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Preface

Data warehousing and knowledge discovery has been widely accepted as a key tech-
nology for enterprises and organizations to improve their abilities in data analysis,
decision support, and the automatic extraction of knowledge from data. With the
exponentially growing amount of information to be included in the decision-making
process, the data to be considered become more and more complex in both structure
and semantics. New developments such as cloud computing add to the challenges
with massive scaling, a new computing infrastructure, and new types of data.

Consequently, the process of retrieval and knowledge discovery from this huge
amount of heterogeneous complex data forms the litmus test for research in the area.

In the last decade, the International Conference on Data Warehousing and Knowl-
edge Discovery (DaWaK) has become one of the most important international scien-
tific events bringing together researchers, developers, and practitioners to discuss the
latest research issues and experiences in developing and deploying data warehousing
and knowledge discovery systems, applications, and solutions.

This year’s conference, the 12" International Conference on Data Warehousing
and Knowledge Discovery (DaWaK 2010), continued the tradition by discussing and
disseminating innovative principles, methods, algorithms, and solutions to challeng-
ing problems faced in the development of data warehousing, knowledge discovery,
the emerging area of "cloud intelligence," and applications within these areas. In order
to better reflect novel trends and the diversity of topics, the conference was organized
in four tracks: Cloud Intelligence, Data Warehousing, Knowledge Discovery, and
Industry and Applications.

The papers presented at DaWaK 2010 covered a wide range of topics within cloud
intelligence, data warehousing, knowledge discovery, and applications. The topics
included data warehouse modeling, spatial data warehouses, mining social networks
and graphs, physical data warehouse design, dependency mining, business intelli-
gence and analytics, outlier and image mining, pattern mining, and data cleaning and
variable selection.

It was encouraging to see that many papers covered emerging important issues
such as social network data, spatio-temporal data, streaming data, non-standard pat-
tern types, complex analytical functionality, multimedia data, as well as real-world
applications. The wide range of topics bears witness to the fact that the data ware-
housing and knowledge discovery field is dynamically responding to the new chal-
lenges posed by novel types of data and applications.

From 112 submitted abstracts, we received 89 papers from 16 countries in Europe,
North and South America, Asia, Africa, and Oceania. The Program Committee finally
selected 26 papers, yielding an acceptance rate of 29%.

We would like to express our most sincere gratitude to the members of the Pro-
gram Committee and the external reviewers, who made a huge effort to review the
papers in a timely and thorough manner. Due to the tight timing constraints and the
high number of submissions, the reviewing and discussion process was a very chal-
lenging task, but the commitment of the reviewers ensured that a very satisfactory
result was achieved. We would like to thank Alfredo Cuzzocrea for his tireless
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contributions as Track Chair and Publicity Chair. We would also like to thank all
authors who submitted papers to DaWaK 2010, for their contribution to making the
technical program so excellent.

Finally, we send our warmest thanks to Gabriela Wagner for delivering an out-
standing level of support within all aspects of the practical organization of DaWaK
2010. We also thank Amin Anjomshoaa for his support with the conference manage-
ment software.

August 2010 Torben Bach Pedersen
Mukesh Mohania
A Min Tjoa
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Logic Programming for Data Warehouse
Conceptual Schema Validation

Carlo dell’ Aquila, Francesco Di Tria, Ezio Lefons, and Filippo Tangorra

Dipartimento di Informatica
Universita degli Studi di Bari “Aldo Moro”
Via Orabona 4, 70125, Bari, Italy
{dellaquila, francescoditria, lefons, tangorra}@di.uniba.it

Abstract. The current lack of a standard methodology for data warehouse de-
sign has led to have many possible lifecycles. In some of them, the validation of
the data warehouse conceptual schema is a specific process that precedes the
translation of such a schema into a logical one. This activity must ensure that
the data warehouse to be implemented effectively allows all the analytical que-
ries to be executed correctly. To accomplish this, the validation process takes
the preliminary workload into account, that is, a set of queries defined from user
requirements to obtain the typical information the users are interested in. The
methodologies that perform such a validation process define some guidelines
that must be manually executed by an expert. In this paper, we introduce a logic
program to automate this activity, by checking a set of predefined issues with
an inferential engine.

Keywords: logic programming; workload; conceptual schema.

1 Introduction

Companies are devoting more and more attention to the benefits emerging from the
exploitation of data warehouses (DWs) in the scope of Business Intelligence (BI)
systems. Indeed, DWs are used as data sources for On-Line Analytical Processing
(OLAP) and Machine Learning [1], in order to produce information and knowledge
useful in decision making processes. Therefore, the design of a DW requires method-
ologies quite different from those adopted for On-Line Transactional Processing
(OLTP) systems; such methodologies must satisfy precise quality factors, such as
believability of data in terms of their completeness and consistency [2].

The basic lifecycle of a DW comprises: (a) analysis and requirements definition,
where end-users needs are investigated in order to understand what kind of informa-
tion they are interested in; (b) conceptual design, based on the user requirements, the
schemata, and the documentation of the source databases; (c) logical design, where
the conceptual schema of the DW is traduced into the logical schema; (d) implementa-
tion, where the DW is implemented according to the logical model (ROLAP or
MOLAP) supported by the DBMS; (e) ETL design, producing a plan to feed and to
periodically update the DW; (f) refreshing, that consists of the execution of the
ETL, repeated at regular intervals of time, depending on the refresh necessity; and

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 12010.
© Springer-Verlag Berlin Heidelberg 2010



2 C. dell’Aquila et al.

(g) BI applications development, consisting of traditional reports, analytical process-
ing, and data mining applications [3].

A popular methodological framework to design DWs [4], establishes that, in the
requirements definition step, the designer must first define a preliminary workload
that consists of a set of queries, expressed according to a high level language. These
queries represent the typical analytical queries that the business users will perform on
the DW and they help the designer to identify facts, dimensions, and measures during
the next conceptual design step. The conceptual model adopted is the Dimensional
Fact Model (DFM) [5], which produces facts schemata according to the Multidimen-
sional Model [6]. Before proceeding with the logical design, the designer must be sure
that the designed conceptual schema supports the preliminary workload. This step is
the so-called DW conceptual schema validation and its aim is to verify whether the
multidimensional schema properly accords to the preliminary workload. In particular,
the designer must be sure that all the measures, useful to produce business informa-
tion, have been identified, and that all the hierarchies are well-structured to perform
data aggregation. Only if all the queries in the workload can be effectively expressed
on such a conceptual schema, then the designer can safely translate it into a logical
one. On the other hand, if the designer realizes that one or more queries are not execu-
table against that conceptual schema, then s/he has the possibility to go back to the
conceptual design step, in order to produce a multidimensional model that satisfies the
user requirements and that allows business users to obtain all the needed information.
In detail, the schema validation is executed by re-writing the preliminary workload
via a simple language that allows defining a query in accordance with the DFM. In
this context, a query is represented by an expression, describing a measure to be re-
trieved, an aggregation pattern, and a selection clause. Currently, the validation is a
made-by-human work and consists of a manual mapping of each expression to the
graphical representation of the conceptual schema. Of course, this test represents, in
some cases, a waste of time and can easily produce misunderstandings, oversights,
and human errors, due to the difficulty to check a very large set of queries on complex
conceptual schemata.

As the conceptual schema design represents the most crucial step to capture user
requirements such to be error-free [7], nowadays, it is emerged the necessity to sup-
port the designers, by providing them with new methodologies to obtain objective
evaluations about the quality of the conceptual schemas [8], to create strong formal
models of user requirements [9, 10], to automate their activities [11, 12], and to ex-
tend the existing ones with more powerful features [13]. In this context, the validation
of the conceptual schema is the only mean to produce a final DW that is as close to
the user needs as possible [14]. In our opinion, the validation phase can be effectively
replaced by an automatic process, based on an inferential engine, whose knowledge
base is composed of metadata representing a multidimensional schema. The aim of
this paper is to describe the architecture and the functionality of such an inferential
engine, able to validate the conceptual schema automatically, effectively replacing the
activity that a human expert makes.

The paper is organized as follows. In Section 2, we report an overview of the re-
lated work about conceptual schema validation. Section 3 introduces the metadata to
be used to represent a conceptual schema. Section 4 describes the inferential process
for the validation and the goal used to start the inferential process. Section 5 illustrates
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the compiler that translates a workload into goals for the logical program. In Section
6, we report the testing scenario of the methodology. Finally, Section 7 contains our
conclusions.

2 Related Work

The conceptual schema is the result of the conceptual design and represents the most
important step of the design of both relational databases [15] and DWs [16]. In the
logical design step, the conceptual schema must be translated into a logical one. How-
ever, in order to produce an effective logical schema, the conceptual schema must be
first validated. While in relational databases the validation is devoted to verify
whether the conceptual schema satisfies a set of constraints [17], such as cardinality
constraints [18] for example, in the scope of data warehousing, it is well-known that
the validation consists of verifying whether the preliminary workload, defined on the
basis of the user requirements, can be supported by the designed conceptual schema
[4]. For the sake of simplicity, validation means controlling whether each query of the
analytical workload can be effectively executed on the designed schema.

A similar approach is used in [11], where a conceptual schema is chosen, among a
set of conceptual schemas designed by an algorithm, provided it is able to accomplish
an answer to each query included in the workload.

A more general methodology allows designers to verify the correctness of a con-
ceptual schema, by checking some desirable properties (such as satisfiability, non-
redundancy of integrity constraints, and executability of operations) according to a
plan, expressed using the first-order logic. For each property, opportune initial state
and goal are defined, and the designer assumes the property is satisfied if there exists
a sequence of derivations to accomplish the given goal [19].

In our opinion, the first-order logic is a very powerful language to perform logical
deductions on the basis of a semantic level, such as the understanding of a conceptual
schema.

3 Metadata Modelling

There are several kinds of metadata associated to a DW [20]. As an example, there are
metadata describing the refresh status of data. However, the most important class of
metadata is the one describing the multidimensional model of the DW. These meta-
data are usually used in ROLAP systems to generate SQL queries [21]. Currently, the
standard language for the representation of DW metadata is described by the Com-
mon Warehouse Metamodel (CWM) [22]. In this paper, we adopt this standard repre-
sentation. In fact, according to the CWM, we model the main concepts and relation-
ships via the Predicate Calculus (PC) [23], in order to define a set of metadata to be
used as a knowledge base for a logical program able to perform the validation of a
conceptual schema. This metadata modelling defines a set of predicates, able to repre-
sent the conceptual schema of a DW. The predicates are listed in Table 1.
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Table 1. Predicates of the Metamodel

Predicate Semantics
cube(C) Cis a cube.
measure(M, C) M is a measure of C. C must be a cube.
dimension(D) D is a dimension.

hierarchy(H, D) H is a hierarchy of D. D must be a dimension.

L is the level number N of H. H must be a hierarchy.

level(L, N, H) N must be a natural number.

cube_dim(C, L) L is one of the first levels of aggregation of C. C must be a cube.

A is an attribute of L. L must be a level of a dimension.

attribute(L, A, T) T value is id (identifier) or desc (descriptive).

4 Conceptual Schema Validation

According to the traced guidelines in [19], we define the following issues related to
the validation of a conceptual schema in reference to the queries included into the
preliminary workload:
e aquery involves a cube that has not been defined as such;
e aquery requires a measure that is not an attribute of the given cube;
e a query presents an aggregation pattern on levels that are unreachable from the
given cube;
e a query requires an aggregation on a field that has not been defined as a dimen-
sional attribute.
In reference to these issues, a set of tests to be performed has been designed, as ex-
plained in the next Sub-section.

4.1 Inferential Engine

The Inferential Engine (IE) is a logic program, composed of a set of rules, expressed
according to the PC. The conceptual schema validation is executed by the IE, via an
inferential process that allows verifying the issues pointed out in the previous Sub-
section. At the end of the inferential process, the IE states whether the conceptual
schema is valid or not, on the basis of a given preliminary workload and a set of mul-
tidimensional metadata. The logic program has been developed in Prolog [24] and it
performs a set of tests. Notice that, for simplicity, the first rule has been entirely re-
ported, while only the head of the other rules is shown.

e Cube test:

verify_cube(C):- cube(C), write(C), writeln('is a cube.’).
verify_cube(C):- not(cube(C)), write(C), writeln(' is not a cube.’), fail.
If C is a cube, then IE shows a validation message. On the contrary, if C is not a
cube, then IE shows an error message.

e Measure test: verify_measure(M, C). This rule verifies whether M is a measure of
the cube C. If M is not a measure of the cube C, then IE shows an error message.
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o Attribute test: verify_attribute(A, L). This rule verifies whether there exists a level
L, where A is an attribute. If A is not an attribute of any level, then IE checks if A is
a measure of the C cube.

e Path test: verify_path(C, D). This rule checks whether D is part of the primary
aggregation pattern of the C cube or belongs to the same hierarchy of the level rep-
resenting the primary aggregation pattern of the C cube (viz., it checks whether
there is an aggregation path from C to D).

e Aggregation test: verify_level([Head | Tail]). The rule scans a list recursively on
the tail of the list (the ending condition is represented by an empty list). It checks
whether all the elements of the list are dimensional attributes (i.e., level identifi-
ers). If an element of the list is not a dimensional attribute, then IE shows an error
message.

4.2 Goal

In order to start the inferential process, the IE needs a goal. All the goals are gener-
ated by a compiler (see, Section 5) using the queries included into the workload. So,
each goal corresponds to a query to be tested. The goal is represented by the predi-
cate:

goal(C, V, A),

where C is the cube on which the query is based, V is a list of dimensional attributes
on which to perform data aggregation, and A is an attribute which can be a measure or
a descriptive attribute.

The main goal is divided into the following three sub-goals:

e fact(C, A). This goal performs both the cube and the attribute tests.

e aggregation(V). This goal performs the aggregation test. V is a list of dimensional
attributes.

e path(C, V). This goal performs the path test on each element D of the list V.

S Compiler

The general workflow of the validation process is the following. The Compiler trans-
lates the workload into goals for the IE. The workload is written according to a high-
level language, as explained in [5]. In particular, it generates a goal for each query in
the workload. Then, the IE uses both the goals and the metadata to check whether the
schema is valid or not. The Compiler is based on a Syntactical Analyzer, that, on turn,
uses a Lexical Analyzer for string pattern recognition.

5.1 Syntactical Analyzer

The Syntactical Analyzer (SA) is a parser that verifies the syntactical structure of a
statement. The SA has been developed using Bison [25], which is a tool that (a) reads
a grammar-file, and (b) generates a C-code program. This C-code program represents
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the SA. In particular, the grammar-file contains the declaration of a set of terminal
symbols and a set of grammar rules, expressed according to the Backus Naur Form
(BNF).

First of all, the terminal symbols (tokens) of the grammar must be defined. The to-
kens include literals (i.e., string constants), identifiers (i.e., string variables), and nu-
meric values. The tokens defined for the SA are the following:

%$token VAR %$token AND “AND”
$token DIGIT -

%$token COMMA “,” %$token OPEN ™ (”
$token SEMICOL “;” $token CLOSE “)”
$token DOT “.” $token OPSQ “[”
%$token EQ “=" %$token CLOSESQ “]”
$token GT “>” %$token SUPS “'”

The first and the second tokens represent string variables and numeric values, respec-
tively. The other tokens represent string constants, as language keywords. Once all
tokens have been defined, the rules of the grammar follow.

A query against a conceptual schema is a statement expressed according to the fol-
lowing BNF grammar:

<query> = <expression>.<measure> |
<expression>.<attribute name>
<expression> = <fact name> <aggr. clause>
<aggr. clause>::= [<pattern>] | [<pattern>; <sel. clause>]
<pattern> = <attribute name> | <pattern>, <attribute name>
<sel. clause> = <predicate> |
<sel. clause> <logical operator> <predicate>
<predicate> = <attribute name> <comparison operator> <value>

This grammar is composed of a set of rules and defines all the well-formed phrases of
the language to express queries against the conceptual schema.
As an example, the string

“sales[day, product; city='Rome' and product="milk’' |.quantity”
is a correct phrase, while the string
“sales[day, product; city="Rome’ and product="milk' ],quantity”

generates a syntax error, due to the comma instead of the dot, before the quantity
attribute.
In Bison, each rule has the form:

<result>: <components> { <statement> };

where <result> is a non-terminal symbol, <components> is a set of terminal and/or
non-terminal symbols, and <statement> is the C-code statement to be executed when
the rule is applied. In order to implement the grammar, the rules defined for the SA
are the following:
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query: express DOT attribute { printf (", %s) \n", $3); };
express: fact aggreg;
fact: VAR { printf("goal(%s",$1); };
aggreg: OPSQ pattern CLOSESQ { printf("l,"); } |
OPSQ pattern SEMICOL seq sel CLOSESQ { printf("1"); };
pattern: attribute { printf (", [%s",$1); } |
pattern COMMA attribute { printf(",%s", $3); };
seq_sel: selection | seqg sel logic selection;
selection: attribute operator wvalue;
value: SUPS VAR SUPS | DIGIT;
operator: EQ | GT | LT | GT EQ | LT EQ;
logic: AND | OR;

attribute: VAR;

The first rule, the tagged query one, is applied when the SA recognizes a string like
“<a>.<b>", where <a> is a valid <express> non-terminal symbol, and <b> is a
VAR token, i.e., when the string is syntactically correct. In this case, the SA prints: (a)
a comma, (b) the third parameter of the <components> (i.e., the attribute), (c) a
closed round bracket, (d) a carriage return, and (e) a line feed. Then, the SA ends with
no error message generation.

Example 1. The query string “sales[day, product; city="Rome’ and product="milk'].
quantity” is translated into the following goal to be submitted to the IE:

goal(sales, [day, product], quantity)

expressed according to the PC. Note that the selection clause is ignored. (This issue
will be addressed in future works.) O

5.2 Lexical Analyzer

The Lexical Analyzer (LA) is the component used by the SA, in order to obtain an
ordered sequence of tokens. The tokens are recognized by the LA inside a string (pat-
tern matching on text) and, then, passed to the SA. The LA has been developed using
Flex [26], which is a tool that (a) uses the tokens defined for the SA program, (b)
reads a rule-file, and (c) generates a C-code program. This C-code program represents
the LA. In particular, the rule-file is composed of two sections: (a) definition, and (b)
rules. The definition section includes the tokens defined with Bison, plus further iden-
tifiers. The identifiers define how to perform the matching between a sequence of
alphanumeric characters and a token. The identifiers contained in the definition sec-
tion of the rule-file are the following:

UVAR [a-z][a-z0-9]*
UDIGIT [0-9]1*

Correct instance of UVAR is any string that starts with an alphabetic character, fol-
lowed by an arbitrary number of alphabetic characters or digits 0 to 9 (for example,
al, qr55, m5n9, abbbddd, ...). Correct instance of UDIGIT is any numeric value,
composed of an arbitrary number of digits 0 to 9. The rule section includes a set of
rules, defining the action to perform when a matching happens. The rules defined for
the LA are the following:
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[=] {return EQ;} {UVAR} {return VAR;}
[<] {return LT;} {UDIGIT} {return DIGIT;}
[>] {return GT;}

<<EOF>> { yyterminate();}

The first rule states that, whenever the constant “=" is recognized inside the input
string, the token EQ must be returned. In fact, when the LA recognizes an identifier, it
returns the corresponding token to the SA. When the LA encounters the end-of-file
symbol, it stops the string scanning (last rule).

Example 2. In analyzing the string “sales[day, product; city='Rome’ and product=
'milk' ].quantity”, the LA returns the following sequence of tokens: VAR OPSQ VAR
COMMA VAR SEMICOL VAR EQ SUPS VAR SUPS AND VAR EQ SUPS VAR
SUPS CLOSESQ DOT VAR. At last, the tokens are passed from the LA to the SA for
the syntactical control. ]

6 Testing Scenario

Figure 1 shows the conceptual schema of two cubes: sales and shipments.

cat_name

——

category client_name

(a) (b)

prod_name

. - order
client shipments

product month_name cost

order sales day month _ year
price
quantity
client_name
client

Fig. 1. Conceptual schemas. (a) sales cube. (b) shipments cube.

Here, sales is a four-dimensional cube. The four dimensions are clients, time, or-
ders, and products. Time is a one-hierarchy dimension. This hierarchy is formed by
three levels: days, months, and years. Each level has at least one attribute (the dimen-
sional attribute, denoted by a circle), representing the identifier of the level. Some
levels can also have descriptive attributes (represented by emphasized names). In the
example, days and years levels have only the day and year dimensional attributes,
while months has the month dimensional attribute and also the month_name descrip-
tive attribute. Orders is a one-hierarchy dimension. This hierarchy is formed by the
one level order. This level has no descriptive attributes. Clients is a one-hierarchy
dimension. This hierarchy is formed by the one level client. This level has the cli-
ent_name descriptive attribute. Products is a one-hierarchy dimension. This hierarchy
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is formed by the two levels product and category. Each of these levels has its own
descriptive attributes. Day, product, order, and client levels represent the primary
aggregation pattern of the sales cube.

The shipments cube is a three-dimensional cube. It has the client and order dimen-
sions in common with sales and has location as geographical dimension.

Let us suppose the following preliminary workload (composed of five queries) has
been defined from user requirements using the high-level language introduced in [5]:

sales[day, product].price, orders[day, product].price,
sales|[day, prod_name] .price, sales[day, location] .price.
sales[day, product].amount, O

At this point, we have to verify whether each query of the workload can be effectively
expressed on the conceptual schema in Fig. 1. The traditional methodology of the
DFM [5] leads to a manual mapping of each query on the graphical representation of
the schema. Clearly, this methodology can be very expensive for designers when
dealing with complex schemas and numerous queries included in the workload. Fur-
thermore, this can generate human errors and can lead to time wasting. On the other
hand, in our approach, metadata can be automatically generated from a conceptual
schema designed by a CASE tool. The following metadata are the description of
shipments cube according to the predicates defined in Table 1. The metadata of the
sales cube can be obtained in an analogous way.

cube (shipments) .

measure (cost, shipments).
dimension(clients_dim) .

dimension (orders_dim) .

dimension (geo_dim) .

hierarchy (orders_hier, orders_dim).
hierarchy(clients_hier, clients_dim).
hierarchy(geo_hier, geo_dim).

level (orders, 1, orders_hier).

level (clients,1l,clients_hier).

level (locations,1l, geo_hier).
attribute(clients, client, id).
attribute(clients, client_name, desc).
attribute (orders, order, id).
attribute(locations, location, id).
attribute(locations, loc_name, desc).
cube_dim(shipments, location).
cube_dim(shipments, order).
cube_dim(shipments, client). O

Then, each query of the workload is translated into a specific goal by the compiler
and the set of goals represents the input of the logical program we use to validate the
conceptual schema. The translation made by the compiler follows.

goal (sales, [day, product], price),
goal (sales, [day, prod_name], price),

goal (orders, [day, product],price),

(
(
goal (sales, [day, product],amount),
(
goal (sales, [day, location],price). O
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In detail, each goal is a test on the conceptual schema and the schema is validated
only in the case the IE reports no errors at all. Thus, using the produced multidimen-
sional metadata and goals, the IE executes the five tests, and, for each of them, we
report the output with reference to the given goal.

Test 1: goal(sales, [day, product), price).
Sales is a cube, price is a measure, day is a dimensional attribute, product is a di-
mensional attribute, there is a valid aggregation path to day from sales, there is a
valid aggregation path to product from sales.

Test 2: goal(sales, [day, prod_name], price).
Sales is a cube, price is a measure, day is a dimensional attribute, prod_name is not
a dimensional attribute.

Test 3: goal(sales, [day, product], amount).
Sales is a cube, amount is not a measure.

Test 4: goal(orders, [day, product], price).
Orders is not a cube.

Test 5: goal(sales, [day, location], price).
Sales is a cube, price is a measure, day is a dimensional attribute, location is a di-
mensional attribute, there is a valid aggregation path to day from sales, there is no
valid aggregation path to location from sales.

In Test 1, no error message is reported. This means that the schema is able to correctly
provide an answer to this query. In Test 2, there is the evidence that prod_name is not a
dimensional attribute. In fact, it has been defined as a descriptive attribute. Then, the
program ends reporting an error and, as a consequence, this states that the schema is
not valid in reference to the given workload. At this point, the designer can choose
whether to correct the query (product is the correct one) or to modify the schema, by
introducing a further dimensional attribute (in the case that no dimensional attribute
exists for the products dimension). Let us assume to continue the validation process. In
Test 3, the error reported is that amount is not a valid measure of the sales cube. Thus,
the query could not be answered. This obliges the designer to modify the schema, by
introducing the needed measure for the sales cube. In Test 4, the error reports that
orders is not a cube and the designer has to introduce an ad-hoc cube in the schema in
order to support this query. Finally, in Test 5, we have that location is a dimensional
attribute but there is no aggregation path from sales. In fact, this dimensional attribute
is part of a hierarchy that belongs to the shipments cube. So, the designer must
(re)model the schema by adding the location dimension to the sales cube.

In conclusion, we highlight that the traditional overload in the conceptual phase,
due to the manual check of the schema, is usually bypassed or ignored by designers.
As a consequence, DW designers may obtain a logical schema that does not satisfy
user requirements. On the other hand, our approach can be very useful to designers in
order to avoid human errors and to obtain time saving, as the logical program is able
to detect whether the conceptual schema supports all the queries of the workload in a
unified and fast way. This leads to a high level of automation in the design process,
especially in the case where the metadata generation process is integrated in the
CASE tool utilized by the designer.
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7 Conclusions

We have presented a novel methodology able to validate a DW conceptual schema,
according to the preliminary workload defined from user requirements. This valida-
tion is executed in automatic way via a logic program, based on the Predicate Calcu-
lus. In fact, the inferential engine is a logic program that validates the conceptual
schema automatically via the inferential process using a set of multidimensional
metadata. If the conceptual schema is validated, then the DW designer can safely
translate it into a logical one. If it is rejected, then the designer can choose whether to
correct the schema or to modify the workload.

Currently, the rules of the inferential engine deal with some basic issues of the
validation process, since the rationale behind this work is to test the efficacy of adopt-
ing automatic techniques in this step of the data warehouse design lifecycle. Thus,
future work consists of extending the logical program in order to manage different
kinds of hierarchies and to process also the selection clause of queries.
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Abstract. Facts are multidimensional concepts of primary interests for
knowledge workers because they are related to events occurring dynam-
ically in an organization. Normally, these concepts are modeled in oper-
ational data sources as tables. Thus, one of the main steps in conceptual
design of a data warehouse is to detect the tables that model facts.
However, this task may require a high level of expertise in the appli-
cation domain, and is often tedious and time-consuming for designers.
To overcome these problems, a comprehensive model-driven approach is
presented in this paper to support designers in: (1) obtaining a CWM
model of business-related relational tables, (2) determining which ele-
ments of this model can be considered as facts, and (3) deriving their
counterparts in a multidimensional schema. Several heuristics —based on
structural information derived from data sources— have been defined to
this end and included in a set of Query/View/Transformation model
transformations.

1 Introduction

The development of data warehouses is based on detecting multidimensional
elements from a detailed analysis of data sources. Among multidimensional el-
ements, facts are those of highest importance since they represent events of
interests for knowledge workers. Therefore, several techniques, such as guide-
lines or glossaries, have been developed so far to support designers in detecting
multidimensional roles of elements in a relational schema (including facts). For
example, in a retail domain, a table called Sales is likely to cover the role of a
fact. However, these techniques may become tedious and time-consuming when
the application domain is complex (in a medical domain, is a table called Fertil-
ityCycle a fact?) or, even worse, when table names are meaningless (what is the
multidimensional counterpart of a table called SP CCCM?).

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 1: 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Other approaches arose to support designers in tackling this task in a more
automated manner [I2/3]. However, these are focused on automatically detecting
other multidimensional concepts (such as dimension hierarchies) rather than
facts, so discovering facts still relies on informal techniques. Furthermore, most
approaches assume that data sources are well-documented or documentation can
be easily obtained; unfortunately, this is not generally true [4], and even if some
documentation exists, it is likely to be out-of-date with respect to the actual
data sources.

To overcome these drawbacks, in this paper we present an approach for for-
malizing fact detection from relational data sources without requiring additional
documentation. Our approach is based on a set of heuristics, elicited from some
real-world case studies we are working on. These heuristics use some syntactical
information derived from the data sources, thus guiding designers in the detec-
tion of facts independently of their knowledge about the application domain. We
have formalized these heuristics by means of QVT (Query/View/Transformation)
transformations in a model-driven perspective, in such a way that the final multi-
dimensional schemata are derived with a high degree of automation, thus saving
time and costs. Basically, our approach consists of three tasks (see Fig. [): (1)
detect clusters of business-related tables within data sources and derive their
relational CWM model, (2) support designers in properly determining which
elements of this model can be considered as facts by means of a set of heuristics-
based QVT model transformations, and (3) model facts, together with their
dimensions and measures, in a multidimensional schema.

The remainder of this paper is structured as follows. Section [2] briefly de-
scribes the current approaches for discovering multidimensional facts. Section [3]
describes our heuristics and the definition of model transformations for detect-
ing facts. Section [ presents an implementation of our approach and draws the
conclusions.

/ Model driven heuristic approach for detecting facts \
Physical level ‘ Logical level Conceptual level
Obtaining CWM
models of data Relational CWM models

sources

Detecting facts

Marked relational CWM models

Deriviny . .
. 9 Multidimensional
multidimensional
schemata
elements

Fig. 1. Overview of our approach for detecting facts
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2 Related Work

Most approaches for deriving multidimensional schemata from relational data
sources (e.g., [BIGIT8]) propose informal mechanisms (such as guidelines or glos-
saries) to support designers. In order to increase the level of automation of this
task, other approaches use heuristics to determine which tables are good can-
didates to become facts. Phipps and Davis [I] propose to consider every entity
in an Entity-Relationship schema that contains numerical attributes as a fact,
which may be unfeasible since (1) most entities in a schema would be selected,
and (2) it is assumed that an up-to-date conceptual schema of data sources is
available. Jensen et al. [2] consider not only the presence of measures, but also
table cardinality to identify facts; though this approach builds on a reverse-
engineering stage in which relational metadata is obtained from data sources,
its success highly depends on the skill of domain experts.

Two automated approaches for detecting facts are presented in [3] and [9].
Song et al. [3] propose structural heuristics to detect facts from an Entity-
Relationship schema: all entities with a high number of many-to-one relation-
ships are candidates to become facts. Not realistically, they assume that a con-
ceptual schema is always available. Romero and Abellé [9] detect facts by ex-
pressing multidimensional SQL queries over relational data sources, and assume
that those aggregated attributes in the SELECT clause which are not included
in the GROUP BY clause belong to a table that is a potential fact. However, this
approach depends on the ability of the users to express their own information
requirements as SQL queries.

Our work is inspired by [I0], that considers relational data sources as legacy
systems whose documentation either is not available, or cannot be obtained, or
is too complex to be easily understood through a manual analysis. To overcome
these problems, they consider the development of a data warehouse as a modern-
ization scenario which addresses the analysis of the available data sources aimed
at discovering multidimensional structures. These structures are then used to
derive a data-driven multidimensional schema or reconcile a requirement-driven
multidimensional schema with data sources. However, the heuristics for detecting
facts presented in that work are rather simplistic and deliver a single solution,
which may hide the analysis potential of data sources.

3 Model-Driven Heuristic Approach for Detecting Facts

Our model-driven approach aims to support designers in marking tables from
relational data sources as facts. Each table can be differently marked, thus sug-
gesting several possibilities to designers. A set of heuristics for determining
which tables are good candidates for being facts, mainly based on an analy-
sis of functional dependencies, have been developed and formalized by using
QVT (Query/View/Transformation) [I1I] model transformations. Our approach
assumes that all database constraints (primary and foreign keys) are known,
which is perfectly reasonable since these constraints can be nimbly derived [12].
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Category
p PK | idCategory
Category
Olganizey A} OrderDetail
PK |idOrganizer PK | idProduct PK.FK2 | idOrder
< o
FirstName Product < PK,FK1 | idProduct
LastName FK1 |idCategory .
5 Quantit
FK1 | idCategory Weigh prvised
A Discount%
ApplicationAccess Sale ¢
PK | idAccess PK |idSale —
Usermname FK1 | idProduct PK |idorder
AccessDate FK2 |idStore —
AccessTime Quantity FK1 | idStore
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UnitPrice OrderDate
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Store
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PK | dCode ShipMethod
ZipCode PK | idShipMethod
ShipMethod

Fig. 2. Relational schema for the running example

The example we will use throughout the paper is based on the retail domain
(see Fig. @) and summarizes situations we have detected in a real case study
we are working on at the Spanish fertility institute TAHE Fertz’lida, which we
cannot show due to confidentiality issues. Data related to sales and orders are
stored, as well as stores, products, etc. Sales are specialized into national and
international ones. The OrderDetail relation allows to include several products
in each order.

3.1 Obtaining CWM Models of Data Sources

This phase concerns the extraction of relational elements (tables, columns, and
constraints) from data sources by querying the DBMS data dictionary. It consists
of two steps: (1) delimiting the relational elements related to the application
domain, and (2) creating their models based on CWM.

The rationale behind the first step is that, in real-world scenarios, data sources
not only store interesting data for analysis but also data about instance feed-
ing applications, security, audit, and so on, that should be ignored when facts
are being detected. The benefits of this pre-processing step are twofold: on the
one hand, useless elements are not considered; on the other, heuristics will be

!http://www.tahefertilidad.es
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more reliable because the required measures will be calculated by considering
only interesting relational elements. Relational elements are first grouped into
clusters, using a graph theory algorithm that computes connected graph com-
ponents [I3]. The output is a set of directed, connected graphs whose nodes
and edges represent relations and functional dependencies, respectively. Then
the designer, in collaboration with domain experts, manually determines which
clusters are useful for analysis. In our running example, the cluster containing
table ApplicationAccess is not considered, since it is supposed to be unrelated to
the business domain.

During the second step, a relational CWM (rCWM) model is created for
each selected cluster. Common Warehouse Metamodel (CWM) [14] consists of
a set of metamodels for representing data warehouse and business intelligence
metadata, including a relational metamodel that allows relational elements to
be easily represented. The next phases of our approach are applied separately
to each rTCWM model created. Fig. B shows part of the rCWM model for our
running example.

R:
TaggedValue taggedValue inDegree :  |taggedValue
TaggedValue

T Pd.\l lue |taggedvalue NIT: taggedvalue
aggedvalue TaggedValue
taggedVvalue| inDegree :
TaggedValue NAR : TaggedValue |taggedvalue

NIT
keyRelationship_| Pk_NationalSale |ownedElement
PrimaryKey

TaggedValue FK_toSale2 : L
uniqueKey

ForeignKey
ltaggedValue| NAR ]
keyRelaffonshi uniqueke
TaggedValue 4 P lownedElement iqi y

Pk_Sale :
PrimaryKey

owne
feature _ feature
idSale : Column keyRelationship)
feature [ - D06 - Column FK_toSale1 :
ForeignKey [keyRelationship
feature v
Quantity : Column

P taggedvalue
TaggedValue

R: taggedValue
TaggedValue namespace
InternationalSale : Table Grmer

namespace| |
NationalSale : Table

uniqueKey

ownedElement|

uniqueKe:
Pk_InternationalSale :

PrimaryKey
ownedElement]

uniqueKey

feature|

idSale : Column

eatur

NAR : taggedValue
TaggedValue

NIT: taggedValue
TaggedValue

inDegree taggedValue
TaggedValue

Fig. 3. Part of the relational CWM model for the running example

3.2 Detecting Facts

The fact detection process (Fig. ) consists of several steps aimed at (1) marking
relationship cardinalities, (2) calculating the in-degree of tables, (3) marking
facts, (4) marking dimensions and measures, and (5) spawning analysis contexts.
Note that several marks can be applied to each relational element, by adding
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f Detecting facts \
Ma_rkmg‘ C_alculatlng the Marking facts Marking Spawning
relationship in degree of . . y
o and measures dimensions analysis contexts
cardinalities tables

Fig. 4. Fact detection process

values to the description attributes provided by CWM. Before explaining the
process steps, we describe the heuristics they rely on.

Heuristics. Our heuristics are based on a set of measures calculated from the
tables of the rCWM model.

1. The first heuristics states that a table may be a fact if it contains a higher
number of instances (NIT) than most other tables. The rationale is that
a large table is frequently updated because it stores data related to dy-
namic events of a business process. The NIT value is retrieved querying
data sources through a simple SQL query.

2. The second heuristics states that a table may be a fact if it has a large ratio
of numerical attributes: NAR = NNA/NTA, where NN A is the number of
numeric attributes and NT' A is the total number of attributes of a table.

3. The third heuristics states that a table may be a fact if it has a low in-degree,
i.e., few or no incoming foreign keys (an incoming foreign key for table T is
a foreign key referencing the primary key of T').

To quantify qualitative terms such as “high” and “few”, we computed three
thresholds. Thresholds for NIT and NAR are calculated using the statistical
percentile concept [I5]. We have chosen the upper quartile (75-th percentile)
as the NIT threshold and the lower quartile (25-th percentile) as the NAR
threshold because this gave good results in our case study. Of course, further
tests will be needed to find the best percentile to be used in general cases. The
in-degree threshold is fixed to 1, which means considering as potential facts only
tables with one or no incoming foreign key. We use 1 instead of 0 to consider
some specific patterns that we will explain in the following subsections.

Each heuristic measure is stored in a CWM tagged value connected to the
related table, as shown in Fig. [l Thresholds are stored using tagged values
linked to the package that contains relational elements.

Marking relationship cardinalities. The relational model has a limited
expressiveness. Specifically, one-to-one relationships, that have an ad-hoc rep-
resentation in the Entity-Relationship model, are not explicitly modeled in a
relational schema. Indeed, the existence of a foreign key between two tables does
not explain if the relationship between these tables is many-to-one or one-to-one.
Since this knowledge is necessary for our approach, we use two transformations
to single out two kinds of one-to-one relationships that we will call, respectively,
strong and weak.
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— Strong one-to-one relationships are schema-based since they are derived and
validated within the schema structure. Precisely, a strong one-to-one rela-
tionship between two tables T" and S is detected when the primary key of
T is a foreign key referencing S. A QVT transformation checks this pattern
inside rCWM models and marks the foreign keys involved as one-to-one.

— Weak one-to-one relationships are instance-based, since they are elicited from
data sources instances. A weak one-to-one relationship between 7" and S is
detected when T includes a foreign key (different from its primary key)
referencing S, and at most one tuple of T has the value of the primary
key of each tuple of S. In this case, no explicit schema constraint assured
the correctness of this cardinality assumption; however, considering that
data warehouse systems are typically fed by data sources populated with a
huge amount of data —hence, instances are representative of the application
domain—, we can reasonably take it as true. A specific QVT transformation
has been developed for detecting this pattern by integrating the algorithm
proposed in []. Precisely, two queries are performed over T to count the
number of non-null values of its foreign key with and without duplicates;
the QVT transformation stores the results, compares them, and marks the
foreign key as one-to-one if they are equal.

Foreign keys not marked as one-to-one are marked as many-to-one. In our run-
ning example, the foreign keys that link NationalSale and InternationalSale to
Sale are marked as (strong) one-to-one, as well as the (weak) one that connects
Organizer to Category. The other foreign keys are marked as many-to-one.

Calculating the in-degree of tables. A QVT transformation rule has been
defined to calculate in-degree of tables. Note that a foreign key that has already
been marked as one-to-one is not taken into account here, due to the possibility
to navigate these relationships in both ways. Indeed, two tables marked as facts
can be linked by a foreign key expressing a one-to-one relationship.

In our running example, table Order has in-degree 1, while Sale has in-degree 0
even if it has two incoming foreign keys (from NationalSale and InternationalSale,
respectively), because these were marked as one-to-one.

Marking facts and measures. A table is marked as a fact if (1) its NIT and
N AR are greater or equal to the thresholds, and (2) its in-degree is 0 or 1. The
comparison is made by the QVT transformation presented in Fig. Bl Then, all
numerical attributes of each table T marked as fact (excluding those belonging
to the primary key of T') are marked as potential measures. In our example, Sale,
Order, OrderDetail, and Product meet the first constraint, so they can be marked
as facts. However, Product is not marked as a fact because its in-degree is 2 (i.e.
the second constraint is not fulfilled).

Marking dimensions. For each table T" marked as fact, its dimensions and
the related hierarchies can be derived by following many-to-one relationships as
normally done in current approaches (e.g., [B/]).
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Table2Fact
NAR : TaggedValue inDegree : TaggedValue
tag = 'NAR' tag = 'inDegree’ .
value = v_NAR value = v_inDegree <<d.oma|n>>
taggedValue Taggedvalue t: Table
<<dornain>>
t: Table CWM,—CWM
e COE e description
d : Description

tag ='NIT"
value = v_NIT

when

V_NIT toReal() >= (t namespace taggedValue >select(e | e tag =
'NIT_Threshold').first().value);

V_NAR toReal() >= (t namespace taggedValue >select(e | e tag =
'NAR_Threshold').first().value);

v_inDegree real() <= 1;

Fig.5. QVT transformation for marking facts

Spawning analysis contexts. The aim of this phase is to create a set of
models, each related to a possible analysis context, so as to generate every mul-
tidimensional solution implicitly contained in the relational data sources. This
is done in two situations:

1. Fact-dimension conflicts. After the marking process, the marked rCWM
model may present some configurations of marks that lead to inconsistencies
in the multidimensional schema. These conflicts must be handled before cre-
ating the multidimensional representation of elements. Precisely, a marked
rCWM model contains a conflict when a table is marked both as a fact and
as a dimension. In our example, there is a conflict in the Order table. To
overcome this problem, for each table T" that has a conflict two rCWM mod-
els, corresponding to two different analysis contexts, are spawned: one where
T is marked as dimension, one where it is marked as fact.

2. Specialization. When a table T marked as fact has a one-to-one foreign key
referencing table S, we spawn two rCWM models: only S is marked as fact
in the first one; S and T are marked as facts in the second one. For example,
InternationalSale and NationalSale are both linked with one-to-one relation-
ships to Sale. This leads to creating three rtCWM models where: (1) only Sale
is marked as fact, (2) Sale and InternationalSale are marked as facts, and (3)
Sale and NationalSale are marked as facts.

In the end, the total number of rCWM models spawned depends on the number
of conflicts and specializations in the original marked rCWM model. Precisely,
the total number of rCWM models is MN = (CN = 2) * Hf:]\i SNT,; where CN
is the number of fact-dimension conflicts, SN the number of specializations, and
SNT; the number of tables involved in the i-th specialization.

It is worth noting that an exponential number of rCWM models is obtained
this way. In order to manage these high amount of models, our proposal can be
easily integrated in the model-driven approach for data warehouse development
proposed in [T6/17], where the rCWM models can be reconciled with a conceptual
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schema previously defined from the information requirements of decision makers.
A single multidimensional schema, that at the same time fits data sources and
fulfills user requirements, is obtained this way. Due to space constraints, this
reconciliation phase is not discussed in this paper.

3.3 Deriving Multidimensional Elements

The spawning phase creates one or more rCWM models. Two special patterns
have been developed for handling special situations that can arise afterwards,
namely (1) skip and (2) merge. Both share the same starting situation, i.e., two
tables T and S marked as facts and such that T references S via a foreign key.
The patterns are distinguished depending on the the mark applied to this foreign
key.

1. When the foreign key is marked as many-to-one, a skip pattern is detected.
In this case, T' and its dimensions are not included in the multidimensional
schema, so as to focus on the right granularity in each case. For example,
the OrderDetail fact-marked table is skipped and Order is considered as fact.
We recall that OrderDetail will be considered as fact in one or more other
solutions.

2. A merge pattern is detected when the foreign key is marked as one-to-one.
In this case, a fact is created whose dimensions and measures are the union
of those belonging to T' and S. For instance, Sale can be merged with Na-
tionalSale or InternationalSale to create facts for national and international
analysis purposes, respectively.

These patterns are applied using QVT transformations, one of which
(Table2Merge) is shown in Fig. In this merge transformation, an input pat-
tern consisting of a table 7" marked as fact that refers S by means of a foreign
key fk marked as one-to-one, leads to create a fact f (previously created from
table S by means of the Table2MDFact transformation as shown in Fig. [Gal). Im-
portantly, according to the QVT transformations called in the WHERE clause,

Table2MDFact

Table2Merge
<<domain>>
<<domain>> S : Table d : Description
:
=Nn_ <<domain>> ownedElement destription
¢ cww, MD f: Fact pk : PrimaryKey
""""" domain>>
description c E | name=nf | — CWM,— MD <=do
d : Description ‘ s & e >
, - fk : ForeignKey
namespace
when [ T:Table | dgescriptiof d1 : Description |
S ownedElement >collect(p | p oclAsType(CWM::ForeignKey)) ‘ name =n_{2 | | name = Fact_|
>collect(e | e uniqueKey) >collect(a | a namespace)
>select(r | isFact(r) = 'Fact’) >isEmpty() ‘when
where S<>T;
n_f = retrieveName(S); where
Table2Merge(S, f); Table2Dimension(T f)
Table2Skip(S,f); Table2Merge(T.f);
Table2Dimension(S f); Table2Skip(T.f);
(a) Obtaining facts (b) Merging facts

Fig. 6. QVT from a marked rCWM model to a multidimensional schema
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Fig. 7. Transformation execution order

Sale NationalSale

InternationalSale
L

e B L~
. A \ p-o / \ ShipMethod
A / \
L3 ¥
Store /Product x | f z’x
Store \ /Product Store /Product

¥ ¥

z . z . r
¢« OrderDetail : . OrderDetail f, OrderDetail
Order Order Order
(a) (b) (c)
Sale NationalSale

ﬁ . ] ﬁ InternationalSale
i x Y g
ZipCode ﬁ: T&g
/j \ /j \ ShipMethod
) . ) / \
2 t 3 | [! !‘ G
¥ X

3

Product Store \ Product Store \ Produet

Order Order Order

(@) (e) (5)

Fig. 8. Approach results over running example

Store

the multidimensional counterparts of all the tables related to T" will be related
to f. Besides, when merge transformations are applied, the name of the table
analyzed in the last merge transformation called is chosen as the fact name.

As to the order for applying transformations, the Table2MDFact transforma-
tion is executed first to create all facts, then special patterns are detected and
applied by means of the QVT transformations called in the WHERE clause.
The transformation flow is graphically represented in Fig. [ using the approach
defined in [I§].

In Fig. B we present the solutions derived by applying our approach to the
running example (measures and time dimensions are not shown for simplicity).
The solutions in Fig. Bal BB and [Bd consider as facts OrderDetail and Sale in a
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general, national, and international analysis context respectively. The solutions
in Fig. Bdl Be, and [Bf consider as facts Order rather than OrderDetail. As a whole,
these solutions bring to light the full multidimensional potential of data sources;
designers can then select the solution that best matches user requirements.

4 Conclusions and Future Work

Current approaches for data-driven conceptual design do not give designers a
comprehensive and formal approach to detect facts. To fill this gap, in this
paper we presented a model-driven approach for formalizing fact discovery in re-
lational data sources by means of QVT transformations. Our approach is based
on a set of heuristics relying on syntactical information derived from the data
sources, thus guiding designers in the detection of multidimensional facts inde-
pendently of their knowledge about the application domain. Remarkably, our
approach has low computational complexity; the total processing time for the
largest relational source schema we used for testing (about 130 tables and 140
foreign key constraints) is about 20 seconds.

The proposed model transformations have been implemented in the EcLipsid
development platform. ECLIPSE is an open source project which has been con-
ceived as a modular platform that can be extended by means of plugins in order
to add more features and new functionalities. In that way, we have designed
a set of modules encapsulated in a single plugin that provides ECLIPSE with
capabilities for supporting our approach:

Relational module. Itimplementstherelational metamodel contained in CWM.

Multidimensional module. The profiling mechanism of the Unified Modeling
Language (UML) has been used to create multidimensional models.

Transformation module. It uses medim'QVTE‘, a QVT transformation en-
gine, in order to code and execute the mapping patterns.
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Abstract. Although many proposals exist for extending Geographic In-
formation Systems (GIS) with OLAP and data warehousing capabilities
(a topic denoted SOLAP), only recently the importance of supporting
continuous fields (i.e., phenomena that are perceived as having a value
at each point in space and/or time) has been acknowledged. Examples
of such phenomena include temperature, altitude, or land use. In this
paper we discuss physical design issues arising when a spatial data ware-
house includes a combination of spatial and non-spatial dimensions and
measures, and spatio-temporal dimensions representing continuous fields.
We give the syntax and semantics of the data types (and their opera-
tors) needed to support fields in SOLAP environments, and present an
implementation of these types, on top of spatial-SQL. We also show how
queries using the spatio-temporal operators for fields are written, parsed,
and executed.

1 Introduction

In the last few years, efforts have been carried out to integrate Geographic In-
formation Systems (GIS) [I] and OLAP (On-Line Analytical Processing) [2].
This integration, called SOLAP (standing for Spatial OLAP), aims at exploring
spatial data by drilling on maps, in the same way as OLAP operates over tables
and charts. This concept was introduced by Rivest et al. [3], who also describe
the desirable features and operators a SOLAP system should have. A survey on
the topic can be found in [4]. The need for sophisticated GIS-based decision sup-
port systems, for the analysis of organizational data with respect to geographic
information, is encouraging OLAP and GIS vendors to integrate their products.

Advances in data analysis technologies raise new challenges. One of them is
the need to handle continuous fields, which describe physical phenomena that
change continuously in time and/or space. Examples of such phenomena are
temperature, pressure, and land elevation. Besides physical geography, continu-
ous fields (from now on, fields), like land use and population density, are used in
human geography as an aid in spatial decision-making process. Formally, a field
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is defined as composed of [5]: (a) a domain D which is a continuous set; (b) a
range of values R; and (¢) a mapping function f from D to R.

Although some work has been done to support querying fields in GIS, spatial
multidimensional analysis of continuous data is still in its infancy. Existing mul-
tidimensional models dealing with discrete data are not adequate for the analysis
of continuous phenomena. Multidimensional models and associated query lan-
guages are thus needed, to support continuous data. Recently, Vaisman and
Zimanyi [0] presented a conceptual model for SOLAP that supports dimensions
and measures representing continuous fields, and characterized multidimensional
queries over fields. They defined a field data type, a set of associated operations,
and a multidimensional calculus supporting this data type. In this paper we go a
step further, and study the translation of this conceptual data model to physical
structures based on the well-known star-schema [2]. We also introduce two new
data types, field and tempfield, define a semantics for the operators associated
to these types, and present an implementation for them. Finally, we define an
SQL-like query language over the physical structures and operators mentioned
above, and provide a preliminary implementation of the language.

This paper is organized as follows. Section 2] provides an overview of related
work dealing with fields. Section [ presents the conceptual model, and introduces
the field data type and its associated operators. In Section @] we discuss the
physical warehouse design to implement the conceptual model and we introduce
the SQL-like language to support fields. Section [{] presents the operators of the
field data type, whose implementation is shown in Section [l Section [f] presents
the query language, and Section [] sketches how a query in this language is
implemented. We conclude in Section [0

2 Related Work

In his pioneering work on defining algebra for fields, Tomlin [7] proposed a so-
called map algebra, based on the notion that a map is used to represent a
continuous variable (e.g., temperature). There are three types of functions in
Map algebra: local, focal, and zonal. Local functions compute a value at a certain
location as a function of the value(s) at this location in other map layer(s).
Focal functions compute each location’s value as a function of existing values in
the neighboring locations of existing layers (i.e., they are characterized by the
topological predicate touches). Zonal functions (characterized by the topological
predicate inside), compute a location’s new value from one layer (containing the
values for a variable), associated to the zone (in another map) containing the
location. Camara et al. [8] and Cordeiro et al. [9] formalized and extended these
functions, supporting more topological predicates. We base our proposal on this
work, and on the proposal of Mennis et al. [10], where map algebra operators are
extended to query time-varying fields. The model and query language we present
here cover those proposals, and extend them to the multidimensional setting.
Paolino et al. [5] introduced Phenomena, a visual language for querying con-
tinuous fields, based on a conceptual model where users view the world as con-
sisting of both continuous fields and discrete objects, and are able to manipulate
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them in a uniform manner. Phenomena uses an extension to Spatial SQL that
supports continuous fields, proposed by Laurini et al. [11]. GeoRastell] is a fea-
ture of Oracle Spatial that allows storing, indexing, querying, analyzing, and
delivering raster data, and its associated metadata. GeoRaster provides special-
ized data types and associated operators, as well as an object relational schema,
which can be used to store and manipulate multidimensional raster layers. None
of these tools and languages were devised for a SOLAP setting.

Regarding fields and multidimensional models, the joint contribution of the
GIS and OLAP communities to this problem has been limited. Shanmugasun-
daram et al. [I2] proposed a data cube representation that deals with continuous
dimensions. This works focuses on using the known data density to calculate
aggregate queries without accessing the data. The representation reduces the
storage requirements, but continuity is addressed in a limited way. Ahmed et al.
use interpolation methods to estimate (continuous) values for dimension levels
and measures, based on existing sample data values [I3]. Continuous cube cells
are computed on-the-fly, producing a continuous representation of the discrete
cube. These proposals are based on a data model devised for OLAP, not for
spatial OLAP, which goes against a comprehensive representation of spatial di-
mensions and measures. Opposite to this, our approach is based on a conceptual
multidimensional model designed with spatial data in mind. Thus, continuous
fields are introduced as a natural extension to this model. In order to support
fields, Vaisman and Ziményi presented a conceptual model for spatio-temporal
OLAP supporting fields, and a calculus to query such data. In this paper, we
build on that work to propose a user-friendly SQL-like version of the calculus
making use of two new data types that support spatio-temporal fields.

3 Preliminaries

We now briefly describe the conceptual model proposed in [6], extending the
MultiDim model [I4] to support fields. For this we use the example in Figure[I]
which represents information about crops produced at land plots. We use this
model also as our running example. There is information in vector format de-
scribing the location of land plots in provinces. Further, there are raster maps
of elevation, soil type, temperature, and precipitation.

A multidimensional schema is a finite set of dimensions and fact relationships.
A dimension comprises at least one hierarchy, which contains at least one level.
A hierarchy with only one level is called a basic hierarchy. Levels in a hierarchy
(e.g., the one formed by LandPlot and Province) are related to each other through
a binary relationship that defines a partial order < between them. Given two
consecutive related levels l;,1;, if [; =< l; then [; is called child and [; is called
parent. When levels in a hierarchy are spatial, they are related by a topological
relationship. For example, the @ pictogram in the LandPlot hierarchy indicates
that a land plot is covered by its parent (a province).

!http://download.oracle.com/docs/html/B10827_01/geor_intro.htm
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Fig. 1. An example of a spatial data warehouse with continuous fields

A level representing the least detailed data in a hierarchy is called a leaf level
(e.g., LandPlot), and is related to at least one fact relationship (e.g., Yield). The
latter represents an n-ary relationship between two or more leaf levels. If these
levels are spatial, the relationship may also be topological and requires a spa-
tial predicate. For example, the @& pictogram in Yields indicates an intersection
between the spatial dimensions LandPlot and Crop. A fact relationship contains
measures, which may be thematic or spatial. The former (e.g., production) are
the usual alphanumeric measures in standard OLAP, and may be calculated us-
ing spatial operators, such as distance or area. The latter are represented by a
geometry or a field. An example is the cropArea measure, which is computed as
the intersection of land plots and crop areas. Dimension levels are composed of
key attributes and property attributes. A key attribute of a parent level (e.g.,
name in Province) determines how child members are grouped for applying aggre-
gation functions to measures. A property attribute contains additional features
of a level; it can be spatial (represented by a geometry or field) or thematic
(alphanumeric data types).

To support fields, we include the notion of field dimensions and field measures.
Non-temporal field levels and measures are identified by the (@) pictogram,
while temporal ones are identified by the f(@,@®) pictogram. A field dimension
is a dimension containing at least one level that is a field. In our example, the
field dimensions are Elevation, SoilType, Temperature, and Precipitation where the
latter two are temporal field dimensions. A field measure is a measure represented
by a continuous field. For example, suitability is a field measure computed in
terms of elements in the model, e.g., the suitability at a certain point can be a
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function of the kind of crop, temperature, precipitation, and elevation, at that
point or its vicinity. Finally, a field hierarchy is a set of related field levels; it
allows a field to be seen at different granularities. Although not shown in our
example, SoilType can define a hierarchy for soil classification, e.g., the USDA
Soil Taxonomy.

Notice that in our approach field dimensions deserve particular treatment. In
traditional multidimensional models, every dimension is connected to at least
one fact relationship. The same approach has been followed in models intro-
ducing fields in spatial data warehouses (e.g., [I3]), where dimension instances
are values in the underlying domain (that may be obtained through on-the-fly
interpolation). Due to the nature of continuous fields, there may be an infinite
number of instances, each one corresponding to one possible value of the domain.
We chose a different approach: we define a field dimension containing only one
instance (corresponding to the function), and the attributes of the field dimen-
sion correspond to metadata describing it, like the units at which the values
are recorded (e.g., Celsius or Farenheit for temperature). Consequently, field di-
mensions are part of the model, but are not tied to any particular fact table.
The physical model we propose below shows the viability of this approach, and
reveals the drawbacks of on-the-fly interpolation.

4 A Physical Model for DWs with Continuous Fields

We discuss next a physical data model supporting the conceptual model intro-
duced in Section[Bl Most conceptual models for spatial data warehouses proposed
so far are based on the star/snowflake schema, but do not follow such schema
when it comes to implementation issues. In these models it is not clear how a
field (e.g., implemented as a raster grid) can fit into the standard star/snowflake
schema. As mentioned before, we propose a different approach where field di-
mensions are not linked to the fact table. Although field dimensions are part of
the model, and are considered as elements in the query language, there is no
natural key to tie fields to a fact table. However, aggregations over fields can be
included as pre-computed field measures in the fact table.

We represent fields using raster structures describing regular square grids. Our
implementation is based on the OpenGIS specification for coverage geometry and
interpolation functions of the OGC [I5]. Other implementations of fields using
irregular tesselations of space, such as triangulated irregular networks (TIN) or
Voronoi diagrams, are possible and are left for future work. Nontemporal fields
are stored in a table containing a spatial attribute (denoted geom) representing
the geometry of the cell, and an alphanumeric attribute that stores its value.
Temporal field tables have two additional attributes representing, respectively,
the start and end instants of the value’s validity interval.

Dimension tables represent both spatial and nonspatial dimensions. There can
be either one table per dimension level or one table per dimension, depending
on whether the dimension is normalized or not (i.e., either a star or a snowflake
schema is used). Spatial dimension tables have an additional spatial attribute
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(denoted by geom) containing the geometry of the object. Field dimension tables
have, in addition to the attributes of field tables, an attribute containing the
metadata of the field (which can be implemented, for example, as an XML
document). Non-field dimension tables have a surrogate identifier denoted id.
This identifier allows dimension tables (spatial or not) to be linked to fact tables
through a foreign key relationship.

Fact tables include references to spatial and nonspatial dimension tables. We
consider four kinds of measures: (1) numeric, as in standard OLAP; (2) spatial
measures; (3) field measures; and (4) field aggregations. An example of a mea-
sure of type (2) is cropArea in Figure [Il This measure, of spatial type region,
represents the intersection (or any other valid spatial operation) of all the spatial
dimensions, while taking into account the other nonspatial dimensions. In our
example, at a given day, a member of the LandPlot level (say, L1) may intersect
a member of the Crop level (e.g., wheat). The intersection of the geometries of
both members (e.g., multipolygons according to the OGC data types) results
in another geometry that is recorded in the fact table as the spatial measure
cropArea. An example of measure of type (3) is suitability in Figure[Il This mea-
sure is actually a field, which can be precomputed, at each point, as a function
of geographic characteristics of related spatial dimensions (LandPlot and Crop),
other related dimensions (Time), other fields (Elevation, ...), and other param-
eters. One possible way of implementing such a measure is to have a field value
associated to each instance of the fact table, in our case, to each combination
of land plot, crop, and time. Measures of type (4) are aggregations of measures
of type (3), in a way that resembles map algebra operations. In Figure [Il mea-
sure avg Temp indicates the average value of the temperature field at the finest
granularity of the fact table, that is, at the combination of land plot, crop, and
day. In other words, a tuple in the fact table Yield will have an attribute that
represents this temperature.

5 The Field and Temporal Field Data Types

We define next two new data types, denoted field and tempfield, and their cor-
responding operations, along the lines of Giiting et al. [16].

Field types capture the variation in space of base types. They are obtained by
applying a constructor field(-). Hence, a value of type field(real) (e.g., representing
altitude) is a continuous function f : point — real. We describe next some of the
operations of field types.

A set of operations realize the projection into the domain and range. The def-
space operator receives a field, and returns the geometry defining it; rangevalues
receives a field, and returns the set of values that the function takes.

Another set of operators allow the interaction with domain and range. Opera-
tions atpoint, atpoints, atline, and atregion restrict the function to a given subset
of the space defined by a spatial value. That means that the operators receive a
field and a geometry, and return a field restricted to such geometry. Operations
at and atrange restrict the function to a point or to a point set in the range of
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the function. Predicates atmin and atmax reduce the function to the points in
space when its value is minimal or maximal.

Rate of change operators compute how a field changes across space. Func-
tions partialder x and partialder y give, respectively, the partial derivative of the
function defining the field with respect to the one of the axis x and y.

Aggregation operators take a field as argument and produce a scalar value.
Operations fmin and fmax give, respectively, the minimum and maximum value
taken by the function. Three field aggregation operators take as argument a field
over numeric values (int or real) and return a real value. These are volume, area,
surface with their standard meaning. From these basic operators, other derived
operators are defined, namely favg, fvariance, and fstdev.

All operations on base or spatial types are generalized for field types. An
operation is lifted (following [16]) to allow any of the argument types to be re-
placed by the respective field type and also return a corresponding field type.
Intuitively, the semantics of such lifted operations is that the result is computed
at each point using the non-lifted operation. Aggregation operators are also up-
lifted in the same way. For instance, an uplifted avg operator combines several
fields, yielding a new field where the average is computed at each point in space.
These uplifted aggregation operations correspond to Tomlin’s local functions [7].

Focal, zonal, and global operators can be derived from the above operators.
Focal (or meighborhood) operators compute a new field in which the output
value at a point is a function of the values of the input field in the neighborhood
“around” that point. Neighborhoods can be defined by different sizes and geome-
tries. Different arithmetic and statistical functions can be applied to summarize
neighborhood values. For example, a focalmax that computes at each point p the
maximum value of the neighborhood around that point at a distance d can be
defined as follows

focalmax(f, p,d) = fmax(atregion(f, buffer(p, d))).

Here, the buffer operator creates a surface of radius d around point p, the atregion
operator restricts the field f to that surface, and the fmax operator takes the
maximum value among all the values of the resulting field.

Zonal operators take as input two fields, f; defining the input values and fs
defining a set of zones, and compute an output field where the value at each point
is computed from all values of the input field that belong to the zone associated
with that point. For example, a zonalmax that computes at each point p the
maximum value of the zone to which p belongs can be defined as follows

zonalmax(f1, f2,p) = fmax(atregion( f1, defspace(at( fa, val(atpoint(fz, p)))))).

Here, atpoint restricts the field fy defining the zones to the point p, val takes the
value v of the field at that point, at restricts f; to the points that have value v,
defspace obtains the underlying space where f5 takes value v, atregion restricts
the input field f; to that space, and the fmax operator takes the maximum value
among all the values of the resulting field.

Finally, global functions compute a field in which the value at a point is
computed from potentially all the points of the underlying space. An example is
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the Euclidean distance which, given a set of “sources” defining objects of interest
such as schools, hospitals, or roads, computes for each point p of the underlying
space the distance to the closest source. If the sources are defined by a geometry
g (of one of the four spatial types) such a function can be defined as follows

globaldistance(p, ¢) = distance(p, g),

where the distance function [I6] determines the minimum Euclidean distance
between the closest pair of points from the first and second arguments.

Temporal fields model phenomena whose value change along time and space.
(e.g., temperature). The work in [6] defines temporal fields based on the moving
types in [I6]. Moving (or temporal) types are obtained by applying the con-
structor moving(-). Hence, moving(real) (e.g., representing the temperature at
a specific point) is a continuous function f : instant — real. Temporal fields
are obtained by applying a constructor tempfield(-) which is an abbreviation of
moving(field(-)). We describe next some of the operators of moving types.

A set of operations realize the projection into the domain and range. Oper-
ations deftime and rangevalues return, respectively, the projection of a moving
type into its domain and range. In other words, given a temporal field, deftime
returns the intervals in which it is defined, and rangevalues returns a set with
the values in its range.

Another set of operators allow the interaction with domain and range. Op-
erations atinstant and atperiod restrict the function to a given time or set of
time intervals. That means, given a field and a time instant (period), returns
the field(s) valid at that time(s). Operations initial and final return, respectively,
the (instant,value) pairs for the first and last instant of the definition time. Op-
eration at restricts the function to a point or to a point set (a range) in the
range of the function. Predicates atmin and atmax reduce the function to the
times when it was minimal or maximal, respectively. The present predicate al-
lows checking whether the temporal function is defined at an instant of time,
or is ever defined during a given set of intervals. Analogously, predicate passes
checks whether the function ever assumed one of the values from the range given
as second argument.

Finally, as was the case for field types, all operations on nontemporal types
are generalized (or lifted) for moving types. As an example, the = operator has
lifted versions where one or both of its arguments can be moving types and the
result is a moving Boolean. Intuitively, the semantics of such lifted operations is
that the result is computed at each time instant using the non-lifted operation.

6 A SOLAP Language That Supports Fields

We now present an SQL-like query language for the model of Section Bl This
model requires a language that supports different kinds of objects, namely di-
mensions, fact tables (spatial and non-spatial), and fields. Vaisman and Ziményi
[6] proposed a query language based on the tuple relational calculus extended
with aggregate functions and variable definitions proposed by Klug [17]), and
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showed that extending this calculus with field types is enough to express multi-
dimensional queries over fields. We base our language on this calculus.

We start with a simple example that does not include fields: “For land plots
located in the province of Limburg and crops in the cereals group give the max-
imum production by month”.

SELECT lLlandPlotNo, t.month, max(y.production)

FROM LandPlot I, Crop ¢, Time t, Yield y

WHERE |.province.name="“Limburg” AND c.group.name="“Cereal”
GROUP BY l.landPlotNo, t.month

Like in typical OLAP languages, we hide the structure of the dimensions,
which is stored as metadata. Also, metadata allows determining which type of
objects are the ones in the FROM clause (e.g., dimension tables — spatial or
not —, fact tables, or fields). This query can be trivially translated to SQL as:

SELECT l.landPlotNo, m.month, max(y.production)

FROM LandPlot I, Province p, Crop ¢, Group g, Time t, Month m, Yield y
WHERE y.landPlot=I.id AND I.province= p.id AND p.name="“Limburg”
AND y.crop=c.id AND c.group=g.id AND g.name="“Cereal”

AND y.time=t.id AND t.month=m.id

GROUP BY l.landPlotNo, m.month

We next introduce fields in the language. Let us start with a simple query,
not involving a fact table: “Total area at sea level in the province of Antwerp”.

SELECT area(intersection(defspace(at(e.geom,0)),l.province.geom))
FROM Elevation e, LandPlot |
WHERE I.province.name=“Antwerp"

Function at restricts the elevation field to the points in space that have the value
0, and defspace yields the region containing such points, which is then intersected
with the province of Antwerp. The area operator is finally applied.

The next query includes a fact table: “For land plots having at least 30%
of their surface at the sea level, give the average suitability value for wheat on
February 1st, 2009.”

SELECT I.LandPlotNo, favg(y.suitability)

FROM Elevation e, LandPlot I, Yield y, Crop ¢, Time t

WHERE area(defspace(atregion(at(e,0),l.geom)))/area(l.geom) > 0.3
AND c.name="Wheat” AND t.date="02/01/2009"

Here, the elevation field is restricted to the value 0 by means of function at,
and the resulting field is restricted to the geometry of the land plot with func-
tion atregion. The operator defspace obtains the geometry of the restricted field,
the area of this geometry is computed, and this is finally divided by the total
area of the land plot. Then, the average suitability is computed using the field
aggregation operation favg applied to the field measure suitability.
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We now show a spatio-temporal query including fields: “Land plots at the sea
level in Limburg with average temperature greater than 10°C in March 2009
and suitability (at every point of the land plot) for a wheat crop at June 1st,
2009 greater than 1.4.”

SELECT l.landPlotNo

FROM LandPlot I, Crop ¢, Time t, Temperature temp, Yield y

WHERE I.province.name="Limburg” AND
favg(avg(atperiods(atregion(temp,l.geom),[“03/01/09","“03/31/09"])))>10
AND intersects(defspace(at(e,0)),l.geom)

AND t.date= “1/6/2009" AND c.name="Wheat"

AND defspace(atrange(y.suitability,[1.4,-]))=l.geom

The temperature field, restricted to the geometry of the land plot and to March
2009, is aggregated with the avg operator (a local cubic operation). Then, favg
is applied to obtain the average at the land plot, which is then compared to
10. The topological predicate intersects verifies that the land plot overlaps the
region defined by the elevation field restricted to the sea level. After obtaining
the instance of the fact relationship relating the land plot, the date, and the
wheat crop, the suitability field for this instance is restricted to the points that
have a value greater than 1.4, the region containing those points is obtained with
function defspace, and it is verified that this region equals the geometry of the
land plot, ensuring that every point satisfies the condition.

Finally, we show an example of a query returning a field: “Restrict the pre-
cipitation field to December, 2009, to the areas with an altitude greater than
150m, and an average production of wheat greater than one thousand tons.”

SELECT atregion(atregion(atperiod(p,[“12/1/2009","12/31/2009"]),
defspace(atrange(e,[150,-]))).
(SELECT I.geom
FROM Yield y, LandPlot I, Crop ¢
WHERE c.name=“Wheat"
GROUP BY Il.geom
HAVING AVG(y.production) > 1000))
FROM Elevation e, Precipitation p

The atperiod function restricts the precipitation field to December, 2009 and
the result is restricted (inner atregion) to the space defined (defspace) by the
restriction of the elevation field to values greater than 150 (atrange). The outer
atregion function restricts this resulting field to the result of the inner query
which returns the set of geometries for land plots having an average production
of wheat greater than one thousand.

7 Implementing the Operators

We show now how the operators over fields are implemented. We designed the
following experimental scenario, according to the conceptual model of Figure [Tl
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We downloaded field data from the WorldClim siteﬁ7 which provides layers with
raster information at different resolutions. For our region of interest (a portion
of Belgium), we used elevation data with a resolution of 5 arc-minutes, obtain-
ing 655 cells, and temperature and precipitation data with a resolution of 10
arc-minutes, obtaining 185 cells. Raster data was downloaded in a generic grid
format exported to ESRI Shape file formatﬁ, an later imported to a PostgreSQL
database with the PostGIS plugirﬁ . This generates polygons with associated val-
ues. The units for elevation, precipitation, and temperature are meters, milime-
ters, and Celsius * 10, respectively. Both, precipitation and temperature data
correspond to monthly values. We created synthetically dimension and fact data
(e.g., land plots, crops). As we explained in Section [ fields are stored in tables
with attributes ‘geom’ and ‘value’. In addition, temporal fields have attributes
‘startDate’ and ‘endDate’ representing the validity interval of the field.

We now show how the defspace and atregion operators are implemented. The
other ones are implemented analogously. Since the actual Java code is self-
descriptive, we have chosen to show this code instead of pseudo-code listings.

(1) Geometry defspace(String tempFieldTable) throws SQLException {
(2) String sqIDML;

(3) sqIDML= String.format( “SELECT geom FROM %s", tempFieldTable);
(4) PreparedStatement pstmt = dbConn.prepareStatement(sqIDML);

(5) ResultSet rs = pstmt.executeQuery();

(6) Collection{Geometry) geomCollection = new ArrayList(Geometry)();
(7) while (rs.next()){

(8) Geometry aGeom = GeometryReader.getGeometry(rs.getObject(1));
(9) geomCollection.add(aGeom);}

(10) pstmt.close();

(11) return unionAll(geomCollection);}

Fig. 2. A Java function to compute defspace

Figure[2shows a Java function implementing the defspace operator. It receives
as parameter the name of the table representing a field and returns the geometry
over which the field is defined (i.e., the union of all the polygons that the field
contains). The SQL statement in Line (3) retrieves the spatial element in the
field table. The loop in Line (7) creates a collection of these geometries.

Note that Figure Bl shows two Java functions that implement the atregion
operator. For implementation reasons we need to define two different functions
that differ in the type of second parameter. The first atregion function receives a
field and a geometry as parameters, and returns a field restricted to the bound-
aries of the geometry. If the geometry is empty, the field is not updated. The
SQL statement in Line (5) deletes the tuples of the field that have no intersec-
tion with the geometry. The statement in Line (9) updates the spatial attribute

2 http://www.worldclim.org/current
3http://www.esri.com/
4http://www.postgresql.org/; http://www.postgis.org/k
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void atregion(String tempFieldTable, Geometry geom) throws SQLException {

(1) if (geom.isEmpty())

(2) return;

(3) String sqIDML;

(4) PreparedStatement pstmt;

(5) sqIDML= String.format( “DELETE FROM %s WHERE NOT
INTERSECTS(geom, %s)"”, tempFieldTable, geom);

(6) pstmt = dbConn.prepareStatement(sqIDML);

(7) pstmt.execute();

(8) pstmt.close();

(9) sqIDML= String.format( “UPDATE %s SET geom=INTERSECTION(geom, %s)",
tempFieldTable, geom);

(10) pstmt = dbConn.prepareStatement(sqlDML);

(11) pstmt.execute();

(12) pstmt.close();}

void atregion(String tempFieldTable, Collection(Geometry) geomCollection)
throws SQLException {

(1) if (geomCollection.isEmpty())

(2) return;

(3) atregion(tempFieldTable, unionAll(geomCollection)); }

Geometry unionAll(Collection(Geometry) geomCollection){

(1) Geometry[] geomArray= new Geometry[geomCollection.size()];

(2) int i=0

3) for(lterator(Geometry) iter = geomCollection.iterator(); iter.hasNext(); i++) {

(4) geomArrayli]= iter.next(); }

(5) GeometryFactory geometryFactory = new GeometryFactory();

(6) GeometryCollection polygonCollection=
geometryFactory.createGeometryCollection(geomArray);

(7) Geometry union = polygonCollection.union();

(8) return union;}

Fig. 3. Java functions implementing the atregion operator

of the remaining tuples with the intersection between the field and the geom-
etry. Since the underlying language does not provide a ‘Union’ operator that
recursively computes the union of a set of geometries, we implemented a second
version of atregion. which first computes the union of all geometries in the sec-
ond parameter by invoking function unionAll. Its result is used in a call to the
first atregion function explained above. Line (7) in function unionAll computes a
union of geometries. Lines (5) and (6) are only for type conversion.

8 Implementing the Language

In this section we show how the last query in Section [d is translated and exe-
cuted. Figure [ shows part of the computation of this query. The upper part of
Figure[d shows the sequence of function calls starting from the inner operator of
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(1) String fieldTempTableNameElev= initField( “Elevation”);

(2) atrange(fieldTempTableNameElev, 150, Double. MAX VALUE);
(3) Geometry unionField = defspace(fieldTempTableNameElev);

(4) String fieldTempTableNamePrec = initField( “Precipitation”);

(5) atperiod(fieldTempTableNamePrec, “12/1/2009”, “12/31/2009");
(6) atregion(fieldTempTableNamePrec, unionField);
(7) lastPhase(fieldTempTableNamePrec);

public void lastPhase(String fieldTempTableName) throws SQLException {
(1) String sqIDML=

(2) “SELECT l.geom” +

(3) “FROM Yield y, LandPlot I, Crop ¢” +

(4) “WHERE c.name=\"Wheat\” " +

(5) “AND y.landPlot=I.landplotNo AND vy.cropld =c.id " +

(6) “GROUP BY l.geom” +

(7) "HAVING AVG(y.production) > 1000";

(8) PreparedStatement pstmt = dbConn.prepareStatement(sqIDML);
(9) ResultSet rs = pstmt.executeQuery();

(10) Collection({Geometry) geomCollection = new ArrayList(Geometry)();
(11) while (rs.next()){

(12) Geometry aGeom = GeometryReader.getGeometry(rs.getObject(1));
(13) geomCollection.add(aGeom); }

(14) pstmt.close();

(15) atregion(fieldTempTableName, geomCollection);

(16) spatialDump(fieldTempTableName, " A");}

Fig. 4. Query evaluation

the SELECT clause of the query (which, remember, returns a field). Since we do
not assume that field data fit in main memory, we use a temporary table that is
updated by sequentially applying the functions explained in Section [l Let us be
more concrete. We have shown in Section [ that the atregion operator updates
geometries and deletes tuples. Thus, the function initField(nameOfFieldTable)
(Line (1) in Figure @) generates a temporary table containing the data in the
original field table (in this case, Elevation). This table is the one that changes
during the execution of the query, preserving the original field. Then, in Line
(2) atrange is applied over the field returned in the previous step to delete the
tuples that do not satisfy the condition (elevation > 150). A unique geometry is
then generated over the result from the previous step using defspace (Line (3)).
Then, a temporary table is created for the precipitation temporal field (Line
(4)), atperiod is applied to the precipitation table for restricting the time frame
of the field in Line (5), and atregion is applied to the field obtained in the pre-
vious step for restricting it with the geometry returned in Line (3). Finally, the
function lastPhase is called. This function computes the collection of geometries
corresponding to the inner query in the FROM clause. In Line (9) of lastPhase
(shown in the lower part of Figure M), the translated inner query is executed
(where all the implicit joins are written in Line (5)), returning the land plots
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Fig. 5. The field resulting from the query

satisfying the query as a set of geometries collected in the loop in Line (11). In
Line (15) atregion is invoked, and in Line (16) the result is returned.

Figure [} shows the result of the query execution. There are two grids of
different precision, one for elevation and one for precipitation. The zones with
vertical bars indicate the resultant field, i.e, a precipitation field in regions with
the desired altitude, and only one kind of crop.

9 Conclusion and Future Work

We have presented a physical model for spatio-temporal data warehouses that
supports continuous fields. This model is based on two new data types, namely
field and tempfield. These data types have a collection of operators, which we
discussed. A relevant contribution of the present paper is the implementation
of these operators and an associated SQL-like language that allows expressing
SOLAP queries over continuous fields. The main goal of this implementation
consists in showing the viability of our approach.

As future work, we will perform extensive testing of the operators and the
language proposed here. Since spatio-temporal data warehouses contain huge
amounts of data, optimization issues are extremely important. They include is-
sues such as appropriate index structures, pre-aggregation, and efficient query
optimization, among others. With respect to the latter, our example queries
can be expressed in several ways, exploiting either the fact relationship or the
geometries of the dimension levels with spatial and topological operators. Al-
though these alternative queries yield the same result, the evaluation time of
them may vary significatively, depending on the actual population of the data
warehouse. Finally, we will consider other possible implementations of fields such
as triangulated irregular networks (or TINs) and Voronoi diagrams.
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Abstract. Spatial data warehouses (SDW) enable analytical multidimensional
queries together with spatial analysis. Mainly, three operations are related to
SDW query processing performance: (i) joining large fact tables and large spa-
tial and non-spatial dimension tables; (ii) computing one or more costly spatial
predicates based on spatial ad hoc query windows; and (iii) aggregating data
according to different spatial granularity levels. Several techniques to improve
the query processing performance over SDW have been proposed in the litera-
ture. However, we identified the lack of a benchmark to carry out a controlled
experimental evaluation of such techniques and, principally, to effectively
measure the costs of the aforementioned three complex operations. In this pa-
per, we propose a novel spatial data warehouse benchmark, called Spadawan, to
provide performance evaluation environments for SDW and enable a further in-
vestigation on spatial data redundancy. The Spadawan benchmark is available
at http://gbd.dc.ufscar.br/spadawan.

Keywords: spatial data warehouse, benchmarking, performance evaluation,
drill-down and roll-up operations.

1 Introduction

Spatial data warehouses (SDW) enable analytical multidimensional queries together
with spatial analysis. A relational SDW inherits several components of conventional
data warehouses, such as fact and dimension tables, numeric measures and hierarchies
that aggregate these measures according to distinct granularity levels [1]. Addition-
ally, the SDW has spatial attributes that store vector geometries and define spatially-
enabled components, such as spatial dimension tables, spatial measures and spatial
hierarchies [2][3][4]. Typically, a spatial hierarchy is a predefined 1:N association
among higher and lower granularity spatial attributes that is determined by a spatial
relationship, e.g. containment, such as (city) < (address). As a result, spatial OLAP
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(SOLAP) operations are common roll-up and drill-down extended to hold spatial
predicates [5]. Also, the well-known star and snowflake schemas may be adequately
adapted to support the inclusion of spatial attributes, which introduce new storage
costs and might impair query processing performance [3][6].

Mainly, three operations are related to SDW query processing performance: (i)
joining large fact tables and large spatial and non-spatial dimension tables; (ii) com-
puting one or more costly spatial predicates based on spatial ad hoc query windows;
and (iii) aggregating data according to different spatial granularity levels. An example
of a spatial and multidimensional query is “find out the total revenue earned by sup-
pliers whose addresses are inside a rectangular window”. This query mentions a topo-
logical relationship and a spatial ad hoc query window that was not previously stored
in dimension tables. Another query may be issued to roll-up to the city granularity
level by using a larger window that intersects the cities where the suppliers are lo-
cated, for instance.

Indices and materialized views are used to provide efficient query processing over
SDW, and the requirements to evaluate their efficiency are datasets with different
characteristics of data volume, data distribution and data types, as well as diverse
types of query concerning their selectivity. The literature mentions benchmarks for
decision support and data warehouses [7][8][9], and for spatial databases [10][11],
synthetic spatial datasets generators [12] and real spatial datasets (e.g. Tiger/Line, see
http://www.census.gov/geo/www/tiger/). However, using them to evaluate SDW
query processing requires several adaptations to comprise spatial roll-up and drill-
down operations, for instance. Therefore, there is a lack of a SDW benchmark to carry
out a controlled experimental evaluation and, principally, to effectively assess the
costs of the aforementioned operations.

In this paper, we propose a novel spatial data warehouse benchmark, called
Spadawan, to address the query processing performance on spatial roll-up and drill-
down operations using predefined spatial hierarchies over SDW. As spatial predi-
cates, the Spadawan benchmark focuses on intersection, containment and enclosure
range queries. Furthermore, it comprises redundant and non-redundant SDW schemas
based on the Star Schema Benchmark (SSB) [8]. Consequently, the Spadawan
benchmark provides a further spatial data redundancy investigation and comparison
with a non-redundant SDW schema.

This paper is organized as follows. Section 2 surveys related work. Section 3 de-
scribes the SDW schemas of the Spadawan benchmark, while Section 4 describes data
loading operations according to each schema. Section 5 presents the queries of the
Spadawan benchmark and their particularities. Section 6 briefly describes a case study
and Section 7 concludes the paper.

2 Related Work

Benchmarks for spatial databases [10][11] are not aimed at assessing the efficiency of
SOLAP operations, although they focus on the spatial predicate computation. Regard-
ing data warehouses, TPC-D is an obsolete benchmark for decision support databases
that does not support indices nor materialized views [7]. This fact motivated the
proposal of the TPC-H [7], which provides individual queries that are not known in
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advance. However, its schema differs from the traditional star schema. The TPC-DS
[9] suppresses this issue with a snowflake schema, but is aimed at data refreshing and
its project is still under development. The SSB [8] extends the TPC-H to enable the
analysis of historical trends and provides a set of predefined queries to run over its
star schema. The SSB’s queries refer to descriptive locations of suppliers and custom-
ers, since there is a predefined conventional hierarchy among attributes, i.e., (region)
X (nation) X (city) X (address). However, the SSB does not hold spatial attributes
nor stores maps that would enable multidimensional queries with spatial predicates,
which is the focus of the Spadawan benchmark.

We argue that the SSB can be adapted to maintain spatial data and therefore pro-
vide spatial roll-up and drill-down operations evaluation, by reusing synthetic or real
spatial datasets This adaption requires maintaining the queries’ semantics by adding
spatial predicates and providing spatial predefined hierarchies based on the conven-
tional existing ones. In this paper, we propose the Spadawan benchmark by extending
the SSB to store a real spatial dataset and by altering the SSB’s queries aiming at
enabling spatial roll-up and drill-down operations evaluation.

3 The Spadawan Benchmark Schemas

We considered existing conceptual and logical models for SDW [2][3][4] in order to
propose our SDW schemas, which extend the SSB schema by introducing spatial
attributes that store geometries in spatial dimension tables, as shown in Fig. 1. The
spatial attributes have the suffix _geo and are based on the SSB’s conventional attrib-
utes that describe suppliers and customers locations, concerning their addresses, cit-
ies, nations and regions. We designed the redundant (Fig. 1a) and the hybrid (Fig. 1b)
SDW schemas aiming at different purposes as follows.

According to Stefanovic et al. [3], Customer and Supplier should be considered as
spatial-to-spatial dimension tables and must store all spatial attributes, as shown in
Fig. 1a. Clearly, these spatial dimension tables maintain spatial data redundancy. For
instance, the map for Europe is stored in every row whose supplier is located in
Europe. Therefore, the redundant schema aims at investigating to what extent SOLAP
queries performance is affected by spatial data redundancy.

On the other hand, Fidalgo et al. [4] state that, in SDW, spatial data must not be
redundant and should be shared whenever is possible. Considering that the SSB’s
customers and suppliers share city, nation and region locations, but have individual
addresses, we designed the hybrid schema (Fig. 1b) to comply with these characteris-
tics that are not treated by the redundant schema. For instance, the hybrid schema’s
City spatial dimension table maintains distinct maps of cities where customers and
suppliers reside. Therefore, the hybrid schema aims at evaluating the overhead of
introducing additional joins costs to the query processing performance, as these joins
are required to avoid spatial data redundancy.

The spatial data redundancy may also increase the number of tables to be scanned.
Suppose that a spatial ad hoc query window intersects both customers and suppliers
cities geometries. Then, in a SDW with a redundant schema (as shown in Figure 1a),
two tables would be scanned, while in a hybrid schema SDW (as given in Figure 1b),
a single table storing all geometries for cities would be searched.
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Finally, our extensions preserved descriptive data as well as created two spatial hi-
erarchies based on the SSB’s original conventional hierarchies. They are valid for
both the redundant and the hybrid schemas: (i) (region_geo) =X (nation_geo) =X
(city_geo) X (c_address_geo); and (ii) (region_geo) X (nation_geo) X (city_geo) X
(s_address_geo). According to Malinowski and Zimdnyi [13], these hierarchies can
be classified as simple symmetric spatial hierarchies with the containment spatial
relationship. We emphasize that the hybrid schema is not a snowflake schema, since
the latter normalizes hierarchies.
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Fig. 1. The Spadawan benchmark schemas
[16] © 2009 Association for Computing Machinery, Inc. Reprinted by permission.

4 Data Generation and Loading

Loading data into the SDW schemas described in Section 3 requires running the SSB
data generator as well as performing other tasks depending on the selected schema.
Fig. 1 shows the data cardinality of each table according to the scale factor S chosen
to generate the SSB dataset. Regarding suppliers and customers locations, there are
always 5 distinct regions, 5 nations per region and 10 cities per nation. We deter-
mined that the spatial attributes that represent cities, nations and regions are polygons,
which were reused from the Tiger/Line real dataset. On the other hand, customer and
supplier descriptive addresses cardinalities depend on S, as well as the number of
customers and suppliers per city. As for geographic addresses, they are synthetic
points randomly distributed inside each city polygon. We implemented a software to
generate and distribute these points such that customers and suppliers have unique
and distinct addresses. As a result, the spatial data volume of addresses varies according
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to S, as well as the quantity of customer and supplier addresses inside each city. Data
sets that have already been used for populating the SDW redundant and hybrid sche-
mas are available at http://gbd.dc.ufscar.br/spadawan.

The Spadawan benchmark’s geometries do not suffer modifications after the data
loading. Obviously, the same scale factor S and the same spatial dataset used for the
redundant schema must be used for the hybrid schema in order to enable spatial data
redundancy investigation. Section 4.1 and 4.2 describe, respectively, the data loading
for the redundant and hybrid schemas, Section 4.3 discusses how to extend these
schemas to increase spatial data volume and to decrease spatial predicate selectivity.

4.1 Loading the Redundant Schema

The following five steps must be performed to load the redundant SDW schema.

1. Load the geometries for cities, nations and regions into temporary tables.

2. Execute the SSB data generator with scale factor S and load its tables.

3. Run our generator of addresses, which also loads customer and supplier addresses
into temporary tables.

4. Alter and update the tables Customer and Supplier to include the geometries of
addresses, cities, nations and regions. Define all the constraints.

5. Discard all the temporary tables and build spatial indices supported by the DBMS
(e.g. R-tree [14] or GiST [15]) on the spatial attributes.

4.2 Loading the Hybrid Schema

Loading the hybrid schema also requires five steps. Steps 1, 2 and 3 are similar to

those described for the redundant schema. The remaining steps are defined as follows.

4. Alter and update the tables Customer and Supplier to include foreign keys refer-
encing the spatial dimension tables, which are the altered temporary tables of steps
1 and 3.

5. Build spatial indices supported by the DBMS on the spatial attributes.

4.3 Increasing Data Volumes

The spatial data volumes for City, Nation and Region levels are fixed in the SSB. We
argue that a fixed data volume for spatial data is unrealistic and should impose a se-
vere drawback to Spadawan benchmark. In order to overcome this drawback, we
describe the algorithm IncreaseVolume to enable increasing the spatial data volume
and decreasing the spatial predicate selectivity. A high selectivity determines that
most of the spatial objects are processed in the spatial predicate computation, while a
low selectivity ensures that only a few of them is processed. The algorithm Increase-
Volume consists of an intermediate step between the steps 2 and 3 presented in Sec-
tions 4.1 and 4.2, and can be used to load both redundant and hybrid schemas.

The algorithm IncreaseVolume generates a spatial data volume n times larger than
that built with a given scale factor S. Translation (line 3) is an operation that shifts a
given geometry to another location, according to chosen offsets. As a result, a transla-
tion modifies all coordinates of the geometry. Specifically, the translation used in the
IncreaseVolume algorithm must assure that: (i) geometries of the same granularity
level do not overlap; and (ii) the spatial hierarchy must not be deteriorated. For
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instance, if cityl is a city and was replicated and translated, the copy of city/ must not
overlap other cities. Also, if cityl is inside nationl, the copy of cityl must be inside
the copy of nationl.

Consider that: (i) IXI is the cardinality of the spatial attribute X, i.e., the number of
distinct objects that X can assume; (ii) sobj is a spatial object for the attribute X; (iii)
sobj.id is the identifier for the spatial object sobj; and (iv) sobj’ is a copy of the spatial
object sobj. Then, the strategy to generate an identifier for sobj’ is to do: sobj’.id <
sobj.id + IX| (line 4). Analogously, the primary key values for replicated suppliers and
customers can be determined (line 6). Regarding the spatial predicate selectivity, the
commented lines (lines 7 and 8) must be executed when constant selectivity is de-
sired. Otherwise, the original selectivity will be divided by n. We further discuss this
issue in Section 5.1.

Algorithm IncreaseVolume

I Fori« 1Ton-1

2 Replicate the initial set of geometries

3 Translate the replicated geometries to new coordinates

4 Generate new identifiers for these geometries

5 Replicate the initial dataset of the dimension tables Customer and Supplier
6

7

8

9

Generate new primary key values for these customers and suppliers

/* Replicate the initial set of spatial query windows */

/* Translate these windows together with the replicated geometries */
End-For

5 Queries

5.1 Ad Hoc Spatial Query Windows

Regarding the spatial query windows, they are quadratic, correlated with the spatial
data, and considered ad hoc because their rectangles are not stored in any spatial di-
mension table. A spatial roll-up operation requires a set of four windows, each one
associated to a granularity level (Address, City, Nation or Region) and has a specific
size (as lower the granularity, smaller is the window). We defined two separate types
of sets for the spatial query windows: disjoint and overlapping.

Regarding the type disjoint, consider a set of windows d/. Every window of d/ has
one centroid that is an address. To create d/’s windows, initially, one arbitrary ad-
dress is chosen to be the centroid of the address window. Then, city, nation and region
windows are produced subsequently by reusing the centroid of the address window, as
shown in Fig. 2a. Note that the query window size is proportional to the granularity
level. In order to create another set of windows d2, the centroid for its windows is
another address, specifically chosen to assure that the windows of d2 do not overlap
any window of di. As a result, all windows of different sets are disjoint, and the user
can query distinct locations as previously fetched objects are not reused.

Concerning the type overlapping, consider a set of windows o/ whose windows
were created similarly to d/. In order to create another set of windows 02, any point
inside the address window of o/ is chosen to be the centroid of the new address, city,
nation and region windows. As a result, all windows of different sets overlap, and the
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user can retrieve data related to a specific neighborhood, as shown in Fig. 2b. In fact,
continuous-line windows were built using an address as centroid, while dashed-line
windows had centroids obtained from any point inside the previous address window.
The query window size is also proportional to the granularity level. Overlapping
query windows were designed to evaluate the reuse of previously fetched objects,
which is a task aided by system cache and buffers.

The Spadawan benchmark performs five roll-up/drill-down operations based on
five fixed sets of disjoint query windows, as well as performs ten roll-up/drill-down
operations based on ten fixed sets of overlapping query windows. Since the quantity
of windows is fixed and they also have a fixed place, the number of spatial objects
that satisfies the spatial predicate associated to a given window is also fixed. There-
fore, replicating a set of windows together with spatial data, as described by the In-
creaseVolume algorithm, maintains the spatial predicate selectivity constant. On the
other hand, increasing only the spatial data volume by n times, divides the spatial
predicate selectivity by n.

MAPS " Address — City — Nation Region
QUERY )
WINDOWS ~ QWa-Address (ommited) QW -City ~ QWy - Nation QWx - Region
(/'_,_F/
| QWR
QW (
a. Spatial disjoint query windows b. Spatial overlapping query windows

Fig. 2. Spatial ad hoc query windows

5.2 Query Types 1,2 and 3

Queries of type 1, 2 and 3 were based on query Q2.3 of the SSB and aim at evaluating
the performance of: (i) at least three joins among tables, depending on the selected
SDW schema; (ii) four spatial predicates computation based on ad hoc spatial query
windows; and (iii) data aggregation according to four spatial granularity levels.

Figure 3 illustrates how a single query was transformed into a spatial roll-up
operation. We replaced conventional predicates that formerly referred to nominative
locations by spatial predicates involving ad hoc spatial query windows. Instead of
asking for a single descriptive granularity level, four queries of distinct spatial granu-
larity levels are issued subsequently, considering that: R, is a spatial relationship to
evaluate supplier addresses against the spatial query window QW,, Rc is a spatial
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relationship to evaluate cities against the spatial query window QW¢, Ry is a spatial
relationship to evaluate nations against the spatial query window QWy, and Ry is a
spatial relationship to evaluate regions against the spatial query window QWyg. The
size of the spatial query windows QW,, QWc, QWy and QWy are distinct and de-
creases as the granularity level decreases. This ensures a control of the selectivity
factor of the queries in different granularity levels.

As a result, Query Types 1, 2 and 3 enable data aggregation according to the four
aforementioned spatial granularity levels. Query Type 1 focuses mainly on the inter-
section relationship (i.e. IRQ: intersection range query on the spatial predicate), while
Query Type 2 focuses mainly on the containment relationship (i.e. CRQ: containment
range query on the spatial predicate) and Query Type 3 focuses mainly on the enclo-
sure relationship (i.e. ERQ: enclosure range query on the spatial predicate).

Query Type 1 is detailed in Table 1. It uses the containment spatial predicate at the
Address level and the intersection predicate at City, Nation and Region levels. The
QW/Extent column shows the fraction of the extent occupied by the spatial query
window. For instance, the query window for Address level represents 0.001% of the
extent. Table 1 lists the average number of objects that are returned per query, consid-
ering 5 roll-up operations with the sets of spatial disjoint query windows and 10 roll-
up operations with the sets of spatial overlapping query windows.

Table 1 shows the selectivity factor (SF), which consists of the conventional SF
multiplied by the spatial SF. The former is fixed and defined by the SSB as 1/1000.
The later is calculated by dividing the number of returned spatial objects by the spa-
tial attribute cardinality. For instance, at City granularity level, the spatial SF is
3.6/250 and therefore the query SF is 1/1000 * 3.6/250 (value of 0.0000144). Only
one spatial SF' was defined at Nation level to assess the efficiency when no spatial
objects are returned as query answer (Table 2). This represents an extreme situation
on query processing.

It is not possible to estimate the number of addresses that satisfies the spatial
predicate, since the address data volume and the number of addresses inside each city
depend on the scale factor S used to generate the SSB dataset. Therefore, we esti-
mated the number of objects retrieved by the query as well as the SF for the Address
level using the data generation scale factor of 1.

SELECT SUM (lo_revenue), d_year, p_brand1
FROM lineorder, date, part, supplier
WHERE AND Ra (Address, QWa)

lo_orderdate = d_datekey o :
AND lo_partkey = p_partkey P AND Rc (City, QWc)
AND lo_suppkey = s_suppkey -~ . :

AND p_brand1 = ‘MFGR#2239' AND Ry (Nation, QW)
AND s_region = ‘EUROPE’ "~
GROUP BY d_year, p_brand1 "

ORDER BY d_year, p_brand1

dn-1104
NMOQ-1111d

AND Rr (Region, QWR)

Fig. 3. The template for Query Types 1, 2 and 3.
[16] © 2009 Association for Computing Machinery, Inc. Reprinted by permission.
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Query Types 2 and 3 are detailed in Tables 2 and 3, respectively, and evaluate
other spatial predicates using different sizes of query windows. We emphasize that all
buffers and cache must be flushed at the end of each spatial roll-up operation that
utilize spatial disjoint query windows. On the other hand, they must not be flushed
when utilizing overlapping spatial query windows.

Table 1. Additional information for Query Type 1

Disjoint Query Windows  Overlapping Query Windows
Level Predicate R QW/Extent Objects/query SF Objects/query SF

Address R,=CRQ 0.001% 22 0.00000022 54 0.00000054
City Rc=1RQ 0.05% 3.6 0.0000144 4.0 0.000016
Nation Ry=1IRQ 0.1% 1.6 0.000064 3.0 0.00012
Region Rz=1RQ 1% 1.2 0.00024 2.0 0.0004

Table 2. Additional information for Query Type 2

Disjoint Query Windows  Overlapping Query Windows
Level Predicate R QW/Extent Objects/query SF Objects/query SF

Address R, =CRQ 0.01% 19.0 0.0000019 37.0 0.0000037
City Rc=CRQ 0.1% 1.4 0.0000056 3.0 0.000012
Nation  Ry=CRQ 10% 1.2 0.000048 0.0 0.0
Region Ry =CRQ 25% 0.4 0.00008 1.0 0.0002

Table 3. Additional information for Query Type 3

Disjoint Query Windows  Overlapping Query Windows
Level Predicate R QW/Extent Objects/query SF Objects/query SF

Address R, =CRQ 0.00001% 1.0 0.0000001 1.0 0.0000001
City Rc=ERQ 0.0005% 0.8 0.0000032 1.0 0.000004
Nation Ry=ERQ  0.001% 0.8 0.000032 1.0 0.00004
Region Ry =ERQ 0.01% 1.0 0.0002 1.0 0.0002

5.3 Query Type 4

Query type 4, shown in Fig. 4, was based on the SSB’s query Q3.3 and consists of a
spatial roll-up and spatial drill-down operations with two ad hoc spatial query win-
dows, which add an extra high join cost. Basically, this query retrieves “the revenue
per year per brand for suppliers of an area x to the customers of an area y”. The
same granularity level is used for both customers and suppliers simultaneously. The
containment spatial predicate is verified at Address level while the intersection
predicate is verified at City, Nation and Region levels. Table 4 shows additional
details.
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SELECT SUM (lo_revenue), d_year, p_brand1 AND WITHIN (S_Address, QWa)

FROM lineorder, date, part, supplier ~ AND WITHIN (C_Address, QWa")

WHERE e - =]
lo_orderdate = d_datekey / . AND INTERSECTS (S_City, QWc) 2 '!;
AND lo_partkey = p_partkey L ~" AND INTERSECTS (C_City, QWc') = I
AND lo_suppkey = s_suppkey - 7l 1=
AND p_brand1 = 'MFGR#2239' ~ , AND INTERSECTS (S_Nation, QWn) S g
AND s_region = ‘EUROPE’ .-~ = AND INTERSECTS (C_Nation, QW) =z
AND c_region = ‘AMERICA’ :

GROUP BY d_year, p_brand1 "~ AND INTERSECTS (S_Region, QWr)

ORDER BY d_year, p_brand1 * AND INTERSECTS (C_Region, QWr’)

Fig. 4. Query Type 4

Table 4. Additional information for Query Type 4

Disjoint Query Windows  Overlapping Query Windows
Level Predicate QW?/Extent Objects/query SF Objects/query SF

Address CRQ 0.001% 9.1 0.00000091 11.3 0.00000114
City 1IRQ 0.05% 7.2 0.0000288 9.0 0.000036
Nation IRQ 0.1% 32 0.000128 5.0 0.0002
Region IRQ 1% 2.4 0.00048 3.0 0.0006

6 Case Study

We have already used the Spadawan benchmark to investigate the impact of spatial
data redundancy over SDW [6]. We loaded the following datasets: D1: the redundant
schema using the scale factor S = 10, which occupied 150 GB; D2: the hybrid schema
with § = 10, which occupied 15 GB; D3: the hybrid schema with S = 6; and D4: the
hybrid schema with S = 2. Regarding City, Nation and Region levels, the spatial data
volume remained fixed as well as the spatial predicate selectivity. The Address level
data volume varied according to S.

We performed five spatial roll-up operations, using the five sets of disjoint query
windows, and collected the average elapsed time at each granularity level. The GiST
index was defined over the spatial attributes to enhance the spatial predicate computa-
tion. Experiments were conducted on a computer with a 2.8 GHz Pentium D proces-
sor, 2 GB of main memory, a 7200 RPM SATA 320 GB hard disk, Linux CentOS 5.2,
PostgreSQL 8.2.5 and PostGIS 1.3.3.

Table 5 shows the results obtained for the datasets D1, D2, D3 and D4 for Query
Type 1. It is important to observe that: (i) the spatial data redundancy drastically im-
paired query processing performance especially at Nation and Region levels whose
cardinalities are lower; and (ii) the smaller the conventional data volume, the shorter
the elapsed time to process the queries over the hybrid schema. Spatial data redun-
dancy impaired not only the query processing performance, but also the storage re-
quirements, since D1 occupied ten times more space than D2.

Another interesting issue was raised by evaluating Query Type 4 against the data-
set D1. At Region and Nation granularity levels, we aborted the query processing
after 4 days of execution, since this elapsed time was prohibitive. At City level, the
query took 172,900.15 seconds (approximately 48 hours). On the other hand, the
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Table 5. Elapsed times in seconds for Query Type 1

D1 D2 D3 D4
Address 2831.23 2853.85 1803.62 594.31
City 2773.10 2758.70 1686.61 562.08

Nation 3449.76 2765.61 1694.00 545.59
Region 6200.44 2790.29 1703.31 552.94

same query issued against the dataset D2 took only 130.34 seconds, i.e., the spatial
data redundancy provided an unacceptable increase of 132,900.00%.

We have developed the Spatial Bitmap Index (SB-index) [16] in order to decrease
the query response time in SDW. The SB-index was also validated using the
Spadawan benchmark. For further details about the performance evaluation, see [16].

7 Conclusions and Future Work

This paper proposed a novel benchmark for spatial data warehouses, called
Spadawan, whose main characteristics are: (i) it generates SDW datasets composed of
points and polygons in spatial attributes; (ii) it is composed of different types of SO-
LAP queries that enable the performance evaluation of intersection range queries,
containment range queries and enclosure range queries in the spatial predicate; (iii) it
enables the evaluation of spatial roll-up and drill-down operations; (iv) it provides a
means of investigating spatial data redundancy in SDW by designing two distinct data
schemas with spatial hierarchies and spatial dimensions; (v) it permits the adjustment
of the SDW data volume and the spatial predicate selectivity; and (vi) it uses spatial
query windows that may overlap each other or may be disjoint from each other. We
validated the Spadawan benchmark using it to generate a performance evaluation
environment to assess the impact of spatial data redundancy over SOLAP queries [6]
and the efficiency of the SB-index data structure [16].

As future work, we intend to propose additional SOLAP query types to analyze
drill-across operations on extended SDW schemas and to compute aggregations of
geometries of spatial objects. We also plan to incorporate different spatial data, such
as lines, polygons with holes and with islands, on the spatial data generation and SO-
LAP query processing. Another future work would be to extend the current bench-
mark by covering all types of classification hierarchies in addition to the predefined
1:N. The use of the Spadawan benchmark with different techniques, such as indices
and materialized views, is another future work.
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Abstract. We propose a new method for identifying the role of a vertex
in a social network. Existing well-known metrics of node centrality such
as betweenness, degree and closeness do not take the community struc-
ture within a network into consideration. Furthermore, existing proposed
community-based roles are defined using cliques, and thereby it is dif-
ficult to discover vertices with only few links that bridge communities.
To overcome the shortcomings, we propose three community-oriented
roles, bridges, gateways and hubs, without knowledge on the commu-
nity structure, for representing vertices that bridge communities. We
believe that detecting the roles in a social network is useful because such
nodes are valuable by themselves due to their intermediate roles between
communities and also because the nodes are likely to provide a deeper
understanding of the communities. Our method outperforms the state-
of-the-art method through experiments using data of DBLP records in
terms of the subjective validness of the outputs.

1 Introduction

In a social network, a vertex represents an individual and an edge between a pair
of vertices represents the presence of a relationship between them. Analyzing
categories of vertices and discovering social relationships between vertices are
acquainted as social network analysis [9]. The methods on social network analysis
not only can be examined in the field of social science but also can be applied
to the field of biology, communication studies and information science [2], and
thereby have received considerable attention recently.

By using network connectivity properties, social network analysis often aims
to discover various categories of vertices in a network. We can find vertices
of high connectivity or discover densely-connected subgroups, and subjectively
assign roles to vertices based on the result of discovery. Evaluating the role of a
vertex is useful in many applications such as viral marketing [13], epidemiology
[8]. We think that the discovery of roles that connect communities is especially
useful in understanding and utilizing communities as each of them is likely to
play a key role in the community. For example, law enforcement agents are
able to gain information of two gangs of criminals if they keep an eye on the
intermediator between the two gangs.

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 52 2010.
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There are many existing renowned metrics used to estimate the role of a
vertex. Centrality is a measure of a vertex how it well connects to other vertices
in a network. Degree, betweenness and closeness are all measures in terms of
centrality [9]. However, the role of a vertex is assigned according to its rank
without considering the community structure and therefore, vertices that bridge
communities are not successfully detected in the measures of centrality.

Recently, [6] proposed community-based roles which are defined using the de-
gree of a vertex and a proposed community metric. In the proposed community
metric, a community is defined based on a clique, i.e, a maximal complete sub-
graph, and thus, a vertex that connects many cliques tends to have a large value
of the degree. The proportional feature of the degree and the community metric
makes it difficult to assign roles to vertices that connect communities with few
links. Note that a vertex that has a small degree but connects with communities
indicates that it bridges communities.

In order to overcome the shortcomings of the previous works, we propose
three community-oriented roles — bridges, gateways and hubs. Bridges, gate-
ways and hubs represent different kinds of roles, each of which is essential as a
kind of relationship between communities. We believe that detecting the roles
in a social network is useful because such nodes are valuable by themselves due
to their intermediate roles between communities and also because the nodes are
likely to provide a deeper understanding of the communities. A bridge is a vertex
just located between two communities. A bridge connects communities, each of
which has only one single link with it. Since each community has only one link
with the bridge, it is controversial to cluster a bridge into any community. A
gateway is a vertex that acts as an entrance or an exit of a community when we
move from a community to another one. A gateway should be included in the
community which most of its neighbors belong to. A hub is a confluent vertex,
on which groups of vertices converge. Groups of vertices may be clustered into
the same community or be divided into different communities, which depends
on the result of community detection. When groups of vertices are divided into
different communities, the hub should be the overlapping vertex among com-
munities. We define the proposed roles rigorously and implement a discovery
algorithm which does not require information of the community structure. The
experimental results show that most of the proposed roles exist in the boundary
of communities and vertices with the proposed roles are important in bridging
communities.

2 DMotivation and Problem Setting

Figure[Il presents a motivating example. Nodes 2, 3, 4, and 5 are members of one
community and nodes 6, 7, 8, 9, 10, and 11 are members of another community
in Figure[Tal Because each community in Figure [Tal only has one link to node 1,
we do not cluster node 1 into any community.
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Fig. 1. Motivating example

Table 1. Centrality measures (Cp, Cc and Cp are degree centrality, closeness central-
ity and betweenness centrality respectively. The higher the value is, the more central
the vertex is.)

Node 1 2 3 4 5 6 7 8 9 10 11
Ccpt 2 4 3 3 3 4 2 4 2 2 1
Ce? 050 0.43 0.33 0.33 0.33 0.53 0.40 0.43 0.32 0.33 0.36
cg® 24 21 0 0 0 29 0 16 0 0 0

According to the rank of centrality measures shown in Table [Il node 6, fol-
lowed by nodes 1, 2 and 8 in Figure [Il can be considered central or important
vertices. In this example, node 1 may be viewed as the most remarkable ver-
tex because node 1 is the important vertex that bridges two communities while
the result in the centrality measures suggests node 6 to be the most important.
Moreover, a centrality measures provides only information of ranking and cannot
differentiate nodes 1, 2, 6 and 8 because a centrality measure does not consider
the community structure.

Four roles — ambassadors, bridges, big fish and loners, are proposed in [6].
The method in [6] is designed to classify roles according to the degree of a vertex
and a proposed community metric for a vertex. Nodes 2, 6 and 8 are discovered
as ambassadors because each of them has a large degree and a large value for the
proposed community metric, nodes 3, 4 and 5 are discovered as big fish because
each of them has a large degree but a small value for the proposed community
metric, and node 11 is a loner because node 11 has a small degree and a small
value for the community metric. In the proposed community metric, a community
is defined based on a clique so [6] fails to detect node 1 that connects the two
communities, which are not cliques.

Considering the example in Figure[[al we think node 1 is the most important
vertex because it is located between the two communities. It becomes easy to
discover these two communities if we can detect node 1. We regard nodes 2 and
6 are entrances or exits of the communities and they become important vertices

L Cp(ni) = >-;1(i,7), where (i,j) € E and [ is a 0/1 indicator function.
2 Co(ni) = s Nd?i iy where d(n;,n;) is the length of the shortest path between
j=1 i
vertices ¢ and j and NV is the number of vertices.
3 Cp(ni) = > i<k 9ik(ni), where gj. is the number of the shortest paths between

vertices j and k that contain vertex 4.
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in bridging communities if we remove node 1 and connect nodes 2 and 6 directly.
When we split the second community into two, we find that node 8 becomes a
vertex connecting communities as shown in Figure This example inspires us
to discover these community-oriented roles that bridge communities. We name
node 1, nodes 2 and 6, and node 8 a bridge, gateways, and a hub, respectively.

Therefore, We tackle the problem of discovering community-oriented roles —
bridges, gateways and hubs from a social network G. The problem setting is
formalized as follows.

Input: a social network G = (V| E), where V' = {v1, vo, ..., v,} is a non-empty
finite set of vertices and FE is a set of edges where an edge is binary relation of
an unordered pair of distinct elements of V

Output: V' = {v; | v; is either a bridge, a gateway, a hub or a loner}

3 Community-Oriented Roles

We examined existing methods with a motivating example in section 2. The
centrality measures are used to find the most central node and [6] is designed to
assign a role using the degree and the proposed community metric of a vertex.
In this paper, we detect community-oriented roles by using topological infor-
mation. Generally two vertices are similar if they have a link between them.
We assume vertices within the same community connect with each other more
densely than vertices between communities do. The more similar the vertices in
the neighborhoods of a vertex are, the denser the graph formed by the vertex
and its neighbors becomes. If a vertex is located between two communities, the
two communities in its neighborhood are not expected to have many common
vertices between them, which leads to our main idea for defining bridges, gate-
ways and hubs. Thus, neighbors of a bridge, a gateway or a hub do not necessarily
share the same common vertices. The extent to which its neighbors connect with
each other decides which role a vertex belongs to and the community structure
the vertex connects accordingly differs.

A property used in our definition is network transitivity or clustering [10],
which is a common property in most networks. If node A links with node B and
node B links with node C, nodes A and C are likely to have a connection between
them. In other words, two of your friends will have a high probability of knowing
each other, on account of their common acquaintance with you. This effect is
quantified by the clustering coefficient C' [5] [I0] which implies the probability
that two of one’s friends are friends themselves, defined as C = 3A/6 where A
represents the number of triangles on the graph and © represents the number
of connected triples of vertices. Furthermore, social networks generally have a
much higher value for C' than the corresponding random model [5].

3.1 Bridges, Gateways and Hubs

In this paper, we focus on a simple, undirected and unweighted graph. Let G =
(V, E) be a graph, where V is a set of vertices and F is a set of unordered pairs
of distinct vertices. Also, a vertex possesses at most one role in this paper.
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Fig. 2. Examples of a bridge (node 1 in Fig. 2al), gateways (nodes 1 and 2 in Fig. 2],
and a hub (node 1 in Fig. 2d)

Definition 1. Let v € V. v’s neighborhood N(v) encompasses vertices linked to
v and itself.
Nw)={ueV | (v,u) € E} U{v}

Definition 2. Let v,u € V,v # u. v and u are connected via an intermediate
node if they have only one common neighbor between them, which is denoted by
CIN (v,u).

CIN(v,u) < |[N(v)NN(u)| =1

Note that there is no direct connection between u and v which satisfy CIN (u, v)
but only one common vertex between their neighborhoods. This accordingly
implies that vertices v and v are likely not to belong to the same community.

Definition 3. Let v,u € V,v # u. v and u are strongly connected if v and u
share two or more neighbors between them, which is denoted by SC(v,u).

SC(v,u) & |N(v) N N(u)| > 2

We think it is more plausible to group w and v that satisfy SC(u,v) into the same
community than to group two vertices that are connected via an intermediate
node (CIN) because strongly connected vertices share more common vertices in
their neighborhoods.

Definition 4. A loner is a vertex v of G whose neighborhood N (v) only contains
itself and another vertex which has an edge to it, which is denoted by loner(v).

Loner(v) < |N(v)| =2

A loner has only one association to other nodes. =Loner(v) denotes that v is
not a loner.
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Definition 5. A vertex v € V is called a bridge if v’s neighbors are not loners
and any two nodes other than v in v’s neighbors have a CIN relation. Bridge(v)
denotes a vertex v is a bridge.

Bridge(v) < Va,y € N(v) — {v},z # y :CIN(x,y)A

=loner(xz) A —loner(y)

We use Figure 2al as an example to explain a bridge. Let v, x,y in Definition
5 be 1, 2, 3, respectively. Nodes 2 and 3 that are neighbors of node 1 are not
loners and they only have a common vertex: node 1, i.e., CIN(2,3), so node 1
in Figure 2alis a bridge. A bridge is a vertex located between two communities.
A bridge connects communities, each of which has only one single link with it
so we need to check any two neighbors of a bridge. Also, a bridge’s neighbors
cannot be a loner since a loner does not form a community. As we said, we think
that it is controversial to cluster a bridge into any community so it is a vertex
independent of communities.

Definition 6. A vertex v € V is called a gateway if it satisfies the following
conditions, which is denoted by gateway(v). First, it has two neighbors that are
strongly connected (SC). Second, it has another neighbor that is not a loner and
does not share any common neighbor except v with v’s other neighbors.

Gateway(v) < (1)3z,y € N(v) — {v},x #y: SC(x,y)
(2)3z € N(v) — {v},Yu € N(v) — {v, 2z} :
—loner(z) NCIN(z,u)

We use Figure[2hlas an example to explain a gateway. Let v, x,y, 2, u in Definition
6bel,6,7,2,6or 7, respectively. Nodes 6 and 7 satisfy SC(6, 7) because nodes 6
and 7 have three common vertices (i.e., nodes 1, 6, and 7) in their neighborhoods
and node 2 that is not a loner has only one common vertex (i.e., node 1) with
other neighbors of node 1. This example shows that node 1 in Figure BHl is
a gateway. A gateway acts as an entrance or an exit when we move from a
community to another one. In condition (1) of the definition,  and y that are
strongly connected implies the existence of a community while in condition (2),
z which is not a loner implies that there exist one vertex which does not belong
to the same community with other neighbors. These two conditions makes a
gateway act as an entrance to a community or an exit from a community.

Definition 7. A vertex v € V is called a hub, denoted by hub(v), if there exist
w, x, Yy, and z which are neighbors of v and which satisfy the following conditions.
w and x are strongly connected, and y and z are strongly connected as well. w
and y are connected via an intermediate node, and x and z are connected via an
intermediate node as well.

Hub(v) 3w, x,y,z € N(v) —{v},w # z,y # z
SC(w,x) AN SC(y,z) NCIN(w,y) NCIN(z,z)
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We use Figure 2d as an example to explain a hub. Let v, w, z,y, z in Definition
7 be 1, 2, 3, 5, 6, respectively. Nodes 2 and 3 have four common vertices (i.e.,
nodes 1, 2, 3 and 4) and hence satisfy SC(2,3), and similarly, nodes 5 and 6 have
three common vertices (i.e., nodes 1, 5 and 6) and hence satisfy SC(5,6). Nodes
2 and 5 have only one common vertex (i.e., node 1), satisfying CIN(2,5), and
similarly nodes 3 and 6 satisfy CIN(3,6). Thus, node 1 in Figure 2d is a hub.
A hub is a confluent vertex, on which groups of vertices converge. We regard a
hub is a center of groups of vertices, as each pair of neighbors that are strongly
connected form a group of vertices and the CIN conditions imply that they may
belong to different groups of vertices. Groups of vertices may be clustered into
the same community or be divided into different communities, which depends
on the procedure of community detection explained in the next section.

3.2 Discovery Priority of Bridges, Gateways and Hubs

To detect the three kinds of roles, our algorithm checks for each vertex v € V
if v satisfies the conditions in definitions 5, 6, 7. Note that each CIN(a,b) and
SC(z,y) can be checked in O(d?) time, where d represents the degree of G,
because a,b,z,y € N(v). Hence the complexity of our algorithm is O(nd?),
where n represents the number of nodes in G.

In this paper, we assume that one vertex possesses at most one role. However,
a vertex is possibly assigned as a gateway and a hub at the same time accord-
ing to the definitions. To avoid this problem, we search roles in the following
order: bridges, gateways and hubs. Once a role is assigned, another role can-
not be assigned. The order is determined in terms of the community detection
(graph clustering) which aims at maximizing the edges within the community
and minimizing the edges between communities.

For clarity, we use a gateway and a hub to explain the order we determine in
the context of community detection, in which an edge bridging communities of
a role is deleted in each step. Suppose we have detected a gateway and a hub,
each of which connects two communities. In the case of the gateway, there is
one of its edges spanning communities so two communities will be discovered
by only removing one edge. However, in the case of the hub, a hub is a vertex
connecting two communities so two communities will be discovered by removing
the edges which link to one of the communities. Hence, when a gateway and a
hub both exist in a graph, the edge of the gateway which spans communities will
be considered to be removed first according to the aim of community detection,
which leads to our intuition for determining the order.

4 Evaluation by Experiments

We have implemented a discovery algorithm of the proposed roles in C lan-
guage and evaluate them using both synthetic and real datasets. The proposed
roles including bridges, gateways, hubs, loners are compared with the method
named rawComm in [6] which proposes four kinds of roles including ambassadors,
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bridges, big fish and loners, and the validness of the outputs are compared sub-
jectively.

Four kinds of roles of rawComm are defined using the degree of a vertex and
a proposed community metric that estimates the number of communities linked
to a vertex, in which a community is defined based on a clique. An ambassador
is a vertex which has a large degree and a large value for the community metric;
a bridge is a vertex which has a small degree but a large value for the community
metric; a big fish is a vertex which has a large degree but a small value for the
community metric; a loner is vertex which has a small degrees and a small value
for the community metric. We follow the way in [6] to normalize the degree and
the proposed community metric value of a vertex between 0 and 1, and assign
roles by determining the value of a threshold r from 0 to 1 required in rawComm.
The threshold r is used to discover roles by classifying values (i.e., the degree and
the value of the proposed community metric) assigned to a vertex. rawComm
can become more useful for communities defined by means other than clique
by using probabilities values that contain community information such as the
probability that two linked nodes are in the same community. We compare our
proposed roles with two variations of rawComm, one which utilizes community
information and the other which does not utilize community information.

4.1 Synthetic Data

To evaluate the proposed roles in one network, we generate a synthetic graph
with 21 vertices and 37 edges as shown in Figure 8l We intentionally settled the
size of the graph relatively small to clearly demonstrate the results of our method
and rawComm. Figure [Bal shows the result of our method, Figure BH] shows the
result of rawComm without using community information, and Figures [3d and
are the results of rawComm that use community information with » = 0.25
and r = 0.65, respectively. To validate our proposed roles, we use normalized cut
[7] that is a well-known clustering technique to show the community structure.
Nodes circled within a gray oval in Figure [Bal are clustered into one community.

As shown in Figure Bal our method discovers node 6 as a hub. In Figure 3]
rawComm without the community information does not discover node 6 while
rawComm discovers node 6 as an ambassador after importing the community
information as shown in Figure Bd

Moreover, we see nodes 1, 2, 4 and 5 are important vertices that bridge two
communities from the community structure shown in Figure[Bal In our method,
node 1 is distinguished as a bridge from other vertices, and nodes 2, 3, 4 and 5
are recognized as gateways. However, rawComm fails to discover nodes 1, 2, 4
and 5 since they are not vertices that have large degrees or connect many cliques
when r = 0.25. Node 1 is discovered as a bridge when r = 0.65 in Figure [Bdl
while much more vertices are assigned loners. From the observations, we see that
vertices (i.e., nodes 1, 2, 4 and 5) that bridge communities are assigned roles in
our method while rawComm cannot detect all vertices bridging communities and
requires that the value of the threshold r is settled appropriately for discovering
some of the roles.
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Fig. 3. Evaluation of proposed roles using synthetic data

4.2 DBLP Data

Figures [ and Bl show the experimental results that use the data from DBLP.
DBLP provides bibliographic information on major computer science journal
and proceedings. For the experiment, we extracted the data of IJCAI between
2005 and 2009 from DBLP, and generated a coauthorship network, where a
vertex represents an author and two authors are linked by an edge when they
have coauthored at least one paper. The data of IJCAI 2005-2009 encompasses
2197 vertices and 6412 edges, and we only show a subgraph for clarity in Figure
M because similar results are also observed in other subgraphs. Note that we
only compare our method with rawComm with community information in this
experiment.

In Figure Hal rawComm discovers two kinds of roles. Nodes 1 and 3 are am-
bassadors and they are vertices which have large values for both the degree and
the community metric value. Nodes 12, 14, 15, 16, 19, 20, and 31 are loners and
they are vertices which have small degrees compared to other vertices. Similarly,
we tuned the value of r in order to examine whether we can find more roles, but
only one more vertex (node 17) of ambassadors is found while most vertices are

!http://www.informatik.uni-trier.de/~1ley/db/
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Fig. 4. rawComm on DBLP data

grouped into the role of loners when r = 0.65 (Figure [dh]). Since the value for
the community metric proposed in [6] tends to be proportional to the degree,
rawComm appears to classify vertices into ambassadors and loners, which is also
observed in [6]. Note that rawComm fails to distinguish node 18 although it is a
node which bridges two communities when the number of communities is three
(Figure [6D)).

To show the relationship between the proposed community-oriented roles and
the community structure, Figures [Gal and [6d show clustering results when
the number of given communities is 2, 3 and 4, respectively, by utilizing the
normalized cut method.

By referring to Figures Bl and [l we have the following findings of our bridges,
gateways and hubs. Node 18 discovered as a bridge is an important vertex in
bridging two communities, nodes 1 and 17 are entrances to communities and
neighbors of node 3 are divided into different communities, which fit our in-
tuition. Although nodes 7 and 10 are not vertices in bridging communities in
the clustering results in Figure [l they turn out to be vertices in bridging com-
munities when the number of communities increases, which corresponds to our
anticipation. From the results, we can conclude that the border between two com-
munities are often vertices with the proposed roles such as nodes 1 and 3 when
the number of communities is two and nodes 1, 3, 17, and 18 when the number of
communities is three. With this regard, our method outperforms rawComm since
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Fig. 6. Comparing with clustering results that use the method of Normalized Cut

rawComm only discovers vertices with large degrees that connect relatively many
cliques while our method discovers vertices that connect communities with few
links such as node 18 as well.

4.3 Analysis on the Proposed Orientation of Community

To examine whether three community-oriented roles — bridges, gateways and
hubs are important vertices in bridging communities, we further perform an-
other experiment which shows how frequently the proposed roles appear around
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Table 2. Summary of the analysis (A cell of the columns of Bridge, Gateway, Hub
represents the number of correct roles/the number of discovered role for bridges, gate-
ways and hubs, respectively. A cell of the column of Community represents the number
of communities whose boundary contain proposed roles/the number of detected com-
munities. A number followed by a % represents the accuracy rate.)

Confname  Bridge Gateway Hub Community
KDD 0/1 (0%) 35/38 (92%) 214/269 (80%) 225/227 (99%)
IJCAI 6/12 (50%) 47/59 (80%) 180/217 (83%) 213/215 (99%)

the boundary of communities. The data for the experiment are collected from
KDD2009, KDD2008-2009, KDD2007-2009, KDD2006-2009, KDD2005-2009, 1J-
CAI2009, IJCAI2007-2009, and IJCAI2005-2009. We extracted all sub-connected
graphs each of whose size is larger than ten, and performed community detection
by using the clustering method introduced in [4] which measures how good the
division is. The number of clusters is optimally determined by [4] and we do not
have to assign the number of clusters so we use it as the method of community
detection to simplify the experiment.

We check whether nodes that are discovered as community-oriented roles
bridge communities and summarize the experimental result in Table Pl Here
we use the result of community detection as our ground truth to compute the
accuracy rate. A vertex discovered as a proposed role is judged as a correct role
if its neighbors belong to different communities.

In Table 2 the number of vertices discovered as bridges is the smallest and
the number of vertices discovered as hubs is the largest, which corresponds to
our anticipation because there exist many cliques in social networks. Gateways
and hubs have high accuracy rates while bridges has low accuracy rates in Table
Bl For the result, we examined the graph structures and found that a part of
vertices that link to bridges are too few to form a community, which results in
low accuracy rates. From the accuracy rate for communities that amounts to 99%
in Table 2l we can conclude that most of the vertices with the proposed roles
are found in the boundary of communities and they are important in bridging
communities.

5 Conclusions and Future Work

In this paper, we proposed three community-oriented roles, namely bridges, gate-
ways and hubs, which are important roles in bridging communities. A role is
assigned to a vertex based on the relationship between its neighbors. The more
similar the vertices shared between its neighbors are, the denser the graph formed
by the vertex and its neighbors becomes. Similarly, if the neighbors of a vertex
rarely share common vertices, it implies that the vertex is likely to be the vertex
bridging communities because community detection aims at maximizing edges
within communities but minimizing edges between communities. Our method is
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validated through experiments and is shown to be able to discover vertices that
bridge communities relatively accurately without knowledge on the community
structure.

As discussed in the previous sections, the grouping problem of the proposed

roles may be considered differently in community detection. For example, it
fits our intuition not to cluster bridges into any community and to view hubs
as overlapping vertices. Therefore, our future work is to develop an algorithm
which detects communities highly accurately by considering roles of vertices.
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Abstract. The paper presents a novel scheme for graph-based cluster-
ing with the goal of identifying groups of related tags in folksonomies.
The proposed scheme searches for core sets, i.e. groups of nodes that
are densely connected to each other by efficiently exploring the two-
dimensional core parameter space, and successively expands the identi-
fied cores by maximizing a local subgraph quality measure. We evaluate
this scheme on three real-world tag networks by assessing the relatedness
of same-cluster tags and by using tag clusters for tag recommendation.
In addition, we compare our results to the ones derived from a baseline
graph-based clustering method and from a popular modularity maxi-
mization clustering method.

Keywords: graph-based clustering, community detection, folksonomies,
tag recommendation.

1 Introduction

Collaborative (or Social) Tagging is nowadays a common feature of content shar-
ing web applications that enables users to: (a) upload new, or bookmark exist-
ing content and, (b) annotate it by means of free-text keywords (tags). Such
applications, examples of which are deliciou, flickid and Bibsonomyﬁ, are com-
monly referred to as Social Tagging Systems (STS). Currently, STS attract huge
amounts of traffic, which results in the emergence of massive grassroots content
annotation and organization schemes, referred to as folksonomies [12]. Folk-
sonomies comprise three types of entities, namely users, resources and tags, as
well as the associations among them [3/4].

Folksonomies constitute a direct encoding of the views of a large number of
users on how content items should be organized through a flexible annotation
scheme (tagging). By analyzing the structure and content of folksonomies, one

! http://delicious.com/
2 http://www.flickr.com/
3 http://bibsonomy.org/
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can expect to gain valuable insights into the topic and vocabulary structure of
the system. To this end, tag clustering has lately attracted significant research
interest due to its value in several Information Retrieval (IR) use case scenar-
ios [B6ITURIQITOITT]. Tag clustering is commonly understood as a process that
groups the tags of an STS in a way such that members of the same tag cluster
are perceived by users as related to each other. Despite the subjective element in
judging the degree of relatedness between tags, tag clusters are expected to corre-
spond to meaningful topic areas, which can be useful in a series of tasks, such as
information exploration and navigation [5J6], automatic content annotation [g],
user profiling [9], content clustering [T0JTT] and tag recommendation [T2/T3].

To date, tag clustering has been dealt with either by conventional clustering al-
gorithms, such as K-means [I0] and Hierarchical Agglomerative Clustering [8/9],
or, more recently, by use of community detection methods [5J6l7]. Conventional
clustering schemes are frequently troubled by two shortcomings: (a) the need for
providing the number of clusters as input to the algorithm, and (b) their compu-
tational complexity. Community detection methods address both of these needs,
since they do not require the number of clusters (communities) to be known a
priori and they are typically more efficient in terms of computations. However,
modularity mazimization methods [I4], which constitute the bulk of community
detection methods, are troubled by the so-called “super-community” problem,
i.e. they produce few communities with very large sizes and numerous communi-
ties with small sizes. Having tag clusters of such highly skewed size distribution
can be detrimental to the aforementioned IR tasks.

For that reason, we introduce in this paper a hybrid graph-based tag cluster-
ing scheme, referred to in short as HGC, which attempts to address the afore-
mentioned constraints. HGC is based on the notion of (u,€)-cores [15], groups
of nodes that have a large number of common neighbors to each other. HGC
conducts an efficient search over the (u,€) parameter space and identifies the
associated core sets. Subsequently, a core set expansion step is conducted based
on a local modularity measure [16]. This expansion enables the resulting clusters
to overlap with each other, which is particularly important for the problem of
tag clustering, since tags are typically used in multiple contexts and senses.

The rest of the paper is structured as follows. Section [2] discusses existing
work on the topic of tag clustering and its applications. Section Bl presents HGC,
the proposed hybrid graph-based solution to the problem of tag clustering. HGC
is evaluated and compared against existing clustering schemes in Section @ The
paper concludes in Section

2 Related Work

The problem of tag clustering has recently attracted increasing research interest
since it is a challenging task from a data mining perspective, but at the same
time it also holds the potential for benefiting a variety of IR applications. For
instance, tag clustering is considered important for eliciting a topic hierarchy
for a tagging system and improving content retrieval and browsing [§]. Similar
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conclusions are reached by [5] who point that the use of raw tag information
limits content exploration and discovery, thus creating the need for an additional
level of organization through tag clustering. In [J], tag clusters are used as a
nexus between users and their interests. Using tag clusters instead of plain tags
for profiling user interests proved beneficial for personalized content ranking. An
additional application of tag clustering is presented in [7]. There, the tag clusters
were used as a means of identifying the different contexts of use for a given tag,
i.e. for sense disambiguation. It was shown that using the tag clusters results in
improved results compared to the use of external resources such as WordNet.

The methods used for performing the tag clustering largely fall under one
of two approaches: (a) conventional clustering techniques, such as Hierarchi-
cal Agglomerative Clustering (HAC) [8l9] and (b) community detection meth-
ods [BI6l7]. HAC suffers from high complexity (quadratic to the number of tags to
be clustered) and the need to set ad-hoc parameters (e.g. three parameters need
to be set in the clustering scheme used in [9]). Community detection methods
largely address the shortcomings of HAC since efficient implementations exist
with a complexity of O(Nlog(N)) for finding the optimal grouping of N tags into
communities. Furthermore, community detection methods rely on the measure
of modularity [I4] as a means to assess the quality of the derived cluster struc-
ture. Thus, modularity maximization methods do not require any user-defined
parameters. However, a problem of modularity maximization methods pointed
in [6] and confirmed by our experiments is their tendency to produce clusters
with a highly skewed size distribution, which makes them unsuitable for the
problem of tag clustering.

3 Description of HGC

The proposed scheme builds upon the notion of (i, €)-cores introduced in [15]
and briefly described in subsection Bl The original algorithm, referred to as
SCAN [15], suffers from two problems. First, it needs two parameters, namely y
and €, to be provided as input. Second, it leaves a substantial number of nodes
unassigned to clusters. As a result, its utility is limited in IR tasks such as tag rec-
ommendation. For that reason, our scheme conducts an efficient iterative search
over the parameter space (u,€) in order to discover cores for multiple values of
the parameters (subsection B:Z). Finally, the identified cores are expanded, as
described in subsection B3 by maximizing a local measure of modularity [I6] in
order to increase the number of nodes that are assigned to communities and to
enable overlap among communities.

3.1 Core Set Discovery

The definition of (u,€)-cores is based on the concepts of structural similarity,
e-neighborhood and direct structure reachability.
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Fig. 1. Example of community structure in an artificial network. Nodes are labeled
with successive numbers and edges are labeled with the structural similarity value
between the nodes that they connect. Nodes 1 and 10 are (p,e€)-cores with p = 5
and € = 0.65. Nodes 2-6 are structure reachable from node 1 and nodes 9, 11-15 are
structure reachable from node 10. Thus, two community seed sets have been identified:
the first consisting of nodes 1-6 and the second consisting of nodes 9-15.

Definition 1. The structural similarity o between two nodes v and w of a
graph G = {V, E} is defined as:
r r
sy T@)NT) "
VIP@)] - |7 (w)|

where I'(v) is the structure of node v: I'(v) = {w € V|(v,w) € E} U{v}.

Definition 2. The e-neighborhood of a node is the subset of its structure con-
taining only the nodes that are at least e-similar with the node; in math notation:

N.(v) = {w € D(v)|o(v,w) > e} (2)

Definition 3. A wvertex v is called a (u,€)-core if its e-neighborhood contains
at least p vertices: CORE,, (v) < |Ne(v)| > p.

Definition 4. A node is directly structure reachable from a (u,¢€)-core if it
is at least e-similar to it: DirReach, ¢(v,w) < CORE,, (v) Aw € N¢(v).

Once the (u,€)-cores of a network have been identified, it is possible to start
attaching adjacent nodes to them provided that they are reachable through a
chain of nodes which are directly structure reachable from each other. We call
the resulting set of nodes as a community seed set. The rest of the nodes are
considered to be hubs or outliers depending on whether they are adjacent to
more than one community core sets or not. An example of computing structural
similarity values for the edges of a network and then identifying the underlying
(u, €)-cores, hubs and outliers of the network is illustrated in Figure [Il This
technique for collecting community seed sets is computationally efficient since its
complexity is O(k-n) for a network of n nodes and average degree k. Computing
the structural similarity values of the m network edges introduces an additional
O(k - m) complexity in the community detection.
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3.2 Parameter Space Exploration

One issue that is not addressed in [I5] pertains to the selection of parameters p
and e. Setting a high value for e (the maximum possible value for € is 1.0) will
render the core detection step very eclectic, i.e. few (i, €)-cores will be detected.
Moreover, higher values for p will also result in the detection of fewer cores
(for instance, all nodes with degree lower than p will be excluded from the core
selection process). For that reason, we employ an iterative scheme, in which
the community seed set selection operation is carried out multiple times with
different values of 1 and € so that a meaningful subspace of these two parameters
is thoroughly explored and the respective (i, €)-cores are detected.

The exploration of the (u,€) parameter space is carried out as depicted in
Figure Pl We start by a very high value for both parameters. Since the maximum
possible values for p and € are kp,q, (maximum degree on the graph) and 1.0
respectively, we start the parameter exploration by two values dependent on
them (for instance, we could select pg = 0.5+ ka0 and g = 0.9; the results of the
algorithm are not very sensitive to this choice). We identify the respective (u, €)
cores and associated core sets and then relax the parameters in the following
way. First, we reduce p; if it falls below a certain threshold (e.g. pmin = 4), we
then reduce € by a small step (e.g. 0.05) and we reset u = po. When both p and
e reach a small value (4 = pmin and € = €,), we terminate the community
seed set detection step. This exploration path ensures that first high quality
communities will be discovered and subsequently less profound ones will also be
detected. In order to speed up the parameter exploration process, we employ
a logarithmic sampling strategy when moving along the p parameter axis. The
computational complexity of the proposed parameter scheme is a multiple of the
original SCAN. The multiplicative factor is C' = s, - s, where s, is the number
of samples along the ¢ axis (=~ 10) and s, is the number of samples along the
axis (=~ log kmaz)-

min

min lJD H

Fig. 2. Depiction of the (u,€) parameter space exploration path. The upper values
o and € are set in relation to their maximum possible ones (tmaz = Kkmae and
€maz = 1.0). The lower values are set to pmin = 4 and €min = 0.4 since cores with
lower values than these are of inconsistent quality.
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3.3 Core Set Expansion

Starting from a community seed set S, the second step in the proposed commu-
nity detection method involves an expansion process, which aims at attaching
additional nodes, which are relevant, to the initial community seed set. The expan-
sion step is essential for deriving higher quality communities since the community
seed sets produced by the previous step may fail to include in the communities
nodes that are of importance for them. In the case of tag communities, this would
lead to tag communities that would miss some important keywords and would
thus be less representative of their topic. In addition, it is due to this expansion
step that overlap among communities is possible since the previous step produces
non-overlapping community seed sets.

The community expansion step is based on the maximization of a local mea-
sure of community quality, namely subgraph modularity introduced in [16]. The
modularity of a subgraph S € V is defined as the ratio of the number of intra-
community edges (edges connecting nodes within S) over the number of edges
sticking out of S (Equation [B]). Obviously, the larger such a value is, the more
well separated the subgraph is from the rest of the graph. In the extreme case
of a disconnected subgraph, its modularity value tends to infinity:

_ind(S) {(v,w) € Elv,w € S}|
MS) = outd(8) = (v, w) € Blv € SAw eV — S} ®)

The proposed expansion step is based on a greedy maximization scheme, i.e. it
successively attaches nodes to community S as long as their addition increases
the subgraph modularity M (S) of the community. The set of nodes that are
considered as candidates for attachment to S are pooled from the “community
frontier”, i.e. the set of all nodes that are adjacent to at least one node of the
community. Each candidate node is tentatively attached to the community and
the new value of its modularity is computed. This computation can be performed
very efficiently in an incremental fashion based on the values of ind(S) and
outd(S) before the tentative attachment of the candidate node to the community.

Nodes with very high degreeﬁ are not considered in this process for two rea-
sons: (a) to reduce the computational complexity of the expansion step, (b) to
prevent the expansion process from creating a “gigantic” community. The node
resulting in the maximum increase of modularity for the community is consid-
ered a member of the community and the process is repeated for the rest of the
candidate nodes (it is possible that there is no increase of modularity by adding
a node to the community, in which case no expansion takes place).

4 FEvaluation

In order to gain insights into the behavior of community detection in real-world
tagging systems, we conduct an evaluation study comparing the performance

4 We create a degree-ordered list of nodes for the whole graph and consider as high-
degree nodes the top 10% of them.
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Table 1. Folksonomy datasets used for evaluation

(a) Basic folksonomy statistics

Dataset F#triplets U R T
BIBSONOMY-200K 234,403 1,185 64,119 12,216
FLICKR-1M 927,473 5,463 123,585 27,969
DELICIOUS-TM 7,501,032 112,950 1,332,796 251,352
(b) Tag graph statistics (for large component)
Dataset V| |E| k ce
BIBSONOMY-200K 11,949 236,791 39.63 0.6689
FLICKR-1M 27,521 693,412 50.39 0.8512
DELICIOUS-TM 216,844 3,443,367 31.76 0.8018

of our method (HGC) against two competing community detection methods on
three datasets coming from different tagging applications, namely BibSonomy,
Flickr and Delicious. The first of the two community detection methods under
study is the well-known greedy modularity maximization scheme presented by
Clauset, Newman and Moore (CNM) [18]@ and the second is the SCAN algorithm
of [I5], which is extended by HGC. The three datasets used for our study are
described below and basic information on their size is presented in the upper
part of Table[dl

BIBSONOMY-200K: BibSonomy is a social bookmarking and publication
sharing application. The BibSonomy dataset was made available through the
ECML PKDD Discovery Challenge 20099. We used the “Post-Core” version of
the dataset, which consists of a little more than 200,000 tag assignments (triplets)
and hence the label “200K” was used to form the dataset name.

FLICKR-1M: Flickr is a popular online photo sharing and organizing appli-
cation. For our experiments, we used a focused subset of Flickr comprising ap-
proximately 120,000 images that were located within the city of Barcelona (by
use of a geo-query). In total, the number of tag assignments for this dataset
approaches one million.

DELICIOUS-7M: Delicious is a popular social bookmarking service for man-
aging and sharing bookmark collections. We used a snapshot of the Delicious
bookmark collection corresponding to January 2006, comprising seven million
tag assignments. This dataset is a subset of the collection studied in [19].
Starting from each dataset, we built a tag graph, considering an edge between
any two tags that co-occur in the context of some resource. The raw graph
contained a large component and several very small components and isolated
nodes. For the experiments we used only the large component of each graph,

5 We used the publicly available implementation of this algorithm, which we down-
loaded from http://www.cs.unm.edu/~aaron/research/fastmodularity.htm
Shttp://www.kde.cs.uni-kassel.de/ws/dc09
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which accounts for more than 99% of the size of the raw graph for all three
datasets. Some basic statistics of the analyzed large components are presented
in the lower part of Table[Il The nodes of the three tag graphs appear to have a
high clustering coefficient on average, which indicates the existence of community
structure in them. We applied the three competing clustering schemes, CNM,
SCAN and HGC, on the tag graphs and proceeded with the analysis of the
derived communities. Since SCAN is parameter-dependent, we performed the
clustering multiple times for many (u,€) combinations and selected the best
solution.

Our first observation concerns the community structure produced by CNM.
When considering the applications of tag clustering, it is hard to imagine that the
highly imbalanced cluster structure produced by CNM can be of much benefit.
For instance, knowing that two tags belong to the same huge cluster is not very
informative of their semantic relation; in fact, there are many pairs of tags within
such huge clusters that are not actually related to each other. Table [2] presents
several such examples of unrelated tags which were placed in the same cluster.
Having these tags in the same cluster is not only uninformative but it is actually
misleading and thus potentially harmful for use within some IR task.

Table 2. Examples of unrelated tags that were assigned by CNM to the same commu-
nity. Examples from the three largest communities of each dataset are presented.
Dataset Examples of unrelated tags in the same community

hannover, nutritional, ebusiness, bishop, vivaldi, sunsets,
skyscapes, recycle, antiracist, patentbibliometrics

BIBSONOMY- informationretrieval, magnetic, robotics, kolmogorov, wordnet,
200K socialinformatics, thermodynamics, metaphysics, ...
webdesign, windows, torrent, puzzle, vmmware, geotagging, mov,
techcrunch, cpplib, baseballplayers
spanien, common chimpanzee, star wars, renault, restaurant,
prostitution, olympicstadium, large windows, infrared
FLICKR-1M barcelona, watermelon, photon awards, birthday, mediterranean,

palm tree, fine arts, volkswagen, building, logistics

roma, double bass, crowd surfing, environment, lomography, flickr
babes, sombrero, basketball, bruce springsteen

geekiness, telepathy, scifihorror, britneyspears, theflintstones,
sportculture, environmentalhealth, uspatent, argentina, ...

DELICIOUS-7M  education, capetown, flashwebsites, businessanalyst, newjournal-
ism, adventuretravel, musicnetwork, scienceastrophysics, ...

food, island, bike, jersey, federal, climate, ghosts, athletics, envi-
roment, imperialism
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In contrast, Table [3] presents several examples of interesting tag clusters dis-
covered by HGC. Close examination of the tags contained in them reveals their
close semantic and contextual association. In the case of CNM these clusters are
contained in the aforementioned gigantic communities together with numerous
unrelated tags, thus their utility is limited. On the other hand, the plain SCAN
method can only identify subsets of these clusters, which is expected to harm
the recall performance of the IR applications making use of them.

Table 3. Examples of interesting tag communities discovered by HGC. In the case of
CNM, these communities are “hidden” within the gigantic communities discovered by
CNM. In contrast, in the case of SCAN, these communities are smaller since they do
not include tags from the community expansion step.

Dataset Examples of interesting HGC tag communities

mpg, tif, jpeg, mpc, ico, wma, swf, fileconversion, txt, midi, psd,
wmi, ogg, avi, psp, tiff, odg, mdb, kar, divx, wmv, qcp, odp, ods,
BIBSONOMY- rtf, odt, jpg, mov, amv, png, flv, flac, mmf, gif, sxw, amr, ...

200K israelis, middleast, terrorism, middleastpeace, peaceprocess,
onevoice, palestinians, conflictresolution, extremism, hatred

urlogic, lymphatic, neoplasms, virus, pathophysiology, microbial,
hemic, physician, doctor, musculoskeletal, respiratory, student,
hepatological, viral, infections, hematological, gastrointestinal

salad, spansih gastronomy, catalan food, modena, bacalla, colme-
nillas, bread with tomato, marinated, gastronomy, merluzzo, ec,
FLICKR-1M marinado, cod, vinegar, bacalao, foie, meatfest, duck foie, ...

george clooney, sean connery, jude law, antonio banderas, jennifer
lopez, tom cruise, penelope cruz, viggo mortensen, ...

series, australian, federer, conde godd, open, moya, tenerife, atp,
las palmas gran, garros, torneo, murray, tamarasit, roland, rod-
dick, podcast, bernardes, sharapova, djokovic, wta, wawrinka,
campeonato, canarias, usopen, enric molina, chela gran, ...

apollomission, saturnrocket, spacecrew, crewflight, navylieu-
tenant, flightcommander, colonelwhite, americanastronauts, lieu-

tenantcolonel, edwardwhite, spacewalk, capekennedy
DELICIOUS-TM
herbiehancock, dextergordon, chrispotter, brianblade, grantgreen,

adamrogers, donaldbyrd, theloniousmonk, leemorgan, larrygold-
ings, hardbop, weatherreport, marcjohnson, mainstreamjazz, art-
blakey, billevans, joehenderson, joshuaredman, charlieparker, ...

danacarvey, commercialparodies, thehanukkasong, richardpryor,
stevemartin, wilferrell, chrisfarley, billmurray, adamsandler, king-
tut, alecbaldwin, mikemyers, churchlady, chevychase, ...
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Finally, we used the derived tag clusters in the context of tag recommenda-
tion in order to quantify their effect on the IR performance of a cluster-based
tag recommendation system. More specifically, we created a simple recommen-
dation scheme, which, based on an input tag, uses the most frequent tags of its
containing cluster to form the recommendation set. In case more than one tags
are provided as input, the system produces one tag recommendation list (ranked
by tag frequency) for each tag and then aggregates the ranked list by summing
the tag frequencies when of tags belonging to more than one list. Although this
recommendation implementation is very simple, it is suitable for benchmarking
the utility of cluster structure since it is directly based on it.

The evaluation process was conducted as follows: We divided the available
tag assignments for each dataset into two sets, one used for training and the
other used for testing. Based on the training set, we built the corresponding tag
graph and produced the tag clusters based on the three competing methods.
Then, by using the tag assignments of the test set, we quantified the extent to
which the cluster structure found by use of the training set could help predict
the tagging activities of users on the test set. For each test resource tagged with
L tags, K < L tags were used as input to the tag recommendation algorithm
and the rest L — K were predicted. In that way, both the number of correctly
predicted tags and the one of missed tags is known. In addition, a filtering
step was applied on the tag assignments of the test set. Out of the test tag
assignments, we removed the tags that (a) did not appear in the training set,
since it would be impossible to recommend them and (b) were among the top 5%
of the most frequent tags, since in that case recommending trivial tags (i.e. the
most frequent within the dataset) would be enough to achieve high performance.

Table @ presents a comparison between the IR performance of tag recommen-
dation when using the CNM, SCAN and HGC tag clusters. According to it,
using the HGC tag clusters results in far better tag recommendations than by
use of CNM across all three datasets. For instance, in the FLICKR-1M dataset,
the HGC-based recommendation achieves six times higher precision than the
CNM-based one (22.98% compared to 3.73%). A large part of the CNM-based
recommendation failure can be attributed to the few gigantic communities that
dominate its community structure. Compared to the best run of SCAN, HGC
performs better in terms of number of unique correct suggestions, recall and
P@1, but worse in terms of precision. In terms of F-measure, SCAN performs
slightly better in two out of the three datasets, but HGC performs better in the
third dataset. Given the fact that SCAN requires parameter tuning to achieve
this performance and that HGC provides more correct unique suggestions, we
conclude that the HGC tag cluster structure is more valuable in the context
of tag recommendation. Since HGC extends SCAN in two steps (multiple iter-
ations of SCAN and expansion of communities), we also ran tests to establish
the relation of performance change to each of these steps: the multiple SCAN
iteration step was responsible for a small part of the drop in precision and a
measurable part of the increase in recall, while the expansion step was the main
reason behind the increase in recall and the largest part of the drop in precision.
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Table 4. IR performance of CNM, SCAN and HGC community structures in tag
recommendation. The following notation is used: Rt denotes the number of correct
tags according to the ground truth, R,.:+ the number of tag suggestions made by the
recommender, Rrp the number of correct suggestions, Urp the number of unique
correct suggestions, P, R, and F' stand for precision, recall and F-measure respectively,
and PQ1, PQ@5 denote precision at one and five recommendations respectively.

BIBSONOMY-200K FLICKR-1M DELICIOUS-7TM
CNM SCAN HGC CNM SCAN HGC CNM SCAN HGC
Rr 15,216 55,875 56,893
Rout 15,056 4,958 11,814 55,605 22,463 49,851 56,166 13,974 33,107
Rrp 272 1,120 1,406 2,074 10,419 11,454 1,022 3,624 6,258
Urp 189 717 837 305 1,399 1,666 459 1,506 2,628
P (%) 181 2259 11.90 3.73 46.38 2298 1.82 25,93 18.90
R (%) 179 736 9.24 371 1865 20.50 1.80 6.37 11.00
F (%) 180 11.10 1040 3.72 26.60 21.67 1.81 10.23 13.91
pal (%) 168 396 5.09 195 802 9.85 164 278 7.95
P@5 (%) 2.18 29.06 1727 341 46.84 2127 235 36.91 29.49

5 Conclusions

We presented a parameter-free graph-based clustering scheme that is particu-
larly suited to the task of tag clustering. The proposed scheme is based on the
discovery of (u,€)-cores for multiple sets of (u,€) values and a subsequent ex-
pansion based on a local measure of cluster quality. We evaluated the proposed
scheme on three real-world datasets and compared its performance against a
modularity maximization clustering algorithm (CNM) and the basic (y, €)-core
detection scheme (SCAN), which our proposal extends. We demonstrated that
the tag clusters produced by our method are of significantly higher quality than
the ones derived by CNM and achieve higher performance when used in the con-
text of tag recommendation. Compared to SCAN, our method produces clusters
with higher coverage (i.e. containing more related tags to the cluster topic). In
the task of tag recommendation, the HGC clusters resulted in higher recall, but
lower precision compared to SCAN. In addition, they led to a higher number of
unique correct recommendations. Given also the fact that SCAN needs param-
eter tuning, we consider our clustering scheme as more suitable for identifying
groups of related tags in folksonomies.
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Abstract. Frequent sub-graph mining entails two significant overheads.
The first is concerned with candidate set generation. The second with
isomorphism checking. These are also issues with respect to other forms
of frequent pattern mining but are exacerbated in the context of frequent
sub-graph mining. To reduced the search space, and address these twin
overheads, a weighted approach to sub-graph mining is proposed. How-
ever, a significant issue in weighted sub-graph mining is that the anti-
monotone property, typically used to control candidate set generation, no
longer holds. This paper examines a number of edge weighting schemes;
and suggests three strategies for controlling candidate set generation.
The three strategies have been incorporated into weighted variations of
gSpan: ATW-gSpan, AW-gSpan and UBW-gSpan respectively. A com-
plete evaluation of all three approaches is presented.

Keywords: Weighted Transaction Graph Mining, Weighted Frequent
Sub-graph Mining, Weighting Schemes.

1 Introduction

Graph mining is concerned with the identification of patterns within graph data
of various forms. One form of graph mining is frequent sub-graph mining which
aims to identify frequently occurring patterns (sub-graphs) across a collection
of “small” graphs or within one “large” graph. This paper concentrates on the
first (also sometimes referred to as transaction graph mining).

Frequent sub-graph mining techniques [3}[5[6,8,11,12] have parallels with
more established frequent pattern mining techniques such as those used in, for
example, Association Rule Mining (ARM). Thus, in common with other forms
of frequent pattern mining, frequent sub-graph mining entails two significant
overheads: candidate set generation and isomorphism checking. However, these
overheads are exacerbated because of the nature of graph data. In the case of
candidate set generation the potential number of size K + 1 sub-graphs that can
be generated from size K graphs is exponentially greater than in the case of
more standard forms of frequent pattern mining. With respect to isomorphism
checking, the process of comparing a candidate pattern with the input data to

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 77 2010.
© Springer-Verlag Berlin Heidelberg 2010
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determine the support (frequency) of the candidate is significantly more complex
in the case of frequent sub-graph mining than in more standard forms of frequent
pattern mining such as ARM.

The overheads associated with frequent sub-graph mining are compounded
when the support threshold is low. The solution advocated in this paper is based
on the observation that, for many applications, some edges (nodes) in the in-
put graph set can be considered to be more significant than others. Therefore,
sub-graph patterns that include edges (nodes) with high weight values should
be considered more important than those with low weight values if they both
satisfied the support threshold. This concept is illustrated in this paper by con-
sidering a social network mining scenario.

Weighted frequent sub-graph mining advocates the use of weighted support
counts to identify weighted frequent sub-graphs. Hence, the “computational bur-
den” of sub-graph mining can be considerably alleviated by generating a set of
weighted frequent sub-graphs. The concept of edge weightings can be encapsu-
lated in a number of ways (for reasons of clarity only edge weighted graphs are
considered in this paper although much of the discussion is equally applicable
to node, or node and edge, weighted graphs).

Regardless of whether edge or node weighting is adopted, a significant issue
encountered in weighted sub-graph mining is that the anti-monotone property,
whereby if a K size sub-graph is not frequent none of its K + 1 super-graphs will
be frequent, typically used to restrict the size of the search space in standard
pattern mining, no longer holds if weightings are applied in a naive manner. Thus
any proposed weighted sub-graph mining mechanism must either be defined in
such a way that the property continues to hold, or an alternative pruning strategy
must be adopted.

Three edge weighting schemes are considered in this paper: (i) Average Total
Weighting (ATW), (ii) Affinity Weighting (AW) and (iii) Utility Based Weight-
ing (UBW). The three approaches have been incorporated into three weighted
variations of the gSpan algorithm (ATW-gSpan, AW-gSpan, and UBW-gSpan).

The rest of this paper is organised as follows. A problem definition overview is
presented in Section[2l The proposed edge weighting mechanisms are considered
in Section [Bl Experiments to evaluate the proposed techniques, and the ensuing
results, are presented in Section [l Some conclusions are presented in Section [l

2 Problem Definition

This section introduces the necessary graph-theoretic and mining definitions.
In the context of this paper a graph is defined as a finite structure G formed
by a set of nodes V = {wvy,vq,...}, a set of edges E = {ey,eq,...}, a set of
vertex and edge labels £, and a mapping ¢, /. : £ — V/E. With respect to the
work described here the edge labels are assumed to be numeric so that they can
be used in the calculation of relative weightings. Depending on the particular
application, edges will be either undirected pairs over V, or directed (ordered)
pairs.
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Let T = {G1,G3, -+, Gt} be a collection of (transaction) graphs. The support
set of g is defined as d7(g) = {t|g C G}, i.e. the set of transaction graphs where
g is a sub-graph of G;. The cardinality of the support set, |dr(g)| then defines
the support of g with respect to T'.

Definition 1. Given a database T', a graph g, and a minimum support T € (0, 1],
the graph g is said to be frequent (in T ) if |07 (g)| > 7xt. The frequent sub-graph
mining problem is thus to find all the frequent sub-graphs in T .

The focus of this paper is on edge weighted graphs. Therefore, the graphs in T
are assumed to have weights associated with their edges. Let W1 be a weighting
function that assigns a weight to any sub-graph g. The weighted support of g
with respect to T', wsupr(g), is then:

wsupr(g9) = Wr(g) x [6(9)]- (1)

Note that the function of Wr(g) needn’t be a number between zero and one. By
defining the weighting function, Wr(g), in an appropriate manner it is possible
to ensure that the anti-monotone property holds; otherwise other method, such
as some heuristic based pruning technique, is required to limit the search space.

3 Graph Weighting Mechanisms

Most research work in frequent sub-graph mining [685L11] assumes each discov-
ered frequent sub-graph is equally important. A lot of redundant and repetitive
frequent patterns may therefore exist in the final result. If the size of the graph
set is substantial and the minimum support threshold is very low, a typical fre-
quent sub-graph mining task can often not be completed within a fixed period of
time due to the exponential complexity of the search space. If we put emphasis on
differentiating each discovered frequent sub-graph according to its importance,
either as definded by the user or derived from the application domain, the com-
putational complexity can be reduced without compromising the effectiveness
of the frequent pattern discovery process. However, when a weighting scheme is
integrated into the process of graph mining in a naive manner, the well-known
anti-monotone property, which is used frequently to reduce the search space, may
no longer be satisfied. Two strategies can be identified to address this dilemma:
(a) adopt an interestingness measure which does satisfy the property; (b) ignore
the property and adopt some alternative heuristic to reduce the computational
overhead incurred by not satisfying the property.

In the context of weighted frequent sub-graph mining, weightings associated
with a sub-graph pattern g can be defined in a number of manners. Three ap-
proaches are introduced in this paper: (i) Average Total Weighting (ATW), (ii)
Affinity Weighting (AW), (iii) Utility Based Weighting (UBW). The first two
approaches satisfy the anti-monotone property while the last one adopts an al-
ternative pruning heuristic. The last two approaches employ two parameters
to control the mining result while the first one uses one parameter only. Each
approach is discussed in further detail in the following three subsections.
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3.1 Average Total Weighting (ATW)

In the ATW approach inspired by the work [10], the weight for a sub-graph g is
calculated by dividing the sum of the average weights in graphs that contain g
with the sum of the average weights across the entire data set T'. Thus:

Definition 2. Given an edge weighted graph g with edge weights {wy, wa, - - -, wy },
ko

the average weight associated with g is defined as Wayg(g) = Zi=kl v

Where w; can be user defined or calculated by some weighting methods.

Definition 3. Given a set of graphs T = {G1,Ga,- -+, G}, the total weight of
this set of graphs is defined as Wym (T) = 2221 Wawg(Gi)-

Definition 4. Given an arbitrary sub-graph g with its support set dp(g), the
weight function of g with respect to T', Wr(g), is defined as

o ZGiE(sT(g) Wavg(Gi)

Wr(g) = = 2

Definition 5. A sub-graph g is weighted frequent with respect to T, if |5(g)| x
Wr(g) > 7 x t, where 0 < 7 < 1 is a minimum support threshold.

From the above it can be easily inferred that the function Wr(g), as defined by
Equation [2] satisfies the anti-monotone property. Therefore, if a k-candidate is
not frequent, then any of its (k + 1)-supersets can be safely pruned from this
branch in the lattice of candidates during the £+ 1 candidate generation process.
It should be noted, however, that the approach will tend to bias large transaction
graphs over smaller transaction graphs, thus is best applied to graph sets where
the individual graphs are of a similar size.

3.2 Affinity Weighting (AW)

The Affinity Weighting (AW) approach is founded on two elements to restrict
the growth of the search space: (i) a graph distance measure, and (ii) a weighting
ratio. For a sub-graph g to be frequent both must be greater than specified user
thresholds. The graph distance measure is calculated using an appropriately
defined support weighting function, Wr(g). This is defined as follows. Let g be
a candidate pattern for a database T'= {G1, Ga, -+, G¢}. In the context of AW
we define:

Vol 2=, VG

Where V(G;) is the set of vertices in transaction graph G; and V(g) is the set
of vertices in the sub-graph g. Observe that Wr(g) satisfies:

_lorla)l _ 1
W) = yig) T 2 i) W
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It should be noted that adding nodes to g can only reduce the value of the above
expression because the support(|dr(g)|) cannot be increased; the sum contains
as many terms as |07 (g)| and each of these cannot be larger than 1/|V (g)|. Thus
Wr(g) as defined above, insures that the weighted support of g is non-increasing
(i.e. anti-monotone) in |V (g)|.

The graph distance measure is directed at the number of nodes contained in a
graph, the weighting ratio concerned with the edge weights (which are assumed
to reflex numeric values). The weighting ratio of an edge-weighted graph g is a
function ¢(g) returning a value between zero and one which is decreasing in the
number of edges of g. Given an edge weighted sub-graph g with edge weights
W = {w1,ws, -, wy} the weighting ratio function which is similar to [13], ¢(g),

is defined as follows:
o MINszW{wz}

C(g) - MAijGW{wj} . (5)

Definition 6. An edge-weighted graph g is a weighted frequent (i.e. weighted
affinity) pattern within a data set T = {G1,Ga, - -+, G}, with respect to a support
threshold T > 0 and weighting ratio threshold v € [0,1], if the following two
conditions (C1 and C2) are satisfied:

(C1) wsupr(g) > 7 x t, and (C2) c(g) = -

Definition [(] leads to an alternative pruning strategy which, may be used as part
of any frequent sub-graph mining algorithms. During the candidate selection
phase, the mining will keep track of the weighted support and weighting ratio of
all candidates and discard all those candidates that do not satisfy at least one
of (C1) and (C2).

3.3 Utility Based Weighting (UBW)

The previous two approaches both satisfy the anti-monotone property. In this
section an alternative weighting scheme which does not hold the property is
proposed. The Utility Based Weighting (UBW) scheme is influenced by ideas
suggested in [IL2]. As in the case of AW scheme, the UBW scheme is founded
on two elements: (i) weighted support and (ii) the share (SH) of a sub-graph.
Thus:

Definition 7. Given a sub-graph g with edges E(g) = {e1,e2,---,er}. For each
e; € E(g), two vertices connecting e; are vi and vy. Their associated support
sets (the graphs in T where they appear) are given as dp(v1) and dr(vs). The
Jaccard similarity coefficient between the two vertices is defined as jC(e;) =
|07 (v1) N o7 (v2)|/|07(v1) Udr(ve)|. The weighting function of g, Wr(g), is then
defined as

1
ZeiEE(g)jO(ei)
From the above it is clear that Wr(g) satisfies the anti-monotone property. From
Section [ the weighted support is given by wsupr(g) = Wr(g) X |61(g)].

Wr(g) = (6)
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Definition 8. Given an edge weighted graph set T = (Gi,...,Gt) with edge
weights {w1,wa, -, wg} for each transaction graph G; and a sub-graph g. Let
g C Gy, the weight of g denoted as W(g,G;), is the sum of the weights of
the edges which occurred in G;. That is, W(g,G;) = Zeieg,gng w;. The to-
tal weight of T, denoted as TW (T, represents the sum of edge weights in T,
where TW(T) = 3 G cr Ye,eq, Wi- The total weight of dr(g), is defined as

TW(or(9)) = ZGjE&T(g) Zeiecj W -

Definition 9. The graph weight of g with respect to T, denoted as GW(g), is
the sum of the weight of the g in each transaction graph G; € dr(g). That is,

GW(g) = chegT(g) W(g,Gj).

Definition 10. The share of a sub-graph g, denoted as SH(g), is the ratio of
the graph weight of g with respect to T to the total weight of T'. Thus:

_ GW(g)

SH(9) = (7

Given a share threshold \, a sub-graph g is SH-frequent if SH(g) > A; otherwise,
g is SH-infrequent.

Theorem 1. Given a T = (G1,...,Gy), a sub-graph g, and a threshold \, if
TW(6r(g)) < A x TW(T), all super-graphs of g are SH-infrequent.

Proof. Let h be an arbitrary super-graph of g. Clearly, GW (h) < TW (ér(h)) <
TW (or(g)). It TW (07(g9)) < A x TW(T) holds, GW (h) < A\ x TW(T). That is,
SH(h) = GW(h)/TW(T) < X\. Therefore, h is SH-infrequent. O

By Theorem [ if TW (6r(g)) < A x TW(T), all super-graphs of g and g are
SH-infrequent and can be pruned; otherwise, g is a candidate sub-graph.

Definition 11. An edge-weighted graph g is a weighted frequent pattern for a
graph set T = (G1,...,Gt) with respect to a support threshold T > 0 and share
threshold X € (0,1] if the following two conditions are satisfied.

(D1) wsupr(g) > 7 x t, and (D2) SH(g) > A.

4 Experiments and Results

This section describes a sequence of experiments designed to:

(i) Demonstrate that the proposed weighting schemes can more efficiently gen-
erate frequent sub-graphs than without using weightings. In many cases,
as will be demonstrated, use of the weighting schemes allows frequent
sub-graphs to be identified where this would not be possible using an un-
weighted approach because of this computational overhead the latter would
entail.
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Table 1. CTS graph set statistics

Norfolk Cornwall GB

# graphs 53 53 53
Max # edges 7 412 30107
Average # edges 54 262 23055
Max # nodes 99 409 23660
Average # nodes 70 284 18749
node label count 614 2195 81153
Edge label count 6 12 46

(ii) Compare and contrast the three proposed weighted sub-graph mining tech-
niques.

The experiments were conducted using a projection of the cattle movement
database in operation in Great Britain (GB). This application domain is described
in Section Il The original gSpan algorithm available to the authors could not
process directed graphs with self cycles. Therefore an extended gSpan algorithm
(extGspan), which can process directed graphs with self cycles, was implemented
in order to compare the proposed weighted approaches with the un-weighted case.
Results from the experiments are presented in Sub-sections {2 and 3]

4.1 The Cattle Tracking System Database

For the experiments the Cattle Tracking System (CTS) database, in operation in
GB, was used. This was provided by the Department for the Environment, Food
and Rural Affairs (DEFRA) from the Rapid Analysis and Detection of Animal
Risk (RADAR) projec. The database provides a record of cattle movements.
Each record includes information such as the sender and receiver location IDs,
animal ID, animal breed, etc. Three distinct transaction graph datasets were
extracted from the CTS database such that nodes represented cattle location
(farms, markets, slaughter houses, etc) and edges the movement of cattle be-
tween locations (the edges are directed by the direction of the cattle movement).
Transaction graph sets for all of Great Britain (GB), and two areas within GB
(Norfolk and Cornwall) were extracted. Edges were annotated with a weight-
ing, indicating the number of cattles moved, and a label, indicating the type of
movement (e.g. farmToFarm, farmToMarket, etc). For each data set the data
from 1 January 2005 to 31 December 2005 was selected and divided into 7-day
“episodes” due to the 6-day movement restriction [9] that applies to farms in
GB. Statistics for each of the data sets are given in Table[Il Note that the GB
data set is significantly larger than the Cm‘nwal, which in turn was larger than

! http://www.defra.gov.uk/foodfarm /farmanimal/diseases/vetsurveillance/radar/
project.htm
2 Cornwall is a county in the SW of GB known for its substantial dairy herds.
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Fig. 1. Performance comparison of weighting schemes vs. extGspan on Nor folk and
Cornwall data sets (using a range of support values from 5% to 30%)

the Nor follﬁ data set. It should also be noted that all the transaction graphs
feature directed edges and self cycles.

4.2 Comparison between Weighted and Non-weighted Approaches

In this subsection the proposed weighting schemes (ATW-gSpan, AW-gSpan,
and UBW-gSpan) are compared with the extended gSpan algorithm in terms
of efficiency (runtime and the number of frequent sub-graphs generated). For
AW-gSpan, v = 0.6 was chosen as the weighgting ratio threshold, and A = 8%
was used as the share threshold for UBW-gSpan. The judstification for these ~y
and A values is given in Sub-section [£.3] below.

Figure[llshows the performance of the weighting schemes and extGspan on the
Nor folk and Cornwall data sets (recall that extGspan does not make any use of
weightings). It can be clearly seen from the figure that all four algorithms display
a similar behaviour when the support value is between 10% to 30%, however the
number of patterns generated by the extGspan algorithm increase abruptly when
the support value is decreased to below 10%. From Fig.[dlit can be observed that:
(i) significantly more frequent sub-graphs (at support threshold below 10%) are
found using the non-weighted extGspan algorithm than using any of the weight-
ing schemes, indicating the advantages offered using the weighted approaches, (ii)

3 Norfolk is a county in the East of GB.
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the ATW and AW schemes run faster than the UBW scheme, this is because the
pruning technique adopted by UBW schem is not strong enough compared with
the anti-monotone based pruning methods used by ATW and AW schemes.
Experiments (not shown) using extGspan and the GB data set failed to pro-
duce any results (because of memory errors) unless the support thresholod was
set to 30% or above, a threshold at which only one node size sub-graph are
discovered. Thus it was not possible to conduct any meaningful comparison be-

tween the weighted frequent sub-graph mining algorithms and a non-weighted
approach using the GB data set.

4.3 Comparison of Weighting Schemes

In this subsection the three proposed weighting schemes are compared with one
another using the large GB dataset. As above, 7 was initially set to 0.6 and A
to 8% for use with AW-gSpan and UBW-gSpan algorithms. Figure 2l shows the
performance of the weighting schemes on the GB dataset. In Fig. ] (a), each
curve depicts the number of patterns generated against the minimum support
value used. From the figure it can be seen that UBW-gSpan produces the least
number of patterns while AW-gSpan produces the most. Figure 2] (b) indicates
the “run time” for the approaches using the same sequence of support threshold
values. From the figure it can be seen that UBW-gSpan is the most “expensive”,
indicating that the cost of finding a minimum number of patterns is higher
compared to the other two mechanisms. ATW-gSpan is the most economical.
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Fig. 2. Performance comparison of three weighting schemes using the GB data set
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Reference to Fig.[I(a) and (b) confirm these results. UBW-gSpan is also expen-
sive with respect to the Nor flok and Cornwall data sets. In fact inspection of
Fig.[[(a) indicates that UBW-gSpan is more expensive than applying extGspan
in the case of theNor folk data indicating that the cost of reducing the number
of patterns is high when using UBW-gSpan. Although it should be noted that
with respect to the GB data set extGspan was unable to process this data set at
all (using realistic support thresholds). It is interesting to note in Fig. 2 (b) that
as the support threshold is reduced the effect on run-time is much smaller for
ATW-gSpan than the other two weighting schemes. More generally, from Fig. [2
it can be seen that (as might be expected) runtime increases significantly as the
support threshold is reduced.

FigureBldisplays the effect on performance of different values for the weighting
ratio threshold () used in conjunction with AW-gSpan, and the share threshold
(M) used with UBW-gSpan, for a range of support threshold values from 4%
to 12%. From Fig. [ (a) and (c) it can be seen that the run time increased as
the ~ value is decreased, while a marginal increase in the number of patterns is
witnessed. With respect to Fig. Bl (b) and (d) it can be seen that the run time
increases as the A\ value is decreased, while a small corresponding increase in
the number of identified patterns is witnessed. However, increasing the A value
beyond 8% seems to have very little effect on the number of patterns. Overall it
was found that a v value of 0.6 and a A value of 0.8% was the most appropriate.

(a) AW-gSpan - runtime (b) UBW-gSpan - runtime
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4.4 Quality of Results

The above experiments indicate that the proposed weighting approaches can be
successfully applied so that frequent sub-graphs can be identified in large col-
lections of graphs (such as those extracted from the CTS database) which could
not otherwise be mined using more conventional graph mining approaches. The
proposed weighting mechanisms operate by identifying the most “significant”
edges. The question that remains is then to ask “are we finding the right frequent
sub-graphs?”. To answer this question the research team applied the weighting
techniques to a number of classification problems. Two data sets were used, an
MRI scan data set and a text mining data set where the scans and documents
had been processed into a graph representation and labelled. Weighted graph
mining techniques were then applied to the graph sets to produce collections
of frequent sub-graphs. These sub-graphs were then interpreted as features in a
feature space and used to represent the individual records using a standard fea-
ture vector representation (where each element represents a frequent sub-graph).
Standard classification algorithms were then applied. The results generated were
comparable with results obtained using alternative, more conventional, classifica-
tion approaches thus indicating that the “right sub-graphs” had been identified.
Space limitations prevent a full presentation and discussion of these results in
this paper, however interested readers can refer to [4] and [7] for reports on the
MRI scan and text mining experiments respectively.

5 Conclusions

This paper has proposed a solution to frequent sub-graph mining where the
size of the input data is such that standard graph mining algorithms (such as
gSpan) are unable to derive any appropriate results because of the computa-
tional overheads involved. Three weighting mechanisms are proposed (ATW-
gSpan, AW-gSpan, and UBW-gSpan) designed to reduce to overall search space
by identifying the most relevant sub-graphs. The weighting schemes assume edge
weightings, but similar techniques may be applied with respect to nodes. Exper-
iments comparing the operation of the weighting schemes to a non-weighted
version of gSpan indicate that many fewer patterns are derived. The research
team have established that the reduced pattern set are the “right” pattern set
by applying the results using classification scenarios. The reported experiments
indicate that UBW-gSpan finds the least number of patterns will requiring the
largest amount of run-time. ATW-gSpan provides the best compromise, a limited
number of patterns found in reasonable time (especially at low support thresh-
old values). Experiments were also conducted with respect to the most suitable
~v and A to be used with respect to AW-gSpan and UBW-gSpan respectively.
Overall it was found that a v value of 0.6 and a A value of 0.8% was the most
appropriate.
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Abstract. In this paper we propose a comprehensive methodology for
designing Parallel Relational Data Warehouses (PRDW) over database
clusters, called Fragmentation& Allocation (F&A). F&A assumes that
cluster nodes are heterogeneous in processing power and storage capacity,
contrary to traditional design approaches that assume that cluster nodes
are instead homogeneous, and fragmentation and allocation phases are
performed in a simultaneous manner, contrary to traditional design ap-
proaches that instead perform these phases in an isolated manner. Also,
a naive replication algorithm that takes into account the heterogeneous
characteristics of our reference architecture is proposed. Finally, our pro-
posal is experimentally assessed and validated against the widely-known
data warehouse benchmark APB-1 release II.

1 Introduction

In this paper, we focus the attention to the context of query optimization tech-
niques over relational Data Warehouses (RDW) developed on top of cluster
environments [14]. A RDW is usually modeled by means of a star schema con-
sisting of a huge fact table and a number of dimension tables, similarly to the
widely-known data warehouse benchmark APB-1 release II [4], where the fact
table Sales is joint to the following four dimension tables: Product, Customer,
Time, Channel. Star queries are typically executed against RDW. Star queries
retrieve aggregate information (e.g., based on standard SQL aggregate operators
like SUM, COUNT etc) from measures stored in the fact table by applying selection
conditions on joint dimension table columns, and they are extensively used as
conceptual basis for more complex OLAP queries, which, in turn, are exploited to
extract useful summarized knowledge from RDW for decision making purposes.

Unfortunately, evaluating OLAP queries over RDW typically demands for a
high-performance that is difficult to ensure over large amounts of multidimen-
sional data, even because such queries are usually complex in nature [2]. This
complexity is mainly due to the presence of joins and aggregation operations
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© Springer-Verlag Berlin Heidelberg 2010



90 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

over huge fact tables, which very often involve billions of tuples to be accessed
and processed. In order to speed-up OLAP queries over RDW, several optimiza-
tion approaches, mainly inherited from classical database technology, have been
proposed in literature. Among others, we recall materialized views [12], indexing
[20], data partitioning [3], data compression [7] etc. Despite this, it has been
demonstrated that the sole use of these approaches singularly is not sufficient
to gain efficiency during the evaluation of OLAP queries over RDW [2]]. As a
consequence, in order to overcome limitations deriving from these techniques,
high-performance in database technology, including RDW [IT9], has tradition-
ally been achieved by means of parallel processing methodologies [16].

Following this major trend, the most important commercial database systems
vendors (e.g., Oracle, IBM, Microsoft, NCR, Sybase etc.) have recently proposed
solutions able to support parallelism within the core layer of their DBMS. Unfor-
tunately, these solutions still remain expensive for small and medium enterprises,
so that database cluster technology represents an efficient low-cost alternative to
tightly-coupled multiprocessing database systems [14]. A database cluster can be
defined as a cluster of personal computers (PC) such that each of them runs an
off-the-shelf sequential DBMS [I4]. The set of DBMS relying in the cluster are
then orchestrated by means of an ad-hoc middleware that implements parallel
processing mechanisms and techniques, being this middleware able to support
typical DBMS functionalities/services (e.g., storage, indexing, querying etc) in a
transparent-for-the-user manner, just like end-users were interacting with a sin-
gleton DBMS. Starting from this low-cost technology solution, in our research
we focus the attention on the application scenario represented by the so-called
parallel relational Data Warehouses (PRDW) over database clusters, i.e. RDW
that are developed on top of a cluster of databases that implements parallel
processing mechanisms and techniques.

Similarly to the traditional context of distributed and parallel databases [16],
the design of a PRDW on a database cluster can be achieved by means of a gen-
eral design methodology consisting by the following steps: (i) fragmenting the
input data warehouse schema; (ii) allocating the so-generated fragments; (4ii)
replicating fragments in order to ensure high-performance during data manage-
ment and query evaluation activities. By examining the active literature, few
proposals on how to design a PRDW on a database cluster exist [TI/T4]. These
approaches can be classified into two main classes. The first class of proposals
assume that data are already partitioned and allocated, and propose solutions
to route OLAP queries across nodes of the database cluster in order to improve
query performance [I7JI8]. The other class of proposals instead propose solu-
tions to partition and allocate data across database cluster nodes [14]. Most
importantly, the majority of approaches devoted to the design of a PRDW over
a database cluster assume that all nodes of the cluster are homogenous, i.e.
they have the same processing power and storage capacity. By looking at the
peculiarities of the target application scenario, it is easy to understand how this
assumption is not always true, as a cluster of PC with heterogeneous character-
istics in terms of storage and processing capacity may exist. Therefore, it clearly
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follows the interest for PRDW design methodologies over database clusters char-
acterized by heterogeneous nodes, in all the phases, including data partitioning,
fragment allocation, and data replication, which is the main goal of our research.

Data fragmentatio is a fundamental phase of any PRDW design methodol-
ogy, and can also be considered as a pre-condition for PRDW design [I]. Data
fragmentation can be of the following two kinds [I6]: (i) horizontal fragmenta-
tion, according to which table instances are decomposed into disjoint partitions;
(ii) wvertical fragmentation, according to which table instances are split into dis-
joint sets of attributes. Horizontal partitioning is the most popular solution used
to design PRDW [T2T22/TTT4]. In previous PRDW design methodologies re-
search efforts, horizontal partitioning algorithms do not control the number of
generated fragments, except [II5]. As a consequence, the number of fragments
generated by the partitioning phase can be larger than the number of nodes of
the database cluster. In turn, this causes flaws in the allocation and replication
phases.

Allocation is the phase that places fragments generated by the partition phase
across nodes of the database cluster. Allocation can be either redundant, i.e.
with replication, or non redundant, i.e. without replication [I6]. Some literature
approaches advocate a full replication in order to ensure a high intra-query par-
allelism [14]. This solution demands for the availability of very large amounts of
disk space, as each node must be ideally able to house the entire data warehouse.
As a consequence, data updates become prohibitively expensive. On the basis of
this main observation, we assert that replication must be partial, meaning that
database cluster nodes house portions of the original data warehouse. Once frag-
ments are placed and replicated, global OLAP queries against the target PRDW
are re-written over fragments and evaluated on the parallel machine.

State-of-the-art PRDW design methodologies on database clusters proposals
suffer from the following two main limitations. First, they focus the attention
on homogenous database clusters, i.e. database clusters where nodes have the
same processing power and storage capacity. Second, fragmentation and alloca-
tion phases are usually performed in an isolated (or iterative) manner, meaning
that the designer first partitions his/her data warehouse using his/her favorite
fragmentation algorithm and then allocates generated fragments on the parallel
machine using his/her favorite allocation algorithm. This approach completely
ignores the inter-dependency between fragmentation and allocation phases,
which, contrary to this, can instead seriously affect the final performance of
data management and OLAP query evaluation activities performed against the
PRDW. Starting from these breaking evidences, in this paper we propose and ex-
perimentally assess an innovative methodology for designing PRDW on database
clusters, called Fragmentation&.Allocation (F&.A), which overtakes the limita-
tions above. To the best of our knowledge, our research is the first one in liter-
ature that addresses the issue of designing PRDW on heterogeneous database
clusters via a combined fragmentation/allocation strategy.

! In this paper, we use the terms “fragmentation” and “partitioning” interchangeably.
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The paper is organized as follows. Section 2l summarizes existing approaches
that focus on iterative PRDW design methodologies. In Section [, we provide a
rigorous formalization of the PRDW design problem on heterogeneous database
clusters, by also putting in emphasis limitations deriving from traditional itera-
tive design methodologies. Section [4] describes our comprehensive methodology
F&A for designing PRDW on heterogeneous database clusters, where partition-
ing and allocation phases are performed simultaneously. In Section[5] we provide
the experimental results obtained from testing the performance of F&.A against
the widely-known data warehouse benchmark APB-1 release II [4]. Finally, Sec-
tion [@] concludes the paper summarizing the main findings of our research, and
proposing directions for future work.

2 Related Work

In this Section, we provide a brief overview on state-of-the-art approaches fo-
cusing on fragmentation and allocation techniques for supporting PRDW over
database clusters [TTT4UTTTS].

Furtado [T1] discusses partitioning strategies for node-partitioned data ware-
houses. The main suggestion coming from [II] can be synthesized in a “best-
practice” recommendation stating to partition the fact table on the basis of the
larger dimension tables (given a ranking threshold). In more detail, each larger
dimension table is first partitioned by means of the Hash mode approach via
its primary key. Then, the fact table is again partitioned by means of the Hash
mode approach via foreign keys referencing the larger dimension tables. Finally,
the so-generated fragments are allocated according to two alternative strategies,
namely round robin and random. Smaller dimension tables are instead fully-
replicated across the nodes of the target data warehouse. The fragmentation
approach [IT] does not take into account specific star query requirements, being
such queries very often executed against data warehouses, and it does not con-
sider the critical issues of controlling the number of generated fragments, like in
B122].

In [I4], Lima et al. focus the attention on data allocation issues for database
clusters. Authors recognize that how to place data/fragments on the different
PC of a database cluster in the dependence of a given criterion/goal (e.g., query
performance) plays a critical role, hence the following two straightforward ap-
proaches can be advocated: (i) full replication of the target database on all
the PC, or (7#) meaningful partition of data/fragments across the PC. Starting
from this main intuition, authors propose an approach that combines partition
and replication for OLAP-style workloads against database clusters. In more
detail, the fact table is partitioned and replicated across nodes using the so-
called chained de-clustering, while dimension tables are fully-replicated across
nodes. This comprehensive approach enables the middleware layer to perform
load balancing tasks among replicas, with the goal of improving query response
time. Furthermore, the usage of chained de-clustering for replicating fact table
partitions across nodes allows the designer not to detail the way of selecting the
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number of replicas to be used during the replication phase. Just like [11], [I4]
does not control the number of generated fact table fragments.

To summarize, the most relevant-in-literature approaches related to our re-
search are mainly oriented towards the idea of performing the fragmentation and
allocation phases over database clusters in an isolate and iterative manner.

3 Formalization of the PRDW Design Problem on
Heterogeneous Database Clusters

In this Section, we introduce a rigorous formalization of the PRDW design prob-
lem on heterogeneous database clusters, which will be used as reference formal-
ism throughout the paper. Formally, given:

— a data warehouse schema DWS composed by d dimension tables D =
{Dqy, D1,...,Dgq_1} and one fact table F — as in [T1/T4], we suppose that all
dimension tables are replicated over the nodes of the database cluster and
are fully-available in main memories of cluster nodes;

— a database cluster machine DBC with M nodes N' = {Ny, N1,...,Napr—1},
each node N,,, with 0 < m < M — 1, having a proper storage S, and proper
processing power P,,, which is straightforwardly modeled in terms of the
number of operations that IV, can process in the reference temporal unit;

— aset of star queries Q = {Q1,Q2,...,QL_1} to be executed over DBC, being
each query @Q;, with 0 <1 < L — 1, characterized by an access frequency fi;

— a maintenance constraint YW : W > M representing the number of fragments
W that the designer considers relevant for his/her target allocation process,
called fragmentation threshold;

the problem of designing a PRDW described by DWS over the heterogeneous
database cluster DBC consists in fragmenting the fact table F into Np fragments
and allocating them over different DBC nodes such that the total cost of executing
all the queries in Q can be minimized while storage and processing constraints
are satisfied across nodes in DBC, under the maintenance constraint V.

Based on the formal statement above, it follows that our investigated prob-
lem is composed by two sub-problems, namely data partitioning and fragment
allocation. Each one of these problems is known to be NP-complete [3I19I13]. In
order to deal with the PRDW design problem over database clusters, two main
classes of methodologies are possible: iterative design methodologies and com-
bined design methodologies. Iterative design methodologies have been proposed
in the context of traditional distributed and parallel database design research.
The idea underlying this class of methodologies consists in first fragmenting the
RDW using any partitioning algorithm, and then allocating the so-generated
fragments by means of any allocation algorithm. In the most general case, each
partitioning and allocation algorithm has its own cost model. The main advan-
tage coming from these traditional methodologies is represented by the fact that
they are straightforwardly applicable to a large number of even-heterogenous
parallel and distributed environments (e.g., Peer-to-Peer Databases). Contrary
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Fig. 1. Iterative PRDW Design Methodology over Heterogeneous Database Clusters
(a) and Combined PRDW Design Methodology over Heterogeneous Database Clusters
— The F&.A Approach (b)

to this, their main limitation is represented by the fact that they neglect the inter-
dependency between the data partitioning and the fragment allocation phase,
respectively. Figure[Il (a) summarizes the steps of iterative design methodologies.

To overcome limitations deriving from using iterative design methodologies,
the combined design methodology F&.A we propose in our research consists in
performing the allocation phase/decision at fragmentation time, in a simulta-
neous manner. Figure [Il (b) illustrates the steps of our approach. Contrary to
the iterative approach that uses two cost models (i.e., one for the fragmentation
phase, and one for the allocation phase), F&.A uses only one cost model that
monitors whether the current generated fragmentation schema is “useful” for
the actual allocation process.

4 F&A: A Combined PRDW Design Methodology over
Heterogeneous Database Clusters

In this Section, we describe in detail our combined PRDW design methodology
over heterogeneous database clusters, F&A. We first focus the attention on
the data partitioning phase, which, as stated in Section[I] is a fundamental and
critical phase for any PRDW design methodology [I]. A distinctive characteristic
of F&A is represented by the fact that, similarly to [I5], it allows the designer
to control the number of generated fragments, which should be a mandatory
requirement for any PRDW design methodology in cluster environments (see
Section [[). Then, we move the attention on data allocation issues and, finally,
we provide the main algorithm implementing our proposed methodology.

4.1 Data Partitioning

In our proposed research, we make use of horizontal (data) partitioning, which
can be reasonably considered as the core of F&A. Specifically, our data parti-
tioning approach consists in fragmenting dimension tables D; in D by means of
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selection predicates of queries in @, and then using the so-generated fragmen-
tation schemes, denoted by FS(D;), to partition the fact table 7. Formally, a
selection predicate is of kind: Ay 6 Vi, such that: (i) Ax models an attribute of
a dimensional table D; in D; (i) Vi models an attribute value in the universe
of instances of DWS; (iit) 0 models an equality or comparison predicate among
attributes/attribute-values, i.e. 6 € {=, <,>, <, >}. The fact table partitioning
method that derives from this approach is known-in-literature under the term
“referential partitioning”, which has recently been incorporated within the core
layer of the DBMS platform Oracle11G [10].

Example 1. To illustrate how our proposed fragmentation process works, let us
consider the APB-1 release II schema [4], which is characterized by the fol-
lowing dimensional tables: D = { Product, Customer, Time, Channel}, and the
following fact table: F = {Sales}. Furthermore, suppose that the dimension ta-
ble Time is partitioned into two fragments, namely Timesggr and Timesgos,
by means of the attribute Year, as follows: Timesgor = Oyear=2007(Time),
Timeanos = Oy ear=2008(Time), such that o represents the selection predicate.
As a consequence, the fact table Sales is fragmented on the basis of the parti-
tioning scheme of the dimensional table Time into the following two fragments,
namely Salesagor and Salesagos, such that Salessgor = Sales X Timesgpr and
Salessgos = Sales X Timesgos, where X represents the semi-join operator.

Based on the data partitioning approach above, the number of fragments Np
generated from the fact table F is given by the following expression: Np =
H?;é @;, such that @;, with 0 < j < d — 1, denotes the number of horizontal
fragments of the dimension table D; in D, and d denotes the number of dimension
tables in DWS. Such a decomposition of the fact table may generate a large
number of fragments [213].

4.2 Naive Solution

In F&A, we introduce the concept of fragmentation scheme candidate of a di-
mensional table D; in D, denoted by FS¢(D;). Intuitively enough, a fragmenta-
tion scheme candidate is a fragmentation scheme generated during the execution
of the algorithm implementing F&.A4 and that may belong to the final solution
represented by the set of N fact-table fragments allocated across nodes of the
target database cluster.

A critical role in this respect is played by the solution used to represent-in-
memory fragmentation scheme candidates, as this, in turn, impacts on the per-
formance of the proposed algorithm. In our implementation, given a dimensional
table D; in D, we model a fragmentation scheme candidate of D; as a multi-
dimensional array A; such that rows in A; represent so-called fragmentation
attributes of the partitioning process (namely, attributes of D;), and columns
in A; represent domain partitions of fragmentation attributes. Given an at-
tribute Ay of D;, a domain partition Pp(Ag) of Ay is a partitioned represen-
tation of the domain of Ay, denoted by Dom(Ay), into disjoint sub-domains
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of Dom(Ak), ie. PD(Ak) = {domo(Ak), d0m1 (Ak), ey d0m|73D(Ak,)\fl(Ak)}a
such that domp(Ax) € Dom(Ag), with 0 < h < |Pp(Ag)| — 1, denotes a
sub-domain of Dom(Ay), and the following property holds: V hp,hy : h, #
hq, domp,(Ay) (\domy,,(Ax) = 0. Given an attribute Ay of D;, a number of al-
ternatives for generating a domain partition Pp(Ax) of Dom(Ay) exist. Among
all the available solutions, F&.4 makes use of the set of queries Q to this end
(see Section [3). Coming back to the structural definition of A;, each cell of A;,
denoted by A,;[k][h], stores an integer value that represents the number of at-
tribute values of Ay belonging to the sub-domain domy(Ay) of Dom(Ag). It is
a matter of fact to notice that A;[k|[h] € [0: |Pp(Agx)|] (see Figure [2).

Based on the multidimensional representation model for fragmentation scheme
candidates above, for each dimension table D; in D, the final fragmentation
scheme of D;, FS(D;), is generated according to the following role-based se-
mantics:

— all cells in A; of a fragmentation attribute Ay of D; have different values
Aj[k][Rh], then all sub-domains of Dom(Ay) will be used to partition Dj;

— all cells in A; of a fragmentation attribute Ay of D; have the same value
Aj[k][h], then the attribute Aj will not participate to the fragmentation
process;

— a sub-set of cells in A4; of a fragmentation attribute Ay of D; have the
same value A;[k][h], then the corresponding sub-domains of Dom(Ay) will
be merged into one sub-domain only, and then used to partition D;.

Ezample 2. Consider again the APB-1 release II schema [4]. Suppose that
the fragmentation process example is driven by the following fragmenta-
tion attributes: Class, Group and Family, all belonging to the dimension
table Product. Also, suppose that the domains of these attributes are the
following: Dom(Class) = {Ci,Ca,Cs}, Dom(Group) = {Gi,G2,G3} and
Dom(Family) = {F1, F», F5}, and that the domain of each attribute is de-
composed into three distinct sub-domains, as shown in Figure [ (a). Figure
(b) shows a fragmentation scheme candidate example Apyoduct of Product for
the running fragmentation process example. Note that attribute As = Family
is not concerned by the fragmentation process, as all its cells in Ap,oquct[2][P]
have the same value, with 0 < h < 2. On the other hand, based on fragmentation
scheme shown in Figure 2] (b), the dimension table Product will be fragmented
into 3 x 2 = 6 horizontal fragments, hence the fact table Sales will be also
partitioned into 6 (fact-table) fragments accordingly.

Based on the formal model of fragmentation scheme candidates above, the naive
solution to the PRDW design problem over database clusters we propose, which
represents a first attempt of the algorithm implementing F&.4, makes use of a
hill climbing heuristic [8], which consists of the following two steps:

1. find an initial solution Zy — Zy may be obtained via using a random distri-
bution for filling cells of fragmentation scheme candidates for each fragmen-
tation attribute Aj of dimensional tables D; in D;
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C; Cs C;
cl | | | |
as f f I I Class 12 3
G G G G 11 |2
Group | | J | Toup
F; £ F Family 1 1 1
Family | | | |

(a) (b)

Fig. 2. Attribute Domain Partitions (a) and a Fragmentation Scheme Candidate
Aproduct of the dimension table Product (b) of the Running Example

2. iteratively improve the initial solution Zy by using the hill climbing heuristic
until no further reduction in the total query processing cost due to evaluating
queries in Q can be achieved, and the storage and processing constraints are
satisfied, under the maintenance constraint W.

It should be noted that, since the number of fragmentation scheme candidates
generated from DWS is finite, the hill climbing heuristic will always complete
its execution, thus finding the final solution Zr. This ensures the convergence of
the naive solution at a theoretical level.

4.3 Improved Solution

The previous naive solution can be improved by introducing two specialized
operators, namely Merge and Split, which allow us to further reduce the total
query processing cost due to evaluating queries in Q. Let us now focus on the
formal definitions of these operators.

Given a fragmentation attribute A of a dimension table D; in D having
FS(Dj) as fragmentation scheme, Merge takes as input two domain partitions
of Ay in FS(Dj), namely P?,(Ax) and P} (Ay), an returns as output a new frag-
mentation scheme for D;, denoted by FS’(D;), where P}, (Ay) and P} (Ax) are
merged into a singleton domain partition of A, denoted by P34 (A). Merge re-
duces the number of fragments generated by means of the fragmentation scheme
FS(Dj) of Dj, hence it is used when the number of generated fragments does
not satisfy the maintenance constraint W (see Section B]). Formally, Merge is
defined as follows:

Merge : (A, Dj;, ‘FS(Dj)’ P%(Ak)v ,Pg) (Ak)) — (A, Dj, }—Sl(Dj)v P%Q(Ak)g )
1

Given a fragmentation attribute Ay of a dimension table D; in D having FS(D;)
as fragmentation scheme, Split takes as input a domain partition of Ay in
FS(Dj), Pp(Ag), an returns as output a new fragmentation scheme for D,
denoted by FS'(D;), where Pp(Ay) is split into two distinct domain partitions
of Ay, denoted by P¥, (Ax) and P} (Ay), respectively. Split increases the number
of fragments generated by means of the fragmentation scheme FS(D;) of D;.
Formally, Split is defined as follows:

Split : (Ay, Dj, FS(Dy), Pp(Ax)) — (Ax, Dj, FS'(D;), PD(Ar), PH(Ar)) (2)
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On the basis of these operators running on fragmentation schemes of dimensional
tables, the hill climbing heuristic still finds the final solution Zp, while the total
query processing cost can be reduced and the maintenance constraint VW can be
satisfied.

4.4 Data Allocation

The data allocation phase of F&.A is performed simultaneously to the data frag-
mentation/partitioning phase. Basically, each fragmentation scheme candidate
generated by the algorithm implementing F&A is allocated across nodes of the
target database cluster, with the goal of minimizing the total query processing
cost queries in Q over all nodes, while satisfying the storage and processing con-
straints on each node. In more detail, during the allocation phase the following
concepts/data-structures are used:

— Fragment Placement Matrix (FPM) Mp, which stores the positions of a
fragment across nodes (recall that fragment replicas may exist). To this end,
M p rows model fragments, whereas M p columns model nodes. M pli][m] =
1, with0<i< Np —1and 0 <m < M — 1, if the fragment F; is allocated
on the node N,, in NV, otherwise M p[i][m] = 0.

— Fragment Size Size(F;), which models the size of the fragment F; in terms
of the number of its instances across the nodes. Size(F;) is estimated by
means of selection predicates. Since each node N,, in A has its own storage
capacity Sy, the storage constraint associated to F; across all nodes of the
target database cluster can be formally expressed as follows:

Np—1

Vmel0: M —1] Z Mpli]lm] x Size(F;) < S, (3)

— Fragment Usage Matrix (FUM) [15] My, which models the “usage” of
fragments by queries in Q. To this end, My rows model queries, whereas
My columns model fragments. My[l][i] = 1, with 0 < I < L —1 and
0 <i < Np — 1, if the fragment F; is involved by the query Q; in Q, other-
wise My [l][i]] = 0. An additional column is added to My for representing
the access frequency fr; of each query @; in Q (see Section B]). In order
to evaluate a query Q; in Q on a node N, in A/, N,, must store relevant
fragments for ;. Based on our theoretical framework, a fragment F; is rel-
evant iff the following property holds: Mp[i][m] = 1 A My[l][{]] = 1, with
0<i<Np—1,0<m<M-landO0<I<L-1.

Example 3. Let Q = {Q1,Q2,Q3,Q4} and F =
{F\, Fy, F3, Fy, F5, Fg, F7, F3 } be the set of queries and generated fragments,
respectively. The corresponding FUM is shown in Table[I]

— Fragment Affinity Matriz (FAM) M 4, which models the “affinity” between
two fragments F;, and Fj, . To this end, M4 rows and columns both model
fragments, hence M4 is a symmetric matrix. M4[ip][iq], with 0 < i, <
Nr —1and 0 <i; < Np —1, stores the sum of access frequencies of queries
in Q that involve F; , and F;_ simultaneously.
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Table 1. FUM of the Running Example

F1F2F3F4F5F6F7F8F’r’
Qi1 010101020

Q1111000035
Q0 010 1 1 1 1 30
Qi1 111111115

Ezample 4. From the FUM shown in Table [ the associated FAM is shown
in Table

Table 2. FAM of the Running Example

Fy F> F3 Fy F5 Fg F7 F3
Fy — 50 70 50 65 15 35 15
F5 50 — 50 50 15 15 15 15
F3 70 50 — 50 65 45 65 45
Fy 505050 — 15151515
F5 65 15 65 15 — 45 65 45
Fs 15 15 45 15 45 — 45 45
F7 35 15 65 15 65 45 — 45
Fg 15 15 45 15 45 45 45 -

4.5 F&A Algorithm

On the basis of the data partitioning phase and the data allocation phase de-
scribed in Section 4.1 and Section 4.4, respectively, and the naive solution and
improved solution to the PRDW design problem over database clusters provided
in Section 4.2 and Section 4.3, respectively, for each fragmentation scheme can-
didate FS¢(D;) of each dimensional table D; in D, the algorithm implementing
our proposed methodology F&.A performs the following steps:

1.

Based on the FUM My and the FAM M 4, generate groups of fragments
G- by means of the method presented in [15].

Compute the size of each fragment group G, as follows: Size(G.) =
> Size(F;), such that Size(F;) denotes the size of the fragment F;.

Sort nodes in the target database cluster DBC by descendent ordering based
on their storage capacities and processing powers.

. Allocate “heavy” fragment groups on powerful nodes in DBC, i.e. nodes with

high storage capacity and high processing power, in a round-robin manner
starting from the first powerful node. The allocation phase must minimize
the total query processing cost due to evaluating queries in Q@ while mazx-
imizing the productivity of each node, based on the following theoretical
formulation:
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L—-1 Np—1

S mamoémSM_l{ 3 Myl][i] x Mpli]m] x Sz’ze(Fz')} (1)

P,
1=0 i=0 m

such that: (i) L denotes the number of queries against DBC; (7)) M denotes
the number of nodes of DBC; (¥ii) Nr denotes the number of fragments
belonging to the solution; (iv) My denotes the FUM; (v) Mp denotes the
FPM; (vi) Size(F;) denotes the size of the fragment Fj; (vii) P, denotes
the processing power of the node N, in A. In formula ), we implicitly
suppose that the response time of any arbitrary query @; in Q is superiorly
bounded by the time needed to evaluate @); against the most-loaded node in
DBC, thus we can consider it as a constant and omit it in formula (@]).

5. Replicate on non-powerful nodes groups of fragments that require high com-
putation time, in order to ensure a high performance.

5 Experimental Assessment and Results

In order to carefully evaluate the effectiveness and the efficiency of our proposed
PRDW design methodology on database clusters, F&.A, we conducted an in-
tensive experimental campaign. Our F&.A algorithm (see Section 4.5) has been
implemented by using Java, and experiments have been performed on an Intel
Pentium Core Duo at 2.8 GHz equipped with 3 GB RAM.

As regards the setting of our experimental framework, we considered a sim-
ulated database cluster environment with 128 nodes. Storage capacity and
processing power of each node have been generated according to a random dis-
tribution, thus obtaining a totally heterogenous database cluster environment.

As regards the data layer of our experimental framework, we considered the
well-known benchmark APB-1 release II [4]. In detail, APB-1 is characterized by
one fact table Sales having 24, 786, 000 tuples, and the following four dimension
tables, with respective number of tuples: Product (9,000 tuples), Customer (900
tuples), Time (24 tuples), and Channel (9 tuples).

As regards the query layer of our experimental framework, we considered a
star query workload consisting of of 55 single-block queries (i.e., queries without
nested sub-queries) characterized by 40 selection predicates defined on the fol-
lowing 9 distinct attributes: Class, Group, Family, Line, Division, Year, Month,
Retailer, All. Domains of these attributes are split into the following number of
sub-domains: 4, 2, 5, 2, 4, 2, 12, 4, 5, respectively. In our experimental assess-
ment, we do not consider update queries, which are left for future work.

As regards the metrics of our experimental framework, we considered the
execution time due to evaluating queries of the experimental query workload by
gathering the total number of I/Os needed to this end divided by the average
processing power of nodes. Here, we set the reference temporal unit determining
the notion of processing power to seconds (see Section [3]).

We performed several kinds of experiments, in order to obtain a “rich” and
reliable experimental evaluation of the F&.A algorithm. First, we compared our
proposed methodology F& A against a classical iterative approach, where frag-
mentation and allocation are executed sequentially and without any iteration,
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still in a heterogeneous database cluster environment. The classical iterative ap-
proach is based on the hill climbing heuristic [§]. As regards the F&.A algorithm,
we set the fragmentation threshold W to 500 (see Section Bl). We measured the
query execution time versus the variation of the number of database cluster
nodes M over the interval [2 : 128]. Figure Bl (a) shows the results obtained
from the first experiment, and confirms to us that the combined approach out-
performs the iterative one significantly. In the second experiment, we focused
the attention on F&A solely, and we observed its performance in four different
application scenarios which may arise in real-life database cluster environments:
(i) heterogenous database cluster environments, according to the general guide-
lines of our experimental setting provided above; (i7) homogenous database clus-
ter environments such that nodes have a “high” processing power (denoted by
P + +); (44) homogenous database cluster environments such that nodes have
a “low” processing power (denoted by P — —); (4v) homogenous database clus-
ter environments such that nodes have an “average” processing power (denoted
by P = AVG). For all scenarios, we assumed a limited storage capacity, i.e.
the following hypothesis holds: Zj\m/tol Sm > Size(DW), where Sy, denotes the
storage capacity of the node N,, in A/ and Size(DW) denotes the size of the
entire data warehouse, respectively. Figure[3] (b) shows the results obtained from
the second experiment. As shown in Figure[Bl (b), F&A performance reaches the
best score in the case of scenario (i7), i.e. P4+, as expected. On the other hand,
a collateral interesting phenomenon is represented by the fact that F&.A per-
formance over heterogenous database cluster environments outperforms F&.A
performance over the remaining two scenarios, i.e. P — — and P = AV@G.

In the third experiment, we stressed the F&.A performance under two different
(heterogeneous database cluster) scenarios determined by the processing power
of nodes, which is a fundamental factor in our research. According to the first
scenario, the allocation phase of F&.A has been performed by considering the
processing power of nodes in the cost model (), whereas in the second one the

M heterogenous

B homogenous P++
homogenous P--

m homogenous P=AVG

B combined

iterative

Query Exe Time [sec]
QueryExe Time [sec|
=
=]
a

-I—I_I—l-l—rl—.-.— 100

8 16 32 64 128

Number of DB Cluster Nodes Number of DB Cluster Nodes
(a) (b)

Fig. 3. Query Performance vs the Number of Database Cluster Nodes for F&.A and the
Hill-Climbing-based Methodology in a Heterogeneous Environment (a) and for F&.A
over Four Different Database Cluster Environments Scenarios (b)
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Fig. 5. Effect of the Fragmentation Threshold W on the Query Performance of F&.A

allocation has not considered the processing power of nodes. Figure @l (a) shows
the results obtained from the third experiment. Derived results show that, when
the cost model ) encompasses the processing power of nodes, F&.A perfor-
mance is higher as all the effective characteristics of nodes are taken into con-
sideration. At the same, this confirms to us the effectiveness and the efficiency
of F&A. Finally, in the last experiment we focused the attention on the effect
of storage capacity of nodes over the F&.A performance, still in a heterogeneous
database cluster environment. Here, we considered two different scenarios related
to this critical factor of nodes, i.e. (heterogeneous) database cluster environments
such that nodes are characterized by a “large” storage capacity, and (heteroge-
neous) database cluster environments such that nodes are characterized by a
“small” storage capacity, respectively. As shown in Figure @ (b), F&A works
better when nodes with large storage capacity are considered, as expected.
Finally, we focused the attention on the effect of the maintenance constraint W
(see Section[J) on the performance of F&A over heterogeneous cluster environ-
ments, still considering the main one developed in our experimental assessment.
Here, we fixed the number of nodes to M = 10, and we ranged the fragmentation
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threshold W over the interval [100 : 300] in order to study how the F&.A query
performance varies accordingly. For each value of W, we run the F&.A algorithm,
and we estimated the total query processing cost due to evaluating queries of
the target query workload in terms of number of I/Os. Figure Bl shows the ob-
tained experimental results. From the analysis of Figure [ it clearly follows that
increasing the value of W improves the F&.A query performance significantly,
as this allows more (fragmentation) attributes to participate in the partitioning
process. In addition to this, it should be noted that F&.A query performance
become stable starting from the cut-off value W = 250. This experimental result
confirms to us the importance of carefully choosing the number of final fragments
to be generated.

6 Conclusions and Future Work

In this paper, we have introduced and experimentally evaluated F&.A, an inno-
vative PRDW design methodology on database clusters. The proposed method-
ology encompasses a number of advancements over state-of-the-art similar ap-
proaches, particularly (¢) the fact it considers heterogeneous cluster nodes, i.e.
nodes having heterogenous storage capacities and processing power, and (i) the
fact it performs the fragmentation and allocation phases simultaneously. As a
secondary contribution of our research, we have provided a comprehensive ex-
perimental campaign where we demonstrated the effectiveness and the efficiency
of our proposed approach. Future work is mainly oriented towards making our
proposed design methodology able to deal with next-generation Grid Data Ware-
house Environments [6].
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Abstract. One of the fundamental tasks that data warehouse (DW) ad-
ministrator needs to perform during the physical design is to select the
right indexes to speed up her/his queries. Two categories of indexes are
available and supported by the main DBMS vendors: (i) indexes defined
on a single table and (ii) indexes defined on multiple tables such as join
indexes, bitmap join indexes, etc. Selecting relevant indexes for a given
workload is a NP-hard problem. A majority of studies on index selection
problem was focused on single table indexes, where several types of algo-
rithms were proposed: greedy search, genetic, linear programming, etc.
Parallel to these research efforts, commercial DBMS gave the same at-
tention to single table indexes, where automated tools and advisors gen-
erating recommended indexes for a particular workload and constraints
are developed. Unfortunately, only few studies dealing with the prob-
lem of selecting bitmap join indexes are carried out. Due to the high
complexity of this problem, these studies mainly focused on proposing
pruning solutions of the search space by the means of data mining tech-
niques. The lack of bitmap join index selection algorithms motivates our
proposal. This paper proposes selection strategies for single and multiple
attributes BJI. Intensive experiments are conducted comparing the pro-
posed strategies using mathematical cost model and the obtained results
are validated under Oracle using APB1 benchmark.

Keywords: Physical Design, Bitmap join index, Query performance.

1 Introduction

Queries defined on relational DW (called star join queries) are complex, since
they involve several joins and selections. Indexes are a solid candidate to optimize
such operations. Note that they are considered as the pioneer of the optimization
techniques in database area. They represent an important part of any database
system design as they can significantly impact workload performance by enabling
quicker and more efficient access to data. In the DW context, when we talk
about indexing, we refer to two different aspects: (i) indexing techniques and (i)
index selection problem. A number of indexing strategies have been suggested
for DWs that we propose to classify into two main categories: (1) single table
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indezes and (2) multiple table indexes. A single table index is an index defined
on one or several attributes of a single table, whereas a multiple table index
involves several tables. A large spectrum of indexing techniques belonging to
both categories has been proposed: value-list index, projection index [13], bitmap
index [0], data indez [11], join index [I8], star join index, bitmap join index [13].
Note that single table indexes are not sufficient to optimize star join queries. A
join index, considered as a multiple table index, is well adapted for such queries.
It is the result of joining two tables on a join attribute and projecting the keys
(or tuple identifiers) of the two tables. To join the two tables, we can use the
join index to fetch the tuples from the tables followed by a join. In the relational
DW, it is of interest to perform a multiple join (a star join) on the fact table
and their dimension tables. Therefore, it will be helpful to build join indexes
between the keys and the dimension tables and the corresponding foreign keys
of the fact table. If the join indexes are represented in bitmap (called bitmap
join indexes (BJI)), a multiple join could be replaced by a sequence of bitwise
operations, followed by a relatively small number of fetch and join operations.
An important characteristic of BJI is their ability to be compressed [19], where
run-length compression is usually used to reduce the size of the bitmaps. Note
that a BJI can be defined on only one attribute of a given dimension table (in
this case it is called single attribute BJI) or on several attributes of the same or
different dimension table (called multiple attribute BJI).

The index selection problem (ISP) has been studied since the early 70’s and its
importance during physical design is well recognized [9]. ISP consists in picking a
set of indexes for given set of queries under some resources constraints (storage
cost, maintenance overhead, etc.). It is a NP-hard problem. A large amount
of studies dealing with this problem were proposed [ZITOTG/8ITAT2/20]. They
are mainly focused on single table indexes. Two main types of algorithms were
proposed to select them: (i) heuristic algorithms, such as greedy search [16],
genetic, etc. and (ii) integer linear programming approaches to compute how
close they get to the optimal solution [7JT4]. Most academic selection approaches
use mathematical cost models to guide the selection process and quantify the
quality of the final indexes. Some industrial index tools use the cost models
of their query optimizers to select indexes [20]. The single table index selection
algorithms used by these tools are usually based on greedy search augmented with
optimization techniques to reduce the number of index candidate they consider
and the number of calls to the query optimizer [§]. Recently, DBMS vendors
propose automated advisors generating recommended single table indexes for a
particular workload and constraints [1120].

So far, we realize that single table indexes received great attention from aca-
demic and industrial communities. This attention concerns both aspects of in-
dexing: techniques and selection algorithms. Unfortunately, a little attention has
been given to multiple table indexes and especially selection algorithms aspect.
Most of studies related to BJI selection problem are mainly focused on pruning
its search space [2I417]. In [2], a data mining algorithm Close [15] is used to per-
form the pruning. Frequent itemsets generated by Close are BJI candidate. Since,
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BJI selection problem is constraint with a storage capacity, the authors propose
a simple greedy algorithm to select a final configuration of BJI optimizing query
processing cost and satisfying the storage constraint. The main drawback of
this selection approach is that it considers only frequencies of appearance of at-
tributes to generate frequent itemsets. In [4], we have shown using an example
that the appearance frequencies cannot be the sole criteria to recommend BJI.
Therefore, we proposed DynaClose algorithm which is an improvement of Close
by adding other DW parameters such as frequencies of attributes, size of the
dimension and fact tables, the system page size, etc to generate frequent item-
sets. Once the pruning phase is done, a simple greedy algorithm is performed to
select final BJI. In [4], horizontal partitioning technique (considered as an opti-
mization structure), is used to prune the search space of BJI indexes. This work
has been motivated by the existence of a strong similarity between horizontal
partitioning and BJI - both optimize selections and joins and are concurrent
to the same resource representing the selection attributes of dimension tables.
The pruning process is done as follows: if a restriction attribute is used to par-
tition the DW, it will be automatically discarded from indexing process. Similar
work was developed in [I7], but without considering BJI selection problem. It
deals with parallel DW design, where algorithms for allocating fragments and
BJIs are given. In [3], a tool (called SimulPhd) assisting, in iterative way, DW
administrators (DWAs) in their physical design tasks are proposed. One of the
functionalities of SimulPhd is the recommendation of BJIs based on DynaClose
approach proposed in [4].

The lack of BJI selection algorithms motivates us to develop other strategies
and to propose a strong evaluation comparing their efficiencies to optimize OLAP
queries. Having a several BJI selection algorithms offers designers a large broad
of choices during the physical design. Our proposed algorithms select both single
and multiple attributes BJIs.

The paper is organized as follows. Section 2 presents background related to
BJI and complexity of their selection problem. Section 3 presents BJI selection
algorithms by describing in details their main steps. Section 4 presents intensive
experiments using mathematical cost model and a validation under Oracle with
data set of APB1 benchmark. Section 5 concludes the paper summarizing the
main findings of our research, and proposing directions for future work.

2 Background

In this section, we present some BJI concepts, a formalization of their selection
problem and its complexity.

BJI is used to pre-compute the joins between dimension table(s) and the
fact table of relational DW modelled using a star schema [I3]. Unlike standard
bitmap index, where the indexed attributes belong to the table to be indexed, a
BJI may be defined on one or more attributes belonging to various tables. More
precisely, let A be an attribute of a given dimension table D with n distinct
values (vq,v2, - ,v,) and m a number of instances of the fact table F. The



108 L. Bellatreche and K. Boukhalfa

construction of the BJI defined on F' via the dimension attribute A is done as
follows:

1. Create n vectors, where each one has m rows;

2. The i*" bit of the vector corresponding to a value vy, is set to 1 if the i** tuple
of the fact table is joined with a tuple of D having a value of its attribute A
equal to vg. It is set to 0 otherwise.

A BJI may be defined on one or several columns (attributes) of the same table
or on more than one table. Besides disk saving (due to the binary representa-
tion and possible compression), BJIs speed up star join queries characterized by
Boolean and COUNT operations. Note that BJI is defined on non key dimension
attribute(s) with low cardinality [l (called indexable attributes). An indexable at-
tribute A; of a given dimension table D; is a column D;.A; such that there is a
condition of the form D;. A; 6 Value in the WHERE clause. The operator
must be among {=, <, >, <, >} and Value € Domain(D;.A;).

The BJI selection is more difficult compare to single table indexes. This is
due to the following points:

— in the context of the DW, the number of indexable attributes may be impor-
tant, since star schemes used to model business intelligence applications are
composed of thousand of dimension tables with various selection attributes
(candidate for indexing),

— the fact that a BJI may be defined on a set of attributes belonging to one or
several dimension tables increases the total number of BJIs. More formally,
let A= {A;, As,---,Ax} be the set of indexed attributes. Then, the pos-
sible number of BJIs that we should consider to select only one BJI grows
exponentially: (f) + (5) +...+ (]Ig) = 2K 1. To select more than one BJI, the

number of possibilities is given by (%K_l) + @K_1> +..+ @ij) =221,

— BJIs are not disjoint, since an indexable attribute may be found in two
different BJIs.

Based on the above analysis, the problem of finding the set of BJIs that minimizes
the total query processing cost while satisfying a storage constraint cannot be
handled by first enumerating all possible BJIs and then computing the query
cost for each candidate BJI. Due to this high complexity, we formalize it as an
optimization problem with constraint as follows:

Given a DW with a set of dimension tables D = {D1, Da, ..., D4} and a fact
table F', a workload @ of queries Q@ = {Q1,Q2,...,@n}, where each query Q;
(1 <4 < n) has an access frequency, and a storage constraint S, the aim of
BJI selection problem is to find a set of BJIs among a pre-computed subset
of all possible candidates which minimizes the cost of Q satisfies the storage
requirements S. We present in the next section our algorithms for selecting
BJIs.

! The domain of this attribute should be an enumerated domain like gender-
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3 Algorithms for Selecting BJIs

In this section, we present two algorithms one for selecting single attribute BJI
and another for multiple attribute BJI. Note that single attribute BJIs are the
first multiple table indexes proposed and supported by commercial DBMS [I3].
The existing studies do not make this distinction. In this case, DWA shall wait
the execution BJI selection algorithm to see whether the selected BJIs are defined
on single or multiple attributes. In the real life, it suitable for DWA to have the
choice to select her/him favourite selection strategy of BJIs.

Our algorithms use a cost model computing the number of inputs outputs
required for executing a set of queries in the presence of BJIs [5].

3.1 Single Attribute BJI Selection

The algorithm for selecting a single-attribute BJI configuration is divided into
three steps: (1) identification of indexable attributes, (2) initialization of the con-
figuration and (3) improving of the current configuration by adding new BJI. In
the first step, all queries are analyzed in order to extract the indexable attributes.
These attributes are sorted based on their cardinality. The algorithm starts with
an initial configuration consisting of a single attribute BJI with minimum cardi-
nality, denoted by BJI,,;,. The initial configuration is iteratively improved by
adding a BJI defined on other attributes not yet indexed and chosen from the
ordered list of indexable attributes. The algorithm terminates when it arrives at
a point, where it cannot see any more improvement of query processing cost and
the storage space is consumed.

3.2 Multiple Attributes BJI Selection

By definition, single attribute BJI involves only one dimension table. Since
OLAP queries cover several dimension tables involving selection predicates, the
development of multiple attributes BJI selection algorithm becomes a necessity.
For this purpose, we propose an intuitive algorithm for selecting such BJIs. It
selects a BJI for each query having indexable attribute(s). Four steps character-
ize this algorithm: (1) identification of indexable attributes, (2) construction of
a configuration for each query, (3) construction of an initial configuration and
(4) construction of a final configuration.

Identification of indexable attributes. This step is done in the same way as in
the previous algorithm.

Construction of a configuration of BJI by query. In this step, each query of the
workload is associated to BJI involving its entire selection attributes candidate
for indexation.

Example 1. Suppose the existence of five indexable attributes: Time.Month,
Time.Day, Product. Type, Customer.City and Customer.Gender and ten queries
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{Q1,Q2,...,Q10}. The indexable attributes used by each query are represented
in the query-attribute matrix shown in Figure[Ii(a). In a query-attribute matrix
the presence of an indexable attribute in a query is indicated by a 1 and ab-
sence by a 0. Applying the first step on this workload generates 10 IJB, each
corresponding to a query (defined on all indexable attributes of that query).

Construction of an initial configuration. This configuration is computed as the
union of all selected indexes. Note that the number of indexes of this configu-
ration may be less than or equal to the number of queries of workload, because
some queries share the same index and some do not have indexable attributes.

Example 2. The application of this step on the previous example generates an
initial configuration consisting of 7 BJI, because queries (Q5, Q8), (Q6, Q9) and
(Q7, Q10) respectively share the same indexes. The initial configuration is shown
in Figure [Ii(b).

Construction of a final configuration. Recall that the initial configuration relaxes
the storage constraint. If the storage cost required for storing all selected indexes
does not exceed the storage capacity S, our algorithm ends. Otherwise, some
BJI should be reduced until the satisfaction of S. To do so, we propose four
elimination strategies:

1. Elimination of attributes with high cardinality (HCA ): The main cause of the
explosion in the size of BJI is the cardinality of the indexed attributes. In
this strategy, an attribute of high cardinality is eliminated from all indexes of
the initial configuration. For this, attributes are sorted in descending order
of their cardinality; they will be eliminated in that order until the size of the
configuration meets the constraint of storage.

2. Elimination of attributes belonging to small dimension tables (NLT): the
principle of this strategy is keep BJI defined on largest dimension tables,
since joins are costly, especially, when the size of involved tables are impor-
tant.
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3. Elimination of the less used attributes (LUA ): this strategy assumes that the
most frequently used attributes should be indexed to satisfy most queries.

4. Cost-based elimination (CBE): the main disadvantage of the above strate-
gies is that they eliminate attributes without quantifying this elimination
in terms of query processing reduction. To overcome this drawback, we pro-
pose CBE strategy that uses our cost model. An elimination of an attribute
is feasible if it reduces significantly the query processing cost.

Example 3. Consider the 10 queries for which the query-attribute matriz is
shown in Figure [l (a) and the initial configuration is found in Figure [ (b).
Suppose that the cardinalities of attributes Month, Day, Type, City and Gen-
der are respectively 12, 31, 5, 50 and 2. HCA strategy eliminates the following
attributes in this order: City, Day, Month, Type and Genre. For instance, after
the elimination of attributes City and Day, we obtain a configuration shown in
Figure [Il (c). We see that these two selection attributes are not indexed (their
column values are set to 0) and the number of BJI is decremented from 7 to 5,
which reduces the storage cost of the resulting configuration.

4 Performance Study

Our BJI selection algorithms are implemented using Visual C++. All experi-
ments were conducted on a Core 2 Duo machine with 2 GB of memory. We
have developed a modular architecture to perform our experiments to facilitate
their integration in our tool SimulPhd [3]. This architecture has five modules:
(1) meta-base querying module, (2) query management module, (3) BJI selection
module, (4) indexation module and (5) query rewriting module. The meta-base
querying module contains information related to logical (list of tables, their
attributes, length of each attribute, domain value of each attribute, etc.) and
physical (attribute and table statistics, size of page of the disk, etc.) aspects of
the DW. The queries management module allows a manual edition or an external
importation of a workload. BJI selection module has as input a DW schema, a
workload (Q)) and a storage space (5) fixed by the administrator and it returns a
configuration of BJI (CBJI) that minimizes the execution time of the workload
and respecting the space constraint. Indexation module creates physically the
selected BJI by using scripts directly on the DW. Finally, the query rewriting
module forces query optimizer to use the selected indexes using Hint.

We use the star schema of the APB-1 benchmark. It consists of one fact ta-
ble (Actvars) and four dimension tables (ProdLevel, TimeLevel, CustLevel, and
ChanLevel). We consider 12 candidates indexable attributes (ClassLevel, Grou-
pLevel, FamilyLevel, LineLevel, DivisionLevel, YearLevel, MonthLevel, Quarter-
Level, RetailerLevel, CityLevel, GenderLevel and ALLLevel) whose cardinalities
are respectively: 605, 300, 75, 15, 4, 2, 12, 4, 99, 4, 2, 5. The used workload has
60 star join queries. We conduct our experiments as follows: (1) an evaluation
using theoretical cost-model and (2) the obtained results are validated on Oracle
10g using the data set of our benchmark.

2 http://www.olapcouncil.org/research /bmarkly.htm)
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4.1 Theoretical Evaluation

We have performed several experiments using a theoretical cost-model that es-
timates the number of inputs outputs (in terms of pages) required to execute
the 60 queries. We implemented three selection algorithms: (1) single attribute
BJI selection algorithm (MI), (2) multi-attributes BJI selection algorithm with
four pruning strategies HCA, NLT, LUA and CBE and (3) data mining algo-
rithm (DM) presented in [2]. To enable DM to select a better configuration, you
must set the value of minsup that represents the minimum support of frequent
itemsets. For this, we performed experiments for different values of minsup. For
each value we execute DM algorithm and the size of obtained BJI are estimated.
In the same time, the cost of executing queries is computed in presence of BJI
selected for each value of minsup. Figures Bl and [3 show the results. It is clear
that when minsup is small, many indexes are created and thus occupy more
space. When minsup is high, few indexes are generated, and thus less space is
occupied. The difficulty to use DM algorithm is that DWA should identify the
value of minsup that gives a good compromise between performance and storage
space.

25000
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1/O 3.£+08 / Size (Mo) \
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o \
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LE+08 7 5000 \
0.E+00 ] 0 \
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Fig. 2. Minsup vs Performance Fig. 3. Minsup vs Storage

Note that multi-attribute BJI selection algorithm generates an initial config-
uration that needs a storage space of 26.4 GB. This motivates the development
of our pruning strategies to reduce the storage cost.

In the first experiment, we vary storage space (from 0 to 4 GB) and we
estimate the query processing cost for each strategy in order to measure the
impact of space on query performance. For DM algorithm, minimum support is
set to 0.25. Figure Ml summarizes obtained results. The best performances are
obtained by the MI and CBE algorithms. This is due to the fact that they are
based on a cost-model which considers several parameters: selectivity factor of
selection predicate, attribute cardinalities, size of dimensions tables, etc. Other
strategies use only a unique parameter to perform the pruning process. For
example, the LUA algorithm considers only the frequency of attributes which is
not sufficient to obtain a good performance. Another interesting result is that
when the storage space is reduced, DM gives best result. This is because the
other algorithms are penalized by the storage space, therefore, only few BJIs
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are generated. Based on these results, we can conclude that the selection of
optimized BJI shall be done using a cost model incorporating logical and physical
parameters of the DW.

In a second experiment, we compare the performance of the proposed strate-
gies by varying the number of selection attributes (from 1 to 12). The results of
this experiment are presented in Figure[Bl We realize that the query performance
increases proportionally to the number of these attributes. The better perfor-
mance is obtained when all query attributes are indexed. In this case, several
joins between the fact and dimension tables are saved. In our experiments, when
the number of candidate attributes is greater than 8, no significative improve-
ment is observed. This is due to the storage constraint.

We have study the effect of varying the number of dimension tables in the BJI
selection process. We run the different algorithms with 1, 2, 3 and 4 dimensions
tables (Figure[dl). We notice that the performance increases proportionally to the
increase of the number of dimension tables. Indeed, join between tables are pre-
calculated using the created BJI. However, we note that the NLT strategy does
not follow this rule. When only one table is used it gives better result. This is
because when the number of tables increases the NLT strategy removes smallest
tables which are sometimes benefit for indexing. The overall performance remains
stable from a certain number of dimension tables, this is because the storage cost
is consumed by all selected indexes.
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In the last theoretical experiment, we study the effect of cardinality of index-
able attributes on query performance. To do so, we assume that all indexable
attributes have the same cardinality, and we vary it from 2 till 2000. For each
value, we execute our algorithms. Figure [7] summarizes the obtained results. We
notice that the performance deteriorates significantly when increasing cardinali-
ties. Indexes on high cardinalities are storage-consuming and to perform queries,
large BJI should be loaded in the main memory.

4.2 Validation on Oracle 10g

To validate our approach, we create a DW schema of APB1 benchmark and
we populate its tables using generator program provided by that benchmark.
We consider 60 star join queries using 12 indexable attributes. These queries
have different shapes: COUNT(*) queries with and without aggregation, queries
using aggregation function as Sum, Min, Max, etc. and queries having dimension
attributes in the SELECT clause. We run our selection algorithms with a storage
space of 3 GB using our mathematical cost model. For the DM algorithm, the
minimum support is fixed to 0.25. The generated BJI by each algorithm are used
to execute our queries using hint. To make sure that query optimizer considers
the selected BJI, we use Explain Plan Tool provided by Oracle that shows in
details the execution plan of each query.

Figures B and [ show respectively the execution time of the workload and
the cost reduction using the BJI configuration generated by each strategy. The
obtained results confirm the utility of BJI for the COUNT(*) queries. On the
other hand, the queries that get less benefit from the created BJI are those us-
ing dimensions attributes in the SELECT clause and those having any selection
attribute in the selected BJI. Consequently, these queries need additional joins
between the dimension tables and the fact table. The best gain in response time
is obtained when multiple attributes BJI covering all indexable attributes of the
queries are used. MI and DM approaches give better results. This is because
they generate BJI defined on single attribute covering respectively 3 and 4 di-
mension tables. For the multi-attribute BJI, the best result is obtained when
CBE strategy is used, since it uses a cost-model which incorporates several pa-
rameters. This result shows the quality of our mathematical cost model. Another
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interesting result concerns NLT and HCA strategies that are outperformed by
other strategies. Note that HCA strategy eliminates attributes with high cardi-
nality, but sometimes creating a BJI on attribute with low cardinality can benefit
for some queries but not all. For instance, DM algorithm proposes to create two
BJI on attributes RetailerLevel and MonthLevel having important cardinalities
compare to other attributes (99 and 12 respectively) to achieve good results
since they are used by several queries of the workload. All results obtained on
ORACLE DBMS confirm the theoretical ones.

5 Conclusion

Indexes are one of the pioneer optimization techniques. They represent an im-
portant part of any database system design as they can significantly impact
workload performance by enabling quicker and more efficient access to data.
The importance of indexes was amplified as query optimizers became sophis-
ticated to cope with complex OLAP queries. Several indexing techniques were
proposed. Selecting right indexes is a crucial issue for query optimization. In
DW context, studies on selection indexes were mainly concentrated on single
table indexes. In this paper, we have motivated the need to develop indexing
algorithms for selecting bitmap join indexes to optimize star join queries. We
propose two main types of algorithms: (i) one for selecting indexes defined on
only one attribute of a dimension table and (ii) another for selecting indexes de-
fined on several attributes of same or different dimension tables. We conducted
several experiments using theoretical cost model and we propose a comparison
between existing and our proposed algorithms. The obtained indexing schemes
generated by our algorithms are validated on Oracle using the data set of APB1
benchmark.
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Abstract. BI accelerator solutions like the SAP NetWeaver database
engine TREX achieve high performance when processing complex ana-
lytic queries in large data warehouses. They do so with a combination
of column-oriented data organization, memory-based processing, and a
scalable multiserver architecture. The use of data compression techniques
further reduces both memory consumption and processing time. In this
paper we study query operators like scan and aggregation on compressed
data structures implemented in TREX.

1 Introduction

Recent years have seen growing demands on data warehousing and OLAP tech-
nologies being able to handle terabytes of data and complex analytic queries from
several hundred users simultaneously. Furthermore, more and more customers
need ad-hoc and realtime evaluation of queries that make materialization of
results and precalculation of reports more or less useless.

In order to meet these requirements, the limiting factor of disk I/O in database
systems has to be addressed. Basically, in the area of data warehousing there are
currently three main approaches: (1) Reduce the amount of data to be read from
disk and read it as fast as possible. Besides index structures, column-oriented
data organization shows great potential. (2) Avoid disk access completely by
keeping and processing data in memory. (3) Exploit the computing capacity of
a large number of inexpensive servers by using parallel processing.

In the field of Business Intelligence (BI) technologies some or all of these ap-
proaches are currently combined in the concept of BI accelerator solutions or
analytical engines. An example is the SAP NetWeaver BWA based on TREX.
TREX runs in a scalable multiserver architecture on blade servers. Processing
is performed completely in main memory, fact and dimension tables are or-
ganized column-wise (vertically partitioned) and the columns are partitioned
horizontally among the server nodes. The combination of parallelism and main
memory processing allows interactive execution of analytical queries without
pre-aggregation.

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 117 2010.
© Springer-Verlag Berlin Heidelberg 2010
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However, since RAM is still expensive compared to hard disk drives and can-
not be enlarged indefinitely, very large data warehouse installations require a
large number of server nodes. Furthermore, scanning the entire memory of a
node does not allow to exploit the benefit of L2 caches. Therefore, data com-
pression techniques are used to reduce the data volume and hence improve the
cache utilization. But, compressing data only is not the silver bullet: If data
processing as part of query evaluation requires an expensive decompression or
additional memory space, the benefit of compression is mitigated or even lost.

Thus, query operators should process compressed data directly without com-
puting-intensive decompression. In our work, we investigate such strategies for
implementing query operators. Based on the TREX infrastructure and the dis-
cussion of several compression schemes for in-memory column stores we present
strategies for filters, scans and aggregations which exploit these compressed data
structures. The results from our experimental evaluation show that depending
on the data distribution significant performance improvements can be achieved.

2 Related Work

The first work that suggests working directly on compressed data as long as pos-
sible was [4]. Its focus is on joins but also exact match comparisons for selections
and duplicate elimination (grouping) is described. They use domain coding as
lightweight compression in a row store implementation and specify the needed
properties of compression techniques for an efficient query processing. The de-
compression of values cannot be avoided for most aggregation functions and when
the data has to be displayed to the user. To reduce the repeated decompression
of fields [10] introduce an extended iterator model.

Raman and Swart showed in [7] that fast processing is also possible on heavyly
compressed data in a row store. They present a novel Huffman coding scheme to
evaluate equality and range predicates on compressed data without full dictio-
nary access. Before working on compressed data can take place, the compressed
records and fields have to be extracted. Afterwards index scan, hash join, merge
join, grouping and count (distinct) aggregation can work directly on the Huff-
man codes. For the min and max computation the codes of each code length
need to be decompressed for comparison. This is because of the coding scheme
where only the codes with the same length are ordered.

By contrast in [2I13] the data is always decompressed for query execution.

One of the first papers about working on compressed data in column stores
was [3]. Here the scan and join operators in queries are executed in a main
memory database on domain coded data. An additional speedup is gained by
using multidimensional hash tables as indexes.

Based on the column-oriented C-Store [9] Abadi et al. [1] introduced an archi-
tecture for a query executor that works directly on compressed data. In contrast
to this work, we use data structures that represent the data of a whole column
and not only parts of it.
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There is also research on avoiding decompression while querying for other
database architectures. In [5] linearized multidimensional arrays are used to ef-
ficiently aggregate data whereas [6] concentrate on joins in a binary relational
database where triples are stored.

Another approach to speed up the query execution on compressed data struc-
tures is the use of modern hardware. [12] as an early paper uses SIMD instruc-
tions in a column store to exploit parallelism and eliminate branch mispredic-
tions. Zhou and Ross consider sequential scan, aggregation, index operations
and joins. For a single compressed tuple instead of several values of one field []]
evaluates a conjunction of equality and range predicates using SIMD.

3 Data Structures for Column Compression

In the following we briefly describe some of the data structures used in TREX for
storing compressed column values. These data structures are pure main memory
structures and the main goals are (1) an effective compression scheme to reduce
the memory consumption and (2) allow to process queries without decompressing
the data. Particularly, the latter goal requires efficient access both to individual
values and also to blocks of values.

The basis for all the following techniques is domain coding [I0IJT3]. For do-
main coding, all values from a column are stored in lexicographical order in
a dictionary. The original column is replaced by an index vector that stores
only bit-compressed pointers to the dictionary. To minimize the bit lengths, a
total of u distinct values appearing in n rows are coded using n[log, u] bits. Fig-
ureshows an example of domain coding for the sample data Aachen, Aachen,
Aachen, Karlsruhe, Aachen, Aachen, Leipzig, Miinster, where each value is rep-
resented in the index vector by two bits. Note, that the column pos is given
in the figures only for illustrative purposes and not physically stored. The use
of integers instead of the original values has the advantages that it reduces the
data volume to be processed and allows to exploit hardware optimization for
integer processing. Furthermore, multiple values can be read at once into the
CPU cache and processed in parallel with special SIMD processor commands.

Based on this scheme prefix coding can be applied as a simple compression
technique. Here, repetitions of the same value at the start (prefix p) of a column
are deleted and replaced by one value and its frequency. For a column with
n elements and w., distinct values, (n — p)[logy ucor] + 64 bits are required.
Fig. shows an example of the original uncompressed index vector and its
compressed version that is constructed using prefix coding.

If the most frequent value appears not only in the prefix but also scattered
among the other values, then sparse coding can be applied to achieve a good
compression (Fig. . Here the positions of all appearances f of the most
frequent value are recorded in an additional bit vector and the original values
or deleted from the index vector. It is possible to use prefix coding for the bit
vector, which for a large prefix p can further improve the compression ratio.
With this technique only (n — f)[logs tcoi| + (7 — p) + 64 bits are needed.
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IndexVector IndexVector IndexVector IndexVector BitVector
- (uncompressed) (prefix coded) (uncompressed) (sparse coded) (is sparse)
Dictionary IndexVector pos | value pos | value pos | value pos | value pos | value
pos value pos_| value = =
0 Aachen 0 0 0 0 3 1 15 0 3 1 3 0
1 | Karlsruhe 1 0 Ll 0 4 0 U 0 6 2 4 1
2 Leipzig 2 0 2 0 5 0 2 0 7 3 5 1
3| Minster 3 [ 1 3 |1 6 | 2 3 |1 6 | 0
4 0 4 0 7 3 4 0 7 0
5 0 5 0 5 0
prefix value: 0 sparse value: 0
‘73 § g g prefix count: 3 g § prefix count: 4
(a) Domain coding (b) Prefix coding (c) Sparse coding

Fig. 1. Examples of domain, prefix and sparse coding

All the techniques described in the following will use prefix coding and work
on blocks of data containing minimal numbers of distinct values in order to
achieve a good compression ratio. In cluster coding only blocks with a single
distinct value are compressed by storing only the single value. Additionally, a
bit vector is needed to indicate which blocks are compressed, in order to be able
to reconstruct the original column. In this paper, we do not further consider how
to determine the optimal block size and its impact on the compression rate and
query runtime. In any case the number of elements should be an integral power
of two, so that instead of multiplication and modulo operation we can exploit
fast bit operations. Figure shows an example in which the block size is two
and the compressed values are shown in gray boxes.

IndexVector ~ IndexVector  BitVector IndexVector IndexVector IndexVector | Integer
(uncompressed)  (cluster coded) ~ (is compressed) (uncompressed) (indirect coded, values) (indirect coded, offsets). (start pos)
pos | value pos | value | |cluster| value pos | value pos value pos value pos

60 2 10 0 | 0 0] o 0/1/2 0 0 0

7 0 3 1 1 1 1 0 3 1 1 0

2 [0 45| 0 2 [ o 2 0 2 0 2 0 0
3 |1 6 | 2 3 |1 5 0 3 1

4 | 0 7 13 470 6 2 0

5 | 0 510 7 3 1 5
6 2 6 2 2

7 3 7 3 3

(a) Cluster coding (block size: 2) (b) Indirect coding (block size: 4)

Fig. 2. Examples of cluster and indirect coding

If the data blocks contain more than one but only few distinct values, indi-
rect coding can be used. Here domain coding is applied to appropriate blocks,
which adds the indirection of a separate mini-dictionary for each block. To re-
duce the number of dictionaries and hence the memory consumption, one dic-
tionary can be used for a continuous sequence of blocks as long as any new
entries in the dictionary do not increase the number of bits required to code
the entries. For a column with wu., distinct values, a block with £ values and
Uplock distinct values benefits from indirect coding if and only if the dictio-
nary and the references take less space than the original (domain coded) data:
Ublock |—10g2 ucolw +k ﬂogg ublock:.l <k ﬂogg ucol~| .
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Figure illustrates the data structures used in the implementation. Here
one block contains four values and the compressed elements are shown again
in gray boxes. The dictionaries and the uncompressed data are stored in the
middle index vector, values, and each block is addressed with a start position. In
the data structure on the right, compressed blocks have their own index vector,
offsets, which points to the individual values.

Finally, a slightly modified variant of run length coding can be used, which
compresses sequences of repeated values to a single value for each run together
with the number of repetitions. In order to calculate the start position of each
value in the run, we add up the frequencies of the previous values. However, this
can result in a high overhead, so instead we decided to reduce the compression
slightly by storing the start position and not the number of repeats.

To speed up single-value accesses we introduce two inverted index structures:
a blocked and a signature index. The blocked index stores for each value a list of
blocks in which this value occurs and is therefore only applicable if using cluster,
indirect or run length coding. For the signature index the data is split into a
fixed number of parts and for each value the occurrences in that parts are stored
in a bit vector which significantly reduces the amount of storage.

4 Query Operators for Compressed Columns

In this section we will describe in detail how the compressed data structures are
used in the standard query operators. We designed the compression techniques
for an efficient direct access to the data and gaining significant performance im-
provements over uncompressed data structures especially for the scan operator.
In the evaluation we will show that the choice of the best compression technique
depends on the data and can be done automatically.

4.1 Basic Operators

The basic operator in a data warehouse environment is the scan operator with op-
tional filter predicates. In scenarios with mass data and non selective predicates,
the performance of the scan operator is very critical. The get operator provides
random access to a column by retrieving the value (or a reference to the dictio-
nary) of a given row id. This operation is needed for projections and selective fil-
ters. The performance of the operators depends on the result materialization data
structures (like bit vector or integer vector), the used compression technique and
many more factors. In the following we will present the scan and get operators for
the most complex compression techniques: sparse and indirect coding.

Sparse Coding. As mentioned above, the sparse coding maintains a bit vector
B¢ for the most frequent value vf of a column. A bit is set if the value of
the corresponding row is not v, otherwise the bit is unset. For all compression
techniques a prefix offset p specifies the first row id, which is different from the
prefix value v, that is omitted. The values that are different from v¢ are stored
in an index vector L.
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Scan Operator. The scan starts by testing the predicate for v, when there is
a prefix p. The same is done for v whose corresponding row ids can easily be
extracted from Bys. If necessary, ¢ is also scanned and the corresponding row
ids are calculated by counting the unset bits in By:

1. estimate the current row id by assuming that no values are removed (row id
= relative row id)
determine the number n,¢ of non frequent values (unset bits)
3. repeat the following steps until ny¢ is higher than the relative row id
(a) increase the current row id
(b) if the current value is not v¢ then increase n,¢
4. calculate the absolute row id with current row id + p

[\

In order to accelerate the calculation of unset bits a data structure is introduced,
which stores the number of set bits for every block of rows (i.e. all 128 rows) as
a sum of all previous blocks.

Get Operator. The get operator first checks if the requested value is in the
prefix. If the row id is higher than p then By is tested. If the corresponding bit
is unset then the result is v¢, otherwise the position of the requested value in I¢
is calculated and the requested value is extracted from there.

The sparse coding shows very good performance characteristics if the sparse
value is dominant in a way that it covers more than 90% of the rows. Otherwise
the costs of the indirect access over the bit vector is too high as shown in the
evaluation.

Indirect Coding. By neglecting the prefix, the indirect coding is a mixture
of variable and fixed size coding. Per block of rows the references to a local
block dictionary are of fixed size, but each block (e.g. 1024 rows) has its own
dictionary which references to the global dictionary of the column. For blocks
where local dictionaries are not suitable (e.g. with as many distinct values as
rows) no local dictionary is used, but the references to the global dictionary are
stored without further indirection. Because the references in the local dictionaries
and the references in blocks without local dictionaries are of fixed size, they are
stored in an index vector I,. A second vector Vi, stores information for each
block, like the start position in I, and the references to the local dictionary (if
it exists).

Scan Operator. The scan operator scans I, by testing the predicate for every
value and storing the hit positions in a temporary structure. For each entry in
this structure the following is done:

1. determine the corresponding block in W;, by checking the start position
2. if the block is uncompressed (no local dictionary) then calculate the absolute
row id with (block number * block size) + match pos - start pos
3. if the block is compressed (local dictionary)
(a) calculate the local dictionary reference with match pos - start pos
(b) scan the local references for that reference
(¢) calculate the absolute row id from the local reference hit positions
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Get Operator. Retrieving the value of a given row id starts by calculating the
block number in Vj,. If the block is uncompressed, the position in I is row id
- (block number * block size) + start position. If the block is compressed, the
position in the local references is row id - (block number * block size). The final
position in I, is the local reference plus the start position.

Hardware Optimization. Another approach to speed up data processing is
the implementation of the scan and decompression operations using SIMD in-
structions. The SIMD implementation used in our work is extensively evaluated
in [II] and we will only investigate the influence on our compressed data struc-
tures.

4.2 Aggregate Operators

Though, in this work we focus on the efficient implementation of scan operators
because they are most critical regarding performance, we discuss in the following
aggregation operators, too.

We start with a description of single column aggregations and grouping. These
aggregation operators are implemented as part of the scans such that filter pred-
icates can be calculated without additional efforts. Furthermore, some aggregate
functions such as min and max can be evaluated using the dictionary only.

Because columns are partitioned horizontally among all servers, aggregate
operators are evaluated in two steps: a scan phase that is performed in parallel
on all partitions followed by a merge phase. During the scan phase, partial
aggregates are computed for each partition which are then merged into the final
aggregates. For sparse coding the scan phase is performed in the following way.
We assume a single column grouping with count as aggregate function. In order
to collect the counts per group an array G is used that is indexed by the values
of the dictionary (i.e. the positions of the actual values in the dictionary). Let
I denote the index vector storing the column values in sparse coding and B the
corresponding bit vector.

1. Read the first value vg from the dictionary and set Glvg] = p
2. Determine the number n of bits set in B and let Gvg] = Glvo] +n
3. Scan the index vector for all values v; and let G[v;] = G[v;] + 1

After the aggregate array G; of all partitions are calculated, they are merged in a
straightforward way. This step is simplified by the same ordering of all grouping
arrays because on all partitions the same dictionary is used.

For other compression schemes this approach has to be slightly modified. For
example, for cluster coding the bit vector is scanned in parallel to the index
vector. If a bit ¢ is set, the corresponding entry ¢ of the index vector is skipped
and G[vgl+ = blocksize. Indirect coding requires an additional step to process
the index vectors of the individual blocks.

This single-column aggregation scheme can be extended to the multi-column
case by maintaining a single group array for all grouping columns Gley, . . ., ¢y
and perform the scans on these columns in parallel. Then, for each tuple vy, ..., vm
the corresponding entry in G is updated as described above.
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5 Experimental Evaluation

This section presents the results of evaluating the scan operator on different
synthetic datasets without a query optimizer. We use a micro benchmark to
analyze special properties of the compression techniques, which can be found also
in real datasets. The data consists of one column with 10 million data items and
4472 unique integer values. One exception is the single dataset which contains
only one unique value. In the linear skew distribution the value ¢ occurs i 4 1
times contiguously and in the uniform distribution all values occur equally
often. For the sparse dataset the items are consecutively numbered values and
a very frequent (sparse) value is added. The position of the sparse data items can
be grouped at the top, at the bottom or evenly scattered. In the blocked data,
blocks with one or more unique values are generated. We have 2236 single-value
blocks and 2236 multi-value blocks with 447 unique values where the block size
is for both cases 2237 values.

The results of our experiments are shown relative to the domain coded data
(index vector) to exclude effects of different data types. Furthermore the cluster
and indirect coding use a block size of 1024 values in our implementation. If not
stated otherwise the used scan operator gets a value range as input and writes
the results in a vector. Furthermore we only evaluated the blocked index of the
presented inverted index structures.

All experiments were performed on an Intel® Xeon® processor X5650 with
2.67 GHz. The scalability of the index vector if using more cores has already been
shown in [IT]. So because the memory bandwidth required by the compressed
data is lower, we concentrated on single-core measurements.

5.1 Experiments without SSE (Streaming SIMD Extensions)

First we want to show that with an optimal compression, not only the memory
size is reduced but also queries can be accelerated. The dictionary coded single
dataset needs with 1 bit per value around 1221 KiB. Because the presented
compression techniques omit the prefix they need less than a kibibyte to store
the values. Even in sparse coding the bit vector will not be stored.

Figure [l overviews the memory consumption of the distributions we focused
on in our evaluation. The linear skew distribution in Fig. shows that if the
most frequent value is below a certain threshold the additional costs of the bit
vector in the sparse coding leads to an increased memory size. Because a value
occurs in less 1024-blocks, the additional memory used for the inverted indexes
is low. The run length coding can adapt best to the different-sized single-value
blocks which leads to significant reduction. Using the uniform distribution the
cluster coding performs better because of the bigger single-value blocks. For the
other techniques there are only small differences in the memory size.

If the most frequent value in the sparse dataset is evenly scattered (Fig.[3(d))
the sparse coding reduces memory size most and only cluster and indirect coding
without inverted indexes can exploit the block of the most frequent value at the
end. This single-value block arises from the scattered generation and a sparse
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Fig. 3. Memory consumption

occurrence of more than 50% (in our case 66%). Because of the many value
changes the run length coding performs worst. For better readability we omit a
part of the bar graph and specify the maximum value on the y-axis.

If the most frequent value is at the top (Fig. all compression techniques
apply prefix coding which leads to a significant memory reduction. Sparse coding
needs slightly more memory because of the additional bit vector. Because of
many value changes and less big single-value blocks in the blocked dataset
(Fig. only cluster and indirect coding can reduce the memory consumption.

To show the possible savings in execution time we do a scan for value 0 and
value 1 in Fig. @ Value 0 is the most frequent value in the sparse dataset. In
Fig. with the blocked dataset the speed of the query correlates to the size
of the data structures except when using inverted indexes. Here the total size of
the index structure is big but only the blocks specified in the inverted index need
to be scanned which results in a very fast execution. For the linear skew dataset
Fig. shows that of all blocked compression techniques only cluster coding
cannot adapt well to the small single-value blocks and that is why it performs
worse. If the most frequent value is scattered in the sparse dataset (Fig. it
is the worst case distribution. Here just the sparse coding can compete with a
query on the only dictionary coded data because of the reduced amount of data
to scan. In Fig. one can see clearly that less memory consumption does not
always imply a faster execution. Also the row id reconstruction overhead has to
be taken into account like in the case of applying sparse coding.

If the result size is small like in the scans showed in Fig. and the row
id reconstruction and result vector resize costs are negligible compared to the
savings. Because for value 1 there are no single-value blocks, the very frequent
single-value access to two index vectors is too expensive. That is also the case if
the amount of data to scan is less (Fig. [4(F)).

All measurements show that when using inverted indexes scan times for single
values always decrease. Run length coding is only worth if there are few but big
single-value blocks and the fasted technique if using an inverted index. Cluster
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coding on the other hand has the best memory-speed tradeoff for all evaluated
data distributions.

We further expect that using inverted indexes is only faster than the baseline
if the requested values are located in few blocks. Figure shows the times of
the experiments where we varied in how many blocks value 0 occurs by using
a step size of 100 blocks. The data distribution is based on the sparse dataset
and value 0 is occurring 9766 times which corresponds to the number of blocks
with a size of 1024 values. Because of the many value changes and the small
amount of occurrences of the value the run length coding is constantly around
ten times slower than the baseline and for this reason we cut the graph for better
readability. If using the inverted indexes for the cluster and indirect coding the
scans become slower the more blocks have to be considered.

To determine if it is worth to spend more memory for the inverted index we cal-
culate a cost-benefit ratio by dividing the time gained by the additional memory
needed. Figureshows that for run length coding the higher memory consump-
tion always results in an increased speed. For the two other techniques it depends
strongly on the distribution of the value and at some point the additional memory
used is counter-productive. To deal with this problem in our implementation we
do a full table scan if an indexed value occurs in too many blocks.

Next we want to show that the more values are queried the slower the query
becomes. In this experiments we use the uniform data distribution and do a scan
for 1, 2, ..., all values. The results are shown for the slowest, an average and
the fastest compression technique with and without using an inverted index in
Fig.[6l One can see that the scans using run length coding are always faster and
sparse coding always slower than the baseline. The outliers in the graph result
from copying memory when resizing the result vector using a doubling strategy.
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Furthermore the dictionary coded algorithms use another initial vector size be-
cause of the missing prefix handling. The cluster coding is only worthwhile if the
number of requested values is small because of the increasing row id reconstruc-
tion costs. Another reason for the increasing time needed if using a inverted index
are the increased number of blocks to consider for the scan.

5.2 Experiments with SSE

Finally, we show in Fig. [ the performance improvements possible when using
SSE as SIMD implementation on the compressed data structures. The baseline is
the scan times measured without active SSE. The results show that the biggest
saving in time is achieved for the domain and prefix coded data because here
always full table scans take place and SSE is optimized for mass data processing.
If the result size is increasing as in Fig. the performance gain is decreasing
because of the reconstruction and resizing costs. There is no or just a little benefit
by using SSE in combination with the inverted indexes because here the amount
of data to be scanned is already significantly reduced. Also the sparse coding
technique cannot exploit the advantages of SSE. Reasons are the reduced data
size if the most frequent value occurs often (Fig.

7(b)| and (c)) and that most
of the time is spent for row id reconstruction (Fig. [7(a)). The times for cluster
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coding when using the linear skew (and uniform) dataset are reduced as there
are few compressed clusters which leads to more data that has to be scanned.

6 Conclusion

Data compression is an important technique to reduce memory consumption and
query processing time in data warehouse systems. However, the real benefit of
compression can be only leveraged if the decompression effort can be minimized.
To tackle this problem, we have presented in this paper several dictionary-based
compression schemes as well as query operator implementations for scans and
aggregates which work directly on the compressed data. Our experimental re-
sults show that depending on the data characteristics and appropriate com-
pression techniques significant improvements in query processing time can be
achieved, but require a careful choice of the compression scheme. We partly im-
plemented an optimizer that determines an optimal row order, the appropriate
compression techniques and inverted index structures depending on the data
distribution.
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Abstract. We present an information-theoretic framework for mining dependen-
cies between itemsets in binary data. The problem of closure-based redundancy in
this context is theoretically investigated, and we present both lossless and lossy
pruning techniques. An efficient and scalable algorithm is proposed, which ex-
ploits the inclusion-exclusion principle for fast entropy computation. This algo-
rithm is empirically evaluated through experiments on synthetic and real-world
data.

1 Introduction

The discovery of rules from data is a popular task in data mining. Mining association
rules in transactional datasets has received a lot of attention especially [2/3l4]. The ob-
jective of association rule mining is to find highly confident rules between sets of items
frequently occurring together. This has been generalized to, among others, relational
tables with categorical or numerical attributes [5]. In this context, much attention has
gone to the discovery of (approximate) functional dependencies in relations [647]. A
functional dependency A = B between two sets of attributes is said to hold, if any
two tuples agreeing on the attributes of A also agree on the attributes of B. Often it is
desirable to also find rules that ‘almost’ hold. Typically, an error is associated with a
functional dependency, which describes how well the relation satisfies that dependency,
commonly this is the minimum relative number of tuples that need to be removed from
the relation for the dependency to hold (known as g3 [6]). These tuples can be thought
of as being the exceptions to the rule. However, the fact that A = B has a low error,
does not necessarily imply that B strongly depends on A, in fact, A and B might even
be independent.

Therefore, in this paper we take an information-theoretic approach to mining depen-
dencies in binary data. We will describe the dependence of a rule based on the mutual
information between consequent and antecedent. Furthermore, we use the entropy of
a rule or itemset to describe its complexity. We present an algorithm called p-Miner,
which efficiently mines rules with a high dependence and a low complexity.

On top of this, we investigate what kinds of redundancy can occur in the collection of
all low entropy, high dependence rules. For traditional association rules, several types of

* An extended version of this paper is available as a technical report [1].
** Michael Mampaey is supported by the Institute for the Promotion of Innovation through Sci-
ence and Technology in Flanders (IWT-Vlaanderen).

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 130}141,2010.
(© Springer-Verlag Berlin Heidelberg 2010
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redundancy have been presented [819]]. We look at lossless closure-based redundancy in
the context of this paper, as well as lossy pruning methods based on some information
theoretical properties. These techniques are then integrated into our algorithm.

2 Related Work

The discovery of exact and approximate functional dependencies from relations has
received a lot of attention in the literature. The TANE algorithm proposed by Huhtala et
al. [[7] finds exact and approximate functional dependencies in a relation, which have a
low g3 error. TANE is a breadth-first algorithm that works with tuple partitions induced
by attribute sets, which can be constructed in linear time with respect to the size of the
relation. If the partition induced by XY does not refine the partition induced by X, then
X =Y is a functional dependency. The error of an approximate dependency can also
be computed using these partitions. The main difference with our work is the way that
the strength of a dependency is measured, but also that TANE only mines minimal rules,
i.e. rules of the form X = Y for which |Y| = 1 and there is no X’ C X such that
X’ = Y is an (approximate) functional dependency. On top of this, we also consider
the complexity of dependencies.

Dalkilic and Robertson [10] use conditional entropy to determine the strength of de-
pendencies in relational data. Their work examines several of their properties and infor-
mation inequalities from a theoretical viewpoint, without focussing on rule discovery.

Heikinheimo et al. mine all low entropy sets from binary data, as well as trees based
on these sets [[11]. A breadth-first mining algorithm is proposed that exploits the mono-
tonicity of entropy, after which a Bayesian tree structure is imposed on the itemsets. Its
nodes correspond to the items, and the directed edges express the conditional entropy
between them. The paper also discusses high entropy sets, argued to be potentially in-
teresting due to the lack of correlation among their items.

Jaroszewicz and Simovici use information theoretic measures to assess the impor-
tance of itemsets or association rules on top of the traditional support/confidence based
mining framework [[12]. They use Kullback-Leibler divergence to determine the redun-
dancy of confident association rules. Given the supports of some subsets of an associa-
tion rule, its most likely confidence is computed (using a maximum entropy model); if
the actual confidence is close to the estimate, the rule is considered to be redundant.

3 Preliminaries and Notation

Below we establish some notation and introduce some concepts that are used later on.
We are given a set of items Z. A dataset D is a bag of transactions ¢, which are subsets
of Z. The collection of all transactions is denoted 7. We write single items as x, y, z
and itemsets as X, Y, Z. For the sake of brevity, we use the shorthands xyz for a set
{z,y, 2}, XY for the union of sets X UY, and X-Y for set difference X \ Y. A rule
between two itemsets X and Y is written as X = Y, where both sets are assumed to
be either disjoint (X N'Y = ()) or inclusive (X C Y), depending on the context. The
support supp and frequency fr of the pair (X = v), with v € {0, 1}/X!, are the absolute
and relative number of transactions ¢ € D for which ¢t x = v, respectively.
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The notion of entropy as a measure of information was introduced by Shannon [13].
Given a discrete random variable X with values v in a domain dom (X)), and a probabil-
ity distribution p, the entropy of X is defined as H(X) = — 3, ¢ j,,.,(x) P(v) logy p(v).
For brevity, if dom(X) = {0, 1} we also write H(f) where f = fr(X = 1) € [0, 1].
The entropy expresses the amount of information that is contained in a random variable,
expressed in bits. Alternatively, it can be seen as a measure of its complexity or of its
uncertainty. The mutual information between two discrete random variables X and Y
is measured as the divergence of the joint distribution p(v, ) from the product distri-

bution p(v)p(u); I(X,Y) = 32, caom(x),ucdom(y) P(Vs u) logy p’(’éq;p’&) If X and Y
are independent then the mutual information is zero and vice versa. Mutual information
can conveniently be expressed in terms of entropy, as I(X,Y) = H(Y)-H(Y | X) =
H(X)+H(Y)—- H(X,Y),where H(Y | X) is the conditional entropy of Y given X,

and H(X,Y) is the joint entropy of X and Y.

4 Strong Dependence Rules

In this section we define our interestingness measures for itemsets and rules, and explore
some of their properties.
4.1 Definitions

In the following, an itemset X is seen as a discrete random variable with dom(X) =
{0, 1}‘X |. For the probability distribution p, the frequency distribution fr is taken.

Definition 1 (Rule Entropy). Let X and Y be two disjoint itemsets. The entropy h of
the rule X =Y is defined as the joint entropy of X andY: h(X = Y) = H(X UY).

It is easy to see that for any set X it holds that 0 < h(X) < log, |dom(X)| = |X]|.
Definition 2 (Rule Dependence). Let X and Y be two disjoint itemsets. We define the
dependence |1 of the rule X =Y as

uX =Y)=

By dividing by H(Y) we obtain a normalized, asymmetric variant of mutual informa-
tion ranging between 0 and 1. When X an Y are independent then u(X = Y) = 0,
this means that X tells us nothing about Y. On the other hand, (X = Y) = 1 if and
only if X fully determines Y'; in this case the rule is called exact.

4.2 Properties

We describe some useful properties of & and p which we exploit to construct an efficient
set and rule mining algorithm later on. Due to space restrictions proofs are omitted but
can be found in the technical report [1]].
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Theorem 1 (Monotonicity of Entropy). Ler X and X' be two itemsets. If X C X',
then h(X) < h(X’).

Using the monotonicity of A, it is possible to efficiently traverse the search space of all
itemsets in a typical Apriori-like breadth-first algorithm, or a memory-efficient depth-
first algorithm as p-Miner does.

Theorem 2 (Antecedent Monotonicity). Let X, X' and Y be itemsets with X C X',
then (X = Y) < u(X'=7Y).

Theorem [2] implies that rules containing all of the items in Z have the highest depen-
dence. However, the entropy of such rules is also very high, and hence they will be
pruned. Furthermore, some of the items might be independent of the other ones, and
it is quite likely that such large rules display some sort of redundancy as described in
Section

Theorem 3 (Partial Monotonicity). Ler X = Y be a rule, where X and 'Y are dis-
joint. There exists an itemy € Y such that (X =Y) < p(Xy = Y-y).

This last theorem allows us to systematically and efficiently construct all rules with
a high dependence from a given low entropy set, in a levelwise fashion. This can be
achieved without having to consider the exponential number of possible rules that can
possibly be constructed from that itemset.

4.3 Closedness

Due to the explosion of patterns commonly encountered in classic frequent itemset
mining, one often turns to mining a condensed representation of a collection of fre-
quent itemsets. Such pattern collections are typically much smaller in magnitude, can
be discovered faster, and it is possible to infer other patterns from them. One example
are maximal frequent itemsets [14415]]. Two other popular condensed representations
are closed and non-derivable frequent itemsets, which we extend to our framework.

The concept of closedness is well-studied for support based itemset mining [[16]]. An
itemset is closed with respect to support if all of its proper supersets have a strictly
smaller support. A closure operator can be defined that maps an itemset to its (unique)
smallest closed superset, i.e. its closure. Similarly, we can consider itemsets that are
closed with respect to entropy. We formally do this as follows. The set inclusion relation
(C) defines a partial order on the powerset P(Z) of all itemsets. Furthermore, a partial
order, i.e. refinement (C), can be defined on the set Q(7) of all transaction partitions. A
given itemset X € P(Z) partitions 7 into equivalence classes according to the value of
X in all transactions, and conversely a partition in Q(7") corresponds to an itemset in
P(Z). (The entropy of an itemset is computed using the sizes of the equivalence classes
in its corresponding partition.) Let us call these two mapping functions 7; and ¢5. It can
be shown that ¢; and i» form a Galois connection between (P(Z),C) and (Q(7),C).
The composition ¢l := is o i1 defines a closure operator on P(Z), which satisfies the
following properties for all itemsets X .

X C d(X) (extension)
c(X) = cl(c(X)) (idempotency)
X C X' = cl(X) C cl(X') (monotonicity)
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Definition 3. We call an itemset X C T closed if X = cl(X). Conversely, the set X is
called a generator if for all X' C X it holds that cl(X') # X.

It holds that all proper supersets of a closed itemset have a strictly higher entropy and
h(X) = h(cl(X)). All proper subsets of a generator have strictly lower entropy. Note
that the rule X = Y is exact if and only if X C XY C ¢l(X). Furthermore, if an
exactrule X = Y is minimal, then X is a generator.

4.4 Derivability

The idea of itemset derivability was introduced by Calders and Goethals [[17]. Given
the supports of all proper subsets of an itemset (X = 1), it is possible, using the
inclusion-exclusion principle, to derive tight lower and upper bounds on its support.
If these bounds coincide we know supp(X = 1) exactly, and (X = 1) is called deriv-
able (with respect to support). The set of all frequent itemsets can thus be derived from
the set of all non-derivable frequent itemsets. Similarly, we can define the derivability
of the entropy of an itemset.

Definition 4. We call X h-derivable if its entropy can be determined exactly from the
entropies of its proper subsets.

The set of all non-derivable itemsets is downward closed. Interestingly, an itemset X is
h-derivable if and only if it is derivable with respect to support.

5 Rule Redundancy

Mining all low entropy, high dependence rules can yield a very large set of patterns,
which is not desirable for a user who wants to analyze them. Typically, this collection
contains a lot of redundant rules. In this section we investigate how we can charac-
terize and prune such rules. We define two types of redundancy, one that is based on
the closure of itemsets, and one that is based on the superfluous augmentation of the
antecedent or consequent of a rule.

5.1 Closure-Based Redundancy

As mentioned in the previous section, rules of the form X = ¢I(X) are always exact. It
should be clear that combining an arbitrary rule with an appropriate exact rule yields a
new rule with identical entropy and dependence. For instance, if A = B is exact, then

WA = C) = u(AB = C).

Theorem 4. Let X = Y and X' = Y’ be two rules, where X C X' C cl(X) and
YCY' CelY).Thenh(X =Y)=h(X' =Y )and (X =Y) = p(X' =Y.

Since the entropy and dependence of such larger rules can be inferred using the smaller
rule and the closure operator, we call them redundant. These minimal rules are con-
structed using generators.
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Definition 5 (Closure-based Redundancy). A rule X = Y is redundant with respect
closure if
X isnota generatoror |[Y|>1 ifu(X =Y)=1,
{ XY is not a generator fuX=Y)<l1.

Note that if XY is a generator, then X and Y are also generators, since the set of all
generators is downward closed.

5.2 Augmentation Redundancy

Here we define a stricter kind of redundancy that prunes rules which have items unnec-
essarily added to their antecedents or consequents.

Antecedent Redundancy. Suppose we have two rules with a common consequent,
X = Yand X' = Y, with X’ = X U {z}. Theorem 2 tells us that u(X = Y) <
u(X’" = Y). Even though the latter rule has a higher dependence, it might be redun-
dant if = does not make a real contribution to the rule. For instance, if X and x are
independent, then p(X’ = Y) is simply the sum of u(X = Y) and p(z = Y).
To characterize this type of redundancy we use the chain rule of mutual information,
I(Xx,Y)=1(X,Y) 4+ I(z,Y | X), where the last term is the conditional mutual in-
formation (which can be written as H(x | X )— H (z | XY)). It is known that I does not
behave monotonically with conditioning. In the case where X and x are independent,
we have I(z,Y | X) = I(z,Y). If X already explains part of the dependency between
zand Y, then I(z,Y | X) < I(x,Y), meaning there is an “overlap” between X and x.
Otherwise, if I(z,Y | X) > I(z,Y), this means that under knowing X, the mutual in-
formation between = and Y increases. Intuitively, it means that X x tells us more about
Y than the sum of X and x separately. This motivates the following definition.

Definition 6 (Antecedent Redundancy). A rule X = Y is redundant with respect to
antecedent augmentation, if there exists an item x € X such that

p(X=Y)<u(Xz=Y)+pulx=Y),or
X-x = Yis redundant.

It follows that (X = Y) > > pu(z = Y) if the rule X = Y is non-redundant.

Consequent Redundancy. Consider the rule X = Y and an item y ¢ XY Unlike in
the previous section, y is not monotonic with respect to augmentation of the consequent,
so in general the dependence of X = Yy can either be higher or lower that that of
X = Y. Anincrease in y means that adding y to Y increases the mutual information
I(X,Y) more than it increases the entropy H(Y"). Put differently, the relative increase
in uncertainty from H(Y') to H(Yy), is surpassed by the increase of the amount of
information X gives about Y and Yy. X gives relatively less information about Yy
than it does about Y.

Definition 7 (Consequent Redundancy). A rule X =Y is redundant with respect to
consequent augmentation, if there exists an item y € Y such that

WX =Y) <X = Y-y)or
X = Y-y is redundant.
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Algorithm 1. y-Miner

Input: Binary dataset D, thresholds Amax and fimin
Output: Non-redundant, low entropy, high dependence rules
1. P—{{z} CT; h(z) < hmax}
2. SetMine(P, hmax, fmin)

It follows that if X = Y is non-redundant, then VY’ C Y : p(X = Y') < (X =
Y).

Relation to Closure-based Redundancy. It turns out that augmentation redundancy is
strictly stronger than closure-based redundancy, as stated in the theorem below.

Theorem 5. If a rule X = Y is redundant with respect to closure, then it is also
redundant with respect to antecedent augmentation or consequent augmentation.

6 The p-Miner Algorithm

In this section we present u-Miner (see Algorithm [I). As input it expects a dataset
D, a maximum entropy threshold A,.x, and a minimum dependence threshold pipiy.
The algorithm efficiently mines low entropy itemsets, and from these sets strong depen-
dence rules are constructed. Further, p-Miner prunes rules that are closure redundant or
augmentation redundant. Computation of entropy and dependence, and the checking of
redundancy is performed by doing some simple arithmetic operations and lookups, and
only one scan of the database is required.

6.1 Mining Itemsets

In the SetMine function (Algorithm 2), itemsets with a low entropy are mined. This
recursive function takes a collection of itemsets with a common prefix as input, initially
this is the set of all low entropy singletons. The search space is traversed in a depth-first,
right-most fashion. This is less memory-intensive than a breadth-first approach, and
the right-most order ensures that when an itemset is considered, all of its subsets will
already have been visited in the past (lines 1&3), a fact we exploit later. This implies
that we need to impose an order on the itemsets, e.g. a simple lexicographical ordering.
In our implementation of p-Miner we use a heuristic ordering based on the entropy
of the items, such that large subtrees of the search space are rooted by sets which are
expected to be have a high entropy, allowing us to prune larger parts of the subspace.

6.2 Efficiently Computing Entropy

A straightforward method to compute h(X) is to perform a scan over the database to
obtain the frequencies of (X = v) for all values v € {0, 1}X]. In total there are 2*
such frequencies for k = | X |, however, at most | D| of them are nonzero and hence this
method requires O(|D|) time. If the database fits in memory this counting method is
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Algorithm 2. SetMine

Input: Itemset collection P, thresholds hAmax and fimin
1. for X in P in descending order do

2. P —0

3 for X> < X1 inP do

4. X —X1UXo

5. Compute and store fr(X = 1)

6 h(X) < EntropyQIE(X)

7 if X is not a generator then

8. Report corresponding exact rule(s)
9. else if 1(X) < hAmax then

10. P —P U{X}

11. RuleMine(X, ftmin)

12.  SetMine(P’)

perfectly feasible, otherwise it becomes too expensive, since database access is required
for each candidate itemset. Another option is to use the partitioning technique used by
TANE [7]]. For each itemset a partition of the transactions is explicitly computed in
O(|D|) time, and then the sizes of the sets in the partition can be used to compute
h(X).

p-Miner uses a different entropy computation method that does not require direct
database access, and has a lower complexity, which is beneficial especially for large
datasets. We start from a simple right-most depth-first itemset support mining algorithm
similar to Eclat [4]], and store the supports in a trie (line 5). When we have mined the
support of (X = 1), the frequencies of all (X = v) are computed with the stored
supports of all subsets, by using quick inclusion-exclusion (Algorithm 3), which takes
O(k - 2¥=1) time [18]]. However, we can again use the fact that at most | D| frequencies
are nonzero, hence this counting method is O(min(k-2*=1, |D|)). The advantage of our
method is that it is fast and it does not require database access. The disadvantage is that
the supports of all mined itemsets must be stored, which may be a problem if memory
is scarce and hyay is set rather high. Note that if we were to restrict ourselves to mining
only non-derivable itemsets, we know that & < [log, |D|] [[17]. In this case the total
number of frequencies we need to store is O(|Z|'°%2 P!} in the worst case, which is
polynomial in |Z| for a fixed database size, and polynomial in |D| for a fixed number of
items.

6.3 Mining Non-redundant Dependence Rules

For each low entropy itemset, RuleMine (Algorithm 4) is called to generate high depen-
dence rules. It starts with rules whose consequent is a singleton, and then moves items
from the antecedent to the consequent. By using the partial monotonicity property from
Theorem 3] not all 2* possible rules need to be considered. Since we have the entropies
of all subsets available to us, we can compute the dependence by performing just a few
lookups. If a rule is found to have high dependence, it is checked whether the rule is
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Algorithm 3. EntropyQIE

Input: Candidate itemset X C 7
Output: h(X), the entropy of X

1. forall X' C X do

2 p(X) = (X' =1)

3. forall z € X do

4. forall X' C X withz € X' do

5. p(X'-a) — p(X'-x) — p(X)

6. return h(X) = —> /e P(X') - log, p(X')

Algorithm 4. RuleMine

Input: Low entropy itemset X ; dependence threshold fmin
Output: Non-redundant strong dependence rules based on X
1. L—A{X-z=z;z € X}
2. while £ # 0 do
for A= Bin L do
Compute u(A = B)
if u(A = B) > pimin and A = B is non-redundant then
Report A = B
L — {A-a = Ba; A = B € L,using Theorem 3]}

Nk W

redundant (line 6). Again, since we have the entropies of all subsets available, these
redundancy checks can be performed quite efficiently.

7 Experimental Evaluation

We perform experiments on several datasets to evaluate the efficiency of u-Miner. We
also investigate the effect of our pruning techniques. The algorithm is implemented in
C+, and the experiments were executed on a machine with a 2.2GHz CPU and 2GB
of memory, running Linux. More experiments can be found in the technical report [[1].

7.1 Datasets

First, we have some benchmark datasets taken from the FIMI Repository [19]: CHESS,
MUSHROOM and PUMSB, containing 3196, 8124 and 49046 transactions respectively.
The original PUMSB dataset contains 2112 items, in our experiments we used the 100
most high entropy items. MUSHROOM originally has 119 items, for our experiments we
removed items with frequencies higher than 0.9 or lower than 0.1. These datasets are
used to test the efficiency of p-Miner.

Second, we generated a SYNTHETIC dataset which contains an embedded pattern.
We use it to evaluate the scalability of p-Miner with respect to the size of the database.
The dataset consists of 1 000 000 transactions and has 16 items. The 15 first items are
independent and have random frequencies between 0.1 and 0.9. The last item equals the

! The source code of p-Miner is publicly available athttp: //www.adrem.ua.ac . be
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sum of the other two modulo 2, i.e. the rule {1,...,15} = {16} is an exact one. Note
that this dependency is also minimal.

7.2 Experiments

First, we perform some experiments on the benchmark datasets. To begin with, we
set the value of hy.. to a fixed value (1.5 for CHESS, 2 for PUMSB, and 3.5 for
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MUSHROOM), and we vary the minimum dependence threshold pn,in between 0 and
1. As can be seen in Figure [Ta the number of rules increases roughly exponentially
when iy 1s decreased. Noticeably, the execution times stay roughly constant as fimin
decreases, as shown in Figure [Tbl This is not surprising, since most computations are
performed in the itemset mining phase, and the computation of p involves just a few
lookups. Next, we set the value of pi,i, to a fixed value (in this case 0.4 for all datasets),
and gradually increase the maximum entropy threshold A,y from zero upward. In Fig-
ure[Id we see that for very low values of Ay, no rules are found. Then, the number of
rules increases exponentially with hp,ayx, Which is to be expected. In Figure [[d we see
that this trend also translates to the execution times. For lower thresholds (hpax < 1)
the runtimes stay roughly constant, because they are dominated by I/O time.

Secondly, we evaluate the scalability of u-Miner with respect to the size of the
database using the SYNTHETIC dataset. The aim is to discover the embedded functional
dependency, in order to do this we set pmin to 1, and hyax sufficiently high (say, 16).
We compare p-Miner with the TANE and TANE/MEM implementations from [20]]. The
main TANE algorithm stores partitions to disk level per level, while the TANE/MEM
variant entirely operates in main memory. The number of transactions is gradually in-
creased from 102 to 10% and the runtimes are reported in Figure [Tel We see that all
algorithms scale linearly with |D|, although the slope is much steeper for TANE and
TANE/MEM, while the execution time of u-Miner increases very slowly. At around
£3000 transactions, p-Miner overtakes TANE in speed, and at 105 transactions our al-
gorithm is already two orders of magnitude faster. The TANE/MEM algorithm is faster
up to £10000 transactions, but cannot handle any datasets much larger than that due
to heavy memory consumption. This observed difference in speed can be explained en-
tirely by the counting method. TANE explicitly constructs a partition of size O(|D]) for
each itemset (and stores these to disk or in memory level per level), while our algorithm
computes the required sizes of the partitions without actually constructing them. The
increase in the execution time of p-Miner can be accounted for almost entirely by the
increase in time it takes to read the data file.

Next, let us investigate how redundancy pruning affects the size of the output. We
experimented on the MUSHROOM and the PUMSB datasets for different values of hyax
(3 for MUSHROOM and 1.5 for PUMSB) and fiyin (0.2 and 0.8 for both datasets). The
results are shown in Figure [[fl For the MUSHROOM dataset pruning all non-minimal
rules already reduces the output by roughly an order of magnitude. Augmentation prun-
ing reduces the output by an additional two orders of magnitude. For the PUMSB dataset
pruning non-minimal rules reduces the output by three orders of magnitude. Here aug-
mentation pruning reduces the output in size even further, by roughly two orders of
magnitude. This makes the result collection of rules far more manageable for a user.

8 Conclusions

We proposed the use of information-theoretic measures based on entropy and mutual in-
formation to mine dependencies between sets of items. This allows us to discover rules
with a high statistical dependence, and a low complexity. We investigated the prob-
lem of redundancy in this framework, and proposed two techniques to prune redundant
rules. One is based on the closure of itemsets and is lossless, while the other, shown
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to be stronger, is lossy and penalizes the augmentation of rules with unrelated items.
We presented our algorithm p-Miner, which mines such dependencies and applies the
presented pruning techniques. Several experiments showed that p-Miner is efficient and
scalable: it can easily handle datasets with millions of transactions and does not require
a large amount of memory. Furthermore, our pruning techniques were shown to be very
effective in reducing the size of the output by several orders of magnitude.
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Abstract. We present an algorithm for mining frequent queries in arbitrary re-
lational databases, over which functional dependencies are assumed. Building
upon previous results, we restrict to the simple, but appealing subclass of simple
conjunctive queries. The proposed algorithm makes use of the functional depen-
dencies of the database to optimise the generation of queries and prune redundant
queries. Furthermore, our algorithm is capable of detecting previously unknown
functional dependencies that hold on the database relations as well as on joins
of relations. These detected dependencies are subsequently used to prune redun-
dant queries. We propose an efficient database-oriented implementation of our
algorithm using SQL, and provide several promising experimental results.

1 Introduction

The discovery of recurring patterns in databases is one of the main topics in data mining
and many efficient solutions have been developed for different classes of patterns and
data collections. Almost all techniques, however, work on so called transaction databases
[1]. Not only for itemsets, but also in the case of trees [20] and graphs [[12J15/19], the
database consists of a collection of transactions, and a frequent pattern is discovered if
it occurs in enough such transactions. Even in the multi-relational case, as considered in
the WARMR system [4], the database can be seen as a collection of transactions in which
each transaction consists of a small relational database. A query is then called frequent
if it gives a non-empty answer in enough of such databases.

Obviously, many relational databases are not suited to be converted into such a trans-
actional format and even if this would be possible, a lot of information implicitly en-
coded in the relational model would be lost after conversion. Recently, we have con-
sidered association rule mining on arbitrary relational databases by combining pairs of
queries which could reveal interesting properties in the database [8I13]. Intuitively, we
pose two queries on the database such that one query is more specific than the other
(w.r.t. query containment). Then, if the number of tuples in the output of both queries is
almost the same, a potentially interesting discovery is revealed.

To illustrate, consider the well known Internet Movie Database [11] containing al-
most all possible information about movies, actors and everything related to that, and
consider the following queries: first, we ask for all actors that have starred in a movie of
the genre ‘drama’; then, we ask for all actors that have starred in a movie of the genre
‘drama’, but that also starred in a (possibly different) movie of the genre ‘comedy’.

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 142 2010.
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Now suppose the answer to the first query consists of 1000 actors, and the answer to the
second query consists of 900 actors. Obviously, these answers do not necessarily reveal
any significant insights on themselves, but when combined, it reveals the potentially
interesting pattern that actors starring in ‘drama’ movies typically (with a probability
of 90%) also star in a ‘comedy’ movie. Of course, this pattern could also have been
found by first preprocessing the database, and creating a transaction for each actor con-
taining the set of all genres of movies he or she appeared in. Similarly, a pattern like:
77% of the movies starring Ben Affleck, also star Matt Damon, could be found by pos-
ing the query asking for all movies starring Ben Affleck, and the query asking for all
movies starring both Ben Affleck and Matt Damon. Again, this could also be found
using frequent set mining methods, but this time, the database should have been dif-
ferently preprocessed in order to find this pattern. Furthermore, it is even impossible to
preprocess the database only once in such a way that the above two patterns would be
found by frequent set mining, as they are counting different types of transactions: actors
in the first example and movies in the second example.

Also truly relational patterns can be found which can not be found using typical set
mining techniques, such as 80% of all movie directors that have ever been an actor
in some movie, also star in at least one of the movies they directed. This is expressed
by two queries of which one asks for all movie directors that have ever acted, and the
second one asks for all movie directors that have ever acted in one of their own movies.

The Conqueror algorithm recently developed by Goethals et al. [8] has shown to dis-
cover interesting association rules over a simple, but appealing subclass of conjunctive
queries, called simple conjunctive queries. Furthermore, the algorithm had an efficient
database-oriented implementation in SQL. One challenge that remained to be solved in
this approach, was the huge number of generated patterns. Part of the volume is inher-
ently due to the relational setting, but a substantial part, however, is due to redundancies
induced by dependencies embedded in the data.

Jen et al. [13]], studied the problem of mining all frequent queries from a single
relational table. They considered projection-selection queries, and assumed that the ta-
ble to be mined satisfies a set of functional dependencies. A pre-ordering over queries
was defined, and shown to be anti-monotonic towards the support measure. Moreover,
this pre-ordering induces an equivalence relation and two equivalent queries are shown
to have the same support. Therefore, one computation per equivalence class allows to
know the support of all queries in that class. In [[14], this work has been generalised to
several tables in the case where the database operates over a star schema. The challenge
however remains to generalise the theory to arbitrary relational databases.

Clearly, the combination of the approaches in [[13] and [8] would resolve the issues
posed, i.e., mining non redundant simple conjunctive queries (thus including arbitrary
joins), given a collection of functional dependencies over the relations of an arbitrary
relational database. This is one major contribution of this paper.

Moreover, combining these techniques also results in new opportunities. That is, next
to the given functional dependencies, we introduce a novel technique to discover pre-
viously unknown functional dependencies, and immediately exploit them for reducing
the number of frequent queries in the output. Furthermore, we do so not only for the re-
lations of the database, but also for any join of relations. This is the second contribution
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of this paper, and several experiments clearly show the benefits of this approach, thus
making the discovery of simple conjunctive queries a feasible and attractive method
towards the exploration of arbitrary relational databases.

The paper is organised as follows: In Section 2] we recall the basic concepts and
definitions used in this work and we briefly review from [[13] how functional dependen-
cies are used to compare queries. We present our algorithm Conqueror™ in Section 3
combining the two approaches [8I13]], and in Sectiond] we report experiments, showing
that Conqueror™ clearly outperforms Conqueror. We conclude in Section [6l

2 Formal Model

2.1 Background

We consider a fixed attribute set U and a relational database schema D = {Ry, ..., R}
over U in which, fori = 1,...,n, R; is a relation name associated with a subset of U,
called the schema of R; and denoted by sch(R;). Without loss of generality, we assume
that, for all distinct ¢ and j in {1, ..., n}, sch(R;) Nsch(R;) = 0. In order to make this
assumption explicit, for all 7 in {1, ..., n}, every A in sch(R;) is referred to as R;.A.

We also assume that we are given functional dependencies over D. More precisely,
each R; is associated with a set of functional dependencies over sch(R;), denoted by
FD;, and the set of all functional dependencies defined in D is denoted by FD.

As in [8], the queries of interest in our approach, are conjunctive projection-selection-
join queries whose joins are expressed using a conjunction of selection conditions of the
form R;.A = R;.A’. We note that by doing so, all possible equi-joins can be considered,
which would not the case using the universal relation associated to the given database.
Moreover, we recall from [§]] that such a conjunctive condition F' induces a partition
blocks(F') of U, where every block 3 of blocks(F') is a maximal set of attributes such
that for all R;.A and R, A'in 3, R;. A= R; .A’ is a consequence of F'. In such a case,
we say that R; and R; are connected through F'.

Definition 1. Denoting by R the cartesian product Ry X ... X Ry, let Q = nxopR
where F' = x(Q) A o(Q), such that x(Q) and o(Q) are respectively conjunctions of
selection conditions of the form R;. A = R;. A" and Ry,.A = a, where i, j and k are in
{1,...,n}and a is in dom(A). Q = mxopR is said to be a simple conjunctive query
if all relation names occurring in X or in o(Q) are connected through x(Q).

Given a simple conjunctive query Q = wxorR, the set X is denoted by w(Q) and
the tuple defined by the conjunctive selection condition o(Q) is denoted by Q°.

We call Q a join query if 0(Q) is the empty condition and if 7(Q) is the set of all
attributes of all relation names occurring in X(Q). Given a simple conjunctive query
Q, we denote by J(Q) the join query such that X (J(Q)) =X (Q).

To simplify notation, given a simple conjunctive query @, the corresponding partition
of U, blocks(x(Q)) is simply denoted by blocks(Q). We emphasise that, according to
Definition [T} considering simple conjunctive queries avoids computing cartesian prod-
ucts. We illustrate this definition below.
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Example 1. Let us consider a database schema D consisting of two relation names R;
and Ry with the following schemas: sch(R;) = {A, B} and sch(Rz) = {C, D, E}.

According to Definition[I} R denotes the cartesian product Ry x Rs. Since sch(R1)N
sch(Rz) is clearly empty, in this example and in the forthcoming examples dealing with
D, we do not prefix attributes with relation names. For example, R;.A is denoted by A.

The query QQ = TApT(A=B)A(E=e) IR is not a simple conjunctive query because Iy
and R are not connected through the condition A = B. Computing the answer to this
query requires to consider explicitly the cartesian product 1 X Rs.

On the other hand, Q1 = TApO(a—c)r(E=e) R is a simple conjunctive query such
that x(Q1) = (A = C), 7(Q1) = AD, 0(Q1) = (E = e) and Q7 = e. Moreover,
J(Q1) = maBCcDEC(a=c) R, and blocks(Q1) contains four blocks, namely: {A, C'},
{B}, {D} and {E}. In this case, computing the answer to (}; does not require to
consider the cartesian product Ry x Rs, since Ry and Ry are joined through A = C. 0

We now define as in [8]] the support of a query, and when a query is said to be frequent.

Definition 2. Given an instance T of D and a simple conjunctive query Q, the answer
to Q in T is denoted by Q(Z) and is seen as a set in which no duplicates are allowed.

The support of Q in Z, denoted supportz(Q) or simply support(Q), is the cardinal-
ity of the answer to Q in I. Given a minimum support threshold minsup, Q is said to be
frequent if support(Q) > minsup.

To end the preliminaries, we mention the strong relationship between support and func-
tional dependency, as stated by the following proposition whose easy proof is omitted.

Proposition 1. Let T be a relational table over the attribute set sch(T) and let X
and X' be subsets of sch(T). T satisfies X — X' if and only if support(rxx:/T) =
support(wxT).

In the context of Example [1l for Q = Tapo(a—c)R and Q" = ma0(a—c)R, con-
sidering an instance Z of D for which support(Q) = support(Q’) indicates that
0(a=c)R(Z) satisfies the functional dependency A — D. Consequently, for every
conjunctive selection condition S, the queries Qs = Tapoa=c)rsR and Q5 =
TA0(a=c)as R also have the same support. Thus, computing the support of Q' is re-
dundant, assuming that the support of Qs is known.

We recall that one of the main contributions of this paper is to discover functional
dependencies in order to avoid computing unnecessary supports.

2.2 Query Comparison
Inspired by [13]], we compare queries based on functional dependencies.

Definition 3. Let Q1 = 7mx,0r, R and Q2 = mx,0r, R be two simple conjunctive
queries. Denoting by Y; the schema of QF, fori = 1,2, Q1 = Q2 holds if

1 x(Q1) Sx(Q2),
2. J(Q2)(Z) satisfies X1Ys — Xo and Yo — Y1, and

3. the tuple Q5 QS is in my, v, J (Q2)(Z).
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Example 2. In the context of Example [Tl assume that FD; = () and FDy = {C —
D FE — D}, and let Q1 = WADU(A:C')/\(E:e)R and Q2 = WCU(A:C’)/\(D:d)R-

We have N(Ql) :N(QQ) and J(Ql) = J(QQ) = WABCDEU(A:C)R- Then, if 7
is an instance of D, J(Q2)(Z) satisfies FD. Moreover, due to the equality defining
x(Q2), J(Q2)(Z) also satisfies A — C and C — A. Therefore, J(Q2)(Z) satisfies
CFE — AD and E — D, and so, if de € npgJ(Q2)(Z), by DefinitionBl Q2 < Q1. O

It can be seen from [13] that < is a pre-ordering and that the support of queries is anti-
monotonic with respect to <. In other words, for all ()1 and Q)2 such that 1 = Qa,
we have support(Q2) < support(Q1). Anti-monotonicity is used in our algorithms to
prune infrequent queries, in much the same way as in Apriori [[1]].

Moreover, the pre-ordering = induces an equivalence relation, denoted by ~, de-
fined as follows: given two simple conjunctive queries )1 and @2, @1 ~ @2 holds if
Q1 =% Q2 and Q2 < 1. As a consequence of anti-monotonicity, if )1 ~ Q2 holds
then support(Q1) = support(Q2). Thus, only one computation per equivalence class
modulo ~ allows to know the support of all queries in that class.

In order to characterize equivalence classes modulo ~, we denote by X T the closure
of a relation schema X with respect to a given set of functional dependencies F'D.
Then, based on [13], it can be seen that for Q1 = 7x,0r R and Q2 = 7x,0m R,
Q1 ~ Q2 holds if and only if x(Q1) =x(Q2), (X1Y1)T = (X2Y2)*, V7 = Y, and
Q7Q3 € Ty, J (Q1) (D).

Now, given a query (), the representative of the equivalence class of () considered
in this paper is the query Q™ such that 7(QT) = 7(Q) ™, x(QT) =x(Q) and o (Q™)
is the selection condition corresponding to the super tuple of Q°, denoted by (Q7)*,
defined over sch(Q7)™, and that belongs to 7., -y +J (Q)(Z).

Moreover, if 7(Q) C sch(Q?) then the support of () is 1, which is meant to be less
than the minimum support threshold. Therefore, the queries @) of interest are such that

m(Q) = 7(Q)T, sch(Q7) = sch(Q7)*, and sch(Q7) C 7(Q).
In what follows, such queries are said to be closed queries and the closed query equiv-
alent to a given query () is denoted by Q.
It is important to notice that, considering only such queries in our algorithms, reduces
the size of the output set of frequent queries.

Example 3. Referring back to the queries Q1 and Q2 of Example ] it is easy to see
that they do not satisfy the restrictions above. For instance, as sch(Qf) = FE and
m(Q1) = AD, the inclusion sch(Q]) C w(Q1) is not satisfied. It can be seen that
none of these queries are closed, and thus, none of them is considered in our algo-
rithms. But as J(Q1)(Z) satisfies C — D, E — D, A — C and C' — A, the closed
queries Q7 and Q7 defined below are processed instead.

Qf = TacpEo(a=c)n(E=e)R and QF = TAcDET(A=C)A(E=e)r(D=d) R
We also note that ()1 and Q2 would not be considered either in [8], as in there, 7(Q;)
(i = 1,2) is required to contain all attributes from the same block of blocks(Q;)
but no attributes from ¢(Q;). Thus, in [8], Q] = TacpT(a=c)r(E=c)R and Q5 =
TACT(A=C)A(E=e)n(D=d) R are processed instead. As Q; ~ Qf ~ Q;f fori = 1,2,
these queries have the same support. (]
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3 Mining Queries under Functional Dependencies

3.1 Algorithm Conquerort

In this section, we present our algorithm called Conqueror™ (given as Algorithm[T)) for
mining frequent queries. We mention in this respect that frequent simple conjunctive
queries mxop R are mined in much the same way as the Conqueror algorithm [S§], that
is, according to the following steps:

— Join loop: Generate all instantiations of F', without constants, in a breadth-first
manner, using restricted growth to represent partitions [8]. Every partition gives
rise to a join query J( and functional dependencies of its ancestors are inherited.

— Projection loop: For each generated partition, all projections of the correspond-
ing join query J() are generated in a breadth-first manner, and their frequency is
tested against the given instance Z. During this loop, functional dependencies are
discovered and used to prune the search space.

— Selection loop: For each frequent projection-join query, constant assignments are
added to F' in a breadth-first manner, as in Conqueror. Moreover, here again, func-
tional dependencies are used to prune the search space.

As in the Conqueror algorithm, attributes are ordered, so as candidate queries are gen-
erated at most once in the different loops: This ordering is implicit lines [[ and [[2] in
Algorithm[T] (the k-th element in the string refers to the k-th attribute according to the
ordering), and is explicitly used line[[7]in AlgorithmP]and line[IQin Algorithm 3]

As an important difference with the Conqueror algorithm, a (possibly empty) set
of functional dependencies FD can be specified as input. This set is first used for the
relations of the database instance (line 3] of Algorithm [ and then augmented during
the projection loop (line T3] of Algorithm[2)).

3.2 Join Loop

The generation of joins is done in much the same way as in Conqueror ([8]]), by gen-
eration of restricted growth strings [[18]]. Such a restricted growth string represents a
partition of the attributes, and such a partition maps to a join.

For example, referring back to Example[Il the set U of all attributes occurring in D
is {4, B, C, D, E}. Then, the restricted growth string 12231 represents the condition
(A= FE) A (B = C), which corresponds to the partition {{4, E}, {B,C}, {D}}.

As in the Conqueror algorithm, we include a check against the user defined most
specific join, which allows a user to specify the sensible joins in the database (see
line [[T] Algorithm[T)). By default, however, every possible join of every attribute pair is
considered. A new addition to the join loop is the inheritance of functional dependencies
shown on lines[I3HI4] and discussed in detail in Section[3.3]

3.3 Projection Loop

Compared to the Conqueror algorithm, one major change in the projection loop is the
fact that the generation of selections is now performed after all projections are gener-
ated (line22] Algorithm[2) so as to be able to immediately use the discovered functional
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Algorithm 1. Conqueror™

Input: Database D, Set of functional dependencies D, Minimum support threshold minsup
Output: Frequent Queries FQ

1: x(Q) :=“1" // initial restricted growth string

2: for all R; in D do

3: FDq =FD;

4:  push(Queue, R;)

// Join Loop

5: while not Queue is empty do

6:  JQ := pop(Queue)

7:  if x(JQ) does not represent a cartesian product then

8 FQ := FQ U ProjectionLoop(JQ)

9:  children := RestrictedGrowth(x (JQ), m)
10:  for all rgs in children do

11: if join defined by rgs is not more specific than the user most specific join then

12: x(JQC) :=rgs

13: for all PJQ such that x(JQC) = x(PJQ) A (R;.A = R;.A") do

14: FDiqc :=FDiqc UFDpiq

15: if x(PJQ) = “1” then

16: FDjiqc :=FDiqc U {Ri.A — Rj.A/, Rj.A/ — Ri.A}

17: blocks(JQC) := blocks(JQ) where the blocks containing R;.A and R;.A’ are merged
18: push(Queue, JQC)

19: return FQ

dependencies to prune redundant queries. The functional dependency discovery is per-
formed lines of Algorithm[2and is discussed in Section

We point out that, according to lines [[7120] of Algorithm 2] candidate projection
queries are generated by removing blocks in blocks(J(Q), because attributes in a given
block are mutually dependent. However, it might be the case that removing such a block
does not result in a closed projection schema. This is why, line 0] of Algorithm 2] we
check whether 7(PQ) is closed; if not, the projection query is simply queued without
any further processing. This however induces complications in the monotonicity check
line[TQl of AlgorithmP] because projections over non closed schemas are not processed.
To cope with this difficulty, if PQ is such that 7(PQ) is closed, for every predecessor
PPQ of PQ, the closure of m(PPQ) under 7 Dq, is computed. The check is passed if all
corresponding projection queries are in FPQ.

Also notice that the function blocks(Q) returns the set of connected blocks of a re-
stricted growth string, i.e., the connected part of the partition blocks(Q). We require
such blocks to form a single connected component, so as to avoid considering cartesian
products, as stated in Definition[Il Clearly, line[7lin Algorithm [l prunes these queries.

3.4 Selection Loop

In the selection loop of our new algorithm, marked queries are not considered, since they
are redundant (line Algorithm ). When adding blocks to the selection condition,
the closure is taken, ensuring no redundant queries are generated (line[I3] Algorithm[3).
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Algorithm 2. ProjectionL.oop
Input: Conjunctive Query Q
1: if x(Q) =“1” then
2: w(Q):=sch(R;)// Qis the query R;

3: else

4:  7w(Q) := union of blocks(Q)

5: push(Queue, Q)

6: FPQ:=0

7: while not Queue is empty do

8:  PQ :=pop(Queue)

9: if 7(PQ) is closed then
10: if monotonicty(PQ) then

11: if support(PQ) > minsup then
12: FPQ :=FPQ U {PQ}
13: for all PPQ in FPQ such that (A PPQ’ € FPQ : n(PQ) C n(PPQ’) C n(PPQ)) do
14: if support(PQ) = support(PPQ) then
15: FDq =FDq U {n(PQ) — n(PPQ) \ 7(PQ)}
16: mark PQ

17:  for all 8 > lastremoved(PQ) do

18: 7(PQC) := w(PQ) with block 5 removed
19: lastremoved(PQC) = 3

20: push(Queue, PQC)

21: FQ :=FQ U FPQ

22: for all PQ € FPQ do

23:  if PQ is not marked then

24: FQ := FQ U SelectionLoop(PQ)

25: return FQ

However, closing of these sets of blocks requires to reorder the queue of candidates in
order to use the Apriori-trick. The following example illustrates this point.

Example 4. Considering the attributes A, B and C, along with the functional depen-
dency A — B, the generation of sets for the selection results in the generation-tree
(a) shown below. Indeed, the addition of A entails that B must also be added so as to
consider closed schemas only.

However, because of the monotonicity property, we need to consider B before AB
(since the selection according to B is less restrictive than that according to AB). We
accomplish this by reordering the candidate queue, to ensure B is considered before
AB and BC is considered before ABC, as shown in the generation-tree (b) below. O

CEIN O
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AB° =B C B C  AB
c c C}..' c
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Moreover, as stated previously, line[I4] of Algorithm[3ensures that o(Q) is a strict sub-
set of 7(Q). However, not all strict subsets of 7(PQ) are considered, since we only
have to consider assignments over closed schemas under 7D ;¢ (see line [[3] Algo-
rithm 3). Furthermore, in line [[4] of Algorithm[3] we make sure that the corresponding
closure has not been processed previously, which can happen since a closed set can be
generated from several non-closed sets.

Then, in lines [ZH8] of Algorithm[3] the obtained queries are processed against Z us-
ing the same strategy as in [8]. The instantiation of constant values in Algorithm [3is
performed analogously to Conqueror by performing SQL queries in the database. For
further details, we therefore refer the reader to [8].

Algorithm 3. SelectionLoop

Input: Conjunctive Query Q
1: push(OrderedQueue,Q)
2: while not OrderedQueue is empty do
3:  CQ :=pop(OrderedQueue)

4: if 0(CQ) = () then

5: toadd := all blocks of 7(Q)

6: else if monotonicty(C'(Q) then

7: if exist frequent constant values for o(CQ) in Z then
8: FQ := FQ U instances of CQ

9: uneq = all blocks of w(Q) ¢ o(CQ)

10: toadd := all blocks B in uneg > last of 0(CQ)

11:  for all B; € toadd do

12: o(CQC) := o(CQ) with B; added

13: o(CQC) := closure of o(CQC) under FDq

14: if (CQC) has not been generated before and o(CQC) is different than 7(Q) then
15: push(OrderedQueue, CQC)

16: return FQ

3.5 Handling and Discovering Functional Dependencies
In this section, we show that, according to our algorithms:

1. A given join query is associated with the set of all functional dependencies satisfied
by its predecessor join queries.

2. Only join and projection queries over closed relation schemas are processed.

3. Considering given functional dependencies along with discovered functional de-
pendencies preserves the above property.

Handling Functional Dependencies. A given join query J() is associated with a set
of functional dependencies, denoted by FD ;, and built up in Algorithm[Ilas follows.

First, when x(Q) is the restricted growth string 1, every instantiated relation R;(Z)
in the database is pushed in Queue (lines 2] and 3] Algorithm [2)), associated with the
set FD; (see line Bl Algorithm [T). Then, the restricted growth strings represent a
join condition of the form (R;.A = R;.A’). Denoting by JQ the corresponding join
query, if R; = R; then JQ(Z) satisfies FD; (since JQ is a selection of R;) along
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with R;.A — R;.A’ and R;. A’ — R;.A. Thus, FD;q is set to FD; U{R;. A —
R;.A',R; A" — R;.A}. Similarly, if R, # R, then J(Q is a join of R; and R, and so,
JQ(Z) satisfies FD; U FD;, as well as R;. A — R;.A" and R;. A" — R;.A. Thus, we
set FDjo = FD; UFD; U{R;. A— R; A, R; A" — R;.A} (see lines[I3{I6l of Al-
gorithm[I). At this stage, 7(JQ) is either sch(R;) (if R; = R;) or sch(R;) U sch(R;)
(if R; # Rj), and so, m(JQ) is closed under FD ;4.

In the general case, at a given level, the join query J@ is generated from join queries
PJQ in the previous level by setting x(JQ) to x(PJQ) A (R;.A = R;.A’), and
by augmenting 7 (PJQ) accordingly. Therefore, JQ(Z) satisfies the dependencies of
FDpjq, and thus, FD ;q is set to be the union of all FDp ;g where PJQ allows to
generate J(Q (see lines of Algorithm[I). Consequently, assuming that 7(PJQ)
is closed under FDp jq clearly entails that 7(JQ) is closed under FD jq.

Thus, for every join query J@Q, 7(JQ) is closed under those functional dependen-
cies of FD ;¢ that belong to D or that are obtained through the connected blocks
of blocks(JQ). Moreover, the discovered functional dependencies in the projection
loop of J( preserve this property, because these new dependencies are defined with at-
tributes in 7(JQ) only. Thus, for every join query JQ, 7(JQ) is closed under FD j¢.

Then, the check performed line [0 of Algorithm[2]ensures that only those projection-
join queries PQ such that 7(PQ) is closed under FD ;¢ are considered. We note that
for performing this check, it is enough to make sure that there is no dependency X — Y
in FD ;g such that X C n(PQ) and Y < 7(PQ).

Discovering Functional Dependencies. Functional dependencies, other than those in
FD, are discovered in the projection loop (see lines of Algorithm ) as fol-
lows. At a given level, a projection-join query P() is generated from the projection-
join queries PPQ of the previous level by removing blocks from 7(PPQ). Thus, by
Proposition[] if support(PQ) = support(PPQ) (see line[I4lof Algorithm[)), JQ(Z)
satisfies 7(PQ) — 7(PPQ) \ m(PQ). The dependency is thus added to FD ;g and
PQ is marked, since m(.JQ) is no longer closed (see lines[I3and [I6 of Algorithm ).
Notice that, as projection-join queries are generated in a breadth-first manner, the
‘best’ functional dependencies (i.e., those with minimal left-hand side) are discovered
last, during the projection loop. However, by doing so, we mark all queries that do not
have to be processed in the selection loop. The following example illustrates this point.

Example 5. In the context of Example[ll let us consider the projection loop associated
to the join query JQ = TapcpET(a—c)R. Inthis case, blocks(JQ) = {{A, C}, {B},
{D}, {E}}. Assuming that all projections are frequent and that JQ(Z) satisfies A —
D, the following dependencies are found: ACBE — D, ACE — D, ACB — D
and AC — D. Consequently, the queries macpgr(JQ), Tace(JQ), macs(JQ) and
mac(JQ) are marked, and so, are not processed by the selection loop.

We note that, A — D is actually not found, because FD ;q contains A — C and
C — A, which enforces A and C to appear together in the projections. Of course,
A — D is a consequence of AC' — D and A — C that now belong to FD . O

The output of the projection loop is processed in the selection loop of Algorithm
as follows: for every non marked frequent projection-join query P(Q), selections over
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closed schemas are generated breadth-first by assigning constant values to some of the
attributes in 7(PQ).

4 Experimental Results

The Conqueror™ algorithm was written in Java using JDBC to communicate with a
sqlite relational database. Experiments were run on a standard computer with 2GB
RAM and a 2.16 GHz processor. We also note that this implementation not only com-
putes frequent queries, but also association rules. The issue of association rules is
not addressed in this paper, due to lack of space. We performed experiments using
Conqueror™ and compared it to Conqueror [8]. We used the backend database of an
online quiz website [2] and a snapshot of the Internet Movie Database (IMDB) [11].
The characteristics of these databases are shown in Table [Tl

Table 1. Number of tuples per attribute in the QuizDB and IMDB databases

(a) Quiz database (b) IMDB
SCORES..* 868755 ACTORS..* 45342
SCORES.SCORE 14 ACTORS.AID 45342
SCORES.NAME 31934 ACTORS.NAME 45342
SCORES.QID 5144 GENRES .* 21
SCORES.DATE 862769 GENRES.GID 21
SCORES.RESULTS 248331 GENRES.NAME 21
SCORES.MONTH 12 MOVIES.* 71912
SCORES.YEAR 6 MOVIES.MID 71912
QUIZZES.* 4884 MOVIES.NAME 71906
QUIZZES.QID 4884 ACTORMOVIES.* 158441
QUIZZES.TITLE 4674 ACTORMOVIES.AID 45342
QUIZZES.AUTHOR 328 ACTORMOVIES.MID 54587
QUIZZES.CATEGORY 18 GENREMOVIES.* 127115
QUIZZES.LANGUAGE 2 GENREMOVIES.GID 21
QUIZZES.NUMBER 539 GENREMOVIES.MID 71912

QUIZZES.AVERAGE 4796

4.1 Impact of Dependency Discovery

We performed four types of experiments with functional dependencies. As a first type,
we executed the regular Conqueror. The second type, denoted ‘disc’ in Figure [ is
Conqueror™ where discovery of dependencies is enabled, but the set of initial provided
dependencies is empty. The third type, denoted ‘given’, is Conqueror™ provided with
a set of initial dependencies, but without any discovery of functional dependencies.
For QuizDB we provided the key dependencies of the QUIZZES and SCORES rela-
tions, and for IMDB we provided the key dependencies for ACTORS, GENRES and
MOVIES. The fourth type, denoted as ‘given+disc’, is Conqueror™ provided with these
dependencies as well as discovery of new functional dependencies.

As can be seen in Figure [Ta Conqueror™ with discovery greatly outperforms Con-
queror in runtime. This is due to the large reduction in number of queries generated
which is clear from the figure. Adding an initial set of (key) functional dependencies
results in a small gain in runtime, due to a small reduction in number of queries gen-
erated. Similarly, providing a set of dependencies whilst also discovering new ones,
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results in a small relative gain. We also observe that the exponential behavior of query
generation is still present, but only for low support values. Furthermore, for Conqueror™
with discovery, runtime remains almost linear for a large portion of the support values,
while for Conqueror, it is increasing rapidly.

The exp