Driven Engineer-
ing (MDE) development process [3]. We present an aspect metamodel to define
the aspect models, and the mappings that enable such models to be composed by
means of model transformations. Furthermore, our approach includes the com-
bined analysis of the inter-feature constraints of the FD and the dependencies
between the corresponding aspect models. We argue that such an analysis may
significantly improve the composition process by allowing (1) the verification
of the constraints explicitly defined in the FD, (2) the identification of implicit
dependencies between the aspect models that are not defined in the FD, and
(3) the derivation of a conflict-free composition strategy. The constraint analysis
and composition are performed at the model level. Afterwards, the composed
model is transformed into software components. We use Service-Component Ar-
chitecture (SCA) [4] as target platform. SCA proposes a reconciliation between
the Service Oriented Architecture (SOA) and CBSE, by defining a framework
for describing the composition and the implementation of services using software
components.

The main advantages of the proposed architecture composition approach as
a whole are: (1) a clear separation of concerns achieved by defining independent
aspect models, (2) the possibility to identify inconsistencies both in the FD
and in the aspect models, (3) the definition of a feature-driven order to prevent
conflicts in the process of architecture composition, and finally (4) the platform
independence guaranteed by aspect models that are agnostic to the underlying
technologies used for implementation.

The remainder of this paper is organized as follows. Section 2 presents a mo-
tivating example and a set of challenges for feature-based composition. Section 3
illustrates our approach in detail. In Section 4 we give some results of our exper-
imentation and revisit the challenges identified in Section 2. Section 5 provides
a related work discussion. In Section 6 we conclude the paper and anticipate
future work.

232 C. Parra et al.

2 Motivation and Challenges

In this section, we present an illustrative example and define a set of challenges
for feature-based software composition.

2.1 Motivating Scenario

Let us consider the feature diagram of Figure 1. It defines a family of products
with the essential functionality for an e-shopping scenario where a client connects
to a server in order to find and buy items. The FODA terminology distinguishes
three types of features: (1) mandatory features (dark circles) which are always
selected (e.g. Notification and Payment), (2) optional features (white circles),
which can be chosen or not (e.g. Location), and (3) alternative features (inverted
arc), a special kind of optionality where the selection is realized among a limited
set of alternatives, it can be non-exclusive (e.g. CreditCard and Discount)
or exclusive (e.g. SMS and Call). In addition to that, the diagram introduces
two types of constraints among features: requires and excludes. The requires
constraint states that for a given feature to be selected, the required feature has
to be selected before. The excludes constraint states that for a given feature to
be selected, the excluded feature has to be deselected. In the feature diagram of
Figure 1 there is one constraint indicating that location-filtered catalog needs
one type of location to work.

Catalog

Application

Location

Filtered WiFi GPS

ByDiscount ByLocation

Notification Payment

DiscountCreditCard

ByWeather

SMS Call

requires
optional mandatory xoror

Legend

Fig. 1. A sample feature diagram

2.2 Challenges

The main idea with a feature diagram like the one in Figure 1 is to enable
software architects to derive their products based on (1) the selection of features,
(2) the existence of dependencies between the selected features, and (3) the
mapping between the selected features and the supporting software artifacts. In
order for software composition to fully benefit from the information contained
in the feature diagram (variabilities, commonalities, and constraints), several
challenges have to be faced:

Feature-Based Composition of Software Architectures 233

1. Ensure a clear separation of concerns: Although feature diagrams en-
able the clean specification of software variability as a feature hierarchy, the
mapping that holds between the features and the corresponding software
artifacts may prove much more difficult to define. This is especially the case
in the presence of crosscutting features, i.e., features that are materialized at
multiple places in the final product. Possibly complex interactions between
features on the one hand, and between artifacts on the other hand, further
complicate the definition of the composable elements.

2. Identify inconsistencies: When composing multiple artifacts to form a
software product, it is possible that two or more of those artifacts have con-
flicts regarding the elements where they are going to be composed and the
requirements for the composition to take place. It may happen that implicit
dependencies exist between artifacts that support independent features in
the FD, and conversely. Such inconsistencies do not necessarily lead to com-
position problems but they have to be made explicit.

3. Derive a suitable composition strategy: This challenge corresponds to
use the information at the feature and also at the artifact level to obtain the
composition strategy. For example if two features have a dependency, like in
the example ByLocation depends on any kind of Location, it is necessary
to first compose the artifacts related to Location so that, ByLocation can
reference parts of the Location artifacts. In other words, features have to
be used to define partial orders in the composition of artifacts.

4. Use multi-platform artifacts: Finally, it is desirable that the artifacts
that implement the features are platform-independent, this allows the SPL
to have multiple targets and postpone the decision of a particular platform
until later steps of the product derivation.

3 From Features to Aspect Composition

In order to obtain a software product from a set of features, we define a product
derivation process with three main phases as illustrated in Figure 2: (1) feature
and aspect modeling concerning to the language used to define both feature di-
agrams and aspect models, (2) constraint analysis dealing with the analysis of
constraints at both the feature and aspect level, and finally (3) model compo-
sition that introduces a process to derive a single product using aspect model
composition.

3.1 Feature and Aspect Modeling

In our approach, both the software variability and the composable software ar-
tifacts are represented as models. Here below, we present the two metamodels
used to define feature and aspect models.

Feature Metamodel. Several works on feature modeling have proposed mul-
tiple extensions to the FDs initially introduced in [1]. In [5] Schobbens et al.
survey different approaches to feature modeling and define an abstract syntax

234 C. Parra et al.

Aspect
Metamodel

1. Feature and Aspect
Modeling

Feature
Metamodel

Analyzer

2. Constraint
Analysis

Constraint
Warnings

Composition
Order

Core Aspects

Design Weaving
(Model Transformation)

Core
+

Aspects

3. Model
Composition

conforms to

Developer

Product
Configuration

Fig. 2. Variability and Product Derivation

for feature diagrams that eliminate the ambiguity occurring in earlier proposals.
They employ a mathematical notation to define the inter-feature relationships.
A different approach to deal with ambiguity in FDs is by defining a metamodel
like the one proposed by Pohl et al. [6]. This metamodel presents two main con-
cepts: variation points and variants. A variation point is a representation of a
variability subject, for example, the type of user interface that an application
provides. A variant identifies a single option of a variation point. Using the same
example, every single user interface that can be chosen for the application (e.g.,
rich, thin, web-based, mobile) is represented by a variant. The metamodel pre-
sented in [6] further specializes the relationships between variation points and
variants, by classifying the types of relationships that may exist. They define
dependencies (optional and mandatory) and constraints (requires, excludes). In
this paper we define a feature metamodel inspired from the concepts that Pohl et
al. have identified. In our metamodel, we define the same concepts and relation-
ships using the Eclipse Modeling Framework (EMF) [7], but we change the way
they are modeled, since EMF does not support the specialization or inheritance
of relationships between two different meta-classes. Our feature metamodel is
shown in Figure 3(Part a).

Aspect Metamodel. The aspect metamodel (see part b of Figure 3) is essential
in our approach, it allows us to link the three different methodologies (SPL, SCA,
and AOSD) into one single model. First, the root of the metamodel is the Aspect
which implements a Variant from the SPL. Second, an Aspect introduces the
concepts needed to model a component and service based application (Model),
and third, the Aspect also defines the two essential elements of any AOSD
approach: the places where the weaving is realized (Pointcut), and the set of
modifications to be performed (Advice).

Modeling the elements to be weaved (Model): The Model part of the metamodel
is used to define the core. It is inspired by the SCA, our target platform, and de-
scribes the structure of applications as a set of components (meta-class Element)
that provides services (meta-class Service) and requires references (meta-class
Reference). An element can contain other elements. This is expressed using the

Feature-Based Composition of Software Architectures 235

FeatureModel

name : String
VariationPoint

CompositeVariant

name : String
selected : Boolean

Variant

min : int
max : int

Alternative

nodes name : String
mandatory : Boolean

Node

requires

excludes

0...*

0...*
0...*

0...*

0...*

name : string
Element

Service
name : stringname : string

Reference

services
references

*

Container

* *

name : String
Aspect

name : String
Model

name : String
ReferencedElement

Advice

execute()

Modification

type: ModelType
Add

type: ModelType
Delete

name : String
Pointcut

name : String
type : ModelType

Variable

operator : OperatorType
CompositeExpression

AtomicExpression

type : ModelType
InstanceOf

isOwnedBy()

Owned

name : String
FindByName

execute()

Expression

how

where

*

*

*

*

1

1 1

parent

child

*

elements

*

referencedElements

what

variable

variable

1

variable

expression

*
referencedElement

expression

implementedBy

1
a) Feature Metamodel

b) Aspect Metamodel

1 1

11

and
or

Enummeration
OperatorType

Fig. 3. Feature and aspect metamodels

composite pattern of the meta-class Container. Additionally, to fully describe
the architecture, the metamodel also introduces concepts like contracts, oper-
ations, objects, activities, connections, etc. Nevertheless, for space reasons, we
show a reduced version of the metamodel making emphasis on the aspect infor-
mation which is used in the constraint analysis. Every aspect uses the meta class
ReferencedElement as an entry point to the Model part. As it can be noticed,
every meta-class in the Model inherits from ReferencedElement which makes
them accessible from the Pointcut and Advice definitions.

Modeling the place (Pointcut): We consider the Pointcut to be a query that
returns all the model elements that have to be present in the model in order for
an aspect to be weaved. A pointcut (meta-class Pointcut) is composed of ex-
pressions (meta-class Expression) and variables (meta-class Variable). An ex-
pression can be either composite (meta-class Composite) or atomic (meta-class
Atomic). A composite expression has an operator (meta-attribute operator)
that defines the semantics of the composition (e.g., and, or). An atomic expres-
sion can be specialized in three different forms. InstanceOf, FindByName and
Owned. InstanceOf is used to find an element using its type as a parameter.
FindByName returns the elements whose name equals the name attribute of the
expression. Finally the Owned expression looks for couples of elements where one
of the elements (parent) owns the other (child). A variable represents a place
where the elements obtained by executing an expression are stored.

236 C. Parra et al.

Modeling the modifications (Advice): We consider the Advice to be a se-
quence of atomic modifications (meta-class Modification). There are two types
of modifications supported: (1) add a new model element (meta-classes Add),
which links an element of the model, represented as a ReferencedElement, and
a Variable of the query, which represents the place where the element is going
to be added, and (2) remove an existing model element (meta-classes Remove),
which has a reference to the Variable representing the elements to be removed.

3.2 Constraint Analysis

The constraint analysis process takes place once the developer has configured
a particular product. The feature selection is represented as a set of variants.
Based on this selection, the constraint analysis aims at: (1) checking that the
constraints defined in the FD are consistent with respect to corresponding inter-
aspect dependencies, (2) identifying implicit composition constraints, and (3)
deriving the most appropriate order of composition. This cross-model analysis
utilizes the two parts: on the one hand (left) there are the features and their
constraints, and on the other hand (right) there are the aspects with their own
dependencies. The analysis goes in both ways: from features to aspects (left
to right), and from aspects to features (right to left). Below, we specify both
analyses based on the following notations:

– FD denotes the feature diagram of interest;
– F = {F1, F2, . . . , Fn} denotes the set of features of FD;
– P denotes the set of valid products that can be derived from FD;
– R = {(F1, F2) ∈ F × F : F1 requires F2} denotes the set of requires con-

straints of FD;
– E = {(F1, F2) ∈ F × F : F1 excludes F2}, denotes the set of excludes

constraints of FD;
– AF denotes the aspect model associated with a feature F ;
– A =

⋃
F∈F AF denotes the set of aspect models associated with the features

of FD;
– A.Model denotes the Model part of an aspect A ∈ A;
– A.Pointcut denotes the Pointcut of an aspect A ∈ A;

Left to right analysis. The left to right analysis, concerns the constraints
(requires or excludes) that are explicitly specified in the FD. Given a valid feature
configuration, the analysis (1) checks that the related FD constraints actually
translate as equivalent inter-aspect dependencies, (2) takes such dependencies
as a basis to derive a correct weaving order, and (3) returns a warning for each
FD constraint that has no “equivalent” at the aspect level.

– A “F1 requires F2” constraint in the FD usually implies that the pointcut
of aspect AF1 references some model element(s) introduced by aspect AF2 .
If it is the case, AF2 must be woven before AF1 when deriving the product.

– A “F1 excludes F2” constraint in the FD usually implies that the pointcuts
of AF1 and AF2 references common model elements.

Feature-Based Composition of Software Architectures 237

Algorithm 1 summarizes the left to right analysis process, which takes as inputs
(1) the feature diagram FD, (2) the associated aspect models A, and (3) a
valid feature configuration p. Each requires constraint relative to p is analyzed
(lines 2–8). If the constraint translates as a Pointcut-Model dependency, the
weaving order is adapted accordingly (line 6). If such a dependency is not found,
a corresponding warning is returned. The analysis of excludes constraints (lines
9–12) is similar, except that (1) it is based on Pointcut-Pointcut dependencies
and (2) it does not impact the weaving order. Indeed, the feature configuration
is supposed to be valid with respect to the explicit FD constraints.

Right to left analysis. The second part of the analysis is intended to find
implicit inter-feature constraints. Such dependencies are not specified in the
FD, but hold between the corresponding aspects and, thus, may cause a conflict
when realizing the composition. Similarly to the left to right analysis, two types
of constraints are considered:
– A requires constraint indicates that an aspect pointcut refers to parts of the

model of other aspect.
– An excludes constraint indicates that there are at least two pointcuts in

distinct aspects with equivalent expressions. If such a situation occurs, then
it is necessary to verify whether the corresponding advices are interfering
with each other. Generally, aspects can be classified with respect to the in-
terferences with each other in three categories: (1) independent, when their
pointcuts and modifications do not affect other aspects, (2) partially depen-
dent, when pointcuts may involve previously woven aspects but advices are
independent, and (3) totally dependent, when pointcuts are dependent on
previous aspects and advices may impact other aspects. In our case, it is
the third category that may lead to composition conflicts. Consequently, as-
pects that exhibit such dependencies should not be weaved within the same
product derivation. In order to determine whether the aspects are totally
dependent, one must check if the modifications introduced by one aspect
have a negative impact on the other. This is similar to critical pair anal-
ysis [8] in the domain of graph rewriting. Since there are only two types
of modifications in our aspect metamodel: add and delete, the analyzer has
to make sure that one aspect is not deleting an element referenced in the
other aspect. If it does, the developer is warned about an implicit excludes
constraint missing in the FD.

The right to left analysis is formalized in Algorithm 2. In case an implicit requires
constraint is detected (lines 2–14), the behavior of the analyzer varies depending
on whether the product configuration includes the required feature F2 or not.
If F2 is selected, a warning is returned and the composition can be achieved
according to an appropriate weaving order (line 8). If, in contrast, F2 is not part
of the configuration, then the composition is aborted (lines 10–11). Regarding
the detection of implicit excludes constraints, the analyzer behaves in the other
way around. In this case, indeed, the presence of excluded features F2 in the
configuration causes the composition to be aborted (lines 20–21), while their
absence leads to a warning only (line 18).

238 C. Parra et al.

Algorithm 1. Left to right analysis
Require: A feature diagram FD, the associated aspect models A, a valid feature

configuration p = {F1, F2, . . . , Fk} ∈ P
Ensure: A weaving order O and a set of warnings W
1. O ← toList(p)

2. for all (F1, F2) ∈ R such that F1 ∈ p do
3. if AF1 .Pointcut ∩ AF2 .Model = ∅ then
4. W ← W ∪ {F1 does not require F2 at the architectural level}
5. else
6. O ← switchPositionIfNeeded(O, F2, F1)

7. end if
8. end for
9. for all (F1, F2) ∈ E such that F1 ∈ p do

10. if AF1 .Pointcut ∩ AF2 .Pointcut = ∅ then
11. W ← W ∪ {F1 does not exclude F2 at the architectural level}
12. end if
13. end for

Algorithm 2. Right to left analysis
Require: A feature diagram FD, the associated aspect models A, a valid feature

configuration p = {F1, F2, . . . , Fk} ∈ P , an initial weaving order O
Ensure: A flag compositionAllowed, a possibly adapted weaving order O and a set

of warnings W
1. compositionAllowed ← true
2. for all F1 ∈ p do
3. for all F2 ∈ F such that AF1 .Pointcut ∩ AF2 .Model �= ∅ do
4. if (F1, F2) �∈ R then
5. W ← W ∪ {F1 implicitly requires F2 at the architectural level}
6. end if
7. if F2 ∈ p then
8. O ← switchPositionIfNeeded(O, F2, F1)

9. else
10. compositionAllowed ← false
11. W ← W ∪ {F1 implicitly requires a non-selected feature (F2)}
12. end if
13. end for
14. end for
15. for all F1 ∈ p do
16. for all F2 ∈ F such that AF1 .Pointcut ∩ AF2 .Pointcut �= ∅ do
17. if (F1, F2) �∈ E∧ totallyDependent(AF1 , AF2) then
18. W ← W ∪ {F1 implicitly excludes F2 at the architectural level}
19. if F2 ∈ p then
20. compositionAllowed ← false
21. W ← W ∪ {F1 implicitly excludes a selected feature (F2)}
22. end if
23. end if
24. end for
25. end for

Feature-Based Composition of Software Architectures 239

Defining the composition order. The composition order is derived from
the analysis in both ways. To obtain it, the analysis tool traverses the list of
features in the same order as they were selected, and, whenever a feature requires
(implicitly or explicitly) other feature, it is moved in the list to the position right
after the feature being required. This is done in both the left to right algorithm
(line 6) and the right to left algorithm (line 8). This order guarantees that the
pointcuts of features requiring other features are correctly executed during the
composition.

3.3 Composition of Aspects

In general terms, the aspect composition consists of successive calls to a single
generic model transformation (weaver). This transformation takes as inputs the
core model M and an aspect A to be weaved, and returns a single model rep-
resenting the composition of the core and the aspect. The transformation itself
relies on the metamodel of Figure 3 (Part b). It consists in iterating over the set
of modifications specified in the Advice of A in order to execute each of them.

The places where each modification takes place are defined by the associated
Pointcut. The execution of this pointcut on the core model iterates over its
Expressions, which can be either atomic or composite. Atomic expressions cor-
respond to FindByName, InstanceOf and Owned. Each atomic expression returns
the collection of core model elements that match their conditions. A composite
expression is evaluated by accumulating and combining the result of each atomic
expression. The way the resulting elements are combined depends on the com-
posite operator. The AND operator is interpreted as the intersection of the model
elements, whereas the OR operator translates as their union.

At the end of the pointcut execution, all the places impacted by the aspect
have been identified. Then the modifications specified by the aspect can be
applied. In the case of an Add modification, the elements of the aspect are added
to the core model. Applying a Delete consists in removing the elements found
in the pointcut from the core model.

The transformation finishes when all modifications specified in the advice
have been performed. The global weaving process repeats until all the aspects
corresponding to the variants selected in the feature configuration have been
composed with the core model.

4 Experimentation and Discussion

In order to test the constraint analysis introduced in the previous section, we
have implemented the sample SPL introduced with the FD in Section 2 and
applied our constraint analysis. There are in total 9 variants (ByDiscount,
ByWeather, ByLocation, SMS, Call, Wifi, GPS, CreditCard, and Discount)
which are realized with individual aspect models. The total number of valid
products that are derivable from such diagram is 66, that is 72 in total minus 6
that do not respect the requires constraint. In Table 1 we have selected a sub-
set of 10 products to illustrate the result of the analysis. For each product we

240 C. Parra et al.

Table 1. Constraint Analysis Results

Product v1 v2 v3 v4 v5 v6 v7 v8 v9 L2R R2L Result Time(ms)

1 � – – � – – – � – – – {v1,v4,v8} 242

2 – � – – � – – – � – HI(v9,v4) Not allowed 229

3 – – � � – � – � – Order – {v6,v3,v4,v8} 240

4 – – � – � � – � – Order – {v6,v3,v5,v8} 236

5 – – � – � – � – � Order HI(v9,v4) Not allowed 231

6 – � – � – � – � – – – {v2,v4,v6,v8} 234

7 � – – – � – � � – – – {v1,v5,v7,v8} 242

8 – � – � – – � � – – – {v2,v4,v7,v8} 270

9 – – � – � – – � – Order HI(v9,v4) Not allowed 255

10 � – – � – – – � � – HI(v9,v4) {v1,v4,v9,v8} 244

present the list of selected variants (v1-v9), the results of the left2right (l2r) and
rigth2left (r2l) algorithms, the order of composition (Result), and the execution
time (Time) in milliseconds.

As it can be seen from the results, the analysis for each product takes slightly
short times for this small FD. Nevertheless, the more variants there exist, the
more aspects to verify for each product with consequences in performance, but
such an overload is related to the nature of the product family itself. Additionally,
since this process is executed during the design phase, time and performance are
less critical than correctness and conflict-free composition.

Regarding the results of the analysis, we notice that the left to right algorithm
modifies the order of composition of the products 3,4,5, and 9. On the other
side, the requires constraint between the variant ByLocation and the variation
point Location has an equivalent dependency in the aspect level. However, as
previously stated, even if there was no equivalent dependencies, the constraint
does not necessarily represent an error since it may come from a business rule.

On the other side, the right to left analysis shows that the aspect for the
variant 9 (Discount) has a dependency (presented in the table as HI for Hidden
Includes), with the aspect realizing the variant 4 (SMS). As a result, products
2,5 and 9 are not allowed for composition. In the case of product 10, the analysis
shows the same dependency, but the composition is allowed since the variant 4
(SMS) is selected. Additionally, the order does not need to be changed since the
variant 4 (SMS) is already placed before the variant 9 (Discount).

Regarding the implementation, we have used the tools provided by EMF.
There are four metamodels in total: the feature and aspect metamodels intro-
duced in Section 3, and additionally, there are two metamodels for SCA and
Java respectively. The constraint analysis algorithms as well as the model trans-
formations are written in Java and use the EMF API to import and manipulate
the models. We have made this choice over other model platforms for two main
reasons: first, we wanted to let the aspect developers to decide how the aspect
has to be composed. Our weaver is generic and allows aspects to define any
combination of advices and pointcuts. This gives aspects great expressivity and

Feature-Based Composition of Software Architectures 241

at the same time, we guarantee that every aspect, modeled with the metamodel
presented in Figure 3, can be processed by the weaver. And second, by using our
own definition and semantics for the modification operations (Add and Remove),
we are able to generate equivalent reconfiguration scripts that can be executed
at runtime. With this property we aim at defining a dynamic product derivation
using the same aspect models.

4.1 Discussion

Let us now revisit the feature-based architecture composition challenges iden-
tified in Section 2 for discussing the tool-supported approach proposed in this
paper. Regarding challenge 1, our modeling approach contributes to a clear sep-
aration of concerns at three levels: variability expression, architecture definition,
and feature-architecture mapping specification. We benefit from the comple-
mentary capabilities of Feature Modeling, Component-Based/Service-Oriented
Architecture and Aspect-Oriented Modeling. The constraint analysis algorithms
allows the detection of inconsistencies (challenge 2) in the FD as well as in the
aspect models. This prevents the composition from taking place unless all the
constraints are respected. Additionally, the algorithms take explicit and implicit
features interactions as a basis to derive a conflict-free composition strategy
(challenge 3) that ensures that aspects are weaved in the appropriate order for
any given configuration. Finally, our aspects are platform-independent models
(challenge 4). In our case, model transformations have been implemented to-
wards a particular platform (SCA and Java) to enable the SPL to deal with
dynamic product derivation as explained in [9]. Nevertheless, such aspect mod-
els can be transformed towards different component-based platforms, in which
case, the analysis and composition processes remain valid.

5 Related Work

This section discusses the complementarity of our approach with respect to pre-
vious work on feature-based software composition, aspectual feature modeling
and aspect-oriented model composition.

Feature-based software composition. In [10] van der Storm presents a
generic approach to feature-based software composition, with a particular focus
on the feature configuration phase. Feature descriptions are mapped to related
software artifacts through a formal model. This mapping indicates which arti-
fact(s) should be included in the product if a feature is selected. A scalable config-
uration technique, based on binary decision diagrams (BDDs) [11], is developed.
The BDDs, derived from the feature interactions specified in the feature model,
aim to lead to valid configurations only. Several possible methods are identified
for the composition process itself, each supporting a different level of granularity.
In contrast, we assume that a valid product configuration is available, and we
contribute to the subsequent feature composition process.

242 C. Parra et al.

Voelter and Groher [12] present an approach based on the combination of
aspect-oriented and model-driven software development. This approach supports
the explicit separation and modeling of variability in feature models. In the im-
plementation of this approach, an AOP framework enables product derivation
to be performed using a weaving process described in a workflow. Kuhlemman
et al. [13] presents a tool-supported approach to support safe composition of
non-monotonic features, i.e., features that add and remove code. In particular,
the authors verify that all valid combinations of features can be composed with-
out errors. Considering each feature implementation as an increment in program
functionality, software composition is seen by the authors as the application of
successive feature transformations that add features to a program (by adding
and/or removing code). The authors use SAT technologies to check configurable
sequences of feature transformations. They show that automated support is in-
dispensable due to the rapidly growing complexity of the analysis.

Our approach also enables the automated composition of (non-monotonic)
features, but it considers the architecture level rather than the code level. Fur-
thermore, in contrast with Kuhleman et al., we do not assume that the feature
composition order is encoded in the feature model by reading from right to left.
Our analysis technique aims at deriving an adequate composition order based
on both explicit and implicit feature interactions.

Lee et al. [14] addresses the challenge of software composition in the presence
of feature dependencies. They suggest the use of aspect-oriented implementation
patterns for such dependencies. This approach allows a clear separation of feature
dependencies from feature implementations, thereby increasing the reusability
of the latter. The authors mainly focus on dynamic feature interactions as those
identified in [15], whereas we consider structural dependencies between features.
Czarnecki et al. [16] present an automated procedure for verifying that a given
feature configuration will lead to a correct product model. The notion of cor-
rectness they consider is well-formedness: they verify that the resulting product
model conforms to the meta-model of the target modelling language. In con-
strast, we aim to check that the configured product can be composed. When
possible, we derive a conflict-free composition strategy allowing all the selected
features to be correctly supported. The analysis of implicit feature dependencies
is essential in this context. For instance, failing to identify an implicit requires
constraint may lead to an incomplete, yet well-formed, product model.

Aspectual feature modeling. Griss [17] presents a conceptual framework for
feature-based and aspect-oriented product line engineering. The key idea is to
use aspects for implementing the features identified as common and variable in
a product line. Lee et al. [18] go a step further by proposing a set of detailed
guidelines on how feature-oriented programming and aspect-oriented program-
ming can be combined in order to enhance the reusability, adaptability and
configurability of software product line artifacts. They aim at addressing the
so-called invasive change problem. This problem is due to the fact that the
code implementing a particular feature may be scattered across multiple com-
ponents, and consequently adding or removing a feature may have an impact on

Feature-Based Composition of Software Architectures 243

several source code locations. Our work also aims at addressing this problem by
considering both inter-feature dependencies and inter-aspect dependencies.

More recently, Apel et al. [19] introduce the notion of aspectual feature module
(AFM), which constitutes a proposal of the symbiosis of Feature-Oriented Pro-
gramming and Aspect-Oriented Programming. An AFM encapsulates the roles
of collaborating classes and aspects that together contribute to implementing a
feature. According to this view, a feature implementation regroups a collection
of artifacts among which classes, class refinements and aspects. The use of as-
pects in an AFM brings the benefit from AOP’s modularization capabilities. In
our approach, we also from aspect modularization, but in our case we do not
mix aspects and classes to implement a feature. We aim at defining independent
aspects that are woven with a core. Since our aspects are self-contained, they
include a model part, which defines the components and services that are latter
transformed into configuration files and classes.

Aspect-oriented model composition. Zhang et al. [20] show that the explicit
specification of aspect precedence at the modeling level allows to mitigate the
problem of aspect interference in AOM. The precedence declarations enable the
composition mechanism to automatically derive an appropriate weaving order.
Our approach relies on this principle and also takes into account the mutual
dependency between feature interactions and related aspect precedence.

Morin et al. [21] consider the introduction of variability at a higher level of
abstraction. They present a generic approach to weaving variability in metamod-
els, by means of a reusable variability aspect. This aspect allows the description
of the variability concepts and the relationships between them, in a metamodel-
independent manner. Such an aspect can then be woven using standard AOM
techniques in order to include variability in a given domain-specific metamodel.
The authors then show how to compute a feature diagram from an instance
model with variability. In contrast, our approach takes feature diagrams as in-
put for aspect-based architecture composition.

6 Conclusion

This paper presented a comprehensive approach to feature-driven composition of
software architectures. This approach allows the automated derivation of product
architectures from feature configurations, by combining MDE and AOM tech-
niques. The composition process is realized through transformation-based model
weaving and is guided by the explicit and implicit dependencies that exist be-
tween the selected features. Our proposal relies on a clear separation of concerns
enabled by the underlying variability and aspect metamodels. Our method allows
to identify implicit dependencies and conflicts between features, and takes such
feature interactions as a basis to derive an appropriate architecture composition
strategy. The overall approach is implemented in a generic SPL framework that
enables the composition and deployment of both component-based and service-
oriented architectures on various platforms. In the near future, we intend to
consolidate the promising results obtained so far, following two main directions.

244 C. Parra et al.

First, we want to explore the reusability of our approach in the context of dy-
namic feature (de)selection. We believe that it could be extended to support the
derivation of context-aware, self-adaptive systems. Second, we intend to evaluate
the application of our feature-based composition techniques to larger software
systems. We already identified FraSCAti [22], a configurable SCA platform, as
a good candidate for such an experiment.

Acknowledgments. The CAPPUCINO project is funded by the Conseil Régional
Nord-Pas-de- Calais, Oseo/ANVAR, and the Fonds Unique Interministériel. This
work was also supported by Ministry of Higher Education and Research, Nord-
Pas de Calais Regional Council and FEDER through the Contrat de Projets
Etat Region (CPER) 2007-2013. This research was carried out during the tenure
of an ERCIM “Alain Bensoussan” Fellowship.

References

1. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented

domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon Univer-

sity Software Engineering Institute (November 1990)

2. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd

edn. Addison-Wesley Professional, Reading (2002)

3. Jézéquel, J.M.: Model driven design and aspect weaving. Software and System

Modeling 7(2), 209–218 (2008)

4. Open SOA: Service component architecture specifications (November 2007),

http://www.osoa.org/display/Main/Service+Component+Architecture+Home

5. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a

formal semantics. In: 14th Int. Requirements Engineering Conference (RE 2006),

pp. 136–145 (2006)

6. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:

Foundations, Principles and Techniques. Springer, Heidelberg (2005)

7. The Eclipse Foundation: Eclipse Modeling Framework Project, EMF (2010),

http://www.eclipse.org/modeling/emf/

8. Plump, D.: Hypergraph rewriting: critical pairs and undecidability of confluence,

pp. 201–213 (1993)

9. Parra, C., Blanc, X., Duchien, L.: Context Awareness for Dynamic Service-Oriented

Product Lines. In: Proceedings of the 13th International Software Product Line

Conference (SPLC 2009), pp. 131–140 (2009)

10. der Storm, T.V.: Generic feature-based software composition. In: Lumpe, M., Van-

derperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp. 66–80. Springer, Heidelberg

(2007)

11. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-

grams. ACM Computing Surveys 24(3), 293–318 (1992)

12. Voelter, M., Groher, I.: Product line implementation using aspect-oriented and

model-driven software development. In: 11th Int. Software Product Line Conference

(SPLC 2007), pp. 233–242. IEEE CS, Los Alamitos (2007)

13. Kuhlemann, M., Batory, D., Kästner, C.: Safe composition of non-monotonic fea-

tures. In: 8th Int. Conference on Generative Programming and Component Engi-

neering (GPCE 2009), pp. 177–186. ACM, New York (2009)

http://www.osoa.org/display/Main/Service+Component+Architecture+Home
http://www.eclipse.org/modeling/emf/

Feature-Based Composition of Software Architectures 245

14. Lee, K., Botterweck, G., Thiel, S.: Aspectual separation of feature dependencies

for flexible feature composition. In: 33rd Annual IEEE Int. Computer Software and

Applications Conference, pp. 45–52. IEEE CS, Los Alamitos (2009)

15. Lee, K., Kang, K.C.: Feature dependency analysis for product line component de-

sign. In: Bosch, J., Krueger, C. (eds.) ICOIN 2004 and ICSR 2004. LNCS, vol. 3107,

pp. 69–85. Springer, Heidelberg (2004)

16. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against

well-formedness ocl constraints. In: 5th Int. Conference on Generative Program-

ming and Component Engineering (GPCE 2006), pp. 211–220. ACM, New York

(2006)

17. Griss, M.L.: Implementing product-line features by composing aspects. In: 1st Con-

ference on Software Product lines: experience and research directions (SPLC 2000),

pp. 271–288. Kluwer Academic Publishers, Dordrecht (2000)

18. Lee, K., Kang, K.C., Kim, M., Park, S.: Combining feature-oriented analysis and

aspect-oriented programming for product line asset development. In: 10th Int. Soft-

ware Product Line Conference (SPLC 2006), pp. 103–112. IEEE CS, Los Alamitos

(2006)

19. Apel, S., Leich, T., Saake, G.: Aspectual feature modules. IEEE Transactions on

Software Engineering (TSE) 34(2), 162–180 (2008)

20. Zhang, J., Cottenier, T., van den Berg, A., Gray, J.: Aspect composition in

the motorola aspect-oriented modelling weaver. Journal of Object Technology 6,

89–108 (2007) (Special issue on Aspect-Oriented Modelling)

21. Morin, B., Perrouin, G., Lahire, P., Barais, O., Vanwormhoudt, G., Jézéquel, J.M.:

Weaving variability into domain metamodels. In: Schürr, A., Selic, B. (eds.) MOD-

ELS 2009. LNCS, vol. 5795, pp. 690–705. Springer, Heidelberg (2009)

22. Seinturier, L., Merle, P., Fournier, D., Dolet, N., Schiavoni, V., Stefani, J.-B.: Re-

configurable sca applications with the frascati platform. In: 6th IEEE International

Conference on Service Computing (SCC 2009), September 2009, pp. 268–275 (2009)

Linking Design Decisions to Design Models in
Model-Based Software Development

Patrick Könemann1 and Olaf Zimmermann2

1 Informatics and Mathematical Modelling, Technical University of Denmark,

2800 Kgs. Lyngby, Denmark

pk@imm.dtu.dk
2 IBM Research – Zürich, Säumerstrasse 8, 8803 Rüschlikon, Switzerland

OLZ@zurich.ibm.com

Abstract. Numerous design decisions are made in model-based soft-

ware development which often are not documented explicitly. Hence, the

design knowledge is ’in the designers mind’ and communicated orally, if

at all, and the rationale behind the decisions is lost. Existing tools tackle

this problem for architectural decisions which refer to the higher level

architecture of a system. However, these decisions are separate artifacts

and not linked to individual design model elements. Hence, there is no

automatic check whether the design models comply with made decisions.

This paper presents concepts for explicitly linking design decisions and

design model elements. As first class artifacts, design decisions can be

used for documentation, consistency checking, and reuse. In case consis-

tency constraints are violated, the user is notified that the design models

no longer comply with the decisions made. Reuse is realized by extracting

design model changes as reusable patterns for recurring decisions.

1 Introduction

Development of software systems is done in teams today, and models improve the
communication within the teams and help to develop such systems. Model-based
software development increases the productivity because the level of abstraction
rises and models (e.g. in the Unified Modeling Language, UML [1]) are first class
artifacts: the models are used for documentation, discussion, and to some extent
also for code generation [2].

One way of documenting design decisions in such projects is the use of decision
management systems. Decisions might either be specific to one particular project
or generic, and thus reusable in similar contexts [3]. Reusable decisions, e.g. the
use of design patterns [4] to solve a particular design issue, can be stored as best
practices and reused in other projects. This makes design decisions valuable
artifacts for expressing and sharing design knowledge.

The state-of-the-art decision management systems are only used for docu-
mentation, analysis, and for sharing architectural design knowledge [5,11,16],
and are isolated from the actual models in model-based software development.
All of these tools store the information semi-formally, i.e. structured by decisions.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 246–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Linking Design Decisions to Design Models 247

Current modeling tools, on the other hand, have only limited or no capabilities
for documenting design decisions. Hence, formal design models and semi-formal
design decisions are separated. Our previous work already introduced decision
enforcement as a proof-of-concept which is the first step to update design models
according to made design decisions [6].

The concepts in this paper introduce an explicit link between design models and
design decisions in model-based software development. Our vision is to treat de-
sign decisions as first-class artifacts and to exploit them to integrate design models
and semi-formal documentation: an explicit link between design model elements
and design decisions will allow keeping the design models consistent with the deci-
sions made. Moreover, we propose concepts for automating redundant work on de-
sign models with the use of model differences—the latter are used to store reusable
design model changes that realize recurring design decisions.

All concepts are tool-independent; to integrate another modeling or decision
management tool, the other tool has to realize the interface specified in [7]. In
essence, a modeling tool must offer reflection (e.g., as EMOF [8] provides) and
design decisions must be mapped to the decision meta model of the interface.

The main benefits of our contributions are reuse of design decisions and the
corresponding changes in the design models as well as automated recognition of
consistency violations between these artifacts. The goals is to make the devel-
opment of model-based software faster and less error-prone (because of reuse).

The remainder of the paper is structured as follows. Sect. 2 introduces an
example, Sect. 3 states the state of the art as well as our goals, Sect. 4 defines
our central concept of a binding and its use, Sect. 5 sketches the prototypic
implementation, Sect. 6 discusses related work, and Sect. 7 concludes the paper.

2 Example

In this section, we introduce a running example to illustrate our concepts. It
is small on purpose in order to focus on relevant properties. It consists of two
decisions, taken from a case study in [7], that describes the development of a
web application with respect to made design decisions. Here we assume that the
design decisions to make (described by design issues and their solutions, called
alternatives) are already known and available in a decision management tool.

The first issue, Session Awareness, concerns an existing class Controller in
the UML design model (which was created due to a previous design decision)
and deals with the issue whether or not to introduce session support in the web
application. Possible solutions are Yes and No, as sketched informally in a sim-
plified decision model in Fig. 1. Here we make the decision to pick the alternative
Yes which induces another issue Session Management. Note that although this
particular choice does not affect the design models directly, subsequent decisions
in fact can have impact on the design models as explained next.

The second issue, Session Management, concerns how the session management
will be realized. The choice will be the Server Session State pattern (as defined by
Fowler [9]) describing a controller, a session manager, and a session object. Other

248 P. Könemann and O. Zimmermann

Alternative
No

Issue
Session

Awareness

Alternative
Yes

Outcome

solution decision

Issue
Session

Management

Outcome

solution

decision

induces

solution

Alternative
Database
Session

State

Alternative
Client

Session
State

Alternative
Server

Session
State

solution
solution

ch
os

en
Al

te
rn

at
iv

e

ch
os

en
Al

te
rn

at
iv

e

project-independent
project-specific

Fig. 1. Design decisions Session Awareness and Session Management

presentation
presentation

presentation

Controller SessionManager
Controller SessionManager

SessionObject

Fig. 2. Parts of the design model before and after the decision Session Management

alternatives are Client Session State and Database Session State. As depicted
on the left-hand side of Fig. 2, a session manager already exists – for instance,
due to previous work on the design model.

The next step is the realization of the server session state in the design model,
i.e. adding design model elements according to the chosen pattern (the result is
shown on the right-hand side of Fig. 2). That work is usually tedious and error-
prone although it varies with the complexity of the selected solution. There
might also be variations of how a particular solution can be realized in the
design models. Moreover, the very same solution could have been realized before
in another project, and, hence, its realization in design models is recurring work.

We use this example in the next sections to illustrate our approach that adds
support for automatic consistency checking (whether the design models comply
with made design decisions) and reuse of realizations of design decisions. Thus,
design decisions are not lost but captured explicitly.

Although the example is dealing with a web application, all model-based
software development processes are supported in which design decisions can be
documented and recur in similar projects.

3 Requirements

This section gives an overview of the state-of-the-art of decision management,
introduces model differences, and states the goals of our contributions.

3.1 Current Situation

Design knowledge in terms of design decisions consists mostly of informal infor-
mation (text) structured as follows. A design decision in terms of the system’s

Linking Design Decisions to Design Models 249

Fig. 3. A typical design decision metamodel in existing work

Fig. 4. An excerpt from a typical metamodel for model differences in existing work

architectural design consists of a design issue or problem, several constraints and
assumptions, one or many solutions, and a rationale, amongst others [10]. The
solutions describe how they shall be applied; in case of design patterns it might
refer to its definition and/or informally describe its realization in the context
of the issue. Moreover, we distinguish between project-independent and project-
specific decisions, at which the former are reusable decisions and the latter are
only documented for one particular project [11].

A typical design decision metamodel is shown in Fig. 3 which can be mapped
to multiple decision management tools: a design decision addresses a particular
design problem (Issue), considering one or many solutions (Alternatives), and
the rationale why a particular alternative was chosen (Outcome). Attributes like
problemStatement and justification describe the properties mentioned before.
The association relates between alternatives and issues allows relating decisions
to each other; the reference induces in Fig. 1 is an instance of it. This metamodel
is based on the one specified in [6], in particular concerning the distinction be-
tween project-independent parts (issues and alternatives) and project-specific
parts (outcomes). Design model changes are, however, not included in any ex-
isting work of decision management we are aware of.

Model differences describe changes in a design model, e.g., adding a class and
three associations (cf. decision 2 in the example in Sect. 2). Hence, they can
be used for describing design model changes for a particular realization of a
solution of a design decision. Here it is sufficient to know that model differences
consist of several ModelChanges as shown in Fig. 4. Concrete changes are, for
instance, addition or movement of elements or change of attributes ([12] discusses

250 P. Könemann and O. Zimmermann

Design
Models

Design
Decisions

works
on

documents

no relation

in existing

work

Binding

Design-
Model-

Changesadded to
solutions

refers to
changed
elements

refers to
changes

new

1.

2.

3.

Documentation:

create and see design decisions
together with design models

Consistency Check:

between design models
and design decisions

Design Decision Reuse:

store and reuse design model changes
together with design decisions

Fig. 5. Binding and design model changes enable our goals

selected differencing approaches in more detail). lowerBound and upperBound
of ModelChange are specific for our differencing technology [13] and define how
often a particular change may be applied.

We require our solution to be independent of particular tools. That is to say,
the metamodels for design models and design decisions shall not be modified.
This ensures that the concepts for the binding are tool-independent and are thus
applicable to many modeling tools and decision management systems.

3.2 Goals

This section states the goals of our contributions. The left-hand side of Fig. 5
sketches the situation without our extensions: design decisions are isolated from
the design model. Adding a Binding and DesignModelChanges, as shown in the
center of the figure, enables our goals to ease documentation, to check consis-
tency, and to reuse design model changes of design decisions.

Goal: Documentation. Almost every change in design models can be seen as
a design decision. However, most decisions, even if they are made consciously,
are not documented because of lacking tool support and developers lacking dis-
cipline. To overcome that problem, our goal is to explicitly link design models to
the design knowledge stored in a decision management system. That is, related
design decisions can be retrieved for each element in the design model. For in-
stance, if the developer selects the class SessionObject (cf. Sect. 2), the tool shall
return a list of design decisions containing the decision SessionManagement.

Goal: Consistency. Another goal is to validate whether design decisions and
their induced changes in the design models are consistent with each other. That
is, for the decision Session Management in the example, the class SessionObject
and the three associations between that class, the Controller, and the Session-
Manager must prevail in the design model. If any of these classes or associations
are removed later on, the design model is not consistent anymore with the result
of the decision and the developer shall be notified.

Goal: Design Decision Reuse. The last goal addresses reuse of design deci-
sions in the same or in a similar context, e.g. in another project. Realizing the

Linking Design Decisions to Design Models 251

same solution multiple times in one or several projects is recurring and error-
prone work. Design model changes of a particular design decision, in the form
of model differences, can be extracted from one design model and applied to
another design model the next time that decision is made. That will not happen
fully automatically but the developer has to revise (and, if necessary, refine) the
application of design model changes. That said, there might be similar design
model changes which realize the same solution, depending on the scenario and
context; there are, for instance, multiple realizations of the server session state
pattern. Hence, our goal is to support multiple realizations per solution.

4 Concepts: Binding Design Knowledge to Design Models

Next, existing and new components are introduced, the binding is defined, and
finally we explain how to use the binding for documentation, consistency check-
ing, and reuse of design decisions.

4.1 Relevant Components

This section lists all relevant existing components before defining a formal link
between design decisions and design models. The link has to connect the particu-
lar decision, more precisely the Outcome of a decision and its chosen Alternative
(cf. design decision metamodel in Fig. 3), with the design model elements the
decision affects. A design model element can be any part of the design model;
in case of UML it would be instances of Element, that are, for example, classes,
associations, attributes, actors for use cases, or messages in a sequence chart [1].

ModelDifferences, which describe how a model should be changed when a
design decision is made, contain a set of individual ModelChanges (cf. metamodel
for model differences in Fig. 4).

4.2 Binding between Design Decisions and Design Models

This section defines a new artifact, the DecisionModelBinding, to achieve our
goals listed in Sect. 3.2. We first sketch it informally with the help of the running
example before we define it. Its purpose is to map each change from the model
differences to the design model elements the particular design decision affects.

In case of the design decision Session Management from the example in
Sect. 2, the binding consists of a couple of ModelElementBindings, one for each
design model element. Fig. 6 sketches the overall picture for that decision. The
design model on the left-hand side and the design decisions on the right-hand side
are already known from Sect. 2. The center part shows the project-independent
ModelDifferences and the project-specific DecisionModelBinding. That is, the
ModelDifferences describe how the design model is changed for that specific al-
ternative (this is the reusable realization of the alternative). The DecisionMod-
elBinding links these changes to the actual design model elements. We made
this separation because the ModelDifferences are reusable and, thus, project-
independent (required for Goal: Design Decision Reuse) whereas the Decision-
ModelBinding is only used for one particular design model and is project-specific.

252 P. Könemann and O. Zimmermann

Model-
Differencespresentation

Controller SessionManager

presentation

Controller SessionManager

SessionObject

Design Model Decision Management

Issue
Session

Awareness

Alternative
Yes

Outcome

solution decision

Issue
Session

Management

Alternative
Server

Session
State

Outcome

solution decision

induces

binding

Binding between Design Models and Design Decisions

Decision-
Model-
Binding

before the design decision:

after the design decision: modelDifferences
realization

newly introduced concepts for binding

project-independent
project-specific
ModelElementBinding

Fig. 6. Example binding between design decisions and design model

ModelElementBinding

: AddElementModelChange
lowerBound = 1
upperBound = 1

: ModelElementBinding

ignore = false

SessionObject : Class
abstract = false
…

ModelChange
lowerBound : int
upperBound : int

ModelElement

container() : ModelElement

i n s t a n c e o f

Concrete Syntax MetamodelAbstract Syntax

SessionObject

modelElements

modelChange1

0..*

ignore : boolean

Fig. 7. One ModelElementBinding in concrete and abstract syntax and its metamodel

Figure 7 shows one of the binding elements in detail, namely the binding
for the added class SessionObject. The left-hand side shows the concrete syntax
whereas the abstract syntax (UML object diagram) of that binding is shown in
the middle. The ModelElementBinding contains references to both, the change
AddElementModelChange in the model differences and to the SessionObject in
the design model. Furthermore, the figure shows the metamodel elements for
this scenario on the right-hand side. The lowerBound and upperBound define
how many design model elements are allowed for a particular binding.

Linking Design Decisions to Design Models 253

Project-independent

Project-specific

Binding

Model related Decision related

Fig. 8. Metamodel of the binding between design decisions and design model

The definition of the binding is given as a metamodel in Fig. 8. The classes
in the middle row define the binding; the DecisionModelBinding and ModelEle-
mentBindings in Fig. 6 are their instances, respectively. The classes are vertically
divided into being design model-related and decision-related. The other compo-
nents in the figure (already introduced in Sect. 4.1) are horizontally divided into
being project-independent and project-specific. They are explained next.

– An Alternative is a solution in a design decision and may contain several
realizations. An Outcome is the result of a particular decision and points to
the chosen alternative.

– A ModelChange defines an individual change in the design model, Model-
Differences groups them logically as a realization for an alternative.

– A ModelElement is an arbitrary element in the design model.
– A ModelElementBinding links a ModelChange to the affected ModelElement

(if ignore is true, this binding is not validated); a ModelDifferenceBinding
groups the binding logically; a DecisionModelBinding connects the Model-
DifferenceBinding to the outcome, that is, to the result of the decision.

Note that the design model does not know about the binding because we do
not want to modify the modeling tool. Moreover, Alternative and Outcome are
just wrapper classes for alternatives and outcomes in a decision management
system. Thus, the references Alternative.realizations to ModelDifferences and
Outcome.binding to DecisionModelBinding belong to these wrapper classes. This
level of indirection keeps all decision related classes independent of the binding.

Since the explicit binding links design model elements and design decisions,
the rationale and other documentation can directly be annotated to the design
model (Goal: Documentation).

254 P. Könemann and O. Zimmermann

4.3 Consistency Check

It is easily possible to check the consistency between design models and made
design decisions with the binding concepts introduced in Sect. 4.2. We defined
a set of constraints for that purpose, for instance that added elements must
prevail in the design model. A violated constraint produces either a warning or
an error, specified by the constraint’s severity. In case of constraint violations,
the developer is notified with a description of the constraint and the cause. These
constraints apply to design-time only.

Constraint Levels. In order to check that the design model corresponds to a
made design decision, two criteria have to be checked. Firstly, all related design
model elements must exist. Secondly, all design model changes defined by the
model differences must prevail. Starting with these two criteria, we identified
three levels with increasing granularity.

1. Element level: all design model elements linked to the binding must exist.
This level is independent of design decisions and concrete changes in the
design model but concerns only the relation between the binding and the
existence and cardinality of design model elements.
Example: the class SessionObject is referenced by a ModelElementBinding
and, thus, must exist in the design model (if ignore is false).

2. Change level: all changes must prevail in the design model.
This level is specific for changes which are made due to a design decision.
Example: if a class is changed to being abstract, that change must prevail
in the design model.

3. Decision level: additional custom constraints for a particular decision.
Constraints in this level are specific for decisions and do not necessarily relate
to model differences. They are specified manually by the developer during
design-time.
Example: the classes Controller and SessionObject must be located in the
same package in the design model.

Constraints for the first two levels are static—we defined them once and for all.
Custom constraints (decision level), on the other hand, can be specified by the
developer and concern individual decision-related properties in the design model.
Two examples from the element and the change level follow. We use the Object
Constraint Language (OCL) [14] to define them as invariants.

Constraints Excerpts. The element level contains exactly the three invariants
shown in Listing 1. They apply to all ModelElementBindings (context) and ensure
that the correct number of design model elements is bound. The cardinality is
defined in the attributes lowerBound and upperBound of the class ModelChange
(cf. binding definition in Fig. 8) and is checked in lines 4–5. The third invari-
ant (line 8) checks that all referenced design model elements are defined which
includes the check that added elements prevail in the design model.

Linking Design Decisions to Design Models 255

presentation

Controller SessionManager

SessionObject

data

Decision-
Model-
Binding

ModelDifferences
1..1

1..1 1..1

1..1

1..1

1..1 1..1

?

project-independent
project-specific
ModelElementBinding

Fig. 9. Example scenario with constraint violations

1 context ModelElementBinding
2

3 −− the binding contains l i n k s to the correc t number of model e lements
4 inv lowerBound : modelChange . lowerBound <= modelElements−>s i z e ()
5 inv upperBound : modelChange . upperBound >= modelElements−>s i z e ()
6

7 −− a l l model e lements e x i s t and are de f ined
8 inv modelElements : modelElements−>forAll (e | not e . o c l I sUnde f i n ed ())

Listing 1. Three constraints for the element level (severity: error)

In contrast to the element level, change level constraints check design model-
specific properties, for instance whether a class is abstract or not. Thus, the
constraints have to access properties which are design model specific. The con-
straint in Listing 2 checks whether added elements are contained in their ex-
pected containers. It uses the reflective call container()

1 (line 6) to retrieve the
actual container and compares it with the expected value AddElementMod-
elChange.parent (cf. metamodel in Fig. 4) in line 7. The invariant is only relevant
for AddedElementModelChanges, hence the implication in line 5.
1 context ModelElementBinding
2

3 −− a l l added elements are contained in the expected parent
4 inv addedElementContainedInExpectedParent :
5 modelChange . oc lIsTypeOf (d i f f : : AddElementModelChange) implies
6 modelElements−>forAll (e | e . c on ta in e r () =
7 modelChange . oclAsType (d i f f : : AddElementModelChange) . parent)

Listing 2. A constraint for the change level (severity: warning)

Example. The following example illustrates the consistency check. The left-
hand side of Fig. 9 shows a modified design model: SessionObject was moved
to another package and the association between Controller and SessionObject
was removed. Consequently, not all design model changes induced by the design
decision Session Management prevail. Using the constraints, we can automati-
cally detect these violations: the upper and lower bounds of each ModelChange
(denoted with 1..1 for model changes in Fig. 9) match the number of referenced
1 This constraint requires an EMOF-compliant [8] metamodel because EMOF provides

facilities for reflection like the operation container() : ModelElement.

256 P. Könemann and O. Zimmermann

Issue

Alternative Outcome

Model-
Differences

1. review / refine
location

2. change model
(automatically)

Decision-
Model-
Binding

3. create binding
(automatically)

project-independent
project-specific
ModelElementBinding

Fig. 10. Reusing Design Decisions by applying model differences

design model elements, so we are safe here. However, one ModelElementBinding
has a dangling reference, i.e. it points to a design model element that does not
exist anymore (invariant in line 8 of Listing 1). This violation is presented to
the developer with the severity error. Moreover, the parent for the added ele-
ment SessionObject differs from the one defined in the model change (invariant
in Listing 2). This violation, in contrast, is presented with the severity warning
because the added element still exists.

These constraints ensure that for each design decision all relevant design model
elements exist (element level) and that all changes prevail in the design model
(change level). Hence, it is now automatically possible to verify that design
decisions are realized in the design model (Goal: Consistency).

4.4 Reusing Design Decisions

Up to now, we defined the binding and explained its use for consistency check-
ing. The question is how to create these bindings. Similar to having the design
knowledge already predefined in some decision management system, we assume
that the model differences representing design model changes have been created
and attached to an alternative in advance. At this point, one can think of these
model differences as a design template extracted from a sample model, a previous
project, or a pattern repository.

Next, we explain how a binding is created as a result of a made design decision
(sketched in Fig. 10). Once the decision Session Management is made, i.e. the
developer selects a particular alternative, she/he chooses one of the attached
realizations (in form of model differences):

1. The developer has to review/refine the location for applying the changes
to the design model. In the example, the package presentation and the two
classes Controller and SessionManager must be selected.

2. The design model is (automatically) changed according to the model differ-
ences. As for any automatic step, it is recommended to review all changes.

3. Then the binding is (automatically) created and contains one ModelElement-
Binding for each changed design model element.

Overall, the only manual work for realizing a design decision in the design model
is to define the correct location where to apply the design model changes and

Linking Design Decisions to Design Models 257

to review them afterwards (instead of manually changing the design model).
The binding can then be used for the goals Documentation and Consistency
Checking.

5 Realization

This section gives some insight into the realization (architecture and some parts
of the GUI) of our prototype. All concepts presented in Sect. 4 are implemented.

Architecture. Here we briefly outline the architecture of the prototype. We
have chosen Eclipse as the base platform because many technologies already exist
for reuse and because it is easily extendable. Figure 11 informally sketches the
dependencies between used and new components. Their purpose in the prototype
is explained on the website http://imm.dtu.dk/~pk/decisions.

One can easily see that the component setup conforms to the binding defi-
nition in Fig. 8. We decided to keep the Difference Binding and the Decision
Binding separate because the Difference Binding is independent of any design
decision—it can be stored after applying model differences to a model and can
also be exploited for other things, for instance, model synchronization.

In order to create the binding, we extended the algorithm for difference appli-
cation in the component Model Differencing. The extension is straightforward:
every time a change is made to the design model, e.g. an element was added or
moved, corresponding ElementBindings (cf. Fig. 8) are created.

EMF

EMF Compare

Binding Validation

Decision Binding

Webtools

Decision Management
(incl decision meta model)

Design
Models

Design
Decisions

Decision Management
System

via web service

Model Differencing

Modeling Tools

Difference Binding

EMF ValidationOCL

Decision
Realizations

Stored as
Model differences

for solutions of
design decisions

reused
components

modified
components

new
components

external
tool

Eclipse
platform

data access
dependency

Decision
Binding

Fig. 11. The architecture of the prototype

258 P. Könemann and O. Zimmermann

Fig. 12. Design Decision view and validation results

User Interface. This section sketches the realization of the user interface for
the presentation of design decisions within Eclipse and for consistency checking.

The left-hand side of Fig. 12 shows all design decisions of the current project
in the design decision view. Actions are available for browsing through design
decisions, creating new, or modifying existing decisions.

The right-hand side of Fig. 12 shows a dialog as the result of a consistency
check of the bindings between the design decisions shown on the left and the
design model on the right. The dialog shows the same two violations from the
example in Sect. 4.3 with their severity (error and warning) and a description.
The affected design model elements are also marked in the graphical editor.

6 Related Work

There are many tools for documenting decisions and capturing architectural
knowledge. None of the existing research prototypes and commercial tools pro-
vides the integration between design decisions and design models we motivated
and specified in a previous publication [15] and in previous sections of this paper.
Hence, our documentation goal has only been partially met so far; the consis-
tency and reuse goals have not been addressed sufficiently yet.

Documentation Goal. There are several systems and approaches which sup-
port developers in capturing and making decisions during a software develop-
ment process. ADDSS [5], for instance, is a web-based tool to collect and store
architectural knowledge including, but not limited to, architectural decisions.

Linking Design Decisions to Design Models 259

ADDSS supports after-the-fact decision capturing; the captured information can
be studied retrospectively, for instance on a subsequent project phase or different
project. However, ADDSS does not support a tight, use case-driven design model
integration such as the one we introduced in the previous sections. For instance,
it is not possible to create outcome instances via the modeling tool to record the
rationale behind a design model change while or immediately after performing
the change. To do so, it is required to switch to the decision management tool.

AREL [16] is another system for the documentation of architectural decisions
based on their rationale. It specifies a UML profile for modeling architectural
design decision rationale and traces them back to the architectural elements;
a single tool can be used to work with UML design models and with design
decisions. However, AREL does not allow the user to capture and reuse changes
in the design models, and to synchronize this information with decision decisions
on the fly; these two artifacts merely coexist in the tool.

The Architectural Decision Knowledge Web Tool (formerly known as Archi-
tectural Decision Knowledge Wiki) [11], which we extended in our prototype,
allows architects to capture, store, and share design rationale. Its base version
supports the user in making and reusing decisions but does not integrate de-
sign decisions with design models. This support is provided by the prototype
described in Sect. 5.

Other tools [17,18] have similar characteristics as the ones discussed so far.

Consistency Goal. The consistency goal is not met by any of the existing
research prototypes; ensuring consistency remains a manual task. In practice,
informal, human-centric techniques such as coaching, architectural templates,
and code reviews dominate. For instance, software engineering processes like
RUP [19] advise architects to enforce decisions by refining the design in small
and therefore actionable increments. The agile community emphasizes the im-
portance of face-to-face communication and team empowerment [20]. Maturity
models such as the Capability Maturity Model Integration2 recommend rigid
approaches to ensure that decision outcome materializes, e.g., formal reviews.
Applying these techniques takes time and their success depends on the archi-
tects’ coding and leadership skills.

We are not aware of any model-based software development tools that re-
spect design decisions. OpenArchitectureWare3 is a framework for model-driven
development allowing the developer to define and use model transformations.
However, architectural decisions are not a genuine modeling concept in Open-
ArchitectureWare. Modeling tools like the IBM Rational Software Modeler4 and
Borland Together5 provide pattern authoring capabilities which are similar to
the intention of the realizations of design decisions. However, a metamodel for ex-
pressing relations between them as well as tool supported guidance, i.e. proposing

2 Available at: http://www.sei.cmu.edu/cmmi/
3 Available at: http://www.openarchitectureware.org
4 Available at: http://www.ibm.com/software/awdtools/modeler/swmodeler/
5 Available at: http://www.borland.com/us/products/together/

260 P. Könemann and O. Zimmermann

subsequent patterns, is missing. Other commercial modeling tools allow the user
to make simple decisions, for instance regarding model element naming, but use
fixed defaults for architectural concerns, e.g. system transaction management
boundaries [21]. Consequently, development resources have to be invested to
change the defaults to the settings required in a particular application design
and implementation.

Design Decision Reuse Goal. In the past, the design decision rationale and
architectural knowledge communities have focused on documenting decisions
that have already been made (following a retrospective, after-the-fact decision
capturing approach). As a consequence, there is no notion of reusing knowledge
about decisions required (i.e., issues and alternatives); few concepts exist for
bringing required decisions into the original design process or into the model-
driven development transformation chain. For instance, ADDSS and AREL do
not support a reuse strategy which automatically updates the design models
according to a decision made. In our previous work, we have developed a frame-
work for architectural decision modeling with reuse which includes an explicit
decision enforcement step [6]. The integration concepts introduced in this paper
provide an advanced, partially automated form of decision enforcement for the
framework.

7 Conclusion and Future Work

In this paper, we presented concepts for connecting design models in model-based
software development with semi-formal design knowledge (design decisions) to
automate tedious and error-prone, recurring work. The proposed concepts make
use of existing technologies (decision management systems and model differ-
ences) and introduce a formal binding between design models, design decisions,
and model differences. We defined three goals for our contributions: easier doc-
umentation is achieved by exploiting the binding and showing the information
in an additional view; consistency checking is achieved by validating formal con-
straints on bindings; reuse of design decisions is partially automated by attaching
design model changes to solutions of design issues.

The concepts are implemented in a prototype6 and its technical feasibility is
proven with a case study [7]. Decision reuse has been validated in our previous
work [6,21]. Moreover, we evaluated reuse of model differences with all 23 design
patterns from [4] and 25 refactorings from [22] (the other refactorings are not
applicable to UML models): 8 design patterns and 14 refactorings are generically
applicable right away. Although the other 15 design patterns are also applicable,
they rather produce a draft which must be adjusted. The other 11 refactorings
are not applicable generically because the current prototype only allows to reuse
precisely those realizations which have been made before. In other words, if the
design model does not contain the context specified in the model differences,

6 Information about the prototype is available at http://imm.dtu.dk/~pk/decisions

Linking Design Decisions to Design Models 261

that particular realization cannot be used. Work in progress is a generaliza-
tion of model differences which aims to overcome this problem. Moreover, we
demonstrated the prototype to leading software architects and developers of a
commercial modeling platform. An evaluation on a real project is in preparation.

Future work includes to improve the presentation of the consistency check
results and to exploit causal relations between design decisions to propose sub-
sequent decisions—e.g. via the relation induces in Fig. 1.

References

1. Object Management Group: UML Superstructure, V2.2 (November 2007)

2. Object Management Group: MDA Guide V1.0.1 (June 2003)

3. Nowak, M., Pautasso, C., Zimmermann, O.: Architectural Decision Modeling with

Reuse: Challenges and Opportunities. In: 5th SHARK, South Africa (May 2010)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading (January 1995)

5. Capilla, R., Nava, F., Duenas, J.C.: Modeling and Documenting the Evolution of

Architectural Design Decisions. In: 2nd SHARK-ADI, Minneapolis, USA, pp. 9–15.

IEEE Computer Society, Los Alamitos (May 2007)

6. Zimmermann, O.: An Architectural Decision Modeling Framework for Service-

Oriented Architecture Design. Dissertation, University of Stuttgart (2009)

7. Könemann, P.: Integrating a Design Decision Management System with a UML

Modeling Tool. IMM-Technical Report-2009-07, Technical University of Denmark

(April 2009)

8. Object Management Group: MOF Core Specification, Version 2.0 (January 2006)

9. Fowler, M.: Patterns of Enterprise Application Architecture. Addison Wesley,

Reading (November 2002)

10. Shahin, M., Liang, P., Khayyambashi, M.R.: Architectural Design Decision: Ex-

isting Models and Tools. In: WICSA/ECSA Working Session. IEEE Computer

Society, Los Alamitos (September 2009)

11. Zimmermann, O., Gschwind, T., Küster, J.M., Leymann, F., Schuster, N.: Reusable

Architectural Decision Models for Enterprise Application Development. In: Over-

hage, S., Szyperski, C., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS,

vol. 4880, pp. 15–32. Springer, Heidelberg (2008)

12. Förtsch, S., Westfechtel, B.: Differencing and Merging of Software Diagrams–State

of the Art and Challenges. In: ICSOFT, Setubal, Portugal, pp. 90–99 (July 2007)

13. Könemann, P.: Model-independent Differences. In: ICSE Workshop on Compari-

son and Versioning of Software Models, pp. 37–42. IEEE Computer Society, Los

Alamitos (May 2009)

14. Object Management Group: OCL Specification, Version 2.0 (May 2006)

15. Könemann, P.: Integrating Decision Management with UML Modeling Concepts

and Tools. In: WICSA/ECSA Working Session. IEEE Computer Society, Los

Alamitos (September 2009)

16. Tang, A., Jin, Y., Han, J.: A Rationale-based Architecture Model for Design Trace-

ability and Reasoning. Journal of Systems and Software 80(6), 918–934 (2007)

17. Bachmann, F., Merson, P.: Experience Using the Web-Based Tool Wiki for Archi-

tecture Documentation. Technical Report CMU/SEI-2005-TN-041, Carnegie Mel-

lon University, Software Engineering Institute (September 2005)

262 P. Könemann and O. Zimmermann

18. Liang, P., Jansen, A., Avgeriou, P.: Knowledge Architect: A Tool Suite for Man-

aging Software Architecture Knowledge. Technical Report RUG-SEARCH-09-L01,

University of Groningen (February 2009)

19. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley,

Reading (2003)

20. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,

Reading (1999)

21. Zimmermann, O., Grundler, J., Tai, S., Leymann, F.: Architectural Decisions

and Patterns for Transactional Workflows in SOA. In: Krämer, B.J., Lin, K.-

J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 81–93. Springer,

Heidelberg (2007)

22. Fowler, M.: Refactoring: Improving the Design of Existing Code. In: Object Tech-

nology Series. Addison-Wesley, Reading (June 1999)

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 263–278, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Customer Value in Architecture Decision Making

Ana Ivanović and Pierre America

Philips Research, High Tech Campus 37
5656 AE Eindhoven, The Netherlands

{Ana.Ivanovic,Pierre.America}@philips.com

Abstract. This paper focuses on the business aspects of architecture decision
making – in particular how to quantify the customer value of quality improve-
ments to support architecture investment decisions. We developed concepts for
quantifying the impact of quality improvements on customer value, customer
value-in-use, and customer segments. In two real-life case studies we present
(1) how the concept for quantifying customer value was used, (2) how the cus-
tomer value relates to the existing value indicators in the organization, and (3)
how the importance of customer value for architecture decision making was as-
sessed by practitioners in the organization.

Keywords: architecture investment, decision making, customer value.

1 Introduction

The aim of any architecture improvement is fulfilling quality attribute requirements
aligned with the business goals [1]. Since implementing such an improvement typi-
cally requires a large investment of time and effort, an organization that makes an
architecture decision wants to be confident that the value created justifies the invest-
ment. The existing approaches for supporting architecture investment decisions focus
on proposing business cases [2] based on cost savings, e.g., in product lines [3-5], or
quantified benefits of quality attributes [6] to justify the architecture investments.

According to Kotler and Keller [7] the task of any business is to deliver customer
value at profit. This becomes also apparent in an increasing number of organizations
that follow a market-differentiation strategy to satisfy customers’ needs and create the
value derived from the customer benefits. In such circumstances the old economy
model organized by product units, focused on profitability and transactions, looking
primarily at financial scorecards is shifting to the new economy model organized by
customer segments, focused on customer life-time value, and looking at marketing
scorecards [7].

Therefore, any approach for supporting architecture investment decisions will need
to incorporate the customer value to adapt to the new economy model. The most used
concept of customer value refers to the to the price customer is willing to pay for a
product offering in terms of the set of perceived benefits that the product offering
provides to the customer. In the context of this paper, we broaden this definition to the
value that drives decisions about product development and modification, pricing, and

264 A. Ivanović and P. America

marketing communication. The literature refers to market scoping [8] or coarse bene-
fit functions for assessing the market benefits [4] as examples of using customer value
in architecture decision making. These models are primarily used in making business
cases and do not include structured guidelines on how to determine and quantify the
customer value of the quality improvements.

To accommodate the existing approaches and at the same time satisfy the urgent
need for making the customer value explicit in decision making, we address the ques-
tion: How to quantify the customer value of quality improvements to support architec-
ture decision making in practice?

To answer this question, we propose to use the well-known marketing concepts
customer value-in-use and customer segments [7] in the architecture context. Depend-
ing on the business goal of the architecture improvements, these concepts can be used
alone or together to estimate the customer value. In two real-life case studies, we
applied these concepts for quantifying the customer value derived from architecture
improvements in the imaging systems organization in Philips Healthcare [9]. The
customer value concepts were compared to the existing value indicators in the organi-
zation and evaluated by decision makers.

The rest of this paper is organized as follows. Section 2 describes the study design
that we have used for conducting research. Section 3 describes the first study for
quantifying the customer value–in-use. Section 4 describes the second study for quan-
tifying customer segments. Finally, Section 5 elaborates on applicability of the
customer value in architecture decision making in practice and concludes with rec-
ommendations for improvements.

2 Methodology

We have been conducting a large-scale study1 in cooperation with Philips Healthcare
[9] to support architecture decision making aligned with a customer-centric and mar-
ket-driven strategy. During the last four years we have conducted several real-life
case studies realizing that the economics of architecture is necessary but not sufficient
for architecture decision making [10] and further improvements should propose link-
ing quality improvements to customer value indicators explicitly [11].

Because so far in the literature little attention has been paid to quantifying the cus-
tomer value of architecture and our aim was a practice-oriented approach, the descrip-
tive practice-oriented case study [12] was chosen as the appropriate research strategy
for this investigation. We used a step-by-step process for conducting our case studies
as shown in Figure 1.

The first step proposes a concept to quantify the customer value by adopting estab-
lished marketing techniques to the architecture context. We elaborate on this step in
each study in more detail.

The second step focuses on selecting the case. We selected the cases in which the
quality improvements were directly observable by the customers and were the main

1 This work has been carried out as a part of the Darwin project at Philips Healthcare under the

responsibility of the Embedded Systems Institute. This project is partially supported by the
Dutch Ministry of Economic Affairs under the BSIK program.

 Customer Value in Architecture Decision Making 265

drivers of customer value creation (rather than the introduction of new functionality).
With the fact that the quality/price ratio rather than price is the main determinant of
the purchase decision in the professional (business-to-business) market, we deliber-
ately selected the architecture decision making cases from the professional market.

The third step focuses on collecting the data to identify the existing value indica-
tors used in the organization and to quantify the customer value using the proposed
concept. In this step we also collected the time spent on quantifying the customer
value, which is relevant for the evaluation session.

The fourth step is about analyzing data by comparing the elicited customer value
with the existing value indicators. According to Rogers [13] any change in the or-
ganization can only be accepted if it is based on small incremental changes. Thus,
understanding the relation between the customer value and the existing value indica-
tors in the organization can help us to better understand the acceptance of the cus-
tomer value concept for decision making in the organization.

Finally, the concept of quantifying customer value was evaluated with respect to
the cost involved in collecting the data and the importance of the quantified customer
value in architecture decision making in practice. The evaluation was done by initiat-
ing and observing a discussion between business decisions makers about the study
findings at an hour review meeting. The two authors of the paper shadowed the dis-
cussion and cross-checked their observations immediately after the meeting.

We envision that improvements of each concept require repeating the study. Since
this study focuses on how and whether customer value can be used, we decided to
conduct a single case study for each customer value concept.

The two case studies following this study design were conducted in Philips
Healthcare using internal and external documentation, interviews, meetings, and ob-
servations as the main source of evidence.

1. Propose a concept of quantifying
the customer value

4. Compare the new concept of
customer value quantification
with existing value indicators

3a. Identify
existing value
indicators used
in practice

2. Select the case

3b. Quantify the
customer value
using the new
concept

Improve

5. Evaluate

Fig. 1. Study design

266 A. Ivanović and P. America

3 Study 1: Customer Value-in-Use

A state-of-practice study about customer value assessment in business markets high-
lights that business decisions about product modification and redesign apply different
techniques such as internal engineering assessment, field value-in-use assessment,
focus group value assessment, or importance rating [14]. Among those techniques, the
value-in-use assessment was the most frequently used technique for supporting new
investments. Therefore, we selected value-in-use as a suitable technique for architec-
ture decision making. Adapted to the scope of our study we define the value-in-use as
differential cash flow generated in using the product with improved quality in the
customer business.

Knowing the customer-value-in-use would offer a twofold benefit to the organiza-
tion. First, the value-in-use can be used to demonstrate the added value of the new
product with quality improvements to the customer and as a value indicator for the
architecture. Second, the value-in-use can be used to estimate the customer’s willing-
ness to pay for such improvements, and therefore to define the potential cash flow of
quality improvements that can be compared to the architecture investment.

In this study we investigate how the customer value-in-use of quality improvements
can be quantified and used in architecture decision making.

3.1 Step 1: Concept of Quantifying Customer Value-in-Use

To quantify the customer value-in-use we need to understand the customer business,
in particular how the quality improvements impact the business indicators in the cus-
tomer business. We propose the concept for quantifying the value-in-use of quality
improvements in Figure 2.

In the first step, we identify the customer business goals in the context of using a
particular product. In the second step, we identify the business indicators in the cus-
tomer business and model the customer business to better understand how the product
in use affects the business indicators. Finally, we analyze conceptually the impact of
quality improvements on the business indicators.

A. Identify the customer business goals

C. Analyze impact of quality
improvements on business indicators
in the customer business model

B. Model the customer
business

B. Identify business
indicators affected by
quality improvements

Fig. 2. Concept: Customer value-in-use

 Customer Value in Architecture Decision Making 267

3.2 Step 2: Explorer Case2

Explorer is a workstation consisting of dedicated hardware and clinical applications
used for viewing medical images acquired by a scanner and post-processing of these
images to support radiologists and cardiologists in making a diagnosis.

Using Explorer in a hospital can take up an hour per patient. One of the reasons is
that the user needs to delineate manually up to 3,500 myocardial contours to make a
diagnosis. Therefore, although Explorer was proven to be clinically beneficial, it has
been used mainly for research purposes by academic hospitals and rarely for routine
use in community hospitals where the throughput has the highest priority.

Philips Healthcare, in cooperation with clinical partners, decided to do an architec-
ture redesign to improve the usability and simplify the use of Explorer [15]. No new
clinical application areas were added. The usability redesign involved (1) minimizing
the amount of interaction needed for post-processing, through judicious use of auto-
mation and (2) introducing new viewing protocols that better reflect the users’ way of
working. The validation study of the redesign in a laboratory setting has shown sig-
nificant efficiency improvements described in more detail in the following section.
Despite strong evidence that the quality improvements were significant, the main
question in the business was whether such improvements make a difference once the
product is in use in hospital.

We were asked to assess the value-in-use of usability improvements in the BEST
hospital. BEST was selected as a preferred customer of Philips Healthcare because of
the strong cooperation and the most efficient use of Explorer in a clinical workflow
among all customers. Thus, if the customer value-in-use would show sufficient con-
tribution to the BEST business, all other hospitals would have higher benefits of using
Explorer with improved usability.

The study question was how usability improvements impact the customer business
when Explorer is being used in hospitals. This study was conducted using several
sources of evidence, such as scientific publications, internal documentation, expert
interviews, and observing users while working with Explorer in the BEST hospital.

3.3 Step 3: Data Collection

This step involves two activities: (1) to identify existing value indicators used in the
organization in the given case and (2) to quantify the customer value-in-use applying
the concept proposed in Section 3.1.

3.3.1 Existing Value Indicators
As we have seen, automation in image post-processing and the new viewing protocol
were the two main improvements in Explorer. The value of these improvements was
assessed using technology assessment techniques and expert opinion.

Technology assessment. The validation study in a lab setting had shown that users
need significantly less time to verify and correct fully automatically detected contours

2 The major identifying details for this case, such as product name and hospital name have been

replaced with pseudonyms for confidentiality reasons.

268 A. Ivanović and P. America

than they need for drawing these contours manually in the four main procedures as
shown in Table 1 [15].

Table 1. Time required delineating an exam manually and with automation

 Images Contours Manual
(minutes)

Auto
(minutes)

Procedure 1 500 1500 90 5
Procedure 2 420 6 6 3
Procedure 3 20 40 10 1
Procedure 4 600 1800 120 10

Expert opinion. Furthermore, the senior doctor from the BEST hospital estimated
that new viewing protocols will result in time gains in the clinical workflow:

o 10-15% for experienced cardiologists
o 50-60% for novice cardiologists

Thus, the efficiency improvement in the procedure completion from the technology
assessment and the experts’ first order estimates about productivity improvements
were the two value indicators used for demonstrating the value of usability improve-
ments of Explorer in the organization.

3.3.2 Customer Value-in-Use
In the Explorer case the main quality improvements were in usability. To identify
usability measures we used the established concept of measuring usability in context
obtained by measuring the user’s satisfaction, effectiveness, and efficiency [16]. In
the Explorer case most benefits were expected in the efficiency improvements, there-
fore we simplify our investigation to understand the impact of Explorer efficiency
improvements in the BEST hospital business. Further, we will follow the concept of
quantifying the customer-value-in-use presented in Figure 2.

A. Identify customer business goals. To identify the BEST business goals we inter-
viewed the head of the cardiology department. The global trend of improving quality
of care and reducing cost was also apparent in BEST. The quality of care improve-
ments are seen in reducing the patient waiting list with increased productivity to gain
enough time for making an additional exam per day. Such an improvement would
also affect the BEST business as each exam would be reimbursed for about €€ 800.

To achieve the business goal of increasing the number of exams, the most urgent
issue in the department was to shorten the time needed from the scan start to the final
report without compromising the quality of image analysis. To get an overview of the
current business in BEST at the moment of the study: Yearly 2000 imaging exams
were performed per scanner with an average time from scan start to report ready of
15-25 minutes.

B. Identify business indicators and model the customer business. From the inter-
view with the department head we learned that examination volume per modality was
the main business indicator monitored regularly in BEST. That agrees with the litera-
ture about the most frequently used productivity indicators [17].

 Customer Value in Architecture Decision Making 269

Scan 1 … Scan 25 Last scan

Report ready

Image acquisition

Viewing and post-processing

Patient administration

Scanner

Explorer

Information system

Scan start

Time Scan start to Report ready

Cardiologist

Operator

Fig. 3. Explorer in the clinical workflow in BEST hospital

To understand how Explorer is used we shadowed an experienced cardiologist in the
clinical workflow. We identified three parallel activities in the clinical workflow: Image
acquisition from the scanner, image viewing and post-processing using Explorer, and
patient administration done on the cardiology information system, see Figure 3.

We model the clinical workflow as time spent on parallel activities (rectangles) in
the hospital to address the potential contribution of usability improvements of Ex-
plorer towards minimizing the time from the scan start to report ready, therefore to-
wards achieving the customer business goal. The clinical workflow can be described
as follows. The image acquisition begins with “scan start” initiated from the console
by the operator, who is sitting next to the cardiologist. It takes some time until the
acquired images are available for viewing and post-processing on Explorer. That gap
time the cardiologist usually uses for checking old exams (dashed rectangles) or ad-
ministrating patient data on the information system such as writing a report (black
rectangles). Once the scan is available at Explorer the cardiologist starts viewing and
post-processing images. If he notices some irregularity in the images, he might re-
quest from the operator to repeat the image acquisition or look at the console to help
the operator to define the right acquisition parameters. We observed that the ends of
all three activities, image acquisition, image viewing and post-procession, and report-
ing almost coincide. When the patient leaves the scan room the report is ready.
Typically, this clinical workflow will be followed for all routine exams. In such a
highly-efficient workflow, improvements in efficiency of image viewing and post-
processing during scanning were critical to shorten the scan start to report ready time,
in order to fit in another exam.

C. Analyze the impact of quality improvements. We analyzed the different exams
in the clinical workflow to identify when and how usability improvements of Explorer
would achieve the most time gain. We realized that different exams in the exam port-
folio benefit differently from usability improvements. Regarding viewing improve-
ments, all exams would benefit from a time saving of 1.5 minutes in average. On the
other side, automation improvements would make a significant contribution only to

270 A. Ivanović and P. America

one exam, which was performed every second day and the gain would be approxi-
mately 7 minutes per exam considering the technology assessment of task efficiency
improvements in Section 3.3.1. In other exams delineation was performed rarely or
never because of the tedious manual work. Thus, automation would not make signifi-
cant improvements in the BEST hospital except for the one exam type.

We presented the results of interviews and shadowing to the participants in the
study in BEST and they confirmed our findings about the clinical workflow model
and productivity improvements due to usability changes of Explorer. Since the 1.5
minutes improvements were too short to schedule the new exam, only the automation
improvements were considered for potential scheduling of an additional exam every
second day. This resulted in 2 additional exams for 50 weeks amounting to the value
of 80K€€ per year.

This study required 1 person-month for a researcher to quantify the customer val-
ue-in-use.

3.4 Step 4: Comparison

We realized that the expert opinion about productivity improvements (10-15%) for
the new viewing protocol closely relates to the estimated time savings in the clinical
workflow (1.5 minutes in the 15-25 minutes exam). On the other side, estimates about
task efficiency of automation (see Table 1) in the lab setting did not relate directly to
the improvements in clinical practice. This difference can be explained with the fact
that procedures which required manual delineation of many contours were used only a
few times, therefore automation improvements would not be observed directly in the
existing clinical workflow. Nevertheless, once the automation becomes available the
cardiologist may start using these procedures more frequently.

Furthermore, we can conclude that the task efficiency and expert opinion indicators
have to be correlated to the real-life clinical workflow to understand the potential
customer value created in a real-life setting. The concept of quantifying the customer
value-in-use provides this information. However, it became apparent that only by
understanding the hospital workflow the relationship between usability improvement
and customer value-in-use can be established.

3.5 Step 5: Evaluation

An evaluation of the Explorer case findings was conducted with the product marketer
and a clinical scientist responsible for estimating the efficiency improvements in the
organization. We presented our findings and asked the review team to discuss how the
proposed framework for quantifying the customer value-in-use can possibly support
the decision making process in the organization. Two themes emerged from the dis-
cussion: the cost of applying the concept of quantifying the customer value and the
importance of such a concept for the organization.

Regarding the time spent on quantifying the customer value-in-use the organization
has to account for an additional effort of 1 person-month if the efficiency indicators
are already available. This time spent could be shorter for an expert knowing the do-
main or having already modeled the workflow of the hospital.

In the Explorer case the practitioners found the customer value-in-use promising and at
the same time incomplete for decision making. Making the value of quality improvements

 Customer Value in Architecture Decision Making 271

in the hospital business explicit was perceived positively. However, analyzing a high
diversity of hospitals and their workflows would be very labor-intensive.

Nevertheless, if improving the business of existing customer is the main strategic
goal of the organization, this analysis can be used for selected representative hospitals
to support the right architecture changes. Another use is envisioned in the case when
quality improvements are so large that details of the hospital workflow do not impact
the customer value-in-use. Then the customer value-in-use can be used generically for
all hospitals and therefore become a relevant value indicator.

4 Study 2: Customer Segments

According to Kotler and Keller, the new economy is organized by customer segments
grouping customers by their needs and their value to the organization [7]. In this sec-
tion we develop the concept to link the quality improvements to the customer seg-
ments, exemplified by a real-life case and evaluated by the decision makers.

4.1 Step 1: Concept of Quantifying Customer Segments

The first step of analyzing any architecture investment is to identify the business goals
of architecture changes, as shown in Figure 4. If the business goals involve addressing
new customer segments or addressing existing segments in a new way, then it makes
sense to identify the customer segments affected by the architecture changes, which is
done in the second step. In the same step, several possible architecture scenarios to meet
the business goals are proposed. Finally, the third step, analyses the impact of proposed
quality improvements on the identified customer segments for different scenarios.

C. Analyze impact of quality
improvements on customer
segments in architecture scenarios

A. Identify the business goals of
architecture changes

B. Make time-dependent
architecture scenarios

B. Identify customer
segments affected by
quality improvements

Fig. 4. Concept of quantifying customer segments

4.2 Step 2: Tricorder Case3

Tricorder is a product line consisting of dedicated hardware and clinical applications
to make a diagnosis and prepare treatment. Over the last years, with an increasing
market pressure to release new applications quickly, the Tricorder architecture has

3 The major identifying details for this case, such as product names and data have been replaced

with pseudonyms for confidentiality reasons.

272 A. Ivanović and P. America

been eroding, resulting in increased development effort and difficulties to predict
time-to-market of new application releases. Furthermore, the newest market research
about customer insights has shown opportunities for improvement in:

• Usability: The system should be easier to use; i.e. the user interfaces of the vari-
ous applications should be harmonized

• Accessibility: The applications should be accessible from any workplace
• Multi-modality: The system should offer viewing of images from other product

lines

To meet these challenges, it has been decided to migrate all Tricorder applications to
the architecture of a successful existing product line. This decision of merging prod-
uct lines was made also to strengthen the competitive advantage of Tricorder by offer-
ing applications from another product line.

The architects selected two potential architectures from existing product lines,
LabTricorder and ViewAll. Regardless of the architecture choice, the marketers re-
quested phased development to offer a few market releases of the new Tricorder to
incrementally meet the customer needs during the migration. It was estimated that in
both scenarios the migration process would last for two years.

At the moment of this study the business had already made the first multi-attribute
ratings of scenarios and favored the LabTricorder scenario. To support this informal
decision to invest in the LabTricorder scenario, the product marketer was asked to
make a business case for the LabTricorder investment.

At the same time, we were asked to estimate how the customer segments will be
affected by the LabTricorder and ViewAll scenarios during the migration as an
input for evaluating the ongoing architecture investment decision making process.
Thus, the study question was: How will Tricorder’s quality improvements impact
customer segments during the migration process in the LabTricorder and ViewAll
scenarios?

This study was conducted using several sources of evidence such as internal and
external documentation, observing decision making meetings, and interviewing prac-
titioners.

4.3 Step 3: Data Collection

Following our study design in Section 2, in this section we identified value indicators
used for modeling the business case and quantified the customer segments using the
customer value concept proposed in Section 4.1.

4.3.1 Existing Value Indicators
As we already mentioned the business case was made only for the LabTricorder sce-
nario conforming to the informal decision that has already been made. The total sales
of the LabTricorder and Tricorder product was used for estimating the present value
(PV) of the difference in the cash flow facilitated with migrating to the LabTricorder
or keeping the existing Tricorder architecture over four years as shown in Figure 5.
The positive business case confirmed the LabTricorder informal decision.

 Customer Value in Architecture Decision Making 273

Year 1 Year 2 Year 3 Year 4

P
V

 d
iff

er
en

ce
 (o

f t
he

 2
 s

ce
na

rio
s)

(p

er
 y

ea
r)

P
V

 (
pe

r
ye

ar
)

Total PV LabTricorder

Total PV WITHOUT
LabTricorder

Doing LabTricorder
versus keeping current
situation

Fig. 5. Present value difference upon introduction of Tricorder

4.3.2 Customer Segments
Although the decision to invest in the LabTricorder scenario was already made, it was
not clear to decision makers how the quality improvements made a difference in gen-
erating the customer value in the LabTricorder and ViewAll scenarios.

A. Identify the business goals of the architecture changes. In multiple one-to-one
interviews with the program manager of Tricorder, the system architect, and product
marketer we spent a significant time to identify the business goal. We realized that the
Tricorder project had a large impact across several business units resulting in diverse
business incentives of the project such as quicker time-to-market, improved mainte-
nance by reducing the number of lines of codes, meeting customer needs, and improv-
ing customer satisfaction. Finally, a consensus was reached on the business goal to
increase the number of customers with met imaging needs, including not only Tri-
corder customers but also customers using LabTricorder or ViewAll.

B. Identify customer segments and architecture scenarios. Based on the business
goals we identified two customer segments that would be affected by the architecture
changes (shown in Figure 6).

As expected, the Tricorder customers would benefit from access to the applications
from anywhere and from the harmonized user interface. At the same time LabTri-
corder or ViewAll customers would benefit from being able to use Tricorder applica-
tions on their respective products. Thus, we needed to understand the impact of the
quality improvements on the number of Tricorder and LabTricorder/ViewAll custom-
ers in meeting their imaging needs in different scenarios.

Since the marketer requested phased development to maximize the customer value
before all applications are migrated to the new architecture, we needed to make two
time-dependent scenarios to understand how customer segments would be affected by
the products offered in different phases. We interviewed 20 stakeholders involved in
this project and read product documentation to reconstruct the time-dependent Lab-
Tricorder and ViewAll scenarios shown in Figure 7.

274 A. Ivanović and P. America

Customer segment indicators

Existing value indicators

Number of customers with met imaging needs

Meet Tricorder
customer needs

1) Harmonized UI across applications

2) Access anywhere

3) Use of Tricorder applications

Meet LabTricorder / ViewAll
customer needs

Revenue Price

Sales

Fig. 6. Existing value indicators (top) and customer segments (bottom)

t

LabTricorder

ViewAll

Year 2

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q4

Year 3Year 1

Q1 Q2 Q3

Decision
point

Fig. 7. Scenarios used for quantification of customer segments

The LabTricorder scenario was envisioned in three phases. Phase 0 (dashed square)
enables viewing but not post-processing of all Tricorder images on the LabTricorder
platform in a year. Phase 1 (square) offers a few Tricorder applications with harmo-
nized user interface while the remaining applications would be still available on the
existing Tricorder in the next quarter. Finally, in Phase 2 (filled square) the remaining
Tricorder applications would be available on the LabTricorder architecture in the two
years from the moment of this study. All applications would be accessible from any
PC in the hospital (thin client).

The ViewAll scenario was envisioned in two phases. Phase 1 (circle) enables mi-
gration of all Tricorder applications to the ViewAll architecture in a year. Tricorder
would not be available on the market anymore. In Phase 2 (filled circle), the Tricorder
applications can be used on multiple dedicated hardware terminals (thick client) in
two years. The Tricorder applications become available for ViewAll customers.

C. Analyze the impact of quality improvements on customer segments in archi-
tecture scenarios. As we have seen, in both scenarios the customer needs are met but
with different solutions (thin vs. thick client) and different timing of releases (phases),

 Customer Value in Architecture Decision Making 275

which satisfy different customer segments. To quantify the customers whose imaging
needs are met we used sales of Tricorder and LabTricorder/ViewAll products from
the previous year as proxies for number of customers, see Table 2.

Table 2. Number of customers with met imaging needs over time in LabTricorder and ViewAll
scenarios

Phase 0 Phase 1 Phase 2
Y0

Segmented customers Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Tricorder 66 68 75 75 77 79 80 80 80
LabTricorder 30 34 34 34 34 34 34 34 34
Total 96 102 109 109 111 113 114 114 114

Tricorder 66 66 69 71 71 71 72 73 73
ViewAll 38 38 38 38 38 40 40 40 40
Total 104 104 107 109 109 111 112 113 113

View All scenario

LabTricroder scenario

Year 1 Year 2

96

98

100

102

104

106

108

110

112

114

116

Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3

Y0 Year 1 Year 2

N
um

be
r o

f c
us

to
m

er
s

w
it

h
m

et

im
ag

in
g

ne
ed

s

ViewAll

LabTricorder

Fig. 8. Total number of customers whose imaging needs are met over time

The estimates were made by the architect, who corrected the individual quarterly
sales using information from Figure 6 and Figure 7, resulting in the total number of
customers whose imaging needs are met in both scenarios (see Figure 8).

The total effort to quantify the customer segments affected by the architecture
changes was 3 person-month for a researcher.

4.4 Step 4: Comparison

According to Figure 8, the LabTricorder scenario offers a higher number of customers
whose imaging needs are met, averaged over the in migration period. That can be
used as a value indicator for the LabTricorder investment, which was consistent with
the business case analysis. With the fact that the organization estimated only the pre-
sent value for the business case in the LabTricorder scenario, we compared the cus-
tomer segment analysis and the present value in the LabTricorder scenario resulting in
the following observations:

276 A. Ivanović and P. America

• The customer segments analysis did not consider the negative effect on meeting
the customers’ needs if the investment were not made

• The customers with met imaging needs estimates were estimated only during the
migration process without considering the long-term effect that was the part of
our assignment

• The increase of the number of customers with met imaging needs (Figure 8) is
related to the increase in the present value generated in the LabTricorder sce-
nario in the first two years (Figure 5).

• The maximum number of customers with met imaging needs was a predictor of
making a decision in favor of the LabTricorder scenario (Figure 8) that was
aligned with the business case findings

As we have seen large similarities between the concept of customer segments and
present value used for making the business cases, we expect that customer segments
can be used in architecture decision making.

4.5 Evaluation

We presented our findings to the program manager, the system architect, and the
marketers in a one-hour review meeting asking them to discuss whether and how the
customer segments could support decision making process in the organization.

The consensus was reached that an explicit link between quality improvements and
the customer segments supports common understanding between decision makers on
how quality improvements create customer value in different scenarios. Furthermore,
such structured analysis would prevent individual business incentives from dominat-
ing the decision making process. Therefore it would facilitate more objective deci-
sions. The marketer especially emphasized that the customer segments analysis could
be used to fine-tune estimates in the business case modeling to improve accuracy of
the existing data. Regarding the time spent for collecting the data, the practitioners
were not concerned as they envision that quantifying customer segments would be
part of the existing business case modeling process, so this time would pay off and
even potentially shorten the whole decision process.

Although the importance of customer segments was recognized the practitioners
still wished to translate quality improvements directly to the financial (sales) data to
have a direct comparison of the monetary value to the architecture investments to
support architecture decision making.

5 Discussion and Conclusion

In this paper we proposed the two concepts of quantifying customer value for particu-
lar customer-centric business strategies and we applied these concepts in real-life
architecture decision making projects.

We made two main observations about the proposed concepts. First, the proposed
customer value concepts increased understanding on how quality improvements con-
tribute to the customer value creation. Second, the proposed customer value concepts

 Customer Value in Architecture Decision Making 277

established more suitable input for architecture decision making than the existing
value indicators in the organization.

Regarding the first observation, it became apparent that a systematic approach of
quantifying customer value helped the practitioners to discuss the architecture
changes in the context of customer value. We also realized that understanding and
acceptance of the customer segment concept (Tricorder case) was higher than the
customer value-in-use concept (Explorer case). This can be explained with the fact
that the customer segment concept was closer to the business case concept already
used in the organization, which is consistent with the diffusion of innovation theory
stating that people are only able to accept small incremental changes [13].

In the second observation, it became apparent that the proposed customer value
concept was better tailored to the architecture decision making than the existing indi-
cators in the organization. In the Explorer case, the technology assessment of effi-
ciency did not provide the sufficient knowledge of the hospital’s actual usage of
Explorer; therefore the architecture redesign could be overlooking the main customer
needs reflected in the value-in-use. This observation is consistent with findings about
low percentage of judged success using technology assessments in business decisions
[14]. On the other side, the customer segments provided more accurate data, which
can be used as fine-grained input for making the business case (Tricorder case).

With respect to the time involved in data collection, we observed that additional
labor would be spent in quantifying the particular customer value only if this became
important to the business strategy of the organization. For example, if the organiza-
tion has the business goal to retain customers by demonstrating the value of product
improvements in the customer business, value-in-use would be used.

Drawing upon the findings of our study, some ways to advance the concept of
quantifying customer value can be suggested. Our results indicate that practitioners
most easily accept concepts similar to their existing concepts. A challenge for re-
searchers is to identify the practitioners’ way of working and propose a customer
value concept with small incremental changes compared to practice to increase ac-
ceptability of the concept. One useful approach would be to make an inventory of
customer value concepts used in practice for assessing the architecture changes as a
starting point in developing this research domain further.

By themselves, the studies described in this paper do not prove absolutely that
quantifying customer value via these concepts really supports architecture decision
making. However, confidence in our findings is increased [18] by several other case
studies indicating that cost data are necessary but not sufficient for decision making
[10] and that there is a need for customer-related information linked to quality attrib-
utes [11]. Furthermore, those findings suggest that customer value concepts need to
be broadened to include the other concepts as well.

We conclude this paper with the proposition that quantification of customer value
linked to quality improvements should be used for architecture decision making when
the customer value is closely aligned with the business strategy of the organization
and the time spent on data collection is acceptable.

Acknowledgments. We would like to thank the people at Philips Healthcare and our
colleague Rob van Ommering for their comments on earlier versions of this paper.

278 A. Ivanović and P. America

References

1. Bass, L., Kazman, R., Clements, P.: Software Architecture in Practice, 2nd edn. Addison
Wesley, Reading (2003)

2. Boehm, B.W.: Value-Based Software Engineering: Seven Key Elements and Ethical Con-
siderations. In: Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P. (eds.)
Value-Based Software Engineering. Springer, Heidelberg (2006)

3. Böckle, G., Clements, P., McGregor, J.D., Muthig, D., Schmid, K.: A Cost Model for
Software Product Lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014,
pp. 310–316. Springer, Heidelberg (2004)

4. Clements, P., McGregor, J.D., Cohen, S.G.: The Structured Intuitive Model for Product
Line Economics (SIMPLE). Technical Report CMU/SEI-2005-TR-003, Carnegie Mellon
University (2005)

5. Schmid, K.: A Quantitative Model of the Value of Architecture in Product Line Adoption.
In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 32–43. Springer, Heidelberg
(2004)

6. Kazman, R., Asundi, J., Klein, M.: Making Architecture Design Decisions: An Economic
Approach. Technical Report CMU/SEI-2002-TR-035, Carnegie Mellon University (2002)

7. Kotler, P., Keller, K.: Marketing Management, 13th edn. Prentice Hall, Englewood Cliffs
(2008)

8. van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action. Springer,
Heidelberg (2007)

9. Philips Healthcare,
http://www.philips.com/about/company/businesses/healthcarehi
ghlights

10. Ivanovic, A., America, P.: Economics of Architectural Investments in Industrial Practice.
In: 2nd International Workshop on Measurement and Economics of Software Product
Lines. SPLC proceedings, vol. 2, pp. 273–276 (2008)

11. Ivanovic, A., America, P.: Information Needed for Architecture Decision Making. In: 1st
International Workshop in Product LinE Approaches in Software Engineering, PLEASE
2010 (2010)

12. Dul, J., Hak, T.: Case Study Methodology in Business Research. Elsevier, Amsterdam
(2008)

13. Rogers, E.M.: Diffusion of Innovation, 5th edn. Free Press, New York (2003)
14. Anderson, J.C., Jain, D.C., Chintagunta, P.K.: Customer Value Assessment in Business

Markets: A State-of-Practice Study. Institute for the Study of Business Markets (1993)
15. Breeuwer, M., Hautvast, G., Higgins, S., Nagel, E.: Simplifying cardiac MR analysis.

MedicaMundi 52(2), 68–76 (2008)
16. Bevan, N., Macleod, M.: Usability measurement in context. Behaviour and Information

Technology 13, 132–145 (1994)
17. Ondategui-Parra, S., Bhagwat, J.G., Zou, K.H., Nathanson, E., Gill, I.E., Ros, P.R.: Use of

Productivity and Financial Indicators for Monitoring Performance in Academic Radiology
Departments: U.S. Nationwide Survey. Radiology 236(1) (2005)

18. Yin, R.K.: Case study research: design and methods. Applied Social Research Methods Se-
ries, vol. 5. SAGE Publications, Thousand Oaks (2003)

A Formal Approach to Enforcing Consistency
in Self-adaptive Systems

Najla Hadj Kacem1, Ahmed Hadj Kacem1, and Khalil Drira2,3

1 ReDCAD Laboratory - University of Sfax

B.P.1088, 3018 Sfax, Tunisia

najla.hadjkacem@isimsf.rnu.tn, ahmed.hadjkacem@fsegs.rnu.tn
2 CNRS, LAAS, 7 Avenue du Colonel Roche,

F-31077 Toulouse, France
3 Université de Toulouse; UPS, INSA, INP, ISAE, LAAS,

F-31077 Toulouse, France

khalil@laas.fr

Abstract. The ability of systems to adapt is increasingly seen as a nec-

essary underlying capability for modern software systems. The resulting

self-adaptive systems are not only supposed to cope with changes, but

must also preserve their consistency. To deal with such challenges in a

systematic way, the design of self-adaptive systems needs to be put on a

formal basis. In this paper, we argue for the benefits of a formal yet ex-

tensible approach to behavioural adaptations of component-based system

architectures. This approach provides the usage of alternative adaptation

processes rather than being limited to a single one. The application of

Coloured Petri Nets for modelling and analysing the adaptation processes

proves to be useful to trust consistency preservation.

1 Introduction

Adaptability is emerging as a key feature of modern software systems, partic-
ularly long running distributed systems (e.g., web servers, application servers
for E-business). Such systems inevitably have to adapt themselves at run-time
to shifting requirements, changing environments and resource variability. The
resulting self-adaptive systems are supposed to keep most of their complexity
hidden from the user, and more importantly to be able to behave correctly.

In component-based systems the basic building block is the component, and
applications are built as component compositions. Self-adaptation at the ar-
chitectural level of these systems can be performed through structural or be-
havioural adaptation actions [1]. Structural adaptation is defined as the ability
to change the compositional topology by adding/removing components and/or
their connections. In contrast, behavioural adaptation refers to the ability to
not only replace individual components, but also adjust their parameters. Of
particular interest to us is behavioural adaptation, and especially how to safely
adapt component-based system architectures.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 279–294, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

280 N. Hadj Kacem, A. Hadj Kacem, and K. Drira

As the adaptability required by systems increases, so does the need for rigor-
ous techniques to design, build and analyse systems and thereby avoid unnec-
essary flaws [2]. Such flaws would generate undesirable transient behaviour and
subsequently would compromise system consistency. The application of formal
methods has proved to be useful at the early stages of the development process.
This can greatly increase the understanding of the system by revealing ambigu-
ities and incompleteness that might otherwise go undetected [3]. Therefore, it
is a fact that for a systematical engineering of self-adaptive systems modelling
and early analysis is required [4]. In this perspective, a significant amount of
effort is invested in formal approaches to structural adaptations [5]. Behavioural
adaptations, in contrast, have received little attention (e.g., [6], [7], [8]).

In this paper, we propose a Coloured Petri Nets based approach to model be-
havioural adaptations of component-based system architectures. The essence of
our approach is to provide the usage of alternative adaptation processes rather
than being limited to a single one. Towards preserving consistency, these pro-
cesses efficiently manage dependencies between components even if they are
cyclic. Coloured Petri Nets (CPN) [9] as supported by CPN Tools [10] are used
to model and analyse the adaptation processes.

This paper is structured as follows. Section 2 presents a typical example
to illustrate the applicability. Section 3 introduces fundamental concepts used
throughout the paper. Section 4 describes the alternative adaptation processes.
Section 5 gives the basic concepts of CPN. Section 6 provides some insight into
the constructed model. Sections 7 and 8 detail the description of some modules
constituting the model. Section 9 shows the analysis results. Section 10 summa-
rizes related work. Finally, some conclusion remarks are drawn.

2 Motivating Example

In this section, we briefly present a simple example of a real world system that we
use throughout the paper to illustrate our proposition. As shown in figure 1, the
example is a typical web based system built as a composition of components. In
a given interaction, a component can provide services to other components and
consume services provided by other ones. The same component can either play
the role of a provider, a requestor, or even both of them in case of processing a
dependent request. A request is said to be dependent if its completion depends on
the completion of another consequent request by another component. Otherwise,
it is said independent. Dependent requests create a call-path which may include
the same component more than once. This implies the presence of a cycle.

Fig. 1. Example system

A Formal Approach to Enforcing Consistency in Self-adaptive Systems 281

Our example system serves as a suitable abstraction of many real world sys-
tems. For illustration, consider a medical system. Doctors, nurses, paramedical
practitioners and even patients may issue requests to a local health center in or-
der to access to electronic patient records. A request is then serviced according to
specific access rights of the requestor. To illustrate dependent requests, assume
an example in which a doctor issues a request for specialized care services to the
local health center which in turn issues a request to a remote health center as
part of processing the request of the doctor.

As another illustration, consider a travel planning system used to make travel
bookings. A traveller issues to a travel agency a trip order together with the
information about the credit card to be charged for the ordered tickets. To actu-
ally make the ticket orders, the travel agency issues a request to a flight booking
company. If the requested seats are available, the flight booking company ini-
tiates a request to the travel agency in order to get the information about the
credit card. Hence, this leads to a cycle. Upon receipt of the reply, the credit card
will be charged and a confirmation of the flights is sent back to the travel agency.
This information is completed into an itinerary which is sent to the traveller.

The above examples illustrate the importance of understanding and manag-
ing component dependencies. Obviously, replacing a component, subsequently
referred to as target, cannot be achieved at any arbitrary time. What if it is
processing requests; or it is waiting for a reply to a request it sent? This will
inevitably lead to inconsistencies. Therefore, the system must be placed in a safe
sate before adaptation can take place.

3 Fundamental Concepts

This section develops a model of a self-adaptive component that we adopt in
the paper. Our model aligns with the autonomic computing initiative [11]; it is
split up into two parts: a core functionality part and an adaptor part. The core
functionality part provides the alternate usage of multiple algorithms with equiv-
alent functionality, each one optimized for a different execution environment. If
a component has a state which is required to be preserved in adaptation, the
component is said to be stateful. Having no such state, the component is said to
be stateless and lacks the need for a state preservation. A component interacts
with its environment through well-defined ports. It exports functions through
input ports and imports its dependencies via output ports. A connector binds
an output port of a component to an input port of another component to resolve
a component dependency. A port dependency however is defined between ports
of the same component. An input port is said to be dependent on an output
port, if the component issues a request through the output port as a direct re-
sult of a request it received through the input port. Based on port dependencies,
dependent requests are thus easily derived.

The adaptor part acts as a unit of autonomy for making decisions about when
and how to perform adaptations. It additionally imposes control over a compo-
nent’s interactions. A very straightforward method for an adaptor to manage

282 N. Hadj Kacem, A. Hadj Kacem, and K. Drira

interactions of a component via its ports is interception. Beyond its intercep-
tion capability, an adaptor can fine tune parameters of a component and even
impose control on its internal behaviour, including suspending and resuming ac-
tivity and also transferring its state. State transfer operation is only applied to
stateful components. To safely carry out adaptation, an adaptor might interact
with other adaptors. Hence, two categories of messages must be distinguished:
cross-components and cross-adaptors.

The facility of interception is exploited to monitor the requests going into
or out of the component and also to restrict them. The essential purpose of
monitoring is to ensure that a component is not actively processing a request
or waiting for a reply. One way to ensure monitoring is by means of a counter
located at each port. Furthermore, rather than merely blocking requests, an
adaptor should selectively restrict them. This selective restriction is based on
inspection of so-called tag of a request. A tag refers to the call-path traversed by
a sequence of requests and is added to a request as follows. Whenever an adaptor
intercepts an incoming request on a dependent port, it recognises this request
as dependent request and checks whether it is tagged or not. If untagged, the
adaptor adds to the request as an implicit parameter the identity of the requestor
component followed by the identity of the current component. Otherwise, it only
adds to the request the identity of the current component. Upon generating a
consequent request, the tag will be copied and extended for the request. The
selective restriction can be applied using either a blocking algorithm or a queuing
algorithm. These two algorithms will be described later in the following section.

4 Adaptation Processes

In [12], we distinguish four ways to adapt a component referred to as full-
blocking (FB), passive partial-blocking (PPB), active partial-blocking (APB) and
non-blocking (NB) adaptation processes. The FB, PPB and APB processes ap-
ply when replacing a component algorithm whereas NB process only applies to
parameter-tuning adaptation.

4.1 Full-Blocking Process

During this process, the target evolves incrementally from its current algorithm
to a new algorithm in three steps: the deactivation step, the switch step and the
reactivation step. In the deactivation step, the target is driven from its original
running state to the safe state. This state change is possible as soon as all in-
teractions involving the target are finished. For this purpose, the adaptor of the
target prevents requestor components, referred to as affected, from generating
further requests to the target. This is achieved by sending Block Requests mes-
sages to the adaptors of all affected components. In response to this message, an
adaptor selectively blocks requests to the target. That is, if the target’s identity
is included in the tag of the request, then the request will be passed. Otherwise,
the request is blocked and an exception is subsequently returned back to the

A Formal Approach to Enforcing Consistency in Self-adaptive Systems 283

component. Further requests issued from the target are selectively blocked. Any
untagged request, i.e., newly initiated by the target and is not part of process-
ing another request, is blocked. An exception is returned back to the target.
Otherwise, the request is allowed to proceed. The reachability of the safe state
is delayed until the target (i) has processed all incoming requests and (ii) has
received replies of all outgoing requests.

At the beginning of the switch step, the adaptor loads the new algorithm
of the target. Then, if the target is stateful, state transfer operation has to
retrieve the internal state contained in the current algorithm and set it back to
the new algorithm. No state preservation has to be taken for a stateless target.
Subsequently, the target is moved from the safe state to the adapted state.

In the reactivation step, the target proceeds from the adapted state to the
resuming state. At this state, the adaptor of the target sends Unblock Requests
messages to the adaptors of affected components. After that, it allows resuming
operation with the new algorithm. Finally, when the target resumes its normal
execution it returns to the original running state.

4.2 Passive Partial-Blocking Process

Similarly to the former adaptation process, this process is three-step and com-
prises the deactivation, switch and reactivation steps. The deactivation step
moves the target from its original running state to the safe state. When compared
to the former deactivation step, the reachibility of the safe state is relatively less
disruptive to the running system. The affected components are not prevented
from initiating requests to the target. They can interact as normal during adap-
tation. Incoming requests to the target will be selectively queued. Only tagged
requests in which the target’s identity is included are allowed to proceed. The
others are kept queued and will be served after adaptation. Further requests
issued from the target are selectively blocked in a similar way to the former pro-
cess. The target is considered to be in the safe state when it (i) has completed
all ongoing requests and (ii) has received replies to all outgoing requests.

Similarly to the previous switch step, the target is driven to the adapted state
after loading the new algorithm and initialising it with the transferred internal
state, if available.

The transit of the target from the adapted state to the resuming state makes
the adaptor allow fetching out queued requests and resuming normal execution.
At the end, the target returns to the running state.

4.3 Active Partial-Blocking Process

Unlike the FB and PPB processes, this process allows for the current and new
algorithms of the target to coexist. Although the process could significantly re-
duce delays in adaptation, it does not provide any facilities for state preservation,
thus limiting its use to stateless components. Two steps are involved in the pro-
cess: the preparation step and the switch step. During the preparation step, the
adaptor drives the target to the prepared state in parallel with normal execution
of the current algorithm. It first loads the new algorithm. Next, at each input

284 N. Hadj Kacem, A. Hadj Kacem, and K. Drira

port, it puts an additional counter in order to control incoming requests to the
new algorithm. The idea is to incrementally limit the interactions of the current
algorithm.

After the preparation step, all new requests made by the current algorithm
are selectively blocked. As such, untagged requests are blocked and tagged ones
are allowed to proceed. Given an incoming request, if the request is tagged
and includes the target’s identity, then it is passed to the current algorithm.
Otherwise, it will be forwarded to the new algorithm to be serviced. The current
algorithm gets the chance to finish processing requests and waiting for replies.
Meanwhile, the new algorithm can be partially operational; it can begin the
processing of requests. All its output would be queued and delivered as long as
the current algorithm completes. If so, the target is said to be in the adapted
state. The counters controlling incoming requests to the current algorithm can be
subsequently removed since the control will be in charge of the added counters.
When the new algorithm is fully operational, the target transits from the adapted
state to the running state.

4.4 Non-blocking Process

This process comprises a single adjustment step in which the adaptor of the tar-
get is required to have ready “read/write” access to a parameter. Once changing
the value of a parameter finishes, the target is considered to be in the adapted
state. From this state, it can directly proceed to the running state.

5 Background on Coloured Petri Nets

A CPN consists of two types of nodes, places (drawn as ellipses) and transi-
tions (drawn as rectangles). Arcs connect places to transitions and transitions
to places. A place is typed by a colour set and contains multi-sets of markers
called tokens. The state of a CPN is called a marking and consists of the number
of tokens positioned on each place. A transition represents an action. An incom-
ing arc of a transition indicates that the transition may remove tokens from
input places while an outgoing arc of a transition indicates that the transition
may add tokens to output places.

The colours of the tokens removed and added are determined by evaluat-
ing the arc expressions (positioned next to the arcs). A transition is enabled if
the multi-set of tokens obtained by evaluating each incoming arc expression is
a subset of the tokens present on the corresponding input place. Any enabled
transition may occur and change the distribution of tokens on the places. Sim-
ple boolean expressions, called guards, can be associated with a transition and
enforce constraints on its occurrence.

In CPN Tools, CPN models can be hierarchically structured into a set of
modules, referred to as pages, to handle large models. The pages are related to
each other in a well-defined way. Fusion places are duplicates of places to make
the places accessible at different pages or different locations on one single page.

A Formal Approach to Enforcing Consistency in Self-adaptive Systems 285

6 CPN Model Overview

The purpose of this section is to provide some insight into the constructed CPN
model. The model makes it possible to carry out adaptation using FB, PPB
or APB adaptation processes. The reason behind not considering the NB adap-
tation process is that it is intuitive and quite easy to realize parameter-tuning
adaptation. In the model, we make sufficient abstraction of implementation de-
tails, but still deal with the behaviour of interest. Hence, processing that is
irrelevant for analysis is abstracted away. This makes the model simpler and the
analysis easier due to restricted state space size.

The complete CPN model is hierarchically structured in 36 pages. The top-
most level page in the CPN model is the SelfAdaptiveSystem page shown in
figure 2. This page is organised such that it reflects the model of a component,
basic building block of the system. On this page, there are six substitution tran-
sitions modelling the adaptor part (DecisionMaker, LifeCycleController, Intercep-
tor), the core functionality part (Requestor, Provider), and the transport medium
over which the components communicate as well as the adaptors (Transport). We
assume that the underlying transport medium is reliable.

The states of the components making up the system are modelled by the place
ComponentsState. Typed by the colour set CPTxStCPT, this place contains the
components identity along with their states (Running, Safe, Adapted, Resuming).
The initial marking of this place states that all the components are in the original
Running state.

Similar to ComponentsState, the place AdaptorsState contains the states of
all the adaptors of the components. The core set of states an adaptor can go
through are defined by the colour set StADP. There are three possible states to
be in with respect to the corresponding component: ExcNrm if the component is
in its normal execution; AdpTrgCpt if the component is the target; AdpAffCpt if
the component is affected. The initial marking of the AdaptorsState place defines
that all the adaptors are initially in the state ExcNrm.

When a component sends a request or receives a reply, it will appear as a
token on the place OutPort. Because every message going into or out of the

Fig. 2. Top-level page

286 N. Hadj Kacem, A. Hadj Kacem, and K. Drira

component is intercepted, we need to associate the request/reply with the adap-
tor’s identity. Hence, the colour set of the OutPort place is defined as the product
of the following colour sets:

1. Lbl models the label of a message indicating if it is a request (REQ, Nw REQ),
a reply (REP, Nw REP) or an exception (EXCP). Note that the prefix Nw is
used when the current and new algorithms of the target coexist while APB
is the actual process, in order to specify the messages of the new algorithm.

2. Rid models the identity of the requestor.
3. OutP models an output port of the requestor.
4. Tag is declared as a union colour set (colset Tag=union Path: LstCPT +

None). The first constructor Path models a call-path as a list of components
identity, and is only added to requests. In contrast, the second constructor
None is only added to replies since replies are evidently not tagged.

5. Pid models the identity of the provider.
6. ADP models the identity of the adaptor of the corresponding requestor.

The colour set of the InPort place is defined in a similar way as the colour set
of the OutPort place, except that InP models an input port of the provider and
ADP represents the identity of the adaptor of the corresponding provider.

The two places ADP2ADP and CPT2CPT are used to contain the messages
cross-adaptors and cross-components respectively.

7 Modelling the Core Functionality Part

According to figure 2, the core functionality part splits the operation of a com-
ponent into two subparts: one is responsible for requiring services (Requestor),
and the other for providing services (Provider).

7.1 Requestor Page

Figure 3 shows the Requestor page. In this page, the requests of components
are abstractly modelled and collected in the ComponentsRequests fusion place.
A token is removed from the ComponentsRequests place when the component
sends a request, or put on this place if the component generates a consequent
request to process a dependent one. Any request contained in the initial marking
of this place consists of a label REQ (of colour LblREQ, subset of Lbl), a requestor,
an output port of the requestor, an empty list as tag, and a provider.

When a component in the Running state requires a service, a request whose
requestor corresponds to that component will be picked non-deterministically
from the ComponentsRequests place. By default, the label of a request to be sent
is REQ. But after the beginning of adaptation, if the actual adaptation process
is APB then the function IsNwREQ determines whether the label of each target’s
request becomes Nw REQ or is left unchanged.

Upon sending a request, either one of the two counters recorded in the fusion
places REQ Counter and NwREQ Counter is incremented by one. The purpose of

A Formal Approach to Enforcing Consistency in Self-adaptive Systems 287

Fig. 3. Requestor page

these counters is to keep track of the number of requests each component has
sent. More precisely, the first counter keeps track of those requests only whose
label is REQ. The second counter records the number of the requests whose
label is Nw REQ. This allows us to ensure that all requests will be inevitably
intercepted. A request being sent by a component is represented by a token put
in the place OutPort. The place WaitingReplies keeps track of the requests being
sent. The reception of an exception or a reply is abstractly modelled by the
transitions ReceiveException and ReceiveReply respectively.

7.2 Provider Page

The Provider page shown in figure 4 models the processing of incoming requests
assigned by an adaptor to the corresponding component. There are two cases
in processing a request. First, if the request is independent (as specified by the
function IsInPDpd), the transition ProcessInDpdReq is enabled. When it occurs,
(i) a token representing the reply will be put on the place InPort. The func-
tion placed on the outgoing arc sets the label of the reply to REP or Nw REP
depending on the label of the processed request (REQ or Nw REQ), and (ii) a
token representing the request is added to the ProcessedRequests place.

Second, if the request is dependent, the transition ProcessDpdReq is respon-
sible for processing the request. But a request having a Nw REQ label could not
be completed in a similar way to how this is done for requests with a REQ label.
The completion of a request with a REQ label (modelled by the transition Com-
pleteDpdReq) is possible once its consequent request is completed, i.e., a token
representing this request is placed on the fusion place RepliedRequests. However,
if the actual adaptation process is APB then the completion of a request with a
Nw REQ label could be postponed temporarily since its consequent request will
be queued.

288 N. Hadj Kacem, A. Hadj Kacem, and K. Drira

Fig. 4. Provider page

8 Modelling the Adaptor Part

As shown in figure 2, the description of the adaptor part is organised such that
it reflects how an adaptor (i) acts as a unit of autonomy for making decisions
(DecisionMaker), (ii) manages all the interactions of the component (Interceptor),
and (iii) manages the component life cycle (LifeCycleController).

8.1 DecisionMaker Page

As previously stated, we do not care about processing that is irrelevant for the
analysis. Hence, the procedure of making decisions about when to begin adap-
tation and how to select the adaptation process that better fits to the current
execution environment is abstracted away. In figure 5(left), adaptation begin-
ning is abstractly modelled by the BeginAdaptation transition. This transition is
initially enabled and can occur at any time, thus making adaptation at random.

Fig. 5. DecisionMaker (left) and Interceptor (right) pages

A Formal Approach to Enforcing Consistency in Self-adaptive Systems 289

8.2 Interceptor Page

The Interceptor page depicted in figure 5(right) consists of four substitution tran-
sitions modelling the interception of: outgoing requests (InterceptOREQ), replies
to outgoing requests (InterceptREPOREQ), incoming requests (InterceptIREQ)
and replies to incoming requests (InterceptREPIREQ). Due to lack of space, we
only consider the InterceptOREQ and the InterceptIREQ pages.

The InterceptOREQ page structures the process of intercepting outgoing re-
quests into three substitution transitions depending on the current state of the
adaptor (IntOREQ ExcNrm, IntOREQ AdpTrg, IntOREQ AdpAff). We only con-
sider the IntOREQ AdpTrg page. On this page, there are three substitution tran-
sitions modelling the behaviour of an adaptor (in the AdpTrgCpt state) with
respect to each adaptation process. As a representative example, we consider
the IntOREQ AdpTrg FB page shown in figure 6. This page models how an adap-
tor manages the requests initiated by the target in case the actual adaptation
process is FB. Any request placed on the OutPort place as a part of process-
ing another request (specified by the guard of the PassIntReq transition) will be
transmitted over the transport medium. Conversely, any request newly initiated
by the target as not a part of processing another request will be blocked and an
exception will be returned back to the target.

After a request goes through the transport medium and reaches the provider,
it has first to be intercepted by the adaptor of this provider. There are essen-
tially two cases for intercepting incoming requests, modelled by the substitution
transitions IntIREQ NrmExcOrAdpAff and IntIREQ AdpTrg on the InterceptIREQ
page. Similarly to the IntOREQ AdpTrg page, the page IntIREQ AdpTrg is organ-
ised into three substitution transitions. We consider the IntIREQ AdpTrg PPB
page (figure 7). By the predefined function mem, an adaptor checks whether the
identity of the target is included in the list representing the call-path. If so, the
request is assigned to the target. The assignment of a dependent request differs
from the assignment of an independent one in that the update of the call-path.

In contrast, if the identity of the target is not included in the list representing
the call-path the request will be queued. A counter maintained in the place
BuffREQ Counter records the number of queued requests and serves to releasing
them. The transition BuffReq takes care of fetching out queued requests and
deposits them in the InPort place.

Fig. 6. IntOREQ AdpTrg FB page

290 N. Hadj Kacem, A. Hadj Kacem, and K. Drira

Fig. 7. IntIREQ AdpTrg PPB page

8.3 LifeCycleController Page

The LifeCycleController page has two substitution transitions modelling how an
adaptor manages the life cycle of the target (LCC AdpTrg) and an affected
component (LCC AdpAff). As a representative example, we only consider the
LCC AdpTrg FB page which is organised such that it reflects the three steps
of the FB process. The first deactivation step is abstractly represented by the
FB Deactivation page that is not shown here due to space limitation. On this
page, the reachability of the Safe state is delayed until:

1. A BlkReq message is sent to the adaptors of affected components. To ensure
that these adaptors have effectively received the BlkReq message, the adaptor
of the target collects BlkReqDone messages.

2. The value of the counters located at the output ports and input ports of the
target is equal to zero. As such, it can be ensured that the target has pro-
cessed all incoming requests and has received replies of all outgoing requests.

3. The value of the counter recorded in the place REQ Counter is equal to zero.

9 Model Analysis

In this section, focus changes from modelling to state space analysis. The pur-
pose of state space analysis is to conduct investigation of the operation of the
modelled system, including verification of its key properties. The first step in
CPN Tools towards state space analysis is to initialise the CPN model according
to a specific configuration. Consider in figure 8 one representative component-
based configuration of the above-described example system. On this figure, there
are five components (a, b, c, d, e) interconnected through their ports indicated
in the box positioned next to them (for example, outx1). A port dependency
between an input port and an output port is represented by a dashed line. The
adaptors (A, B, C, D, E) of the components can be recognised by the grey bar
around each component.

A Formal Approach to Enforcing Consistency in Self-adaptive Systems 291

Fig. 8. Initial configuration

Table 1. Initial tests

Table 1 shows the chosen values to set the target (Target), the actual adapta-
tion process (PrcADP) and the initial marking of the ComponentsRequests place
(M(CR)), in order to carry out six representative tests.

The state space analysis is done by first generating the state spaces for the
considered tests. State space generation is followed by generation of the state
space report which provides some statistical information about the state space
and contains answers to a number of standard behavioural properties of Petri
nets. Table 2 shows part of the generated state space reports. In the following,
we interpret selected analysis results.

Table 2. Analysis results

Property1: Absence of Deadlocks. This property can be formulated as the
absence of unexpected dead markings. A dead marking is a marking in which no
transition is enabled. With respect to the CPN model, the only acceptable dead
markings would be the states in which the components end up being adapted
properly and correctly resume normal execution. In the considered tests, the
analysis reveals dead markings. By transferring the dead markings into the simu-
lator, we inspect the markings and observe these as desired terminal states of the
system. Common for all dead markings we have all adaptors in the ExcNrm state
(AdaptorsState place); all components in the Running state (ComponentsState

292 N. Hadj Kacem, A. Hadj Kacem, and K. Drira

place) and all requests are either replied (RepliedRequests place) or blocked
(BlockedRequests place).

Property2: Absence of Livelocks. This property states that the model
should be free from livelocks. A livelock is revealed when the state space con-
tains a cycle that once entered will repeat forever and within which no progress
is made. Absence of livelocks can be determined by examining the Scc graph. In
table 2, common result for all tests is that the Scc graph has the same number
of nodes and arcs as the state space. This implies that there are no cycles in the
state space and the system will always terminate correctly. Proper termination
is further acknowledged by the absence of live transitions, as is shown in table
2. A live transition is a transition which always can become enabled once more.

Property3: Absence of Unexpected Dead Transitions. This property
states that every transition is enabled by at least one reachable marking. As ex-
pected, the analysis shows a number of dead transitions with respect to each test.
They are caused by transitions being modelled but not enabled due to the ini-
tially considered adaptation process. For example, consider the test 1 where FB is
the actual process. There are 31 dead transitions. Inspection of these transitions
shows that dead transitions are related to the PPB and APB processes.

Even though the state space report proves to be useful to investigate a set of stan-
dard behavioural properties, some properties which are particular for the CPN
model need to be verified. For example, an interesting property
(Property4) to check states that each request will be eventually replied or
blocked whatever the considered adaptation process. Checking this property
boils down to check that in all terminal markings, the addition of the multi-
sets of tokens on places RepliedRequests and BlockedRequests is identical to the
multi-set of tokens on place ComponentsRequests (without considering the label).
The query function PredAllNodes is used to list all nodes violating this property.
As shown in figure9(left), there are no such nodes when the actual process is FB.
The property is consequently satisfied, and so is for the PPB and APB processes.

Another property (Property5) to investigate states that when the considered
process is FB, the target in the Safe state will neither receive nor initiate requests.
That is, once the target is driven in the Safe state the number of tokens on the
place OutPort whose requestor is the target and the number of tokens on the
place InPort whose provider is the target should be equal to zero. In the query,
we negate this condition and hence the function PredAllNodes checks the state

Fig. 9. Checking results of Property4 (left) and Property5 (right)

A Formal Approach to Enforcing Consistency in Self-adaptive Systems 293

space for nodes which satisfy it. The result in figure9(right) shows that there are
no such nodes, therefore the property is satisfied.

10 Related Work

The work by Kramer and Magee [6] presents one of the earliest approaches for
dynamic adaptation. In this approach, a system is seen as a directed graph con-
sisting of nodes and connections between the nodes. Nodes can only affect each
other through transactions, thus limiting the use of the approach to transactional
systems. During adaptation, node quiescence is defined as a state in which the
node is not within a transaction and will neither receive nor initiate any new
transactions. However, the offered solution to reach quiescence is coarse-grained.
That is, any adaptation of a node can suspend completely its adjacent nodes,
where some activities are unnecessarily suspended.

More fine-grained approach is used by Wermelinger [13] which argues that
the passivation of links needs to be dealt with instead of the passivation of
nodes. A novelty of this approach is that each node must be supplied with a
description of internal port dependencies, which relate input ports and output
ports. Dependencies between transactions are derived from port dependencies.
Cycles are not allowed since transactions cannot be interleaved.

Zhang and Cheng [14] propose an approach to create formal models for the
behavior of adaptive systems. In this approach, an adaptive system is modeled
as the composition of a finite number of programs and the adaptations among
these programs. The properties of each program are assumed to be specified
with a Linear Temporal Logic (LTL) formula. To specify an adaptation from
one program to another, Zhang and Cheng introduce the A-LTL, an extension
to LTL. This approach does not only require from the developer expertise of A-
LTL, but also substantial effort to describe the relative temporal ordering among
events and program states that occur during the adaptation process.

Recently, in [8], Rasche and Polze introduce an algorithm for dynamic adapta-
tion. They model a system configuration together with the adaptation algorithm
using Petri Nets. To prove some important properties of the algorithm, such as
the absence of deadlocks and progress, they use model checking. The algorithm is
however limited to adding or removing a component, and changing its attributes.
No support for replacing a component is provided.

11 Conclusion and Future Work

In this paper, we investigate the use of CPN for modelling and analyzing self-
adaptive systems in order to ensure consistency. First, we present an abstract
model of alternative adaptation processes that an adaptor can apply to adapt a
component. In the model, the multi-threaded nature of a component is taken into
account as it must deal with dependent requests and even cycles. Furthermore,
the chosen level of abstraction excludes implementation details, but still deals
with the behaviour of interest. Second, for the values of parameters considered in

294 N. Hadj Kacem, A. Hadj Kacem, and K. Drira

the tests, we analyse the model and show that it terminates correctly. We prove
that there are no deadlocks or livelocks, and the terminal states show that the
components end up being adapted properly and resume normal execution in a
correct manner. This helps us to give further confidence in the constructed model
and thereby in the self-adaptive system which is assured to preserve consistency.

Future work will include modelling of systems with timing constraints. Beyond
preserving consistency, these systems must ensure that adaptation is carried out
in such a way that all timing constraints are satisfied. CPN include a time concept
that makes it possible to capture the time taken to execute activities in the system.

References

1. Oreizy, P., Medvidovic, N., Taylor, R.: Architecture-Based Runtime Software Evo-

lution. In: Proc. of the 20th International Conference on Software Engineering,

pp. 177–186. IEEE CS, Los Alamitos (1998)

2. Kramer, J., Magee, J.: Towards robust self-managed systems. Progress in Infor-

matics (5), 1–4 (2008)

3. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.

ACM Computing Surveys 28(4), 626–643 (1996)

4. Becker, B., Giese, H.: Modeling of Correct Self-Adaptive Systems: A Graph Trans-

formation System Based Approach. In: Proc. of the 5th International Conference

on Soft Computing as Transdisciplinary Science and Technology (CSTST 2008),

pp. 508–516. ACM, New York (2008)

5. Bradbury, J., Cordy, J., Dingel, J., Wermelinger, M.: A survey of self-management

in dynamic software architecture specifications. In: Proc. of the 1st ACM SIGSOFT

Workshop on Self-managed Systems, pp. 28–33. ACM, New York (2004)

6. Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change Man-

agement. IEEE Trans. on Soft. Eng. 16(11), 1293–1306 (1990)

7. Zhang, J., Yang, Z., Cheng, B.H., McKinley, P.K.: Adding safeness to dynamic

adaptation techniques. In: Proc. of ICSE 2004 Workshop on Architecting Depend-

able Systems, WADS 2004 (2004)

8. Rasche, A., Polze, A.: ReDAC - Dynamic Reconfiguration of Distributed

Component-based Applications with Cyclic Dependencies. In: Proc. of the 11th

IEEE International Symposium on Object-Oriented Real-Time Distributed Com-

puting (2008)

9. Jensen, K., Kristensen, L., Wells, L.: Coloured Petri Nets and CPN Tools for Mod-

elling and Validation of Concurrent Systems. International Journal on Software

Tools for Technology Transfer 9(3), 213–254 (2007)

10. CPN Tools (2007), http://www.daimi.au.dk/CPNTools
11. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing 36(1), 41–50

(2003)

12. Hadj Kacem, N., Hadj Kacem, A., Drira, K.: Orchestrating Safe Behavioural Adap-

tations of Component-based Systems. In: Proc. of the Sixth International Confer-

ence on Autonomic and Autonomous Systems, pp. 37–46. IEEE CS, Los Alamitos

(2010)

13. Wermelinger, M.A.: Specification of software architecture reconfiguration. Ph.D,

Thesis, Universidade Nova de Lisboa (1999)

14. Zhang, J., Cheng, B.: Using Temporal Logic to Specify Adaptive Program Seman-

tics. Journal of Systems and Software 79(10), 1361–1369 (2006)

http://www.daimi.au.dk/CPNTools

Architecture-Centric Component-Based
Development Needs a Three-Level ADL

Huaxi (Yulin) Zhang, Christelle Urtado, and Sylvain Vauttier

LGI2P / Ecole des Mines d’Alès, Nı̂mes, France

{Huaxi.Zhang,Christelle.Urtado,Sylvain.Vauttier}@mines-ales.fr

Abstract. Architecture-centric, component-based development inten-

sively reuses components from repositories. Such development processes

produce architecture definitions, using architecture description languages

(Adls). This paper proposes a three step process. Architecture specifi-

cations first capture abstract and ideal architectures imagined by ar-

chitects to meet requirements. Specifications do not describe complete

component types but only component roles (usages). Architecture config-

urations then capture implementation decisions, as the architects select

specific component classes from the repository to implement component

roles. Finally, architecture assemblies define how components instances

are created and initialized to customize the deployment of architectures

in their own execution contexts. This development process is supported

by a three-level Adl which enables the separate definition of these three

representations. The refinement relationships between these architecture

representations are also discussed.

1 Introduction

Component-based software development (Cbsd) consists in two activities: the
development of software components for reuse and the development of software
applications by the reuse of components. The first activity can be managed by
classical software development processes, with an analysis, a design and then
a coding phase. The produced software modules, encapsulated as component
classes, are then stored and indexed in repositories to be reused later on. The
second activity corresponds to a more specific and still scarcely studied devel-
opment processes. We propose an architecture-centric development process that
aims at defining the structure of an application as a set of reused components and
a set of connections between them, using a dedicated language called an Archi-
tecture Description Language (Adl). This process is structured in three steps,
through which architecture definitions are gradually refined, from abstract to
concrete representations. After a classical analysis step, architecture specifica-
tions first capture design decisions as ideal architectures imagined by architects
to meet the requirements. Specifications do not describe complete component
types but only component roles (usages). These roles are used to search for
matching component classes in repositories. Specification and roles are thus key
concepts to integrate component reuse effectively in the development process.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 295–310, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

296 H.(Y.) Zhang, C. Urtado, and S. Vauttier

Second, architecture configurations capture implementation decisions, as the ar-
chitects select specific component classes to implement component roles. Finally,
architecture assemblies define how components instances are created and initial-
ized to customize the deployment of architectures in different execution contexts.
Our process is supported by an three-leveled dedicated Adl, called Dedal, which
enables the explicit and separate definitions of architecture specifications, con-
figurations and assemblies. This way, a single abstract architecture definition
can be refined into many concrete architecture definitions, to foster not only
the reuse of components but also of architectures. The refinement relationships
between these separate architecture representations — i.e. the relationship be-
tween the component roles, classes and instances they are composed of — are
proposed to control and verify the global coherence of these multi-level architec-
ture definitions.

The remaining of this paper is organized as follows. Section 2 introduces our
proposed architecture-centric, reuse-based development process. It studies how
existing Adls are suitable for it. Section 3 presents the different component
description levels supported in Dedal, our proposed Adl to support this devel-
opment process. Section 4 presents the different architecture description levels
which can be expressed in Dedal, along with the refinement relations between
them. Section 6 concludes with future work directions.

2 Software Architectures in CBD

2.1 A Development Process for Component Reuse

Component-based software development is characterized by its implementation
of the “reuse in the large” principle. Reusing existing (off-the-shelf) software
components therefore becomes the central concern during development. Tradi-
tional software development processes cannot be used as is and must be adapted
to component reuse [1,2]. Figure 1 illustrates our vision of such a development
process which is classically divided in two:

– the component development process (sometimes referred to as component
development for reuse), which is not detailed here. This development pro-
cess is the producer of components that are stored in repositories for later
consumption by the component reuse process.

– and, the component-based software development process (referred to as com-
ponent-based software development by reuse) that describes how previously
developed software components can be used for software development (and
how this reuse process impacts the way software is built).

The proposed component-based software development process deliberately fo-
cuses on the produced artifacts (architecture descriptions, as models of the soft-
ware) for each development step. For simplicity’s sake, it is also exclusively
“reuse-centered” and does not describe how components should be developed

Architecture-Centric Component-Based Development 297

Component development for reuse

Lifecycle step Lifecycle stepProduction

documentation

Component
development and

documentation

Component code
storage and
indexation

Component
code & models

Component
repository

System requirement
analysis

Architecture
specification

Architecture
configuration

Instantiated
component assembly

Production

Instantiated software
component assembly

Concrete architecture
configuration

Abstract architecture
specification

Functional & non functional
requirements

Caption:

Component
search

Component
instantiation

Uses
Produces
Precedes

Component-based software development by reuse

Fig. 1. Component-based software development process

from scratch if no component is found that matches or closely matches specifi-
cations, adapted if no existing component type perfectly matches specifications,
tested and integrated or, physically deployed.

In this component-based software development process, software is considered
to be produced by the reuse of components that have previously been stored
and indexed in a component repository. It decomposes in three steps each of
which produces a description that models the view of the architecture at this
development step:

1. Model of requirements. After a classical requirement analysis step, architects
establish the abstract architecture specification. They define which func-
tionalities should be supplied by components, which interfaces should be
exported by components, and how interfaces should connect to build a soft-
ware system that meets the requirements.

2. Model of design. In a second step, architects create architecture configura-
tions that define the sets of component implementations (classes) by search-
ing and selecting from the component repository. Abstract component types
from the architecture specification then become concrete component types
in architecture configurations.

3. Model of runtime. In a third step, configurations are instantiated into com-
ponent instance assemblies and deployed to executable software applications.

The claim of this paper is that an architectural description should correspond to
each of the three steps of the component-based software development process. In
other words, architectures should be described from all specification (model of
requirements), configuration (model of design) and assembly (model of runtime)
point of views. These three descriptions should reflect the architect’s design de-
cisions at each step of the development cycle and be expressed using an adequate

298 H.(Y.) Zhang, C. Urtado, and S. Vauttier

Adl. State-of-the-art Adls have been analyzed from this perspective, trying to
answer the following questions (that provide a taxonomy for comparison):

– Do existing Adls support multiple view representations?
– If so, are these views used to reflect successive development steps?
– In cases where several descriptions of a given architecture coexist, which

development step can they be associated to?
– Which information on software is captured? In which view / level represen-

tation?

2.2 Expressiveness of Existing ADLs

A software system architecture [3] gathers design decisions on the system. It is
expressed using an Adl which, in most cases, provides information on the struc-
ture of the software system listing the components and connectors the system
is composed of. Quality attributes are sometimes provided (e.g. xAdl [4]). The
dynamic behavior of systems is often described (e.g. C2SADEL [5], Wright [6],
Sofa [7]) but their descriptions are not homogeneous as various technologies
(e.g. message-based communication, Csps, regular expressions) are used.

When systems are too complex to easily be described, two classical mecha-
nisms can be used to split descriptions into smaller ones. Hierarchical decom-
position enables to view the system at various granularities (e.g. Darwin [8],
Sofa [7] or Fractal Adl [9]). Systems are composed of sub-systems that can fur-
ther be described at a finer level. Thematic decomposition amounts to consider
the system from distinct viewpoints (e.g. syntactic and behavioral diagrams of
Uml [10]). Whole systems are seen from several partial viewpoints that make
each description focus on some system attributes.

Systems can also be described at various steps of their life-cycles. To our
knowledge, no Adl really includes this “time” dimension. Some works such as
Uml [10] or Taylor et al. [3] implement or describe close notions. Uml makes it
possible to describe object-oriented software at various life-cycle steps but this
capability is not transposed in their component model. Taylor et al. [3] distin-
guish two description levels for architectures at design and programming time,
respectively called perspective (or as-intended) and descriptive (or as-realized)
architectures. However, as far as we know, they do not propose any Adl or
metamodel to concretely implement these two architecture descriptions. Garlan
et al. [11] propose a three-layer framework (task, model and runtime layers) and
points out the importance of three levels for dynamic software evolution man-
agement. Beside their having close notions, these existing works do not propose
such descriptions that would follow the three identified steps of component-based
software development.

We then examine the representative Adls to see which levels of architecture
descriptions are supported (as shown in Tables 1 and 2). As far as we know, the
studied Adls unfortunately do not enable the three levels that correspond to
lifecycle steps to be all described. This analysis results in requirements for the
language presented in this paper:

Architecture-Centric Component-Based Development 299

Table 1. Expressiveness of existing ADLs — Modeling of the three lifecycle steps

ADL Specification Configuration Assembly

C2SADEL � � ×
Wright × � ×
Darwin × � ×
Unicon × � ×
SOFA 2.0 × � ×
FractalADL × � ×
xADL 2.0 × � �

Table 2. Expressiveness of existing ADLs — Component representations

ADL Abstract
component
type

Concrete
component
type

Component
class

Component
instance

C2SADEL × � � ×
Wright × � � ×
Darwin × � � ×
Unicon × � � ×
SOFA 2.0 × � � ×
FractalADL × � � ×
xADL 2.0 × � � �

1. No Adls presented in Table 1 is tailored to Cbd. Switching to such a reuse-
centered development process shall impact the description language.

2. No Adls presented in Table 1 models component types in an abstract way in
order to support the search and selection of concrete component in compo-
nent repositories. Concrete components in architecture configurations should
not be strictly identical to abstract component types described in their ar-
chitecture specification. As components pre-exist, the specification should
define abstract (ideal) and partial component types while configurations de-
scribe concrete (satisfying) components that are going to be used (as claimed
by Taylor et al. [3]).

3. Connectors should not necessary be explicit but the architect should have the
possibility to explicit them when needed. Explicit connectors model specific
connection types and can be reused from one design to another. However,
in most situations, connectors can be system-generated and thus remain
implicit for simplicity’s sake.

4. Most Adls do not model the running system (assembly level) or component
instances, except xAdl 2.0. Adls should include some description on how
components classes are instantiated and what are the characteristics of the
running assemblies (constraints on component state values).

5. Components should possibly be primitive (implemented by an implemen-
tation class) or hierarchically composed of components (implemented by a
configuration).

300 H.(Y.) Zhang, C. Urtado, and S. Vauttier

6. Component types should be reusable. This implies that their description is
modularized (outside architectures).

7. Both structural and behavioral viewpoints should be provided for both com-
ponents and architectures.

2.3 Example of a Bicycle Rental System

Figure 2 shows the example used throughout the paper: the architecture spec-
ification of a bicycle rental system (Brs). A BikerGUI component manages a
user interface. It cooperates with a Session component which handles user com-
mands. The Session component cooperates with the Account and Bike&Course
components to identify the user, check the balance of its account, assign him an
available bike and then calculate the price of the trip when the rented bike is
returned. In the following sections, we will use a part of this system to illustrate
our concepts and Adl syntax.

The two following sections present Dedal, the proposed Adl which spans the
three levels of architecture descriptions. Dedal enables the description of abstract
architecture specifications, concrete architecture configurations and instantiated
component assemblies. It also supports a controlled architecture evolution pro-
cess the description of which is out of the scope of this paper (see [12] for this
aspect).

Fig. 2. Brs abstract architecture specification

3 Component Descriptions in the Three Levels of Dedal

Dedal models architectures at three separate abstraction levels, each of which
contains different forms of components and connectors. For now, Dedal mainly
focuses on modeling components. At the specification level, components are mod-
eled as roles which are requirement models for concrete component search. These
specifications thus are abstract and partial. At the configuration level, compo-
nents are modeled as (whole) component classes which realize the specifications.

Architecture-Centric Component-Based Development 301

Fig. 3. The Session component role, some possible concrete realizations and some of

their instantiations

Several component classes might correspond to a single component role as there
might exist several concrete realizations of a single specification. At the assem-
bly level, concrete component classes are instantiated into component instances
that represent runtime components and their parameterizations. Figure 3 shows
a complete example of components at three levels.

3.1 Components in Abstract Architecture Specifications

Component roles model abstract component types in that they describe the roles
components should play in the system. A component role lists the minimum list
of interfaces (both required and provided) the component should expose and the
component behavior protocol that describes the behavior of the component in
the architecture (dynamics of the architecture). As they define the requirements
of the architect (its ideal view) to guide the search for corresponding concrete
components, component roles are abstract and partial component representa-
tions (e.g. Session component role on Fig. 3). Dedal uses the protocol syntax
of Sofa [7] to describe component behavior as regular expressions1. Other for-
malisms could have been used instead; the notation chosen is interesting as it is
compact and is implemented as an extension of the Fractal component model we
used for or experimentation, with companion verification tools. Component pro-
tocols capture the behavior of components in their context describing all valid
sequences of emitted function calls (emitted by the component and addressed to
neighbor components) and received function calls (received by the component
from neighbor components). As component roles are abstract component spec-
ifications, Dedal modularly describes them outside architecture specifications,
so as they can be reused from a specification to another (which would not be
possible if they were embedded). Figure 4 shows the description of the Session
component role. This description contains (a part of) the Sofa-like description
of its behavior.

1 !i.m (resp. ?i.m) denotes an outgoing (resp. incoming) call of method m on interface

i. A+B is for A or B (exclusive or) and A;B for B after A (sequence).

302 H.(Y.) Zhang, C. Urtado, and S. Vauttier

component role Session
required interfaces BikeOprs; CourseOprs; AccountOprs
provided interfaces Account; Bike
component behavior
(!Session.Bike.findB,
?Session.BikeOprs.findB;)
+
(!Session.Account.login,
?Session.AccountOprs.checkID;)
. . .

Fig. 4. Session component role

3.2 Components in Concrete Architecture Configurations

At configuration level, components are modeled in two ways with component
types and component classes. Figure 5 provides a close-up view of the relation-
ships between a component role (that model an abstract and partial view of a
required component), a component type that models the complete type of some
existing concrete implementation, a component class that represent the concrete
component implementation and a parameterized component instance.

Fig. 5. BikeCourseDBClass composite component

Component types represent the full types of at least one (maybe several) ex-
isting component implementations. They are defined by describing the interfaces
and behavior of these component classes. Component types are reusable as they
can be implemented by multiple component classes which possess the same in-
terfaces and component behavior. The BasketType component type description
of Fig. 6 is an example of component type description.

Component classes represent concrete component implementations. Each com-
ponent class points to the component type it implements. Component classes can
either be primitive or composite.

Primitive component classes (e.g. Basket as described in Fig. 7) define the
reused components by describing their interfaces, behavior, version2 and imple-
menting class. Existing models usually do not include links to the implementaing
2 This information (as well as all the versioning information included in other descrip-

tions later on) serves evolution management purposes that are not described in this

paper. For more information, the interested reader might refer to [12].

Architecture-Centric Component-Based Development 303

component type BasketType
required interfaces BikeOprs; CourseOprs; AccountOprs; CampusOprs;

AccessoryOprs
provided interfaces Account; Bike
component behavior
(!BasketType.Bike.findB,
?BasketType.BikeOprs.findB;)
+
(!BasketType.Account.login,
?BasketType.AccountOprs.checkID;)
. . .

Fig. 6. Description of the BasketType component type

component class Basket
implements BasketType
using fr.ema.locaBike.Basket
attributes string company; string currency

Fig. 7. The Basket (primitive) component class description

component instance BasketLocaBike
instance of Basket (1.0)
initiation state company="LocaBikecurrency"; currency=="Euro."

Fig. 8. The BasketLocaBike component instance description

class as they assume there is a single implementation. In Dedal, components can
thus have several implementations (which can be useful to have implementations
versioned in such cases as software product lines management).

Composite component classes will be introduced in Sect.4.2. Both primitive
and composite component classes can export an attribute list (as exemplified
on Fig. 7 and 11). Attributes are not mandatory but can be declared as observ-
able / visible properties for component classes so as to be able to set assembly
constraints on attribute values in the instantiated component assembly level.

3.3 Components in Instantiated Software Component Assemblies

Component instances document the real artifacts that are connected together
in an assembly at runtime. They are instantiated from the corresponding com-
ponent classes. They might define constraints on components’ attributes that
reflect design decisions impacting component states (attribute values) over time.
They also set the initial component state by initializing attributes values.

4 Three Levels of Architecture Description in Dedal

4.1 Abstract Architecture Specifications

Abstract architecture specifications (Aass) are the first level of software archi-
tecture descriptions. They provide a generic definition of the global structure

304 H.(Y.) Zhang, C. Urtado, and S. Vauttier

and behavior of software systems according to previously identified functional
requirements. They model the requirements expressed by the architect to serve
as a basis to search for concrete component to create concrete architecture con-
figurations. These architecture specifications are abstract and partial: they do
not identify concrete component types that are going to be instantiated in the
software system. They only describe the “ideal” component types from the ap-
plication point of view. Types of concrete components need not be identical to
abstract types. As Cbd processes favors component reuse, component type com-
patibility should be more permissive than strict identity but still guarantee safety
of use. Compatible concrete component types can, for example, provide more
functionalities than strictly specified (extra functionality will remain unused)
or provide more generic functionalities (use of polymorphism of object-oriented
languages)3.

specification BRSSpec
component roles
BikeCourse; BikeCourseDB
...
connections
connection connection1
client BikeCourse.BikeQS
server BikeCourseDB.BikeQS
connection connection2
client BikeCourse.CourseQS
server BikeCourseDB.CourseQS
...
architecture behavior
(!BikeCourse.BikeOprs.selectBike;
?BikeCourse.BikeQS.findBike;
!BikeCourseDB.BikeQS.findBike;)
+
(!BikeCourse.CourseOprs.startC;
?BikeCourse.CourseQS.findCourse;
!BikeCourseDB.CourseQS.saveCourse;)
...

version 1.0

Fig. 9. Aas of the Brs (partial)

In Dedal, an Aas is composed of a set of component roles, a set of connec-
tions and its architecture behavior. Figure 9 provides an example of the Aas
for the Brs. For readability reasons, this description represents only a small
part of the Brs Aas depicted in Fig. 2. Connections make interactions be-
tween two components possible. They define which component interfaces are
bound together. connection1 and connection2 from Fig. 9 are such connections.
Architecture behaviors describe the protocols of complete architectures –
meaning all possible interactions between their constituent components. As for
component protocols, the syntax used is that of Sofa protocols4. Compatibility
3 The reader further interested about component compatibility can refer to authors’

work on component repositories [13] and component substitution [14].
4 !c.i.m (resp. ?c.i.m) denotes an outgoing (resp. incoming) call of method m on

interface i of component c.

Architecture-Centric Component-Based Development 305

between individual component protocols and the protocol of their containing
architecture as well as compatibility between the protocols of two connected
components is not studied in this work as we interface our language with cor-
responding mechanisms (trace inclusion) from Sofa. Figure 9, that describes
the Brs architecture specification, contains the Brs architecture protocol. The
reader can intuitively check that the protocol of the BikeCourse component role
is compatible with (“included” in) the protocol of the Brs architecture.

4.2 Concrete Architecture Configurations

Concrete architecture configurations (Cacs) are the second level of system ar-
chitecture descriptions. They result from the search and selection of real compo-
nent types and classes in a component repository. These component types must
match abstract component descriptions from the architecture but need not be
identical; compatibility is sufficient. Component classes must be valid implemen-
tations of their declared component type. Cacs describe the architecture from
an implementation viewpoint (by assigning component roles to existing compo-
nent types). Architecture configurations thus list the concrete component and
connector classes which compose a specific version of a software application.
The architecture of a given software is thus defined by a unique Aas and pos-
sibly several Cacs. For a given software, each architecture configuration must
conform to the architecture specification. This means that each component or
connector class used in an architecture configuration must be a legal implemen-
tation of the corresponding component role or connection in the architecture
specification. Figure 10 describes the architecture configuration of the Brs. The
explicit description of connector classes is possible (as exemplified on Fig. 12)
but not mandatory. In cases where they are implicit, we consider connectors as
generic entities which are provided by containers (execution environments) in
which configurations are deployed. Connections are automatically administered
by containers at runtime to manage the instantiation of configurations. In cases
where connectors are explicitly added, their descriptions define the specific con-
nector classes that reflect design choices and that must be used to manage special
communication, coordination, and mediation schemes. Composite component
classes are components the implementation of which is not a simple class but
a complete configuration that differ from the above described configurations in
that it has some unconnected interfaces. The composite component class con-
cept enables hierarchical composition of architectures which has been identified

configuration BRSConfig
implements BRSSpec (1.0)
component classes
BikeTrip (1.0) as BikeCourse;
BikeCourseDBClass (1.0) as BikeCourseDB

version 1.0

Fig. 10. A possible Cac for the Brs

306 H.(Y.) Zhang, C. Urtado, and S. Vauttier

component class BikeCourseDBClass
implements BikeCourseDB
using BikeCourseDBConfig (1.0)
delegated interfaces
provided
BikeCourseDBConfig.BikeData.BikeQS
as BikeCourseDB.BikeQS
provided
BikeCourseDBConfig.TripData.CourseQS
as BikeCourseDB.CourseQS

version 1.0
attributes company

Fig. 11. The BikeCourseDBClass composite component class and its description

specification BikeCourseDBSpec
component roles
BikeDB; CourseDB
connections
connection ConnectionCourseQuery;
client BikeDB.CourseQuery
server CourseDB.CourseQuery

version 1.0

configuration BikeCourseDBConfig
implements BikeCourseDBSpec (1.0)
component classes
BikeData (1.0) as BikeDB;
TripData (1.0) as CourseDB
connector classes
CourseQuery (1.0) as

ConnectionCourseQuery;
version 1.0

Fig. 12. Descriptions of the BikeCourseDBSpec abstract specification and of the Bike-
CourseDBConfig inner configuration

as an effective means to manage system complexity and concretely implement
reuse (as whole configurations can be considered as coarser grained components).
Composite component classes further define how unconnected interfaces from the
inner configuration can be delegated to interfaces of the composite component.
As for provided and required interfaces in primitive components, delegated inter-
faces are implementations of the corresponding provided and required interfaces
in the corresponding component role. Figures 11 and 12 give the example of
the composite component class BikeCourseDBClass that implements the Bike-
CourseDB role where the BikeQS provided interface of the BikeData component
inside the BikeCourseDBConfig configuration is delegated as a provided inter-
face of the composite component that implements the BikeQS interface of the
BikeCourseDB component role. Figure 11 shows a graphical representation of
the same BikeCourseDBClass component.

Conformance between an AAS and a CAC is a matter of conformance
between component roles and the component classes that supposedly implement
them. Many conformance relations could be defined, from stricter to very loose
ones. On the one hand, we defend that reused components need not be exactly
identical to specifications because being too strict in this matter might seriously
decrease the number of reuse opportunities. On the other hand, it is expected
from a conformance relation that it enables verifications that guarantees good
chances that the thought component combination will execute. The rule of the
thumb that can be used is that concrete components must provide at least what

Architecture-Centric Component-Based Development 307

is the specification declare it provides and require less than what the specification
already requires. This translates into rules for interfaces and rules for behavior
protocols:

– the provided interfaces list of the concrete component class must contain all
the interfaces specified in the component role,

– all the required interfaces of the concrete component class must be specified
in the component role,

– the behavior of a component class includes (in the sense of trace inclusions)
the behavior specified in the component role.

Variations on these rules can further consider interface specialization rules as
in [13]. Figure 7 shows an example of a concrete component class (BikeTrip)
that has a required interface (LocOprs) that is not in the specification (Bike-
Course component role) it conforms to. In the case of composite components,
delegated interfaces of provided (resp. required) direction are considered exactly
as if they where provided (resp. required) interface of primitive components. In-
deed, when considered externally, composite components can be seen as if they
where primitive. Figure 7 provides an example of the BikeCourseDBClass com-
posite component class, that conforms to the specification of the BikeCourseDB
component role.

4.3 Instantiated Software Component Assemblies

Instantiated software component assemblies (Iscas) are the third level of system
architecture descriptions. They result from the instantiation of the component
classes from a configuration. They provide a description of runtime software sys-
tems and gather information on their internal states. Indeed, this description
level enables the record of state-dependent design decisions [15]. Iscas list the
component and connector instances that compose a runtime software system,
the attributes of this software system, and the assembly constraints the compo-
nent instances are constrained by. Figure 13 gives the description of a software
assembly that instantiates the Brs architecture configuration of Fig. 10.

assembly BRSAss
instance of BRSConfig (1.0)
component instances
BikeTripC1; BikeCourseDBClassC1
assembly constraints
BikeTripC1.currency="Euro.";
BikeCourseDBClassC1.company=
BikeTripC1.company

version 1.0
component instance BikeTripC1
instance of BikeTrip (1.0)
component instance BikeCourseDBClassC1

instance of BikeCourseDBClass (1.0)

Fig. 13. Component assembly description of the Brs

308 H.(Y.) Zhang, C. Urtado, and S. Vauttier

The explicit description of connector instances is possible but not manda-
tory. In cases where they are implicit, we consider them as generic entities which
are provided by containers (execution environments) in which configurations
are deployed. In cases where connector instances are explicitly added, their de-
scriptions define the specific attributes that reflect implementation choice to
meet different situation. By default, component classes can be instantiated into
multiple component instances. When more precise cardinality information is
needed, it is expressed in component role descriptions using minInstances and
maxInstances that define the minimum and maximum numbers of component
instances that are permitted to instantiate from the component class which im-
plements this component role. By this means, component classes do not include
this configuration-dependent information and remain reusable. In the assembly
level, assembly constraints that restrain the valid number of instances will be
checked against the cardinality information defined in the component role (in
the specification level). There is no rule to constrain the name of component
instances of a given component class. Assembly constraints define conditions
that must be verified by attributes of some component instances of the assem-
bly, to enforce its consistency. Such assembly constraints are not mandatory. For
now, Dedal only permits to list several constraints that must all be enforced and
that either:

– limit the possible values for an attribute to a given constant,
– restrain the cardinality of some connection end (i.e.,the number of instances

of the component class that stands at the end of the connection in the
configuration) to a given constant,

– or, enforce equality of the values of two distinct attributes that pertain to
two distinct component instances of a given component assembly.

Such assembly constrains are illustrated on Fig. 13 where the value of the cur-
rency attribute of component BikeTripC1 is fixed to Euro and where the value of
the attribute company of the BikeCourseClassDBC1 component must be main-
tained identical to the value of attribute company of component BikeTripC1.
Another example that involves cardinalities would be expressed as the assembly
constraint InstanceNbr(BikeTrip)=2 that mean that exactly two component in-
stances of the BikeTrip component class should be instantiated in this system.
The cardinality of the BikeTrip component class is recorded in the BikeCourse
component role specification. These constraints are very simple and do not yet
enable the expression of alternatives, negation, nor the resolution of possible con-
flicts. Such extended assembly constraint management is one of the perspectives
for this work for which we plan to take inspiration from systems that manage
architectural styles as constraints sets [6, 16].

Conformance between a CAC and an ISCA is quite straightforward.
All component instances of the assembly must be an instance of a correspond-
ing component class from its source configuration (and reciprocally). Confor-
mance also includes the verification that attribute names used in an assembly
constraint of some component assembly pertain to the component classes the

Architecture-Centric Component-Based Development 309

components of the assembly are instances of. For example, the assembly con-
straint BikeTripC1.currency=”Euro.” of Fig. 13 has the conformance process
check whether the BikeTrip component class (from which BikeTripC1 is instan-
tiated) possesses a currency attribute.

5 Implementation of Dedal in the Arch3D Tool Suite

The Dedal Adl presented in this paper has been implemented in the Arch3D
tool suite. The language has been implemented twice: as an XML-based Adl
and as a Java-based Adl. The tools also propose a component model which en-
ables to instantiate and manipulate corresponding assemblies at runtime which
is extended as an extension of Julia, the open-source java implementation of the
Fractal component platform5. Our extension of the Fractal platform tools has
two purposes: to support the explicit and separate representation of specifica-
tions and configurations and, to embed these representations in the component
model. The three architecture representations are then available and manipulable
at runtime, also providing a full support for evolution management. The Arch3D
Editor tool provides a graphical console to create, view and modify Dedal-based
Fractal architectures. Architects can simultaneously display the different repre-
sentations of an architecture and work on them.

6 Conclusion

Dedal enables the explicit and separate representations of architecture specifica-
tions, configurations and assemblies. Architecture design decisions can thus be
precisely captured and traced throughout the development process. The three-
level syntax of Dedal supports the expression of requirements by the means
of abstract and partial component roles that are used as the main conceptual
support for the search of reusable components to be included in configurations.
The model of the runtime system (the instanciated component assembly) is rich
enough to serve as the baseis of a full evolution process [12]. A perspective for
this work is to experiment the use of Dedal to manage component-based software
product lines.

References

1. Crnkovic, I., Chaudron, M., Larsson, S.: Component-based development process

and component lifecycle. In: Proc. of the Intl. Conf. on Software Engineering Ad-

vances, Papeete, French Polynesia, October 2006, p. 44 (2006)

2. Chaudron, M., Crnkovic, I.: Component-based Software Engineering. In: Software

Engineering; Principles and Practice, pp. 605–628. Wiley, Chichester (2008)

3. Taylor, R., Medvidovic, N., Dashofy, E.: Software Architecture: Foundations, The-

ory, and Practice. Wiley, Chichester (January 2009)

5 http://fractal.ow2.org/

310 H.(Y.) Zhang, C. Urtado, and S. Vauttier

4. Dashofy, E., van der Hoek, A., Taylor, R.: A highly-extensible, XML-based ar-

chitecture description language. In: Proc. of 2nd WICSA Conf., Amsterdam, The

Netherlands, pp. 103–112 (2001)

5. Medvidovic, N., Rosenblum, D., Taylor, R.: A language and environment for

architecture-based software development and evolution. In: Proc. of ICSE Conf.,

Los Angeles, USA, May 1999, pp. 44–53 (1999)

6. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.

Softw. Eng. Methodol. 6(3), 213–249 (1997)

7. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans.

Softw. Eng. 28(11), 1056–1076 (2002)

8. Magee, J., Kramer, J.: Dynamic structure in software architectures. SIGSOFT

Softw. Eng. Notes 21(6), 3–14 (1996)

9. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal

component model and its support in Java: Experiences with auto-adaptive and

reconfigurable systems. Softw. Pract. Exper. 36(11-12), 1257–1284 (2006)

10. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide,

2nd edn. Addison-Wesley, Reading (2005)

11. Garlan, D., Schmerl, B., Chang, J.: Using gauges for architecture-based monitoring

and adaptation. In: Proc. of Working Conf. on Complex and Dynamic Systems

Architecture, Brisbane, Australia (December 2001)

12. Zhang, H. Y., Urtado, C., Vauttier, S.: Architecture-centric development and evo-

lution processes for component-based software. In: Proc. of 22nd SEKE Conf.,

Redwood City, USA (July 2010)

13. Aboud, N.A., Arévalo, G., Falleri, J. R., Huchard, M., Tibermacine, C., Urtado,

C., Vauttier, S.: Automated architectural component classification using concept

lattices. In: Proc. of the Joint WICSA/ECSA Conf., Cambridge, UK (September

2009)

14. Desnos, N., Huchard, M., Tremblay, G., Urtado, C., Vauttier, S.: Search-based

many-to-one component substitution. J. Softw. Maint: Res. Pract. 20(5), 321–344

(2008)

15. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging disci-

pline. Prentice-Hall, Englewood Cliffs (1996)

16. Cheng, S.W., Garlan, D., Schmerl, B., Sousa, J.P., Spitznagel, B., Steenkiste, P.:

Using architectural style as a basis for system self-repair. In: Proc. of 3rd WICSA

Conf., Montreal, Canada, August 2002, pp. 45–59 (2002)

Dynamic Architectural Constraints Monitoring
and Reconfiguration in Service Architectures

Jose John, MingXue Wang, and Claus Pahl

School of Computing, Dublin City University

Dublin, Ireland

jose.john2@mail.dcu.ie, {mwang,cpahl}@computing.dcu.ie

Abstract. Service-oriented architecture is an architectural approach

that can be applied for building autonomous service systems dynamically

to satisfy on-demand business requests. During the execution of service

compositions, architectural constraint violations relating to functional

and non-fucntional system properties need to be handled intelligently

and autonomously, possibly requiring architectural reconfigurations. We

propose integrated architectural constraint violation handling to deal

with architectural quality problems through dynamic reconfiguration.

We concentrate on service replacement selection as a remedial strategy

for a possible quality violation requiring architectural remedies.

1 Introduction

Service-oriented architecture (SOA) allows us to build interoperable distributed
systems. Service processes are build using orchestration languages like WS-
BPEL. Composing processes dynamically is a solution for on-demand requests.
Dynamic reconfiguration is often the consequence of faults (e.g., caused by the
violation of architectural constraints). The severity of some faults might not al-
low a service to be used further. BPEL provides fault handling mechanisms, but
no remedial mechanisms. A solution is to dynamically select a remedial strategy.
Architectural constraint violations indicating quality problems are important
faults that can occur during execution [12].

Our solution is an operationalisation of dynamic service architecture through
an architectural quality monitoring instrumentation of processes using the WS-
BPEL fault handling mechanism. Fault and violation handling based on dynam-
ically available architectural knowledge in the form of quality-oriented service
annotations acts here as a framework for dynamic architectural decision making:

– A dynamic remedial strategy selection mechanism. In [11], remedial strate-
gies are proposed for business constraint violations and runtime faults, which
are mapped to architectural remedial strategies for reconfiguration. This pa-
per focuses on the service replacement remedial strategy.

– Service replacement selection based on a service quality annotation scheme.
The annotation scheme captures different architectural properties for each
replacement service. When a quality constraint violation occurs, the anno-
tation scheme will be searched for a suitable replacement.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 311–318, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

312 J. John, M. Wang, and C. Pahl

We focus on the operationalisation of dynamic selection techniques. Based on
an empirical study, we have identified a number of properties that can be used
for the annotation scheme of recomposable services. We introduce a similarity
metric based on an aggregated distance, which is used for selecting a suitable re-
placement. We also use a history-based success ranking heuristics as a weighting
mechanism to further discriminate between replacement candidate services.

Section 2 introduces service fault handling. In Section 3, we outline our archi-
tecture. We define the annotation scheme in Section 4, the selection mechanism
in Section 5, and the monitoring and violation handling implementation in Sec-
tion 6. Finally, we discuss our implementation and conclusions are given.

2 Service-Oriented Architecture and Service Composition

Constraint Violation and Fault Monitoring. If we compose services dynamically
based on on-demand user requests, we can customise services based on user pro-
files or remedy requirements validation [9]. BPEL process instances interact with
the constituent web services through invoking various activities. Normally, the
process ends its execution with a reply activity. During the execution of a process,
faults can occur. One category of faults are technical runtime exceptions which
are thrown by the BPEL engine itself. There are also business or requirements
constraint violations. The faults can be the consequence of violations of archi-
tectural quality constraints or can impact on these. Quality constraints need to
be monitored and faults need to be handled appropriately so that the composed
process do not fail. Fault monitoring detects faults and records data for analysis.
We use BPEL fault handlers for architectural constraints monitoring and fault
handling. BPEL has fault handlers for handling specific faults (<catch>) and
for handling all kinds of faults (<catchAll>). We will use a constraint moni-
toring and fault handling framework to monitor architectural quality (expressed
as architectural constraints) and handle violations by recomposing the service
process.

Fault Analysis. Used for finding the best remedial strategy for a fault instance,
it takes fault data as input and outputs a strategy. Pre-defined remedial knowl-
edge is used for fault analysis. Defining remedial knowledge involves three steps:
defining a fault taxonomy, defining remedial strategies, and matching each fault
category with remedial strategies. The types of faults that can occur define a
fault taxonomy [1],[4]. In order to deal with business constraint validations, a
fault taxonomy is derived from the context model which is used for constraint val-
idation services. Remedial strategies like process goal-preserving retry, replace,
ignore or recompose [1],[11] are selected and applied dynamically:

– Ignore: this strategy completely ignores the fault occurred. This is suitable
for faults that do not have any effect on the overall architectural goal.

– Retry: this strategy tries to execute the faulted service again. Maximum
retries and the retry interval can be defined.

– Replace: this strategy replaces the faulty service with a suitable one with
same the business functionality.

Dynamic Architectural Constraints Monitoring and Reconfiguration 313

– Recompose: this strategy discards the entire faulty process and establishes
a new process with the same architectural goal.

Non-goal preserving strategies identified are log (the fault data is recorded),
alert (concerned parties will be alerted) and suspend (suspends the faulty process
based on a threshold value of past failure ratio). The fault taxonomy is mapped to
the strategies. We can have two kinds of constraint violation faults, pre-condition
constraint violation faults and post-condition constraint violation faults, which
are validated before or after service execution, respectively.

3 Fault Handling Architecture

We focus on the replacement strategy in particular as it is the core activity in
architectural reconfiguration – recomposition creates specific problems in terms
of planning techniques [10] that go beyond the focus of this paper. Replace-
ment requires additional supporting infrastructure for discovering alternatives.
We can implement it in two ways: pre-assign a replacement service so that the
strategy can be instantly applied or discover alternative services dynamically.
This discovery can be based on functional and/or non-functional architectural
annotations. We select an alternative service from a service repository, which
may have multiple services which match the functionality of the faulty service.
A decision which one to select is made by a selection mechanism.

We use BPEL fault handling to implement annotation and remedial activ-
ities. This avoids the overhead of BPEL engine-dependent modifications and
additional monitoring components in order to reduce monitoring and fault han-
dling overhead. We add validation services for business constraint validations.
Constraint violations are thrown from these constraint services as service faults.
This allows us to catch the architectural constraint violation faults in the BPEL
fault handlers. Fig. 1 shows the architecture. Main layers identified are process
execution layer, fault tolerance layer and database layer. The fault-tolerance
layer contains monitoring, analysis (selection mechanism) and a service wrapper
component. The database layer stores all available services to be considered for a
possible replacement in a service repository. The annotation is stored in an anno-
tation scheme database. The wrapper handles the invocation of the replacement
service. The execution of the process happens at the process execution layer.

4 Service Quality Annotation Scheme

The annotation scheme is a central component that enables dynamic alternative
service selection. Annotations of replacement services are kept in a dynamically
accessible and updatable repository. The annotation scheme works based on
operational (QoS) properties of services. The values of these architectural quality
properties play a crucial role in the selection of a replacement service. We choose
here three architecturally important properties which can be measured - all
suitable for easy operationalisation:

314 J. John, M. Wang, and C. Pahl

AnnotationAnnotation Service
Repository
Service

Repository

MonitoringMonitoring Service
Wrapper
Service
WrapperAnalysisAnalysis

BPEL ProcessBPEL Process

BPEL
Engine
BPEL
Engine

fault data replacement

Process
Execution

Layer

Database
Layer

Fault
Tolerance

Layer

Fig. 1. Fault Handling Architecture

– Response Time (Latency): This property measures the difference between
the time a service request takes between the request and response. It can be
calculated as follows: Response Time = Response Completion Time - User
Request Time. Response Completion Time is the time when all data for a
response arrives at the user. User Request Time is the time when the user
sends a request. This is a measure of the performance of a web service.

– Availability: It is the time period in which the service is ready for use or the
service is maintained. If the time when a system is not available is ’Down
Time’ and when its is available is ’Up Time’, then availability is the average
uptime. It can be measured using Availability = 1 - (Down Time / Up Time).

– Accessibility: Accessibility represents the degree that a system is normatively
operated to counteract request messages without delay. In some cases, a
service system could be accessible for external users to try accessing its
resources even if its services are not available. We can determine whether
a web service system is accessible by just ensuring that the system can
return an acknowledgment for a request message. Thus, accessibility can be
calculated as the ratio of number of acknowledgments received to the number
of request messages: Accessibility = Number of Acknowledgments Received /
Number of Request Messages.

Other properties such as throughput and reliability, but also integrity, compli-
ance and security are also considered to be important, but have not been ad-
dressed in our framework yet. We focus on selection based on operational criteria
of architectural relevance, which capture classical quality-of-service properties in
the first category (such as response time or accessibility). Maintaining architec-
tural quality through quality monitoring and remedy is our objective.

5 Analysis and Selection Mechanism

The selection mechanism that we use here is based on the concept of an aggre-
gated distance (AD). An aggregated distance is the sum of distances of all the
annotated properties for a service. For each annotated property there is some

Dynamic Architectural Constraints Monitoring and Reconfiguration 315

threshold value for the running process. A distance is the difference between
this threshold value and the actual property value of the service. Let Pij be the
value of the j-th property of the i-th replacement service Pi. Tj as the threshold
value is defined for the j-th property in order to normalise the values. Then, the
aggregated distance, a simple additive weighting, for the i-th service is

ADi =
ni∑

j=1

Pij − Tj

max(Pij) − min(Pij)

for all properties j where max and min refer to the maximal and minimal values
of each property in order to normalise each property in comparison to the other
properties. ADi shall be defined 1 where max(Pij) − min(Pij) = 0. The service
with the least aggregated distance is the best replacement candidate.

In addition to the AD, we use a heuristic function to support the selection. A
history-based success ranking system shall support the decision. The heuristic
is in this case an approximation of the expected reliability of a service. If the
post-constraint evaluation finishes without any exception, we increase the rank
of the service by one. If the execution flow reaches the fault handler, the service
has generated some fault and we decrease the rank by one. While selecting the
replacement service, we take the service with highest rank into account as a
weighting to discriminate between similarly valued services based on AD. We
adjust the distance measure using the rank for service i, rank(i), with 1 being
the best and ‖rank‖ denoting the total number of ranked services:

ADnorm
i = ADi × (1 +

rank(i)
‖rank‖)

This ranking-based weighting works as a passive recommendation system as it
gives up-to-date feedback on each service. The normalised ADnorm

i value that is
closest to the original ADi is considered the best (lower ranked services would
create a greater distance to ADi).

6 Architectural Constraint Monitoring and Handling

Two aspects need to be distinguished: monitoring in order to keep the service
annotations up to date and architectural constraint monitoring and handling.

Annotation Monitoring and Updating. The annotation scheme is kept up to
date. The advantage of dynamic monitoring is that the selection mechanism can
make decisions based on the latest information to increase the accuracy of selec-
tions. We monitor the response time of a service, measured as the time between
the end of pre-condition validation to the start of post-condition validation. This
time is updated for that service in the annotation scheme as the new response
time. We are working on a constraint monitoring instrumentation that can be
applied to provide measurement for the suggested quality properties.

Instrumentation Template for Constraint Handling. The implementation of
the violation handling needs a BPEL process instrumentation that integrates

316 J. John, M. Wang, and C. Pahl

pre-conditionpre-condition

path = 1
invokingServiceRef = applService

path=2path=2 path=3path=3path=1path=1

applService()applService()

post-conditionpost-condition

pre-conditionpre-condition

genericOperation()genericOperation()

post-conditionpost-condition

analyse()analyse()

path=2
invokingServiceRef=

replacement

path=2
invokingServiceRef=

replacement
post-conditionpost-condition

repeatUntil (path=0)

catch

catchAll

path=3

faultData
invokingServiceRef

path=0 path=0 path=0

Fig. 2. Instrumentation Template

fault handling and monitoring capabilities. To achieve this, we use constraint
services. The instrumentation also applies the selected remedial strategies. We
use a modified version of the instrumentation template which is used in [11].
Fig. 2 shows this modified instrumentation template. Two important variables
are used in the instrumentation template, invokingServiceRef and path. invok-
ingServiceRef holds a reference to the current activity which is invoked. invok-
ingServiceRef is passed to both pre- and post-constraint services so that they
can inspect the properties of the invoking service to see whether constraints are
satisfied. Whenever there is a fault, the invokingServiceRef will be passed to
the fault handlers for further analysis along with the fault data. There are two
main execution paths in the template. In the default path (path=1), the original
service is invoked along with the pre- and post-constraint services. If there is a
fault, then the path variable is changed so that the execution follows the second
path (path=2). Once an execution path is completed without faults, the path
variable is assigned to 0 (path = 0) and the repeatUntil construct finishes.

The Replacement Strategy. Faults caused by pre-condition constraint viola-
tion are caught by the <catch> fault handler. It passes fault data as well as
the invokingServiceRef variable to the analyse() service. Since the replacement
strategy is applied, the analyse operation sets path=2. It also assigns a new
service found by the selection to invokingServiceRef. This alternative service is
called by the genericOperation() wrapper. Faults caused by the invoking service
are caught by a <catchAll> handler. It sets path to 3. This path has a post-
constraint validator which converts this fault into a constraint validation fault.
This is caught by the <catch> and analyse() will run as in case 1.

7 Discussion

Our evaluation focus was on the effectiveness and performance of the monitoring
and fault handling system. Performance is critical as the context is dynamic

Dynamic Architectural Constraints Monitoring and Reconfiguration 317

architectural reconfiguration. Effectiveness and reliability are equally important
in an autonomous setting.

The aggegrated distance approach essentially creates an attribute vector of
normalised values (threshold), which based on a manual validation determines
good candidate replacements. We have used the success ranking to have a sec-
ond analysis stage to remove unsuitable cases. 35 test cases were designed for
a payment process, which involves four business services (requestBill; payBill;
updateRecords; infoProvider) to evaluate the remedial strategy as a whole. We
developed three alternative services for each service to test the replacement reme-
dies with alternative services. Test cases cover architectural constraint violations
and runtime faults in the context of all proposed remedial strategies.

The overhead created for monitoring and updating annotation attributes did
not exceed 9% of the overall execution time and the overhead for the violation
was in average between 3 and 4% due to the embedding of the instrumentation
into the BPEL fault handling. Only the access to the database for replacement
selection was a significant element in the 9% figure. Each process was com-
posed of a different number (2 to 10) of application services. We instrumented
each process and created pairs of processes to compare their performance. The
performance evaluation results show that the instrumented processes does not
introduce any significant overhead (in average less than 1%). The instrumented
processes do not delay the overall execution unless a fault needs to be handled.

Effectiveness, performance and reliability shall also be looked at in the con-
text of related work. In [10], a solution using various planning techniques for
dynamic service composition is provided. However, they lack comprehensive
fault-tolerance mechanisms. Constraint integration and monitoring platforms
has been looked at. In [2], a constraint language is proposed for the Dynamo
monitoring platform. We use a simpler and more efficient standard BPEL fault
handling without requiring additional execution monitoring subsystems.

Different remedial strategy selections have been proposed. An interesting ap-
proach [5] is to invoke all alternative services in parallel and select the one which
gives back the first response. It allows to select the best service quickly, but
causes computational and network overheads and has the risk of multiple trans-
actions, which is avoided in our annotation repository-based solution.

Our selection approach is based on aggregated distances and heuristics as
a basic recommendation mechanism. Recommendation system are based on the
learning done by the system from user or system feedbacks [7]. While aggregated
distances seem to perform well as a similarity measure in terms of determining
effective replacements, agglomerative clustering algorithms (e.g. association co-
efficient based similarity measures) can also be used.

8 Conclusions

We have introduced an integrated constraint monitoring and violation handling
mechanism for dynamic service compositions. Flexible service process orches-
trations at runtime form the problem setting [8],[3]. We used replacement as

318 J. John, M. Wang, and C. Pahl

the basis of our remedial architecture strategy. We provided an instrumentation
template to support the integrated fault monitoring and handling for archi-
tectural quality constraints. A quality-oriented selection mechanism has been
implemented to select from the available replacement services. Architectural re-
configuration is a problem of technical fault-tolerance, but also the consideration
of architectural compliance with respect to business rules.

An extension is a more intelligent selection strategy based on machine learn-
ing. We will also address access performance improvements for the selection
mechanism. Storage of the annotation scheme is another point of improvement.

Acknowledgment
The authors would like to thank the Science Foundation Ireland for their support
for the CASCAR project.

References

1. Ardagna, D., Cappiello, C., Fugini, M., Mussi, E., Pernici, B., Plebani, P.: Faults

and recovery actions for self-healing web services. In: World Wide Web Conf. (2006)

2. Baresi, L., Guinea, S., Pasquale, L.: Towards a unified framework for the monitoring

and recovery of bpel processes. In: Workshop on Testing, analysis, and verification

of web services and applications (2008)

3. Barrett, R., Patcas, L.M., Murphy, J., Pahl, C.: Model Driven Distribution Pattern

Design for Dynamic Web Service Compositions. In: International Conference on

Web Engineering, ICWE 2006, Palo Alto, US, pp. 129–136. ACM Press, New York

(2006)
4. Chan, K.M., Bishop, J., Steyn, J., Baresi, L., Guinea, S.: A fault taxonomy for

web service composition. In: 3rd Intl. Workshop on Engineering Service Oriented

Applications, WESOA (2007)

5. Dobson, G.: Using ws-bpel to implement software fault tolerance for web services.

In: 32nd EUROMICRO Conf. on Software Eng. and Adv. Applications (2006)

6. Liu, A., Li, Q., Huang, L., Xiao, M.: A declarative approach to enhancing the

reliability of bpel processes. In: IEEE Intl. Conf. on Web Services (2007)
7. Manikrao, U., Prabhakar, T.: Dynamic selection of Web services with recommen-

dation system. In: Next Generation Web Services Practices (2005)
8. Pahl, C.: A Formal Composition and Interaction Model for a Web Component Plat-

form. In: Proc. ICALP Workshop on Formal Methods and Component Interaction

FMCI 2002. Electronic Notes on Computer Science, ENTCS, vol. 66(4) (2002)
9. Pahl, C.: Layered Ontological Modelling for Web Service-oriented Model-Driven

Architecture. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS,

vol. 3748, pp. 88–102. Springer, Heidelberg (2005)

10. Pistore, M., Barbon, F., Bertoli, P.: Planning and monitoring web service com-

position. In: Workshop on Planning and Scheduling for Web and Grid Services

(2004)

11. Wang, M., Bandara, K.Y., Pahl, C.: Integrated Constraint Violation Handling

for Dynamic Service Composition. In: IEEE International Conference on Services

Computing, SCC 2009 (2009)
12. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-

aware middleware for web services composition. IEEE Transactions on Software

Engineering 30(5), 311–327 (2004)

Using Domain Knowledge to Boost Software
Architecture Evaluation

Veli-Pekka Eloranta and Kai Koskimies

Department of Software Systems,
Tampere University of Technology, Finland
{firstname.lastname}@tut.fi

Abstract. Benefits of scenario-based software architecture evaluation such as
ATAM are widely recognized. However, full-scale software architecture eval-
uation is resource and time consuming. In this paper we propose a technique
to facilitate the creation of scenarios in a particular domain using a conceptual
model especially targeted for architecture evaluation. The technique supports the
finding of general, system-independent scenarios and the use of general scenar-
ios in new evaluations. If the model is annotated with a (domain-specific) pat-
tern language, the approach also supports the identification of solutions and the
analysis of the architecture. The potential benefits of the technique in terms of
semi-automatically produced scenarios are analyzed in the context of an indus-
trial architecture evaluation.

1 Introduction

The benefits of software architecture evaluation have been widely recognized (e.g. [4]),
and especially scenario-based evaluation methods [11] have become popular. However,
a major problem of scenario-based evaluation methods is their need of resources, often
hindering their usage especially in smaller development projects. For example, a full-
scale ATAM evaluation of an average-sized system may easily take from 200 up to 400
manhours [7], which can be hard to justify in many cases. We need techniques to make
software architecture evaluation more efficient without losing its benefits and accuracy.
This is particularly required in agile development.

The main idea of scenario-based evaluation methods is to identify the architectural
solutions of the target system, refine and concretize the quality requirements of the
system as scenarios, and analyze the prioritized scenarios against the architectural solu-
tions. The problem of efficient scenario elicitation has been studied by several authors.
In particular, the concept of a general scenario was introduced in [3] for the purpose of
expressing reusable scenarios in a system-independent fashion. General scenarios are
abstracted from previous evaluations and specialized for a particular system. The main
contribution of this paper is a technique that supports the creation and specialization of
general scenarios in the context of a particular domain. In contrast to general frame-
works (e.g. [10]) or scenario categories ([1], [5]), we propose the use of a conceptual
model of a system category as the basis of scenario elicitation. The main benefits of
this approach are that the model provides a vehicle to relate scenarios with the basic
concepts of the system, making it possible to derive and specialize general scenarios in

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 319–326, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

320 V.-P. Eloranta and K. Koskimies

a systematic way, and that the coverage of the scenarios can be evaluated in terms of
the system concepts.

On the other hand, the identification of architectural solutions of a given system
during evaluation can be hard as well. Often the architecture is poorly documented at
the time of evaluation, or the documentation does not explicitly identify the architectural
solutions. We demonstrate that the same conceptual model can be enriched with generic
solutions (patterns) as well, supporting the identification and analysis of architectural
solutions during the evaluation.

The domain we have investigated is mobile working machine control systems; how-
ever, it seems plausible that the proposed techniques are applicable to other domains
as well. Our study is based on four full-scale ATAM-like architectural evaluations we
have carried out in two Finnish companies manufacturing large industrial working ma-
chines: mining machines and forest harvesters. Additionally, the potential benefits of
this approach were studied in a fifth evaluation.

2 System Concept Model for Architecture Evaluation

2.1 System Concept Model (SCM)

A central artifact in our approach is a conceptual model of a system or system category,
called a system concept model (SCM). Essentially, SCM describes the basic concepts
required to communicate about a system during the architecture evaluation. As such,
the concepts in SCM can be related to the software architecture (e.g. archetypes [6]),
hardware in an embedded system, input and output devices, domain concepts, system
resources and external artifacts relevant for the system etc. The scope of SCM can vary,
and we deliberately leave it open: SCM should serve as a pragmatic description of the
conceptual world of architecture evaluation, rather than as a formal specification. SCM
differs from a traditional domain model in that it contains technical concepts as well; on
the other hand it describes the logical relationships between concepts rather than system
architecture. Minimally, SCM should contain the system-related concepts appearing in
the scenarios and the core concepts of the system architecture, i.e. archetypes. SCM can
be given for a single system, or (more usefully) for a system category. We assume here
that SCM is given as a UML class diagram.

2.2 Process of Scenario Elicitation Using SCM

Our process for exploiting general scenarios in architecture evaluation is illustrated in
Fig. 1. The first step in our technique is to carry out an architecture evaluation (e.g.
ATAM), which produces a set of concrete scenarios. SCM is assumed either to exist
before the evaluation or to be constructed after (or during) the evaluation. If SCM exists
before the evaluation, it can be used to facilitate the communication between stake-
holders during the evaluation, providing the evaluators and stakeholders with the same
domain-specific vocabulary.

The second step is to annotate SCM with concrete scenarios. This means that key-
words that can be found from SCM are searched from the scenario descriptions and the

Using Domain Knowledge to Boost Software Architecture Evaluation 321

Fig. 1. Process to produce general scenarios and new concrete scenarios using SCM

scenario is linked with the corresponding classes in SCM. Often it is useful to mark im-
plicit relationships as well, that is, even if a concept is not mentioned in the scenario but
is known to be closely related with the scenario, the corresponding link can be added for
the scenario. The scenarios are presented as UML collaborations in SCM. In principle,
it should be possible to attach every scenario with some concepts in SCM; in case there
is a scenario with no links, it is a sign that SCM lacks concepts that are essential for
understanding the system, and it should be completed with such concepts.

Once SCM is annotated with concrete scenarios, general scenarios can be derived in
the third step (Fig. 1). For each concrete scenario that is linked with certain specialized
concepts, the generalization relationships of these concepts are followed upwards until
a suitable level of abstraction is reached, and a new general scenario is created and
linked with those higher-level concepts. Naturally, a scenario can be associated with
arbitrary many concepts.

For example, assume that a concrete scenario is "The joystick can be operated via
Bluetooth, the necessary change can be made in a month". This scenario involves two
specific concepts: the joystick and Bluetooth. Both are specific kinds of more general
concepts, namely a user control device and a wireless communication protocol. Thus,
a general scenario could be "A user control device can be operated via a wireless com-
munication protocol, the necessary change can be made in x months". Note that the
response part cannot be generalized in the same manner, but it has to expressed for ex-
ample using variable names for specific numbers or using a template list for responses.

This process is by no means fully mechanical, since there can be several levels of
more general concepts in SCM, or possibly none. In the former case, it may be possi-
ble and useful to create several general scenarios at different levels of abstraction. In
the latter case, the lack of a generalization relationship may indicate that SCM needs
new generalized concepts. It is also quite possible that some concrete scenarios simply
cannot be generalized in a sensible manner. If a concrete scenario is linked only with the

322 V.-P. Eloranta and K. Koskimies

subclasses of a single concept (say, "changing CAN bus to Ethernet"), the correspond-
ing general scenario will be linked with a single concept, and the general scenario has
to be formed in a different way (e.g. "changing the communication bus type").

In the fourth step scenarios are specialized by traversing the generalization hierar-
chy downwards, selecting the subclasses that are relevant for the target system. For
example, in the case of the general scenario above, the new target could be the control
system of a machine that does not have a joystick but a touch pad. In the case of the
new machine, wireless control is also interesting, but Bluetooth is not an option since
the remote control is too far away. Instead, a plausible option might be a wireless in-
ternet connection. Thus, traversing downwards in the hierarchy, touch pad and WLAN
are seen as relevant subclasses, and the specialized scenario becomes "The touch pad
control can be operated via WLAN, the necessary change can be made in 3 months".
The response part is specialized separately, assigning suitable numbers in the place of
the variables. The new concrete scenario is then included in the architecture evaluation
in the normal way, prioritized and possibly analyzed. The relevant quality attribute for
the scenario is readily available as the general scenario is already mapped to the quality
attribute through the original concrete scenario.

Besides scenario elicitation, SCM can be used also for estimating scenario coverage.
SCM can be divided into major subareas, and ideally the scenarios should be fairly
evenly associated with the different subareas. If the scenarios are mainly attached to
only certain subareas, or if one subarea is without any scenarios, it is possible that the
scenario set is somewhat misaligned and new scenarios should be elicited for the empty
or scarse subareas. For example, in the domain studied in this work, SCM was divided
into 9 subareas (e.g. Messaging, User interfaces, Remote access etc).

2.3 Annotating SCM with Solutions

On the solution side, the counterpart of a general scenario is a pattern: a pattern de-
scribes a solution in a system-independent manner. In the same way as a concrete sce-
nario is an instance of a general scenario, a solution in the architecture is often (although
not always) an instance of a pattern documented as part of a pattern language. Similarly
to general scenarios, patterns can be and often are domain-specific.

Assuming that SCM is available, patterns can be linked to the concepts in the model
in the same way as general scenarios: if a pattern refers to a concept in SCM, it is linked
to the corresponding class. We have used UML collaborations also for denoting patterns
in SCM. This kind of model annotation can be useful for the pattern language itself, as
it provides a domain-oriented structuring for the pattern language, but it makes sense
also from the viewpoint of architecture evaluation. In particular, the representation of
both the problem domain (general scenarios) and the solution domain (patterns) in the
same model together with the essential system concepts facilitates discussions about
the relationships of problems and solutions. We will present concrete examples in the
next section.

Since patterns describe general solutions in a system-independent way, they will be
typically linked to the base classes in the inheritance hierarchies. For example, if a
pattern describes a solution to create an abstraction for a bus, it is linked to the Bus
class; if a pattern describes a communication mechanism between nodes based on a

Using Domain Knowledge to Boost Software Architecture Evaluation 323

bus, it is linked with Bus and Node classes etc. Basically, the nouns in the context and
solution parts of the pattern description are potential concepts to be linked with the
pattern in SCM. This process can also lead to the observation that new classes need to
be added to SCM.

SCM, annotated with scenarios and patterns, can be utilized in the analysis phase
of ATAM in particular for more accurate solution identification. When a scenario has
been proposed in such a way that it is linked with the same concepts as a pattern, an
instance of the pattern may exist in the architecture. This may have been overlooked in
the identification of architectural solutions: either the solution has not been recognized
at all or it has been recognized but not seen as an instance of a pattern. In both cases,
recognizing a solution as an instance of a pattern makes the analysis faster and more
reliable, as the potential non-risks and risks are readily available as positive and negative
consequences in the documentation of the pattern, respectively.

3 Applying the Approach

We have applied the proposed techniques in the domain of mobile working machine
control systems. Based on four full-scale ATAM-like architectural evaluations carried
out in Finnish machine industry, SCM was created, and the elicited scenarios were
generalized and attached to SCM. During those evaluations, patterns were identified,
documented and organized into a pattern language, and the patterns were attached to
the SCM as well.

After that, a fifth evaluation was carried out. In this evaluation, the aim was to eval-
uate the potential usability of SCM enriched with general scenarios and patterns. How-
ever, since the primary purpose of the evaluation was to produce normal analysis results
for the company, we could not risk the evaluation process by trying entirely new tech-
niques in the elicitation of scenarios. Instead, scenarios were created in the conventional
way during the evaluation, and compared afterwards against a set of concrete scenarios
that was created before the evaluation on the basis of the general scenarios and SCM
refined according to the specialized concepts of the target system.

A part of the resulting SCM annotated with patterns for mobile working machine
control systems is depicted in Fig. 2. A basic source of information for SCM was the
set of scenarios elicited during the four evaluations. Essentially, SCM was created by
gathering first a list of generally known basic concepts for the domain such as bus, node,
controller etc. After that all scenarios were studied and more concepts were found in
the phrasing of the scenarios. Additionally, the list of concepts was augmented with
concrete examples of the existing concepts. We decided to leave attributes out from
SCM as they are not required in our context. The entire SCM comprises of 71 classes.

Once we had created SCM, we annotated it with concrete scenarios from previous ar-
chitecture evaluations. The concrete scenario (Scenario 1) has been attached as a UML
collaboration to classes Boom Control Algorithm and Boom Controller in Fig. 2 as the
scenario is related to the control algorithm of the boom, residing in the boom controller.
Scenario description is as follows:

Boom’s control algorithm geometry (spherical, cartesian, etc) can be changed
by changing only one parameter.

324 V.-P. Eloranta and K. Koskimies

<<Pattern>>

Bus Abstraction

Control Algorithm

Boom
Controller

<<Pattern>>

Redundant
functionality

General
scenario 1

Programmable
Node

Boom Control
Algorithm

Scenario 14

Controller

Embedded
Data Storage

Scenario 1

 BluetoothEthernet

Actuator

I/O
Channel

System

Sensor

Boom

Node

LONCAN

Head

Bus

1..*

1

0..*
1..*

1..*

0..*

0..*1

1

1..*

0..*

1

1

1..*

0..1

1..*

0..1

Fig. 2. Part of SCM with example scenario and some of the domain-specific patterns

Note that here we have used an implicit relationship between a scenario and a con-
cept: the controller is not explicitly mentioned in the scenario, but the location of the
control algorithm is considered essential from the viewpoint of the scenario.

Next, general scenarios were developed using SCM. For example, we can see from
SCM that Boom Control Algorithm is inherited from Control Algorithm and Boom
Controller is inherited from Controller. By following this generalization hierarchy and
applying little rephrasing we can form a general scenario for Scenario 1 as follows:

A control algorithm in a controller can be changed to another algorithm ver-
sion by changing x parameters.

The resulting general scenario is linked with Control Algorithm and Controller, as
shown in Fig. 2. We created in this way 52 general scenarios from the concrete sce-
narios elicited in the evaluations.

The fifth evaluation was carried out as a normal ATAM-like evaluation. Scenarios
were elicited by the stakeholders only, without any influence from our side. After the
evaluation sessions we verified how many of the scenarios in the fifth evaluation could
have been actually "guessed", at least approximately, before the evaluation sessions
using the general scenarios developed earlier.

We created 57 concrete scenarios as specializations of the general scenarios before
the fifth evaluation and compared these to the 22 well-formed concrete scenarios which
were elicited during the evaluation. We found out that 17 of the concrete scenarios
created during the evaluation were essentially the same that we have generated before-
hand. This means that 77 percent of the correctly formed scenarios could have been
created, in a more or less accurate form, prior to the evaluation. Bass et al. [3] reports
that as much as 91 percent of created concrete scenarios could be mapped to general

Using Domain Knowledge to Boost Software Architecture Evaluation 325

scenarios extracted from five evaluations, suggesting that we can reach a fairly good
level of coverage of general scenarios with our technique.

During the four evaluations we gathered a pattern language of 45 patterns for the
domain of distributed embedded control system [8]. These patterns were linked to the
domain concepts in SCM using (general) scenarios, resulting in general scenarios and
patterns linked with the classes of SCM. When annotated both with scenarios and pat-
terns, SCM provides useful information about the interplay of scenarios and patterns
during the evaluation. For example, in Fig. 2 scenario 14 describes a situation where
the bus is changed from CAN to Ethernet in a week. If this scenario is analysed, evalu-
ators can look if there is a solution described by BUS ABSTRACTION or REDUNDANT

FUNCTIONALITY pattern. If the solution provided by the pattern is not used, evaluators
can ask whether this was intentional or not, and if not, why. In some cases, the architect
just may have ignored such a solution.

4 Related Work

Babar and Biffl [1] divide the techniques to steer scenario creation into two main types:
top-down elicitation is guided by a predefined classification of scenario categories,
while bottom-up techniques aim at extracting the scenarios directly from stakeholders
using queries, interviews and brainstorming. Our technique falls clearly in the former
category. In that category, the approaches that come near to ours are the idea of gen-
eral scenarios discussed previously ([2], [3]), the use of various (domain-independent)
matrix forms like [10] or [12], and the use of change categories (e.g. [5]). In addition,
slightly similar approach than ours has been taken in [9] to share architectural knowl-
edge of quantitative analysis. Another way to classify scenario elicitation techniques
is the level of domain independence: domain-specific techniques build an instrument
guiding the scenario elicitation on the basis of a particular domain, while domain-
independent techniques rely on generic guiding instruments. Our technique belongs
obviously to the top-down domain-specific category. Basically, the techniques in this
category require some additional work to build the domain-specific instrument, but they
can provide stronger support for scenario elicitation. This has been actually empirically
verified by Babar and Biffl [1] in the case of change categories: they have shown that
domain specific categories of software changes can help stakeholders to generate better
quality scenarios.

According to Bengtsson et al [5], a classification of change categories can guide the
scenario elicitation process towards high quality scenarios. The classification of change
categories is derived from the target domain. Change categories also help to decide
scenario coverage: when there are scenarios in each category, the amount of scenarios
can be regarded sufficient [5] [12]. When compared to our technique, change categories
are more focused, addressing quality attributes like maintainability and modifiability.
Our technique is in principle independent of quality attributes.

5 Conclusions

In this paper we have shown how to take advantage of domain knowledge in a scenario-
based architecture evaluation process using SCM, a model that captures the conceptual

326 V.-P. Eloranta and K. Koskimies

world of architecture evaluation. The approach is particularly suitable if a number of
evaluations is carried out for a well-understood domain. Our work leaves a number of
open research questions. A practical problem is related to architectural knowledge man-
agement (e.g. [13]): how to support the collecting and management of the large amount
of information pertaining to our approach, including SCM, scenarios, and patterns in
a particular domain or company context? Another related problem is how to manage
both architectural knowledge management and the actual architectural evaluations in
an agile project context with minimal effort, without losing the benefits? These topics
will be on our future research agenda.

References

1. Babar, M.A., Biffl, S.: Eliciting better quality architecture evaluation scenarios: a controlled
experiment on top-down vs. bottom-up. In: ISESE 2006: Proceedings of the 2006 ACM/IEEE
international symposium on empirical software engineering, pp. 307–315. ACM Press, New
York (2006), http://dx.doi.org/10.1145/1159733.1159779

2. Bachmann, F., Bass, L., Klein, M.: Deriving architectural tactics: A step toward methodical
architectural design (March 2003)

3. Bass, L., Klein, M., Moreno, G.: Applicability of General Scenarios to the Architecture
Tradeoff Analysis Method (2001)

4. Bass, L., Nord, R.L., Wood, W., Zubrow, D., Ozkaya, I.: Analysis of architecture evaluation
data, vol. 81 (2008),
http://dblp.uni-trier.de/db/journals/jss/jss81.html#BassNWZO08

5. Bengtsson, P., Bosch, J.: An experiment on creating scenario profiles for software change,
vol. 9, pp. 59–78. Springer, Netherlands (2000)

6. Bosch, J.: Design and use of software architectures: adopting and evolving a product-line
approach. ACM Press/Addison-Wesley Publishing Co., New York (2000)

7. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case
Studies. Addison-Wesley Professional, Reading (January 2002)

8. Eloranta, V.P., Koskinen, J., Leppänen, M., Reijonen, V.: A pattern language for distributed
machine control systems. Tech. rep., Tampere University of Techology (2010) ISBN 978-
952-15-2319-9

9. Jansen, A., Vries, T., Avgeriou, P., Veelen, M.: Sharing the architectural knowledge of quan-
titative analysis. In: Becker, S., Plasil, F., Reussner, R. (eds.) QoSA 2008. LNCS, vol. 5281,
pp. 220–234. Springer, Heidelberg (2008)

10. Kazman, R., Carriére, S.J., Woods, S.G.: Toward a discipline of scenario-based architectural
engineering (2000)

11. Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation (2000)
12. Lassing, N., Rijsenbrij, D., van Vliet, H.: The goal of software architecture analysis: Confi-

dence building or risk assessment (1999)
13. Peng, L.: Paris, Avgeriou. In: Muhammad, A.B., Torgeir, D., Patricia, L., Hans, v.V. (eds.)

Tools and Technologies for Architectural Knowledge Management, Springer, Heidelberg
(2009)

http://dx.doi.org/10.1145/1159733.1159779
http://dblp.uni-trier.de/db/journals/jss/jss81.html#BassNWZO08

Independently Extensibile Contexts

Martin Rytter and Bo Nørregaard Jørgensen

The Maersk Mc-Kinney Moller Institute, University of Southern Denmark,

Campusvej 55, 5230 Odense M, Denmark

{mlrj,bnj}@mmmi.sdu.dk
http://www.sdu.dk/mmmi

Abstract. Building and maintaining non-trivial software systems that

are independently extensible is a difficult task. This is because the com-

bination of independent extensions tends to produce conflicts that are

difficult to anticipate, and to which no general resolution strategy exists.

In this paper, we show how some of these conflicts can be avoided if

domain-specific contexts are modeled using a representation that is open

for extension and safe for sharing among independent extensions.

Keywords: Independent extensibility, openness, sharing, context.

1 Introduction

The creation of software systems that are independently extensible is a difficult
but important challenge [14]. To be independently extensible, it must be possible
to combine independently developed extensions of a system without performing
a global integrity check.

Independent extensibility would be easy to achieve, if system designers were
able to anticipate dimensions of extension that would be needed in the future.
Unfortunately, this is often not the case:

– It is difficult for a programmer to anticipate extension points required by
future extensions. Whenever the programmer fails to do so, and the required
extension point cannot be introduced, the system fails to be extensible.

– It is difficult for a programmer to anticipate interactions among mutually
unaware extensions developed independently of each other. When the com-
bination of extensions may lead to undesirable interactions, the system fails
to be independently extensible.

In other words, the combination of requirements for independent extensibility
and unanticipated extensibility is difficult to achieve.

We suggest that the above problems may be minimized, if we improve our
ability to model independently extensible contexts. Specifically, the representa-
tion of domain-specific contexts must be open to extension and yet safe to share
among independent extensions.

The rest of the paper is organized as follows. Section 2 presents the state of the
art of independent extensibility mechanisms. Section 3 motivates the importance
of context representations that are open and suitable for sharing. Finally, section
4 concludes the paper.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 327–334, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.sdu.dk/mmmi

328 M. Rytter and B.N. Jørgensen

2 State of the Art

Independent extensibility cannot be achieved when the means of extensibility
violate the mutual independence of extension providers [14]. In the context
of this observation, we now provide an overview of approaches for achieving
extensibility.

When dimensions of extension can be anticipated, it is possible to constrain
interaction using a component framework approach [17]. In this approach, exist-
ing systems ensure that all supported dimensions of extension are coordinated in
such a way that independent extensibility can be guaranteed. Such coordination
generally relies on high-level contracts among components [1]. Modern operating
systems are examples of component frameworks. They work by letting the sub-
ject of extension (the operating system core) coordinate shared resources (pro-
cessor, memory, etc.) through which independent extensions (programs, drivers,
etc.) interact [11].

The difficulty of anticipating the future may be used to advocate mechanisms
that support unanticipated extensibility. Two categories of unanticipated exten-
sibility exist: i) Invasive in-place modification, and ii) non-invasive refinement
that leads to client migration. Unfortunately, both categories of solutions lead
to independent extensibility problems [12].

With invasive in-place modification, an extension provider modifies the ex-
isting system in order to allow for extension. Since modification is performed
in place, changes become globally visible to all extensions. Modifications may
be performed directly in source code, i.e. traditional evolutionary pressure [9],
or on an intermediate representation of the system, e.g. using open classes [3]
or aspects [7]. Invasive in-place modification techniques suffer from the problem
that some conflicts are not detectable during development of the individual ex-
tensions, but first when extensions are combined. Such conflicts may be due to
the introduction of similar members, overlapping invariants, or the need for an
order in which to advice, or overwrite methods [13].

Non-invasive refinement is an extension strategy where modifications are per-
formed on copies. This approach avoids conflicts that may emerge from in-place
modification. Instead, we encounter the problem of client migration, i.e. the
task of making existing clients refer to a newly refined version of a source file,
module, or class. The ability to migrate a client may itself be unanticipated,
and thus lead to the need for migration of clients-of-clients [12]. In the extreme
case, the user is “migrated” to use a new version of the entire system. The old-
est and most basic non-invasive refinement strategy is the practice known as
copy-and-paste reuse. Other examples include Hyper/J [16] and object-based
wrappers [4,2].

Lasagne/J [6] is an example of a hybrid approach where the primary extension
mechanism is object-based wrappers, i.e. a non-invasive technique, but it also
supports adherent methods, i.e. an invasive technique similar to aspect-oriented
advices.

Independently Extensibile Contexts 329

3 Independently Extensible Contexts

We now proceed to discuss independently extensible contexts. First, we discuss
what a context is, and how it is usually represented in mainstream software
systems. Subsequently, we discuss the role of openness and sharing in making
contexts independently extensible.

3.1 Context

In general terms, a context is a setting in which statements may be interpreted
or claims verified [10]. E.g. “a letter” is a context in which we can interpret
statements such as “read it”, “write it”, “send it”, and so on.

There are constraints on which statements can be meaningfully interpreted in
a context. In context of “a letter” we can meaningfully interpret statements such
as “send it”, while other statements such as “drive it” has no obvious meaning.

A context may change. What this really means is that we maintain the percep-
tion of a context’s identity, while we allow its state or constraints to change. E.g.
given “a letter” we may change its state by “writing it”, or we may change its
constraints by discovering meaningful semantics for a statement such as “shred
it”. Despite these changes the identity of the letter remains the same. It is pos-
sible to see the state of a context as a simple constraint that must always be
true, e.g. “the letter must be blank”. However, we use the word “state” because
it is extremely intuitive.

Our motivation for discussing contexts’ ability to change is to highlight how
modeling of contexts using networks of objects often constrains this process. We
may do so by outlining three levels of context openness:

– A closed context never changes. E.g. a String object never changes. This is
also known as immutability.

– A restricted context may change in well-defined anticipated ways. E.g. a
Letter object may change the value of its address field, but only because
the developer of the Letter class anticipated this scenario by introducing
an appropriate set method.

– An open context may change in unanticipated ways. In a statically-typed
language this level is difficult to achieve because every object is constrained
by its class, i.e. an explicit definition of the forms of change that can occur. A
Letter cannot suddenly have a return address if no setReturnAddress()-
method was anticipated.

In order to achieve openness of any context, one must be able to modify its
representation – in case of the inability to do so, the context is effectively closed.

3.2 Open Context

The openness of a software system relies on our ability to modify networks of
objects. We now discuss how such modification is constrained in statically-typed

330 M. Rytter and B.N. Jørgensen

g : Greenhouse s : Sensor

Greenhouse

-s: Sensor

+getSensor(): Sensor

+setSensor(s:Sensor)

Sensor

+get(): Value

Fig. 1. A restricted network of objects

object-oriented languages, and we outline a simple modeling technique that may
increase openness.

The modification of a network of objects is closely related to the concept of
object composition. Object composition is traditionally seen as the combination
of simple objects into more complex ones – i.e. composing a network of objects.
However, a widely accepted benefit of object composition lies not in the ability
to create, but in the ability to modify, a composition at runtime [4].

In order to understand how a network of objects is restricted by classes we
will introduce a trivial example. The example is focusing on only two objects, a
Greenhouse object, g, and a Sensor object, s. The diagram in figure 1 shows a
class view and an object view of the example.

Now let us consider the openness of this object network, i.e. which modifica-
tions are possible without imposing change on existing classes. Below we consider
openness with respect to the g object – a similar analysis can be made for the s
object.

– It is possible to set the existing link outgoing from g to i) null, ii) a new
object of class Sensor, or iii) a new object of a subtype of class Sensor.

– Without invasive change it is impossible to modify g to i) have a link to an
object of a class that is not a subclass of Sensor, or ii) have a new number
of outgoing links.

Given this analysis we may say that the object, g, is constrained by its class,
Greenhouse. We may also say that the specific object-level link, g.s, is con-
strained by the class-level association, Greenhouse.s. While it is possible to
introduce an object with an unanticipated implementation, e.g. a Specific-
Sensor, it is not possible to introduce an object with an unanticipated interface,
i.e. an object that is not a subtype of Sensor.

Figure 2 demonstrates how the lack of openness can be avoided by using the
lookup pattern [8]. The idea is that a class, e.g. Greenhouse, by associating
a Lookup at the class level, may allow for links to objects with unanticipated
interfaces, e.g. Actuator objects.

By introducing the lookup pattern [8] when designing Greenhouse, the de-
veloper can facilitate openness with respect to unanticipated interfaces. E.g. an
independent extension may decide to compose g with an Actuator object, a,
using the Lookup:

g.getLookup().addLink(Actuator.class, new Actuator());

Independently Extensibile Contexts 331

g : Greenhouse a : Actuatorl : Lookup

Actuator

+get(): Value

+set(v:Value)

<<interface>>

Lookup

+lookup(c:Class<T>): T

+lookupAll(c:Class<T>): T[]

+addLink(c:Class<T>,obj:T): Link

Greenhouse

+getLookup(): Lookup

Fig. 2. An open network of objects

The openness offered in our example is not specific to a single extension.
Another extension may navigate the link from g to a indirectly through the
Lookup:

Actuator a = g.getLookup().lookup(Actuator.class);
if(a != null) { /* use actuator */ }

The increased openness comes from the idea that links can be qualified by
a Class object. In Java, the Class object can be obtained through the special
class-field, e.g. Actuator.class.

The lookup pattern has helped us to create a network of objects that is open
to unanticipated changes. Specifically, a network of objects is not just open to
objects with unanticipated implementations but also objects with unanticipated
interfaces.

3.3 Shared Context

In addition to being open, the representation of a context must also be designed
to be shared among multiple independent clients. An object is shared when more
than one alias refer to it [5]. The owner of an alias may be called a client of the
object to which the alias refers.

To illustrate a simple case of sharing, we will now consider two indepen-
dently developed extensions being clients of the Actuator, a, in figure 2. For
this example, we will assume that a controls the position of a window in the
Greenhouse, g.

Extension 1 attempts to prevent condensation in the Greenhouse by ventilat-
ing when humidity becomes critically high:

// Extension 1: Prevent condensation.
if(humidityCriticallyHigh) { a.set(Value.OPEN); }

Extension 2 attempts to prevent loss of heat by closing all windows when the
Greenhouse is being heated up:

// Extension 2: Prevent heating energy loss.
if(heatingValveOpen) { a.set(Value.CLOSED); }

332 M. Rytter and B.N. Jørgensen

While the code snippets from extension 1 and extension 2 work fine in iso-
lation, their combination may lead to undesirable behavior. Specifically, it may
happen that condensation takes place when extension 2 runs after extension 1,
or a loss of heating energy may happen when extension 1 runs after extension 2.
Note that this problem emerges even though both extensions are non-invasive.

In a monolithic system, the sharing of a would merely be a bug that should
be fixed. However, in an independently extensible system the problem is more
severe, because no extension developer can be blamed for the undesirable behav-
ior that emerges from sharing [14,15]. If someone is to blame, it is the developer
of Actuator, who has published an interface that allows a conflict to emerge at
a point in time where no general resolution strategy applies. For this reason we
hold that:

The interface of an object, o, shared among independent extensions,
must ensure that any contract offered to a client, c1, cannot be violated
by any other client, c2.

In the example outlined above, no explicit contract is stated for Actuator.-
set(Value) above the language level. However, traditionally programmers ex-
pect the effects of a client invoking a set method to persist until the same client
invokes the same method again. In a non-sharing scenario this contract would
hold, but not always in a sharing scenario.

Note that the formal specification of a contract may facilitate detection of un-
desirable interactions [1]. However, a formal specification does not ensure that
independent clients will actually find the offered contract useful – i.e. indepen-
dent extensibility is limited by the nature of contracts, and not merely by the
lack of formal specification.

A set method is one of the most common examples of an idiom that does not
support sharing and thus hinders independent extensibility. The solution to this
problem is to assign state using a protocol that supports multiple clients.

In our example we may substitute a traditional assignment for a simple
priority-based protocol. Figure 3 demonstrates how this can be done. Instead of
invoking a set method, a client can influence state by adding a ValueProvider.

A ValueProvider provides not only a desired value but also a priority. The
protocol ensures that a value of higher priority will always be preferred over
one of lower priority. Thus, instead of being arbitrary, the conflict resolution
is now handled using a high-level protocol known to all extensions. The core
protocol behavior is implemented in Actuator.get() that statically depends on
the ValueProvider interface:

Value get() {
List<ValueProvider> l = getValueProviders();
sort(l, DESC_PRIORITY);
return (l.size() > 0) ? l.getValue(0) : null;

}

In figure 3 all interfaces, i.e. Actuator and ValueProvider, support shar-
ing. This has been achieved by promoting the desire to modify a shared state

Independently Extensibile Contexts 333

g : Greenhouse a : Actuatorl : Lookup

v1 : ValueProvider

v2 : ValueProvider

v3 : ValueProvider

Actuator

+add(v:ValueProvider)

+get(): Value

<<interface>>

ValueProvider

+getValue(): Value

+getPriority(): Priority

Fig. 3. A network of objects suitable for sharing

to an object, i.e. ValueProvider. In doing so, we have eliminated the method
Actuator.set(Value)which, as we have seen, does not support sharing. Instead
we have introduced Actuator.add(ValueProvider). An extension invoking this
method does not cause any undesirable interactions with other independent ex-
tensions – thus, this method is safe in sharing scenarios.

4 Conclusion

Our inability to model independently extensible contexts poses a threat to the
design of software systems, for which not all dimensions of extension can be
anticipated. To remedy this problem, we have emphasized two techniques, which
we believe offer a pragmatic approach to improve the situation.

First, by using the lookup design pattern, it is possible to model fine-grained
domain-specific contexts as networks of objects that allow for non-invasive intro-
duction of links to objects with unanticipated interfaces. The technique is useful
when it is possible to anticipate the existence of an open context, but not specific
interfaces required by future extensions that must be used in that context.

Second, we suggest that interfaces of objects representing an open context
must be carefully designed in order to support sharing. Specifically, a shared in-
terface must ensure that a contract offered to a specific client cannot be violated
by any other client. This can be achieved by accepting the selection of high-level
coordination protocols to be an integral part of interface design.

Improved modeling of independently extensible contexts is essential in order
to achieve independent extensibility of non-trivial software systems.

References

1. Beugnard, A., Jézéquel, J., Plouzeau, N., Watkins, D.: Making Components Con-

tract Aware. Computer 32(7), 38–45 (1999)

2. Büchi, M., Weck, W.: Generic Wrappers. In: Bertino, E. (ed.) ECOOP 2000. LNCS,

vol. 1850, pp. 201–225. Springer, Heidelberg (2000)

334 M. Rytter and B.N. Jørgensen

3. Clifton, C., Leavens, G., Chambers, C., Millstein, T.: MultiJava: Modular Open

Classes and Symmetric Multiple Dispatch for Java. In: OOPSLA 2000 – Proceed-

ings of the 15th ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pp. 130–145 (2000)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional, Reading (1994)

5. Hogg, J., Lea, D., Wills, A.: deChampeaux, D., Holt, R.: The Geneva Convention

– On The Treatment of Object Aliasing. ACM SIGPLAN OOPS Messenger 3(2),

11–16 (1992)

6. Jørgensen, B.: Integration of Independently Developed Components through

Aliased Multi-Object Type Widening. Journal of Object Technology 3(11),

55–76 (2004)

7. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An

Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072,

pp. 327–354. Springer, Heidelberg (2001)

8. Kircher, M., Jain, P.: Pattern-Oriented Software Architecture. Patterns for Re-

source Management, vol. 3. Wiley, Chichester (2004)

9. Lehman, M.: Programs, Life Cycles, and Laws of Software Evolution. Proceedings

of the IEEE 68, 1060–1076 (1980)

10. McGregor, J.: Context. Journal of Object Technology 4(7), 35–44 (2005)

11. Oreizy, P., Taylor, R.: Coping with Application Inconsistency in Decentralized Soft-

ware Evolution. In: International Workshop on the Principles of Software Evolution

(1999)

12. Ostermann, K., Kniesel, G.: Independent Extensibility – An Open Challenge for

AspectJ and Hyper/J. In: ECOOP 2000 – Workshop on Aspects and Dimension

of Concerns (2000)

13. Steimann, F.: The Paradoxical Success of Aspect-Oriented Programming. In: OOP-

SLA 2006 – Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-

Oriented Programming Systems, Languages, and Applications, pp. 481–497 (2006)

14. Szyperski, C.: Independently Extensible Systems – Software Engineering Poten-

tial and Challenges. In: Proceedings of the 19th Australasian Computer Science

Conference (1996)

15. Szyperski, C.: Component Software – Beyond Object-Oriented Programming, 2nd

edn. Addison-Wesley Professional, Reading (2002)

16. Tarr, P., Ossher, H., Sutton, S.: Hyper/JTM: Multi-Dimensional Separation of Con-

cerns for JavaTM. In: Proceedings of the 24th International Conference on Software

Engineering, pp. 689–690 (2002)

17. Weck, W.: Independently Extensible Component Frameworks. Special Issues in

Object-Oriented Programming, pp. 177–183 (1997)

Mediating Connector Patterns for
Components Interoperability�

Romina Spalazzese and Paola Inverardi

Università degli Studi dell’Aquila

via Vetoio I-67100 L’Aquila, Italy

{romina.spalazzese,paola.inverardi}@di.univaq.it

Abstract. A key objective for ubiquitous environments is to enable

system interoperability between system’s components that are highly

heterogeneous. In particular, the challenge is to embed in the system

architecture the necessary support to cope with behavioral diversity in

order to allow components to coordinate and communicate. In this pa-

per we present the design building blocks for the dynamic and on-the-fly

interoperability between heterogeneous components. Specifically, we de-

scribe an Architectural Pattern called Mediating Connector, that is the

key enabler for communication. In addition, we present a set of Basic
Mediator Patterns, that describe the basic mismatches which can occur

when components try to interact, and their corresponding solutions.

Keywords: Heterogeneous Components Interoperability, Mediating

Connector Architectural Pattern, Basic Mediator Patterns.

1 Introduction

A multitude of heterogeneous networked devices are today embedded in the
Ubiquitous networked environment [2] where a key objective is to enable sys-
tem interoperability. Tremendous work has been done in the middleware field
while the application-layer interoperability remains an open problem calling for
mediating connectors or mediators. The mediator concept was initially intro-
duced to cope with the integration of heterogeneous data sources [13] and as
design pattern [17]. In the field of software architectures ad hoc wrappers have
been proposed to address communication problems [8]. Mediators and auto-
mated mediation have received attention within the Web Services and Semantic
Web contexts [6,3,4]. Recently, the challenge is to provide general solutions to
the behavioral diversities at runtime and on-the-fly, to respond to the contin-
uous evolution of the environment1. An approach to protocol mediation is to
categorize the types of protocol mismatches that may occur and that must be
solved in order to provide corresponding solutions to these recurring problems.
This immediately reminds of patterns [18,1,12,17] and of pattern-based works
[15,16,20,21,22].
� The work is partly supported by the Connect European Project No 231167.
1 Connect European project, http://connect-forever.eu/

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 335–343, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

336 R. Spalazzese and P. Inverardi

In this paper we present a set of design building blocks for the interoper-
ability between heterogeneous components which would certainly facilitate the
solution. The contributions of this paper are: (1) an Architectural Pattern called
Mediating Connector, that is the key enabler for communication; (2) a set of
Basic Mediator Patterns that describe: (i) the basic mismatches which can oc-
cur while components try to interact, and (ii) their corresponding solutions. The
paper is organized as follows: in Section 2, we sketch a pattern-based approach
for the automatic synthesis of Mediating Connector. In Section 3, we illustrate
the Mediating Connector Architectural Pattern for the ubiquitous networked en-
vironment. In Section 4, we show the Basic Mediator Patterns and we conclude,
in Section 5, by outlining future work.

2 A Pattern-Based Approach for Interoperability
Mismatches

In this section we describe our proposal for an automated pattern based ap-
proach, whose details are in [9]. For the sake of this paper, we make some as-
sumptions and we investigate the related underling research problems as part of
Connect. We assume to know the interaction protocols run by two networked
components as Labeled Transition Systems (LTS) [14] and the components’ in-
terfaces with which to interact as advertised or as result of learning techniques
[5,19]. We also assume a semantic correspondence between the messages ex-
changed among components exploiting ontologies. The first step is to establish
whether the components are potentially compatible, i.e., if it makes sense for them
to interoperate through the Mediating Connector. This amounts to understand
if the components share some intent (trace), i.e., if they have some complemen-
tary sequences of messages visible at interface level. To do this we define (1)
a decomposition strategy/tool to decompose the whole components’ behavior
(LTS) into elementary behaviors (traces) representing elementary intents of the
components and then (2) an automatic analyzer to identify mismatches between
elementary behaviors of the different components. Once discovered the compo-
nents compatibility, solving their interoperability means solving the behavioral
mismatches that they exhibit. Then it is necessary to: (3) define a mismatches
manager to solve the identified mismatches between elementary behaviors; (4)
define a composition approach to build elementary mediating behaviors (medi-
ating traces) based on the identified mismatches and their relative solutions; (5)
define a composition strategy to build a mediating connector’s behavior starting
from the elementary mediating behaviors.

The above described approach is far from trivial, especially to achieve au-
tomatically. However, in the following we show its feasibility. To address steps
(1) and (5) the approach makes use of a compositional strategy to decompose
components interaction protocols into traces and compose mediating connec-
tors interaction protocol from mediating traces respectively. Furthermore, we
describe six Basic Mediator Patterns that are the building blocks on which the
steps (2), (3), and (4) can be built upon.

Mediating Connector Patterns for Components Interoperability 337

3 Mediating Connector Architectural Pattern

We characterize the interoperability problem between diverse components pop-
ulating the ubiquitous environment and its related solution as a Mediating Con-
nector Architectural Pattern basing on the template used in [1]. The Mediating
Connector is a behavioral pattern. Being an architectural building block embed-
ding the necessary support, it should be used to dynamically cope with compo-
nents’ behavioral diversity.
Name. Mediating Connector.
Also Known As. Mediator.
Example. We describe the example used in [10] where we have been study-
ing the problem and where appeared first results on the theory underlying our
approach. An extended and more complete version of the theory can be found
in [9]. We consider the simple yet challenging example of instant messaging.

(a) Windows protocol (b) Jabber protocol

Fig. 1. Behavioral models of two instant messengers

Various instant messag-
ing systems are now in
use. However, although
those systems imple-
ment similar function-
alities, end-users need
to use the very same
system to communicate
due to behavioral mis-
matches of the respec-
tive protocols. For
instance, consider Win-
dows Messenger2(WM),
now called Windows Live
Messenger, and Jabber
Messenger3(JM). Figure 1 models their behavioral protocols using LTSs. We
use the usual convention that actions with overbar denote output actions while
the ones with no overbar denote input actions. These systems should be able
to interoperate since they both amount to supporting authentication with their
servers and then message exchanges among peers. However mediating their re-
spective protocols to achieve interoperability is far from trivial, especially if one
wants to achieve a general solution. An effort has been done in [11] requiring
the implementation of the translation from any client protocol to a reference
exchange protocol, and vice versa. Unfortunately this affects the generality and
the automation of the approach.

Context. The environment is distributed and changes continuously. Heteroge-
neous mismatching systems require seamless coordination and communication.

Problem. In order to support existing and future systems’ interoperability,
some means of mediation is required. From the components’ perspective, there
2 Windows Live Messenger, http://www.messenger.it/
3 Jabber Software Foundations, http://www.jabber.org/

338 R. Spalazzese and P. Inverardi

should be no difference whether interacting with a peer component, i.e, using the
very same interaction protocol, or interacting through a mediator with another
component that uses a different interaction protocol. The component should
not need to know anything about the protocol of the other one while continu-
ing to ”speak” its own protocol. Using the Mediating Connector, the following
forces (aspects of the problem that should be considered when solving it [1])
need to be balanced: (a) the different components should continue to use their
own interaction protocols. That is, components should interact as if the Medi-
ating Connector were transparent; (b) the following basic interaction protocol
mismatches should be solved in order for a set of components to coordinate
and communicate (cfr. Section 4): 1) Extra Send/Missing Receive Mismatch;
2) Missing Send/Extra Receive Mismatch; 3) Signature Mismatch; 4) Ordering
Mismatch; 5) One Send-Many Receive/Many Receive-One Send Mismatch; 6)
Many Send-One Receive/One Receive-Many Send Mismatch.

Solution. The introduction of a Mediating Connector to manage the interac-
tion behavioral differences between potentially compatible components. The idea
behind this pattern is that components that would need some interaction pro-
tocol’s adaptation to become compatible, and hence to interoperate, are able to
coordinate and communicate achieving their goals/intents without undergoing
any modification. The Mediating Connector is one (or a set of) component(s)
that manage the behavioral mismatches. It directly communicates with each
component by using the component’s proper protocol. The mediator forwards
the interaction messages from one component to the other by making opportune
translation/adaptation of protocols when/if needed.

Structure. The Mediating Connector Pattern comprises three types of partici-
pating components: communicating components, potentially compatible compo-
nents and mediators. Figure 2 shows the objects involved in a mediated system.
The communicating components implement already compatible components, i.e.
able to interact and evolve following their usual interaction behavior. The poten-
tially compatible components implement application level entities that want to
reach some of their intents by interacting with other components able to satisfy
their needs, i.e. required/provided functionalities. However those components are
unable to directly interact because of protocol mismatches and can only evolve
following their usual interaction behavior, without any change. The mediators are
entities responsible for the mediated communication between the components.
This means that the role of the mediator is to make compatible components
that are mismatching. That is, a mediator must receive and properly forward
requests and responses between potentially compatible components.

Fig. 2. Entities involved in a mediated system

Mediating Connector Patterns for Components Interoperability 339

Fig. 3. Scenario on the relevant operation of a Mediator

Dynamics. Figure 3 illustrates the interactions between three components and
one mediator belonging to the messengers example. Triggered by a user, the
Windows Messenger protocol (Figure 1(a)) performs one of its possible behav-
ior: it authenticates after an handshake, sends/receives several messages, and
closes. The mediator should: (1) forward the handshake and authentication mes-
sages as they are between the Windows Messenger and its authentication server
(communicating components), (2) translate and forward messages between the
Windows and Jabber Messengers (potentially compatible components)4 (3) for-
ward the closing messages as they are between the Windows Messenger and its
server (communicating components).

Implementation. The implementation of this pattern implies the definition of
an approach/tool (we have proposed one in Section 2) to automatically synthe-
size the behavior of the Mediating Connector which allows potentially compatible
components to interoperate mediating their interactions.

Example Resolved. The Mediating Connector’s concrete protocol for the ex-
ample is shown in Figure 4. Once established that the two messengers are po-
tentially compatible, i.e., they have some complementary portion of interaction
protocols, the mediating connector manages the components’ behavioral mis-
matches allowing them to have a mediated coordination and communication.

Variants. Distributed Mediating Connector. It is possible to implement this
pattern either as a centralized component or as distributed components. This
latter introduces a synchronization issue that has to be taken into account.

4 With “translation” we refer to a “behavioral translation” (see Section 4).

340 R. Spalazzese and P. Inverardi

Fig. 4. Mediating Connector protocol of the messengers example

Consequences. The main benefit of the Mediating Connector Pattern is that
it allows interoperability between components that otherwise would not be able
to do it because of their behavioral differences.

The main liability that the Mediating Connector Pattern imposes is that the
systems using it are slower than the ones interacting directly because of the
indirection layer introduced. However the severity of this drawback is mitigate
and made acceptable by the fact that such systems, without mediator, are not
able at all to interoperate.

4 Basic Mediator Patterns

The Basic Mediator Patterns include the above mentioned basic interoperability
mismatches together with their corresponding solutions. These patterns are: (1)
Message Consumer Pattern, (2) Message Producer Pattern, (3) Message Trans-
lator Pattern, (4) Messages Ordering Pattern, (5) Message Splitting Pattern, (6)
Messages Merger Pattern.

Figure 5 shows, for each Basic Mediator Pattern: (i) two traces (left hand-
side and right hand-side), showing the basic interoperability mismatch coming
from two potentially compatible components, and (ii) its related basic solu-
tion trace (in the center). All the considered traces are the most elementary in
terms of messages exchanged and only their visible messages are shown. The
mismatches, inspired by service composition mismatches, refer to send/receive
problems that can occur while synchronizing two traces. In real cases, the traces
may also contain portions of behavior already compatible (abstracted by dots in
the figure) and may amount to any combination of the presented mismatches.
Then an appropriate strategy to detect and manage this is needed. The basic
patterns, share the context considering two traces (left and right) expressing
similar complementary functionalities and focusing on one of their semantically

Mediating Connector Patterns for Components Interoperability 341

m2

(4) MESSAGES ORDERING

(3) MESSAGE TRANSLATOR(1) MESSAGE CONSUMER (2) MESSAGE PRODUCER

(5) MESSAGE SPLITTING (6) MESSAGES MERGER

m

m1

m2

m1

m2

m2

m1
m2

m1 m2

m1

m

m2

m1

m1
m1 m1

m2 m2 m2

m1

m1

m2

m1

m2

m2

m1

m

m

m2

m1

Fig. 5. Basic Mediator Patterns

equivalent elementary actions. Moreover the patterns have the same intent: to
allow synchronization between the two traces letting them evolve together which
otherwise would not be possible because of behavioral mismatches. Due to the
lack of space, we do not give here further details that can be found in [7].

5 Conclusion

The Ubiquitous environment, embedding a big number of heterogeneous sys-
tem’s components, puts forward an ever growing need of mediation entities for
component’s interoperability purpose. The challenge is to embed mediators com-
ponents into the system architecture allowing mismatching components to co-
ordinate and communicate. Another challenge is to find dynamic and on the fly
approaches to cope with component’s behavioral diversities. To respond to these
two challenges, we illustrated the Mediating Connector Architectural Pattern
which, encapsulating the necessary support, is the key enabler for the com-
munication between mismatching components. We also proposed an automatic
pattern based approach describing a set of Basic Mediator Patterns, including
basic mismatches and respective solutions, which represent the basic building
blocks on which an automatic approach can build upon.

As future works, we intend to define a theoretical compositional strategy to
allow reasoning on mismatches and to build the mediating connector behavior.
Moreover we also aim at providing the “concrete” Basic Mediator Patterns, i.e.,

342 R. Spalazzese and P. Inverardi

the skeleton code corresponding to the “abstract” ones presented in this work
and present the actual code for the component’s behavior decomposition and
the mediating connector behavior building.

References

1. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Sommerlad,

P., Stal, M.: Pattern-Oriented Software Architecture. A System of Patterns, vol. 1.

John Wiley & Sons, Chichester (August 1996)

2. Weiser, M.: The computer for the 21st century. Scientific American (September

1991)

3. Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-

automated adaptation of service interactions. In: WWW 2007, pp. 993–1002. ACM,

New York (2007)

4. Williams, S.K., Battle, S.A., Cuadrado, J.E.: Protocol mediation for adaptation

in semantic web services. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,

vol. 4011, pp. 635–649. Springer, Heidelberg (2006)

5. Issarny, V., Steffen, B., Jonsson, B., Blair, G., Grace, P., Kwiatkowska, M., Cali-

nescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Chal-

lenges: Towards Emergent Connectors for Eternal Networked Systems. In: ICECCS

2009, pp. 154–161 (2009)

6. Vaculin, R., Neruda, R., Sycara, K.P.: An Agent for Asymmetric Process Mediation

in Open Environments. In: Kowalczyk, R., Huhns, M.N., Klusch, M., Maamar, Z.,

Vo, Q.B. (eds.) SOCASE 2008. LNCS, vol. 5006, pp. 104–117. Springer, Heidelberg

(2008)

7. Spalazzese, R., Inverardi, P.: Mediating Connector Patterns for Components In-

teroperability. Tech. Rep., University of L’Aquila (2010)

8. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.

In: ICSE 2003, pp. 374–384. IEEE Computer Society, Washington (2003)

9. Spalazzese, R., Inverardi, P., Issarny, V.: A Theory of Mediators for the Ubiquitous

Networking Environment - Version 2. Tech. Rep. TRCS 002/2010 (2010)

10. Spalazzese, R., Inverardi, P., Issarny, V.: Towards a formalization of mediating

connectors for on the fly interoperability. In: WICSA/ECSA 2009, pp. 345–348

(2009)

11. Motoyama, M.A., Varghese, G.: Crosstalk: scalably interconnecting instant mes-

saging networks. In: WOSN 2009, pp. 61–68. ACM, New York (2009)

12. Avgeriou, P., Zdun, U.: Architectural Patterns Revisited – A Pattern Language.

In: EuroPLoP 2005, Irsee, Germany, 139 Pages (2005)

13. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE

Computer 25, 38–49 (1992)

14. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–

384 (1976)

15. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing

adapters for web services integration. In: Pastor, Ó., Falcão e Cunha, J. (eds.)

CAiSE 2005. LNCS, vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

16. Cimpian, E., Mocan, A.: Wsmx process mediation based on choreographies. In:

Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 130–143. Springer,

Heidelberg (2006)

Mediating Connector Patterns for Components Interoperability 343

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Resusable Object-Oriented Software. Addison-Wesley Professional, Reading (1995)

18. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Center for Envi-

ronmental Structure Series, vol. 2. Oxford University Press, New York (1977)

19. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of be-

havior protocols for composable web-services. In: Proc.ESEC/FSE, pp. 141–150

(2009)

20. Li, X., Fan, Y., Jiang, F.: A classification of service composition mismatches to

support service mediation. In: GCC, pp. 315–321 (2007)

21. Li, X., Fan, Y., Wang, J., Wang, L., Jiang, F.: A pattern-based approach to devel-

opment of service mediators for protocol mediation. In: WICSA 2008, pp. 137–146.

IEEE Computer Society, Los Alamitos (2008)

22. Jiang, F., Fan, Y., Zhang, X.: Rule-based automatic generation of mediator pat-

terns for service composition mismatches. In: Proc. of GPC-WORKSHOPS 2008,

pp. 3–8. IEEE Computer Society, Washington (2008)

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 344–351, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Assessing the Impact of AOSD on Layered
Software Architectures

Juliana Saraiva, Sérgio Soares, and Fernando Castor

Centro de Informática - Universidade Federal de Pernambuco (UFPE), Recife – PE, Brazil
{jags2,scbs,castor}@cin.ufpe.br

Abstract. Software structuring techniques aim to make software systems easier to
develop and maintain, increasing their quality. Aspect-Oriented Software Devel-
opment (AOSD) and Software Architectural Styles are examples of such
techniques. In spite of all the benefits of structuring techniques, both actual and
intended, it is not always easy or even advantageous to integrate two or more of
these techniques. For example, the effects of combining AOSD and Layered
Software Architectures are still not well understood. This might be detrimental to
system quality and can be a decisive factor when deciding whether or not to em-
ploy AOSD, specially considering the pervasiveness of layered architectures. This
paper presents a study aiming to assess the impact of AOSD on software architec-
tures adopting the layered style. To better account for the influence of aspects on
the layered structure of the system, we have extended existing approaches to
measure dependencies and layering violations in software architectures.

Keywords: Aspect-Oriented Software Development, Layering Software Archi-
tectures, Layering Structuring Violations, Coupling.

1 Introduction

The complexity of software is one of the major problems encountered in software
development. When this problem is not dealt with, software quality decreases, costs
increase, delays in delivery occur and, in some cases, the project is canceled com-
pletely [8]. However, there are techniques for structuring software that can reduce this
complexity, such as software architecture. The software architecture adheres to one or
more architectural styles. Architectural styles define families of software systems in
terms of their organization [9]. This paper focuses on the study of the Layered Archi-
tectural Style. In this architectural style, software systems are structured in groups of
subtasks, so that each group is implemented at a certain level of abstraction and
groups at higher levels of abstraction are clients of the groups at lower levels of ab-
straction [2]. Although software architecture is an important discipline for software
development, it can and should be complemented by other approaches such as, De-
sign Patterns and Aspect-Oriented Software Development (AOSD)1.
 AOSD is a software development approach where the basic development ac-
tivities (requirements, design, coding, testing, and deployment) are conducted starting

1 http://www.aosd.net

 Assessing the Impact of AOSD on Layered Software Architectures 345

from the assumption that the system will be implemented in an aspect-oriented pro-
gramming (AOP) language. AOP languages provide constructs to structure the
so-called crosscutting concerns - concerns whose implementation is scattered
throughout system modules, tangled with code pertaining to other concerns. Another
assumption of AOSD is that proper use of AOP languages makes the system more
modular. Since AOSD is a recent approach, it is necessary to conduct empirical stud-
ies that demonstrate the benefits and/or drawbacks of its use with respect to object-
oriented programming (OOP), the current dominant software development approach.
Hence, some important research questions remain unaddressed:

• How does the use of AOSD to modularize crosscutting concerns affect the
coupling between the layers of object-oriented systems?

• Do layered architectures whose crosscutting concerns are modularized by
means of AOSD respect the basic principles of the layered architectural
style?

This paper presents a study aiming to assess the impact of AOSD on systems that
adopt a layered organization. We intend to assist developers in making decisions
about which concerns are worth modularizing with aspects in a layered software sys-
tem. In addition, we propose adaptations to existing metrics to take the effect of as-
pects into consideration since they introduce new dependencies that are not covered
by existing metrics to assess layered software architectures. These extensions are
another contribution of the paper. This paper is organized as follows. Section 2 pre-
sents the target application of our study, our approach to counting dependencies and
violations in layered software architectures, and the employed metrics suite. The
results of the study are presented in Section 3. Section 4 discusses the conclusions and
future work.

2 Setting of the Study

This section presents the setting of our study. Section 2.1 briefly describes Health
Watcher, the target system of our study. Section 2.2 describes the ways in which we
have identified and computed the dependencies and violations in layered software
architectures. Finally, Section 2.3 presents the group of metrics that we employed in
this study.

2.1 Our Case Study

Health Watcher2 (HW) is a Web-based information system that receives and manages
requests and notifications about the public healthcare system. It is also used to expose
important healthcare information to patients. Health Watcher is implemented in Java
and leverages a number of well-known design patterns and technologies. The archi-
tecture of the system consists of four layers: Data Management, Business, Communi-
cation and User Interface. For more information, access the HW website. HW has ten
releases, each one with an object-oriented version and an aspect-oriented version.

2 http://www.comp.lancs.ac.uk/~greenwop/ecoop07/

346 J. Saraiva, S. Soares, and F. Castor

Each release stems from maintenance activities aiming to improve the structure of the
system or to add new functionality.

2.2 Dependencies and Violations Counting

This section explains how we have counted dependencies between layers in our study,
for both object-oriented and aspect-oriented versions of HW. To the best of our
knowledge, this is the first work to extend existing approaches to count dependencies
between layers that also consider dependencies caused by aspects. In this section we
also explain some of the basic principles that govern the structure of layered software
architectures. These principles are among the factors responsible for the desirable
properties that layered architectures. As a consequence, violations of these principles
partially negate the benefits of layering and should be avoided.
Dependencies. Before explaining the dependency counting process, we need to clar-
ify some basic definitions. Methods, pointcuts, advice, and attributes are considered
internal entities of a module. A module (class, aspect) is a structure with a defined
purpose, which has one or more entities, described above. It is important to note that
the presence of all kinds entities in the modules is not required. A layer comprises a
set of modules. This work considers only dependencies between modules pertaining
to different layers. In this scenario, dependencies between modules located within the
same layer are less relevant.

In this work, we consider 5 groups of dependencies: (i) Method Call; (ii) Attribute
Access; (iii) Inheritance; (iv) Pointcut Interception; and (v) Exception Handling. A
high number of dependencies between system layers indicate a problem: either the
code was not implemented in accordance with the architecture design or the architec-
ture did not reflect the best solution for the problem at hand. We consider that a de-
pendency caused by a method call occurs when a method declared in a module
(class/aspect) that is in layer B is called by a method declared by a module in a differ-
ent layer A. We also include in this group dependencies that stem from a module in
layer B being instantiated by a method declared in a module in a different layer A. In
this case, the method from layer A is calling the constructor of the module from layer
B. On the other hand, attribute access dependencies occur when the entities of a
module (class/aspect) belonging to layer A access/update any attribute declared in a
module (class/aspect) of a different layer B.

Inheritance dependencies are different from Attribute Access and Method Call de-
pendencies because they are not associated with the entities in a module. A layer A
has an inheritance dependency on a different layer B if a module (class/aspect) of
layer A extends (inherits from) a different module (class/aspect) belonging to layer B.
The fourth group of dependencies identified in this study comprises dependencies
caused by pointcuts defined in aspects that intercept Java and AspectJ join points. We
consider that there is a pointcut dependency between two different layers A and B if a
module in layer A specifies a pointcut that explicitly refers to a module in layer B or
one or more of its entities. The last group of dependencies comprises the dependen-
cies caused by exception handling code. There is an exception handling dependency
between two different layers A and B if a module (class/aspect) or entity (meth-
ods/advices) from layer A catches or throws some exception defined by a module
(class) belonging to layer B.

 Assessing the Impact of AOSD on Layered Software Architectures 347

Violations. To assess the impact of a structuring technique such as AOSD in layered
software architectures, it is first necessary to understand the basic principles that di-
rect the design of these architectures. These principles, when combined with the prin-
ciples of modular software development [1], yield the expected benefits of layered
software architectures. To enjoy these benefits, the structure of a software system
must follow three basic principles [6]:

• Back-Call Principle: A top layer should depend only on a lower layer, but
lower layers should not depend on the upper layers;

• Skip-Call Principle: Each layer should depend only on the layer located
immediately below it;

• Cyclic-Call Principle: Cycles of dependencies between layers should not
exist because they make a set of layers monolithic and inseparable.

These violations indicate that the architecture of the system does not faithfully reflect
the intention of its architect. They also partially cancel out the expected advantages of
a layered structure. In addition, these violations are measurable, which makes it possi-
ble to compare the quality of different versions of the same release of our case study.

2.3 Metrics Suite

As cited above, all these metrics were collected automatically, using a tool that was
developed in Java language. This tool collects metrics from Java and AspectJ
programs. In this work, the metrics implemented were divided into three groups: Vo-
cabulary Size, Coupling between Layers and Violations. Vocabulary Size Metrics
provide a sense of the complexity of a system. The second group of collected metrics is
the Coupling between Layers. The coupling metric was first proposed by Zhao [5] and
measures the coupling between aspects and classes. The results of this group of metrics
were computed by adding the dependencies that exist between one layer and another.

Table 1. Metrics collected from ArchE Meter

Table 1 shows all the metrics that are collected automatically by the ArchE Meter
tool, where the first column indicates which group is the metric, the second column
indicates the name of the metric and the third column provides a description of the
metric. For the metrics belonging to Coupling Between Layers and Violation Metrics,
the lower the value the better. The Vocabulary Size group includes additional metrics,
i.e. it helps just in understanding the structure of the systems evaluated.

Group Metrics Description
NC Number of Classes.
NM Number of Methods.
NAs Number of Aspects.

Vocabulary Size

NAd Number of Advices.
MCD Method Call Dependencies.
AAD Attribute Access Dependencies.

ID Inheritance Dependencies.
PID Pointcut Interception Dependencies.

CBL (Coupling between
Layers)

EHD Exception Handling Dependencies.
SCV Skip Call Violation.
BCV Back Call Violation.

Violation Metrics

CCV Cyclic Call Violation.

348 J. Saraiva, S. Soares, and F. Castor

3 Study Results

In this section, we present and analyze the results of the three groups of metrics that
were collected in this study. We have collected these metrics for each one of the ten
releases of the two versions of HW. The values for the Vocabulary Size group and a
discussion about these values are presented in Section 3.1. Section 3.2 presents and
analyzes the results for the Coupling Between Layers metrics. Section 3.3 focuses on
the Layering Violation Metrics.

3.1 Vocabulary Size

We obtained values of the Vocabulary Size metrics for all the releases of HW in its
two versions, aspect-oriented and object-oriented. It could be observed from these
results that throughout the evolution of HW, all the values of the Vocabulary Size
metrics increased. Comparing the first release of the system with the last, the follow-
ing additional values were obtained: for the object-oriented versions, the NC
increased 51.13% and NM showed an increase of 66.8%. In the aspect-oriented ver-
sions, the NC grew by 47.7%, the NM increased 43.9%, the NAs by 127% and the
NAD by 193%. Furthermore, if size metrics can be considered a proxy to the system
complexity, we can say that the aspect-oriented releases of HW were more complex
than their object-oriented counterparts.

3.2 Coupling between Layers Result

This section shows the results obtained in the collection of the Coupling Between Layers
metrics. The analyses of the results can be used to assist developers in making decisions
about how to model their layered architectures. A qualitative analysis of these values can
also be used to aid developers in making decisions regarding the use or absence of AOSD
in the construction of systems adhering to this layered architectural style.

Table 2 exhibits all the values of the Coupling Between Layers metrics obtained
for the twenty releases of HW. The first column is the name of the system. The sec-
ond, third, fourth, fifth, and sixth columns are the coupling metrics, represented by the
names MCD, AAD, ID, PID, and EHD, respectively. The seventh column of Table
3.1 represents the total of relationships and dependencies between the layers of the
system. We use boldface to indicate the version with the higher overall coupling
between layers for a given release. The eighth and last column shows the percentage
difference between the two versions of the same HW release. This percentage refers
to the value of the object-oriented version. Therefore, a positive percentage means
that the aspect-oriented version of a given release had stronger overall coupling be-
tween layers than its object-oriented counterpart. In the same vein, a negative value
indicates a lower coupling between the layers of the aspect-oriented version.

Note that in Table 2 there is a radical change in the percentage differences be-
tween releases 4 and 5. The reason for this growth has not yet been detected and
needs further examination. May have been caused by the Adapter Pattern implemen-
tation in release 5, or may have been because of aspectization some specific concern,
which was not examined separately in this study. The tendency in the evolution of the
MCD metric is also an interesting result. With these results is possible to infer that, at

 Assessing the Impact of AOSD on Layered Software Architectures 349

least from the viewpoint of MCDs, the aspect-oriented releases seem to better ac-
commodate the evolution scenarios than the object-oriented ones. This has a cost,
however, the number of PIDs of HW_AO_10 is almost 41,7% greater than
HW_AO_02's. Combining MCD and PID it is possible to get a better picture of how
well the aspect-oriented releases fare, when compared with the object-oriented re-
leases, after a number of evolution scenarios (ID and AAD do not seem to change
significantly between the two versions).

Table 2. Coupling Between Layers Metrics

Systems MCD AAD ID PID EHD Total Percentage
Difference

HW_OO_01 317 22 22 0 213 591
HW_AO_01 465 54 22 1 132 674 14%
HW_OO_02 314 29 26 0 213 582

HW_ AO _02 456 22 27 113 132 750 28%
HW_OO_03 308 29 34 0 213 584

HW_ AO _03 458 22 35 129 132 776 32.8%
HW_OO_04 312 29 34 0 221 596

HW_ AO _04 458 22 36 132 132 780 30.8%
HW_OO_05 339 29 34 0 382 784

HW_ AO _05 457 22 36 132 132 779 -0.63%
HW_OO_06 355 29 36 0 382 802

HW_ AO _06 456 22 38 136 132 784 -2.29%
HW_OO_07 356 29 36 0 382 803

HW_ AO _07 445 22 38 140 132 777 -3.23%
HW_OO_08 359 28 37 0 386 810

HW_ AO _08 444 22 40 142 132 780 -3.7%
HW_OO_09 424 25 47 0 632 1128

HW_ AO _09 520 22 50 148 193 933 -17.28%
HW_OO_10 427 27 50 0 634 1138

HW_ AO _10 530 23 53 160 197 963 -15.37%

It can be observed in Table 2 that the number of dependencies is higher in aspect-

oriented versions for the first, second, third, and fourth releases. This is intuitive,
since aspects normally affect classes and other aspects in a number of layers, due to
the kind of concern that aspects aim to modularize. Overall, this result indicates that,
for the first few releases of the systems, AOSD results in more strongly coupled lay-
ers. Nevertheless, starting from the fifth release, the level of coupling between layers
became consistently lower in the aspect-oriented versions. For example, HW_AO_10
had more than 15% less dependencies between layers than HW_OO_10. This result
must be analyzed with care, however. If we remove EHDs from the calculations, the
overall number of dependencies of HW_AO_10 is 52% greater than the number of
dependencies of HW_OO_10. Again, it is important to stress that the difference was
even greater in the initial: 67%.

3.3 Violations Result

This section presents the results for the Layering Violation metrics. The greater the
number of violations, the less the system complies with this style. In Table 3 we can
see all the values of the Layering Violation metrics. The first column represents the
system names, similarly to Tables 2 The second, third and fourth columns present the
values of the metrics: BCV, SCV, and CCV, respectively. The fifth column of
Table 3 represents the total of violations of the layered style. Remember that the
higher the number of violations occurring in the system, the less the system is in ac-
cordance with its intended architecture. The last column represents the percentual

350 J. Saraiva, S. Soares, and F. Castor

difference between the numbers of violations exhibit by the two versions of the same
release of HW.

Note that from release four there was a huge change in the percentage difference
between versions. This happened because the Adapter Pattern was implemented only
in the object-oriented version. There was thus, an increase in Skip-Call and Back-Call
violations in those versions. As a consequence, with this increase and stagnation in
the numbers of violations of the aspect-oriented releases, the percentage difference
between them has decreased considerably across subsequent releases.

Table 3. Violation Metrics

System BCV SCV CCV Total Percentage Difference

HW_OO_01 108 226 1 335

HW_AO_01 228 271 0 499 48.9%

HW_OO_02 110 209 1 320

HW_ AO _02 233 234 0 467 45.9%

HW_OO_03 84 229 1 314

HW_ AO _03 217 250 0 467 48.7%

HW_OO_04 89 225 1 315

HW_ AO _04 232 247 0 479 52%

HW_OO_05 116 333 1 450

HW_ AO_05 232 246 0 478 6.22%
HW_OO_06 117 332 1 450

HW_ AO _06 209 247 0 456 1.33%

HW_OO_07 116 334 1 451

HW_ AO _07 209 248 0 457 1.33%

HW_OO_08 119 318 1 438

HW_ AO _08 208 246 0 454 3.65%

HW_OO_09 140 444 0 584
HW_ AO _09 215 216 0 511 -12.5%
HW_OO_10 143 455 1 589

HW_ AO _10 255 298 0 553 -6.11%

The values of the object-oriented versions of releases 9 and 10 are much greater

than the previous releases because of the increase in the number of dependencies
caused by EHDs. This result is intuitive, since layering violations are dependencies
that violate the Back Call, Skip Call, and Cyclic Call Principles, and the number of
dependencies generated by handling exceptions grew sharply in the object-oriented
versions after the eighth release. HW_AO_10 has 9,44% more BCVs than
HW_AO_02, while HW_OO_10 has 30% more BCVs than HW_OO_02.

Overall, it is difficult to say whether AOSD has a negative or positive impact on
the layered architecture of a system. In spite of the better results, these results stem to
a great extent from a specific kind of dependency that cannot be considered as repre-
sentative as, e.g., MCDs. Moreover, it is not easy to determine how much EHDs af-
fect maintenance and comprehension tasks. After analyzing the study results, our
conclusion is that, at least in the specific context of this study, aspects are more of an
obstacle than a facilitator.

4 Conclusion and Future Work

This paper presents a study aiming to assess the impact that AOSD has on the archi-
tecture of software systems that employ the layering architecture style. To produce a

 Assessing the Impact of AOSD on Layered Software Architectures 351

realistic evaluation, we have extended existing notions of dependencies between ar-
chitectural layers with a new kind of dependency that stems from the use of aspects.

Two adaptations to count dependency metrics were performed. The first one,
unlike Zhao’s study [5], considers that the level of abstraction is the layer, while Zhao
considered the abstraction level to the modules (classes and aspects) of the system.
Thus, in this present paper, the dependencies between modules of the same layer were
not computed. The second adjustment made for this approach was motivated by limi-
tations of the study conducted by Monteiro et al. [10], where aspects were allocated to
a specific layer, orthogonal to the system layer. Due to this organization, they decided
to ignore the dependencies created by the aspects. According to the presented results,
the use of AOSD to structure crosscutting concerns in layered software systems has
mixed results to say the least. Perhaps the negative impact of AOSD in some cases is
due to the fact that specific concerns, such as logging, persistence, and exception
handling, were not evaluated separately. Therefore, a natural thread for future work is
the exploration of the effects of aspects on the quality of specific concerns that appear
in layered systems.

Acknowledgment. This work was partially supported by the National Institute of Sci-
ence and Technology for Software Engineering (INES), funded by CNPq and FACEPE,
grants 573964/2008-4 and APQ-1037-1.03/08. Juliana is supported by FACEPE. Sérgio
is partially supported by CNPq and FACEPE, grants 309234/2007-7 and APQ-0093-
1.03/08. Fernando is partially supported by CNPq, grants 308383/2008-7, 481147/2007-
1, and 550895/2007-8. We would like to thank the anonymous referees, who helped to
improve this paper with insightful comments and suggestions.

References

1. Parnas, D.L.: On the Criteria for Decomposing Systems into Modules (1972)
2. Albin, T.S.: The Art of Software Architecture: Design Methods and Techniques,

pp. 85–111. Wiley Publishing, Chichester (2003)
3. Kweku, E.-M.: Technical Factors and Abandoned Projects. In: Software Development

Failures: Anatomy of Abandoned Projects. MIT Press, Cambridge (2003)
4. Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C., Staa, A.: On the Reuse and Mainte-

nance of Aspect-Oriented Software: An Assessment Framework. In: SBES 2003 (2003)
5. Zhao, L.: Measuring Coupling in Aspect-Oriented Systems. In: 10th International Software

Metrics Symposium. EUA, Chicago (2004)
6. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using Dependency Models to Manage

Complex Software Architecture. In: OOPSLA 2005, California, USA (2005)
7. Sarkar, S., Rama, G.M., Shubha, R.: A method of detecting and measuring architectural

layering violations in source code. In: XIII Asia Pacific Software Engineering Conference
(APSEC 2006), Bangalore, India (2006)

8. Booch, G., Maksimchuk, R.A., Engel, M.W., Young, B.J., Conallen, J., Houston, K.A.:
Object oriented analysis and design with applications (2007)

9. Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern- Oriented Soft-
ware Architecture, pp. 31–52. Wiley Publishing, Chichester (2008)

10. Monteiro, M., Moura, M., Soares, S., Castor, F.F.: Towards an Analysis of Layering
Violations in Aspect-Oriented Software Architectures. In: 3rd International Workshop on
Aspects, Dependencies and Interactions (2008)

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 352–359, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Explaining Architectural Choices to Non-architects

Diego Bernini and Francesco Tisato

D.I.S.Co., University of Milano-Bicocca, Viale Sarca, 336
20126 Milano, Italy

{bernini,tisato}@disco.unimib.it

Abstract. Explaining and motivating architectural choices are crucial points
both in real system development and in computer scientists education.
Stakeholders and students should fully understand from a high level perspective
the rationale behind basic architectural choices. The paper proposes a
communication approach that is complementary to established design processes
and can be exploited in workshops that involve the “non-architects” at the end
of each phase of an iterative development process. Starting from a problem
analysis focused on the significant aspects of data, activities and information
flows, a logical architecture is defined by grouping activities into logical
components. Different logical architectures are rated according to several
conceptual dimensions, in order to highlight their specific rationale and
benefits. Finally, deployment solutions are considered to weight the ratings
according to costs and constraints of different deployment architectures and of
the underlying technologies.

Keywords: requirements analysis; architectural design; components; architect-
ture teaching.

1 Introduction

Many methods and approaches have been proposed to drive the architectural
design [1]: among them Rational Unified Process methods [2] and Kruchten’s 4+1
views [3], the Siemens Four Views model [4] and the Architecture Tradeoff
Analysis Method [5]. Most methods rely on an iterative approach and highlight
the relevance of frequent workshops [6] to assess the achievements of each
iteration and to draw the guidelines for the next ones. Workshops involve “non-
architects”, be they stakeholders in a business context or undergraduate students
in an educational context; they play a crucial role but are often flooded with
trendy buzzwords including, during the last decades, client-server, three-tier, grid,
SOA, cloud computing and so on. Though these terms denote significant
technological opportunities, they are often misused and presented as silver bullets
in a marketing perspective.

The risk is the premature elaboration [6] of key architectural aspects (e.g.,
distribution issues) that are improperly biased by scarcely motivated technological
choices and do not rely on a clear understanding and assurance that the architecture
meets the business needs [7]. This risk is especially high at early stages of the process,

 Explaining Architectural Choices to Non-architects 353

(e.g., at the end of the inception and of the initial elaboration phases in RUP), both
because key choices about coarse-grained architectural aspects can be hardly modified
later and because non-architects playing strategic roles are involved in these stages.

The aim of the paper is to suggest a communication process that is complementary
to the overall design process and can support the explanation of architectural choices
to non-architects when they are involved in critical decisions. The explanation should
present in understandable and linear way the rationale of the choices, not the history
of the underpinning process; this can be subsumed by the sentence “fountain process,
waterfall explanation”.

First, the problem architecture is introduced. It includes, as one can expect, actors,
use cases and domain model. It provides insights about the conceptual activities the
system must perform by sketching the major information flows in a Data Flow Diagram
style [8]. The problem architecture also summarizes the major Non-Functional
Requirements (NFRs), whereas it carefully excludes technological issues.

Then the logical architecture is defined by grouping activities into logical
components according to two well-established criteria, Low Coupling and High
Cohesion [9]. Coupling and cohesion are rated according to dimensions that correspond
not only to functional, but mainly to non-functional requirements. The ratings are
synthesized by Kiviat charts allowing alternative architectural solutions to be roughly
compared “at-a-glance”. Technological issues are still kept out of scope.

Finally the deployment architecture shows how the components of a logical
architecture can be deployed into a distributed system. Technological platforms enter
the scene. The ratings are weighted by considering costs and criticalities in different
deployment scenarios.

Section 2 introduces a simple case study and the problem architecture. Section 3
presents two logical architectures and discusses how they can be compared. Section 4
sketches some deployment architectures and exemplifies the impact of technological
constraints. Finally, Section 5 highlights lessons learned from the application of the
approach.

2 Problem Architecture

A simple example will be used as reference in the following. A shop chain has several
shops and one central warehouse. Each shop has a local warehouse. The goal is to
manage the demand chain. Sold goods are recognized at each POS via RFID (or via
code bar or keyboard). Product stocks are managed at three levels: shelf (to notify an
operator about the need for replenishment), local shop inventory (to require the
delivery of goods from central to local warehouse) and global inventory (to plan
purchases or production).

The aim of the Problem Architecture is to communicate the key elements of the
problem by answering a few basic questions: Who actors are, Where they are located,
What the interesting information is, How it is generated and processed, When
activities have to be performed and Why they are triggered.

Every question leads to the identification of properties of information and activities
on the basis of both functional and non-functional requirements. Properties correspond
to problem dimensions that will provide a conceptual framework for the comparison of
alternative logical architectures, as we shall discuss later.

354 D. Bernini and F. Tisato

Answering the "Who" and “Where” questions means to identify actors and where
they are physically located. In the example, there are four actors: POS, located at the
shop; Operator, mobile inside the shop; Shop manager, located at the shop and
Purchase manager, located at the central site.

“What” we are talking about is answered by a domain model in terms of class
diagrams. In the example the basic concept is that of good, characterized by an
identifier and by a number of items (sold or on a shelf or in the shop warehouse or in
the central warehouse). This can be modeled in a straightforward way by an abstract
Goods class with several subclasses corresponding to different views of the general
concept of Goods. Subclasses may exhibit significant NFRs: for example, the required
precision, which is different for different subclasses.

A2 - Update shelf level

«data store»
I2 :OnShelf

A5 - Check shelf level

I5 :Need

A3 - Update shop level

«data store»
I3 :ShopStock

A6 - Check shop level

I6 :Need

A4 - Update central level

«data store»
I4 :CentralStock

A7 - Plan purchases

I7 :Need

A1 - Get sold I1 :Sold

A8 - Fill request A9 - Supply request A10 - Send order

«How»
{Complexity = low}

«How»
{Complexity =
high}

«When»
{Frequency =
numPOS*1/sec}

«When»
{Frequency =
nShop*nProd*
1/day}

«When»
{Frequency =
nProd*1/week}

«Why»
{each time}

«When»
{Delay <=
5 min}

[low level][low level]

Fig. 1. “How”, “When” and “Why”

“How” information are generated and flow among computational activities is
sketched by the data flows in the activity diagram of Fig. 1. A relevant intrinsic
property of the activities is their computational complexity. Adornments dealing with
“When” and “Why” issues would be better presented in separate diagrams to
highlight that "How" just defines necessary conditions (i.e., the availability of
information) for the execution of the activities. Defining “When” they are performed
implies to identify frequencies and timing constraints. Finally, answering the “Why”
question implies to identify those, and only those, control constraints that are
explicitly stated by the specifications.

 Explaining Architectural Choices to Non-architects 355

3 Logical Architectures

The next step is to describe the Logical Architecture, i.e. how to group activities into
logical components. A logical component conceptually identifies a coarse-grained
software entity which encapsulates computations and state in a self-contained whole
that can be utilized through well-defined interfaces [10][11].

Activities can be grouped into logical components in many ways. Architects often
choose a dominant dimension as driver and check the resulting architecture against
other dimensions. Choosing different dimensions as drivers may lead to dramatically
different logical architectures. For example, Fig. 2 a) sketches a grouping driven by
the “What” question i.e., the goods a component manages. Fig. 2 b) sketches a
grouping driven by the “Where” question i.e., the location of devices and actors.

 a) b)

Fig. 2. a) “Goods-driven” grouping; b) “Location-driven” grouping

<<How>> adornments deal with the multiplicity of component instances. The
assumption is that the Goods-driven component is dynamically instantiated for each
sold item, whereas the Location-driven components are statically instantiated
according to the locations they deal with; of course, they have a cyclic behavior, not
shown for simplicity.

The presented solutions are naive and extreme, but they are useful to stress how the
choice of a driving dimension influences the logical architecture. The solutions are named
“Goods-driven” and “Location-driven” respectively to help non-architects identifying the
driving problem dimensions, though the solutions correspond to well-known composition
criteria (e.g., functional grouping and user/device oriented grouping [12]).

356 D. Bernini and F. Tisato

The question is: how to compare the effectiveness of different logical architectures
by considering all the problem dimensions? Key criteria are low coupling and high
cohesion [9], which should be evaluated over all the dimensions of the problem,
including NFRs. This can be done via Kiviat charts (see Fig. 3) where axes
correspond to problem dimensions. The “What” issue is refined to consider how many
data types are exploited by a component (Types), how may object instances are
managed by a component instance (Instances), data flows across components (Flows)
and data sharing among components (Sharing). The effectiveness on each dimension
is rated from 1 to 10 by assigning crisp “rule-of-thumb” values; this may suffice in a
workshop discussion aimed at providing a broad comparison of different solutions.

The footprint of a chart provides a rough but impressive “at-a-glance” feeling
about the effectiveness of different logical architectures: wider footprints correspond
to better solutions. The charts provide a reference for discussing with non-architects
the rationale behind the ratings, as summarized in the rest of this section.

Fig. 3. Ratings for Goods-driven and Location-driven logical architectures

The Goods-driven architecture (see Fig. 3) is poor in terms of cohesion. The
component interacts with all the actors (“Who”) wherever they are located (“Where”).
It also deals with all the Goods types; in this simple example there are few subclasses
of Goods that perform similar functions, so that this dimension gets a medium rating,
though in more complex situations this aspect might be more critical. The cohesion is
also poor regarding “How” and, in particular, the complexity, because the component
intermixes very simple and computationally intensive activities (Plan purchases).
Finally, the component exhibits scarce cohesion in the “When” dimension, regarding
both the frequency of the activities it includes and the timing constraints.

Things are not so bad when looking at coupling. There is only one component,
which obviously is fully uncoupled if its static structure is considered. However, the
component is multi-instantiated; therefore the coupling among different instances
must be rated by considering the dynamic behavior. Each instance of the component
manages an individual Goods item, so that different instances do not explicitly
communicate and are fully uncoupled in the “What-Flows” dimension. They

 Explaining Architectural Choices to Non-architects 357

sometimes interact over the data stores, so that there is a moderate coupling in the
“What-Sharing” dimension.

The Location-driven architecture can be rated in a similar way (see Fig. 3). Just
note that component manages several instances of Goods (“What-Instances”). There
are several information flows among components (“What-Flows”). Information
sharing (“What-Sharing”) is negligible because the data stores exploited by the
components contain disjoint information.

The comparison of the two charts in Fig. 3 shows that the ratings of the two logical
architectures are somehow complementary. The Location-driven one looks better, but
this preliminary conclusion will be refined in the following.

4 Deployment

At last platforms and technologies enter the stage. The deployment architecture
defines how logical components can be deployed into computational nodes. A natural
deployment for the Goods-driven architecture is to rely on a centralized server farm,
where instances of the unique logical component can be dynamically created each
time items are sold. On the opposite, a natural deployment for the Location-driven
architecture is to rely on a distributed infrastructure where computational nodes are
associated with shelves, shops and central site. Again, these are naive solutions,
presented here to exemplify how technological issues can be exploited to tune the
ratings deriving from the logical architecture.

Fig. 4. Weighted ratings for Goods-driven and Location-driven logical architectures

The straightforward idea is that the rating of a logical architecture on each
dimension must be weighted according to the advantages it produces in a specific
deployment scenario. For example, if a low-cost and reliable broadband network is
available, computing power is not a problem and an efficient DBMS is available, the
ratings of the cohesion on the “Where”, “How-Complexity”, “What-sharing” and
“When” dimensions get a low weight (say 0.3). On the opposite, the presence of
complex inter-component data flows may imply high development and management

358 D. Bernini and F. Tisato

costs; therefore the rating of the “What-Flows” gets a high weight (say 0.8). The
result is shown in Fig. 4, highlighting that the Goods-driven logical architecture might
be more cost-effective than the Location-driven one. Of course, the result can be very
different under different technological assumptions, for example if connectivity
problems are foreseen.

5 Lessons Learned and Conclusions

The proposed approach focuses on “how to communicate to non-architects the criteria
underlying architectural choices”. The idea is that the communication process cannot
mirror the development process, because the explanation must follow a waterfall
pattern even if the real development process is iterative. Therefore the approach
should be viewed as complementary, not alternative to established design and
development processes.

The approach borrows some central ideas from the Model Driven Architecture
(MDA) approach [13]. Moreover it strong related with the Use-Case driven
architecture design [14]. The Krutchen 4+1 views [3] and the Rational Unified
Process [2] pay particular attention to the identification of use cases, business and
problem analysis to validate the final architecture. The term “Logical Architecture” is
used there to identify the functionalities that the system has to provide. However, our
approach is more focused on how the component organization can be conceptually
defined and motivated in term of clusters of functionalities and properties. Similar
remarks apply to the Conceptual Architecture view proposed by [4].

The approach stems from experiences in real-life projects and, in particular, from
the participation in project reviews involving high-level stakeholders which “want
to understand” (and to decide) in half an hour and are often biased by up-to-date
buzzwords. The problem here is to focus on key issues and to avoid discussions
shifting from vague philosophical principles to technological tricks. The separation
between problem, logical and deployment architectures might seem pedantic, but it
helps enforcing the attitude towards abstraction and separation of concerns, without
neglecting technical aspects and constraints.

The approach has been also successfully tested in several introductory courses on
software architecture. What the authors learned is that presenting to students one or
more systems is reasonably easy; what is difficult is to communicate the rationale
underlying the choices and the conceptual process that led to a specific architecture.
Not surprisingly, students with an “algorithm-oriented” culture started with solutions
like the “goods-driven” one, whereas students with a “web-oriented” culture started
with the “location-driven” one. The comparison of the solutions by relying on the
impressive, though naive, presentation of the footprints, together with the “what-if”
discussion of what happens if different dimensions have different weights, have been
the basis for highly effective classroom discussions.

Ultimately, our goal was to support fruitful discussions, to raise doubts, to stimulate
a critical attitude and to warn against the unconscious adoption of a-priori solutions.

Further research will deal with a more precise formalization of the communication
process and, in particular, on metrics supporting the rating of the architectures over
the problem dimensions.

 Explaining Architectural Choices to Non-architects 359

References

1. Wieringa, R.: A survey of structured and object-oriented software specification methods
and techniques. ACM Comput. Surv. 30, 459–527 (1998)

2. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley
Professional, Reading (2000)

3. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Softw. 12, 42–50 (1995)
4. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley

Professional, Reading (1999)
5. Kazman, R., Barbacci, M., Klein, M., Carrière, S.J., Woods, S.G.: Experience with

performing architecture tradeoff analysis. In: Proceedings of the 21st international
conference on Software engineering, pp. 54–63. ACM, Los Angeles (1999)

6. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development, 3rd edn. Prentice Hall PTR, Englewood Cliffs
(2004)

7. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE
Softw. 22, 19–27 (2005)

8. DeMarco, T.: Structured Analysis and System Specification. Prentice Hall PTR,
Englewood Cliffs (1979)

9. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured design. IBM Systems Journal 13,
115–139 (1974)

10. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging discipline.
Prentice-Hall, Inc., Englewood Cliffs (1996)

11. Heineman, G.T., cur Councill, W.T.: Component-based software engineering: putting the
pieces together. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

12. Wieringa, R.J.: Design Methods for Reactive Systems: Yourdon, Statemate, and the UML.
Morgan Kaufmann, San Francisco (2003)

13. Mellor, S.J., Kendall, S., Uhl, A., Weise, D.: MDA Distilled. Addison Wesley Longman
Publishing Co., Inc., Amsterdam (2004)

14. Tekinerdogan, B., sit, M.A.: Classifying and Evaluating Architecture Design Methods.
In: sit, M.A. (cur.) Software Architecture and Component Technology, pp. 3–28. Kluwer
Academic Publishers, Dordrecht (2001)

Reference Models and Reference Architectures
Based on Service-Oriented Architecture:

A Systematic Review

Lucas Bueno Ruas de Oliveira, Katia Romero Felizardo,
Daniel Feitosa, and Elisa Yumi Nakagawa

Dept. of Computer Systems

University of São Paulo - USP

PO Box 668, 13560-970, São Carlos, SP, Brazil

{buenolro,katiarf,fdaniel,elisa}@icmc.usp.br

Abstract. Service-Oriented Architecture (SOA) has received increasing

attention by providing low coupling, reuse, productivity, and a better

understanding of the business domain. However, there are challenges

in creating quality solutions using services. Based on SOA, reference

models and reference architectures have been proposed to support the

understanding, development, and standardization in the development of

service-oriented systems. Considering the relevance of SOA, as well as

the lack of a complete panorama about these models and architectures,

this paper aims at presenting a detailed view about the establishment

and use of these models and architectures. For this, we conducted a

systematic review. As main results, we observed a recent increase in the

number of work regarding reference models and reference architectures

based on SOA, including for different domains. Furthermore, based on

the presented view, we identified interesting and important perspectives

for future research.

1 Introduction

SOA has arisen as a new architectural style to develop software systems. It
has been recently focus of considerable attention of the academy and industry.
In SOA, software functionalities are packaged in independent, self-contained and
well-defined modules, called services, that are the basis to compose more complex
service-oriented systems. SOA intends to contribute with low coupling systems
and, as a consequence, it can promote reuse and productivity in software devel-
opment [1]. However, in spite of the relevance of SOA, there is still challenges to
create efficient solutions using this architectural style [2].

In another perspective, Software Architecture has received increasing atten-
tion as an important research area of Software Engineering. Software archi-
tectures play a major role in determining system quality, since they form the
backbone to any successful software-intensive system. In this context, reference
models and reference architectures have emerged as elements that aim at facili-
tating and systematizing the development of software systems. In this work, we
have adopted reference model as an abstract framework that presents a mini-
mal set of unifying concepts, axioms and relationships within a particular prob-
lem domain, independently of specific standards, technologies, implementations,

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 360–367, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Reference Models and Reference Architectures Based on SOA 361

or other concrete details [3]. Otherwise, the reference architecture aggregates
knowledge of a domain, identifying abstract solutions of a problem and promot-
ing reuse of design expertise by achieving solid, well-recognized understanding of
a specific domain. In other words, while reference model is usually in a higher ab-
straction level, reference architecture intends to provide more details. In order to
contribute to development of service-oriented software systems, service-oriented
reference model and service-oriented reference architecture (i.e., models and ar-
chitectures that are based on SOA) can also be found; for instance, the OASIS
reference model [3] and Service-Oriented Solution Stack (S3) reference architec-
ture [2]. In this context, a complete and detailed view about these models and
architectures seems to be very relevant, considering the impact that they can
have to the service-oriented system development.

The main objective of this paper is to present a detailed panorama about how
reference models and reference architectures based on SOA have been recently
proposed and used. For this, we have adopted and applied the systematic review
technique [4] that makes possible to have a complete and fair evaluation about
a topic of interest. As main results of our systematic review, we have observed
that in the last years there is an increase in the number of work involving refer-
ence models and reference architectures based on SOA, showing a real interest
by both academy and industry. Furthermore, this panorama makes possible to
identify interesting and important research topics that could be investigated
yet1.

The remainder of this paper is organized as follows. In Section 2, we present
the conducted systematic review. In Section 3, we discuss results, lessons
learned and limitations of this work. Finally, in Section 4, we present our con-
clusions.

2 Systematic Review Application

Our systematic review was conducted aiming at identifying relevant primary
studies related to service-oriented reference models and service-oriented refer-
ence architectures. It was conducted from Sep/2009 to Dec/2009 and was car-
ried out by four people (one software architecture researcher, one systematic
review specialist and two graduate students). To conduct our systematic re-
view, we followed the process proposed by Kitchenham [4]. In short, this process
presents three main phases: (i) Phase 1 - Planning: the research objectives
and the review protocol are defined. The protocol constitutes a pre-determined
plan that describes the research questions and how the systematic review will
be conducted; (ii) Phase 2 - Conduction: the primary studies are identified,
selected and evaluated according to the inclusion and exclusion criteria estab-
lished previously. For each selected study, data are extracted and synthesized;
and (iii) Phase 3 - Reporting: a final report is formatted and presented. In
next subsections, we present how these phases were conducted in our systematic
review.

1 Detailed information about our systematic review is available in a technical report

found in http://www.icmc.usp.br/~biblio/BIBLIOTECA/rel_tec/RT_353.pdf

http://www.icmc.usp.br/~biblio/BIBLIOTECA/rel_tec/RT_353.pdf

362 L.B.R. Oliveira et al.

2.1 Phase 1: Planning

In this phase, we established the review protocol. For this, we specified: (i) re-
search questions; (ii) search strategy; (iii) inclusion and exclusion criteria; and
(iv) data extraction and synthesis methods.

(i)Research Questions: Aiming at finding all primary studies to understand
and summarize evidences about reference models and reference architecture
based on SOA, the following research questions (RQ) were established:

Table 1. Research Questions

RQ Description

1 Which SOA characteristics have been considered during the design and devel-

opment of reference models and reference architectures?

2 How reference architectures and reference models can enhance the development

of service-oriented systems and which are the main benefits of their use?

3 In which contexts (academy or industry) service-oriented reference architec-

tures and service-oriented reference models have been applied?

4 Which is the evaluation and use level of the service-oriented reference architec-

tures and service-oriented reference models, considering their use to implement

service-oriented systems?

5 What are the “inputs” (set of information) that support the development of

service-oriented reference architectures and service-oriented reference models?

(ii)Search Strategy: Considering the research questions, we identified the main
keywords: “Reference Architecture” and “Service Oriented Architecture”. Fol-
lowing, we found related terms for these keywords: “Reference Model”, “Service
based”, “Service Oriented”, and “SOA”. The keywords chosen must be sim-
ple enough to bring many results and, at the same time, rigorous enough to
cover only the desired research topic. We used the boolean OR operator to link
the main terms and their related terms. Finally, all these terms were combined
using the boolean AND operator. The final search string was: ((“Reference Ar-
chitecture” OR “Reference Model”) AND (“Service Oriented Architecture” OR
“Service based” OR “Service Oriented” OR SOA)).

The selected databases to our systematic review are: ACM Digital Library,
IEEE Xplore, ScienceDirect, Scopus, Springer, Web of Science. According to
Dyb̊a et. al [5], these databases are efficient to conduct systematic review in
the context of software engineering. Furthermore, Scopus was added, since it is
considered the largest database of abstracts and citations [4].

(iii)Inclusion and Exclusion Criteria: Another important element is to de-
fine the Inclusion Criteria (IC) and Exclusion Criteria (EC). These criteria make
possible to include primary studies that are relevant to answer the research ques-
tions and exclude studies that do not answer them. The inclusion and exclusion
criteria are presented in Table 2.

(iv)Data Extraction and Synthesis Method: In order to extract data, we
plan to build data extraction tables related to each research question. These
tables must synthesized results to obtain conclusions. To summarize and describe
the set of data, statistical synthesis method will be used.

Reference Models and Reference Architectures Based on SOA 363

Table 2. Inclusion Criteria and Exclusion Criteria

Criterion Description

IC1 The primary study presents a service-oriented reference architecture or a

service-oriented reference model.

IC2 The primary study presents some experience involving a service-oriented

reference architecture or service-oriented reference model.

EC1 The primary study presents a reference architecture or reference model;

however, it involves a specific characteristic or a part of SOA (for in-

stance, reference architecture for systems that support Enterprise Service
Bus (ESB) or systems that manage Service Level Agreement (SLA)).

EC2 The primary study presents a reference architecture or a reference model

to other types of systems that do not contain features related to service.

EC3 The primary study is related to SOA, but it does not propose or discuss

about reference architectures or reference models.

2.2 Phase 2: Conduction

The search by primary studies was conducted according to previously established
plan. This identification was done by looking for all primary studies that match
with the search string in the search sources. This phase is defined by three steps.
In Step 1, we identified primary studies in the databases, following the systematic
review plan established previously. As result, 181 studies were identified. In the
next step (Step 2), we selected the primary studies, through reading of titles and
abstracts and application of the inclusion and exclusion criteria. Thus, a total of
38 studies were selected. In Step 3, the 38 papers were read in full and inclusion
and exclusion criteria were again applied. Finally, 21 studies were considered as
the most relevant to our systematic review. Table 3 summarizes our findings.
It is important to observe that Scopus indexes studies of other databases, such
as IEEE xplore and Springer. Thus, it can cause an increase in the number of
repeated studies; among 36 studies, 15 were therefore repeated. However, Scopus
was the most efficient source, since 66.7% of all included papers were obtained
in this source. Otherwise, ACM contributed with only 4.8% of papers.

Table 3. Search sources, obtained and included primary studies

Database Obtained Included Rate Index2 Date

ACM Digital Library 7 1 0.048 10/27/2009

IEEE Xplore 41 7 0.333 09/29/2009

Science Direct 4 1 0.048 10/29/2009

Scopus 67 14 0.667 10/30/2009

Springer 19 5 0.238 10/28/2009

Web of Science 43 8 0.381 10/27/2009

Table 4 presents the 21 primary studies included. Column “Type” indicates
if the study is related to a service-oriented reference model (RM) or a service-
oriented reference architecture (RA). Column “Doc. type” indicates if the study
2 Ratio between the total of included studies of a database and the total of primary

studies obtained.

364 L.B.R. Oliveira et al.

Table 4. Included primary studies

Study Authors Year Type IC Doc. type

S1 Arsanjani, A. et al. 2007 RA IC1, IC2 JA

S2 Brehm, N. and Gomez, J. 2007 RA IC1 CP

S3 Choi, H. et al. 2009 RA IC1 CP

S4 Costagliola, G. et al. 2008 RM IC1 JA

S5 Costagliola, G. et al. 2006 RM IC1 CP

S6 Dillon, T. et al. 2008 RA IC2 CP

S7 Duro, N. et al. 2005 RA IC2 CP

S8 Fioravanti, F. et al. 2007 RA IC2 CP

S9 Futo, I. 2007 RM IC1 CP

S10 Hemalatha, T. et al. 2008 RA IC1 CP

S11 Lan, J. et al. 2008 RA IC1, IC2 CP

S12 Leppaniemi, J. et al. 2009 RA IC1 CP

S13 Liu, L. et al. 2008 RA IC1, IC2 CP

S14 Murakami, E. et al. 2007 RA IC1 JA

S15 OASIS 2006 RM IC1, IC2 TR

S16 Peristeras, V. et al. 2009 RA IC1, IC2 JA

S17 Ramanathan, S. 2008 RA IC2 JA

S18 Reiff-Marganiec, S. et al. 2008 RA IC1 CP

S19 Zheng, Q. et al. 2008 RA IC1 CP

S20 Zimmermann, O. et al. 2009 RA IC2 BC

S21 Zirpins, C. et al. 2008 RM IC1 JA

was published in a Journal Article (JA), Conference Paper (CP), Technical Re-
port (TR) or a Book Chapter (BC). Moreover, almost all studies were included
by criteria 1 (i.e, the primary study presents a service-oriented reference architec-
ture or a service-oriented reference model). Following, a more detailed analysis
was conducted on the 21 primary studies included in our systematic review and
data were extracted.

2.3 Phase 3: Reporting

In this phase, we present analytical results of our systematic review. Only studies
published until Oct/2009 were considered. It is observed an increase in the num-
ber of primary studies related to service-oriented reference models and service-
oriented reference architectures. This seems to indicate an increasing interest on
this topic of research. The data extraction and synthesis of knowledge arisen
considering each research question are discussed below.

RQ1: Regarding RQ1 (i.e., SOA characteristics in reference models and refer-
ence architectures), we have identified five main characteristics that have been
more widely treated in the primary studies. Table 5 summarizes these char-
acteristics and presents the studies that address each characteristic. Definition
for these characteristics can be found in [2]. In some studies, we had to infer
about the SOA characteristics that the studies were dealing with, since they was
not explicitly indicated. Among these characteristics, “service publication” and
“service composition” have had more attention.

Reference Models and Reference Architectures Based on SOA 365

Table 5. SOA characteristics in the reference architectures and reference models

Characteristic of SOA Total Percentage Primary Studies

Service publication 16 76.19% S1, S2, S3, S4, S5, S6, S8, S10, S14,

S15, S16, S17, S18, S19, S20, S21

Quality of service 11 52.38% S1, S2, S7, S9, S11, S13, S15, S16,

S17, S18, S20

Polices and governance 8 38.10% S1, S2, S9, S11, S13, S18, S19, S20

Service composition 12 57.14% S1, S3, S6, S9, S10, S11, S16, S17,

S18, S19, S20, S21

Enterprise service bus 7 33.33% S1, S3, S11, S14, S17, S19, S20

RQ2: This research question addresses the support that reference architectures
and reference models have provided to the service-oriented system development.
We have concluded that these architectures and models have been mainly used
to provide facilities to the development of systems related to a specific domain.
Moreover, the primary studies have pointed out that a common “basis” to de-
velop a set of systems is interesting. We identified also the main benefits by
using these architectures and models: inter-operability, better comprehension of
the domain, establishment of a common vocabulary, architectural reuse, consis-
tence in the system representation, and a better time-to-market.

RQ3: This research question refers to the context in which service-oriented ref-
erence architectures and service-oriented reference models have been applied. We
have observed that these architectures and models have been applied in different
domains. Table 6 summarizes our findings. Domains that involve governmental
systems, collaborative work environments, and e-learning have been investigated.
We have also identified efforts to establish architectures and models that are in-
dependent of a specific domain. For instance, S3 reference architecture [2] and
OASIS reference model [3] are two initiatives widely known, cited, and used as
basis of other reference architectures and reference models. However, in spite of
these efforts, there are still several other domains that could be considered.

RQ4: This research question addresses the evaluation and level of the service-
oriented reference architectures and service-oriented reference models. Table 7
presents how these architectures and models have been applied. It is observed
that, on the one hand, 61.90% (4.76% + 14.28% + 42.86%) of the studies have
presented an instantiation and/or implementation based on the proposed ar-
chitecture or model; on the other hand, eight studies (38.10%) have presented
only the architecture or the model. It is important to observe that none study
has explicitly treated evaluation of reference architectures and reference mod-
els. According to Clements et. al [6], the application of evaluation methods in
software architectures can improve the success of systems built from these ar-
chitectures. Thus, it seems to be interesting to concentrate efforts to investigate
the evaluation of architectures and models based on SOA.

RQ5: The RQ5 refers to the “inputs” that support the development of service-
oriented reference architectures and service-oriented reference models. The
inputs to the reference architectures and reference models involved in our sys-

366 L.B.R. Oliveira et al.

Table 6. Application domains of the primary studies

Context

Application domain Total Percentage Academy Industry

Generic (domain independent) 6 28.57% S6, S11, S13 S1, S15, S20

Governamental system 3 14.29% S3, S9, S12

E-learning 3 14.29% S4, S5, S19

Collaborative work 2 9.52% S16, S18

Enterprise resource planning (ERP) 1 4.76% S2

Multimedia 1 4.76% S8

Image processing 1 4.76% S10

Precision agriculture 1 4.76% S14

Telecommunication 1 4.76% S17

Collaborative network organization 1 4.76% S21

Ground software system 1 4.76% S7

Table 7. Evaluation and use of the reference architectures and reference models

Evaluation and use level Total Percentage Primary Studies

Evaluate 0 0% –

Architectural instantiation (a) 3 14.28% S2, S11, S21

Implementation (b) 1 4.76% S10

Both (a) and (b) 9 42.86% S3, S4, S5, S14, S16, S17, S18,

S19, S20

None 8 38.10% S1, S6, S7, S8, S9, S12, S13, S15

Table 8. Inputs used to design the reference architectures and reference models

Input Total Percentage Primary Studies

Existing systems and concrete

architectures

5 23.81% S1, S6, S19, S20, S21

Other reference architectures or

reference models

5 23.81% S4, S5, S7, S8, S14

Knowledge and experience of

the domain expert

11 52.38% S2, S3, S9, S10, S11, S12, S13,

S15, S16, S17, S18

tematic review are: existing systems, concrete architectures, similar reference
architectures, and knowledge coming from domain experts. These inputs were
also pointed by Angelov et. al [7] to establish reference architectures and refer-
ence models. Table 8 summarizes the inputs that we have found through the 21
primary studies considered. For instance, the most of studies (53.38%) have used
knowledge and experience coming from domain experts. Five studies (23.81%)
used other reference architectures and reference models as input; however, these
architectures and models are not based on SOA.

3 Discussion

Results of our systematic review point out that reference architectures and ref-
erence models based on SOA have recently received increasing attention from

Reference Models and Reference Architectures Based on SOA 367

both academia and industry. We have also observed that there is not a consensus
about how to represent service-oriented reference models and service-oriented
reference architectures. Some of them have used UML; however, the most of
them have used particular and informal way to represent them. Thus, different
understanding can be obtained, disturbing the real purposes of these models and
architectures. We also observe that the included studies have been published in
different conferences and periodicals. In other words, they are not concentrated,
for instance, in only software architecture or SOA events. Thus, the conduction
of systematic review seems to be an adequate choice, aiming at finding possibly
all primary studies in this context. In spite of positive results, relevant primary
studies written in other languages can have been ignored, it was considered only
papers in English. Our review could be conducted again, aiming at inserting
studies published from Sep/2009 until now. Although the databases used in our
systematic review are usually considered efficient sources to Software Engineer-
ing area, other databases, such as Compendex3, could be included.

4 Conclusion
The main contribution of this work is to present a detailed panorama about pro-
posal, use and evaluation of reference models and reference architectures based
on SOA. For this, we have conducted a systematic review. As main result, we
can conclude that these models and architectures have been focus of increas-
ing attention in the last years. Another important contribution of this work is
to make possible identification of new research lines; for instance, evaluation
of service-oriented reference architecture and establishment of architectures and
models for other domains that have not been considered yet. Thus, there are
still different perspectives that could be investigated, aiming at improving reuse,
productivity and quality of service-oriented systems.

References
1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-

puting: a research roadmap. Int. Journal of Cooperative Information Systems 17(2),

223–255 (2008)
2. Arsanjani, A., Zhang, L.J., Ellis, M., Allam, A., Channabasavaiah, K.: S3: A service-

oriented reference architecture. IT Professional 9(3), 10–17 (2007)
3. OASIS: Reference model for service oriented architecture 1.0. Technical report, OA-

SIS Standard (October 2006)
4. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature re-

views in software engineering. Technical Report EBSE 2007-001, Keele University

and Durham University Joint Report (2007)
5. Dyb̊a, T., Dingsoyr, T., Hanssen, G.K.: Applying systematic reviews to diverse study

types: An experience report. In: ESEM 2007, pp. 225–234. IEEE Computer Society,

Los Alamitos (2007)
6. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods

and Case Studies. Addison-Wesley, Boston (2002)
7. Angelov, S., Grefen, P.W.P.J., Greefhorst, D.: A classification of software reference

architectures: Analyzing their success and effectiveness. In: WICSA 2009, Cam-

bridge, UK, Sep 2009, pp. 141–150 (2009)

3 http://www.engineeringvillage.com

A Classification of Value for Software
Architecture Decisions

Ulrik Eklund and Thomas Arts

Department of Applied IT
Chalmers Univ. of Technology/Göteborg University, Sweden

ulrik.eklund@ituniv.se

Abstract. This paper introduces a classification for decisions originat-
ing from work performed by architects. With the creation of a new
architecture, all observed decisions were documented using an existing
taxonomy extended with the introduced classification. In the first four
months, 80 decisions were documented. Not all decisions have the same
value for the architecture and one needed a classification to reason about
importance of decisions. After realization of the first increment of the ar-
chitecture a sanity check was performed: The architects showed how the
six most important design artefacts and the fifteen most important ar-
chitectural constraints and prerequisites were related. The relationship
was via decisions and the classification helps to reduce the work to make
and maintain this connection over time. The classification is dynamic
and over time decisions can be classified differently. This enables archi-
tectural learning by pointing out which decisions were taken too early or
had little impact.

1 Introduction

The classification introduced in this paper originates from a practical problem
a group of architects was confronted with. In their preparation of a software
architecture for a new product, they have to take a large number of decisions.
Design artefacts such as specifications, models and code remain, but the ‘why’ is
lost over time. In the lifetime of a product, but in particular when an architecture
for a new product is created, an answer to the ‘why’ question is of utmost
importance; “Did we base this decision on technology that now is replaced?”;
“Did we take this decision because the company decided for a specific business
unit to implement it?”. If the reasons for a decision has been invalidated, then it
would be wise to revisit that decision, but one can only do so, if the reasoning
around the decision is documented.

The architects were in particular interested in the relationship between design
artefacts and the prerequisites for the architecture, which includes business and
technical requirements, and design constraints. During the work we noticed a
demand among the architects to discuss and understand more in detail how pre-
requisites and artefacts were related, especially as a rationale for the architecture
as a whole. This lead to a new classification of decisions supporting reasoning
about the value or usefulness of a decision, also over time.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 368–375, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Classification of Value for Software Architecture Decisions 369

We aim to aid in answering questions like “do the architects spend their time
on the right/best decisions?”, “Are there some decision the architects should not
make?” and “which decisions could be reused?”. Our contribution is a classifica-
tion of decisions and show that this helps architects to:

– detect possible decisions that need to be elaborated on,
– detect decisions that need discussion with stakeholders,
– detect over time whether the architects spend their time on taking the right

decisions, those that create true value for the organisation. These are the
decisions that would be impossible, less efficient or more costly if they would
be made by an other stakeholder, for example an acquirer or programmer.

The focus on the vital decisions become even more necessary if architects are
a limited resource or one has a lean perspective on software development, i.e.
eliminate spending time on issues not creating value.

Related Work. Kruchten et al. [1] have noticed the need of explicitly docu-
menting design decisions and recognize that this is often omitted in practice.
They present an ontology to help documenting and analysing design decisions.
In our case the architects build upon this existing ontology. Tang et al. [2] fo-
cus much on the relation between prerequisites, decision and artefacts and have
tool support for documenting this by means of a UML model profile [3]. This
approach would support a change impact analysis of the architecture, e.g. [4].

A difference between the two mentioned approaches is that Tang et. al. only
describes relationship between prerequisites and design outcomes and not be-
tween decisions themselves. If such relations need to be expressed, then a de-
sign outcome from one decision must be modelled as a prerequisite for another.
Kruchten et al. on the other hand give no extra status to prerequisites; these are
decisions at the beginning of the chain of relations and one may use a decision
attribute to document their special rationale.

2 The Case of Documenting Decisions

How can one help the architect to make a limited set of decisions, and still do
a proper job? We expect that each “architectural requirement” or prerequisite
relates via a number of decisions to at least one design artefact, most likely a
few. Similarly we would expect each design artefact to be traceable to at least
one prerequisite. If we consider the software architect to be the link between the
requirement owners (stakeholders) and the software design, then part of the job
of the software architect is to take decisions such that the set of architectural
artefacts is a smallest set covering the prerequisites.

In our case a team of software architects is appointed to deliver a new software
architecture, but one of them has the extra task as an industrial PhD student to
document all decisions taken. This is communicated to the team and everyone
agrees on the usefulness of that extra task being carried out. The decisions were

370 U. Eklund and T. Arts

documented in a systematic way with attributes1 similar to the ones by Kruchten
et al. [1]. Additional notes were taken describing how the decision was taken, e.g.
was it made by the lead architect, by consensus after discussion, or if alternatives
were not even discussed?

In the first four months, 80 decisions were documented relating to both the
process of defining the architecture and the resulting artefacts. After first incre-
ment of the software architecture a sanity check on the work was to be performed.
In order to do so, the architects showed how the six most important design arte-
facts and the fifteen most important architectural prerequisites and constraints
were related by various decisions.

Design Artefact II

Prerequisite I

Design Artefact I

Decision A

Decision D Decision B

Decision C

Quality Attributes,
Constraints

and Functionality

Decisions and
Relationships

Design Artefacts

Prerequisite II

Decision E

Fig. 1. The relationship between decisions and other elements in a simple graphical
notation. The relationships to other architectural artefacts are inspired by [2].

When documenting decisions care was taken to relate them. Whenever a
new decisions was added, it was related to already existing decisions if possi-
ble. Kruchten et. al. have a rather elaborate categorisation of different relation-
ships [5], [1], but in practice this richness of relations is a bit overwhelming; the
simplest thing to determine is whether a decision depends upon another. We pro-
pose a very simple relationship of “is influenced by”2. If decision B is influenced
by decision A then decision B must be re-evaluated if decision A is removed or
changed. This simple relationship would make it possible to evaluate how far the
influence of a single decision reaches. The link between artefacts and decisions
and between decisions and prerequisites were made as part of the documentation
process (Fig. 1), sometimes within the team of architects, sometimes by the PhD
student alone. These relations are also characterized as “influenced by”.

Future work involves evaluation of this classification together with an analysis
of the benefits at Volvo Cars.
1 Epitome (or decision itself), Rationale, Scope, Authors, State, and Category.
2 Note that the relation ‘influenced by’ is the inverse of Kruchten’s ‘depends on’.

A Classification of Value for Software Architecture Decisions 371

3 Classes of Architectural Design Decisions

We now want to talk about the decisions by characterizing the decisions based
upon how valuable the decisions are for the organization. Our point of view
is that each design artefact should be based upon a decision taken and that
decisions are taken to meet some prerequisite.

If we consider for simplicity the prerequisites and design artefacts as decisions
as well, then in this way one obtains a directed graph of decisions. When the
Ph.D. student studied this graph, it was observed that certain relations were
missing, since it was believed that two nodes were related, but no path existed
between them. In those cases it turned out that an implicit decisions was taken
they were added to the graph (similar to “Implicit and undocumented decisions”
mentioned in [1]3. Obviously, there may still be implicit decisions not recognized
this stage and therefore not made explicit, hence undocumented. The implicit
decisions are the first we want to define a name for in order to talk about them.

Oblivious Decisions are the decisions that the architects are not aware that
they are making and at best are documented in hindsight. Examples include ear-
lier experience, implicit company policies to use certain approaches, standards,
and the like. These were the most difficult decisions to observe since the ob-
server was native to the setting he observed, i.e., he was as accustomed to the
‘of course’ knowledge as the other architects. The existence of them is based on
a theoretical reasoning rather than empirical observation.

Example: Typical examples are decisions where there is only one alternative.
This can be due to technical limitations, but also that the consensus is so strong
or the decisions was taken so long ago that no-one is aware of any alternatives.

3.1 Classification by Relations in the Decision Graph

We base our terminology on the directed graph, of which Fig. 1 is an example,
obtained by relating all decisions and including prerequisites and design arte-
facts as nodes in the graph. We first divide the decisions in four main classes,
corresponding to the following relation with the decision graph:

Exterior Decision. A node in the graph that has a path to a prerequisite.
Interior Decisions. A node in the graph that has no path to a prerequisite.
Effectual Decisions. A node in the graph for which there exists a path from

a design artefact to this node.
Ineffectual Decisions. A node in the graph for which there exists no path

from a design artefact to this node.

Exterior decisions have a clear stakeholder that drives the decision and the
decisions give value to the organization by bringing the requirements of a stake-
holder closer to the design artefacts. Decision A, C and D in Fig. 1 are typical
Exterior decisions.
3 “The architect is unaware of the decision, or it concerns ‘of course’ knowledge.”

372 U. Eklund and T. Arts

Table 1. Example of a decision directly affecting the design outcomes driven by a
number of business concerns

Name: #35 AUTOSAR Basic Software
Epitome: The basic software of the electronic control units (ECU) in the elec-

trical system shall follow the AUTOSAR standard.
Rationale:
Scope: All software in the electrical system
History: Director nn, 200x-xx-xx, 1st version
Category: Exterior Effectual decision
Note: This is an assumption that the architects have worked on since the

project start in 2008 and was observed as a decided fact rather than
when the actual decision was made by management.

Example: A typical example of an exterior decision is the use of the AUTOSAR
standard [6], which supports a number of business decisions and defines a number
of standardized software components that are part of the design outcomes (cf.
Table 1 for the documented observed decision).

Interior decisions are decision necessary for the architecture to progress. De-
cision B in Fig. 1 is a typical Interior decision. Within this class of decisions, we
discriminate two kinds of decisions: Imposed Decisions and Supporting Decisions.

Imposed decisions. Decisions that are imposed on the architects and need
to be resolved for the design of the architecture to progress. There is no
stakeholder that drives the decision, but a choice needs to be made in order
to progress. Normally the choice made limits certain future business cases.
An experienced architect will need a solid knowledge about the system and
what needs to be resolved in order to have a finished product.
Example: For a connected car [7] it is important to know if the car manu-
facturer will offer all services or if 3rd parties also shall have a possibility
to offer services (in some sort of open innovation scenario). This is really a
business decision which acts as an architectural prerequisite but if it is not
known the architects need to make an assumption to progress the work with
the technical solution in the car anyway.

Supporting Decisions. A supporting decision is a decision necessary for the
architects to progress, but not discernible for other stake holders than the
architects themselves.
Example: An architecture team is tasked with developing both a product
line architecture and the architecture for the first instance. They can then
decide between first developing the product line architecture and use that
as a basis for the product architecture. Or they can first define a product
architecture and then generalise that to a product line. Either way it is not
discernible for any stakeholders which decision they made if they are both
delivered at the same time.

A Classification of Value for Software Architecture Decisions 373

Table 2. Example of a decision directly affecting the design outcomes

Name: #25 Choice of deployment views

Epitome:

The logical architecture components will have three deployments:
1. Logical architecture components onto hardware (ECUs)
2. Logical architecture components onto systems
3. Logical architecture components onto organisation
The deployment will be modelled separately from the logical package
structure in the UML model.

Rationale:
Scope: The entire logical architecture, the entire life-span
History: Architect nn1, 2009-06-08, 2nd version
Category: Exterior Effectual decision
Note: Consensus decision after several discussions. Original decision ob-

served at working meetings of the logical architecture team.

Effectual decisions result in a visible Design Outcome. In a design document
driven organization, these are typically the decisions that the software architects
are expected to make and document the outcomes in various views. An example
of an effectual decision is seen in Table 2 stating how the design outcome will be
presented. However, the software architect should obey to the principle of “an
architect should make as few decisions as possible, deferring the rest until later
in the lifecycle” [8].

Ineffectual Decisions are those decisions that address a prerequisite but are
never visible in a design artefact.

We have not found any examples of Ineffectual decisions in our study but an
analysis of design decisions and their relationship to Concerns and Outcomes
shows that these types of decisions can also exist if the classification should be
considered complete. Decision E in Fig. 1 is a typical Ineffectual decision.

4 Value of Decisions

By defining classes of decisions as above, one can determine by the position
in the graph what kind of decision is taken (Exterior or Interior, Effectual or
Ineffectual) and for those that are Interior, one can determine by studying the
decisions whether it is an Imposed decision or a Supporting decision. This can
then help to determine the value of a decision or to detect decisions that need
elaboration or more discussion with stakeholders. The value depends on the
organizational context. In the context of Volvo Cars, some guidelines can be
formulated for decisions that probably need more attention than other decisions.
For example, interior imposed decisions are most important to document, since
they indicate that a technical decisions is made before the business stakeholders
have made up their mind. In other words, further discussion with stakeholders
is required; either immediately for the software release under development or at
a later stage when the business propositions are clearer.

374 U. Eklund and T. Arts

Ineffectual decisions may in the case of Volvo Cars indicate that the architects
are not yet ready with their work, since the rôle of the software architect is seen
to produce the initial top-level design and Volvo Cars is a design artefact-driven
organization. In other organizations it may be the other way around, where many
effectual decisions may indicate overambitious software architects that deal too
much with details.

Exterior and effectual decisions are, of course, also important to document,
since the “why” will be forgotten when the Design Outcome is fixed, but these
decisions are relatively easy to trace in the organization and can potentially be
reconstructed.

5 Classifying Decisions over Time

The classes of decisions we described before are statically determined. However it
was observed that decisions change over time for various reasons and this needs
to be addressed when evaluating the value or usefulness of them. Two classes
emerged after the involved architects analysed the 80 observed decisions in our
case. In order to asses the value of the decisions over time the analysis needs to
be iterated.

Unstable decisions are those decisions that change over time due to added or
changed prerequisites, given that these prerequisites were hard to foresee. At the
moment of this analysis, we have not yet been able to identify such decisions,
but since our study only lasted four months and the products based on the
architecture are manufactured in more than seven years this is not unexpected.

Premature decisions are decisions that show to be erroneous over time. They
had to be changed without new prerequisites emerging, because they were based
upon incorrect interpretation of prerequisites or forgotten prerequisites.

Example: A decision on what to include in the architecture description was
changed from: Items/headings that are known to be included in the reference
architecture description with a comment that future information will be included
in future versions of the document, to: There will not be any empty headings
with TBD (to be defined) in the architecture description. This decision was
changed by the lead architect after three months. Because of too little contextual
information available at the moment that the decision was taken, this precise
decision had to be adjusted quickly after.

Expedient decisions are those decisions that do not change over time (thus
it depends upon when in time one determines their status whether they are
expedient or not). Expedient decisions are unchanged when prerequisites are
added or changed.

6 Conclusion

With the proposed classification of decisions it should be possible to reason
about the value of decisions, as seen from the architects perspective, both when

A Classification of Value for Software Architecture Decisions 375

the decisions are are made and later in retrospective. The classification should
support post-mortem analysis if the architects spend their time on the most
useful issues, especially in the view of the architects being a limited resource.

A software architect should observe and take care of Interior Imposed deci-
sions, since they form a potential risk for the architecture. If one is to re-use
decisions in a next project, then the Interior Imposed and Interior supported
decisions need to be evaluated thoroughly. Exterior decisions also need to be
re-evaluated, but the situation of having a stakeholder for them eases that task.

When gaining experience from working with software architecture it is impor-
tant to observe which decisions become unstable, premature or stay expedient
throughout the product lifetime. In particular premature decisions indicate a
learning opportunity for software architects.

In practice it seems impossible to document all architectural decisions in the
lifetime of a car, in particular to maintain the documentation of these decisions.
A learning organization starting to document decisions will become better in
choosing which decisions to maintain.

If an organisation is interested in re-using architectural knowledge from pre-
vious projects and systems, it should also be interested in what subset of this
knowledge that is useful for the architects to re-use. We believe this paper
presents a classification and an associated in-depth terminology to use in such
analyses.

Acknowledgements. This work has been financially supported by the Swedish
Agency for Innovation Systems (VINNOVA) as part of the FFI program. We are
grateful for all the time fellow architects have contributed in discussions.

References

1. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural
knowledge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 43–58. Springer, Heidelberg (2006)

2. Tang, A., Han, J., Vasa, R.: Software architecture design reasoning: A case for
improved methodology support. IEEE Software 26(2), 43–49 (2009)

3. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design trace-
ability and reasoning. Journal of Systems and Software 80(6), 918–934 (2007)

4. Jansen, A., Avgeriou, P., van der Ven, J.S.: Enriching software architecture docu-
mentation. Journal of Systems and Software 82(8), 1232–1248 (2009)

5. Kruchten, P.: An ontology of architectural design decisions in software intensive
systems. In: 2nd Groningen Workshop on Software Variability, pp. 54–61 (2004)

6. AUTOSAR: AUTomotive open system ARchitecture, AUTOSAR (2009)
7. Automotive technology: The connected car. The Economist (June 2009)
8. Tyree, J., Akerman, A.: Architecture decisions: demystifying architecture. IEEE

Software 22(2), 19–27 (2005)

BeeEye: A Framework for Constructing
Architectural Views

Hervé Verjus1, Sorana Cı̂mpan1, Azadeh Razavizadeh1, and Stéphane Ducasse2

1 University of Savoie, LISTIC Lab, France
2 INRIA Lille-Nord Europe, RMoD Team, France

{firstname.lastname}@univ-savoie.fr, stephane.ducasse@inria.fr

Abstract. We believe that offering means for defining and building mul-

tiple architectural views of a given system enhances the understand-

ing of the system as a whole. BeeEye is a generic and open framework
for architecture reconstruction, which allows to construct architectural

views using different (possibly combined) viewpoints and perspectives.

The framework follows a model-driven approach where viewpoints and

views (abstract and concrete) are models that are defined, constructed

and used.

1 Introduction

Software systems need to evolve over time. They get modified to improve their
performance or change their functionality in response to new requirements, de-
tected bugs, etc. Some changes are part of the system maintenance; others evolve
the system, generally by adding new functionalities, modifying its architecture,
etc.. To successfully evolve a complex system, it is essential to understand it. The
understanding phase is time and effort consuming, due to several reasons, among
which: the system size, lack of overall views of the system, its previous (undoc-
umented) evolutions, etc. Software architectures are valuable assets during soft-
ware evolution; they improve the system understanding, by providing abstract
representations of it. This motivates us on supporting the software system un-
derstanding phases, by constructing for an existing system different architectural
representations, at different abstraction levels, called architectural views.

It is widely accepted that multiple architectural views are useful when describ-
ing the architecture of a software system [11,4,1]. Architecture relevant informa-
tion can be found at different granularity levels of given systems and needs to be
studied from different perspectives. A viewpoint is a collection of patterns and
conventions for constructing one type of views. It reflects stakeholders concerns
and guides the construction of views [9]. This paper presents the BeeEye frame-
work, dedicated to the construction of architectural views according to different,
possibly composed, viewpoints. The framework proposes several viewpoints re-
lated to both business and software engineering domains. It also provides the
means for defining new viewpoints. The next section presents an overview of
the BeeEye approach. Then we zoom on architectural views (Section 3), ar-
chitectural viewpoints (Section 4), and view construction (Section 5). Section

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 376–383, 2010.
� Springer-Verlag Berlin Heidelberg 2010

BeeEye: A Framework for Constructing Architectural Views 377

6 presents related work and section 7 briefly addresses the BeeEye framework
implementation. The paper closes in section 8 with concluding remarks.

2 BeeEye: Goal and Overall Approach

Current propositions highlight the importance of taking into account multiple
viewpoints in both the engineering of the system, and in the maintenance phase.
Several viewpoints were proposed to be used during the different phases of the
software process [11,18,7]. Software architecture recovery aims at extracting ar-
chitectural representations for existing systems. Ducasse and Pollet [6] propose
an exhaustive process-oriented taxonomy of existing architecture reconstruction
approaches. Such approaches are classified according to their goal, processes
employed, inputs used, techniques and outputs. Given the wide range of propo-
sitions, we identified the need for a unifying architecture recovery framework,
where processes, techniques and views can be combined in different ways, de-
pending on the user expectations. The main constraints on such a framework
are: (1) genericity: set and structure the main concepts to cover as much as
possible the existing techniques; give system representations from different (pos-
sible user-defined) perspectives; (2) flexibility, openness : provide different con-
struction processes and means to combine them; give the possibility to define
user-specific construction processes. None of the existing approaches is generic
enough to provide such a framework: they either limit to some specific view-
points and/or representations, either the process is fixed, either the techniques
employed are limited: they are not adapted as a basis for a generic framework,
as their intended goal was not to provide such a framework.

BeeEye is a first proposal for a generic architecture recovery framework. Bee-
Eye deals with the above mentioned contraints on genericity, flexibility and open-
ness throughout the use of:

– views, and viewpoints : as the main artefacts for architecture representation
and recovery, where views are system representations from a given perspec-
tive defined in a viewpoint;

– composable construction processes : different basic operators (construction
techniques) are provided and can be combined in a flexible manner to obtain
user-defined construction processes;

– different abstraction levels: architectural representations (views) are consid-
ered at different abstraction levels; different kinds of relations exist among
constructed views; abstraction and refinement relations concern views sit-
uated at different abstraction levels; composition relations concern views
situated at the same abstraction level; these relations are inferred either by
construction, either by analysis of existing views.

Figure 1 presents an overview of the possibilities offered by the framework in
terms of view construction, relations among views and viewpoints. Each con-
struction step corresponds to a framework recursion [16] where an output view
is constructed from an input view using a given viewpoint. The viewpoint entails

378 H. Verjus et al.

Fig. 1. An overview of the BeeEye Framework

the technique used to construct the view. Such construction steps can be chained
horizontally and/or vertically. An architectural view construction process can
combine multiple construction steps. A vertical application of a construction
step leads to output views representing the system from the same perspective as
the input view. It induces a change in the abstraction level: the output view is
either an abstraction, either a refinement of the input view. Horizontal applica-
tions of construction steps lead to composed output views in which the system is
represented from multiple perspectives. This translates in a representation which
details elements of the input view using a different perspective on the system:
the concerned elements are represented as composite elements.

3 Architectural Views

An architectural view represents a system in terms of interconnected architec-
tural elements from a given (possibly composed) perspective. Such a perspective
is related to particular stakeholders concerns [9], and conditions the representa-
tion elements and their relationships. A view is generally part of a set of views
representing the system using different perspectives. Several views may represent
the system from the same perspective, but at different abstraction or detail lev-
els. Relations exist among views, generally related to the framework recursions
that constitute the view construction process (Section 5). We consider two kinds
of architectural views: abstract views and concrete views.

An abstract view represents a possible (intuitive) model for a system within a
considered perspective. Each element of the abstract view is supposed to be an
abstraction of a part of the system, but the relation with the system’s elements is

BeeEye: A Framework for Constructing Architectural Views 379

not explicit. Abstract views are means for representing a priori knowledge on the
system architecture. Different inputs, architectural or not [6], can be considered
when defining abstract views, such as previous architectures, documentation,
expertise on the system, etc.

A concrete view gives a concrete representation for a software system: the
relation between this view and the system is explicit, generally by abstraction
relationships among view and system elements. Concrete views are considered
at different abstraction levels. Elements of a concrete view are either directly,
either transitively connected to system elements via abstraction relations. An im-
plementation view is considered for the system, where for each system element
a corresponding architectural element is defined and connected by an abstrac-
tion relationship. Concrete views are always issued from a construction process
(section 5) which employs one or several viewpoints (section 4).

4 Viewpoints

[9] defines a viewpoint as a collection of patterns and conventions for constructing
one type of view. It reflects stakeholders concerns and guides the construction
of views. BeeEye uses viewpoints in each framework recursion where starting
from an entry concrete view another concrete view is constructed (see Section
2). BeeEye proposes two general classes of viewpoints: (a) matching viewpoints :
are used to verify whether the system is compliant (in terms of established
criteria) to a given architectural representation (abstract view); the user has thus
representation expectations which are tested against the system; (b) discovery
viewpoints : are used as means for discovering representations of the system in
the absence of particular representation expectations; elements are grouped using
generic similarity criteria.

The two intuitive definitions given above can be refined in terms of user
concerns representation and kind of construction process employed. Thus, user
concerns can be represented in terms of abstract views (matching viewpoints)
or/and in terms of a similarity criteria to be used and an associated threshold
(discovery viewpoints). In matching viewpoints the construction process maps
the elements of the system1 against architectural elements of the abstract view.
In discovery viewpoints the construction process makes use of clustering tech-
niques; it compares among them elements of the entry concrete view using the
chosen similarity criteria (reflecting user concerns). Elements with a degree of
similarity above the established threshold are grouped and association relations
are defined between them and a corresponding architectural element introduced
in the constructed concrete view.

Our framework formalizes thus the [9] definition by separating the concerns
reflected in the viewpoint (in an abstract view for mapping viewpoints and sim-
ilarity criteria for discovery viewpoints) on the one hand, and rather generic
construction primitives that make use of this information when constructing a
1 We use the term system elements here to make reference to elements of the view

used as an entry view for the construction process.

380 H. Verjus et al.

new view on the other hand. The separation of the viewpoint definition in these
distinct, yet related descriptions, has several benefits: (i) reusability and main-
tenance flexibility: each part of the framework (abstract and concrete views,
viewpoints, construction process) can be maintained and reused independently;
(ii) accessibility and security: this separation gives the ability to use the frame-
work for different categories of users with different levels of knowledge about
a system.

Examples of matching viewpoints are business domain-based mapping view-
points which consider the principal business domain concepts and their rela-
tionships, and software pattern-based viewpoints [8] which identify architectural
elements conform to a given pattern. Examples of discovery viewpoints are the
activity-based viewpoint which identifies the architectural elements according to
their level of interaction with their environment, and the business domain-based
discovery viewpoint which identifies business domain concepts. The framework
can easily integrate other viewpoints.

5 View Construction

Concrete views are always constructed using framework recursions, or construc-
tion steps 1. Such a step takes an existing concrete view as input and produces
another concrete view using a viewpoint. The specificity of concrete views relies
in their relations with the system they represent (dashed arrows in Figure 1).
They provide abstract representations of the system, from a given perspective
entailed implicitly in the viewpoint definition. This relation can be direct, if the
view was constructed directly from the system. Otherwise, it can be obtained by
transitive closure, as each concrete view posses relations towards the view from
which it was constructed. So at each framework recursion the view constructed
is linked to the input view. The nature of this relation depends on the technique
employed: construction by refinement, composition or abstraction.

Construction steps can be chained, combining vertical and horizontal recur-
sions, and concrete views are issued from a succession of construction steps. We
employ the term construction process to make reference to this combination of
construction steps. As each step employs a different viewpoint each of which can
be related to a different perspective, a view can represent the system from a
combined perspective.

Construction by Abstraction. The elements of the constructed view are at a
higher abstraction level than their related elements of view given as input. El-
ements of the input view sharing a particular characteristic are grouped. Char-
acteristics used for grouping elements are either provided by the abstract view
(matching viewpoint), either they are provided by generic algorithms (i.e. de-
tecting elements’ naming similarities - discovery viewpoint). The elements of the
constructed view have abstraction relationships towards elements of view given
as input.

Construction by Refinement. This technique is the counterpart of the previous
one. The output view represents the system from the same perspective, but at a
lower abstraction level. It consists a more detailed representation of the system.

BeeEye: A Framework for Constructing Architectural Views 381

Construction by Composition. This technique is employed to obtain multi-
ple perspective views and corresponds to horizontal framework recursions. The
viewpoint V employed in a construction by composition step corresponds to
a perspective that differs from the one in which the input view represents the
system. Thus, for each element E in the entry view, the associated abstracted el-
ements are considered and grouped according to the viewpoint V. The elements
thus obtained and their relationships are considered as a representation of the
element E and bare composition relationships to it.

6 Related Work

Various contributions concern architecture recovery for object-oriented systems
[6]. The inputs used by extraction approaches are various. Most often the source
code is used, but also alternative sources of information such as: developer knowl-
edge [13,10]; bug reports and external documentation [2]; or an ontology of the
software system’s domain [3]. In our approach we use viewpoints to guide the
extraction from the source code of a system. Viewpoints are generic and can be
related to a software pattern, a business model or cohesion metric,etc.. Sepa-
rating user concerns and construction process in viewpoint definition increases
their genericity, reuse and maintainance.

There are several techniques to reconstruct architecture of an existing sys-
tem. Approaches like [12] and [15] consider external constraints (represented as
queries) to be checked against the reality of source code or recovered architec-
tural elements. [13,10,17] propose an automatic reconstruction technique based
on reflexion models, starting with a structural high-level model. In Murphy et
al. proposition, users iteratively refine a structural high level view model to gain
information about the source code. The technique is based on the definition of
a set of mappings between this high level model and the source code. Our tech-
nique is a reflexion model; the main difference is that we propose a framework
to apply this reflexivity. This framework leads in define multiple views from any
generated (or existing) view.

7 Implementation

Conceptually, the BeeEye framework entails all reconstruction steps starting
from the source code. Nevertheless, the initial steps correspond to reverse en-
gineer the system. The BeeEye implementation (in Smalltalk) uses the Moose
re-engineering environment [14] for the construction of the implementation view
(the first BeeEye framework recursion) which is represented using the FAMIX
meta-model [5]. The current framework implementation supports part of the
proposed techniques. Although not complete, the implementation allowed us to
test both vertical and horizontal view construction. The paper [16] details and
further analyses the results obtained in a case study using the BeeEye framework.

382 H. Verjus et al.

8 Concluding Remarks

We propose in this paper BeeEye, a generic architecture recovery framework.
The architecture is defined here as a set of architectural views representing the
system from different perspectives and at different abstraction levels. In build-
ing this framework we tried as much as possible to cover existing propositions
and to build an open framework that eases the integration of new means for
view construction. Thus, BeeEye provides generic enough concepts to cover as
much as possible the existing extraction techniques and to support system repre-
sentations from different (possible user-define) perspectives. It equally provides
different construction processes and means to combine them, giving the pos-
sibility to define user-specific construction processes. None of the existing ap-
proaches in software architecture recovery is generic enough to provide an open
and generic framework for architecture recovery: they either limit to some spe-
cific representations, either the extraction process is fixed, either the techniques
employed. Using the BeeEye framework, viewpoints related to both business and
software engineering domains are defined. It also provides means for defining new
viewpoints.

References

1. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,

Stafford, J.: Documenting Software Architectures: Views and Beyond. Addison-

Wesley Professional, Reading (2002)

2. Cubranic, D., Murphy, G.: Hipikat: Recommending pertinent software development

artifacts. In: Proceedings 25th International Conference on Software Engineering

(ICSE 2003), pp. 408–418. ACM Press, New York (2003)

3. Deissenboeck, F., Ratiu, D.: A unified meta-model for concept-based reverse en-

gineering. In: Proceedings of the 3rd International Workshop on Metamodels,

Schemas, Grammars and Ontologies, ATEM 2006 (2006)

4. Deursen, A., Hofmeister, C., Koschke, R., Moonen, L., Riva, C.: Symphony:

View-driven software architecture reconstruction. In: Proceedings of the Fourth

Working IEEE/IFIP Conference on Software Architecture (WICSA), pp. 122–134

(2004),

http://csdl.computer.org/comp/proceedings/wicsa/2004/2172/00/

21720122abs.htm

5. Ducasse, S., Ĝırba, T., Greevy, O., Lanza, M., Nierstrasz, O.: Workshop on FAMIX

and Moose in software reengineering (FAMOOSr 2008). In: 15th Working Confer-

ence on Software Maintenance and Reengineering (WCRE 2008), October 2008,

pp. 343–344 (2008),

http://scg.unibe.ch/archive/papers/Duca08bFAMOOSr2008.pdf

6. Ducasse, S., Pollet, D.: Software architecture reconstruction: A process-oriented

taxonomy. IEEE Transactions on Software Engineering (2009),

http://scg.unibe.ch/archive/external/Duca09x-SOAArchitectureExtraction.

pdf

7. Finkelstein, A., Goedicke, M., Karmer, J., Niskier, C.: Viewpoint oriented software

development: Methods and viewpoints in requirements engineering. In: Algebraic

Methods II: Theory, Tools and Applications (1991)

http://csdl.computer.org/comp/proceedings/wicsa/2004/2172/00/21720122abs.htm
http://csdl.computer.org/comp/proceedings/wicsa/2004/2172/00/21720122abs.htm
http://scg.unibe.ch/archive/papers/Duca08bFAMOOSr2008.pdf
http://scg.unibe.ch/archive/external/Duca09x-SOAArchitectureExtraction.pdf
http://scg.unibe.ch/archive/external/Duca09x-SOAArchitectureExtraction.pdf

BeeEye: A Framework for Constructing Architectural Views 383

8. Guo, Y., Atlee, Kazman: A software architecture reconstruction method. In: Work-

ing Conference on Software Architecture (WICSA), pp. 15–34 (1999)

9. IEEE Architecture Working Group: IEEE P1471/D5.0 Information Technology —

Draft Recommended Practice for Architecural Description (August 1999)

10. Koschke, R., Simon, D.: Hierarchical reflexion models. In: Proceedings of the 10th

Working Conference on Reverse Engineering (WCRE 2003), p. 36. IEEE Computer

Society, Los Alamitos (2003)

11. Kruchten, P.B.: The 4+1 view model of architecture. IEEE Software 12(6), 42–50

(1995)

12. Mens, K., Kellens, A., Pluquet, F., Wuyts, R.: Co-evolving code and design with

intensional views — a case study. Journal of Computer Languages, Systems and

Structures 32(2), 140–156 (2006),

http://prog.vub.ac.be/Publications/2005/vub-prog-tr-05-26.pdf

13. Murphy, G., Notkin, D., Sullivan, K.: Software reflexion models: Bridging the

gap between source and high-level models. In: Proceedings of SIGSOFT 1995,

Third ACM SIGSOFT Symposium on the Foundations of Software Engineering,

pp. 18–28. ACM Press, New York (1995)

14. Nierstrasz, O., Ducasse, S., Ĝırba, T.: The story of Moose: an agile reengineering

environment. In: Proceedings of the European Software Engineering Conference

(ESEC/FSE 2005), pp. 1–10. ACM Press, New York NY (2005), (invited paper)

http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf

15. Pinzger, M., Fischer, M., Gall, H., Jazayeri, M.: Revealer: A lexical pattern matcher

for architecture recovery. In: Proceedings of the 9th Working Conference on Reverse

Engineering (WCRE 2002), pp. 170–178 (2002)

16. Razavizadeh, A., Ĉımpan, S., Verjus, H., Ducasse, S.: Software system under-

standing via architectural views extraction according to multiple viewpoints.

In: 8th International Workshop on System/Software Architectures, Algarve, Por-

tugal (November 2009)

17. Robillard, M.P., Murphy, G.C.: Concern graphs: finding and describing concerns

using structural program dependencies. In: ICSE 2002: Proceedings of the 24th

International Conference on Software Engineering, pp. 406–416. ACM Press, New

York (2002)

18. Woods, S.G., Carrière, S.J., Kazman, R.: The perils and joys of reconstructing

architectures. SEI Interactive, The Architect 2 (September 1999)

http://prog.vub.ac.be/Publications/2005/vub-prog-tr-05-26.pdf
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 384–391, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Facilitating the Selection of Architectural Patterns by
Means of a Marked Requirements Model

Javier Berrocal, José García-Alonso, and Juan Manuel Murillo

Escuela Politécnica, University of Extremadura,
Av. Universidad S/N, 10071, Cáceres, Spain

{jberolm,jgaralo,juanmamu}@unex.es

Abstract. Architecture definition requires architects who are highly qualified in
both the use of architectural patterns and the analysis of the application's re-
quirements. This is because they have to identify what patterns satisfy the
application's functional requirements (FR) and quality attributes (QA), and the
interrelationships between them. However, since QAs and FRs are usually ad-
dressed separately, their interrelationships are not detailed in full. This situation
means that the architect has to expend considerable effort on their identifica-
tion, with the risk of misinterpretations that lead to an inappropriate choice of
patterns. We here present a model that allows the FRs to be marked with the
constraints imposed by the QAs. The marks are conceived to be re-used during
the architecture definition. The model brings knowledge of the requirements
and their relationships closer to the architect, allowing patterns aligned with the
requirements to be identified with less effort.

Keywords: Requirements Engineering, Quality Attributes, Software Architecture.

1 Introduction

Companies are undertaking software projects that are ever more complex, with more
features, and with stricter quality attributes. In this context, software architecture has
moved from pure research to occupying a crucial place in the development life cycle
[1]. The architecture specifies the structure of an application, the relationships be-
tween its subsystems, the requirements they cover, and how each QA is to be satisfied
[2], [3]. This allows the architect to establish a basis on which to design and imple-
ment the system as well as facilitating its maintenance and reuse [5], [6].

Creation of the architecture involves a complex decision-making process in which
the architect structures the application to meet both the FRs and the QAs [7]. To
facilitate this work, catalogues have been defined of the architectural patterns and
tactics applied in the commonest situations [1]. Also, approaches such as ADD (at-
tribute-driven design) [11] or quality-driven architecture development [13] assist the
architect in choosing and applying the most suitable patterns to meet the system's
requirements.

All these techniques assume that the architect has a profound knowledge of the re-
quirements and their relationships. The architect usually extracts this knowledge from

 Facilitating the Selection of Architectural Patterns 385

an in-depth analysis of the requirement artefacts. However, although the QAs and the
FRs are usually properly documented, they are often specified separately [16]. This is
an obstacle to the full specification of the relationships between FRs and QAs. The
result is not only that the architect's work is more difficult, but it also exposes him to
making errors of interpretation that can lead to defects being introduced into the archi-
tecture which eventually will have to be found and corrected.

Approaches such as IESE-NFR [15] focus on the architects' re-use of the afore-
mentioned information in order to check whether a requirement has been met. How-
ever, they do not indicate how architects can use this information to create a more
precise architecture. The architect still has to perform a complex analysis of the de-
tailed information. Moreover, both the requirements and the relationships are defined
in natural language, which makes it difficult to re-use them in applications to assist
the architect in generating the architecture.

The focus of the present work is the reduction of the effort and expertise required
to create the architecture. To that end, this paper describes a marked requirements
model. This model allows the functional requirements to be marked with the relation-
ships and constraints imposed by the QAs. Thus, it brings the knowledge of the
requirements and their relationships closer to the architect. Also, the marks were de-
signed to be re-used both by the architect to manually detect which pattern to apply at
each moment, and by tools that assist the architect in selecting the most appropriate
pattern. The result is that architecture patterns aligned with the requirements can be
identified with less effort by architects who are less specialized.

The paper is organized as follows. Section 2 details different approaches to archi-
tecture definition. Section 3 presents the marked requirements model. And Section 4
gives some conclusions and describes future work.

2 Background

Software architecture allows the architect to structure an application to satisfy both
the FRs and the QAs. Designing an architecture is a very complex task [8], [9]. It
requires the architect to make an in-depth analysis of the requirements to obtain the
information that will show which patterns or tactics will allow them to be met. For the
analysis to be successful and to avoid misunderstanding, the requirements have to be
correctly detailed and the architect has to be highly experienced in their analysis.

Several methods have been proposed to reduce the complexity of this task. Some
of them provide a requirement model especially designed to facilitate the architect's
work. For example, IESE-NFR [15] proposes artefacts and templates which act to
guide the elicitation of the non-functional requirements (NFRs). They even define
how to document and interlink each NFR with the FRs that have to satisfy them. The
aim of this approach is to refine the QAs until they reach a level at which pattern and
metrics can be specified. From this information, the architect can evaluate whether the
QAs are correctly achieved by the architecture. However, this approach gives no
indication on how to re-use this information to generate the architecture, or how to
choose the most appropriate pattern.

Other proposals define activities that guide the architect during the analysis of the
requirements and the selection of patterns. For example, Quality-Driven Architecture

386 J. Berrocal, J. García-Alonso, and J.M. Murillo

Development [13] details each pattern and its variations in a model based on feature
modeling [14]. Among other things, this model is used to specify the relationship
between patterns, indicating how they should be combined. The architect uses it to
identify the patterns that can achieve the QAs of the system, and can also consider the
relationships modeled to select those which are most appropriate. However, this ap-
proach does not indicate how to consider the relationships between QAs or with the
FRs. Also, the selection is done entirely by the architect based on his knowledge.

Attribute-Driven Design (ADD) [11] is one of the best known approaches. It de-
fines a recursive process guiding the architect in selecting system elements, in identi-
fying the architectural driver within each system element, and in applying patterns to
satisfy them. In order to reduce the effort of the selection of patterns, it proposes the
use of reasoning frameworks [12], [8]. A reasoning framework is an application im-
plementing mechanisms to evaluate which patterns achieve some of the architectural
drivers of a QA. However, these frameworks are unable to evaluate the effect of the
patterns on the rest of the QAs. Furthermore, selecting the architectural driver re-
quires the architect to conduct a thorough analysis of the requirements.

Therefore, approaches which define activities to model more of the requirements'
information do not show how to re-use this information to create the architecture.
Approaches guiding the selection of patterns require a major effort on the part of
skilled architects to avoid misinterpretation during the analysis of the requirements
and their relationships. The present work is intended to contribute to overcoming the
drawbacks of these two kinds of approach, bringing the knowledge of the require-
ments closer to the architect. In particular, it describes a marked requirements model.
This model marks which FRs are constrained by each QA. The marks are conceived
to be re-used both by the architect to identify which pattern to apply in each situation,
and by tools to assist the architect in the selection of patterns.

3 Marked Requirements Model

Architecture definition requires the analysis of the QAs and the FRs. Through this
analysis the architect identifies the NFRs that have to be satisfied, and gains informa-
tion on the subsystems, their interconnections, and their size. This information is later
used to identify which patterns to apply. However, choosing the most appropriate
pattern also requires the architect to analyze the relationships between requirements.
He must know which part of the system is constrained by each QA and how. For
example, if an application has to be maintainable and portable, it can be split into
layers using the Layer Pattern [4]. But if only a part should achieve these QAs, the
architect should evaluate the possibility of applying other patterns.

However, although the requirements are usually perfectly detailed in the require-
ments model, this is not the case for their relationships. The reason is that each kind
of requirement is addressed separately. OpenUP [10], for instance, defines different
artefacts for each class of requirement. Thus, the architect has to analyze these arte-
facts carefully to identify the relationships between requirements. This requires great
experience to avoid making mistakes of interpretation.

The present section describes a marked requirements model. The objective of this
model is to convey more information to the architect about the quality restrictions of

 Facilitating the Selection of Architectural Patterns 387

each subsystem or FR. The following subsections will describe the process1 of identi-
fying and marking requirements, and how the architect re-uses this information.

3.1 The Process of Marking Requirements

This model proposes marking the FRs influenced by some QA with the notation
<<QA>> + attributes to satisfy. In this way, the relationships between FRs and QAs
can be modeled. This notation has been defined as a stereotype in a UML profile2.

The process of marking requirements begins with their identification. Like other
processes, this identification starts by analyzing the business processes and the stake-
holders' objectives. From the former, one extracts the application's subsystems and the
functional requirements of each subsystem. Each functional requirement is detailed
with the use case nomenclature, and the sequencing of its steps/actions is modeled
with Interaction Diagrams. These diagrams will later be used to mark the relationships
between requirements.

From the latter, one identifies the QAs comprising the stakeholders' objectives and
which business processes and subsystems will have to satisfy them. This information
is used to bind the subsystems to the QAs to create a first approximation to their rela-
tionships. Then, the QAs are refined to detail the NFRs that conform them. If possi-
ble, the NFRs have to be refined until measurable values are extracted. Besides the
stakeholders' NFRs, the NFRs set by the software company also have to be specified.
Examples might be the need for distributed development, or the use of a specific
technology.

As the NFRs are detailed, one must refine the relationships between subsystems
and QAs. To that end, the FRs and NFRs involved in each relationship have to be
identified. Once identified, the actions of the functional requirement Interaction Dia-
grams have to be marked to indicate which NFRs they must satisfy. This marking
process can be performed using a purpose-designed UML profile that defines the
stereotype <<QA>> + restrictions to satisfy. This stereotype allows the requirements
engineer to indicate which actions or group of actions are constrained by a given QA.
In this way, these diagrams can convey a fuller picture of the requirements and their
relationships, and can even reflect the actions involved in each relationship.

Figure 1 shows a marked activity diagram. This diagram models a use case of a
web-shop. This use case indicates how the seller checks that a customer's order is cor-
rect. In this diagram, there are two marked groups of actions. The first indicates that
the whole use case should be maintainable and developed by multiple teams, and the
second that the communication between the actor and the use case should be secure.

Once the requirements have been modeled, the analysis discipline commences. As
in other processes, one of the first tasks of this discipline is to identify the analysis
classes. As well as being included in a Class Diagram, each class identified is also
included in the Interaction Diagrams of the requirements in which it has some kind of
responsibility, similar to the indications given in [18]. For this, each class is modeled
as a lane encompassing the actions for which it is responsible. Thus, the actions are

1 A brief outline will be given of the activities related to the discipline of the requirements so as

to deal in some depth with the activities of architecture generation.
2 The formal specification of the UML profile is not given in this paper because we think that it

falls beyond the scope of the conference.

388 J. Berrocal, J. García-Alonso, and J.M. Murillo

first grouped into classes, and second, knowing which QAs constrain each action, the
architect can infer which QAs affect each class. This information can be re-used to
identify what pattern to use and in which classes to apply it. For example, Figure 1
shows two levels of lanes. The first indicates that the Sales subsystem is responsible
for all the actions. And the second indicates that, within this subsystem, the Orders
class is responsible for these actions. Therefore, this subsystem and this class have to
achieve the QAs of security, maintainability, and development by multiple teams.

Fig. 1. Use case of a web-shop

After these classes have been identified, the architect can define the system archi-
tecture. As discussed above, to create the architecture the architect has to analyze the
use cases, the analysis classes, and the restrictions imposed by the QAs on each ele-
ment. In this case, the architect can use the marked Interaction Diagrams to access
this information without needing to perform an in-depth analysis of the requirements.
In particular, architects with less experience in methods of analysis and requirement
processing can access these data with less effort. Also, the architect can re-use these
marks to evaluate which QAs impact each part of the system and how. This informa-
tion can be used to decide which pattern to apply. For example, if a system's diagrams
are marked with the QAs of maintainability, but not with the efficiency QA, the layer
pattern could be applied.

Furthermore, these marked diagrams can also be re-used by tools that assist the
architect in the selection of patterns. This kind of tool usually defines an ontology
detailing a company's architectural criteria. These criteria may be related to the stereo-
type <<QA>>, defining which criteria apply depending on the QAs that are marked.
Thus, the use of these tools together with the marked requirements model reduces the
effort and expertise needed to define the architecture.

3.2 Using the Marked Requirements Model to Select and Apply Patterns

This section details how the layer pattern is selected from the marked requirements
model and how it is applied. Only one pattern is presented due to space limitations.
This pattern was chosen because it satisfies some of the QAs marked in the activity
diagram of Figure 1. For this pattern, the following data is detailed (similarly to [17]):
intent, consequences, motivation, and structure and necessary transformations.

Intent. The layer pattern helps to structure applications that can be decomposed into
groups of subtasks. If these groups are based on responsibility (responsibility-based

 Facilitating the Selection of Architectural Patterns 389

layering), the grouping is into layers called tiers. The number of tiers will differ from
one application to another depending on the complexity.

Consequences. Table 1 lists, ordered by relevance, the QAs affected positively and
negatively by the implementation of this pattern.

Table 1. Benefits and liabilities of the Layer pattern

Benefits Liabilities
Maintainability Inefficiency
Developed by multiple teams Development complexity
Portability (adaptability)

Motivation. The Interaction Diagrams can be used to easily identify whether this pat-
tern can be applied. To this end, the architect has to check whether all or almost all
the diagrams are marked with the QAs affected positively, and not with those affected
negatively. For example, all of the actions of the activity diagram of Figure 1 are
marked with the QAs of maintainability and development by multiple teams. If the
rest of the diagrams are also marked with these QAs, this pattern can be implemented.

Without these diagrams the architect would have to do the following: analyze the
artefact in which the QAs are documented; for each QA, e.g., maintainability, evalu-
ate the FRs to identify which of them have to be maintainable; re-analyze all the QAs
to identify which other attributes constrain the same requirements, e.g., development
by multiple teams or efficiency; check for conflicts; and finally identify the patterns
that satisfy the QAs and resolve the conflicts.

Structure and necessary transformations. To implement this pattern the following
steps are taken. First, by analyzing the class diagram, the architect has to identify the
number of tiers into which the application will be divided. If the diagram has no more
than four classes3, the application will have one tier. If the diagram has between five
and ten classes, the application will have two tiers (presentation and data). If the
diagram has more than ten classes, the application will be divided into three tiers
(presentation, business logic, and data). Due to lack of space, only the transforma-
tions for the three-tier case will be detailed.

Second, the architect has to assign responsibilities to the tiers. This involves the
following steps:

• Create the presentation tier in the class and interaction diagrams.
• Create a new class in the presentation tier, and add a new action responsible for

communication to this class.
• If the previous action is not the last of the use case, the sequence of actions has to

be followed, so that a flow between this action and the next has to be created.
• Interactions between actions and actors that exchange data need a document detail-

ing the data exchanged to be associated with them.

3 These numbers will be based on an architect's knowledge and experience of his or her com-

pany and team. They may differ from company to company.

390 J. Berrocal, J. García-Alonso, and J.M. Murillo

The actions of the interaction diagram which require data to be read/written must
obtain them through the data tier. This involves the following steps:

• Create the data tier in the class and interaction diagrams.
• For each group of data read/written, a value object (VO) is created.
• For each VO, a data access object (DAO) managing it is created.
• Every action reading/writing data must be included in the responsible DAO.

The remaining operations will be part of the business logic tier. Figure 2 shows the
diagram resulting from applying this pattern to the use case specified in Figure 1.

Fig. 2. The use case of Figure 1 after applying the Layer Pattern

4 Conclusions and Future Works

We have presented a marked requirements model which provides the architect with
more information on the requirements and their interrelationships.

Architecture definition requires architects who are highly experienced in methods
of dealing with requirements. Even experienced architects who join a new company
have to go through an adaptation period to understand how requirements are defined.
Today, there are techniques such as MDA that automate some development activi-
ties. Architecture definition is another activity that needs to be automated to reduce
its complexity and the dependence on highly skilled architects. The marked model
presented here was designed to be re-used by tools that assist the architect in his
work.

We are currently working on developing a tool based on an ontology describ-
ing a company's development criteria. This tool analyzes the marked requirements
model to assist the architect in defining an architecture. Also, we are analyzing
the relationships between FRs and QAs to identify further situations in which
patterns are applied, and how these situations are marked in the requirements
model.

Acknowledgments. This work was funded by PDT08A034, TIN2008-02985,
GRU09137, PRE09156, and Fundación Valhondo Calaff.

 Facilitating the Selection of Architectural Patterns 391

References

1. Clements, P., Shaw, M.: The golden age of software architecture. Revisited. IEEE Soft-
ware 26(4), 70–72 (2009)

2. Bengtsson, P.: Towards Maintainability Metrics on Software Architecture: An Adaptation
of Object-Oriented Metrics. In: 1st Nordic Workshop on Software Architecture (1998)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley,
Boston (2003)

4. Avgeriou, P., Zdun, U.: Architectural Patterns Revisited - A Pattern Language. In: 10th
European Conference on Pattern Languages of Programs, Germany, pp. 1–39 (2005)

5. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and
Case Studies. Addison-Wesley, Boston (2002)

6. Lung, C.H., Kalaichelvan, K.: An Approach to Quantitative Software Architecture Sensi-
tivity Analysis. J. Software Eng. and Knowledge Eng. 10(1), 97–114 (2000)

7. ISO/IEC 9126,
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39752

8. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing software architectures to
achieve quality attribute requirements. IEE Proc., Softw. 152(4), 153–165 (2005)

9. Bosch, J.: Design and use of software architectures adopting and evolving a product-line
approach. Addison-Wesley, Boston (2000)

10. OpenUP, http://epf.eclipse.org/wikis/openup/index.htm
11. Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., Wood, B.: Attrib-

ute-Driven Design (ADD), Version 2.0. Technical Report, Software Engineering Institute,
CMU/SEI-2006-TR-023 (2006)

12. Bachmann, F., Bass, L., Klein, M.: Moving from quality attribute requirements to architec-
tural decisions. In: 2nd International Software Requirements to Architectures Workshop,
Portland, Oregon, USA (2003)

13. Kim, S., Kim, D., Lu, L., Park, S.: Quality-driven architecture development using architec-
tural tactics. J. Systems and Software 82(8), 1211–1231 (2009)

14. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Boston (2000)

15. Doerr, J., Kerkow, D., Koenig, T., Olsson, T., Suzuki, T.: Non-Functional Requirements in
Industry - Three Case Studies Adopting an Experience-based NFR Method. In: 13th IEEE
Int. Conference on Requirements Engineering, pp. 373–384 (2005)

16. Xu, L., Ziv, H., Richardson, D., Liu, Z.: Towards Modeling Non-Functional Requirements
in Software Architecture. In: Workshop on Early-Aspect (2005)

17. Buschmann, F., Henney, k., Schmidt, D.C.: Pattern-Oriented Software Architecture: On
Patterns and Pattern Languages. John Wiley & Sons, England (2007)

18. Meszaros, G., Doble, J.: A Pattern Language for Pattern Writing. In: Pattern Languages of
Program Design, vol. 3, pp. 529–574. Addison-Wesley, Boston (1998)

Modelling Changes and Data Transfers
for Architecture-Based Runtime Evolution

of Distributed Applications

An Phung-Khac, Jean-Marie Gilliot,
Maria-Teresa Segarra, Antoine Beugnard, and Eveline Kaboré

Department of Computer Science, Télécom Bretagne

Technopôle Brest-Iroise - CS 83818 - 29238 Brest Cedex 3 - France

{an.phungkhac,jm.gilliot,mt.segarra,antoine.beugnard,eveline.kabore}
@telecom-bretagne.eu

Abstract. Architecture-based approaches for runtime evolution enable

software systems to dynamically move between consistent architectural

variants. Successful runtime evolution must enable the new, replacement

variant to be initialized with the data of the replaced one. In distributed

systems, however, the initialization is complex and may be time-consuming

due to data transfers across sites. Identifying systems’ components subject

to change is then critical for planning evolution and reducing replacement

actions, avoid unnecessary data transfers, and then, reduce downtime of

system services. Addressing this issue, this paper presents an approach to

runtime evolution of distributed applications. We present how a develop-

ment process allows to 1) specify architectural variants of an application

and 2) identify components subject to change and operations for transfer-

ring data managed by these components. Moreover, the design informa-

tion is used at runtime to automatically plan evolution.

1 Introduction

An important class of software systems needs to evolve at runtime in order to
adapt to changing executing environments. Moreover, during evolution, they
are expected to be continuously available which require the software system to
modify its own architecture at runtime [1]. Such runtime modifications include
1) replacement, addition, and removal actions to achieve the target variant, and
2) initialization of the replaced variant with data of the replacement one.

As the above tasks may disrupt collaboration among components, coordina-
tion is needed when performing modification actions. Such coordination is even
more difficult when considering distributed software. Furthermore, initializing
the replacement variant with data of the replaced one may be time-consuming
due to data transfers across sites. Such data transfers make continuous avail-
ability difficult or even impossible to achieve. Therefore, planning evolution,
including identifying components subject to change and operations for trans-
ferring data managed by these components, becomes a critical task in order to

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 392–400, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Architecture-Based Runtime Evolution of Distributed Applications 393

avoid unnecessary replacement of components and data transfers, thus reducing
downtime of system services.

In our previous work [2], we have proposed an architecture-based approach,
called adapt-medium approach, for runtime adaptation and evolution of dis-
tributed applications. The approach is based on a model-based development
process that allows to generate consistent architectural variants of a distributed
application, and then, embed the variants into an adaptive distributed compo-
nent. However, although an adapt-medium component is able to evolve at run-
time without recompilation, the whole running variant must be replaced when
performing evolution.

This paper extends our previous work by allowing identification, through the
model-based development process, of the variants’ components subject to change
and operations for manipulating their data. Therefore, when performing evolu-
tion, instead of replacing the whole running variant, only the necessary com-
ponents are replaced. Moreover, we describe how the system can exploit design
information of the model-based process in order to automatically plan evolution.

The remainder of the paper is organized as follows. Section 2 briefly presents
the adapt-medium approach that was presented in [2]. Section 3 describes the
basics when applying this approach to develop an adaptive publish/subscribe
system. Section 4 presents the main contribution of this paper, i.e., how our
approach allows identifying components subject to change and operations for
manipulating their data. Section 5 discusses related work and Section 6 concludes
the paper.

2 Adapt-Medium Approach Overview

To cope with distribution complexity and manage evolution we adopt the adapt-
medium approach when developing a distributed software system. This approach
is mainly defined by (see Figure 1) :

– A high-level abstraction of the system with a set of fixed services. As
defined by [3], these services define the functional properties of the system
and is represented by the dotted-line oval on top of Figure 1, called medium.

– A distributed architecture for implementing the system. As the system
should allow distributed collaborations among services, its internals are im-
plemented as a set of distributed components, called managers. Managers
collaborate to provide the specified services.

– A development method proposed in [4] which consists in a set of refine-
ments successively applied. Each refinement considers a particular design
concern and each concern has several alternative solutions. The refinement
process can be described and automated by using reusable model transfor-
mations.

In [2], we reused the refinement process in order to build architectural variants
of a software system. The process was extended to allow evolution and com-
pleted with a composition step enabling to embed all variants of a manager into

394 A. Phung-Khac et al.

an adapt-manager (see Figure 2). Moreover, adapt-managers include Buisson’s
framework [5] (Decider, Planner, Executor in the figure) to perform transitions
between variants.

* 1

Abstraction

1
11

Variant 1

11

1 1* 1 111 1*

1 1

Adapt-medium

1 1*

Refinement

…

Composition
Adapt-manager

Solutions

Separation
of concerns

Manager

**

1
Planner

Decider

Executor

Medium Logic

Planner

Decider

Executor

Medium Logic

Design
decisions

Variant n

Composite manager

Fig. 1. Adapt-medium development approach

3 Example: A Publish/Subscribe Adapt-Medium

We have recently been working in the Compagnym@ges project1 that aims at
deploying services to help elderly people stay at home. In this project, we used
a publish/subscribe (P/S) system for developing a news service and an events
sharing service. Because of the many faces of P/S systems [6] and different data
storage strategies, there is a large number of possible variants. In order to develop
(a subset of) these variants and be able to switch between them, we used the
adapt-medium approach for both services.

3.1 High-Level Abstraction

Consider a P/S system managing resources published by different publishers.
Subscribers subscribe to events they are interested in and will be notified about
new events matching their demands. A publisher can remove the resources he
has published. Likewise, a subscriber can unsubscribe from event(s) he has sub-
scribed to.

Based on this description, the P/S high-level abstraction should propose five
services: subscribe, unsubscribe, notify, and publish, unpublish.
1 www.companymages.eu

Architecture-Based Runtime Evolution of Distributed Applications 395

3.2 Refinement Process

Figure 2 shows the refinement process of the adapt-medium approach applied to
a P/S system. Each level in the figure corresponds to a refinement step which
considers a particular design concern. Each node represents a model of the sys-
tem. An edge from node A at level i to node B at level i+1 represents the
transformation that introduces a particular solution model for the design con-
cern considered at level i into the system model at node A. The result is the
model represented by node B.

Therefore, the first transformation introduces managers for managing the re-
sources and events sets (nodes 1a, 1b). From these nodes, two corresponding
refinement subtrees are created. As an example, the model at node 1a is step
by step transformed into several resources-implementation models at the leafs
(nodes 2, 7, 8, 9) which include solutions to all the considered concerns. Like-
wise, the refinement subtree of the events data will lead to different events-
implementation models. An implementation variant will be derived by merging
two models, one from each subtree.

0

1a

2 3 4

65

97 8

High-level
abstraction

Introducing storage
strategies

Introducing data
indexing algorithms

Centralized Replication Distributed

HashTable HashTable Algo. X

OpenChord Past(FreePastry) OpenChord
Introducing algorithm

implementations

1

1b

AND
Introducing
managers resources events

Fig. 2. Refinement process for resources data management

The refinement of the resources (and events) management contains three steps
corresponding to three design concerns:

– Introducing storage strategies : three solutions, centralized, distributed, and
replicated are the considered solutions for this design concern.

– Introducing data indexing algorithms : when the functional data are not man-
aged by the centralized strategy, the P/S system needs to use data indexing
algorithms for indexing and locating data. For example, the system can use
hash table to index resources.

– Introducing algorithm implementations: each algorithm for indexing data
may have different implementations. For example, the system can use two
design solutions for a hash table: OpenChord DHT [7] or Past DHT [8].

396 A. Phung-Khac et al.

4 Facilitating Runtime Evolution

Our approach to facilitate runtime evolution consists of enabling the identifica-
tion of 1) variants’ components subject to change and 2) operations for manip-
ulating data managed by these components.

The main idea of our approach is to 1) modularize solutions into components
and 2) model the refinement process. By analyzing the refinement process model,
the components implementing the concern solution subject to change and oper-
ations for manipulating their data can be identified. This section presents the
basics of the modularization principle and the refinement process model.

4.1 Modularization

At each refinement step, the introduced solution may be modularized into com-
ponents located in different (distributed) adapt-managers. Realizing an evolution
that replaces one solution by another one thus relies on replacing all the con-
stituent components of the former solution. The set of interfaces implemented
by the components forms a change point. If a component implements data man-
agement, read-/write-operations of the change point interfaces will be used for
transferring data between the components.

Although an important goal of the separation of concerns is to modularize
software, implementations of a design concern are not always completely repre-
sented by individual components because a design concern may interleave other
ones [9]. The solution introduced for such a design concern may require mod-
ifying components modularized by previous transformations of the refinement
process. In this case, we modularize the independent parts, if any, of the solu-
tion into components and create new variants of all the interleaved concerns’
components modularized previously. Moreover, constraints among these compo-
nents are also defined for constraining evolutions, i.e., replacing components of
the interleaving concern requires replacing those of the interleaved one.

4.2 Modelling Refinement Process

We extend the refinement process by providing an explicit process model. The
model describes the steps of the process, the modularized components, and change
points referring to components’ interfaces and their read-/write-operations. This
model is used by the planner at runtime to automatically plan evolution.

Figure 3 shows the refinement process model. Each design decision (DesignDe-
cision) corresponds to a branch of the tree in Figure 2. A design decision contains
a solution model (SolutionModel) describing a solution (its set of components)
of the considered design concern, and a solution introduction model (Solution-
Introduction). The latter describes how to introduce the solution model into the
current model (MediumModel) by indicating a change point (ChangePoint). To-
gether with a model (MediumModel), a change point is included in a decision
point (DecisionPoint) which corresponds to a node in Figure 2. As previously
mentioned, a change point includes the interfaces (Interface) implemented by

Architecture-Based Runtime Evolution of Distributed Applications 397

ChangePoint EOperation

interface

Solution
Introduction

Interface

*

EReference

data

DecisionPoint

readOper

writeOper

data

DataDefinition

eType

0..1

0..*

0..1

0..1

11

changePoint

1

MediumModel

medium 1

SolutionModel

1

MediumRefinementProcess

DesignDecision
* *

medium

in

out

solution
1

1

Component

1..*Medium
1

1..*

Fig. 3. Description of the adapt-medium refinement process model

the introduced solution and, if it corresponds to data management services, the
change point indicates the data set and read-/write-operations of the interfaces
for manipulating the data. The process model can be considered as a variability
model whose variation points correspond to the decision points.

This explicit refinement process model allows to identify the components im-
plementing a solution of a design concern and its interfaces, including data man-
agement operations. Therefore, evolutions can be automatically planned at run-
time by using this model.

4.3 Planning Evolution

In order to explain how automatic planning can be achieved, we use the ex-
ample of the P/S system and its variants presented in Section 3. By using
the refinement process model, the planning of the evolution from variant V2
(centralized-resources) to variant V8 (OpenChord-resources), resp. nodes 2 and
8 in Figure 2, is realized as follows:

– Identifying components to be replaced: all the components corresponding to
interfaces identified by the change point related to node 1a in Figure 2 will
be replaced.

– Identifying replacement components: all the components corresponding to
refinements in the righthand branch from node 1a to node 8 will be replace-
ment components.

– Identifying operations for transferring data: evolution from V2 to V8 re-
quires transferring resources between the variants. The required operations
are then the read-operation provided by the to-be-removed components and
the write-operation provided by the to-be-added components.

398 A. Phung-Khac et al.

When running, the process model is replicated and managed by the MediumLogic
component presented in Figure 1. By using the model, the Planner component
of a particular adapt-manager, called the coordinator, plans the actions to be
executed to perform evolutions. These actions are executed by the Executor
component of each concerned adapt-manager. Moreover, when data transfers
are needed, each Executor component reads local data managed by the replaced
component and writes the data into the replacement one through the identified
interfaces. Depending on the functional implementation of the replacement com-
ponent, the data will be placed in this component or sent across sites to other
replacement components.

5 Related Work

Automatic planning of component-based adaptation has been addressed mainly
in architecture-based and/or SPL-based adaptation approaches.

In the first type of approaches, variants of an adaptive software system can
be built by using architecture description languages (such as Darwin ADL [10]
or ArchWare-ADL [11]), specific architectural styles (such as C2 in ArchStudio
[12]), or multiple architectural styles (such as Rainbow [13] or ArchWare [11]).
Adaptation plans can then be generated by analyzing models of source and target
system variants.

Considering automatic adaptation planning as a consequence of modelling
commonality and variability (CVM) of adaptive software, approaches employing
techniques in the domain of software product lines are particularly relevant. In
these approaches, a system variant is considered as a software product. Common-
ality and variability of system variants can be modelled by relying on variation
points of the corresponding product line (such as MADAM [14]), by using fea-
ture models (such as DIVA [15] or the approach by Cetina et. al. [16]), or by
using orthogonal variability models (such as Genie [17]).

None of the existing approaches supports automatic planning of distributed
evolutions including data transfers across sites. This issue is addressed in our
approach by 1) using a high-level abstraction (for specifying distributed applica-
tions) and its model-based refinement process, and 2) describing the process as
a variability model. Moreover, unlike existing CVM approaches, our variability
modelling does not assume that features can be directly mapped to (a set of)
components, which allows us to model interleaved concerns.

6 Conclusion

In this paper, we have introduced an architecture-based approach to support
runtime evolution of distributed applications, addressing the challenges of iden-
tifying applications’ components subject to change and supporting data transfers
between variants when performing evolution.

In our approach, the target distributed application is first specified by using an
abstraction that represents the functional communication between distributed

Architecture-Based Runtime Evolution of Distributed Applications 399

client components. This initial abstraction is then refined by an iterative process
that considers one design concern at a time and introduces different solutions
for it. Moreover, a model for the process has been proposed so that components
implementing solutions and their interfaces can be identified and, thus, be used
for automatic planing on evolution.

We have automated the development process by using model-based tech-
niques including Eclipse Modelling Framework [18] and Kermeta [19] and used
it for developing to P/S system based services: a news and an event sharing
services.

Our future work include supporting an explicit model of modularity and vari-
ability. Feature models could be employed for organizing variation points, that
correspond to decision points of the process model. We expect to build an inte-
grated environment that support the adapt-medium development process.

References

1. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: A research

roadmap. In: Software Engineering for Self-Adaptive Systems, pp. 1–26 (2009)

2. Phung-Khac, A., Beugnard, A., Gilliot, J.M., Segarra, M.T.: Model-driven develop-

ment of component-based adaptive distributed applications. In: SAC 2008 DADS

Track, ACM Press, New York (2008)

3. Cariou, E., Beugnard, A., Jézéquel, J.M.: An architecture and a process for imple-

menting distributed collaborations. In: EDOC 2002, Lausanne, Switzerland (2002)

4. Kaboré, E., Beugnard, A.: Implementing a data distribution variant with a meta-

model, some models and a transformation. In: Meier, R., Terzis, S. (eds.) DAIS

2008. LNCS, vol. 5053, pp. 224–237. Springer, Heidelberg (2008)

5. Buisson, J., André, F., Pazat, J.L.: A framework for dynamic adaptation of parallel

components. In: ParCo 2005 (2005)

6. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of

publish/subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

7. Bamberg University, Distributed System Group: Openchord,

http://www.uni-bamberg.de/projects/openchord

8. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage

utility. In: HOTOS 2001. IEEE Computer Society, Los Alamitos (2001)

9. Tarr, P., Ossher, H., Harrison, W., Sutton, S.: N degrees of separation: Multi-

dimensional separation of concerns. In: ICSE 1999. ACM Press, New York (1999)

10. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software

architectures. In: PESEC 1995. Springer, Heidelberg (1995)

11. Oquendo, F., Warboys, B., Morrison, R., Dindeleux, R., Gallo, F., Garavel, H.,

Occhipinti, C.: ArchWare: Architecting Evolvable Software. In: Oquendo, F., War-

boys, B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 257–271.

Springer, Heidelberg (2004)

12. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,

N., Quilici, A., Rosenblum, D.S., An, A.L.W.: Architecture-Based Approach to

Self-Adaptive Software. IEEE Intelligent Systems 14, 54–62 (1999)

13. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:

Architecture-based self-adaptation with reusable infrastructure. Computer 37(10),

46–54 (2004)

http://www.uni-bamberg.de/projects/openchord

400 A. Phung-Khac et al.

14. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using

architecture models for runtime adaptability. IEEE Software 23(2), 62–70 (2006)

15. Morin, B., Barais, O., Jézéquel, J.-M., Fleurey, F., Solberg, A.: Models@run.time

to support dynamic adaptation. IEEE Computer 42(10), 44–51 (2009)

16. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic computing through reuse

of variability models at runtime: The case of smart homes. Computer 42(10), 37–43

(2009)

17. Bencomo, N.: Supporting the Modelling and Generation of Reflective Middleware

Families and Applications using Dynamic Variability. PhD thesis, Lancaster Uni-

versity (2008)

18. The Eclipse Foundation: Eclipse modeling framework (EMF),

http://www.eclipse.org/modeling/emf/

19. IRISA Triskell: Kermeta, http://www.kermeta.org/

http://www.eclipse.org/modeling/emf/
http://www.kermeta.org/

Mining Relationships between the Participants
of Architectural Patterns

Ahmad Waqas Kamal and Paris Avgeriou

Department of Mathematics and Computing Science,
University of Groningen, The Netherlands

a.w.kamal@rug.nl, paris@cs.rug.nl

Abstract. Architectural patterns are often combined with other, relevant architec-
tural patterns during software architecture design. However, combining patterns
effectively remains a challenging task: first because the integration of any two ar-
chitectural patterns can take several forms; second because existing pattern lan-
guages only mention generic pattern-to-pattern relationships and do not go into the
details of their combination. In this paper, we propose to address this problem by
discovering and defining a handful of recurring pattern relationships at the level of
the participants of patterns. We have studied 32 industrial case studies and mined
a number of relationships between participants of different patterns. We present a
few of these relationships and outline some examples of their appearance.

Keywords: Architectural Patterns, Pattern relationships, Pattern Languages.

1 Introduction

Over the last decade, architectural patterns have increasingly become an integral part
of software architecture design practices [1]. Architectural patterns are seldom applied
in isolation within a software architecture: individual architectural patterns can only
solve specific parts of the design problem; it takes a combination of patterns to cover all
the requirements. For instance, the Client-Server and Broker patterns are often used in
combination to design distributed systems architectures [2]. Architectural patterns are
characterized of intrinsic relations to other patterns, giving them the potential to solve
larger design problems [3].

The integration of two or more patterns during software architecture design remains
a challenging task. More precisely, we identify the following two challenges:

– Most of the pattern languages described in the literature document relationships
among patterns at the conceptual level [4]. However, none of these pattern lan-
guages deals with the relationships among participants1 of related patterns. In this
sense, current pattern languages only offer guidance for the selection of related
architectural patterns, or hints to design a particular kind of system; they do not
provide support for integrating architectural patterns within software architecture

1 The term pattern participants, frequently used in this paper, refers to the elements within the
solution of patterns e.g. the Pipe and Filter are participants of the Pipes and Filters pattern.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 401–408, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

402 A.W. Kamal and P. Avgeriou

design. Extensive design effort is required to precisely identify participants of re-
lated patterns that overlap, interact, or override related pattern participants in the
resulting software architecture.

– Depending on the context of a system at hand, the combination of architectural
patterns may entail variability, which is weakly addressed by existing pattern rela-
tionships approaches. For instance, to model interactive applications, the MVC[2]
and Layers[2] pattern can be combined in several different forms like 3-tier layered
architecture (where the presentation layer may consist of View and Control partic-
ipants while the application logic layer owns the Model participant), which may
vary for 2-tier or 4-tier software architectures.

To address the challenges described above, we propose to model the combination of
patterns using a set of relationships between their participants. We have discovered these
relationships by reviewing the patterns used in several industrial software architectures.
We present a representative set of these relationships and exemplify them with instances
from studied architectures.

The remainder of the paper is structured as follows: in Section 2, we describe the
notion of pattern-to-pattern relationships and briefly outline the approach presented in
this paper. In Section 3, we list the pattern participants relationships discovered during
this work. Section 4 discusses the related work and Section 5 describes future work and
concludes this study.

2 Relationships among Architectural Patterns

Architectural patterns are often combined with related patterns within software archi-
tectures. The value that individual patterns have, as solutions to design problems, is
of course substantial, but their tremendous value comes when patterns are effectively
combined within software architectures [1]: the combination of patterns is more than
the sum of its parts. Unfortunately, individual patterns descriptions are not always ex-
plicit on ’how’ to combine them with related architectural patterns. For instance, when
reading the Reactor [4] pattern description, it is not clear how to apply Active Object [4]
or Monitor Object [4]. In principle each participant within the solution of architectural
patterns can be quite complex by itself, and often implemented using other patterns.
It is therefore of paramount importance to express the intricate relationships between
patterns, in order to effectively combine them within software architectures.

Pattern languages are thus far the most common and well-known form used by the
software patterns community for defining relationships among architectural patterns.
Pattern languages are not formal languages, although they document generic relation-
ships among architectural patterns to address particular design problems [4]. For in-
stance, the Model-View-Controller pattern has a ’change propagation’ relationship with
the Observer pattern as documented in [2]. Several pattern languages have been doc-
umented in the literature e.g. pattern languages for distributed computing [1], domain
specific pattern languages [2], architectural views specific pattern language [3] etc.

Mining Relationships between the Participants of Architectural Patterns 403

2.1 The Proposed Approach

The underlying idea behind our approach is that architectural patterns can be effec-
tively combined using a set of relationships between their participants. The relation-
ships serve as a basis for identifying the participants of the patterns to be combined,
that share responsibilities, overlap, or override each other. In order to come up with
such relationships between participants, we have analyzed the architectural patterns
used within several software architectures, and mined the relationships between their
participants. The sources for eliciting pattern participants relationships were architec-
ture design documents, architecture diagrams, design decisions, and case studies etc.
The mined relationships must be recurring in several different examples in order to be
considered as good design solutions. In the following section, we present a set of these
relationships.

3 Mining Pattern-Participants Relationships for Modeling
Patterns

The relationships presented in this section are based on the study of 32 industrial soft-
ware architectures [5]. We provide, as an example, the complete documentation of a
selected relationship. Due to space restrictions, a number of other relationships are also
documented in an abbreviated form. We also provide a table to exemplify the discovered
relationships by mapping pairs of patterns to the relationship between their participants.

3.1 Example of a Pattern Participant Relationship: absorbparticipant

In this sub-section, we present the detailed documentation of the absorbParticipant re-
lationship while in the next sub-section we list several other relationships discovered
during this study.
Definition: An absorbParticipant relationship defines how the participants of different
patterns performing similar responsibilities are integrated in a single element. In an
absorbParticipant relationship, certain participants of a pattern are absorbed by the
participants of another pattern to avoid redundancy.
An example to describe the issue: Both the Reactor and Acceptor-Connector patterns
introduce their own event handling solutions for using different services. The separate
event handling structures in both patterns would be redundant if these patterns are ap-
plied in combination, e.g. the handler participant is present in both the Reactor and
Acceptor-Connector patterns. In the Reactor’s architectural structure, for each service
an application offers, a separate event handler is introduced that processes different
types of events from certain event sources. However, the Acceptor-Connector pattern
can be suggested as an option to implement the Reactor’s event handlers. This ensures
that the Reactor pattern specifies the ’right’ types of event handlers associated with the
Acceptor-Connector pattern. In order to integrate the two patterns, the overlapping pat-
tern participants either need to be merged or participants of one pattern be replaced
by the other. However, removing a specific participant within a pattern may impact the
solution specified by that pattern and may require new associations between the partic-
ipants of both patterns, which is not a trivial work and require extensive design effort.

404 A.W. Kamal and P. Avgeriou

Fig. 1. The absorbParticipant relationship between Reactor and Acceptor-Connector

3.2 More Pattern Participants Relationships

Due to space restrictions, we will not go into detail for the rest of the pattern participants
relationships we have elicited, but we will give a brief overview of these relationships.

mergeParticipant: The mergeParticipant relationship is used to combine one or more
semantically different pattern participants into a single element within the target pattern.
Such an integration retains the structural and semantic properties of individual partici-
pants into the target element. For instance, integrating the Active-Passive pattern with
the Pipes and Filters pattern may result in certain filters passively processing the data.
In essence, a passive filter in the Pipes and Filters chain performs the responsibilities of
both a filter and a passive element. The mergeParticipant relationship is different from
the absorbParticipant relationship where participants performing similar responsibil-
ities are overridden (i.e. redundant participants are virtually removed in the resulting

Fig. 2. The mergeParticipant relationship

Mining Relationships between the Participants of Architectural Patterns 405

software architecture). Figure 2 shows an example of the occurrence of mergePartici-
pant relationship among the participants of architectural patterns.

employ: In the employ relationship, participants of a pattern make use of another pat-
tern for their complete implementation. Patterns using the ’employ’ relationship are
often used together within a software architecture where one pattern often ’makes use
of’ another pattern to fulfill specific design needs. Patterns having an ’employ’ rela-
tionship can be applied separately to a software architecture as the relationship does not
constrain the presence of both patterns within the architecture. For instance, the MVC
pattern often employs the Observer pattern for implementing the change propagation
mechanism. However, each of these patterns can also be individually applied to a soft-
ware architecture. Figure 3 shows the employ relationship among the participants of the
Iterator and Batch Method patterns.

Fig. 3. Employ relationship between the Iterator and Batch Method Patterns

depends: The depends relationship shows the need of pattern participant(s) to use an-
other pattern for their complete implementation. In comparison to the employ rela-
tionship, the depends relationship is a strong dependency of a pattern’s participants on
another pattern where participants of the source pattern are seldom applied without the
use of target pattern participants. The depends relationship is shown in a particular ex-
ample of Client-Server and Broker pattern in figure 4.

Fig. 4. The depends relationship among pattern participants

importPattern: In the importPattern relationship, the participants of the target pattern
import all participants from the source pattern i.e. all participants of a pattern are

406 A.W. Kamal and P. Avgeriou

modeled within the participant of another pattern. The importPattern relationship is
similar to Package import in UML, Family import in ACME, etc. For instance, indi-
vidual layers in the Layers pattern can import other patterns e.g. the Pipes and Filters
pattern is used for implementing data processing layers as illustrated, for example, in
figure 5.

Fig. 5. importPattern and importParticipant relationships among pattern participants

importParticipant: In the importParticipant relationship, participants of the target pat-
tern import ’specific’ participants from the source pattern. For instance, an individual
layer in the Layers pattern can import the View and Controller participants of the MVC
pattern while the Model participant of the MVC pattern resides in another layer. Figure
5 shows an example of using importParticipant relationship.

interact: In the interact relationship, certain participants of the source pattern ’interact’
with the participants of the target pattern. This relationship represents a loose coupling
among the participants of different architectural patterns such as events, procedure calls,
etc. For instance, the Request Handler pattern has an interact relationship with the Proxy
pattern to send and receive messages as shown in figure 6.

Fig. 6. The interact relationship

Table 1 provides a number of examples of pattern participants relationships discov-
ered in pattern combinations in the studied architectures.

Mining Relationships between the Participants of Architectural Patterns 407

Table 1. Pattern-Participants Relationships Description

Pattern A Pattern B Relationship Description
Reactor Leader/ Fol-

lower
absorbParticipant EventHandler and Handle participants are present in both patterns

Reactor Acceptor-
Connector

absorbParticipant EventHandler and Handle participants are present in both patterns

Layers Pipes and Fil-
ters

importPattern A specific layer can internally implement Pipes and Filters structure

Layers MVC importParticipant Individual layers can import specific participants of MVC pattern e.g.
Model may reside in one layer while View and Controller reside in an-
other layer

Layers Client-Server importParticipant see previous line comments
Layers Broker importPattern A specific layer can be implemented as a Broker
Layers Proxy importPattern A specific layer can be implemented as a proxy to other layers
Layers Factory

Method
importPattern A layer can be implemented using factory method to handle different

requests
MVC Observer employ MVC employs observer pattern to implement change notification mech-

anism
MVC Factory

Method
importPattern The Model participant can be implemented using Factory method

Broker Client-Server depends Broker is often modeled in combination with the Client-Server pattern
Client-Server Proxy interact The interaction mechanism between Client and Server may use proxy
Active Object Proxy integrate A proxy can act as an active object
Scheduler Proxy interact A scheduler can monitor the requests to decide when a request needs to

be executed

4 Related Work

Several pattern languages have been documented in the literature e.g pattern languages
for solving specific design problems [2], domain-specific pattern languages [1], and the
pattern languages documented in the Pattern Oriented Software Architecture book se-
ries [4]. Buschmann et. al. [1] present a pattern language for distributed computing that
includes 114 patterns grouped into 13 problem areas. The problem areas address tech-
nical topics related to building distributed applications e.g. Event Demultiplexing, Con-
currency, Synchronization etc. Their pattern language serve as an overview about the
selection and use of related architectural patterns to solve design problems in specific
areas. However, the language in itself presents architectural patterns as components,
objects and entities linked through generic textual relationships. For instance Model-
View-Controller has a ’request handling’ relationship with the Command, Command
Processor, Application Controller, and Chain of Responsibility patterns. Our work sig-
nificantly differs from their work as we document relationships among the ’participants’
of architectural patterns that can be used more effectively for combing any two archi-
tectural patterns in several different forms.

Some work has been done on proposing patterns languages that address specific
architectural concerns such as pattern languages for usability [6], pattern languages
for concurrency issues [1], pattern languages for performance-critical systems [2] etc.
However, these languages provide relationships that best fit to address the concerns they
relate to and do not address the relationships among participants of related architectural
patterns. In terms of granularity, pattern languages that deal with specific concerns pro-
vide more enriched relationships as compared to general pattern languages but they
too do not address the relationships among participants of architectural patterns and

408 A.W. Kamal and P. Avgeriou

overlook possible variation in relationships among the participants of combined archi-
tectural patterns.

In our previous work [3], we have documented relationships among architectural
patterns in different architectural views that show specific aspects of systems like data
flow, interaction decoupling etc. However, though such relationships provide valuable
information about pattern-to-pattern relationships (e.g. communication between Layers
may use Pipes and Filters), this language too does not focus on relationships among
participants of architectural patterns.

5 Conclusion and Future Work

The novelty of our work lies in discovering relationships among the ’participants’ of
architectural patterns which has not been fully addressed before. The use of pattern
participants relationships for integrating architectural patterns offers an effective way
to integrate architectural patterns within software architecture design. In particular, this
approach offers: a) reusability by providing a vocabulary of pattern-to-pattern relation-
ships that help combine the participants of selected architectural patterns; b) model
validation support by ensuring that the patterns are correctly combined within a soft-
ware architecture; and c) explicit representation of ’integrated’ architectural patterns
participants within software architectures.

As future work, we plan to apply our approach to industrial case studies for designing
software architectures and by conducting controlled experiments. We are in the process
of developing a pattern modeling tool called Primus [7], which will support integrating
architectural patterns and pattern variants, modeling pattern variability, architectural
views synchronization, and source code generation. We believe that we can discover
more pattern participants relationships in the near future, which will provide a better re-
usability support to software architects for effectively integrating architectural patterns.

References

1. Schmidt, D.C., Buschmann, F., Henney, K.: Pattern-Oriented Software Architecture: On Pat-
terns and Pattern Languages. Wiley Series in Software Design Patterns (2007)

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software
Architecture, vol. 1. Wiley & Sons, Chichester (1996)

3. Avgeriou, P., Zdun, U.: Architectural patterns revisited - a pattern language. Technical Report
(2005)

4. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Patterns for Concurrent and Distributed
Objects. In: Pattern-Oriented Software Architecture, J. Wiley and Sons Ltd., Chichester (2000)

5. Boosch, G.: Handbook of software architecture: Gallery (2010),
http://www.booch.com/architecture/architecture.jsp?
part=Gallery

6. Patterns and pattern languages of program (2010), http://hillside.net
7. Kirtley, N., Kamal, A.W., Avgeriou, P.: Developing a modeling tool using eclipse. In: Interna-

tional Workshop on Advanced Software Development Tools and Techniques, Co-located with
ECOOP 2008 (2008)

http://www.booch.com/architecture/architecture.jsp?part=Gallery
http://www.booch.com/architecture/architecture.jsp?part=Gallery
http://hillside.net

Software Architecture Recovery Process Based on
Object-Oriented Source Code and Documentation

Sylvain Chardigny1 and Abdelhak Seriai2

1 MGPS
Port-Saint-Louis, France
s.chardigny@mgps.info

2 LIRMM, university of Montpellier II/CNRS
Montpellier, France
seriai@lirmm.fr

Abstract. Architecture recovery aims at providing a high level abstrac-
tion of a system using the architectural elements to represent func-
tionalities and interactions. This architecture makes easier the program
comprehension and then provides many advantages during all the phases
of software life cycle. Nevertheless, most architecture recovery approaches
fail to combine the human expertise on the system with a high automa-
tion level. In order to solve this issue, we propose to use the intentional
architecture of a system, which represent the system as imagined by
its designers, to improve the adequation between the resulting software
architecture and the architect’s expectations without requiring more hu-
man expertise. Thus, we present in this paper a semi-automatic process
to recover intentional architecture from the available documentation and
the expert recommendations. This process is an extension of ROMAN-
TIC, an approach aiming at recovering a component-based architecture
of an existing object-oriented system.

1 Introduction

Given the explosive growth of the computer systems size and complexity, soft-
ware architectures are emerging as a valuable ally for both the design and main-
tenance of these systems. This abstract view of systems has become, during the
last decade, a central field of software engineering [1]. Its main advantages is to
make easier the program comprehension by allowing us to focus on architectural
elements (components, connectors and configuration) rather than implementa-
tion details [2]. In addition to program comprehension, this distinction between
functionalities (components) and interactions (connectors) is crucial to safely
maintain the system [3]. However most existing systems do not have a reliable
architecture representation. Indeed these systems could have been designed with-
out an architecture design phase, as it is the case for most legacy systems. In
other systems, the available representation can diverge from the system imple-
mentation due to the lack of synchronization between software documentation
and implementation.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 409–416, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

410 S. Chardigny and A. Seriai

Taking into account the previous considerations, we have proposed an ap-
proach called ROMANTIC1 which focuses on recovering a component-based ar-
chitecture from object-oriented systems [4]. Starting from the source code, our
process aims at selecting among all the architectures which can be abstracted
from a system, the best one according to our quality model. Then we formu-
late this model as measurable constraints and modelize the recovery process as
a search-based problem aiming at balancing these competing constraints. This
choice is motivated by the recent works on the search-based engineering showing
that these techniques are very effective to solve this kind of problems [5].

The main advantage of our approach is its automation level which decreases
the need of human expertise which is expensive and not always available. How-
ever, the code source is insufficient to recover an architecture which fulfills all
the expert expectations and allows a complete comprehension of the system.
Consequently, we propose to integrate in our process information about the in-
tentional architecture, i.e. architecture as imagined by the designers, in order to
identify an architecture reflecting all the design decisions.

The remainder of this paper is structured as follows. Section 2 presents an
overview of ROMANTIC whereas Section 3 studies the place of the intentional
architecture in the related work. In section 4 we describe the impact of the inten-
tional architecture on the search-based process and the intentional architecture
recovery process. Conclusion and future works are presented in Section 5.

2 Principles of ROMANTIC

ROMANTIC aims at recovering a component-based software architecture from
an object-oriented system using a search-based approach [6]: an exploration pro-
cess of the search space, i.e. a representation of all possible architectures, in
order to identify the best solution according to a given fitness function.

Definition of the search-space. ROMANTIC operates on a search-space consist-
ing of all the instances of a mapping model between object concepts (i.e. classes,
interfaces, packages, etc.) and architectural ones (i.e. components, connectors,
interfaces, etc.). According to this model, an architecture is a partition of the
system classes. Each element of this partition, named “shape”, is mapped to a
component and contains classes which can belong to different object-oriented
packages. All existing links between shapes are mapped to connectors. Finally,
the architecture configuration is mapped to the set of shapes constituting a
partition of the system classes.

Definition of the fitness function. Our fitness function is based on a quality model
for software architecture [7,4]. This model is based on the ISO-9126 norm [8]
and refines successively architecture quality characteristics to sub-characteristics,
properties on components and then on the shapes, like coupling or cohesion. The
1 ROMANTIC: Re-engineering of Object-oriented systeMs by Architecture extractioN

and migraTIon to Component based ones.

Software Architecture Recovery Process 411

first quality characteristic, the semantic correctness, measures the relevance of
an entity according to the concept of architecture. Its refinement is based on the
most commonly admitted properties of the architectural concepts. The second
quality characteristic, the architectural quality, describes the quality character-
istics of the architectural elements. We refine it in two sub-characteristics: the
maintainability and the reliability.

Meta-heuristic of the search-based process. ROMANTIC uses a simulated an-
nealing algorithm in order to explore the solution space and resolve the recovery
problem. This algorithm explores one solution by iteration and chooses the fol-
lowing one in its neighborhood [9]. The neighborhood depends on the algorithm
operators defined according to the problem, but the choice is also dependent from
the evaluation of the solutions according to our fitness function. The algorithm
can sometimes accept a worse solution in order to avoid local extrema.

3 Place of Intentional Architecture in Existing Recovery
Approaches

Various works are proposed in literature in order to recover architecture from an
existing system. According to their consideration for the intentional architecture,
these approaches can be split in two groups. The first one contains approaches
which deal with intentional architecture recovery from available documentation
like UML diagrams [10], source code commentaries [11] or physical organization
[12]. None of these approaches merge the information recovered from different
sources or use the expert recommendations. Moreover, all these approaches trust
all the documents whereas the documentation of the system is often outdated.

On the contrary, other approaches use the code source and human expertise
to recover the software architecture and ignore available documentation. They
use the dependencies presented in the code source and the expert recommen-
dations to regroup the source code entities in order to identify the architecture
elements. These approaches can be classified according to their automation level:
quasi manual [13], semi-automatic [14] or quasi-automatic [15]. Finally, manual
approaches take advantages from the intentional architecture thought the hu-
man expertise but are costly whereas automatic approaches are less expensive
but refuse to use the information not contained in the code source.

Thereby, the architecture recovery approaches fail to reconcile all the available
information sources. They are focused either on the human expertise or the code
source, and cannot benefit from their combination.

4 Place of Intentional Architecture in the ROMANTIC
Process

In order to improve ROMANTIC, we use the intentional architecture to reduce
the search-space. This is done in two different ways. Firstly, we define a starting

412 S. Chardigny and A. Seriai

point which is conformed to the intentional architecture. Secondly the process
ignores solutions which are obviously in conflict with the intentional architecture.
To achieve this reduction, we proceed in four steps. Firstly, we recover one view
of the intentional architecture from each type of available documents. Then we
collect the expert recommendations. After these steps, we merge all the recovered
intentional architectures and the expert recommendations in order to define a
hierarchical constraint network, i.e. a set of constraints classified per level, from
required constraints to optional ones. Finally, we use the constraint network to
reduce the search-space according to two ways. Firstly, we use the constraint
network solution as starting point for the simulated annealing. Secondly, we
modify the acceptance probability in order to depend on the variation of the
number of broken constraints in the same way that the fitness function variation.
In particular, if a required constraint is broken, the solution cannot be accepted.

4.1 Useful Information Sources for the Intentional Architecture
Recovery

Intentional architecture is the architecture as imagined, understood and manip-
ulated by its architects and designers. It is not necessary the one that is imple-
mented. Thus the information source about intentional architecture cannot be
only the source code. Among available sources, we outline the three followings :

– source code: the entity names and the commentaries contained in the code
source are often carefully chosen to make the code more explicit. They
contain intentional information which reflect the programmer goals. Con-
sequently we can use them to identify the dependences between two classes
according to the semantic similarity between their commentaries and their
entity names [16]. For example, consider two JAVA classes which sort a
list of object according to different comparators. We will probably find
similar names of variables or methods as well ass similar commentaries.
Consequently, these classes are semantically closed according to these com-
mentaries and their entity’s names, and should be in the same component;

– UML diagrams: UML diagrams are used since the first steps of the software
life cycle in order to modelize links between classes and functionalities. We
can use these information to identify the intentional architecture components
[10]. For example, consider a class diagram where the classes A and B are
connected through an aggregation link whereas the class C is disconnected.
This implies that intentional architecture should include two components:
{A, B} and {C};

– log of versionning tools: this log contains informations on the time of the file
modification and the commits. These information are useful to identify some
intentional dependency between the maintained classes[17]. For example,
consider two logged commits, the first one describes the modification of two
classes a and b whereas the second one describes the modification of the class
c. It appear that c seems to be independent and this implies that intentional
architecture should include two components: {a, b} and {c}.

Software Architecture Recovery Process 413

4.2 ROMANTIC Intentional Architecture Recovery Process

In order to use information identified in the previous section, we propose a re-
covery process from the documentation and architect recommendations. This
process is composed of four steps with different automation levels: the class par-
tition step, the recommendation collect step, the constraint network generation
step and the last step which solves the constraint network in order to obtain a
system class partition. Each element of this partition is matched to an architec-
tural component and so the partition is a view of the intentional architecture.

Class partition step. In order to recover a class partition from the three
selected type of documents, we use a process based five phases (cf. Fig.1). These
phases are of two kinds: computation phases (in blue on the figure 1) which
are automatics and validation phases (in green on the figure 1) which allow the
architect’s interventions.

Fig. 1. Class partition step and the resulting trust level

Computation phases. Computation phases aims to compute the class partition.
The first one aims to merge system classes according to a different similarity
measure for each document type. To achieve this, we use the hierarchical clus-
tering algorithm, defined by S.C.Johnson [18]. At the beginning, this algorithm
assigns each initial element to a cluster. Then, in each step, the two more similar

414 S. Chardigny and A. Seriai

clusters are merged into a single cluster. The process stops when all items are
merged into a single cluster. We obtain from this single cluster a dendrogram
which represents the class cluster hierarchy.

The second phase aims to compute a class partition from the dendrogram. To
obtain this partition, we cut the dendrogram according to its depth. Clusters
positioned to the half of the dendrogram depth are part of the system class
partition. This default process can be modified by the architect.

Validation phases. The architect’s interventions may occur at different times
during the calculation of the partition of classes: before the first computation
phase, between the two computation phases and after the last computation
phase. Each of these interventions has a direct impact on confidence in the
recovery result (cf. Figure 1):

– he can reject the information considering they are not sufficiently reliable
to be used. This action result in the first trust level : the lack of confidence;

– he can ignore the information. This is the default case if no architect is
available. In this case, he does not wish to comment at this level and take
no decision. This action result in the second trust level, the default ;

– he may also validate the results or directly influence the process.
Before the clustering phase, he can change the similarity measures between
classes. For example, he can assess the similarity between two classes is
higher than that measured or vice versa. Before the partitioning phase, he
can also change the resulting dendrogram to fit their expectations. Finally,
he can change the partition results to adjust them to their expectations.
These actions give a maximum confidence to the automatic computing and
result in the third trust level.

Recommendation collect step. To allow the architect to provide all the
knew information, our approach takes into account all partial information he
has. Thereby, our process accept the positive and negative properties, i.e. the
properties that describe respectively a relationship between two entities or the
absence of such a relationship. For example, the architect may tell us that two
classes must belong to the same component shape (positive information) or they
should not belong to the same shape (negative information).

However, depending on the expertise of the architect, we can obtain more
accurate information. Thus, the architect may know a cluster of classes which is
a component. He can even specify a system architecture which seems correct. In
this case, the objective of our process is to refine his proposal.

Constraint network generation step. The construction of the constraint
network is done in two steps: the constraint creation and their assembly into a
hierarchical network.

Constraint creation. There is two kinds of constraints: the constraints which
have been collected though the expert recommendations and constraints define

Software Architecture Recovery Process 415

by the intentional architectures. The first ones are defined directly by the expert
and they have a maximum confidence level. For example, it can be a constraint
which requires several specific classes to be in the same component shape. The
second kind of constraints needs to be extracted from each recovered intentional
architecture. For each pair of classes which are in the same shape, we create a
constraint requiring to not separate the pair. Then for each pair of classes which
are in different shape, we create a constraint requiring to separate the classes
in different shapes. Finally all these constraints have a confidence level which is
the confidence in their intentional architecture.

Constraint network assembly. The constraints recovered from the expert’s rec-
ommendations and documentation are assembled to form the hierarchical net-
work of constraints, where the hierarchy in the network is determined by the
level of confidence of each constraint. However, given the diversity of constraint
sources, some conflicts may exist between the constraints, making the network
inconsistent. To ensure this consistency, we proceed by hierarchical level. Firstly,
we check the consistency of each level. If two constraints are conflicting, the ar-
chitect can choose the one to keep. If the architect is not available, we delete
one of them randomly. Secondly, we check the consistency between levels. If two
different level constraints are in conflict, we remove the constraint of the lowest
level since it is the constraint that has the least confidence.

5 Conclusion

We proposed, in this paper, an approach to recover a component-based archi-
tecture from an object-oriented system using a combination of documentation,
human expertise and source code. This approach extends a previous one based
on the use of the component semantic and quality characteristics which are used
to define a fitness function. We presented an algorithm to recover the inten-
tional architectures from documentation and expert recommendations and we
described a method to extend ROMANTIC, using the intentional architectures.
The new process can identify more accurately the system functionalities and so
the recovered architecture is more accurate and useful for the program compre-
hension.

The intervention of the architect can be see as a major drawback of our
process. Nevertheless all interventions are optional and each one is associated
to a default action. These default actions allow the architect to focus on his
phases of interest according to his knowledge and his availability. Another point
of discussion is the similarity measures for each document type. Due to space
limitation we only gave examples of these measures, but we need to improve the
confidence in these measures and to test their scalability through a case study.

Our current work is realize this case study. We use Jigsaw, a JAVA WEB
server to test our approach and compare the results to the classic ROMANTIC
process (cf. Sect.2) and the known architecture of the system.

Finally we have to document the functionalities of identified components. In-
deed, our process groups the classes which participate to a same functionality

416 S. Chardigny and A. Seriai

but it does not explain this functionality. Consequently, the functionality iden-
tification is another future work.

References

1. Garlan, D.: Software architecture: a roadmap. In: ICSE 2000, pp. 91–101. ACM,
New York (2000)

2. Garlan, D., Perry, D.: Introduction to the special issue on software architecture.
IEEE Transactions on Software Engineering 21(4), 269–274 (1995)

3. Koschke, R.: Atomic Architectural Component Recovery for Program Understand-
ing and Evolution. PhD thesis, University of Stuttgart (2000)

4. Chardigny, S., Seriai, A., Oussalah, M., Tamzalit, D.: Extraction of component-
based architecture from object-oriented systems. In: WICSA, pp. 285–288. IEEE
ComputerSociety, Los Alamitos (2008)

5. Harman, M.: The current state and future of search based software engineering.
IEEE Future of Software Engineering, 342–357 (2007)

6. Chardigny, S., Seriai, A., Oussalah, M., Tamzalit, D.: Search-based extraction of
component-based architecture from object-oriented systems. In: Morrison, R., Bal-
asubramaniam, D., Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 322–325.
Springer, Heidelberg (2008)

7. Chardigny, S., Seriai, A., Tamzalit, D., Oussalah, M.: Quality-driven extraction of
a component-based architecture from an object-oriented system. In: CSMR, IEEE,
pp. 269–273 (2008)

8. ISO: ISO 9126-1 Software Engineering - Product Quality - Part 1: Quality Model.
International Organization for Standardization (2001)

9. Laarhoven, P.J.M., Aarts, E.H.L. (eds.): Simulated annealing: theory and applica-
tions. Kluwer Academic Publishers, Norwell (1987)

10. Riva, C., Selonen, P., Systa, T., Xu, J.: Uml-based reverse engineering and
model analysis approaches for software architecture maintenance. In: ICSM 2004,
pp. 50–59. IEEE Computer Society, Washington (2004)

11. de Boer, R.C., van Vliet, H.: Architectural knowledge discovery with latent se-
mantic analysis: Constructing a reading guide for software product audits. J. Syst.
Softw. 81(9), 1456–1469 (2008)

12. Harris, D.R., Reubenstein, H.B., Yeh, A.S.: Reverse engineering to the architectural
level. In: Proc. of ICSE, pp. 186–195. ACM, New York (1995)

13. Medvidovic, N., Jakobac, V.: Using software evolution to focus architectural re-
covery. Automated Software Engg. 13(2), 225–256 (2006)

14. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The
architecture tradeoff analysis method. In: Engineering of Complex Computer Sys-
tems ICECCS 1998, pp. 68–78 (1998)

15. Mancoridis, S., Mitchell, B.S., Chen, Y.F., Gansner, E.R.: Bunch: A clustering tool
for the recovery and maintenance of software system structures. In: ICSM, p. 50
(1999)

16. van der Spek, P., Klusener, S., van de Laar, P.: Towards recovering architectural
concepts using latent semantic indexing. In: CSMR 2008, pp. 253–257. IEEE Com-
puter Society, Los Alamitos (2008)

17. Beyer, D.: Clustering software artifacts based on frequent common changes.
In: IWPC, IEEE, pp. 259–268 (2005)

18. Johnson, S.: Hierarchical clustering schemes. Psychometrika 32, 241–245 (1967)

Ontological Analysis for Generating Baseline
Architectural Descriptions

Arvind W. Kiwelekar and Rushikesh K. Joshi

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Powai, Mumbai-400076, India

{awk,rkj}@cse.iitb.ac.in

Abstract. Mapping elements from an application domain to architec-

tural abstractions is a significant architecture description activity from

the point of view of seamlessness in descriptions. For establishing such a

mapping of domain elements to architectural abstractions, an approach

based on ontological analysis is presented. The central idea of the ap-

proach is to establish the mapping through a uniform framework of un-

derstanding that is applicable over the problem domain as well as the

solution domain. The reference ontology used is an adaptation of Bunge-

Wand-Weber (BWW) ontology. Typically, an element from an appli-

cation domain is mapped with an architectural abstraction when both

represent the same phenomena from BWW ontology. The approach is

realized as a model-driven transformation process.

1 Introduction

Domain understanding is one of the concerns that needs to be addressed while
deriving architectural descriptions from requirements [1]. Some of the challenges
faced while understanding application domains are- (i) Different models are used
to represent outcomes of the activities of requirement analysis and architec-
ture design. (ii) Domain requirements are elaborated through domain terminol-
ogy. (iii) Correspondence among requirements and architectural viewpoints is
undefined.

In this paper, an ontological analysis technique to guide the transition from
requirements to architecture is presented. The technique aims to understand ap-
plication domains and architectural abstractions through a universal language
formalism. The BWW ontology [2,3] is used to interpret domain elements and
architectural abstractions. The reason for selecting this ontology was that it has
been applied to evaluate the expressive power of various modeling languages
such as UML [4], and ebXML [5], and it is a generic ontology capturing di-
verse phenomena. The outcomes of the application of the analysis technique
include identification of architecturally significant domain elements specific to
Component-Connector (C&C) viewpoints, and an initial architectural config-
uration aligned with interactions among domain elements. The technique as-
sumes the availability of domain descriptions in natural language text or scenario
descriptions.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 417–424, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

418 A.W. Kiwelekar and R.K. Joshi

Earlier approaches that derive architectural descriptions from requirements
vary in terms of analysis models used. Analysis models such as goal oriented
analysis [6,7], global analysis [8,9], and quality attribute based analysis [7] are
some of the techniques used earlier. In this paper, it is proposed to perform
ontological analysis of application domains for describing domains in terms of
ontological categories. Some of the earlier approaches such as the collaborative
approach called CBSP [10] target the component-connector (C&C) view. The
CBSP approach analyzes requirements in terms of components, buses, systems
and properties. A limitation of this approach is that a given requirement may be
mapped to a component or a connector by different analysts. The conflicts on
the choice of abstraction is resolved through a voting process that lacks analyti-
cal reasoning. The approach presented in this paper also targets C&C views. An
element from an application domain is mapped with an architectural abstrac-
tion only when both represent the same phenomena from BWW ontology. The
approach presented in this paper also attempt to address the problem of vague-
ness [11] in semantics of components and connectors. The problem is handled
by performing ontological analysis of components and connectors. The distinct-
ness of these abstractions is brought out by showing that components are the
representations of Things and connectors represent Coupled Events. Things and
Coupled Events are two different phenomena from the reality.

The next section describes the reference model based on BWW ontology.
Section 3 presents an overview of the process with various artifacts involved.
Ontological interpretations of architectural abstractions and also of domain el-
ements are presented in Section 4. Section 5 discusses transformation rules
that transform the output ontological analysis to components and connector
specifications.

2 BWW Reference Model

Bunge’s original ontology [2] is considered as a general system theory. Later,
Wand and Weber [12] subsequently adapted it to model information systems.
The adapted version is referred to BWW ontology. An ontological category cap-
turing a real world phenomenon is a high-level generic notion defined in an
ontology. Ontological categories are valuable conceptual abstractions to analyze
a particular domain because they can be used to identify the roles played by
domain abstractions and relationships among them. BWW ontology includes
a comprehensive set of ontological categories that model static and dynamic
features of reality. Earlier we developed a classification scheme for ontological
categories and a meta-model for BWW ontology that have been reported in
[13]. The ontological categories and the relationships among them are repre-
sented through a UML meta-model is summarized in Figure 1. The meta-model
has been formalized through type-theoretic notations. By specifying the meta-
model through type theoretic notations, we learnt that the ontological categories
are generic types and they can play the roles of types to describe elements from
application domains.

Ontological Analysis for Generating Baseline Architectural Descriptions 419

Fig. 1. An Object Oriented meta-model for BWW Ontology

3 The Process and Its Artifacts

Two different types of modeling artifacts are needed. Firstly, a domain ontology
model describes an application domain through BWW ontological categories.
This model is manually developed after performing ontological analysis of re-
quirements. The second model is automatically generated and it is referred to as
a baseline architectural description. It consists of a set of architecturally signifi-
cant elements from application domain. Baseline architectural abstractions i.e.,
abstractions present in baseline architectural descriptions can be further refined
into full-fledged architectural abstractions by adding features found in software
modeling languages. For example, in Meeting Scheduler domain [14], getting
a preferred date for meeting is an element of the domain that can be consid-
ered as a baseline connector. This baseline connector can be further refined to
a full-fledged software connector by adding non-functional features such as dis-
tribution, concurrency and security around the baseline connector. Earlier, we
have used the concept of the baseline connector to extract C&C views from the
UML models of existing systems [15]. A baseline connector becomes a full-fledged
connector by adding non-functional properties to it.

4 Interpreting Architectural Abstractions and Domain
Elements through BWW Ontology

The existing practices and taxonomies [11,16] provide guidelines to represent
solution-domain specific entities through architectural abstractions. For exam-
ple, computational processes or database entities can be represented through
components. The interaction entities such as pipes, semaphores and communi-
cation protocols can be represented through connectors. These guidelines are
convenient to describe architectures of many software systems. But they offer
little assistance to derive architectural abstractions from domain descriptions.

420 A.W. Kiwelekar and R.K. Joshi

The interpretation mappings are developed to provide an assistance by relat-
ing the architectural abstractions with the generic types of domain elements.
In this context, the ontological categories play the roles of generic types. The
architectural abstractions from ACME ADL [17] are considered as the reference
model for architectural abstractions in the process of developing interpretation
mappings.

As shown in Table 1, two different types of interpretation mappings are de-
fined. The abstraction mapping relates the ACME abstractions with the BWW
ontological categories. The prevalent usages of the architectural abstractions and
their intended meanings are the criteria used to establish the correspondence.
The architectural abstractions and the relationships among them are represented
through a UML meta-model as shown in Figure 2. The domain mapping assigns
exactly one category to a domain element because each domain element repre-
sents a single phenomenon from the reality. A noun, or a noun phrase, a verb
or a verb phrase or a single sentence describing domain requirements is consid-
ered as a domain element. The domain mapping is also referred to as domain

Table 1. Interpretation Mappings

(a) Interpretation Mapping for Architectural Abstractions

Architectural
Abstractions

BWW Cate-
gory

Architectural
Abstractions

BWW Category

Component Thing Port Attributes representing

Binding Mutual property

Connector Coupled Process Roles Mutual Binding Property

System System Representation System Composition

Property BWW Property Attachments Representation relation be-

tween mutual property and

attributes

(b) InterpretationMapping forExampleDomainElements from
Meeting Scheduler Problem

Sr.
No.

Domain Element BWW
Cate-
gory

Sr.
No.

Domain Element BWW
Cate-
gory

1. Meeting Initiator Thing 2. Meeting Attendee Thing

3. To Ask all for exclusion set Coupled-

event

4 To ask all for preference set Coupled-

event

5. Exclusion Set Property 6. Preference set Property

7. Meeting Date Property 8. To ask for special Equip-

ment

Coupled

Event

9. To ask for preferred loca-

tion

Coupled

Event

10. The proposed meeting date

should belong to the stated

date range and to none of

the exclusion sets

Law

Ontological Analysis for Generating Baseline Architectural Descriptions 421

Fig. 2. Meta-model for Architectural Abstractions

ontology model and it is described as an XMI document. The BWW ontolog-
ical categories are the tags in XMI document. The XMI document describing
application domain follows the schema presented in the meta-model of the ref-
erence BWW ontology shown in Figure 1. The mapping from domain elements
to BWW ontology is depended on an application domain and it is defined every
time for each domain. The mapping from architectural abstractions to BWW
ontology is independent of application domains and it is defined only once as a
reusable process. The metamodel represented in Figure 2 is used as schema for
the output description.

5 Transformation Rules

Transformation rules are defined to create architectural abstractions from a do-
main ontology model. A C&C view described in ACME is the output model
that the transformation rules generate. Transformation rules are invoked based
on the ontological types of domain elements. Things, Properties, Coupled Events
and BWW System are some types of domain elements. They are transformed to
ACME Components Properties, Connectors and System respectively. The type
of ACME abstraction to be created is guided by the interpretation mapping de-
fined in Table 1(a). Transformation rules are realized in ATLAS Transformation
Language (ATL). One example of a transformation rule for transforming coupled
event to connector is included below.

An instance of a connector is created when the ontological type of a domain
element is Coupled Event. Steps involved in creating new instance of connectors

422 A.W. Kiwelekar and R.K. Joshi

1 ru l e ce2con {
2 from

3 ce :BWWOntology ! CoupledEvent

4 to

5 −−Construct ing new connector .

6 con :C2ADL! Connector (

7 name<− ce . name ,

8 ownedRoles<− Sequence {}) ,

9 −− Construct ing Prope r t i e s

10 p : C2ADL! Property (

11 name <− ’ Parameters ’ ,

12 value<− ce . parameter ,

13 ownedElement<− Sequence {}
14 −>append (ce)) ,

15 −− Construct ing Roles

16 r o l e 1 : C2ADL! Role (

17 name<−ce . name+’Requester ’) ,

18 r o l e 2 : C2ADL! Role (

19 name<−ce . name + ’ Repl i e r ’) ,

20 −− Construct ing Ports

21 port1 : C2ADL! Port (

22 name<−ce . name + ’RepPort ’ ,

23 owner<− ce . agent) ,

24 port2 : C2ADL! Port (

25 name<−ce . name + ’ReqPort ’ ,

26 owner<− ce . pa t i en t) ,

27 binding1 : C2ADL! Attachment (

28 port<− port2 ,

29 ro l e <− r o l e 2) ,

30 binding2 : C2ADL! Attachment (

31 port<− port1 ,

32 ro l e <− r o l e 1)

33 do{
34 con . ownedRoles<− con .

35 ownedRoles−>append (r o l e 1) ;

36 con . ownedRoles<− con .

37 ownedRoles−>append (r o l e 2) ;

38 }}

are (i) defining properties of connectors, (ii) constructing roles of connectors,
(iii) creating ports in the components playing the roles of connectors, and (iv)
binding ports to roles through attachments. Connectors, Ports, Roles and At-
tachments are created as a result of processing of instances of Coupled Events. In
some cases, though the number of connectors, ports, roles and attachments can
be minimized by merging all coupled events that share their participant things,
this may be undesirable from the point of view of losing flexibility. For exam-
ple, in Figure 3, the instances of coupled events askAllPrefSet and askAllExSet
are not merged to form a single connector instance. It can be noted that non-
functional properties of interactions may depend on the semantics of interactions
among things and not on the participant types. In interaction such as withdraw
meeting, an acknowledgment or reply may not be expected, while in the interac-
tion askAllPrefSet an acknowledgment and reply are expected. Coupled events
that need an acknowledgment may use a reliable communication protocol. In
this context, reliability is a non-functional property.

The transformation rules generate a XMI document that conforms to the
XMI schema representing meta-model of architectural abstractions. The baseline
architectural configuration for Meeting Scheduler Problem as generated by the
approach is shown in Figure 3. An earlier C&C-based architectural model of
Meeting Scheduler problem can be found in [18]. The appropriateness of the
generated architectural description is checked by comparing it with the existing
architectural description.

Ontological Analysis for Generating Baseline Architectural Descriptions 423

Fig. 3. Generated Architectural Configuration for Meeting Scheduler Problem

6 Conclusion

A process of mapping domain elements to produce C&C based architectural
descriptions was discussed in this paper. The outcomes of the process include
identification of architecturally significant domain elements and an architectural
configuration aligned to interactions among things present in the domain. Useful-
ness of the approach comes from the definition of transformation rules to create
an architectural configuration. The transformation rules maintain traceability
links between domain requirements and architectural abstractions. By introduc-
ing the concept of baseline architectural descriptions the approach achieves a
separation of application domain specific concerns from software specific con-
cerns. Currently, the task of interpreting domain elements in terms of BWW
ontological categories is manually performed by mapping the decisions depend
on the judgment of a domain expert. The approach can be explored further-(i)
by considering non-functional properties, (ii) validating the approach through
non-trivial software systems and (iii) evaluating the approach from scalability
point of view and by (iv) developing knowledge-based automated techniques to
assist the process.

References

1. Ferrari, R.N., Madhavji, N.H.: Architecting-problems rooted in requirements. Inf.

Softw. Technol. 50(1-2), 53–66 (2008)

2. Bunge, M.: Treatise on Basic Philosophy, 1st edn. Ontology I: The Furniture of

the World, vol. 3. D. Reidel Publishing Compant (1977)

3. Yair, W., Weber, R.: An ontological model of an information system. IEEE Trans-

actions on Software Engineering 16(11), 1282–1292 (1990)

4. Opdahl, A., Henderson-Sellers, B.: Ontological evaluation of the uml using the

bunge-wand-weber model. Software and Systems Modeling J. 1(1), 43–67 (2002)

5. Green, P.F., Rosemann, M., Indulska, M.: Ontological evaluation of enterprise sys-

tems interoperability using ebxml. IEEE Transactions on Knowledge and data

Engineering 17(5), 713–724 (2005)

6. Liu, W., Easterbrook, S.: From requirements to architectural designs using goals

and scenarios. In: STRAW 2001 located at ICSE 2001 (2003)

7. Kim, J., Park, S., Sugumaran, V.: Drama: A framework for domain requirements

analysis and modeling architectures in software product lines. J. Syst. Softw. 81(1),

37–55 (2008)

424 A.W. Kiwelekar and R.K. Joshi

8. Schwanke, R.W.: Architectural requirements engineering: Theory vs. practice.

In: STRAW, pp. 1–8 (2003)

9. Hofmeister, C., Kruchten, P., Nord, R., Obbink, H., Ran, A., America, P.: Gen-

eralizing a model of software architecture design from five industrial approaches.

In: Proceedings of the 5th Working IEEE/IFIP Conference on Software Architec-

ture, WICSA 2005 (2005)

10. Grunbacher, P., Egyed, A., Medvidovic, N.: Reconciling software requirements and

architectures with intermediate models. Journal on Software and System Modeling

(December 2003)

11. Mehta, N.R.: Towards a taxonomy of software connectors. In: 22nd International

Conference on Software Engineering (June 2000)

12. Yair, W., Weber, R.: On the ontological expressiveness of information system anal-

ysis and design grammars. Journal of Information Systems (3), 217–237 (1993)

13. Kiwelekar, A.W., Joshi, R.K.: An object oriented metamodel for bunge-wand-weber

ontology. In: Proc. of SWeCKa 2007, Workshop on Semantic Web for Collaborative

Knowledge Acquisition at IJCAI 2007 (January 2007)

14. Shaw, M., Garlan, D., Allen, R., Klein, D., Ockerbloom, J., Scott, C., Schumacher,

M.: Candidate model problems in software architecture (January 1995)

15. Kiwelekar, A.W., Joshi, R.K.: Extracting high-level component-connector view

from detailed uml models: A case study. COMPSAC (2), 527–534 (2007)

16. Liu, W., Easterbrook, S.: Eliciting architectural decisions from requirements using

a rule based framework. In: STRAW 2003 located at ICSE (2003)

17. Garlan, D.: Acme: An architecture description interchange language. In: Proceed-

ings of CASCON 1997 (November 1997)

18. Medvidovic, N.: Modeling software architectures in unified modeling language.

ACM Transactions on Software Engineering and Methodology 11(1), 2–57 (2002)

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 425–432, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Experiences in Making Architectural Decisions during
the Development of a New Base Station Platform

Juha Savolainen1, Juha Kuusela2, Tomi Männistö3, and Aki Nyyssönen4

1 Nokia Research Center, Itämerenkatu 11-13, 00180 Helsinki, Finland
juha.e.savolainen@nokia.com

2 Nokia Devices, Keilalahdentie 4, 02150 Espoo, Finland
juha.kuusela@nokia.com

3 Aalto University, Tekniikantie 14, 02150 Espoo, Finland
tomi.mannisto@tkk.fi

4 Nokia Siemens Networks, Kaapelitie 4, 90650 Oulu, Finland
aki.nyyssonen@nsn.com

Abstract. Creating architecture for a complex telecommunication system is a
difficult task and requires expertise of many different stakeholders. The soft-
ware architecture design process relies on understanding the architecturally
significant requirements (ASRs) for the system under design. This paper de-
scribes experiences in creating a new base station product line. A goal was to
create a process to facilitate fulfillment of ASRs during the development of the
product line. The approach proved to be feasible for developing large-scale sys-
tems in the telecommunications infrastructure domain. This paper describes the
approach taken, experiences gathered during the development process and pro-
motes the idea of defining concrete ASRs for each project and refining them
through architecture for all relevant subsystems.

Keywords: Software architecture, design decisions, architecturally significant
requirements process, refinement.

1 Introduction

Software architecture has been identified as one of the main development tools that
helps system to achieve it's quality requirements [1]. Correct architectural decisions
allow the system to meet its quality requirements such as modifiability, performance,
reliability and security. In the highest level, architectural styles has been proposed as
the way to match architecturally significant requirements to architectural decisions
[2]. However, architectural styles cover only the highest levels of software architec-
ture design. In fact, it seems that complex systems tend to be based on many different
architectural styles.

The overall system architecture determines the main subsystems. Separation to the
subsystems can happen for many reasons, but for large-scale systems the most impor-
tant is that the subsystems support division of work. That is, each subsystem can be
reasonably independently designed and implemented. This is measured by cohesion

426 J. Savolainen et al.

and coupling. By increasing the cohesion within the subsystem and minimizing cou-
pling between the subsystems can make the subsystems more independent.

In this paper, we share experiences from a project in the telecommunication do-
main. The intention of the project was to build a new base station platform that would
allow creating base stations for various telecommunication standards. The base station
project was substantial in size. More than one hundred engineers and multiple sites
around the globe participated contributed to the project. Because of the geographical
division, a way to communicate the decisions and to effectively divide work to the
different sites was very important.

In the context of our work, the system had chief architects that were responsible for
the whole system and subsystem architects for the system components, the first level
of the decomposition. Together these architects intended to create an architecture that
would supports ASRs for the whole system. Initial list of ASRs was created by the
chief architects together with architecture experts from corporate research. The high-
est-level software architecture document was created to describe how the ASRs were
addressed by the overall architecture.

For each of the system components the system-wide ASRs must be converted to
the ones that are relevant to that particular subsystem. As the design progresses each
system component will determine its own architecture within the constraints of the
higher-level architecture and will again will define new subsystems. We consider
architecture design to continue until no new subsystems are needed. At this point the
design will continue with classes or code modules, depending on the implementation
technology.

The structure of the development project was aligned with the software architecture
of the system. This provided easy communication of architectural decisions through
software architecture documentation.

The remainder of this paper is organized as follow. Section 2, discusses three main
ways in which we made architectural decisions during the base station project. After
this, we discuss our findings and conclude in Section 3.

2 Observations on Architectural Decisions during the
Development of the Base Station Platform

Designing good architectures require making correct design decisions in many differ-
ent levels of abstraction. On the higher levels many questions relating to overall
structure of the architecture must be answered, general approach for division of work
established and main responsibilities of software elements decided. On the lower
levels APIs must be designed, process structures decided and detailed compile time
dependencies managed.

A number of researchers have argued that architectural decisions should be, if pos-
sible, delayed. Delaying decisions achieves flexibility and allows improved knowl-
edge taken into account when making the decisions. Lower level decisions are equally
difficult to be taken upfront, since not enough is known on the implementation details
to make correct decision on e.g. detailed process or threading design issues. We agree
with Ruth Malan and Dana Bredemeyer [3] who argue that an architect should make

 Experiences in Making Architectural Decisions 427

as few decisions as possible, deferring the rest until later in the lifecycle. Delaying
decision means that decisions must be made during different time in the system de-
velopment lifecycle and in a different level of abstraction.

In the base station project, we had three main ways to target architectural concerns.
Sometimes an architectural solution was created and described in form of compo-
nents, their dependencies and interactions, allocation of functionality or interfaces.
Often, chief architects could decide to solve the issue later. This was communicated to
subsystem architects using system component specific ASRs. In few cases, an addi-
tional process step was sometimes added to alleviate the risk of not satisfying the
concern at some later point of time.

We believe that understanding the different intent of these different approaches to
architectural decisions will help architects to better express their decisions in their
own architectures.

2.1 Architectural Decision Are Made in Form of the Structure

The most common type of architectural decision is a decision taken to modify the
current structure of the software architecture. These decisions affect the architecture
on level of abstraction currently under work and typically address the ASRs defined
for this level of abstraction. In general, the structure is a good way to communicate
decisions. When a decision is expressed as e.g. a defined interface or as a responsibil-
ity division between subsystems it makes the decision very explicit and the probabil-
ity of misunderstandings is low. The decision can be implemented by updating the
structure.

For our project, the intent was to use the overall list of ASRs as the way to organ-
ize architectural decisions. The main ASRs were included into all versions of the
architectural documentation to keep track on the process of facilitating them.

Not all decisions affecting the structure give ready-made solutions to ASRs. Some
architectural decisions are made as explicit constraints on future decisions. These are
often explicitly documented as constraints or rules [4], but can be sometimes dis-
guised as just another architectural decision on the structure of the architecture.

An architectural constraint restricts the future architectural decisions. Even though
it can be argued that all decisions will reduce the available design space [5], for archi-
tectural constraints this becomes the essence of the decision. One possible way to
express a constraint is to use layer diagrams as shown in Figure 1.

The idea of layer diagram in Figure 1 was to communicate to subsystem architects
and other stakeholders the main mechanism to achieve reuse in software product line
architecture. Layers were used to achieve reuse across different radio access tech-
nologies, that is, to allow derivation of products that differ on the supported radio
technology. Hence, two layers were constructed, one specific to radio technology and
one generic.

Most subsystems could be mapped to either layer, but some had functionality that
belonged to both layers. For these subsystems, the subsystem architects must guaran-
tee that on the component level, the subsystem can be organized to a layered structure
that separates components that are specific to a particular radio technology and to
those that contain generic functionality.

428 J. Savolainen et al.

Fig. 1. Architectural constraints shown in the context of the structure

2.2 Architectural Decisions Are Done in Form of Requirements to the Structure

Making architectural decisions in the form of the structure requires that we can de-
scribe the decision in terms of architectural structures. Sometimes, the architects
either lack the information, necessary specialized expertise, or some preliminary deci-
sions have not been done so that it is not possible to express the decision in terms of
structure.

Decision has to be expressed in form of architectural requirements. Here the inten-
tion is not to make the actual decision, but the explain the requirements for the
decision to be made later. A requirement places a constraint that is described in a
textual form and targets some subsystems (or system components). This way of com-
municating decisions is typically less precise than making the decision in form of the
structure, but is necessary when the architects cannot make the actual decisions right
now and must delay them.

However, the decisions on the structure are not independent from decisions in form
of requirements. In particular, an architectural decision on the level of the entire sys-
tem can greatly affect the ASRs for the subsystems. For example, a decision to dis-
tribute responsibilities between subsystems defines what ASRs will be relevant for
each subsystem. That is, making decisions on the structure of the architecture and

 Experiences in Making Architectural Decisions 429

making the ASRs are results of an iterative process of architecting and both commu-
nicate architectural constraints.

As long as architecture design continues, we believe that it is essential to refine the
ASRs, so that for each step of software architecture design, the relevant ASRs are
available. To do this, two things must happen. First, for each level of decomposition a
subsystem architect must be able to identify the relevant higher level ASRs for it and
second, the architect must be able to derive the relevant ASRs into subsystem specific
ASR(s). This process is described in Figure 2.

Fig. 2. Refining ASRs in general (adapted from [6])

Figure 2 describes how ASR refinement works in general. Two system-wide ASRs
refined to the subsystem ASRs. There is a complex mapping between the system
ASRs and the subsystem ASRs. Often a system level ASR is refined into many sub-
system level ASRs similarly what ASR.1 is refined into subsystem A ASRs
SsA_ASR.1 and SsA_ASR.2. This represents how higher-level ASRs become more
detailed when transitioning to subsystems. Also many system level ASRs affect a
number of subsystems. In Figure 2, the system level ASR.1 if refined to ASRs of both
subsystems A and B.

However, not every ASR needs to be relevant to all subsystems. For example, per-
formance may be crucial for data transmission part of the system, but a maintenance
system can ignore strict real-time requirements. In Figure 2 this is shown in case of
ASR.2 that is only refined into respective ASRs for subsystem B.

For the base station platform we had an extensive excel document describing how
the system level ASRs were reflected in the subsystems. The idea was not to repeat
the ASRs in the subsystem documentation in the same way as they were described
in the overall architecture document, but rather describe the ASR as requirements for
the subsystem. We felt that is was crucial to express the subsystem ASRs in those
terms that are relevant for the subsystem. The resulted subsystem ASRs were then
recorded and represented in the subsystem architecture document.

For example, a system level ASR “The system shall be able to report any fault in
the system within 5 seconds of its detection” could be refined to BTS O&M system

430 J. Savolainen et al.

component ASR as “BTS O&M shall report a detected fault in any of the HW
cards within 2 seconds”. This means that we intended to make the ASRs always
very relevant for the particular subsystem and also communicate e.g. performance
budgets.

After defining some of the subsystem level ASRs will start another iteration where
decisions on the (subsystem) structure will be made and new detailed ASRs for the
components within the subsystems are born.

2.3 Architectural Decision as a Process Step

In two previous sections we have discussed two ways to address software architecture
development directly by either making architectural decisions in form of the structure
or as architectural requirements. However, during the software architecture design,
not all decisions address the architecture directly, but affect the process of designing
the architecture.

For a large system, the chief architect is typically responsible for the overall system
architecture and each subsystem has an own responsible architect. A set of rules cover
the whole architecting process and give guidelines on what documentation is required
for each subsystem. These rules are often derived from company or domain specific
standards on architectural documentation.

Based on the decisions on how to achieve ASRs in the system level, the subsystem
ASRs are affected. Besides this, also the ways the architectural decisions are docu-
mented or intended to be pursued, could be tailored for some subsystems. This is the
essence of architectural decisions as a process step. For example, some subsystems
may be required to document how certain aspects of the system are achieved or
defined analysis may be required.

In the base station, two large decisions on the process of architecting were done.
First, for selected subsystems architectural evaluation was decided to be done in a
later stage to verify the fulfilment of a number of key ASRs. Second, a detailed analy-
sis of performance characteristics was selected for a small subset of the architecture.
This part of the architecture was agreed to be critical for the overall performance of
the messaging functionality of the base station. We decided to perform rate monotonic
analysis (see e.g. [7]) for this part of the system after we have better understanding on
the actual process structure. This process decision was combined with architectural
requirements, because we also decided to estimate worst-case execution times for
each system component that limited the design freedom of the system component
teams.

3 Discussion and Conclusions

Software architecture can be been seen as a series of architecturally significant design
decisions. These decisions aim to define the architecture that is then used as the basis
for system implementation.

The decisions can manifest themselves as being about requirements, architecture or
changes to design process, among others. The kinds of decisions include, for example,

 Experiences in Making Architectural Decisions 431

requirements, constraints, rules and different decisions about the actual systems, such
as structure, interfaces, styles, patterns and detailed design decisions. These all can
be seen as restrictions on the allowed design space in the later phases of the design
process.

In a broader view, we try to shed light in this paper on the issue that when someone
is making architectural decisions, what kind of decisions should she make. There are
two main aspects in that. First, the decisions should be made to the appropriate level
of detail not to restrict the later design decisions unnecessarily. Second, the decision-
making should bear adequate responsibility not to postpone the making of decisions
on issues that could and should be resolved here and now. Within these boundaries,
the decision-maker should be aware of her capabilities in making the decision, so that
she would have the a justified understanding on how concrete decisions to make or
what issues to still leave to be determined later, typically by others.

We used a concrete example of the phenomenon in which the ASRs of the whole
system were propagated to the subsystems. The propagation was not straightforward
and thus illustrated how ASRs for the whole system become refined and take a differ-
ent form when interpreted within the context of a subsystem and how in this decision-
making the structural decision regarding the system decomposition have a major
impact on the ASRs of the subsystems.

The used case example is a real example from a complex architecture design
problem. However, the example is simple in the broader view of the idea we aim to
illustrate, as it only covers a slice of the entire problem area in making different
kinds of architectural decisions. There is clearly a room for deeper understanding on
the kinds of architectural design decisions and their role in restricting the available
design space. With such understanding, a framework and guidelines could be defined
to help practitioners to explicate their own boundaries and responsibilities and to
assess what kinds of architectural decisions should be applied in a particular situa-
tion.

For practitioners it is important to make explicit decisions on how to represent
architectural decisions. If the architect’s have enough knowledge to make the deci-
sion by affecting the structure of the architecture and this simplifies the further
development by supporting independent work, then the decision should be made.
Otherwise creating new subsystem specific ASRs or adding a process step to e.g.
evaluate subsystem architectures may be more appropriate. Despite that we de-
scribed three ways to make architectural decisions separately; these three options are
rarely independent. When making a decision on structure, it tends to change subsys-
tem-level ASRs. In addition, the more decisions are made; typically less process is
needed later.

The ability to make correct architectural decisions and how to represent them is ul-
timately dependent on the competence of the architect. This paper presented three
different ways to represent architectural decisions to assist architects to consider all
options during the architecting process. In the future, we intend to research more on
factors affecting the choice of representing architectural decisions in order to further
assist practitioners.

432 J. Savolainen et al.

References

[1] Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-Wesley,
Reading (2003)

[2] Shaw, M., Garlan, D.: Software architecture: Perspectives on an emerging discipline. Pren-
tice Hall, Englewood Cliffs (1996)

[3] Malan, R., Bredemeyer, D.: Less is more with minimalist architecture. IEEE IT Profes-
sional 4(5), 46–48 (2002)

[4] Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product-
Line Approach. Addison-Wesley, Harlow (2000)

[5] Davis, A.: Great Software Depates. Wiley, Hoboken (2004)
[6] Savolainen, J., Kuusela, J.: Transition to Agile Development - Rediscovery of Important

Requirements Engineering Practices. In: 18th IEEE International Requirements Engineer-
ing Conference. IEEE, Sydney (to appear, 2010)

[7] Nord, R.L., Cheng, B.C.: Using RMA for evaluating design decisions. In: Proceedings of
the IEEE Workshop on Real-Time Applications, pp. 76–80 (1994)

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 433–440, 2010.
© Springer-Verlag Berlin Heidelberg 2010

On the Role of Architectural Styles in Improving the
Adaptation Support of Middleware Platforms

Naeem Esfahani and Sam Malek

Department of Computer Science
George Mason University

{nesfaha2,smalek}@gmu.edu

Abstract. Modern middleware platforms provide the applications deployed on
top of them with facilities for their adaptation. However, the level of adaptation
support provided by the state-of-the-art middleware solutions is often limited to
dynamically loading and off-loading of software components. Therefore, it is
left to the application developers to handle the details of change such that the
system’s consistency is not jeopardized. In this paper, we present an approach
that addresses the current shortcomings by utilizing the information encoded in
a software system’s architectural style. This information drives the development
of adaptation patterns, which could be employed to enhance the adaptation sup-
port in middleware platforms. The patterns specify both the exact sequence of
changes and the time at which those changes need to occur.

Keywords: Middleware, Adaptation Patterns, Architectural Styles.

1 Introduction

The unrelenting pattern of growth in size and complexity of software systems that we
have witnessed over the past few decades is likely to continue well into the foresee-
able future. As software engineers have developed new techniques to address the
complexity associated with the construction of modern-day software systems, an
equally pressing need has risen for mechanisms that automate and simplify the man-
agement and modification of software systems after they are deployed, i.e., during
run-time. This has called for the development of self-* (self-configuring, self-healing,
self-optimizing, etc.) systems. However, the construction of such systems has been
shown to be significantly more challenging than traditional, relatively more static and
predictable, software systems.

Previous studies have shown that a promising approach to resolve the challenges
of constructing complex software systems is to employ the principles of software
architecture [7], [8]. Software architectures provide abstractions for representing the
structure, behavior, and key properties of a software system. They are described in
terms of software components (computational elements), connectors (interaction ele-
ments), and their configurations. A given software architectural style (e.g., publish-
subscribe, peer-to-peer, pipe-and-filter, client-server) further refines a vocabulary of
component and connector types and a set of constraints on how instances of those
types may be combined in a system [1].

434 N. Esfahani and S. Malek

Software architecture has also been shown to provide an appropriate level of ab-
straction and generality to deal with the complexity of dynamic adaptation of software
systems [3]. This observation has led to research on architecture-based adaptation,
which is the process of reasoning about and adapting a system’s software at the archi-
tectural level [3], [6].

Architecture-based adaptation is often realized via the run-time facilities provided
by an implementation platform, i.e., middleware. Unfortunately, the level of adapta-
tion support provided by most state-of-the-art middleware solutions is limited to
dynamically loading and offloading of software components. They do not consider
the state or dependency among the system’s software components. This is driven by
the fact that, in the general case, component dependency relationships are application
specific, and cannot be predicted a priori by the middleware designers.

The lack of advanced adaptation management and coordination facilities in the ex-
isting platforms forces the application developers to implement them on their own.
Unfortunately, the status quo places significant burden on the application developers.
The developers have to spend a significant amount of time understanding the underly-
ing details of a middleware platform, before they can develop the required adaptation
facilities. As a result, the theoretical advances [4], [10] for consistent and sound
adaptation of a software system remain untapped, and the application developers rely
on the rudimentary adaptation capabilities that the existing middlewares provide by
default.

In this paper, we present an approach that attempts to alleviate these shortcomings.
The approach relies on the information encoded in a software system’s architectural
style. More specifically, an underlying insight guiding our research is that a software
system’s architectural style reveals a lot about the dependency relationships among
the system’s software components. This information is utilized to identify adaptation
patterns, which determine the recurring sequence of changes that need to occur for
adapting a software system built according to a given style. An adaptation pattern
ensures that the system is not left in an inconsistent state and the application’s func-
tionality is not jeopardized. We have realized the adaptation patterns on top of an
existing middleware platform, called Prism-MW [5].

The paper is organized as follows. Section 2 provides the required background,
while Section 3 motivates the work by summarizing the problems with existing
approaches. Section 4 describes our overall approach. Section 5 describes the extrac-
tion of an adaptation pattern from a given architectural style. Section 6 provides an
overview of the application of patterns in improving the capabilities of an existing
middleware. Finally, the paper concludes.

2 Background and Related Work

For exposition purposes, we are going to use a simple application intended for routing
incoming cargo to a set of warehouses. This application was first presented in the
seminal work on architecture-based adaptation [6]. We have reproduced its architec-
ture in Fig. 1a. The architectural style of this application is C2 [9]. A software system
built in the C2 style consists of layers, where request events travel upward, while
notification events travel downward. Events that are received are evaluated to deter-
mine if the component needs to process them.

 On the Role of Architectural Styles in Improving the Adaptation Support 435

In Fig. 2, the Ports, Vehicles, and Warehouses components are abstract data types
(ADTs) that keep track of the state of shipping ports, transportation vehicles, and
goods warehouses, respectively. The Telemetry component determines when cargo
arrives at a port, and tracks the cargo from the time it is routed until it is delivered to
the warehouse. The Port Artist, Vehicle Artist, and Warehouse Artist components are
responsible for graphically depicting the state of their respective ADTs to the end-
user. The Router component provides the end-user’s last selected port, vehicle, and
warehouse. The Graphics component renders the drawing requests sent from the
artists using the Java AWT graphics package.

2.1 Challenges of Architecture-Based Adaptation

Typically, middleware support for architecture-based adaptation is realized in the
form of adding, removing, and replacing software components. However, such
changes could jeopardize the functionality of a software system, as they could leave
the system in an inconsistent state. For instance, consider a scenario where we would
like to replace the Warehouses component. Such capability may be realized by
removing the old Warehouses and adding a new instance of it [6]. This solution,
however, ignores the other components, such as Telemetry, which depend on the
Warehouses for delivering their services.

Let us assume the end-user makes a “Route Warehouse” request using the Graph-
ics component. Fig. 1b shows the interactions (events/messages) that would result in
response to this request. If such a request is made while Warehouses component is
being updated, and thus temporarily unavailable, it is processed by the Router and
Warehouse Artist, but not the new Warehouses component. The effect of this may
manifest itself in the form of functional failure: the new Warehouses component may
not receive event 3, resulting in the system to never respond to the user (i.e., events
4-7 do not occur).

At first blush it may seem that buffering events intended for Warehouses compo-
nent would solve the problem. However, buffering by itself cannot address consis-
tency issues that may arise. Consider the situation in which Warehouses component is

Fig. 1. Cargo-routing application: a) its C2 architecture; and b) a transaction for the cargo-
routing application and the corresponding component dependencies

436 N. Esfahani and S. Malek

replaced after it has replied with event 4, but before receiving event 5. In this case, it
is possible for the old component to process request 3, and the new component to
process request 5, assuming it is buffered for later processing. However, this
may violate the component’s interaction protocol (i.e., event 5 can be processed only
after event 3 has, which would not be the case with the newly installed component).
Since the new component may not have the correct state, the system may become
inconsistent.

2.2 Change Management Model

A generally applicable solution to this problem was proposed by Kramer and Magee’s
seminal model of dynamic change management [3], which provides a separation of
structural concerns from application concerns. Their work also identifies two possible
states for a software component during the adaptation process. Each state defines how
a component behaves during the corresponding phase of adaptation:

• Active: A component can start, receive, and process transactions.
• Passive: A component in this state will continue to receive and process transac-

tions, but will not initiate any new transactions.

Quiescence is defined as the required property to adapt a component [4]. Quiescence
implies that a component (1) is not currently involved in a transaction, (2) will not
start any new transactions, and (3) no transactions have been or will be initiated by
other components that require service from this node.

Based on this change management model, Gomaa and Hussein [2] suggest the
development of reconfiguration patterns for software product lines. However, their
approach does not consider transitive dependencies and their implications.

3 Research Problem

It is typically left to the application developers to implement the required change
management and coordination facilities mentioned above. These facilities would
provide the logic that ensures the system’s consistency during adaptation (i.e., the
order in which the various components are activated and passivated).

The implementation of these facilities is a major burden on the application devel-
opers for the following reasons: (1) Identifying the component dependencies: Deter-
mining the changes that need to occur in the system to place a software component
in a particular adaptation state (i.e., active, passive) depends on the component de-
pendencies. However, identifying transitive dependencies requires understanding the
details of the application logic, which defeats the purpose of treating components as
black boxes and adapting a system at the architectural level. (2) High complexity:
Realizing such facilities requires the development of complex state management and
coordination logic. (3) Lack of reuse: Since each component has its own unique set of
dependencies on other components, one component’s state management logic cannot
be easily reused by other software components that may need to be updated at run-
time. (4) High coupling: Since the state management logic depends on the component
dependency relationships, the resulting software is very fragile. That is as soon as the

 On the Role of Architectural Styles in Improving the Adaptation Support 437

software evolves (e.g., components change the way they interact and use one an-
other), the state management logic needs to be modified.

Traditionally, one method of reducing complexity and increasing the developer’s
productivity is to employ middlewares. The middleware engineers develop the fre-
quently needed intra-component facilities (e.g., data marshalling, remote method
invocation, service discovery), and provide them as reusable modules to any applica-
tions developed on top of the middleware. Unfortunately, employing the same
approach in the context of adaptation is not feasible, since it needs inter-component
analysis and the middleware designers cannot predict a priori which software compo-
nents will be deployed on top of a middleware, how they will be configured, and what
will be their dependencies. Therefore, modern middleware platforms do not provide
change management facilities beyond simple dynamic addition and removal of com-
ponents. This is precisely the research problem that we have aimed to solve in this
paper through the use of knowledge embedded in architectural styles and the capabili-
ties of a unique style aware middleware.

4 Approach

In light of the challenges mentioned above, currently three methods of adapting a
software system are employed: (1) Query the component itself to provide information
about its dependency relationships. This relates to the 1st problem in Section 3, i.e.,
violates the black-box treatment of components. Moreover, it hinders reusability of
components developed in this manner. (2) Yank the old component and replace it
with a new one. As exemplified using the Cargo Routing application in Section 2.1,
this approach could leave the sytem in an inconsistent state. (3) Bring down (Pas-
sivate) the entire system before adapting it, and restart it afterwards. This approach
clearly results in severe disruption in system’s execution.

We propose a new approach that builds on the existing models of dynamic change
management (recall Section 2). The key underlying insight guiding our research is
that a software system’s architectural style could reveal the dependency relationships
among the components of a given system, even if the components are indirectly
connected to one another. The dependency relationships are critical when adapting a
software system, as they determine the impact of change on the system [4], [10].

We use the rules and constraints of an architectural style to infer the component
dependencies for any software system built according to that style. An example of this
can be seen in Fig. 1a. In a C2 software system it is generally true that components in
lower layer depend on components in higher layer. As a concrete example, take
Warehouse Artist that depends on Warehouses.

The component dependencies are in turn used to determine a reusable sequence of
changes that need to occur for placing a component in the appropriate adaptation
state. Such a recurring sequence of changes, which are coordinated among the sys-
tem’s architectural constructs (e.g., components, connectors) is called an adaptation
pattern. An adaptation pattern provides a template for making changes to a software
system built according to a given style without jeopardizing its consistency.

An adaptation pattern for a given style is guaranteed to be generally applicable
for systems built according to that style, since (1) quiescence is guaranteed to be

438 N. Esfahani and S. Malek

reachable [4], and (2) applications built according to the style exhibit similar depend-
ency relationships among their components.

5 Style-Driven Adaptation Patterns

In this section we describe the process of extracting adaptation patterns from an archi-
tectural style. For this purpose we have chosen the C2 style [9]. Note that while the
overall approach is generally applicable to any style, the details of the patterns, their
accuracy, and level of disruption due to adaptation directly depend on the characteris-
tics of the style. The styles with rich properties and rules inevitably result in more
interesting and effective patterns.

During normal operation a C2Component is Waiting to receive asynchronous
request event from an associated C2Connector. If the event is not intended for the
component, it returns to the Waiting state. Otherwise, it starts Processing the request
and additional request and notification events are generated as needed. After the
Processing has completed and the appropriate events are sent, the component returns
to the Waiting state.

Adaptation of a software system requires its constituents (e.g., components, con-
nectors) to coordinate the changes that need to occur. It is the responsibility of the
adaptation module to track the adaptation state (e.g., active, passive) of the compo-
nent and neighboring architectural constructs. This recurring coordination constitutes
the adaptation pattern for an architectural construct in a given style.

An adaptation pattern may be expressed using statechart models (Fig. 2). Each pat-
tern contains one or more statecharts that define the sequence of steps a component
goes through during the adaptation process. In essence, each statechart describes the
run-time behavior of a component type (e.g., Client in Client-Server, Publisher in
Publish-Subscribe) provisioned by a style during the adaptation process.

The adaptation process requires a component that is to be updated to satisfy the
quiescence property. The statechart in Fig. 2 presents the transitions that take an Ac-
tive C2Component that is being adapted to satisfy the quiescence property. When in
the Active state, the component processes any received events. The first step toward
quiescing the component can take one of three paths. Let us first consider the scenario

Fig. 2. Partial state chart of C2 adaptation pattern: A C2Component that is being adapted

 On the Role of Architectural Styles in Improving the Adaptation Support 439

where the component has no bottom connector (i.e., no other component depend on
it). In this case, either the component is currently processing or waiting (idle). If the
component is waiting, then it simply transitions to Quiescent. If the component is
processing, it starts Quiescing Itself, and waits. When the processing has completed, it
transitions to Quiescent.

If the component has a bottom connector (i.e., other components depend on it),
then the component sends a Passivate request to the bottom connector to passivate the
dependent components. Once an ACK reply is received from the bottom connector,
the component gets Quiescent if it is waiting, and starts Quiescing Itself if it is proc-
essing. In the latter case, the component eventually transitions to the Quiescent when
the component has completed the work.

The pattern described above, while simple, codify the structural rules and con-
straints of C2 style into reusable logic that allows for consistent adaptation of any C2
software system. Due to space constraints we have just shown the adaptation patterns
for the component being adapted.

6 Style-Aware Adaptation

We have leveraged the style-driven adaptation patterns described above to provide
advanced run-time adaptation facilities in Prism-MW [5]. Prism-MW is an architec-
tural middleware, which supports architectural abstractions by providing implementa-
tion-level modules (e.g., classes) for representing each architectural element, with
operations for creating, manipulating, and destroying the element. These abstractions
enable direct mapping between a system’s software architectural model and its im-
plementation. Prism-MW’s core functionality provides the necessary support for
developing arbitrarily complex applications, as long as one relies on the provided
default facilities (e.g., event scheduling, dispatching, and routing). The developer can
extend the core functionality as needed. Prism-MW provides three key capabilities
that we have relied on to realize the proposed approach. It provides support for (1)
basic architecture-level dynamism, (2) multiple architectural styles, and (3) architec-
tural reflection. By codifying the adaptation patterns in Prism-MW, we have been
able to provide significantly more advanced adaptation capabilities than that is cur-
rently offered by other middleware platforms.

7 Conclusion

Most state-of-the-art middleware solutions provide rudimentary support for dynamic
adaptation of software systems. They lack the ability to handle the implications of
replacing a software component. Therefore, the application developers are burdened
with the responsibility of managing the adaptation process at the application-level.
We have developed a new approach that addresses the current shortcomings. It lever-
ages the rules and characteristics of an architectural style to determine adaptation
patterns for software systems built according to that style. These patterns specify the
required sequence of actions to put a software component in a state that can
be adapted without jeopardizing the software system’s consistency, and hence its

440 N. Esfahani and S. Malek

functionality. In our future work, we plan to develop a catalog of adaptation patterns
for commonly employed architectural styles. Such a catalog would be of great interest
to both the software engineering and middleware community. We also plan to include
the new patterns in the adaptation support of Prism-MW.

Acknowledgments. This work is partially supported by grant CCF-0820060 from the
National Science Foundation.

References

1. Fielding, R.: Architectural Styles and the Design of Network-based Software Architec-
tures. Doctoral Thesis #AAI9980887, Univ. of California Irvine (2000)

2. Gomaa, H., Hussein, M.: Software reconfiguration patterns for dynamic evolution of soft-
ware architectures. In: Working IEEE/IFIP Conference on Software Architecture,
pp. 79–88 (2004)

3. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In: Int’l. Conf.
on Software Engineering, Minneapolis, MN, pp. 259–268 (2007)

4. Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change Manage-
ment. IEEE Trans. Softw. Eng. 16(11), 1293–1306 (1990)

5. Malek, S., Mikic-Rakic, M., Medvidovic, N.: A Style-Aware Architectural Middleware for
Resource-Constrained, Distributed Systems. IEEE Trans. Softw. Eng. 31(3), 256–272
(2005)

6. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution.
In: Int’l. Conf. on Software Engineering, Kyoto, Japan, pp. 177–186 (1998)

7. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. Softw. Eng.
Notes. 17(4), 40–52 (1992)

8. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging discipline. Pren-
tice-Hall, Inc., Englewood Cliffs (1996)

9. Taylor, R.N., Medvidovic, N., et al.: A component- and message-based architectural style
for GUI software. In: Int’l. Conf. on Software Engineering, Seattle, Washington,
pp. 295–304 (1995)

10. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: A Low Disruptive Al-
ternative to Quiescence for Ensuring Safe Dynamic Updates. IEEE Trans. Softw.
Eng. 33(12), 856–868 (2007)

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 441–448, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Context-Aware Quality Model Driven Approach:
A New Approach for Quality Control in Pervasive

Computing Environments

Adel Alti1, Abdellah Boukerram1, and Philippe Roose2

1 Computer Science Departement, Engineering Faculty,
Ferhat Abbas University of Setif, 19000 Setif, Algeria

altiadel2002@yahoo.fr
2 LIUPPA / IUT Bayonne, 2 Allée du Parc Montaury, 64600 Anglet, France

Philippe.Roose@iutbayonne.univ-pau.fr

Abstract. This paper presents extension of MDA called Context-aware Quality
Model Driven Architecture (CQ-MDA) which can be used for quality control in
pervasive computing environments. The proposed CQ-MDA approach based on
ContextualArchRQMM (Contextual ARCHitecture Quality Requirement
MetaModel), being an extension to the MDA, allows for considering quality
and resources-awareness while conducting the design process. The main idea
of presented extension consists in three abstractions levels: PIM (Platform In-
dependent Model), CPIM (Contextual Platform Independent Model) and CPSM
(Contextual Platform Specific Model). At the PIM level, a model decomposed
into a two interrelated models: software architecture artifacts, which reflect
functional requirements and quality model. At the CPIM level a simultaneous
transformation of these two models with contextual information details is elabo-
rated and then refined to a specific platform at the CPSM level. Such a proce-
dure ensures that the transformation decisions should be based on the quality
assessment of the created models.

Keywords: MDA, Context, Quality Model, ADL.

1 Introduction

Model Driven Approach (MDA) [5] has been proposed by the OMG (Object man-
agement Group). The basic models of MDA are entities able to unify and support the
development of computer systems by providing interoperability and portability. MDA
approach does not address how to consider non-functional demands, i.e. how to repre-
sent and transform them.

In this paper, we present an extended Model Driven Architecture which includes
support for software architecture quality control and resources requirements changes,
in the framework of CQ-MDA (Context-aware Quality Model Driven Architecture).
Some other works concentrate only on quality system architecture or context-aware
system architecture [9, 10]. Our approach focuses on separation of two concerns: the
architecture and the implementation contexts. This enables us to support them with

442 A. Alti, A. Boukerram, and P. Roose

the elaboration of quality model explicitly and to facilitate the system architecture
quality control with the continuous evolution of its context.

We have previously introduced the ArchRQMM (ARCHitecture Requirement
Quality MetaModel) [3] to address a serious gap in architectural styles quality control.
ArchRQMM extend the common concepts of Architecture Description Languages
(ADLs) with the concepts of quality requirements and quality standards [7]. The
ArchRQMM targets the quality evaluation and selection of application styles at a high
level of abstraction. However, our metamodel does not support the definition of a
context-awareness and a resource-awareness metamodel.

The paper is organized as follows. Section 2 proposes the main element of CQ-
MDA approach, i.e. ContextualArchRQMM metamodel which it is an ArchRQMM
extension used as support for context model description and quality model definition.
Section 3 describes the CQ-MDA itself. Section 4 shows an example of applying CQ-
MDA for VideoConferencing system development. Section 4 summarizes related
works. Section 5 concludes this article and presents some future works.

2 ContextualArchRQMM

The main idea of this proposal is to take into consideration the nonfunctional concerns
(adaptation service, communication protocol, security, QoS, etc.) of the components
by connectors at the software architecture level. Our motivation is to extend
ArchRQMM with contextual connectors in order to support improved composability
of heterogeneous components and to integrate a software architecture quality control
in the framework CQ-MDA which unifies all modelling² approaches.

2.1 Context-Awareness MetaModel

We extend our software architecture metamodel, with a context metamodel (Fig. 1).
The goal is to represent context information of system architecture at model level.
Context is any information that can be collected from artifact needs, resources
capacities and user preferences. ContextualArchRQMM uses these informations to
perform a software architecture quality evaluation and selection in software
development process. In our metamodel we have identified two types of context, i.e.,
required context (user preferences, artifacts needs) and provided context that
encompasses the properties of the execution environment of an application. Context
elements are realized through Context class, are expressed as QoS properties of the
contextual architectural artifacts (Non-Functional-Prop class).

2.2 Resource-Awareness MetaModel

Fig. 2 depicts a resource-awareness metamodel. The hardware components are mobile
devices (Class Device) like PDAs, PC Portables or smart phone, are constrained in
their resources (memory size, CPU power, bandwith, battery, etc) and act as execu-
tion environment for architectural artifact (Class Artifact).

Network connections (Class Node) connect hardware components having a limited
bandwith. A resource-awareness about current usage of processing power, memory,

Context-Aware Quality Model Driven Approach: A New Approach for Quality Control 443

0..1 1..*

Resource
ress:rresKid1

name:SString
Context

ProvidedContext

1
1

0..*

+resources
+pvdctxt 1..*

0..*

+reqprefs

Artifact
(abstract)

1

0implies

+involves

+nfr

QualityGoal

Non-Functional-Req
+userpreferences1..*

+artifactsneeds
1..*

RequiredContext

+nfps Non-Functional-Prop

Fig. 1. The context metamodel of ContextualArchRQMM

+network-owner

1+device

Node
name:NNodeKind
type:NNodeType
bandwidth:int+archArtifact

1..*

+nodes

1..*

Device
name:ddeviceKind NodeKind

WAN
GPRS
UMTS

<<enumeration>>

Resource
+ressourc 1

ress:rresKind

Network-Config

1

1+associtaeddevi

+network-access

Ar ifact t
(abstract) +deployArtifact

1
1..*

PDA
Server
MOBILE
PC

deviceKind
<<enumeration>>

PowerLevel
Battery

Speed
CPU

FreeSpace
Memory

Fig. 2. The resource metamodel of ContextualArchRQMM

network bandwith, etc. is a prerequisite to guarantee a minimum quality of service.
Due to heterogeneous architectural components as well as its various communications
paradigms (GSM 3G, Bluetooth, ZigBee, etc.) can be specified more easily using a
contextual architectural artifact to better support resource-awareness.

2.3 Contextual Architectural Artifacts

For an efficient and clear specification of connection points, we have introduced more
precise port according to their global roles in a component: the DataPort, the Con-
textPort, the ServiceControlPort, the QoSNotificationPort. The DataPort is used to
transfer data of any type. The ContextPort is responsible for the sending and receiving
of the context information available at run-time when the service is active. The Ser-
viceControlPort is a standard dedicated port for controlling a service. It allows the
service to be (re)started, updated, relocated, stopped and uninstalled. The QoSNotifi-
cationPort is responsible for sending QoS information to execution platform in order
to decide if a service reconfiguration is needed.

444 A. Alti, A. Boukerram, and P. Roose

As software architecture descriptions rely on a connector to express interactions
between components, an equivalent abstraction must be used to express a contextual
and a heterogeneous interaction (i.e. various interactions paradigms). We extend an
architectural connector with a contextual concern in a heterogeneous interaction (see
Fig. 3). The traditional connector is not enough to design a contextual and a heteroge-
neous interaction because the way that a contextual component composes with a busi-
ness logic component is slightly different from the composition between business
logic components only. A contextual (i.e. the adaptation) connector is the central
place where the auto-adaptative mechanisms are managed in a connector. Three auto-
adaptative mechanisms are distinguished: communication (i.e. clarify the connection
between various components regarding the communications paradigms), service ad-
aptation (i.e. adding, suppression and substitution of adaptation services), and QoS
adaptation (selecting parameters of service to provide adequate quality to component
needs at runtime). The business logic component is adapted explicitly and automati-
cally by a contextual connector. This means that context ports of business logic
components instances, related to the context managed by a contextual connector, are
all connected to that contextual connector.

cUse

D C
1

+target
D C

cUse

Ar ifact t
name:String
(abstract)

weight:float

1 0

1

0..*
1..* 1

0..*

Configuration

Connector

1Port

Interface

+subconnectors

+i
nt
er
fa
ce
s

+source

1
+details+details

1
0..10..1

Service 1

+source +source

ServicetRole

ServiceControlRole

ReqDataRole

ProvDataRole

RequiredService

ProvidedService

0..*

1

Component

+t
ar
ge
t

+t

+subccomponents

Role

QoSNotificationPort

ServiceControlPort

ContextPort

ServicePort

+associatedwith

Behavior
+behavior +behavior

1 *

actions0..*
AnyAction

0..*
1..*

include

+ow

ReqData
P t
ProvDat
P

DataPort ContextRole

Glue
11

DataRole

QoS-Policy
+QoSPolicies

QoS-Rules

Adaptation-Mechanisms

1..* 1..*

1..*

Communication

AdaptationService

AdapationQoS

QoSNotificationRole

Fig. 3. Contextual architectural artifacts in ContextualArchRQMM

3 Context-Aware Quality Model Driven Architecture (CQ-MDA)

The general structure of Context-aware Quality – Model Driven Architecture (CQ-
MDA) is presented in Fig. 4. The proposed structure consists in five levels represent-
ing CIM, PIM, Contextual Platform Independent Model (CPIM), Contextual Platform
Specific Model (CPSM), and code. Each level decomposed into three parts: the left
part represents architectural artifacts and context concepts; the right part represents

Context-Aware Quality Model Driven Approach: A New Approach for Quality Control 445

quality model and measurements done for these artifacts while the center part repre-
sents requirements. Architecture quality should be controlled at each steps of the
design. External requirements of the system are transformed into internal ones for the
architecture and its components. Internal requirements are needed for assessing
designed architecture models. So, particular internal models, being instances of Con-
textualArchRQMM metamodel, are used to assess particular models of CQ-MDA, for
example, the requirement reflects both functional and non-functional architects’ needs
are elaborated on the base of a particular set of criteria’s and associated metrics. The
software architecture quality model is produced by measurement done for each archi-
tectural artifact for a given factor in the context of associated requirement, for a given
criteria with associated metric. The quality model is evaluated by the semantic con-
straints defined by the metamodel.

Two ways of using the ContextualArchRQMM metamodel are possible:

- The first one assumes that the software architecture quality metamodel is used
for evaluating an architecture model. The architecture model is tested and
validated with the semantic constraints defined by the metamodel. If the veri-
fied architecture model gets bad marks then the design process can be stopped
or it can go back to the previous stage either to change requirements or to
elaborate a different (better) architectural model.

- The second one, using software architecture quality metamodel considers the
case when the metamodel is used for selecting the best architectural model
from different choices. In this case the values of a metric are used to classify
the models. A metric formula gives a note for the architecture model. The
values of the metric function are used to classify the models and to choose the
suitable one and we select a first model if we have the same value. After that,
the selected architectural model is evaluated by the OCL constraints to re-
move any quality semantic violation.

Requirement

External Quality Model

CIM CIM Internal Quality Model

CPIM CPIM Internal Quality Model

CPSM CPSM Internal Quality Model

Software Architecture Model

Context Model

Automatic Evaluation &
Selection

CODE CODE Internal Quality Model

PIM PIM Internal Quality Model

- Requirements
- Software Architecture Quality Model
- Measurement
- Formal Quality Checking

Fig. 4. Context-aware Quality Driven Model Architecture

446 A. Alti, A. Boukerram, and P. Roose

4 Case Study: VideoConferencing System

A case study given below is intended to show applicability of CQ-MDA both for
evaluation and for selection of the best architectural model from some alternatives. A
case study deals with VideoConferencing System [13]. The following architect needs
and preferences are considered:

- Recording, reviewing user’ video and creating respective reports.
- Video should be delivered in quality and in period no longer than one minute

from their request.

These demands are processed as external quality requirements. The first one is func-
tional demand while second one is non-functional one. Only non-functional require-
ments will be considered further.

4.1 PIM Level

Several architectural models can be used to design a given system. For the VideoCon-
ferencing system, the model is designed with PipesAndFilters style. The architecture
model should be evaluated, tested and validated with the semantic constraints defined
by the metamodel.

According to ContextualArchRQMM, all these requirements should be associated
with a respective architecture quality model with selected quality factors. It is pro-
posed to use the efficiency factor with time-behavior sub-factor and the maintenabil-
ity factor with modularity, analyzability sub-factors [4].

We have evaluated the PIM model with similar measurements of the whole archi-
tecture of the basic metrics (i.e. coupling, cohesion and complexity) [4]. The architec-
tural model provides an acceptable maintainability (a high level of cohesion, a low
level of coupling, a low level of complexity). This architectural model is accepted for
further transformation.

4.2 CPIM Level

PIM software architecture model may be transformed, manually or automatically, into
different CPIM models. The PIM model is transformed into four exemplary CPIM
models. For time-behavior, three metrics proposed in [8], one of them, TBM (the
estimated Time Behavior Metric) is selected and adapted in our case. Apart from the
evaluation of time behavior sub-factor we evaluate the analyzability sub-factor to
select the best CPIM model. In [17] two metrics were proposed for the dynamic
adaptivity at the architectural level, but only one, MaAC (Minimum architectural
Adaptive Cost) was used and validated for analysability assessment in our example.

We have simulated the four CPIMs models using our Java VM simulator and have
varied the user (and respectively, the mobile devices) from 1 to 30. Table 1 shows the
evaluation results, meaning that CPIM4 model turns out to be the best. Differences
can be seen in the adaptation cost of CPIM4 and other CPIMs, which is due to the low
adaptation cost compared to other CPIMs.

Context-Aware Quality Model Driven Approach: A New Approach for Quality Control 447

Table 1. CPIM models evaluation results

CPIM TBMBenefit(ms) MaACCost (artifacts number)
CPIM 1 200 ~ 400 0 ~ 16
CPIM 2 350 ~ 500 0 ~ 8
CPIM 3 470 ~ 800 0 ~ 8
CPIM 4 200 ~ 930 0

5 Related Works

The first related area of research are ADLs that have been proposed for representing
dynamic architectures including: ACME [12], π-ADL [6], C3 [2] and AADL [1].
However, except for ACME, most ADLs do not support the concept of evaluation
function. In addition, most of them are not contextual defined. AADL [1] allows
definition of non-functional requirements and their validation at model level. MARTE
[15] not treat the problem of heterogeneity by a meta-model which verifies the ade-
quacy of service regarding its context. π-ADL [6] supports dynamic software archi-
tecture and evolving software systems. However, contrary to our work, π-ADL does
not support contextual connectors and not integrate quality metrics. Recently, Garlan
and al. [12] extended ACME ADL in order to support evaluation function in evolu-
tion styles and their multiple decision forms. However, this work does not consider
exploiting contextual connectors in heterogeneous environment where entities of
different nature collaborate: software and hardware components.

The second related area of research are some works involving quality in MDA ap-
proach, like QADA (Quality-driven Architecture Design and Quality Analysis) [9] – a
methodology targeted at the development of service architectures. Other works in-
volving Context in MDA approach, e.g. Context-aware Model Driven Architecture
Model Transformation [11] – a methodology targeted at the development of context-
aware applications and other networked systems. These works concentrate only on
quality system architecture or context-aware system architecture, while CQ-MDA
insisted on the separation of the two concerns: software architecture model and con-
text model. These models based on the quality assessment that enables us to reuse
them independently and to achieve a comfortable architectural quality analysis
framework.

6 Conclusion and Future Work

In this paper we presented ContextualArchRQMM metamodel centered on the concept
of contextual connector to provide a lightweight support for the definition of some
composition facilities such as contextual interfaces at the connector level. In this way,
ContextualArchRQMM encompasses a reduced set of minor changes. Our goal is a
complete ArchRQMM software architecture metamodel that supports structural and
contextual description of software systems. Representing components, connectors as
first class entities allows us to define the context concerns of each of concept inde-
pendently and explicitly and to improve composability of heterogeneous components
and lowering adaptation cost through self-adaptation policies under resources

448 A. Alti, A. Boukerram, and P. Roose

constraints. We have used our metamodel to extend the MDA's CIM-PIM-PSM with a
parallel CPIM-CPSM chain of refinement, to explicitly consider quality and re-
sources-awareness while conducting the design and implementation process. We
presented an illustrative example to show the applicability of the proposed CQ-MDA
approach. The results of the experiments (based on the example of VideoConferenc-
ing system with four CPIMs) are encouraging. The experiment shows that our ap-
proach outperforms two abstractions level in terms of some quality metrics such as
adaptation ratio and time response. As future work, we will consider moving our
approach to a real execution platform to validate its feasibility.

References

1. Berthomieu1, B., Bodeveix, J.P., Chaudet, C., Vernadat, F.: Formal Verification of AADL
Specifications in the Topcased Environment. In: 14th Ada-Europe International Confer-
ence on Reliable Software Technologies, Brest, France, pp. 207–221 (2009)

2. Amirat, A., Oussalah, M.: First-Class Connectors to Support Systematic Construction of
Hierarchical Software Architecture. JOT 8(7), 107–130 (2009)

3. Alti, A., Boukerram, A., Smeda, A.: Architectural Styles Quality Evaluation and Selection.
In: 9th Conference International NOTERE 2009, Montréal, Canada (2009)

4. Alti, A., Boukerram, A.: QualiStyle: A Tool for Automatic Quality Evaluation and Selec-
tion of Architectural Styles. In: 10th Annual Conference on New Technologies of Distrib-
uted Systems, pp. 243–248. IEEE Press, Tunisia (2010)

5. Miller, J., Mujerki, J.: MDA Guide, Version 1.0. OMG Technical Report (2003),
http://www.omg.org/docs/ptc/03-05-01.pdf

6. Oquendo, F.: π-ADL: an architecture description language based en the higher order typed
π-calculus for specifying dynamic and mobile software architecture. ACM Software Engi-
neering 29(4), 1–13 (2004)

7. Losavio, F., Chirinos, L., Lévy, N., RamdaneCherif, A.: Quality characteristics for soft-
ware architecture. JOT 2(2), 133–150 (2003)

8. ISO/IEC 9126-3, Software Engineering Product quality Part 3: Internal metrics (2003)
9. Quality-driven Architecture Design and Quality Analysis,

http://virtual.vtt.fi/qada
10. Tarvainen, P.: Adaptability Evaluation at Software Architecture Level. The Open Software

Engineering Journal 2, 1–30 (2008)
11. Vale, S., Hammoudi, S.: Context-aware Model Driven Development by Parameterized

Transformation. In: 3rd Workshop of MDISIS 2008, pp. 167–180 (2008)
12. Garlan, D., Barnes, J.M., Schmerl, B., Celiku, O.: Evolution Styles: Foundations and Tool

Support for Software Architecture Evolution. In: WICSA 2009, pp. 16–25 (2009)
13. Laplace, S., Dalmau, M., Roose, P.: Prise en compte de la qualité de service dans la con-

ception et l’exploitation d’applications réparties. In: Workshop GEDSIP@Inforsid (2009)
14. Raibulet, C., Masciadri, L.: Evaluation of Dynamic Adaptivity through Metrics: an

Achievable Target? In: WICSA 2009, pp. 65–71 (2009)
15. Gérard, S., Petriu, D., Medina, J.: MARTE: A New Standard for Modeling and Analysis of

Real-Time and Embedded Systems. In: 19th Euromicro Conference on Real-Time Sys-
tems, Pisa, Italy (2007)

Many to Many Service Discovery:
A First Approach

Anthony Hock-koon and Mourad Oussalah

University of Nantes, LINA Laboratory

2 rue de la Houssiniere, 44322 NANTES, France

{anthony.hock-koon,mourad.oussalah}@univ-nantes.fr
http://www.lina.univ-nantes.fr/

Abstract. Dynamic service discovery is one of the main concepts which

define the Service Oriented Architectures (SOA). This mechanism en-

sures loosely coupled services. It supports the reusability of services and

the flexibility of applications. This paper provides a new service discovery

approach which enhances the number of services potentially discovered

and thus, it multiplies the number of candidate services. This multipli-

cation ensures a better selection of the most suitable services and more

alternatives is case of failures.

Keywords: SOA, Service Composition, Service Discovery.

1 Introduction

Service Oriented Architecture (SOA) [8] relies on the service composition which
can be divided in three phases: service discovery, service selection and service
composition. According to the user’s needs the composition system has to dis-
cover the set of candidate services which can realize his task; then it selects the
most suitable ones following the context (user or system); finally it defines the
collaboration between them in order to realize the targeted application. Thereby,
the service discovery step is a central mechanism in the SOA paradigm. It is the
base towards the dynamic definition of a new composition and it is directly
involved in its quality.

The existing service discovery algorithms can be grouped in two approaches
[4], one to one matching (1-1) [2,11] and one to many matching (1-N) [4,1]. The
1-1 approach identifies one abstract service to exactly one concrete service. The
1-N approach identifies one abstract service to one concrete service or to many
concrete services which coordinate their actions to realize the targeted service. In
this paper, we intend to provide a first step towards the definition of a many to
many matching (M-N). Our approach relies on a semantic organization between
some sets of available services.

The remainder of this paper continues as follows. Section 2 deals with the
existing types of service discovery. We present the motivations of our M-N ap-
proach and its contributions to the SOA paradigm. In section 3, we define this
M-N approach and its related mechanisms. Section 4 concludes and discusses
future work.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 449–456, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.lina.univ-nantes.fr/

450 A. Hock-koon and M. Oussalah

2 Service Discovery Overview

Service discovery is a main step of the matching between abstract services and
concrete services. Abstract services represent the descriptions of the sought ser-
vices. These descriptions are extracted from the expression of the user’s task
which is combined with the user’s preferences. Concrete services represent the
existing services which are available for possible invocations of their capabilities.

2.1 Related Works

There are numerous works on service discovery which focus on different prob-
lems such as trust orientation [6], context awareness [9] or user’s preferences [5].
However all of them can be grouped in two types of approaches [4], one to one
matching (1-1) and one to many matching (1-N).

The 1-1 approach identifies one abstract service to exactly one concrete ser-
vice. We distinguish between strong matching and loose matching. The strong
matching represents the exact correspondence between the needs and the avail-
able services (Figure 1:L-a). The loose matching represents the ability to discover
non exact solutions which can be interesting for the user. These solutions repre-
sent 1) the services which can provide more capabilities than the required ones
(Figure 1:L-b) or 2) the lower quality services which are identified according to
a fixed coefficient of acceptance (Figure 1:L-c).

The 1-N approach is the enhancement of the previous one. Most of them only
focus on the entries defined by the abstract service [4,1]. They intend to establish
a composition of available services which can fulfill the abstract service’s require-
ments. The different approaches can be classified following their handled types
of compositions. We identify three types of potentially identified compositions:
sequential, parallel and complex. A sequential composition (Figure 1:R-a) is a
chain of services which are sequentially executed to realize the abstract service.
A parallel composition (Figure 1:R-b) is a set of independent services where
each of them realizes a specific part of the capabilities required by the abstract
service. A complex composition (Figure 1:R-c) represents a combination of se-
quential and parallel identifications. Moreover, each of them can be combined
with strong matching or loose matching.

2.2 Towards M-N Matching

The M-N matching appears as the logical enhancement of the service discovery.
This approach allows for discovering new compositions of concrete services which

Fig. 1. Left: 1-1 matching; Right: 1-N matching

Many to Many Service Discovery: A First Approach 451

Fig. 2. Left:M-N matching; Right: Redefinition of the user’s task

are not detectable by the previous matchings. The multiplication of candidate
compositions has some potential benefits on the quality of service discovery
and selection. According to our knowledge, none of existing works in the SOA
paradigm provides its specification. Therefore, we intend to define the theoretical
concepts involved in the M-N approach and we clarify its contributions.

We introduce the notion of cross boundaries concrete service. This type of
concrete service realizes a set of functionalities which are distributed among dif-
ferent abstract services. It is the main concept which defines the M-N matching.
In Figure 2:L-a, we show a 2-1 matching where two abstract services are realized
by one concrete service. This new concept of services can be easily combined
with strong matching and loose matching, and with the different types of com-
positions (sequential, parallel, complex). In Figure 2:L-b, two abstract services
are realized by a complex composition of five services which includes one cross
boundaries service (concrete service 1). Three services were identified with strong
matchings (1, 2, 3), and two with loose matchings (4, 5) where (4) is a lower
quality and (5) provides more functions than required.

The first goals of the M-N approach is the identification of additional concrete
solutions which can fulfill the abstract services. More solutions there are, better
the service selection is. The probability of finding adequate concrete services
is higher.

In addition to these quantitative benefits related to the number of solutions,
the M-N approach could have a significant impact on the quality of a composite.
On the contrary to the 1-1 and 1-N approaches which focus on each abstract
services one by one, the M-N approach takes account of the overall composition
sought by the architect. The quality of the concrete realization is not limited to
the individual quality of each abstract service instantiations but it can include
a global evaluation of the composition. Some evaluation metrics of compositions
[7,10] can be reused to drive the M-N matching and they help the selection
of the best identified composition. Figure 2:R shows a user’s task defined by
a composition of abstract services and its concrete realization identified by a
M-N approach. These compositions are represented by a simplified collaboration
schema [3] which only focuses on the invocation order of the services: AS2 is
invoked just after AS1. A complete collaboration schema handles workflow and
dataflow between services. The collaboration schema of the abstract services is
different from the one between the concrete services, this illustrates a redefinition
of user’s task.

452 A. Hock-koon and M. Oussalah

3 Specifying the M-N Approach

Our M-N approach relies on a specific classification of the available concrete
services. All these services are gathered in different families (family of services),
and we define a set of semantic relationships between these families.

3.1 Family of Services

A family of services represents a set of services which are semantically close.
They have the same kind of capabilities and thus, they share the same ontology
of domain [11] related to some specific activities. An ontology of domain is used
as description of a family. For example a family Data conversion can gather
different services which ensures money conversions, metrics conversions and so
forth. The use of family ensures a faster location of equivalent services.

Moreover, we define three binary semantic relationships between families: the
inheritance link, the equivalence link and the union link.

Inheritance link : derives from object orientation. A family A inherits from a
family B implies that the A’s ontology of domain is a specialization of B’s ones.
For exemple, an ontology luxury car rental is a specialization of the ontology
car rental. The services included in the set of the first domain realize at least
all the expected capabilities of the second domain. This can be understood as a
familial lineage.

Equivalence link : represents a functional equivalence between two families.
A family A is equivalent to a family B implies that A’s services and B’s ser-
vices realize the same functionalities. It represents an equivalence of ontological
domains. For example, two ontologies car rental (english) and location voiture
(french) represent the same domain. However their syntactic description are
different, their semantics are identical and their services realize the same func-
tionalities. This can be understood as a brotherly relationship.

The equivalence link is transitive, i.e. A is equivalent to B and B is equivalent
to C imply that A is equivalent to C.

Union link : represents some possible compositions between the services of two
different families. It expresses the semantical matching between their inputs and
outputs. Two families linked by an union link can be viewed as a new family.
This can be understood as a marital link which defines a new family in the point
of view of this “couple” i.e. the composition of services.

The union link is transitive, for example two union links which associate A
and B, and B and C can defined a greater family which gathers all of three.

The choice of the term family and the related concepts of lineage (inheritance
link), brotherhood (equivalence link) and marriage (union link) ensure a better
natural understanding of our approach. Following these semantic relationships
between families we are able to define some graphs of families.

3.2 Graph of Families

The three semantic links previously defined are used to organize the different
families. They allow for building some graphs of families. A graph of families is
used to provide a classification of the available services.

Many to Many Service Discovery: A First Approach 453

Fig. 3. Example: Graph of families

Figure 3 shows an example of graph. This graph is composed by six families
which gather all the services. Two union links associate F2 and F3, and F4 and
F5 which define respectively the families F23 and F45. F1 is equivalent to F23
and F45 is equivalent to F2. F6 inherits from F3. This particular organization
and the transitivity of the links ensure other equivalences. For example, F2 can
potentially be replaced by the union of F4 and F5 (F45) which can defined a
new family from F45 and F3 following the union link between F2 and F3. This
new family is equivalent to F1. These complex identifications of equivalences
between families are the base of our M-N discovery approach.

A graph of families mixes two levels of relationships. The first level is defined
by the semantical equivalence between the ontologies of domains (inheritance link
and equivalence link). We are at the family level. The second level is defined by
the ability of composition between available services. This allows for identifying
concrete compositions of services. We are at the service level.

These two levels of relationships imply a two levels management: adding or
removing services, and adding or removing families.

Adding services: a new service has to be registered in the graph of families
in order to be discovered and used. Its classification relies on its description of
service and this process can be divided in two steps. First, the system has to
identify the ontology of domain at which the service can be associated and it is
registered in the corresponding family. Then, some union links have to be defined
between this family and the other ones according to the added service’s entries.

A service which becomes unavailable or which is no more supported by its
provider has to be removed from the graph. Therefore, the system removes this
service from its family and all the related union links are deleted.

Adding families: the adding of a new family corresponds to the definition
of inheritance and equivalence links between this family and the existing ones.
These new links rely on the use of semantic and ontologies which define the do-
mains of applications. Their definitions can partially be automated nevertheless,
most of them have to be handled by a human’s expertise which decides how to
connect the new family.

In general, it is not very useful to remove a family from the graph even if it is
empty. Indeed, a family expresses a semantic concept which is automated with
difficulty. Moreover, the semantic links associated with this family can be useful
to define multiple complex equivalences. The human’s expertise has to be stored
in order to be reused.

This concept of graph is the cornerstone of our M-N approach.

454 A. Hock-koon and M. Oussalah

Fig. 4. Example: Left available graph of families; Right user’s task redefinition

3.3 Identifying Concrete Compositions

The notion of family and the associated semantic links are used to organize the
services which are available in the system. In order to illustrate our identification
process, we use an example. The graph of families presented in the figure 4:L
is the representation of the system’s available services. Figure 4:R(up) shows
the representation of a sought task expressed by the user’s needs. This task is
described by a composition of abstract services. So as to facilitate the under-
standing of our method we assume that there is a direct matching between the
semantic descriptions of the abstract services and the ontologies of domains as-
sociated with the existing families. Therefore, the abstract service AS1 can be
realized by one concrete service of the family F1 (and respectively between ASi
and Fi).

The discovery algorithm is based on the descriptions of services which are
associated with the composition of abstract services extracted from the user’s
task.

First, it intends to make a direct matching (1-1) between the functional on-
tologies provided by the descriptions of services and the available ontologies
of domains associated with the families. In our example, there are some direct
matchings between the couples (AS1, F1), (AS2, F2), (AS3, F3), (AS4, F4).
After the identification of the appropriate families, the system tries to define
a composition between their registered concrete services. This composition is
defined following the union links. Finally, the system selects the most suitable
composition according to the user’s preferences.

However, we can imagine that the available concrete services which are regis-
tered by the identified families are no more available or their quality of services
is not enough according to the selection criteria. Therefore, the system has to
identify some alternative solutions. Now, the system will focus on the family
level and the semantic relationships defined by the inheritance link and the
equivalence link.

We rule that the families F1 and F2 do not have the suitable concrete ser-
vices. However, the union link between them (which is parallel to the sought
composition AS1 to AS2) defines a new family in the graph. This new family is
equivalent to the family F5. Then, the system selects in F5 the most suitable
service according to the preferences. This service has to be able to be composed
with the concrete realization of AS3. The system identifies a 2-1 matching.

Many to Many Service Discovery: A First Approach 455

Moreover, the same problem can occur with the family F3. Following the
equivalence link, some alternatives can be provided by a composition of two
concrete services which belong to the families F6 and F7. The system identifies
a 1-2 matching.

A last equivalence can be identified by the inheritance link between F4 and
F8. F8’s services realize at least the same functionalities as the F4’s ones. They
are specialized versions or they have more capabilities. All these alternatives are
proposed to the user which has the final decision of the services uses.

Thereby, the composition of abstract services is redefined following the graph
of families. Figure 4:R (down) shows the redefinition of the task. However the
global matching is 4-4, the structure of the composition is totally different where
S5 is a concrete service from the family F5 and respectively S6, S7 and S8 from
F6, F7 and F8.

3.4 Toward the Automated Definition of New Families

Our M-N discovery approach relies on a graph of families which has to exist in
the system. The specification of all the families and their semantic relationships
depend on a human expertise. Indeed, our concept of families is limited by the
locks which are encountered by the research area of the ontologies. Therefore,
the instantiation of the graph is automated with difficulty. However, we draft a
method which allows for dynamic enlargement of a graph of families by reusing
the user’s tasks. In fact, a user’s task defines a complex composition of function-
alities in order to realize some high level goals. These goals can defined as new
ontology of domains which are associated with a family. Some equivalence links
can be specified between this family and the existing ones which were selected
for implementing the concrete composite. The composite service’s description is
registered in this new family. Note that the user’s level of comprehension has to
be trusted.

In our example (Figure 4), the user’s task defines a new family. According to
the semantic matching (between AS1 and F1 and respectively AS2, AS3, AS4
and F2, F3, F4) this new family is equivalent to families F1, F2, F3, F4 which
are linked by different union links.

4 Conclusion

In this paper, we present a many-to-many (M-N) service discovery approach. We
introduce the notion of family of services which ensures an organized repartition
of the available services. The M-N algorithm enhances the potential of alterna-
tives and thus, it reinforces the composite’s quality and robustness. Moreover it
can be used as development guidelines by proposing some redefinitions of the
collaboration schema initially targeted by the architect following the graph of
families. Our M-N approach can be combined with works on the composition’s
quality to provide a dynamic selection of the most suitable task’s redefinition
following some criteria such as coupling or cohesion [7,10].

456 A. Hock-koon and M. Oussalah

In future work, we will focus on the evaluation of our approach’s cost. This
method is a first step toward a real many-to-many matchings which gives some
immediate benefits on numerous aspects (service’s quality, robustness, coupling
and so forth) nevertheless a prototype still needs to be provided.

References

1. Beauche, S., Poizat, P.: Automated service composition with adaptive planning.

In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,

pp. 530–537. Springer, Heidelberg (2008)

2. Gu, X., Nahrstedt, K., Yu, B.: Spidernet: An integrated peer-to-peer service com-

position framework. In: HPDC, pp. 110–119 (2004)

3. Hock-koon, A., Oussalah, M.: Expliciting a composite service by a metamodeling

approach. In: RCIS (2010)

4. Kalasapur, S., Kumar, M., Shirazi, B.A.: Dynamic service composition in pervasive

computing. TPDS 18 (2007)

5. Kwak, D., Lee, J., Kim, D., Lee, Y.: User care preference-based semantic service

discovery in a ubiquitous environment. In: Nielsen, M., Kucera, A., Miltersen, P.B.,

Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404,

pp. 365–375. Springer, Heidelberg (2009)

6. Li, L., Wang, Y., Lim, E.P.: Trust-oriented composite service selection and discov-

ery. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS,

vol. 5900, pp. 50–67. Springer, Heidelberg (2009)

7. Ma, Q., Zhou, N., Zhu, Y., Wang, H.: Evaluating service identification with design

metrics on business process decomposition. In: IEEE SCC, pp. 160–167 (2009)

8. OASIS: Reference architecture for service oriented architecture 1.0 (April 2008),

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf

9. Patel, P., Chaudhary, S.: Context aware semantic service discovery. In: SERVICES

II, pp. 1–8 (2009)

10. Perepletchikov, M., Ryan, C., Frampton, K., Tari, Z.: Coupling metrics for predict-

ing maintainability in service-oriented designs. In: Australian Software Engineering

Conference, pp. 329–340 (2007)

11. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The meteor-s

approache for configuring and executing dynamic web processes. LSDIS Lab, Uni-

versity of Georgia Technical Rport (2005),

http://lsdis.cs.uga.edu/projects/meteor-s/

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf
http://lsdis.cs.uga.edu/projects/meteor-s/

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 457–463, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Communicating Architectural Knowledge: Requirements
for Software Architecture Knowledge Management Tools

Widura Schwittek and Stefan Eicker

paluno – The Ruhr Institute for Software Technology
University of Duisburg-Essen

Universitätsstr. 9, 45141 Essen, Germany
{widura.schwittek,stefan.eicker}@paluno.de

Abstract. Architecting is a communication intensive task in which architectural
knowledge is shared between the architect and the stakeholders. The software
architect’s communicative action is often conducted face-to-face, e.g. in presen-
tations and workshops. A software architecture documentation as a carrier of
explicit architectural knowledge can also be seen as an architect’s communica-
tive action. This perspective opens the door for treating a software architecture
documentation as an expression of an asynchronous knowledge communication
process enabling the application of principles from communication theory. In
this paper this perspective is taken and specific requirements are derived for
software architecture knowledge management tools with respect to the context-
oriented communication model.

Keywords: software architecture, architectural knowledge, knowledge commu-
nication.

1 Introduction

Architecting is a communication intensive task in which the architecture serves as a
vehicle for communication among stakeholders [1]. Developers must understand their
work assignments it requires of them, testers must understand the task structure it
imposes on them, management must understand scheduling implications it suggests,
and so forth [2].

The shift to viewing a software architecture as a set of architectural design deci-
sions [3, 4] brought the notion of architectural knowledge to the software architecture
research community, in which it is defined as “architectural design decisions +
design” [5]. This shift underlines that communicating a software architecture is a
knowledge intensive process, which occurs often during the development of a soft-
ware architecture and therefore should be considered adequately.

Communicating knowledge takes a lot of effort because not only facts are commu-
nicated, but also their emphasis, underlying assumptions and problem perspectives
etc. Unlike the sole transfer of information, this kind of communication is called
“knowledge communication” [6], which aims at creating a common ground between
two communication partners. Communicating architectural knowledge is even more
tedious because a software architecture is intangible and at first resides only in the

458 W. Schwittek and S. Eicker

architect’s head. It needs advanced communication skills to achieve a common under-
standing of the architecture between all stakeholders. Stakeholders from different
functional domains with different backgrounds and mindsets speak different lan-
guages, which make successful communication even more difficult.

Much research work has been spent on tool support for the architecting process and
especially on the subject of sharing architectural knowledge [7, 8, 9, 10]. But to the
knowledge of the author there has been no work on the success factors of computer-
mediated communication processes underlying many architectural knowledge sharing
processes. The research work behind this paper tries to fill this gap recognizing the
importance of successful communication for creating a common ground between the
architect and the stakeholders, and which otherwise would have a negative impact on
software architecting and maintenance processes. The focus of this work lies on soft-
ware architecture documentations viewed as the expression of a central architectural
knowledge communication process. The results are high-level requirements for soft-
ware architecture knowledge management tools to better support successful commu-
nication of architectural knowledge during all software lifecycle phases and to relieve
the architect in his role as a “communicator”.

This paper is structured as follows: In chapter two, the context-oriented communi-
cation model is explained and the rationale behind its selection. An understanding of
how computer-mediated communication works is created and the significance of the
different communication contexts is highlighted. In chapter three, derived high-level
requirements from these insights are presented. In chapter four, a conclusion is made
and an outlook is given to further research following this paper.

2 Computer-Mediated Knowledge Communication

The field of knowledge communication originating from communication theory tries
to find answers to the question how knowledge should be communicated, in order to
create a common understanding between two communication partners. In this process
the sender has to create a plan, how to construct an expression regarding his target
audience choosing the right form and language. While knowledge becomes informa-
tion in the moment it is expressed, the recipient has to reconstruct the knowledge by
integrating the information into his existing knowledge. This constructivist under-
standing of knowledge is central within the context-oriented communication model
[11]. Originally created to explain misunderstandings in computer-mediated commu-
nication situations, it was later used to derive requirements for CSCW (Computer
Supported Collaborative Work) systems [12]. This model is based on the work of
Ungeheuer [13] and the neurobiological insights of Maturana and Varela [14]. While
Ungeheuer dealt with the significance of the context in communication processes,
Maturana and Varela came to the conclusion, that living systems always perceive
their environment through filters and always constructing their own reality.

As its name already says, the importance of the context for creating a common un-
derstanding through communication is taken into account and should be explained in
detail in the following.

Figure 1 depicts the elements and their interplay of the context-oriented communi-
cation model. To create a common understanding between two communication

 Communicating Architectural Knowledge 459

Fig. 1. Context-oriented communication model translated from [12]

partners not only the proper expression of an idea is important, but also what addi-
tional context information should be given, in order to allow the recipient to interpret
the expression correctly. The context-oriented communication model differentiates
two kinds of contexts.

The inner context represents the personal existing knowledge, which is not directly
accessible by other individuals. The expression of an idea is biased by the inner
context of the sender, meaning by his personal background, his attitude, prejudices,
values, educational history etc. In order to support the recipient’s understanding of the
expression, the sender has to check his personal impression of the recipient against
congruencies between the inner context of him and the recipient’s inner context. Any
expected differences between those two inner contexts must be compensated by ex-
pressing or referencing those parts and making them explicit.

The outer context consists of everything that is not part of the current communica-
tion expression, such as the facial expression, gesture and behavior, but also informa-
tion and knowledge, which has been shared before. It is divided into things, which are
or have been potentially perceivable by the communication partners and into things,
which actually are perceived by both communication partners (shared perception). In
computer-mediated communication processes the outer context is reduced depending
on which medium is used. E.g. using a chat system the outer context is reduced to
characters leaving no room to validate the interpretation of the expression against
elements from the outer context. While this synchronous type of communication
allows immediate check-backs and feedbacks to secure communication, this is not
possible in asynchronous communication situations.

Communicating architectural knowledge through a software architecture documenta-
tion represents such an asynchronous communication situation. This short introduction
into computer-mediated communication should sensitize the reader to consider both
inner and outer context, if knowledge communication should be supported adequately.

460 W. Schwittek and S. Eicker

3 High-Level Requirements

3.1 Avoid Loss of Inner Context

Knowledge is always bound to a person. If knowledge is separated from a person,
more knowledge – part of the inner context – needs to be explicated to raise chances
of a good reconstruction of that knowledge by another person. Research work around
capturing architectural design decisions to prevent knowledge vaporization [3, 15]
show, that the inner context of a communication process is in part already taken into
account within the architecture research community: It is not only about capturing the
design decisions itself, but also about capturing its rationale, considered alternatives,
organizational constraints at a certain point in time and other situative information,
that span the context around the actual decision. Referring to the discussion about
context-oriented communication in chapter two, it is already known how to commu-
nicate decisions the right way. But architectural knowledge does not only comprise
decisions and there are probably more measures to be made, in order to overcome the
other problems resulting from asynchronicity and computer-mediation. These other
aspects are discussed in the following with respect to the context-oriented communi-
cation model.

3.2 Avoid Loss of Outer Context

As described in chapter two, the conception of an expression is biased by the impres-
sion the sender has got of the recipient. He therefore has to estimate the foreknowledge
of the recipient. The same applies for interpreting the expression on the recipient’s
side. During this process the recipient is biased by the impression he has about the
sender. Thus having a good impression of your communication partner helps to com-
municate effectively and reduce misunderstandings. Its creation should therefore be
supported on both sides, especially when it comes to computer-mediated communica-
tion in which the outer context is reduced depending on the type of media used.

Looking at the research field of CSCW a lot of research work has been spent on
this topic labeled “awareness research”. In this field awareness is described as “an
understanding of the activities of others, which provides a context for your own activ-
ity” [16]. Awareness modules in modern CSCW systems offer information about the
presence, availability, working activities (e.g. last opened document) etc. of other
users. Another source for information, which might enrich the creation of a partner’s
impression is social software. Social software makes the weak and strong ties of
social relationships visible, offering profile information about skills and working
experience. Hence, social software supports building up a proper impression of a
person and making communication more effective on both sides. Furthermore social
software encourages spontaneous and informal synchronous communication, but this
is not subject of this paper.

Software architecture research already gave birth to a knowledge sharing commu-
nity software [17]. But while recognizing the importance of communication, interac-
tion and the outer context for knowledge sharing processes, it focuses on networking
and making use of the network. It fulfills not all requirements described in this paper
and therefore does not explicitly support knowledge communication processes the
way we presented it in this paper.

 Communicating Architectural Knowledge 461

3.3 Support Asynchronous Communication

Asynchronous communication comes with two problems: On the sender’s side it is
not possible to check, if the conceptualization of an expression was good enough. On
the recipient’s side it is not possible to validate the interpretation of an expression.
The best way to communicate knowledge is face-to-face, being able to establish a
common understanding through high interaction. Asynchronous communication has
to compensate this.

Asynchronous communication requires even more to focus on the target audience,
because there is no possibility to adapt the expression instantaneously. Through the
concept of architectural views [18] this requirement is already being applied in
software architecture documentations. The concept allows creating viewpoints and
instantiating views for different groups of stakeholders to satisfy their demand for
information. Views only display specific aspects of an architecture which leads to
reduced complexity and a language and notation the target audience understands. The
context-oriented communication model speaks of “hide the known and irrelevant”
referring to the fact, that having more information at hand does not automatically
mean being more informed [13].

Due to the fact that questions on the recipient’s side cannot be asked instantane-
ously, context-oriented communication suggests multiple expressions of the same
idea helping to reduce room for interpretation. Mass media like newspapers and
magazines fulfill this requirement by not only providing textual representations but
also additional images. In software architecture documentations UML diagrams sup-
port textual representations and vice versa.

Other visual representations beside the well-known UML diagrams exist and
should be considered when offering multiple expressions. E.g. in [19] a proposal is
made for different visualizations of architectural design decisions.

3.4 The Dynamic Architecture Documentation

On the basis of the insights offered by the context-oriented communication model we
propose the concept of a dynamic architecture documentation. By this we mean to
simulate synchronicity and the ability to interact instantaneously between two com-
munication partners. This is achieved by certain mechanisms on the sender’s and
recipient’s side.

First, the recipient should be able to bring expressions into a form he chooses and
understands best. While an architectural view offers a starting point for a stakeholder
of the target group, a dynamic architecture documentation makes it possible to fine
tune his “personal” view. This is realized through filters allowing hiding and showing
different aspects of an architecture and through transformers to switch to different
visual representation forms or to merge them. Second, the sender should be supported
in segmenting and semantically enriching an architecture documentation, enabling the
functionality on the recipient’s side. One way of realization is through the concept of
tags. In [9] a word plug-in is presented that allows tagging parts of the document. One
use case of this approach is to list all design decisions. All parts of the document,
which have been tagged as a design decisions are collected and shown in an aggre-
gated form.

462 W. Schwittek and S. Eicker

A general requirement for the concept of a dynamic architecture documentation is
the provisioning of a repository storing all explicit architectural knowledge, which
can be queried the way described above.

One tool originating from architecture research is already close to the realization of
the concept of a dynamic architecture documentation: The Knowledge Architect [20]
is database-driven and offers a repository, which is queried by a Knowledge Transla-
tor component which transforms generic architectural knowledge into a more domain
specific form the stakeholder understands. The stakeholder however is not able to
configure the Knowledge Translator to fine tune his view, but has to stick to the pre-
defined views the component offers.

4 Conclusions and Future Work

In this paper a communication theory perspective is taken, in order to consider a soft-
ware architecture documentation as an expression of an asynchronous communication
process, through which architectural knowledge is shared. With this perspective
high-level requirements have been derived for architecture knowledge management
tools. The context-oriented communication model has been used to explain how
knowledge is communicated and the importance of the inner and outer context has
been highlighted. It provided the necessary conceptual framework to look at concepts
from other research fields like CSCW, social media and visualization and to make
them usable in software architecture research. The result consists of high-level re-
quirements, measures and hints to concepts and tools, already fulfilling parts of these
high-level requirements.

The research work presented in this paper is not finished and open research ques-
tions remain. These will be addressed in the next step of our research work. One of
these questions is, to look more into detail, how existing software architecture knowl-
edge management tools cope with knowledge communication, and how the high-level
requirements proposed in this paper can be refined and put into practice. Another open
question is, whether these high-level requirements really have an impact on the success
of knowledge communication processes and whether they really lead to a better com-
mon understanding between the architect and other stakeholders. Therefore an empiri-
cal evaluation is planned for which a software prototype will be used. It is based on the
Generic Views Concept [21] and fulfills all requirements of a dynamic architecture
documentation. The prototype concentrates on delivering user defined and concern
related on-demand-views, while still missing other features like avoiding the loss of the
outer context, which has been demanded in this paper. Thus, further development of
the prototype is planned, while it is not yet clear if it will result in a standalone applica-
tion or in an enhancement of existing architecture knowledge management tools.

References

1. Dingsøyr, T., van Vliet, H.: Introduction to Software Architecture and Knowledge Man-
agement. In: Ali Babar, M., Dingsøyr, T., Lago, P., van Vliet, H. (eds.) Software Architec-
ture Knowledge Management. Theory and Practice, pp. 1–17. Springer, Heidelberg (2009)

2. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-Wesley,
Boston (2003)

 Communicating Architectural Knowledge 463

3. Bosch, J.: Software Architecture: The next step. In: Oquendo, F., Warboys, B.C., Morri-
son, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg (2004)

4. Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions.
In: Proceedings of the 5th IEEE/IFIP Working Conference on Software Architecture
(WICSA), pp. 109–119. IEEE Computer Society, Los Alamitos (2005)

5. Kruchten, P., Lago, P., van Vliet, H.: Building up and Reasoning about Architectural
Knowledge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 43–58. Springer, Heidelberg (2006)

6. Reinhardt, R., Eppler, M.J.: Wissenskommunikation in Organisationen. Methoden, In-
strumente, Theorien. Springer, Heidelberg (2004)

7. Ali-Babar, M., Gorton, I., Jeffery, R.: A tool for managing software architecture knowl-
edge. In: 2nd Workshop on Sharing and Reusing architectural Knowledge – Architecture,
Rationale, and Design Intent (SHARK/ADI). ACM, Minneapolis (2007)

8. Farenhorst, R., Lago, P., van Vliet, H.: EAGLE: Effective tool support for sharing archi-
tectural knowledge. Int. J. Cooper. Inform. Syst. 16(3/4), 413–437 (2007)

9. Jansen, A., Avgeriou, P., van der Ven, J.S.: Enriching software architecture documenta-
tion. J. Syst. Software 82(8), 1232–1248 (2009)

10. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Ali-Babar, M.: A comparative study of ar-
chitecture knowledge management tools. J. Syst. Software 83(3), 352–370 (2010)

11. Herrmann, T., Misch, A.: Anforderungen an lehrunterstützende Kooperationssysteme aus
kommunikationstheoretischer Sicht. In: Schwill, A. (ed.) Informatik und Schule,
pp. 58–71. Informatik aktuell. Springer, Heidelberg (1999)

12. Kienle, A.: Integration von Wissensmanagement und kollaborativem Lernen durch tech-
nisch unterstützte Kommunikationsprozesse. Dissertation. Lohmar, Eul (2003)

13. Ungeheuer, G.: Vor-Urteile über Sprechen, Mitteilen, Verstehen. In: Ungeheuer, G. (ed.)
Kommunikationstheoretische Schriften, vol. 1, pp. 229–338, Rader, Aachen, (1982)

14. Maturana, H.R., Varela, F.J.: Tree of Knowledge: Biological Roots of Human Understand-
ing. Shambhala Publications, Boston (1987)

15. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE Soft-
ware 22(2), 19–27 (2005)

16. Dourish, P., Bellotti, V.: Awareness and Coordination in Shared Workspaces. In: Turner,
J., Kraut, R. (eds.) CSCW 1992 - Sharing perspectives. Proceedings of the Conference on
Computer-Supported Cooperative Work, pp. 107–114. ACM, New York (1992)

17. Lago, P.: Establishing and Managing Knowledge Sharing Networks. In: Ali Babar, M.,
Dingsøyr, T., Lago, P., van Vliet, H. (eds.) Software Architecture Knowledge Manage-
ment. Theory and Practice, pp. 113–131. Springer, Heidelberg (2009)

18. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Software 12(6), 42–50 (1995)
19. Lee, L., Kruchten, P.: Visualizing software architectural design decisions. In: Morrison, R.,

Balasubramaniam, D., Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 359–362.
Springer, Heidelberg (2008)

20. Liang, P., Jansen, A., Avgeriou, P.: Collaborative Software Architecting through Knowl-
edge Sharing. In: Finkelstein, A., van der Hoek, A., Grundy, J., Mistrìk, I., Whitehead, J.
(eds.) Collaborative Software Engineering, pp. 343–367. Springer, Heidelberg (2010)

21. Eicker, S., Jung, R., Schwittek, W., Spies, T.: SOA Generic Views - In the Eye of the Be-
holder. In: Congress on Services - Part I, SERVICES 2008, pp. 479–486. IEEE Computer
Society, Piscataway (2008)

Specifying Loose Coupling from Existing Service
Composition Approaches

Anthony Hock-koon and Mourad Oussalah

University of Nantes, LINA Laboratory

2 rue de la Houssiniere, 44322 NANTES, France

{anthony.hock-koon,mourad.oussalah}@univ-nantes.fr
http://www.lina.univ-nantes.fr/

Abstract. The loose coupling notion associated with the service compo-

sition is a key concept which defines the Service Oriented Architectures

(SOA) paradigm. Given that this notion is intuitively understood, its

definition lacks formalism. Moreover, the existing evaluation metrics are

limited and cannot take into account all the specificities of the SOA’s

composition mechanism. In this paper, we present a set of metrics based

on a clear definition of the loose coupling. We combine these metrics in

a formula which calculates a weight. This weight allows for clear mea-

surements of a composite’s coupling.

Keywords: SOA, Composite Service, Loose Coupling, Metrics.

1 Introduction

Service Oriented Architecture (SOA) [15] is a software development paradigm
which provides a set of mechanisms to ensure an homogeneous exposition and
use of heterogeneous resources. One of these mechanisms is the service compo-
sition. It allows combinations of available resources exposed as services. Many
models were developed in order to automatically produce new compositions of
services in a secure manner. In this context, the underlying issue of what makes
good compositions of services is critical for evaluating the existing composition
approaches.

The SOA paradigm intends to generalize a loose coupling relationship between
reused services in a composition. In fact, their independences ensure immediate
improvements on the composition’s flexibility (localized failures, easier replace-
ment of services, etc.). However, the lack of formalism in the definition of loose
coupling in SOA and the limitations of existing metrics do not allow its clear
evaluation. Therefore, we propose a definition of this notion which allows for
the specification of evaluation metrics. These metrics are combined into a global
formula which evaluates the coupling of a composition of services.

Section 2 deals with the motivations and contributions of a new coupling
definition. Section 3 presents this definition and its related metrics. Section 4
presents a formula which reuses the previous metrics. Section 5 concludes and
discusses future work.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 464–471, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.lina.univ-nantes.fr/

Specifying Loose Coupling from Existing Service Composition Approaches 465

2 Related Work

Formal specifications of the SOA paradigm in existence (listed in [6]) present
the loose coupling notion as essential in a composition of services. The reduction
of the dependencies between constituent services gives immediate benefits to
the composition’s flexibility. This intuitive understanding of the loose coupling
principles is the only definition provided by these specifications. Moreover, ex-
isting works in SOA which provide evaluation metrics for loose coupling are not
able to evaluate all the mechanisms introduced by the diversity of composition
approaches. They cannot give a clear comparison between them.

In [18,9], the authors reuse established metrics which come from the object-
oriented (OO) design [5,3]. These metrics have been proved effective for evalu-
ating the OO design structure. However, they focus on the implementation-level
concepts of classes and thus they are unsuitable for SOA [17]. The methods pro-
posed by [7,13] rely on message exchanges (number of messages, complexity of
the exchanged data, etc.). They only focus on physical aspect of an instantiated
composition. Thus, they do not take account of all the high level mechanisms
which can be supported by this instantiated composition. Other works exist in
CBSE such as [21,10]. However, they cannot be applied directly since there are
some theoretical differences between component and service orientation (dynam-
icity, mechanisms, granularity, black box, etc.).

We believe that these metrics are not enough to take account of all the speci-
ficities of the SOA’s composition theory. They have to be extended in order
to capture all its aspects. Indeed, there are numerous service composition ap-
proaches which aim at reducing the coupling inside a composition of services
by proposing new mechanisms. Each of them focus on a particular aspects of
the service composition. Some approaches [19,1] focus on the heterogeneous na-
ture of the services which are not directly reachable and invokable. In [2,4], the
authors focus on adaptation mechanisms which can modify the composition’s
architecture. Each of these works are linked to the fundamental concepts which
characterize the service composition, such as service discovery, service selection,
service mediation, adaptation and so forth. All of them have some intuitively
tangible benefits on the composition’s coupling and, as for the intuitive under-
standing of the loose coupling, this lack of formalism leads to the impossibility
of having some real measurements of their contributions. An architect cannot
compare these approaches and thus, he cannot select the suitable one according
to his needs.

We aim at proposing an evaluation method of the coupling which takes ac-
count of all the aspects underlined by the existing works on the service composi-
tion. We aim at providing a quantitative evaluation which provides an objective
point of view about a composite’s coupling. Since the choice of a composition
model heavily depends on the expertise and experience of individual architects,
our coupling evaluation wants to be a formal guideline for helping them to make
a decision.

466 A. Hock-koon and M. Oussalah

3 The Loose Coupling Notion

We use a short running example to illustrate our work. We give a simple rep-
resentation of a car constructor’s development process. In the first step, the
constructor models its new car by defining its elements and the way they work
together to ensure the required functionalities. We use a set of five classic car’s
functionalities.

The moving capability is composed of three elements: Cooling system, Mo-
tor and Wheels. The Cooling system provides a coolant to the Motor which is
able to run and thus triggers the Wheels movements. The stopping capability
is composed of two elements: Brake and Wheels. The Brake transfers frictions
to the Wheels which stop their movement. The direction capability is composed
of two elements: Steering Wheel and Wheels. The Steering Wheel gives direc-
tions to the Wheels. The GPS capability is composed by one element: GPS.
The air-conditioning capability is composed by one element: Cooling system.
The constructor wants to subcontract the production of all these elements and
searches which enterprises are able to produce them.

This scenario is a classic problem which can be supported by a service-based
modeling. The specification of the car prototype by the constructor expresses its
needs. These needs can be modeled by a set of abstract services organized by a
collaboration schema [11] which defines workflow and dataflow. For example, the
description of the Motor element defines an abstract service and its sought func-
tionalities and properties. The constructor looks for some enterprises (providers
of services) which are able to realize this abstract Motor and provide this con-
crete service. The realization of the car by composing all the different concrete
services represents the composite service.

Our coupling definition deals with all these different notions of abstract and
concrete services. Then, it is divided into three couplings:

The semantic coupling between abstract services: intends to make explicit
the architect’s expertise about the application domain of his composite. It is in-
dependent of the implementation and represents the dependencies which involve
an abstract service and the composite capabilities that this service participates
in. Thereby, the semantic coupling measurement of the abstract services depends
on the collaboration schema and on the level of importance given by the architect
to the composite capabilities.

We define three levels of semantic coupling:

Strong coupling: an abstract service and a composite are strongly coupled if
this service participates in an essential capability of the composite. A capability
is identified subjectively as essential by the architect: without this capability
the composite becomes unusable. In our example, the constructor can define
the moving capability as essential. Without this capability the composite can
no longer be called a car. The abstract services (Cooling system, Motor and
Wheels) which the related collaboration schema supports the moving capability,
are strongly coupled with the composite. They represent some critical points
according to the constructor.

Specifying Loose Coupling from Existing Service Composition Approaches 467

Loose coupling: an abstract service and a composite are loosely coupled if this
service participates in a non essential capability of the composite. However,
these capabilities have a direct impact on the composite efficiency. We cannot
guarantee the composite quality if one or more of these capabilities are removed.
If all of them are removed, we rule that the composite becomes unusable. In our
example, the constructor can define the abstract services involved in the stopping
capability and the direction capability as loosely coupled with the composite. In
fact, the car is totally out of control if it loses these two capabilities.

Non predominant coupling: an abstract service and a composite have a non
predominant coupling if this service participates in a non-essential capability.
Moreover, all non-predominant services can be removed without consequences
on the composite availability or on the efficiency of its essential capabilities.
These specific capabilities express some optional features. In our example, the
constructor can define the abstract services involved in the GPS capability and
the air-conditioning capability as non predominant for the composite. These
capabilities are optional and their dysfunction does not modify the semantic of
the car.

The syntactic coupling: an important property of the SOA paradigm relies
on the dynamic discovery of available services. Thereby, the syntactic coupling
focuses on the dependencies between abstract services and concrete services. We
define two levels of syntactic coupling:

Strong coupling: an abstract service is strongly coupled with a concrete service
if this concrete service is the only available one which can realize the abstract
service. Alternative solutions are not available.

Loose coupling: an abstract service is loosely coupled with a concrete service if
there are alternative solutions. The more suitable concrete services there are,
the weaker the coupling is.

In our example, the Motor has a strong syntactic coupling if there is only
one enterprise which is able to produce it. On the contrary, it can have a loose
syntactic coupling if numerous enterprises are known by the constructor.

Thereby, this notion of syntactic coupling directly depends on two elements:

The used discovery algorithm: the existing algorithm can be grouped in two
approaches [12], one to one matching (1-1) [8,20] and one to many matching (1-
N) [12,1]. The 1-1 approach identifies one abstract service to exactly one concrete
service. The 1-N approach identifies one abstract service to one concrete service
or many concrete services in collaboration. Thereby, the 1-N approach has a
larger potential of solutions than the 1-1. The syntactic coupling is weaker. In
our example, the constructor which wants to identify the future production site
of its car will prefer a region which can be easily supplied by a greater potential
of industrial subcontractors.

The selection criteria: they define the constraints on the identification of con-
crete services. These constraints are provided to a discovery algorithm. Thereby,
the weaker the constraints are, the larger the potential of solutions is. The

468 A. Hock-koon and M. Oussalah

management of the heterogeneities [11,19,1,16] directly impacts on the syntactic
coupling. A composite which does not have implementation considerations can
use a larger range of concrete services. In our example, if the constructor can
adapt any type of wheels in its car, it will be able to choose between classic
producers of car wheels, but also truck or air plane wheels. More enterprises will
match its call for tender.

The syntactic coupling expresses the alternatives of realization and completes
the semantic coupling. In fact, the semantic coupling allows for identifying the
critical aspect of the composite in a functional point view. An architect will
uppermost try to reduce the syntactic coupling of services which are related to
this critical aspect. For example, the Motor is defined as essential in the car
by the constructor. However, the Motor is not critical in a realization point of
view since there are numerous enterprises which can produce it. In case of any
problems related to the Motor (defects, time of production, etc.) the constructor
can call for others enterprises.

The syntactic coupling represents the dynamic possibilities of service selection
for the specification of the composite and also its ability to dynamically identifies
alternatives solutions in case of failures.

The physical coupling between concrete services: it reuses existing re-
searches and it is based on empirical measurements [18,9,7,13] such as method
calls, message exchanges, and so forth. These metrics identify the physical depen-
dencies. They are fully linked to the collaboration methods (orchestration, chore-
ography) and to the communication methods (messages, notification of events,
and so forth). A purely SOA approach gives priority to the minimization of the
transversal communications between services in the same level of composition.
There is a preference for a vertical communication (composite and constituent)
rather than horizontal communication (constituent and constituent). Following
this preference, we rule that a service is strongly coupled if it is linked with
numerous services. A service is loosely coupled if it is linked with only one other
service (theoretically its composite service).

These three couplings focus on different aspects of the service composition
and act in a complementary way. The semantic coupling expresses the archi-
tect’s expertise and allows for identifying the critical functional aspects of his
composite. This semantic coupling acts as guidelines for the syntactic coupling.
In fact, the architect intends to reduce the syntactic coupling of the abstract ser-
vices which are strongly coupled at the semantic level and thus, he makes these
critical aspects safer. The physical coupling expresses the dependencies between
concrete services and can be used to select the better concrete composition.

4 Global Evaluation

Our evaluation takes inspiration from an existing formula of the Preliminary
risk analysis [14] and it is commonly used in the automotive industry. This
simplified formula is used to measure the risk of failure of car’s components:
Risk = A ∗ B ∗ C. A is the Criticality of the component, B is its Probability

Specifying Loose Coupling from Existing Service Composition Approaches 469

of Failure Occurrence and C is the Probability of non-detected Failure of this
component. We provide our own specification of these three elements so as to
calculate the coupling of a service in a specific composition.

Criticality: expresses the degree of element’s dangerousness. In the automotive
industry, it is evaluated by an empirical scale based on the car constructor’s
experiences. There is a direct match with our notion of semantic coupling which
represents the architect’s expertise. A coefficient is associated with strong cou-
pling (S), loose coupling (L) and non-predominant coupling (np). An abstract
service can have multiple semantic couplings insofar as it can participate in mul-
tiple composite’s capabilities. Therefore, we define that the criticality of a service
equals: A = {S, L, np}NbCapabilities

Probability of failure occurrence: can be refined in two others probabilities,
(a) the probability of failure on the services which realize the task, and (b)
the probability of failure on the management services which define the system
responsible of the coordination between the others services.

The (a) probability is evaluated by using the informations of the syntactic
coupling and the physical coupling. In fact, the syntactic coupling calculates
the potential of alternative solutions for instantiating an abstract service. The
functionalities required by the abstract service will no longer be supported if
all the alternative solutions become unavailable. Therefore, an abstract service
fails if all concrete solutions fail. Moreover, this weight has to be level-headed
by the physical coupling which provides data about the use ratio or the possible
propagations of a service’s fail and so forth. Therefore, we define that the (a)
probability equals:(a) = Pallfail ∗ Cphys

Our Pallfail is the probability that all concrete solutions fail. This probability
is linked to the number of these solutions. This potential of alternatives heavily
depends on the discovery engine (1-1 matching [8,20] or 1-N matching [12,1])
and on the management of the heterogeneities by the composition system.

We define Ps the probability that a service fails. The calculation of Ps has
to be done by a precise analyze of the service’s implementation. Typically, this
analyze is under the responsibility of the service’s owner. We define a general
formula Pallfail which handles M-N matching. However, we do not find signi-
ficative service discovery engines which realize M-N matching, our approach is
able to evaluate them. In fact, M-N approaches represent a natural goal for the
thematic of service discovery. The number of possible combinations relies on the
numbers M and N , and also on the number X of abstract services which are
required by the architect in his composite. First, we determine λ the number
of possible combinations of M in X abstract services. Then, we use this λ to
calculate the number of compositions which realize these abstract services. α
represents the number of concrete alternatives.

Pallfail =
λ∏

k=1

N∏
i=1

i∑
j=1

((Ps)kij)αkij (1)

470 A. Hock-koon and M. Oussalah

M < X : λ =
∑X−1

i=X−M Ci
X−1 M ≥ X : λ = 1 +

∑X−1
i=1 Ci

X−1

The (b) probability focuses on the failure of the coordination system. Its
evaluation heavily depends on the implementation techniques and thus it requires
a deep analyze of the prototype of the composition approaches. We only define
a coefficient called Psys which addresses this probability.

This probability calculation assumes that the composite service is able to
dynamically modify its architecture, i.e. it is able to make good use of the alter-
native solutions. Otherwise, the formula only focuses on selected services which
instantiate the composite. We do not take account of the alternatives.
Probability of non-detected failure: is determined by the mechanism used
by the composite or by the composition system in order to observe the environ-
mental context. Therefore, the evaluation of this criteria requires a deep study
of the targeted model. However, a first distinction can be done between cen-
tralized and distributed observation systems. Centralized approaches advocate
that one entity is responsible for observing the used services. If this entity fails,
whatever the failed service, it won’t be able to detect it. On the contrary, dis-
tributed approaches advocate that each observed services is associated with a
dedicated observer. The probability of non-detected failure results in the combi-
nation of failures: both service’s failure and observer’s failure. We define Pndetect,
the probability of non-detected failure which is higher for centralized approaches
than distributed ones. If the composite service is unable to detect failures, the
probability of non detected failure equals 1.

5 Conclusion

In this paper, we point out the lack of theorization of the loose coupling defi-
nition. We demonstrate the limitations of existing coupling measurement tech-
niques which do not take account of all the high level concepts involved in the
service composition.

We present our coupling evaluation method which intends to handle all the
features which leverage the coupling relationship between the composite’s ser-
vices. Therefore, we combine statical and dynamical aspects of a composite and
its modeling approach. We group these aspects in three different couplings: se-
mantic, syntactic and physical. While the physical coupling reuses existing works
based on OO metrics, the semantic and syntactic couplings capture the high level
concepts of SOA such as service discovery, service mediation and so forth. We
combine these three couplings by reusing a formula inspired by the context of
preliminary risk analysis. This formula defines our quantitative evaluation of
the composite’s global coupling. Moreover, it is the base toward a classification
of existing service composition approaches and a classification of existing tools.
Due to page limitation, we do not focus on our comparison framework of ex-
isting service composition approaches which reuses our coupling metrics. This
framework will be the topic of another paper.

Specifying Loose Coupling from Existing Service Composition Approaches 471

References
1. Beauche, S., Poizat, P.: Automated service composition with adaptive planning.

In: ICSOC, pp. 530–537 (2008)

2. Bottaro, A., Gérodolle, A., Lalanda, P.: Pervasive service composition in the home

network. In: AINA, pp. 596–603 (2007)

3. Briand, L.C., Wüst, J., Daly, J.W., Porter, D.V.: A comprehensive empirical

validation of design measures for object-oriented systems. In: IEEE METRICS,

pp. 246–257 (1998)

4. Chibani, A., Djouani, K., Amirat, Y.: Semantic middleware for context services

composition in ubiquitous computing. In: MOBILWARE, p. 9 (2008)

5. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE

Trans. Software Eng. 20(6), 476–493 (1994)

6. Erickson, J., Siau,K.: Web services, service-oriented computing, and service-oriented

architecture: Separating hype from reality. J. Database Manag. 19(3), 42–54 (2008)

7. Erradi, A., Kulkarni, N.N., Maheshwari, P.: Service design process for reusable

services: Financial services case study. In: Krämer, B.J., Lin, K.-J., Narasimhan,

P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 606–617. Springer, Heidelberg (2007)

8. Gu, X., Nahrstedt, K., Yu, B.: Spidernet: An integrated peer-to-peer service com-

position framework. In: HPDC, pp. 110–119 (2004)

9. Gui, G., Scott, P.D.: New coupling and cohesion metrics for evaluation of software

component reusability. In: ICYCS, p. 1181 (2008)

10. Gui, G., Scott, P.D.: Ranking reusability of software components using coupling

metrics. Journal of Systems and Software 80(9), 1450–1459 (2007)

11. Hock-koon, A., Oussalah, M.: Expliciting a composite service by a metamodeling

approach. In: RCIS (2010)

12. Kalasapur, S., Kumar, M., Shirazi, B.A.: Dynamic service composition in pervasive

computing. TPDS 18 (2007)

13. Ma, Q., Zhou, N., Zhu, Y., Wang, H.: Evaluating service identification with design

metrics on business process decomposition. In: IEEE SCC, pp. 160–167 (2009)

14. Mortureux, Y.: Preliminary risk analysis. Techniques de l’ingenieur. Securite et

gestion des risques SE2(SE4010), SE4010.1–SE4010.10 (2002)

15. OASIS: Reference architecture for service oriented architecture 1.0 (April 2008),

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf
16. OASIS: Service component architecture assembly model specification version 1.1

(2009), http://www.oasis-opencsa.org/
17. Perepletchikov, M., Ryan, C., Frampton, K.: Comparing the impact of service-

oriented and object-oriented paradigms on the structural properties of software.

In: OTM Workshops, pp. 431–441 (2005)

18. Perepletchikov, M., Ryan, C., Frampton, K., Tari, Z.: Coupling metrics for predict-

ing maintainability in service-oriented designs. In: Australian Software Engineering

Conference, pp. 329–340 (2007)

19. Roman,D., deBruijn, J.,Mocan,A.,Lausen,H.,Domingue, J.,Bussler,C.,Fensel,D.:

Www:Wsmo,wsml, andwsmx inanutshell. In:Mizoguchi,R., Shi,Z.-Z.,Giunchiglia,

F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 516–522. Springer, Heidelberg (2006)

20. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The meteor-s ap-

proache for configuring and executing dynamic web processes. LSDIS Lab, Univer-

sity of Georgia Technical Report (2005),

http://lsdis.cs.uga.edu/projects/meteor-s/
21. Yu, L., Ramaswamy, S.: Multiple-parameter coupling metrics for layered

component-based software. Software Quality Journal 17(1), 5–24 (2009)

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf
http://www.oasis-opencsa.org/
http://lsdis.cs.uga.edu/projects/meteor-s/

Dynamic Adaptive Service Architecture –
Towards Coordinated Service Composition

Claus Pahl

School of Computing

Dublin City University

Dublin, Ireland

cpahl@computing.dcu.ie

Abstract. With software services becoming a strategic capability for

the software sector, software architecture needs to address integration

problems to help services to collaborate and coordinate their activities.

The increasing need to address dynamic and automated changes can be

answered by a service coordination architecture with event-based col-

laboration that enables dynamic and adaptive architectures. Intelligent

service and process identification and adaptation techniques are suitable

solutions for event-driven and on-demand service architectures. We de-

fine an architectural solution space and identify research challenges.

1 Introduction

Service-oriented architecture (SOA) is a methodological framework for software
architectures, supported by Web services as the platform technology. Particu-
larly scalability and suitability for open, collaborative applications are limited
due to the restrictive nature of current service composition, collaboration and
interaction techniques such as orchestration and choreography languages as the
core principles of SOA.

Interoperation and coordination of services is a major challenge service-
oriented architecture in the context of on-demand scenarios - as the emergence of
cloud computing as a form of service architecture virtualisation demonstrates [4].
Today, hand-crafted service architectures are in place and provide support for
software systems in classical sectors such as finance or banking. However, their
inherent structural inflexibility makes changes and evolution difficult, resulting
in major costs.

2 A Changing Architectural Landscape – SOA Challenges

The vision behind recent initiatives such as cloud and on-demand computing is
to enable collaboration of service communities [4]. These exhibit a more dynamic
nature of interaction, which requires novel software architecture techniques for
the identification of needs and behaviours and the adaptation and customisation
of provided services to requested needs. The coordination of activities between

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 472–475, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Dynamic Adaptive Service Architecture 473

communities of users and providers needs to be supported [5]. Architecture-based
solutions for these evolving and software-intensive systems are sought.

Currently, orchestration and choreography approaches describe business in-
teraction protocols that coordinate and control collaborating services [8]. Chal-
lenges for architectural configuration to support future needs are [7]:

– Dynamic and adaptive processes. Services and processes need to provide
adaptive capabilities in order to respond to evolving demands and changes
without compromising operational and financial efficiencies. A challenge is
to provide self-management support for dynamic service compositions.

– QoS-aware service compositions. Service compositions must be QoS-aware
- including business regulations, performance levels, reliability requirements
or service-level agreements (SLA).

3 Architecture Implications – Coordination

The changing architectural landscape requires flexible composition techniques
such as event-driven and decentralised coordination instead of tightly coupled
synchronous and centralised compositions [9] – resulting in three objectives:

– Objective 1: provide a technology framework (platform + methodology) that
allows flexible composition of services for dynamic service architectures. The
core solution can be built around a notion of a coordination space. This
coordination space acts as a passive infrastructure to allow communities of
users and providers to collaborate through the coordination of requests and
provided services. The coordination space can be governed by event-driven
principles: tasks to perform some activity on an object occur are requested,
services collaborative and coordinate their activities to execute these tasks.

– Objective 2: provide flexible infrastructure mechanisms to support dynamic,
changing service architectures. Dynamic selection and adaptive, process-
centric composition of services to meet user needs requires a considerable
degree of flexibility: user requests might be incomplete or incorrect and need
to be corrected, individual requests can be part of an ongoing process that
can be derived from the context and the execution history, and provided
service might need to be adapted and customised to meet user needs.

– Objective 3: provide a solution to support future Internet objects and ap-
plications. Users are concerned with the processing of objects. In classical
enterprise scenarios these objects are electronic documents passing through
business processes, but within the Future Internet, the notion of objects will
broaden, capturing any dynamic, evolving entity.

The central concepts are objects and processes. Evolving objects are dynamic
entities that represent an end-to-end view. The process notion refers to business
processes on these objects. States of the process are points of variation for ob-
jects: data evolves as it passes through a process. Process-centricity is the first
aspect that characterise this new architecture [3]; the second is a paradigm shift
from a pull- to a push-model of communication. Instead of requesting services
directly (pull), requests are published (push) and responded to independently.

474 C. Pahl

4 A Challenges Framework and Architectural Solutions

Fig. 1 represents an architectural solution framework that we use here to locate
and describe specific research challenges. The conceptual framework is goal-
driven, event-based collaboration of services. We can identify two core facets:
the data representing processable objects and the processes themselves and the
operation of coordination based on event handling and self-management.

Based on a core architecture, we look into challenges for the information ar-
chitecture, the operational aspects of dynamic and adaptive service architecture
and quality considerations – forming the advanced layer in our framework.

Information Architecture. The architecture needs to process object and process
information in many ways:

– static and incremental process identification aiming to determine individual
tasks, i.e. steps of a larger process, to achieve goals based on an abstract,
user-centric and object-based goal specification. Static determination can
identify processes based on static knowledge, e.g. in the form of common
structural patterns. Incremental determination based on mining approaches
can incrementally identify behaviour patterns based on historical data.

– adaptation of provided services to meet the needs of identified process and
requestor via mediation between client and provider. Based on identified pro-
cesses that should enable an object goal to be achieved, adaptations of ex-
isting services or subprocesses might be necessary to bridge the gap between
requirements and actual services: service-level adaptation as data-centric me-
diation based on identified process patterns and process-centric adaptation
to adapt processes locally to include user profile and context aspects.

Operation through Coordination

– Event handling is the challenge. A variety of coordination models has been
proposed [1],[6],[2], e.g. based on tuple spaces. Domain- and application
context-specific solutions and approaches based on semantic extensions need
to be further investigated and applied to service composition and mediation.

– Self-management is a requirement in dynamic systems. A critical aspect
is fault-tolerance [10]. The classical security aspects prevention, detection
and recovery can be applied to define challenges. Correction of incorrect or

data:

objects + processes
event handling + access

operation

identification:

static +
incremental

adaptivity:

services +
processes

fault

tolerance:

prevention +
detection + recovery

Service
Request
Service
Request

Provided
Service

Provided
Service

Fig. 1. An Architectural Challenges Framework

Dynamic Adaptive Service Architecture 475

incomplete input is a fault prevention technique; constraint monitoring is
detection or remedial strategies can be defined for recovery purposes.

– Governance is a management-related aspect that also bridges into quality.
Compliance with not only technical constraints is needed for self-management,
but also wider regulatory and business constraints are of importance for vir-
tualisation environments such as the cloud that bridge organisational bound-
aries and therefore need to reconcile different regulatory needs.

The coordination models selected to support a solution determines notational
aspects we would expect an architectural description language to deal with.

Quality Reflections. We have discussed different technology challenges for dy-
namic, adaptable service coordination architectures. As quality is a central con-
cern of software architecture, the respective techniques need to be considered
from a quality perspective:

– The infrastructure techniques suggested here require specifically qualities
related to the dynamic context in which they need to be provided, i.e. per-
formance and reliability are central challenges.

– The services (i.e. applications themselves) are subject to varying qualities as
required by the context, but need to be dealt with dynamically, i.e. efficiency
and reliability are again critical requirements.

Accountability through governance is another quality aspect of importance.

References

1. Balzarotti, D., Costa, P., Picco, G.P.: The LighTS tuple space framework and

its customization for context-aware applications. Web Intelligence and Agent Sys-

tems 5(2), 215–231 (2007)
2. Doberkat, E.-E., Franke, W., Gutenbeil, U., Hasselbring, W., Lammers, U., Pahl,

C.: PROSET - Prototyping with Sets, Language Definition. Software-Engineering

Memo 15, Universitt GH Essen (1992)
3. Gacitua-Decar, V., Pahl, C.: Automatic Business Process Pattern Matching for En-

terprise Services Design. In: 4th International Workshop on Service- and Process-

Oriented Software Engineering (SOPOSE 2009). IEEE Press, Los Alamitos (2009)
4. Hayes, B.: Cloud computing. Communications of the ACM 51(7), 9–11 (2008)
5. Johanson, B., Fox, A.: Extending Tuplespaces for Coordination in Interactive

Workspaces. Journal of Systems and Software 69(3), 243–266 (2004)

6. Nixon, L., Antonechko, O., Tolksdorf, R.: Towards semantic tuplespace computing:

the semantic web spaces system. In: Symp. on Appl. Computing, SAC 2007 (2007)
7. Papazoglou,M.P.,Traverso,P.,Dustdar, S., Leymann,F.: Service-OrientedComput-

ing: State of the Art and Research Challenges. Computer, 38–45 (November 2007)

8. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods.

In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54.

Springer, Heidelberg (2005)
9. Utschig-Utschig, C.: Architecting Event-Driven SOA: A Primer. Oracle (2008),

http://www.oracle.com/technology/pub/articles/oraclesoa_eventarch.html
10. Wang, M., Yapa Bandara, K., Pahl, C.: Integrated Constraint Violation Handling

for Dynamic Service Composition. In: IEEE International Conference on Services

Computing, SCC 2009. IEEE, Los Alamitos (2009)

http://www.oracle.com/technology/pub/articles/oraclesoa_eventarch.html

Identity Management Mismatch Challenges in
the Danish Municipality Administration System

Mads Schaarup Andersen and Henrik Bærbak Christensen

Department of Computer Science, Aarhus University, Aarhus, Denmark

{masa,hbc}@cs.au.dk

Abstract. Integrating a COTS product in a company’s product portfo-

lio is appealing from a business perspective but highly challenging from

the perspective of the software architecture. In this paper we outline

research challenges regarding authorization in the identity management

part of the Danish municipality administration system, called Opus BRS,

a system that integrates SAP, legacy mainframe systems, and other sys-

tems present in the individual municipalities. Each of these systems

defines their own access control model and architecture, which leads to

architectural mismatch that impacts security, usability, as well as main-

tainability. We outline a three-year research project and discuss our re-

search method that will include elements of action research as well as

experiments using architectural prototyping. The project is carried out

in cooperation with KMD, one of the largest Danish IT companies, who

is the producer of the Opus system.

Keywords: Architectural Mismatch, Identity Management, Architec-

tural Prototyping, Action Research, COTS.

1 Motivation

Commercial Off-The-Shelf (COTS) products offer business value as they encap-
sulate complex domain functionality in thoroughly tested components. However,
COTS products often also pose serious challenges for the software architects be-
cause of Architectural Mismatch. Architectural mismatch was first identified and
described by Garlan et al. [4] during their development of the AESOP system,
and Garlan et al. recently stated that the problem of architectural mismatch
persists today [5].

In this paper, we outline our research project that investigates the research
challenges of architectural mismatch for identity management, with a focus on
authorizations. The project is a three year project co-funded by the major Danish
supplier, KMD, of administration systems for the Danish municipalities. KMD
provides administration services in more than 90% of the Danish municipalities.
The Danish municipalities handles vast and complex data concerning each indi-
vidual citizen in Denmark. The complexity stems from both the Danish social
welfare system that entitles a citizen to a large palette of benefits in case of
unemployment, retirement, or social or medical problems on one hand, and the

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 476–479, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

IDM Challenges in Danish Municipality Administration 477

Danish legislation that defines very strong limitations of the type of data an
individual social worker at the municipality may access.

To illustrate the complexity, a social worker that is responsible for payment of
disability pensions in the municipality must have access to the citizens’ classifica-
tion of disability. However, the social worker is not entitled to access a person’s
full medical record, criminal record, etc. The social worker in the next office,
however, aids citizens in getting a job and need access to for instance certain as-
pects of the criminal record to judge if a person is suitable for a vacant job. Thus,
a very fine grained role- and identity management system is required. The archi-
tectural challenges are complicated as KMD has a complex and heterogeneous
portfolio of applications and systems, including a legacy mainframe system, indi-
vidual systems, as well as SAP [11]. To further complicate things KMD handles
the administration systems for a large set of Danish municipalities on a single
centralized solution in which each municipality act as a client. This is done for
cost-efficiency but as each municipality has their own peculiar work flows and
requirements, this poses even further challenges for the architecture.

2 Research Challenge

We will investigate the problems faced by the KMD security division in realizing
the first version of the SAP based system called Opus BRS. A major problem
faced here is in relation to the access control model in SAP. SAP is mainly
based on RBAC [3,10] with the addition of structural authorizations [8], which
is a way of restricting access based on a company’s organizational structure.
Currently, the structural authorization model only exists in SAP Human Capital
Management (HCM), and hence is not supported by SAP Identity Management
(IDM). This presents a mismatch when user access rights need to be provisioned
between the different components in the heterogeneous setup of KMD. One of
the goals of Opus BRS is to provide a single interface for user administration
in the form of a web based portal interface. The portal is based on SAP IDM
and hence is not able to handle structural authorizations. This entails that the
user administrator needs to log in to the SAP HCM system to assign structural
authorizations, thus compromising the idea of the portal as a single interface
for managing users. The initial research challenge is to examine and quantify
this architectural mismatch and propose an architecture in which structural
authorizations can be handled using the portal, enabling the idea of a single
interface. The initial idea is to examine whether and how the existing components
in SAP IDM can be used to accommodate structural authorizations.

Further research challenges include examining and quantifying whether the
SAP access control model is capable of handling all the requirements in the
heterogeneous setup in which Opus BRS is deployed.

There have been other efforts to solve the limited expressiveness of the RBAC
model [3] which we will use in our analysis. TRBAC (Temporal RBAC) [2] and
GTRBAC (Generalized TRBAC) [6] introduces the temporal aspect to RBAC,
the latter being more expressive than the first. GRBAC (Generalized RBAC) [9]
extends RBAC by introducing object and environment state.

478 M.S. Andersen and H.B. Christensen

3 Research Method

The project is carried out in close cooperation with KMD, and because of this we
have the architects and developers involved in the implementation of the Opus
BRS system at our disposal. As the project is designed to have an industrial and
applicable outcome as well as a research outcome, we have focused on empirical
software engineering methods.

Sjøberg et al. distinguishes between four kinds of empirical methods in soft-
ware engineering research: Experimentation, Surveys, Case Studies, and Action
Research [12]. We have decided on a research agenda based on a Action Research
which is defined as “Action research focuses particularly on combining theory and
practice. It attempts to provide practical value to the client organization while
simultaneously contributing to the acquisition of new theoretical knowledge.” Us-
ing the definition proposed by Sjøberg et al. we elaborate the research to be
reflective action research, where an already existing system is examined.

The reason for choosing action research is that it fits our needs of investi-
gating a specific problem in practice and identifying a problem. Next our am-
bition is to combine the obtained knowledge of the system with our knowledge
of identity management and software architecture in a number of architectural
prototypes [1], which we will then evaluate in cooperation with KMD. Archi-
tectural prototypes seek to experiment and evaluate architectural solutions in a
“sandbox,” a realistic but scaled down version of the real target system.

4 The Case

The Danish company KMD is one of the largest IT companies in Denmark
with more than 3000 employees [7]. In 2005 they started working with SAP,
and recently they started deploying a new system, Opus, based on SAP. Opus
is KMD’s suite of administration systems for Danish municipalities, and Opus
BRS is the identity management part of this.

We will specifically be collaborating with the Security Division of KMD. Our
research will be divided into two phases. In phase 1 we will do a retrospective
analysis and documentation of how authorization and identity management is
currently implemented in KMD’s Opus BRS solution. This will be done as a
bottom-up analysis where authorization in identity management and software
architecture issues will be examined by interviewing the people involved in the
process of implementing and deploying the solution, this being both developers
and architects. The retrospective analysis will be based on architecture and
document reviews, as well as code tracing. We expect to identify a number of
issues in relation to identity management, and the impact on the Opus system
software architecture. In phase 2 we will use the knowledge obtained in phase 1
to create a number of architectural prototypes in which the problems identified
will be addressed. These will then be used to propose and experiment with one
or several new architectural solutions in collaboration with KMD architects.

IDM Challenges in Danish Municipality Administration 479

5 Expected Outcome

The project is expected to have both research as well as industrial outcomes.
Regarding research we expect develop detailed models for authorizations in iden-
tity management and specifically in relation to COTS product integration and
the mismatch that this might introduce. This should in turn lead to a proposal
for an architecture incorporating an access control model which solves the au-
thorization problems of identity management identified in phase 1. Regarding
industrial outcomes we expect to produce a number of architectural prototypes
demonstrating different solutions to the problems which currently exists in the
Opus BRS system. These will in turn be evaluated in cooperation with the KMD
architects, and hence we will use the method of evolutionary prototypes.

References

1. Bardram, J., Christensen, H., Hansen, K.: Architectural Prototyping: An Approach

for Grounding Architectural Design and Learning. In: Proceedings of Fourth Work-

ing IEEE/IFIP Conference on Software Architecture. WICSA 2004, June 2004,

pp. 15–24 (2004)

2. Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: A temporal role-based access con-

trol model. ACM Trans. Inf. Syst. Secur. 4(3), 191–233 (2001)

3. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed

NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4(3),

224–274 (2001)

4. Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch: Why Reuse is so

Hard. IEEE Software 12(6), 17–26 (1995)

5. Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch: Why Reuse Is Still

So Hard. IEEE Software 26(4), 66–69 (2009)

6. Joshi, J.B., Bertino, E., Latif, U., Ghafoor, A.: A Generalized Temporal Role-Based

Access Control Model. IEEE Transactions on Knowledge and Data Engineering 17,

4–23 (2005)

7. KMD, http://www.kmd.dk/

8. Linkies, M., Off, F.: SAP Security and Authorizations. SAP Press (2006)

9. Moyer, M.J., Ahamad, M.: Generalized Role-Based Access Control. In: Interna-

tional Conference on Distributed Computing Systems, p. 391 (2001)

10. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control mod-

els. Computer 29(2), 38–47 (1996)

11. SAP, http://www.sap.com/

12. Sjøberg, D., Dyba, T., Jørgensen, M.: The Future of Empirical Methods in Software

Engineering Research. In: Future of Software Engineering, FOSE 2007, May 2007,

pp. 358–378 (2007)

http://www.kmd.dk/
http://www.sap.com/

From Web Components to Web Services:
Opening Development for Third Parties

Chouki Tibermacine1 and Mohamed Lamine Kerdoudi2

1 LIRMM, CNRS and Montpellier University, France
2 Computer Science Department, University of Biskra, Algeria

Chouki.Tibermacine@lirmm.fr, l.kerdoudi@univ-biskra.dz

Abstract. One of the main advantages of the Web component-based

development paradigm is the ability to build customizable and compos-

able web application modules as independent units of development, and

to share them with other developers by publishing them in libraries as

COTS (Commercial Off The Shelf) or free components. Besides this,

since many years, Web services confirmed their status of the most per-

tinent solution for a given service provider, like Google, Amazon or

FedEx, to open its solutions for third party development. In this pa-

per, we present an approach to build web services starting from existing

web component-based applications and deploy them on a web service

provider. This transformation helps server-side web application develop-

ers in transforming their ”user interface”-based web components into a

set of web services intended for remote code extensions. We implemented

our solution on a collection of Java EE technologies.

1 Introduction: Context and Motivation

Web component-based development aims at decoupling Web application code
modules, and making them reusable and customizable software entities. Indeed,
in this paradigm a step has been taken forward in modularizing Web applications
and thus separating business logic code, from view, model and controller one. One
of the technologies leading this field is Java EE1 and its numerous frameworks
like Struts or JSF. Web components in such technologies are entities that can
be used and reused in different applications and customized according to the
application requirements.

In our opinion, these technologies are currently the ideal solutions for de-
veloping large and complex applications with highly critical requirements on
maintainability. However, after deploying a Web component-based application
within an application server, there is no means to directly publish some services
of the application for third party development. In this paper, we present an ap-
proach (see Section 2) to build web service-oriented architectures starting from
existing web component-based applications and deploy them on a web service
provider. In this way, developers of web components offer the opportunity to
other developers to build extensions of the services provided by their artifacts.
1 Java Enterprise Edition from Sun Microsystems: http://java.sun.com/javaee/

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 480–484, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

From Web Components to Web Services 481

This transformation goes through a process composed of several steps, which has
been implemented on a collection of Java-related technologies. Java EE compo-
nents are the input artifacts of the proposed implementation, and a set of Java
web services and compositions of these services are provided at output. The
paper ends by discussing some related work and presenting our future work.

2 Proposed Approach

The transformation process is composed of five steps:

1. Operation Extraction: First, a recursive parsing of the different web com-
ponent elements is performed to extract the potential set of Web services. All
operations in classes and other structured code elements are saved. In addition,
the code present in server-side programs (JSP pages, for example) is grouped
within a single operation and formatted to be executed as stand-alone code.
Similar extracted operations are spread out in different Web services using a
simple similarity measure (based on operations’ names, parameters, ...).

2. Input and Output Message Identification: The input and output mes-
sages related to each operation in the Web services are extracted starting from
the parsed elements in the Web component. For classes and other structured
code elements, the parameters and the returned value are formatted as SOAP
messages. The code present in other programs (like JSP pages) is parsed to ex-
tract the input values received in the HTTP requests. Their types are inferred
from the parsed code by analyzing type casts and other conversions. The con-
tents produced by theses programs, which are viewed at the client side (like JSP
expressions), are considered as returned values.

3. Operation Filtering: After that, the non-pertinent operations of the Web
services are eliminated from the starting set, according to a collection of filter-
ing heuristics. These heuristics are boolean expressions which are represented by
OCL expressions that can be added/modified/removed by developers. An exam-
ple of a filtering heuristic is: “Operations that use the session standard script
variable are not taken into account”. This is formalized in OCL as follows:
not (self.body.usedType->includes(t|t.name=’HTTPSession’))
At the end of this step, the developer is asked to choose the less pertinent oper-
ations to remove from the Web services that will be published.

4. Composite Web Service Creation: In this step, the potential dependen-
cies between the different selected operations in the Web services are identified.
There are two kinds of dependencies between operations: operation-call depen-
dencies (which give rise to Web service choreographies) and Web navigation
relationships (which allow to generate Web service orchestrations).

4.1. Web Service Choreography Creation: All calls to operations in the
code are captured. If the called operations are published in the same web service
of the caller operation, the calls are left as method invocations. If they are
published on a remote host, these operation dependencies are replaced by Web

482 C. Tibermacine and M.L. Kerdoudi

service requests. In this way, we build composite Web services as code-level
choreographies. In the near future, we plan to generate high-level choreographies
in “WS-CDL”-compliant languages [7].

4.2. Web Service Orchestration Creation: Navigation documents such as
JSF faces-config files are parsed. This allows the identification of the different
relationships between Web pages, and potential collaborations of the different
Web services extracted from these pages. This task is implemented according to
a simple algorithm in which we first create a process, and for each navigation
rule in the Web navigation document, we identify the source and destination
operations. Before each operation invocation, we prepare the list of parameters.

5. Web Service Deployment and Indexing: The validated set of Web ser-
vices (composite and primitive ones) are deployed on an application server cho-
sen by the developer/administrator of the Web component-based application.
If the developer deploys the Web services in different servers, the dependencies
between collaborative operations in composite services are resolved. Then, on
the Seekda Web server, we create an account and register the services. Once the
services indexed, we propose to the developer a smart mechanism of keyword
extraction, based on our previous work [2]. This mechanism identifies potential
tags for the services starting from their WSDL description. The keyword list
(based on identifiers in the service operation names, parameters’ names, ...) is
proposed to the developer in order to select tags for the deployed services.

3 Related Work

In [5], Roger Lee et al. proposed an approach which allows a client to specify
a request for searching a given functionality in components deployed in a Web
server. As an answer, a Web service or a composition of Web services is gen-
erated automatically. Our approach is proactive; it does not react to a client
request, but it allows a web application engineer to anticipate the export of
some functionalities to third party developers as Web services. In addition, in
our work we deal with Web interface conversion into stateless Web services. In
Wike [3], developers can define patterns for extracting partial information from
Web pages. These patterns are encapsulated in functions that can be exported as
Web services. In our work, content-based Web pages are not the main concern.
Wike is however a complementary solution to our work. Web services that are
generated using our approach starting from Web components, which produce
to users during execution a large quantity of content, can be enhanced with
new operations that return only partial information (texts, images, ...) using
Wike.

Many works in the literature proposed model-driven techniques to generate
Web service-oriented applications. Bauer and Müller [1] developed an approach
to map elements from UML2 sequence diagrams (considered as PlMs – Plat-
form Independent Models) to a representation of compositions of Web services

From Web Components to Web Services 483

using BPEL (considered as PSMs – Platform Specific Models). In [8], the au-
thors propose transformation rules for converting orchestration models specified
in CCA (Component Collaboration Architecture), which is part of the UML
profile for Enterprise Distributed Object Computing (EDOC [6]), into BPEL
specifications. Another model-driven approach for creating service-oriented so-
lutions has been proposed in [4]. In this work, a UML profile has been defined for
the expression of service-oriented applications. In our work the transformations
are made from PSM to PSM. Web components, which are models specific to
a given platform (in the current implementation, Java EE), are converted into
Web services, which are considered as another platform-specific model (WSDL,
Java and BPEL). The UML profile presented in [4] can be used to define high-
level models of the generated Web services. The other approaches can be used
to make a reverse engineering of the generated Web services or orchestrations
and obtain more understandable models (compared to the code).

4 Conclusion: Contribution and Future Work

We implemented the proposed solution as a prototype tool called WSGen:
Web Service Generator. The components parsed by WSGen are Java Enter-
prise archives. JSPs, Servlets, JavaBeans, Enterprise JavaBeans and traditional
Java classes in these archives are extracted. To deploy services, this tool uses a
Tomcat/Axis server.

In our work, we consider the generated and deployed Web services as remote
APIs that offer the opportunity for developers to extend the functionalities pro-
vided by these services and exploit the resources used by them. Many enhance-
ments still have to be performed in the transformation process implemented in
WSGen. We are now working on the implementation of more interesting tech-
niques for grouping complementary operations in Web services, based on “text-
mining” of the Web components’ documentation. At the conceptual level, we
plan to study the formalization of the process as a set of high level declarative
(or a combination of declarative and imperative) transformation rules, and thus
integrate our solution in the Model-Driven Engineering world. At the tool level,
we plan, as introduced previously, to work on the generation of high-level speci-
fications of choreographies in ”WS-CDL”-compliant languages [7] starting from
collaborations of the generated Web services’ operations.

References

1. Bauer, B., Müller, J.P.: Mda applied: From sequence diagrams to web service

choreography. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS,

vol. 3140, pp. 132–136. Springer, Heidelberg (2004)

2. Falleri, J.-R., Azmeh, Z., Huchard, M., Tibermacine, C.: Automatic tag identifica-

tion in web service descriptions. In: Proc. of WEBIST 2010 (April 2010)

3. Han, H., Tokuda, T.: Wike: A web information/knowledge extraction system for web

service generation. In: Proc. of ICWE 2008, pp. 354–357. IEEE CS, Los Alamitos

(2008)

484 C. Tibermacine and M.L. Kerdoudi

4. Johnson, S.K., Brown, A.W.: A model-driven development approach to creating

service-oriented solutions. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,

vol. 4294, pp. 624–636. Springer, Heidelberg (2006)

5. Lee, R., et al.: A framework for dynamically converting components to web services.

In: Proc. of SERA 2005 (2005)

6. OMG. Uml profile for enterprise distributed object computing (edoc) (2004), OMG

Website: http://www.omg.org/technology/documents/formal/edoc.htm

7. W3C. Web services choreography description language version 1.0, w3c candidate

recommendation (2005), W3C Website: http://www.w3.org/TR/ws-cdl-10/

8. Yu, X., Zhang, Y., Zhang, T., Wang, L., Zhao, J., Zheng, G., Li, X.: Towards a

model driven approach to automatic bpel generation. In: Akehurst, D.H., Vogel, R.,

Paige, R.F. (eds.) ECMDA-FA. LNCS, vol. 4530, pp. 204–218. Springer, Heidelberg

(2007)

http://www.omg.org/technology/documents/formal/edoc.htm
http://www.w3.org/TR/ws-cdl-10/

Learning from the Cell Life-Cycle:
A Self-adaptive Paradigm

Antinisca Di Marco1, Francesco Gallo1, Paola Inverardi1, and Rodolfo Ippoliti2

1 Dipartimento di Informatica - University of L’Aquila
2 Dipartimento di Biologia di Base ed Applicata - University of L’Aquila

{antinisca.dimarco,francesco.gallo,
paola.inverardi,rodolfo.ippoliti}@univaq.it

Abstract. In the software domain, self-adaptive systems are able to

modify their behavior at run-time to respond to changes in the envi-

ronment they run, to changes of the users’ requirements or to changes

occurring in the system it-self. In life science, biological cells are power

entities able to adapt to the (unpredictable) situations they incur in, in

a complete decentralized fashion. Learning adaptation mechanism from

the cell life-cycle, we propose in this paper a new architectural paradigm

for self-adaptive software systems.

1 Motivations and Background

Biological systems inspire systems design in many directions [4,6,5]. Among the
biological systems, cells represent a model for their ability to undergo adaptation
changes as a response to environmental stimuli. Each cell is able to check its
status, to duplicate (mitosis) and to kill itself (apoptosis) in case of need[1].

Stem cells are primitive cells with the singular ability to generate all other
types of cells and to give rise to progenitor cells in adult tissues able to substitute
ageing cells [1]. They, regardless of their origin, have three general properties:
(i) they are able to divide and renew themselves even after a long period of
inactivity, (ii) they are not specialized cells, that is they do not make work of a
specific organ or tissue and (iii) they give rise to several specialized cell types.

Once a stem cell is activated, depending on the type of internal or external
received signal, it may choose to mutually execute:

– Symmetric Stem Cell Division (SSCD) process, in which the stem cell
clones itself producing a new stem cell identical to it.

– Asymmetric Stem Cell Division (ASCD) process, a first step of spe-
cialization, that originates as outcome of the stem cell and a new cell called
Transit Amplifying Cell (TAC) or progenitor cell. TAC is the real origin of
the (tissue) cell proliferation and it represents an intermediate cell that has
lost the status of stem and that can evolve into a tissue cell.

– Apoptosis (A) process, it happens when the stem cell is induced to differ-
entiate into cells unable to enter in the cellular process and it is then sent
to death.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 485–488, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

486 A. Di Marco et al.

TAC, in turn, can mutually start the Terminal Differentiation (TD) process
(that represents the final specification step), in which the cell passes to a specific
status (Differentiated Cell (DC)), depending on the type of tissue or organ in
which it is located; or the Apoptosis (A) process. TAC undergoes the apoptosis
if it occurs in an errors, or the generation from the stem cell fails in meeting
the required behavior specification. Finally the DC may face either to mitosis
or apoptosis. Mitosis (M) is a process that substitutes the DC with two new
daughter cells of the same type (DC’).

The basic properties of the cell life-cycle that have inspired our paradigm
are (i) the reflective properties of stem cells, i.e. the ability to self-preservation
in spite of changes induced by the environment and (ii) the ability to capture
stimuli from the environment and generate the associated behaviors. This two
properties can be can be summarized as: a universal machine that can interpret
the signals from the environment and generate the code that implements the
desired functionality. The paradigm also embeds the cell apoptosis process [3] to
improve the efficiency of the whole system by means of the programmed death
of all cells that are no more useful as they are, and that cannot evolve any more.

2 Bio-inspired Paradigm for Self-adaptive Systems

The definition of the paradigm we propose is given by means of a mapping
between the paradigm entities and the cellular process concepts inspiring them.
Figure 1 shows such a mapping reporting at the left-side the cellular process
concepts whereas at the right-side the corresponding paradigm entities.

The key concept of the paradigm is the stem module that is inspired to the
stem cell. In our paradigm, we refer to multipotent stem cell as stem cell that
is able to generate different types of differentiated cells as required by the organ
making up its environment. The organ establishes the boundary of the stem cell
specialization capabilities, limiting its generation power to the differentiated cells
of the tissues composing it. The organ concept is mapped to the functionalities
provided by the system. The system can evolve by adaptation in different ways
always guaranteeing the core services (organ functionalities) as required by the
users. In other words, the organ functionalities and the user requirements repre-
sent the invariant for the biologic and software systems, respectively. In general,
the invariant (Inv) represents a collection of properties that meets system and
which must also be satisfied after successive and repeated adjustments induced
in the system. The stem cell represents a huge container of information, which
is capable if properly stimulated, to interpret signals from the environment and
generate the appropriate behaviour. In particular, the stem cell itself contains
all the means to understand the problem shaped as changes, and generate the
”solution”. It implements the basic functionalities that allow the cell to survive
and evolve over time, preserving them in a sort of kernel. In our metaphor, the
stem cell can be compared to the universal machine able to execute all possi-
ble behaviors throughout interpretation of the corresponding code. To improve
the efficiency of the paradigm, the stem module is devised as an engine able

Cell Self-adaptive Paradigm 487

Fig. 1. Mapping from the Cell Life-cycle to the Self-adaptive Paradigm

to treat behaviors as data, interprets them to generate compiled code (i.e., the
Differentiated Module) implementing the new behavior.

Both the stem cell and the stem module are characterized by the reflection
property, i.e. the ability to self-renew, to capture changes in the system and
in its environment, and to generate code to implement different, possible new,
behaviors in case of need.

Generate code suitable for the implementation of specific functionality is
equivalent to passing from a condition of generalization to one of specializa-
tion. This transition occurs through a series of steps or specialized functions
that we describe below. The first step is one of the following division:

– ASMD (Asymmetric Stem Module Division), this process results in a first
step of specialization: our universal machine in response to a given external
event, generates a specialized meta module software, called TAM (Transit
Amplifying Module), which represents a software module compiled with the
ability to further specialize into the final code implementation of the func-
tionalities associated to the event or to self eliminate, mimicking the cellular
concept of Apoptosis (A). Moreover, by exploiting the reflection ability of
the universal machine, it duplicates by creating an identical copy of itself.

– MASMD (Meta Asymmetric Stem Module Division), this process is very
similar to the one seen above, but there is no duplication of the universal
machine. This is because in most cases this is unnecessary and expensive
computationally. This process is not present in the cellular life-cycle. We
introduce it to improve the efficiency of the paradigm.

– SSMD (Symmetric Stem Module Division), this process results in a dupli-
cation of the universal machine only. This process is very rare also in biology,
as computationally expensive.

The next step of the specialization process, Terminal Differentiation (TD), is the
final generation of specialized code, which in our paradigm is denoted by DM

488 A. Di Marco et al.

(Differentiated Module). This module represents the compiled code that will run
on the underlying hardware and exhibits the highest degree of efficiency. Again,
to improve the efficiency of the paradigm, TD step generates a DM maintaining
a copy of the TAM.

The concept of mitosis in our framework is very close to the one in the cellular
process. The difference is that in our paradigm, the production of multiple copies
does not imply the destruction of the original one. It will be denoted by MM
(Meta Mitosis).

In our paradigm, the running software system is composed by a stem module,
a set of TAM (one for each type) and a set of differentiated modules (possible
more instances coming from the same TAM type) implementing the application
specific functions. The stem module has the ability to face the unforeseeable
changes since it contains all the logic to generate new behaviors in case some
unforeseeable changes occur the system must adapt. Whereas the more spe-
cialized modules (i.e., the set of DM) provide the services required by users and
implement the adaptation logic to foreseen and foreseeable changes. In our mind,
the canonical feedback control loop (such as, the MAPE-K loop) [2] is imple-
mented in the DMs either in a centralized or in distributed way. Finally, TAMs
implement an intermediate step of specialization between stem module and DM,
introduced to reduce the complexity of the specialization step, as it happens in
the cellular process. To improve the paradigm efficiency, we maintain a copy of
each type of generated TAM from which restarts the TD step in case of necessity
without to involve the stem module again.

Acknowledgement. This work is partially supported by the EU-funded Con-
nect project (FP7–231167) and by the Italian PRIN d-ASAP project.

References

1. Alberts, Johnson, Lewis, Raff, Roberts, Walter (eds.): Molecular Biology of the Cell,

4th edn. Garland Publishing, Inc., New York (2004)

2. Brun, Y., Serugendo, G.D.M., Gacek, C., Giese, H., Kienle, H.M., Litoiu, M., Müller,

H.A., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feedback

loops. In: Software Engineering for Self-Adaptive Systems, pp. 48–70 (2009)

3. Degterev, Y.J.A.: Expansion and evolution of cell death programmes. Nat. Rev.

Mol. Cell Biol. 9(5), 378–390 (2008)

4. Horn, P.: Autonomic computing: Ibm perspective on the state of information tech-

nology. In: Presented at AGENDA 2001, Scottsdale, AR, IBM T.J. Watson Labs,

NY (2001)

5. Shen, C.-C., Li, K., Jaikaeo, C., Sridhara, V.: Ant-based distributed constrained

steiner tree algorithm for jointly conserving energy and bounding delay in ad hoc

multicast routing. ACM Trans. Auton. Adapt. Syst. 3(1), 1–27 (2008)

6. Snyder, P.L., Greenstadt, R., Valetto, G.: Myconet: A fungi-inspired model for

superpeer-based peer-to-peer overlay topologies. In: SASO, pp. 40–50 (2009)

Toward an Aspect Oriented ADL
for Embedded Systems

Sihem Loukil, Slim Kallel, Bechir Zalila, and Mohamed Jmaiel

ReDCAD Laboratory, University of Sfax

B.P. 1173, 3038 Sfax, Tunisia

sihem.loukil@redcad.org, slim.kallel@fsegs.rnu.tn,

{bechir.zalila,mohamed.jmaiel}@enis.rnu.tn

Abstract. Managing embedded systems complexity and scalability is

one of the most important problems in software development. To bet-

ter address this problem, it is very recommended to have an abstraction

level high enough to model complex systems. Architectural description

languages (ADLs) intend to model these systems and manage their struc-

ture at a high abstraction level. Traditional ADLs do not provide appro-

priate formalisms to separate any kind of crosscutting concerns. This

frequently results in poor descriptions of the software architectures and

a tedious adaptation to constantly changing user requirements and spec-

ifications. AOSD (Aspect Oriented Software Development) deals with

these problems by considering crosscutting concerns in software devel-

opment. The effectiveness of AOSD appears when aspect concepts are

considered throughout the software’s life-cycle.

In this paper, we propose a new aspect language called AO4AADL

that adequately manipulates aspect oriented concepts at the software

architecture level to master complexity and ensure scalability.

1 Introduction

Implementing and managing software embedded systems are tedious tasks, due
to the complexity and strict requirements of such systems. A possible solution
to manage this complexity is to model these systems at architecture level. Ar-
chitecture description languages [1,2] are an important tool for early analysis
and feasibility testing. They can also support code generation and allow easier
management of the configuration and the deployment of systems.

Traditional ADLs provide formalisms to describe functional concerns (what
the system does) and non-functional concerns (the quality of service and the
conditions under which the system correctly operates). They lack of appropri-
ate formalisms representing crosscutting concerns (behavior that cuts across the
typical divisions of responsibility). This lack frequently results in poor descrip-
tions of the architectures and a tedious adaptation to the constantly changing
user requirements and execution context. The specification of non-functional
concerns is not well-modularized, as it is tangled with the specification of each
component’s core functionality or scattered across the specification of different

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 489–492, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

490 S. Loukil et al.

components. This results in an increase of the model complexity. Furthermore,
when the designer modifies one of the concerns, he should manipulate all parts of
the model related to that concern which is challenging as these parts are mixed
with elements of other concerns. AOSD deals with these problems by considering
crosscutting concerns in software development.

In this paper we propose AO4AADL, an aspect oriented language for AADL [2],
a well known ADL. This language considers aspects as an extension of AADL us-
ing “annexes”, an intrinsic mechanism to extend the AADL language. We consider
that aspects can be specified in a language other than AADL, and then integrated
in AADL models as annexes. The remainder of this paper is organized as follows.
Section 2 overviews the syntax and the semantics of a new aspect oriented lan-
guage for AADL in terms of pointcut and advice. Section 3 gives the related works
and Section 4 concludes the paper and presents ongoing work.

2 The AO4AADL Language

Considering aspect concepts at the beginning of software life cycle is consider-
ably valuable: it improves comprehensibility, evolution and reuse in the develop-
ment of complex software systems. For this purpose, we extended AADL. Many
reasons led us to this choice. AADL is a concrete ADL in which all elements cor-
respond to concrete entities that allows describing both hardware and software
parts of the system. It introduces two extension mechanisms: properties and an-
nexes. These mechanisms make the language much easier to enrich. Moreover,
they offer a good foundation for additional capabilities in analysis, automated
system integration, distribution, and dynamism. Based on the annex extension
mechanism, we propose to enrich AADL specifications with aspect concepts.

An AO4AADL aspect consists of two parts: (1) pointcut specification deter-
mines the conditions under which the aspect is invoked by the corresponding
functional components and (2) advice specification encapsulates the behaviour
of the aspect depending on its location. If the aspect influences only one com-
ponent, it should be declared as an annex inside this component. If the aspect
influences the behaviour of more than one component, it should be declared as
an annex library in an AADL package outside the components.

2.1 Pointcut Specification

A pointcut is defined as a set of joinpoints which are used to accomplish the com-
position between the aspect description and the base description of the software
system. Pointcut definitions consist of a left-hand side containing the specifica-
tion of the pointcut name and parameters (the data available when the events
happen) and a right-hand side consisting of the pointcut itself.

A joinpoint specifies a well-defined point of the aspect behaviour execution.
AO4AADL explicitly defines the architectural joinpoints as places where the
effect of aspect annex can occurs. They include: (1) the subprograms already
declared in the AADL specifications (2) the outgoing data flow emerging from
an AADL component and (3) the incoming data into an AADL component

Toward an Aspect Oriented ADL for Embedded Systems 491

with either a call or an execution primitive. Moreover, a joinpoint can expose
instance of checks and control to specify when the arguments are instances of
specific types or the types of the specified identifiers.

In real architectural configuration, aspect behaviour may be executed by sev-
eral architectural joinpoints. Hence, an architectural pointcut should be defined
as an expression that specifies the set of joinpoints to which the behaviour of an
aspect is applicable. In order to express the architectural quantification mech-
anism, we introduce the operators “and” (“&&”) and “or” (“||”) as well as
wildcards such as “*” to describe sets of joinpoints invoking the same advice.

Listing 1 shows an example of an aspect code, CheckCode, described in
AO4AADL. It belongs to the software part of an automated teller machine
(ATM). It specifies that the client has exactly three authentication attempts.
Each time it gets an incorrect code, the system prompts for the code again. If
it reaches the third time, the card will be rejected and an explanatory message
is displayed to the customer. The example shows also the interaction between
the AO4AADL code and the corresponding AADL entities (here, the out port
RestoreCode out specified in the AADL thread containing the annex).

Listing 1. Example of AO4AADL aspect

1 a spect CheckCode{
2 po in tcu t V e r i f i c a t i o n () : c a l l ou tp o r t Res to r eCode ou t (. .) ;
3 adv i ce around () : V e r i f i c a t i o n () {
4 v a r i a b l e s { coun te r : I n t e g e r Typ e ; message : S t r i ng Type ;}
5 i n i t i a l l y { coun te r :=1; message :=”Card Re jec ted ! ” ;}
6 i f (coun te r = 3){
7 Re jec tedCa rd ou t ! (message) ;
8 coun te r := 1;}
9 e l s e {

10 proceed () ;
11 coun te r := coun te r + 1;}}}

2.2 Advice Specification

The advice defines the crosscutting relationships among the aspect behaviour
and the place where to inject this behaviour (joinpoint). AO4AADL provides
three kinds of crosscutting interactions listed by the keywords: before (the ad-
vice action runs before the joinpoint), after (the action runs after each join-
point) and around (the action runs before and after of each joinpoint. The
joinpoint itself can be executed by calling proceed). To each pointcut, we can
associate one or more crosscutting behaviour which is expressed in an advice sec-
tion allowing one or more advice sections can be associated to the same pointcut.

The syntax used to specify the action performed by the advice action on the
functional component is inspired from the AADL Annex Behavior [2] with some
modifications to express other requirements1.

In our aspect CheckCode (Listing 1), the advice is presented in lines (3 – 12).
We use an around advice to execute the joinpoint only if the user has remaining
attempts. In the other case, the card will be rejected.
1 The full AO4AADL grammar can be found on www.redcad.org/projects/AO4AADL

www.redcad.org/projects/AO4AADL

492 S. Loukil et al.

3 Related Work

There are several points of view on how to represent aspects at architectural level
but most of existing Aspect-Oriented architectural approaches agree on that the
semantics of the composition should be somehow extended in order to ensure
the connection between the aspects and the basic components.

As stated by [3], extending a component based formalism to AOSD is per-
formed either symmetrically or asymmetrically. Some existing implementation
of AOSD in an ADL used the asymmetric approach [4,5]. They use two different
formalism to describe the model and the aspect. Some other implementations
use the symmetric approaches [6]. They use components to model both func-
tional components and aspects. In our case, we integrated the aspect code in the
model (in the same document) while keeping out model compatible with tools
that do not support AO4AADL. Therefore we used the AADL annex extension
mechanism. This allows us to have a whole new formalism to describe the as-
pects (benefit of the asymmetric approach) while keeping a single model which
can be reusable among different tools (benefit of the symmetric approach).

4 Conclusion and Future Work

In this paper, we presented AO4AADL, an aspect-oriented ADL, which extends
the AADL language using the annex extension mechanism to capture crosscut-
ting concerns at architectural level. We defined a rigorous grammar that sup-
ports most of aspect concepts. We are currently working on the implementation
of the code generator from AO4AADL aspect to AspectJ aspect. Future work
include using AO4AADL for defining an approach for managing “at runtime”
configurable (adaptive) embedded systems.

References

1. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-

ware architecture description languages. IEEE Trans. Softw. Eng. 26, 70–93 (2000)

2. SAE: Architecture Analysis & Design Language (2004), http://www.sae.org

3. Harrison, W.H., Ossher, H.L., Tarr, P.L., Harrison, W.: Asymmetrically vs. sym-

metrically organized paradigms for software composition. Technical report, Research

Report RC22685, IBM Thomas J. Watson Research (2002)

4. Navasa, A., Pérez-Toledano, M.A., Murillo, J.M.: An ADL dealing with aspects at

software architecture stage. Inf. Softw. Technol. 51, 306–324 (2009)

5. Jing, W., Shi, Y., LinLin, Z., YouCong, N.: AC2-ADL: Architectural description of

aspect-oriented systems. In: Proc. of the ASEA, pp. 147–152. IEEE, Los Alamitos

(2008)

6. Pinto, M., Fuentes, L.: AO-ADL: An ADL for describing aspect-oriented architec-

tures. In: Early Aspects: current challenges and future directions, pp. 94–114 (2007)

http://www.sae.org

On the Need of Safe Software Product Line
Architectures

Roberto E. Lopez-Herrejon and Alexander Egyed

Institute for Systems Engineering and Automation
Johannes Kepler University Linz, Austria

{roberto.lopez,alexander.egyed}@jku.at

Abstract. A Software Product Line (SPL) is a family of related software sys-
tems distinguished by the different sets of features each system provides. Over
the last decade, the substantial benefits of SPL practices have been extensively
documented and corroborated both in academia and industry. Several architec-
ture methods have been proposed that employ different artifacts for expressing
the components of a SPL, their properties and relationships. Of crucial impor-
tance for any SPL architecture method is to guarantee that the variability, for
instance as expressed in feature models, is not only preserved but also kept con-
sistent across all artifacts used. In this research challenge paper we argue that
Safe Composition – the guarantee that all programs of a product line are type
safe – can be leveraged to address this guarantee for structural properties of SPL
architectures and the challenges that that entails.

1 Motivation

A Software Product Line (SPL) is a family of related software systems distinguished
by the different sets of features each system provides [1,2,3]. Extensive research and
industrial experience have widely proven the significant benefits of SPL practices, some
of them are: reduced time to market, increase in asset reuse and increase in software
quality [4,2]. Variability is the capacity of software artifacts to vary [5], and its effective
management is a core tenet of the research in SPL.

An adequate underlying software architecture support is a crucial factor for the suc-
cess of any software system [6]. Such support is even more critical in the case of a SPL
because its architecture must cope with variability [3]. This means that from the SPL
architecture it should be possible to instantiate all individual product architectures [7].
This instantiation requires preserving the variability expressed in feature models [8](i.e.
considering all feature combinations of the SPL), and assuring consistency amongst the
software artifacts used to express each individual product architecture (e.g. in UML or
an Architecture Description Language (ADL) [6]). The research question addressed by
our paper is precisely this: How can the correct instantiation of all product architectures
of a SPL be guaranteed?

We argue that Safe Composition [9], the guarantee that all program members of a
SPL are type safe (i.e. absent of references to undefined elements), can be leveraged
to address this guarantee for structural properties of SPL architectures. Thus in a Safe
SPL Architecture all the product architectures that can be instantiated are devoid of

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 493–496, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

494 R.E. Lopez-Herrejon and A. Egyed

references to undefined elements. First we describe some key emerging trends in SPL
development that bear relation to Safe Composition.

2 The Road to Composition

SPL development approaches can be broadly divided in two main categories depending
on how they manage variability in software artifacts [10]. In integrative approaches,
artifacts contain both the common and variable parts. Building a system member of
the product family means preserving the common parts and removing the unneeded
parts of the unselected features of the system being built [11,12]. In contrast, in the
compositional approaches the variable parts are encapsulated in modular units. These
variable units are put together (composed) in accordance to the feature set of the system
to be built [13,1,14,10,15]1.

It has been shown that both categories can complement each other (and in some cases
can be regarded as expressive) [16], none-the-less compositional approaches have mod-
ularity as a key advantage. Though most of the early research on this area has focused
on source code artifacts, there is a growing awareness and research in other types of
artifacts such as models [15,17]. Furthermore, work such as Bosch et. al. strongly ad-
vocates the use of a compositional perspective throughout the overall development of a
SPL not only on its implementation at programming level [18,19].

There has been research on extending ADLs such as xADL to represent variability
[20], and proposals that exploit Aspect-Orientation concepts for modularizing ADLs
for SPL architectures [21,22,23]. However, to the best our knowledge, checking that
structural properties of SPL architectures hold for all the products of a SPL is a topic
that remains largely unexplored.

3 Principles of Safe Composition

Safe composition uses propositional logic to express and relate two terms [9]: i) domain
constraints denoted as PLf which are derived from a mapping of feature models to
propositional logic (see details in [24]), and ii) implementation constraints denoted as
IMPf which correspond to the concrete instances of structural properties to validate.
Because we are interested in verifying that all members of the product line satisfy a
given structural property, the following formula should not be satisfiable:¬(PLf ⇒
IMPf). In case it is satisfiable, it would mean that there is a member of the product line
that does not meet constraint instance IMPf . By using a satisfiability (SAT) solver, the
violating feature combination(s) can be identified. This process is performed for each
instance of each structural property we want to verify.

For example, consider an architecture with feature F that contains a component with
a required interface I which is provided by components in either feature G or H. This
particular implementation constraint instance is denoted as IMPf≡ F⇒(G∨H) . When
plugged in the previous expression and expanded, the resulting proposition which is
passed to the SAT solver is: PLf ∧ F ∧ ¬G ∧ ¬H . Intuitively, this expression

1 This classification appears with different names in the literature, for example negative or pos-
itive variability respectively [10].

On the Need of Safe Software Product Line Architectures 495

checks that it is not the case that a product with feature F does not have neither feature
G nor H as well. Again, this process is performed for each instance of each structural
property we want to verify. For details on Safe Composition please consult [9].

4 Open Challenges

This section summarizes the challenges and research venues identified by our work:

– Scalability. Safe Composition relies on SAT solvers which inherently present scal-
ability issues as the size and complexity of a feature models increase. Other less
exhaustive alternatives that exploit knowledge of the artifact structure could be em-
ployed to address this limitation [25].

– Generic Safe Composition. Our recent work applied Safe Composition in basic
UML artifacts [26]; however, for other artifact types an adequate underlying theory
and tool support is required. Model-Driven Engineering technologies could be used
to meet this requirement.

– SPL quality attributes. There exist extensive research results on formal analysis of
feature models which can be potentially used for assessing quality attributes such
as performance in SPL architectures [24,27].

– Non-structural architectural properties. This paper focused on structural properties
of SPL architectures; however, non-structural properties such as behavioral confor-
mance are equally important. Recent work such as Brito et al. on fault tolerance
goes in that direction [28]. Drawing a relation with Safe Composition may lead to
benefits on both kinds of approaches.

Acknowledgments. This work was partially funded by the Austrian FWF under agree-
ment P21321-N15 and Marie Curie Actions - Intra-European Fellowship (IEF) project
number 254965.

References

1. Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE Trans.
Software Eng. 30(6), 355–371 (2004)

2. Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Heidelberg (2005)

3. Bosch, J.: Design and Use of Software Architectures. In: Adopting and evolving a product-
line approach, Addison-Wesley, Reading (2000)

4. van der Linden, F.J., Schimd, K., Rommes, E.: Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering. Springer, Heidelberg (2007)

5. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.
Softw., Pract. Exper. 35(8), 705–754 (2005)

6. Taylor, R.N., Medvidovic, N., Dashofy, E.: Software Architecture: Foundations, Theory, and
Practice. John Wiley & Sons, Chichester (2009)

7. Perry, D.E.: Generic architecture descriptions for product lines. In: van der Linden, F.J. (ed.)
ESPRIT ARES. LNCS, vol. 1429, pp. 51–56. Springer, Heidelberg (1998)

8. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, Reading (2000)

496 R.E. Lopez-Herrejon and A. Egyed

9. Thaker, S., Batory, D.S., Kitchin, D., Cook, W.R.: Safe composition of product lines.
In: Consel, C., Lawall, J.L. (eds.) GPCE, pp. 95–104. ACM, New York (2007)

10. Groher, I., Völter, M.: Aspect-oriented model-driven software product line engineering. T.
Aspect-Oriented Software Development VI 6, 111–152 (2009)

11. Gomaa, H.: Designing Software Product Lines with UML. In: From Use Cases to Pattern-
Based Software Architectures, Addison-Wesley, Reading (2004)

12. Zhang, H., Jarzabek, S.: Xvcl: a mechanism for handling variants in software product lines.
Sci. Comput. Program 53(3), 381–407

13. Batory, D.: AHEAD Tool Suite (2008),
http://www.cs.utexas.edu/users/schwartz/ATS.html

14. Mezini, M., Ostermann, K.: Variability management with feature-oriented programming and
aspects. In: Taylor, R.N., Dwyer, M.B. (eds.) SIGSOFT FSE, pp. 127–136. ACM, New York
(2004)

15. Jayaraman, P., Whittle, J., Elkhodary, A., Gomaa, H.: Model Composition in Product Lines
and Feature Interaction Detection Using Critical Pair Analysis. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 151–165. Springer,
Heidelberg (2007)

16. Kästner, C., Apel, S., Kuhlemann, M.: A model of refactoring physically and virtually sepa-
rated features. In: Siek, J.G. (ed.) GPCE, pp. 157–166. ACM, New York (2009)

17. Lopez-Herrejon, R.E., Rivera, J.E.: Realizing feature oriented software development with
equational logic: An exploratory study. In: Vallecillo, A., Sagardui, G. (eds.) JISBD,
pp. 269–274 (2009)

18. Bosch, J.: Software product families: Towards compositionality. In: Dwyer, M.B., Lopes, A.
(eds.) FASE 2007. LNCS, vol. 4422, pp. 1–10. Springer, Heidelberg (2007)

19. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of software
product lines, global development and ecosystems. Journal of Systems and Software 83(1),
67–76 (2010)

20. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A comprehensive approach for the devel-
opment of modular software architecture description languages. ACM Trans. Softw. Eng.
Methodol. 14(2), 199–245 (2005)

21. Pinto, M., Fuentes, L., Valenzuela, J.A., Pires, P.F., Delicato, F.C., Marinho, E.: On the need
of architectural patterns in aosd for software evolution. In: [29], pp. 245–248

22. Loughran, N., Sánchez, P., Garcia, A., Fuentes, L.: Language support for managing variabil-
ity in architectural models. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954,
pp. 36–51. Springer, Heidelberg (2008)

23. Adachi, E., Batista, T., Kulesza, U., Medeiros, A.L., Chavez, C., Garcia, A.: Variability
management in aspect-oriented architecture description languages: An integrated approach,
pp. 1–11 (2009)

24. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years
later: A literature review. Information System (in Press, 2010) (Corrected Proof)

25. Egyed, A., Wile, D.S.: Support for managing design-time decisions. IEEE Trans. Software
Eng. 32(5), 299–314 (2006)

26. Lopez-Herrejon, R.E., Egyed, A.: Detecting inconsistencies in multi-view models with vari-
ability. In: ECMFA (to appear, 2010)

27. Etxeberria, L., Mendieta, G.S.: Variability driven quality evaluation in software product lines.
In: SPLC, pp. 243–252. IEEE Computer Society, Los Alamitos (2008)

28. Brito, P.H.S., Rubira, C.M.F., de Lemos, R.: Verifying architectural variabilities in software
fault tolerance techniques. In: [29], pp. 231–240

29. Joint Working IEEE/IFIP Conference on Software Architecture 2009 and European Con-
ference on Software Architecture 2009, WICSA/ECSA 2009, Cambridge, UK, September
14-17. IEEE, Los Alamitos (2009)

http://www.cs.utexas.edu/users/schwartz/ATS.html

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 497–500, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Expert Activities Automation through Enhanced
Business Services Orchestration

Asta Krupaviciute and Jocelyne Fayn

MTIC-EA4171, INSA de Lyon, Université de Lyon 1, F69677, Bron, France
asta.krupaviciute@insa-lyon.fr, jocelyne.fayn@insa-lyon.fr

Abstract. Automating sophisticated, personalized expert activities, which are
based on the application of professional knowledge to process an individual
case, remains a great challenge. It is all the more relevant in some complex
domains such as preventive medicine or e-learning where reliable and self-
adaptive solutions are expected by users. In this paper we analyze differences
between typical procedure-based business processes automation and expert
activities automation. We propose to integrate context related knowledge into
the business process modeling via the development of an intelligent process
management agent. The latter is designed to dynamically orchestrate the set of
services that will build up the process reproducing an expert activity, adapted to
the concrete client’s context.

Keywords: Expert activity, Dynamic business process, Ontology-based
approach, Web services orchestration, Data and Model driven SOA.

1 Introduction

Business activities are increasingly being automated in order to expand their accessi-
bility by overcoming time and distance limitations and reducing their costs. Usually,
this automation is performed for activities based on a well known, defined procedure
and are implemented as reusable atomic or composite business services accessible via
the Internet. Examples of such procedure-based activities include well known services
as booking an hotel room and flight tickets or creating a bank account. However, if a
user demand is more complex, specific or intrinsic to the user, the implemented
service cannot fulfill the request and so the task is forwarded to a human domain's
expert. In particular, this situation occurs when the user request cannot be guided by a
set of questions with multiple modalities. Then, in his turn, the expert analyzes the
user situation and proposes the most adequate personalized solution.

This paper addresses the challenge of automating such complex, nonstandard and
expert-requiring business activities, which we call expert activities in order to distin-
guish them from typical, procedural business activities. The target of such expert
activities is to assist the user in an application of a specific domain knowledge, which
depends on the circumstances of use and which is capable to respond to a concrete
demand of the user. This activity, typically, covers a human intellectual process, such
as teaching, diagnosing or deciding. Sasa et al. [1] called it a mental process task,
where the final result can vary and depends on an individual expert.

498 A. Krupaviciute and J. Fayn

In the following, we further discuss the issue of expert activity automation by
comparing it with the automation of a procedure-based business activity. Then, we
propose a dynamic business process approach for modeling expert activities and a
way to implement these processes by means of ontology driven services orchestration.

2 Expert Activities Automation

Procedure-based activities are being successfully automated in various domains,
while the expert activity automation is often presented as a long-term future vision
[1], although both activity types have at a first glance many similarities. They both
tend to replace a human, to give a personal assistance, and they both require specific
domain knowledge. Thereinafter, we overview the issues which make an automation
of expert activities a complex and great challenge.

First of all, let us give two simplified examples of each activity type. We name PA
a procedure-based activity helping a system user to book plane tickets and EA an
automated expert activity, which is capable to locate the correct electrodes position on
a human torso enabling the user to record the best quality electrocardiogram (ECG)
by himself. Here, EA aims to replace a skillful nurse in a specialized hospital unit,
who is recording an ECG that provides a patient specific body signal for a further
medical diagnosis. Our goal is then to analyze the modeling of these two examples
according to their input data, working practice and output, seeking to highlight chal-
lenges EA type activities are raising.

Typically, five broad stages underlie both activities: there is a situation (a), from
which a need (b) is rising, then a formal request (c) is formed and a process (d) is
launched in order to obtain an answer (e) to the user needs. Obviously, input data
shall be described before the process is launched, so stages (a), (b) and (c) include the
design of input parameters. In the PA case, the system user is an active client, capable
to manage the online booking service on his own. He analyzes by himself his situa-
tion, he clearly understands his need and is able to formulate his demand in a formal
request form. For example, a travel type – one way, a destination – Berlin, an out-
bound date – 2010.07.01. In the EA case, a service user is on the contrary a passive
client, who has no specific medical or anatomy knowledge to evaluate his own situa-
tion and is not sure how to express his needs. So he is not really able to formulate his
demand. Here, a service performing an optimal electrode-system selection should
guide the user in order to obtain the possible user related contextual information that
would help this service to determine the user situation and his needs as a formal re-
quest. Hence, the request form, in the EA case, can differ and basically depends on
contextual information and on available methods used to acquire this information.

Then, when the user specific formal request (c) is set, the input data treatment (d)
seeking to obtain a final result (e) is launched. For the procedure based activities, a
chain of tasks is usually designed, where each task might demand additional informa-
tion (or decision) from a client and a final task in the chain provides an answer (e) to
the user primal request. Intuitively, we even can define a chain of tasks for the
PA case: a flights search, a flight selection, a client identification, payment and con-
firmation. The latter answers to the initial user demand with a confirmation of booked
tickets and details upon flights. Actually, we could use another online service to book

 Expert Activities Automation through Enhanced Business Services Orchestration 499

the flight to Berlin and we would obtain the same final result (a confirmation and the
same flight details), what shows that procedure based activities tend to produce repeti-
tious results and are easy to test.

Meanwhile, the expert activity is often seen as a black box, which produces hardly
tailored results. Here, we suggest perceiving a mental process not as a black box and
not as a complex chain of tasks, but rather as a labyrinth, which can have several
entries and several exits, and for which some passing rules (obtained from a previous
experience or from the current steps evaluation) can be set in advance and/or at run-
time. Indeed, an expert activity design strongly depends on a specific request, that is
an entry point to the labyrinth, and on the expert knowledge base (practice / experi-
ence / habits), which holds also labyrinth passing rules. So the model of an expert
activity (the labyrinth) instantiated for different clients may contain different passing
routes or workflows of tasks to be performed, as a human expert would have proposed
to each client a personal and individualized service. In our simplified EA example, if
a client is a man and the signal quality is not sufficient (or qualified not to be suffi-
cient), he might be asked to shave his chest in order to reduce skin conductivity. Also,
several iterations of signal recording or an identification of various possible postures,
electrode places or other changes might be done in order to improve the signal quality
depending on the client context, available data processing methods and on intermedi-
ate results. Then, the labyrinth can be roughly seen as a state machine, where a
pointer changes its state by choosing one out of four possible directions: the next state
is the exit (x), the next state is a new task (+), the next state is an error, the pointer
comes back to one of the previous states and sets a rule based on the error analysis (-),
or finally the next state is the repetition of the current task using another method in
order to gather additional information, which shall improve the confidence about the
next direction to take (°). This state machine presents well the dynamism of the expert
activity, herewith challenging to create advanced, adaptive business processes, which
could provide intelligent assistance.

3 Dynamic Business Process

As it’s briefly presented in the previous section, a business process, which is capable
to adapt to a context, could be used to simulate expert type activities. We call such a
business process a dynamic business process. A dynamic business process is com-
posed of two main elements: a set of tasks and an intelligent management agent,
which is responsible for the design of a business process that is specific to each client.
Here, a set of tasks corresponds to various business process functionalities, which are
typically implemented through atomic or composite services. However, the realization
of the management agent, capable to orchestrate business functionality services ac-
cording to each client’s specificities, requires further research.

We are currently investigating knowledge management and business process man-
agement integration. Instead of modeling separately the domain knowledge and its
context, we propose to model process knowledge on the basis of the context-aware
domain knowledge. In this approach, the process knowledge is formally expressed via
an ontology and a rules engine that provides a solid base to implement process related

500 A. Krupaviciute and J. Fayn

services and to compose them into a business process which is dynamically orches-
trated according to the client specificities.

This approach is being tested on a decision support system called a Personal Car-
diac Assistant [2] helping a non-professional user to select a personal sensor-system
for biosignals recording on his own.

4 Conclusion

Expert activities automation is awaited in several domains such as preventive medi-
cine, where early diagnosis is expected to be performed automatically at anytime and
anyplace [3]. Also a thorough automatic follow up of the knowledge assimilation
processes [4] could ameliorate and boom e-learning. Alike, the sales and consulting
sectors may benefit from services proposing the user an automatic help that is most
adequate to his needs. All these processes are domain specific and require profes-
sional knowledge that normally a typical user does not have.

Our ontology driven approach for enhancing services orchestration is especially
promising for context-aware modeling. We thus firmly believe that intelligent assis-
tance shall be grounded by a knowledge model upon each specific expert activity, and
not only upon a specific business domain. Reusable expert activities automation could
thus be performed thanks to domain independent core-ontologies that are related to
the generic scope of the services, such as decision making. A research challenge is
now to expand the Services Oriented Architecture (SOA) approach towards a data and
model driven SOA approach.

Acknowledgement. This research work has been supported by a Marie Curie Early
Stage Research Training Fellowship of the European Community Sixth Framework
Programme under the contract number MEST-CT-2005-021024 within the project
Wide Area Research Training in Health Engineering (WARTHE).

References

1. Sasa, A., Juric, M., Krisper, M.: Service-Oriented Framework for Human Task Support and
Automation. IEEE Transactions on Industrial Informatics 4, 292–302 (2008)

2. Krupaviciute, A., Fayn, J., Verdier, C., McAdams, E., Nugent, C., Rubel, P.: Information
system architecture for wearable cardiac sensors personalization. In: 14th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, pp. 265–272. IEEE
Computer Society, Washington (2009)

3. Fayn, J., Rubel, P.: Towards a Personal Health Society in Cardiology. IEEE Transactions on
Information technology in Biomedicine 14(2), 401–409 (2010)

4. Macris, A., Papakonstantinou, D., Malamateniou, F., Vassilacopoulos, G.: Using ontology-
based knowledge networks for user training in managing healthcare processes. International
Journal of Technology Management 47, 5–21 (2009)

Architecture Decision-Making in Support
of Complexity Control

Andrzej Zalewski and Szymon Kijas

Warsaw University of Technology,

Institute of Automatic Control and Computational Engineering

a.zalewski@ia.pw.edu.pl, s.kijas@elka.pw.edu.pl

Abstract. The main challenge of software engineering has always been

to bring software complexity under control. Different kinds of abstrac-

tions have been devised and applied for that purpose at different levels of

software design. Some of them have proven successful, such as function

hierarchies, layers, API’s, abstract classes, encapsulation, interfaces etc.

and are widely used in practice. Concepts from the genre of software

architecture should also help to manage software complexity. We argue

that, before architecture decisions and architecture decision-making be-

come a common industrial practice, they have to support software com-

plexity management much more efficiently than at present. Despite the

substantial progress already made, it is still a major challenge both in

theory (architecture decisions representation and architecture decision-

making methods) and practice (tool support).

Keywords: architecture decisions, architecture decision-making, archi-

tectural styles, software complexity.

1 Introduction

Complexity has always been a primary concern of software engineering. Its ulti-
mate objective was to overcome software complexity with software design meth-
ods, models, approaches and programming paradigms. Brooks, in his famous
paper [1], has called them ”silver bullets” and argued pessimistically that there
are no such bullets in sight. The discussion over bullets killing software complex-
ity seems to have faded out now. We have made tremendous progress in software
development methods and tools over the last fifteen years: software we could not
even imagine in 1996 can be created nowadays in just a couple of hours.

This does not mean that ”silver bullets” have been found. We have rather
managed to transform a complexity werewolf into a genie, and to devise means
of keeping him in a tightly sealed bottle of abstractions such as API’s, inter-
faces, layers or styles/patterns [9]. Hence, we have devised numerous successful
abstractions that allow us to successfully manage software complexity. This is
why these most popular abstractions are widely applied in practice.

The concept of architecture decisions (AD) [2], [3] and architecture decision-
making have not achieved a maturity level similar to the abstractions men-
tioned above, and are still far from being everyday industrial practice. The main

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 501–504, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

502 A. Zalewski and S. Kijas

challenge to be met in order to achieve industrial maturity of architectural
decision-making, is to transform it into an efficient means of managing software
complexity. In the conclusion of the paper we try to envisage future developments
in the area of AD making aimed at meeting this general challenge.

2 Does AD Making Help to Control Software
Complexity?

Architecture decisions (AD) have been conceived as a model of software archi-
tecture alternative to the views [4]. Software modelling has always been about
abstracting from details that are unimportant at a given level of abstraction.
Software architecture plays the same role.

ADs successfully capture knowledge that usually evaporates during system
design and evolution. However, the question of whether architectural decision-
making helps to overcome software complexity has not even been raised yet. We
think that in current state-of-the-art, architectural decision-making contributes
very little to overcoming design complexity, while it introduces an additional
complexity of its own. These limitations of architectural decision-making arise
mainly from: the textual form of ADs documentation; the diversity of abstraction
levels of ADs, accompanied by insufficient and often ambiguous classifications;
extremely complex structures of relations between ADs and a lack of guidelines
on how to properly shape these relations in the decision-making process.

2.1 Representation of Architectural Decisions

Architecture decisions are still represented as text records [3], [5], [6], certain
prototype tools link ADs with some illustrating diagrams, see [7] for example.
The weaknesses of textual documentation have long been identified and are a
kind of mantra of software engineering: incompleteness, inconsistency, ambiguity,
inefficiency in representing and sharing engineering concepts. ADs have inherited
these weaknesses in full.

Diagrammatic representations of ADs could help resolve this problem, as they
did in the case of structured and object-oriented analysis and design methods.
However, it is very difficult to express the heart of ADs graphically, as only
existence decisions [6] can easily be linked to a specific element of software design,
while most ADs describe certain properties, design assumptions or constraints.

2.2 Abstraction Level and Classifications of Architectural Decisions

ADs comprising certain software architecture usually concern different levels of
abstraction, different levels of architectural scope or detail. Most influential clas-
sifications by Kruchten [6] (existence, non-existence, property and management
ADs) and Zimmermann [8] (executive, conceptual, technology, vendor asset ADs)
substantially help to navigate through a set of ADs. However, these categories
are not always precise, and in many cases can confuse engineers (consider, for
example, the decision of implementing access to data via web services - engineers

Architecture Decision-Making in Support of Complexity Control 503

can treat it either as a management (technology decision) or as an existence de-
cision). The same category can contain decisions concerning different levels of
abstraction, impacting different sets of design elements or engineering artefacts.
The means of creating hierarchies of ADs (to hide unimportant details) or of
aggregating ADs defining the same design element have not been devised yet.

2.3 Relations between Architecture Decisions and the Architecture
Decision-Making Process

Relations between architecture decisions are used both to represent the architec-
tural decision-making process and to supplement software architecture modelled
as a set of ADs. Kruchten in [6] indicates ten kinds of relations between ADs, a
number exceeding the famous 7 ± 2 rule. Thus, it could take some time to learn
how to recognise each of these kinds.

ADs often represent a cross-cutting concern and can potentially be related
to many other ADs (e.g. certain ADs can constrain many other ADs). This
usually leads to the extremely complex structures of such relations - compare,
for example, figures in [6] - pages 51-54. At the same time, there are scarcely
any clues on how to shape the relations between ADs, which relations and under
what conditions should or should not be modelled.

Sets of ADs do not comprise a uniform set of states similar to those known
from the decision-making theory. This makes tree or graph representation of the
architectural decision-making process difficult to achieve, as trees and graphs are
most suitable for representing transitions between states of the same structure.
This explains why design decision-making models, although developed for at
least the past fifteen years [8], [10], [11], have not yet become popular in software
industry. At the same time, existing tree or graph representations of architectural
decision-making lack the ability to represent ADs hierarchically.

3 Challenges for Architecture Decision-Making

Architectural decision-making does not sufficiently address the concerns of soft-
ware complexity control. This makes its ”value proposition” disputable and will
limit the transfer of the approach to the industry. We do think that the success
of architectural decision-making depends mainly on its transformation into an
efficient means of coping with software complexity, as in case of API’s, layers,
interfaces, architectural styles or design patterns.

To meet the above challenge, the following advances are needed:

– modelling ADs: developing models of ADs representing them in terms of
engineering artefacts easily comprehensible for software engineers,

– organisation of ADs:
• extending techniques of classification and clustering of ADs to improve

complexity management. This should aim at the identification of ADs
at a given level of abstraction, concerning certain design elements as
well as clustering ADs with the structures recognised as contributing to
complexity control, e.g. hierarchies or layers;

504 A. Zalewski and S. Kijas

• developing means of aggregating ADs comprising a certain design ele-
ment;

• developing means of defining and managing links between ADs and soft-
ware engineering artefacts.

– structuring architectural decision-making process and providing more effi-
cient ways of managing relations between ADs:
• minimising the number of relations between ADs captured during the

architectural decision-making process to a reasonable minimum defined
by architectural decision-making methods,

• extending existing architectural decision-making approaches to minimise
dependencies between ADs by defining more precise paths of architec-
tural decision-making while preserving the necessary level of design free-
dom,

• developing predefined structures of relations between ADs, probably for
chosen application domains.

References

1. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering, 2nd An-

niversary edn. Addison-Wesley Professional, Reading (1995)

2. Bosch, J., Jansen, A.: Software Architecture as a Set of Architectural Design Deci-

sions. In: WICSA 2005, pp. 109–120. IEEE Computer Society, Los Alamitos (2005)

3. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE

Software (2005)

4. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Software 12, 45–50

(1995)

5. Harrison, N.B., Avgeriou, P., Zdun, U.: Using Patterns to Capture Architectural

Decisions. IEEE Software 24(4), 38–45 (2007)

6. Ali Babar, M., et al.: Architecture knowledge management. Theory and Practice.

Springer, Heidelberg (2009)

7. Capilla, R., et al.: A Web-Based Tool for Managing Architectural Design Decisions.

In: Proc. SHARK 2006, Software Eng. Notes. ACM SIGSOFT, vol. 31(5) (2006)

8. Zimmermann, O., et al.: Managing architectural decision models with dependency

relations, integrity constraints, and production rules. Journal of Systems and Soft-

ware 82(8), 1249–1267 (2009)

9. Avgeriou, P., Zdun, U.: Architectural patterns revisited - a pattern language.

In: 10th European Conference on Pattern Languages of Programs (EuroPlop 2005),

Irsee, Germany (2005)

10. Ran, A., Kuusela, J.: Design decision trees. In: Eighth International Workshop on

Software Specification and Design, pp. 172–175 (1996)

11. Workshop summary: Patterns for decision-making in architectural design, Con-

ference on Object Oriented Programming Systems Languages and Applications,

pp. 132-137 (1995)

Software Architecture Constraints
as Customizable, Reusable
and Composable Entities

Chouki Tibermacine1, Christophe Dony1, Salah Sadou2, and Luc Fabresse3,4

1 LIRMM, CNRS and Montpellier University, France
2 VALORIA, Université Bretagne-Sud, Vannes, France

3 Université Lille Nord de France, France
4 École des Mines de Douai, France

{tibermacin,dony}@lirmm.fr, sadou@univ-ubs.fr, luc.fabresse@mines-douai.fr

Abstract. One of the major advantages of component-based soft-

ware engineering is the ability for developers to reuse and assemble

software entities to build complex software. Whereas decomposition of

software into components has been and is largely addressed for what con-

cerns the business (functional) part of applications, this is not yet the

case for what concerns their documentation (non-functional) part. In this

paper, we propose a new and original solution to express component-

based software non-functional documentation, and we will focus more

especially on architecture constraints, which formalize parts of archi-

tecture decisions, as executable, customizable, reusable and composable

building blocks represented by components. Component-based applica-

tions using business and constraint components can be modeled with

CLACS, a dedicated ADL which is also introduced in the paper. Ar-

chitecture constraints can be executed at design-time within CLACS.

CLACS is implemented as a plugin in the Eclipse IDE.

1 Introduction: Context and Motivation

Architecture constraints play an important role in design decision documentation
and architecture validation. These constraints are often specified either textu-
ally or formally, but no means are proposed to customize them for their reuse
in different contexts or to compose them in order to define complex constraints.
The goal of the work presented in this paper is to propose a way to build archi-
tecture constraints as checkable entities embedded in a special kind of software
components that can be reused, assembled, composed into higher-level ones and
customized using standard component-based techniques. The purpose is as well
to put reusable constraint-component on shelves (design for reuse) and to pro-
duce new constraints by composition of existing ones (design by reuse) and then
to simplify the expression and definition of constraints (ascending design). An
additional fundamental goal is to define a uniform paradigm to develop busi-
ness and non-functional (constraint-) components. We aim thus at proposing an
operational component-based design environment providing new capabilities to

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 505–509, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

506 C. Tibermacine et al.

express architecture constraints that can be executed at design-time to check
the conformity of architecture designs and in which business components can be
compiled into instructions of a component-based programming language.

The remaining of the paper is organized as follows. In the following section,
we first introduce CLACS, the ADL we built for the SCL [4] component pro-
gramming language which has been developed in our team. We then explain
how using this ADL we can describe constraints as components and how these
components can be connected to other constraint components or business ones.
Before concluding and presenting the future work at the end of this paper, we
make an overview of the related works.

2 Architecture Constraint-Components

Our solution is embedded into an operational software suite (CLACS-SCL)
made of an architecture description language (ADL) called CLACS (Constraint
Language for Architectures of Component-based SCL-like software), and of a
component-oriented programming language named SCL (Simple component lan-
guage [4]). CLACS is a modeling alternative for SCL.

2.1 Constraint-Components vs. Business Components

In order to not add (yet-)other constructs for constraint-component modeling,
we chose to use the same constructs as for business component modeling. SCL
business components and CLACS constraint components share most of their
characteristics. The difference between them is expressed in the implementa-
tion of services. In business components, services represent traditional opera-
tions with a body containing the SCL code implementing the business logic.
In constraint-components, the body contains the code of the constraint to be
checked (specified in ACL [7] which is an adaptation of OCL).

2.2 Constraint-Component Specification in CLACS

Suppose we define a constraint-component which checks the Façade pat-
tern. The descriptor of this component can be specified in CLACS and
instantiated in a given architecture description. Each Façade checker, in-
stance of this descriptor, owns one provided port named Checking that
exports a constraint checking service having this signature : boolean
isFacade(aPort:Port,aSubComp:Component). Each Façade checker can then
be connected, through that checking port, to any business component requiring
this service i.e. having a corresponding required interface.

2.3 Connecting Constraints to Architectures

When designing a software architecture, the developer can connect constraint-
components to business ones. The binding used to connect these two model
elements makes it possible to validate the architecture design according to the

Software Architecture Constraints 507

constraints embedded in the constraint-component. When invoked within our
modeling environment, a constraint-component provided service returns true if
the architecture of the business component to which it is connected fulfills the
constraint. When such a connection is established and a constraint evaluated,
the constraint expressions interpretor automatically binds the context identi-
fier, used in constraints expressions, to the business-component to which the
constraint will be applied. When composite constraint-components are built in
which a constraint-component is connected to another one, a transitive closure
is computed on that link until a business-component is found.

2.4 Constraint-Component Composition

A constraint-component can be assembled together with other constraint-
components to build more complex ones. We have defined one kind of binding
for each logical operator (and, or, xor and implies). Delegation bindings linking
constraint-components can be of kind “affirmative” or “negative”. In the
first case, if the constraint-component is bound to a business-component, this
means that the architecture of the latter component should respect the constraint
embedded in the former component. However, in the second case (negative del-
egation binding), the architecture of the business component should not respect
the architecture choice formalized within the constraint-component.

2.5 Constraint Checking

Architectural constraint checking is performed at design time. Thus, constraint-
components are interpreted at this stage contrarily to business-components
which are executed after their deployment. The constraint checking is imple-
mented by a simple function. Depending on the kind of constraint-components
(composite or primitive), the local evaluation corresponds to a delegation to
another sub-component or to an ACL interpreter. The propagation of the con-
text within the different constraint-components is done during constraint check-
ing. This allows the evaluation of the constraints on the appropriate business
component.

3 Related Work

Different existing ADLs embed constraint languages. Acme [5] and Wright [2]
are two representative examples of them. Constraints in Acme and Wright do
not represent first-class entities for composition. In addition, constraints in these
languages are fixed expressions, which cannot be parameterized to reference a
part of the architecture description (with identified components). As presented
in the previous sections, CLACS implements a customizability feature at the ar-
chitecture constraint description level, which allows designers to define reusable
constraints. Being embedded in components, these constraints can be easily as-
sembled to extend existing architecture constraint specifications.

508 C. Tibermacine et al.

Design pattern schemas [6] and component specification patterns [1] are de-
scriptions which allow the definition of templates of OCL constraints with some
parameters which are fixed during the instantiation of the templates. As in
our work, constraints are parameterized with model elements and are used as
library modules. However, model elements (parameters) in our case are archi-
tectural elements and constraints target structural descriptions, whereas, in [6],
model elements are UML class entities and in [1] constraints target the functional
(behavioral) aspect of components.

4 Conclusion and Future Work

Sometimes, defined manually (from scratch) architectural decisions’ documen-
tation is complex, error-prone and time-consuming. Having a means to define
such documentations by hierarchical composition of constraints is beneficial for
two accounts: First, by decomposing the models of architecture constraints in
several small interfaced documentation parts, a common repository of reusable
(parametrized) assets is provided for software architects; and second, this is a
logical way of doing in the continuum of artifact development in component-
based software engineering1.

We implemented CLACS as a prototype in the Eclipse IDE by using some
existing plugins [3]: the EMF (Eclipse Modeling Framework) module which al-
lowed us to define an Ecore metamodel of CLACS to generate an editor, and
the GMF (Graphical Modeling Framework) plugin to give a graphical dimen-
sion to the editor. SCL code generation feature in this editor allows to generate
SCL code starting from EMF models. This has been done using the JET (Java
Emitter Templates) Eclipse plugin [3]. At the conceptual level, we plan to enrich
constraint-components with the other parts of architecture decision documenta-
tion. This will help to incrementally build complex non-functional documenta-
tions by composition and thus get the advantages of component-based software
engineering. In addition, we are investigating the proposition of a model of re-
flective components. At the tool level, we plan in the near future to work on
constraint-component code generation. This will help to check architecture con-
straints at the evolution stage on implementation artifacts (SCL code). Our aim
in the future is also to build a repository of classified architecture constraints.

References

1. Ackermann, J., Turowski, K.: A library of ocl specification patterns for behavioral

specification of software components. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006.

LNCS, vol. 4001, pp. 255–269. Springer, Heidelberg (2006)

2. Allen, R.: A Formal Approach to Software Architecture. PhD thesis, Carnegie Mel-

lon University, Pittsburgh, PA, USA (May 1997)

1 In the same spirit, the Eiffel language has been proposed for, at the same time, pro-

gramming applications’ business-logic and formalizing functional constraints (con-

tract programming with assertions).

Software Architecture Constraints 509

3. Eclipse. Eclipse Modeling Project. Eclipse Board Web Site:

http://www.eclipse.org/modeling/

4. Fabresse, L., Dony, C., Huchard, M.: Foundations of a Simple and Unified

Component-Oriented Language. Journal of Computer Languages, Systems & Struc-

tures 34(2-3), 130–149 (2008)

5. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-

based systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-

Based Systems, pp. 47–68. Cambridge Univ. Press, Cambridge (2000)

6. Giese, M., Larsson, D.: Simplifying transformations of OCL constraints. In: Briand,

L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 309–323. Springer,

Heidelberg (2005)

7. Tibermacine, C., Fleurquin, R., Sadou, S.: A family of languages for architecture

constraint specification. Journal of Systems and Software, JSS (2010)

http://www.eclipse.org/modeling/

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 510–514, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Framework for Dynamic Self-optimization
of Power and Dependability Requirements

in Green Cloud Architectures

Rami Bahsoon

School of Computer Science
The University of Birmingham

 Edgbaston, B15 2TT, Birmingham, UK
r.bahsoon@cs.bham.ac.uk

Abstract. I report on the activities and research challenges, their rationales, and
the work in progress related to the ongoing EPSRC/UoB Bridging the Gap Fel-
lowship project on Green Cloud Architectures. The initiative is aimed at a
framework for dynamic self-optimization of cloud architectures taking into
account the tradeoffs involved in maintaining acceptable dependability re-
quirements/Quality of Service (QoS) with minimal power at runtime. I argue
that linkage between dependability requirements and power should be explicit. I
motivate the need for new meters for Power-per-QoS value (and sacrifices) for
cloud architectures. I motivate the need for an economics-inspired approach for
dynamic self-optimization of cloud architectures. I discuss the role of Data
Driven Simulation Systems in implementing such framework.

1 Introduction

Cloud computing is claimed for enabling convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort[1,3]. The popularity of the cloud is rapidly increasing: many com-
puting services have now moved to the cloud and many new applications are emerg-
ing either as standalone or in orchestration with existing services. As a result, the
cloud architecture is dynamically scaling up to accommodate such growth in services,
data, and users. From the architecture point of view, scaling up such ultra-large scale
architectures does continuously introduce additional computational power, as meeting
dependability requirements such as scalability, availability, reliability, real time per-
formance, fault-tolerance, openness and security essentially imply the need for addi-
tional computational resources: this may, for example, entail hardware and software
redundancy to be deployed in realization to some architectural mechanisms and tac-
tics, like load balancing, replication, migration transparency, and so forth. It would
be expected that more servers/nodes to be deployed to realize dependability require-
ments and consequently more operating and cooling power will be required. The
situation will lead to an uncontrolled growth of computational power consumption.
Such growth, if left unmanaged, is expected to contribute to the degradation of our

A Framework for Dynamic Self-optimization of Power and Dependability Requirements 511

ecosystem and more CO2 emissions, as we move and heavily depend on the cloud.
Meanwhile, meeting dependability and Quality of Service (QoS) requirements are
critical and can’t be neglected in favor of power savings.

I report on the activities and research challenges, their rationales, and the work in
progress related to the ongoing EPSRC Bridging the Gap Fellowship project on
Green Cloud Architectures. The initiative is aimed at a framework for dynamic self-
optimization of cloud architectures taking into account the tradeoffs involved in main-
taining acceptable dependability requirements with minimal power at runtime. The
research initiative is multidisciplinary, involving Software Architectures and Dynamic
Data Driven Simulation Systems (DDDAS), Economics, Dynamic Power Manage-
ment and Energy Policy, Modeling and Optimization research.

2 Self-managed Green Cloud Architectures: Research Challenges
and Work in Progress

Below, I report on the software architecture related challenges, their rationales, and
work in progress in realizing the framework for dynamic self-optimization of cloud
architectures taking into account the tradeoffs of dependability on power.

2.1 Linking Dependability Requirements to Power and New Meters for QoS
per Cloud Power Value

Green-aware constraints such as power bring new challenges to the way we systemati-
cally develop, evolve and scale ultra large-scale software architectures, as it is the case
for the cloud. We argue that the software architecture should be green aware, where the
architecture design decisions should not only be judged by their technical merits, but
also by their contributions to energy savings. The software system architecture is the
appropriate level of abstraction to address green-aware concerns, as the architectural
design decisions in addressing dependability requirements and managing their evolu-
tion trends and tradeoffs are crucial determinant for power consumptions and savings.
Current practice to architecting software systems does not make the linkage between
power and design decisions explicit (or even implicit). The need for such linkage be-
comes more important especially in the case of evolving large-scale architectures, such
as cloud architectures. In practice, dynamic changes and evolution of dependability
requirements like scalability, availability, security, and performance requirements may
suggest additional hardware/software resources, which need to be deployed at runtime.
This may effectively translate to additional computing power. As result, power could
be best modeled in relation to dependability and QoS demands and provision of a run-
time instance. There are several research challenges to address, however. One of the
challenges is to relate power to dependability requirements in cloud architectures.
Another challenge is to arrive on mechanisms for measuring, logging, controlling,
actuating and calibrating power as the cloud architecture dynamically evolves in re-
sponse to dependability and QoS demands and provision. One intuition is to leverage
on the state-of-art and state-of-practice in Dynamic Power Management to benefit the
case of the cloud. The challenge, however, is to express and formulate models for
expressing dependability and QoS demands and provision-values per power usage or

512 R. Bahsoon

savings. Inversely, new meters for QoS-per-power value will be needed. Such meters
will show the value of QoS on the expense of power sacrificed (and vice versa). We
envision further refinement of these meters to include individual QoS quality-per-
power value (e.g. performance-per-power value, availability-per-power value etc.)
and how they can be expressed in isolation or when combined. Such meters will be
useful for performing what-if analyses, when matching resources provision to power
demands, for facilitating sensitivity and tradeoffs analyses-either statically or dynami-
cally (at runtime). The fundamental premise is that the cloud architecture (and its com-
ponents) experiences no uniform workloads exhibiting variation in QoS requirements
during its operation. Such an assumption is valid for most systems, both when consid-
ered in isolation and when internetworked as for the case of the cloud. A second
assumption is that it is possible to monitor, with a certain degree of confidence, the
fluctuations of QoS and their power. Such observation and prediction should not con-
sume significant energy, however.

2.2 Economics-Inspired Approach for Self-optimizing the Cloud Architecture

We argue that dynamic change and evolution of the cloud architectures is a value-
seeking and value-maximizing process, where the architecture is undergoing a
dynamic change (at runtime) and seeking value. We treat dependability provision and
their power consumption as scare resources, which need to be dynamically optimized.
Performing a runtime search for best architectural instances, which addresses the
dependability requirements with minimal power is a problem, which is appealing to
“dynamic” or “on line” Search-based Software Engineering (SBSE), where the opti-
mization problem is rapidly changing and the current best solution must be continu-
ally adapted. The challenge is to maximize the value added and select the optimal
execution plans.

The highly dynamic nature of the cloud architecture requires a simple, scal-
able, and inexpensive runtime optimization technique. This is necessary as the search
for the optimal runtime instance addressing the tradeoffs between power and depend-
ability requirements/QoS is continuously active and may be initiated at various time
intervals of the execution. This is not only for seeking to find an optimal solution to
the said problem, but rather, for seeking to improve upon the current runtime situa-
tion. Classical and static optimization techniques may be ineffective and expensive to
use in this dynamic setting for the representation of the problem and the definition
of the fitness function are mere active at runtime and very volatile with respect to
time. Furthermore, the problem entails judging the tradeoffs not only from a technical
perspective but also from an economics driven one. We are investigating how eco-
nomics-inspired approaches, based on market-control theory and/or game theory, can
address the problem of dynamic runtime optimization and self-adaptation of the cloud
architecture in addressing such tradeoffs. Together with Economists, we will formu-
late models and scenarios, utilizing the meters developed in 2.1. We are investigating
how classical market based theory and it various simple concepts and scenarios like
supply, demand, inflation, recession, and equilibrium could be mapped to the case of
matching supply and demand of power vs. that of dependability requirements (indi-
vidual or combined) in the cloud. We have reported on some preliminary results on

A Framework for Dynamic Self-optimization of Power and Dependability Requirements 513

the analogy for the case of standalone software architectures [2]. The relevance to the
cloud architecture is promising.

2.3 Implementation Framework Using Dynamic Data Driven
Simulation Systems (DDDAS)

We are investigating how Dynamic Data Driven Simulation Systems (DDDAS) para-
digm, which the University of Birmingham is a key contributor to the field, can bene-
fit the cloud architecture. In particular, we are investigating how elements of DDDAS
– including measurement, simulation, control, and feedback can extend various cloud
architectural styles to assist in the problem of dynamic runtime self-optimization of
the cloud in relation to power and QoS. This layer is expected to utilize the meters of
2.1 and the economics-inspired models developed in 2.2. One important aspect of
DDDAS in this setting is the ability to use runtime simulation (through the use
of high performance computing) in order to improve the prediction and the self-
management process of the runtime configuration through symbiotic control
and feedback loops. To achieve this objective, the simulation will require min-
ing data stored from previous runtime instances to inform and tune the prediction and
execution plans to self-adaptation. In particular, the simulation (i) will identify scenar-
ios and possible moves leading to robust and stable runtime configurations in the
cloud topology showing efficiency of power use and acceptable QoS. Simulation can
also predict situations leading to QoS sacrifices in relation to power savings; (ii) can
assist in predict the rippling impact of such sacrifices on the robustness of individual
nodes/services and the cloud as whole; (iii) shall provide the basis for dynamic analy-
sis for QoS value sacrifices with respect to power savings. Simulation can also deter-
mine the long-term implications of favoring QoS requirements and policies over
power savings for some instances, where QoS can’t be compromised. These implica-
tions can be in relation to cost and stability of the cloud architecture; (iv) can
also have static use: For example, the simulation can inform the cloud management
decisions and long-term policies related to cloud service provision, management,
deployment, and capacity restriction or leasing in relation to various cloud services –
ranging from software-, platform-; infrastructure-, data- services. The DDDAS layer
is expected to form a standalone and independent layer, which can be integrated in the
cloud to make it green-aware and energy efficient.

3 Conclusions and Expected Impact

Green-aware constraints such as power bring new challenges to the way we system-
atically develop, evolve and scale ultra large-scale software architectures, as it is the
case for the cloud. We have argued that the software architecture should be green
aware, where the architecture design decisions and their evolution trends should not
only be judged by their technical merits, but also by their contributions to energy
savings. We have reported on the activities and research challenges of the ongoing
EPSRC Bridging the Gap Fellowship project on Green Cloud Architectures. The
initiative is aimed at a framework for dynamic self-optimization of cloud architectures
taking into account the tradeoffs involved in maintaining acceptable dependability

514 R. Bahsoon

requirements with minimal power at runtime. We have argued that linkage between
dependability requirements and power should be explicit. We have motivated the
need for new meters for Power-Per-QoS value and sacrifices. We have discussed the
role of DDDAS in such framework. The research will raise the understanding of evo-
lution trends in ultra large sale dynamic cloud architectures and improve their quality
and robustness through dependability and power measurement and control. More
widely, we hope the research results will feed into long-term vision of helping in
reducing power consumption and CO2 emissions in ICT infrastructures.

References

1. Nallur, V., Bahsoon, R., Yao, X.: Self-Optimizing Architecture for Ensuring Quality
Attributes in the Cloud. In: Proceedings of the Joint Working IEEE/IFIP Conference on
Software Architecture 2009 & European Conference on Software Architecture 2009,
Cambridge, UK (2009)

2. Rangaraj, G., Bahsoon, R.: A Market-based Approach for Self-Managing Power in Soft-
ware Architectures – in submission. Technical Report, School of Computer Science,
University of Birmingham, CSR-10-01 (2010)

3. Nallur, V., Bahsoon, R.: Design of a Market-Based Mechanism for Quality Attributes
Tradeoffs of Services in the Cloud. To appear in the Proceedings of the 25th ACM
Symposium of Applied Computing, ACM SAC 2010 (2010)

4. EDSER 1-8: Proceedings of the Workshops on Economics-Driven Software Engineering
Research. In conj. with the 21st through 28th International Conference on Software
Engineering (1999-2006)

Identifying Architectural Connectors
through Formal Concept Analysis of

Communication Primitives

Arvind W. Kiwelekar and Rushikesh K. Joshi

Department of Computer Science and Engineering

Indian Institute of Technology Bombay, Mumbai-400076, India

awk@cse.iitb.ac.in, rkj@cse.iitb.ac.in

Abstract. A set of interaction primitives and properties are system-

atically analyzed through Formal Concept Analysis (FCA) leading to

identification of connector types and relationships among them. The ap-

proach is illustrated through a set of communication primitives from the

web services modeling languages. The identified concepts are elaborated

in terms of UML/OCL descriptions. The FCA based analysis and OCL

descriptions can be used to automatically build an ontology of architec-

tural connectors.

1 Introduction

Architectural connectors encapsulate protocols of interactions among compo-
nents of software systems [1]. They differ in terms of properties they possess.
For example, implementations of Remote Procedure Call may vary on type of
binding between clients and servers, exceptions, argument copying, and security
[2]. Architectural connectors can be conceptualized in terms of such properties.
Earlier researchers have formalized the semantics of connectors through various
techniques such as process calculus [1], taxonomies and description logics. In
this paper, we attempt a systematic identification of connectors through Formal-
Concept Analysis [3]. The approach also brings out differences and commonalities
between connectors.

2 Interaction Primitives and Properties

Eight interaction primitives from WSDL and BPEL interaction patterns [4] are
considered to demonstrate the use of FCA in identifying connectors. They are
characterized by the properties that they possess. From WSDL, the data transfer
primitives that are considered are simple output data transfer, robust output
data transfer, and simple and robust input of data. From BPEL, the activity
primitives considered are an activity to reply to a request, an invocation of an
activity, an activity to receive data and an event handler activity. The WSDL
primitives are data transfer primitives, while the BPEL primitives are control

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 515–518, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

516 A.W. Kiwelekar and R.K. Joshi

transfer primitives that start activities. The former primitives are of descriptive
nature, while the latter are executional primitives.

The following properties can be associated with a characterization of these
interaction primitives: (i) Bilateral. Only two participants are involved in the
interaction. (ii) Anonymity. The identity of the peer participant is not known
in advance. (iii) Round trip Interaction. The sender of a message is also the re-
cipient of the reply. (iv) Synchronized. A recipient is ready to receive messages
when messages arrive. (v) Single Message Transfer. Only a reply or a request is
sent, but not both. (vi) Reliable Delivery. The messages are guaranteed to be
delivered despite the failure of a communication medium. (vii) Blocked Sender.
The initiator of an interaction gets blocked until a message is successfully deliv-
ered or delivery failure is reported. (viii) Correlating Interactions. Messages that
have been sent and their replies are correlated. (ix) Fault Generation. A fault
message is generated if the interaction is not successful. (x) Racing of Messages.
If many messages are received at the same time, a race condition may occur. (xi)
Thread-based handling. A new thread is created to process an incoming message.
(xii) Exception-based fault handling. Faults are handled separately by exceptions.
An association of various primitives and these properties is captured in Table 1.
It can however be noted that the table represents one view in a possible appli-
cation context, and other variations may be possible due to application specific
architectural considerations.

Table 1. Building Formal Context

B
IL

A
T

A
N

O
N

R
O

U
N

D
S
Y

N
C

H
O

N
E

T
X

R
E

L
I

B
L
O

C
K

C
O

R
E

L
F
A

U
L
T

R
A

C
E

T
H

R
E

A
D

E
X

C
E

P

wsdlOut × ×
wsdlRobustOut × × × × ×
wsdlIn × × ×
wsdlRobustIn × × × × × ×
bpelRepAct × × × × × × × × × ×
bpelRecvAct × × × × × × × × × ×
bpelInvokeAct × × × × × × × ×
bpelOnEvent × × × × × ×

BILAT Bilateral
ANON Anonymous
ROUND Round Trip
SYNCH Synchronized
ONETX Single T ransfer
RELI Reliable Delivery
BLOCK Blocked Sender
COREL Message Correlation
FAULT Fault Message
RACE Race Avoider
THREAD Threaded Handling
EXCEP Exception Handling

3 Conceptualization of Connector Types

To identify concepts a formal context as shown in Table 1 can be used. A formal
context is a 3-tuple (O, A, R), where O, A and R are sets of objects, attributes,
and relations between objects and attributes respectively. The interaction primi-
tives are mapped to objects and properties to attributes. Objects and attributes
are related if a communication primitive possesses a given property. A concept
C is a pair (X, Y) where X ⊆ O, Y ⊆ A, X’=Y and Y’=X, where X’={a ∈ A |

Identifying Architectural Connectors through FCA 517

(a) Connectors as Formal Concepts

Concepts Definitions Identified

Connectors

Descriptive Connector Types

c1 = {(wsdlIn, wsdlRobustIn, wsdlOut, wsdlRobustOut), (BILAT,

ONETX)}
Simple

Transfer

c2 = {(wsdlIn, wsdlRobustIn), (BILAT, ONETX, RELI)} Reliable

Transfer

c4 = {(wsdlRobustOut, wsdlRobustIn), (BILAT, ONETX, FAULT,

EXCEP, ROUND)}
Robust

Transfer

Executable Connector Types

c6 = {(bpelRecvAct), (BILAT, ONETX, SYNCH, BLOCK, EX-

CEP, FAULT, RELI, ROUND, COREL, THREAD)}
Threaded

Receiver

c8 = {(bpelInvokeAct, bpelRepAct), (BILAT, ONETX, SYNCH,

BLOCK, EXCEP, FAULT, RELI, ANON)}
Anonymous

Invocation

c9 = {(bpelRepAct), (BILAT, ONETX, SYNCH, BLOCK, EXCEP,

FAULT, RELI, ANON, ROUND, COREL)}
Round Reli-

able Callback

c11 = {(bpelOnEvent), (BILAT, ONETX, SYNCH, ROUND,

THREAD)}
Event Lis-

tener

(b) The Concept Lattice for

WSDL

(c) The Concept Lattice for BPEL

Fig. 1. Conceptualization of Connector Types

(o,a) ∈ R for all o ∈ X }, and Y’={o ∈ O | (o,a) ∈ R for all a ∈ Y }. The set X
is known as an extent of the concept and Y is the intent. The concept lattices
for the interaction primitives and properties considered are shown in Figure 1.
A concept lattice relates two concepts through a sub-concept relationship. Two
concepts may be related through sub-concept relationships For example, in the
wsdl lattice, reliable connector is a sub-connector of simple connector. Reliable
connector adds more attributes to simple connector. Similarly, reliable connec-
tor and robust connector are siblings, both being subconnectors of the simple
connector. Robust and reliable connector is a specialization derived from these
two specializations. The lattice brings out these relationships.

4 OCL Descriptions

Towards building connector ontologies, the connector types are further specified
with OCL invariants against UML based reference communication model shown

518 A.W. Kiwelekar and R.K. Joshi

Fig. 2. UML based Communication Model

in Figure 2. For example, a simple message transfer connector has two properties.
Firstly, a simple message transfer is a bilateral interaction, i.e. only one source
is involved for a message received. Secondly only one message is transferred
between source and target participant for a given message Id.

context SimpleMessageTransfer inv smt :

s e l f . sourcePort−>a l l I n s t an c e s ()−> s i z e () = 1 and

s e l f . targetPort−>a l l I n s t an c e s ()−> s i z e () = 1 and

s e l f . sourcePort . entry−>c o l l e c t (sm : Message |
s e l f . t a rge tPort . entry−>s e l e c t (tm : Message |
tm . messageID = sm . messageID and

sm . messageType = KindsOfTransfer : :OUT and

tm . messageType = KindsOfTransfer : : IN))−> s i z e () =1

5 Conclusion

The FCA approach demonstrates a method of systematic analysis of interaction
properties to bring out connectors and relationships between them. Connec-
tors derived through the analysis are specified through OCL specifications with
reference to a metamodel towards building connector ontologies. However, the
challenges faced in this work include handling properties in different domains,
subtle variations in interpretations of properties and scale of contexts.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.

Softw. Eng. Methodol. 6(3), 213–249 (1997)

2. Birrell, A.D., Nelson, B.J.: Implementing remote procedure calls. ACM Trans. Com-

put. Syst. 2(1), 39–59 (1984)

3. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI),

vol. 3626. Springer, Heidelberg (2005)

4. Alistair, B., Dumas, M., ter Hofstede, A.H.: Service interaction patterns: Towards a

reference framework for service-based business process interconnection. In: van der

Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,

vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 519–522, 2010.
© Springer-Verlag Berlin Heidelberg 2010

MDA Tool for Telecom Service Functional Design

Ankit Ahuja1,2, Jacques Simonin2, and Rémi Nedelec1

1 Orange Labs, 2 avenue P. Marzin,
22300 Lannion, France

{Ankit.Ahuja,Remi.Nedelec}@orange-ftgroup.com
2 Institut Télécom, Télécom Bretagne, Lab-STICC UMR CNRS 3192, UEB,

Technopole Brest-Iroise, 29238 Brest, France
{Ankit.Ahuja,Jacques.Simonin}@telecom-bretagne.eu

Abstract. Telecom service development process followed at Orange consists of
a sequence of interrelated tasks. We present an MDA tool which describes this
process using SPEM 2.0 compatible graphical editor, and then associates a
model to each defined task for its execution. These models are validated for
conformance to functional rules embedded inside the tool. Task automation is
achieved using MDA model transformations, which use Orange knowledge
model as the basis to extract the existing reusable functional components and
their interdependencies. Graphical editor and model transformations have been
integrated together in an ECLIPSE environment. Finally, the validated func-
tional design model is transformed towards a UML2 profile, so as the telecom
architect can manipulate it in an environment he is familiar.

Keywords: model-driven architecture, SPEM 2.0, model transformation, com-
ponent reuse.

1 Introduction

A telecom service is a service provided to an end-user by a telecommunication opera-
tor. For telecom service development, an enterprise architecture assisted method
called Enterprise Architecture for Unified Processes (EA4UP) [1] is used at Orange.
This method aims at improving the process continuity and reuse of existing compo-
nents. We have developed a Model-Driven Architecture (MDA) tool around EA4UP
method which firstly describes this development process graphically using a SPEM
2.0 (Software Process Engineering Meta-model) compatible editor, and secondly
associates an input/output model to each task defined. The target audiences for this
tool are on one hand the telecom architects at Orange, and on the other, the quality
engineers who could thus check telecom service development traceability. The input
and output models conform to EA4UP meta-model and are generated automatically
using model transformations. For these transformations, MDA approach is used
which consists of transforming a Platform Independent Model (PIM) into a Platform
Specific Model (PSM) using a Platform Dependent Model (PDM). In our approach,
PIM is a model extracted from the graphically defined components and PSM is the
functional design model obtained using PDM which is the Orange knowledge model

520 A. Ahuja, J. Simonin, and R. Nedelec

consisting of existing reusable functional components. PSM model is validated for
correctness based on functional rules of enterprise architecture defined in the trans-
formation, and the telecom architect is warned of anomalies, if any. Finally, the vali-
dated EA4UP model is transformed towards a UML2 profile, so that it can be
analyzed in a modeling tool like Rational Software Modeler (RSM).

This tool presents a new paradigm for creating functional architecture of a telecom
service, as the architect describes graphically the required functional components
without intervening directly into the complex EA4UP model. Of these components,
ones already available in the knowledge model are extracted along with their interde-
pendencies. The functional design model is then transformed towards a UML2 profile
which can be imported in RSM, with which the telecom architect is familiar. Hence,
an automatically generated visual model of functional design is obtained.

2 Tool Architecture

Tool architecture consists of three different layers as shown in Figure 1: Process de-
scription layer, Input/output model layer and UML2 profile layer. Firstly, in Process
description layer, the EA4UP development process is described in terms of activities
and tasks using a SPEM 2.0 compatible editor Top-Process Modeler (TPM) [2]. TPM
meta-model has been evolved to integrate with it the EA4UP and Orange knowledge
models as input/output for a task. Additional classes and attributes are added in TPM
meta-model in order to make links of tasks with EA4UP models. A new graphical
editor is generated using TOPCASED [3] approach for the evolved TPM meta-model.
Secondly, in Input/output model layer, each of the tasks defined in TPM is executed by
linking it with an input or output model. These models conform to the EA4UP or
the Orange knowledge meta-model, and are generated using MDA model transforma-
tions. Model transformations are realized using the open-source ECLIPSE plug-in
SmartQVT [4], developed at Orange Labs. Hence, the tasks defined in the Process

Fig. 1. MDA tool 3-layer architecture

 MDA Tool for Telecom Service Functional Design 521

description layer are executed with the help of models generated by MDA transforma-
tions in Input/Output model layer. These models are validated for conformance to
functional rules defined by a telecom architect which are coded in model transforma-
tion. Thirdly, in UML2 profile layer, the hence obtained validated EA4UP model is
transformed to a UML2 profile, so as it can be viewed and edited in software modeling
tool like RSM. This is also achieved using a SmartQVT transformation.

3 Task Execution Using MDA Tool

The tool has been implemented for the functional view defined in EA4UP process.
This view further consists of a sequence of tasks shown in Figure 2. In task 1, the
telecom architect graphically creates various Functional Operations (FO) required for
a particular telecom service. In task 2, these FOs are extracted into an EA4UP model
and a look-up is performed in the Orange knowledge model for their pre-existence.
This task generates a warning to the telecom architect as shown in Figure 3, in case
the created FO does not exist in the knowledge model. In task 3, the corresponding
functional interfaces (FI) are extracted from Orange knowledge model for each FO.
Also, for newly created FOs in task 2, new FIs are created. In task 4, the functional
components (FC) related to each FI are extracted from knowledge model. Here, it is
to be noted that a FC has a list of provided FIs and used FIs which, in turn, gives a
chain of interdependent FIs and FCs. Hence, all the required FCs are extracted from
the knowledge model. In task 5, the telecom architect creates new FCs corresponding
to new FIs not existing in knowledge model. Here, he has to comply with the func-
tional rule that the FI-FC interdependency should never create a loop, as it would lead
to unnecessary redundant data flow. Finally in task 6, functional architecture is vali-
dated for conformance to this functional rule and error message is generated in case of
non-compliance.

The EA4UP functional design model hence obtained is then transformed towards a
UML2 profile, which is shown in layer 3 in the tool architecture. UML2 stereotypes

Fig. 2. Execution of functional design tasks using MDA tool

522 A. Ahuja, J. Simonin, and R. Nedelec

Fig. 3. MDA tool screenshots showing EA4UP graphical model and a warning message gener-
ated during model transformation

are created for each FI, FO and FC defined in the EA4UP functional design. The
UML model hence obtained is imported in a software modeling tool like Rational
Software Modeler to visualize the functional design. It is during this stage of telecom
service development that the functional component interaction is visualized. This
interaction thus allows the realization of scenarios for the telecom service. Tasks
defined inside MDA transformation box in Figure 2 are automated. Figure 3 shows
screenshots of MDA tool functionalities.

4 Conclusion

The main expectation of telecom architect from this tool is to obtain a validated UML
functional design of a telecom service containing the existing reusable components
and their interdependencies. Hence, the output of this MDA tool is an automatically
generated UML model which can be manipulated and analyzed by the architect ac-
cording to his functional knowledge.

Experimentation results of this tool show that it is able to automate majority of
functional design tasks of a telecom architect and efficiently reuse the existing com-
ponents. This tool has been fully implemented for the Functional MDE sub-process of
EA4UP, and can be replicated in a similar way for the other sub-processes.

References

1. Simonin, J., Alizon, F., Deschrevel, J.-P., Le Tron, Y., Jézéquel, J.-M., Nicolas, B.: EA4UP:
an Enterprise Architecture-Assisted Telecom Service Development Method. In: 12th Inter-
national IEEE Enterprise Distributed Object Computing Conference (2008)

2. Garcia, A., Combemale, B., Cregut, X., Vandeur, J., Guyot, J.-N., Libert, B.: topPROCESS:
a Process Model Driven Approach Applied in TOPCASED for Embedded Real-Time Soft-
ware. In: Proceedings of the 4th European Congress Embedded Real Time Software
(ERTS), Toulouse, France (2008)

3. Topcased: Toolkit in Open-source for Critical Applications and SystEms Development,
http://www.topcased.org

4. Belaunde, M., Dupe, G.: SmartQVT, an implementation of the MOF QVT Opertational lan-
guage in top of EMF. In: eclipseCON 2007 (2007)

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 523–526, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A NUI Based Multiple Perspective Variability
Modeling CASE Tool

Rabih Bashroush

School of Computing, IT and Engineering,
University of East London,
London, United Kingdom
rabih@uel.ac.uk

Abstract. With current trends towards moving variability from hardware to
software, and given the increasing desire to postpone design decisions as
much as is economically feasible, managing the variability from requirements
elicitation to implementation is becoming a primary business requirement in the
product line engineering process. One of the main challenges in variability
management is the visualization and management of industry size variability
models. In this demonstration, we introduce our CASE tool, MUSA. MUSA is
designed around our work on multiple perspective variability modeling and is
implemented using the state-of-the-art in NUI, multi-touch interfaces, giving it
the power and flexibility to create and manage large-scale variability models
with relative ease.

Keywords: Software Product Lines, Variability Management, Feature Modeling.

1 Introduction

Software Product-line Engineering (SPLE) has emerged as a major strategy for
maximizing reuse when a family of related software systems is developed. In this
approach, commonality-variability analysis [1] (Variability Management - VM) of
the member products is a major phase of the process and plays an important role in its
success.

One of the main challenges within VM is the handling and visualizing “industry-
size” models which usually comprise a large number of variability points along with
the dependency relationships that exist among them. The challenge comes from the
large amount of information captured within a model (business related, dependency
and relationships, etc.) as well as the current techniques and I/O devices used to visu-
alize the model which do not inherently scale.

The MUSA CASE tool was designed to overcome these challenges. MUSA is
based on our successful work on multiple-perspective based variability management
which provides a rich modeling framework while using the concept of separation-of-
concerns to alleviate the problem of information overloading. MUSA implements this
theory using a mind-mapping modeling approach over the state-of-the-art in HCI, the
multi-touch Microsoft Surface [2]. This provides a scalable solution that taps on the

524 R. Bashroush

latest in Natural User Interface (NUI) [3] design providing an intuitive and large dis-
play for VM. In addition, the MUSA solution provides interfaces over other multi-
touch platforms including Windows 7 (using its native multi-touch support).

The theory behind MUSA is highlighted in section 2. An overview of the MUSA
CASE tool is then presented in section 3. Finally, section 4 ends with related work
and conclusion.

2 Theoretical Background

The Four Views Model (4VM) forms the theoretical foundation upon which MUSA is
designed as a Proof-of-Concept. The original version of the 4VM can be found here
[4] and to appear here [5].

It is generally agreed that different stakeholders have interest in considering differ-
ent views of the product line variability model [4],[6]. So, it is important for a VM
mechanism to be able to extract and present relevant information about the family
model in dedicated views for different groups of stakeholders (users, system analysts,
developers, etc.). This could considerably contribute to alleviating the graphical over-
load when showing all the information in one view (as compared to using multiple
views). This is one of the core concepts behind 4VM.

The 4VM proposes a four view presentation of the feature model. The views are:

- Business View: where the information related to the project management,
cost/benefit analysis, closed/open sets of features, etc. is presented.

- Hierarchical & Behavioral View: where the way the different features are
organized (usually presented in a tree structure) along with the behavior
attached to each feature is presented.

- Dependency & Interaction View: where the dependency and interaction
among features is presented.

- Intermediate View: where some design decisions are injected into the feature
model to take it one step further towards the architecture domain in an
attempt to bridge the gap between the feature model and the system ar-
chitecture.

For further information about 4VM, please refer to [4],[5].

3 Technical Foundation

MUSA was funded as a Proof-of-Concept project to demonstrate the theoretical foun-
dation provided in 4VM. The MUSA system provides an end-to-end variability
management solution as shown in Figure 1 below. MUSA provides a rich and collabo-
rative interface to elicit and manage requirements and variability from stakeholders
while allowing for appropriate access to the variability model to different teams includ-
ing: implementation, testing and deployment teams. In addition, MUSA automates
model verification (with the use of SAT solvers) and maintains consistency among the
different views with the help of a centralized Database (as shown in Fig. 1).

 A NUI Based Multiple Perspective Variability Modeling CASE Tool 525

This is the first official demonstration of the toolset and will focus on the interface
that is used for variability management and requirements elicitation by Software Ar-
chitects/Requirements engineers. The main features of this interface are:

- Based on the Microsoft Surface platform [2], it provides a large gesture
based interface for managing the variability model.

- The interface design principles followed (360-D UI and NUI [3]) support a
seamless multi-user simultaneous interaction and collaborative environ-
ment.

- The variability model itself is implemented using a mind-mapping approach
based on hyperbolic trees providing an unprecedented potential for scal-
ability

MUSA is considered among the very first CASE tools to move into the NUI space in
order to overcome scalability issues.

Fig. 1. The end-to-end MUSA System overview

4 Conclusion and Related Work

Over the past few years, a number of VM approaches have been developed ranging
from research techniques [7],[8],[9] to commercial products [10],[11],[12].

The major challenge for most research techniques is scalability. The scalability is-
sue arises from the graphical modeling techniques traditionally adopted (e.g. trees)
and the I/O devices used (standard keyboard, mouse, and monitors). Although virtual
reality technologies have been recently reported as being explored as a potential
approach for VM, it is hard to see how such techniques could make their way to com-
mercial environments due to the difficulty involved in integrating such approaches
within existing industrial development settings.

526 R. Bashroush

Commercial products on the other hand have managed scalability by largely mov-
ing away from graphical representation of models. File system tree like structures and
even text listings (e.g. using MS Excel sheets) have been seen in use. Although such
approaches scale and are in industrial use, adopting NUI interfaces such as the one we
implemented in MUSA will increase productivity, time-to-market and allow for the
creation and management of larger and more complex product families.

Acknowledgments. The work on the MUSA project has been funded by the Euro-
pean RD Fund through INI under the Proof of Concept funding scheme [2008-2010].
It has just received further funding under the Challenge Fund scheme at the Univer-
sity of East London [2010-2011]. We thank all the postgraduate students at the CITE
school at UEL who contributed to some of the testing and development of the MUSA
toolset as part of their thesis work.

References

1. Kang, K.C., Lee, J., Donohoe, P.: Feature-Oriented Product Line Engineering. IEEE Soft-
ware 19, 58–65 (2002)

2. Microsoft Surface, http://www.microsoft.com/surface/
3. Natural User Interfaces,

http://en.wikipedia.org/wiki/Natural_user_interface
4. Bashroush, R., Spence, I., Kilpatrick, P., Brown, T.J., Gillan, C.: A Multiple Views Model

for Variability Management in Software Product Lines. In: Proceedings of the Second In-
ternational Workshop on Variability Modelling of Software-intensive Systems, Essen,
Germany (2008)

5. US Patent Application No. 12/349,797, Inventor: Rabih Bashroush, Title: Multiple Per-
spective Feature-based Variability Management (Patent Pending)

6. Nuseibeh, B., Kramer, J., Finkelstein, A.: A Framework for Expressing the Relationships
Between Multiple Views in Requirements Specification. IEEE Transactions on Software
Engineering 20(10), 760–773 (1994)

7. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: COVAMOF: A Framework for Modeling
Variability in Software Product Families. In: Proceedings of Third Software Product Line
Conference 2004, Boston (2004)

8. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: feature modeling plug-in for Eclipse.
In: Proceedings of the 2004 OOPSLA workshop on eclipse technology eXchange (2004)

9. Asikainen, T., Männistö, T., Soininen, T.: Kumbang: A domain ontology for modelling
variability in software product families. Advanced Engineering Informatics 21, 23–40
(2007)

10. Beuche, D.: Variant Management with pure: Variants, Pure-Systems GmbH (2003)
11. Pure-Systems Pure:Variants,

http://www.pure-systems.com/Variant_Management.49.0.html
12. BigLever Software Gears,

http://www.biglever.com/solution/product.html

ByADL: An MDE Framework for Building
Extensible Architecture Description Languages�

Davide Di Ruscio, Ivano Malavolta, Henry Muccini,
Patrizio Pelliccione, and Alfonso Pierantonio

University of L’Aquila, Dipartimento di Informatica
{davide.diruscio,ivano.malavolta,henry.muccini,

patrizio.pelliccione,alfonso.pierantonio}@univaq.it

Abstract. In order to deal with evolving needs and stakeholder concerns, next
generation ADLs should support incremental extension and customization. In this
direction we proposed BYADL (Build Your ADL), a framework which allows
software architects to (i) extend existent ADLs with domain specificities, new
architectural views, or analysis aspects, (ii) integrate an ADL with development
processes and methodologies, and (iii) customize an ADL. This paper presents
the BYADL tool and its features.

1 Introduction

A broader view of Software Architecture (SA), which is being accepted today, is far be-
yond the traditional perception of an SA as a set of constituting elements (such as com-
ponents, connectors and interfaces) and looks at the multiple stakeholder’s concerns
and their design decisions [1,2,3]. Many Architecture Description Languages (ADLs)
have been proposed in the last years. Software engineers found existent ADLs inad-
equate for modelling concerns judged unavoidable by system’s stakeholders. Further-
more, stakeholders’s concerns vary from system to system and from domain to domain;
this demonstrates that it is not possible to define a general, optimal ADL once and for-
ever. Therefore, ADLs should be extensible in order to be able to adapt to different
stakeholder’s concerns and to different domain specificities. However, first attempts of
extensible ADLs do not deal with semantic aspects of extensions in a satisfactory way.

BYADL (Build Your ADL) [4] is a framework that supports a software architect
in defining its own ADL, which is optimal according to specific stakeholder’s con-
cerns, starting from an existent ADL. BYADL provides extensibility mechanisms for:
(i) adding domain specificities, new architectural views, or analysis aspects, (ii) inte-
grate ADLs with development processes and methodologies, (iii) customize ADLs by
fine tuning them. These mechanisms are implemented in the BYADL tool that is the
main objective of this paper. The tool supports different features such as model editing,
visualization with different views, extensibility, interoperability, and analysis. The tool
has been applied on a real system called Integrated Environment for Communication
on Ship (IECS); the case study comes from a project developed within Selex Commu-
nications, a company mainly operating in the naval communication domain.

� This work is partly supported by the Italian PRIN d-ASAP project.

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 527–531, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

528 D. Di Ruscio et al.

Metamodels
repository

Composition
mechanisms

Visualization
and editor
creators

Migrators

Semantic links
definition

…

ByADL

a)

b) c)

d)e)

Fig. 1. The high-level design of the BYADL framework

The paper is organized as follows: Section 2 presents the main aspects of the BYADL
framework, Section 3 presents the tool, and finally Section 4 concludes the paper.

2 The ByADL Framework

Figure 1 shows the high-level design of the BYADL framework. The main input of
BYADL is the metamodel of the ADL to be extended. For this reason BYADL contains
a repository of metamodels as shown in Figure 1.a. The metamodel is extended by
means of composition mechanisms (see Figure 1.b) that rely on specific composition
operators for metamodels.

It is important to note that, even though this could be technically possible, we do not
allow to compose two different ADLs since this could lead to the creation of a “chaotic”
and “vague” language. In such cases we believe that it is better to keep the two ADLs
separated, and to use interoperability techniques to translate from one ADL to a different
one [5]. The composition operators are: Match, Inherit, Reference, and Expand, whose
semantics is detailed in [4]. The composition engine performs also semantic checks to
avoid incidental errors. The Migrators (see Figure 1.c) component is used to automat-
ically generate model transformations able to reflect the architectural models defined
within the newly created ADL, back to the original tools. In the BYADL framework,
migrators are automatically generated by means of higher-order model transformations.
The ADL obtained at the end of the process is a modeling language consisting of (i) an
abstract syntax, i.e. the metamodel obtained by means of the composition mechanisms,
(ii) a set of concrete syntaxes, i.e., textual and graphical notations to visualize and edit
models conforming to the composed metamodel (see Figure 1.d), and (iii) semantics
describing the meaning of the language constructs [6] (see Figure 1.e). The semantics
of the extended language is given by means of semantic relationships between the lan-
guage’s elements and elements of a target semantic domain called A0 [5].

3 The ByADL Tool

The BYADL tool1 is implemented as a plugin of the Eclipse2 platform. More specifi-
cally, it extends the ATLAS Model Management Architecture (AMMA)3. Metamodel

1 BYADL Web site: http://byadl.di.univaq.it/
2 Eclipse Project Home Page: http://www.eclipse.org
3 AMMA: http://wiki.eclipse.org/AMMA

http://byadl.di.univaq.it/
http://www.eclipse.org
http://wiki.eclipse.org/AMMA

ByADL: An MDE Framework for Building Extensible ADLs 529

Fig. 2. Metamodels composition user interface

compositions are specified as weaving models defined by using the ATLAS Model
Weaver (AMW). All the involved model transformations are based on the ATLAS
Transformation Language (ATL), a hybrid model transformation language with declar-
ative and imperative constructs. Models and metamodels are managed by means of
EMF4, a modeling framework for Eclipse. In the following we present how the features
of the BYADL framework described in Section 2 are realized in its supporting tool.

Metamodels import. Importing a metamodel into the Metamodels repository is a three-
steps process:
1. Obtaining a metamodel. The BYADL tool works on EMF metamodels. If the meta-
model of an architectural notation is not available, many techniques exist to obtain such
a metamodel, like using TCS5 in case of textual notations, or using the DUALLY im-
porting engine in case of UML-based notations.
2. Tagging a metamodel. Tagging metamodels guides ADLs extensions and keeps the
involved metamodels organized. The tags available in BYADL reflect the different kinds
of metamodel involved in the composition scenarios, namely: ADL, Domain, Analysis,
Viewpoint, Process, Methodology, Customization. The importing wizard al-
lows the user to associate one or more tags to the metamodel being imported.
3. Providing semantics to a metamodel. As stated in Section 2, in BYADL a kind of
translational semantics is provided to a metamodel by linking it to the A0 semantic do-
main. We extended the AMW interface so that the semantic links to the A0 metamodel
guide the application of the composition operators. More precisely, once applying an
operator, the BYADL tool highlights as target the metaclasses that are semantically
compatible with the source metaclass.

Metamodels composition. Software engineers create a new ADL by composing two
metamodels already imported into the Metamodel Repository. Metamodels are com-
posed by specifying weaving models which represent the application of the composition
operators. Figure 2 shows the AMW graphical interface we extended for metamodel
composition. The woven metamodels are rendered into two lateral panels (points a and

4 Eclipse Modeling Framework (EMF) project Web site: http://www.eclipse.org/emf
5 TCS: http://wiki.eclipse.org/TCS

http://www.eclipse.org/emf
http://wiki.eclipse.org/TCS

530 D. Di Ruscio et al.

c in the figure) using the standard EMF tree-based interface. The central panel (point
b in the figure) represents the composition weaving model. Our extension consists of
a specific weaving metamodel defining the four kinds of composition operators and a
dedicated weaving toolbar (see Figure 2.d). The composed metamodel is generated by
clicking on a button of the BYADL weaving toolbar; the result is a metamodel which is
automatically loaded into the Metamodels repository and tagged as ADL.

Model migrators generation. A model migrator is a specific ATL transformation; its
inner logic is represented by the operators applied in the weaving model during the com-
position phase. The BYADL weaving toolbar contains functionalities (see Figure 2.d)
to automatically generate the migrators starting from the current composition weaving
model. Model migrators may be used also outside the BYADL tool.

Editors generation. In BYADL there are three possibilities to produce an editor for the
ADL being developed: tree-based, textual, and graphical. Each editor has different lev-
els of usability and requires different efforts for the customization (if needed). The tree-
based editor, with its collapsible and hierarchical structure, is automatically provided
by EMF. The textual editor is automatically generated and conforms to the Human-
Usable Textual Notation (HUTN) specification6. The produced textual editor supports
syntax highlighting and automatic conformance check with respect to the metamodel of
the new ADL. The graphical editor is based on the EuGENia7 tool: exploiting specific
annotations of the metamodels involved in the composition (included A0), a graphical
editor is automatically generated. Obviously the generation of the editor is limited to
elements for which EuGENia annotations are provided. Special policies regulate the
choice of the graphical element to be used when more than one metamodel provide
EuGENia annotations for a specific concept.

4 Conclusions

In this paper we presented the BYADL tool. Starting from an existing ADL, BYADL
allows software architects to incrementally extend and customize an ADL according to
stakeholder’s concerns. BYADL ensures the compatibility with existing tools by means
of automatically generated migrators. Our tool also supports the generation of textual
and graphical editors for the newly created ADL. The generation of graphical editors is
in its prototypal version, this aspect is one of the main future work directions.

References

1. ISO: Fourth working draft of Systems and Software Engineering – Architectural Descrip-
tion (ISO/IECWD4 42010). Working doc.: ISO/IEC JTC 1/SC 7 N 000. IEEE, Los Alamitos
(2009)

2. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural knowledge.
Quality of Software Architectures (2006)

6 HUTN specification: http://www.omg.org/spec/HUTN/
7 EuGENia: http://www.eclipse.org/gmt/epsilon/doc/eugenia/

http://www.omg.org/spec/HUTN/
http://www.eclipse.org/gmt/epsilon/doc/eugenia/

ByADL: An MDE Framework for Building Extensible ADLs 531

3. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory,
and Practice. John Wiley & Sons, Chichester (2009)

4. Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: Developing next
generation adls through mde techniques. In: ICSE 2010. IEEE Computer Society, Los Alami-
tos (2010)

5. Malavolta, I., Muccini, H., Pelliccione, P., Tamburri, D.: Providing architectural languages and
tools interoperability through model transformation technologies. IEEE TSE 36(1) (2010)

6. Cuadrado, J.S., Molina, J.G.: A model-based approach to families of embedded domain spe-
cific languages. IEEE TSE 99(RapidPosts), 825–840 (2009)

Author Index

Ahuja, Ankit 519

Alarcón, Pedro P. 102

Alti, Adel 441

America, Pierre 263

Andersen, Mads Schaarup 476

Araújo, Rodrigo 166

Arts, Thomas 368

Avgeriou, Paris 24, 401

Bahsoon, Rami 510

Balasubramaniam, Balasangar 38

Bashroush, Rabih 523

Batista, Thais 166

Bernini, Diego 352

Berrocal, Javier 384

Beugnard, Antoine 392

Blanc, Xavier 230

Bode, Stephan 182

Bosch, Jan 1

Boukerram, Abdellah 441

Brinkkemper, Sjaak 198

Brückmann, Tobias 53

Buchgeher, Georg 86

Buyens, Koen 150

Castor, Fernando 344

Chardigny, Sylvain 409

Christensen, Henrik Bærbak 118, 476

Ĉımpan, Sorana 376

Cleve, Anthony 230

Coelho, Roberta 166

Delicato, Flávia C. 166

Dı́az, Jessica 102

Di Marco, Antinisca 485

Di Ruscio, Davide 527

Dony, Christophe 505

Drira, Khalil 279

Ducasse, Stéphane 376

Duchien, Laurence 230

Egyed, Alexander 493

Eicker, Stefan 457

Eklund, Ulrik 368

Elankeswaran, Poopalasinkam 38

Eloranta, Veli-Pekka 319

Esfahani, Naeem 433

Fabresse, Luc 505

Fayn, Jocelyne 497

Feitosa, Daniel 360

Fiadeiro, José Luiz 70

Freitas, Tássia 166

Gallo, Francesco 485

Garbajosa, Juan 102

Garćıa-Alonso, José 384

Gilliot, Jean-Marie 392

Gopalasundaram, Umatharan 38

Gruhn, Volker 53

Hadj Kacem, Ahmed 279

Hadj Kacem, Najla 279

Haikala, Ilkka 214

Hansen, Klaus Marius 118

Hock-koon, Anthony 449, 464

Inverardi, Paola 335, 485

Ippoliti, Rodolfo 485

Ivanović, Ana 263

Jmaiel, Mohamed 489

John, Jose 311

Joosen, Wouter 150

Jørgensen, Bo Nørregaard 327

Joshi, Rushikesh K. 417, 515

Kaboré, Eveline 392

Kallel, Slim 489

Kamal, Ahmad Waqas 401

Kerdoudi, Mohamed Lamine 480

Kijas, Szymon 501

Kiwelekar, Arvind W. 417, 515

Könemann, Patrick 246

Koskimies, Kai 319

Koskinen, Johannes 214

Kruchten, Philippe 5

Krupaviciute, Asta 497

Kulesza, Uirá 166

Kuusela, Juha 425

534 Author Index

Lindstrøm, Bo 118

Liu, Yan 133

Lopes, Antónia 70

Lopez-Herrejon, Roberto E. 493

Loukil, Sihem 489

Lung, Chung-Horng 38

Malavolta, Ivano 527

Malek, Sam 433

Männistö, Tomi 425

Miranda, Sindolfo 166

Muccini, Henry 527

Murillo, Juan Manuel 384

Nakagawa, Elisa Yumi 360

Nedelec, Rémi 519

Nyyssönen, Aki 425

Oliveira, Lucas Bueno Ruas de 360

Oussalah, Mourad 449, 464

Pachidi, Stella 198

Pahl, Claus 311, 472

Parra, Carlos 230

Pelliccione, Patrizio 527

Pereira, Lucas 166

Pérez, Jennifer 102

Phoomvuthisarn, Suronapee 133

Phung-Khac, An 392

Pierantonio, Alfonso 527

Pires, Paulo F. 166

Razavizadeh, Azadeh 376

Reijonen, Ville 214

Riebisch, Matthias 182

Romero Felizardo, Katia 360

Roose, Philippe 441

Rytter, Martin 327

Sadou, Salah 505

Saraiva, Diego 166

Saraiva, Juliana 344

Savolainen, Juha 425

Scandariato, Riccardo 150

Schwittek, Widura 457

Segarra, Maria-Teresa 392

Selvarajah, Kamalachelva 38

Seriai, Abdelhak 409

Simonin, Jacques 519

Soares, Sérgio 344

Souto, Ana Liz 166

Spalazzese, Romina 335

Su, Guoxin 8

Tibermacine, Chouki 480, 505

Tisato, Francesco 352

Urtado, Christelle 295

van Heesch, Uwe 24

Vauttier, Sylvain 295

Verjus, Hervé 376

Wang, MingXue 311

Webber, Jim 7

Weinreich, Rainer 86

Ying, Mingsheng 8

Zalewski, Andrzej 501

Zalila, Bechir 489

Zhang, Chengqi 8

Zhang, Huaxi (Yulin) 295

Zhu, Liming 133

Zimmermann, Olaf 246

	Title Page
	Preface
	Organization
	Table of Contents
	Keynote Talks
	Architecture in the Age of Compositionality
	Setting the Context
	Role of Architecture and the Architect
	Research Challenges

	Where Did All This Good Architectural Knowledge Go?
	Beyond Mere Architecture Documentation…
	Tools and Processes for Architectural Reasoning
	References

	REST in Practice
	Introduction

	Full Research Papers
	An ADL-Approach to Specifying and Analyzing Centralized-Mode Architectural Connection
	Introduction
	Novelty
	Other Related Works

	Motivating Examples
	π-Calculus
	Specifying Architectural Connection
	Formal Semantics
	Analyzing Architectural Properties
	Compositional Analyses
	Type-Based Analyses
	Discussions

	Conclusions and Future Work
	References

	Naive Architecting - Understanding the Reasoning Process of Students A Descriptive Survey
	Motivation
	Related Work
	Design of the Study
	Goal
	Study Design and Execution

	Analysis
	RQ1 - Architectural Analysis
	RQ2 - Architectural Synthesis
	RQ3 - Architectural Evaluation
	Open Questions Concerning the Whole Architecting Process

	Interpretation
	Threats to Validity

	Conclusions and Future Work
	References

	Towards Architecture-Centric Software Generation
	Introduction
	Development of the Architecture-Centric Generative Framework
	Variability Management
	Construction of Reusable Components and the Framework

	Usage of the Framework
	Related Work
	Domain Engineering and Generative Programming
	Software Components, Architecture Prototyping and Evaluation

	Conclusion and Future Work
	References

	An Architectural Blueprint for Model Driven Development and Maintenance of Business Logic for Information Systems
	Introduction
	Related Work
	Architectural Blueprint of an Amabulo Infrastructure
	Example Model
	What Robustness Means
	Assurance of Local Conditions
	Assurance of Global Domain States
	Clear Separation of Concerns

	Architecture of Business Logic Layers of Generated J2EE-Applications
	Business Objects
	Processes
	System Functions
	User Functions

	Robustness at Code Level
	Conclusion
	References

	A Model for Dynamic Reconfiguration in Service-Oriented Architectures
	Introduction
	Motivation and Example
	Business-Reflective Configurations
	Service Binding as a Reconfiguration Action
	Related Work
	Concluding Remarks
	References

	Integrating Requirements and Design Decisions in Architecture Representation
	Introduction
	Previous Work
	Conceptual Overview
	Tool Support
	Capturing Architectural Issues
	Visualizing Architectural Issues
	Analyzing Architectural Issues

	Validation
	Related Work
	Conclusion
	References

	Flexible $Working Architectures$: Agile Architecting Using PPCs
	Introduction
	Background
	Agile Software Development
	An Overview of Plastic Partial Components (PPCs)

	Related Work
	Flexible Working Architectures
	Plastic Partial Components in Agile
	Agile Architecting
	Analysis of PPCs and Working Architectures from the Agile Perspective

	Applying PPC for the Agile Development of a Testing Framework for Biogas Plants
	A Test and Operation Framework for Biogas Plants
	Developing a Flexible Architecture for TOPEN Biogas

	Conclusions and Further Work
	References

	Lightweight and Continuous Architectural Software Quality Assurance Using the aSQA Technique
	Introduction
	The aSQA Technique
	The aSQA Steps
	Discussion

	Experience Outside Systematic
	Related Work
	Discussion
	Conclusions
	References

	An Architectural Approach to Composing Reputation-Based Distributed Services
	Introduction
	Background
	Trust Level Calculation
	The VicKrey Auction Mechanism (VAM)
	Motivating Example

	The Architecture
	Architecture Layers
	Key Components
	Auction-Based Trust Negotiation Protocol
	Discussion

	Case Studies and Evaluation
	Testbed Setup
	The Experimental Results

	Related Work
	Conclusion
	References

	Automated Detection of Least Privilege Violations in Software Architectures
	Introduction
	Preparation Phase
	Task Execution Model
	Security Policy

	Analysis Phase
	Single Principal
	Multiple Principals
	Heuristic-Based Techniques
	False Positives

	Validation
	Banking System: Architecture and Permissions
	Banking System: Analysis
	Discussion

	Related Work
	Conclusions and Future Work
	References

	Architecting a Model-Driven Aspect-Oriented Product Line for a Digital TV Middleware: A Refactoring Experience
	Introduction
	Ginga Common Core Architecture
	Refactoring the Ginga Architecture
	Feature Model
	Base Model
	Variability Model

	Automatic Variability Management
	Case Study: Ginga IPTV and Ginga Zapper Products
	Related Work
	Final Remarks and Lessons Learned
	References

	Impact Evaluation for Quality-Oriented Architectural Decisions regarding Evolvability
	Introduction
	Evolvability Subcharacteristics and Design Properties
	The Evolvability Model
	The Selection Procedure for Architectural Decisions

	Evaluation of Architectural Solution Elements
	Selection of Patterns
	Determination of the Impact on the Properties
	Calculation of the Impact on Evolvability Subcharacteristics
	Determining the Impact on Evolvability

	Discussion of the Results
	Related Work
	Conclusion and Further Work
	References

	Functional Architecture Modeling for the Software Product Industry
	Towards Functional Architecture Modeling Attuned to Software Products
	Functional Architecture Modeling: Design Principles and Structures
	Modeling the Functional Architecture of Software Products
	Functional Architecture Model
	Modular Decomposition

	An Approach for Designing Functional Architecture Diagrams
	Notation and Conventions for Functional Architecture Diagrams
	Creating a Functional Architecture Diagram

	Discussion and Conclusions
	References

	Experiences from Scenario-Based Architecture Evaluations with ATAM
	Introduction
	ATAM Steps Deciphered
	Phase 0: Preparation
	Efficient Two Day Schedule
	Phase 1: Evaluation
	Phase 2: Verification and Phase 3: Follow-Up
	Benefits of Evaluation
	Related Work
	Conclusions
	References

	Feature-Based Composition of Software Architectures
	Introduction
	Motivation and Challenges
	Motivating Scenario
	Challenges

	From Features to Aspect Composition
	Feature and Aspect Modeling
	Constraint Analysis
	Composition of Aspects

	Experimentation and Discussion
	Discussion

	Related Work
	Conclusion
	References

	Linking Design Decisions to Design Models in Model-Based Software Development
	Introduction
	Example
	Requirements
	Current Situation
	Goals

	Concepts: Binding Design Knowledge to Design Models
	Relevant Components
	Binding between Design Decisions and Design Models
	Consistency Check
	Reusing Design Decisions

	Realization
	Related Work
	Conclusion and Future Work
	References

	Customer Value in Architecture Decision Making
	Introduction
	Methodology
	Study 1: Customer Value-in-Use
	Step 1: Concept of Quantifying Customer Value-in-Use
	Step 2: Explorer Case2
	Step 3: Data Collection
	Step 4: Comparison
	Step 5: Evaluation

	Study 2: Customer Segments
	Step 1: Concept of Quantifying Customer Segments
	Step 2: Tricorder Case3
	Step 3: Data Collection
	Step 4: Comparison
	Evaluation

	Discussion and Conclusion
	References

	A Formal Approach to Enforcing Consistency in Self-adaptive Systems
	Introduction
	Motivating Example
	Fundamental Concepts
	Adaptation Processes
	Full-Blocking Process
	Passive Partial-Blocking Process
	Active Partial-Blocking Process
	Non-blocking Process

	Background on Coloured Petri Nets
	CPN Model Overview
	Modelling the Core Functionality Part
	Requestor Page
	Provider Page

	Modelling the Adaptor Part
	DecisionMaker Page
	Interceptor Page
	LifeCycleController Page

	Model Analysis
	Related Work
	Conclusion and Future Work
	References

	Architecture-Centric Component-Based Development Needs a Three-Level ADL
	Introduction
	Software Architectures in CBD
	A Development Process for Component Reuse
	Expressiveness of Existing ADLs
	Example of a Bicycle Rental System

	Component Descriptions in the Three Levels of Dedal
	Components in Abstract Architecture Specifications
	Components in Concrete Architecture Configurations
	Components in Instantiated Software Component Assemblies

	Three Levels of Architecture Description in Dedal
	Abstract Architecture Specifications
	Concrete Architecture Configurations
	Instantiated Software Component Assemblies

	Implementation of Dedal in the Arch3D Tool Suite
	Conclusion
	References

	Emerging Research Papers
	Dynamic Architectural Constraints Monitoring and Reconfiguration in Service Architectures
	Introduction
	Service-Oriented Architecture and Service Composition
	Fault Handling Architecture
	Service Quality Annotation Scheme
	Analysis and Selection Mechanism
	Architectural Constraint Monitoring and Handling
	Discussion
	Conclusions
	References

	Using Domain Knowledge to Boost Software Architecture Evaluation
	Introduction
	System Concept Model for Architecture Evaluation
	System Concept Model (SCM)
	Process of Scenario Elicitation Using SCM
	Annotating SCM with Solutions

	Applying the Approach
	Related Work
	Conclusions
	References

	Independently Extensibile Contexts
	Introduction
	State of the Art
	Independently Extensible Contexts
	Context
	Open Context
	Shared Context

	Conclusion
	References

	Mediating Connector Patterns for Components Interoperability
	Introduction
	A Pattern-Based Approach for Interoperability Mismatches
	Mediating Connector Architectural Pattern
	Basic Mediator Patterns
	Conclusion
	References

	Assessing the Impact of AOSD on Layered Software Architectures
	Introduction
	Setting of the Study
	Our Case Study
	Dependencies and Violations Counting
	Metrics Suite

	Study Results
	Vocabulary Size
	Coupling between Layers Result
	Violations Result

	Conclusion and Future Work
	References

	Explaining Architectural Choices to Non-architects
	Introduction
	Problem Architecture
	Logical Architectures
	Deployment
	Lessons Learned and Conclusions
	References

	Reference Models and Reference Architectures Based on Service-Oriented Architecture: A Systematic Review
	Introduction
	Systematic Review Application
	Phase 1: Planning
	Phase 2: Conduction
	Phase 3: Reporting

	Discussion
	Conclusion
	References

	A Classification of Value for Software Architecture Decisions
	Introduction
	The Case of Documenting Decisions
	Classes of Architectural Design Decisions
	Classification by Relations in the Decision Graph

	Value of Decisions
	Classifying Decisions over Time
	Conclusion
	References

	BeeEye: A Framework for Constructing Architectural Views
	Introduction
	BeeEye: Goal and Overall Approach
	Architectural Views
	Viewpoints
	View Construction
	Related Work
	Implementation
	Concluding Remarks
	References

	Facilitating the Selection of Architectural Patterns by Means of a Marked Requirements Model
	Introduction
	Background
	Marked Requirements Model
	The Process of Marking Requirements
	Using the Marked Requirements Model to Select and Apply Patterns

	Conclusions and Future Works
	References

	Modelling Changes and Data Transfers for Architecture-Based Runtime Evolution of Distributed Applications
	Introduction
	Adapt-Medium Approach Overview
	Example: A Publish/Subscribe Adapt-Medium
	High-Level Abstraction
	Refinement Process

	Facilitating Runtime Evolution
	Modularization
	Modelling Refinement Process
	Planning Evolution

	Related Work
	Conclusion
	References

	Mining Relationships between the Participants of Architectural Patterns
	Introduction
	Relationships among Architectural Patterns
	The Proposed Approach

	Mining Pattern-Participants Relationships for Modeling Patterns
	Example of a Pattern Participant Relationship: absorbparticipant
	More Pattern Participants Relationships

	Related Work
	Conclusion and Future Work
	References

	Software Architecture Recovery Process Based on Object-Oriented Source Code and Documentation
	Introduction
	Principles of ROMANTIC
	Place of Intentional Architecture in Existing Recovery Approaches
	Place of Intentional Architecture in the ROMANTIC Process
	Useful Information Sources for the Intentional Architecture Recovery
	ROMANTIC Intentional Architecture Recovery Process

	Conclusion
	References

	Ontological Analysis for Generating Baseline Architectural Descriptions
	Introduction
	BWW Reference Model
	The Process and Its Artifacts
	Interpreting Architectural Abstractions and Domain Elements through BWW Ontology
	Transformation Rules
	Conclusion
	References

	Experiences in Making Architectural Decisions during the Development of a New Base Station Platform
	Introduction
	Observations on Architectural Decisions during the Development of the Base Station Platform
	Architectural Decision Are Made in Form of the Structure
	Architectural Decisions Are Done in Form of Requirements to the Structure
	Architectural Decision as a Process Step

	Discussion and Conclusions
	References

	On the Role of Architectural Styles in Improving the Adaptation Support of Middleware Platforms
	Introduction
	Background and Related Work
	Challenges of Architecture-Based Adaptation
	Change Management Model

	Research Problem
	Approach
	Style-Driven Adaptation Patterns
	Style-Aware Adaptation
	Conclusion
	References

	Context-Aware Quality Model Driven Approach: A New Approach for Quality Control in Pervasive Computing Environments
	Introduction
	ContextualArchRQMM
	Context-Awareness MetaModel
	Resource-Awareness MetaModel
	Contextual Architectural Artifacts

	Context-Aware Quality Model Driven Architecture (CQ-MDA)
	Case Study: VideoConferencing System
	PIM Level
	CPIM Level

	Related Works
	Conclusion and Future Work
	References

	Many to Many Service Discovery: A First Approach
	Introduction
	Service Discovery Overview
	Related Works
	Towards M-N Matching

	Specifying the M-N Approach
	Family of Services
	Graph of Families
	Identifying Concrete Compositions
	Toward the Automated Definition of New Families

	Conclusion
	References

	Communicating Architectural Knowledge: Requirements for Software Architecture Knowledge Management Tools
	Introduction
	Computer-Mediated Knowledge Communication
	High-Level Requirements
	Avoid Loss of Inner Context
	Avoid Loss of Outer Context
	Support Asynchronous Communication
	The Dynamic Architecture Documentation

	Conclusions and Future Work
	References

	Specifying Loose Coupling from Existing Service Composition Approaches
	Introduction
	Related Work
	The Loose Coupling Notion
	Global Evaluation
	Conclusion
	References

	Research Challenges Papers
	Dynamic Adaptive Service Architecture – Towards Coordinated Service Composition
	Introduction
	A Changing Architectural Landscape – SOA Challenges
	Architecture Implications – Coordination
	A Challenges Framework and Architectural Solutions
	References

	Identity Management Mismatch Challenges in the Danish Municipality Administration System
	Motivation
	Research Challenge
	Research Method
	The Case
	Expected Outcome
	References

	From Web Components to Web Services: Opening Development for Third Parties
	Introduction: Context and Motivation
	Proposed Approach
	Related Work
	Conclusion: Contribution and Future Work
	References

	Learning from the Cell Life-Cycle: A Self-adaptive Paradigm
	Motivations and Background
	Bio-inspired Paradigm for Self-adaptive Systems
	References

	Toward an Aspect Oriented ADL for Embedded Systems
	Introduction
	The AO4AADL Language
	Pointcut Specification
	Advice Specification

	Related Work
	Conclusion and Future Work
	References

	On the Need of Safe Software Product Line Architectures
	Motivation
	The Road to Composition
	Principles of Safe Composition
	Open Challenges
	References

	Expert Activities Automation through Enhanced Business Services Orchestration
	Introduction
	Expert Activities Automation
	Dynamic Business Process
	Conclusion
	References

	Architecture Decision-Making in Support of Complexity Control
	Introduction
	Does AD Making Help to Control Software Complexity?
	Representation of Architectural Decisions
	Abstraction Level and Classifications of Architectural Decisions
	Relations between Architecture Decisions and the Architecture Decision-Making Process

	Challenges for Architecture Decision-Making
	References

	Software Architecture Constraints as Customizable, Reusable and Composable Entities
	Introduction: Context and Motivation
	Architecture Constraint-Components
	Constraint-Components vs. Business Components
	Constraint-Component Specification in CLACS
	Connecting Constraints to Architectures
	Constraint-Component Composition
	Constraint Checking

	Related Work
	Conclusion and Future Work
	References

	A Framework for Dynamic Self-optimization of Power and Dependability Requirements in Green Cloud Architectures
	Introduction
	Self-managed Green Cloud Architectures: Research Challenges and Work in Progress
	Linking Dependability Requirements to Power and New Meters for QoS per Cloud Power Value
	Economics-Inspired Approach for Self-optimizing the Cloud Architecture
	Implementation Framework Using Dynamic Data Driven Simulation Systems (DDDAS)

	Conclusions and Expected Impact
	References

	Identifying Architectural Connectors through Formal Concept Analysis of Communication Primitives
	Introduction
	Interaction Primitives and Properties
	Conceptualization of Connector Types
	OCL Descriptions
	Conclusion
	References

	Tool Demo Papers
	MDA Tool for Telecom Service Functional Design
	Introduction
	Tool Architecture
	Task Execution Using MDA Tool
	Conclusion
	References

	A NUI Based Multiple Perspective Variability Modeling CASE Tool
	Introduction
	Theoretical Background
	Technical Foundation
	Conclusion and Related Work
	References

	ByADL: An MDE Framework for Building Extensible Architecture Description Languages
	Introduction
	The ByADL Framework
	The ByADL Tool
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

