
The NOX Framework: Native Language Queries

for Business Intelligence Applications

Todd Eavis, Hiba Tabbara, and Ahmad Taleb

Concordia University, Montreal, Canada

Abstract. Over the past ten to fifteen years, Business Intelligence ap-
plications have become increasingly important and visible components
of enterprize computing environments. While relational database man-
agement systems often form the backbone of the BI software stack, the
unique modeling and processing requirements of BI applications often
make for a relatively awkward fit with RDBMS platforms in general,
and their SQL query interfaces in particular. In this paper, we present a
new framework for BI/OLAP applications that directly exploits a domain
specific conceptual data model. In turn, the new paradigm allows us to
support native, client-side OOP querying without the need to embed an
intermediate, non-OOP language such as SQL or MDX. A pre-processor
essentially translates standard OOP source code into a query grammar
developed specifically for BI analysis. The end result is a query facility
that is far more intuitive to use, as well as being more amenable to con-
temporary code development tools. We provide numerous examples to
illustrate the flexibility and convenience of the new framework.

1 Introduction

Over the past three decades, relational DBM systems have secured their place
as the cornerstone of contemporary data management environments. During
that time, logical data models and query languages have matured to the point
whereby database practitioners can almost unequivocally identify common stan-
dards and best practices. With respect to operational databases, the ubiquitous
relational data model and the Structured Query Language (SQL) have become
synonymous with the notion of efficient storage and access of transactional data.

That being said, a number of new and important domain-specific data man-
agement applications have emerged in the past decade. At the same time, gen-
eral programming languages have evolved, driven by a desire for both greater
simplicity, modeling accuracy, reliability, and development efficiency. As such,
opportunities to explore new data models, as well as the languages that might
exploit them, have emerged.

One particular area of interest is the Business Intelligence/Online Analytical
Processing (OLAP) context. Typically, such systems work in conjunction with an
underlying relational data warehouse that houses an integrated, time sensitive,
repository of one or more organizational data stores. At its heart, BI attempts
to abstract away some of the often gory details of the large warehouses so as

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 172–189, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The NOX Framework 173

to provide users with a cleaner, more intuitive view of enterprize data. Beyond
trivial exploitation of BI GUI facilities, however, meaningful analysis can become
quite complex and can necessitate a considerable investment of the developer’s
time and energy.

Of particular significance in this regard is the awkward relationship between
the development language and the data itself. Given the relational model of
the underlying DBMS, BI querying typically relies upon non-procedural SQL
or one of its proprietary derivatives. Unlike transactional databases, however,
which are often cleanly modeled by a set-based representation, the nature of
BI/OLAP environments argues against the use of such languages. In particular,
concepts such as cubes, dimensions, aggregation hierarchies, granularity levels,
and drill down relationships map poorly at best to the standard logical model
of relational systems.

A second related concern is the relative difficulty of integrating non-procedural
query languages into application level source code. Larger development projects
typically encounter one or more of the following limitations:

– Comprehensive compile-time type checking is often impossible. All parsing
is performed at run-time by a possibly remote, often overloaded server.

– Developers must merge two fundamentally incompatible programming mod-
els (i.e., procedural OOP versus a non-procedural DBMS query language).

– There are few possibilities for the kind of code re-use afforded by OOP
concepts (e.g., inheritance and polymorphism).

– The use of embedded query strings (i.e., JDBC/SQL) severely limits the
developer’s ability to efficiently refactor source code in response to changes
in schema design.

In this paper, we present a comprehensive new data access framework called
NOX (Native language OLAP query eXecution) that is specifically tailored to
the BI/OLAP domain. Beginning with the specification of an OLAP algebra, we
develop a robust query grammar that presents the developer with an Object Ori-
ented representation of the primary OLAP structural elements. The grammar,
in turn, is the foundation of a native language query interface that eliminates the
reliance on an intermediate, string based embedded language. We illustrate the
new design via the Java programming language, and demonstrate how develop-
ers can transparently interact with massive, remote data cubes using standard
OOP principles and practices. While the underlying compilation and translation
mechanism is somewhat complex, virtually all of the framework’s sophistication
is hidden from the developer. In short, NOX represents a significant step towards
“making the OLAP DBMS disappear”.

The paper is organized as follows. In Section 2, we present an overview of re-
lated work. Section 3 introduces the primary NOX components, while Section 4
discusses the underlying conceptual model. The full details of the client archi-
tecture are then presented in Section 5. Future work and final conclusions are
provided in Sections 6 and 7 respectively.

174 T. Eavis, H. Tabbara, and A. Taleb

2 Related Work

For more than 30 years, Structured Query Language (SQL) has been the defacto
standard for data access within the relational DBMS world. Because of its relative
age, however, numerous attempts have been made to modernize database access
mechanisms. Two themes in particular are noteworthy in the current context. In
the first case, Object Relational Mapping (ORM) frameworks have been used to
define type-safe mappings between the DBMS and the native objects of the client
applications. With respect to the Java language, industry standards such as JDO
(Java Data Objects) [4], as well as the open source Hibernate framework [10]
have emerged. In all cases, however, it is important to note that while the ORM
frameworks do provide transparent persistence for individual objects, additional
string-based query languages such as JDOQL (JDO), or HQL (Hibernate) are
required in order to execute joins, complex selections, subqueries, etc. The result
is a development environment that often seems as complex as the model it was
meant to replace.

More recently, Safe Query Objects (SQO) [12] have been introduced. Rather
than explicit mappings, safe queries are defined by a class containing, in its sim-
plest form, a filter and execute method. Within the filter method, the developer
encodes query logic (e.g., selection criteria) using the syntax of the native lan-
guage. The compiler checks the validity of query types, relative to the objects
defined in the filter. The execute method is then rewritten as a JDO call to the
remote database. The approach is quite elegant, though it can be difficult to
accurately model completely arbitrary SQL statements.

In contrast to the ORM models, a second approach extends the development
languages themselves. The Ruby language [7], for example, employs ActiveRe-
cords to dynamically examine method invocations against the database schema.
HaskellDB [5], on the other hand, “decomposes” queries into a series of distinct
algebraic operations (e.g., restrict, project) . Microsoft’s LINQ extensions (C#
and VisualBasic) [11] are also quite interesting in that they essentially integrate
the mapping facilities of the ORM frameworks into the language itself (via the
ubiquitous SELECT-FROM-WHERE format). It should be noted, however, that
none of these language extensions are in any way OLAP-aware.

In terms of OLAP and BI specific design themes, most contemporary research
builds in some way upon the OLAP data cube operator [15]. In addition to
various algorithms for cube construction, including those with direct support for
dimension hierarchies [21,19], researchers have identified a number of new OLAP
operators [9,13], each designed to minimize in some way the relative difficulty of
implementing core operations in “raw SQL”. There has also been considerable
interest in the design of supporting algebras [8,16,20]. The primary focus of
this work has been to define an API that would ultimately lead to transparent,
intuitive support for the underlying data cube. In a more general sense, these
algebras have identified the core elements of the OLAP conceptual data model.

A somewhat orthogonal pursuit in the OLAP context has been the design
of domain-specific query languages and/or extensions. SQL, for example, has
been updated to include the CUBE, ROLLUP, and WINDOW clauses [18],

The NOX Framework 175

though vendor support for these operations in DBMS platforms is inconsistent at
best [14]. In addition to SQL, many commercial applications support Microsoft’s
MDX query language [23]. While syntactically reminiscent of SQL, MDX pro-
vides direct support for both multi-level dimension hierarchies and a crosstab
data model. Still, MDX remains an embedded string based language with an
irregular structure and is plagued by the same limitations as those discussed in
Section 1.

Finally, we note that query languages such as SQL and MDX are typically
encapsulated within a programmatic API that exposes methods for connection
configuration, query transfer, and result handling. While relational systems uti-
lize mature standards (e.g., JDBC, ODBC), no definitive API has emerged for
OLAP. A recent attempt to do so was the ill-fated JOLAP specification, JSR-
69 [3], an industry-backed initiative to define an enterprize-ready, Java-oriented
meta data and query framework based upon the Common Warehouse Meta-
model [2]. JOLAP proved to be exceedingly complex and, consequently, no vi-
able JOLAP-aware applications were ever developed. At present, the most widely
supported API is arguably XML for Analysis (XMLA) [1], a low-level XML/-
SOAP mechanism running across HTTP. In practice, XMLA is effectively just a
wrapper for MDX, though XMLA result sets are structured in an OLAP-aware
format.

3 NOX: Native Language OLAP Query eXecution

To begin, we note that a fundamental design objective for any new query frame-
work or API must be the minimization of the complexity associated with trans-
parent persistence, as the introduction of obscure and non-intuitive design and
programming patterns severely limits the likelihood of adoption. We therefore
state at the outset that the NOX focus is explicitly on the OLAP/BI domain. In
fact, NOX is intended to specifically support higher level analytics servers and
is not expected to resolve every ”ad hoc” query that might be executed against
an underlying relational data warehouse. The primary motivation for this ap-
proach is the rejection of the “be all things to all people” mantra that tends
to plague systems that must maintain a fully generic, lowest common denomi-
nator profile [22]. Conventional RDMSs, conceptual mapping frameworks, and
even JOLAP suffer from this same “curse of generality”. In the current context,
the targeting of a specific application domain ultimately relieves the designer
from having to manually construct a comprehensive data model, along with its
constituent processing constructs.

3.1 The NOX Components

Given the preceding objective, NOX has been constructed from the ground up so
as to emphasize the transparency in the term “transparent persistence”. Doing
so, of course, requires considerable infrastructure. In the remainder of the paper,
we discuss the design, implementation, and use of the NOX framework, using a

176 T. Eavis, H. Tabbara, and A. Taleb

number of programming examples to illustrate its practical value. Before digging
in to the details, however, it is useful to first provide a brief overview of the
primary physical and logical elements of the framework. Keep in the mind that
the following list includes elements that are both visible and invisible to the
developer.

– OLAP conceptual model. NOX allows developers to write code directly
at the conceptual level; no knowledge of the physical or even logical schema
is required.

– OLAP algebra. Given the complexity of directly utilizing the relational
algebra in the OLAP context (via SQL or MDX), we define fundamental
query operations against a cube-specific OLAP algebra.

– OLAP grammar. Closely associated with the algebra is a DTD-encoded
OLAP grammar that provides a concrete foundation for client language
queries.

– Client side libraries. NOX provides a small suite of OOP classes corre-
sponding to the objects of the conceptual model. Collectively, the exposed
methods of the libraries form a clean programming API that can be used to
instantiate OLAP queries.

– Augmented compiler. At its heart, NOX is a query re-writer. During
a pre-processing phase, the framework’s compilation tools (JavaCC/JJTree)
effectively re-write source code to provide transparent model-to-DBMS query
translation.

– Cube result set. OLAP queries essentially extract a subcube from the
original space. The NOX framework exposes the result in a logical, read-
only multi-dimensional array.

In short, the developer’s view of the OLAP environment consists solely of the
API and the Result Set. More to the point, from the developer’s perspective, all
OLAP data is housed in a series of cube objects housed in local memory. The
fact that these repositories are not only remote, but possibly Gigabytes or even
Terabytes in size, is largely irrelevant.

4 Conceptual Model

One of the great burdens associated with enterprize ORM projects is the design
of accurate data models. Even when a model can be formally identified, it is
often the case that the conceptual view of the data differs widely even between
departments of the same organization. In the OLAP context, however, the con-
ceptual view of the data has reached a level of maturity whereby virtually all
analytical applications essentially support the same high level view of the data.

Briefly, we consider analytical environments to consist of one or more data
cubes. Each cube is composed of a series of d dimensions (sometimes called fea-
ture attributes) and one or more measures. The dimensions can be visualized as
delimiting a d -dimensional hyper-cube, with each axis identifying the members

The NOX Framework 177

Time
(month)

Location
(city)

Product (number)

San Jose

Los Angeles

Berkeley

Dec

Jan

Feb

Sk11 FH12 AM54

Measure
Value

20 35 31

14 20 12

21 40 24

(a)

USA

Los
Angeles

New YorkCalifornia

AlbanySan Jose New
York

Store 1 Store 2 Store 3 Store 4 Store 5 Store 6

Country

State

City

Store

(b)

Fig. 1. (a) NOX conceptual query model (b) A simple symmetric hierarchy

of the parent dimension (e.g., the days of the year). Cell values, in turn, repre-
sent the aggregated measure (e.g., sum) of the associated members. Figure 1(a)
provides an illustration of a very simple three dimensional cube. We can see,
for example, that 12 units of Product AM54 were sold in the Berkeley location
during the month of January (assuming a Count measure).

Beyond the basic cube, however, the conceptual OLAP model relies exten-
sively on aggregation hierarchies provided by the dimensions themselves. In fact,
hierarchy traversal is one of the more common and important elements of an-
alytical queries. In practice, there are many variations on the form of OLAP
hierarchies [17] (e.g., symmetric, ragged, non-strict). NOX supports virtually all
of these, and does so by augmenting the conceptual model with the notion of
an arbitrary graph-based hierarchy that may be used to decorate one or more
cube dimensions. Figure 1(b) illustrates a simple geographic hierarchy that an
organization might use to identify intuitive customer groupings.

4.1 OLAP Algebra

Given the clean, conceptual model described above, it is possible to consider the
application of an OLAP algebra that directly exploits the model’s structure. As
noted in Section 2, a number of researchers have identified the core operations
of such an algebra. We will shortly see how the exploitation of a formal algebra
ultimately allows developers to program directly against the conceptual model,
rather than to a far more complex physical or even logical model.

As indicated, a core set of operations common to virtually all proposed OLAP
algebras has been identified. Below, we list and briefly describe these operations.
Note that we do not provide a formal analysis of the semantics of the algebraic
operations, nor their equivalence to the components of the relational algebra, as
these issues have been extensively discussed in the original publications.

– selection: the identification of one or more cells from within the full d -
dimensional search space.

– projection: the identification of presentation attributes, including both the
measure attribute(s) and dimension members.

178 T. Eavis, H. Tabbara, and A. Taleb

< !−− Data que r i e s−−>

< !ELEMENT DATA QUERY (CUBE NAME, OPERATION LIST, FUNCTION LIST?)>

< !ELEMENT CUBENAME (#PCDATA)>

< !ELEMENT OPERATION LIST (

SELECTION? , PROJECTION? , CHANGE LEVEL? , CHANGE BASE? ,

PIVOT? , DRILL ACROSS? , UNION? , INTERSECTION? , DIFFERENCE?)>

Listing 1.1. Core operations of the NOX algebra

– drill across: the integration of two independent cubes, each possessing com-
mon dimensional axes. In effect, this is a cube “join”.

– union/intersection/difference: basic set operations performed on two
cubes sharing common dimensional axes.

– change level: modification of the granularity of aggregation, typically re-
ferred to as “drill down” and “roll up”.

– change base: the addition or deletion of one or more dimensions from the
current result.

– pivot: rotation of the cube axes to provide an alternate perspective.

Several explanatory notes are in order at this stage. First, the selection is the
driving operation behind most analytical queries. In fact, if suitable defaults are
available for the projection, many queries can be expressed with nothing more
than a selection. Second, the final three operations — change level, change
base, and pivot — are distinct from the first six in that each is only relevant
as a query against an existing result set. Third, it is important to recognize that
while logical data warehouse models typically require explicit joins between fact
(measure) and dimension tables, there is no such requirement at the conceptual
level. The result is a dramatic reduction in complexity for the developer. (De-
pending upon the architecture of the supporting analytics server, of course, join
operations may still be performed at some point.). Finally, and perhaps most
importantly, the OLAP algebra is implicitly read only, in that database updates
are performed via distinct ETL processes.

4.2 The NOX Grammar

NOX encapsulates the algebra in a formal schema encoded by a Document Type
Definition (DTD). The DTD is relatively complex as it effectively represents
the foundation for an expressive, XML-based analytics language. Due to space
limitations, we do not present the full schema specification here. However, key
elements are presented below.

Listing 1.1 defines the core structure of a NOX query. Each query is associated
with a single cube (though references to other cubes are possible), as well as a
Function List and an Operations List. We do not discuss cube functions exten-
sively in this paper but, for the sake of completeness, we can informally define
a cube function as one that is logically associated with a result set, rather than
a specific cell or dimension member. The common top10 function is a simple
example.

The NOX Framework 179

< !−− Se l e c t i on −−>

< !ELEMENT SELECTION (DIMENSION LIST)>

< !ELEMENT DIMENSION LIST (DIMENSION+)>

< !ELEMENT DIMENSION (DIMENSION NAME, EXPRESSION)>

< !ELEMENT DIMENSION NAME (#PCDATA)>

< !−− Dimension Express ions −−>

< !ELEMENT EXPRESSION (RELATIONAL EXP | COMPOUNDEXP)>

< !ELEMENT RELATIONAL EXP (SIMPLE EXP, COND OP, SIMPLE EXP)>

< !ELEMENT COMPOUNDEXP (EXPRESSION, LOGICAL OP, EXPRESSION)>

< !ELEMENT SIMPLE EXP (EXP VALUE | ARITHMETIC EXP)>

< !ELEMENT ARITHMETIC EXP (SIMPLE EXP, ARITHMETIC OP, SIMPLE EXP)>

Listing 1.2. Selection elements

< !ELEMENT UNION (DATA QUERY)>

< !ELEMENT INTERSECTION (DATA QUERY)>

< !ELEMENT DIFFERENCE (DATA QUERY)>

Listing 1.3. Set Operations

The Operations List contains the algebraic elements of the query, and each
may occur exactly zero or one time in a single query. Given the significance of
the selection operation, we will look at it in greater detail. Listing 1.2 demon-
strates that a selection is defined as a listing of one or more dimensions, each
associated with an expression. In effect, the expression represents a query re-
striction on the associated dimension (this will become more clear in Section 5).
Simple expressions may be combined to form compound expressions (via logical
AND and OR) and can be recursively defined. In other words, as with any mean-
ingful programming language, conditional restrictions can be almost arbitrarily
complex.

Finally, in Listing 1.3, we illustrate the remarkable simplicity of the set opera-
tion specifications. In effect, set operations are syntactically modeled on an OOP
paradigm. Consider, for example, a String equality check in a language such as
Java, where we would write myString.equals("Joe"), rather than something
like myString == "joe". This same approach allows us to represent set operations
simply as a nested data query, defined relative to the current query.

5 Client Side API

Within the NOX framework, the conceptual model and its associated grammar
are intended to provide an abstract development environment for expressive an-
alytical programming. In order to provide such an interface, however, supporting
client side functionality is required. In a nutshell, NOX provides persistent trans-
parency via a source code re-writing mechanism that interprets the developer’s
OOP query specification and decomposes it into the core operations of the OLAP
algebra. These operations are given concrete form within the NOX grammar and

180 T. Eavis, H. Tabbara, and A. Taleb

then transparently delivered (via standard socket calls) at run-time to the back-
end analytics server for processing. Results are again transparently injected back
into the running application and made available through a standard OOP API.

We note at this point that we have chosen to implement the API functionality
using external libraries rather than direct language modification. This is partly
to encourage portability between languages, as we consider the NOX model to
be broadly applicable to any modern OOP language. However, it is also due
to the fact that while OLAP/BI is an immensely important commercial do-
main (thereby justifying this work in the first place), OLAP-specific language
extensions would have virtually no relevance to the vast majority of developers
working in arbitrary domains.

5.1 The NOX Preprocessor

As should be obvious, source code augmentation of this form is non-trivial.
In short, NOX must identify query-specific elements of the source code and
transform them as required before passing the output to the standard Java
compiler. The pre-preprocessor is produced with the JavaCC parser generator
and its JJTree Tree builder plug-in [6]. Briefly, JJTree is used to define parse
tree building actions that are executed during the later parse process. In the
NOX case, JJTree identifies query-specific code constructs (e.g., class definitions)
that should be re-written. The output of JJTree is then used by JavaCC to
construct a Java parser that actually “walks the parse tree” in order to locate and
transform these constructs. We note that although NOX utilizes a complete Java
1.5 grammar for its parser, the pre-processor only examines and/or processes
parse tree nodes defined by JJTree. In practice, this makes the pre-processing
step extremely fast.

So what is the pre-processor looking for? NOX is supported by client libraries
that define the relevant query components. The fundamental structure is the
OlapQuery class. Listing 1.4 provides a partial listing of its contents. We make
note of the following points. First, method names correspond directly to the op-
erations of the algebra/grammar (Note: We currently do not include the change
base, change level, and pivot methods in the OlapQuery class as we consider
these operations to be manipulations of the Result Set. Their exact implementa-
tion is the subject of ongoing research). Second, method bodies have no meaning-
ful implementation, other than a nominal return value (required for successful
compilation). In fact, this is true of most client library methods, a fact that
makes sense when one realizes that the only code that will actually be executed
is the code eventually inserted by the pre-processor. Third, each query method
has a return type unique to its own semantic abstraction (the upcoming exam-
ples will make this more clear). Fourth, the execute method serves as the link
between the programmer’s conceptual view and NOX’s algebraic view. More to
the point, it is the execute method that will be re-written to include an XML
statement corresponding to the specifications of the other methods. The XML
string is then “wrapped” in a message that is sent to the server when execute()
is invoked in the application. Finally, the OlapQuery is declared abstract, though

The NOX Framework 181

public abstract class OlapQuery {
public boolean s e l e c t () {return fa l se ;}
public Object [] p r o j e c t () {return null ;}
public OlapQuery d r i l l A c r o s s () {return null ;}
public OlapQuery union () {return null ;}
public OlapQuery i n t e r s e c t i o n () {return null ;}
public OlapQuery d i f f e r e n c e () {return null ;}

public Resu l tSet execute () { return new Resu l tSet () ; }
}

Listing 1.4. The OLAP Query class

none of its methods are abstract, a model reminiscent of Java’s Adapter classes.
Use of this structure allows programmers to over-ride the OlapQuery and pro-
vide only the operations necessary for the query at hand (often just selection).
The remaining methods are effectively no-ops.

Figure 2 graphically illustrates the process described thus far. In the box at the
left, we see the parser generation tools that produce the translating pre-processor.
The dashed line to the pre-processor itself indicates that this association is static,
and the parser building tools are not invoked directly at either compile time or
run-time. In terms of the compilation process, the pre-processor take as input
the original source file and then, using the parse tree constructed from this
source, converts the relevant source elements into an XML decomposition of
the OlapQuery. Throughout this process, various DOM utilities and services are
exploited in order to generate and verify the XML. Finally, once the source has
been transformed, it is run through a standard Java compiler and converted
into an executable class file. We note that, in practice, the NOX translation
step would be integrated into a build task (ANT, makefile, IDE script, etc.) and
would be completely transparent to the programmer.

NOX Pre-
processor

text

DOM
Query

Generator

Query
DTD

Final
executable
application

DOM TreeDOM Utilities

JJTree Parse
Tree actions

JJTree
(Java1.5.jjt)

JavaCC
(java1.5.jj)

Java
source file

XML query
string

Modified
Java
Source

DOM ModuleParser generation
module

Standard
Java

Compiler

Fig. 2. The client compilation model

182 T. Eavis, H. Tabbara, and A. Taleb

class SimpleQuery extends OlapQuery {
public boolean s e l e c t () {
DateDimension date = new DateDimension () ;

return date . getYear () == 2001;

}
// . . . p ro j e c t i on exc luded

}

public class Demo1 {
public stat ic void main (Str ing [] a rgs) {
// . . .DBMS b o i l e r p l a t e connect ion

SimpleQuery myQuery = new SimpleQuery (‘ ‘ SalesByDate ’ ’) ;

Resu l tSet r e s u l t = myQuery . execute () ;

// . . . manipulate r e s u l t s e t

}}

Listing 1.5. Simple OLAP Query

5.2 Application Programming

While novel algebras, grammars, and parsing methods are interesting for their
own sake, they provide little benefit unless they ultimately lead to a clean,
intuitive programming experience for the developer. In this section, we provide
a number of examples that demonstrate the practical use of the NOX model.

A Simple Selection. We begin with a query that specifies a simple selection
criteria, namely that we would like to list total sales for 2001. Listing 1.5 pro-
vides the corresponding OlapQuery definition, along with a small main method
that demonstrates how the query’s execute method would be invoked. (For sim-
plicity, we will ignore the projection method that would specify the measure and
display attributes, as well as the “boilerplate” connection and authentication
methods.) We can see that the select method instantiates a DateDimension
and invokes its getYear() method. Because Dates are virtually universal in ana-
lytical processing, NOX provides a fully functional Date class “out of the box”
(with the standard empty method bodies). In terms of the selection criterion,
note how it is specified simply via a boolean-generating return statement.

It is crucial that we understand why such an approach is used. From the
programmer’s perspective, the query is executed against the physical data cube
such that the selection criteria will be iteratively evaluated against each and
every cell. If the selection test evaluates to true, the cell’s content is included
in the result; if not, it is ignored. In actual fact, of course, the server would
almost certainly not resolve a query in this manner. However, that is irrelevant
here as our goal is simply to allow the developer to program against an intuitive
conceptual model. Once the query is decomposed and sent to the server, the
backend DBMS is free to do what it likes.

The NOX Framework 183

public class CustomerDimension extends OlapDimension {
private Str ing name ;

private int age ;

CustHierarchy geograph i cHi erar chy ;

public Str ing getName () { return name ; }
public int getAge () { return age ; }
public CustHierarchy getGeographicHierarchy () {
return geograph i cHi erar chy ;

}}

Listing 1.6. Simple OLAP dimension

In terms of the decomposition itself, it is of course represented in an XML
string generated by the pre-processor (Due to space limitations, we do not repro-
duce the associated XML here; we simply note that it corresponds directly to the
DTD depicted in Listing 1.2). This string is inserted — by the pre-processor —
into the query’s execute method and subsequently invoked in the main method.
At run-time, this invocation produces a network call to the DBMS to send and
receive the query and its results. Again, we stress that all of this processing is
entirely invisible to the end user.

Manipulating Hierarchies. As previously noted, hierarchical queries are ex-
tremely common in OLAP environments. For this reason, much of the current
NOX research focuses on extending the expressive capabilities of the framework
in this context. With the example below, we give the reader a sense of the NOX
philosophy with respect to hierarchical navigation.

Let us assume that we would like to find sales data for older customers from
California cities who purchased products in the first half of 2007. Because we now
have an arbitrarily defined dimension to restrict (as opposed to the built-in Date
dimension), we need a mechanism to statically type-check the relevant dimension
attributes so that we can ensure at compile time that all query element are being
used appropriately (e.g, integers compared with integers). (Again, we do NOT
want to rely on embedded strings like SQL/MDX since type validity could then
only be assessed at run-time.) To do this, the programmer simply sub-classes
the library-provided OlapDimension class and adds the relevant attributes/types
and getter methods (NOX can strip the “get” from the getters to obtain case
insensitive attribute names). Both dimension attributes and hierarchies can be
specified in this manner. Listing 1.6 illustrates this simple approach. Note that
CustHierarchy is a simple extension of the NOX OlapHierarchy class.

Now, given this simple Customer class, and a geographic hierarchy corre-
sponding to that of Figure 1(b), we can now discuss the hierarchical query
of Listing 1.7. Here, conditions are expressed on both Date and Customer.
We can see how the NOX Path object is used to identify the elements of a
partial hierarchy path. (Note that the path strings refer to raw cube data,
NOT typed-checked meta data). Furthermore, we see the use of the built-in
includes method to constrain the hierarchy condition. How does one interpret

184 T. Eavis, H. Tabbara, and A. Taleb

public boolean s e l e c t () {
DateDimension date = new DateDimension () ;

CustomerDimension customer = new CustomerDimension () ;

CustHierarchy h i e rar chy = customer . getGeographicHierarchy () ;

OlapPath path= new OlapPath (‘ ‘USA ’ ’ , ‘ ‘ C a l i f o r n i a ’ ’) ;

return (customer . getAge () > 65 && hierar chy . i n c l ude s (path))

&&

(date . getYear () == 2007 && date . getMonth () <= 6) ;

}

Listing 1.7. Manipulating hierarchies

class OuterQuery extends OlapQuery{
public boolean s e l e c t () {
CustomerDimension customer = new CustomerDimension () ;

ProductDimension product = new ProductDimension () ;

return ((customer . getAge () < 30) && (product . getWeight () >

10 . 0)) ;

}

public OlapQuery i n t e r s e c t i o n () { return new InnerQuery () ;}
}

Listing 1.8. Set operations

the expression hierarchy.includes(path)? Again, all selection criterion are
defined relative to the current cube cell. Logically, this condition simply asks “Is
this partial path consistent with the hierarchy members of this cell?” We note
that while there are many variations on hierarchy traversal, NOX always uses
this same simple approach.

Several additional points are worth noting. First, our NOX objects are fully
amenable to standard IDE refactoring methods. For example, should the DB
administrator modify the customer name field to cname, we can directly refactor
the attribute name/schema without relying on a tedious and error-prone “find
and replace”. Second, pre-computation of the query verifies its sematic valid-
ity. In other words, while we cannot guarantee that the user’s specific selection
criteria will actually match any cells in the remote database, we can guaran-
tee at compile-time that the query is structurally sound in terms of its use of
dimensions, hierarchies, members, etc. Finally, by decomposing the query into
its constituent algebraic elements at compile time, we relieve the server of the
computational overhead that would normally be done at run-time. Embedded
query string APIs — while superficially appealing for trivial queries — simply
cannot provide this functionality.

Set Operations. Previously, we showed that set operations are defined quite
simply in the NOX grammar. As it turns out, their specification in the native
language is just as straightforward. Listing 1.8 provides a simple illustration.

The NOX Framework 185

class OldQuery extends OlapQuery{
// . . . s e l e c t method d e f i n i t i o n

// . . . p ro j e c t method d e f i n i t i o n

}

class NewQuery extends OldQuery {
public Object [] p r o j e c t () {
CustomerDimension customer = new CustomerDimension () ;

ProductDimension product = new ProductDimension () ;

SalesMeasure measure = new SalesMeasure () ;

Object [] p r o j e c t i o n s = {measure . getCount () , customer . getName () ,

product . getLabel () } ;

return p r o j e c t i o n s ;

}}

Listing 1.9. Over-riding query classes

Here, the programmer defines the “outer” query using the standard selection
method (and possibly others). In the intersection method, the “inner” query
(previously defined) is specified merely by returning a reference to the relevant
query object. Using this info, the NOX pre-parser can combine both queries into
a single XML string corresponding to the nested style of the grammar.

Query Inheritance. One of the reasons that we represent algebraic operations
in separate methods is simply because most operations are semantically unique,
making it very difficult to combine them into a single native language method
(with a single return type). However, a second rationale is just as important.
Namely, we feel that it is extremely valuable to allow for the re-use of previous,
often very complex, queries. We saw a simple example of this with the “inner”
query above. A more powerful opportunity would be to allow programmers to re-
use portions of already defined queries. Perhaps the most obvious example would
be to re-define the projection method to simply identify a different measure
or display attribute. With virtually all current approaches, this would involve
cutting and pasting previous chunks of source code, each of which would have
to be independently located and updated in the future.

With NOX’s distinct query methods, we now have a great deal more latitude
in this regard. Listing 1.9 demonstrates how a “new” query extends an “old”
one by providing a new projection method. Because NOX obeys inheritance
chaining, it sees that a new projection has been specified, and creates a new query
that consists of the selection method of the “old” query and the projection
method of the “new” query. Any subsequent changes to the source of OldQuery
will be automatically integrated into the NewQuery upon re-compilation.

As a final point, this listing also demonstrates the use of the projection
method itself. Note that its return argument is an array of Objects, indicative of

186 T. Eavis, H. Tabbara, and A. Taleb

its purpose to identify measure and display attributes (strings, ints, floats, etc).
Measures extend the OlapMeasure class and are defined in a manner similar to
dimension classes; that is, a list of measures and their associated getters.

5.3 Result Sets

One of the great advantages of ORM systems is that they allow data to be more
or less transparently mapped back into client applications. NOX offers the same
functionality in the context of multi-dimensional cube results. Specifically, the
framework retrieves results from the server and transforms them into a multi-
dimensional array object that can be directly accessed via the OlapResultSet
reference. The format of the result is again defined by a DTD and is essentially
structured as a combination of meta data and cell data. The meta data con-
sists of the relevant dimensions, along with those dimension members actually
included in the query result. The cell data, on the other hand, is listed in a row
format that maps cell values to the corresponding axis coordinates. For example,
a meta data element defined in the DTD as (MEMBER NAME, MEMBER ID) would
associate a member — say the customer John Smith — with an integer repre-
senting the axis offset – say 4. In the cell data section of the XML document,
this ID would then be embedded within a record of the form <4,1,2,345.24>.
Assuming a Sales measure and a Customer–Product–Location cube, the row
<4,1,2,345.24>would indicate that John Smith has purchased $345.24 of Prod-
uct 1 at Location 2.

Once the XML result is received at the client, it is immediately transformed
into a multi-dimensional object. The XML is parsed using the same DOM fa-
cilities used to create the original query (albeit with a different DTD). The
aforementioned MEMBER ID values are directly utilized as cube axes coordi-
nates, thereby allowing a linear time population of the Result Set object. Meta
data is inserted into a series of lookup data structures (i.e., maps and dictionar-
ies) that not only allow efficient searches, but also permit transparent mapping
between “user friendly” member names and the server generated member IDs
that are meaningless to the end user.

The Result Set API then exposes a series of methods that allow for the simple
manipulation of the cube results. Individual cell values can be retrieved merely
by specifying the appropriate coordinates, either by axis value or member value.
More sophisticated access can also be layered on top of the simpler access primi-
tives. For example, Listing 1.10 shows how one might produce a simple report of
all cells in a simple Customer-Product cube, assuming that the execute method
has already been invoked and an OlapResultSet created. One merely has to re-
trieve the member values for each dimension and then, with a set of nested FOR
loops, combine the relevant coordinates for each cell. It should be clear that
this is really quite trivial relative to the alternatives (e.g., a JDBC ResultSet
model).

The NOX Framework 187

// . . . r e t r i e v e l i s t s o f dimension members from r e s u l t o b j e c t

for (Str ing CustMember : CustList) {
for (Str ing ProdMember : ProdList) {

coo rd i na t e s = new LinkedList<CubeCoordinate >() ;

c oo r d i na t e s . add (new CubeCoordinate (CustDimension ,

CustMember)) ;

c oo r d i na t e s . add (new CubeCoordinate (ProdDimension ,

ProdMember)) ;

System . out . p r i n t l n (r e s u l t . getCe l lVa lue (coo r d i na t e s)) ;

}}}

Listing 1.10. Trivial report method

6 Future Work

NOX is already a very large system and is currently the subject of a great deal of
ongoing research. Of particular importance at the present time are the following
challenges:

– The expansion of the facilities for hierarchical navigation to include more
flexible and varied traversal options.

– The enhancement of the ResultSet model to include transparent change
base, change level, and pivot operations, as well as paged retrieval of
result sets that are either too big or too sparse to be fully encapsulated
inside a local array.

– Support for run-time parameterization of query values (i.e., user-defined
query parameters). This will likely be done via query constructors, with
“stubs” identifying the location for run-time XML augmentation.

– Full integration with the OLAP DBMS. While NOX includes a simple server
that validates and parses the final XML query (including all examples in this
paper), a parallel project is currently developing an optimized OLAP server
that natively understands the algebra of the NOX model. However, even in
the absence of such a server, we note that it is entirely possible to convert
the NOX output to MDX and deliver it to an XMLA-compliant server.

7 Conclusions

In this paper we have provided a relatively thorough presentation of NOX, the
Native language OLAP query eXecution framework. The current version of NOX
represents a comprehensive implementation of the native language query model.
In building upon the notion of a consistent OLAP conceptual model, we have
been able to provide almost fully transparent cube persistence functionality that
allows the programmer to view remote, possibly very large, analytical reposito-
ries merely as local objects. In addition to the ability to program against the
conceptual model, our framework also provides compile-time type checking, clean
re-factoring opportunities, and direct Object-Oriented manipulation of Results

188 T. Eavis, H. Tabbara, and A. Taleb

Sets. While we chose to target Java in this initial implementation, the fundamen-
tal concepts are language agnostic and could easily be applied to other modern
OOP languages. Given the awkward, loosely standardized nature of the current
OLAP application marketplace, we believe that NOX offers exciting possibilities
for those building and utilizing products and services in this extremely important
area.

References

1. XML for Analysis Specification v1.1. (2002), http://www.xmla.org/index.htm
2. CWM, Common Warehouse Metamodel (2003), http://www.cwmforum.org/
3. JSR-69 JavaTM OLAP Interface (JOLAP), JSR-69 (JOLAP) Expert Group

(2003),
http://jcp.org/aboutJava/communityprocess/first/jsr069/index.html

4. JSR 243: Java Data Objects 2.0 - An Extension to the JDO specification (2008),
http://java.sun.com/products/jdo/

5. HaskellDB (2010), http://www.haskell.org/haskellDB/
6. JavaCC, the Java Compiler Compiler (2010), https://javacc.dev.java.net/
7. Ruby programming language (2010), http://www.ruby-lang.org/en/
8. Agrawal, R., Gupta, A., Sarawagi, S.: Modeling multidimensional databases. In:

International Conference on Data Engineering (ICDE), Washington, DC, USA, pp.
232–243. IEEE Computer Society, Los Alamitos (1997)

9. Akinde, M.O., Bohlen, M.H.: Efficient computation of subqueries in complex
OLAP. In: International Conference on Data Engineering (ICDE), pp. 163–174
(2003)

10. Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications Co.,
Greenwich (2006)

11. Blakeley, J.A., Rao, V., Kunen, I., Prout, A., Henaire, M., Kleinerman, C.: .NET
database programmability and extensibility in Microsoft SQL Server. In: ACM
SIGMOD International Conference on Management of Data, pp. 1087–1098. ACM,
New York (2008)

12. Cook, W.R., Rai, S.: Safe query objects: statically typed objects as remotely exe-
cutable queries. In: International Conference on Software Engineering (ICSE), pp.
97–106 (2005)

13. Cunningham, C., Graefe, G., Galindo-Legaria, C.A.: PIVOT and UNPIVOT: Op-
timization and execution strategies in an RDBMS. In: International Conference on
Very Large Data Bases (VLDB), pp. 998–1009 (2004)

14. Dittrich, J.-P., Kossmann, D., Kreutz, A.: Bridging the gap between OLAP and
SQL. In: International Conference on Very Large Data Bases (VLDB), pp. 1031–
1042 (2005)

15. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A relational aggre-
gation operator generalizing group-by, cross-tab, and sub-total. In: International
Conference on Data Engineering (ICDE), Washington, DC, USA, pp. 152–159.
IEEE Computer Society, Los Alamitos (1996)

16. Gyssens, M., Lakshmanan, L.V.S.: A foundation for multi-dimensional databases.
In: International Conference on Very Large Data Bases (VLDB), pp. 106–115.
Morgan Kaufmann Publishers Inc., San Francisco (1997)

17. Malinowski, E., Zimanyi, E.: Hierarchies in a multidimensional model: From con-
ceptual modeling to logical representation. Data Knowl. Eng. 59(2), 348–377 (2006)

http://www.xmla.org/index.htm
http://www.cwmforum.org/
http://jcp.org/aboutJava/communityprocess/first/jsr069/index.html
http://java.sun.com/products/jdo/
http://www.haskell.org/haskellDB/
https://javacc.dev.java.net/
http://www.ruby-lang.org/en/

The NOX Framework 189

18. Melton, J.: Advanced SQL 1999: Understanding Object-Relational, and Other Ad-
vanced Features. Elsevier Science Inc., New York (2002)

19. Morfonios, K., Ioannidis, Y.: CURE for cubes: cubing using a ROLAP engine. In:
International Conference on Very Large Data Bases (VLDB), pp. 379–390. VLDB
Endowment (2006)

20. Romero, O., Abelló, A.: On the need of a reference algebra for OLAP. In: Song,
I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 99–110.
Springer, Heidelberg (2007)

21. Sismanis, Y., Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Hierarchical dwarfs
for the rollup cube. In: International Workshop on Data Warehousing and OLAP
(DOLAP), pp. 17–24. ACM, New York (2003)

22. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland,
P.: The end of an architectural era (it’s time for a complete rewrite). In: Interna-
tional Conference on Very Large Data Bases (VLDB), pp. 1150–1160 (2007)

23. Whitehorn, M., Zare, R., Pasumansky, M.: Fast Track to MDX. Springer, New
York (2005)

	The NOX Framework: Native Language Queries for Business Intelligence Applications
	Introduction
	Related Work
	NOX: Native Language OLAP Query eXecution
	The NOX Components

	Conceptual Model
	OLAP Algebra
	The NOX Grammar

	Client Side API
	The NOX Preprocessor
	Application Programming
	Result Sets

	Future Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

