


Lecture Notes in Computer Science 6263
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Torben Bach Pedersen Mukesh K. Mohania
A Min Tjoa (Eds.)

DataWarehousing and
Knowledge Discovery

12th International Conference, DaWaK 2010
Bilbao, Spain, August/September 2010
Proceedings

13



Volume Editors

Torben Bach Pedersen
Aalborg University Selma
Department of Computer Science
Lagerløfs Vej 300
9220 Aalborg, Denmark
E-mail: tbp@cs.aau.dk

Mukesh K. Mohania
IBM India Research Lab
4, Block C, Institutional Area, Vasant Kunj
New Delhi 110 070, India
E-mail: mkmukesh@in.ibm.com

A Min Tjoa
Vienna University of Technology
Institute of Software Technology andInteractive Systems
Favoritenstr. 9/188
1040 Wien, Austria
E-mail: amin@ifs.tuwien.ac.at

Library of Congress Control Number: 2010931871

CR Subject Classification (1998): H.2, H.2.8, H.3, H.4, J.1, H.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-15104-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15104-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface 

 
Data warehousing and knowledge discovery has been widely accepted as a key tech-
nology for enterprises and organizations to improve their abilities in data analysis, 
decision support, and the automatic extraction of knowledge from data. With the 
exponentially growing amount of information to be included in the decision-making 
process, the data to be considered become more and more complex in both structure 
and semantics. New developments such as cloud computing add to the challenges 
with massive scaling, a new computing infrastructure, and new types of data.  

Consequently, the process of retrieval and knowledge discovery from this huge 
amount of heterogeneous complex data forms the litmus test for research in the area. 

In the last decade, the International Conference on Data Warehousing and Knowl-
edge Discovery (DaWaK) has become one of the most important international scien-
tific events bringing together researchers, developers, and practitioners to discuss the 
latest research issues and experiences in developing and deploying data warehousing 
and knowledge discovery systems, applications, and solutions.  

This year’s conference, the 12th International Conference on Data Warehousing 
and Knowledge Discovery (DaWaK 2010), continued the tradition by discussing and 
disseminating innovative principles, methods, algorithms, and solutions to challeng-
ing problems faced in the development of data warehousing, knowledge discovery, 
the emerging area of "cloud intelligence," and applications within these areas. In order 
to better reflect novel trends and the diversity of topics, the conference was organized 
in four tracks: Cloud Intelligence, Data Warehousing, Knowledge Discovery, and 
Industry and Applications.  

The papers presented at DaWaK 2010 covered a wide range of topics within cloud 
intelligence, data warehousing, knowledge discovery, and applications. The topics 
included data warehouse modeling, spatial data warehouses, mining social networks 
and graphs, physical data warehouse design, dependency mining, business intelli-
gence and analytics, outlier and image mining, pattern mining, and data cleaning and 
variable selection.   

It was encouraging to see that many papers covered emerging important issues 
such as social network data, spatio-temporal data, streaming data, non-standard pat-
tern types, complex analytical functionality, multimedia data, as well as real-world 
applications. The wide range of topics bears witness to the fact that the data ware-
housing and knowledge discovery field is dynamically responding to the new chal-
lenges posed by novel types of data and applications.  

From 112 submitted abstracts, we received 89 papers from 16 countries in Europe, 
North and South America, Asia, Africa, and Oceania. The Program Committee finally 
selected 26 papers, yielding an acceptance rate of 29%.  

We would like to express our most sincere gratitude to the members of the Pro-
gram Committee and the external reviewers, who made a huge effort to review the 
papers in a timely and thorough manner. Due to the tight timing constraints and the 
high number of submissions, the reviewing and discussion process was a very chal-
lenging task, but the commitment of the reviewers ensured that a very satisfactory 
result was achieved. We would like to thank Alfredo Cuzzocrea for his tireless  



 Preface VI 

contributions as Track Chair and Publicity Chair. We would also like to thank all 
authors who submitted papers to DaWaK 2010, for their contribution to making the 
technical program so excellent.  

Finally, we send our warmest thanks to Gabriela Wagner for delivering an out-
standing level of support within all aspects of the practical organization of DaWaK 
2010. We also thank Amin Anjomshoaa for his support with the conference manage-
ment software.  

 
 

August 2010 
 

Torben Bach Pedersen 
Mukesh Mohania 

A Min Tjoa 
 



Organization 

Program Chairs 

Torben Bach Pedersen Aalborg University, Denmark 
Mukesh Mohania IBM India Research Lab, India 
A Min Tjoa Vienna University of Technology, Austria 

Publicity Chair 

Alfredo Cuzzocrea  ICAR CNR & University of Calabria, Italy  

Program Committee 

Alberto Abello Universitat Politecnica de Catalunya, Spain 
Ira Assent Aalborg University, Denmark 
Elena Baralis Politecnico di Torino, Italy 
Ladjel Bellatreche ENSMA, France 
Petr Berka University of Economics, Prague, Czech Republic 
Jorge Bernardino ISEC - Instituto Superior de Engenharia de Coimbra, 

Portugal 
Mokrane Bouzeghoub CNRS - Université de Versailles SQY, France 
Stephane Bressan National University of Singapore, Singapore 
Peter Brezany University of Vienna, Austria 
Robert Bruckner Microsoft, USA 
Jesús Cerquides Universitat de Barcelona, Spain 
Zhiyuan Chen University of Maryland Baltimore County, USA 
Sunil Choenni The Netherlands Ministry of Justice, The Netherlands 
Frans Coenen University of Liverpool, UK 
Bruno Cremilleux Université de Caen, France 
Alfredo Cuzzocrea ICAR-CNR & University of Calabria, Italy  
Agnieszka  Dardzinska Bialystok University of Technology, Poland 
Karen Davis University of Cincinnati, USA 
Kevin Desouza University of Washington, USA 
Curtis Dyreson Utah State University, USA 
Todd Eavis Concordia University, Canada 
Johann Eder University of Klagenfurt, Austria 
Tapio Elomaa Tampere University of Technology, Finland 
Roberto Esposito Università di Torino, Italy 
Vladimir Estivill-Castro Griffith University, Australia 
Christie Ezeife School of Computer Science, University of Windsor, 

Ontario, Canada 
Jianping Fan UNC-Charlotte, USA 
Ling Feng Tsinghua University 



 Organization VIII 

Eduardo Fernandez Medina University of Castilla-La Mancha, Spain 
Dragan Gamberger Ruder Boskovic Institute, Croatia 
Gyözö Gidófalvi Royal Institute of Technology (KTH), Sweden 
Matteo Golfarelli University of Bologna, Italy 
Eui-Hong (Sam) Han Sears Holdings Corporation, USA 
Wook-Shin Han Kyungpook National University, Korea 
Jaakko Hollmén Aalto University School of Science and Technology, 

Finland 
Jimmy Huang York University, Canada 
Farookh Hussain Curtin University of Technology, Australia 
Ryutaro Ichise National Institute of Informatics, Japan 
Mizuho Iwaihara Waseda University, Japan 
Murat Kantarcioglu University of Texas at Dallas, USA 
Jinho Kim Kangwon National University, Korea 
Sang-Wook Kim Hanyang University, Korea 
Jörg Kindermann Fraunhofer Institute IAIS, Germany 
Jens Lechtenboerger Westfälische Wilhelms-Universität Münster,  

Germany 
Wolfgang Lehner Dresden University of Technology, Germany 
Sanjay Kumar Madria University of Missouri-Rolla, USA 
Anirban Mondal University of Tokyo, Japan 
Jose-Norberto Mazón University of Alicante, Spain 
Ullas Nambiar IBM Research, India 
Jian Pei Simon Fraser University, Canada 
Evaggelia Pitoura University of Ioannina, Greece 
Stefano Rizzi University of Bologna, Italy 
Alkis Simitsis HP Labs 
Koichi Takeda Tokyo Research Laboratory, IBM Research, Japan 
Dimitri Theodoratos New Jersey Institute of Technology, USA 
Christian Thomsen Aalborg University, Denmark 
Juan-Carlos Trujillo 

Mondéjar 
 
University of Alicante, Spain 

Vincent Shin-Mu Tseng National Cheng Kung University, Taiwan 
Panos Vassiliadis University of Ioannina, Greece 
Wolfram Woess University of Linz, Austria 
Robert Wrembel Poznan University of Technology, Poland 
Man Lung Yiu Hong Kong Polytechnic University, Hong Kong 
Qiankun Zhao Telefonica, Spain 
Xiaofang Zhou University of Queensland, Australia 
Esteban Zimányi Université Libre de Bruxelles, Belgium 

External Reviewers 

Timo Aho 
Annalisa Appice 
Ryan Bissell-Siders 

Rajkumar Bondugula 
Panos Bouros 
Giulia Bruno 



 Organization  IX 

Peggy Cellier 
Tania Cerquitelli 
Eugenio Cesario 
Fabio Fassetti 
Christina Feilmayr 
Alessandro Fiori 
Paolo Garza 
Teemu Heinimäki 

Christian Koncilia  
Jussi Kujala 
Stefano Lodi 
Jose-Norberto Mazón 
Francois Rioult 
Paolo Serafino 
Jose Jacobo Zubcoff 

 



Table of Contents

Data Warehouse Modeling and Spatial Data
Warehouses

Logic Programming for Data Warehouse Conceptual Schema
Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Carlo dell’Aquila, Francesco Di Tria, Ezio Lefons, and
Filippo Tangorra

A Model-Driven Heuristic Approach for Detecting Multidimensional
Facts in Relational Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Andrea Carmè, Jose-Norberto Mazón, and Stefano Rizzi

Physical Design and Implementation of Spatial Data Warehouses
Supporting Continuous Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Leticia Gómez, Alejandro Vaisman, and Esteban Zimányi

Benchmarking Spatial Data Warehouses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Thiago Lúıs Lopes Siqueira, Ricardo Rodrigues Ciferri,
Valéria Cesário Times, and Cristina Dutra de Aguiar Ciferri

Mining Social Networks and Graphs

Discovering Community-Oriented Roles of Nodes in a Social Network . . . 52
Bin-Hui Chou and Einoshin Suzuki

A Graph-Based Clustering Scheme for Identifying Related Tags in
Folksonomies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Symeon Papadopoulos, Yiannis Kompatsiaris, and Athena Vakali

Frequent Sub-graph Mining on Edge Weighted Graphs . . . . . . . . . . . . . . . . 77
Chuntao Jiang, Frans Coenen, and Michele Zito

Physical Data Warehouse Design

F&A: A Methodology for Effectively and Efficiently Designing Parallel
Relational Data Warehouses on Heterogenous Database Clusters . . . . . . . 89

Ladjel Bellatreche, Alfredo Cuzzocrea, and Soumia Benkrid

Yet Another Algorithms for Selecting Bitmap Join Indexes . . . . . . . . . . . . 105
Ladjel Bellatreche and Kamel Boukhalfa

Speeding Up Queries in Column Stores: A Case for Compression . . . . . . . 117
Christian Lemke, Kai-Uwe Sattler, Franz Faerber, and
Alexander Zeier



XII Table of Contents

Dependency Mining

Mining Non-redundant Information-Theoretic Dependencies between
Itemsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Michael Mampaey

Discovery and Application of Functional Dependencies in Conjunctive
Query Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Bart Goethals, Dominique Laurent, and Wim Le Page

Using Transitivity to Increase the Accuracy of Sample-Based Pearson
Correlation Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Taylor Phillips, Chris GauthierDickey, and Ramki Thurimella

Business Intelligence and Analytics

The NOX Framework: Native Language Queries for Business
Intelligence Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Todd Eavis, Hiba Tabbara, and Ahmad Taleb

Experience in Extending Query Engine for Continuous Analytics . . . . . . . 190
Qiming Chen and Meichun Hsu

Development of a Business Intelligence Environment for e-Gov Using
Open Source Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Eduardo Zanoni Marques, Rodrigo Sanches Miani,
Everton Luiz de Almeida Gago Júnior, and
Leonardo de Souza Mendes

Outlier and Image Mining

A Fast Randomized Method for Local Density-Based Outlier Detection
in High Dimensional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Minh Quoc Nguyen, Edward Omiecinski, Leo Mark, and Danesh Irani

Specialty Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Hanuma Kumar, Rohit Paravastu, and Vikram Pudi

Region of Interest Based Image Categorization . . . . . . . . . . . . . . . . . . . . . . . 239
Ashraf Elsayed, Frans Coenen, Marta Garćıa-Fiñana, and
Vanessa Sluming

Pattern Mining

Meta-learning for Post-processing of Association Rules . . . . . . . . . . . . . . . . 251
Petr Berka and Jan Rauch



Table of Contents XIII

A Relational Approach for Discovering Frequent Patterns with
Disjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Corrado Loglisci, Michelangelo Ceci, and Donato Malerba

An Occurrence Based Approach to Mine Emerging Sequences . . . . . . . . . . 275
Kang Deng and Osmar R. Zäıane

Mining Closed Itemsets in Data stream Using Formal Concept
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Anamika Gupta, Vasudha Bhatnagar, and Naveen Kumar

Data Cleaning and Variable Selection

XML Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Frantchesco Cecchin, Cristina Dutra de Aguiar Ciferri, and
Carmem Satie Hara

An Efficient Duplicate Record Detection Using q-Grams Array Inverted
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Alfredo Ferro, Rosalba Giugno, Piera Laura Puglisi, and
Alfredo Pulvirenti

Modelling Complex Data by Learning Which Variable to Construct . . . . 324
Françoise Fessant, Aurélie Le Cam, Marc Boullé, and
Raphaël Féraud

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337



T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 1–12, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Logic Programming for Data Warehouse  
Conceptual Schema Validation 

Carlo dell’Aquila, Francesco Di Tria, Ezio Lefons, and Filippo Tangorra 

Dipartimento di Informatica 
Università degli Studi di Bari “Aldo Moro” 

Via Orabona 4, 70125, Bari, Italy 
{dellaquila,francescoditria,lefons,tangorra}@di.uniba.it 

Abstract. The current lack of a standard methodology for data warehouse de-
sign has led to have many possible lifecycles. In some of them, the validation of 
the data warehouse conceptual schema is a specific process that precedes the 
translation of such a schema into a logical one. This activity must ensure that 
the data warehouse to be implemented effectively allows all the analytical que-
ries to be executed correctly. To accomplish this, the validation process takes 
the preliminary workload into account, that is, a set of queries defined from user 
requirements to obtain the typical information the users are interested in. The 
methodologies that perform such a validation process define some guidelines 
that must be manually executed by an expert. In this paper, we introduce a logic 
program to automate this activity, by checking a set of predefined issues with 
an inferential engine. 

Keywords: logic programming; workload; conceptual schema. 

1   Introduction 

Companies are devoting more and more attention to the benefits emerging from the 
exploitation of data warehouses (DWs) in the scope of Business Intelligence (BI) 
systems. Indeed, DWs are used as data sources for On-Line Analytical Processing 
(OLAP) and Machine Learning [1], in order to produce information and knowledge 
useful in decision making processes. Therefore, the design of a DW requires method-
ologies quite different from those adopted for On-Line Transactional Processing 
(OLTP) systems; such methodologies must satisfy precise quality factors, such as 
believability of data in terms of their completeness and consistency [2]. 

The basic lifecycle of a DW comprises: (a) analysis and requirements definition, 
where end-users needs are investigated in order to understand what kind of informa-
tion they are interested in; (b) conceptual design, based on the user requirements, the 
schemata, and the documentation of the source databases; (c) logical design, where 
the conceptual schema of the DW is traduced into the logical schema; (d) implementa-
tion, where the DW is implemented according to the logical model (ROLAP or  
MOLAP) supported by the DBMS; (e) ETL design, producing a plan to feed and to 
periodically update the DW; (f) refreshing, that consists of the execution of the  
ETL, repeated at regular intervals of time, depending on the refresh necessity; and  



2 C. dell’Aquila et al. 

(g) BI applications development, consisting of traditional reports, analytical process-
ing, and data mining applications [3]. 

A popular methodological framework to design DWs [4], establishes that, in the 
requirements definition step, the designer must first define a preliminary workload 
that consists of a set of queries, expressed according to a high level language. These 
queries represent the typical analytical queries that the business users will perform on 
the DW and they help the designer to identify facts, dimensions, and measures during 
the next conceptual design step. The conceptual model adopted is the Dimensional 
Fact Model (DFM) [5], which produces facts schemata according to the Multidimen-
sional Model [6]. Before proceeding with the logical design, the designer must be sure 
that the designed conceptual schema supports the preliminary workload. This step is 
the so-called DW conceptual schema validation and its aim is to verify whether the 
multidimensional schema properly accords to the preliminary workload. In particular, 
the designer must be sure that all the measures, useful to produce business informa-
tion, have been identified, and that all the hierarchies are well-structured to perform 
data aggregation. Only if all the queries in the workload can be effectively expressed 
on such a conceptual schema, then the designer can safely translate it into a logical 
one. On the other hand, if the designer realizes that one or more queries are not execu-
table against that conceptual schema, then s/he has the possibility to go back to the 
conceptual design step, in order to produce a multidimensional model that satisfies the 
user requirements and that allows business users to obtain all the needed information. 
In detail, the schema validation is executed by re-writing the preliminary workload 
via a simple language that allows defining a query in accordance with the DFM. In 
this context, a query is represented by an expression, describing a measure to be re-
trieved, an aggregation pattern, and a selection clause. Currently, the validation is a 
made-by-human work and consists of a manual mapping of each expression to the 
graphical representation of the conceptual schema. Of course, this test represents, in 
some cases, a waste of time and can easily produce misunderstandings, oversights, 
and human errors, due to the difficulty to check a very large set of queries on complex 
conceptual schemata. 

As the conceptual schema design represents the most crucial step to capture user 
requirements such to be error-free [7], nowadays, it is emerged the necessity to sup-
port the designers, by providing them with new methodologies to obtain objective 
evaluations about the quality of the conceptual schemas [8], to create strong formal 
models of user requirements [9, 10], to automate their activities [11, 12], and to ex-
tend the existing ones with more powerful features [13]. In this context, the validation 
of the conceptual schema is the only mean to produce a final DW that is as close to 
the user needs as possible [14]. In our opinion, the validation phase can be effectively 
replaced by an automatic process, based on an inferential engine, whose knowledge 
base is composed of metadata representing a multidimensional schema. The aim of 
this paper is to describe the architecture and the functionality of such an inferential 
engine, able to validate the conceptual schema automatically, effectively replacing the 
activity that a human expert makes. 

The paper is organized as follows. In Section 2, we report an overview of the re-
lated work about conceptual schema validation. Section 3 introduces the metadata to 
be used to represent a conceptual schema. Section 4 describes the inferential process 
for the validation and the goal used to start the inferential process. Section 5 illustrates 



 Logic Programming for Data Warehouse Conceptual Schema Validation 3 

the compiler that translates a workload into goals for the logical program. In Section 
6, we report the testing scenario of the methodology. Finally, Section 7 contains our 
conclusions. 

2   Related Work 

The conceptual schema is the result of the conceptual design and represents the most 
important step of the design of both relational databases [15] and DWs [16]. In the 
logical design step, the conceptual schema must be translated into a logical one. How-
ever, in order to produce an effective logical schema, the conceptual schema must be 
first validated. While in relational databases the validation is devoted to verify 
whether the conceptual schema satisfies a set of constraints [17], such as cardinality 
constraints [18] for example, in the scope of data warehousing, it is well-known that 
the validation consists of verifying whether the preliminary workload, defined on the 
basis of the user requirements, can be supported by the designed conceptual schema 
[4]. For the sake of simplicity, validation means controlling whether each query of the 
analytical workload can be effectively executed on the designed schema.  

A similar approach is used in [11], where a conceptual schema is chosen, among a 
set of conceptual schemas designed by an algorithm, provided it is able to accomplish 
an answer to each query included in the workload. 

A more general methodology allows designers to verify the correctness of a con-
ceptual schema, by checking some desirable properties (such as satisfiability, non-
redundancy of integrity constraints, and executability of operations) according to a 
plan, expressed using the first-order logic. For each property, opportune initial state 
and goal are defined, and the designer assumes the property is satisfied if there exists 
a sequence of derivations to accomplish the given goal [19]. 

In our opinion, the first-order logic is a very powerful language to perform logical 
deductions on the basis of a semantic level, such as the understanding of a conceptual 
schema. 

3   Metadata Modelling 

There are several kinds of metadata associated to a DW [20]. As an example, there are 
metadata describing the refresh status of data. However, the most important class of 
metadata is the one describing the multidimensional model of the DW. These meta-
data are usually used in ROLAP systems to generate SQL queries [21]. Currently, the 
standard language for the representation of DW metadata is described by the Com-
mon Warehouse Metamodel (CWM) [22]. In this paper, we adopt this standard repre-
sentation. In fact, according to the CWM, we model the main concepts and relation-
ships via the Predicate Calculus (PC) [23], in order to define a set of metadata to be 
used as a knowledge base for a logical program able to perform the validation of a 
conceptual schema. This metadata modelling defines a set of predicates, able to repre-
sent the conceptual schema of a DW. The predicates are listed in Table 1. 



4 C. dell’Aquila et al. 

Table 1. Predicates of the Metamodel 

Predicate Semantics 

cube(C) C is a cube. 
measure(M, C) M is a measure of C.  C must be a cube. 

dimension(D) D is a dimension. 

hierarchy(H, D) H is a hierarchy of D.  D must be a dimension. 

level(L, N, H) 
L is the level number N of H.  H must be a hierarchy. 
N must be a natural number. 

cube_dim(C, L) L is one of the first levels of aggregation of C.  C must be a cube. 

attribute(L, A, T) 
A is an attribute of L.  L must be a level of a dimension.  
T value is id (identifier) or desc (descriptive). 

4   Conceptual Schema Validation 

According to the traced guidelines in [19], we define the following issues related to 
the validation of a conceptual schema in reference to the queries included into the 
preliminary workload: 
• a query involves a cube that has not been defined as such; 
• a query requires a measure that is not an attribute of the given cube; 
• a query presents an aggregation pattern on levels that are unreachable from the 

given cube; 
• a query requires an aggregation on a field that has not been defined as a dimen-

sional attribute. 
In reference to these issues, a set of tests to be performed has been designed, as ex-

plained in the next Sub-section. 

4.1   Inferential Engine 

The Inferential Engine (IE) is a logic program, composed of a set of rules, expressed 
according to the PC. The conceptual schema validation is executed by the IE, via an 
inferential process that allows verifying the issues pointed out in the previous Sub-
section. At the end of the inferential process, the IE states whether the conceptual 
schema is valid or not, on the basis of a given preliminary workload and a set of mul-
tidimensional metadata. The logic program has been developed in Prolog [24] and it 
performs a set of tests. Notice that, for simplicity, the first rule has been entirely re-
ported, while only the head of the other rules is shown. 
• Cube test: 

verify_cube(C):-  cube(C), write(C), writeln(' is a cube.'). 
verify_cube(C):-  not(cube(C)), write(C), writeln(' is not a cube.'), fail. 
If C is a cube, then IE shows a validation message. On the contrary, if C is not a 
cube, then IE shows an error message. 

• Measure test: verify_measure(M, C). This rule verifies whether M is a measure of 
the cube C. If M is not a measure of the cube C, then IE shows an error message. 



 Logic Programming for Data Warehouse Conceptual Schema Validation 5 

• Attribute test: verify_attribute(A, L). This rule verifies whether there exists a level 
L, where A is an attribute. If A is not an attribute of any level, then IE checks if A is 
a measure of the C cube. 

• Path test: verify_path(C, D). This rule checks whether D is part of the primary 
aggregation pattern of the C cube or belongs to the same hierarchy of the level rep-
resenting the primary aggregation pattern of the C cube (viz., it checks whether 
there is an aggregation path from C to D).  

• Aggregation test: verify_level([Head | Tail]). The rule scans a list recursively on 
the tail of the list (the ending condition is represented by an empty list). It checks 
whether all the elements of the list are dimensional attributes (i.e., level identifi-
ers). If an element of the list is not a dimensional attribute, then IE shows an error 
message. 

4.2   Goal 

In order to start the inferential process, the IE needs a goal. All the goals are gener-
ated by a compiler (see, Section 5) using the queries included into the workload. So, 
each goal corresponds to a query to be tested. The goal is represented by the predi-
cate: 

goal(C, V, A), 

where C is the cube on which the query is based, V is a list of dimensional attributes 
on which to perform data aggregation, and A is an attribute which can be a measure or 
a descriptive attribute. 

The main goal is divided into the following three sub-goals: 

• fact(C, A). This goal performs both the cube and the attribute tests. 
• aggregation(V). This goal performs the aggregation test. V is a list of dimensional 

attributes. 
• path(C, V). This goal performs the path test on each element D of the list V. 

5   Compiler 

The general workflow of the validation process is the following. The Compiler trans-
lates the workload into goals for the IE. The workload is written according to a high-
level language, as explained in [5]. In particular, it generates a goal for each query in 
the workload. Then, the IE uses both the goals and the metadata to check whether the 
schema is valid or not. The Compiler is based on a Syntactical Analyzer, that, on turn, 
uses a Lexical Analyzer for string pattern recognition.  

5.1   Syntactical Analyzer 

The Syntactical Analyzer (SA) is a parser that verifies the syntactical structure of a 
statement. The SA has been developed using Bison [25], which is a tool that (a) reads 
a grammar-file, and (b) generates a C-code program. This C-code program represents  
 
 



6 C. dell’Aquila et al. 

the SA. In particular, the grammar-file contains the declaration of a set of terminal 
symbols and a set of grammar rules, expressed according to the Backus Naur Form 
(BNF). 

First of all, the terminal symbols (tokens) of the grammar must be defined. The to-
kens include literals (i.e., string constants), identifiers (i.e., string variables), and nu-
meric values. The tokens defined for the SA are the following: 

%token VAR     %token AND “AND” 
%token DIGIT     … 
%token COMMA “,”    %token OPEN “(” 
%token SEMICOL “;”    %token CLOSE “)” 
%token DOT “.”    %token OPSQ “[” 
%token EQ “=”     %token CLOSESQ “]” 
%token GT “>”     %token SUPS “'” 

 
The first and the second tokens represent string variables and numeric values, respec-
tively. The other tokens represent string constants, as language keywords. Once all 
tokens have been defined, the rules of the grammar follow. 

A query against a conceptual schema is a statement expressed according to the fol-
lowing BNF grammar: 

 
<query> ::= <expression>.<measure> |  

<expression>.<attribute name>  
<expression> ::= <fact name> <aggr. clause>  
<aggr. clause> ::= [<pattern>] | [<pattern>; <sel. clause>]  
<pattern> ::= <attribute name> | <pattern>, <attribute name>  
<sel. clause> ::= <predicate> |  

<sel. clause> <logical operator> <predicate>  
<predicate> ::= <attribute name> <comparison operator> <value> 

 
This grammar is composed of a set of rules and defines all the well-formed phrases of 
the language to express queries against the conceptual schema. 

As an example, the string  

“sales[day, product; city='Rome' and product='milk' ].quantity” 

 is a correct phrase, while the string  

“sales[day, product; city='Rome' and product='milk' ],quantity” 

generates a syntax error, due to the comma instead of the dot, before the quantity 
attribute. 

In Bison, each rule has the form: 

<result>: <components> { <statement> }; 

where <result> is a non-terminal symbol, <components> is a set of terminal and/or 
non-terminal symbols, and <statement> is the C-code statement to be executed when 
the rule is applied. In order to implement the grammar, the rules defined for the SA 
are the following: 

 



 Logic Programming for Data Warehouse Conceptual Schema Validation 7 

query: express DOT attribute { printf(", %s) \n", $3); }; 
express: fact aggreg;  
fact: VAR { printf("goal(%s",$1); }; 
aggreg: OPSQ pattern CLOSESQ { printf("],"); } |  

OPSQ pattern SEMICOL seq_sel CLOSESQ { printf("]"); }; 
pattern: attribute { printf(",[%s",$1); } |  

pattern COMMA attribute { printf(",%s", $3); }; 
seq_sel: selection | seq_sel logic selection; 
selection: attribute operator value; 
value: SUPS VAR SUPS | DIGIT; 
operator: EQ | GT | LT | GT EQ | LT EQ; 
logic: AND | OR; 
attribute: VAR; 

 
The first rule, the tagged query one, is applied when the SA recognizes a string like 
“<a>.<b>”, where <a> is a valid <express> non-terminal symbol, and <b> is a 
VAR token, i.e., when the string is syntactically correct. In this case, the SA prints: (a) 
a comma, (b) the third parameter of the <components> (i.e., the attribute), (c) a 
closed round bracket, (d) a carriage return, and (e) a line feed. Then, the SA ends with 
no error message generation. 
 
Example 1. The query string “sales[day, product; city='Rome' and product='milk' ]. 

quantity” is translated into the following goal to be submitted to the IE: 

goal(sales, [day, product], quantity) 

expressed according to the PC. Note that the selection clause is ignored. (This issue 
will be addressed in future works.)                                                                                 □ 

5.2   Lexical Analyzer 

The Lexical Analyzer (LA) is the component used by the SA, in order to obtain an 
ordered sequence of tokens. The tokens are recognized by the LA inside a string (pat-
tern matching on text) and, then, passed to the SA. The LA has been developed using 
Flex [26], which is a tool that (a) uses the tokens defined for the SA program, (b) 
reads a rule-file, and (c) generates a C-code program. This C-code program represents 
the LA. In particular, the rule-file is composed of two sections: (a) definition, and (b) 
rules. The definition section includes the tokens defined with Bison, plus further iden-
tifiers. The identifiers define how to perform the matching between a sequence of 
alphanumeric characters and a token. The identifiers contained in the definition sec-
tion of the rule-file are the following: 

 
UVAR [a-z][a-z0-9]* 
UDIGIT [0-9]* 
 

Correct instance of UVAR is any string that starts with an alphabetic character, fol-
lowed by an arbitrary number of alphabetic characters or digits 0 to 9 (for example, 
a1, qr55, m5n9, abbbddd, …). Correct instance of UDIGIT is any numeric value, 
composed of an arbitrary number of digits 0 to 9. The rule section includes a set of 
rules, defining the action to perform when a matching happens. The rules defined for 
the LA are the following: 



8 C. dell’Aquila et al. 

[=] {return EQ;}   {UVAR} {return VAR;} 
[<] {return LT;}   {UDIGIT} {return DIGIT;} 
[>] {return GT;}   … 
     <<EOF>> { yyterminate();} 
 

The first rule states that, whenever the constant “=” is recognized inside the input 
string, the token EQ must be returned. In fact, when the LA recognizes an identifier, it 
returns the corresponding token to the SA. When the LA encounters the end-of-file 
symbol, it stops the string scanning (last rule). 

Example 2. In analyzing the string “sales[day, product; city='Rome' and product= 

'milk' ].quantity”, the LA returns the following sequence of tokens: VAR OPSQ VAR 
COMMA VAR SEMICOL VAR EQ SUPS VAR SUPS AND VAR EQ SUPS VAR 
SUPS CLOSESQ DOT VAR. At last, the tokens are passed from the LA to the SA for 
the syntactical control.                                                                                                    □ 

6   Testing Scenario 

Figure 1 shows the conceptual schema of two cubes: sales and shipments. 

shipments
cost

location

loc_name

client

client_name

order

sales
price
quantity

day month

month_name

year

client

client_name

order

product

prod_name

category

cat_name

 

Fig. 1. Conceptual schemas. (a) sales cube. (b) shipments cube. 

Here, sales is a four-dimensional cube. The four dimensions are clients, time, or-
ders, and products. Time is a one-hierarchy dimension. This hierarchy is formed by 
three levels: days, months, and years. Each level has at least one attribute (the dimen-
sional attribute, denoted by a circle), representing the identifier of the level. Some 
levels can also have descriptive attributes (represented by emphasized names). In the 
example, days and years levels have only the day and year dimensional attributes, 
while months has the month dimensional attribute and also the month_name descrip-
tive attribute. Orders is a one-hierarchy dimension. This hierarchy is formed by the 
one level order. This level has no descriptive attributes. Clients is a one-hierarchy 
dimension. This hierarchy is formed by the one level client. This level has the cli-
ent_name descriptive attribute. Products is a one-hierarchy dimension. This hierarchy 



 Logic Programming for Data Warehouse Conceptual Schema Validation 9 

is formed by the two levels product and category. Each of these levels has its own 
descriptive attributes. Day, product, order, and client levels represent the primary 
aggregation pattern of the sales cube. 

The shipments cube is a three-dimensional cube. It has the client and order dimen-
sions in common with sales and has location as geographical dimension.  

Let us suppose the following preliminary workload (composed of five queries) has 
been defined from user requirements using the high-level language introduced in [5]:  

 
sales[day, product].price,  orders[day, product].price, 
sales[day, prod_name].price, sales[day, location].price. 
sales[day, product].amount, □ 
 

At this point, we have to verify whether each query of the workload can be effectively 
expressed on the conceptual schema in Fig. 1. The traditional methodology of the 
DFM [5] leads to a manual mapping of each query on the graphical representation of 
the schema. Clearly, this methodology can be very expensive for designers when 
dealing with complex schemas and numerous queries included in the workload. Fur-
thermore, this can generate human errors and can lead to time wasting. On the other 
hand, in our approach, metadata can be automatically generated from a conceptual 
schema designed by a CASE tool. The following metadata are the description of 
shipments cube according to the predicates defined in Table 1. The metadata of the 
sales cube can be obtained in an analogous way. 

 
cube(shipments). 
measure(cost, shipments). 
dimension(clients_dim). 
dimension(orders_dim). 
dimension(geo_dim). 
hierarchy(orders_hier, orders_dim). 
hierarchy(clients_hier, clients_dim). 
hierarchy(geo_hier, geo_dim).  
level(orders,1,orders_hier). 
level(clients,1,clients_hier). 
level(locations,1, geo_hier). 
attribute(clients, client, id). 
attribute(clients, client_name, desc). 
attribute(orders, order, id). 
attribute(locations, location, id). 
attribute(locations, loc_name, desc). 
cube_dim(shipments, location). 
cube_dim(shipments, order). 
cube_dim(shipments, client). □ 
 

Then, each query of the workload is translated into a specific goal by the compiler 
and the set of goals represents the input of the logical program we use to validate the 
conceptual schema. The translation made by the compiler follows. 

goal(sales, [day, product], price), 
goal(sales, [day, prod_name], price), 
goal(sales, [day, product],amount), 
goal(orders, [day, product],price), 
goal(sales, [day, location],price). □ 



10 C. dell’Aquila et al. 

In detail, each goal is a test on the conceptual schema and the schema is validated 
only in the case the IE reports no errors at all. Thus, using the produced multidimen-
sional metadata and goals, the IE executes the five tests, and, for each of them, we 
report the output with reference to the given goal. 

 

Test 1: goal(sales, [day, product], price).  
Sales is a cube, price is a measure, day is a dimensional attribute, product is a di-
mensional attribute, there is a valid aggregation path to day from sales, there is a 
valid aggregation path to product from sales. 

Test 2: goal(sales, [day, prod_name], price). 
Sales is a cube, price is a measure, day is a dimensional attribute, prod_name is not 
a dimensional attribute. 

Test 3: goal(sales, [day, product], amount). 
Sales is a cube, amount is not a measure. 

Test 4: goal(orders, [day, product], price). 
Orders is not a cube. 

Test 5: goal(sales, [day, location], price). 
Sales is a cube, price is a measure, day is a dimensional attribute, location is a di-
mensional attribute, there is a valid aggregation path to day from sales, there is no 
valid aggregation path to location from sales. 
 

In Test 1, no error message is reported. This means that the schema is able to correctly 
provide an answer to this query. In Test 2, there is the evidence that prod_name is not a 
dimensional attribute. In fact, it has been defined as a descriptive attribute. Then, the 
program ends reporting an error and, as a consequence, this states that the schema is 
not valid in reference to the given workload. At this point, the designer can choose 
whether to correct the query (product is the correct one) or to modify the schema, by 
introducing a further dimensional attribute (in the case that no dimensional attribute 
exists for the products dimension). Let us assume to continue the validation process. In 
Test 3, the error reported is that amount is not a valid measure of the sales cube. Thus, 
the query could not be answered. This obliges the designer to modify the schema, by 
introducing the needed measure for the sales cube. In Test 4, the error reports that 
orders is not a cube and the designer has to introduce an ad-hoc cube in the schema in 
order to support this query. Finally, in Test 5, we have that location is a dimensional 
attribute but there is no aggregation path from sales. In fact, this dimensional attribute 
is part of a hierarchy that belongs to the shipments cube. So, the designer must 
(re)model the schema by adding the location dimension to the sales cube.  

In conclusion, we highlight that the traditional overload in the conceptual phase, 
due to the manual check of the schema, is usually bypassed or ignored by designers. 
As a consequence, DW designers may obtain a logical schema that does not satisfy 
user requirements. On the other hand, our approach can be very useful to designers in 
order to avoid human errors and to obtain time saving, as the logical program is able 
to detect whether the conceptual schema supports all the queries of the workload in a 
unified and fast way. This leads to a high level of automation in the design process, 
especially in the case where the metadata generation process is integrated in the 
CASE tool utilized by the designer.  



 Logic Programming for Data Warehouse Conceptual Schema Validation 11 

7   Conclusions 

We have presented a novel methodology able to validate a DW conceptual schema, 
according to the preliminary workload defined from user requirements. This valida-
tion is executed in automatic way via a logic program, based on the Predicate Calcu-
lus. In fact, the inferential engine is a logic program that validates the conceptual 
schema automatically via the inferential process using a set of multidimensional 
metadata. If the conceptual schema is validated, then the DW designer can safely 
translate it into a logical one. If it is rejected, then the designer can choose whether to 
correct the schema or to modify the workload. 

Currently, the rules of the inferential engine deal with some basic issues of the 
validation process, since the rationale behind this work is to test the efficacy of adopt-
ing automatic techniques in this step of the data warehouse design lifecycle. Thus, 
future work consists of extending the logical program in order to manage different 
kinds of hierarchies and to process also the selection clause of queries. 

References 

1. Negash, S., Gray, P.: Business Intelligence. In: Handbook on Decision Support Systems 2. 
International Handbooks on Information Systems, pp. 175–193. Springer, Heidelberg 
(2008) 

2. Jarke, M., Vassiliou, M.: Foundations of Data Warehouse Quality: an Overview of the 
DWQ Project. In: 2nd International Conference on Information Quality, Cambridge, Mass. 
(1997) 

3. Kimball, R.: The Data Warehouse Lifecycle Toolkit. In: Practical Techniques for Building 
Data Warehouse and Business Intelligence Systems, 2nd edn. John Wiley & Sons, Chich-
ester (2008) 

4. Golfarelli, M., Rizzi, S.: A Methodological Framework for Data Warehouse Design. In: 1st 
ACM International Workshop on Data Warehousing and OLAP, pp. 3–9. ACM, Washing-
ton (1998) 

5. Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: a Conceptual Model for 
Data Warehouses. Int. J. Cooperative Information Systems 7, 215–247 (1998) 

6. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology. 
ACM Sigmod Record 26, 65–74 (1997) 

7. Tryfona, N., Busborg, F., Borch Christiansen, J.G.: starER: A Conceptual Model for Data 
Warehouse Design. In: 2nd ACM International Workshop on Data Warehousing and 
OLAP, pp. 3–8. ACM, New York (1999) 

8. Serrano, M.A., Calero, C., Trujillo, J., Luján-Mora, S., Piattini, M.: Empirical Validation 
of Metrics for Conceptual Models of Data Warehouses. In: Persson, A., Stirna, J. (eds.) 
CAiSE 2004. LNCS, vol. 3084, pp. 506–520. Springer, Heidelberg (2004) 

9. Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., Paraboschi, S.: Designing Data Marts for 
Data Warehouses. ACM Transactions on Software Engineering and Methodology 10, 452–
483 (2001) 

10. Mazón, J.-N., Trujillo, J., Lechtenbörger, J.: Reconciling Requirement-Driven Data Ware-
houses with Data Sources via Multidimensional Normal Forms. Data & Knowledge Engi-
neering 63, 725–751 (2007) 



12 C. dell’Aquila et al. 

11. Phipps, C., Davis, K.C.: Automating Data Warehouse Conceptual Schema Design and 
Evaluation. In: 4th International Workshop on Design and Management of Data Ware-
houses, pp. 23–32 (2002) 

12. Romero, O., Abelló, A.: Multidimensional Design by Examples. In: Tjoa, A.M., Trujillo, 
J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 85–94. Springer, Heidelberg (2006) 

13. dell’Aquila, C., Di Tria, F., Lefons, E., Tangorra, F.: Dimensional Fact Model Extension 
via Predicate Calculus. In: 24th International Symposium on Computer and Information 
Sciences, pp. 211–216. IEEE Press, Los Alamitos (2009) 

14. Ballard, C., Herreman, D., Schau, D., Bell, R., Kim, E., Valencic, A.: Data Modeling 
Techniques for Data Warehousing. IBM Redbooks, Riverton (1998) 

15. Halpin, T.A.: Conceptual Schema and Relational Database Design, 2nd edn. Prentice Hall, 
Australia (1995) 

16. Husemann, B., Lechtenborger, J., Vossen, G.: Conceptual Data Warehouse Design. In: In-
ternational Workshop on Design and Management of DataWarehouses, Stockholm, Swe-
den, pp. 6-1–6-11 (2000) 

17. Halpin, T.A., McCormack, J.I.: Automated Validation of Conceptual Schema Constraints. 
In: Loucopoulos, P. (ed.) CAiSE 1992. LNCS, vol. 593, pp. 364–377. Springer, Heidel-
berg (1992) 

18. Proper, H.: Generating Significant Examples for Conceptual Schema Validation. In: Inter-
active Query Formulation using Query By Navigation. Asymetrix Research Laboratory, 
University of Queensland, Australia (1994) 

19. Costal, D., Teniente, E., Urpí, T., Farré, C.: Handling Conceptual Model Validation by 
Planning. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, J. (eds.) CAiSE 1996. 
LNCS, vol. 1080, pp. 255–271. Springer, Heidelberg (1996) 

20. Huynh, T.N., Mangisengi, O., Min Tjoa, A.: Metadata for Object-Relational Data Ware-
house. In: International Workshop on Design and Management of Data Warehouses, 
Stockholm, Sweden, pp. 3-1–3-9 (2000) 

21. Sen, A.: Metadata Management: Past, Present and Future. Decision Support Systems 37, 
151–173 (2004) 

22. Object Management Group, Common Warehouse Metamodel Specification, vers. 1.1, vol. 
1. OMG, Needham (2003) 

23. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Springer, New 
York (1990) 

24. Sterling, L., Shapiro, E.: The Art of Prolog: Advanced Programming Techniques, 2nd edn. 
MIT Press, Cambridge (1994) 

25. Donnelly, C., Stallman, R.: Bison Version 2.1 (2005),  
  http://www.gnu.org/software/bison 

26. Paxson, V., Estes, V., Millaway, J.: Flex: the Fast Lexical Analyzer Manual Edition 2.5.35 
(2007), http://flex.sourceforge.net 

 
 



A Model-Driven Heuristic Approach for
Detecting Multidimensional Facts in Relational

Data Sources

Andrea Carmè1, Jose-Norberto Mazón2, and Stefano Rizzi3

1 Iconsulting, Italy

a.carme@iconsulting.biz
2 Lucentia Research Group

Dept. of Software and Computing Systems

University of Alicante, Spain

jnmazon@dlsi.ua.es
3 DEIS - University of Bologna, Italy

stefano.rizzi@unibo.it

Abstract. Facts are multidimensional concepts of primary interests for

knowledge workers because they are related to events occurring dynam-

ically in an organization. Normally, these concepts are modeled in oper-

ational data sources as tables. Thus, one of the main steps in conceptual

design of a data warehouse is to detect the tables that model facts.

However, this task may require a high level of expertise in the appli-

cation domain, and is often tedious and time-consuming for designers.

To overcome these problems, a comprehensive model-driven approach is

presented in this paper to support designers in: (1) obtaining a CWM

model of business-related relational tables, (2) determining which ele-

ments of this model can be considered as facts, and (3) deriving their

counterparts in a multidimensional schema. Several heuristics –based on

structural information derived from data sources– have been defined to

this end and included in a set of Query/View/Transformation model

transformations.

1 Introduction

The development of data warehouses is based on detecting multidimensional
elements from a detailed analysis of data sources. Among multidimensional el-
ements, facts are those of highest importance since they represent events of
interests for knowledge workers. Therefore, several techniques, such as guide-
lines or glossaries, have been developed so far to support designers in detecting
multidimensional roles of elements in a relational schema (including facts). For
example, in a retail domain, a table called Sales is likely to cover the role of a
fact. However, these techniques may become tedious and time-consuming when
the application domain is complex (in a medical domain, is a table called Fertil-
ityCycle a fact?) or, even worse, when table names are meaningless (what is the
multidimensional counterpart of a table called SP CCCM?).

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 13–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



14 A. Carmè, J.-N. Mazón, and S. Rizzi

Other approaches arose to support designers in tackling this task in a more
automated manner [1,2,3]. However, these are focused on automatically detecting
other multidimensional concepts (such as dimension hierarchies) rather than
facts, so discovering facts still relies on informal techniques. Furthermore, most
approaches assume that data sources are well-documented or documentation can
be easily obtained; unfortunately, this is not generally true [4], and even if some
documentation exists, it is likely to be out-of-date with respect to the actual
data sources.

To overcome these drawbacks, in this paper we present an approach for for-
malizing fact detection from relational data sources without requiring additional
documentation. Our approach is based on a set of heuristics, elicited from some
real-world case studies we are working on. These heuristics use some syntactical
information derived from the data sources, thus guiding designers in the detec-
tion of facts independently of their knowledge about the application domain. We
have formalized these heuristics by means of QVT (Query/View/Transformation)
transformations in a model-driven perspective, in such a way that the final multi-
dimensional schemata are derived with a high degree of automation, thus saving
time and costs. Basically, our approach consists of three tasks (see Fig. 1): (1)
detect clusters of business-related tables within data sources and derive their
relational CWM model, (2) support designers in properly determining which
elements of this model can be considered as facts by means of a set of heuristics-
based QVT model transformations, and (3) model facts, together with their
dimensions and measures, in a multidimensional schema.

The remainder of this paper is structured as follows. Section 2 briefly de-
scribes the current approaches for discovering multidimensional facts. Section 3
describes our heuristics and the definition of model transformations for detect-
ing facts. Section 4 presents an implementation of our approach and draws the
conclusions.

Fig. 1. Overview of our approach for detecting facts



A Model-Driven Heuristic Approach for Detecting Multidimensional Facts 15

2 Related Work

Most approaches for deriving multidimensional schemata from relational data
sources (e.g., [5,6,7,8]) propose informal mechanisms (such as guidelines or glos-
saries) to support designers. In order to increase the level of automation of this
task, other approaches use heuristics to determine which tables are good can-
didates to become facts. Phipps and Davis [1] propose to consider every entity
in an Entity-Relationship schema that contains numerical attributes as a fact,
which may be unfeasible since (1) most entities in a schema would be selected,
and (2) it is assumed that an up-to-date conceptual schema of data sources is
available. Jensen et al. [2] consider not only the presence of measures, but also
table cardinality to identify facts; though this approach builds on a reverse-
engineering stage in which relational metadata is obtained from data sources,
its success highly depends on the skill of domain experts.

Two automated approaches for detecting facts are presented in [3] and [9].
Song et al. [3] propose structural heuristics to detect facts from an Entity-
Relationship schema: all entities with a high number of many-to-one relation-
ships are candidates to become facts. Not realistically, they assume that a con-
ceptual schema is always available. Romero and Abelló [9] detect facts by ex-
pressing multidimensional SQL queries over relational data sources, and assume
that those aggregated attributes in the SELECT clause which are not included
in the GROUP BY clause belong to a table that is a potential fact. However, this
approach depends on the ability of the users to express their own information
requirements as SQL queries.

Our work is inspired by [10], that considers relational data sources as legacy
systems whose documentation either is not available, or cannot be obtained, or
is too complex to be easily understood through a manual analysis. To overcome
these problems, they consider the development of a data warehouse as a modern-
ization scenario which addresses the analysis of the available data sources aimed
at discovering multidimensional structures. These structures are then used to
derive a data-driven multidimensional schema or reconcile a requirement-driven
multidimensional schema with data sources. However, the heuristics for detecting
facts presented in that work are rather simplistic and deliver a single solution,
which may hide the analysis potential of data sources.

3 Model-Driven Heuristic Approach for Detecting Facts

Our model-driven approach aims to support designers in marking tables from
relational data sources as facts. Each table can be differently marked, thus sug-
gesting several possibilities to designers. A set of heuristics for determining
which tables are good candidates for being facts, mainly based on an analy-
sis of functional dependencies, have been developed and formalized by using
QVT (Query/View/Transformation) [11] model transformations. Our approach
assumes that all database constraints (primary and foreign keys) are known,
which is perfectly reasonable since these constraints can be nimbly derived [12].



16 A. Carmè, J.-N. Mazón, and S. Rizzi

Fig. 2. Relational schema for the running example

The example we will use throughout the paper is based on the retail domain
(see Fig. 2) and summarizes situations we have detected in a real case study
we are working on at the Spanish fertility institute TAHE Fertilidad1, which we
cannot show due to confidentiality issues. Data related to sales and orders are
stored, as well as stores, products, etc. Sales are specialized into national and
international ones. The OrderDetail relation allows to include several products
in each order.

3.1 Obtaining CWM Models of Data Sources

This phase concerns the extraction of relational elements (tables, columns, and
constraints) from data sources by querying the DBMS data dictionary. It consists
of two steps: (1) delimiting the relational elements related to the application
domain, and (2) creating their models based on CWM.

The rationale behind the first step is that, in real-world scenarios, data sources
not only store interesting data for analysis but also data about instance feed-
ing applications, security, audit, and so on, that should be ignored when facts
are being detected. The benefits of this pre-processing step are twofold: on the
one hand, useless elements are not considered; on the other, heuristics will be

1 http://www.tahefertilidad.es

http://www.tahefertilidad.es


A Model-Driven Heuristic Approach for Detecting Multidimensional Facts 17

more reliable because the required measures will be calculated by considering
only interesting relational elements. Relational elements are first grouped into
clusters, using a graph theory algorithm that computes connected graph com-
ponents [13]. The output is a set of directed, connected graphs whose nodes
and edges represent relations and functional dependencies, respectively. Then
the designer, in collaboration with domain experts, manually determines which
clusters are useful for analysis. In our running example, the cluster containing
table ApplicationAccess is not considered, since it is supposed to be unrelated to
the business domain.

During the second step, a relational CWM (rCWM) model is created for
each selected cluster. Common Warehouse Metamodel (CWM) [14] consists of
a set of metamodels for representing data warehouse and business intelligence
metadata, including a relational metamodel that allows relational elements to
be easily represented. The next phases of our approach are applied separately
to each rCWM model created. Fig. 3 shows part of the rCWM model for our
running example.

Fig. 3. Part of the relational CWM model for the running example

3.2 Detecting Facts

The fact detection process (Fig. 4) consists of several steps aimed at (1) marking
relationship cardinalities, (2) calculating the in-degree of tables, (3) marking
facts, (4) marking dimensions and measures, and (5) spawning analysis contexts.
Note that several marks can be applied to each relational element, by adding



18 A. Carmè, J.-N. Mazón, and S. Rizzi

Fig. 4. Fact detection process

values to the description attributes provided by CWM. Before explaining the
process steps, we describe the heuristics they rely on.

Heuristics. Our heuristics are based on a set of measures calculated from the
tables of the rCWM model.

1. The first heuristics states that a table may be a fact if it contains a higher
number of instances (NIT ) than most other tables. The rationale is that
a large table is frequently updated because it stores data related to dy-
namic events of a business process. The NIT value is retrieved querying
data sources through a simple SQL query.

2. The second heuristics states that a table may be a fact if it has a large ratio
of numerical attributes: NAR = NNA/NTA, where NNA is the number of
numeric attributes and NTA is the total number of attributes of a table.

3. The third heuristics states that a table may be a fact if it has a low in-degree,
i.e., few or no incoming foreign keys (an incoming foreign key for table T is
a foreign key referencing the primary key of T ).

To quantify qualitative terms such as “high” and “few”, we computed three
thresholds. Thresholds for NIT and NAR are calculated using the statistical
percentile concept [15]. We have chosen the upper quartile (75-th percentile)
as the NIT threshold and the lower quartile (25-th percentile) as the NAR
threshold because this gave good results in our case study. Of course, further
tests will be needed to find the best percentile to be used in general cases. The
in-degree threshold is fixed to 1, which means considering as potential facts only
tables with one or no incoming foreign key. We use 1 instead of 0 to consider
some specific patterns that we will explain in the following subsections.

Each heuristic measure is stored in a CWM tagged value connected to the
related table, as shown in Fig. 3. Thresholds are stored using tagged values
linked to the package that contains relational elements.

Marking relationship cardinalities. The relational model has a limited
expressiveness. Specifically, one-to-one relationships, that have an ad-hoc rep-
resentation in the Entity-Relationship model, are not explicitly modeled in a
relational schema. Indeed, the existence of a foreign key between two tables does
not explain if the relationship between these tables is many-to-one or one-to-one.
Since this knowledge is necessary for our approach, we use two transformations
to single out two kinds of one-to-one relationships that we will call, respectively,
strong and weak.



A Model-Driven Heuristic Approach for Detecting Multidimensional Facts 19

– Strong one-to-one relationships are schema-based since they are derived and
validated within the schema structure. Precisely, a strong one-to-one rela-
tionship between two tables T and S is detected when the primary key of
T is a foreign key referencing S. A QVT transformation checks this pattern
inside rCWM models and marks the foreign keys involved as one-to-one.

– Weak one-to-one relationships are instance-based, since they are elicited from
data sources instances. A weak one-to-one relationship between T and S is
detected when T includes a foreign key (different from its primary key)
referencing S, and at most one tuple of T has the value of the primary
key of each tuple of S. In this case, no explicit schema constraint assured
the correctness of this cardinality assumption; however, considering that
data warehouse systems are typically fed by data sources populated with a
huge amount of data –hence, instances are representative of the application
domain–, we can reasonably take it as true. A specific QVT transformation
has been developed for detecting this pattern by integrating the algorithm
proposed in [4]. Precisely, two queries are performed over T to count the
number of non-null values of its foreign key with and without duplicates;
the QVT transformation stores the results, compares them, and marks the
foreign key as one-to-one if they are equal.

Foreign keys not marked as one-to-one are marked as many-to-one. In our run-
ning example, the foreign keys that link NationalSale and InternationalSale to
Sale are marked as (strong) one-to-one, as well as the (weak) one that connects
Organizer to Category. The other foreign keys are marked as many-to-one.

Calculating the in-degree of tables. A QVT transformation rule has been
defined to calculate in-degree of tables. Note that a foreign key that has already
been marked as one-to-one is not taken into account here, due to the possibility
to navigate these relationships in both ways. Indeed, two tables marked as facts
can be linked by a foreign key expressing a one-to-one relationship.

In our running example, table Order has in-degree 1, while Sale has in-degree 0
even if it has two incoming foreign keys (from NationalSale and InternationalSale,
respectively), because these were marked as one-to-one.

Marking facts and measures. A table is marked as a fact if (1) its NIT and
NAR are greater or equal to the thresholds, and (2) its in-degree is 0 or 1. The
comparison is made by the QVT transformation presented in Fig. 5. Then, all
numerical attributes of each table T marked as fact (excluding those belonging
to the primary key of T ) are marked as potential measures. In our example, Sale,
Order, OrderDetail, and Product meet the first constraint, so they can be marked
as facts. However, Product is not marked as a fact because its in-degree is 2 (i.e.
the second constraint is not fulfilled).

Marking dimensions. For each table T marked as fact, its dimensions and
the related hierarchies can be derived by following many-to-one relationships as
normally done in current approaches (e.g., [5,1]).



20 A. Carmè, J.-N. Mazón, and S. Rizzi

Fig. 5. QVT transformation for marking facts

Spawning analysis contexts. The aim of this phase is to create a set of
models, each related to a possible analysis context, so as to generate every mul-
tidimensional solution implicitly contained in the relational data sources. This
is done in two situations:

1. Fact-dimension conflicts. After the marking process, the marked rCWM
model may present some configurations of marks that lead to inconsistencies
in the multidimensional schema. These conflicts must be handled before cre-
ating the multidimensional representation of elements. Precisely, a marked
rCWM model contains a conflict when a table is marked both as a fact and
as a dimension. In our example, there is a conflict in the Order table. To
overcome this problem, for each table T that has a conflict two rCWM mod-
els, corresponding to two different analysis contexts, are spawned: one where
T is marked as dimension, one where it is marked as fact.

2. Specialization. When a table T marked as fact has a one-to-one foreign key
referencing table S, we spawn two rCWM models: only S is marked as fact
in the first one; S and T are marked as facts in the second one. For example,
InternationalSale and NationalSale are both linked with one-to-one relation-
ships to Sale. This leads to creating three rCWM models where: (1) only Sale
is marked as fact, (2) Sale and InternationalSale are marked as facts, and (3)
Sale and NationalSale are marked as facts.

In the end, the total number of rCWM models spawned depends on the number
of conflicts and specializations in the original marked rCWM model. Precisely,
the total number of rCWM models is MN = (CN ∗ 2) ∗

∏SN
i=1 SNTi where CN

is the number of fact-dimension conflicts, SN the number of specializations, and
SNTi the number of tables involved in the i-th specialization.

It is worth noting that an exponential number of rCWM models is obtained
this way. In order to manage these high amount of models, our proposal can be
easily integrated in the model-driven approach for data warehouse development
proposed in [16,17], where the rCWM models can be reconciled with a conceptual



A Model-Driven Heuristic Approach for Detecting Multidimensional Facts 21

schema previously defined from the information requirements of decision makers.
A single multidimensional schema, that at the same time fits data sources and
fulfills user requirements, is obtained this way. Due to space constraints, this
reconciliation phase is not discussed in this paper.

3.3 Deriving Multidimensional Elements

The spawning phase creates one or more rCWM models. Two special patterns
have been developed for handling special situations that can arise afterwards,
namely (1) skip and (2) merge. Both share the same starting situation, i.e., two
tables T and S marked as facts and such that T references S via a foreign key.
The patterns are distinguished depending on the the mark applied to this foreign
key.

1. When the foreign key is marked as many-to-one, a skip pattern is detected.
In this case, T and its dimensions are not included in the multidimensional
schema, so as to focus on the right granularity in each case. For example,
the OrderDetail fact-marked table is skipped and Order is considered as fact.
We recall that OrderDetail will be considered as fact in one or more other
solutions.

2. A merge pattern is detected when the foreign key is marked as one-to-one.
In this case, a fact is created whose dimensions and measures are the union
of those belonging to T and S. For instance, Sale can be merged with Na-
tionalSale or InternationalSale to create facts for national and international
analysis purposes, respectively.

These patterns are applied using QVT transformations, one of which
(Table2Merge) is shown in Fig. 6b. In this merge transformation, an input pat-
tern consisting of a table T marked as fact that refers S by means of a foreign
key fk marked as one-to-one, leads to create a fact f (previously created from
table S by means of the Table2MDFact transformation as shown in Fig. 6a). Im-
portantly, according to the QVT transformations called in the WHERE clause,

(a) Obtaining facts (b) Merging facts

Fig. 6. QVT from a marked rCWM model to a multidimensional schema



22 A. Carmè, J.-N. Mazón, and S. Rizzi

Fig. 7. Transformation execution order

(a) (b) (c)

(d) (e) (f)

Fig. 8. Approach results over running example

the multidimensional counterparts of all the tables related to T will be related
to f . Besides, when merge transformations are applied, the name of the table
analyzed in the last merge transformation called is chosen as the fact name.

As to the order for applying transformations, the Table2MDFact transforma-
tion is executed first to create all facts, then special patterns are detected and
applied by means of the QVT transformations called in the WHERE clause.
The transformation flow is graphically represented in Fig. 7 using the approach
defined in [18].

In Fig. 8 we present the solutions derived by applying our approach to the
running example (measures and time dimensions are not shown for simplicity).
The solutions in Fig. 8a, 8b, and 8c consider as facts OrderDetail and Sale in a



A Model-Driven Heuristic Approach for Detecting Multidimensional Facts 23

general, national, and international analysis context respectively. The solutions
in Fig. 8d, 8e, and 8f consider as facts Order rather than OrderDetail. As a whole,
these solutions bring to light the full multidimensional potential of data sources;
designers can then select the solution that best matches user requirements.

4 Conclusions and Future Work

Current approaches for data-driven conceptual design do not give designers a
comprehensive and formal approach to detect facts. To fill this gap, in this
paper we presented a model-driven approach for formalizing fact discovery in re-
lational data sources by means of QVT transformations. Our approach is based
on a set of heuristics relying on syntactical information derived from the data
sources, thus guiding designers in the detection of multidimensional facts inde-
pendently of their knowledge about the application domain. Remarkably, our
approach has low computational complexity; the total processing time for the
largest relational source schema we used for testing (about 130 tables and 140
foreign key constraints) is about 20 seconds.

The proposed model transformations have been implemented in the Eclipse2

development platform. Eclipse is an open source project which has been con-
ceived as a modular platform that can be extended by means of plugins in order
to add more features and new functionalities. In that way, we have designed
a set of modules encapsulated in a single plugin that provides Eclipse with
capabilities for supporting our approach:

Relational module. It implements the relationalmetamodelcontained inCWM.
Multidimensional module. The profiling mechanism of the Unified Modeling

Language (UML) has been used to create multidimensional models.
Transformation module. It uses mediniQVT 3, a QVT transformation en-

gine, in order to code and execute the mapping patterns.

Acknowledgments. This work has been supported by the QUASIMODO
(PAC08-0157-0668) project from the Castilla-La Mancha Ministry of Educa-
tion and Science (Spain). We would like to express our gratitude to personnel at
TAHE Fertilidad (http://www.tahefertilidad.es) for their support during
the development of this work.

References

1. Phipps, C., Davis, K.C.: Automating data warehouse conceptual schema design

and evaluation. In: Proc. DMDW, pp. 23–32 (2002)

2. Jensen, M.R., Holmgren, T., Pedersen, T.B.: Discovering multidimensional struc-

ture in relational data. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK

2004. LNCS, vol. 3181, pp. 138–148. Springer, Heidelberg (2004)

2 http://www.eclipse.org
3 http://projects.ikv.de/qvt

http://www.tahefertilidad.es
http://www.eclipse.org
http://projects.ikv.de/qvt


24 A. Carmè, J.-N. Mazón, and S. Rizzi

3. Song, I.Y., Khare, R., Dai, B.: SAMSTAR: a semi-automated lexical method for

generating star schemas from an entity-relationship diagram. In: Proc. DOLAP,

pp. 9–16 (2007)

4. Alhajj, R.: Extracting the extended entity-relationship model from a legacy rela-

tional database. Inf. Syst. 28(6), 597–618 (2003)

5. Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A conceptual

model for data warehouses. Int. J. Cooperative Inf. Syst. 7(2-3), 215–247 (1998)

6. Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual data warehouse model-

ing. In: Proc. DMDW, p. 6 (2000)

7. Böhnlein, M., von Ende, A.U.: Deriving initial data warehouse structures from

the conceptual data models of the underlying operational information systems. In:

Proc. DOLAP, pp. 15–21 (1999)

8. Moody, D.L., Kortink, M.A.R.: From enterprise models to dimensional models: a

methodology for data warehouse and data mart design. In: Proc. DMDW, p. 5

(2000)

9. Romero, O., Abelló, A.: Multidimensional design by examples. In: Tjoa, A.M.,

Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 85–94. Springer, Heidelberg

(2006)

10. Mazón, J.N., Trujillo, J.: A model driven modernization approach for automatically

deriving multidimensional models in data warehouses. In: Proc. ER, pp. 56–71

(2007)

11. Object Management Group: MOF 2.0 Query/View/Transformation,

http://www.omg.org/cgi-bin/doc?ptc/2005-11-01

12. Soutou, C.: Relational database reverse engineering: Algorithms to extract cardi-

nality constraints. Data Knowl. Eng. 28(2), 161–207 (1998)

13. Hopcroft, J.E., Tarjan, R.E.: Efficient algorithms for graph manipulation [h] (al-

gorithm 447). ACM Commun. 16(6), 372–378 (1973)

14. Object Management Group: Common Warehouse Metamodel Specification 1.1,

http://www.omg.org/cgi-bin/doc?formal/03-03-02

15. SAS Institute: Base SAS 9.1.3 Procedures Guide. Second edn. (2006)

16. Mazón, J.N., Trujillo, J., Lechtenbörger, J.: Reconciling requirement-driven data

warehouses with data sources via multidimensional normal forms. Data Knowl.

Eng. 63(3), 725–751 (2007)

17. Mazón, J.N., Trujillo, J.: A hybrid model driven development framework for the

multidimensional modeling of data warehouses. SIGMOD Record 38(2), 12–17

(2009)

18. Meliá, S., Kraus, A., Koch, N.: MDA transformations applied to web application

development. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp.

465–471. Springer, Heidelberg (2005)

http://www.omg.org/cgi-bin/doc?ptc/2005-11-01
http://www.omg.org/cgi-bin/doc?formal/03-03-02


Physical Design and Implementation of Spatial
Data Warehouses Supporting Continuous Fields

Leticia Gómez1, Alejandro Vaisman2, and Esteban Zimányi3

1 Instituto Tecnológico de Buenos Aires

lgomez@itba.edu.ar
2 Universidad de Buenos Aires

avaisman@dc.uba.ar
3 Université Libre de Bruxelles

ezimanyi@ulb.ac.be

Abstract. Although many proposals exist for extending Geographic In-

formation Systems (GIS) with OLAP and data warehousing capabilities

(a topic denoted SOLAP), only recently the importance of supporting

continuous fields (i.e., phenomena that are perceived as having a value

at each point in space and/or time) has been acknowledged. Examples

of such phenomena include temperature, altitude, or land use. In this

paper we discuss physical design issues arising when a spatial data ware-

house includes a combination of spatial and non-spatial dimensions and

measures, and spatio-temporal dimensions representing continuous fields.

We give the syntax and semantics of the data types (and their opera-

tors) needed to support fields in SOLAP environments, and present an

implementation of these types, on top of spatial-SQL. We also show how

queries using the spatio-temporal operators for fields are written, parsed,

and executed.

1 Introduction

In the last few years, efforts have been carried out to integrate Geographic In-
formation Systems (GIS) [1] and OLAP (On-Line Analytical Processing) [2].
This integration, called SOLAP (standing for Spatial OLAP), aims at exploring
spatial data by drilling on maps, in the same way as OLAP operates over tables
and charts. This concept was introduced by Rivest et al. [3], who also describe
the desirable features and operators a SOLAP system should have. A survey on
the topic can be found in [4]. The need for sophisticated GIS-based decision sup-
port systems, for the analysis of organizational data with respect to geographic
information, is encouraging OLAP and GIS vendors to integrate their products.

Advances in data analysis technologies raise new challenges. One of them is
the need to handle continuous fields, which describe physical phenomena that
change continuously in time and/or space. Examples of such phenomena are
temperature, pressure, and land elevation. Besides physical geography, continu-
ous fields (from now on, fields), like land use and population density, are used in
human geography as an aid in spatial decision-making process. Formally, a field

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 25–39, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



26 L. Gómez, A. Vaisman, and E. Zimányi

is defined as composed of [5]: (a) a domain D which is a continuous set; (b) a
range of values R; and (c) a mapping function f from D to R.

Although some work has been done to support querying fields in GIS, spatial
multidimensional analysis of continuous data is still in its infancy. Existing mul-
tidimensional models dealing with discrete data are not adequate for the analysis
of continuous phenomena. Multidimensional models and associated query lan-
guages are thus needed, to support continuous data. Recently, Vaisman and
Zimányi [6] presented a conceptual model for SOLAP that supports dimensions
and measures representing continuous fields, and characterized multidimensional
queries over fields. They defined a field data type, a set of associated operations,
and a multidimensional calculus supporting this data type. In this paper we go a
step further, and study the translation of this conceptual data model to physical
structures based on the well-known star-schema [2]. We also introduce two new
data types, field and tempfield, define a semantics for the operators associated
to these types, and present an implementation for them. Finally, we define an
SQL-like query language over the physical structures and operators mentioned
above, and provide a preliminary implementation of the language.

This paper is organized as follows. Section 2 provides an overview of related
work dealing with fields. Section 3 presents the conceptual model, and introduces
the field data type and its associated operators. In Section 4 we discuss the
physical warehouse design to implement the conceptual model and we introduce
the SQL-like language to support fields. Section 5 presents the operators of the
field data type, whose implementation is shown in Section 7. Section 6 presents
the query language, and Section 8 sketches how a query in this language is
implemented. We conclude in Section 9.

2 Related Work

In his pioneering work on defining algebra for fields, Tomlin [7] proposed a so-
called map algebra, based on the notion that a map is used to represent a
continuous variable (e.g., temperature). There are three types of functions in
Map algebra: local, focal, and zonal. Local functions compute a value at a certain
location as a function of the value(s) at this location in other map layer(s).
Focal functions compute each location’s value as a function of existing values in
the neighboring locations of existing layers (i.e., they are characterized by the
topological predicate touches). Zonal functions (characterized by the topological
predicate inside), compute a location’s new value from one layer (containing the
values for a variable), associated to the zone (in another map) containing the
location. Câmara et al. [8] and Cordeiro et al. [9] formalized and extended these
functions, supporting more topological predicates. We base our proposal on this
work, and on the proposal of Mennis et al. [10], where map algebra operators are
extended to query time-varying fields. The model and query language we present
here cover those proposals, and extend them to the multidimensional setting.

Paolino et al. [5] introduced Phenomena, a visual language for querying con-
tinuous fields, based on a conceptual model where users view the world as con-
sisting of both continuous fields and discrete objects, and are able to manipulate



Physical Design and Implementation of Spatial Data Warehouses 27

them in a uniform manner. Phenomena uses an extension to Spatial SQL that
supports continuous fields, proposed by Laurini et al. [11]. GeoRaster1 is a fea-
ture of Oracle Spatial that allows storing, indexing, querying, analyzing, and
delivering raster data, and its associated metadata. GeoRaster provides special-
ized data types and associated operators, as well as an object relational schema,
which can be used to store and manipulate multidimensional raster layers. None
of these tools and languages were devised for a SOLAP setting.

Regarding fields and multidimensional models, the joint contribution of the
GIS and OLAP communities to this problem has been limited. Shanmugasun-
daram et al. [12] proposed a data cube representation that deals with continuous
dimensions. This works focuses on using the known data density to calculate
aggregate queries without accessing the data. The representation reduces the
storage requirements, but continuity is addressed in a limited way. Ahmed et al.
use interpolation methods to estimate (continuous) values for dimension levels
and measures, based on existing sample data values [13]. Continuous cube cells
are computed on-the-fly, producing a continuous representation of the discrete
cube. These proposals are based on a data model devised for OLAP, not for
spatial OLAP, which goes against a comprehensive representation of spatial di-
mensions and measures. Opposite to this, our approach is based on a conceptual
multidimensional model designed with spatial data in mind. Thus, continuous
fields are introduced as a natural extension to this model. In order to support
fields, Vaisman and Zimányi presented a conceptual model for spatio-temporal
OLAP supporting fields, and a calculus to query such data. In this paper, we
build on that work to propose a user-friendly SQL-like version of the calculus
making use of two new data types that support spatio-temporal fields.

3 Preliminaries

We now briefly describe the conceptual model proposed in [6], extending the
MultiDim model [14] to support fields. For this we use the example in Figure 1,
which represents information about crops produced at land plots. We use this
model also as our running example. There is information in vector format de-
scribing the location of land plots in provinces. Further, there are raster maps
of elevation, soil type, temperature, and precipitation.

A multidimensional schema is a finite set of dimensions and fact relationships.
A dimension comprises at least one hierarchy, which contains at least one level.
A hierarchy with only one level is called a basic hierarchy. Levels in a hierarchy
(e.g., the one formed by LandPlot and Province) are related to each other through
a binary relationship that defines a partial order � between them. Given two
consecutive related levels li, lj, if li � lj then li is called child and lj is called
parent. When levels in a hierarchy are spatial, they are related by a topological
relationship. For example, the pictogram in the LandPlot hierarchy indicates
that a land plot is covered by its parent (a province).

1 http://download.oracle.com/docs/html/B10827_01/geor_intro.htm

http://download.oracle.com/docs/html/B10827_01/geor_intro.htm


28 L. Gómez, A. Vaisman, and E. Zimányi

Time

date
...

Province

name
population
...

Yield

production
cropArea
avgTemp
suitability

landPlotNo
owner
...

LandPlot

units
minValue
maxValue
...

Elevation f( )

Calendar

Month

monthID
...

name
characteristics
...

Crop

name
characteristics
...

Precipi-
tation f( ,   )C

rop class

Quarter

quarterId
...

CropGroup

SoilType

Year

yearID
...

f( )

f( )

G
eo location

units
startDate
endDate
...

Temper-
ature f( ,   )

units
startDate
endDate
...

classifSystem
date
characteristics
...

Fig. 1. An example of a spatial data warehouse with continuous fields

A level representing the least detailed data in a hierarchy is called a leaf level
(e.g., LandPlot), and is related to at least one fact relationship (e.g., Yield). The
latter represents an n-ary relationship between two or more leaf levels. If these
levels are spatial, the relationship may also be topological and requires a spa-
tial predicate. For example, the pictogram in Yields indicates an intersection
between the spatial dimensions LandPlot and Crop. A fact relationship contains
measures, which may be thematic or spatial. The former (e.g., production) are
the usual alphanumeric measures in standard OLAP, and may be calculated us-
ing spatial operators, such as distance or area. The latter are represented by a
geometry or a field. An example is the cropArea measure, which is computed as
the intersection of land plots and crop areas. Dimension levels are composed of
key attributes and property attributes. A key attribute of a parent level (e.g.,
name in Province) determines how child members are grouped for applying aggre-
gation functions to measures. A property attribute contains additional features
of a level; it can be spatial (represented by a geometry or field) or thematic
(alphanumeric data types).

To support fields, we include the notion of field dimensions and field measures.
Non-temporal field levels and measures are identified by the f( ) pictogram,
while temporal ones are identified by the f( ,   ) pictogram. A field dimension
is a dimension containing at least one level that is a field. In our example, the
field dimensions are Elevation, SoilType, Temperature, and Precipitation where the
latter two are temporal field dimensions. A field measure is a measure represented
by a continuous field. For example, suitability is a field measure computed in
terms of elements in the model, e.g., the suitability at a certain point can be a



Physical Design and Implementation of Spatial Data Warehouses 29

function of the kind of crop, temperature, precipitation, and elevation, at that
point or its vicinity. Finally, a field hierarchy is a set of related field levels; it
allows a field to be seen at different granularities. Although not shown in our
example, SoilType can define a hierarchy for soil classification, e.g., the USDA
Soil Taxonomy.

Notice that in our approach field dimensions deserve particular treatment. In
traditional multidimensional models, every dimension is connected to at least
one fact relationship. The same approach has been followed in models intro-
ducing fields in spatial data warehouses (e.g., [13]), where dimension instances
are values in the underlying domain (that may be obtained through on-the-fly
interpolation). Due to the nature of continuous fields, there may be an infinite
number of instances, each one corresponding to one possible value of the domain.
We chose a different approach: we define a field dimension containing only one
instance (corresponding to the function), and the attributes of the field dimen-
sion correspond to metadata describing it, like the units at which the values
are recorded (e.g., Celsius or Farenheit for temperature). Consequently, field di-
mensions are part of the model, but are not tied to any particular fact table.
The physical model we propose below shows the viability of this approach, and
reveals the drawbacks of on-the-fly interpolation.

4 A Physical Model for DWs with Continuous Fields

We discuss next a physical data model supporting the conceptual model intro-
duced in Section 3. Most conceptual models for spatial data warehouses proposed
so far are based on the star/snowflake schema, but do not follow such schema
when it comes to implementation issues. In these models it is not clear how a
field (e.g., implemented as a raster grid) can fit into the standard star/snowflake
schema. As mentioned before, we propose a different approach where field di-
mensions are not linked to the fact table. Although field dimensions are part of
the model, and are considered as elements in the query language, there is no
natural key to tie fields to a fact table. However, aggregations over fields can be
included as pre-computed field measures in the fact table.

We represent fields using raster structures describing regular square grids. Our
implementation is based on the OpenGIS specification for coverage geometry and
interpolation functions of the OGC [15]. Other implementations of fields using
irregular tesselations of space, such as triangulated irregular networks (TIN) or
Voronoi diagrams, are possible and are left for future work. Nontemporal fields
are stored in a table containing a spatial attribute (denoted geom) representing
the geometry of the cell, and an alphanumeric attribute that stores its value.
Temporal field tables have two additional attributes representing, respectively,
the start and end instants of the value’s validity interval.

Dimension tables represent both spatial and nonspatial dimensions. There can
be either one table per dimension level or one table per dimension, depending
on whether the dimension is normalized or not (i.e., either a star or a snowflake
schema is used). Spatial dimension tables have an additional spatial attribute



30 L. Gómez, A. Vaisman, and E. Zimányi

(denoted by geom) containing the geometry of the object. Field dimension tables
have, in addition to the attributes of field tables, an attribute containing the
metadata of the field (which can be implemented, for example, as an XML
document). Non-field dimension tables have a surrogate identifier denoted id.
This identifier allows dimension tables (spatial or not) to be linked to fact tables
through a foreign key relationship.

Fact tables include references to spatial and nonspatial dimension tables. We
consider four kinds of measures: (1) numeric, as in standard OLAP; (2) spatial
measures; (3) field measures; and (4) field aggregations. An example of a mea-
sure of type (2) is cropArea in Figure 1. This measure, of spatial type region,
represents the intersection (or any other valid spatial operation) of all the spatial
dimensions, while taking into account the other nonspatial dimensions. In our
example, at a given day, a member of the LandPlot level (say, L1) may intersect
a member of the Crop level (e.g., wheat). The intersection of the geometries of
both members (e.g., multipolygons according to the OGC data types) results
in another geometry that is recorded in the fact table as the spatial measure
cropArea. An example of measure of type (3) is suitability in Figure 1. This mea-
sure is actually a field, which can be precomputed, at each point, as a function
of geographic characteristics of related spatial dimensions (LandPlot and Crop),
other related dimensions (Time), other fields (Elevation, . . .), and other param-
eters. One possible way of implementing such a measure is to have a field value
associated to each instance of the fact table, in our case, to each combination
of land plot, crop, and time. Measures of type (4) are aggregations of measures
of type (3), in a way that resembles map algebra operations. In Figure 1, mea-
sure avgTemp indicates the average value of the temperature field at the finest
granularity of the fact table, that is, at the combination of land plot, crop, and
day. In other words, a tuple in the fact table Yield will have an attribute that
represents this temperature.

5 The Field and Temporal Field Data Types

We define next two new data types, denoted field and tempfield, and their cor-
responding operations, along the lines of Güting et al. [16].

Field types capture the variation in space of base types. They are obtained by
applying a constructor field(·). Hence, a value of type field(real) (e.g., representing
altitude) is a continuous function f : point→ real. We describe next some of the
operations of field types.

A set of operations realize the projection into the domain and range. The def-
space operator receives a field, and returns the geometry defining it; rangevalues
receives a field, and returns the set of values that the function takes.

Another set of operators allow the interaction with domain and range. Opera-
tions atpoint, atpoints, atline, and atregion restrict the function to a given subset
of the space defined by a spatial value. That means that the operators receive a
field and a geometry, and return a field restricted to such geometry. Operations
at and atrange restrict the function to a point or to a point set in the range of



Physical Design and Implementation of Spatial Data Warehouses 31

the function. Predicates atmin and atmax reduce the function to the points in
space when its value is minimal or maximal.

Rate of change operators compute how a field changes across space. Func-
tions partialder x and partialder y give, respectively, the partial derivative of the
function defining the field with respect to the one of the axis x and y.

Aggregation operators take a field as argument and produce a scalar value.
Operations fmin and fmax give, respectively, the minimum and maximum value
taken by the function. Three field aggregation operators take as argument a field
over numeric values (int or real) and return a real value. These are volume, area,
surface with their standard meaning. From these basic operators, other derived
operators are defined, namely favg, fvariance, and fstdev.

All operations on base or spatial types are generalized for field types. An
operation is lifted (following [16]) to allow any of the argument types to be re-
placed by the respective field type and also return a corresponding field type.
Intuitively, the semantics of such lifted operations is that the result is computed
at each point using the non-lifted operation. Aggregation operators are also up-
lifted in the same way. For instance, an uplifted avg operator combines several
fields, yielding a new field where the average is computed at each point in space.
These uplifted aggregation operations correspond to Tomlin’s local functions [7].

Focal, zonal, and global operators can be derived from the above operators.
Focal (or neighborhood) operators compute a new field in which the output
value at a point is a function of the values of the input field in the neighborhood
“around” that point. Neighborhoods can be defined by different sizes and geome-
tries. Different arithmetic and statistical functions can be applied to summarize
neighborhood values. For example, a focalmax that computes at each point p the
maximum value of the neighborhood around that point at a distance d can be
defined as follows

focalmax(f, p, d) def= fmax(atregion(f, buffer(p, d))).

Here, the buffer operator creates a surface of radius d around point p, the atregion
operator restricts the field f to that surface, and the fmax operator takes the
maximum value among all the values of the resulting field.

Zonal operators take as input two fields, f1 defining the input values and f2

defining a set of zones, and compute an output field where the value at each point
is computed from all values of the input field that belong to the zone associated
with that point. For example, a zonalmax that computes at each point p the
maximum value of the zone to which p belongs can be defined as follows

zonalmax(f1, f2, p) def= fmax(atregion(f1, defspace(at(f2, val(atpoint(f2, p)))))).

Here, atpoint restricts the field f2 defining the zones to the point p, val takes the
value v of the field at that point, at restricts f2 to the points that have value v,
defspace obtains the underlying space where f2 takes value v, atregion restricts
the input field f1 to that space, and the fmax operator takes the maximum value
among all the values of the resulting field.

Finally, global functions compute a field in which the value at a point is
computed from potentially all the points of the underlying space. An example is



32 L. Gómez, A. Vaisman, and E. Zimányi

the Euclidean distance which, given a set of “sources” defining objects of interest
such as schools, hospitals, or roads, computes for each point p of the underlying
space the distance to the closest source. If the sources are defined by a geometry
g (of one of the four spatial types) such a function can be defined as follows

globaldistance(p, g) def= distance(p, g),

where the distance function [16] determines the minimum Euclidean distance
between the closest pair of points from the first and second arguments.

Temporal fields model phenomena whose value change along time and space.
(e.g., temperature). The work in [6] defines temporal fields based on the moving
types in [16]. Moving (or temporal) types are obtained by applying the con-
structor moving(·). Hence, moving(real) (e.g., representing the temperature at
a specific point) is a continuous function f : instant → real. Temporal fields
are obtained by applying a constructor tempfield(·) which is an abbreviation of
moving(field(·)). We describe next some of the operators of moving types.

A set of operations realize the projection into the domain and range. Oper-
ations deftime and rangevalues return, respectively, the projection of a moving
type into its domain and range. In other words, given a temporal field, deftime
returns the intervals in which it is defined, and rangevalues returns a set with
the values in its range.

Another set of operators allow the interaction with domain and range. Op-
erations atinstant and atperiod restrict the function to a given time or set of
time intervals. That means, given a field and a time instant (period), returns
the field(s) valid at that time(s). Operations initial and final return, respectively,
the (instant,value) pairs for the first and last instant of the definition time. Op-
eration at restricts the function to a point or to a point set (a range) in the
range of the function. Predicates atmin and atmax reduce the function to the
times when it was minimal or maximal, respectively. The present predicate al-
lows checking whether the temporal function is defined at an instant of time,
or is ever defined during a given set of intervals. Analogously, predicate passes
checks whether the function ever assumed one of the values from the range given
as second argument.

Finally, as was the case for field types, all operations on nontemporal types
are generalized (or lifted) for moving types. As an example, the = operator has
lifted versions where one or both of its arguments can be moving types and the
result is a moving Boolean. Intuitively, the semantics of such lifted operations is
that the result is computed at each time instant using the non-lifted operation.

6 A SOLAP Language That Supports Fields

We now present an SQL-like query language for the model of Section 3. This
model requires a language that supports different kinds of objects, namely di-
mensions, fact tables (spatial and non-spatial), and fields. Vaisman and Zimányi
[6] proposed a query language based on the tuple relational calculus extended
with aggregate functions and variable definitions proposed by Klug [17]), and



Physical Design and Implementation of Spatial Data Warehouses 33

showed that extending this calculus with field types is enough to express multi-
dimensional queries over fields. We base our language on this calculus.

We start with a simple example that does not include fields: “For land plots
located in the province of Limburg and crops in the cereals group give the max-
imum production by month”.

SELECT l.landPlotNo, t.month, max(y.production)
FROM LandPlot l, Crop c, Time t, Yield y
WHERE l.province.name=“Limburg” AND c.group.name=“Cereal”
GROUP BY l.landPlotNo, t.month

Like in typical OLAP languages, we hide the structure of the dimensions,
which is stored as metadata. Also, metadata allows determining which type of
objects are the ones in the FROM clause (e.g., dimension tables – spatial or
not –, fact tables, or fields). This query can be trivially translated to SQL as:

SELECT l.landPlotNo, m.month, max(y.production)
FROM LandPlot l, Province p, Crop c, Group g, Time t, Month m, Yield y
WHERE y.landPlot=l.id AND l.province= p.id AND p.name=“Limburg”
AND y.crop=c.id AND c.group=g.id AND g.name=“Cereal”
AND y.time=t.id AND t.month=m.id
GROUP BY l.landPlotNo, m.month

We next introduce fields in the language. Let us start with a simple query,
not involving a fact table: “Total area at sea level in the province of Antwerp”.

SELECT area(intersection(defspace(at(e.geom,0)),l.province.geom))
FROM Elevation e, LandPlot l
WHERE l.province.name=“Antwerp”

Function at restricts the elevation field to the points in space that have the value
0, and defspace yields the region containing such points, which is then intersected
with the province of Antwerp. The area operator is finally applied.

The next query includes a fact table: “For land plots having at least 30%
of their surface at the sea level, give the average suitability value for wheat on
February 1st, 2009.”

SELECT l.LandPlotNo, favg(y.suitability)
FROM Elevation e, LandPlot l, Yield y, Crop c, Time t
WHERE area(defspace(atregion(at(e,0),l.geom)))/area(l.geom) > 0.3
AND c.name=“Wheat” AND t.date=“02/01/2009”

Here, the elevation field is restricted to the value 0 by means of function at,
and the resulting field is restricted to the geometry of the land plot with func-
tion atregion. The operator defspace obtains the geometry of the restricted field,
the area of this geometry is computed, and this is finally divided by the total
area of the land plot. Then, the average suitability is computed using the field
aggregation operation favg applied to the field measure suitability.



34 L. Gómez, A. Vaisman, and E. Zimányi

We now show a spatio-temporal query including fields: “Land plots at the sea
level in Limburg with average temperature greater than 10 ◦C in March 2009
and suitability (at every point of the land plot) for a wheat crop at June 1st,
2009 greater than 1.4.”

SELECT l.landPlotNo
FROM LandPlot l, Crop c, Time t, Temperature temp, Yield y
WHERE l.province.name=“Limburg” AND
favg(avg(atperiods(atregion(temp,l.geom),[“03/01/09”,“03/31/09”])))>10
AND intersects(defspace(at(e,0)),l.geom)
AND t.date= “1/6/2009” AND c.name=“Wheat”
AND defspace(atrange(y.suitability,[1.4,-]))=l.geom

The temperature field, restricted to the geometry of the land plot and to March
2009, is aggregated with the avg operator (a local cubic operation). Then, favg
is applied to obtain the average at the land plot, which is then compared to
10. The topological predicate intersects verifies that the land plot overlaps the
region defined by the elevation field restricted to the sea level. After obtaining
the instance of the fact relationship relating the land plot, the date, and the
wheat crop, the suitability field for this instance is restricted to the points that
have a value greater than 1.4, the region containing those points is obtained with
function defspace, and it is verified that this region equals the geometry of the
land plot, ensuring that every point satisfies the condition.

Finally, we show an example of a query returning a field: “Restrict the pre-
cipitation field to December, 2009, to the areas with an altitude greater than
150m, and an average production of wheat greater than one thousand tons.”

SELECT atregion(atregion(atperiod(p,[“12/1/2009”,“12/31/2009”]),
defspace(atrange(e,[150,-]))),

(SELECT l.geom
FROM Yield y, LandPlot l, Crop c
WHERE c.name=“Wheat”
GROUP BY l.geom
HAVING AVG(y.production) > 1000))

FROM Elevation e, Precipitation p

The atperiod function restricts the precipitation field to December, 2009 and
the result is restricted (inner atregion) to the space defined (defspace) by the
restriction of the elevation field to values greater than 150 (atrange). The outer
atregion function restricts this resulting field to the result of the inner query
which returns the set of geometries for land plots having an average production
of wheat greater than one thousand.

7 Implementing the Operators

We show now how the operators over fields are implemented. We designed the
following experimental scenario, according to the conceptual model of Figure 1.



Physical Design and Implementation of Spatial Data Warehouses 35

We downloaded field data from the WorldClim site2, which provides layers with
raster information at different resolutions. For our region of interest (a portion
of Belgium), we used elevation data with a resolution of 5 arc-minutes, obtain-
ing 655 cells, and temperature and precipitation data with a resolution of 10
arc-minutes, obtaining 185 cells. Raster data was downloaded in a generic grid
format exported to ESRI Shape file format3, an later imported to a PostgreSQL
database with the PostGIS plugin4 . This generates polygons with associated val-
ues. The units for elevation, precipitation, and temperature are meters, milime-
ters, and Celsius * 10, respectively. Both, precipitation and temperature data
correspond to monthly values. We created synthetically dimension and fact data
(e.g., land plots, crops). As we explained in Section 4, fields are stored in tables
with attributes ‘geom’ and ‘value’. In addition, temporal fields have attributes
‘startDate’ and ‘endDate’ representing the validity interval of the field.

We now show how the defspace and atregion operators are implemented. The
other ones are implemented analogously. Since the actual Java code is self-
descriptive, we have chosen to show this code instead of pseudo-code listings.

(1) Geometry defspace(String tempFieldTable) throws SQLException {
(2) String sqlDML;
(3) sqlDML= String.format(“SELECT geom FROM %s”, tempFieldTable);
(4) PreparedStatement pstmt = dbConn.prepareStatement(sqlDML);
(5) ResultSet rs = pstmt.executeQuery();
(6) Collection〈Geometry〉 geomCollection = new ArrayList〈Geometry〉();
(7) while (rs.next()){
(8) Geometry aGeom = GeometryReader.getGeometry(rs.getObject(1));
(9) geomCollection.add(aGeom);}
(10) pstmt.close();
(11) return unionAll(geomCollection);}

Fig. 2. A Java function to compute defspace

Figure 2 shows a Java function implementing the defspace operator. It receives
as parameter the name of the table representing a field and returns the geometry
over which the field is defined (i.e., the union of all the polygons that the field
contains). The SQL statement in Line (3) retrieves the spatial element in the
field table. The loop in Line (7) creates a collection of these geometries.

Note that Figure 3 shows two Java functions that implement the atregion
operator. For implementation reasons we need to define two different functions
that differ in the type of second parameter. The first atregion function receives a
field and a geometry as parameters, and returns a field restricted to the bound-
aries of the geometry. If the geometry is empty, the field is not updated. The
SQL statement in Line (5) deletes the tuples of the field that have no intersec-
tion with the geometry. The statement in Line (9) updates the spatial attribute

2 http://www.worldclim.org/current
3 http://www.esri.com/
4 http://www.postgresql.org/; http://www.postgis.org/.

http://www.worldclim.org/current
http://www.esri.com/
http://www.postgresql.org/
http://www.postgis.org/


36 L. Gómez, A. Vaisman, and E. Zimányi

void atregion(String tempFieldTable, Geometry geom) throws SQLException {
(1) if (geom.isEmpty())
(2) return;
(3) String sqlDML;
(4) PreparedStatement pstmt;
(5) sqlDML= String.format(“DELETE FROM %s WHERE NOT

INTERSECTS(geom, %s)”, tempFieldTable, geom);
(6) pstmt = dbConn.prepareStatement(sqlDML);
(7) pstmt.execute();
(8) pstmt.close();
(9) sqlDML= String.format(“UPDATE %s SET geom=INTERSECTION(geom, %s)”,

tempFieldTable, geom);
(10) pstmt = dbConn.prepareStatement(sqlDML);
(11) pstmt.execute();
(12) pstmt.close();}

void atregion(String tempFieldTable, Collection〈Geometry〉 geomCollection)
throws SQLException {

(1) if (geomCollection.isEmpty())
(2) return;
(3) atregion(tempFieldTable, unionAll(geomCollection)); }

Geometry unionAll(Collection〈Geometry〉 geomCollection){
(1) Geometry[] geomArray= new Geometry[geomCollection.size()];
(2) int i=0;
(3) for(Iterator〈Geometry〉 iter = geomCollection.iterator(); iter.hasNext(); i++) {
(4) geomArray[i]= iter.next(); }
(5) GeometryFactory geometryFactory = new GeometryFactory();
(6) GeometryCollection polygonCollection=

geometryFactory.createGeometryCollection(geomArray);
(7) Geometry union = polygonCollection.union();
(8) return union;}

Fig. 3. Java functions implementing the atregion operator

of the remaining tuples with the intersection between the field and the geom-
etry. Since the underlying language does not provide a ‘Union’ operator that
recursively computes the union of a set of geometries, we implemented a second
version of atregion. which first computes the union of all geometries in the sec-
ond parameter by invoking function unionAll. Its result is used in a call to the
first atregion function explained above. Line (7) in function unionAll computes a
union of geometries. Lines (5) and (6) are only for type conversion.

8 Implementing the Language

In this section we show how the last query in Section 6 is translated and exe-
cuted. Figure 4 shows part of the computation of this query. The upper part of
Figure 4 shows the sequence of function calls starting from the inner operator of



Physical Design and Implementation of Spatial Data Warehouses 37

(1) String fieldTempTableNameElev= initField(“Elevation”);
(2) atrange(fieldTempTableNameElev, 150, Double.MAX VALUE);
(3) Geometry unionField = defspace(fieldTempTableNameElev);
(4) String fieldTempTableNamePrec = initField(“Precipitation”);
(5) atperiod(fieldTempTableNamePrec, “12/1/2009”, “12/31/2009”);
(6) atregion(fieldTempTableNamePrec, unionField);
(7) lastPhase(fieldTempTableNamePrec);

public void lastPhase(String fieldTempTableName) throws SQLException {
(1) String sqlDML=
(2) “SELECT l.geom” +
(3) “FROM Yield y, LandPlot l, Crop c” +
(4) “WHERE c.name=\”Wheat\” ” +
(5) “AND y.landPlot=l.landplotNo AND y.cropId =c.id ” +
(6) “GROUP BY l.geom” +
(7) “HAVING AVG(y.production) > 1000”;
(8) PreparedStatement pstmt = dbConn.prepareStatement(sqlDML);
(9) ResultSet rs = pstmt.executeQuery();
(10) Collection〈Geometry〉 geomCollection = new ArrayList〈Geometry〉();
(11) while (rs.next()){
(12) Geometry aGeom = GeometryReader.getGeometry(rs.getObject(1));
(13) geomCollection.add(aGeom); }
(14) pstmt.close();
(15) atregion(fieldTempTableName, geomCollection);
(16) spatialDump(fieldTempTableName, ” A”);}

Fig. 4. Query evaluation

the SELECT clause of the query (which, remember, returns a field). Since we do
not assume that field data fit in main memory, we use a temporary table that is
updated by sequentially applying the functions explained in Section 7. Let us be
more concrete. We have shown in Section 7 that the atregion operator updates
geometries and deletes tuples. Thus, the function initField(nameOfFieldTable)
(Line (1) in Figure 4) generates a temporary table containing the data in the
original field table (in this case, Elevation). This table is the one that changes
during the execution of the query, preserving the original field. Then, in Line
(2) atrange is applied over the field returned in the previous step to delete the
tuples that do not satisfy the condition (elevation > 150). A unique geometry is
then generated over the result from the previous step using defspace (Line (3)).
Then, a temporary table is created for the precipitation temporal field (Line
(4)), atperiod is applied to the precipitation table for restricting the time frame
of the field in Line (5), and atregion is applied to the field obtained in the pre-
vious step for restricting it with the geometry returned in Line (3). Finally, the
function lastPhase is called. This function computes the collection of geometries
corresponding to the inner query in the FROM clause. In Line (9) of lastPhase
(shown in the lower part of Figure 4), the translated inner query is executed
(where all the implicit joins are written in Line (5)), returning the land plots



38 L. Gómez, A. Vaisman, and E. Zimányi

Fig. 5. The field resulting from the query

satisfying the query as a set of geometries collected in the loop in Line (11). In
Line (15) atregion is invoked, and in Line (16) the result is returned.

Figure 5 shows the result of the query execution. There are two grids of
different precision, one for elevation and one for precipitation. The zones with
vertical bars indicate the resultant field, i.e, a precipitation field in regions with
the desired altitude, and only one kind of crop.

9 Conclusion and Future Work

We have presented a physical model for spatio-temporal data warehouses that
supports continuous fields. This model is based on two new data types, namely
field and tempfield. These data types have a collection of operators, which we
discussed. A relevant contribution of the present paper is the implementation
of these operators and an associated SQL-like language that allows expressing
SOLAP queries over continuous fields. The main goal of this implementation
consists in showing the viability of our approach.

As future work, we will perform extensive testing of the operators and the
language proposed here. Since spatio-temporal data warehouses contain huge
amounts of data, optimization issues are extremely important. They include is-
sues such as appropriate index structures, pre-aggregation, and efficient query
optimization, among others. With respect to the latter, our example queries
can be expressed in several ways, exploiting either the fact relationship or the
geometries of the dimension levels with spatial and topological operators. Al-
though these alternative queries yield the same result, the evaluation time of
them may vary significatively, depending on the actual population of the data
warehouse. Finally, we will consider other possible implementations of fields such
as triangulated irregular networks (or TINs) and Voronoi diagrams.



Physical Design and Implementation of Spatial Data Warehouses 39

References

1. Worboys, M.F., Duckham, M.: GIS: A Computing Perspective, 2nd edn. CRC

Press, Second edn (2004)

2. Kimball, R.: The Data Warehouse Toolkit. J. Wiley and Sons, Inc., Chichester

(1996)

3. Rivest, S., Bédard, Y., Marchand, P.: Toward better suppport for spatial deci-

sion making: Defining the characteristics of spatial on-line analytical processing

(SOLAP). Geomatica 55, 539–555 (2001)

4. Bédard, Y., Rivest, S., Proulx, M.: Spatial online analytical processing (SOLAP):

Concepts, architectures, and solutions from a geomatics engineering perspective.

In: Wrembel-Koncilia (ed.) Data Warehouses and OLAP: Concepts, Architectures

and Solutions, pp. 298–319. IRM Press (2007)

5. Paolino, L., Tortora, G., Sebillo, M., Vitiello, G., Laurini, R.: Phenomena: a visual

query language for continuous fields. In: Proc. of ACM-GIS, pp. 147–153 (2003)

6. Vaisman, A.A., Zimányi, E.: A multidimensional model representing continuous

fields in spatial data warehouses. In: Proc. of ACM-GIS, pp. 168–177 (2009)

7. Tomlin, D.: Geographic Information Systems and Cartographic Modelling.

Prentice-Hall, Englewood Cliffs (1990)

8. Câmara, G., Palomo, D., de Souza, R.C.M., de Oliveira, D.: Towards a generalized

map algebra: Principles and data types. In: Proc. of GeoInfo, pp. 66–81 (2005)

9. Cordeiro, J.P., Câmara, G., Moura, U.F., Barbosa, C.C., Almeida, F.: Algebraic

formalism over maps. In: Proc. of GeoInfo., pp. 49–65 (2005)

10. Mennis, J., Viger, R., Tomlin, C.: Cubic map algebra functions for spatio-temporal

analysis. Cartography and Geographic Information Science 32, 17–32 (2005)

11. Laurini, R., Paolino, L., Sebillo, M., Tortora, G., Vitiello, G.: A spatial SQL exten-

sion for continuous field querying. In: Proc. of COMPSAC Workshops, pp. 78–81

(2004)

12. Shanmugasundaram, J., Fayyad, U.M., Bradley, P.S.: Compressed data cubes for

OLAP aggregate query approximation on continuous dimensions. In: Proc. of KDD,

pp. 223–232 (1999)

13. Ahmed, T.O., Miquel, M.: Multidimensional structures dedicated to continuous

spatiotemporal phenomena. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD

2005. LNCS, vol. 3567, pp. 29–40. Springer, Heidelberg (2005)

14. Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design: From Conven-

tional to Spatial and Temporal Applications. Springer, Heidelberg (2008)

15. Open Geospatial Consortium Inc.: OpenGIS Abstract Specification: Topic 6: The

Coverage Type and its Subtypes. OGC 07-011, Version 4 (2007)

16. Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, San

Francisco (2005)

17. Klug, A.: Equivalence of relational algebra and relational calculus query languages

having aggregate functions. Journal of the ACM 29, 699–717 (1982)



T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 40–51, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Benchmarking Spatial Data Warehouses 

Thiago Luís Lopes Siqueira1,2, Ricardo Rodrigues Ciferri2,  
Valéria Cesário Times3, and Cristina Dutra de Aguiar Ciferri4 

1 São Paulo Federal Institute of Education, Science and Technology,  IFSP,  
Salto Campus, 13.320-271, Salto, SP, Brazil 

2 Computer Science Department, Federal University of São Carlos, UFSCar,  
13.565-905, São Carlos, SP, Brazil 

3 Informatics Center, Federal University of Pernambuco, UFPE,  
50.670-901, Recife, PE, Brazil 

4 Computer Science Department, University of São Paulo at São Carlos, USP 
13.560-970, São Carlos, SP, Brazil 

prof.thiago@cefetsp.br, ricardo@dc.ufscar.br, vct@cin.ufpe.br, 
cdac@icmc.usp.br 

Abstract. Spatial data warehouses (SDW) enable analytical multidimensional 
queries together with spatial analysis. Mainly, three operations are related to 
SDW query processing performance: (i) joining large fact tables and large spa-
tial and non-spatial dimension tables; (ii) computing one or more costly spatial 
predicates based on spatial ad hoc query windows; and (iii) aggregating data 
according to different spatial granularity levels. Several techniques to improve 
the query processing performance over SDW have been proposed in the litera-
ture. However, we identified the lack of a benchmark to carry out a controlled 
experimental evaluation of such techniques and, principally, to effectively 
measure the costs of the aforementioned three complex operations. In this pa-
per, we propose a novel spatial data warehouse benchmark, called Spadawan, to 
provide performance evaluation environments for SDW and enable a further in-
vestigation on spatial data redundancy. The Spadawan benchmark is available 
at http://gbd.dc.ufscar.br/spadawan. 

Keywords: spatial data warehouse, benchmarking, performance evaluation, 
drill-down and roll-up operations. 

1   Introduction 

Spatial data warehouses (SDW) enable analytical multidimensional queries together 
with spatial analysis. A relational SDW inherits several components of conventional 
data warehouses, such as fact and dimension tables, numeric measures and hierarchies 
that aggregate these measures according to distinct granularity levels [1]. Addition-
ally, the SDW has spatial attributes that store vector geometries and define spatially-
enabled components, such as spatial dimension tables, spatial measures and spatial 
hierarchies [2][3][4]. Typically, a spatial hierarchy is a predefined 1:N association 
among higher and lower granularity spatial attributes that is determined by a spatial 
relationship, e.g. containment, such as (city)  (address). As a result, spatial OLAP 



 Benchmarking Spatial Data Warehouses 41 

(SOLAP) operations are common roll-up and drill-down extended to hold spatial 
predicates [5]. Also, the well-known star and snowflake schemas may be adequately 
adapted to support the inclusion of spatial attributes, which introduce new storage 
costs and might impair query processing performance [3][6]. 

Mainly, three operations are related to SDW query processing performance: (i) 
joining large fact tables and large spatial and non-spatial dimension tables; (ii) com-
puting one or more costly spatial predicates based on spatial ad hoc query windows; 
and (iii) aggregating data according to different spatial granularity levels. An example 
of a spatial and multidimensional query is “find out the total revenue earned by sup-
pliers whose addresses are inside a rectangular window”. This query mentions a topo-
logical relationship and a spatial ad hoc query window that was not previously stored 
in dimension tables. Another query may be issued to roll-up to the city granularity 
level by using a larger window that intersects the cities where the suppliers are lo-
cated, for instance. 

Indices and materialized views are used to provide efficient query processing over 
SDW, and the requirements to evaluate their efficiency are datasets with different 
characteristics of data volume, data distribution and data types, as well as diverse 
types of query concerning their selectivity. The literature mentions benchmarks for 
decision support and data warehouses [7][8][9], and for spatial databases [10][11], 
synthetic spatial datasets generators [12] and real spatial datasets (e.g. Tiger/Line, see 
http://www.census.gov/geo/www/tiger/). However, using them to evaluate SDW 
query processing requires several adaptations to comprise spatial roll-up and drill-
down operations, for instance. Therefore, there is a lack of a SDW benchmark to carry 
out a controlled experimental evaluation and, principally, to effectively assess the 
costs of the aforementioned operations. 

In this paper, we propose a novel spatial data warehouse benchmark, called 
Spadawan, to address the query processing performance on spatial roll-up and drill-
down operations using predefined spatial hierarchies over SDW. As spatial predi-
cates, the Spadawan benchmark focuses on intersection, containment and enclosure 
range queries. Furthermore, it comprises redundant and non-redundant SDW schemas 
based on the Star Schema Benchmark (SSB) [8]. Consequently, the Spadawan 
benchmark provides a further spatial data redundancy investigation and comparison 
with a non-redundant SDW schema. 

This paper is organized as follows. Section 2 surveys related work. Section 3 de-
scribes the SDW schemas of the Spadawan benchmark, while Section 4 describes data 
loading operations according to each schema. Section 5 presents the queries of the 
Spadawan benchmark and their particularities. Section 6 briefly describes a case study 
and Section 7 concludes the paper.  

2   Related Work 

Benchmarks for spatial databases [10][11] are not aimed at assessing the efficiency of 
SOLAP operations, although they focus on the spatial predicate computation. Regard-
ing data warehouses, TPC-D is an obsolete benchmark for decision support databases 
that does not support indices nor materialized views [7]. This fact motivated the  
proposal of the TPC-H [7], which provides individual queries that are not known in 



42 T.L.L. Siqueira et al. 

advance. However, its schema differs from the traditional star schema. The TPC-DS 
[9] suppresses this issue with a snowflake schema, but is aimed at data refreshing and 
its project is still under development. The SSB [8] extends the TPC-H to enable the 
analysis of historical trends and provides a set of predefined queries to run over its 
star schema. The SSB’s queries refer to descriptive locations of suppliers and custom-
ers, since there is a predefined conventional hierarchy among attributes, i.e., (region) 

 (nation)  (city)  (address). However, the SSB does not hold spatial attributes 
nor stores maps that would enable multidimensional queries with spatial predicates, 
which is the focus of the Spadawan benchmark. 

We argue that the SSB can be adapted to maintain spatial data and therefore pro-
vide spatial roll-up and drill-down operations evaluation, by reusing synthetic or real 
spatial datasets This adaption requires maintaining the queries’ semantics by adding 
spatial predicates and providing spatial predefined hierarchies based on the conven-
tional existing ones. In this paper, we propose the Spadawan benchmark by extending 
the SSB to store a real spatial dataset and by altering the SSB’s queries aiming at 
enabling spatial roll-up and drill-down operations evaluation. 

3   The Spadawan Benchmark Schemas 

We considered existing conceptual and logical models for SDW [2][3][4] in order to 
propose our SDW schemas, which extend the SSB schema by introducing spatial 
attributes that store geometries in spatial dimension tables, as shown in Fig. 1. The 
spatial attributes have the suffix _geo and are based on the SSB’s conventional attrib-
utes that describe suppliers and customers locations, concerning their addresses, cit-
ies, nations and regions. We designed the redundant (Fig. 1a) and the hybrid (Fig. 1b) 
SDW schemas aiming at different purposes as follows. 

According to Stefanovic et al. [3], Customer and Supplier should be considered as 
spatial-to-spatial dimension tables and must store all spatial attributes, as shown in 
Fig. 1a. Clearly, these spatial dimension tables maintain spatial data redundancy. For 
instance, the map for Europe is stored in every row whose supplier is located in 
Europe. Therefore, the redundant schema aims at investigating to what extent SOLAP 
queries performance is affected by spatial data redundancy. 

On the other hand, Fidalgo et al. [4] state that, in SDW, spatial data must not be  
redundant and should be shared whenever is possible. Considering that the SSB’s 
customers and suppliers share city, nation and region locations, but have individual 
addresses, we designed the hybrid schema (Fig. 1b) to comply with these characteris-
tics that are not treated by the redundant schema. For instance, the hybrid schema’s 
City spatial dimension table maintains distinct maps of cities where customers and 
suppliers reside. Therefore, the hybrid schema aims at evaluating the overhead of 
introducing additional joins costs to the query processing performance, as these joins 
are required to avoid spatial data redundancy. 

The spatial data redundancy may also increase the number of tables to be scanned. 
Suppose that a spatial ad hoc query window intersects both customers and suppliers 
cities geometries. Then, in a SDW with a redundant schema (as shown in Figure 1a), 
two tables would be scanned, while in a hybrid schema SDW (as given in Figure 1b), 
a single table storing all geometries for cities would be searched. 



 Benchmarking Spatial Data Warehouses 43 

Finally, our extensions preserved descriptive data as well as created two spatial hi-
erarchies based on the SSB’s original conventional hierarchies. They are valid for 
both the redundant and the hybrid schemas: (i) (region_geo)  (nation_geo)  
(city_geo)  (c_address_geo); and (ii) (region_geo)  (nation_geo)  (city_geo)  
(s_address_geo). According to Malinowski and Zimányi [13], these hierarchies can 
be classified as simple symmetric spatial hierarchies with the containment spatial 
relationship. We emphasize that the hybrid schema is not a snowflake schema, since 
the latter normalizes hierarchies. 

 
a. Redundant SDW schema                                          b. Hybrid SDW schema 

Fig. 1. The Spadawan benchmark schemas  
[16] © 2009 Association for Computing Machinery, Inc. Reprinted by permission. 

4   Data Generation and Loading 

Loading data into the SDW schemas described in Section 3 requires running the SSB 
data generator as well as performing other tasks depending on the selected schema. 
Fig. 1 shows the data cardinality of each table according to the scale factor S chosen 
to generate the SSB dataset. Regarding suppliers and customers locations, there are 
always 5 distinct regions, 5 nations per region and 10 cities per nation. We deter-
mined that the spatial attributes that represent cities, nations and regions are polygons, 
which were reused from the Tiger/Line real dataset. On the other hand, customer and 
supplier descriptive addresses cardinalities depend on S, as well as the number of 
customers and suppliers per city. As for geographic addresses, they are synthetic 
points randomly distributed inside each city polygon. We implemented a software to 
generate and distribute these points such that customers and suppliers have unique 
and distinct addresses. As a result, the spatial data volume of addresses varies according 



44 T.L.L. Siqueira et al. 

to S, as well as the quantity of customer and supplier addresses inside each city. Data 
sets that have already been used for populating the SDW redundant and hybrid sche-
mas are available at http://gbd.dc.ufscar.br/spadawan. 

The Spadawan benchmark’s geometries do not suffer modifications after the data 
loading. Obviously, the same scale factor S and the same spatial dataset used for the 
redundant schema must be used for the hybrid schema in order to enable spatial data 
redundancy investigation. Section 4.1 and 4.2 describe, respectively, the data loading 
for the redundant and hybrid schemas, Section 4.3 discusses how to extend these 
schemas to increase spatial data volume and to decrease spatial predicate selectivity. 

4.1   Loading the Redundant Schema 

The following five steps must be performed to load the redundant SDW schema. 
1. Load the geometries for cities, nations and regions into temporary tables. 
2. Execute the SSB data generator with scale factor S and load its tables. 
3. Run our generator of addresses, which also loads customer and supplier addresses 

into temporary tables. 
4. Alter and update the tables Customer and Supplier to include the geometries of 

addresses, cities, nations and regions. Define all the constraints. 
5. Discard all the temporary tables and build spatial indices supported by the DBMS 

(e.g. R-tree [14] or GiST [15]) on the spatial attributes. 

4.2   Loading the Hybrid Schema 

Loading the hybrid schema also requires five steps. Steps 1, 2 and 3 are similar to 
those described for the redundant schema. The remaining steps are defined as follows. 
4.  Alter and update the tables Customer and Supplier to include foreign keys refer-

encing the spatial dimension tables, which are the altered temporary tables of steps 
1 and 3. 

5.  Build spatial indices supported by the DBMS on the spatial attributes. 

4.3   Increasing Data Volumes 

The spatial data volumes for City, Nation and Region levels are fixed in the SSB. We 
argue that a fixed data volume for spatial data is unrealistic and should impose a se-
vere drawback to Spadawan benchmark. In order to overcome this drawback, we 
describe the algorithm IncreaseVolume to enable increasing the spatial data volume 
and decreasing the spatial predicate selectivity. A high selectivity determines that 
most of the spatial objects are processed in the spatial predicate computation, while a 
low selectivity ensures that only a few of them is processed. The algorithm Increase-
Volume consists of an intermediate step between the steps 2 and 3 presented in Sec-
tions 4.1 and 4.2, and can be used to load both redundant and hybrid schemas. 

The algorithm IncreaseVolume generates a spatial data volume n times larger than 
that built with a given scale factor S. Translation (line 3) is an operation that shifts a 
given geometry to another location, according to chosen offsets. As a result, a transla-
tion modifies all coordinates of the geometry. Specifically, the translation used in the 
IncreaseVolume algorithm must assure that: (i) geometries of the same granularity 
level do not overlap; and (ii) the spatial hierarchy must not be deteriorated. For  



 Benchmarking Spatial Data Warehouses 45 

instance, if city1 is a city and was replicated and translated, the copy of city1 must not 
overlap other cities. Also, if city1 is inside nation1, the copy of city1 must be inside 
the copy of nation1.  

Consider that: (i) |X| is the cardinality of the spatial attribute X, i.e., the number of 
distinct objects that X can assume; (ii) sobj is a spatial object for the attribute X; (iii) 
sobj.id is the identifier for the spatial object sobj; and (iv) sobj’ is a copy of the spatial 
object sobj. Then, the strategy to generate an identifier for sobj’ is to do: sobj’.id ← 
sobj.id + |X| (line 4). Analogously, the primary key values for replicated suppliers and 
customers can be determined (line 6). Regarding the spatial predicate selectivity, the 
commented lines (lines 7 and 8) must be executed when constant selectivity is de-
sired. Otherwise, the original selectivity will be divided by n. We further discuss this 
issue in Section 5.1. 

 Algorithm IncreaseVolume 
1 
2 
3 
4 
5 
6 
7 
8 
9 

For i ← 1 To n-1 
Replicate the initial set of geometries 
Translate the replicated geometries to new coordinates 
Generate new identifiers for these geometries 
Replicate the initial dataset of the dimension tables Customer and Supplier 
Generate new primary key values for these customers and suppliers 
/* Replicate the initial set of spatial query windows */ 
/* Translate these windows together with the replicated geometries */ 

End-For 

5   Queries 

5.1   Ad Hoc Spatial Query Windows 

Regarding the spatial query windows, they are quadratic, correlated with the spatial 
data, and considered ad hoc because their rectangles are not stored in any spatial di-
mension table. A spatial roll-up operation requires a set of four windows, each one 
associated to a granularity level (Address, City, Nation or Region) and has a specific 
size (as lower the granularity, smaller is the window). We defined two separate types 
of sets for the spatial query windows: disjoint and overlapping. 

Regarding the type disjoint, consider a set of windows d1. Every window of d1 has 
one centroid that is an address. To create d1’s windows, initially, one arbitrary ad-
dress is chosen to be the centroid of the address window. Then, city, nation and region 
windows are produced subsequently by reusing the centroid of the address window, as 
shown in Fig. 2a. Note that the query window size is proportional to the granularity 
level. In order to create another set of windows d2, the centroid for its windows is 
another address, specifically chosen to assure that the windows of d2 do not overlap 
any window of d1. As a result, all windows of different sets are disjoint, and the user 
can query distinct locations as previously fetched objects are not reused.  

Concerning the type overlapping, consider a set of windows o1 whose windows 
were created similarly to d1. In order to create another set of windows o2, any point 
inside the address window of o1 is chosen to be the centroid of the new address, city, 
nation and region windows. As a result, all windows of different sets overlap, and the 



46 T.L.L. Siqueira et al. 

user can retrieve data related to a specific neighborhood, as shown in Fig. 2b. In fact, 
continuous-line windows were built using an address as centroid, while dashed-line 
windows had centroids obtained from any point inside the previous address window. 
The query window size is also proportional to the granularity level. Overlapping 
query windows were designed to evaluate the reuse of previously fetched objects, 
which is a task aided by system cache and buffers.  

The Spadawan benchmark performs five roll-up/drill-down operations based on 
five fixed sets of disjoint query windows, as well as performs ten roll-up/drill-down 
operations based on ten fixed sets of overlapping query windows. Since the quantity 
of windows is fixed and they also have a fixed place, the number of spatial objects 
that satisfies the spatial predicate associated to a given window is also fixed. There-
fore, replicating a set of windows together with spatial data, as described by the In-
creaseVolume algorithm, maintains the spatial predicate selectivity constant. On the 
other hand, increasing only the spatial data volume by n times, divides the spatial 
predicate selectivity by n. 

 

 

 
a. Spatial disjoint query windows 

 
b. Spatial overlapping query windows 

Fig. 2. Spatial ad hoc query windows 

5.2   Query Types 1, 2 and 3 

Queries of type 1, 2 and 3 were based on query Q2.3 of the SSB and aim at evaluating 
the performance of: (i) at least three joins among tables, depending on the selected 
SDW schema; (ii) four spatial predicates computation based on ad hoc spatial query 
windows; and (iii) data aggregation according to four spatial granularity levels.  

Figure 3 illustrates how a single query was transformed into a spatial roll-up  
operation.  We replaced conventional predicates that formerly referred to nominative 
locations by spatial predicates involving ad hoc spatial query windows. Instead of 
asking for a single descriptive granularity level, four queries of distinct spatial granu-
larity levels are issued subsequently, considering that: RA is a spatial relationship to 
evaluate supplier addresses against the spatial query window QWA, RC is a spatial  
 



 Benchmarking Spatial Data Warehouses 47 

relationship to evaluate cities against the spatial query window QWC, RN is a spatial 
relationship to evaluate nations against the spatial query window QWN, and RR is a 
spatial relationship to evaluate regions against the spatial query window QWR. The 
size of the spatial query windows QWA, QWC, QWN and QWR are distinct and de-
creases as the granularity level decreases. This ensures a control of the selectivity 
factor of the queries in different granularity levels. 

As a result, Query Types 1, 2 and 3 enable data aggregation according to the four 
aforementioned spatial granularity levels. Query Type 1 focuses mainly on the inter-
section relationship (i.e. IRQ: intersection range query on the spatial predicate), while 
Query Type 2 focuses mainly on the containment relationship (i.e. CRQ: containment 
range query on the spatial predicate) and Query Type 3 focuses mainly on the enclo-
sure relationship (i.e. ERQ: enclosure range query on the spatial predicate). 

Query Type 1 is detailed in Table 1. It uses the containment spatial predicate at the 
Address level and the intersection predicate at City, Nation and Region levels. The 
QW/Extent column shows the fraction of the extent occupied by the spatial query 
window. For instance, the query window for Address level represents 0.001% of the 
extent. Table 1 lists the average number of objects that are returned per query, consid-
ering 5 roll-up operations with the sets of spatial disjoint query windows and 10 roll-
up operations with the sets of spatial overlapping query windows.  

Table 1 shows the selectivity factor (SF), which consists of the conventional SF 
multiplied by the spatial SF. The former is fixed and defined by the SSB as 1/1000.  
The later is calculated by dividing the number of returned spatial objects by the spa-
tial attribute cardinality. For instance, at City granularity level, the spatial SF is 
3.6/250 and therefore the query SF is 1/1000 * 3.6/250 (value of 0.0000144). Only 
one spatial SF was defined at Nation level to assess the efficiency when no spatial 
objects are returned as query answer (Table 2). This represents an extreme situation 
on query processing. 

 It is not possible to estimate the number of addresses that satisfies the spatial 
predicate, since the address data volume and the number of addresses inside each city 
depend on the scale factor S used to generate the SSB dataset. Therefore, we esti-
mated the number of objects retrieved by the query as well as the SF for the Address 
level using the data generation scale factor of 1. 

 

Fig. 3. The template for Query Types 1, 2 and 3.  
[16] © 2009 Association for Computing Machinery, Inc. Reprinted by permission. 



48 T.L.L. Siqueira et al. 

Query Types 2 and 3 are detailed in Tables 2 and 3, respectively, and evaluate 
other spatial predicates using different sizes of query windows. We emphasize that all 
buffers and cache must be flushed at the end of each spatial roll-up operation that 
utilize spatial disjoint query windows. On the other hand, they must not be flushed 
when utilizing overlapping spatial query windows. 

Table 1. Additional information for Query Type 1 

   Disjoint Query Windows Overlapping Query Windows 
Level Predicate R QW/Extent Objects/query SF Objects/query SF 

Address RA = CRQ 0.001% 2.2 0.00000022 5.4 0.00000054 
City RC = IRQ 0.05% 3.6 0.0000144 4.0 0.000016 

Nation RN = IRQ 0.1% 1.6 0.000064 3.0 0.00012 
Region RR = IRQ 1% 1.2 0.00024 2.0 0.0004 

 

Table 2. Additional information for Query Type 2 

   Disjoint Query Windows Overlapping Query Windows 
Level Predicate R QW/Extent Objects/query SF Objects/query SF 
Address RA = CRQ 0.01% 19.0 0.0000019 37.0 0.0000037 
City RC = CRQ 0.1% 1.4 0.0000056 3.0 0.000012 
Nation RN = CRQ 10% 1.2 0.000048 0.0 0.0 
Region RR = CRQ 25% 0.4 0.00008 1.0 0.0002 

 

Table 3. Additional information for Query Type 3 

   Disjoint Query Windows Overlapping Query Windows 
Level Predicate R QW/Extent Objects/query SF Objects/query SF 
Address RA = CRQ 0.00001% 1.0 0.0000001 1.0 0.0000001 
City RC = ERQ 0.0005% 0.8 0.0000032 1.0 0.000004 
Nation RN = ERQ 0.001% 0.8 0.000032 1.0 0.00004 
Region RR = ERQ 0.01% 1.0 0.0002 1.0 0.0002 
 

5.3   Query Type 4 

Query type 4, shown in Fig. 4, was based on the SSB’s query Q3.3 and consists of a 
spatial roll-up and spatial drill-down operations with two ad hoc spatial query win-
dows, which add an extra high join cost. Basically, this query retrieves “the revenue 
per year per brand for suppliers of an area x to the customers of an area y”. The 
same granularity level is used for both customers and suppliers simultaneously. The 
containment spatial predicate is verified at Address level while the intersection 
predicate is verified at City, Nation and Region levels. Table 4 shows additional 
details. 



 Benchmarking Spatial Data Warehouses 49 

 

Fig. 4. Query Type 4 

Table 4. Additional information for Query Type 4 

   Disjoint Query Windows Overlapping Query Windows 
Level Predicate QW/Extent Objects/query SF Objects/query SF 
Address CRQ 0.001% 9.1 0.00000091 11.3 0.00000114 
City IRQ 0.05% 7.2 0.0000288 9.0 0.000036 
Nation IRQ 0.1% 3.2 0.000128 5.0 0.0002 
Region IRQ 1% 2.4 0.00048 3.0 0.0006 

 

6   Case Study  

We have already used the Spadawan benchmark to investigate the impact of spatial 
data redundancy over SDW [6]. We loaded the following datasets: D1: the redundant 
schema using the scale factor S = 10, which occupied 150 GB; D2: the hybrid schema 
with S = 10, which occupied 15 GB; D3: the hybrid schema with S = 6; and D4: the 
hybrid schema with S = 2. Regarding City, Nation and Region levels, the spatial data 
volume remained fixed as well as the spatial predicate selectivity. The Address level 
data volume varied according to S.  

We performed five spatial roll-up operations, using the five sets of disjoint query 
windows, and collected the average elapsed time at each granularity level. The GiST 
index was defined over the spatial attributes to enhance the spatial predicate computa-
tion. Experiments were conducted on a computer with a 2.8 GHz Pentium D proces-
sor, 2 GB of main memory, a 7200 RPM SATA 320 GB hard disk, Linux CentOS 5.2, 
PostgreSQL 8.2.5 and PostGIS 1.3.3. 

Table 5 shows the results obtained for the datasets D1, D2, D3 and D4 for Query 
Type 1. It is important to observe that: (i) the spatial data redundancy drastically im-
paired query processing performance especially at Nation and Region levels whose 
cardinalities are lower; and (ii) the smaller the conventional data volume, the shorter 
the elapsed time to process the queries over the hybrid schema. Spatial data redun-
dancy impaired not only the query processing performance, but also the storage re-
quirements, since D1 occupied ten times more space than D2. 

Another interesting issue was raised by evaluating Query Type 4 against the data-
set D1. At Region and Nation granularity levels, we aborted the query processing 
after 4 days of execution, since this elapsed time was prohibitive. At City level, the 
query took 172,900.15 seconds (approximately 48 hours). On the other hand, the  
 



50 T.L.L. Siqueira et al. 

Table 5.  Elapsed times in seconds for Query Type 1 

 D1 D2 D3 D4 
Address 2831.23 2853.85 1803.62 594.31 

City 2773.10 2758.70 1686.61 562.08 
Nation 3449.76 2765.61 1694.00 545.59 
Region 6200.44 2790.29 1703.31 552.94 

 
same query issued against the dataset D2 took only 130.34 seconds, i.e., the spatial 
data redundancy provided an unacceptable increase of 132,900.00%. 

We have developed the Spatial Bitmap Index (SB-index) [16] in order to decrease 
the query response time in SDW. The SB-index was also validated using the 
Spadawan benchmark. For further details about the performance evaluation, see [16]. 

7   Conclusions and Future Work 

This paper proposed a novel benchmark for spatial data warehouses, called 
Spadawan, whose main characteristics are: (i) it generates SDW datasets composed of 
points and polygons in spatial attributes; (ii) it is composed of different types of SO-
LAP queries that enable the performance evaluation of intersection range queries, 
containment range queries and enclosure range queries in the spatial predicate; (iii) it 
enables the evaluation of spatial roll-up and drill-down operations; (iv) it provides a 
means of investigating spatial data redundancy in SDW by designing two distinct data 
schemas with spatial hierarchies and spatial dimensions; (v) it permits the adjustment 
of the SDW data volume and the spatial predicate selectivity; and (vi) it uses spatial 
query windows that may overlap each other or may be disjoint from each other. We 
validated the Spadawan benchmark using it to generate a performance evaluation 
environment to assess the impact of spatial data redundancy over SOLAP queries [6] 
and the efficiency of the SB-index data structure [16]. 

As future work, we intend to propose additional SOLAP query types to analyze 
drill-across operations on extended SDW schemas and to compute aggregations of 
geometries of spatial objects. We also plan to incorporate different spatial data, such 
as lines, polygons with holes and with islands, on the spatial data generation and SO-
LAP query processing. Another future work would be to extend the current bench-
mark by covering all types of classification hierarchies in addition to the predefined 
1:N. The use of the Spadawan benchmark with different techniques, such as indices 
and materialized views, is another future work. 
 
Acknowledgements. This work has been supported by the following Brazilian re-
search agencies: FAPESP, CNPq, CAPES, INEP and FINEP. The first two authors 
thank the support of the Web-PIDE Project in the context of the Observatory of the 
Education of the Brazilian Government. The work carried by the third author was 
supported by funds from the CNPq under the Grant 479018/2009-0. The last author’s 
work has been founded by FAPESP under the Grant 2009/06052-7. 
 



 Benchmarking Spatial Data Warehouses 51 

References 

1. Kimball, R., Ross, M.: The data warehouse toolkit: the complete guide to dimensional 
modeling. John Wiley & Sons, Inc., Chichester (2002) 

2. Malinowski, E., Zimányi, E.: Advanced data warehouse design: from conventional to spa-
tial and temporal applications (data-centric systems and applications). Springer, Heidel-
berg (2008) 

3. Stefanovic, N., Han, J., Koperski, K.: Object-based selective materialization for efficient 
implementation of spatial data cubes. IEEE Trans. Knowl. Data Eng. 12(6), 938–958 
(2000) 

4. Fidalgo, R., Times, V.C., Silva, J., Souza, F.F.: GeoDWFrame: a framework for guiding 
the design of geographical dimensional schemas. In: Kambayashi, Y., Mohania, M., Wöß, 
W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 26–37. Springer, Heidelberg (2004) 

5. Rivest, S., Bédard, Y., Proulx, M., Nadeau, M., Hubert, F., Pastor, J.: SOLAP technology: 
merging business intelligence with geospatial technology for interactive spatio-temporal 
exploration and analysis of data. J. of Photogrammetry and Remote Sensing 60, 17–33 
(2005) 

6. Siqueira, T.L.L., Ciferri, C.D.A., Times, V.C., Oliveira, A.G., Ciferri, R.R.: The impact of 
spatial data redundancy on SOLAP query performance. J. Braz. Comp. Soc. 15(2), 19–34 
(2009) 

7. Poess, M., Floyd, C.: New TPC benchmarks for decision support and web commerce. SIG-
MOD Record 29(4), 64–71 (2000) 

8. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark and augmented 
fact table indexing. In: TPCTC, pp. 237–252 (2009) 

9. Poess, M., Smith, B., Kollar, L., Larson, P.: TPC-DS, taking decision support benchmark-
ing to the next level. In: SIGMOD, pp. 582–587 (2002) 

10. Paton, N.W., Williams, M.H., Dietrich, K., Liew, O., Dinn, A., Patrick, A.: VESPA: a 
benchmark for vector spatial databases. In: Jeffery, K., Lings, B. (eds.) BNCOD 2000. 
LNCS, vol. 1832, pp. 81–101. Springer, Heidelberg (2000) 

11. Günther, O., Oria, V., Picouet, P., Saglio, J., Scholl, M.: Benchmarking spatial joins à la 
carte. In: SSDBM, pp. 32–41 (1998) 

12. Theodoridis, Y., Silva, J.R., Nascimento, M.A.: On the generation of spatiotemporal data-
sets. In: SSD, pp. 147–164 (1999) 

13. Malinowski, E., Zimányi, E.: Spatial hierarchies and topological relationships in the spatial 
MultiDimER model. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS, 
vol. 3567, pp. 17–28. Springer, Heidelberg (2005) 

14. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 
47–57 (1984) 

15. Aoki, P.M.: “Generalizing “search” in generalized search trees”. In: ICDE, pp. 380–389 
(1998) 

16. Siqueira, T.L.L., Ciferri, R.R., Times, V.C., Ciferri, C.D.A.: A spatial Bitmap-based index 
for geographical data warehouses. In: ACM SAC, pp. 1336–1342. ACM, Inc., New York 
(2009), http://doi.acm.org/10.1145/1529282.1529582 

 



Discovering Community-Oriented Roles of
Nodes in a Social Network

Bin-Hui Chou and Einoshin Suzuki

Department of Informatics, ISEE, Kyushu University,

Fukuoka 819-0395, Japan

chou@i.kyushu-u.ac.jp, suzuki@inf.kyushu-u.ac.jp

http://www.i.kyushu-u.ac.jp/~suzuki/slabhome.html

Abstract. We propose a new method for identifying the role of a vertex

in a social network. Existing well-known metrics of node centrality such

as betweenness, degree and closeness do not take the community struc-

ture within a network into consideration. Furthermore, existing proposed

community-based roles are defined using cliques, and thereby it is dif-

ficult to discover vertices with only few links that bridge communities.

To overcome the shortcomings, we propose three community-oriented

roles, bridges, gateways and hubs, without knowledge on the commu-

nity structure, for representing vertices that bridge communities. We

believe that detecting the roles in a social network is useful because such

nodes are valuable by themselves due to their intermediate roles between

communities and also because the nodes are likely to provide a deeper

understanding of the communities. Our method outperforms the state-

of-the-art method through experiments using data of DBLP records in

terms of the subjective validness of the outputs.

1 Introduction

In a social network, a vertex represents an individual and an edge between a pair
of vertices represents the presence of a relationship between them. Analyzing
categories of vertices and discovering social relationships between vertices are
acquainted as social network analysis [9]. The methods on social network analysis
not only can be examined in the field of social science but also can be applied
to the field of biology, communication studies and information science [2], and
thereby have received considerable attention recently.

By using network connectivity properties, social network analysis often aims
to discover various categories of vertices in a network. We can find vertices
of high connectivity or discover densely-connected subgroups, and subjectively
assign roles to vertices based on the result of discovery. Evaluating the role of a
vertex is useful in many applications such as viral marketing [1,3], epidemiology
[8]. We think that the discovery of roles that connect communities is especially
useful in understanding and utilizing communities as each of them is likely to
play a key role in the community. For example, law enforcement agents are
able to gain information of two gangs of criminals if they keep an eye on the
intermediator between the two gangs.

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 52–64, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.i.kyushu-u.ac.jp/~suzuki/slabhome.html


Discovering Community-Oriented Roles of Nodes in a Social Network 53

There are many existing renowned metrics used to estimate the role of a
vertex. Centrality is a measure of a vertex how it well connects to other vertices
in a network. Degree, betweenness and closeness are all measures in terms of
centrality [9]. However, the role of a vertex is assigned according to its rank
without considering the community structure and therefore, vertices that bridge
communities are not successfully detected in the measures of centrality.

Recently, [6] proposed community-based roles which are defined using the de-
gree of a vertex and a proposed community metric. In the proposed community
metric, a community is defined based on a clique, i.e, a maximal complete sub-
graph, and thus, a vertex that connects many cliques tends to have a large value
of the degree. The proportional feature of the degree and the community metric
makes it difficult to assign roles to vertices that connect communities with few
links. Note that a vertex that has a small degree but connects with communities
indicates that it bridges communities.

In order to overcome the shortcomings of the previous works, we propose
three community-oriented roles — bridges, gateways and hubs. Bridges, gate-
ways and hubs represent different kinds of roles, each of which is essential as a
kind of relationship between communities. We believe that detecting the roles
in a social network is useful because such nodes are valuable by themselves due
to their intermediate roles between communities and also because the nodes are
likely to provide a deeper understanding of the communities. A bridge is a vertex
just located between two communities. A bridge connects communities, each of
which has only one single link with it. Since each community has only one link
with the bridge, it is controversial to cluster a bridge into any community. A
gateway is a vertex that acts as an entrance or an exit of a community when we
move from a community to another one. A gateway should be included in the
community which most of its neighbors belong to. A hub is a confluent vertex,
on which groups of vertices converge. Groups of vertices may be clustered into
the same community or be divided into different communities, which depends
on the result of community detection. When groups of vertices are divided into
different communities, the hub should be the overlapping vertex among com-
munities. We define the proposed roles rigorously and implement a discovery
algorithm which does not require information of the community structure. The
experimental results show that most of the proposed roles exist in the boundary
of communities and vertices with the proposed roles are important in bridging
communities.

2 Motivation and Problem Setting

Figure 1 presents a motivating example. Nodes 2, 3, 4, and 5 are members of one
community and nodes 6, 7, 8, 9, 10, and 11 are members of another community
in Figure 1a. Because each community in Figure 1a only has one link to node 1,
we do not cluster node 1 into any community.



54 B. Chou and E. Suzuki

12

3

4

5

6

7

8
9

1011

(a) Two communities

12

3

4

5

6

7

8
9

1011
Community

(b) Three communities

Fig. 1. Motivating example

Table 1. Centrality measures (CD, CC and CB are degree centrality, closeness central-

ity and betweenness centrality respectively. The higher the value is, the more central

the vertex is.)

Node 1 2 3 4 5 6 7 8 9 10 11

CD
1 2 4 3 3 3 4 2 4 2 2 1

CC
2 0.50 0.43 0.33 0.33 0.33 0.53 0.40 0.43 0.32 0.33 0.36

CB
3 24 21 0 0 0 29 0 16 0 0 0

According to the rank of centrality measures shown in Table 1, node 6, fol-
lowed by nodes 1, 2 and 8 in Figure 1 can be considered central or important
vertices. In this example, node 1 may be viewed as the most remarkable ver-
tex because node 1 is the important vertex that bridges two communities while
the result in the centrality measures suggests node 6 to be the most important.
Moreover, a centrality measures provides only information of ranking and cannot
differentiate nodes 1, 2, 6 and 8 because a centrality measure does not consider
the community structure.

Four roles — ambassadors, bridges, big fish and loners, are proposed in [6].
The method in [6] is designed to classify roles according to the degree of a vertex
and a proposed community metric for a vertex. Nodes 2, 6 and 8 are discovered
as ambassadors because each of them has a large degree and a large value for the
proposed community metric, nodes 3, 4 and 5 are discovered as big fish because
each of them has a large degree but a small value for the proposed community
metric, and node 11 is a loner because node 11 has a small degree and a small
value for the community metric. In the proposed community metric, a community
is defined based on a clique so [6] fails to detect node 1 that connects the two
communities, which are not cliques.

Considering the example in Figure 1a, we think node 1 is the most important
vertex because it is located between the two communities. It becomes easy to
discover these two communities if we can detect node 1. We regard nodes 2 and
6 are entrances or exits of the communities and they become important vertices

1 CD(ni) =
∑

j I(i, j), where (i, j) ∈ E and I is a 0/1 indicator function.
2 CC(ni) = N−1∑g

j=1 d(ni,nj)
, where d(ni, nj) is the length of the shortest path between

vertices i and j and N is the number of vertices.
3 CB(ni) =

∑
j<k gjk(ni), where gjk is the number of the shortest paths between

vertices j and k that contain vertex i.



Discovering Community-Oriented Roles of Nodes in a Social Network 55

in bridging communities if we remove node 1 and connect nodes 2 and 6 directly.
When we split the second community into two, we find that node 8 becomes a
vertex connecting communities as shown in Figure 1b. This example inspires us
to discover these community-oriented roles that bridge communities. We name
node 1, nodes 2 and 6, and node 8 a bridge, gateways, and a hub, respectively.

Therefore, We tackle the problem of discovering community-oriented roles —
bridges, gateways and hubs from a social network G. The problem setting is
formalized as follows.

Input: a social network G = 〈V, E〉, where V = {v1, v2, . . . , vn} is a non-empty
finite set of vertices and E is a set of edges where an edge is binary relation of
an unordered pair of distinct elements of V

Output: V ′ = {vi | vi is either a bridge, a gateway, a hub or a loner}

3 Community-Oriented Roles

We examined existing methods with a motivating example in section 2. The
centrality measures are used to find the most central node and [6] is designed to
assign a role using the degree and the proposed community metric of a vertex.
In this paper, we detect community-oriented roles by using topological infor-
mation. Generally two vertices are similar if they have a link between them.
We assume vertices within the same community connect with each other more
densely than vertices between communities do. The more similar the vertices in
the neighborhoods of a vertex are, the denser the graph formed by the vertex
and its neighbors becomes. If a vertex is located between two communities, the
two communities in its neighborhood are not expected to have many common
vertices between them, which leads to our main idea for defining bridges, gate-
ways and hubs. Thus, neighbors of a bridge, a gateway or a hub do not necessarily
share the same common vertices. The extent to which its neighbors connect with
each other decides which role a vertex belongs to and the community structure
the vertex connects accordingly differs.

A property used in our definition is network transitivity or clustering [10],
which is a common property in most networks. If node A links with node B and
node B links with node C, nodes A and C are likely to have a connection between
them. In other words, two of your friends will have a high probability of knowing
each other, on account of their common acquaintance with you. This effect is
quantified by the clustering coefficient C [5] [10] which implies the probability
that two of one’s friends are friends themselves, defined as C = 3Δ/Θ where Δ
represents the number of triangles on the graph and Θ represents the number
of connected triples of vertices. Furthermore, social networks generally have a
much higher value for C than the corresponding random model [5].

3.1 Bridges, Gateways and Hubs

In this paper, we focus on a simple, undirected and unweighted graph. Let G =
〈V, E〉 be a graph, where V is a set of vertices and E is a set of unordered pairs
of distinct vertices. Also, a vertex possesses at most one role in this paper.



56 B. Chou and E. Suzuki

12 3

4

5

6

7

8

(a) bridge

1 2

3

4

5

6

7

(b) gateway

1

2

3

4

5

6

(c) hub

Fig. 2. Examples of a bridge (node 1 in Fig. 2a), gateways (nodes 1 and 2 in Fig. 2b),

and a hub (node 1 in Fig. 2c)

Definition 1. Let v ∈ V . v’s neighborhood N(v) encompasses vertices linked to
v and itself.

N(v) = {u ∈ V | (v, u) ∈ E} ∪ {v}

Definition 2. Let v, u ∈ V, v 	= u. v and u are connected via an intermediate
node if they have only one common neighbor between them, which is denoted by
CIN(v, u).

CIN(v, u)⇔ |N(v) ∩N(u)| = 1

Note that there is no direct connection between u and v which satisfy CIN(u, v)
but only one common vertex between their neighborhoods. This accordingly
implies that vertices u and v are likely not to belong to the same community.

Definition 3. Let v, u ∈ V, v 	= u. v and u are strongly connected if v and u
share two or more neighbors between them, which is denoted by SC(v, u).

SC(v, u)⇔ |N(v) ∩N(u)| ≥ 2

We think it is more plausible to group u and v that satisfy SC(u, v) into the same
community than to group two vertices that are connected via an intermediate
node (CIN ) because strongly connected vertices share more common vertices in
their neighborhoods.

Definition 4. A loner is a vertex v of G whose neighborhood N(v) only contains
itself and another vertex which has an edge to it, which is denoted by loner(v).

Loner(v) ⇔ |N(v)| = 2

A loner has only one association to other nodes. ¬Loner(v) denotes that v is
not a loner.



Discovering Community-Oriented Roles of Nodes in a Social Network 57

Definition 5. A vertex v ∈ V is called a bridge if v’s neighbors are not loners
and any two nodes other than v in v’s neighbors have a CIN relation. Bridge(v)
denotes a vertex v is a bridge.

Bridge(v) ⇔ ∀x, y ∈ N(v)− {v}, x 	= y :CIN(x, y)∧
¬loner(x) ∧ ¬loner(y)

We use Figure 2a as an example to explain a bridge. Let v, x, y in Definition
5 be 1, 2, 3, respectively. Nodes 2 and 3 that are neighbors of node 1 are not
loners and they only have a common vertex: node 1, i.e., CIN(2, 3), so node 1
in Figure 2a is a bridge. A bridge is a vertex located between two communities.
A bridge connects communities, each of which has only one single link with it
so we need to check any two neighbors of a bridge. Also, a bridge’s neighbors
cannot be a loner since a loner does not form a community. As we said, we think
that it is controversial to cluster a bridge into any community so it is a vertex
independent of communities.

Definition 6. A vertex v ∈ V is called a gateway if it satisfies the following
conditions, which is denoted by gateway(v). First, it has two neighbors that are
strongly connected (SC). Second, it has another neighbor that is not a loner and
does not share any common neighbor except v with v’s other neighbors.

Gateway(v) ⇔ (1)∃x, y ∈ N(v)− {v}, x 	= y : SC(x, y)
(2)∃z ∈ N(v)− {v}, ∀u ∈ N(v)− {v, z} :
¬loner(z) ∧CIN(z, u)

We use Figure 2b as an example to explain a gateway. Let v, x, y, z, u in Definition
6 be 1, 6, 7, 2, 6 or 7, respectively. Nodes 6 and 7 satisfy SC(6, 7) because nodes 6
and 7 have three common vertices (i.e., nodes 1, 6, and 7) in their neighborhoods
and node 2 that is not a loner has only one common vertex (i.e., node 1) with
other neighbors of node 1. This example shows that node 1 in Figure 2b is
a gateway. A gateway acts as an entrance or an exit when we move from a
community to another one. In condition (1) of the definition, x and y that are
strongly connected implies the existence of a community while in condition (2),
z which is not a loner implies that there exist one vertex which does not belong
to the same community with other neighbors. These two conditions makes a
gateway act as an entrance to a community or an exit from a community.

Definition 7. A vertex v ∈ V is called a hub, denoted by hub(v), if there exist
w, x, y, and z which are neighbors of v and which satisfy the following conditions.
w and x are strongly connected, and y and z are strongly connected as well. w
and y are connected via an intermediate node, and x and z are connected via an
intermediate node as well.

Hub(v)⇔∃w, x, y, z ∈ N(v)− {v}, w 	= x, y 	= z :
SC(w, x) ∧ SC(y, z) ∧ CIN(w, y) ∧CIN(x, z)



58 B. Chou and E. Suzuki

We use Figure 2c as an example to explain a hub. Let v, w, x, y, z in Definition
7 be 1, 2, 3, 5, 6, respectively. Nodes 2 and 3 have four common vertices (i.e.,
nodes 1, 2, 3 and 4) and hence satisfy SC(2, 3), and similarly, nodes 5 and 6 have
three common vertices (i.e., nodes 1, 5 and 6) and hence satisfy SC(5, 6). Nodes
2 and 5 have only one common vertex (i.e., node 1), satisfying CIN(2, 5), and
similarly nodes 3 and 6 satisfy CIN(3, 6). Thus, node 1 in Figure 2c is a hub.
A hub is a confluent vertex, on which groups of vertices converge. We regard a
hub is a center of groups of vertices, as each pair of neighbors that are strongly
connected form a group of vertices and the CIN conditions imply that they may
belong to different groups of vertices. Groups of vertices may be clustered into
the same community or be divided into different communities, which depends
on the procedure of community detection explained in the next section.

3.2 Discovery Priority of Bridges, Gateways and Hubs

To detect the three kinds of roles, our algorithm checks for each vertex v ∈ V
if v satisfies the conditions in definitions 5, 6, 7. Note that each CIN(a, b) and
SC(x, y) can be checked in O(d2) time, where d represents the degree of G,
because a, b, x, y ∈ N(v). Hence the complexity of our algorithm is O(nd2),
where n represents the number of nodes in G.

In this paper, we assume that one vertex possesses at most one role. However,
a vertex is possibly assigned as a gateway and a hub at the same time accord-
ing to the definitions. To avoid this problem, we search roles in the following
order: bridges, gateways and hubs. Once a role is assigned, another role can-
not be assigned. The order is determined in terms of the community detection
(graph clustering) which aims at maximizing the edges within the community
and minimizing the edges between communities.

For clarity, we use a gateway and a hub to explain the order we determine in
the context of community detection, in which an edge bridging communities of
a role is deleted in each step. Suppose we have detected a gateway and a hub,
each of which connects two communities. In the case of the gateway, there is
one of its edges spanning communities so two communities will be discovered
by only removing one edge. However, in the case of the hub, a hub is a vertex
connecting two communities so two communities will be discovered by removing
the edges which link to one of the communities. Hence, when a gateway and a
hub both exist in a graph, the edge of the gateway which spans communities will
be considered to be removed first according to the aim of community detection,
which leads to our intuition for determining the order.

4 Evaluation by Experiments

We have implemented a discovery algorithm of the proposed roles in C lan-
guage and evaluate them using both synthetic and real datasets. The proposed
roles including bridges, gateways, hubs, loners are compared with the method
named rawComm in [6] which proposes four kinds of roles including ambassadors,



Discovering Community-Oriented Roles of Nodes in a Social Network 59

bridges, big fish and loners, and the validness of the outputs are compared sub-
jectively.

Four kinds of roles of rawComm are defined using the degree of a vertex and
a proposed community metric that estimates the number of communities linked
to a vertex, in which a community is defined based on a clique. An ambassador
is a vertex which has a large degree and a large value for the community metric;
a bridge is a vertex which has a small degree but a large value for the community
metric; a big fish is a vertex which has a large degree but a small value for the
community metric; a loner is vertex which has a small degrees and a small value
for the community metric. We follow the way in [6] to normalize the degree and
the proposed community metric value of a vertex between 0 and 1, and assign
roles by determining the value of a threshold r from 0 to 1 required in rawComm.
The threshold r is used to discover roles by classifying values (i.e., the degree and
the value of the proposed community metric) assigned to a vertex. rawComm
can become more useful for communities defined by means other than clique
by using probabilities values that contain community information such as the
probability that two linked nodes are in the same community. We compare our
proposed roles with two variations of rawComm, one which utilizes community
information and the other which does not utilize community information.

4.1 Synthetic Data

To evaluate the proposed roles in one network, we generate a synthetic graph
with 21 vertices and 37 edges as shown in Figure 3. We intentionally settled the
size of the graph relatively small to clearly demonstrate the results of our method
and rawComm. Figure 3a shows the result of our method, Figure 3b shows the
result of rawComm without using community information, and Figures 3c and
3d are the results of rawComm that use community information with r = 0.25
and r = 0.65, respectively. To validate our proposed roles, we use normalized cut
[7] that is a well-known clustering technique to show the community structure.
Nodes circled within a gray oval in Figure 3a are clustered into one community.

As shown in Figure 3a, our method discovers node 6 as a hub. In Figure 3b,
rawComm without the community information does not discover node 6 while
rawComm discovers node 6 as an ambassador after importing the community
information as shown in Figure 3c.

Moreover, we see nodes 1, 2, 4 and 5 are important vertices that bridge two
communities from the community structure shown in Figure 3a. In our method,
node 1 is distinguished as a bridge from other vertices, and nodes 2, 3, 4 and 5
are recognized as gateways. However, rawComm fails to discover nodes 1, 2, 4
and 5 since they are not vertices that have large degrees or connect many cliques
when r = 0.25. Node 1 is discovered as a bridge when r = 0.65 in Figure 3d
while much more vertices are assigned loners. From the observations, we see that
vertices (i.e., nodes 1, 2, 4 and 5) that bridge communities are assigned roles in
our method while rawComm cannot detect all vertices bridging communities and
requires that the value of the threshold r is settled appropriately for discovering
some of the roles.



60 B. Chou and E. Suzuki

1
2

3

45

6

7

8

9

10

11
12

13

14

15

16

17

18

1920

21 Bridge

Hub

Gateway

Loner

(a) Proposed roles

Ambassador

Loner

1
2

3

45

6

7

8

9

10

11
12

13

14

15

16

17

18

1920

21

(b) rawComm without commu-

nity information

1
2

3

45

6

7

8

9

10

11
12

13

14

15

16

17

18

1920

21

Ambassador

Loner

(c) rawComm with community in-

formation (r=0.25)

1
2

3

45

6

7

8

9

10

11
12

13

14

15

16

17

18

1920

21

Ambassador

Bridge

Loner

(d) rawComm with community in-

formation (r=0.65)

Fig. 3. Evaluation of proposed roles using synthetic data

4.2 DBLP Data

Figures 4 and 5 show the experimental results that use the data from DBLP1.
DBLP provides bibliographic information on major computer science journal
and proceedings. For the experiment, we extracted the data of IJCAI between
2005 and 2009 from DBLP, and generated a coauthorship network, where a
vertex represents an author and two authors are linked by an edge when they
have coauthored at least one paper. The data of IJCAI 2005–2009 encompasses
2197 vertices and 6412 edges, and we only show a subgraph for clarity in Figure
4 because similar results are also observed in other subgraphs. Note that we
only compare our method with rawComm with community information in this
experiment.

In Figure 4a, rawComm discovers two kinds of roles. Nodes 1 and 3 are am-
bassadors and they are vertices which have large values for both the degree and
the community metric value. Nodes 12, 14, 15, 16, 19, 20, and 31 are loners and
they are vertices which have small degrees compared to other vertices. Similarly,
we tuned the value of r in order to examine whether we can find more roles, but
only one more vertex (node 17) of ambassadors is found while most vertices are

1 http://www.informatik.uni-trier.de/~ley/db/

http://www.informatik.uni-trier.de/~ley/db/


Discovering Community-Oriented Roles of Nodes in a Social Network 61

1

2

3

4

5

6

7
8

9

1011

12

13

14

15

16

17

1920

21

22

23

24

26

25

27

28

29

30

31

32

33

34

35

18

Ambassador

Loner

(a) r=0.3

1

2

3

4

5

6

7
8

9

1011

12

13

14

15

16

17

1920

21

22

23

24

26

25

27

28

29

30

31

32

33

34

35

18

Ambassador

Loner

(b) r=0.65

Fig. 4. rawComm on DBLP data

grouped into the role of loners when r = 0.65 (Figure 4b). Since the value for
the community metric proposed in [6] tends to be proportional to the degree,
rawComm appears to classify vertices into ambassadors and loners, which is also
observed in [6]. Note that rawComm fails to distinguish node 18 although it is a
node which bridges two communities when the number of communities is three
(Figure 6b).

To show the relationship between the proposed community-oriented roles and
the community structure, Figures 6a, 6b and 6c show clustering results when
the number of given communities is 2, 3 and 4, respectively, by utilizing the
normalized cut method.

By referring to Figures 5 and 6, we have the following findings of our bridges,
gateways and hubs. Node 18 discovered as a bridge is an important vertex in
bridging two communities, nodes 1 and 17 are entrances to communities and
neighbors of node 3 are divided into different communities, which fit our in-
tuition. Although nodes 7 and 10 are not vertices in bridging communities in
the clustering results in Figure 6, they turn out to be vertices in bridging com-
munities when the number of communities increases, which corresponds to our
anticipation. From the results, we can conclude that the border between two com-
munities are often vertices with the proposed roles such as nodes 1 and 3 when
the number of communities is two and nodes 1, 3, 17, and 18 when the number of
communities is three. With this regard, our method outperforms rawComm since



62 B. Chou and E. Suzuki

1

2

3

4

5

6

7
8

9

1011

12

13

14

15

16

17

1920

21

22

23

24

26

25

27

28

29

30

31

32

33

34

35

18

Bridge

Hub

Gateway

Loner

Fig. 5. Proposed roles on DBLP data

1

2

3

4

5

6

7
8

9

1011

12

13

14

15

16

17

1920

21

22

23

24

26

25

27

28

29

30

31

32

33

34

35

18

(a) Two communities

1

2

3

4

5

6

7
8

9

1011

12

13

14

15

16

17

1920

21

22

23

24

26

25

27

28

29

30

31

32

33

34

35

18

(b) Three communities

1

2

3

4

5

6

7
8

9

1011

12

13

14

15

16

17

1920

21

22

23

24

26

25

27

28

29

30

31

32

33

34

35

18

(c) Four communities

Fig. 6. Comparing with clustering results that use the method of Normalized Cut

rawComm only discovers vertices with large degrees that connect relatively many
cliques while our method discovers vertices that connect communities with few
links such as node 18 as well.

4.3 Analysis on the Proposed Orientation of Community

To examine whether three community-oriented roles — bridges, gateways and
hubs are important vertices in bridging communities, we further perform an-
other experiment which shows how frequently the proposed roles appear around



Discovering Community-Oriented Roles of Nodes in a Social Network 63

Table 2. Summary of the analysis (A cell of the columns of Bridge, Gateway, Hub

represents the number of correct roles/the number of discovered role for bridges, gate-
ways and hubs, respectively. A cell of the column of Community represents the number

of communities whose boundary contain proposed roles/the number of detected com-

munities. A number followed by a % represents the accuracy rate.)

Confname Bridge Gateway Hub Community

KDD 0/1 (0%) 35/38 (92%) 214/269 (80%) 225/227 (99%)

IJCAI 6/12 (50%) 47/59 (80%) 180/217 (83%) 213/215 (99%)

the boundary of communities. The data for the experiment are collected from
KDD2009, KDD2008-2009, KDD2007-2009, KDD2006-2009, KDD2005-2009, IJ-
CAI2009, IJCAI2007-2009, and IJCAI2005-2009. We extracted all sub-connected
graphs each of whose size is larger than ten, and performed community detection
by using the clustering method introduced in [4] which measures how good the
division is. The number of clusters is optimally determined by [4] and we do not
have to assign the number of clusters so we use it as the method of community
detection to simplify the experiment.

We check whether nodes that are discovered as community-oriented roles
bridge communities and summarize the experimental result in Table 2. Here
we use the result of community detection as our ground truth to compute the
accuracy rate. A vertex discovered as a proposed role is judged as a correct role
if its neighbors belong to different communities.

In Table 2, the number of vertices discovered as bridges is the smallest and
the number of vertices discovered as hubs is the largest, which corresponds to
our anticipation because there exist many cliques in social networks. Gateways
and hubs have high accuracy rates while bridges has low accuracy rates in Table
2. For the result, we examined the graph structures and found that a part of
vertices that link to bridges are too few to form a community, which results in
low accuracy rates. From the accuracy rate for communities that amounts to 99%
in Table 2, we can conclude that most of the vertices with the proposed roles
are found in the boundary of communities and they are important in bridging
communities.

5 Conclusions and Future Work

In this paper, we proposed three community-oriented roles, namely bridges, gate-
ways and hubs, which are important roles in bridging communities. A role is
assigned to a vertex based on the relationship between its neighbors. The more
similar the vertices shared between its neighbors are, the denser the graph formed
by the vertex and its neighbors becomes. Similarly, if the neighbors of a vertex
rarely share common vertices, it implies that the vertex is likely to be the vertex
bridging communities because community detection aims at maximizing edges
within communities but minimizing edges between communities. Our method is



64 B. Chou and E. Suzuki

validated through experiments and is shown to be able to discover vertices that
bridge communities relatively accurately without knowledge on the community
structure.

As discussed in the previous sections, the grouping problem of the proposed
roles may be considered differently in community detection. For example, it
fits our intuition not to cluster bridges into any community and to view hubs
as overlapping vertices. Therefore, our future work is to develop an algorithm
which detects communities highly accurately by considering roles of vertices.

References

1. Domingos, P., Richardson, M.: Mining the Network Value of Customers. In: Pro-

ceedings of the Seventh ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), pp. 57–66 (2001)

2. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,

San Francisco (2005)

3. Kempe, D., Kleinberg, J.M., Tardos, É.: Influential Nodes in a Diffusion Model

for Social Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,

Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg

(2005)

4. Newman, M.E.J.: Finding Community Structure in Networks Using the Eigen-

vectors of Matrices. Physical Review E (Statistical, Nonlinear, and Soft Matter

Physics) 74(3), 036104 (2006)

5. Newman, M., Park, J.: Why Social Networks are Different from Other Types of

Networks. Physical Review E 68(3), 36122 (2003)

6. Scripps, J., Tan, P.N., Esfahanian, A.H.: Node Roles and Community Structure in

Networks. In: Proceedings of the Ninth WebKDD and the First SNA-KDD 2007

Workshop on Web Mining and Social Network Analysis (WebKDD/SNA-KDD),

pp. 26–35 (2007)

7. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence 22, 888–905 (1997)

8. Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic Spreading in Real

Networks: An Eigenvalue Viewpoint. In: Proceedings of the 22nd International

Symposium on Reliable Distributed Systems (SRDS), pp. 25–34 (2003)

9. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.

Cambridge University Press, Cambridge (1994)

10. Watts, D.J., Strogatz, S.H.: Collective Dynamics of ‘Small-World’ Networks. Na-

ture 393(6684), 440–442 (1998)



A Graph-Based Clustering Scheme for
Identifying Related Tags in Folksonomies

Symeon Papadopoulos1,2, Yiannis Kompatsiaris1, and Athena Vakali2

1 Informatics and Telematics Institute, CERTH

57001, Thessaloniki, Greece

{papadop,ikom}@iti.gr
2 Department of Informatics, Aristotle University,

54124, Thessaloniki, Greece

avakali@csd.auth.gr

Abstract. The paper presents a novel scheme for graph-based cluster-

ing with the goal of identifying groups of related tags in folksonomies.

The proposed scheme searches for core sets, i.e. groups of nodes that

are densely connected to each other by efficiently exploring the two-

dimensional core parameter space, and successively expands the identi-

fied cores by maximizing a local subgraph quality measure. We evaluate

this scheme on three real-world tag networks by assessing the relatedness

of same-cluster tags and by using tag clusters for tag recommendation.

In addition, we compare our results to the ones derived from a baseline

graph-based clustering method and from a popular modularity maxi-

mization clustering method.

Keywords: graph-based clustering, community detection, folksonomies,

tag recommendation.

1 Introduction

Collaborative (or Social) Tagging is nowadays a common feature of content shar-
ing web applications that enables users to: (a) upload new, or bookmark exist-
ing content and, (b) annotate it by means of free-text keywords (tags). Such
applications, examples of which are delicious1, flickr2 and Bibsonomy3, are com-
monly referred to as Social Tagging Systems (STS). Currently, STS attract huge
amounts of traffic, which results in the emergence of massive grassroots content
annotation and organization schemes, referred to as folksonomies [1,2]. Folk-
sonomies comprise three types of entities, namely users, resources and tags, as
well as the associations among them [3,4].

Folksonomies constitute a direct encoding of the views of a large number of
users on how content items should be organized through a flexible annotation
scheme (tagging). By analyzing the structure and content of folksonomies, one
1 http://delicious.com/
2 http://www.flickr.com/
3 http://bibsonomy.org/

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 65–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://delicious.com/
http://www.flickr.com/
http://bibsonomy.org/


66 S. Papadopoulos, Y. Kompatsiaris, and A. Vakali

can expect to gain valuable insights into the topic and vocabulary structure of
the system. To this end, tag clustering has lately attracted significant research
interest due to its value in several Information Retrieval (IR) use case scenar-
ios [5,6,7,8,9,10,11]. Tag clustering is commonly understood as a process that
groups the tags of an STS in a way such that members of the same tag cluster
are perceived by users as related to each other. Despite the subjective element in
judging the degree of relatedness between tags, tag clusters are expected to corre-
spond to meaningful topic areas, which can be useful in a series of tasks, such as
information exploration and navigation [5,6], automatic content annotation [8],
user profiling [9], content clustering [10,11] and tag recommendation [12,13].

To date, tag clustering has been dealt with either by conventional clustering al-
gorithms, such as K-means [10] and Hierarchical Agglomerative Clustering [8,9],
or, more recently, by use of community detection methods [5,6,7]. Conventional
clustering schemes are frequently troubled by two shortcomings: (a) the need for
providing the number of clusters as input to the algorithm, and (b) their compu-
tational complexity. Community detection methods address both of these needs,
since they do not require the number of clusters (communities) to be known a
priori and they are typically more efficient in terms of computations. However,
modularity maximization methods [14], which constitute the bulk of community
detection methods, are troubled by the so-called “super-community” problem,
i.e. they produce few communities with very large sizes and numerous communi-
ties with small sizes. Having tag clusters of such highly skewed size distribution
can be detrimental to the aforementioned IR tasks.

For that reason, we introduce in this paper a hybrid graph-based tag cluster-
ing scheme, referred to in short as HGC, which attempts to address the afore-
mentioned constraints. HGC is based on the notion of (μ, ε)-cores [15], groups
of nodes that have a large number of common neighbors to each other. HGC
conducts an efficient search over the (μ, ε) parameter space and identifies the
associated core sets. Subsequently, a core set expansion step is conducted based
on a local modularity measure [16]. This expansion enables the resulting clusters
to overlap with each other, which is particularly important for the problem of
tag clustering, since tags are typically used in multiple contexts and senses.

The rest of the paper is structured as follows. Section 2 discusses existing
work on the topic of tag clustering and its applications. Section 3 presents HGC,
the proposed hybrid graph-based solution to the problem of tag clustering. HGC
is evaluated and compared against existing clustering schemes in Section 4. The
paper concludes in Section 5.

2 Related Work

The problem of tag clustering has recently attracted increasing research interest
since it is a challenging task from a data mining perspective, but at the same
time it also holds the potential for benefiting a variety of IR applications. For
instance, tag clustering is considered important for eliciting a topic hierarchy
for a tagging system and improving content retrieval and browsing [8]. Similar



A Graph-Based Clustering Scheme for Identifying Related Tags 67

conclusions are reached by [5] who point that the use of raw tag information
limits content exploration and discovery, thus creating the need for an additional
level of organization through tag clustering. In [9], tag clusters are used as a
nexus between users and their interests. Using tag clusters instead of plain tags
for profiling user interests proved beneficial for personalized content ranking. An
additional application of tag clustering is presented in [7]. There, the tag clusters
were used as a means of identifying the different contexts of use for a given tag,
i.e. for sense disambiguation. It was shown that using the tag clusters results in
improved results compared to the use of external resources such as WordNet.

The methods used for performing the tag clustering largely fall under one
of two approaches: (a) conventional clustering techniques, such as Hierarchi-
cal Agglomerative Clustering (HAC) [8,9] and (b) community detection meth-
ods [5,6,7]. HAC suffers from high complexity (quadratic to the number of tags to
be clustered) and the need to set ad-hoc parameters (e.g. three parameters need
to be set in the clustering scheme used in [9]). Community detection methods
largely address the shortcomings of HAC since efficient implementations exist
with a complexity of O(Nlog(N)) for finding the optimal grouping of N tags into
communities. Furthermore, community detection methods rely on the measure
of modularity [14] as a means to assess the quality of the derived cluster struc-
ture. Thus, modularity maximization methods do not require any user-defined
parameters. However, a problem of modularity maximization methods pointed
in [6] and confirmed by our experiments is their tendency to produce clusters
with a highly skewed size distribution, which makes them unsuitable for the
problem of tag clustering.

3 Description of HGC

The proposed scheme builds upon the notion of (μ, ε)-cores introduced in [15]
and briefly described in subsection 3.1. The original algorithm, referred to as
SCAN [15], suffers from two problems. First, it needs two parameters, namely μ
and ε, to be provided as input. Second, it leaves a substantial number of nodes
unassigned to clusters. As a result, its utility is limited in IR tasks such as tag rec-
ommendation. For that reason, our scheme conducts an efficient iterative search
over the parameter space (μ, ε) in order to discover cores for multiple values of
the parameters (subsection 3.2). Finally, the identified cores are expanded, as
described in subsection 3.3, by maximizing a local measure of modularity [16] in
order to increase the number of nodes that are assigned to communities and to
enable overlap among communities.

3.1 Core Set Discovery

The definition of (μ, ε)-cores is based on the concepts of structural similarity,
ε-neighborhood and direct structure reachability.



68 S. Papadopoulos, Y. Kompatsiaris, and A. Vakali

Fig. 1. Example of community structure in an artificial network. Nodes are labeled

with successive numbers and edges are labeled with the structural similarity value

between the nodes that they connect. Nodes 1 and 10 are (μ, ε)-cores with μ = 5

and ε = 0.65. Nodes 2-6 are structure reachable from node 1 and nodes 9, 11-15 are

structure reachable from node 10. Thus, two community seed sets have been identified:

the first consisting of nodes 1-6 and the second consisting of nodes 9-15.

Definition 1. The structural similarity σ between two nodes v and w of a
graph G = {V, E} is defined as:

σ(v, w) =
|Γ (v) ∩ Γ (w)|√
|Γ (v)| · |Γ (w)|

(1)

where Γ (v) is the structure of node v: Γ (v) = {w ∈ V |(v, w) ∈ E} ∪ {v}.

Definition 2. The ε-neighborhood of a node is the subset of its structure con-
taining only the nodes that are at least ε-similar with the node; in math notation:

Nε(v) = {w ∈ Γ (v)|σ(v, w) ≥ ε} (2)

Definition 3. A vertex v is called a (μ, ε)-core if its ε-neighborhood contains
at least μ vertices: COREμ,ε(v)⇔ |Nε(v)| ≥ μ.

Definition 4. A node is directly structure reachable from a (μ, ε)-core if it
is at least ε-similar to it: DirReachμ,ε(v, w) ⇔ COREμ,ε(v) ∧ w ∈ Nε(v).

Once the (μ, ε)-cores of a network have been identified, it is possible to start
attaching adjacent nodes to them provided that they are reachable through a
chain of nodes which are directly structure reachable from each other. We call
the resulting set of nodes as a community seed set. The rest of the nodes are
considered to be hubs or outliers depending on whether they are adjacent to
more than one community core sets or not. An example of computing structural
similarity values for the edges of a network and then identifying the underlying
(μ, ε)-cores, hubs and outliers of the network is illustrated in Figure 1. This
technique for collecting community seed sets is computationally efficient since its
complexity is O(k ·n) for a network of n nodes and average degree k. Computing
the structural similarity values of the m network edges introduces an additional
O(k ·m) complexity in the community detection.



A Graph-Based Clustering Scheme for Identifying Related Tags 69

3.2 Parameter Space Exploration

One issue that is not addressed in [15] pertains to the selection of parameters μ
and ε. Setting a high value for ε (the maximum possible value for ε is 1.0) will
render the core detection step very eclectic, i.e. few (μ, ε)-cores will be detected.
Moreover, higher values for μ will also result in the detection of fewer cores
(for instance, all nodes with degree lower than μ will be excluded from the core
selection process). For that reason, we employ an iterative scheme, in which
the community seed set selection operation is carried out multiple times with
different values of μ and ε so that a meaningful subspace of these two parameters
is thoroughly explored and the respective (μ, ε)-cores are detected.

The exploration of the (μ, ε) parameter space is carried out as depicted in
Figure 2. We start by a very high value for both parameters. Since the maximum
possible values for μ and ε are kmax (maximum degree on the graph) and 1.0
respectively, we start the parameter exploration by two values dependent on
them (for instance, we could select μ0 = 0.5 ·kmax and ε0 = 0.9; the results of the
algorithm are not very sensitive to this choice). We identify the respective (μ, ε)
cores and associated core sets and then relax the parameters in the following
way. First, we reduce μ; if it falls below a certain threshold (e.g. μmin = 4), we
then reduce ε by a small step (e.g. 0.05) and we reset μ = μ0. When both μ and
ε reach a small value (μ = μmin and ε = εmin), we terminate the community
seed set detection step. This exploration path ensures that first high quality
communities will be discovered and subsequently less profound ones will also be
detected. In order to speed up the parameter exploration process, we employ
a logarithmic sampling strategy when moving along the μ parameter axis. The
computational complexity of the proposed parameter scheme is a multiple of the
original SCAN. The multiplicative factor is C = sε · sμ, where sε is the number
of samples along the ε axis (� 10) and sμ is the number of samples along the μ
axis (� log kmax).

Fig. 2. Depiction of the (μ, ε) parameter space exploration path. The upper values

μ0 and ε0 are set in relation to their maximum possible ones (μmax = kmax and

εmax = 1.0). The lower values are set to μmin = 4 and εmin = 0.4 since cores with

lower values than these are of inconsistent quality.



70 S. Papadopoulos, Y. Kompatsiaris, and A. Vakali

3.3 Core Set Expansion

Starting from a community seed set S, the second step in the proposed commu-
nity detection method involves an expansion process, which aims at attaching
additional nodes, which are relevant, to the initial community seed set. The expan-
sion step is essential for deriving higher quality communities since the community
seed sets produced by the previous step may fail to include in the communities
nodes that are of importance for them. In the case of tag communities, this would
lead to tag communities that would miss some important keywords and would
thus be less representative of their topic. In addition, it is due to this expansion
step that overlap among communities is possible since the previous step produces
non-overlapping community seed sets.

The community expansion step is based on the maximization of a local mea-
sure of community quality, namely subgraph modularity introduced in [16]. The
modularity of a subgraph S ∈ V is defined as the ratio of the number of intra-
community edges (edges connecting nodes within S) over the number of edges
sticking out of S (Equation 3). Obviously, the larger such a value is, the more
well separated the subgraph is from the rest of the graph. In the extreme case
of a disconnected subgraph, its modularity value tends to infinity:

M(S) =
ind(S)
outd(S)

=
|{(v, w) ∈ E|v, w ∈ S}|

|{(v, w) ∈ E|v ∈ S ∧ w ∈ V − S}| (3)

The proposed expansion step is based on a greedy maximization scheme, i.e. it
successively attaches nodes to community S as long as their addition increases
the subgraph modularity M(S) of the community. The set of nodes that are
considered as candidates for attachment to S are pooled from the “community
frontier”, i.e. the set of all nodes that are adjacent to at least one node of the
community. Each candidate node is tentatively attached to the community and
the new value of its modularity is computed. This computation can be performed
very efficiently in an incremental fashion based on the values of ind(S) and
outd(S) before the tentative attachment of the candidate node to the community.

Nodes with very high degree4 are not considered in this process for two rea-
sons: (a) to reduce the computational complexity of the expansion step, (b) to
prevent the expansion process from creating a “gigantic” community. The node
resulting in the maximum increase of modularity for the community is consid-
ered a member of the community and the process is repeated for the rest of the
candidate nodes (it is possible that there is no increase of modularity by adding
a node to the community, in which case no expansion takes place).

4 Evaluation

In order to gain insights into the behavior of community detection in real-world
tagging systems, we conduct an evaluation study comparing the performance
4 We create a degree-ordered list of nodes for the whole graph and consider as high-

degree nodes the top 10% of them.



A Graph-Based Clustering Scheme for Identifying Related Tags 71

Table 1. Folksonomy datasets used for evaluation

(a) Basic folksonomy statistics

Dataset #triplets U R T

BIBSONOMY-200K 234,403 1,185 64,119 12,216

FLICKR-1M 927,473 5,463 123,585 27,969

DELICIOUS-7M 7,501,032 112,950 1,332,796 251,352

(b) Tag graph statistics (for large component)

Dataset |V | |E| k cc

BIBSONOMY-200K 11,949 236,791 39.63 0.6689

FLICKR-1M 27,521 693,412 50.39 0.8512

DELICIOUS-7M 216,844 3,443,367 31.76 0.8018

of our method (HGC) against two competing community detection methods on
three datasets coming from different tagging applications, namely BibSonomy,
Flickr and Delicious. The first of the two community detection methods under
study is the well-known greedy modularity maximization scheme presented by
Clauset, Newman and Moore (CNM) [18]5 and the second is the SCAN algorithm
of [15], which is extended by HGC. The three datasets used for our study are
described below and basic information on their size is presented in the upper
part of Table 1.

BIBSONOMY-200K: BibSonomy is a social bookmarking and publication
sharing application. The BibSonomy dataset was made available through the
ECML PKDD Discovery Challenge 20096. We used the “Post-Core” version of
the dataset, which consists of a little more than 200,000 tag assignments (triplets)
and hence the label “200K” was used to form the dataset name.

FLICKR-1M: Flickr is a popular online photo sharing and organizing appli-
cation. For our experiments, we used a focused subset of Flickr comprising ap-
proximately 120,000 images that were located within the city of Barcelona (by
use of a geo-query). In total, the number of tag assignments for this dataset
approaches one million.

DELICIOUS-7M: Delicious is a popular social bookmarking service for man-
aging and sharing bookmark collections. We used a snapshot of the Delicious
bookmark collection corresponding to January 2006, comprising seven million
tag assignments. This dataset is a subset of the collection studied in [19].

Starting from each dataset, we built a tag graph, considering an edge between
any two tags that co-occur in the context of some resource. The raw graph
contained a large component and several very small components and isolated
nodes. For the experiments we used only the large component of each graph,
5 We used the publicly available implementation of this algorithm, which we down-

loaded from http://www.cs.unm.edu/~aaron/research/fastmodularity.htm
6 http://www.kde.cs.uni-kassel.de/ws/dc09

http://www.cs.unm.edu/~aaron/research/fastmodularity.htm
http://www.kde.cs.uni-kassel.de/ws/dc09


72 S. Papadopoulos, Y. Kompatsiaris, and A. Vakali

which accounts for more than 99% of the size of the raw graph for all three
datasets. Some basic statistics of the analyzed large components are presented
in the lower part of Table 1. The nodes of the three tag graphs appear to have a
high clustering coefficient on average, which indicates the existence of community
structure in them. We applied the three competing clustering schemes, CNM,
SCAN and HGC, on the tag graphs and proceeded with the analysis of the
derived communities. Since SCAN is parameter-dependent, we performed the
clustering multiple times for many (μ, ε) combinations and selected the best
solution.

Our first observation concerns the community structure produced by CNM.
When considering the applications of tag clustering, it is hard to imagine that the
highly imbalanced cluster structure produced by CNM can be of much benefit.
For instance, knowing that two tags belong to the same huge cluster is not very
informative of their semantic relation; in fact, there are many pairs of tags within
such huge clusters that are not actually related to each other. Table 2 presents
several such examples of unrelated tags which were placed in the same cluster.
Having these tags in the same cluster is not only uninformative but it is actually
misleading and thus potentially harmful for use within some IR task.

Table 2. Examples of unrelated tags that were assigned by CNM to the same commu-

nity. Examples from the three largest communities of each dataset are presented.

Dataset Examples of unrelated tags in the same community

BIBSONOMY-

200K

hannover, nutritional, ebusiness, bishop, vivaldi, sunsets,

skyscapes, recycle, antiracist, patentbibliometrics

informationretrieval, magnetic, robotics, kolmogorov, wordnet,

socialinformatics, thermodynamics, metaphysics, ...

webdesign, windows, torrent, puzzle, vmware, geotagging, mov,

techcrunch, cpplib, baseballplayers

FLICKR-1M

spanien, common chimpanzee, star wars, renault, restaurant,

prostitution, olympicstadium, large windows, infrared

barcelona, watermelon, photon awards, birthday, mediterranean,

palm tree, fine arts, volkswagen, building, logistics

roma, double bass, crowd surfing, environment, lomography, flickr

babes, sombrero, basketball, bruce springsteen

DELICIOUS-7M

geekiness, telepathy, scifihorror, britneyspears, theflintstones,

sportculture, environmentalhealth, uspatent, argentina, ...

education, capetown, flashwebsites, businessanalyst, newjournal-

ism, adventuretravel, musicnetwork, scienceastrophysics, ...

food, island, bike, jersey, federal, climate, ghosts, athletics, envi-

roment, imperialism



A Graph-Based Clustering Scheme for Identifying Related Tags 73

In contrast, Table 3 presents several examples of interesting tag clusters dis-
covered by HGC. Close examination of the tags contained in them reveals their
close semantic and contextual association. In the case of CNM these clusters are
contained in the aforementioned gigantic communities together with numerous
unrelated tags, thus their utility is limited. On the other hand, the plain SCAN
method can only identify subsets of these clusters, which is expected to harm
the recall performance of the IR applications making use of them.

Table 3. Examples of interesting tag communities discovered by HGC. In the case of

CNM, these communities are “hidden” within the gigantic communities discovered by

CNM. In contrast, in the case of SCAN, these communities are smaller since they do

not include tags from the community expansion step.

Dataset Examples of interesting HGC tag communities

BIBSONOMY-

200K

mpg, tif, jpeg, mpc, ico, wma, swf, fileconversion, txt, midi, psd,

wmi, ogg, avi, psp, tiff, odg, mdb, kar, divx, wmv, qcp, odp, ods,

rtf, odt, jpg, mov, amv, png, flv, flac, mmf, gif, sxw, amr, ...

israelis, middleast, terrorism, middleastpeace, peaceprocess,

onevoice, palestinians, conflictresolution, extremism, hatred

urlogic, lymphatic, neoplasms, virus, pathophysiology, microbial,

hemic, physician, doctor, musculoskeletal, respiratory, student,

hepatological, viral, infections, hematological, gastrointestinal

FLICKR-1M

salad, spansih gastronomy, catalan food, modena, bacallà, colme-

nillas, bread with tomato, marinated, gastronomy, merluzzo, ec,

marinado, cod, vinegar, bacalao, foie, meatfest, duck foie, ...

george clooney, sean connery, jude law, antonio banderas, jennifer

lopez, tom cruise, penelope cruz, viggo mortensen, ...

series, australian, federer, conde godó, open, moya, tenerife, atp,

las palmas gran, garros, torneo, murray, tamarasit, roland, rod-

dick, podcast, bernardes, sharapova, djokovic, wta, wawrinka,

campeonato, canarias, usopen, enric molina, chela gran, ...

DELICIOUS-7M

apollomission, saturnrocket, spacecrew, crewflight, navylieu-

tenant, flightcommander, colonelwhite, americanastronauts, lieu-

tenantcolonel, edwardwhite, spacewalk, capekennedy

herbiehancock, dextergordon, chrispotter, brianblade, grantgreen,

adamrogers, donaldbyrd, theloniousmonk, leemorgan, larrygold-

ings, hardbop, weatherreport, marcjohnson, mainstreamjazz, art-

blakey, billevans, joehenderson, joshuaredman, charlieparker, ...

danacarvey, commercialparodies, thehanukkasong, richardpryor,

stevemartin, wilferrell, chrisfarley, billmurray, adamsandler, king-

tut, alecbaldwin, mikemyers, churchlady, chevychase, ...



74 S. Papadopoulos, Y. Kompatsiaris, and A. Vakali

Finally, we used the derived tag clusters in the context of tag recommenda-
tion in order to quantify their effect on the IR performance of a cluster-based
tag recommendation system. More specifically, we created a simple recommen-
dation scheme, which, based on an input tag, uses the most frequent tags of its
containing cluster to form the recommendation set. In case more than one tags
are provided as input, the system produces one tag recommendation list (ranked
by tag frequency) for each tag and then aggregates the ranked list by summing
the tag frequencies when of tags belonging to more than one list. Although this
recommendation implementation is very simple, it is suitable for benchmarking
the utility of cluster structure since it is directly based on it.

The evaluation process was conducted as follows: We divided the available
tag assignments for each dataset into two sets, one used for training and the
other used for testing. Based on the training set, we built the corresponding tag
graph and produced the tag clusters based on the three competing methods.
Then, by using the tag assignments of the test set, we quantified the extent to
which the cluster structure found by use of the training set could help predict
the tagging activities of users on the test set. For each test resource tagged with
L tags, K < L tags were used as input to the tag recommendation algorithm
and the rest L − K were predicted. In that way, both the number of correctly
predicted tags and the one of missed tags is known. In addition, a filtering
step was applied on the tag assignments of the test set. Out of the test tag
assignments, we removed the tags that (a) did not appear in the training set,
since it would be impossible to recommend them and (b) were among the top 5%
of the most frequent tags, since in that case recommending trivial tags (i.e. the
most frequent within the dataset) would be enough to achieve high performance.

Table 4 presents a comparison between the IR performance of tag recommen-
dation when using the CNM, SCAN and HGC tag clusters. According to it,
using the HGC tag clusters results in far better tag recommendations than by
use of CNM across all three datasets. For instance, in the FLICKR-1M dataset,
the HGC-based recommendation achieves six times higher precision than the
CNM-based one (22.98% compared to 3.73%). A large part of the CNM-based
recommendation failure can be attributed to the few gigantic communities that
dominate its community structure. Compared to the best run of SCAN, HGC
performs better in terms of number of unique correct suggestions, recall and
P@1, but worse in terms of precision. In terms of F -measure, SCAN performs
slightly better in two out of the three datasets, but HGC performs better in the
third dataset. Given the fact that SCAN requires parameter tuning to achieve
this performance and that HGC provides more correct unique suggestions, we
conclude that the HGC tag cluster structure is more valuable in the context
of tag recommendation. Since HGC extends SCAN in two steps (multiple iter-
ations of SCAN and expansion of communities), we also ran tests to establish
the relation of performance change to each of these steps: the multiple SCAN
iteration step was responsible for a small part of the drop in precision and a
measurable part of the increase in recall, while the expansion step was the main
reason behind the increase in recall and the largest part of the drop in precision.



A Graph-Based Clustering Scheme for Identifying Related Tags 75

Table 4. IR performance of CNM, SCAN and HGC community structures in tag

recommendation. The following notation is used: RT denotes the number of correct

tags according to the ground truth, Rout the number of tag suggestions made by the

recommender, RTP the number of correct suggestions, UTP the number of unique

correct suggestions, P , R, and F stand for precision, recall and F-measure respectively,

and P@1, P@5 denote precision at one and five recommendations respectively.

BIBSONOMY-200K FLICKR-1M DELICIOUS-7M

CNM SCAN HGC CNM SCAN HGC CNM SCAN HGC

RT 15,216 55,875 56,893

Rout 15,056 4,958 11,814 55,605 22,463 49,851 56,166 13,974 33,107

RTP 272 1,120 1,406 2,074 10,419 11,454 1,022 3,624 6,258
UTP 189 717 837 305 1,399 1,666 459 1,506 2,628
P (%) 1.81 22.59 11.90 3.73 46.38 22.98 1.82 25,93 18.90

R (%) 1.79 7.36 9.24 3.71 18.65 20.50 1.80 6.37 11.00
F (%) 1.80 11.10 10.40 3.72 26.60 21.67 1.81 10.23 13.91
P@1 (%) 1.68 3.96 5.09 1.95 8.02 9.85 1.64 2.78 7.95
P@5 (%) 2.18 29.06 17.27 3.41 46.84 21.27 2.35 36.91 29.49

5 Conclusions

We presented a parameter-free graph-based clustering scheme that is particu-
larly suited to the task of tag clustering. The proposed scheme is based on the
discovery of (μ, ε)-cores for multiple sets of (μ, ε) values and a subsequent ex-
pansion based on a local measure of cluster quality. We evaluated the proposed
scheme on three real-world datasets and compared its performance against a
modularity maximization clustering algorithm (CNM) and the basic (μ, ε)-core
detection scheme (SCAN), which our proposal extends. We demonstrated that
the tag clusters produced by our method are of significantly higher quality than
the ones derived by CNM and achieve higher performance when used in the con-
text of tag recommendation. Compared to SCAN, our method produces clusters
with higher coverage (i.e. containing more related tags to the cluster topic). In
the task of tag recommendation, the HGC clusters resulted in higher recall, but
lower precision compared to SCAN. In addition, they led to a higher number of
unique correct recommendations. Given also the fact that SCAN needs param-
eter tuning, we consider our clustering scheme as more suitable for identifying
groups of related tags in folksonomies.

Acknowledgments. This work was supported by the WeKnowIt and GLOCAL
projects, partially funded by the European Commission, under contract numbers
FP7-215453 and FP7-248984 respectively.

References

1. Mathes, A.: Folksonomies - Cooperative Classification and Communica-

tion Through Shared Metadata (2004), http://www.adammathes.com/academic/

computer-mediated-communication/folksonomies.html

http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html


76 S. Papadopoulos, Y. Kompatsiaris, and A. Vakali

2. Vander Wal, T.: Folksonomy Coinage and Definition (2007),

http://www.vanderwal.net/folksonomy.html

3. Mika, P.: Ontologies are us: A unified model of social networks and semantics.

In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,

vol. 3729, pp. 522–536. Springer, Heidelberg (2005)

4. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folk-

sonomies: Search and Ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006.

LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)

5. Begelman, G., Keller, P., Smadja, F.: Automated Tag Clustering: Improving search

and exploration in the tag space (2006),

http://www.pui.ch/phred/automated_tag_clustering

6. Simpson, E.: Clustering Tags in Enterprise and Web Folksonomies. Technical Re-

port HPL-2008-18 (2008)

7. Au Yeung, C.M., Gibbins, N., Shadbolt, N.: Contextualising Tags in Collabora-

tive Tagging Systems. In: Proceedings of 20th ACM Conference on Hypertext and

Hypermedia, Turin, Italy, June 29-July 1, pp. 251–260. ACM, New York (2009)

8. Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotag-

ging and hierarchical clustering. In: Proceedings of WWW 2006: 15th International

Conference on World Wide Web, pp. 625–632. ACM, New York (2006)

9. Gemmell, J., Shepitsen, A., Mobasher, B., Burke, R.: Personalizing Navigation in

Folksonomies Using Hierarchical Tag Clustering. In: Song, I.-Y., Eder, J., Nguyen,

T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 196–205. Springer, Heidelberg (2008)

10. Giannakidou, E., Koutsonikola, V.A., Vakali, A., Kompatsiaris, Y.: Co-Clustering

Tags and Social Data Sources. In: Proceedings of WAIM 2008: 9th International

Conference on Web-Age Information Management, pp. 317–324. IEEE, Los Alami-

tos (2008)

11. Java, A., Joshi, A., Finin, T.: Detecting Commmunities via Simultaneous Cluster-

ing of Graphs and Folksonomies. In: Proceedings of WebKDD 2008: KDD Work-

shop on Web Mining and Web Usage Analysis (2008)

12. Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective

knowledge. In: Proceedings of WWW 2008: 17th International Conference on World

Wide Web, pp. 327–336. ACM, New York (2008)

13. Li, X., Snoek, C.G.M., Worring, M.: Learning Social Tag Relevance by Neighbor

Voting. IEEE Transactions on Multimedia 11(7), 1310–1322 (2009)

14. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-

works. Physical Review E 69, 026113 (2004)

15. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.: SCAN: A Structural Clustering Algo-

rithm for Networks. In: Proceedings of KDD 2007: 13th International Conference

on Knowledge Discovery and Data Mining, pp. 824–833. ACM, New York (2007)

16. Luo, F., Wang, J.Z., Promislow, E.: Exploring Local Community Structures in Large

Networks. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference

on Web Intelligence, pp. 233–239. IEEE Computer Society, Los Alamitos (2006)

17. Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: Leveraging Collective Intelligence

through Community Detection in Tag Networks. In: Proceedings of CKCaR 2009

Workshop in K-CAP 2009 Conference, Redondo Beach, California, USA (2009)

18. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very

large networks. Physical Review E 70, 066111 (2004)

19. Wetzker, R., Zimmermann, C., Bauckhage, C.: Analyzing social bookmarking sys-

tems: A del.icio.us cookbook. In: Proceedings of ECAI 2008 Workshop on Mining

Social Data (MSoDa), Patras, Greece, pp. 26–30 (July 2008)

http://www.vanderwal.net/folksonomy.html
http://www.pui.ch/phred/automated_tag_clustering


Frequent Sub-graph Mining on Edge Weighted
Graphs

Chuntao Jiang, Frans Coenen, and Michele Zito

The University of Liverpool

Ashton Building, Ashton Street

Liverpool, L69 3BX, United Kingdom

{c.jiang,coenen,michele}@liv.ac.uk

Abstract. Frequent sub-graph mining entails two significant overheads.

The first is concerned with candidate set generation. The second with

isomorphism checking. These are also issues with respect to other forms

of frequent pattern mining but are exacerbated in the context of frequent

sub-graph mining. To reduced the search space, and address these twin

overheads, a weighted approach to sub-graph mining is proposed. How-

ever, a significant issue in weighted sub-graph mining is that the anti-
monotone property, typically used to control candidate set generation, no

longer holds. This paper examines a number of edge weighting schemes;

and suggests three strategies for controlling candidate set generation.

The three strategies have been incorporated into weighted variations of

gSpan: ATW-gSpan, AW-gSpan and UBW-gSpan respectively. A com-

plete evaluation of all three approaches is presented.

Keywords: Weighted Transaction Graph Mining, Weighted Frequent

Sub-graph Mining, Weighting Schemes.

1 Introduction

Graph mining is concerned with the identification of patterns within graph data
of various forms. One form of graph mining is frequent sub-graph mining which
aims to identify frequently occurring patterns (sub-graphs) across a collection
of “small” graphs or within one “large” graph. This paper concentrates on the
first (also sometimes referred to as transaction graph mining).

Frequent sub-graph mining techniques [3, 5, 6, 8, 11, 12] have parallels with
more established frequent pattern mining techniques such as those used in, for
example, Association Rule Mining (ARM). Thus, in common with other forms
of frequent pattern mining, frequent sub-graph mining entails two significant
overheads: candidate set generation and isomorphism checking. However, these
overheads are exacerbated because of the nature of graph data. In the case of
candidate set generation the potential number of size K +1 sub-graphs that can
be generated from size K graphs is exponentially greater than in the case of
more standard forms of frequent pattern mining. With respect to isomorphism
checking, the process of comparing a candidate pattern with the input data to

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 77–88, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



78 C. Jiang, F. Coenen, and M. Zito

determine the support (frequency) of the candidate is significantly more complex
in the case of frequent sub-graph mining than in more standard forms of frequent
pattern mining such as ARM.

The overheads associated with frequent sub-graph mining are compounded
when the support threshold is low. The solution advocated in this paper is based
on the observation that, for many applications, some edges (nodes) in the in-
put graph set can be considered to be more significant than others. Therefore,
sub-graph patterns that include edges (nodes) with high weight values should
be considered more important than those with low weight values if they both
satisfied the support threshold. This concept is illustrated in this paper by con-
sidering a social network mining scenario.

Weighted frequent sub-graph mining advocates the use of weighted support
counts to identify weighted frequent sub-graphs. Hence, the “computational bur-
den” of sub-graph mining can be considerably alleviated by generating a set of
weighted frequent sub-graphs. The concept of edge weightings can be encapsu-
lated in a number of ways (for reasons of clarity only edge weighted graphs are
considered in this paper although much of the discussion is equally applicable
to node, or node and edge, weighted graphs).

Regardless of whether edge or node weighting is adopted, a significant issue
encountered in weighted sub-graph mining is that the anti-monotone property,
whereby if a K size sub-graph is not frequent none of its K +1 super-graphs will
be frequent, typically used to restrict the size of the search space in standard
pattern mining, no longer holds if weightings are applied in a naive manner. Thus
any proposed weighted sub-graph mining mechanism must either be defined in
such a way that the property continues to hold, or an alternative pruning strategy
must be adopted.

Three edge weighting schemes are considered in this paper: (i) Average Total
Weighting (ATW), (ii) Affinity Weighting (AW) and (iii) Utility Based Weight-
ing (UBW). The three approaches have been incorporated into three weighted
variations of the gSpan algorithm (ATW-gSpan, AW-gSpan, and UBW-gSpan).

The rest of this paper is organised as follows. A problem definition overview is
presented in Section 2. The proposed edge weighting mechanisms are considered
in Section 3. Experiments to evaluate the proposed techniques, and the ensuing
results, are presented in Section 4. Some conclusions are presented in Section 5.

2 Problem Definition

This section introduces the necessary graph-theoretic and mining definitions.
In the context of this paper a graph is defined as a finite structure G formed
by a set of nodes V = {v1, v2, . . .}, a set of edges E = {e1, e2, . . .}, a set of
vertex and edge labels L, and a mapping φv/e : L → V/E. With respect to the
work described here the edge labels are assumed to be numeric so that they can
be used in the calculation of relative weightings. Depending on the particular
application, edges will be either undirected pairs over V , or directed (ordered)
pairs.



Frequent Sub-graph Mining on Edge Weighted Graphs 79

Let T = {G1, G2, · · · , Gt} be a collection of (transaction) graphs. The support
set of g is defined as δT (g) = {t|g ⊆ Gt}, i.e. the set of transaction graphs where
g is a sub-graph of Gt. The cardinality of the support set, |δT (g)| then defines
the support of g with respect to T .

Definition 1. Given a database T , a graph g, and a minimum support τ ∈ (0, 1],
the graph g is said to be frequent (in T ) if |δT (g)| ≥ τ×t. The frequent sub-graph
mining problem is thus to find all the frequent sub-graphs in T .

The focus of this paper is on edge weighted graphs. Therefore, the graphs in T
are assumed to have weights associated with their edges. Let WT be a weighting
function that assigns a weight to any sub-graph g. The weighted support of g
with respect to T , wsupT (g), is then:

wsupT (g) = WT (g)× |δT (g)|. (1)

Note that the function of WT (g) needn’t be a number between zero and one. By
defining the weighting function, WT (g), in an appropriate manner it is possible
to ensure that the anti-monotone property holds; otherwise other method, such
as some heuristic based pruning technique, is required to limit the search space.

3 Graph Weighting Mechanisms

Most research work in frequent sub-graph mining [6,8,5,11] assumes each discov-
ered frequent sub-graph is equally important. A lot of redundant and repetitive
frequent patterns may therefore exist in the final result. If the size of the graph
set is substantial and the minimum support threshold is very low, a typical fre-
quent sub-graph mining task can often not be completed within a fixed period of
time due to the exponential complexity of the search space. If we put emphasis on
differentiating each discovered frequent sub-graph according to its importance,
either as definded by the user or derived from the application domain, the com-
putational complexity can be reduced without compromising the effectiveness
of the frequent pattern discovery process. However, when a weighting scheme is
integrated into the process of graph mining in a naive manner, the well-known
anti-monotone property, which is used frequently to reduce the search space, may
no longer be satisfied. Two strategies can be identified to address this dilemma:
(a) adopt an interestingness measure which does satisfy the property; (b) ignore
the property and adopt some alternative heuristic to reduce the computational
overhead incurred by not satisfying the property.

In the context of weighted frequent sub-graph mining, weightings associated
with a sub-graph pattern g can be defined in a number of manners. Three ap-
proaches are introduced in this paper: (i) Average Total Weighting (ATW), (ii)
Affinity Weighting (AW), (iii) Utility Based Weighting (UBW). The first two
approaches satisfy the anti-monotone property while the last one adopts an al-
ternative pruning heuristic. The last two approaches employ two parameters
to control the mining result while the first one uses one parameter only. Each
approach is discussed in further detail in the following three subsections.



80 C. Jiang, F. Coenen, and M. Zito

3.1 Average Total Weighting (ATW)

In the ATW approach inspired by the work [10], the weight for a sub-graph g is
calculated by dividing the sum of the average weights in graphs that contain g
with the sum of the average weights across the entire data set T . Thus:

Definition 2. Given an edge weighted graph g with edge weights {w1, w2, · · · , wk},
the average weight associated with g is defined as Wavg(g) =

∑ k
i=1 wi

k .

Where wi can be user defined or calculated by some weighting methods.

Definition 3. Given a set of graphs T = {G1, G2, · · · , Gt}, the total weight of
this set of graphs is defined as Wsum(T ) =

∑t
i=1 Wavg(Gi).

Definition 4. Given an arbitrary sub-graph g with its support set δT (g), the
weight function of g with respect to T , WT (g), is defined as

WT (g) =

∑
Gi∈δT (g) Wavg(Gi)

Wsum(T )
(2)

Definition 5. A sub-graph g is weighted frequent with respect to T , if |δ(g)| ×
WT (g) ≥ τ × t, where 0 < τ ≤ 1 is a minimum support threshold.

From the above it can be easily inferred that the function WT (g), as defined by
Equation 2, satisfies the anti-monotone property. Therefore, if a k-candidate is
not frequent, then any of its (k + 1)-supersets can be safely pruned from this
branch in the lattice of candidates during the k+1 candidate generation process.
It should be noted, however, that the approach will tend to bias large transaction
graphs over smaller transaction graphs, thus is best applied to graph sets where
the individual graphs are of a similar size.

3.2 Affinity Weighting (AW)

The Affinity Weighting (AW) approach is founded on two elements to restrict
the growth of the search space: (i) a graph distance measure, and (ii) a weighting
ratio. For a sub-graph g to be frequent both must be greater than specified user
thresholds. The graph distance measure is calculated using an appropriately
defined support weighting function, WT (g). This is defined as follows. Let g be
a candidate pattern for a database T = {G1, G2, · · · , Gt}. In the context of AW
we define:

WT (g) =
1

|V (g)|
∑

Gi∈δT (g)

|V (Gi)| − |V (g)|
|V (Gi)|

. (3)

Where V (Gi) is the set of vertices in transaction graph Gi and V (g) is the set
of vertices in the sub-graph g. Observe that WT (g) satisfies:

WT (g) =
|δT (g)|
|V (g)| −

∑
Gi∈δT (g)

1
|V (Gi)|

(4)



Frequent Sub-graph Mining on Edge Weighted Graphs 81

It should be noted that adding nodes to g can only reduce the value of the above
expression because the support(|δT (g)|) cannot be increased; the sum contains
as many terms as |δT (g)| and each of these cannot be larger than 1/|V (g)|. Thus
WT (g) as defined above, insures that the weighted support of g is non-increasing
(i.e. anti-monotone) in |V (g)|.

The graph distance measure is directed at the number of nodes contained in a
graph, the weighting ratio concerned with the edge weights (which are assumed
to reflex numeric values). The weighting ratio of an edge-weighted graph g is a
function c(g) returning a value between zero and one which is decreasing in the
number of edges of g. Given an edge weighted sub-graph g with edge weights
W = {w1, w2, · · · , wk} the weighting ratio function which is similar to [13], c(g),
is defined as follows:

c(g) =
MINwi∈W {wi}
MAXwj∈W {wj}

. (5)

Definition 6. An edge-weighted graph g is a weighted frequent (i.e. weighted
affinity) pattern within a data set T = {G1, G2, · · · , Gt}, with respect to a support
threshold τ > 0 and weighting ratio threshold γ ∈ [0, 1], if the following two
conditions (C1 and C2) are satisfied:

(C1) wsupT (g) ≥ τ × t, and (C2) c(g) ≥ γ.

Definition 6 leads to an alternative pruning strategy which, may be used as part
of any frequent sub-graph mining algorithms. During the candidate selection
phase, the mining will keep track of the weighted support and weighting ratio of
all candidates and discard all those candidates that do not satisfy at least one
of (C1) and (C2).

3.3 Utility Based Weighting (UBW)

The previous two approaches both satisfy the anti-monotone property. In this
section an alternative weighting scheme which does not hold the property is
proposed. The Utility Based Weighting (UBW) scheme is influenced by ideas
suggested in [1, 2]. As in the case of AW scheme, the UBW scheme is founded
on two elements: (i) weighted support and (ii) the share (SH) of a sub-graph.
Thus:

Definition 7. Given a sub-graph g with edges E(g) = {e1, e2, · · · , ek}. For each
ei ∈ E(g), two vertices connecting ei are v1 and v2. Their associated support
sets (the graphs in T where they appear) are given as δT (v1) and δT (v2). The
Jaccard similarity coefficient between the two vertices is defined as jC(ei) =
|δT (v1) ∩ δT (v2)|/|δT (v1) ∪ δT (v2)|. The weighting function of g, WT (g), is then
defined as

WT (g) =
1∑

ei∈E(g) jC(ei)
(6)

From the above it is clear that WT (g) satisfies the anti-monotone property. From
Section 2 the weighted support is given by wsupT (g) = WT (g)× |δT (g)|.



82 C. Jiang, F. Coenen, and M. Zito

Definition 8. Given an edge weighted graph set T = (G1, . . . , Gt) with edge
weights {w1, w2, · · · , wk} for each transaction graph Gj and a sub-graph g. Let
g ⊆ Gj, the weight of g denoted as W (g, Gj), is the sum of the weights of
the edges which occurred in Gj. That is, W (g, Gj) =

∑
ei∈g,g⊆Gj

wi. The to-
tal weight of T , denoted as TW (T ), represents the sum of edge weights in T ,
where TW (T ) =

∑
Gj∈T

∑
ei∈Gj

wi. The total weight of δT (g), is defined as
TW (δT (g)) =

∑
Gj∈δT (g)

∑
ei∈Gj

wi.

Definition 9. The graph weight of g with respect to T , denoted as GW (g), is
the sum of the weight of the g in each transaction graph Gj ∈ δT (g). That is,
GW (g) =

∑
Gj∈δT (g) W (g, Gj).

Definition 10. The share of a sub-graph g, denoted as SH(g), is the ratio of
the graph weight of g with respect to T to the total weight of T . Thus:

SH(g) =
GW (g)
TW (T )

(7)

Given a share threshold λ, a sub-graph g is SH-frequent if SH(g) ≥ λ; otherwise,
g is SH-infrequent.

Theorem 1. Given a T = (G1, . . . , Gt), a sub-graph g, and a threshold λ, if
TW (δT (g)) < λ× TW (T ), all super-graphs of g are SH-infrequent.

Proof. Let h be an arbitrary super-graph of g. Clearly, GW (h) ≤ TW (δT (h)) ≤
TW (δT (g)). If TW (δT (g)) < λ× TW (T ) holds, GW (h) < λ× TW (T ). That is,
SH(h) = GW (h)/TW (T ) < λ. Therefore, h is SH-infrequent. ��

By Theorem 1, if TW (δT (g)) < λ × TW (T ), all super-graphs of g and g are
SH-infrequent and can be pruned; otherwise, g is a candidate sub-graph.

Definition 11. An edge-weighted graph g is a weighted frequent pattern for a
graph set T = (G1, . . . , Gt) with respect to a support threshold τ > 0 and share
threshold λ ∈ (0, 1] if the following two conditions are satisfied.

(D1) wsupT (g) ≥ τ × t, and (D2) SH(g) ≥ λ.

4 Experiments and Results

This section describes a sequence of experiments designed to:

(i) Demonstrate that the proposed weighting schemes can more efficiently gen-
erate frequent sub-graphs than without using weightings. In many cases,
as will be demonstrated, use of the weighting schemes allows frequent
sub-graphs to be identified where this would not be possible using an un-
weighted approach because of this computational overhead the latter would
entail.



Frequent Sub-graph Mining on Edge Weighted Graphs 83

Table 1. CTS graph set statistics

Norfolk Cornwall GB

# graphs 53 53 53

Max # edges 77 412 30107

Average # edges 54 262 23055

Max # nodes 99 409 23660

Average # nodes 70 284 18749

node label count 614 2195 81153

Edge label count 6 12 46

(ii) Compare and contrast the three proposed weighted sub-graph mining tech-
niques.

The experiments were conducted using a projection of the cattle movement
database in operation in Great Britain (GB). This application domain is described
in Section 4.1. The original gSpan algorithm available to the authors could not
process directed graphs with self cycles. Therefore an extended gSpan algorithm
(extGspan), which can process directed graphs with self cycles, was implemented
in order to compare the proposed weighted approaches with the un-weighted case.
Results from the experiments are presented in Sub-sections 4.2 and 4.3.

4.1 The Cattle Tracking System Database

For the experiments the Cattle Tracking System (CTS) database, in operation in
GB, was used. This was provided by the Department for the Environment, Food
and Rural Affairs (DEFRA) from the Rapid Analysis and Detection of Animal
Risk (RADAR) project1. The database provides a record of cattle movements.
Each record includes information such as the sender and receiver location IDs,
animal ID, animal breed, etc. Three distinct transaction graph datasets were
extracted from the CTS database such that nodes represented cattle location
(farms, markets, slaughter houses, etc) and edges the movement of cattle be-
tween locations (the edges are directed by the direction of the cattle movement).
Transaction graph sets for all of Great Britain (GB), and two areas within GB
(Norfolk and Cornwall) were extracted. Edges were annotated with a weight-
ing, indicating the number of cattles moved, and a label, indicating the type of
movement (e.g. farmToFarm, farmToMarket, etc). For each data set the data
from 1 January 2005 to 31 December 2005 was selected and divided into 7-day
“episodes” due to the 6-day movement restriction [9] that applies to farms in
GB. Statistics for each of the data sets are given in Table 1. Note that the GB
data set is significantly larger than the Cornwall2, which in turn was larger than

1 http://www.defra.gov.uk/foodfarm/farmanimal/diseases/vetsurveillance/radar/

project.htm
2 Cornwall is a county in the SW of GB known for its substantial dairy herds.



84 C. Jiang, F. Coenen, and M. Zito

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5  10  15  20  25  30

ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

minimum support(%)

(a) Norfolk - runtime

extGspan
ATW-gSpan

AW-gSpan
UBW-gSpan

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 5  10  15  20  25  30

# 
pa

tte
rn

s

minimum support(%)

(b) Norfolk - # patterns

extGspan
ATW-gSpan

AW-gSpan
UBW-gSpan

 0

 50

 100

 150

 200

 250

 300

 5  10  15  20  25  30

ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

minimum support(%)

(c) Cornwall- runtime

extGspan
ATW-gSpan

AW-gSpan
UBW-gSpan

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000

 5  10  15  20  25  30

# 
pa

tte
rn

s

minimum support(%)

(d) Cornwall - # patterns

extGspan
ATW-gSpan

AW-gSpan
UBW-gSpan

Fig. 1. Performance comparison of weighting schemes vs. extGspan on Norfolk and

Cornwall data sets (using a range of support values from 5% to 30%)

the Norfolk3 data set. It should also be noted that all the transaction graphs
feature directed edges and self cycles.

4.2 Comparison between Weighted and Non-weighted Approaches

In this subsection the proposed weighting schemes (ATW-gSpan, AW-gSpan,
and UBW-gSpan) are compared with the extended gSpan algorithm in terms
of efficiency (runtime and the number of frequent sub-graphs generated). For
AW-gSpan, γ = 0.6 was chosen as the weighgting ratio threshold, and λ = 8%
was used as the share threshold for UBW-gSpan. The judstification for these γ
and λ values is given in Sub-section 4.3 below.

Figure 1 shows the performance of the weighting schemes and extGspan on the
Norfolk and Cornwall data sets (recall that extGspan does not make any use of
weightings). It can be clearly seen from the figure that all four algorithms display
a similar behaviour when the support value is between 10% to 30%, however the
number of patterns generated by the extGspan algorithm increase abruptly when
the support value is decreased to below 10%. From Fig. 1 it can be observed that:
(i) significantly more frequent sub-graphs (at support threshold below 10%) are
found using the non-weighted extGspan algorithm than using any of the weight-
ing schemes, indicating the advantages offered using the weighted approaches, (ii)
3 Norfolk is a county in the East of GB.



Frequent Sub-graph Mining on Edge Weighted Graphs 85

the ATW and AW schemes run faster than the UBW scheme, this is because the
pruning technique adopted by UBW schem is not strong enough compared with
the anti-monotone based pruning methods used by ATW and AW schemes.

Experiments (not shown) using extGspan and the GB data set failed to pro-
duce any results (because of memory errors) unless the support thresholod was
set to 30% or above, a threshold at which only one node size sub-graph are
discovered. Thus it was not possible to conduct any meaningful comparison be-
tween the weighted frequent sub-graph mining algorithms and a non-weighted
approach using the GB data set.

4.3 Comparison of Weighting Schemes

In this subsection the three proposed weighting schemes are compared with one
another using the large GB dataset. As above, γ was initially set to 0.6 and λ
to 8% for use with AW-gSpan and UBW-gSpan algorithms. Figure 2 shows the
performance of the weighting schemes on the GB dataset. In Fig. 2 (a), each
curve depicts the number of patterns generated against the minimum support
value used. From the figure it can be seen that UBW-gSpan produces the least
number of patterns while AW-gSpan produces the most. Figure 2 (b) indicates
the “run time” for the approaches using the same sequence of support threshold
values. From the figure it can be seen that UBW-gSpan is the most “expensive”,
indicating that the cost of finding a minimum number of patterns is higher
compared to the other two mechanisms. ATW-gSpan is the most economical.

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 2  4  6  8  10  12  14  16  18  20

# 
pa

tte
rn

s

minimum support(%)

(a) GB - # patterns

ATW-gSpan
AW-gSpan

UBW-gSpan

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2  4  6  8  10  12  14  16  18  20

ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

minimum support(%)

(b) GB - runtime

ATW-gSpan
AW-gSpan

UBW-gSpan

Fig. 2. Performance comparison of three weighting schemes using the GB data set



86 C. Jiang, F. Coenen, and M. Zito

Reference to Fig. 1(a) and (b) confirm these results. UBW-gSpan is also expen-
sive with respect to the Norflok and Cornwall data sets. In fact inspection of
Fig. 1(a) indicates that UBW-gSpan is more expensive than applying extGspan
in the case of theNorfolk data indicating that the cost of reducing the number
of patterns is high when using UBW-gSpan. Although it should be noted that
with respect to the GB data set extGspan was unable to process this data set at
all (using realistic support thresholds). It is interesting to note in Fig. 2 (b) that
as the support threshold is reduced the effect on run-time is much smaller for
ATW-gSpan than the other two weighting schemes. More generally, from Fig. 2,
it can be seen that (as might be expected) runtime increases significantly as the
support threshold is reduced.

Figure 3 displays the effect on performance of different values for the weighting
ratio threshold (γ) used in conjunction with AW-gSpan, and the share threshold
(λ) used with UBW-gSpan, for a range of support threshold values from 4%
to 12%. From Fig. 3 (a) and (c) it can be seen that the run time increased as
the γ value is decreased, while a marginal increase in the number of patterns is
witnessed. With respect to Fig. 3 (b) and (d) it can be seen that the run time
increases as the λ value is decreased, while a small corresponding increase in
the number of identified patterns is witnessed. However, increasing the λ value
beyond 8% seems to have very little effect on the number of patterns. Overall it
was found that a γ value of 0.6 and a λ value of 0.8% was the most appropriate.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 4  5  6  7  8  9  10  11  12

ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

minimum support(%)

(a) AW-gSpan - runtime

gamma=0.2
gamma=0.3
gamma=0.4
gamma=0.5
gamma=0.6

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 4  5  6  7  8  9  10  11  12

ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

minimum support(%)

(b) UBW-gSpan - runtime

lambda=4%
lambda=6%
lambda=8%

lambda=10%

 60000
 70000
 80000
 90000

 100000
 110000
 120000
 130000
 140000
 150000
 160000

 4  5  6  7  8  9  10  11  12

# 
pa

tte
rn

s

minimum support(%)

(c) AW-gSpan - # patterns

gamma=0.2
gamma=0.3
gamma=0.4
gamma=0.5
gamma=0.6

 45000

 50000

 55000

 60000

 65000

 70000

 4  5  6  7  8  9  10  11  12

# 
pa

tte
rn

s

minimum support(%)

(d) UBW-gSpan - # patterns

lambda=4%
lambda=6%
lambda=8%

lambda=10%

Fig. 3. Analysis of the Performance of AW-gSpan and UBW-gSpan using different γ
and λ values



Frequent Sub-graph Mining on Edge Weighted Graphs 87

4.4 Quality of Results

The above experiments indicate that the proposed weighting approaches can be
successfully applied so that frequent sub-graphs can be identified in large col-
lections of graphs (such as those extracted from the CTS database) which could
not otherwise be mined using more conventional graph mining approaches. The
proposed weighting mechanisms operate by identifying the most “significant”
edges. The question that remains is then to ask “are we finding the right frequent
sub-graphs?”. To answer this question the research team applied the weighting
techniques to a number of classification problems. Two data sets were used, an
MRI scan data set and a text mining data set where the scans and documents
had been processed into a graph representation and labelled. Weighted graph
mining techniques were then applied to the graph sets to produce collections
of frequent sub-graphs. These sub-graphs were then interpreted as features in a
feature space and used to represent the individual records using a standard fea-
ture vector representation (where each element represents a frequent sub-graph).
Standard classification algorithms were then applied. The results generated were
comparable with results obtained using alternative, more conventional, classifica-
tion approaches thus indicating that the “right sub-graphs” had been identified.
Space limitations prevent a full presentation and discussion of these results in
this paper, however interested readers can refer to [4] and [7] for reports on the
MRI scan and text mining experiments respectively.

5 Conclusions

This paper has proposed a solution to frequent sub-graph mining where the
size of the input data is such that standard graph mining algorithms (such as
gSpan) are unable to derive any appropriate results because of the computa-
tional overheads involved. Three weighting mechanisms are proposed (ATW-
gSpan, AW-gSpan, and UBW-gSpan) designed to reduce to overall search space
by identifying the most relevant sub-graphs. The weighting schemes assume edge
weightings, but similar techniques may be applied with respect to nodes. Exper-
iments comparing the operation of the weighting schemes to a non-weighted
version of gSpan indicate that many fewer patterns are derived. The research
team have established that the reduced pattern set are the “right” pattern set
by applying the results using classification scenarios. The reported experiments
indicate that UBW-gSpan finds the least number of patterns will requiring the
largest amount of run-time. ATW-gSpan provides the best compromise, a limited
number of patterns found in reasonable time (especially at low support thresh-
old values). Experiments were also conducted with respect to the most suitable
γ and λ to be used with respect to AW-gSpan and UBW-gSpan respectively.
Overall it was found that a γ value of 0.6 and a λ value of 0.8% was the most
appropriate.



88 C. Jiang, F. Coenen, and M. Zito

Acknowledgements

We would like to thank the Department for the Environment, Food and Rural
Affairs (DEFRA) for providing us the data. We are grateful to Dr. Christian
Setzkorn from the Faculty of Veterinery Science, University of Liverpool for
extracting the simplified form of the data and Mrs Puteri Nor Ellyza Nohuddin
for assisting us to get the data.

References

1. Barber, B., Hamilton, H.J.: Extracting Share Frequent Itemsets with Infrequent

Subsets. Journal of Data Mining and Knowledge Discovery 7, 153–185 (2003)

2. Carter, C.L., Hamilton, H.J., Cercone, N.: Share based Measures for Itemsets. In:

Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 14–24.

Springer, Heidelberg (1997)

3. Cook, D.J., Holder, L.B.: Substructure Discovery Using Minimum Description

Length and Background Knowledge. Journal of Artificial Intelligenc Research 1,

231–255 (1994)

4. Elsayed, A., Coenen, F., Jiang, C., Garca-Fiana, M., Sluming, V.: Corpus Callosum

MR Image Classification. Journal of Knowledge Based Systems (to appear 2010)

5. Huan, J., Wang, W., Prins, J.: Efficient Mining of Frequent Subgraph in the Pres-

ence of Isomorphism. In: Proceedings of the 2003 International Conference on Data

Mining, ICDM 2003 (2003)

6. Inokuchi, A., Washio, T., Motoda, H.: An Apriori-based Algorithm for Mining

Frequent Substructures from Graph Data. In: Proceedings of the 4th European

Conference on Principles and Practice of Knowledge Discovery in Databases (2000)

7. Jiang, C., Coenen, F., Sanderson, R., Zito, M.: Text Classification using Graph

Mining-Based Feature Extraction. The Journal of Knowledge Based Systems (to

appear 2010)

8. Kuramochi, M., Karypis, G.: Frequent Subgraph Discovery. In: Proceedings of

IEEE International Conference on Data Mining (2001)

9. Robinson, S.E., Christley, R.M.: Identifying Temporal Variation in Reported

Births, Deaths and Movements of Cattle in Britain. Journal of BMC Verterinary

Research (2006), doi:10.1186/1746-6148-2-11

10. Tao, F., Murtagh, F., Farid, M.: Weighted Association Rule Mining using Weighted

Support and Significance Framework. In: The Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (ACM SIGKDD 2003),

Washington DC, USA, pp. 661–666 (2003)

11. Yan, X., Han, J.: gSpan: Graph-based Substructure Pattern Mining. In: Proceed-

ings of 2002 International Conference on Data Mining (2002)

12. Yan, X., Han, J.: CloseGraph: Mining Closed Frequent Graph Patterns. In: Pro-

ceedings of the Ninth ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, Washington DC, USA, pp. 286–295 (2003)

13. Yun, U.: WIS: Weighted Interesting Sequential Pattern Mining with a Similar Level

of Support and/or Weight. ETRI Journal 29(3), 336–352 (2007)



F&A: A Methodology for Effectively and
Efficiently Designing Parallel Relational Data

Warehouses on Heterogenous Database Clusters

Ladjel Bellatreche1, Alfredo Cuzzocrea2, and Soumia Benkrid3

1 LISI/ENSMA Poitiers University, France

bellatreche@ensma.fr
2 ICAR-CNR and University of Calabria, Italy

cuzzocrea@si.deis.unical.it
3 National High School for Computer Science (ESI), Algeria

s benkrid@esi.dz

Abstract. In this paper we propose a comprehensive methodology for

designing Parallel Relational Data Warehouses (PRDW) over database
clusters, called Fragmentation&Allocation (F&A). F&A assumes that

cluster nodes are heterogeneous in processing power and storage capacity,
contrary to traditional design approaches that assume that cluster nodes

are instead homogeneous, and fragmentation and allocation phases are

performed in a simultaneous manner, contrary to traditional design ap-

proaches that instead perform these phases in an isolated manner. Also,

a naive replication algorithm that takes into account the heterogeneous

characteristics of our reference architecture is proposed. Finally, our pro-

posal is experimentally assessed and validated against the widely-known

data warehouse benchmark APB-1 release II.

1 Introduction

In this paper, we focus the attention to the context of query optimization tech-
niques over relational Data Warehouses (RDW) developed on top of cluster
environments [14]. A RDW is usually modeled by means of a star schema con-
sisting of a huge fact table and a number of dimension tables, similarly to the
widely-known data warehouse benchmark APB-1 release II [4], where the fact
table Sales is joint to the following four dimension tables: Product, Customer,
Time, Channel. Star queries are typically executed against RDW. Star queries
retrieve aggregate information (e.g., based on standard SQL aggregate operators
like SUM, COUNT etc) from measures stored in the fact table by applying selection
conditions on joint dimension table columns, and they are extensively used as
conceptual basis for more complex OLAP queries, which, in turn, are exploited to
extract useful summarized knowledge from RDW for decision making purposes.

Unfortunately, evaluating OLAP queries over RDW typically demands for a
high-performance that is difficult to ensure over large amounts of multidimen-
sional data, even because such queries are usually complex in nature [2]. This
complexity is mainly due to the presence of joins and aggregation operations

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 89–104, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



90 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

over huge fact tables, which very often involve billions of tuples to be accessed
and processed. In order to speed-up OLAP queries over RDW, several optimiza-
tion approaches, mainly inherited from classical database technology, have been
proposed in literature. Among others, we recall materialized views [12], indexing
[20], data partitioning [3], data compression [7] etc. Despite this, it has been
demonstrated that the sole use of these approaches singularly is not sufficient
to gain efficiency during the evaluation of OLAP queries over RDW [21]. As a
consequence, in order to overcome limitations deriving from these techniques,
high-performance in database technology, including RDW [11,9], has tradition-
ally been achieved by means of parallel processing methodologies [16].

Following this major trend, the most important commercial database systems
vendors (e.g., Oracle, IBM, Microsoft, NCR, Sybase etc.) have recently proposed
solutions able to support parallelism within the core layer of their DBMS. Unfor-
tunately, these solutions still remain expensive for small and medium enterprises,
so that database cluster technology represents an efficient low-cost alternative to
tightly-coupled multiprocessing database systems [14]. A database cluster can be
defined as a cluster of personal computers (PC) such that each of them runs an
off-the-shelf sequential DBMS [14]. The set of DBMS relying in the cluster are
then orchestrated by means of an ad-hoc middleware that implements parallel
processing mechanisms and techniques, being this middleware able to support
typical DBMS functionalities/services (e.g., storage, indexing, querying etc) in a
transparent-for-the-user manner, just like end-users were interacting with a sin-
gleton DBMS. Starting from this low-cost technology solution, in our research
we focus the attention on the application scenario represented by the so-called
parallel relational Data Warehouses (PRDW) over database clusters, i.e. RDW
that are developed on top of a cluster of databases that implements parallel
processing mechanisms and techniques.

Similarly to the traditional context of distributed and parallel databases [16],
the design of a PRDW on a database cluster can be achieved by means of a gen-
eral design methodology consisting by the following steps: (i) fragmenting the
input data warehouse schema; (ii) allocating the so-generated fragments; (iii)
replicating fragments in order to ensure high-performance during data manage-
ment and query evaluation activities. By examining the active literature, few
proposals on how to design a PRDW on a database cluster exist [11,14]. These
approaches can be classified into two main classes. The first class of proposals
assume that data are already partitioned and allocated, and propose solutions
to route OLAP queries across nodes of the database cluster in order to improve
query performance [17,18]. The other class of proposals instead propose solu-
tions to partition and allocate data across database cluster nodes [14]. Most
importantly, the majority of approaches devoted to the design of a PRDW over
a database cluster assume that all nodes of the cluster are homogenous, i.e.
they have the same processing power and storage capacity. By looking at the
peculiarities of the target application scenario, it is easy to understand how this
assumption is not always true, as a cluster of PC with heterogeneous character-
istics in terms of storage and processing capacity may exist. Therefore, it clearly



F&A: Designing Parallel Relational Data Warehouses 91

follows the interest for PRDW design methodologies over database clusters char-
acterized by heterogeneous nodes, in all the phases, including data partitioning,
fragment allocation, and data replication, which is the main goal of our research.

Data fragmentation1 is a fundamental phase of any PRDW design methodol-
ogy, and can also be considered as a pre-condition for PRDW design [1]. Data
fragmentation can be of the following two kinds [16]: (i) horizontal fragmenta-
tion, according to which table instances are decomposed into disjoint partitions ;
(ii) vertical fragmentation, according to which table instances are split into dis-
joint sets of attributes. Horizontal partitioning is the most popular solution used
to design PRDW [1,21,22,11,14]. In previous PRDW design methodologies re-
search efforts, horizontal partitioning algorithms do not control the number of
generated fragments, except [1,5]. As a consequence, the number of fragments
generated by the partitioning phase can be larger than the number of nodes of
the database cluster. In turn, this causes flaws in the allocation and replication
phases.

Allocation is the phase that places fragments generated by the partition phase
across nodes of the database cluster. Allocation can be either redundant, i.e.
with replication, or non redundant, i.e. without replication [16]. Some literature
approaches advocate a full replication in order to ensure a high intra-query par-
allelism [14]. This solution demands for the availability of very large amounts of
disk space, as each node must be ideally able to house the entire data warehouse.
As a consequence, data updates become prohibitively expensive. On the basis of
this main observation, we assert that replication must be partial, meaning that
database cluster nodes house portions of the original data warehouse. Once frag-
ments are placed and replicated, global OLAP queries against the target PRDW
are re-written over fragments and evaluated on the parallel machine.

State-of-the-art PRDW design methodologies on database clusters proposals
suffer from the following two main limitations. First, they focus the attention
on homogenous database clusters, i.e. database clusters where nodes have the
same processing power and storage capacity. Second, fragmentation and alloca-
tion phases are usually performed in an isolated (or iterative) manner, meaning
that the designer first partitions his/her data warehouse using his/her favorite
fragmentation algorithm and then allocates generated fragments on the parallel
machine using his/her favorite allocation algorithm. This approach completely
ignores the inter-dependency between fragmentation and allocation phases,
which, contrary to this, can instead seriously affect the final performance of
data management and OLAP query evaluation activities performed against the
PRDW. Starting from these breaking evidences, in this paper we propose and ex-
perimentally assess an innovative methodology for designing PRDW on database
clusters, called Fragmentation&Allocation (F&A), which overtakes the limita-
tions above. To the best of our knowledge, our research is the first one in liter-
ature that addresses the issue of designing PRDW on heterogeneous database
clusters via a combined fragmentation/allocation strategy.

1 In this paper, we use the terms “fragmentation” and “partitioning” interchangeably.



92 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

The paper is organized as follows. Section 2 summarizes existing approaches
that focus on iterative PRDW design methodologies. In Section 3, we provide a
rigorous formalization of the PRDW design problem on heterogeneous database
clusters, by also putting in emphasis limitations deriving from traditional itera-
tive design methodologies. Section 4 describes our comprehensive methodology
F&A for designing PRDW on heterogeneous database clusters, where partition-
ing and allocation phases are performed simultaneously. In Section 5, we provide
the experimental results obtained from testing the performance of F&A against
the widely-known data warehouse benchmark APB-1 release II [4]. Finally, Sec-
tion 6 concludes the paper summarizing the main findings of our research, and
proposing directions for future work.

2 Related Work

In this Section, we provide a brief overview on state-of-the-art approaches fo-
cusing on fragmentation and allocation techniques for supporting PRDW over
database clusters [11,14,17,18].

Furtado [11] discusses partitioning strategies for node-partitioned data ware-
houses. The main suggestion coming from [11] can be synthesized in a “best-
practice” recommendation stating to partition the fact table on the basis of the
larger dimension tables (given a ranking threshold). In more detail, each larger
dimension table is first partitioned by means of the Hash mode approach via
its primary key. Then, the fact table is again partitioned by means of the Hash
mode approach via foreign keys referencing the larger dimension tables. Finally,
the so-generated fragments are allocated according to two alternative strategies,
namely round robin and random. Smaller dimension tables are instead fully-
replicated across the nodes of the target data warehouse. The fragmentation
approach [11] does not take into account specific star query requirements, being
such queries very often executed against data warehouses, and it does not con-
sider the critical issues of controlling the number of generated fragments, like in
[3,22].

In [14], Lima et al. focus the attention on data allocation issues for database
clusters. Authors recognize that how to place data/fragments on the different
PC of a database cluster in the dependence of a given criterion/goal (e.g., query
performance) plays a critical role, hence the following two straightforward ap-
proaches can be advocated: (i) full replication of the target database on all
the PC, or (ii) meaningful partition of data/fragments across the PC. Starting
from this main intuition, authors propose an approach that combines partition
and replication for OLAP-style workloads against database clusters. In more
detail, the fact table is partitioned and replicated across nodes using the so-
called chained de-clustering, while dimension tables are fully-replicated across
nodes. This comprehensive approach enables the middleware layer to perform
load balancing tasks among replicas, with the goal of improving query response
time. Furthermore, the usage of chained de-clustering for replicating fact table
partitions across nodes allows the designer not to detail the way of selecting the



F&A: Designing Parallel Relational Data Warehouses 93

number of replicas to be used during the replication phase. Just like [11], [14]
does not control the number of generated fact table fragments.

To summarize, the most relevant-in-literature approaches related to our re-
search are mainly oriented towards the idea of performing the fragmentation and
allocation phases over database clusters in an isolate and iterative manner.

3 Formalization of the PRDW Design Problem on
Heterogeneous Database Clusters

In this Section, we introduce a rigorous formalization of the PRDW design prob-
lem on heterogeneous database clusters, which will be used as reference formal-
ism throughout the paper. Formally, given:

– a data warehouse schema DWS composed by d dimension tables D =
{D0, D1, . . . , Dd−1} and one fact table F – as in [11,14], we suppose that all
dimension tables are replicated over the nodes of the database cluster and
are fully-available in main memories of cluster nodes;

– a database cluster machine DBC with M nodes N = {N0, N1, . . . , NM−1},
each node Nm, with 0 ≤ m ≤ M −1, having a proper storage Sm and proper
processing power Pm, which is straightforwardly modeled in terms of the
number of operations that Nm can process in the reference temporal unit;

– a set of star queriesQ = {Q1, Q2, . . . , QL−1} to be executed over DBC, being
each query Ql, with 0 ≤ l ≤ L− 1, characterized by an access frequency fl;

– a maintenance constraint W : W > M representing the number of fragments
W that the designer considers relevant for his/her target allocation process,
called fragmentation threshold ;

the problem of designing a PRDW described by DWS over the heterogeneous
database cluster DBC consists in fragmenting the fact table F into NF fragments
and allocating them over different DBC nodes such that the total cost of executing
all the queries in Q can be minimized while storage and processing constraints
are satisfied across nodes in DBC, under the maintenance constraint W .

Based on the formal statement above, it follows that our investigated prob-
lem is composed by two sub-problems, namely data partitioning and fragment
allocation. Each one of these problems is known to be NP-complete [3,19,13]. In
order to deal with the PRDW design problem over database clusters, two main
classes of methodologies are possible: iterative design methodologies and com-
bined design methodologies. Iterative design methodologies have been proposed
in the context of traditional distributed and parallel database design research.
The idea underlying this class of methodologies consists in first fragmenting the
RDW using any partitioning algorithm, and then allocating the so-generated
fragments by means of any allocation algorithm. In the most general case, each
partitioning and allocation algorithm has its own cost model. The main advan-
tage coming from these traditional methodologies is represented by the fact that
they are straightforwardly applicable to a large number of even-heterogenous
parallel and distributed environments (e.g., Peer-to-Peer Databases). Contrary



94 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

(a) (b)

Fig. 1. Iterative PRDW Design Methodology over Heterogeneous Database Clusters

(a) and Combined PRDW Design Methodology over Heterogeneous Database Clusters

– The F&A Approach (b)

to this, their main limitation is represented by the fact that they neglect the inter-
dependency between the data partitioning and the fragment allocation phase,
respectively. Figure 1 (a) summarizes the steps of iterative design methodologies.

To overcome limitations deriving from using iterative design methodologies,
the combined design methodology F&A we propose in our research consists in
performing the allocation phase/decision at fragmentation time, in a simulta-
neous manner. Figure 1 (b) illustrates the steps of our approach. Contrary to
the iterative approach that uses two cost models (i.e., one for the fragmentation
phase, and one for the allocation phase), F&A uses only one cost model that
monitors whether the current generated fragmentation schema is “useful” for
the actual allocation process.

4 F&A: A Combined PRDW Design Methodology over
Heterogeneous Database Clusters

In this Section, we describe in detail our combined PRDW design methodology
over heterogeneous database clusters, F&A. We first focus the attention on
the data partitioning phase, which, as stated in Section 1, is a fundamental and
critical phase for any PRDW design methodology [1]. A distinctive characteristic
of F&A is represented by the fact that, similarly to [1,5], it allows the designer
to control the number of generated fragments, which should be a mandatory
requirement for any PRDW design methodology in cluster environments (see
Section 1). Then, we move the attention on data allocation issues and, finally,
we provide the main algorithm implementing our proposed methodology.

4.1 Data Partitioning

In our proposed research, we make use of horizontal (data) partitioning, which
can be reasonably considered as the core of F&A. Specifically, our data parti-
tioning approach consists in fragmenting dimension tables Dj in D by means of



F&A: Designing Parallel Relational Data Warehouses 95

selection predicates of queries in Q, and then using the so-generated fragmen-
tation schemes, denoted by FS(Dj), to partition the fact table F . Formally, a
selection predicate is of kind: Ak θ Vk, such that: (i) Ak models an attribute of
a dimensional table Dj in D; (ii) Vk models an attribute value in the universe
of instances of DWS; (iii) θ models an equality or comparison predicate among
attributes/attribute-values, i.e. θ ∈ {=, <, >,≤,≥}. The fact table partitioning
method that derives from this approach is known-in-literature under the term
“referential partitioning”, which has recently been incorporated within the core
layer of the DBMS platform Oracle11G [10].

Example 1. To illustrate how our proposed fragmentation process works, let us
consider the APB-1 release II schema [4], which is characterized by the fol-
lowing dimensional tables: D = {Product, Customer, T ime, Channel}, and the
following fact table: F = {Sales}. Furthermore, suppose that the dimension ta-
ble Time is partitioned into two fragments, namely T ime2007 and T ime2008,
by means of the attribute Year, as follows: T ime2007 = σY ear=2007(T ime),
T ime2008 = σY ear=2008(T ime), such that σ represents the selection predicate.
As a consequence, the fact table Sales is fragmented on the basis of the parti-
tioning scheme of the dimensional table Time into the following two fragments,
namely Sales2007 and Sales2008, such that Sales2007 = Sales � T ime2007 and
Sales2008 = Sales � T ime2008, where � represents the semi-join operator.

Based on the data partitioning approach above, the number of fragments NF

generated from the fact table F is given by the following expression: NF =∏d−1
j=0 Φj , such that Φj , with 0 ≤ j ≤ d − 1, denotes the number of horizontal

fragments of the dimension table Dj inD, and d denotes the number of dimension
tables in DWS. Such a decomposition of the fact table may generate a large
number of fragments [21,3].

4.2 Naive Solution

In F&A, we introduce the concept of fragmentation scheme candidate of a di-
mensional table Dj in D, denoted by FSC(Dj). Intuitively enough, a fragmenta-
tion scheme candidate is a fragmentation scheme generated during the execution
of the algorithm implementing F&A and that may belong to the final solution
represented by the set of NF fact-table fragments allocated across nodes of the
target database cluster.

A critical role in this respect is played by the solution used to represent-in-
memory fragmentation scheme candidates, as this, in turn, impacts on the per-
formance of the proposed algorithm. In our implementation, given a dimensional
table Dj in D, we model a fragmentation scheme candidate of Dj as a multi-
dimensional array Aj such that rows in Aj represent so-called fragmentation
attributes of the partitioning process (namely, attributes of Dj), and columns
in Aj represent domain partitions of fragmentation attributes. Given an at-
tribute Ak of Dj , a domain partition PD(Ak) of Ak is a partitioned represen-
tation of the domain of Ak, denoted by Dom(Ak), into disjoint sub-domains



96 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

of Dom(Ak), i.e. PD(Ak) = {dom0(Ak), dom1(Ak), . . . , dom|PD(Ak)|−1(Ak)},
such that domh(Ak) ⊆ Dom(Ak), with 0 ≤ h ≤ |PD(Ak)| − 1, denotes a
sub-domain of Dom(Ak), and the following property holds: ∀ hp, hq : hp 	=
hq, domhp(Ak)

⋂
domhq (Ak) = ∅. Given an attribute Ak of Dj , a number of al-

ternatives for generating a domain partition PD(Ak) of Dom(Ak) exist. Among
all the available solutions, F&A makes use of the set of queries Q to this end
(see Section 3). Coming back to the structural definition of Aj , each cell of Aj ,
denoted by Aj [k][h], stores an integer value that represents the number of at-
tribute values of Ak belonging to the sub-domain domh(Ak) of Dom(Ak). It is
a matter of fact to notice that Aj [k][h] ∈ [0 : |PD(Ak)|] (see Figure 2).

Based on the multidimensional representation model for fragmentation scheme
candidates above, for each dimension table Dj in D, the final fragmentation
scheme of Dj , FS(Dj), is generated according to the following role-based se-
mantics:

– all cells in Aj of a fragmentation attribute Ak of Dj have different values
Aj [k][h], then all sub-domains of Dom(Ak) will be used to partition Dj ;

– all cells in Aj of a fragmentation attribute Ak of Dj have the same value
Aj [k][h], then the attribute Ak will not participate to the fragmentation
process;

– a sub-set of cells in Aj of a fragmentation attribute Ak of Dj have the
same value Aj [k][h], then the corresponding sub-domains of Dom(Ak) will
be merged into one sub-domain only, and then used to partition Dj .

Example 2. Consider again the APB-1 release II schema [4]. Suppose that
the fragmentation process example is driven by the following fragmenta-
tion attributes: Class, Group and Family, all belonging to the dimension
table Product. Also, suppose that the domains of these attributes are the
following: Dom(Class) = {C1, C2, C3}, Dom(Group) = {G1, G2, G3} and
Dom(Family) = {F1, F2, F3}, and that the domain of each attribute is de-
composed into three distinct sub-domains, as shown in Figure 2 (a). Figure 2
(b) shows a fragmentation scheme candidate example AProduct of Product for
the running fragmentation process example. Note that attribute A2 = Family
is not concerned by the fragmentation process, as all its cells in AProduct[2][h]
have the same value, with 0 ≤ h ≤ 2. On the other hand, based on fragmentation
scheme shown in Figure 2 (b), the dimension table Product will be fragmented
into 3 × 2 = 6 horizontal fragments, hence the fact table Sales will be also
partitioned into 6 (fact-table) fragments accordingly.

Based on the formal model of fragmentation scheme candidates above, the naive
solution to the PRDW design problem over database clusters we propose, which
represents a first attempt of the algorithm implementing F&A, makes use of a
hill climbing heuristic [8], which consists of the following two steps:

1. find an initial solution I0 – I0 may be obtained via using a random distri-
bution for filling cells of fragmentation scheme candidates for each fragmen-
tation attribute Ak of dimensional tables Dj in D;



F&A: Designing Parallel Relational Data Warehouses 97

(a) (b)

Fig. 2. Attribute Domain Partitions (a) and a Fragmentation Scheme Candidate

AProduct of the dimension table Product (b) of the Running Example

2. iteratively improve the initial solution I0 by using the hill climbing heuristic
until no further reduction in the total query processing cost due to evaluating
queries in Q can be achieved, and the storage and processing constraints are
satisfied, under the maintenance constraint W .

It should be noted that, since the number of fragmentation scheme candidates
generated from DWS is finite, the hill climbing heuristic will always complete
its execution, thus finding the final solution IF . This ensures the convergence of
the naive solution at a theoretical level.

4.3 Improved Solution

The previous naive solution can be improved by introducing two specialized
operators, namely Merge and Split, which allow us to further reduce the total
query processing cost due to evaluating queries in Q. Let us now focus on the
formal definitions of these operators.

Given a fragmentation attribute Ak of a dimension table Dj in D having
FS(Dj) as fragmentation scheme, Merge takes as input two domain partitions
of Ak in FS(Dj), namely Pp

D(Ak) and Pq
D(Ak), an returns as output a new frag-

mentation scheme for Dj , denoted by FS′(Dj), where Pp
D(Ak) and Pq

D(Ak) are
merged into a singleton domain partition of Ak, denoted by Pp,q

D (Ak). Merge re-
duces the number of fragments generated by means of the fragmentation scheme
FS(Dj) of Dj , hence it is used when the number of generated fragments does
not satisfy the maintenance constraint W (see Section 3). Formally, Merge is
defined as follows:

Merge : 〈Ak, Dj,FS(Dj),Pp
D(Ak),Pq

D(Ak)〉 → 〈Ak, Dj ,FS′(Dj),Pp,q
D (Ak)〉

(1)
Given a fragmentation attribute Ak of a dimension table Dj in D having FS(Dj)
as fragmentation scheme, Split takes as input a domain partition of Ak in
FS(Dj), PD(Ak), an returns as output a new fragmentation scheme for Dj ,
denoted by FS′(Dj), where PD(Ak) is split into two distinct domain partitions
of Ak, denoted by Pp

D(Ak) and Pq
D(Ak), respectively. Split increases the number

of fragments generated by means of the fragmentation scheme FS(Dj) of Dj .
Formally, Split is defined as follows:

Split : 〈Ak, Dj ,FS(Dj),PD(Ak)〉 → 〈Ak, Dj,FS′(Dj),Pp
D(Ak),Pq

D(Ak)〉 (2)



98 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

On the basis of these operators running on fragmentation schemes of dimensional
tables, the hill climbing heuristic still finds the final solution IF , while the total
query processing cost can be reduced and the maintenance constraint W can be
satisfied.

4.4 Data Allocation

The data allocation phase of F&A is performed simultaneously to the data frag-
mentation/partitioning phase. Basically, each fragmentation scheme candidate
generated by the algorithm implementing F&A is allocated across nodes of the
target database cluster, with the goal of minimizing the total query processing
cost queries in Q over all nodes, while satisfying the storage and processing con-
straints on each node. In more detail, during the allocation phase the following
concepts/data-structures are used:

– Fragment Placement Matrix (FPM) MP , which stores the positions of a
fragment across nodes (recall that fragment replicas may exist). To this end,
MP rows model fragments, whereasMP columns model nodes.MP [i][m] =
1, with 0 ≤ i ≤ NF − 1 and 0 ≤ m ≤ M − 1, if the fragment Fi is allocated
on the node Nm in N , otherwise MP [i][m] = 0.

– Fragment Size Size(Fi), which models the size of the fragment Fi in terms
of the number of its instances across the nodes. Size(Fi) is estimated by
means of selection predicates. Since each node Nm in N has its own storage
capacity Sm, the storage constraint associated to Fi across all nodes of the
target database cluster can be formally expressed as follows:

∀m ∈ [0 : M − 1] :
NF −1∑
i=0

MP [i][m]× Size(Fi) ≤ Sm (3)

– Fragment Usage Matrix (FUM) [15] MU , which models the “usage” of
fragments by queries in Q. To this end, MU rows model queries, whereas
MU columns model fragments. MU [l][i] = 1, with 0 ≤ l ≤ L − 1 and
0 ≤ i ≤ NF − 1, if the fragment Fi is involved by the query Ql in Q, other-
wise MU [l][i] = 0. An additional column is added to MU for representing
the access frequency frl of each query Ql in Q (see Section 3). In order
to evaluate a query Ql in Q on a node Nm in N , Nm must store relevant
fragments for Ql. Based on our theoretical framework, a fragment Fi is rel-
evant iff the following property holds: MP [i][m] = 1 ∧MU [l][i] = 1, with
0 ≤ i ≤ NF − 1, 0 ≤ m ≤ M − 1 and 0 ≤ l ≤ L− 1.
Example 3. Let Q = {Q1, Q2, Q3, Q4} and F =
{F1, F2, F3, F4, F5, F6, F7, F8} be the set of queries and generated fragments,
respectively. The corresponding FUM is shown in Table 1.

– Fragment Affinity Matrix (FAM) MA, which models the “affinity” between
two fragments Fip and Fiq . To this end, MA rows and columns both model
fragments, hence MA is a symmetric matrix. MA[ip][iq], with 0 ≤ ip ≤
NF − 1 and 0 ≤ iq ≤ NF − 1, stores the sum of access frequencies of queries
in Q that involve Fip and Fiq simultaneously.



F&A: Designing Parallel Relational Data Warehouses 99

Table 1. FUM of the Running Example

F1 F2 F3 F4 F5 F6 F7 F8 Fr

Q1 1 0 1 0 1 0 1 0 20

Q2 1 1 1 1 0 0 0 0 35

Q3 0 0 1 0 1 1 1 1 30

Q4 1 1 1 1 1 1 1 1 15

Example 4. From the FUM shown in Table 1, the associated FAM is shown
in Table 2.

Table 2. FAM of the Running Example

F1 F2 F3 F4 F5 F6 F7 F8

F1 – 50 70 50 65 15 35 15

F2 50 – 50 50 15 15 15 15

F3 70 50 – 50 65 45 65 45

F4 50 50 50 – 15 15 1 5 15

F5 65 15 65 15 – 45 65 45

F6 15 15 45 15 45 – 45 45

F7 35 15 65 15 65 45 – 45

F8 15 15 45 15 45 45 45 -

4.5 F&A Algorithm

On the basis of the data partitioning phase and the data allocation phase de-
scribed in Section 4.1 and Section 4.4, respectively, and the naive solution and
improved solution to the PRDW design problem over database clusters provided
in Section 4.2 and Section 4.3, respectively, for each fragmentation scheme can-
didate FSC(Dj) of each dimensional table Dj in D, the algorithm implementing
our proposed methodology F&A performs the following steps:

1. Based on the FUM MU and the FAM MA, generate groups of fragments
Gz by means of the method presented in [15].

2. Compute the size of each fragment group Gz, as follows: Size(Gz) =∑
i Size(Fi), such that Size(Fi) denotes the size of the fragment Fi.

3. Sort nodes in the target database cluster DBC by descendent ordering based
on their storage capacities and processing powers.

4. Allocate “heavy” fragment groups on powerful nodes in DBC, i.e. nodes with
high storage capacity and high processing power, in a round-robin manner
starting from the first powerful node. The allocation phase must minimize
the total query processing cost due to evaluating queries in Q while max-
imizing the productivity of each node, based on the following theoretical
formulation:



100 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

L−1∑
l=0

fl ×max0≤m≤M−1

{NF −1∑
i=0

MU [l][i]×MP [i][m]× Size(Fi)
Pm

}
(4)

such that: (i) L denotes the number of queries against DBC; (ii) M denotes
the number of nodes of DBC; (iii) NF denotes the number of fragments
belonging to the solution; (iv) MU denotes the FUM; (v) MP denotes the
FPM; (vi) Size(Fi) denotes the size of the fragment Fi; (vii) Pm denotes
the processing power of the node Nm in N . In formula (4), we implicitly
suppose that the response time of any arbitrary query Ql in Q is superiorly
bounded by the time needed to evaluate Ql against the most-loaded node in
DBC, thus we can consider it as a constant and omit it in formula (4).

5. Replicate on non-powerful nodes groups of fragments that require high com-
putation time, in order to ensure a high performance.

5 Experimental Assessment and Results

In order to carefully evaluate the effectiveness and the efficiency of our proposed
PRDW design methodology on database clusters, F&A, we conducted an in-
tensive experimental campaign. Our F&A algorithm (see Section 4.5) has been
implemented by using Java, and experiments have been performed on an Intel
Pentium Core Duo at 2.8 GHz equipped with 3 GB RAM.

As regards the setting of our experimental framework, we considered a sim-
ulated database cluster environment with 128 nodes. Storage capacity and
processing power of each node have been generated according to a random dis-
tribution, thus obtaining a totally heterogenous database cluster environment.

As regards the data layer of our experimental framework, we considered the
well-known benchmark APB-1 release II [4]. In detail, APB-1 is characterized by
one fact table Sales having 24, 786, 000 tuples, and the following four dimension
tables, with respective number of tuples: Product (9, 000 tuples), Customer (900
tuples), Time (24 tuples), and Channel (9 tuples).

As regards the query layer of our experimental framework, we considered a
star query workload consisting of of 55 single-block queries (i.e., queries without
nested sub-queries) characterized by 40 selection predicates defined on the fol-
lowing 9 distinct attributes: Class, Group, Family, Line, Division, Year, Month,
Retailer, All. Domains of these attributes are split into the following number of
sub-domains: 4, 2, 5, 2, 4, 2, 12, 4, 5, respectively. In our experimental assess-
ment, we do not consider update queries, which are left for future work.

As regards the metrics of our experimental framework, we considered the
execution time due to evaluating queries of the experimental query workload by
gathering the total number of I/Os needed to this end divided by the average
processing power of nodes. Here, we set the reference temporal unit determining
the notion of processing power to seconds (see Section 3).

We performed several kinds of experiments, in order to obtain a “rich” and
reliable experimental evaluation of the F&A algorithm. First, we compared our
proposed methodology F&A against a classical iterative approach, where frag-
mentation and allocation are executed sequentially and without any iteration,



F&A: Designing Parallel Relational Data Warehouses 101

still in a heterogeneous database cluster environment. The classical iterative ap-
proach is based on the hill climbing heuristic [8]. As regards the F&A algorithm,
we set the fragmentation threshold W to 500 (see Section 3). We measured the
query execution time versus the variation of the number of database cluster
nodes M over the interval [2 : 128]. Figure 3 (a) shows the results obtained
from the first experiment, and confirms to us that the combined approach out-
performs the iterative one significantly. In the second experiment, we focused
the attention on F&A solely, and we observed its performance in four different
application scenarios which may arise in real-life database cluster environments:
(i) heterogenous database cluster environments, according to the general guide-
lines of our experimental setting provided above; (ii) homogenous database clus-
ter environments such that nodes have a “high” processing power (denoted by
P + +); (iii) homogenous database cluster environments such that nodes have
a “low” processing power (denoted by P − −); (iv) homogenous database clus-
ter environments such that nodes have an “average” processing power (denoted
by P = AV G). For all scenarios, we assumed a limited storage capacity, i.e.
the following hypothesis holds:

∑M−1
m=0 Sm > Size(DW ), where Sm denotes the

storage capacity of the node Nm in N and Size(DW ) denotes the size of the
entire data warehouse, respectively. Figure 3 (b) shows the results obtained from
the second experiment. As shown in Figure 3 (b), F&A performance reaches the
best score in the case of scenario (ii), i.e. P ++, as expected. On the other hand,
a collateral interesting phenomenon is represented by the fact that F&A per-
formance over heterogenous database cluster environments outperforms F&A
performance over the remaining two scenarios, i.e. P −− and P = AV G.

In the third experiment, we stressed the F&A performance under two different
(heterogeneous database cluster) scenarios determined by the processing power
of nodes, which is a fundamental factor in our research. According to the first
scenario, the allocation phase of F&A has been performed by considering the
processing power of nodes in the cost model (4), whereas in the second one the

(a) (b)

Fig. 3. Query Performance vs the Number of Database Cluster Nodes for F&A and the

Hill-Climbing-based Methodology in a Heterogeneous Environment (a) and for F&A
over Four Different Database Cluster Environments Scenarios (b)



102 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

(a) (b)

Fig. 4. F&A Query Performance vs the Number of Database Cluster Nodes in the

dependence of Processing Power (a) and Storage Capacity (b) of Nodes

Fig. 5. Effect of the Fragmentation Threshold W on the Query Performance of F&A

allocation has not considered the processing power of nodes. Figure 4 (a) shows
the results obtained from the third experiment. Derived results show that, when
the cost model (4) encompasses the processing power of nodes, F&A perfor-
mance is higher as all the effective characteristics of nodes are taken into con-
sideration. At the same, this confirms to us the effectiveness and the efficiency
of F&A. Finally, in the last experiment we focused the attention on the effect
of storage capacity of nodes over the F&A performance, still in a heterogeneous
database cluster environment. Here, we considered two different scenarios related
to this critical factor of nodes, i.e. (heterogeneous) database cluster environments
such that nodes are characterized by a “large” storage capacity, and (heteroge-
neous) database cluster environments such that nodes are characterized by a
“small” storage capacity, respectively. As shown in Figure 4 (b), F&A works
better when nodes with large storage capacity are considered, as expected.

Finally, we focused the attention on the effect of the maintenance constraintW
(see Section 3) on the performance of F&A over heterogeneous cluster environ-
ments, still considering the main one developed in our experimental assessment.
Here, we fixed the number of nodes to M = 10, and we ranged the fragmentation



F&A: Designing Parallel Relational Data Warehouses 103

threshold W over the interval [100 : 300] in order to study how the F&A query
performance varies accordingly. For each value of W , we run the F&A algorithm,
and we estimated the total query processing cost due to evaluating queries of
the target query workload in terms of number of I/Os. Figure 5 shows the ob-
tained experimental results. From the analysis of Figure 5, it clearly follows that
increasing the value of W improves the F&A query performance significantly,
as this allows more (fragmentation) attributes to participate in the partitioning
process. In addition to this, it should be noted that F&A query performance
become stable starting from the cut-off value W = 250. This experimental result
confirms to us the importance of carefully choosing the number of final fragments
to be generated.

6 Conclusions and Future Work

In this paper, we have introduced and experimentally evaluated F&A, an inno-
vative PRDW design methodology on database clusters. The proposed method-
ology encompasses a number of advancements over state-of-the-art similar ap-
proaches, particularly (i) the fact it considers heterogeneous cluster nodes, i.e.
nodes having heterogenous storage capacities and processing power, and (ii) the
fact it performs the fragmentation and allocation phases simultaneously. As a
secondary contribution of our research, we have provided a comprehensive ex-
perimental campaign where we demonstrated the effectiveness and the efficiency
of our proposed approach. Future work is mainly oriented towards making our
proposed design methodology able to deal with next-generation Grid Data Ware-
house Environments [6].

References

1. Bellatreche, L., Benkrid, S.: A joint design approach of partitioning and allocation

in parallel data warehouses. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.)

DAWAK 2009. LNCS, vol. 5691, pp. 99–110. Springer, Heidelberg (2009)

2. Bellatreche, L., Boukhalfa, K.: An evolutionary approach to schema partitioning se-

lection in a data warehouse environment. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK

2005. LNCS, vol. 3589, pp. 115–125. Springer, Heidelberg (2005)

3. Bellatreche, L., Boukhalfa, K., Richard, P.: Data partitioning in data warehouses:

Hardness study, heuristics and oracle validation. In: Song, I.-Y., Eder, J., Nguyen,

T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 87–96. Springer, Heidelberg (2008)

4. OLAP Council. Apb-1 olap benchmark, release ii (1998),

http://www.olapcouncil.org/research/bmarkly.htm

5. Cuzzocrea, A., Darmont, J., Mahboubi, H.: Fragmenting very large XML data

warehouses via k-means clustering algorithm. International Journal of Business

Intelligence and Data Mining 4(3-4), 301–328 (2009)

6. Cuzzocrea, A., Kumar, A., Russo, V.: Experimenting the query performance of a

grid-based sensor network data warehouse. In: Hameurlain, A. (ed.) Globe 2008.

LNCS, vol. 5187, pp. 105–119. Springer, Heidelberg (2008)

http://www.olapcouncil.org/research/bmarkly.htm


104 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

7. Cuzzocrea, A., Serafino, P.: LCS-hist: taming massive high-dimensional data cube

compression. In: 12th International Conference on Extending Database Technology,

EDBT 2009 (2009)

8. Davis, L.D.: Bit-climbing, representational bias, and test suite design. In: Proceed-

ings of the 4th International Conference on Genetic Algorithms (ICGE 1991), pp.

18–23 (March 1991)

9. DeWitt, D.J.D., Madden, S., Stonebraker, M.: How to build a high-performance

data warehouse, http://db.lcs.mit.edu/madden/high_perf.pdf

10. Eadon, G., Chong, E.I., Shankar, S., Raghavan, A., Srinivasan, J., Das, S.: Sup-

porting table partitioning by reference in oracle. In: SIGMOD 2008 (2008)

11. Furtado, P.: Experimental evidence on partitioning in parallel data warehouses. In:

DOLAP, pp. 23–30 (2004)

12. Gupta, H.: Selection and maintenance of views in a data warehouse. Ph.d. thesis,

Stanford University (September 1999)

13. Karlapalem, K., Pun, N.M.: Query driven data allocation algorithms for distributed

database systems. In: Tjoa, A.M. (ed.) DEXA 1997. LNCS, vol. 1308, pp. 347–356.

Springer, Heidelberg (1997)

14. Lima, A.B., Furtado, C., Valduriez, P., Mattoso, M.: Improving parallel olap query

processing in database clusters with data replication. Distributed and Parallel

Database Journal (2009) (to appear)

15. Navathe, S.B., Ra, M.: Vertical partitioning for database design: a graphical algo-

rithm. In: ACM SIGMOD, pp. 440–450 (1989)

16. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn.

Prentice Hall, Englewood Cliffs (1999)

17. Röhm, U., Böhm, K., Schek, H.-J.: Olap query routing and physical design in a

database cluster. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.)

EDBT 2000. LNCS, vol. 1777, pp. 254–268. Springer, Heidelberg (2000)

18. Röhm, U., Böhm, K., Schek, H.-J.: Cache-aware query routing in a cluster of

databases. In: Proceedings of the International Conference on Data Engineering

(ICDE), pp. 641–650 (2001)

19. Saccà, D., Wiederhold, G.: Database partitioning in a cluster of processors. ACM

Transactions on Database Systems 10(1), 29–56 (1985)

20. Sarawagi, S.: Indexing olap data. IEEE Data Engineering Bulletin 20(1), 36–43

(1997)

21. Stöhr, T., Märtens, H., Rahm, E.: Multi-dimensional database allocation for paral-

lel data warehouses. In: Proceedings of the International Conference on Very Large

Databases, pp. 273–284 (2000)

22. Stöhr, T., Rahm, E.: Warlock: A data allocation tool for parallel warehouses. In:

Proceedings of the International Conference on Very Large Databases, pp. 721–722

(2001)

http://db.lcs.mit.edu/madden/high_perf.pdf


Yet Another Algorithms for Selecting Bitmap
Join Indexes

Ladjel Bellatreche1 and Kamel Boukhalfa2

1 LISI/ENSMA - Poitiers University, Futuroscope, France

bellatreche@ensma.fr
2 USTHB University - Algiers- Algeria

boukhalk@gmail.com

Abstract. One of the fundamental tasks that data warehouse (DW) ad-

ministrator needs to perform during the physical design is to select the

right indexes to speed up her/his queries. Two categories of indexes are

available and supported by the main DBMS vendors: (i) indexes defined

on a single table and (ii) indexes defined on multiple tables such as join

indexes, bitmap join indexes, etc. Selecting relevant indexes for a given

workload is a NP-hard problem. A majority of studies on index selection

problem was focused on single table indexes, where several types of algo-

rithms were proposed: greedy search, genetic, linear programming, etc.

Parallel to these research efforts, commercial DBMS gave the same at-

tention to single table indexes, where automated tools and advisors gen-

erating recommended indexes for a particular workload and constraints

are developed. Unfortunately, only few studies dealing with the prob-

lem of selecting bitmap join indexes are carried out. Due to the high

complexity of this problem, these studies mainly focused on proposing

pruning solutions of the search space by the means of data mining tech-

niques. The lack of bitmap join index selection algorithms motivates our

proposal. This paper proposes selection strategies for single and multiple

attributes BJI. Intensive experiments are conducted comparing the pro-

posed strategies using mathematical cost model and the obtained results

are validated under Oracle using APB1 benchmark.

Keywords: Physical Design, Bitmap join index, Query performance.

1 Introduction

Queries defined on relational DW (called star join queries) are complex, since
they involve several joins and selections. Indexes are a solid candidate to optimize
such operations. Note that they are considered as the pioneer of the optimization
techniques in database area. They represent an important part of any database
system design as they can significantly impact workload performance by enabling
quicker and more efficient access to data. In the DW context, when we talk
about indexing, we refer to two different aspects: (i) indexing techniques and (i)
index selection problem. A number of indexing strategies have been suggested
for DWs that we propose to classify into two main categories: (1) single table

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 105–116, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



106 L. Bellatreche and K. Boukhalfa

indexes and (2) multiple table indexes. A single table index is an index defined
on one or several attributes of a single table, whereas a multiple table index
involves several tables. A large spectrum of indexing techniques belonging to
both categories has been proposed: value-list index, projection index [13], bitmap
index [6], data index [11], join index [18], star join index, bitmap join index [13].
Note that single table indexes are not sufficient to optimize star join queries. A
join index, considered as a multiple table index, is well adapted for such queries.
It is the result of joining two tables on a join attribute and projecting the keys
(or tuple identifiers) of the two tables. To join the two tables, we can use the
join index to fetch the tuples from the tables followed by a join. In the relational
DW, it is of interest to perform a multiple join (a star join) on the fact table
and their dimension tables. Therefore, it will be helpful to build join indexes
between the keys and the dimension tables and the corresponding foreign keys
of the fact table. If the join indexes are represented in bitmap (called bitmap
join indexes (BJI)), a multiple join could be replaced by a sequence of bitwise
operations, followed by a relatively small number of fetch and join operations.
An important characteristic of BJI is their ability to be compressed [19], where
run-length compression is usually used to reduce the size of the bitmaps. Note
that a BJI can be defined on only one attribute of a given dimension table (in
this case it is called single attribute BJI ) or on several attributes of the same or
different dimension table (called multiple attribute BJI ).

The index selection problem (ISP) has been studied since the early 70’s and its
importance during physical design is well recognized [9]. ISP consists in picking a
set of indexes for given set of queries under some resources constraints (storage
cost, maintenance overhead, etc.). It is a NP-hard problem. A large amount
of studies dealing with this problem were proposed [7,10,16,8,14,12,20]. They
are mainly focused on single table indexes. Two main types of algorithms were
proposed to select them: (i) heuristic algorithms, such as greedy search [16,8],
genetic, etc. and (ii) integer linear programming approaches to compute how
close they get to the optimal solution [7,14]. Most academic selection approaches
use mathematical cost models to guide the selection process and quantify the
quality of the final indexes. Some industrial index tools use the cost models
of their query optimizers to select indexes [20]. The single table index selection
algorithms used by these tools are usually based on greedy search augmented with
optimization techniques to reduce the number of index candidate they consider
and the number of calls to the query optimizer [8]. Recently, DBMS vendors
propose automated advisors generating recommended single table indexes for a
particular workload and constraints [1,20].

So far, we realize that single table indexes received great attention from aca-
demic and industrial communities. This attention concerns both aspects of in-
dexing: techniques and selection algorithms. Unfortunately, a little attention has
been given to multiple table indexes and especially selection algorithms aspect.
Most of studies related to BJI selection problem are mainly focused on pruning
its search space [2,4,17]. In [2], a data mining algorithm Close [15] is used to per-
form the pruning. Frequent itemsets generated by Close are BJI candidate. Since,



Yet Another Algorithms for Selecting Bitmap Join Indexes 107

BJI selection problem is constraint with a storage capacity, the authors propose
a simple greedy algorithm to select a final configuration of BJI optimizing query
processing cost and satisfying the storage constraint. The main drawback of
this selection approach is that it considers only frequencies of appearance of at-
tributes to generate frequent itemsets. In [4], we have shown using an example
that the appearance frequencies cannot be the sole criteria to recommend BJI.
Therefore, we proposed DynaClose algorithm which is an improvement of Close
by adding other DW parameters such as frequencies of attributes, size of the
dimension and fact tables, the system page size, etc to generate frequent item-
sets. Once the pruning phase is done, a simple greedy algorithm is performed to
select final BJI. In [4], horizontal partitioning technique (considered as an opti-
mization structure), is used to prune the search space of BJI indexes. This work
has been motivated by the existence of a strong similarity between horizontal
partitioning and BJI - both optimize selections and joins and are concurrent
to the same resource representing the selection attributes of dimension tables.
The pruning process is done as follows: if a restriction attribute is used to par-
tition the DW, it will be automatically discarded from indexing process. Similar
work was developed in [17], but without considering BJI selection problem. It
deals with parallel DW design, where algorithms for allocating fragments and
BJIs are given. In [3], a tool (called SimulPhd) assisting, in iterative way, DW
administrators (DWAs) in their physical design tasks are proposed. One of the
functionalities of SimulPhd is the recommendation of BJIs based on DynaClose
approach proposed in [4].

The lack of BJI selection algorithms motivates us to develop other strategies
and to propose a strong evaluation comparing their efficiencies to optimize OLAP
queries. Having a several BJI selection algorithms offers designers a large broad
of choices during the physical design. Our proposed algorithms select both single
and multiple attributes BJIs.

The paper is organized as follows. Section 2 presents background related to
BJI and complexity of their selection problem. Section 3 presents BJI selection
algorithms by describing in details their main steps. Section 4 presents intensive
experiments using mathematical cost model and a validation under Oracle with
data set of APB1 benchmark. Section 5 concludes the paper summarizing the
main findings of our research, and proposing directions for future work.

2 Background

In this section, we present some BJI concepts, a formalization of their selection
problem and its complexity.

BJI is used to pre-compute the joins between dimension table(s) and the
fact table of relational DW modelled using a star schema [13]. Unlike standard
bitmap index, where the indexed attributes belong to the table to be indexed, a
BJI may be defined on one or more attributes belonging to various tables. More
precisely, let A be an attribute of a given dimension table D with n distinct
values (v1, v2, · · · , vn) and m a number of instances of the fact table F . The



108 L. Bellatreche and K. Boukhalfa

construction of the BJI defined on F via the dimension attribute A is done as
follows:

1. Create n vectors, where each one has m rows;
2. The ith bit of the vector corresponding to a value vk is set to 1 if the ith tuple

of the fact table is joined with a tuple of D having a value of its attribute A
equal to vk. It is set to 0 otherwise.

A BJI may be defined on one or several columns (attributes) of the same table
or on more than one table. Besides disk saving (due to the binary representa-
tion and possible compression), BJIs speed up star join queries characterized by
Boolean and COUNT operations. Note that BJI is defined on non key dimension
attribute(s) with low cardinality 1 (called indexable attributes). An indexable at-
tribute Aj of a given dimension table Di is a column Di.Aj such that there is a
condition of the form Di.Aj θ V alue in the WHERE clause. The operator θ
must be among {=, <, >,≤,≥} and V alue ∈ Domain(Di.Aj).

The BJI selection is more difficult compare to single table indexes. This is
due to the following points:

– in the context of the DW, the number of indexable attributes may be impor-
tant, since star schemes used to model business intelligence applications are
composed of thousand of dimension tables with various selection attributes
(candidate for indexing),

– the fact that a BJI may be defined on a set of attributes belonging to one or
several dimension tables increases the total number of BJIs. More formally,
let A = {A1, A2, · · · , AK} be the set of indexed attributes. Then, the pos-
sible number of BJIs that we should consider to select only one BJI grows
exponentially:

(
K
1

)
+

(
K
2

)
+...+

(
K
K

)
= 2K−1. To select more than one BJI, the

number of possibilities is given by
(

2K−1
1

)
+

(
2K−1
2

)
+ ...+

(
2K−1
2K−1

)
= 22K−1,

– BJIs are not disjoint, since an indexable attribute may be found in two
different BJIs.

Based on the above analysis, the problem of finding the set of BJIs that minimizes
the total query processing cost while satisfying a storage constraint cannot be
handled by first enumerating all possible BJIs and then computing the query
cost for each candidate BJI. Due to this high complexity, we formalize it as an
optimization problem with constraint as follows:

Given a DW with a set of dimension tables D = {D1, D2, ..., Dd} and a fact
table F , a workload Q of queries Q = {Q1, Q2, ..., Qn}, where each query Qi

(1 ≤ i ≤ n) has an access frequency, and a storage constraint S, the aim of
BJI selection problem is to find a set of BJIs among a pre-computed subset
of all possible candidates which minimizes the cost of Q satisfies the storage
requirements S. We present in the next section our algorithms for selecting
BJIs.

1 The domain of this attribute should be an enumerated domain like gender.



Yet Another Algorithms for Selecting Bitmap Join Indexes 109

3 Algorithms for Selecting BJIs

In this section, we present two algorithms one for selecting single attribute BJI
and another for multiple attribute BJI. Note that single attribute BJIs are the
first multiple table indexes proposed and supported by commercial DBMS [13].
The existing studies do not make this distinction. In this case, DWA shall wait
the execution BJI selection algorithm to see whether the selected BJIs are defined
on single or multiple attributes. In the real life, it suitable for DWA to have the
choice to select her/him favourite selection strategy of BJIs.

Our algorithms use a cost model computing the number of inputs outputs
required for executing a set of queries in the presence of BJIs [5].

3.1 Single Attribute BJI Selection

The algorithm for selecting a single-attribute BJI configuration is divided into
three steps: (1) identification of indexable attributes, (2) initialization of the con-
figuration and (3) improving of the current configuration by adding new BJI. In
the first step, all queries are analyzed in order to extract the indexable attributes.
These attributes are sorted based on their cardinality. The algorithm starts with
an initial configuration consisting of a single attribute BJI with minimum cardi-
nality, denoted by BJImin. The initial configuration is iteratively improved by
adding a BJI defined on other attributes not yet indexed and chosen from the
ordered list of indexable attributes. The algorithm terminates when it arrives at
a point, where it cannot see any more improvement of query processing cost and
the storage space is consumed.

3.2 Multiple Attributes BJI Selection

By definition, single attribute BJI involves only one dimension table. Since
OLAP queries cover several dimension tables involving selection predicates, the
development of multiple attributes BJI selection algorithm becomes a necessity.
For this purpose, we propose an intuitive algorithm for selecting such BJIs. It
selects a BJI for each query having indexable attribute(s). Four steps character-
ize this algorithm: (1) identification of indexable attributes, (2) construction of
a configuration for each query, (3) construction of an initial configuration and
(4) construction of a final configuration.

Identification of indexable attributes. This step is done in the same way as in
the previous algorithm.

Construction of a configuration of BJI by query. In this step, each query of the
workload is associated to BJI involving its entire selection attributes candidate
for indexation.

Example 1. Suppose the existence of five indexable attributes: Time.Month,
Time.Day, Product.Type, Customer.City and Customer.Gender and ten queries



110 L. Bellatreche and K. Boukhalfa

0 0 0 0 1

1

1

1

0

0 0 0 0

0 0 0 1

0 1 0 0

0 1 0 1

BJI1

BJI2

BJI3

BJI4

BJI5

(a) Query-attribute matrix

0 1 0 1 1

1

0

1

1

0

1

1 0 0 0

0 0 0 1

1 0 0 1

1 1 0 0

0 1 1 1

1 1 1 0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

T.Month T.Day P.Type C.City C.Gender

1

0

1

1 1 0 0

0 1 1 1

1 1 1 0

Q8

Q9

Q10

0 1 0 1 1

1

0

1

1

0

1

1 0 0 0

0 0 0 1

1 0 0 1

1 1 0 0

0 1 1 1

1 1 1 0

BJI1

BJI2

BJI3

BJI4

BJI5

BJI6

BJI7

T.Month T.Day P.Type C.City C.Gender

(b) Initial configuration

(c) Configuration generated after 

elimination of attributes : T.Day et C.City

T.Month T.Day P.Type C.City C.Gender

Fig. 1. Example of initial generated configuration and attribute elimination

{Q1, Q2, ..., Q10}. The indexable attributes used by each query are represented
in the query-attribute matrix shown in Figure 1(a). In a query-attribute matrix
the presence of an indexable attribute in a query is indicated by a 1 and ab-
sence by a 0. Applying the first step on this workload generates 10 IJB, each
corresponding to a query (defined on all indexable attributes of that query).

Construction of an initial configuration. This configuration is computed as the
union of all selected indexes. Note that the number of indexes of this configu-
ration may be less than or equal to the number of queries of workload, because
some queries share the same index and some do not have indexable attributes.

Example 2. The application of this step on the previous example generates an
initial configuration consisting of 7 BJI, because queries (Q5, Q8), (Q6, Q9) and
(Q7, Q10) respectively share the same indexes. The initial configuration is shown
in Figure 1(b).

Construction of a final configuration. Recall that the initial configuration relaxes
the storage constraint. If the storage cost required for storing all selected indexes
does not exceed the storage capacity S, our algorithm ends. Otherwise, some
BJI should be reduced until the satisfaction of S. To do so, we propose four
elimination strategies:

1. Elimination of attributes with high cardinality (HCA): The main cause of the
explosion in the size of BJI is the cardinality of the indexed attributes. In
this strategy, an attribute of high cardinality is eliminated from all indexes of
the initial configuration. For this, attributes are sorted in descending order
of their cardinality; they will be eliminated in that order until the size of the
configuration meets the constraint of storage.

2. Elimination of attributes belonging to small dimension tables (NLT): the
principle of this strategy is keep BJI defined on largest dimension tables,
since joins are costly, especially, when the size of involved tables are impor-
tant.



Yet Another Algorithms for Selecting Bitmap Join Indexes 111

3. Elimination of the less used attributes (LUA): this strategy assumes that the
most frequently used attributes should be indexed to satisfy most queries.

4. Cost-based elimination (CBE): the main disadvantage of the above strate-
gies is that they eliminate attributes without quantifying this elimination
in terms of query processing reduction. To overcome this drawback, we pro-
pose CBE strategy that uses our cost model. An elimination of an attribute
is feasible if it reduces significantly the query processing cost.

Example 3. Consider the 10 queries for which the query-attribute matrix is
shown in Figure 1 (a) and the initial configuration is found in Figure 1 (b).
Suppose that the cardinalities of attributes Month, Day, Type, City and Gen-
der are respectively 12, 31, 5, 50 and 2. HCA strategy eliminates the following
attributes in this order: City, Day, Month, Type and Genre. For instance, after
the elimination of attributes City and Day, we obtain a configuration shown in
Figure 1 (c). We see that these two selection attributes are not indexed (their
column values are set to 0) and the number of BJI is decremented from 7 to 5,
which reduces the storage cost of the resulting configuration.

4 Performance Study

Our BJI selection algorithms are implemented using Visual C++. All experi-
ments were conducted on a Core 2 Duo machine with 2 GB of memory. We
have developed a modular architecture to perform our experiments to facilitate
their integration in our tool SimulPhd [3]. This architecture has five modules:
(1) meta-base querying module, (2) query management module, (3) BJI selection
module, (4) indexation module and (5) query rewriting module. The meta-base
querying module contains information related to logical (list of tables, their
attributes, length of each attribute, domain value of each attribute, etc.) and
physical (attribute and table statistics, size of page of the disk, etc.) aspects of
the DW. The queries management module allows a manual edition or an external
importation of a workload. BJI selection module has as input a DW schema, a
workload (Q) and a storage space (S) fixed by the administrator and it returns a
configuration of BJI (CBJI) that minimizes the execution time of the workload
and respecting the space constraint. Indexation module creates physically the
selected BJI by using scripts directly on the DW. Finally, the query rewriting
module forces query optimizer to use the selected indexes using Hint.

We use the star schema of the APB-1 benchmark2. It consists of one fact ta-
ble (Actvars) and four dimension tables (ProdLevel, TimeLevel, CustLevel, and
ChanLevel). We consider 12 candidates indexable attributes (ClassLevel, Grou-
pLevel, FamilyLevel, LineLevel, DivisionLevel, YearLevel, MonthLevel, Quarter-
Level, RetailerLevel, CityLevel, GenderLevel and ALLLevel) whose cardinalities
are respectively: 605, 300, 75, 15, 4, 2, 12, 4, 99, 4, 2, 5. The used workload has
60 star join queries. We conduct our experiments as follows: (1) an evaluation
using theoretical cost-model and (2) the obtained results are validated on Oracle
10g using the data set of our benchmark.
2 http://www.olapcouncil.org/research/bmarkly.htm)



112 L. Bellatreche and K. Boukhalfa

4.1 Theoretical Evaluation

We have performed several experiments using a theoretical cost-model that es-
timates the number of inputs outputs (in terms of pages) required to execute
the 60 queries. We implemented three selection algorithms: (1) single attribute
BJI selection algorithm (MI), (2) multi-attributes BJI selection algorithm with
four pruning strategies HCA, NLT, LUA and CBE and (3) data mining algo-
rithm (DM) presented in [2]. To enable DM to select a better configuration, you
must set the value of minsup that represents the minimum support of frequent
itemsets. For this, we performed experiments for different values of minsup. For
each value we execute DM algorithm and the size of obtained BJI are estimated.
In the same time, the cost of executing queries is computed in presence of BJI
selected for each value of minsup. Figures 2 and 3 show the results. It is clear
that when minsup is small, many indexes are created and thus occupy more
space. When minsup is high, few indexes are generated, and thus less space is
occupied. The difficulty to use DM algorithm is that DWA should identify the
value of minsup that gives a good compromise between performance and storage
space.

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

0,05 0,1 0,15 0,2 0,25 0,3

I/O

Minsup

Fig. 2. Minsup vs Performance

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

0,05 0,1 0,15 0,2 0,25 0,3

Size (Mo)

Minsup

Fig. 3. Minsup vs Storage

Note that multi-attribute BJI selection algorithm generates an initial config-
uration that needs a storage space of 26.4 GB. This motivates the development
of our pruning strategies to reduce the storage cost.

In the first experiment, we vary storage space (from 0 to 4 GB) and we
estimate the query processing cost for each strategy in order to measure the
impact of space on query performance. For DM algorithm, minimum support is
set to 0.25. Figure 4 summarizes obtained results. The best performances are
obtained by the MI and CBE algorithms. This is due to the fact that they are
based on a cost-model which considers several parameters: selectivity factor of
selection predicate, attribute cardinalities, size of dimensions tables, etc. Other
strategies use only a unique parameter to perform the pruning process. For
example, the LUA algorithm considers only the frequency of attributes which is
not sufficient to obtain a good performance. Another interesting result is that
when the storage space is reduced, DM gives best result. This is because the
other algorithms are penalized by the storage space, therefore, only few BJIs



Yet Another Algorithms for Selecting Bitmap Join Indexes 113

0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

1.E+09

0 500 1000 1500 2000 2500 3000 3500 4000

I/O

Space (Mo)

NLT HCA LUA CBE MI DM

Fig. 4. Query Performance vs. Storage

Space

0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

1.E+09

0 2 4 6 8 10 12

I/O

# of indexable attributes

NLT HCA LUA CBE MI

Fig. 5. Performance vs Number of at-

tributes

are generated. Based on these results, we can conclude that the selection of
optimized BJI shall be done using a cost model incorporating logical and physical
parameters of the DW.

In a second experiment, we compare the performance of the proposed strate-
gies by varying the number of selection attributes (from 1 to 12). The results of
this experiment are presented in Figure 5. We realize that the query performance
increases proportionally to the number of these attributes. The better perfor-
mance is obtained when all query attributes are indexed. In this case, several
joins between the fact and dimension tables are saved. In our experiments, when
the number of candidate attributes is greater than 8, no significative improve-
ment is observed. This is due to the storage constraint.

We have study the effect of varying the number of dimension tables in the BJI
selection process. We run the different algorithms with 1, 2, 3 and 4 dimensions
tables (Figure 6). We notice that the performance increases proportionally to the
increase of the number of dimension tables. Indeed, join between tables are pre-
calculated using the created BJI. However, we note that the NLT strategy does
not follow this rule. When only one table is used it gives better result. This is
because when the number of tables increases the NLT strategy removes smallest
tables which are sometimes benefit for indexing. The overall performance remains
stable from a certain number of dimension tables, this is because the storage cost
is consumed by all selected indexes.

0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

1.E+09

0 1 2 3 4

I/O

# number of candidate dimension tables

NLT HCA LUA CBE MI

Fig. 6. Performance vs. Number of di-

mension tables

0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

0 200 400 600 800 1000 1200 1400 1600 1800 2000

I/O

Cardinality

NLT HCA LUA CBE MI

Fig. 7. Performance vs. Cardinality



114 L. Bellatreche and K. Boukhalfa

In the last theoretical experiment, we study the effect of cardinality of index-
able attributes on query performance. To do so, we assume that all indexable
attributes have the same cardinality, and we vary it from 2 till 2000. For each
value, we execute our algorithms. Figure 7 summarizes the obtained results. We
notice that the performance deteriorates significantly when increasing cardinali-
ties. Indexes on high cardinalities are storage-consuming and to perform queries,
large BJI should be loaded in the main memory.

4.2 Validation on Oracle 10g

To validate our approach, we create a DW schema of APB1 benchmark and
we populate its tables using generator program provided by that benchmark.
We consider 60 star join queries using 12 indexable attributes. These queries
have different shapes: COUNT(*) queries with and without aggregation, queries
using aggregation function as Sum, Min, Max, etc. and queries having dimension
attributes in the SELECT clause. We run our selection algorithms with a storage
space of 3 GB using our mathematical cost model. For the DM algorithm, the
minimum support is fixed to 0.25. The generated BJI by each algorithm are used
to execute our queries using hint. To make sure that query optimizer considers
the selected BJI, we use Explain Plan Tool provided by Oracle that shows in
details the execution plan of each query.

Figures 8 and 9 show respectively the execution time of the workload and
the cost reduction using the BJI configuration generated by each strategy. The
obtained results confirm the utility of BJI for the COUNT(*) queries. On the
other hand, the queries that get less benefit from the created BJI are those us-
ing dimensions attributes in the SELECT clause and those having any selection
attribute in the selected BJI. Consequently, these queries need additional joins
between the dimension tables and the fact table. The best gain in response time
is obtained when multiple attributes BJI covering all indexable attributes of the
queries are used. MI and DM approaches give better results. This is because
they generate BJI defined on single attribute covering respectively 3 and 4 di-
mension tables. For the multi-attribute BJI, the best result is obtained when
CBE strategy is used, since it uses a cost-model which incorporates several pa-
rameters. This result shows the quality of our mathematical cost model. Another

0

100

200

300

400

500

600

700

Without 

BJI

NLT DM HCA LUA CBE MI

Time(mn)

Fig. 8. Workload execution time

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

NLT DM HCA LUA CBE MI

12,99

32,04

2,81

22,96
24,81

37,82

%  of cost 

reduction

Fig. 9. Percentage of cost reduction



Yet Another Algorithms for Selecting Bitmap Join Indexes 115

interesting result concerns NLT and HCA strategies that are outperformed by
other strategies. Note that HCA strategy eliminates attributes with high cardi-
nality, but sometimes creating a BJI on attribute with low cardinality can benefit
for some queries but not all. For instance, DM algorithm proposes to create two
BJI on attributes RetailerLevel and MonthLevel having important cardinalities
compare to other attributes (99 and 12 respectively) to achieve good results
since they are used by several queries of the workload. All results obtained on
ORACLE DBMS confirm the theoretical ones.

5 Conclusion

Indexes are one of the pioneer optimization techniques. They represent an im-
portant part of any database system design as they can significantly impact
workload performance by enabling quicker and more efficient access to data.
The importance of indexes was amplified as query optimizers became sophis-
ticated to cope with complex OLAP queries. Several indexing techniques were
proposed. Selecting right indexes is a crucial issue for query optimization. In
DW context, studies on selection indexes were mainly concentrated on single
table indexes. In this paper, we have motivated the need to develop indexing
algorithms for selecting bitmap join indexes to optimize star join queries. We
propose two main types of algorithms: (i) one for selecting indexes defined on
only one attribute of a dimension table and (ii) another for selecting indexes de-
fined on several attributes of same or different dimension tables. We conducted
several experiments using theoretical cost model and we propose a comparison
between existing and our proposed algorithms. The obtained indexing schemes
generated by our algorithms are validated on Oracle using the data set of APB1
benchmark.

References

1. Agrawal, S., Chaudhuri, S., Kollar, L., Marathe, A., Narasayya, V., Syamala, M.:

Database tuning advisor for microsoft sql server 2005. In: Proceedings of the In-

ternational Conference on Very Large Databases, pp. 1110–1121 (2004)

2. Aouiche, K., Boussaid, O., Bentayeb, F.: Automatic Selection of Bitmap Join In-

dexes in Data Warehouses, pp. 64–73 (August 2005)

3. Bellatreche, L., Boukhalfa, K., Alimazighi, Z.: Simulph.d.: A physical design sim-

ulator tool. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS,

vol. 5690, pp. 263–270. Springer, Heidelberg (2009)

4. Bellatreche, L., Missaoui, R., Necir, H., Drias, H.: A data mining approach for

selecting bitmap join indices. Journal of Computing Science and Engineering 2(1),

206–223 (2008)

5. Boukhalfa, K.: De la conception physique aux outils d’administration et de tuning

des entrepts de donnes. Phd. thesis, Poitiers University, France (2009)

6. Chan, C.Y., Ioannidis, Y.E.: Bitmap index design and evaluation. In: Proceedings

of the ACM SIGMOD International Conference on Management of Data, pp. 355–

366 (June 1998)



116 L. Bellatreche and K. Boukhalfa

7. Chaudhuri, S.: Index selection for databases: A hardness study and a principled

heuristic solution. IEEE Transactions on Knowledge and Data Engineering 16(11),

1313–1323 (2004)

8. Chaudhuri, S., Narasayya, V.: An efficient cost-driven index selection tool for mi-

crosoft sql server. In: Proceedings of the International Conference on Very Large

Databases, pp. 146–155 (August 1997)

9. Chaudhuri, S., Narasayya, V.: Self-tuning database systems: A decade of progress.

In: Proceedings of the International Conference on Very Large Databases, pp. 3–14

(September 2007)

10. Choenni, S., Blanken, H.M., Chang, T.: On the selection of secondary indices in

relational databases. Data Knowledge Engineering 11(3), 207–238 (1993)

11. Datta, A., Ramamritham, K., Thomas, H.: Curio: A novel solution for efficient

storage and indexing in data warehouses. In: Proceedings of the International Con-

ference on Very Large Databases, pp. 730–733 (September 1999)

12. Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J.: Index selection for olap.

In: Proceedings of the International Conference on Data Engineering (ICDE), pp.

208–219 (April 1997)

13. O’Neil, P., Quass, D.: Improved query performance with variant indexes. In: Pro-

ceedings of the ACM SIGMOD International Conference on Management of Data,

pp. 38–49 (May 1997)

14. Papadomanolakis, S., Ailamaki, A.: An integer linear programming approach to

database design. In: ICDE Workshops, pp. 442–449 (2007)

15. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-

sets. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416.

Springer, Heidelberg (1998)

16. Sanjay, A., Surajit, C., Narasayya, V.R.: Automated selection of materialized views

and indexes in microsoft sql server. In: Proceedings of the International Conference

on Very Large Databases, pp. 496–505 (September 2000)

17. Stöhr, T., Märtens, H., Rahm, E.: Multi-dimensional database allocation for paral-

lel data warehouses. In: Proceedings of the International Conference on Very Large

Databases, pp. 273–284 (2000)

18. Valduriez, P.: Join indices. ACM Transactions on Database Systems 12(2), 218–246

(1987)

19. Wu, K., Shoshani, A., Stockinger, K.: Analyses of multi-level and multi-component

compressed bitmap indexes. ACM Transactions on Database Systems 35(1) (2010)

20. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M., Storm, A., Garcia-Arellano, C.,

Fadden, S.: Db2 design advisor: Integrated automatic physical database design. In:

Proceedings of the International Conference on Very Large Databases, pp. 1087–

1097 (August 2004)



Speeding Up Queries in Column Stores
A Case for Compression

Christian Lemke1,2, Kai-Uwe Sattler2, Franz Faerber1, and Alexander Zeier3

1 SAP AG, Walldorf, Germany

c.lemke@sap.com, franz.faerber@sap.com
2 Ilmenau Univ. of Technology, Ilmenau, Germany

kus@tu-ilmenau.de
3 Hasso-Plattner-Institute, Potsdam, Germany

alexander.zeier@hpi.uni-potsdam.de

Abstract. BI accelerator solutions like the SAP NetWeaver database

engine TREX achieve high performance when processing complex ana-

lytic queries in large data warehouses. They do so with a combination

of column-oriented data organization, memory-based processing, and a

scalable multiserver architecture. The use of data compression techniques

further reduces both memory consumption and processing time. In this

paper we study query operators like scan and aggregation on compressed

data structures implemented in TREX.

1 Introduction

Recent years have seen growing demands on data warehousing and OLAP tech-
nologies being able to handle terabytes of data and complex analytic queries from
several hundred users simultaneously. Furthermore, more and more customers
need ad-hoc and realtime evaluation of queries that make materialization of
results and precalculation of reports more or less useless.

In order to meet these requirements, the limiting factor of disk I/O in database
systems has to be addressed. Basically, in the area of data warehousing there are
currently three main approaches: (1) Reduce the amount of data to be read from
disk and read it as fast as possible. Besides index structures, column-oriented
data organization shows great potential. (2) Avoid disk access completely by
keeping and processing data in memory. (3) Exploit the computing capacity of
a large number of inexpensive servers by using parallel processing.

In the field of Business Intelligence (BI) technologies some or all of these ap-
proaches are currently combined in the concept of BI accelerator solutions or
analytical engines. An example is the SAP NetWeaver BWA based on TREX.
TREX runs in a scalable multiserver architecture on blade servers. Processing
is performed completely in main memory, fact and dimension tables are or-
ganized column-wise (vertically partitioned) and the columns are partitioned
horizontally among the server nodes. The combination of parallelism and main
memory processing allows interactive execution of analytical queries without
pre-aggregation.

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 117–129, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



118 C. Lemke et al.

However, since RAM is still expensive compared to hard disk drives and can-
not be enlarged indefinitely, very large data warehouse installations require a
large number of server nodes. Furthermore, scanning the entire memory of a
node does not allow to exploit the benefit of L2 caches. Therefore, data com-
pression techniques are used to reduce the data volume and hence improve the
cache utilization. But, compressing data only is not the silver bullet: If data
processing as part of query evaluation requires an expensive decompression or
additional memory space, the benefit of compression is mitigated or even lost.

Thus, query operators should process compressed data directly without com-
puting-intensive decompression. In our work, we investigate such strategies for
implementing query operators. Based on the TREX infrastructure and the dis-
cussion of several compression schemes for in-memory column stores we present
strategies for filters, scans and aggregations which exploit these compressed data
structures. The results from our experimental evaluation show that depending
on the data distribution significant performance improvements can be achieved.

2 Related Work

The first work that suggests working directly on compressed data as long as pos-
sible was [4]. Its focus is on joins but also exact match comparisons for selections
and duplicate elimination (grouping) is described. They use domain coding as
lightweight compression in a row store implementation and specify the needed
properties of compression techniques for an efficient query processing. The de-
compression of values cannot be avoided for most aggregation functions and when
the data has to be displayed to the user. To reduce the repeated decompression
of fields [10] introduce an extended iterator model.

Raman and Swart showed in [7] that fast processing is also possible on heavyly
compressed data in a row store. They present a novel Huffman coding scheme to
evaluate equality and range predicates on compressed data without full dictio-
nary access. Before working on compressed data can take place, the compressed
records and fields have to be extracted. Afterwards index scan, hash join, merge
join, grouping and count (distinct) aggregation can work directly on the Huff-
man codes. For the min and max computation the codes of each code length
need to be decompressed for comparison. This is because of the coding scheme
where only the codes with the same length are ordered.

By contrast in [2,13] the data is always decompressed for query execution.
One of the first papers about working on compressed data in column stores

was [3]. Here the scan and join operators in queries are executed in a main
memory database on domain coded data. An additional speedup is gained by
using multidimensional hash tables as indexes.

Based on the column-oriented C-Store [9] Abadi et al. [1] introduced an archi-
tecture for a query executor that works directly on compressed data. In contrast
to this work, we use data structures that represent the data of a whole column
and not only parts of it.



Speeding Up Queries in Column Stores 119

There is also research on avoiding decompression while querying for other
database architectures. In [5] linearized multidimensional arrays are used to ef-
ficiently aggregate data whereas [6] concentrate on joins in a binary relational
database where triples are stored.

Another approach to speed up the query execution on compressed data struc-
tures is the use of modern hardware. [12] as an early paper uses SIMD instruc-
tions in a column store to exploit parallelism and eliminate branch mispredic-
tions. Zhou and Ross consider sequential scan, aggregation, index operations
and joins. For a single compressed tuple instead of several values of one field [8]
evaluates a conjunction of equality and range predicates using SIMD.

3 Data Structures for Column Compression

In the following we briefly describe some of the data structures used in TREX for
storing compressed column values. These data structures are pure main memory
structures and the main goals are (1) an effective compression scheme to reduce
the memory consumption and (2) allow to process queries without decompressing
the data. Particularly, the latter goal requires efficient access both to individual
values and also to blocks of values.

The basis for all the following techniques is domain coding [10,1,13]. For do-
main coding, all values from a column are stored in lexicographical order in
a dictionary. The original column is replaced by an index vector that stores
only bit-compressed pointers to the dictionary. To minimize the bit lengths, a
total of u distinct values appearing in n rows are coded using n�log2 u� bits. Fig-
ure 1(a) shows an example of domain coding for the sample data Aachen, Aachen,
Aachen, Karlsruhe, Aachen, Aachen, Leipzig, Münster, where each value is rep-
resented in the index vector by two bits. Note, that the column pos is given
in the figures only for illustrative purposes and not physically stored. The use
of integers instead of the original values has the advantages that it reduces the
data volume to be processed and allows to exploit hardware optimization for
integer processing. Furthermore, multiple values can be read at once into the
CPU cache and processed in parallel with special SIMD processor commands.

Based on this scheme prefix coding can be applied as a simple compression
technique. Here, repetitions of the same value at the start (prefix p) of a column
are deleted and replaced by one value and its frequency. For a column with
n elements and ucol distinct values, (n − p)�log2 ucol� + 64 bits are required.
Fig. 1(b) shows an example of the original uncompressed index vector and its
compressed version that is constructed using prefix coding.

If the most frequent value appears not only in the prefix but also scattered
among the other values, then sparse coding can be applied to achieve a good
compression (Fig. 1(c)). Here the positions of all appearances f of the most
frequent value are recorded in an additional bit vector and the original values
or deleted from the index vector. It is possible to use prefix coding for the bit
vector, which for a large prefix p can further improve the compression ratio.
With this technique only (n− f)�log2 ucol�+ (n− p) + 64 bits are needed.



120 C. Lemke et al.

(a) Domain coding (b) Prefix coding (c) Sparse coding

Fig. 1. Examples of domain, prefix and sparse coding

All the techniques described in the following will use prefix coding and work
on blocks of data containing minimal numbers of distinct values in order to
achieve a good compression ratio. In cluster coding only blocks with a single
distinct value are compressed by storing only the single value. Additionally, a
bit vector is needed to indicate which blocks are compressed, in order to be able
to reconstruct the original column. In this paper, we do not further consider how
to determine the optimal block size and its impact on the compression rate and
query runtime. In any case the number of elements should be an integral power
of two, so that instead of multiplication and modulo operation we can exploit
fast bit operations. Figure 2(a) shows an example in which the block size is two
and the compressed values are shown in gray boxes.

(a) Cluster coding (block size: 2) (b) Indirect coding (block size: 4)

Fig. 2. Examples of cluster and indirect coding

If the data blocks contain more than one but only few distinct values, indi-
rect coding can be used. Here domain coding is applied to appropriate blocks,
which adds the indirection of a separate mini-dictionary for each block. To re-
duce the number of dictionaries and hence the memory consumption, one dic-
tionary can be used for a continuous sequence of blocks as long as any new
entries in the dictionary do not increase the number of bits required to code
the entries. For a column with ucol distinct values, a block with k values and
ublock distinct values benefits from indirect coding if and only if the dictio-
nary and the references take less space than the original (domain coded) data:
ublock�log2 ucol�+ k�log2 ublock� < k�log2 ucol�.



Speeding Up Queries in Column Stores 121

Figure 2(b) illustrates the data structures used in the implementation. Here
one block contains four values and the compressed elements are shown again
in gray boxes. The dictionaries and the uncompressed data are stored in the
middle index vector, values, and each block is addressed with a start position. In
the data structure on the right, compressed blocks have their own index vector,
offsets, which points to the individual values.

Finally, a slightly modified variant of run length coding can be used, which
compresses sequences of repeated values to a single value for each run together
with the number of repetitions. In order to calculate the start position of each
value in the run, we add up the frequencies of the previous values. However, this
can result in a high overhead, so instead we decided to reduce the compression
slightly by storing the start position and not the number of repeats.

To speed up single-value accesses we introduce two inverted index structures:
a blocked and a signature index. The blocked index stores for each value a list of
blocks in which this value occurs and is therefore only applicable if using cluster,
indirect or run length coding. For the signature index the data is split into a
fixed number of parts and for each value the occurrences in that parts are stored
in a bit vector which significantly reduces the amount of storage.

4 Query Operators for Compressed Columns

In this section we will describe in detail how the compressed data structures are
used in the standard query operators. We designed the compression techniques
for an efficient direct access to the data and gaining significant performance im-
provements over uncompressed data structures especially for the scan operator.
In the evaluation we will show that the choice of the best compression technique
depends on the data and can be done automatically.

4.1 Basic Operators

The basic operator in a data warehouse environment is the scan operator with op-
tional filter predicates. In scenarios with mass data and non selective predicates,
the performance of the scan operator is very critical. The get operator provides
random access to a column by retrieving the value (or a reference to the dictio-
nary) of a given row id. This operation is needed for projections and selective fil-
ters. The performance of the operators depends on the result materialization data
structures (like bit vector or integer vector), the used compression technique and
many more factors. In the following we will present the scan and get operators for
the most complex compression techniques: sparse and indirect coding.

Sparse Coding. As mentioned above, the sparse coding maintains a bit vector
Bnf for the most frequent value vf of a column. A bit is set if the value of
the corresponding row is not vf, otherwise the bit is unset. For all compression
techniques a prefix offset p specifies the first row id, which is different from the
prefix value vp that is omitted. The values that are different from vf are stored
in an index vector Inf.



122 C. Lemke et al.

Scan Operator. The scan starts by testing the predicate for vp when there is
a prefix p. The same is done for vf whose corresponding row ids can easily be
extracted from Bnf. If necessary, Inf is also scanned and the corresponding row
ids are calculated by counting the unset bits in Bnf:

1. estimate the current row id by assuming that no values are removed (row id
= relative row id)

2. determine the number nnf of non frequent values (unset bits)
3. repeat the following steps until nnf is higher than the relative row id

(a) increase the current row id
(b) if the current value is not vf then increase nnf

4. calculate the absolute row id with current row id + p

In order to accelerate the calculation of unset bits a data structure is introduced,
which stores the number of set bits for every block of rows (i.e. all 128 rows) as
a sum of all previous blocks.
Get Operator. The get operator first checks if the requested value is in the
prefix. If the row id is higher than p then Bnf is tested. If the corresponding bit
is unset then the result is vf, otherwise the position of the requested value in Inf

is calculated and the requested value is extracted from there.
The sparse coding shows very good performance characteristics if the sparse

value is dominant in a way that it covers more than 90% of the rows. Otherwise
the costs of the indirect access over the bit vector is too high as shown in the
evaluation.

Indirect Coding. By neglecting the prefix, the indirect coding is a mixture
of variable and fixed size coding. Per block of rows the references to a local
block dictionary are of fixed size, but each block (e.g. 1024 rows) has its own
dictionary which references to the global dictionary of the column. For blocks
where local dictionaries are not suitable (e.g. with as many distinct values as
rows) no local dictionary is used, but the references to the global dictionary are
stored without further indirection. Because the references in the local dictionaries
and the references in blocks without local dictionaries are of fixed size, they are
stored in an index vector Iv. A second vector Vb stores information for each
block, like the start position in Iv and the references to the local dictionary (if
it exists).
Scan Operator. The scan operator scans Iv by testing the predicate for every
value and storing the hit positions in a temporary structure. For each entry in
this structure the following is done:

1. determine the corresponding block in Vb by checking the start position
2. if the block is uncompressed (no local dictionary) then calculate the absolute

row id with (block number * block size) + match pos - start pos
3. if the block is compressed (local dictionary)

(a) calculate the local dictionary reference with match pos - start pos
(b) scan the local references for that reference
(c) calculate the absolute row id from the local reference hit positions



Speeding Up Queries in Column Stores 123

Get Operator. Retrieving the value of a given row id starts by calculating the
block number in Vb. If the block is uncompressed, the position in Iv is row id
- (block number * block size) + start position. If the block is compressed, the
position in the local references is row id - (block number * block size). The final
position in Iv is the local reference plus the start position.

Hardware Optimization. Another approach to speed up data processing is
the implementation of the scan and decompression operations using SIMD in-
structions. The SIMD implementation used in our work is extensively evaluated
in [11] and we will only investigate the influence on our compressed data struc-
tures.

4.2 Aggregate Operators

Though, in this work we focus on the efficient implementation of scan operators
because they are most critical regarding performance, we discuss in the following
aggregation operators, too.

We start with a description of single column aggregations and grouping. These
aggregation operators are implemented as part of the scans such that filter pred-
icates can be calculated without additional efforts. Furthermore, some aggregate
functions such as min and max can be evaluated using the dictionary only.

Because columns are partitioned horizontally among all servers, aggregate
operators are evaluated in two steps: a scan phase that is performed in parallel
on all partitions followed by a merge phase. During the scan phase, partial
aggregates are computed for each partition which are then merged into the final
aggregates. For sparse coding the scan phase is performed in the following way.
We assume a single column grouping with count as aggregate function. In order
to collect the counts per group an array G is used that is indexed by the values
of the dictionary (i.e. the positions of the actual values in the dictionary). Let
I denote the index vector storing the column values in sparse coding and B the
corresponding bit vector.

1. Read the first value v0 from the dictionary and set G[v0] = p
2. Determine the number n of bits set in B and let G[v0] = G[v0] + n
3. Scan the index vector for all values vi and let G[vi] = G[vi] + 1

After the aggregate array Gi of all partitions are calculated, they are merged in a
straightforward way. This step is simplified by the same ordering of all grouping
arrays because on all partitions the same dictionary is used.

For other compression schemes this approach has to be slightly modified. For
example, for cluster coding the bit vector is scanned in parallel to the index
vector. If a bit i is set, the corresponding entry i of the index vector is skipped
and G[v0]+ = blocksize. Indirect coding requires an additional step to process
the index vectors of the individual blocks.

This single-column aggregation scheme can be extended to the multi-column
case by maintaining a single group array for all grouping columns G[c1, . . . , cm]
and perform the scans on these columns in parallel. Then, for each tuple v1, . . . , vm

the corresponding entry in G is updated as described above.



124 C. Lemke et al.

5 Experimental Evaluation

This section presents the results of evaluating the scan operator on different
synthetic datasets without a query optimizer. We use a micro benchmark to
analyze special properties of the compression techniques, which can be found also
in real datasets. The data consists of one column with 10 million data items and
4472 unique integer values. One exception is the single dataset which contains
only one unique value. In the linear skew distribution the value i occurs i + 1
times contiguously and in the uniform distribution all values occur equally
often. For the sparse dataset the items are consecutively numbered values and
a very frequent (sparse) value is added. The position of the sparse data items can
be grouped at the top, at the bottom or evenly scattered. In the blocked data,
blocks with one or more unique values are generated. We have 2236 single-value
blocks and 2236 multi-value blocks with 447 unique values where the block size
is for both cases 2237 values.

The results of our experiments are shown relative to the domain coded data
(index vector) to exclude effects of different data types. Furthermore the cluster
and indirect coding use a block size of 1024 values in our implementation. If not
stated otherwise the used scan operator gets a value range as input and writes
the results in a vector. Furthermore we only evaluated the blocked index of the
presented inverted index structures.

All experiments were performed on an Intel R© Xeon R© processor X5650 with
2.67 GHz. The scalability of the index vector if using more cores has already been
shown in [11]. So because the memory bandwidth required by the compressed
data is lower, we concentrated on single-core measurements.

5.1 Experiments without SSE (Streaming SIMD Extensions)

First we want to show that with an optimal compression, not only the memory
size is reduced but also queries can be accelerated. The dictionary coded single
dataset needs with 1 bit per value around 1221 KiB. Because the presented
compression techniques omit the prefix they need less than a kibibyte to store
the values. Even in sparse coding the bit vector will not be stored.

Figure 3 overviews the memory consumption of the distributions we focused
on in our evaluation. The linear skew distribution in Fig. 3(b) shows that if the
most frequent value is below a certain threshold the additional costs of the bit
vector in the sparse coding leads to an increased memory size. Because a value
occurs in less 1024-blocks, the additional memory used for the inverted indexes
is low. The run length coding can adapt best to the different-sized single-value
blocks which leads to significant reduction. Using the uniform distribution the
cluster coding performs better because of the bigger single-value blocks. For the
other techniques there are only small differences in the memory size.

If the most frequent value in the sparse dataset is evenly scattered (Fig. 3(d))
the sparse coding reduces memory size most and only cluster and indirect coding
without inverted indexes can exploit the block of the most frequent value at the
end. This single-value block arises from the scattered generation and a sparse



Speeding Up Queries in Column Stores 125
m

em
or

y 
co

ns
um

pt
io

n 
[%

]

 50

 100

 150

 200

 250

100

 0

(a) Blocked data

run length coding+index

 50

 100

 150

 200

 250

100

m
em

or
y 

co
ns

um
pt

io
n 

[%
]

prefix coding
sparse coding
cluster coding

cluster coding+index
indirect coding

indirect coding+index
run length coding

 0

(b) Linear skew data

m
em

or
y 

co
ns

um
pt

io
n 

[%
]

 50

 100

 150

 200

 250

100

 0

(c) Uniform data

m
em

or
y 

co
ns

um
pt

io
n 

[%
]

50

100

150

200

...309

100

0

(d) Sparse data (scattered)

m
em

or
y 

co
ns

um
pt

io
n 

[%
]

 50

 100

 150

 200

 250

100

 0

(e) Sparse data (top)

m
em

or
y 

co
ns

um
pt

io
n 

[%
]

 50

 100

 150

 200

 250

100

 0

(f) Sparse data (bottom)

Fig. 3. Memory consumption

occurrence of more than 50% (in our case 66%). Because of the many value
changes the run length coding performs worst. For better readability we omit a
part of the bar graph and specify the maximum value on the y-axis.

If the most frequent value is at the top (Fig. 3(e)) all compression techniques
apply prefix coding which leads to a significant memory reduction. Sparse coding
needs slightly more memory because of the additional bit vector. Because of
many value changes and less big single-value blocks in the blocked dataset
(Fig. 3(a)) only cluster and indirect coding can reduce the memory consumption.

To show the possible savings in execution time we do a scan for value 0 and
value 1 in Fig. 4. Value 0 is the most frequent value in the sparse dataset. In
Fig. 4(a) with the blocked dataset the speed of the query correlates to the size
of the data structures except when using inverted indexes. Here the total size of
the index structure is big but only the blocks specified in the inverted index need
to be scanned which results in a very fast execution. For the linear skew dataset
Fig. 4(b) shows that of all blocked compression techniques only cluster coding
cannot adapt well to the small single-value blocks and that is why it performs
worse. If the most frequent value is scattered in the sparse dataset (Fig. 4(c)) it
is the worst case distribution. Here just the sparse coding can compete with a
query on the only dictionary coded data because of the reduced amount of data
to scan. In Fig. 4(d) one can see clearly that less memory consumption does not
always imply a faster execution. Also the row id reconstruction overhead has to
be taken into account like in the case of applying sparse coding.

If the result size is small like in the scans showed in Fig. 4(f) and 4(e) the row
id reconstruction and result vector resize costs are negligible compared to the
savings. Because for value 1 there are no single-value blocks, the very frequent
single-value access to two index vectors is too expensive. That is also the case if
the amount of data to scan is less (Fig. 4(f)).

All measurements show that when using inverted indexes scan times for single
values always decrease. Run length coding is only worth if there are few but big
single-value blocks and the fasted technique if using an inverted index. Cluster



126 C. Lemke et al.

tim
e 

[%
]

50

100

150

200

...570

100

0

(a) Blocked data, scan for

value 0

run length coding+index

 50

 100

 150

 200

 250

100tim
e 

[%
]

prefix coding
sparse coding
cluster coding

cluster coding+index
indirect coding

indirec codingt+index
run length coding

 0

(b) Linear skew data, scan

for value 0

tim
e 

[%
]

 50

 100

 150

 200

 250

100

 0

(c) Sparse data (scattered),

scan for value 0

tim
e 

[%
]

 50

 100

 150

 200

 250

100

 0

(d) Sparse data (top), scan

for value 0

tim
e 

[%
]

50

100

150

200

...730

100

0

(e) Sparse data (scattered),

scan for value 1

tim
e 

[%
]

50

100

150

200

...380

100

0

(f) Sparse data (top), scan

for value 1

Fig. 4. Single-value scans

coding on the other hand has the best memory-speed tradeoff for all evaluated
data distributions.

We further expect that using inverted indexes is only faster than the baseline
if the requested values are located in few blocks. Figure 5(a) shows the times of
the experiments where we varied in how many blocks value 0 occurs by using
a step size of 100 blocks. The data distribution is based on the sparse dataset
and value 0 is occurring 9766 times which corresponds to the number of blocks
with a size of 1024 values. Because of the many value changes and the small
amount of occurrences of the value the run length coding is constantly around
ten times slower than the baseline and for this reason we cut the graph for better
readability. If using the inverted indexes for the cluster and indirect coding the
scans become slower the more blocks have to be considered.

To determine if it is worth to spend more memory for the inverted index we cal-
culate a cost-benefit ratio by dividing the time gained by the additional memory
needed. Figure 5(b) shows that for run length coding the higher memory consump-
tion always results in an increased speed. For the two other techniques it depends
strongly on the distribution of the value and at some point the additional memory
used is counter-productive. To deal with this problem in our implementation we
do a full table scan if an indexed value occurs in too many blocks.

Next we want to show that the more values are queried the slower the query
becomes. In this experiments we use the uniform data distribution and do a scan
for 1, 2, . . . , all values. The results are shown for the slowest, an average and
the fastest compression technique with and without using an inverted index in
Fig. 6. One can see that the scans using run length coding are always faster and
sparse coding always slower than the baseline. The outliers in the graph result
from copying memory when resizing the result vector using a doubling strategy.



Speeding Up Queries in Column Stores 127

0

20

40

60

80

100

120

140

...950

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

tim
e 

[%
]

blocks containing value

cluster coding
cluster coding+index

indirect coding
indirect coding+index

run length coding
run length coding+index

(a) Time

run length coding

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

co
st

−
be

ne
fi

t r
at

io

blocks containing value

cluster coding
indirect coding

−0.2

(b) Cost-benefit ratio

Fig. 5. Increasing number of blocks containing the requested value

run length coding

 50

 100

 150

 200

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

100

tim
e 

[%
]

number of queried values

sparse coding
cluster coding

 0

(a) Without inverted indexes

run length coding+index

 50

 100

 150

 200

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

100

tim
e 

[%
]

number of queried values

cluster coding+index

 0

(b) With inverted indexes

Fig. 6. Multi-value scans

Furthermore the dictionary coded algorithms use another initial vector size be-
cause of the missing prefix handling. The cluster coding is only worthwhile if the
number of requested values is small because of the increasing row id reconstruc-
tion costs. Another reason for the increasing time needed if using a inverted index
are the increased number of blocks to consider for the scan.

5.2 Experiments with SSE

Finally, we show in Fig. 7 the performance improvements possible when using
SSE as SIMD implementation on the compressed data structures. The baseline is
the scan times measured without active SSE. The results show that the biggest
saving in time is achieved for the domain and prefix coded data because here
always full table scans take place and SSE is optimized for mass data processing.
If the result size is increasing as in Fig. 7(b) the performance gain is decreasing
because of the reconstruction and resizing costs. There is no or just a little benefit
by using SSE in combination with the inverted indexes because here the amount
of data to be scanned is already significantly reduced. Also the sparse coding
technique cannot exploit the advantages of SSE. Reasons are the reduced data
size if the most frequent value occurs often (Fig. 7(b) and (c)) and that most
of the time is spent for row id reconstruction (Fig. 7(a)). The times for cluster



128 C. Lemke et al.

 60

 20

 40

 0

 80

 100

tim
e 

[%
]

(a) Linear skew data;

value 0

 60

 20

 40

 0

 80

 100

tim
e 

[%
]

(b) Sparse data (top);

value 0

run length+index

 20

 40

 60

 80

 100

tim
e 

[%
]

only domain coded
prefix
sparse
cluster
cluster+index
indirect
indirect+index
run lenght

 0

(c) Sparse data (top); value 1

Fig. 7. Single-value scans using SSE

coding when using the linear skew (and uniform) dataset are reduced as there
are few compressed clusters which leads to more data that has to be scanned.

6 Conclusion

Data compression is an important technique to reduce memory consumption and
query processing time in data warehouse systems. However, the real benefit of
compression can be only leveraged if the decompression effort can be minimized.
To tackle this problem, we have presented in this paper several dictionary-based
compression schemes as well as query operator implementations for scans and
aggregates which work directly on the compressed data. Our experimental re-
sults show that depending on the data characteristics and appropriate com-
pression techniques significant improvements in query processing time can be
achieved, but require a careful choice of the compression scheme. We partly im-
plemented an optimizer that determines an optimal row order, the appropriate
compression techniques and inverted index structures depending on the data
distribution.

References

1. Abadi, D.J., Madden, S.R., Ferreira, M.C.: Integrating compression and execution

in column-oriented database systems. In: Proc. SIGMOD, pp. 671–682 (2006)

2. Chen, Z., Gehrke, J., Korn, F.: Query optimization in compressed database sys-

tems. In: Proc. SIGMOD, pp. 271–282 (2001)

3. Cockshott, W.P., McGregor, D., Wilson, J.: High-performance operations using a

compressed database architecture. The Computer Journal 41(5), 283–296 (1998)

4. Graefe, G., Shapiro, L.D.: Data compression and database performance. In: Proc.

ACM/IEEE-CS Symp. on Applied Computing, pp. 22–27 (1991)

5. Li, J., Srivastava, J.: Efficient aggregation algorithms for compressed data ware-

houses. IEEE TKDE 14(3), 515–529 (2002)

6. O’Connell, S.J., Winterbottom, N.: Performing joins without decompression in a

compressed database system. SIGMOD Rec. 32(1), 6–11 (2003)

7. Raman, V., Swart, G.: How to wring a table dry: Entropy compression of relations

and querying of compressed relations. In: Proc. 32nd VLDB, pp. 858–869 (2006)



Speeding Up Queries in Column Stores 129

8. Raman, V., Swart, G., Qiao, L., Reiss, F., Dialani, V., Kossmann, D., Narang, I.,

Sidle, R.: Constant-time query processing. In: Proc. 24th ICDE, pp. 60–69 (2008)

9. Stonebraker, M., et al.: C-store: A column-oriented dbms. In: Proc. 31st VLDB,

pp. 553–564 (2005)

10. Westmann, T., Kossmann, D., Helmer, S., Moerkotte, G.: The implementation and

performance of compressed databases. SIGMOD Rec. 29(3), 55–67 (2000)

11. Willhalm, T., Popovici, N., Boshmaf, Y., Plattner, H., Zeier, A., Schaffner, J.:

Simd-scan: Ultra fast in-memory table scan using on-chip vector processing units.

PVLDB 2(1), 385–394 (2009)

12. Zhou, J., Ross, K.A.: Implementing database operations using simd instructions.

In: Proc. SIGMOD, pp. 145–156 (2002)

13. Zukowski, M., Héman, S., Nes, N., Boncz, P.: Super-scalar ram-cpu cache compres-

sion. In: Proc. 22nd ICDE, p. 59 (2006)



Mining Non-redundant Information-Theoretic
Dependencies between Itemsets�

Michael Mampaey��

Dept. of Mathematics and Computer Science, University of Antwerp
michael.mampaey@ua.ac.be

Abstract. We present an information-theoretic framework for mining dependen-
cies between itemsets in binary data. The problem of closure-based redundancy in
this context is theoretically investigated, and we present both lossless and lossy
pruning techniques. An efficient and scalable algorithm is proposed, which ex-
ploits the inclusion-exclusion principle for fast entropy computation. This algo-
rithm is empirically evaluated through experiments on synthetic and real-world
data.

1 Introduction

The discovery of rules from data is a popular task in data mining. Mining association
rules in transactional datasets has received a lot of attention especially [2,3,4]. The ob-
jective of association rule mining is to find highly confident rules between sets of items
frequently occurring together. This has been generalized to, among others, relational
tables with categorical or numerical attributes [5]. In this context, much attention has
gone to the discovery of (approximate) functional dependencies in relations [6,7]. A
functional dependency A ⇒ B between two sets of attributes is said to hold, if any
two tuples agreeing on the attributes of A also agree on the attributes of B. Often it is
desirable to also find rules that ‘almost’ hold. Typically, an error is associated with a
functional dependency, which describes how well the relation satisfies that dependency,
commonly this is the minimum relative number of tuples that need to be removed from
the relation for the dependency to hold (known as g3 [6]). These tuples can be thought
of as being the exceptions to the rule. However, the fact that A ⇒ B has a low error,
does not necessarily imply that B strongly depends on A, in fact, A and B might even
be independent.

Therefore, in this paper we take an information-theoretic approach to mining depen-
dencies in binary data. We will describe the dependence of a rule based on the mutual
information between consequent and antecedent. Furthermore, we use the entropy of
a rule or itemset to describe its complexity. We present an algorithm called μ-Miner,
which efficiently mines rules with a high dependence and a low complexity.

On top of this, we investigate what kinds of redundancy can occur in the collection of
all low entropy, high dependence rules. For traditional association rules, several types of

� An extended version of this paper is available as a technical report [1].
�� Michael Mampaey is supported by the Institute for the Promotion of Innovation through Sci-

ence and Technology in Flanders (IWT-Vlaanderen).

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 130–141, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Mining Non-redundant Information-Theoretic Dependencies between Itemsets 131

redundancy have been presented [8,9]. We look at lossless closure-based redundancy in
the context of this paper, as well as lossy pruning methods based on some information
theoretical properties. These techniques are then integrated into our algorithm.

2 Related Work

The discovery of exact and approximate functional dependencies from relations has
received a lot of attention in the literature. The TANE algorithm proposed by Huhtala et
al. [7] finds exact and approximate functional dependencies in a relation, which have a
low g3 error. TANE is a breadth-first algorithm that works with tuple partitions induced
by attribute sets, which can be constructed in linear time with respect to the size of the
relation. If the partition induced by XY does not refine the partition induced by X , then
X ⇒ Y is a functional dependency. The error of an approximate dependency can also
be computed using these partitions. The main difference with our work is the way that
the strength of a dependency is measured, but also that TANE only mines minimal rules,
i.e. rules of the form X ⇒ Y for which |Y | = 1 and there is no X ′ � X such that
X ′ ⇒ Y is an (approximate) functional dependency. On top of this, we also consider
the complexity of dependencies.

Dalkilic and Robertson [10] use conditional entropy to determine the strength of de-
pendencies in relational data. Their work examines several of their properties and infor-
mation inequalities from a theoretical viewpoint, without focussing on rule discovery.

Heikinheimo et al. mine all low entropy sets from binary data, as well as trees based
on these sets [11]. A breadth-first mining algorithm is proposed that exploits the mono-
tonicity of entropy, after which a Bayesian tree structure is imposed on the itemsets. Its
nodes correspond to the items, and the directed edges express the conditional entropy
between them. The paper also discusses high entropy sets, argued to be potentially in-
teresting due to the lack of correlation among their items.

Jaroszewicz and Simovici use information theoretic measures to assess the impor-
tance of itemsets or association rules on top of the traditional support/confidence based
mining framework [12]. They use Kullback-Leibler divergence to determine the redun-
dancy of confident association rules. Given the supports of some subsets of an associa-
tion rule, its most likely confidence is computed (using a maximum entropy model); if
the actual confidence is close to the estimate, the rule is considered to be redundant.

3 Preliminaries and Notation

Below we establish some notation and introduce some concepts that are used later on.
We are given a set of items I. A dataset D is a bag of transactions t, which are subsets
of I. The collection of all transactions is denoted T . We write single items as x, y, z
and itemsets as X, Y, Z . For the sake of brevity, we use the shorthands xyz for a set
{x, y, z}, XY for the union of sets X ∪ Y , and X-Y for set difference X \ Y . A rule
between two itemsets X and Y is written as X ⇒ Y , where both sets are assumed to
be either disjoint (X ∩ Y = ∅) or inclusive (X ⊆ Y ), depending on the context. The
support supp and frequency fr of the pair (X = v), with v ∈ {0, 1}|X|, are the absolute
and relative number of transactions t ∈ D for which tX = v, respectively.



132 M. Mampaey

The notion of entropy as a measure of information was introduced by Shannon [13].
Given a discrete random variable X with values v in a domain dom(X), and a probabil-
ity distribution p, the entropy of X is defined as H(X) = −

∑
v∈dom(X) p(v) log2 p(v).

For brevity, if dom(X) = {0, 1} we also write H(f) where f = fr(X = 1) ∈ [0, 1].
The entropy expresses the amount of information that is contained in a random variable,
expressed in bits. Alternatively, it can be seen as a measure of its complexity or of its
uncertainty. The mutual information between two discrete random variables X and Y
is measured as the divergence of the joint distribution p(v, u) from the product distri-
bution p(v)p(u); I(X, Y ) =

∑
v∈dom(X),u∈dom(Y ) p(v, u) log2

p(v,u)
p(v)p(u) . If X and Y

are independent then the mutual information is zero and vice versa. Mutual information
can conveniently be expressed in terms of entropy, as I(X, Y ) = H(Y )−H(Y | X) =
H(X)+ H(Y )−H(X, Y ), where H(Y | X) is the conditional entropy of Y given X ,
and H(X, Y ) is the joint entropy of X and Y .

4 Strong Dependence Rules

In this section we define our interestingness measures for itemsets and rules, and explore
some of their properties.

4.1 Definitions

In the following, an itemset X is seen as a discrete random variable with dom(X) =
{0, 1}|X|. For the probability distribution p, the frequency distribution fr is taken.

Definition 1 (Rule Entropy). Let X and Y be two disjoint itemsets. The entropy h of
the rule X ⇒ Y is defined as the joint entropy of X and Y : h(X ⇒ Y ) = H(X ∪ Y ).

It is easy to see that for any set X it holds that 0 ≤ h(X) ≤ log2 |dom(X)| = |X |.

Definition 2 (Rule Dependence). Let X and Y be two disjoint itemsets. We define the
dependence μ of the rule X ⇒ Y as

μ(X ⇒ Y ) =
I(X, Y )
H(Y )

.

By dividing by H(Y ) we obtain a normalized, asymmetric variant of mutual informa-
tion ranging between 0 and 1. When X an Y are independent then μ(X ⇒ Y ) = 0,
this means that X tells us nothing about Y . On the other hand, μ(X ⇒ Y ) = 1 if and
only if X fully determines Y ; in this case the rule is called exact.

4.2 Properties

We describe some useful properties of h and μ which we exploit to construct an efficient
set and rule mining algorithm later on. Due to space restrictions proofs are omitted but
can be found in the technical report [1].



Mining Non-redundant Information-Theoretic Dependencies between Itemsets 133

Theorem 1 (Monotonicity of Entropy). Let X and X ′ be two itemsets. If X ⊆ X ′,
then h(X) ≤ h(X ′).

Using the monotonicity of h, it is possible to efficiently traverse the search space of all
itemsets in a typical Apriori-like breadth-first algorithm, or a memory-efficient depth-
first algorithm as μ-Miner does.

Theorem 2 (Antecedent Monotonicity). Let X , X ′ and Y be itemsets with X ⊆ X ′,
then μ(X ⇒ Y ) ≤ μ(X ′ ⇒ Y ).

Theorem 2 implies that rules containing all of the items in I have the highest depen-
dence. However, the entropy of such rules is also very high, and hence they will be
pruned. Furthermore, some of the items might be independent of the other ones, and
it is quite likely that such large rules display some sort of redundancy as described in
Section 5.

Theorem 3 (Partial Monotonicity). Let X ⇒ Y be a rule, where X and Y are dis-
joint. There exists an item y ∈ Y such that μ(X ⇒ Y ) ≤ μ(Xy ⇒ Y -y).

This last theorem allows us to systematically and efficiently construct all rules with
a high dependence from a given low entropy set, in a levelwise fashion. This can be
achieved without having to consider the exponential number of possible rules that can
possibly be constructed from that itemset.

4.3 Closedness

Due to the explosion of patterns commonly encountered in classic frequent itemset
mining, one often turns to mining a condensed representation of a collection of fre-
quent itemsets. Such pattern collections are typically much smaller in magnitude, can
be discovered faster, and it is possible to infer other patterns from them. One example
are maximal frequent itemsets [14,15]. Two other popular condensed representations
are closed and non-derivable frequent itemsets, which we extend to our framework.

The concept of closedness is well-studied for support based itemset mining [16]. An
itemset is closed with respect to support if all of its proper supersets have a strictly
smaller support. A closure operator can be defined that maps an itemset to its (unique)
smallest closed superset, i.e. its closure. Similarly, we can consider itemsets that are
closed with respect to entropy. We formally do this as follows. The set inclusion relation
(⊆) defines a partial order on the powerset P(I) of all itemsets. Furthermore, a partial
order, i.e. refinement (�), can be defined on the setQ(T ) of all transaction partitions. A
given itemset X ∈ P(I) partitions T into equivalence classes according to the value of
X in all transactions, and conversely a partition in Q(T ) corresponds to an itemset in
P(I). (The entropy of an itemset is computed using the sizes of the equivalence classes
in its corresponding partition.) Let us call these two mapping functions i1 and i2. It can
be shown that i1 and i2 form a Galois connection between (P(I),⊆) and (Q(T ),�).
The composition cl := i2 ◦ i1 defines a closure operator on P(I), which satisfies the
following properties for all itemsets X .⎧⎨

⎩
X ⊆ cl(X) (extension)
cl(X) = cl(cl(X)) (idempotency)
X ⊆ X ′ ⇒ cl(X) ⊆ cl(X ′) (monotonicity)



134 M. Mampaey

Definition 3. We call an itemset X ⊆ I closed if X = cl(X). Conversely, the set X is
called a generator if for all X ′ � X it holds that cl(X ′) 	= X .

It holds that all proper supersets of a closed itemset have a strictly higher entropy and
h(X) = h(cl(X)). All proper subsets of a generator have strictly lower entropy. Note
that the rule X ⇒ Y is exact if and only if X ⊆ XY ⊆ cl(X). Furthermore, if an
exact rule X ⇒ Y is minimal, then X is a generator.

4.4 Derivability

The idea of itemset derivability was introduced by Calders and Goethals [17]. Given
the supports of all proper subsets of an itemset (X = 1), it is possible, using the
inclusion-exclusion principle, to derive tight lower and upper bounds on its support.
If these bounds coincide we know supp(X = 1) exactly, and (X = 1) is called deriv-
able (with respect to support). The set of all frequent itemsets can thus be derived from
the set of all non-derivable frequent itemsets. Similarly, we can define the derivability
of the entropy of an itemset.

Definition 4. We call X h-derivable if its entropy can be determined exactly from the
entropies of its proper subsets.

The set of all non-derivable itemsets is downward closed. Interestingly, an itemset X is
h-derivable if and only if it is derivable with respect to support.

5 Rule Redundancy

Mining all low entropy, high dependence rules can yield a very large set of patterns,
which is not desirable for a user who wants to analyze them. Typically, this collection
contains a lot of redundant rules. In this section we investigate how we can charac-
terize and prune such rules. We define two types of redundancy, one that is based on
the closure of itemsets, and one that is based on the superfluous augmentation of the
antecedent or consequent of a rule.

5.1 Closure-Based Redundancy

As mentioned in the previous section, rules of the form X ⇒ cl(X) are always exact. It
should be clear that combining an arbitrary rule with an appropriate exact rule yields a
new rule with identical entropy and dependence. For instance, if A ⇒ B is exact, then
μ(A ⇒ C) = μ(AB ⇒ C).

Theorem 4. Let X ⇒ Y and X ′ ⇒ Y ′ be two rules, where X ⊆ X ′ ⊆ cl(X) and
Y ⊆ Y ′ ⊆ cl(Y ). Then h(X ⇒ Y ) = h(X ′ ⇒ Y ′) and μ(X ⇒ Y ) = μ(X ′ ⇒ Y ′).

Since the entropy and dependence of such larger rules can be inferred using the smaller
rule and the closure operator, we call them redundant. These minimal rules are con-
structed using generators.



Mining Non-redundant Information-Theoretic Dependencies between Itemsets 135

Definition 5 (Closure-based Redundancy). A rule X ⇒ Y is redundant with respect
closure if {

X is not a generator or |Y | > 1 if μ(X ⇒ Y ) = 1,
XY is not a generator if μ(X ⇒ Y ) < 1.

Note that if XY is a generator, then X and Y are also generators, since the set of all
generators is downward closed.

5.2 Augmentation Redundancy

Here we define a stricter kind of redundancy that prunes rules which have items unnec-
essarily added to their antecedents or consequents.

Antecedent Redundancy. Suppose we have two rules with a common consequent,
X ⇒ Y and X ′ ⇒ Y , with X ′ = X ∪ {x}. Theorem 2 tells us that μ(X ⇒ Y ) ≤
μ(X ′ ⇒ Y ). Even though the latter rule has a higher dependence, it might be redun-
dant if x does not make a real contribution to the rule. For instance, if X and x are
independent, then μ(X ′ ⇒ Y ) is simply the sum of μ(X ⇒ Y ) and μ(x ⇒ Y ).
To characterize this type of redundancy we use the chain rule of mutual information,
I(Xx, Y ) = I(X, Y ) + I(x, Y | X), where the last term is the conditional mutual in-
formation (which can be written as H(x | X)−H(x | XY )). It is known that I does not
behave monotonically with conditioning. In the case where X and x are independent,
we have I(x, Y | X) = I(x, Y ). If X already explains part of the dependency between
x and Y , then I(x, Y | X) < I(x, Y ), meaning there is an “overlap” between X and x.
Otherwise, if I(x, Y | X) > I(x, Y ), this means that under knowing X , the mutual in-
formation between x and Y increases. Intuitively, it means that Xx tells us more about
Y than the sum of X and x separately. This motivates the following definition.

Definition 6 (Antecedent Redundancy). A rule X ⇒ Y is redundant with respect to
antecedent augmentation, if there exists an item x ∈ X such that{

μ(X ⇒ Y ) ≤ μ(X-x ⇒ Y ) + μ(x ⇒ Y ), or
X-x ⇒ Y is redundant.

It follows that μ(X ⇒ Y ) >
∑

x∈X μ(x ⇒ Y ) if the rule X ⇒ Y is non-redundant.

Consequent Redundancy. Consider the rule X ⇒ Y and an item y /∈ XY . Unlike in
the previous section, μ is not monotonic with respect to augmentation of the consequent,
so in general the dependence of X ⇒ Y y can either be higher or lower that that of
X ⇒ Y . An increase in μ means that adding y to Y increases the mutual information
I(X, Y ) more than it increases the entropy H(Y ). Put differently, the relative increase
in uncertainty from H(Y ) to H(Y y), is surpassed by the increase of the amount of
information X gives about Y and Y y. X gives relatively less information about Y y
than it does about Y .

Definition 7 (Consequent Redundancy). A rule X ⇒ Y is redundant with respect to
consequent augmentation, if there exists an item y ∈ Y such that{

μ(X ⇒ Y ) ≤ μ(X ⇒ Y -y), or
X ⇒ Y -y is redundant.



136 M. Mampaey

Algorithm 1. μ-Miner

Input: Binary dataset D, thresholds hmax and μmin

Output: Non-redundant, low entropy, high dependence rules
1. P ← {{x} ⊂ I; h(x) ≤ hmax}
2. SetMine(P , hmax, μmin)

It follows that if X ⇒ Y is non-redundant, then ∀Y ′ ⊂ Y : μ(X ⇒ Y ′) < μ(X ⇒
Y ).

Relation to Closure-based Redundancy. It turns out that augmentation redundancy is
strictly stronger than closure-based redundancy, as stated in the theorem below.

Theorem 5. If a rule X ⇒ Y is redundant with respect to closure, then it is also
redundant with respect to antecedent augmentation or consequent augmentation.

6 The μ-Miner Algorithm

In this section we present μ-Miner (see Algorithm 1). As input it expects a dataset
D, a maximum entropy threshold hmax, and a minimum dependence threshold μmin.
The algorithm efficiently mines low entropy itemsets, and from these sets strong depen-
dence rules are constructed. Further, μ-Miner prunes rules that are closure redundant or
augmentation redundant. Computation of entropy and dependence, and the checking of
redundancy is performed by doing some simple arithmetic operations and lookups, and
only one scan of the database is required.

6.1 Mining Itemsets

In the SetMine function (Algorithm 2), itemsets with a low entropy are mined. This
recursive function takes a collection of itemsets with a common prefix as input, initially
this is the set of all low entropy singletons. The search space is traversed in a depth-first,
right-most fashion. This is less memory-intensive than a breadth-first approach, and
the right-most order ensures that when an itemset is considered, all of its subsets will
already have been visited in the past (lines 1&3), a fact we exploit later. This implies
that we need to impose an order on the itemsets, e.g. a simple lexicographical ordering.
In our implementation of μ-Miner we use a heuristic ordering based on the entropy
of the items, such that large subtrees of the search space are rooted by sets which are
expected to be have a high entropy, allowing us to prune larger parts of the subspace.

6.2 Efficiently Computing Entropy

A straightforward method to compute h(X) is to perform a scan over the database to
obtain the frequencies of (X = v) for all values v ∈ {0, 1}|X|. In total there are 2k

such frequencies for k = |X |, however, at most |D| of them are nonzero and hence this
method requires O(|D|) time. If the database fits in memory this counting method is



Mining Non-redundant Information-Theoretic Dependencies between Itemsets 137

Algorithm 2. SetMine

Input: Itemset collection P , thresholds hmax and μmin

1. for X1 in P in descending order do
2. P ′ ← ∅
3. for X2 < X1 in P do
4. X ← X1 ∪X2

5. Compute and store fr(X = 1)

6. h(X) ← EntropyQIE(X)
7. if X is not a generator then
8. Report corresponding exact rule(s)
9. else if h(X) ≤ hmax then

10. P ′ ← P ′ ∪ {X}
11. RuleMine(X, μmin)
12. SetMine(P ′)

perfectly feasible, otherwise it becomes too expensive, since database access is required
for each candidate itemset. Another option is to use the partitioning technique used by
TANE [7]. For each itemset a partition of the transactions is explicitly computed in
O(|D|) time, and then the sizes of the sets in the partition can be used to compute
h(X).

μ-Miner uses a different entropy computation method that does not require direct
database access, and has a lower complexity, which is beneficial especially for large
datasets. We start from a simple right-most depth-first itemset support mining algorithm
similar to Eclat [4], and store the supports in a trie (line 5). When we have mined the
support of (X = 1), the frequencies of all (X = v) are computed with the stored
supports of all subsets, by using quick inclusion-exclusion (Algorithm 3), which takes
O(k · 2k−1) time [18]. However, we can again use the fact that at most |D| frequencies
are nonzero, hence this counting method is O(min(k ·2k−1, |D|)). The advantage of our
method is that it is fast and it does not require database access. The disadvantage is that
the supports of all mined itemsets must be stored, which may be a problem if memory
is scarce and hmax is set rather high. Note that if we were to restrict ourselves to mining
only non-derivable itemsets, we know that k ≤ �log2 |D|� [17]. In this case the total
number of frequencies we need to store is O(|I|log2 |D|) in the worst case, which is
polynomial in |I| for a fixed database size, and polynomial in |D| for a fixed number of
items.

6.3 Mining Non-redundant Dependence Rules

For each low entropy itemset, RuleMine (Algorithm 4) is called to generate high depen-
dence rules. It starts with rules whose consequent is a singleton, and then moves items
from the antecedent to the consequent. By using the partial monotonicity property from
Theorem 3, not all 2k possible rules need to be considered. Since we have the entropies
of all subsets available to us, we can compute the dependence by performing just a few
lookups. If a rule is found to have high dependence, it is checked whether the rule is



138 M. Mampaey

Algorithm 3. EntropyQIE

Input: Candidate itemset X ⊂ I
Output: h(X), the entropy of X
1. for all X ′ ⊆ X do
2. p(X ′) ← fr(X ′ = 1)

3. for all x ∈ X do
4. for all X ′ ⊆ X with x ∈ X ′ do
5. p(X ′-x) ← p(X ′-x) − p(X ′)
6. return h(X) = −∑

X′⊆X p(X ′) · log2 p(X
′)

Algorithm 4. RuleMine

Input: Low entropy itemset X; dependence threshold μmin

Output: Non-redundant strong dependence rules based on X
1. L ← {X-x ⇒ x;x ∈ X}
2. while L �= ∅ do
3. for A⇒ B in L do
4. Compute μ(A⇒ B)

5. if μ(A⇒ B) ≥ μmin and A⇒ B is non-redundant then
6. Report A⇒ B
7. L ← {A-a⇒ Ba;A⇒ B ∈ L, using Theorem 3}

redundant (line 6). Again, since we have the entropies of all subsets available, these
redundancy checks can be performed quite efficiently.

7 Experimental Evaluation

We perform experiments on several datasets to evaluate the efficiency of μ-Miner. We
also investigate the effect of our pruning techniques. The algorithm is implemented in
C++1, and the experiments were executed on a machine with a 2.2GHz CPU and 2GB
of memory, running Linux. More experiments can be found in the technical report [1].

7.1 Datasets

First, we have some benchmark datasets taken from the FIMI Repository [19]: CHESS,
MUSHROOM and PUMSB, containing 3196, 8124 and 49046 transactions respectively.
The original PUMSB dataset contains 2112 items, in our experiments we used the 100
most high entropy items. MUSHROOM originally has 119 items, for our experiments we
removed items with frequencies higher than 0.9 or lower than 0.1. These datasets are
used to test the efficiency of μ-Miner.

Second, we generated a SYNTHETIC dataset which contains an embedded pattern.
We use it to evaluate the scalability of μ-Miner with respect to the size of the database.
The dataset consists of 1 000 000 transactions and has 16 items. The 15 first items are
independent and have random frequencies between 0.1 and 0.9. The last item equals the

1 The source code of μ-Miner is publicly available at http://www.adrem.ua.ac.be

http://www.adrem.ua.ac.be


Mining Non-redundant Information-Theoretic Dependencies between Itemsets 139

sum of the other two modulo 2, i.e. the rule {1, . . . , 15} ⇒ {16} is an exact one. Note
that this dependency is also minimal.

7.2 Experiments

First, we perform some experiments on the benchmark datasets. To begin with, we
set the value of hmax to a fixed value (1.5 for CHESS, 2 for PUMSB, and 3.5 for

101

102

103

104

105

106

107

108

109

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r 

of
 p

at
te

rn
s

μmin threshold

chess
pumsb

mushroom

(a) Number of rules for varying μmin

101

102

103

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e 

(s
ec

)

μmin threshold

chess
pumsb

mushroom

(b) Execution times for varying μmin

100

101

102

103

104

105

106

107

108

109

 0  0.5  1  1.5  2  2.5  3  3.5  4

nu
m

be
r 

of
 p

at
te

rn
s

hmax threshold

chess
pumsb

mushroom

(c) Number of rules for varying hmax

10-2

10-1

100

101

102

103

104

 0  0.5  1  1.5  2  2.5  3  3.5  4

tim
e 

(s
ec

)

hmax threshold

chess
pumsb

mushroom

(d) Execution times for varying hmax

10-1

100

101

102

103

104

102 103 104 105 106

tim
e 

(s
ec

)

Number of tuples

μ-Miner
TANE

TANE/MEM

(e) μ-Miner and TANE scalability on SYNTHETIC

102

103

104

105

106

107

108

109

mushroom mushroom pumsb pumsb

nu
m

be
r 

of
 p

at
te

rn
s

all rules
minimal rules

augmentation pruning

(f) Effect of redundancy pruning

Fig. 1. Experimental results



140 M. Mampaey

MUSHROOM), and we vary the minimum dependence threshold μmin between 0 and
1. As can be seen in Figure 1a, the number of rules increases roughly exponentially
when μmin is decreased. Noticeably, the execution times stay roughly constant as μmin

decreases, as shown in Figure 1b. This is not surprising, since most computations are
performed in the itemset mining phase, and the computation of μ involves just a few
lookups. Next, we set the value of μmin to a fixed value (in this case 0.4 for all datasets),
and gradually increase the maximum entropy threshold hmax from zero upward. In Fig-
ure 1c we see that for very low values of hmax no rules are found. Then, the number of
rules increases exponentially with hmax, which is to be expected. In Figure 1d we see
that this trend also translates to the execution times. For lower thresholds (hmax ≤ 1)
the runtimes stay roughly constant, because they are dominated by I/O time.

Secondly, we evaluate the scalability of μ-Miner with respect to the size of the
database using the SYNTHETIC dataset. The aim is to discover the embedded functional
dependency, in order to do this we set μmin to 1, and hmax sufficiently high (say, 16).
We compare μ-Miner with the TANE and TANE/MEM implementations from [20]. The
main TANE algorithm stores partitions to disk level per level, while the TANE/MEM
variant entirely operates in main memory. The number of transactions is gradually in-
creased from 102 to 106 and the runtimes are reported in Figure 1e. We see that all
algorithms scale linearly with |D|, although the slope is much steeper for TANE and
TANE/MEM, while the execution time of μ-Miner increases very slowly. At around
±3000 transactions, μ-Miner overtakes TANE in speed, and at 105 transactions our al-
gorithm is already two orders of magnitude faster. The TANE/MEM algorithm is faster
up to ±10000 transactions, but cannot handle any datasets much larger than that due
to heavy memory consumption. This observed difference in speed can be explained en-
tirely by the counting method. TANE explicitly constructs a partition of size O(|D|) for
each itemset (and stores these to disk or in memory level per level), while our algorithm
computes the required sizes of the partitions without actually constructing them. The
increase in the execution time of μ-Miner can be accounted for almost entirely by the
increase in time it takes to read the data file.

Next, let us investigate how redundancy pruning affects the size of the output. We
experimented on the MUSHROOM and the PUMSB datasets for different values of hmax

(3 for MUSHROOM and 1.5 for PUMSB) and μmin (0.2 and 0.8 for both datasets). The
results are shown in Figure 1f. For the MUSHROOM dataset pruning all non-minimal
rules already reduces the output by roughly an order of magnitude. Augmentation prun-
ing reduces the output by an additional two orders of magnitude. For the PUMSB dataset
pruning non-minimal rules reduces the output by three orders of magnitude. Here aug-
mentation pruning reduces the output in size even further, by roughly two orders of
magnitude. This makes the result collection of rules far more manageable for a user.

8 Conclusions

We proposed the use of information-theoretic measures based on entropy and mutual in-
formation to mine dependencies between sets of items. This allows us to discover rules
with a high statistical dependence, and a low complexity. We investigated the prob-
lem of redundancy in this framework, and proposed two techniques to prune redundant
rules. One is based on the closure of itemsets and is lossless, while the other, shown



Mining Non-redundant Information-Theoretic Dependencies between Itemsets 141

to be stronger, is lossy and penalizes the augmentation of rules with unrelated items.
We presented our algorithm μ-Miner, which mines such dependencies and applies the
presented pruning techniques. Several experiments showed that μ-Miner is efficient and
scalable: it can easily handle datasets with millions of transactions and does not require
a large amount of memory. Furthermore, our pruning techniques were shown to be very
effective in reducing the size of the output by several orders of magnitude.

References

1. Mampaey, M.: Mining non-redundant information-theoretic dependencies between itemsets.
Technical Report, University of Antwerp (2010)

2. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in
large databases. ACM SIGMOD Record 22(2), 207–216 (1993)

3. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. ACM SIG-
MOD Record 29(2), 1–12 (2000)

4. Zaki, M., Parthasarathy, S., Ogihara, M., Li, W., et al.: New algorithms for fast discovery of
association rules. In: Proceedings of KDD (1997)

5. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables.
ACM SIGMOD Record 25(2), 1–12 (1996)

6. Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from relations.
Theoretical Computer Science 149(1), 129–149 (1995)

7. Huhtala, Y., Karkkainen, J., Porkka, P., Toivonen, H.: TANE: An efficient algorithm for discov-
ering functional and approximate dependencies. The Computer Journal 42(2), 100–111 (1999)

8. Zaki, M.J.: Generating non-redundant association rules. In: Proceedings of KDD, pp. 34–43
(2000)

9. Balcázar, J.L.: Minimum-size bases of association rules. In: Proceedings of ECML PKDD,
pp. 86–101 (2008)

10. Dalkilic, M.M., Robertson, E.L.: Information dependencies. In: Proceedings of ACM PODS,
pp. 245–253 (2000)

11. Heikinheimo, H., Hinkkanen, E., Mannila, H., Mielikäinen, T., Seppänen, J.K.: Finding low-
entropy sets and trees from binary data. In: Proceedings of KDD, pp. 350–359 (2007)

12. Jaroszewicz, S., Simovici, D.A.: Pruning redundant association rules using maximum en-
tropy principle. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI),
vol. 2336, pp. 135–147. Springer, Heidelberg (2002)

13. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27,
379–423 (1948)

14. Bayardo Jr., R.: Efficiently mining long patterns from databases. In: Proceedings of ACM
SIGMOD, pp. 85–93 (1998)

15. Gouda, K., Zaki, M.: Efficiently mining maximal frequent itemsets. In: Proceedings of IEEE
ICDM, pp. 163–170 (2001)

16. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for
association rules. In: Proceedings of ICDT, pp. 398–416 (1999)

17. Calders, T., Goethals, B.: Non-derivable itemset mining. Data Mining and Knowledge Dis-
covery 14(1), 171–206 (2007)

18. Calders, T., Goethals, B.: Quick inclusion-exclusion. In: Bonchi, F., Boulicaut, J.-F. (eds.)
KDID 2005. LNCS, vol. 3933, pp. 86–103. Springer, Heidelberg (2006)

19. Goethals, B.: Frequent itemset mining implementations repository,
http://fimi.cs.helsinki.fi/data

20. Huhtala, Y., Karkkainen, J., Porkka, P., Toivonen, H.: TANE homepage,
http://www.cs.helsinki.fi/research/fdk/datamining/tane

http://fimi.cs.helsinki.fi/data
http://www.cs.helsinki.fi/research/fdk/datamining/tane


Discovery and Application of Functional Dependencies
in Conjunctive Query Mining

Bart Goethals1, Dominique Laurent2, Wim Le Page1

1 University of Antwerp, Dept of Mathematics and Computer Science B-2020 Antwerp
2 ETIS-CNRS-ENSEA-Université de Cergy-Pontoise F-95000 Cergy-Pontoise

Abstract. We present an algorithm for mining frequent queries in arbitrary re-
lational databases, over which functional dependencies are assumed. Building
upon previous results, we restrict to the simple, but appealing subclass of simple
conjunctive queries. The proposed algorithm makes use of the functional depen-
dencies of the database to optimise the generation of queries and prune redundant
queries. Furthermore, our algorithm is capable of detecting previously unknown
functional dependencies that hold on the database relations as well as on joins
of relations. These detected dependencies are subsequently used to prune redun-
dant queries. We propose an efficient database-oriented implementation of our
algorithm using SQL, and provide several promising experimental results.

1 Introduction

The discovery of recurring patterns in databases is one of the main topics in data mining
and many efficient solutions have been developed for different classes of patterns and
data collections. Almost all techniques, however, work on so called transaction databases
[1]. Not only for itemsets, but also in the case of trees [20] and graphs [12,15,19], the
database consists of a collection of transactions, and a frequent pattern is discovered if
it occurs in enough such transactions. Even in the multi-relational case, as considered in
the WARMR system [4], the database can be seen as a collection of transactions in which
each transaction consists of a small relational database. A query is then called frequent
if it gives a non-empty answer in enough of such databases.

Obviously, many relational databases are not suited to be converted into such a trans-
actional format and even if this would be possible, a lot of information implicitly en-
coded in the relational model would be lost after conversion. Recently, we have con-
sidered association rule mining on arbitrary relational databases by combining pairs of
queries which could reveal interesting properties in the database [8,13]. Intuitively, we
pose two queries on the database such that one query is more specific than the other
(w.r.t. query containment). Then, if the number of tuples in the output of both queries is
almost the same, a potentially interesting discovery is revealed.

To illustrate, consider the well known Internet Movie Database [11] containing al-
most all possible information about movies, actors and everything related to that, and
consider the following queries: first, we ask for all actors that have starred in a movie of
the genre ‘drama’; then, we ask for all actors that have starred in a movie of the genre
‘drama’, but that also starred in a (possibly different) movie of the genre ‘comedy’.

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 142–156, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Discovery and Application of Functional Dependencies 143

Now suppose the answer to the first query consists of 1000 actors, and the answer to the
second query consists of 900 actors. Obviously, these answers do not necessarily reveal
any significant insights on themselves, but when combined, it reveals the potentially
interesting pattern that actors starring in ‘drama’ movies typically (with a probability
of 90%) also star in a ‘comedy’ movie. Of course, this pattern could also have been
found by first preprocessing the database, and creating a transaction for each actor con-
taining the set of all genres of movies he or she appeared in. Similarly, a pattern like:
77% of the movies starring Ben Affleck, also star Matt Damon, could be found by pos-
ing the query asking for all movies starring Ben Affleck, and the query asking for all
movies starring both Ben Affleck and Matt Damon. Again, this could also be found
using frequent set mining methods, but this time, the database should have been dif-
ferently preprocessed in order to find this pattern. Furthermore, it is even impossible to
preprocess the database only once in such a way that the above two patterns would be
found by frequent set mining, as they are counting different types of transactions: actors
in the first example and movies in the second example.

Also truly relational patterns can be found which can not be found using typical set
mining techniques, such as 80% of all movie directors that have ever been an actor
in some movie, also star in at least one of the movies they directed. This is expressed
by two queries of which one asks for all movie directors that have ever acted, and the
second one asks for all movie directors that have ever acted in one of their own movies.

The Conqueror algorithm recently developed by Goethals et al. [8] has shown to dis-
cover interesting association rules over a simple, but appealing subclass of conjunctive
queries, called simple conjunctive queries. Furthermore, the algorithm had an efficient
database-oriented implementation in SQL. One challenge that remained to be solved in
this approach, was the huge number of generated patterns. Part of the volume is inher-
ently due to the relational setting, but a substantial part, however, is due to redundancies
induced by dependencies embedded in the data.

Jen et al. [13], studied the problem of mining all frequent queries from a single
relational table. They considered projection-selection queries, and assumed that the ta-
ble to be mined satisfies a set of functional dependencies. A pre-ordering over queries
was defined, and shown to be anti-monotonic towards the support measure. Moreover,
this pre-ordering induces an equivalence relation and two equivalent queries are shown
to have the same support. Therefore, one computation per equivalence class allows to
know the support of all queries in that class. In [14], this work has been generalised to
several tables in the case where the database operates over a star schema. The challenge
however remains to generalise the theory to arbitrary relational databases.

Clearly, the combination of the approaches in [13] and [8] would resolve the issues
posed, i.e., mining non redundant simple conjunctive queries (thus including arbitrary
joins), given a collection of functional dependencies over the relations of an arbitrary
relational database. This is one major contribution of this paper.

Moreover, combining these techniques also results in new opportunities. That is, next
to the given functional dependencies, we introduce a novel technique to discover pre-
viously unknown functional dependencies, and immediately exploit them for reducing
the number of frequent queries in the output. Furthermore, we do so not only for the re-
lations of the database, but also for any join of relations. This is the second contribution



144 B. Goethals, D. Laurent, W. Le Page

of this paper, and several experiments clearly show the benefits of this approach, thus
making the discovery of simple conjunctive queries a feasible and attractive method
towards the exploration of arbitrary relational databases.

The paper is organised as follows: In Section 2, we recall the basic concepts and
definitions used in this work and we briefly review from [13] how functional dependen-
cies are used to compare queries. We present our algorithm Conqueror+ in Section 3,
combining the two approaches [8,13], and in Section 4, we report experiments, showing
that Conqueror+ clearly outperforms Conqueror. We conclude in Section 6.

2 Formal Model

2.1 Background

We consider a fixed attribute set U and a relational database schemaD = {R1, . . . , Rn}
over U in which, for i = 1, . . . , n, Ri is a relation name associated with a subset of U ,
called the schema of Ri and denoted by sch(Ri). Without loss of generality, we assume
that, for all distinct i and j in {1, . . . , n}, sch(Ri)∩sch(Rj) = ∅. In order to make this
assumption explicit, for all i in {1, . . . , n}, every A in sch(Ri) is referred to as Ri.A.

We also assume that we are given functional dependencies over D. More precisely,
each Ri is associated with a set of functional dependencies over sch(Ri), denoted by
FDi, and the set of all functional dependencies defined in D is denoted by FD.

As in [8], the queries of interest in our approach, are conjunctive projection-selection-
join queries whose joins are expressed using a conjunction of selection conditions of the
form Ri.A = Rj .A

′. We note that by doing so, all possible equi-joins can be considered,
which would not the case using the universal relation associated to the given database.
Moreover, we recall from [8] that such a conjunctive condition F induces a partition
blocks(F ) of U , where every block β of blocks(F ) is a maximal set of attributes such
that for all Ri.A and Rj .A

′ in β, Ri.A = Rj .A
′ is a consequence of F . In such a case,

we say that Ri and Rj are connected through F .

Definition 1. Denoting by R the cartesian product R1 × . . . × Rn, let Q = πXσF R
where F = ��(Q) ∧ σ(Q), such that ��(Q) and σ(Q) are respectively conjunctions of
selection conditions of the form Ri.A = Rj .A

′ and Rk.A = a, where i, j and k are in
{1, . . . , n} and a is in dom(A). Q = πXσF R is said to be a simple conjunctive query
if all relation names occurring in X or in σ(Q) are connected through ��(Q).

Given a simple conjunctive query Q = πXσF R, the set X is denoted by π(Q) and
the tuple defined by the conjunctive selection condition σ(Q) is denoted by Qσ.

We call Q a join query if σ(Q) is the empty condition and if π(Q) is the set of all
attributes of all relation names occurring in ��(Q). Given a simple conjunctive query
Q, we denote by J(Q) the join query such that ��(J(Q)) =��(Q).

To simplify notation, given a simple conjunctive query Q, the corresponding partition
of U , blocks(��(Q)) is simply denoted by blocks(Q). We emphasise that, according to
Definition 1, considering simple conjunctive queries avoids computing cartesian prod-
ucts. We illustrate this definition below.



Discovery and Application of Functional Dependencies 145

Example 1. Let us consider a database schema D consisting of two relation names R1

and R2 with the following schemas: sch(R1) = {A, B} and sch(R2) = {C, D, E}.
According to Definition 1, R denotes the cartesian product R1×R2. Since sch(R1)∩

sch(R2) is clearly empty, in this example and in the forthcoming examples dealing with
D, we do not prefix attributes with relation names. For example, R1.A is denoted by A.

The query Q = πADσ(A=B)∧(E=e)R is not a simple conjunctive query because R1

and R2 are not connected through the condition A = B. Computing the answer to this
query requires to consider explicitly the cartesian product R1 ×R2.

On the other hand, Q1 = πADσ(A=C)∧(E=e)R is a simple conjunctive query such
that ��(Q1) = (A = C), π(Q1) = AD, σ(Q1) = (E = e) and Qσ = e. Moreover,
J(Q1) = πABCDEσ(A=C)R, and blocks(Q1) contains four blocks, namely: {A, C},
{B}, {D} and {E}. In this case, computing the answer to Q1 does not require to
consider the cartesian product R1×R2, since R1 and R2 are joined through A = C. �

We now define as in [8] the support of a query, and when a query is said to be frequent.

Definition 2. Given an instance I of D and a simple conjunctive query Q, the answer
to Q in I is denoted by Q(I) and is seen as a set in which no duplicates are allowed.

The support of Q in I, denoted supportI(Q) or simply support(Q), is the cardinal-
ity of the answer to Q in I. Given a minimum support threshold minsup, Q is said to be
frequent if support(Q) > minsup.

To end the preliminaries, we mention the strong relationship between support and func-
tional dependency, as stated by the following proposition whose easy proof is omitted.

Proposition 1. Let T be a relational table over the attribute set sch(T ) and let X
and X ′ be subsets of sch(T ). T satisfies X → X ′ if and only if support(πXX′T ) =
support(πXT ).

In the context of Example 1, for Q = πADσ(A=C)R and Q′ = πAσ(A=C)R, con-
sidering an instance I of D for which support(Q) = support(Q′) indicates that
σ(A=C)R(I) satisfies the functional dependency A → D. Consequently, for every
conjunctive selection condition S, the queries QS = πADσ(A=C)∧SR and Q′

S =
πAσ(A=C)∧SR also have the same support. Thus, computing the support of Q′

S is re-
dundant, assuming that the support of QS is known.

We recall that one of the main contributions of this paper is to discover functional
dependencies in order to avoid computing unnecessary supports.

2.2 Query Comparison

Inspired by [13], we compare queries based on functional dependencies.

Definition 3. Let Q1 = πX1σF1R and Q2 = πX2σF2R be two simple conjunctive
queries. Denoting by Yi the schema of Qσ

i , for i = 1, 2, Q1 � Q2 holds if

1. ��(Q1) ⊆��(Q2),
2. J(Q2)(I) satisfies X1Y2 → X2 and Y2 → Y1, and
3. the tuple Qσ

1Qσ
2 is in πY1Y2J(Q2)(I).



146 B. Goethals, D. Laurent, W. Le Page

Example 2. In the context of Example 1, assume that FD1 = ∅ and FD2 = {C →
D, E → D}, and let Q1 = πADσ(A=C)∧(E=e)R and Q2 = πCσ(A=C)∧(D=d)R.

We have ��(Q1) =��(Q2) and J(Q1) = J(Q2) = πABCDEσ(A=C)R. Then, if I
is an instance of D, J(Q2)(I) satisfies FD. Moreover, due to the equality defining
��(Q2), J(Q2)(I) also satisfies A → C and C → A. Therefore, J(Q2)(I) satisfies
CE → AD and E → D, and so, if de ∈ πDEJ(Q2)(I), by Definition 3, Q2 � Q1. �

It can be seen from [13] that � is a pre-ordering and that the support of queries is anti-
monotonic with respect to �. In other words, for all Q1 and Q2 such that Q1 � Q2,
we have support(Q2) ≤ support(Q1). Anti-monotonicity is used in our algorithms to
prune infrequent queries, in much the same way as in Apriori [1].

Moreover, the pre-ordering � induces an equivalence relation, denoted by ∼, de-
fined as follows: given two simple conjunctive queries Q1 and Q2, Q1 ∼ Q2 holds if
Q1 � Q2 and Q2 � Q1. As a consequence of anti-monotonicity, if Q1 ∼ Q2 holds
then support(Q1) = support(Q2). Thus, only one computation per equivalence class
modulo∼ allows to know the support of all queries in that class.

In order to characterize equivalence classes modulo∼, we denote by X+ the closure
of a relation schema X with respect to a given set of functional dependencies FD.
Then, based on [13], it can be seen that for Q1 = πX1σF1R and Q2 = πX2σF2R,
Q1 ∼ Q2 holds if and only if ��(Q1) =��(Q2), (X1Y1)+ = (X2Y2)+, Y +

1 = Y +
2 and

Qσ
1Qσ

2 ∈ πY1Y2J(Q1)(I).
Now, given a query Q, the representative of the equivalence class of Q considered

in this paper is the query Q+, such that π(Q+) = π(Q)+, ��(Q+) =��(Q) and σ(Q+)
is the selection condition corresponding to the super tuple of Qσ , denoted by (Qσ)+,
defined over sch(Qσ)+, and that belongs to πsch(Qσ)+J(Q)(I).

Moreover, if π(Q) ⊆ sch(Qσ) then the support of Q is 1, which is meant to be less
than the minimum support threshold. Therefore, the queries Q of interest are such that

π(Q) = π(Q)+, sch(Qσ) = sch(Qσ)+, and sch(Qσ) ⊂ π(Q).

In what follows, such queries are said to be closed queries and the closed query equiv-
alent to a given query Q is denoted by Q+.

It is important to notice that, considering only such queries in our algorithms, reduces
the size of the output set of frequent queries.

Example 3. Referring back to the queries Q1 and Q2 of Example 2, it is easy to see
that they do not satisfy the restrictions above. For instance, as sch(Qσ

1 ) = E and
π(Q1) = AD, the inclusion sch(Qσ

1 ) ⊂ π(Q1) is not satisfied. It can be seen that
none of these queries are closed, and thus, none of them is considered in our algo-
rithms. But as J(Q1)(I) satisfies C → D, E → D, A → C and C → A, the closed
queries Q+

1 and Q+
2 defined below are processed instead.

Q+
1 = πACDEσ(A=C)∧(E=e)R and Q+

2 = πACDEσ(A=C)∧(E=e)∧(D=d)R.

We also note that Q1 and Q2 would not be considered either in [8], as in there, π(Qi)
(i = 1, 2) is required to contain all attributes from the same block of blocks(Qi)
but no attributes from σ(Qi). Thus, in [8], Q′

1 = πACDσ(A=C)∧(E=e)R and Q′
2 =

πACσ(A=C)∧(E=e)∧(D=d)R are processed instead. As Qi ∼ Q′
i ∼ Q+

i for i = 1, 2,
these queries have the same support. �



Discovery and Application of Functional Dependencies 147

3 Mining Queries under Functional Dependencies

3.1 Algorithm Conqueror+

In this section, we present our algorithm called Conqueror+ (given as Algorithm 1) for
mining frequent queries. We mention in this respect that frequent simple conjunctive
queries πXσF R are mined in much the same way as the Conqueror algorithm [8], that
is, according to the following steps:

– Join loop: Generate all instantiations of F , without constants, in a breadth-first
manner, using restricted growth to represent partitions [8]. Every partition gives
rise to a join query JQ and functional dependencies of its ancestors are inherited.

– Projection loop: For each generated partition, all projections of the correspond-
ing join query JQ are generated in a breadth-first manner, and their frequency is
tested against the given instance I. During this loop, functional dependencies are
discovered and used to prune the search space.

– Selection loop: For each frequent projection-join query, constant assignments are
added to F in a breadth-first manner, as in Conqueror. Moreover, here again, func-
tional dependencies are used to prune the search space.

As in the Conqueror algorithm, attributes are ordered, so as candidate queries are gen-
erated at most once in the different loops: This ordering is implicit lines 1 and 12 in
Algorithm 1 (the k-th element in the string refers to the k-th attribute according to the
ordering), and is explicitly used line 17 in Algorithm 2 and line 10 in Algorithm 3.

As an important difference with the Conqueror algorithm, a (possibly empty) set
of functional dependencies FD can be specified as input. This set is first used for the
relations of the database instance (line 3 of Algorithm 1) and then augmented during
the projection loop (line 15 of Algorithm 2).

3.2 Join Loop

The generation of joins is done in much the same way as in Conqueror ([8]), by gen-
eration of restricted growth strings [18]. Such a restricted growth string represents a
partition of the attributes, and such a partition maps to a join.

For example, referring back to Example 1, the set U of all attributes occurring in D
is {A, B, C, D, E}. Then, the restricted growth string 12231 represents the condition
(A = E) ∧ (B = C), which corresponds to the partition {{A, E}, {B, C}, {D}}.

As in the Conqueror algorithm, we include a check against the user defined most
specific join, which allows a user to specify the sensible joins in the database (see
line 11, Algorithm 1). By default, however, every possible join of every attribute pair is
considered. A new addition to the join loop is the inheritance of functional dependencies
shown on lines 13-14, and discussed in detail in Section 3.5.

3.3 Projection Loop

Compared to the Conqueror algorithm, one major change in the projection loop is the
fact that the generation of selections is now performed after all projections are gener-
ated (line 22, Algorithm 2) so as to be able to immediately use the discovered functional



148 B. Goethals, D. Laurent, W. Le Page

Algorithm 1. Conqueror+

Input: Database D, Set of functional dependencies FD, Minimum support threshold minsup
Output: Frequent Queries FQ
1: ��(Q) := “1” // initial restricted growth string
2: for all Ri in D do
3: FDQ := FDi

4: push(Queue, Ri)
// Join Loop

5: while not Queue is empty do
6: JQ := pop(Queue)
7: if ��(JQ) does not represent a cartesian product then
8: FQ := FQ ∪ ProjectionLoop(JQ)
9: children := RestrictedGrowth(��(JQ), m)

10: for all rgs in children do
11: if join defined by rgs is not more specific than the user most specific join then
12: ��(JQC) := rgs
13: for all PJQ such that ��(JQC) = ��(PJQ) ∧ (Ri.A = Rj .A

′) do
14: FDJQC := FDJQC ∪ FDPJQ

15: if ��(PJQ) = “1” then
16: FDJQC := FDJQC ∪ {Ri.A → Rj .A

′, Rj .A
′ → Ri.A}

17: blocks(JQC) := blocks(JQ) where the blocks containing Ri.A and Rj .A
′ are merged

18: push(Queue, JQC)
19: return FQ

dependencies to prune redundant queries. The functional dependency discovery is per-
formed lines 13-16 of Algorithm 2 and is discussed in Section 3.5.

We point out that, according to lines 17-20 of Algorithm 2, candidate projection
queries are generated by removing blocks in blocks(JQ), because attributes in a given
block are mutually dependent. However, it might be the case that removing such a block
does not result in a closed projection schema. This is why, line 9 of Algorithm 2, we
check whether π(PQ) is closed; if not, the projection query is simply queued without
any further processing. This however induces complications in the monotonicity check
line 10 of Algorithm 2, because projections over non closed schemas are not processed.
To cope with this difficulty, if PQ is such that π(PQ) is closed, for every predecessor
PPQ of PQ, the closure of π(PPQ) under FDQ is computed. The check is passed if all
corresponding projection queries are in FPQ.

Also notice that the function blocks(Q) returns the set of connected blocks of a re-
stricted growth string, i.e., the connected part of the partition blocks(Q). We require
such blocks to form a single connected component, so as to avoid considering cartesian
products, as stated in Definition 1. Clearly, line 7 in Algorithm 1 prunes these queries.

3.4 Selection Loop

In the selection loop of our new algorithm, marked queries are not considered, since they
are redundant (line 23, Algorithm 2). When adding blocks to the selection condition,
the closure is taken, ensuring no redundant queries are generated (line 13, Algorithm 3).



Discovery and Application of Functional Dependencies 149

Algorithm 2. ProjectionLoop

Input: Conjunctive Query Q
1: if ��(Q) = “1” then
2: π(Q) := sch(Ri) // Q is the query Ri

3: else
4: π(Q) := union of blocks(Q)
5: push(Queue, Q)
6: FPQ := ∅
7: while not Queue is empty do
8: PQ := pop(Queue)
9: if π(PQ) is closed then

10: if monotonicty(PQ) then
11: if support(PQ) > minsup then
12: FPQ := FPQ ∪ {PQ}
13: for all PPQ in FPQ such that ( � ∃ PPQ′ ∈ FPQ : π(PQ) ⊂ π(PPQ′) ⊂ π(PPQ)) do
14: if support(PQ) = support(PPQ) then
15: FDQ := FDQ ∪ {π(PQ) → π(PPQ) \ π(PQ)}
16: mark PQ
17: for all β > lastremoved(PQ) do
18: π(PQC) := π(PQ) with block β removed
19: lastremoved(PQC) = β
20: push(Queue, PQC)
21: FQ := FQ ∪ FPQ
22: for all PQ ∈ FPQ do
23: if PQ is not marked then
24: FQ := FQ ∪ SelectionLoop(PQ)
25: return FQ

However, closing of these sets of blocks requires to reorder the queue of candidates in
order to use the Apriori-trick. The following example illustrates this point.

Example 4. Considering the attributes A, B and C, along with the functional depen-
dency A → B, the generation of sets for the selection results in the generation-tree
(a) shown below. Indeed, the addition of A entails that B must also be added so as to
consider closed schemas only.

However, because of the monotonicity property, we need to consider B before AB
(since the selection according to B is less restrictive than that according to AB). We
accomplish this by reordering the candidate queue, to ensure B is considered before
AB and BC is considered before ABC, as shown in the generation-tree (b) below. �

(a) ∅
A

���
�

����
� B

��
C

��
�

���
��

AB ��

C
��

B

C
��

C

ABC �� BC

(b) ∅
B

��
�

�����
C
��

A
���

�

�����

B

C
��

C AB

C
��

��

BC ABC		



150 B. Goethals, D. Laurent, W. Le Page

Moreover, as stated previously, line 14 of Algorithm 3 ensures that σ(Q) is a strict sub-
set of π(Q). However, not all strict subsets of π(PQ) are considered, since we only
have to consider assignments over closed schemas under FDJQ (see line 13, Algo-
rithm 3). Furthermore, in line 14 of Algorithm 3, we make sure that the corresponding
closure has not been processed previously, which can happen since a closed set can be
generated from several non-closed sets.

Then, in lines 7-8 of Algorithm 3, the obtained queries are processed against I us-
ing the same strategy as in [8]. The instantiation of constant values in Algorithm 3 is
performed analogously to Conqueror by performing SQL queries in the database. For
further details, we therefore refer the reader to [8].

Algorithm 3. SelectionLoop

Input: Conjunctive Query Q
1: push(OrderedQueue,Q)
2: while not OrderedQueue is empty do
3: CQ := pop(OrderedQueue)
4: if σ(CQ) = ∅ then
5: toadd := all blocks of π(Q)
6: else if monotonicty(CQ) then
7: if exist frequent constant values for σ(CQ) in I then
8: FQ := FQ ∪ instances of CQ
9: uneq := all blocks of π(Q) /∈ σ(CQ)

10: toadd := all blocks B in uneq > last of σ(CQ)
11: for all Bi ∈ toadd do
12: σ(CQC) := σ(CQ) with Bi added
13: σ(CQC) := closure of σ(CQC) under FDQ

14: if σ(CQC) has not been generated before and σ(CQC) is different than π(Q) then
15: push(OrderedQueue, CQC)
16: return FQ

3.5 Handling and Discovering Functional Dependencies

In this section, we show that, according to our algorithms:

1. A given join query is associated with the set of all functional dependencies satisfied
by its predecessor join queries.

2. Only join and projection queries over closed relation schemas are processed.
3. Considering given functional dependencies along with discovered functional de-

pendencies preserves the above property.

Handling Functional Dependencies. A given join query JQ is associated with a set
of functional dependencies, denoted by FDJQ, and built up in Algorithm 1 as follows.

First, when ��(Q) is the restricted growth string 1, every instantiated relation Ri(I)
in the database is pushed in Queue (lines 2 and 5, Algorithm 2), associated with the
set FDi (see line 3, Algorithm 1). Then, the restricted growth strings represent a
join condition of the form (Ri.A = Rj .A

′). Denoting by JQ the corresponding join
query, if Ri = Rj then JQ(I) satisfies FDi (since JQ is a selection of Ri) along



Discovery and Application of Functional Dependencies 151

with Ri.A → Ri.A
′ and Ri.A

′ → Ri.A. Thus, FDJQ is set to FDi ∪ {Ri.A →
Ri.A

′, Ri.A
′ → Ri.A}. Similarly, if Ri 	= Rj , then JQ is a join of Ri and Rj , and so,

JQ(I) satisfies FDi ∪ FDj , as well as Ri.A → Rj .A
′ and Rj .A

′ → Ri.A. Thus, we
set FDJQ = FDi ∪ FDj ∪ {Ri.A→ Rj .A

′, Rj .A
′ → Ri.A} (see lines 13-16 of Al-

gorithm 1). At this stage, π(JQ) is either sch(Ri) (if Ri = Rj) or sch(Ri) ∪ sch(Rj)
(if Ri 	= Rj), and so, π(JQ) is closed under FDJQ.

In the general case, at a given level, the join query JQ is generated from join queries
PJQ in the previous level by setting ��(JQ) to ��(PJQ) ∧ (Ri.A = Rj .A

′), and
by augmenting π(PJQ) accordingly. Therefore, JQ(I) satisfies the dependencies of
FDPJQ, and thus, FDJQ is set to be the union of all FDPJQ where PJQ allows to
generate JQ (see lines 13-14 of Algorithm 1). Consequently, assuming that π(PJQ)
is closed under FDPJQ clearly entails that π(JQ) is closed under FDJQ.

Thus, for every join query JQ, π(JQ) is closed under those functional dependen-
cies of FDJQ that belong to FD or that are obtained through the connected blocks
of blocks(JQ). Moreover, the discovered functional dependencies in the projection
loop of JQ preserve this property, because these new dependencies are defined with at-
tributes in π(JQ) only. Thus, for every join query JQ, π(JQ) is closed under FDJQ.

Then, the check performed line 9 of Algorithm 2 ensures that only those projection-
join queries PQ such that π(PQ) is closed under FDJQ are considered. We note that
for performing this check, it is enough to make sure that there is no dependency X → Y
in FDJQ such that X ⊆ π(PQ) and Y 	⊆ π(PQ).

Discovering Functional Dependencies. Functional dependencies, other than those in
FD, are discovered in the projection loop (see lines 13-16 of Algorithm 2) as fol-
lows. At a given level, a projection-join query PQ is generated from the projection-
join queries PPQ of the previous level by removing blocks from π(PPQ). Thus, by
Proposition 1, if support(PQ) = support(PPQ) (see line 14 of Algorithm 2), JQ(I)
satisfies π(PQ) → π(PPQ) \ π(PQ). The dependency is thus added to FDJQ and
PQ is marked, since π(JQ) is no longer closed (see lines 15 and 16 of Algorithm 2).

Notice that, as projection-join queries are generated in a breadth-first manner, the
‘best’ functional dependencies (i.e., those with minimal left-hand side) are discovered
last, during the projection loop. However, by doing so, we mark all queries that do not
have to be processed in the selection loop. The following example illustrates this point.

Example 5. In the context of Example 1, let us consider the projection loop associated
to the join query JQ = πABCDEσ(A=C)R. In this case, blocks(JQ) = {{A, C}, {B},
{D}, {E}}. Assuming that all projections are frequent and that JQ(I) satisfies A →
D, the following dependencies are found: ACBE → D, ACE → D, ACB → D
and AC → D. Consequently, the queries πACBE(JQ), πACE(JQ), πACB(JQ) and
πAC(JQ) are marked, and so, are not processed by the selection loop.

We note that, A → D is actually not found, because FDJQ contains A → C and
C → A, which enforces A and C to appear together in the projections. Of course,
A→ D is a consequence of AC → D and A→ C that now belong to FDJQ. �

The output of the projection loop is processed in the selection loop of Algorithm 3
as follows: for every non marked frequent projection-join query PQ, selections over



152 B. Goethals, D. Laurent, W. Le Page

closed schemas are generated breadth-first by assigning constant values to some of the
attributes in π(PQ).

4 Experimental Results

The Conqueror+ algorithm was written in Java using JDBC to communicate with a
sqlite relational database. Experiments were run on a standard computer with 2GB
RAM and a 2.16 GHz processor. We also note that this implementation not only com-
putes frequent queries, but also association rules. The issue of association rules is
not addressed in this paper, due to lack of space. We performed experiments using
Conqueror+ and compared it to Conqueror [8]. We used the backend database of an
online quiz website [2] and a snapshot of the Internet Movie Database (IMDB) [11].
The characteristics of these databases are shown in Table 1.

Table 1. Number of tuples per attribute in the QuizDB and IMDB databases

(a) Quiz database

SCORES.* 868755
SCORES.SCORE 14
SCORES.NAME 31934
SCORES.QID 5144
SCORES.DATE 862769
SCORES.RESULTS 248331
SCORES.MONTH 12
SCORES.YEAR 6
QUIZZES.* 4884
QUIZZES.QID 4884
QUIZZES.TITLE 4674
QUIZZES.AUTHOR 328
QUIZZES.CATEGORY 18
QUIZZES.LANGUAGE 2
QUIZZES.NUMBER 539
QUIZZES.AVERAGE 4796

(b) IMDB

ACTORS.* 45342
ACTORS.AID 45342
ACTORS.NAME 45342
GENRES.* 21
GENRES.GID 21
GENRES.NAME 21
MOVIES.* 71912
MOVIES.MID 71912
MOVIES.NAME 71906
ACTORMOVIES.* 158441
ACTORMOVIES.AID 45342
ACTORMOVIES.MID 54587
GENREMOVIES.* 127115
GENREMOVIES.GID 21
GENREMOVIES.MID 71912

4.1 Impact of Dependency Discovery

We performed four types of experiments with functional dependencies. As a first type,
we executed the regular Conqueror. The second type, denoted ‘disc’ in Figure 1, is
Conqueror+ where discovery of dependencies is enabled, but the set of initial provided
dependencies is empty. The third type, denoted ‘given’, is Conqueror+ provided with
a set of initial dependencies, but without any discovery of functional dependencies.
For QuizDB we provided the key dependencies of the QUIZZES and SCORES rela-
tions, and for IMDB we provided the key dependencies for ACTORS, GENRES and
MOVIES. The fourth type, denoted as ‘given+disc’, is Conqueror+ provided with these
dependencies as well as discovery of new functional dependencies.

As can be seen in Figure 1a, Conqueror+ with discovery greatly outperforms Con-
queror in runtime. This is due to the large reduction in number of queries generated
which is clear from the figure. Adding an initial set of (key) functional dependencies
results in a small gain in runtime, due to a small reduction in number of queries gen-
erated. Similarly, providing a set of dependencies whilst also discovering new ones,



Discovery and Application of Functional Dependencies 153

results in a small relative gain. We also observe that the exponential behavior of query
generation is still present, but only for low support values. Furthermore, for Conqueror+

with discovery, runtime remains almost linear for a large portion of the support values,
while for Conqueror, it is increasing rapidly.

The experiments on the IMDB shown in Figure 1b show similar results, but in this
case, the impact of discovery is smaller. The small amount of attributes in the database
reduces the impact of the use of functional dependencies. It is however clear that also in
this case, the discovery of functional dependencies reduces the exponentiality of query
generation and has an almost linear runtime. Likewise the small impact of providing
key dependencies as input to the algorithm, is comparable to QuizDB.

We also performed some time analysis to determine the cost of functional dependency
discovery. The results for an experiment using QuizDB are shown in Figure 2. It is clear
that the time needed for the discovery of functional dependencies (shown as ‘fdisc’ in
Figure 2a) is negligible in comparison to the time gained in the selection loop (shown as
‘sel’). Adding discovery also requires extra time in the join loop (shown as ‘join’), but
again, the gain in the selection loop outweighs this. Looking at the partitioning of time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Queries

n
u

m
b

e
r 

o
f 

q
u

e
ri
e
s

minimal support

Q
Q (disc)
Q (given)
Q (given+disc)

0

75000

150000

225000

300000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Runtime

m
ill

is
e
c
o

n
d

s

minimal support

runtime
runtime (disc)
runtime (given)
runtime (given+disc)

(a) QuizDB

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 70 140 210 280 350 420 490 560 630 700

Queries

n
u
m

b
e
r 

o
f 

q
u
e
ri
e
s

minimal support

Q
Q (disc)
Q (given)
Q (given+disc)

7700000

7800000

7900000

8000000

8100000

0 70 140 210 280 350 420 490 560 630 700

Runtime

m
ill

is
ec

on
d

s

minimal support

runtime
runtime (disc)
runtime (given)
runtime (given+disc)

(b) IMDB

Fig. 1. Results for Conqueror, Conqueror+ with a set of Functional Dependencies given but
no detection (given), Conqueror+ with only detection of Functional Dependencies (disc), and
Conqueror+ both with given Functional Dependencies and detection.



154 B. Goethals, D. Laurent, W. Le Page

1

10

100

1000

10000

100000

join proj fdisc sel total

Disc  No Discovery

(a) Time Analysis

62%

27%

11%

Algorithms
Input Database Communication
Output Databases Communication

(b) Input/Output Time Analysis

Fig. 2. Time and I/O time analysis of a QuizDB experiment

in Figure 2b, we clearly see that most time is spent in output and input. Since functional
dependency discovery in Conqueror+ greatly reduces output and input, we get a large
reduction in runtime as was observed in Figure 1.

5 Related Work

Mining frequently occurring patterns in arbitrary relational databases has been the topic
of several research efforts. Dehaspe and Toivonen developed the WARMR algorithm [4],
that discovers association rules in over a limited type of Datalog queries in an Inductive
Logic Programming setting. The input to their algorithm consists of a collection of
databases, and then, queries are generated in a level-wise manner, and each candidate
query is evaluated against all of these databases. The frequency of a query is the number
of databases for which it gives a nonempty answer. Therefore, the interpretation of
frequent queries is incomparable to the conjunctive queries considered in this paper.

In [6], we studied a strict generalization of WARMR. The notion of diagonal con-
tainment provided an excellent tool to compare queries with different sets of projected
attributes. Unfortunately, the search space is infinite and there exist no most general
and no most specific patterns. However, the subclass of tree-shaped conjunctive queries
defined over a single binary relation representing a graph was studied, showing that
these tree queries are powerful patterns, useful for mining graph-structured data [7,10].
In [8], we considered conjunctive queries over several relations, allowing a more effi-
cient algorithm, called Conqueror.

Considering projection-selection queries over a single relation, Jen et al. introduced
a new notion of query equivalence [13], taking functional dependencies into account,
which is not the case in previous work. The approach of [13] has been generalised in
[14] to databases defined over multiple relations, organised according to a star schema.

All approaches other than those discussed just above and dealing with mining fre-
quent queries ([5,9,16,17]) are far more restrictive than ours. Indeed, whereas our



Discovery and Application of Functional Dependencies 155

approach considers several tables and all possible ways to count supports as distinct
values over all possible attribute sets, all these approaches consider a fixed relation to
be mined, along with a fixed characterisation of how to count supports. For instance,
in [9,16] tuples are counted, Turmeaux et al. [17] characterize counting by tuple values
over a given attributes, whereas Diop et al. [5] characterize counting by a query, called
the reference. Notice that all these approaches (except for [17]) are also restricted to
conjunctive queries, as is the case in this paper.

6 Concluding Remarks

The contribution of this paper is threefold. First, we combined the results of different
prior work resulting in a new algorithm for mining association rules over simple con-
junctive queries in arbitrary relational databases, over which functional dependencies
are assumed. The algorithm makes use of the functional dependencies of the database
to optimise the generation of frequent queries and prune redundant queries. Second,
our new algorithm is capable of detecting new functional dependencies that were not
given but that hold on the database relations or on any join of these relations. Third,
these newly detected dependencies are used to prune even more redundant queries. We
implemented our algorithm, and we showed that it greatly outperforms our previous
methods and efficiently reduces the amount of queries generated.

Several new opportunities for future work exist. First, the additional use of key and
foreign key contraints is an issue that we are currently investigating. Other appealing re-
lated constraints are conditional functional dependency, introduced by Fan et al. [3]. As
these constraints generalise standard functional dependencies using selections, it seems
interesting to investigate how they could be used and discovered in our framework.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of asso-
ciation rules. In: Advances in Knowledge Discovery and Data Mining, pp. 309–328. AAAI-
MIT Press (1996)

2. Bocklandt, R.: http://www.persecondewijzer.net
3. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional depen-

dencies for data cleaning. In: ICDE, pp. 746–755 (2007)
4. Dehaspe, L., De Raedt, L.: Mining association rules in multiple relations. In: Džeroski, S.,

Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 125–132. Springer, Heidelberg (1997)
5. Diop, C.T., Giacometti, A., Laurent, D., Spyratos, N.: Composition of mining contexts for

efficient extraction of association rules. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis,
S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 106–123.
Springer, Heidelberg (2002)

6. Goethals, B., Van den Bussche, J.: Relational association rules: getting warmer. In: Hand,
D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI),
vol. 2447, pp. 125–139. Springer, Heidelberg (2002)

7. Goethals, B., Hoekx, E., Van den Bussche, J.: Mining tree queries in a graph. In: ACM KDD,
pp. 61–69 (2005)

8. Goethals, B., Le Page, W., Mannila, H.: Mining association rules of simple conjunctive
queries. In: SIAM-SDM, pp. 96–107 (2008)

http://www.persecondewijzer.net


156 B. Goethals, D. Laurent, W. Le Page

9. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: Dmql: A data mining query language
for relational databases. In: SIGMOD-DMKD 1996, pp. 27–34 (1996)

10. Hoekx, E., Van den Bussche, J.: Mining for tree-query associations in a graph. In: IEEE
ICDM, pp. 254–264 (2006)

11. IMDB (2008), http://imdb.com
12. Inokuchi, A., Washio, T., Motoda, H.: An Apriori-based algorithm for mining frequent sub-

structures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD
2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)

13. Jen, T.Y., Laurent, D., Spyratos, N.: Mining all frequent selection-projection queries from a
relational table. In: EDBT 2008, pp. 368–379. ACM Press, New York (2008)

14. Jen, T.Y., Laurent, D., Spyratos, N.: Mining frequent conjunctive queries in star schemas.
In: International Database Engineering and Applications Symposium (IDEAS), pp. 97–108.
ACM Press, New York (2009)

15. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: IEEE ICDM, pp. 313–320
(2001)

16. Meo, R., Psaila, G., Ceri, S.: An extension to sql for mining association rules. Data Mining
and Knowledge Discovery 9, 275–300 (1997)

17. Turmeaux, T., Salleb, A., Vrain, C., Cassard, D.: Learning caracteristic rules relying on quan-
tified paths. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003.
LNCS (LNAI), vol. 2838, pp. 471–482. Springer, Heidelberg (2003)

18. Weisstein, E.W.: Restricted growth string. In: From MathWorld – A Wolfram Web Resource
(2009), http://mathworld.wolfram.com/RestrictedGrowthString.html

19. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: IEEE ICDM, p. 721
(2002)

20. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: ACM KDD, pp. 71–80 (2002)

http://imdb.com
http://mathworld.wolfram.com/RestrictedGrowthString.html


Using Transitivity to Increase the Accuracy of
Sample-Based Pearson Correlation Coefficients

Taylor Phillips, Chris GauthierDickey�, and Ramki Thurimella�

University of Denver

Department of Computer Science

taylorphillips@du.edu, {chrisg,ramki}@cs.du.edu

Abstract. Pearson product-moment correlation coefficients are a well-

practiced quantification of linear dependence seen across many fields.

When calculating a sample-based correlation coefficient, the accuracy of

the estimation is dependent on the quality and quantity of the sample.

Like all statistical models, these correlation coefficients can suffer from

overfitting, which results in the representation of random error instead

of an underlying trend.

In this paper, we discuss how Pearson product-moment correlation

coefficients can utilize information outside of the two items for which

the correlation is being computed. By introducing a transitive relation-

ship with one or more additional items that meet specified criterion,

our Transitive Pearson product-moment correlation coefficient can sig-

nificantly reduce the error, up to over 50%, of sparse, sample-based es-

timations. Finally, we demonstrate that if the data is too dense or too

sparse, transitivity is detrimental in reducing the correlation estimation

errors.

1 Introduction

Statistical models are used in the day-to-day lives of modern humans. Alleviating
traffic congestion, predicting weather patterns, or investing in the stock market
are all common examples of such models. When insufficient quantities of data
are used by these models, they exhibit a phenomenon known as overfitting. This
overfitting causes the models to display random error instead of an underlying
trend, which in turn makes it difficult to utilize the results in a sensible fashion.

We propose an algorithm that reduces the effects of overfitting by using in-
formation in the data set other than that which the statistical model was built
to utilize. For the purpose of discussion, we focus on a particular, ubiquitous
example of a statistical model that is susceptible to overfitting known as the
Pearson product-moment correlation coefficient (PMCC). This PMCC measures
the correlation, or linear dependence, between two vectors, i and j, and relies
� This research was funded in part by the National Science Foundation under Grant

No. DUE–0911991. Any opinions, findings and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not necessarily reflect those

of the National Science Foundation.

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 157–171, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



158 T. Phillips, C. GauthierDickey, and R. Thurimella

solely on the intersection of those two vectors. Our proposed algorithm works by
finding transitive neighbors, ks, such that the ks are the vectors in the data set
most similar to i. These ks are then used to form estimates for i’s relationship
with j, allowing our algorithm to incorporate auxiliary information that is nor-
mally disregarded. Note that statistically PMCC does not exhibit transitivity:
i.e., if X and Y are correlated and Y and Z are correlated, then X and Z are not
necessarily correlated. Our goal, however, is to try to exploit those cases where
the transitive relationship exists.

The existing approaches to alleviating the effects of overfitting do not address
this issue directly. Instead, techniques specific to particular applications have
been developed. Our work, which uses the idea of transitivity, could in theory be
applied to improve estimations of many statistical models that use sparse data.

To quantify the performance of the algorithms presented in this paper, the
Netflix Prize data set was used. This readily available data consists of approxi-
mately 100 million user-movie pairs. The results demonstrate that our Transitive
Pearson product-moment correlation coefficient algorithm can reduce the error
by up to 50% of the PMCC approximations in sparse data sets.

The notion of utilizing transitivity in statistical models to reduce the effects
of sparse data is both abstract and powerful. The algorithm proposed in this
paper is important because it is the first to demonstrate a significant reduction of
error in sparse, sample-based PMCC estimations. PMCCs find uses in education,
psychology, physics, mathematics, economics, and finance, all of which can suffer
from overfitting and can subsequently benefit from the ideas presented in this
paper. Further, this notion of neighbor transitivity used by our algorithm could
be extended to reduce the error of other statistical models operating on sparse
data.

2 Background

Collaborative filtering (CF) is the process by which users rate material in a col-
lection or database of materials so that other users may use those ratings to help
them select materials they are interested in [8]. The first opportunities for col-
laborative filtering came through the Internet where users were able to provide
real time feedback on a product or service. Tivo [2] and Amazon were some of
the first commercial entities to take advantage of it and an analysis of collab-
orative filtering in Amazon demonstrated a 20% increase in sales attributed to
personalization through CF [11]. Adomavicius and Tuzhilin provide an extensive
survey of collaborative filtering techniques [1].

Recently, the Netflix Prize offered $1,000,000 to anyone who could improve
the accuracy of Netflix’s proprietary movie recommendation algorithm by 10%
[13,16,12,7,14]. Their algorithm was designed to recommend movies to customers
based on how a specific customer rated his previously viewed movies. This same
task of recommending movies could also be looked as the task of predicting
a rating for an unseen movie, and then recommend movies with the highest
predicted rating. Thus, the goal of the Netflix Prize was to improve the accuracy
of the predictions of unseen movies.



Using Transitivity to Increase Accuracy of Sample-Based PMCCs 159

Bell and Koren’s work towards the Netflix Prize focused on nearest-neighbor
models, latent-factor models, and combining those models together [3,5,10]. A
synopsis of the research by Bell et al. on the Netflix Prize can be found in [6,4].
While being related to our own work, we are more interested in estimating the
measures of similarity employed by these various algorithms.

The most widely used correlation coefficient in the Netflix Prize was the Pear-
son product-moment correlation coefficient (PMCC) [3,5,10,9,15], where it was
used directly as a measure of similarity or to recommend an alternative. PMCCs
are used as a measure of similarity in numerous applications of many different
models, including matrix factorization and the nearest neighbor models.

Like any statistical model, the usefulness of the correlation coefficients is con-
tingent on having sufficient data. While the Netflix dataset is large, the ratings
are sparse and thus the challenge is to find relationships between users, movies
and their ratings. Using the dataset, the PMCC is used to measure the correla-
tion between two user’s ratings. Thus, to compute the correlation coefficient for
two users, an overlap in movies seen is needed to draw any conclusion about the
relation between those two users. Our algorithm does not have this requirement
and is able to make estimations of correlation coefficients when there is abso-
lutely no data of this kind. This in turn allows models that make use of Pearson
correlation coefficients to improve estimations of sample-based data and even
make predictions that simply were not possible without this technique.

3 Motivation

Quantifying a relationship between users or items is an important component
of collaborative filtering, with similarity being a measure of this relationship
[3,5,10,9,15]. Similarity is then used to weight different opinions proportionally
to the similarity of opinion between items. Determining the distribution of the
weight from similarity is a specific focus in [5,10], which demonstrate how crucial
similarity and weighting are when forming approximations from sparse data.
There are multiple interpretations of similarity, but one commonly accepted
method is correlation (linear or otherwise) [3,9,15].

3.1 Pearson Product-Moment Correlation Coefficient

The Pearson product-moment correlation coefficient (PMCC) is a measure of
linear dependence between two vectors, i and j, in the range of [-1,1]. A PMCC
of 1 indicates an exact positive correlation, -1 indicates an exact negative cor-
relation, while 0 indicates there is no linear relationship. The formula for the
PMCC of i and j can take many forms, one of which is shown in Eq. 1. The
PMCC of i and j, dubbed rij , is based only on i ∩ j which are the points of
data common between both variables. We will refer to |i∩ j| or |rij | as the direct
sample size of i and j.

rij =
∑

x(ix − ī)(jx − j̄)√∑
x(ix − ī)2

√∑
x(jx − j̄)2

(1)



160 T. Phillips, C. GauthierDickey, and R. Thurimella

PMCCs are a standard for measuring linear dependence and thus, play a role in
many fields ranging from math and statistics to social sciences and psychology.
These correlations are, however, limited by the classic phrase that correlation
does not not equal causation. This means that, for example, although tempera-
ture and humidity are negatively correlated, it does not imply that the increase
in temperature caused the reduction in humidity. Correlations can still provide
insight because they demonstrate that historical data indicates that there simply
is a negative correlation, regardless of cause.

Other measures of similarity used in collaborative filtering include Euclidean
distance and the Cosine similarity. Euclidean distance, defined as d(i, j) =√∑n

x=1 i2x − j2
x, finds a natural usage when dealing with spatial proximities.

The Cosine similarity finds the angle between vectors just as PMCCs find the
slope between vectors and takes the form cos(θ) = i·j

||i||||j|| .

3.2 Overfitting

PMCC can be limited in practice due to its susceptibility to overfitting. Over-
fitting, also referred to as inductive bias, is a symptom exhibited by statistical
models that causes them to display random error instead of an underlying rela-
tionship. This means that a statistical model can indicate a relationship that is
not true as a result of insufficient data. PMCCs are often used in sample-based
scenarios which can have a small set of data that is not guaranteed to be rep-
resentative of the theoretical, complete set of data. For example, if a statistical
model relies on a single point of data, that point could be an outlier causing the
model to predict incorrectly.

An alternative way of understanding overfitting is rooted in the law of large
numbers. The law of large numbers states that the more data points that exist
for a random variable, the more likely that data is to be representative of the
expected value of that random variable. Rolling a single dice has six possible
outcomes or values, all of which are equally likely. Because each outcome is
equally likely, the expected value can be computed as the average of all outcomes,
which for this example is (1+2+3+4+5+6)/6 = 3.5. If the dice is rolled only
once yielding a one, there will be significant error if that single roll is assumed to
be indicative of all possible rolls. Furthermore, statisticians are able to provide
a confidence interval using the law of large numbers. That is, a sample size and
interval may be specified such that the sample mean will fall within the specified
interval the desired percentage of the time.

This idea may be applied analogously to the Netflix Prize where a given user’s
rating is the random variable in question. If we have only one rating, that rating
is not necessarily representative of the long term opinions of that user. The law of
large numbers states that the more ratings we have, the more likely that data will
be representative of the long term. Thus, when dealing with an incomplete set
of data, as in collaborative filtering, it is important to understand and account
for this overfitting.

Various heuristics exist to curb overfitting and arrive at a more conservative
estimate. This may be beneficial, or even necessary in some situations, but the



Using Transitivity to Increase Accuracy of Sample-Based PMCCs 161

ability of these techniques to significantly improve the estimations is limited.
Such heuristics can be as simple as skewing the original, overfitted value towards
the mean of all values. In this paper, we propose an algorithm that minimizes the
effects of overfitting of sample-based PMCCs by using information other than
i∩ j. The myriad of applications of PMCCs can also suffer from overfitting and
can subsequently benefit from the ideas presented in this paper.

4 Algorithms

In this section we describe two heuristics and our Transitive PMCC algorithm.
For the following sections we assume there is a universe of vectors, for which a
PMCC could be computed between any two vectors using Eq. 1. The algorithms
will operate on some original PMCC, rij , and yield a new PMCC, r′ij , that is
intended to replace the rij for all subsequent applications.

4.1 Heuristics

The two heuristics presented in this section dampen the effects of overfitting by
reducing the reliance on the data specific to rij . This is done by using a lin-
ear combination of the original rij and some given constant. The first heuristic
algorithm, HeuristicA, takes two constants α and C where α is the linear com-
bination weight given to rij and 1−α is given to C. For our purposes we choose
C = 0, indicating that the more weight C gets, the more it would transform rij

to zero which, for PMCCs, means that there is no linearly dependent relation-
ship between i and j. This choice of C curbs overfitting by skewing the actual
rij towards this conservative value. HeuristicA is descibed formally in Eq. 2.

HeuristicAij = αrij + (1− α)C = αrij (2)

Note that α is not dependent on anything and thus, the linear combination
weight given to rij is fixed. The problem with HeuristicA is that regardless of
the direct sample size of rij , the linear combination weight remains fixed. Thus,
an rij with a very large direct sample size would recieve exactly α weight just
as an rij with a very small direct sample size. An improvement can be made by
having the linear combination weight of rij be a function of the direct sample
size of rij . This means that when there is a smaller direct sample size rij will
get less weight, but as direct sample size increases rij gets more weight. This is
useful because as direct sample size increases, the effects of overfitting ought to
decrease and thus, the original value can be weighted more heavily.

HeuristicB uses |rij | to arrive at a weight for rij that is more appropriate
for the specific pair of i and j. It is described in Eq. 3 where β is the linear
combination weight of rij and C is a chosen constant. As with HeuristicA, C =
0 was chosen so that the linear combination would be skewed towards 0, the
equivalent of no relationship. For β = 5 with a direct sample size of 95, HeuristicB
gives rij 95% of the linear combination weight and only 5% to no relationship.
If the direct sample size were only 5, rij would receive only 50% of the weight



162 T. Phillips, C. GauthierDickey, and R. Thurimella

while no relationship would also get 50%. By determining a linear combination
weight for rij from the direct sample size of rij , HeuristicB incorporates the
conservative estimate with small amounts of data, but has little impact when
there is larger amounts.

HeuristicBij = ri,j
|rij |

|rij |+ β
+ (1 − |rij |

|rij |+ β
)C = ri,j

|rij |
|rij |+ β

(3)

4.2 Transitive PMCC

Our proposed Transitive PMCC algorithm (TPMCC) works to find informa-
tion beyond i ∩ j to develop a stronger estimate for r′ij . This extra information
is rooted in the neighbors that are chosen to represent i’s relationship with j.
That is, the TPMCC algorithm takes the items most similar to i and uses their
relationships with j to estimate i’s relationship with j. To determine an ordering
of neighbors for i by similarity, we use abs(rik), such that neighbors most sim-
ilar will have a strong correlation. This strong linear dependence can be either
positive or negative denoted by the absolute value.

The process of selecting a set of neighbors for a given pair, i and j, begins by
examining all possible neighbor candidates, k. The candidates are then narrowed
down, keeping only those whose abs(rik) > δ for which δ is some chosen constant.
Additionally, we want to require some sufficient direct sample size on rik and
rkj so that we can have a degree of certainty that the neighbors themselves
aren’t suffering from overfitting. These constraints take the form of |rik| ≥ γik

and |rkj | ≥ γkj . We then take our final neighbor set Nij , as the set of all ks
that meet the previously stated criterion with δ, γik, and γkj . The number of
neighbors in Nij will be referred to as the transitive sample size. The Transitive
PMCC algorithm is then described in Eq. 4 where w(i, j) is the weight of the
actual rij and w(i, j, k) is the weight of neighbor k.

TPMCCij =

rijw(i, j) +
∑

k∈Nij

rkjw(i, j, k)

w(i, j) +
∑

k∈Nij

w(i, j, k)
(4)

In order to examine all possible neighbor candidates, every unique PMCC must
be computed. This step alone has an asymptotic complexity of O(n2) in running
time where n is the number of vectors in the universe. The TPMCC algorithm
then examines all n−2 neighbor candidates for each of the O(n2) unique PMCCs,
making the asymptotic complexity of the Transitive PMCC algorithm O(n3).
This is somewhat alleviated by being trivially executed in parallel, but the cubic
complexity must be considered.

5 Experimental Methodology

The Netflix Prize data set was used to experimentally measure the performance
of the heuristics and TPMCC algorithm presented in the previous section. This



Using Transitivity to Increase Accuracy of Sample-Based PMCCs 163

data set contains the rating history for 480,189 users and 17,770 movies with
a total of 100,480,507 ratings. The movies data consists of a title, release year,
and a unique identifier while the users consist of a unique identifier only. Lastly,
the ratings data consists of a unique user identifier, a unique movie identifier,
date of the rating, and a value of the rating ranging from one to five.

One hundred million ratings may appear substantial, but it only represents
1% of the total possible ratings. That is, if every user rated every movie then
every possible rating would already be known, while in actuality 99% of those
ratings are missing. This missing data complicates the use of PMCCs as they
are based on only a subset of the possible data. Thus, the goal is to compute the
PMCCs of the complete set of data using only a subset of the data. These sets
could be thought of as a grading set and training set respectively. In our first
set of experiments, we examine the effects of training the TPMCC algorithm on
50% of the data set (or 0.5% of the total possible ratings) to predict against the
second half of the data. Subsequently, we will discuss how different amounts of
training data influence the results.

For our purposes, the only points of data used were the rating’s unique user
identifier, the unique movie identifier, and the rating value. Using only one ran-
dom half of the ratings data the PMCCs were computed for all pairs of movies.
With 17,770 movies this results in 157,877,565 unique pairs of movies, each with
their own PMCC. The PMCC for movies i and j in this set will be denoted
Originalij . Another set of PMCCs, Final, was computed using the entire set of
ratings data and is used to grade the accuracy of the Original PMCCs and the
PMCCs created by the algorithms.

The Original PMCCs will be used by the heuristics and TPMCC algorithm as
input to provide new estimates for the Final PMCCs. To quantify the error be-
tween any two sets of PMCCs, we use the root mean-squared error (RMSE). The
formula for RMSE is shown in Eq. 5 where a and b are sets of PMCCs of size n.

RMSE =

√√√√ 1
n

n∑
x=1

(ax − bx)2 (5)

The resulting RMSE between Original and Final is 0.468. Theoretically, the
worst possible RMSE could be 2.0. This would happen if, for example, the Final
PMCCs were all 1 and all of the Original PMCCs were -1. However, given a
distribution of data and predicting the mean yields much lower measures of error
in practice. For example, the RMSE of absolutely no data, which is predicting 0
for every PMCC, yields an RMSE of 0.542. This means that using the Original
PMCCs computed using half of the data only reduced the error of predicting 0
for all PMCCs by 13.7%.

6 Results

6.1 Heuristics

Each heuristic was run using the Original PMCCs as input yielding two new sets
of PMCCS, HeuristicA and HeuristicB. A plot of the RMSE of HeuristicA



164 T. Phillips, C. GauthierDickey, and R. Thurimella

is shown in Figure 1a for different values of α. In this plot it is visible that the
RMSE of HeuristicA is minimized for α = 0.6, which reduced the RMSE to
0.425 - a 9.1% reduction of the RMSE of Original. The value of α that achieved
the lowest RMSE is between 0 and 1, indicating that Original does suffer from
overfitting and benefits from the HeuristicA algorithm. If α = 0 or α = 1 yielded
the least RMSE, it would mean that predicting 0 for all PMCCs was best or using
the unmodified HeuristicA was best, respectively. When α = 0.6, HeuristicA
is going to scale the Original PMCCs down to 60% of the linear combination
weight and give 40% to 0. The contrast with the effects of HeuristicA on the
PMCCs produced by the TPMCC algorithm as also shown in Figure 1a will be
discussed in the following section.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0  0.2  0.4  0.6  0.8  1

R
M

S
E

α

Heuristic A
Transitive

(a) HeuristicA

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  5  10  15  20

R
M

S
E

β

Heuristic B
Transitive

(b) HeuristicB

Fig. 1. RMSE of HeuristicA vs. α and HeuristicB vs. β: HeuristicA exhibits the lowest

RMSE for Original when α is 0.6 for a 9.1% improvement of the RMSE of Original
while HeuristicB exhibits the lowest RMSE with Original when β is 2, yielding a 9.8%

improvement of the RMSE over Original.

The RMSE of the PMCCs of the HeuristicB algorithm were computed for
various values of β and displayed in Figure 1b. Note that choosing β = 0 results
in no change to Original and β = ∞ would result in a prediction of 0 for all
PMCCs. The RMSE for HeuristicB was minimized using β = 2, which achieved
a total reduction of RMSE of nearly 9.8% over Original. Like HeuristicA, this
demonstrates that HeuristicB does reduce the RMSE of the PMCCs indicating
that Original does suffer from overfitting. This value of β means that PMCCs
with a direct sample size of 2 were reduced to 50% of their value, while PMCCs
with a direct sample size of 20 were reduced to only 90.1% of their original value.
The contrast with the effects of HeuristicB on the PMCCs produced by the
TPMCC algorithm as also shown in Figure 1b will be discussed in the following
section.

6.2 Transitive PMCC

Multiple sets of PMCCs were computed with the proposed TPMCC algorithm
using Original as input. The different sets were computed with different con-
straints on the neighbor sets. We chose a fixed δ = 0.9 and γkj = 1, but used



Using Transitivity to Increase Accuracy of Sample-Based PMCCs 165

multiple values of γik ranging from 3, 6, 12, and 24. This means that the neigh-
bors for the Orginalij were limited to ks such that abs(Originalik) ≥ 0.9, the
direct sample size of Originalkj is greater than zero and the direct sample size
of Originalik ranged from greater than or equal to 3, 6, 12, and 24. Our im-
plementation was in Java and the computation was performed in parallel on
four machines. The machines had 4GB of RAM, 2.13GHz Intel Core 2 CPU and
were running Debian GNU/linux 2.6.18. Depending on the value for γik (which
determined the size of the neighbor sets), the entire operation would take five
to eight hours. In contrast, a standard PMCC calculation could be done on a
single machine in less than an hour.

The RMSEs for the different values of γik are shown in Figure 2. The second
axis of the figure displays the average number of transitive and direct neighbors
of i and k for each γik. Note that with γik = 24 it was difficult to even find
a large number of direct neighbors and thus, didn’t have a significant impact
on the data. Both the improvements from γik = 24 to γik = 12 and γik = 12
to γik = 6 were substantial, while the change form γik = 6 to γik = 3 had
little impact. This shows that direct sample sizes like 6 and 12 held a strong
balance between attainability and usefulness. Neighbors that only have a very
small direct sample size are less reliable because such a small direct sample size
could easily misrepresent the complete set of data, however, they were still able
to make a positive contribution to reducing the overall RMSE. The TPMCC
algorithm is minimized for γik = 3 with nearly 1300 transitive neighbors, which
reduces the RMSE of Original to 0.28, a 40.1% reduction in RMSE. This set of
PMCCs, denoted Transitive, will be used in subsequent comparisons to other
sets of PMCCs.

Looking back at Figures 1a and 1b, both plots also display the results of
each heuristic algorithm on the PMCCs produced by TPMCC. In these fig-
ures Transitive is minimized by the heuristic algorithms when they don’t effect

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  3  6  9  12  15  18  21  24
 0.1

 1

 10

 100

 1000

 10000

R
M

S
E

N
um

be
r 

of
 N

ei
gh

bo
rs

Minimum Direct Sample of i and k

Original
Transitive

Direct

Fig. 2. RMSE of TPMCC with Transitive vs. γik. The RMSE for Original is also

displayed for comparison. The secondary Y axis is the mean number of transitive

neighbors for the Neighbors plot. Note that Transitive exhibits the lowest RMSE

when γik is 3, computed with nearly 1300 neighbors, yielding a 40.1% improvement

over Original.



166 T. Phillips, C. GauthierDickey, and R. Thurimella

them at all - namely α = 1 and β = 0 for HeuristicA and HeuristicB respec-
tively. As discussed in the above subsection, these values of α and β have no
effect on Transitive, and further, the RMSE gets progressively worse as the
heuristics make a larger impact. This is directly indicative that Transitive, un-
like Original, already accounts for overfitting and is only made worse by the
heuristics.

6.3 Error Distributions of PMCC Estimations

The distribution of error from each algorithm’s PMCCs, including Original, are
shown in Figure 3a. The plot was built by computing the absolute value of the
error and counting the frequency of errors falling into each bucket. The buckets
have a lower and upper threshold, all of which were chosen to have width 0.1
and range from 0 to 2. A particular error value falls into the first bucket for
which the error is less than that bucket’s upper threshold. We will refer to the
first bucket, containing values ranging from 0 to 0.1, as the ”0.1 bucket” and all
subsequent buckets will be denoted by their upper threshold.

In Figure 3a, Original has the largest error of any other set of PMCCs. The
Transitive PMCCs contain the most values in the 0.1 bucket with over 30%
of all PMCCs falling into this category. Both heuristic PMCC sets are close
behind, while Original has only 25%. In the next two buckets, Original and
both heuristics differ slightly, but TPMCC has about 5% more. In addition,
Transitive is the only set of PMCCs to have any significant effect on buckets
0.7 to 1, which each contain roughly 5% of all other sets of PMCCs. Transitive
has much less, emphasizing the fact that it has much fewer high-error PMCCs.
These buckets are likely populated by PMCCs that have a very small direct
sample size which results in overfitting and high error. TPMCC’s performance
in this situation is indicative that the it is doing more than curing the symptoms
of overfitting, but actually using the extra information to improve estimations.

To further examine the PMCCs and understand the implications of Figure 3a,
a second distribution was made to show the RMSE for different direct sample
sizes of i and j in Figure 3b. Like Figure 3a, this distribution was sampled using
thresholds and each bucket is denoted by its upper threshold, where the first
bucket contains only those PMCCs who had a direct sample size of zero. The
remaining buckets have exponential widths ranging from the previous buckets
upper threshold (exclusive) to its own upper threshold (inclusive).

The PMCCs for all algorithms, excluding Transitive, are identical for the first
two buckets, 0 and 1, as they had no data on which to operate and therefore
predicted 0. The TPMCC algorithm was able to produce PMCCs that reduced
this error in bucket 0 by over 31.2%. For bucket 1, Transitive further improves
and demonstrates its ability to operate with little direct data and reduces the
error of all other algorithms by 41.4%. Original doesn’t improve much in bucket
2, but both heuristics show a drastic change and reduce the RMSE of Original by
17%. The Transitive continues to improve and reduces the RMSE of Original
for the bucket 2 by 50.4%. These contrasting results demonstrate the ability of



Using Transitivity to Increase Accuracy of Sample-Based PMCCs 167

 0

 5

 10

 15

 20

 25

 30

 35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

P
er

ce
nt

 o
f T

ot
al

abs(Error)

Original
HeuristicA
HeuristicB
Transitive

(a) Distribution of Absolute Error

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 4 8 16 32 64 128 256 512 1024

R
M

S
E

Direct Sample Size

Original
HeuristicA
HeuristicB
Transitive

(b) Distribution of RMSE

Fig. 3. Distributions of the absolute value of error and RMSEs: In (a), the distribution

of the absolute value of the error with thresholds of width 0.1 where the X axis repre-

sents upper threshold is shown. Note that Transitive has the most values in buckets

0.1-0.5 while the others have more in the high-error buckets. In (b), the distribution of

RMSE by direct sample sizes of PMCCs where the X axis represents upper threshold

(inclusive). Note that Transitive exhibits significantly lower RMSEs for direct sample

sizes less than or equal to 8. After this point Transitive has higher RMSEs demon-

strating that the transitive data becomes less valuable as direct sample size increases.

the TPMCC algorithm to extract indirect information from transitive neighbors
and improve the accuracy of predictions with limited amounts of data.

The Transitive continues to outperform all other algorithms by a similarly
significant margins up to bucket 8. For buckets larger than 16, a new trend
develops and Transitive begins to have a larger RMSE than the other algo-
rithms. This interesting behavior implies that there exists a direct sample size
at which point enough direct information renders the transitive neighbor infor-
mation detrimental. This is somewhat intuitive as the larger the direct sample
size that is available, the more trust that can be placed on the subsequent results.
Thus, when the results are sufficiently trusted, the Transitive uses less accurate
and indirect information from transitive neighbors that actually increases the
RMSE of the PMCC estimations.

To gain insight as to how significantly Figure 3b will impact the overall RMSE,
a third distribution was made. This distribution is shown in Figure 4 and displays
the percent of all PMCCs to fall in each of the buckets used in Figure 3b. It shows
that roughly 7% of all PMCCs have a direct sample size of 0. The thresholds with
direct sample sizes from 0 to 8 account for 67.9% of all data and Transitive was
able to reduce the RMSE by 42.7%. In addition, the thresholds where Transitive
is detrimental, direct sample sizes with thresholds 64 and greater, all combine
to make up only 12.9% of all unique pairs.

6.4 Data Density

As discussed in Section 5, the Netflix Prize data set has approximately a 1%
density, indicating that in the results presented above the algorithms operated



168 T. Phillips, C. GauthierDickey, and R. Thurimella

 0

 5

 10

 15

 20

 25

0 1 2 4 8 16 32 64 128 256 512 1024

P
er

ce
nt

 T
ot

al

Direct Sample Size

Transitive

Fig. 4. Distribution of all PMCCs by direct sample sizes where X axis represents upper

threshold. Note that samples sizes 0 through 8, where TPMCC performs well, account

for 67.9% of all PMCCs. The TPMCC has a negative impact on buckets with direct

sample sizes of 64 and greater, which combine to only 12.9%.

on only 0.5% data density since we used half of the data set. The following
analysis addresses how the different algorithms perform as the amount of data
is reduced.

The plot in Figure 5 shows a RMSE of different sets of PMCCs as the amount
of data is varied. OrigHeuristicA and OrigHeuristicB are the PMCCs resulting
from using Original with each heuristic. Transitive is the results from TPMCC
algorithm while TransHeuristicA and TransHeuristicB are from the heuristics
operating on Transitive. With 0% of the data, all algorithms produce the same
set of PMCCs which amounts to predicting 0 for all PMCCs. The 2% sample
points, or 0.02% data density, show little improvement because the data is still
too sparse to support sufficient intersection between movies.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

0%2% 10% 25% 50%

R
M

S
E

Percent of Data Used for Training

Original
OrigHeuristicA
OrigHeuristicB

Transitive
TransHeuristicA
TransHeuristicB

Fig. 5. RMSE vs. percent of Netflix Prize data used, Transitive and both heuristics

for each. Note that Original actually increases RMSE as amount of data increases

until 50% data, while Transitive is able to make increasingly notable improvements

starting with 10% data.



Using Transitivity to Increase Accuracy of Sample-Based PMCCs 169

 0.01

 0.1

 1

 10

 100

 1000

 10000

2% 10% 25% 50%

M
ea

n 
S

am
pl

e 
S

iz
e

Percent of Data Used for Training

Mean Transitive Neighbors
Mean Direct Sample Size

Fig. 6. Mean direct sample size and mean transitive sample size vs. percent of Netflix

Prize data used. Note that neither reach usable quantities for 2% data density, but at

10% the mean number of transitive neighbors reaches 50, while mean number of direct

neighbors only reaches just over 2. At 50% data there are nearly 1300 and 50 mean

transitive and direct neighbors respectively.

To confirm that 0.02% data density was too low, Figure 6 displays the mean
number of transitive neighbors found by TPMCC and the number of direct
neighbors for normal PMCCs. For the 2% predictions, it is clear that neither
transitive nor direct neighbors exist in usable quantities.

The next point at 10% (0.1% data density) shows an interesting trend. With
nearly 100 transitive neighbors, Transitive reduces the RMSE of Original,
by 12.5%. The heuristics for Transitive fail to make additional improvement.
Original and its heuristics actually perform slightly worse than predicting 0 for
all PMCCs. This demonstrates that such sparse data causes overfitting, and in
this case, can actually be improved by not utilizing the data at all.

At 25% (0.25% data density) Original is still being out performed by predict-
ing 0 for all PMCCs. Its heuristics do slightly better, but Transitive is able to
achieve a 34.8% reduction in RMSE over Original. Back to 50% of the Netflix
Prize data, Original makes a drastic improvement with a mean intersection size
of 51. Transitive continues to improve reaching a 40.1% reduction over Original.
Note that the heuristics operating on Transitive are always only made worse,
demonstrating that the TPMCC algorithm has already reduced overfitting be-
yond the aid of those heuristics.

It is interesting to note that the Transitive PMCC algorithm is able to begin
reducing RMSE with only 100 transitive neighbors as shown in the 0.1% data den-
sity point in the plots above. However, with 0.5% data density, it further benefits
from over 1000 neighbors. This means that the Transitive algorithm benefits from
being in a wide data set, or a data set that has lots of users and movies in the case
of the Netflix data set. If there were only 10 movies, it would be very difficult for
the Transitive algorithm to find a sufficient number of neighbors. With the Netflix
Prize data, almost 20,000 movies along with half a million users exist, given plenty
of opportunities to find different neighbors, transitive or not.



170 T. Phillips, C. GauthierDickey, and R. Thurimella

7 Conclusions and Future Work

The proposed nearest neighbor PMCC algorithm increases the accuracy of PM-
CCs estimations when dealing with sparse, sample-based data. In such sample-
based data, statistical models can suffer from the lack of data and represent
random error instead of underlying trends in a phenomenon known as overfit-
ting. The results of the experiments with the Netflix Prize data demonstrate
that the proposed heuristics and TPMCC algorithm are able to reduce the error
in such PMCC estimations.

The PMCCs computed from the random test set reduced the error of pre-
dicting 0 for all PMCCs by only 13.7%. The heuristics reduced the error of the
test set PMCCs by up to 9.8%, while our TPMCC algorithm, which took ad-
vantage of transitive relationships, was able to achieve a 40.1% reduction. For
Pearson estimates with direct sample sizes of two, which account for 13.6% of
the population, the TPMCC reduced the error by over 50%. Lastly, the TPMCC
algorithm is able to provide comparable improvements with reduced amounts of
data. This reduction in error of PMCCs will strengthen the variety of applica-
tions in which they are applied and allow statistical models to be utilized in
situations where they otherwise could not. Furthermore, the abstract notion of
gathering information from transitive neighbors is likely to have a positive effect
in new applications.

For future work, we plan on exploring how measures of similarity other than
PMCC, like the Jaccard index, Euclidean distance, and Spearman rank coef-
ficient, could be improved by discovering transitive relationships in the data
sets. The TPMCC’s temporal computational complexity is O(n3), requiring an
O(n) operation for each of the O(n2) unique PMCCs. This running time could
be reduced to O(kn2) = O(n2) by selecting some well- chosen subset of size
k to represent all possible neighbor candidates. Furthermore, if the TPMCC
algorithm was computed on a subset of c PMCCs, those that are likely to ben-
efit the most (e.g. those with a very small sample size), it could be reduced to
O(ckn) = O(n) which could make it much more pragmatic in real life situations.

References

1. Adomavicius, G., Tuzhilin, A.: Towards the next generation of recommender sys-

tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions

on Knowledge and Data Engineering 17, 634–749 (2005)

2. Ali, K., van Stam, W.: Tivo: Making show recommendations using a distributed

collaborative filtering architecture. In: Proceedings of the 10th ACM International

Conference on Knowledge Discovery and Data Mining, pp. 394–401 (2004)

3. Bell, R., Koren, Y.: Improved neighborhood-based collaborative filtering. In: In-

ternational Conference on Knowledge Discovery and Data Mining (2007)

4. Bell, R., Koren, Y.: Lessons from the netflix prize challenge. SIGKDD Explo-

rations 9, 75–79 (2007)

5. Bell, R., Koren, Y.: Scalable collaborative filtering with jointly derived neighbor-

hood interpolation weights. In: IEEE International Conference on Data Mining

(ICDM 2007), pp. 43–52 (2007)



Using Transitivity to Increase Accuracy of Sample-Based PMCCs 171

6. Bell, R., Koren, Y., Volinsky, C.: The bellkor solution to the netflix prize. Tech.

rep., AT&T Labs (2007)

7. Buskirk, E.V.: Winning teams join to qualify for $1 million netflix prize. Wired

Magazine (2009)

8. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to

weave an information tapestry. Communications of the ACM 35(12), 61–71 (1992)

9. Hong, T., Tsamis, D.: Use of knn for the netflix prize. Tech. rep., Stanford Univer-

sity (2006)

10. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-

tering model. In: International Conference on Knowledge Discovery and Data Min-

ing (2008)

11. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item col-

laborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)

12. Lohr, S.: Netflix Competitors Learn the Power of Teamwork. NY Times (2009)

13. Netflix: The Netflix Prize, http://www.netflixprize.com

14. Newitz, A.: Movie Tips From Your Robot Overlords. Washington Post (2009)

15. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering

recommendation algorithms. In: Proc. 10th International Conference on the World

Wide Web, pp. 285–295 (2001)

16. Thompson, C.: Netflix challenge to hackers: Improve our service and win big. NY

Times (2007)

http://www.netflixprize.com


The NOX Framework: Native Language Queries
for Business Intelligence Applications

Todd Eavis, Hiba Tabbara, and Ahmad Taleb

Concordia University, Montreal, Canada

Abstract. Over the past ten to fifteen years, Business Intelligence ap-

plications have become increasingly important and visible components

of enterprize computing environments. While relational database man-

agement systems often form the backbone of the BI software stack, the

unique modeling and processing requirements of BI applications often

make for a relatively awkward fit with RDBMS platforms in general,

and their SQL query interfaces in particular. In this paper, we present a

new framework for BI/OLAP applications that directly exploits a domain

specific conceptual data model. In turn, the new paradigm allows us to

support native, client-side OOP querying without the need to embed an

intermediate, non-OOP language such as SQL or MDX. A pre-processor

essentially translates standard OOP source code into a query grammar

developed specifically for BI analysis. The end result is a query facility

that is far more intuitive to use, as well as being more amenable to con-

temporary code development tools. We provide numerous examples to

illustrate the flexibility and convenience of the new framework.

1 Introduction

Over the past three decades, relational DBM systems have secured their place
as the cornerstone of contemporary data management environments. During
that time, logical data models and query languages have matured to the point
whereby database practitioners can almost unequivocally identify common stan-
dards and best practices. With respect to operational databases, the ubiquitous
relational data model and the Structured Query Language (SQL) have become
synonymous with the notion of efficient storage and access of transactional data.

That being said, a number of new and important domain-specific data man-
agement applications have emerged in the past decade. At the same time, gen-
eral programming languages have evolved, driven by a desire for both greater
simplicity, modeling accuracy, reliability, and development efficiency. As such,
opportunities to explore new data models, as well as the languages that might
exploit them, have emerged.

One particular area of interest is the Business Intelligence/Online Analytical
Processing (OLAP) context. Typically, such systems work in conjunction with an
underlying relational data warehouse that houses an integrated, time sensitive,
repository of one or more organizational data stores. At its heart, BI attempts
to abstract away some of the often gory details of the large warehouses so as

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 172–189, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



The NOX Framework 173

to provide users with a cleaner, more intuitive view of enterprize data. Beyond
trivial exploitation of BI GUI facilities, however, meaningful analysis can become
quite complex and can necessitate a considerable investment of the developer’s
time and energy.

Of particular significance in this regard is the awkward relationship between
the development language and the data itself. Given the relational model of
the underlying DBMS, BI querying typically relies upon non-procedural SQL
or one of its proprietary derivatives. Unlike transactional databases, however,
which are often cleanly modeled by a set-based representation, the nature of
BI/OLAP environments argues against the use of such languages. In particular,
concepts such as cubes, dimensions, aggregation hierarchies, granularity levels,
and drill down relationships map poorly at best to the standard logical model
of relational systems.

A second related concern is the relative difficulty of integrating non-procedural
query languages into application level source code. Larger development projects
typically encounter one or more of the following limitations:

– Comprehensive compile-time type checking is often impossible. All parsing
is performed at run-time by a possibly remote, often overloaded server.

– Developers must merge two fundamentally incompatible programming mod-
els (i.e., procedural OOP versus a non-procedural DBMS query language).

– There are few possibilities for the kind of code re-use afforded by OOP
concepts (e.g., inheritance and polymorphism).

– The use of embedded query strings (i.e., JDBC/SQL) severely limits the
developer’s ability to efficiently refactor source code in response to changes
in schema design.

In this paper, we present a comprehensive new data access framework called
NOX (Native language OLAP query eXecution) that is specifically tailored to
the BI/OLAP domain. Beginning with the specification of an OLAP algebra, we
develop a robust query grammar that presents the developer with an Object Ori-
ented representation of the primary OLAP structural elements. The grammar,
in turn, is the foundation of a native language query interface that eliminates the
reliance on an intermediate, string based embedded language. We illustrate the
new design via the Java programming language, and demonstrate how develop-
ers can transparently interact with massive, remote data cubes using standard
OOP principles and practices. While the underlying compilation and translation
mechanism is somewhat complex, virtually all of the framework’s sophistication
is hidden from the developer. In short, NOX represents a significant step towards
“making the OLAP DBMS disappear”.

The paper is organized as follows. In Section 2, we present an overview of re-
lated work. Section 3 introduces the primary NOX components, while Section 4
discusses the underlying conceptual model. The full details of the client archi-
tecture are then presented in Section 5. Future work and final conclusions are
provided in Sections 6 and 7 respectively.



174 T. Eavis, H. Tabbara, and A. Taleb

2 Related Work

For more than 30 years, Structured Query Language (SQL) has been the defacto
standard for data access within the relational DBMS world. Because of its relative
age, however, numerous attempts have been made to modernize database access
mechanisms. Two themes in particular are noteworthy in the current context. In
the first case, Object Relational Mapping (ORM) frameworks have been used to
define type-safe mappings between the DBMS and the native objects of the client
applications. With respect to the Java language, industry standards such as JDO
(Java Data Objects) [4], as well as the open source Hibernate framework [10]
have emerged. In all cases, however, it is important to note that while the ORM
frameworks do provide transparent persistence for individual objects, additional
string-based query languages such as JDOQL (JDO), or HQL (Hibernate) are
required in order to execute joins, complex selections, subqueries, etc. The result
is a development environment that often seems as complex as the model it was
meant to replace.

More recently, Safe Query Objects (SQO) [12] have been introduced. Rather
than explicit mappings, safe queries are defined by a class containing, in its sim-
plest form, a filter and execute method. Within the filter method, the developer
encodes query logic (e.g., selection criteria) using the syntax of the native lan-
guage. The compiler checks the validity of query types, relative to the objects
defined in the filter. The execute method is then rewritten as a JDO call to the
remote database. The approach is quite elegant, though it can be difficult to
accurately model completely arbitrary SQL statements.

In contrast to the ORM models, a second approach extends the development
languages themselves. The Ruby language [7], for example, employs ActiveRe-
cords to dynamically examine method invocations against the database schema.
HaskellDB [5], on the other hand, “decomposes” queries into a series of distinct
algebraic operations (e.g., restrict, project) . Microsoft’s LINQ extensions (C#
and VisualBasic) [11] are also quite interesting in that they essentially integrate
the mapping facilities of the ORM frameworks into the language itself (via the
ubiquitous SELECT-FROM-WHERE format). It should be noted, however, that
none of these language extensions are in any way OLAP-aware.

In terms of OLAP and BI specific design themes, most contemporary research
builds in some way upon the OLAP data cube operator [15]. In addition to
various algorithms for cube construction, including those with direct support for
dimension hierarchies [21,19], researchers have identified a number of new OLAP
operators [9,13], each designed to minimize in some way the relative difficulty of
implementing core operations in “raw SQL”. There has also been considerable
interest in the design of supporting algebras [8,16,20]. The primary focus of
this work has been to define an API that would ultimately lead to transparent,
intuitive support for the underlying data cube. In a more general sense, these
algebras have identified the core elements of the OLAP conceptual data model.

A somewhat orthogonal pursuit in the OLAP context has been the design
of domain-specific query languages and/or extensions. SQL, for example, has
been updated to include the CUBE, ROLLUP, and WINDOW clauses [18],



The NOX Framework 175

though vendor support for these operations in DBMS platforms is inconsistent at
best [14]. In addition to SQL, many commercial applications support Microsoft’s
MDX query language [23]. While syntactically reminiscent of SQL, MDX pro-
vides direct support for both multi-level dimension hierarchies and a crosstab
data model. Still, MDX remains an embedded string based language with an
irregular structure and is plagued by the same limitations as those discussed in
Section 1.

Finally, we note that query languages such as SQL and MDX are typically
encapsulated within a programmatic API that exposes methods for connection
configuration, query transfer, and result handling. While relational systems uti-
lize mature standards (e.g., JDBC, ODBC), no definitive API has emerged for
OLAP. A recent attempt to do so was the ill-fated JOLAP specification, JSR-
69 [3], an industry-backed initiative to define an enterprize-ready, Java-oriented
meta data and query framework based upon the Common Warehouse Meta-
model [2]. JOLAP proved to be exceedingly complex and, consequently, no vi-
able JOLAP-aware applications were ever developed. At present, the most widely
supported API is arguably XML for Analysis (XMLA) [1], a low-level XML/-
SOAP mechanism running across HTTP. In practice, XMLA is effectively just a
wrapper for MDX, though XMLA result sets are structured in an OLAP-aware
format.

3 NOX: Native Language OLAP Query eXecution

To begin, we note that a fundamental design objective for any new query frame-
work or API must be the minimization of the complexity associated with trans-
parent persistence, as the introduction of obscure and non-intuitive design and
programming patterns severely limits the likelihood of adoption. We therefore
state at the outset that the NOX focus is explicitly on the OLAP/BI domain. In
fact, NOX is intended to specifically support higher level analytics servers and
is not expected to resolve every ”ad hoc” query that might be executed against
an underlying relational data warehouse. The primary motivation for this ap-
proach is the rejection of the “be all things to all people” mantra that tends
to plague systems that must maintain a fully generic, lowest common denomi-
nator profile [22]. Conventional RDMSs, conceptual mapping frameworks, and
even JOLAP suffer from this same “curse of generality”. In the current context,
the targeting of a specific application domain ultimately relieves the designer
from having to manually construct a comprehensive data model, along with its
constituent processing constructs.

3.1 The NOX Components

Given the preceding objective, NOX has been constructed from the ground up so
as to emphasize the transparency in the term “transparent persistence”. Doing
so, of course, requires considerable infrastructure. In the remainder of the paper,
we discuss the design, implementation, and use of the NOX framework, using a



176 T. Eavis, H. Tabbara, and A. Taleb

number of programming examples to illustrate its practical value. Before digging
in to the details, however, it is useful to first provide a brief overview of the
primary physical and logical elements of the framework. Keep in the mind that
the following list includes elements that are both visible and invisible to the
developer.

– OLAP conceptual model. NOX allows developers to write code directly
at the conceptual level; no knowledge of the physical or even logical schema
is required.

– OLAP algebra. Given the complexity of directly utilizing the relational
algebra in the OLAP context (via SQL or MDX), we define fundamental
query operations against a cube-specific OLAP algebra.

– OLAP grammar. Closely associated with the algebra is a DTD-encoded
OLAP grammar that provides a concrete foundation for client language
queries.

– Client side libraries. NOX provides a small suite of OOP classes corre-
sponding to the objects of the conceptual model. Collectively, the exposed
methods of the libraries form a clean programming API that can be used to
instantiate OLAP queries.

– Augmented compiler. At its heart, NOX is a query re-writer. During
a pre-processing phase, the framework’s compilation tools (JavaCC/JJTree)
effectively re-write source code to provide transparent model-to-DBMS query
translation.

– Cube result set. OLAP queries essentially extract a subcube from the
original space. The NOX framework exposes the result in a logical, read-
only multi-dimensional array.

In short, the developer’s view of the OLAP environment consists solely of the
API and the Result Set. More to the point, from the developer’s perspective, all
OLAP data is housed in a series of cube objects housed in local memory. The
fact that these repositories are not only remote, but possibly Gigabytes or even
Terabytes in size, is largely irrelevant.

4 Conceptual Model

One of the great burdens associated with enterprize ORM projects is the design
of accurate data models. Even when a model can be formally identified, it is
often the case that the conceptual view of the data differs widely even between
departments of the same organization. In the OLAP context, however, the con-
ceptual view of the data has reached a level of maturity whereby virtually all
analytical applications essentially support the same high level view of the data.

Briefly, we consider analytical environments to consist of one or more data
cubes. Each cube is composed of a series of d dimensions (sometimes called fea-
ture attributes) and one or more measures. The dimensions can be visualized as
delimiting a d -dimensional hyper-cube, with each axis identifying the members



The NOX Framework 177

Time
(month)

Location
(city)

Product (number)

San Jose

Los Angeles

Berkeley

Dec

Jan

Feb

Sk11 FH12 AM54

Measure
Value

20 35 31

14 20 12

21 40 24

(a)

USA

Los
Angeles

New YorkCalifornia

AlbanySan Jose New
York

Store 1 Store 2 Store 3 Store 4 Store 5 Store 6

Country

State

City

Store

(b)

Fig. 1. (a) NOX conceptual query model (b) A simple symmetric hierarchy

of the parent dimension (e.g., the days of the year). Cell values, in turn, repre-
sent the aggregated measure (e.g., sum) of the associated members. Figure 1(a)
provides an illustration of a very simple three dimensional cube. We can see,
for example, that 12 units of Product AM54 were sold in the Berkeley location
during the month of January (assuming a Count measure).

Beyond the basic cube, however, the conceptual OLAP model relies exten-
sively on aggregation hierarchies provided by the dimensions themselves. In fact,
hierarchy traversal is one of the more common and important elements of an-
alytical queries. In practice, there are many variations on the form of OLAP
hierarchies [17] (e.g., symmetric, ragged, non-strict). NOX supports virtually all
of these, and does so by augmenting the conceptual model with the notion of
an arbitrary graph-based hierarchy that may be used to decorate one or more
cube dimensions. Figure 1(b) illustrates a simple geographic hierarchy that an
organization might use to identify intuitive customer groupings.

4.1 OLAP Algebra

Given the clean, conceptual model described above, it is possible to consider the
application of an OLAP algebra that directly exploits the model’s structure. As
noted in Section 2, a number of researchers have identified the core operations
of such an algebra. We will shortly see how the exploitation of a formal algebra
ultimately allows developers to program directly against the conceptual model,
rather than to a far more complex physical or even logical model.

As indicated, a core set of operations common to virtually all proposed OLAP
algebras has been identified. Below, we list and briefly describe these operations.
Note that we do not provide a formal analysis of the semantics of the algebraic
operations, nor their equivalence to the components of the relational algebra, as
these issues have been extensively discussed in the original publications.

– selection: the identification of one or more cells from within the full d -
dimensional search space.

– projection: the identification of presentation attributes, including both the
measure attribute(s) and dimension members.



178 T. Eavis, H. Tabbara, and A. Taleb

< !−− Data que r i e s−−>

< !ELEMENT DATA QUERY (CUBE NAME, OPERATION LIST, FUNCTION LIST?)>

< !ELEMENT CUBENAME (#PCDATA)>

< !ELEMENT OPERATION LIST (

SELECTION? , PROJECTION? , CHANGE LEVEL? , CHANGE BASE? ,

PIVOT? , DRILL ACROSS? , UNION? , INTERSECTION? , DIFFERENCE?)>

Listing 1.1. Core operations of the NOX algebra

– drill across: the integration of two independent cubes, each possessing com-
mon dimensional axes. In effect, this is a cube “join”.

– union/intersection/difference: basic set operations performed on two
cubes sharing common dimensional axes.

– change level: modification of the granularity of aggregation, typically re-
ferred to as “drill down” and “roll up”.

– change base: the addition or deletion of one or more dimensions from the
current result.

– pivot: rotation of the cube axes to provide an alternate perspective.

Several explanatory notes are in order at this stage. First, the selection is the
driving operation behind most analytical queries. In fact, if suitable defaults are
available for the projection, many queries can be expressed with nothing more
than a selection. Second, the final three operations — change level, change
base, and pivot — are distinct from the first six in that each is only relevant
as a query against an existing result set. Third, it is important to recognize that
while logical data warehouse models typically require explicit joins between fact
(measure) and dimension tables, there is no such requirement at the conceptual
level. The result is a dramatic reduction in complexity for the developer. (De-
pending upon the architecture of the supporting analytics server, of course, join
operations may still be performed at some point.). Finally, and perhaps most
importantly, the OLAP algebra is implicitly read only, in that database updates
are performed via distinct ETL processes.

4.2 The NOX Grammar

NOX encapsulates the algebra in a formal schema encoded by a Document Type
Definition (DTD). The DTD is relatively complex as it effectively represents
the foundation for an expressive, XML-based analytics language. Due to space
limitations, we do not present the full schema specification here. However, key
elements are presented below.

Listing 1.1 defines the core structure of a NOX query. Each query is associated
with a single cube (though references to other cubes are possible), as well as a
Function List and an Operations List. We do not discuss cube functions exten-
sively in this paper but, for the sake of completeness, we can informally define
a cube function as one that is logically associated with a result set, rather than
a specific cell or dimension member. The common top10 function is a simple
example.



The NOX Framework 179

< !−− Se l e c t i on −−>

< !ELEMENT SELECTION (DIMENSION LIST)>

< !ELEMENT DIMENSION LIST (DIMENSION+)>

< !ELEMENT DIMENSION (DIMENSION NAME, EXPRESSION)>

< !ELEMENT DIMENSION NAME (#PCDATA)>

< !−− Dimension Express ions −−>

< !ELEMENT EXPRESSION (RELATIONAL EXP | COMPOUNDEXP)>

< !ELEMENT RELATIONAL EXP (SIMPLE EXP, COND OP, SIMPLE EXP)>

< !ELEMENT COMPOUNDEXP (EXPRESSION, LOGICAL OP, EXPRESSION)>

< !ELEMENT SIMPLE EXP (EXP VALUE | ARITHMETIC EXP)>

< !ELEMENT ARITHMETIC EXP (SIMPLE EXP, ARITHMETIC OP, SIMPLE EXP)>

Listing 1.2. Selection elements

< !ELEMENT UNION (DATA QUERY)>

< !ELEMENT INTERSECTION (DATA QUERY)>

< !ELEMENT DIFFERENCE (DATA QUERY)>

Listing 1.3. Set Operations

The Operations List contains the algebraic elements of the query, and each
may occur exactly zero or one time in a single query. Given the significance of
the selection operation, we will look at it in greater detail. Listing 1.2 demon-
strates that a selection is defined as a listing of one or more dimensions, each
associated with an expression. In effect, the expression represents a query re-
striction on the associated dimension (this will become more clear in Section 5).
Simple expressions may be combined to form compound expressions (via logical
AND and OR) and can be recursively defined. In other words, as with any mean-
ingful programming language, conditional restrictions can be almost arbitrarily
complex.

Finally, in Listing 1.3, we illustrate the remarkable simplicity of the set opera-
tion specifications. In effect, set operations are syntactically modeled on an OOP
paradigm. Consider, for example, a String equality check in a language such as
Java, where we would write myString.equals("Joe"), rather than something
like myString == "joe". This same approach allows us to represent set operations
simply as a nested data query, defined relative to the current query.

5 Client Side API

Within the NOX framework, the conceptual model and its associated grammar
are intended to provide an abstract development environment for expressive an-
alytical programming. In order to provide such an interface, however, supporting
client side functionality is required. In a nutshell, NOX provides persistent trans-
parency via a source code re-writing mechanism that interprets the developer’s
OOP query specification and decomposes it into the core operations of the OLAP
algebra. These operations are given concrete form within the NOX grammar and



180 T. Eavis, H. Tabbara, and A. Taleb

then transparently delivered (via standard socket calls) at run-time to the back-
end analytics server for processing. Results are again transparently injected back
into the running application and made available through a standard OOP API.

We note at this point that we have chosen to implement the API functionality
using external libraries rather than direct language modification. This is partly
to encourage portability between languages, as we consider the NOX model to
be broadly applicable to any modern OOP language. However, it is also due
to the fact that while OLAP/BI is an immensely important commercial do-
main (thereby justifying this work in the first place), OLAP-specific language
extensions would have virtually no relevance to the vast majority of developers
working in arbitrary domains.

5.1 The NOX Preprocessor

As should be obvious, source code augmentation of this form is non-trivial.
In short, NOX must identify query-specific elements of the source code and
transform them as required before passing the output to the standard Java
compiler. The pre-preprocessor is produced with the JavaCC parser generator
and its JJTree Tree builder plug-in [6]. Briefly, JJTree is used to define parse
tree building actions that are executed during the later parse process. In the
NOX case, JJTree identifies query-specific code constructs (e.g., class definitions)
that should be re-written. The output of JJTree is then used by JavaCC to
construct a Java parser that actually “walks the parse tree” in order to locate and
transform these constructs. We note that although NOX utilizes a complete Java
1.5 grammar for its parser, the pre-processor only examines and/or processes
parse tree nodes defined by JJTree. In practice, this makes the pre-processing
step extremely fast.

So what is the pre-processor looking for? NOX is supported by client libraries
that define the relevant query components. The fundamental structure is the
OlapQuery class. Listing 1.4 provides a partial listing of its contents. We make
note of the following points. First, method names correspond directly to the op-
erations of the algebra/grammar (Note: We currently do not include the change
base, change level, and pivot methods in the OlapQuery class as we consider
these operations to be manipulations of the Result Set. Their exact implementa-
tion is the subject of ongoing research). Second, method bodies have no meaning-
ful implementation, other than a nominal return value (required for successful
compilation). In fact, this is true of most client library methods, a fact that
makes sense when one realizes that the only code that will actually be executed
is the code eventually inserted by the pre-processor. Third, each query method
has a return type unique to its own semantic abstraction (the upcoming exam-
ples will make this more clear). Fourth, the execute method serves as the link
between the programmer’s conceptual view and NOX’s algebraic view. More to
the point, it is the execute method that will be re-written to include an XML
statement corresponding to the specifications of the other methods. The XML
string is then “wrapped” in a message that is sent to the server when execute()
is invoked in the application. Finally, the OlapQuery is declared abstract, though



The NOX Framework 181

public abstract class OlapQuery {
public boolean s e l e c t ( ) {return fa l se ;}
public Object [ ] p r o j e c t ( ) {return null ;}
public OlapQuery d r i l l A c r o s s ( ) {return null ;}
public OlapQuery union ( ) {return null ;}
public OlapQuery i n t e r s e c t i o n ( ) {return null ;}
public OlapQuery d i f f e r e n c e ( ) {return null ;}

public Resu l tSet execute ( ) { return new Resu l tSet ( ) ; }
}

Listing 1.4. The OLAP Query class

none of its methods are abstract, a model reminiscent of Java’s Adapter classes.
Use of this structure allows programmers to over-ride the OlapQuery and pro-
vide only the operations necessary for the query at hand (often just selection).
The remaining methods are effectively no-ops.

Figure 2 graphically illustrates the process described thus far. In the box at the
left, we see the parser generation tools that produce the translating pre-processor.
The dashed line to the pre-processor itself indicates that this association is static,
and the parser building tools are not invoked directly at either compile time or
run-time. In terms of the compilation process, the pre-processor take as input
the original source file and then, using the parse tree constructed from this
source, converts the relevant source elements into an XML decomposition of
the OlapQuery. Throughout this process, various DOM utilities and services are
exploited in order to generate and verify the XML. Finally, once the source has
been transformed, it is run through a standard Java compiler and converted
into an executable class file. We note that, in practice, the NOX translation
step would be integrated into a build task (ANT, makefile, IDE script, etc.) and
would be completely transparent to the programmer.

NOX Pre-
processor

text

DOM
Query

Generator

Query
DTD

Final
executable
application

DOM TreeDOM Utilities

JJTree Parse
Tree actions

JJTree
(Java1.5.jjt)

JavaCC
(java1.5.jj)

Java
source file

XML query
string

Modified
Java
Source

DOM ModuleParser generation
module

Standard
Java

Compiler

Fig. 2. The client compilation model



182 T. Eavis, H. Tabbara, and A. Taleb

class SimpleQuery extends OlapQuery {
public boolean s e l e c t ( ) {
DateDimension date = new DateDimension ( ) ;

return date . getYear ( ) == 2001;

}
// . . . p ro j e c t i on exc luded

}

public class Demo1 {
public stat ic void main ( Str ing [ ] a rgs ) {
// . . .DBMS b o i l e r p l a t e connect ion

SimpleQuery myQuery = new SimpleQuery ( ‘ ‘ SalesByDate ’ ’ ) ;

Resu l tSet r e s u l t = myQuery . execute ( ) ;

// . . . manipulate r e s u l t s e t

}}

Listing 1.5. Simple OLAP Query

5.2 Application Programming

While novel algebras, grammars, and parsing methods are interesting for their
own sake, they provide little benefit unless they ultimately lead to a clean,
intuitive programming experience for the developer. In this section, we provide
a number of examples that demonstrate the practical use of the NOX model.

A Simple Selection. We begin with a query that specifies a simple selection
criteria, namely that we would like to list total sales for 2001. Listing 1.5 pro-
vides the corresponding OlapQuery definition, along with a small main method
that demonstrates how the query’s execute method would be invoked. (For sim-
plicity, we will ignore the projection method that would specify the measure and
display attributes, as well as the “boilerplate” connection and authentication
methods.) We can see that the select method instantiates a DateDimension
and invokes its getYear() method. Because Dates are virtually universal in ana-
lytical processing, NOX provides a fully functional Date class “out of the box”
(with the standard empty method bodies). In terms of the selection criterion,
note how it is specified simply via a boolean-generating return statement.

It is crucial that we understand why such an approach is used. From the
programmer’s perspective, the query is executed against the physical data cube
such that the selection criteria will be iteratively evaluated against each and
every cell. If the selection test evaluates to true, the cell’s content is included
in the result; if not, it is ignored. In actual fact, of course, the server would
almost certainly not resolve a query in this manner. However, that is irrelevant
here as our goal is simply to allow the developer to program against an intuitive
conceptual model. Once the query is decomposed and sent to the server, the
backend DBMS is free to do what it likes.



The NOX Framework 183

public class CustomerDimension extends OlapDimension {
private Str ing name ;

private int age ;

CustHierarchy geograph i cHi erar chy ;

public Str ing getName ( ) { return name ; }
public int getAge ( ) { return age ; }
public CustHierarchy getGeographicHierarchy ( ) {
return geograph i cHi erar chy ;

}}

Listing 1.6. Simple OLAP dimension

In terms of the decomposition itself, it is of course represented in an XML
string generated by the pre-processor (Due to space limitations, we do not repro-
duce the associated XML here; we simply note that it corresponds directly to the
DTD depicted in Listing 1.2). This string is inserted — by the pre-processor —
into the query’s execute method and subsequently invoked in the main method.
At run-time, this invocation produces a network call to the DBMS to send and
receive the query and its results. Again, we stress that all of this processing is
entirely invisible to the end user.

Manipulating Hierarchies. As previously noted, hierarchical queries are ex-
tremely common in OLAP environments. For this reason, much of the current
NOX research focuses on extending the expressive capabilities of the framework
in this context. With the example below, we give the reader a sense of the NOX
philosophy with respect to hierarchical navigation.

Let us assume that we would like to find sales data for older customers from
California cities who purchased products in the first half of 2007. Because we now
have an arbitrarily defined dimension to restrict (as opposed to the built-in Date
dimension), we need a mechanism to statically type-check the relevant dimension
attributes so that we can ensure at compile time that all query element are being
used appropriately (e.g, integers compared with integers). (Again, we do NOT
want to rely on embedded strings like SQL/MDX since type validity could then
only be assessed at run-time.) To do this, the programmer simply sub-classes
the library-provided OlapDimension class and adds the relevant attributes/types
and getter methods (NOX can strip the “get” from the getters to obtain case
insensitive attribute names). Both dimension attributes and hierarchies can be
specified in this manner. Listing 1.6 illustrates this simple approach. Note that
CustHierarchy is a simple extension of the NOX OlapHierarchy class.

Now, given this simple Customer class, and a geographic hierarchy corre-
sponding to that of Figure 1(b), we can now discuss the hierarchical query
of Listing 1.7. Here, conditions are expressed on both Date and Customer.
We can see how the NOX Path object is used to identify the elements of a
partial hierarchy path. (Note that the path strings refer to raw cube data,
NOT typed-checked meta data). Furthermore, we see the use of the built-in
includes method to constrain the hierarchy condition. How does one interpret



184 T. Eavis, H. Tabbara, and A. Taleb

public boolean s e l e c t ( ) {
DateDimension date = new DateDimension ( ) ;

CustomerDimension customer = new CustomerDimension ( ) ;

CustHierarchy h i e rar chy = customer . getGeographicHierarchy ( ) ;

OlapPath path= new OlapPath ( ‘ ‘USA ’ ’ , ‘ ‘ C a l i f o r n i a ’ ’ ) ;

return ( customer . getAge ( ) > 65 && hierar chy . i n c l ude s ( path ) )

&&

( date . getYear ( ) == 2007 && date . getMonth ( ) <= 6) ;

}

Listing 1.7. Manipulating hierarchies

class OuterQuery extends OlapQuery{
public boolean s e l e c t ( ) {
CustomerDimension customer = new CustomerDimension ( ) ;

ProductDimension product = new ProductDimension ( ) ;

return ( ( customer . getAge ( ) < 30) && ( product . getWeight ( ) >

10 . 0 ) ) ;

}

public OlapQuery i n t e r s e c t i o n ( ) { return new InnerQuery ( ) ;}
}

Listing 1.8. Set operations

the expression hierarchy.includes(path)? Again, all selection criterion are
defined relative to the current cube cell. Logically, this condition simply asks “Is
this partial path consistent with the hierarchy members of this cell?” We note
that while there are many variations on hierarchy traversal, NOX always uses
this same simple approach.

Several additional points are worth noting. First, our NOX objects are fully
amenable to standard IDE refactoring methods. For example, should the DB
administrator modify the customer name field to cname, we can directly refactor
the attribute name/schema without relying on a tedious and error-prone “find
and replace”. Second, pre-computation of the query verifies its sematic valid-
ity. In other words, while we cannot guarantee that the user’s specific selection
criteria will actually match any cells in the remote database, we can guaran-
tee at compile-time that the query is structurally sound in terms of its use of
dimensions, hierarchies, members, etc. Finally, by decomposing the query into
its constituent algebraic elements at compile time, we relieve the server of the
computational overhead that would normally be done at run-time. Embedded
query string APIs — while superficially appealing for trivial queries — simply
cannot provide this functionality.

Set Operations. Previously, we showed that set operations are defined quite
simply in the NOX grammar. As it turns out, their specification in the native
language is just as straightforward. Listing 1.8 provides a simple illustration.



The NOX Framework 185

class OldQuery extends OlapQuery{
// . . . s e l e c t method d e f i n i t i o n

// . . . p ro j e c t method d e f i n i t i o n

}

class NewQuery extends OldQuery {
public Object [ ] p r o j e c t ( ) {
CustomerDimension customer = new CustomerDimension ( ) ;

ProductDimension product = new ProductDimension ( ) ;

SalesMeasure measure = new SalesMeasure ( ) ;

Object [ ] p r o j e c t i o n s = {measure . getCount ( ) , customer . getName ( ) ,

product . getLabel ( ) } ;

return p r o j e c t i o n s ;

}}

Listing 1.9. Over-riding query classes

Here, the programmer defines the “outer” query using the standard selection
method (and possibly others). In the intersection method, the “inner” query
(previously defined) is specified merely by returning a reference to the relevant
query object. Using this info, the NOX pre-parser can combine both queries into
a single XML string corresponding to the nested style of the grammar.

Query Inheritance. One of the reasons that we represent algebraic operations
in separate methods is simply because most operations are semantically unique,
making it very difficult to combine them into a single native language method
(with a single return type). However, a second rationale is just as important.
Namely, we feel that it is extremely valuable to allow for the re-use of previous,
often very complex, queries. We saw a simple example of this with the “inner”
query above. A more powerful opportunity would be to allow programmers to re-
use portions of already defined queries. Perhaps the most obvious example would
be to re-define the projection method to simply identify a different measure
or display attribute. With virtually all current approaches, this would involve
cutting and pasting previous chunks of source code, each of which would have
to be independently located and updated in the future.

With NOX’s distinct query methods, we now have a great deal more latitude
in this regard. Listing 1.9 demonstrates how a “new” query extends an “old”
one by providing a new projection method. Because NOX obeys inheritance
chaining, it sees that a new projection has been specified, and creates a new query
that consists of the selection method of the “old” query and the projection
method of the “new” query. Any subsequent changes to the source of OldQuery
will be automatically integrated into the NewQuery upon re-compilation.

As a final point, this listing also demonstrates the use of the projection
method itself. Note that its return argument is an array of Objects, indicative of



186 T. Eavis, H. Tabbara, and A. Taleb

its purpose to identify measure and display attributes (strings, ints, floats, etc).
Measures extend the OlapMeasure class and are defined in a manner similar to
dimension classes; that is, a list of measures and their associated getters.

5.3 Result Sets

One of the great advantages of ORM systems is that they allow data to be more
or less transparently mapped back into client applications. NOX offers the same
functionality in the context of multi-dimensional cube results. Specifically, the
framework retrieves results from the server and transforms them into a multi-
dimensional array object that can be directly accessed via the OlapResultSet
reference. The format of the result is again defined by a DTD and is essentially
structured as a combination of meta data and cell data. The meta data con-
sists of the relevant dimensions, along with those dimension members actually
included in the query result. The cell data, on the other hand, is listed in a row
format that maps cell values to the corresponding axis coordinates. For example,
a meta data element defined in the DTD as (MEMBER NAME, MEMBER ID) would
associate a member — say the customer John Smith — with an integer repre-
senting the axis offset – say 4. In the cell data section of the XML document,
this ID would then be embedded within a record of the form <4,1,2,345.24>.
Assuming a Sales measure and a Customer–Product–Location cube, the row
<4,1,2,345.24>would indicate that John Smith has purchased $345.24 of Prod-
uct 1 at Location 2.

Once the XML result is received at the client, it is immediately transformed
into a multi-dimensional object. The XML is parsed using the same DOM fa-
cilities used to create the original query (albeit with a different DTD). The
aforementioned MEMBER ID values are directly utilized as cube axes coordi-
nates, thereby allowing a linear time population of the Result Set object. Meta
data is inserted into a series of lookup data structures (i.e., maps and dictionar-
ies) that not only allow efficient searches, but also permit transparent mapping
between “user friendly” member names and the server generated member IDs
that are meaningless to the end user.

The Result Set API then exposes a series of methods that allow for the simple
manipulation of the cube results. Individual cell values can be retrieved merely
by specifying the appropriate coordinates, either by axis value or member value.
More sophisticated access can also be layered on top of the simpler access primi-
tives. For example, Listing 1.10 shows how one might produce a simple report of
all cells in a simple Customer-Product cube, assuming that the execute method
has already been invoked and an OlapResultSet created. One merely has to re-
trieve the member values for each dimension and then, with a set of nested FOR
loops, combine the relevant coordinates for each cell. It should be clear that
this is really quite trivial relative to the alternatives (e.g., a JDBC ResultSet
model).



The NOX Framework 187

// . . . r e t r i e v e l i s t s o f dimension members from r e s u l t o b j e c t

for ( Str ing CustMember : CustList ) {
for ( Str ing ProdMember : ProdList ) {

coo rd i na t e s = new LinkedList<CubeCoordinate >() ;

c oo r d i na t e s . add (new CubeCoordinate ( CustDimension ,

CustMember ) ) ;

c oo r d i na t e s . add (new CubeCoordinate ( ProdDimension ,

ProdMember) ) ;

System . out . p r i n t l n ( r e s u l t . getCe l lVa lue ( coo r d i na t e s ) ) ;

}}}

Listing 1.10. Trivial report method

6 Future Work

NOX is already a very large system and is currently the subject of a great deal of
ongoing research. Of particular importance at the present time are the following
challenges:

– The expansion of the facilities for hierarchical navigation to include more
flexible and varied traversal options.

– The enhancement of the ResultSet model to include transparent change
base, change level, and pivot operations, as well as paged retrieval of
result sets that are either too big or too sparse to be fully encapsulated
inside a local array.

– Support for run-time parameterization of query values (i.e., user-defined
query parameters). This will likely be done via query constructors, with
“stubs” identifying the location for run-time XML augmentation.

– Full integration with the OLAP DBMS. While NOX includes a simple server
that validates and parses the final XML query (including all examples in this
paper), a parallel project is currently developing an optimized OLAP server
that natively understands the algebra of the NOX model. However, even in
the absence of such a server, we note that it is entirely possible to convert
the NOX output to MDX and deliver it to an XMLA-compliant server.

7 Conclusions

In this paper we have provided a relatively thorough presentation of NOX, the
Native language OLAP query eXecution framework. The current version of NOX
represents a comprehensive implementation of the native language query model.
In building upon the notion of a consistent OLAP conceptual model, we have
been able to provide almost fully transparent cube persistence functionality that
allows the programmer to view remote, possibly very large, analytical reposito-
ries merely as local objects. In addition to the ability to program against the
conceptual model, our framework also provides compile-time type checking, clean
re-factoring opportunities, and direct Object-Oriented manipulation of Results



188 T. Eavis, H. Tabbara, and A. Taleb

Sets. While we chose to target Java in this initial implementation, the fundamen-
tal concepts are language agnostic and could easily be applied to other modern
OOP languages. Given the awkward, loosely standardized nature of the current
OLAP application marketplace, we believe that NOX offers exciting possibilities
for those building and utilizing products and services in this extremely important
area.

References

1. XML for Analysis Specification v1.1. (2002), http://www.xmla.org/index.htm

2. CWM, Common Warehouse Metamodel (2003), http://www.cwmforum.org/

3. JSR-69 JavaTM OLAP Interface (JOLAP), JSR-69 (JOLAP) Expert Group

(2003),

http://jcp.org/aboutJava/communityprocess/first/jsr069/index.html

4. JSR 243: Java Data Objects 2.0 - An Extension to the JDO specification (2008),

http://java.sun.com/products/jdo/

5. HaskellDB (2010), http://www.haskell.org/haskellDB/

6. JavaCC, the Java Compiler Compiler (2010), https://javacc.dev.java.net/

7. Ruby programming language (2010), http://www.ruby-lang.org/en/

8. Agrawal, R., Gupta, A., Sarawagi, S.: Modeling multidimensional databases. In:

International Conference on Data Engineering (ICDE), Washington, DC, USA, pp.

232–243. IEEE Computer Society, Los Alamitos (1997)

9. Akinde, M.O., Bohlen, M.H.: Efficient computation of subqueries in complex

OLAP. In: International Conference on Data Engineering (ICDE), pp. 163–174

(2003)

10. Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications Co.,

Greenwich (2006)

11. Blakeley, J.A., Rao, V., Kunen, I., Prout, A., Henaire, M., Kleinerman, C.: .NET

database programmability and extensibility in Microsoft SQL Server. In: ACM

SIGMOD International Conference on Management of Data, pp. 1087–1098. ACM,

New York (2008)

12. Cook, W.R., Rai, S.: Safe query objects: statically typed objects as remotely exe-

cutable queries. In: International Conference on Software Engineering (ICSE), pp.

97–106 (2005)

13. Cunningham, C., Graefe, G., Galindo-Legaria, C.A.: PIVOT and UNPIVOT: Op-

timization and execution strategies in an RDBMS. In: International Conference on

Very Large Data Bases (VLDB), pp. 998–1009 (2004)

14. Dittrich, J.-P., Kossmann, D., Kreutz, A.: Bridging the gap between OLAP and

SQL. In: International Conference on Very Large Data Bases (VLDB), pp. 1031–

1042 (2005)

15. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A relational aggre-

gation operator generalizing group-by, cross-tab, and sub-total. In: International

Conference on Data Engineering (ICDE), Washington, DC, USA, pp. 152–159.

IEEE Computer Society, Los Alamitos (1996)

16. Gyssens, M., Lakshmanan, L.V.S.: A foundation for multi-dimensional databases.

In: International Conference on Very Large Data Bases (VLDB), pp. 106–115.

Morgan Kaufmann Publishers Inc., San Francisco (1997)

17. Malinowski, E., Zimanyi, E.: Hierarchies in a multidimensional model: From con-

ceptual modeling to logical representation. Data Knowl. Eng. 59(2), 348–377 (2006)

http://www.xmla.org/index.htm
http://www.cwmforum.org/
http://jcp.org/aboutJava/communityprocess/first/jsr069/index.html
http://java.sun.com/products/jdo/
http://www.haskell.org/haskellDB/
https://javacc.dev.java.net/
http://www.ruby-lang.org/en/


The NOX Framework 189

18. Melton, J.: Advanced SQL 1999: Understanding Object-Relational, and Other Ad-

vanced Features. Elsevier Science Inc., New York (2002)

19. Morfonios, K., Ioannidis, Y.: CURE for cubes: cubing using a ROLAP engine. In:

International Conference on Very Large Data Bases (VLDB), pp. 379–390. VLDB

Endowment (2006)

20. Romero, O., Abelló, A.: On the need of a reference algebra for OLAP. In: Song,

I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 99–110.

Springer, Heidelberg (2007)

21. Sismanis, Y., Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Hierarchical dwarfs

for the rollup cube. In: International Workshop on Data Warehousing and OLAP

(DOLAP), pp. 17–24. ACM, New York (2003)

22. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland,

P.: The end of an architectural era (it’s time for a complete rewrite). In: Interna-

tional Conference on Very Large Data Bases (VLDB), pp. 1150–1160 (2007)

23. Whitehorn, M., Zare, R., Pasumansky, M.: Fast Track to MDX. Springer, New

York (2005)



T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 190–202, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Experience in Extending Query Engine  
for Continuous Analytics 

Qiming Chen and Meichun Hsu  

HP Labs  
Palo Alto, California, USA 

Hewlett Packard Co. 
{qiming.chen,meichun.hsu}@hp.com 

Abstract. Combining data warehousing and stream processing technologies has 
great potential in offering low-latency data-intensive analytics. Unfortunately, 
such convergence has not been properly addressed so far. The current genera-
tion of stream processing systems is in general built separately from the data 
warehouse and query engine, which can cause significant overhead in data ac-
cess and data movement, and is unable to take advantage of the functionalities 
already offered by the existing data warehouse systems.   

In this work we tackle some hard problems not properly addressed previously 
in integrating stream analytics capability into the existing query engine. We define 
an extended SQL query model that unifies queries over both static relations and 
dynamic streaming data, and develop techniques to extend query engines to sup-
port the unified model. We propose the cut-and-rewind query execution model to 
allow a query with full SQL expressive power to be applied to stream data by 
converting the latter into a sequence of “chunks”, and executing the query over 
each chunk sequentially, but without shutting the query instance down between 
chunks for continuously maintaining the application context across the execution 
cycles as required by sliding-window operators. We also propose the cycle-based 
transaction model to support Continuous Querying with Continuous Persisting 
(CQCP) with cycle-based isolation and visibility.   

We have prototyped our approach by extending the PostgreSQL. This work 
has resulted in a new kind of tightly integrated, highly efficient system with the 
advanced stream processing capability as well as the full DBMS functionality. 
We demonstrate it with the popular Linear Road benchmark, and report the per-
formance. By leveraging the matured code base of a query engine to the maxi-
mal extent, we can significantly reduce the engineering investment needed for 
developing the streaming technology. Providing this capability on proprietary 
parallel analytics engine is work in progress.  

1   Introduction 

Streaming analytics is a data-intensive computation chain from event streams to 
analysis results. In response to the rapidly growing data volume and the pressing need 
for lower latency, Data Stream Management Systems (DSMSs) provide a paradigm 
shift from the load-first analyze-later mode of data warehousing [8,13,15].  



 Experience in Extending Query Engine for Continuous Analytics 191 

 

1.1   The Problem 

However, the current generation of DSMS is in general built separately from the data 
warehouse query engine, due to the difference in handling stream data and static data; 
as a result, the data transfer overhead between the two has become a performance and 
scalability bottleneck [4,6,10]. The standalone DSMS’s also lack the full SQL expres-
sive power and DBMS functionalities of managing persistent data. It does not have 
the appropriate transaction support for continuously persisting and sharing results 
along with continuous querying. As stream processing evolves from simple to com-
plex, these functionalities are likely to be redeveloped.  

1.2   The Prior Art 

Since a stream query is defined on unbounded data and in general limited to non-
transactional event processing, the current generation of DSMSs is mostly built from 
scratch independently of the database engine. Big players along this direction include 
System S (IBM) [12],  STREAM (Stanford) [3], TelegraphCQ (Berkeley) [5], as well 
as Aurora, Borealis, etc [1,2,7,11]. Managing data-intensive stream processing outside 
of the query engine causes the data copying and moving overhead, and fails to lever-
age the full SQL and DBMS functionality. Two recently reported systems, the 
TruSQL engine [13] developed by Truviso Inc, USA, and the DataCell engine [15] 
developed by CWI, Netherlands, do leverage database technology but are character-
ized by providing a workflow like service for launching a SQL query for each chunk 
of the stream data during stream processing. Oracle currently offers a “continued 
query” feature but it is based on automatic view updates and is not the same feature as 
stream processing.   

Managing data-intensive stream processing outside of the query engine causes the 
data copying and moving overhead, and fails to leverage the full SQL and DBMS 
functionality. To the best of our knowledge, none of the existing approaches has 
solved the difficulty of processing stream in terms of truly continued SQL query with 
chunk-wise semantics but continuously tracked application context, by leveraging the 
query engine without introducing an additional loosely-coupled “middleware” layer.  

1.3   The Solution 

We view a query engine essentially as a streaming engine, although this potential has 
not been thoroughly explored. With this vision, we advocate an extended SQL model 
that unifies queries over both streaming and static relational data, and a new architec-
ture for integrating stream processing and DBMS to support continuous, “just-in-
time” analytics with window-based operators and transaction semantics.  

Our proposed stream model is defined as follows: given a query Q over a set of re-
lations R1,..,Rn and an infinite stream of relation tuples S with a criterion C for cutting 
S into an unbounded sequence of chunks, e.g. by every 1-minute time window,  

<SC0, SC1, …, SCi, …> 

where SCi denotes the i-th “chunk” of the stream according to the chunking-criterion 
C.  SCi can be interpreted as a relation. The semantics of applying the query Q to the 
unbounded stream S plus the bounded relations R1,..,Rn lies in 



192 Q. Chen and M. Hsu 

Q (S, R1,..,Rn)  < Q (SC0, R1,..,Rn), … Q (SCi, R1,..,Rn), ... > 

which continuously generates an unbounded sequence of query results, one on each 
chunk of the stream data.   

Our goal is to support the above semantics using a continuous query that runs cycle 
by cycle for processing the stream data chunks, each data chunk to be processed in 
each cycle, in a single, long-standing query instance. In this sense we also refer to the 
data chunking criterion C as the query cycle specification. The cycle specification can 
be based on time or a number of tuples, which can amount to as small as a single tu-
ple, and as large as billions of tuples per cycle. The stream query may be terminated 
based on specification in the query (e.g. run for 300 cycles), user intervention, or a 
special end-of-stream signal received from the stream source. Specifically, our solu-
tions include the following. 

− We start with providing unbounded relation data to feed queries continuously, by 
using function-scan instead of table-scan, to turn captured events into unbounded 
sequence of relation tuples without first storing them on disk.  

− We develop UDF shells [9] to deliver operators with stream semantics (e.g. moving 
average, notification) that are not available in conventional SQL.  

− We propose the cut-and-rewind query model, namely, cutting a query execution 
based on some granule (“chunk”) of the stream data (e.g. in a time window), and 
then  rewinding the state of the query without shutting it down, for processing the 
next chunk of stream data. This mechanism, on one hand, allows applying a query 
continuously to the stream data chunks falling in consecutive time windows, within 
a single, long-standing query; on the other hand, allows retaining the application 
context (e.g. data buffered with UDFs) continuously across the execution cycles to 
perform sliding-window oriented, history sensitive operations.  

− To support Continuous Querying with Continuous Persisting (CQCP), we intro-
duce the cycle-based transaction model with the cycle-based isolation mechanism.  

The proposed cut-and-rewind approach enables us to support truly continuous query 
in a completely different way from other DSMSs, and seamlessly integrate the stream 
processing capability into a full-functional database system, creating a powerful and 
flexible system that can run SQL over tables, streams (tuple by tuple or chunk by 
chunk), and the combination of the two.  

We report our experience in leveraging the PostgreSQL engine for supporting 
stream processing, and demonstrate the merit of our platform using the popular Linear 
Road (LR) stream processing benchmark. Providing this capability on a proprietary 
parallel database engine is currently being explored. 

The rest of this paper is organized as follows: Section 2 reports our approach in 
handling stream source and stream analytic functions by extending a DBMS with new 
source functions and UDFs for stream operations; Section 3 proposes the cut-and-
rewind approach; Section 4 deals with the transaction issues in cycle-based stream 
processing; Section 5 shows how the proposed approach is applied to the LR bench-
mark, and discusses the experiment results; Section 6 concludes the paper.  



 Experience in Extending Query Engine for Continuous Analytics 193 

2   Stream Processing as Continuous Querying 

There exist some fundamental differences between the conventional query processing 
and the stream processing. First, a query is defined on bounded relations but stream 
data are unbounded; next, stream processing adopts window-based semantics, i.e. 
processing the incoming data chunk by chunk falling in consecutive time windows; 
however, the SQL operators are either based on one tuple (such as filter operators) or 
the entire relation; Further, stream processing is also required to handle sliding win-
dow operations continuously across chunk based data processing; and finally, endless 
stream analytics results must be continuously accessible along their production, under  
specific transaction semantics.  

The above stream processing challenges can be indicated by the widely-accepted 
LR benchmark [14]. This benchmark models the traffic on multiple express ways di-
vided by directions and segments. It requires computing the segment aggregates, i.e. 
the number of cars and their average speed from each data chunk falling in every 1-
minute time window, as well as computing the past 5-minute moving average speed 
continuously atop of the 1-minute average speed but across the 1-minute query cycles.  

2.1   Stream Source Function 

We start with providing unbounded relation data to fuel queries continuously. The 
first step is to replace the database table, which contains a set of tuples on disk, by the 
special kind of table function, called Stream Source Function (SSF) that returns a se-
quence of tuples to feed queries without first storing on disk. A SSF can listen or read 
data/events sequence and generate stream elements tuple by tuple continuously. A 
SSF is called multiple, up to infinite, times during the execution of a continuous 
query, each call returns one tuple. When the end-of-cycle event or condition is seen, 
the SSF signals the query engine to terminate the current query execution cycle. 

We rely on SSF and query engine for continuous querying on the basis that “as far 
as data do not end, the query does not end”, rather than employing an extra scheduler 
to launch a sequence of one-time query instances. The SSF scan is supported at two 
levels, the SSF level and the query executor level. A data structure containing func-
tion call information, hFC, bridges these two levels. hFC is initiated by the query ex-
ecutor and passed in/out the SSF for exchanging function invocation related informa-
tion. We use this mechanism for minimizing the code change, but maximize the ex-
tensibility, of the query engine.  

2.2   Stream Analytics through UDF 

One important characteristics of stream processing is the use of stream-oriented his-
tory-sensitive analytic operators such as moving average or change point detection. 
This represents a different requirement from the regular query processing that only 
cares about the current state. While the standard SQL engine contains a number of 
built-in analytic operators, stream history-sensitive operators are not supported. Using 
UDFs is the generally accepted mechanism to extend query operators in a DBMS.  
A UDF can be provided with a data buffer in its function closure, and for caching 
stream processing state (synopsis). Furthermore, it is also used to support one or more 
emitters for delivering the analytics results to interested clients in the middle of a cy-
cle, which is critical in satisfying stream applications with low latency requirement. 



194 Q. Chen and M. Hsu 

We use UDFs to add window operators and other history sensitive operators, buffer-
ing required raw data or intermediate results within the UDF closures. A scalar UDF is 
called multiple times on the per-tuple basis, following the typical FIRST_CALL, 
NORMAL_CALL, FINAL_CALL skeleton. The data buffer structures are initiated in 
the FIRST_CALL and used in each NORMAL_CALL. A window function defined as a 
scalar UDF incrementally buffers the stream data, and manipulates the buffered data 
chunk for the required window operation. Since the query instance remains alive, as 
supported by  our cut-and-rewind model, the UDF buffer is retained between cycles of 
execution and the data states are traceable continuously (we see otherwise if the stream 
query is made of multiple one-time instances, the buffered data cannot be traced con-
tinuously across cycle boundaries). As a further optimization, the static data retrieved 
from the database can be loaded in a window operation initially and then retained in the 
entire long-standing query, which removes much of the data access cost as seen in the 
multi-query-instances based stream processing.   

3   Cycle Based Continuous Query 

We propose to run a SQL query cycle by cycle for deriving a sequence of data-chunk 
based results, but never shutting down the query instance in order to have the per-
tuple based data processing history continuous tractable. To support the cycle based 
execution of stream queries, we propose the cut-and-rewind query execution model, 
namely, cut a query execution based on the cycle specification  (e.g. by time), and 
then rewind the state of the query without shutting it down, for processing the next 
chunk of stream data in the next cycle.  

Under this cut-and-rewind mechanism, a stream query execution is divided into a 
sequence of cycles, each for processing a chunk of data only; it, on one hand, allows 
applying a SQL query to unbounded stream data chunk by chunk within a single, 
long-standing query instance; on the other hand, allows the application context (e.g. 
data buffered within a User Defined Function (UDF)) to be retained continuously 
across the execution cycles, which is required for supporting sliding-window oriented, 
history sensitive operations. Bringing these two capabilities together is the key in our 
approach.  

Cut. Cutting stream data into chunks is originated in the SSF at the bottom of the 
query tree. Upon detection of end-of-cycle condition, the SSF signals end-of-data to 
the query engine through setting a flag on the function call handle, that, after being 
interpreted by the query engine, results in the termination of the current query execu-
tion cycle.  

If the cut condition is detected by testing the newly received stream element, the 
end-of-data event of the current cycle would be captured upon receipt of the first tu-
ple of the next cycle; in this case, that tuple will not be returned by the SSF in the 
current cycle, but buffered within the SSF and returned as the first tuple of the next 
cycle. Since the query instance is kept alive, that tuple can be kept across the cycle 
boundary.  

Rewind. Upon termination of an execution cycle, the query engine does not shut 
down the query instance but rewinds it for processing the next chunk of stream data. 



 Experience in Extending Query Engine for Continuous Analytics 195 

Rewinding a query is a top-down process along the query plan instance tree, with spe-
cific treatment on each node type. In general, the intermediate results of the standard 
SQL operators (associated with the current chunk of data) are discarded but the appli-
cation context kept in UDFs (e.g. for handling sliding windows) are retained. The 
query will not be re-parsed, re-planned or re-initiated. 

Note that rewinding the query plan instance aims to process the next chunk of data, 
rather than re-deliver the current query result; therefore it is different from “rewinding 
a query cursor” for re-delivering the current result set from the beginning.  

As mentioned above, the proposed cut-and-rewind approach has the ability to keep 
the continuity of the query instance over the entire stream while dividing it to a se-
quence of execution cycles. This is significant in supporting history sensitive stream 
analytic operations, as discussed in the previous section.       

4   Continuous Querying with Continuous Persisting (CQCP) 

One problem of the current generation of DSMSs is that they do not support transac-
tions. Intuitively, as stream data are unbounded and the query for processing these 
data may never end, the conventional notion of transaction boundary is hard to apply. 
In fact, transaction notions have not been appropriately defined for stream processing, 
and the existing DSMSs typically make application specific, informal guarantees of 
correctness.  

However, to allow a hybrid system where stream queries can refer to static data 
stored in a database, or to allow the stream analysis results (whether intermediate or 
final) to persist and be visible to other concurrent queries in the system in a timely 
manner, a transaction model which allows the stream processing to periodically 
“commit” its results and makes them visible is needed.   

Note that if a stream application does not use static data in the database, or does 
not need to persist results and make them visible to other concurrent applications, 
then transaction semantics are not needed. In our design, the transaction semantics is 
used, and thus transaction management overhead is incurred, only when a stream ap-
plication requires persistent data management.   

4.1   Query Cycle Based Transaction Model 

Conventionally a query is placed in a transaction boundary. In general, the query re-
sult and the possible update effect are made visible only after the commitment of the 
transaction (although weaker transaction semantics do exist). In order to allow the 
result of a long-running stream  query to be incrementally accessible, we introduce 
the cycle-based transaction model incorporated with the cut-and-rewind query model, 
which we call continuous querying with continuous persisting, (CQCP). Under 
CQCP, a stream query is committed one cycle at a time in a sequence of “micro-
transactions”. The transaction boundaries are consistent with the query cycles, thus 
synchronized with the chunk-wise stream processing. The per-cycle stream process-
ing results are made visible as soon as the cycle ends. The isolation level is Cycle 
based Read Committed (CRC). To allow the cycle results to be continuously visible 
to external world, regardless of the table is under the subsequent cycle-based transac-
tions, we enforce record level locking.  



196 Q. Chen and M. Hsu 

We extended both SELECT INTO and INSERT INTO facilities of the PostgreSQL 
to support CQCP. We also added an option to force the data to stay in memory, and 
an automatic space reclaiming utility should the data be  written to the disk.    

4.2   Continuous Persisting  

In a regular database system, the queries with SPJ (Select, Project, Join) operations 
and those with the update (Insert, Delete, Update) operations are different in the flow 
of resulting data. In a SPJ query, the destination of results is a query receiver con-
nected to the client. In a data update query, such as insert, the results are emitted to, or 
synched to, the database. 

In stream processing, such separation would be impractical.  The analytic results 
must be streaming to the client continuously as well as being stored in the database if 
needed for other applications to access. Therefore, we extended the query engine to 
have query evaluation and results persisting integrated and expressed in a single 
query. This two-receiver approach makes it possible to have the results both persisted 
and streamed out externally.  

Certain intermediate stream processing results can be deposited into the database 
from UDFs. To do so the UDF must be relaxed from the read-only mode, and employ 
the database internal query facility to form, parse, plan and execute queries effi-
ciently. In our prototype, the PostgreSQL SPI (Server Program Interface) is used.  

5   Example and Experiments 

5.1   Modeling the Linear Road Benchmark  

We use the widely-accepted Linear-Road (LR) benchmark [14] to demonstrate our 
extended query engine. The LR benchmark models the traffic on express ways for the 
3-hour duration; each express way has two directions and 100 segments. Cars may 
enter and exit any segment. The position of each car is read every 30 seconds and 
each reading constitutes an event, or stream element, for the system. A car position 
report has attributes vid (vehicle ID), time (seconds), speed (mph), xway (express 
way), dir (direction), seg (segment), etc. The benchmark requires computing the traf-
fic  statistics for each highway segment, i.e. the number of active cars, their average 
speed per minute, and the past 5-minute moving average of vehicle speed. Based on 
these per-minute per-segment statistics, the application  computes the tolls to be 
charged to a vehicle entering a segment any time during the next minute, and  notifies 
the toll in real time (notification is to be sent to a vehicle within 5 seconds upon enter-
ing the segment). The application also includes accident detection; an accident occur-
ring in one segment will impact the toll computation of that segment as well as a few 
downstream segments. An accident is flagged when multiple cars are found to have 
stopped in the same location. The graphical representation of our implementation of 
the LR stream processing requirement is shown in Fig. 1 together with its correspond-
ing stream query.  
 

INSERT INTO toll_table SELECT minute, xway, dir, seg, lr_toll(r.traffic_ok, r.cars_volume) 
FROM (  
        SELECT minute, xway, dir, seg, cars_volume,  
                       lr_moving_avg(xway, dir, seg, minute, avg_speed) as mv_avg, traffic_ok 



 Experience in Extending Query Engine for Continuous Analytics 197 

        FROM (  
                SELECT floor(time/60)::integer AS minute, xway, dir, seg,  
                               AVG(speed) AS avg_speed, COUNT(distinct Vid)-1) AS cars_volume, 
                               MIN(trffic_ok) AS traffic_ok  
                FROM ( 
                        SELECT xway, dir, seg, time, speed, vid,  
                                       lr_acc_affected(vid,speed,xway,dir,seg,pos) AS traffic_ok 
                        FROM STREAM_CYCLE_lr_data(60, 180)       
                        WHERE lr_notify_toll(vid, xway, dir, seg, time)>=0 
 ) s 
                 GROUP BY minute, xway, dir, seg 
        ) p 
) r 
WHERE r.mv_avg > 0 AND r.mv_avg < 40; 

This query provides the following major functions. 

Stream Source Function. The streaming tuples are generated by the SSF 
STREAM_CYCLE_lr_data(time, cycles), from the LR data source file with time-
stamps, where parameter “time” is the time-window size in seconds; “cycles” is the 
number of cycles the query is supposed to run. For example, 
STREAM_CYCLE_lr_data(60, 180) delivers the position reports one-by-one until it 
detects the end of a cycle (60 seconds), and performs a “cut”, then onto the next cycle, 
for a total of 180 cycles (for 3 hours). 

Segment statistics and toll generation. As illustrated by the left hand side of Fig. 1, 
the tolls are derived from the segment statistics, i.e. the number of active cars, average 
speed, and the 5-minute moving average speed, as well as from detected accidents, 
and dimensioned by express way, direction and segment. We leveraged the minimum, 
average and count-distinct aggregate-groupby operators built into the SQL engine, 
and provided the moving average (lr_moving_avg) operator and the accident detec-
tion (lr_accident) operator in UDFs.   

Toll persisting. Required by the LR benchmark, the segment tolls of minute m should 
be generated within 5 seconds after m.  The toll of a segment calculated in the past 
minute is applied to the cars currently entering into that segment. The generated tolls 
are inserted into a segment toll table (SegToll) with the transaction committed per 
cycle (i.e., per minute). Therefore the tolls generated in the past minutes are visible to 
the current minute. 

Toll notification. As shown on the right side of Fig. 1, the per-car toll notification is 
provided by the UDF lr_notify_toll() appearing in the following phrase 

WHERE lr_notify_toll(vid, xway, dir, seg, time) >= 0 

This UDF keeps enough information about active cars so as to detect the event of a 
car entering a new segment; and for each car entering a new segment, it emits a toll 
notification while persisting the toll to a table (carAccount table) for future account 
balance queries. This UDF reads the segment tolls of the previous minute within the 



198 Q. Chen and M. Hsu 

FIRST_CALL part of the UDF (represented by the dash line), enabling it to use the 
information produced by the previous cycle of the stream query. Since this UDF is a 
per-tuple UDF (i.e., the NORMAL_CALL part of the UDF is invoked per input tu-
ple), the toll notification is emitted immediately after the position report is received 
from the source stream, and does not wait for the current cycle (minute) to terminate.  
This UDF also persists the toll into the car account table. While the toll is notified 
immediately upon receiving the car position report, persisting the toll is committed 
once per cycle, in accordance to our CPCQ model.  

Multiple features of our cycle-based stream processing approach are illustrated in 
this query:  

Cut-and-Rewind. This query repeatedly applies to each data chunks falling in 1-
minute time-window as an execution cycle, and rewinds 180 times in the single 
query instance; the sub-query with alias p uses the standard SQL aggregate-groupby 
function to yield the number of active cars and their average speed for every minute 
dimensioned by segment, direction and express way.  The SQL aggregate functions 
are computed for each cycle with no context carried over from one cycle to  
the next. 

Sliding Window Function (per-tuple history sensitive). The sliding window func-
tion lr_moving_avg() buffers the up to 5 per-minute average speed for accumulating 
the dimensioned 5-minute moving average; since the query is only rewound but not 
shut down, this buffer is retained  continuously across query cycles – this is a critical  
advantage of cut/rewind over shutdown/restart.  

Continuous Querying with Continuous Persisting. The top-level construct of the 
LR query is actually the INSERT-SELECT phrase; with our engine extension, it  
 

(cars_volume) (avg speed)(traffic_ok)

- Read
segment toll 
of last minute 
- If a car 
enters a new 
segment, 
emit a toll 
notification.

toll notification

COUNT
DISTINCT-

AVG-GB

UDF

lr_toll

Stream segtoll
(per minute) Min N

Min N-1

stream p (per minute)

stream r (per minute)

UDF

mvg-avg 
operator

lr_Notify_toll

lr_moving avg

Seg Toll Table

Car
account 

table 

Stream toll_notif 
(per car) 

MIN-GB 

lr_accident

car pos reports 

Source stream 

 

Fig. 1. Cycle based stream query for LR benchmark, for both the generation of per-minute, per 
cycle tolls common to all cars, and the per car based retrieval of resulting tolls 
 



 Experience in Extending Query Engine for Continuous Analytics 199 

persists the result stream returned from the SELECT query (r) to the toll table on 
the per-cycle basis. The transactional LR query commits per cycle to make the cy-
cle based result accessible to subsequent cycles or other concurrent queries after the 
cycle ends. This cycle-based isolation level is supported with the appropriate lock-
ing mechanism.      

Self-Referencing. The per-car toll notification is generated by the UDF 
lr_notify_toll(). It efficiently accesses the segment toll in the last minute directly from 
the toll table.  This kind of self-referencing provides a handshake mechanism for the 
producer part and the consumer part of the same query to rely on the query engine to 
synchronize, to perform history sensitive stream analytics, and to gain extremely high 
performance due to their seamless integration. We believe that such self-referencing 
represents a common paradigm in stream processing. 

5.2   Experimental Setup 

The experimental results are measured on HP xw8600 with 2 x Intel Xeon E54102 
2.33 Ghz CPUs and 4 GB RAM, running Windows XP (x86_32) and PostgreSQL 8.4. 
The input data are downloaded from the benchmark’s home page. The “L=1” setting 
was chosen for our experiment which means that the benchmark consists of 1 express 
way (with 100 segments in each direction).  The event arrival rate ranges from a few 
per second to peak at about 1,700 events per second towards the end of the 3-hour 
duration. Fig. 3(Left) shows the distribution of data volume per minute, i.e. the per-
minute throughput. The LR data can be supplied in the following two modes: 

− Stress test mode: the data are read by the SSF from a file continuously without 
following the real-time intervals (continuous input) 

− Real-time input: the data are received from a data driver outside of the query en-
gine with real-time intervals.  

We report our experimental results in these 2 different modes.  

5.3   Performance under Stress Test Mode 

Time for computing segment tolls. Calculating the segment statistics and tolls has 
been recognized as the computation bottleneck of the benchmark in the literature. The 
LR benchmark requires the segment toll to be calculated based on the segment statis-
tics and traffic status (whether affected by accidents) every minute.  

We took the left-hand-side of our LR model in Fig 1 and ran that branch of the 
query up until the toll is computed, under the stress test mode. The total computation 
time with L=1 setting is shown in Fig. 2 (Left). It shows that our system is able to 
generate the per-minute per-segments tolls for  the total 3 hours of LR data (approx. 
12 Million tuples) in a little over 2 minutes. 

Performance of Persisting with Heap-Insert. Unlike other reported DSMSs where 
the stream processing results are persisted by connecting to a separate database and 
issuing queries, with the proposed cycle-based CQCP approach, the continuous, min-
ute-cycle based query results are stored through efficient heap-insert.   

 



200 Q. Chen and M. Hsu 

LR Segment Toll Computation

0.75 2.56 5.61
19.65

40.12

66.62

96.18

126.37

0

20

40

60

80

100

120

140

60539 225212 495815 1830211 3792111 6251720 9016201 11928635

# of events in 10, 20, 30, 60, 90, 120, 150, 180 minutes 

Ti
m

e 
(S

ec
)

Perf Comparison of Stream Query and Persist

0

20,000
40,000

60,000

80,000
100,000

120,000

140,000
160,000

180,000

30min 60min 90min 120min 150min 180min
Data Volume by Time

Pr
oc

es
si

ng
 T

im
e 

(m
s)

Query Direct Insert Persist with Logging
 

Fig. 2. (Left) Total time of toll computation. (Right) Performance comparison of querying-
only and query+persisting (with continuous input) 

From Fig. 2 (Right) we can see that persisting the cycle based stream processing 
results either by inserting with logging (using INSERT INTO with extended support 
by the query engine) or by direct inserting (using SELECT INTO with extended sup-
port by the query engine – not shown in this query), does not add significant perform-
ance overhead compared to querying only. This is because we completely push stream 
processing down to the query engine and handle it in a long running query instance 
with direct heap operations, with negligible overhead for data movement and for set-
ting up update queries. 

Post Cut Elapsed Time. In cycle-based stream processing, the remaining time of 
query evaluation after the input data chunk is cut, called Post Cut Elapsed Time 
(PCET), is particularly important since it directly affects the delta time for the results 
to be accessible after the last tuple of the data chunk in the cycle has been received.   

Fig 3 (Left) shows the input data volume over 1-minute time windows (i.e., the 
stream workload). Fig. 3 (Right) shows the query time, as well as the PCET, for proc-
essing each 1-minute data chunk. It can be seen that the PCET (the blue line) is well 
controlled around 0.2 second, meaning that the maximal response time for the seg-
ment toll  results, as measured from the time a cycle (a minute) ends, is around 0.2 
second.   

5.4   Performance under the Real-Time Input Mode 

With real-time input, the events (car position reports) are delivered by a data driver in 
real-time with additional system-assigned timestamps. The query runs cycle by cycle 
on each one-minute data chunk. Fig 4 shows the maximal toll notification response 
time in each of the 180 1-minute windows.  

The maximal response time of toll notification really depends on the PCET meas-
ure introduced above, i.e. it is essentially the delay after a cycle is “cut” in completing 
the segment toll part of the query of that cycle. This is because in the beginning of 
each cycle, the toll notification cannot be emitted until the segment toll generation of 
the last cycle completes. In the first 2 hours the toll notification response time is 
 
 



 Experience in Extending Query Engine for Continuous Analytics 201 

Data Load in Minute Time Windows

0

20000

40000

60000

80000

100000

120000

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172
Minute Time Windows

N
um

be
r
of

Tu
pl

es

Total Elapsed Time and Post Input Elapsed Time
for Data Chunk in 1 Minute Time Windows

0

500

1000

1500

2000

2500

3000

3500

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172

Minute Time Windows

Q
ue

ry
Ti
m

e
(M

ill
is
ec

on
ds

)

total elapsed time
post input elapsed time  

Fig. 3. (Left) Data load distribution over minute time windows (Right) Query time as well as 
PCET on the data chunk falling in each minute time window 

 
Test results

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180 200

Time (minutes)

C
yc

le
 g

ap
 t

im
e 

(m
s)

Cycle gap time (ms)

 

Fig. 4. Maximal toll notification response time in consecutive one-minute time windows 

rather small, and with the increased data load in the last hour, it reaches the maximal 
value of about 0.3 second, which is still well within the 5-second latency requirement 
of the benchmark. Note that the maximal notification latency is not the average re-
sponse time of notification. On the average, the notification response time is near 
zero, as the ones after the beginning of each cycle are not measurable by millisecond.  

The experimental results indicate that our approach is highly competitive to any 
reported one. This is because we completely pushed stream processing down to the 
query engine with negligible data movement overhead and with efficient direct heap-
insert. We eliminated the middleware layer, as provided by all other systems, for 
scheduling time-window based querying.  

6   Conclusions 

Due to the growing data volume and the low-latency requirement, the platform sepa-
ration of analytics and data management has become the performance bottleneck, and 
their integration offers great potential in real-time, data-intensive analytics.  

In this paper we reported our experience in leveraging the DBMS for continuous 
stream analytics. We tackled the key technical issues for integrating stream analytics 



202 Q. Chen and M. Hsu 

capability into the existing query engine, and built an integrated, efficient and robust 
system with stream processing capability while retaining the full DBMS functionality, 
giving the query engine a new role. We proposed the cut-and-rewind query execution 
model for chunk-wise continuous stream processing with the full SQL power, while 
enabling history-sensitive stream operations. We provided advanced stream process-
ing capability by extending the existing query engine directly without introducing 
separate executor or additional “middleware”. With this approach we have bridged 
SQL and stream processing in a single engine.   

The proposed approach has been implemented on the PostgreSQL engine. We are 
currently refining our unified query and transaction model, and investigating into  
using HP SeaQuest for providing a MPP-based, data-intensive streaming analytics 
platform.  

References 

1. Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, 
M., Tatbul, N., Zdonik, S.: A New Model and Architecture for Data Stream Management. 
VLDB J. 2(12), 120–139 (2003) 

2. Abadi, D.J., et al.: The Design of the Borealis Stream Processing Engine. In: CIDR (2005) 
3. Arasu, A., Babu, S., Widom, J.: The CQL Continuous Query Language: Semantic Founda-

tions and Query Execution. VLDB Journal 2(15) (June 2006) 
4. Bryant, R.E.: Data-Intensive Supercomputing: The case for DISC, CMU-CS-07-128 

(2007) 
5. Chandrasekaran, S., et al.: TelegraphCQ: Continuous Dataflow Processing for an Uncer-

tain World. In: CIDR 2003 (2003) 
6. Chaiken, R., Jenkins, B., Larson, P.-Å., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.: 

SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. In: VLDB 2008 
(2008) 

7. Chen, J., et al.: NiagaraCQ: A Scalable Continuous Query System for Internet Databases. 
In: SIGMOD (2000) 

8. Chen, Q., Hsu, M.: Cooperating SQL Dataflow Processes for In-DB Analytics. In: Proc. 
CoopIS 2009 (2009) 

9. Chen, Q., Hsu, M., Liu, R.: Extend UDF Technology for Integrated Analytics. In: Peder-
sen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2009. LNCS, vol. 5691, pp. 256–
270. Springer, Heidelberg (2009) 

10. Cooper, B.F., et al.: PNUTS: Yahoo!’s Hosted Data Serving Platform. In: VLDB 2008 
(2008) 

11. Cranor, C.D., et al.: Gigascope: A Stream Database for Network Applications. In: SIG-
MOD 2003 (2003) 

12. Gedik, B., Andrade, H., Wu, K.-L., Yu, P.S., Doo, M.C.: SPADE: The System S Declara-
tive Stream Processing Engine. In: ACM SIGMOD 2008 (2008) 

13. Franklin, M.J., et al.: Continuous Analytics: Rethinking Query Processing in a NetworkEf-
fect World. In: CIDR 2009 (2009) 

14. Jain, N., et al.: Design, Implementation, and Evaluation of the Linear Road Benchmark on 
the Stream Processing Core. In: SIGMOD (2006) 

15. Liarou, E., et al.: Exploiting the Power of Relational Databases for Efficient Stream Proc-
essing. In: EDBT 2009 (2009) 

 



T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 203–214, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Development of a Business Intelligence Environment  
for e-Gov Using Open Source Technologies 

Eduardo Zanoni Marques, Rodrigo Sanches Miani,  
Everton Luiz de Almeida Gago Júnior, and Leonardo de Souza Mendes 

Department of Communication, School of Electrical and Computer Engineering,  
University of Campinas 
Campinas, SP, Brazil 

{emarques,rsmiani,elagj,lmendes}@decom.fee.unicamp.br 

Abstract. It has become common for modern organizations to use advanced in-
formation systems for helping their daily operational task. However, there is 
still a large demand for software solutions that enable straightforward data 
analysis from these systems. Aiming to solve this problem, Business Intelli-
gence (BI) environments were created. Electronic Government (e-Gov) sys-
tems, which typically work with governmental operational data, can take great 
benefits from a BI environment. Therefore, in e-Gov systems BI tools can be 
used, among others, to pursue the following goals: enhance the relationship be-
tween city and state government and the citizen; help administrating public re-
sources; monitor the impacts of public policies upon the society. This paper 
presents a proposal for creating a BI environment for Electronic Government 
systems, using open source technologies with a special application to Social 
Welfare, developed for the city of Campinas, SP, Brazil. 

Keywords: business intelligence, e-government, open source, software architecture. 

1   Introduction 

With the technological progress of our society, demands for software solutions have 
been growing in all sorts of areas, both in public and private organizations. Generally 
speaking, information systems are focused on data storage and processing, which help 
organizations’ operational sector execute their daily tasks, such as register commer-
cial transactions, calculate payroll, register employee and client personal data and so 
on. However, there is an eminent demand from organizations management sectors for 
software solutions to help in the processing, analysis and interpretation of their data. 
This can provide opportunities for better monitoring of their sectors, making projec-
tions and finding business deficiencies and/or opportunities. To accomplish this goal, 
several tools, technologies and solutions were created and aggregated under the con-
cept of Business Intelligence (BI) [1]. 

The creation of a BI environment is a very challenging task, since it requires the im-
plementation and concise integration of such technologies as Data Warehouse (DW), 
Data Mining and Online Analytical Processing (OLAP). Thus, it is fundamental the 



204 E.Z. Marques et al. 

usage of a methodology and a reference architecture to support the creation of this kind 
of environment. 

Trying to define a generic architecture for this environment, Moss [2] presents a 
three-layered architecture, shown in Fig. 1. In the bottom of the figure are the data 
sources from pre-existing systems. These data are transformed by an extraction,  
transformation and loading (ETL) process, executed by the bottom layer of the archi-
tecture, and sent to the middle layer, where the data is stored. Then, data views are 
exposed to the upper layer, where are the BI applications that allow users to visualize 
and manipulate data. These applications are provided to users by an interface, like a 
web site or a web service. The communication between layers is always mediated by 
a middleware. 

 

Fig. 1. Generic architecture for a Business Intelligence environment [2] 

Although the creation of a BI environment is typical of private organizations, e-
Gov systems can also benefit from their applications. 

This paper presents a proposal for the creation of a BI environment for e-Gov,  
utilizing open source technologies. As proof of concept, we present the use of this 
proposal to develop a BI environment to manage Social Welfare for the city of 
Campinas, SP, Brazil. 

The paper is organized as follow: Section 2 presents a discussion about related 
works, Section 3 brings the technical background of this paper, Section 4 presents the 
proposal of this paper, Section 5 describes the case study that is being conducted and, 
closing the paper, Section 6 brings final considerations. 



 Development of a Business Intelligence Environment 205 

2   Related Work 

One can find several works describing the construction of a BI environment in various 
areas. 

In [3] a BI environment is created for a supermarket by building a DW using Mi-
crosoft Analysis Services. The work applied clustering techniques to define clients 
profile and discover what types of merchandise most influenced their purchases. In 
the paper, no information is given on how the BI data will be made available to the 
users. 

In [4] it is presented the elaboration of a BI environment for a life insurance com-
pany. This environment has an architecture similar to the one defined in [2], with the 
adoption of a DW for data storage. The paper does not inform either how the envi-
ronment was built or the technologies used. 

In [5] it is presented the creation of a BI environment for a Taiwan Internet Service 
Providers (ISP). The paper defines its own methodology for the BI construction, with 
an architecture similar to the one defined in [2]. In this environment, an ETL process 
is applied to the users’ Internet traffic data, with results stored in a DW, using support 
tools from MS-SQL 2000. Then, clustering techniques are applied to the data to de-
fine the Internet users’ usage profile. This data was made available to the users 
through a Web Site developed for this purpose using Java e Flash technologies. 

In Brazil, [6] discusses the creation of a BI environment for the judiciary system. 
Here, a DW is chosen to store data generated from the ETL process. The DW was 
built using the methodology proposed in [7]. However, this paper presents neither the 
environment architecture nor the technologies used. 

Regarding DW construction, which is the most common option for data storage in 
BI environments, there are two works, [8] and [9], treating of health related systems. 
The first used SAS Data Warehouse Administrator, while the second followed its own 
methodology using the DBMS MySQL. In [10] the creation of DW for Geographical 
Information Systems (GIS) and its challenges are discussed. Because all papers fo-
cused only in the DW creation, none discuss how data will be provided to the users. 
In the Brazilian scenario, Mussi [11] presents how the National Agency of Sanitary 
Surveillance (ANVISA) created its DW by adopting the methodology of [7] and using 
the DBMS Oracle to store the DW data and the OLAP tool MicroStrategy to make 
data available to end users. 

This paper differs from those mentioned above by presenting: i) all phases for the 
creation of the BI environment, covering since the planning of the data storage until 
providing this data to end users; ii) the architecture of the environment; iii) the tech-
nologies and tools used in the BI implementation and their integration, highlighting 
the fact that all technologies and tools used are open source. 

3   Technical Background 

3.1   Business Intelligence 

Created in 1989 by Howard Dresner [12], the Business Intelligence concept defines an 
architecture and a set of operational, decision support and database systems that, inte-
grated, aims at offering to business community easy access to business information [2]. 



206 E.Z. Marques et al. 

As can be seen in Fig. 1, BI can be divided in three main areas: extract, transform 
and load process (ETL), data storage and tools provided to end users visualize and 
manipulate data. 

The ETL process focus on loading data from the operational data sources to BI 
data storage. It is developed in three well defined steps [13]: 

• extract: in the first step, operational data from the organization, which can be 
stored in many forms (like in relational, hierarchical or multidimensional 
DBMS,  spreadsheets or emails) is loaded and sent to the next step; 

• transform: in this step the data is corrected and suited for the BI through the ap-
plication of different operations, like misspelling correction,  domain standardi-
zation and purging unneeded fields; 

• load: final step, where the resulting data from the transform step is stored in the 
BI data storage. 

The most common option for BI data storage is Data Warehouse (DW). The DW was 
first defined for Inmon [14] as “a subject-oriented, integrated, nonvolatile, and time-
variant collection of data in support of management’s decisions”. Although not man-
datory, its utilization in a BI is so usual that Almeida [15] and Biere [16] consider BI 
as the evolution of DW. 

Addressing the applications provided to end users, Biere [16] classify them in three 
groups: traditional query and report, OLAP and Data Mining. 

Query and Report tools help common users browse files and DBMS using friendly 
graphical interfaces, enabling the creation of reports from these data [16]. 

Defined by Codd [17], OLAP tools offers, through a well defined set of operations, 
support to visualization and analysis of multidimensional databases. These databases 
are composed by data cubes, with a set of data cubes being defined as a data mart, that 
have two basic entities: facts, which are interest items to the organization, like the 
sales of a product holding related numerical data, like its value and/or discount, and 
dimensions, where the data that gives context to the fact is stored hierarchically, like 
date of a sales [13]. The main operations of an OLAP tool are [18]: 

• rollup: where the data from the fact is aggregated to an upper level of a defined 
hierarchy, decreasing data details; 

• drill-down: where data from the fact is decomposed to the lower level of a de-
fined hierarchy, increasing data details;  

• slice and dice: which enables the application of filters to the resulting data; 
• pivot: that enables re-ordering data. 

These two types of tools previously presented focused on simplifying access to BI 
data. To complement these, Data Mining tools aims at generating intrinsic informa-
tion from data stored in the BI. This kind of tools used techniques divided in two 
groups [19]: 

• descriptive: characterize general properties of the data, finding patterns and rela-
tions, using techniques like clustering and market basket analysis; 

• predictive: composed of techniques like classification, regression and time series 
analysis, make inferences on the current data to predict future data. 



 Development of a Business Intelligence Environment 207 

3.2   Eletronic Government 

An Electronic Government (e-Gov) system is defined by the use of information and 
communication technologies to develop and offer governmental services and informa-
tion through electronic media (usually the Internet) for citizens, enterprises and gov-
ernment employees agencies [20]. 

The construction of e-Gov systems presents particular challenges, depending on 
the target users of these systems. For this reason, they are divided into five classes 
[21]: 

• Government to Business (G2B): systems developed focusing the improvement 
of communication between government agencies and enterprises, in such rela-
tions as service providing and regulation; 

• Government to Citizens (G2C): these systems seek to improve communication 
between government agencies and the citizens, using initiatives like creating in-
formation portals, where citizens can both find governmental information and 
express their opinions; 

• Government to Government (G2G): these systems focus on improving commu-
nication between government agencies, enabling them to work together in a 
simpler and efficient way;  

• Government Internal Efficiency and Effectiveness (IEE): these systems seek to 
improve the internal operation of government agencies; 

• Overarching Infrastructure (Cross-Cutting): systems used to facilitate the inte-
gration between the systems from all other classes, applying software and hard-
ware integration techniques. 

There are diverse papers discussing the challenges of creating e-Gov systems, like 
[22], [23] and [24].  

4   Proposal 

This paper proposes a technological composition to create a BI environment to e-Gov 
systems using open source technologies. The architecture used here is based on the 
one described in [2], being divided in three layers: the ETL layer; the data storage and 
view providing layer; and the end users applications layer, which are accessed 
through a web site. A Fig. 2 presents the technological composition proposed. 

4.1   ETL Layer 

The Talend Open Studio [25], which is a specialized tool for data integration and 
migration, was adopted to implement the ETL process over the ETL Layer. Through 
the configuration and composition of its components, it is possible to read data from 
diverse formats, like Excel, CSV and XML. The tool also enables connecting to rela-
tional, hierarchical and multidimensional DBMS. Different types of transformations, 
like data normalization and denormalization, data joining using key match and string 
processing can be applied over the data read. After applying the selected transforma-
tions, data can be stored in diverse formats, like the ones from the reading step. 



208 E.Z. Marques et al. 

 

Fig. 2. Realization of the architecture proposed in [2] using open source technologies 

4.2   Data Storage and View Providing Layer 

In the Data Storage and View Providing Layer, the data storage is implemented using 
relational DBMS MySQL [26]. This DBMS was chosen based on its support to vari-
ous types of indexes (B-Tree and Hash, for an instance) and fast data load and access, 
by using MyISAM tables. The communication between Talend and MySQL is done 
through JDBC middleware, which is a standard to connect Java applications to rela-
tional DBMS. 

To implement the data view, Mondrian OLAP Server [27] was selected. Mondrian 
is an OLAP Server written in Java that allows the execution of multidimensional 
queries, written in Multi Dimensional Expressions (MDX), on relational databases, 
presenting the results in multidimensional format. It is done by creating a multidimen-
sional mapping over the relational data, defining data cubes, where the queries are 
executed. 

The MDX format is a standard defined by Microsoft to execute queries on data 
cubes, providing an easier and intuitive form to access data from multidimensional 
databases. In a certain way, MDX is to multidimensional databases what SQL is to 
relational databases, except that MDX queries return data cubes, while SQL queries 
return tables. Also, SQL has a Data Definition Language (DDL), which is not in-
cluded in current MDX specification. Besides Mondrian, other tools support MDX 
queries, like MicroStrategy, SAS e Oracle Essbase [28]. 



 Development of a Business Intelligence Environment 209 

Using data views brings extra benefits to BI, considering it enables creating differ-
ent views to different users and providing a clearer presentation of data to end users. 

4.3   End Users Applications Layer 

To provide data access to end users, the OpenI [29] application was chosen. OpenI is 
a web application for executing queries in multidimensional databases. Using OpenI, 
users can select a data cube and, through a graphical interface, browse data using the 
main operations of an OLAP client. It is also possible to browse data using MDX to 
more advanced queries. The resulting data can be displayed in multidimensional ta-
bles or charts, like bar and pie. These queries can be saved in the application for fur-
ther visualization and/or edition. 

Another important OpenI feature is the dashboard creation, where previously saved 
queries are put together for fast analysis of important data. Thus, it is possible to 
choose different types of data display for each query result. 

The communication between OpenI and Mondrian OLAP Server is done through 
HTTP, using Simple Object Access Protocol (SOAP) and XML for Analysis (XMLA) 
protocols. 

The SOAP protocol structures information exchange through HTTP. Using XML, 
this protocol is composed by an envelope which has two tags: header, where infor-
mation pertinent to data processing is allocated, and body, that contains the data from 
the message being transferred [30]. 

Using SOAP, XMLA protocol defines a couple of XML messages for communica-
tion between an OLAP client and server, establishing an interoperable client-server 
communication channel where diverse tools from different enterprises can work 
along.  The messages defined in this protocol are [28]: 

• discover: used to query the OLAP server properties, like a list of available data 
sources; 

• execute: used to execute queries to a specific data source, using MDX language. 

5   Case Study 

This section describes the application of the proposal to create a BI environment to 
analyze the operational data from the Social Welfare Department of the city govern-
ment of Campinas, SP, Brazil. 

The Social Welfare Department has the mission of “rescuing citizenship to people that 
are in a social vulnerability situation caused by poverty and exclusion”. Thus, diverse 
social programs have been developed aiming to offer to citizens in vulnerable state new 
possibilities to enable their financial emancipation. These social programs include differ-
ent areas, like offering microcredit, digital inclusion and training courses [31]. 

To manage data from this area, the Social Welfare module from Integrated System 
for Municipal e-Gov (SIGM) was adopted. The SIGM is an ERP-like system for 
managing “all services, citizen records, processes management and relevant data for a 
city’s administration” [24]. In the Social Welfare module, any data from the social 
programs developed by the city government can be stored and manipulated as needed. 



210 E.Z. Marques et al. 

As the first step to construct the BI environment, the utilization of a DW to data 
storage was chosen. Then, a data-oriented analysis, as proposed in [32], was con-
ducted. In this, only operational data sources are considered to define the DW data. 
This analysis resulted in various candidate data cubes to compose the BI database. 
From these cubes, the Inclusion in Social Program data cube was selected to be the 
first offered by the BI. 

With the data cube selected, the next step was defining what data would compose 
this data cube. It was done in two steps. First, a conceptual model was generated (Fig. 
3), having the fact, the dimensions, the dimensions hierarchical levels and fields. This 
model was created in UML using the profile proposed in [33]. Based in this model, 
the logical and physical modeling was conducted. In this step, the star model pro-
posed in [7] was adopted, where the fact is the central element surrounded by its di-
mensions. The resulting physical model is illustrated in Fig. 4. 

After composing the models, the ETL process was configured using Talend tool. 
Given the number of treatments needed to be applied in the data before it was inserted 
on the BI data storage, this step, as predicted in [13], was the one that took the largest 
development effort in the case study. 

Parallel to the ETL step, the DW data view exposed by Mondrian was configured. 
It was done using the Schema Workbench, an auxiliary tool from Mondrian. In this 
tool, data cubes are created by defining a fact and the dimensions related to this fact. 
It is also configured both fact and dimensions fields, which can be from data consoli-
dated on the DW or calculated at runtime. The resulting data view is similar to the 
conceptual model (Fig. 3), which provides a clearer representation of the BI data to its 
users. 

 

Fig. 3. The Inclusion in Social Program data cube conceptual model 



 Development of a Business Intelligence Environment 211 

 

Fig. 4. The Inclusion in Social Program data cube physical model 

 

Fig. 6. The OpenI OLAP Client interface, with a query resulting data displayed in a dimen-
sional table.  

 
Once both ETL and data view steps were concluded, the next step was to configure 

OpenI to access the data through the data view exposed in Mondrian. This configura-
tion is done using its administrator interface, where the data sources are registered. 
After registering the data source, it was already possible to access the BI data using 
OLAP queries, which were created using OpenI OLAP Client interface, as can be 
seen in Fig. 6. It is important to say that the data exhibited in the figure does not cor-
respond to the real data from the BI constructed. 



212 E.Z. Marques et al. 

The creation of this BI environment, although having only one data cube, enabled 
the discovery of diverse information about inclusions in social programs, like periods 
when the highest inclusion rate happens for a specific social program and major char-
acteristics of citizens included in a specific social program. This information is very 
useful to analyze the execution of social programs, considering factors like its effec-
tiveness. 

6   Conclusion 

This paper presented a proposed technological composition to create a BI environ-
ment to e-Gov systems using open source technologies. It also presents the applica-
tion of this proposal to develop a BI environment to manage Social Welfare for the 
city of Campinas, SP, Brazil. 

The creation of the BI environment in the case study was done through the follow-
ing steps: 

i. analysis of candidate data cubes to compose the DW and selection of one to 
be implemented; 

ii. conceptual, logical and physical modeling of the chosen data cube; 
iii. configuration of the ETL process in Talend tool; 
iv. creation of the data view in Mondrian OLAP Server; 
v. configuration of OpenI to access the data view exposed in Mondrian, provid-

ing users access to data. 

The case study is in its beginning, having still a few requirements not being consid-
ered, like data access security and queries performance. Nevertheless, analyzing the 
data already provided to end users, we could conclude that the case study validates the 
proposal. 

As future work, besides the mitigation about the requirements not considered and 
the inclusion of new data cubes in the BI, will be conducted a study analyzing data 
mining techniques that can be applied in this scenario. It is also planned a deeper 
analysis of the impacts of applying BI environments to e-Gov. 

 
Acknowledgments. Rodrigo Sanches Miani's work is supported by the State of São 
Paulo Research Foundation (FAPESP). 

References 

1. Xu, L., Zeng, L., Shi, Z., He, Q., Wang, M.: Research on Business Intelligence in enter-
prise computing environment. In: ISIC. IEEE International Conference on Systems, Man 
and Cybernetics, pp. 3270–3275 (2007) 

2. Moss, L.T., Atre, S.: Business Intelligence Roadmap: The Complete Project Lifecycle for 
Decision-Support Applications. Addison-Wesley Longman Publishing Co., Inc., Amster-
dam (2003) 

3. Hong, X., Zai-wen, L., Hai-yang, M.: Study and Realization of Supermarket BI System 
Based on Data Warehouse and Web Technique. In: CSSE 2008: Proceedings of the 2008 
International Conference on Computer Science and Software Engineering, pp. 482–485. 
IEEE Computer Society, Washington (2008) 



 Development of a Business Intelligence Environment 213 

4. Xu, Z., Zhang, M., Jiang, X.: Business Intelligence - A Case Study in Life Insurance In-
dustry. In: ICEBE 2005: Proceedings of the IEEE International Conference on e-Business 
Engineering (2005) 

5. Li, S., Shue, L., Lee, S.: Business intelligence approach to supporting strategy-making of 
ISP service management. J. Expert Syst. Appl. 35, 739–754 (2008) 

6. Ruschel, A.J.: Governo eletrônico: Business Intelligence para a modernização do Ju-
diciário (2008) 

7. Kimball, R.: The data warehouse toolkit: practical techniques for building dimensional 
data warehouses. John Wiley & Sons, Inc., Chichester (1996) 

8. Sahama, T.R., Croll, P.R.: A data warehouse architecture for clinical data warehousing. In: 
ACSW 2007: Proceedings of the Fifth Australasian Symposium on ACSW Frontiers, pp. 
227–232. Australian Computer Society, Inc., Australia (2007) 

9. Wah, T.Y., Sim, O.S.: Development of a data warehouse for Lymphoma cancer diagnosis 
and treatment decision support. J. WSEAS Trans. Info. Sci. and App. 6, 530–543 (2009) 

10. Rifaie, M., Blas, E.J., Muhsen, A.R.M., Mok, T., Kianmehr, K., Alhajj, R., Ridley, M.J.: 
Data warehouse architecture for GIS applications. In: iiWAS 2008: Proceedings of the 
10th International Conference on Information Integration and Web-based Applications & 
Services, pp. 178–185. ACM, New York (2008) 

11. Mussi, C., Murahovschi, D., Bettni, G., Kratz, L.G.: Data Warehouse - A Experiência da 
ANVISA. In: IX CBIS - Congresso Brasileiro de Informática em Saúde (2004) 

12. Business intelligence at age 17,  
  http://www.computerworld.com/s/article/266298/BI_at_age_17 

13. Kimball, R., Reeves, L., Ross, M., Thornwaite, W.: The Data Warehouse Lifecycle Tool-
kit: Expert Methods for Designing, Developing and Deploying Data Warehouses. John 
Wiley & Sons, Inc., Chichester (1998) 

14. Inmon, W.H.: Building the Data Warehouse. John Wiley & Sons, Inc., Chichester (1992) 
15. Almeida, M.S., Ishikawa, M., Reinschmidt, J., Roeber, T.: Getting Started with Data 

Warehouse and Business Intelligence. IBM Redbooks (1999) 
16. Biere, M.: Business intelligence for the enterprise. IBM Press (2003) 
17. Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP to User-Analysts: An IT Mandate 

(1993) 
18. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. J. 

SIGMOD Rec. 26, 65–74 (1997) 
19. Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Prentice Hall PTR, 

Englewood Cliffs (2002) 
20. Yu, C.: Role-Based and Service-Oriented Security Management in the E-Government En-

vironment. In: EGOV 2009: Proceedings of the 8th International Conference on Electronic 
Government, pp. 364–375. Springer, Berlin (2009) 

21. Lee, S.M., Tan, X., Trimi, S.: Current practices of leading e-government countries. J. 
Commun. ACM 48, 99–104 (2005) 

22. Velsen, L., Geest, T., Hedde, M., Derks, W.: Engineering User Requirements for e-
Government Services: A Dutch Case Study. In: Wimmer, M.A., Scholl, H.J., Ferro, E. 
(eds.) EGOV 2008. LNCS, vol. 5184, pp. 243–254. Springer, Heidelberg (2008) 

23. Al-Omari, H.: E-Government Architecture in Jordan: A Comparative Analysis. J. of Com-
puter Science 2(11), 846–852 (2006) 

24. Tilli, M., Panhan, A.M., Lima, O., Mendes, L.S.: A Web-based Architecture for e-Gov. 
Application Development. In: ICE-B: Proceedings of the International Conference on e-
Business (2008) 

25. Talend: Open Source ETL and Data Integration Software, http://www.talend.com 



214 E.Z. Marques et al. 

26. MySQL, http://www.mysql.com 
27. Mondrian, http://mondrian.pentaho.org 
28. XML for Analysis, http://www.xmla.org 
29. OpenI: Open Source Business Intelligence for On-Demand Deployments,  

  http://openi.org 
30. Snell, J., Tidwell, D., Kulchenko, P.: Programming Web services with SOAP. O’Reilly & 

Associates, Inc., Sebastopol (2002) 
31. Prefeitura Municipal de Campinas,  

  http://2009.campinas.sp.gov.br/trabalho/ 
32. Inmon, W.H.: Building the Data Warehouse, 4th edn. John Wiley & Sons, Inc., Chichester 

(2005) 
33. Luján-Mora, S., Trujillo, J., Song, I.: A UML profile for multidimensional modeling in 

data warehouses. J. Data Knowl. Eng. 59, 725–769 (2006) 
 



A Fast Randomized Method for Local
Density-Based Outlier Detection in High

Dimensional Data

Minh Quoc Nguyen, Edward Omiecinski, Leo Mark, and Danesh Irani

College of Computing,

Georgia Institute of Technology,

Atlanta, GA 30332, USA

{quocminh,edwardo,leomark,danesh}@cc.gatech.edu

Abstract. Local density-based outlier (LOF) is a useful method to de-

tect outliers because of its model free and locally based property. How-

ever, the method is very slow for high dimensional datasets. In this paper,

we introduce a randomization method that can computer LOF very ef-

ficiently for high dimensional datasets. Based on a consistency property

of outliers, random points are selected to partition a data set to compute

outlier candidates locally. Since the probability of a point to be isolated

from its neighbors is small, we apply multiple iterations with random

partitions to prune false outliers. The experiments on a variety of real

and synthetic datasets show that the randomization is effective in com-

puting LOF. The experiments also show that our method can compute

LOF very efficiently with high dimensional data.

1 Motivation

Recently, several different methods for outlier detection [6] have been presented.
We can roughly categorize the methods into parametric and nonparametric
methods. The nonparametric methods have a great advantage over the para-
metric methods is that they do not require prior knowledge of the processes that
produce the events (e.g. data distribution). These methods can further be cat-
egorized into globally based and locally based. The globally based methods [8]
identify the observations that are considered to be the top outliers with respect
to distance for the entire dataset. Breunig et al [5] introduced a local density-
based method (LOF) to detect local outliers with respect to its neighbors. The
concept of local outliers show to be very useful [6] [15] [12] [13] for two reasons.
First, it is because, in practice, an observation is an outlier due to its deviation
from its locally similar observations rather than the entire dataset. Second, it
can detect outlier without requiring any statistical model assumption.

However, the k-nearest neighbors need to be computed for the LOF method.
The time complexity is O(N2) for a data set of size N . This is costly. In very
low dimensional data, one may use indexing methods to speedup the nearest
neighbor searches, namely R*-tree [3], X-tree [4], Kd-tree [9], etc. The main idea

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 215–226, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



216 M.Q. Nguyen et al.

of the indexes is to create a hierarchical tree of the point boundaries. The index
trees scale well with n but the number of boundaries exponentially increases
with the number of dimensions. In fact, Bay and Schwabacher [2] showed that
the performance of index trees is worse than the brute force search for more
than 20 dimensions. Therefore, even though LOF is very useful method, it is
challenging to compute LOF for large and high dimensional datasets [6] [15].

In this paper, we present a randomization method to compute LOF efficiently
for datasets with more than 50 dimensions. The method is made possible by our
observation of the outlier consistency property of local outliers, which will be
discussed in the formalism section. As a result, we can employ a randomization
method to compute LOF. From now on, we will refer to the original version of
LOF with full k-nearest neighbor search as the nonrandomized version of
LOF. In the following sections, we will formally define the randomized method.
In the experiment section, we will evaluate the effectiveness and efficiency of the
randomized version against the nonrandomized version of LOF.

2 Related Work

Outliers have been studied extensively in the field of statistics [10] by comput-
ing the probability of an event against its underlying distribution. However, this
method requires prior knowledge about the process that produces the events,
which is usually unknown. Knorr et al [8] introduce a distance-based method to
identify the outliers. The outliers are those points whose distance to other obser-
vations are the largest. Their method can detect global outliers. The advantage
of this method is that no prior knowledge about the underlying distribution is
required. Breunig et al [5] introduce a local density based method for outlier
detection. An outlier is a point that deviates from its neighbors. The local out-
lier factor is measured by the ratio of its distance to its neighbors and the local
density. Spiros et al [18] introduce the method to detect outliers by using multi-
granularity deviation factor (MDEF). The authors then propose an approximate
version to speed up the method. The method is based on the modification of an
approximate nearest neighbor search algorithm (quad-tree) in order to avoid the
cost of computing the MDEF scores for all the points in the dataset. Thus, the
method depends on the performance of the index tree. Recently, Kriegel et al
[12] propose an angle-based method that computes outlier scores based on the
angles of the points with respect to other points. The method aims to provide
more accurate rankings of the outliers in high dimensions. However, the method
can not detect outliers surrounded by other points. The naive implementation
of the algorithm runs in O(n3). Bay and Schwabacher [2] introduce a randomize
method to detect distance-based outlier. However, their method can not be used
for density-based outlier.

3 Generalized Local Density-Based Outlier

We revisit the concept of local density-based outlier introduced by Breunig et al
[5]. The local density-based outlier is based on the k-nearest neighbor distance,



Randomized Method for Local Density-Based Outlier Detection 217

the local reachability and local outlier factor. The local outlier factor (LOF) of
p is the ratio between the average local reachability of its neighbors and its local
reachability. If p is in a deep cluster, the local outlier factor is close to 1. If p
is outside the clusters, it is greater than 1. The local outlier factor measures
the degree of local deviation of p with respect to its neighbors. We observe that
the main idea of the local outlier factor is in fact similar to computing of the
ratio between the distance from p to its nearest points and the density of its
local subspace, in order to identify local outliers. Breunig et al measure the local
density by using the average k-distance of the nearest neighbors of p. This metric,
however, can be generalized to other local density functions without affecting
the meaning of local density-based outlier. A reasonable choice can be a kernel
density function. We say that S is approximately uniform if the following two
conditions hold. The variance of the k-nearest distances is less than a small ε and
there is no k-nearest distance is larger than the average k-nearest distance with ε
unit for some k. In this study and in the following theorems, we measure the local
density by the average closest distance between the points in S (density(S)). We
also observe that if the distance of p to its nearest points is much greater than
the density of any subset in D (dist(d, S)) that is approximately uniform, then
p is not in any cluster. Clearly, p is an outlier in D. On the contrary, if there is a
subset S′ such that the difference is small, then p is likely to be generated from
the same distribution of S′. We can not conclude that p is an outlier, so p is
considered to be normal. These two observations lead to the conclusion that the
ratio between the distance and the density must be high for all the subsets in the
dataset for a point to be an outlier. Thus, we can define a local density-based
outlier as follows:

Definition 1. Given a point p, a dataset D, and for any subset S of D such that Si

is approximately uniform, then p is an outlier with respect to D iff dist(p,S)
density(S) � 1.

Figure 1 illustrates two outliers p1 and p2 based on this definition. In the figure,
p1 is not only a local outlier for the cluster containing S1, but p1 is also an outlier
with respect to S2, S3, and S4. Similarly, p2 is also an outlier with respect to S1.

By this definition, we observe that if we take a random hyperplane to partition
a data set into two subsets, then in most cases, the local outlier factors will not
change dramatically. Hence, we can recursively partition the subsets into smaller
subsets. We can partition the data set until the subsets are small enough for us to
compute the local outlier factors efficiently. As we see, we do not need to perform
the nearest neighbor computation for the entire dataset in order to detect the
local outliers.

Figure 1 illustrates an example of partition. L1 and L2 partition the dataset.
S1 . . . S4 are unchanged after the partitions. L2 cuts S3 into two subsets S′

3 and
S′′

3 . We see that S′
3 and S′′

3 are still approximately uniform after the partition.
The points p1 and p2 remain to be outliers in the new subsets partitioned by L1

and L2.
The procedure to detect local outliers assumes that a partition does not affect

the density for the partitioned sets. There are two cases where it can go wrong.
The first case is when a point q is on a cluster boundary and the partition isolates



218 M.Q. Nguyen et al.

Fig. 1. Outliers with respect to their local subspaces

it from the cluster it belongs to. If the distance between the local subset of q
and the new cluster in the subset it belongs to is large, then q is incorrectly
identified as an outlier with respect to the new clusters. The second case is when
there are many points like q that are separated from their clusters. It may make
an outlier p to be normal in the new subset contains only these points.

These problem in fact can be avoided if during the separation, the new subsets
contain enough neighbors of these points. Fortunately, it can be shown that the
probability of partitions that separate a normal point from all of their neighbors
is small. This is due to the fact that if a set C which contains q (on the cluster
boundary) is large, then the probability of drawing a hyperplane cutting C such
that it only contains q is small.

Theorem 1. Given a point p in a set of size N , the probability of selecting k
nearest neighbors of p or less is k/N .

Proof. The probability to choose a value k is 1/N . Thus, the probability to
choose up to k nearest neighbors is

∑k
i=1

1
N = k

N .

If p is not an outlier, it should belong to a cluster. This implies that k � N . The
theorem shows that the probability of a point p being on the boundary to be sep-
arated from its cluster is small. This is an important observation because we can
detect local outliers effectively using randomization. If we randomly partition
the dataset multiple times, in most partitions, q will appear to be normal. Thus,
if a point appears to be normal in most partitions, we can flag it as normal with
high confidence. We can illustrate this using figure 1. It will be rare for the small
group of points S1 to be always separated from its cluster using random par-
titioning. The observations above are the principles of the randomized method
for computing outliers by randomly partitioning a dataset and running the algo-
rithm multiple times so that the false outliers can be ruled out. The discussions
above are based on the assumption that the local subsets are approximately
uniform. Practically, data sets do not usually contain uniform subsets. However,
this does not affect the randomization method. In the section above, we discuss
the definition based the density of local set but there is no requirement about
the size of the set. The subsets do not have to be large for the definition to
be correct. In fact, S can be any size of at least two and the definition is still



Randomized Method for Local Density-Based Outlier Detection 219

applicable. Therefore, we can consider any data set as a set of approximately
uniform subsets.

4 Algorithm

The randomized algorithm is described in Algorithm 1. In this algorithm, PAR-
TITION takes a dataset D as input. Then, it will call SPLIT to split the dataset
into two subsets S1 and S2 in the following way. SPLIT randomly selects two
points p1 and p2 in D. For every point in D, SPLIT computes the distance from
it to p1 and p2. D will be split into S1 and S2 where S1, S2 contain all the points
that are closer to p1, p2 respectively. This SPLIT is equivalent to choosing a
hyperplane P to partition the dataset. Then, for S ∈ {S1, S2}, if the size of S is
still greater than a threshold Mθ, PARTITION will be applied to S. This recur-
sive PARTITION will be performed until the size of the result sets are smaller
than a chosen size of Mθ. At this point, the LOF for all the points in S will
be computed with respect to S. Mθ should be greater than the parameter k of
LOF. Other than that, it can be any value that allows the outlier detection to
be computed efficiently. In the end, we will have all the outlier scores for D. As
discussed in section 3, the result set of outliers may contain false outliers due to
isolated points. PARTITION is run multiple times to rule out false outliers. The
final LOF for each point will be its minimum score over all the iterations. We
use the parameter Niter to set the number of iterations of the algorithm. Ac-
cording to the experiments, the output tends to be stable with Niter = 10. We
can speed up the algorithm by filtering points with low scores that are less than
a threshold δout. The points with the scores computed in the first few iteration
less than δout will not be considered in the next iterations.

It is expected that there will always be some small differences in the rankings
between the original method and the randomized method. Even for the original
LOF method, the ranking depends on k. The choice of k is subjective. A small
change in k will lead to a change in the ranking by LOF. Therefore, it is accept-
able for the ranking to be slightly different. In the case that a more similar LOF
ranking is desired, we can recompute the outlier scores for the top N outliers by
using the original nonrandomized version. It will give the exact scores for these
points. The number of top outliers is small, thus the computation time is fast.
We call this version the recompute version of the randomized method, while
we call the earlier one the naive version.

We can also run the algorithm multiple times with the new final scores being
the average of all the runs. We call it the (merge version). We notice that even
though the recompute version can produce a ranking which is nearly the same as
the ranking of the nonrandomized version, it is limited to the top N outliers. On
the other hand, the output of the merge version is less similar for the top outliers,
but the similarity can be improved for all the points. Thus, we first produce the
average outlier scores using the merge version, then we recompute the score of
the top outliers (hybrid version). Finally, we have a ranking similar to that of
the nonrandomized method for all the points.



220 M.Q. Nguyen et al.

In the algorithm, the parameter Mθ is the stop condition for the partition
step. A partition will stop if there is less than Mθ points in the partition. As
discussed earlier, the value for Mθ should not affect the quality of the algorithm
as long as it is large enough. In our experiments, the scores are not affected when
we increase Mθ.

Algorithm 1. PARTITION(Set D)

Split(D,S1, S2)

if |S1| > Mθ then
Partition(S1)

else
ComputeCandidates(S1)

end if
if |S2| > Mθ then

Partition(S2)

else
ComputeCandidates(S2)

end if

4.1 Query Time of New Point

The partition can actually be treated as the creation of a binary tree with two-
key nodes. Each key represents a new subset. The keys are two selected points
(called split points) for the partition. Each key has a pointer to the child node.
The structure is then recursively created. A leaf node is a node which represents
a subset which will not be further partitioned. The leaf node contains all points
of the subset. The keys of the root node are the first two randomly selected
points. To traverse the tree, we start with the root node. We compare a query
point p to the keys of the parent node and choose the key which is closest to p.
Then, we traverse the tree to the child node referred by this key. We repeat this
process until we reach a leaf node where we will compute the outlier score for p
with respect to the leaf node.

As we discussed earlier, we will maintain multiple trees for ruling out false
outliers. The number of trees corresponds to the number of iterations. The score
of a point will be the minimum score computed from all the trees. The time
complexity of a query is O(h + f(Mθ)), where h is the height of the tree and
f(Mθ) is the time required to compute the outlier scores for the subset. If the
trees are balanced, the number of steps to reach the leaf nodes is O(log n).

4.2 Time Complexity Analysis

We use the tree structure discussed in section 4.1 to analyze the time complexity
of the algorithm. The algorithm consists of three main steps: partition, outlier
score computation for local sets, and merge.



Randomized Method for Local Density-Based Outlier Detection 221

The partition step is fastest when the tree is perfectly balanced. Multiple
partitions are required until the subsets are less than Mθ. For each level h, there
are 2h subsets, the size of each set is n

2h , thus the partition cost at this level
is O(2h × n

2h ) = O(n). The total time for all levels is O(H × n), where H is
the height of the tree. If the tree is balanced, H ≈ log n. The total time will be
O(n log n). In the outlier score computation step, we consider it a constant O(c)
because the sizes of the subsets are very small. The maximum number of subsets
is n, the worst time complexity to compute the scores is O(n). In the worst case,
the merging process for different runs and iterations can be done in O(n).

In total, the upper bound for a balanced tree is 0(n log n). In practice, we may
not have a balanced tree, however, if we assume that most of the time the ratio
of the sizes of subsets after a split is a reasonable value, the time complexity can
be roughly approximated as in the balanced tree. It is possible that a partition
may result in two completely unbalanced subsets where one set contains most
of the points. Therefore, the key is to ensure that the probability of completely
unbalanced subsets is small. If a tree is completely unbalanced, the data set
is always divided into two groups such that one of them contains most of the
data. However, theorem 1 shows that the probability of isolating a point from its
neighbors is small. Therefore, the probability of always isolating a point from its
neighbors is small. In other words, the probability for the algorithm to approach
O(n2) is small. The speed is guaranteed under this assumption; however, in
practice, it is showed that the algorithm can yield fast performance.

5 Experiments

5.1 2D Example

We use a two dimensional dataset to show that the randomized method can de-
tect local outliers correctly. We generate two Gaussians with different means and
standard deviations. We then generate two local outliers p1 and p2 for clusters C1

and C2. The dataset is illustrated in figure 1.First, we compute the outlier scores
using the nonrandomized version. The LOF method detects two outliers p2 (2.75)
and p1 (2.4) as two top outliers. In addition, it returns two other outliers q2 (2.2)
and q1 (2.1). These outliers are synthetically generated by the Gaussians. Then,
we compute the scores using the merge version. We set Mθ = 100 and Nrun = 6.
The points p2 and p1 are consistently detected as the top two outliers for all the
different runs. Their final scores are 2.65 and 2.35 respectively, which are very
close to the original scores. In contrast with p1 and p2, the rankings for q2 and
q1 are not consistent. However, when using the merge version, they were ranked
correctly. The scores are 2.1 and 1.9 respectively. The experiment shows that the
randomized method is as good as the original method using full nearest neigh-
bor computation. In some cases, some outliers may be ranked differently but
on the average the output of the randomized method converges to the original
method.



222 M.Q. Nguyen et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

(N,detection rate)

naive
recompute

merge
hybrid

(a) Magic Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

(N,detection rate)

naive
recompute

merge
hybrid

(b) Physics Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

(N,detection rate)

naive
recompute

merge
hybrid

(c) KDD CUP ’99 Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

(N,detection rate)

d=100
d=200
d=500

(d) Affect of dimensionality

Fig. 2. Similarity in ranking for randomized outlier detection

5.2 Real Datasets

Dataset Description. We evaluate the performance of our method against the
original LOF method with three different datasets: MAGIC Gamma Telescope
[17], Physics [7], and KDD Cup ’99 Network Intrusion [17]. The number of
attributes and the size of the Magic, Physics, and KDD Cup after normalization
and after removing nonnumerical attributes are (10, 19K), (69, 50K) and (34,
80K) respectively.

Evaluation Metrics. Before proceeding with the experiments, we first discuss
the metrics for evaluating the effectiveness of the randomized method. The LOF
method returns two values which are the local outlier factor (which we call score
in our method) and the ranking of the points according to the local outlier
factor. We observe that LOF method is sensitive to the parameter k. With the
same LOF method, a small change in k can lead to changes in the ranking
and the scores. Except for very strong outliers where the scores are distinct,
the ranking is sensitive to the scores. It is even more sensitive for points with
low outlier scores. For an example, there is not much difference between the
rankings of 200 and 203 for the outliers with the scores of 1.90 and 1.85 due to
the statistical variation. Therefore, the objective is not to have the exact same
scores and rankings between the original and randomized versions. Instead, the
main objective is to have similar scores with some acceptable statistical variation.



Randomized Method for Local Density-Based Outlier Detection 223

Since we are interested in the top outliers, we try to preserve the ranking for
these outliers. This preservation is important if there are strong and distinct
outliers in the dataset. Therefore, we evaluate the method using the following
metrics:

We use the ”detection rate” N−Nlof

N to evaluate the top outliers, where Nlof

is the number of outliers in the top N outliers in our method that also appear
in the top N nonrandomized outliers. According to the experiments, the scores
drop quickly when the points are outside the top 100 outliers, which makes the
ranking sensitive to small changes of the scores. Thus, we vary N up to 200
outliers. For the weak outliers, we compute the mean and standard deviation
of the ratios of the absolute differences between the methods for every point. If
they are small, the two methods produce similar results.

Effectiveness of the Randomized Method. We then evaluate the effective-
ness of the randomized method as follows:

First, we run the nonrandomized LOF on the datasets to compute the outlier
scores (k = 20). Then, we run the randomized method on the datasets (Mθ =
500, Niter = 20, and Nrun = 6). The results are shown in Figure 2a, 2b, and 2c.
In all the figures, the naive version performs worst in comparison with the others.
Nonetheless, in all the experiments, it still guarantees a detection rate of 40%
for N = 25. It means that at least the top ten outliers are detected. The method
performs best for the KDD dataset where the top 20 outliers are identified. The
merge version produces slightly better results for the Magic and KDD datasets.
At least 50% of the top 50 outliers are detected. The performance of the merge
version is more stable compared with the naive version when N increases. As
expected, the recompute version boosts the performance for all the datasets. In
the figures, all top five outliers are correctly detected. At least 80% of the top 50
outliers are detected in the Magic and KDD datasets. However, the differences in
the rankings start to increase when N increases. By using the hybrid approach,
the performance of the randomized version becomes stable with high accuracy.
As we can see, this approach is the best in all the experiments.

By manually examining the results, we found that the KDD dataset contained
many strong outliers. The outlier scores for the KDD dataset are high while
those in the Magic and Physics datasets are low. It can be explained by the fact
that the KDD dataset contains many intrusion attack connections. This makes
the distinction between the outlier scores in the KDD dataset more obvious.
Therefore, the results in the KDD dataset are more stable than those in the
other two datasets.

For the weak outliers, we compute the mean and standard deviation as men-
tioned earlier. We found that the top 180, 167, and 151 outliers had the ex-
act same scores with the outliers computed by the original LOF in the Magic,
Physics, and KDD datasets respectively. The statistics imply that our method
and the original LOF method produce similar results.



224 M.Q. Nguyen et al.

 0

 500

 1000

 1500

 2000

Magic Physic Kdd

R
un

ni
ng

 T
im

e 
(s

ec
on

d)

Nonrandomized LOF
Randomized Method

(a) Speed Comparison

 0

 50

 100

 150

 200

 250

 50  100  150  200  250  300  350  400

t 
(s

ec
)

N (x1000)

d=50
d=100
d=200

(b) Running Time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2  4  6  8  10  12  14  16  18

(#Iteration, Change rate)

magic
physic

kdd

(c) Convergence rate

Fig. 3. Performance

5.3 Performance

Dimensionality. We want to answer the question whether the effectiveness of
the randomized method will be reduced by the ”curse of dimensionality” as is
the case for index trees. We generate synthetic datasets with the dimensionality
up to 500. We run the experiments with d = 100, 200 and 500. The datasets con-
sist of the Gaussians with randomly generated means and standard deviations.
We also inject ten randomly generated outliers into the datasets. According to
figure 2d, the ten injected outliers are correctly identified and the top 20 outliers
are correctly identified in all the experiments. We notice that there is a slight
decrease in the detection rate when d increases. When we examine the outliers
manually, we find that it is due to the fact that the scores of the outliers become
closer when d increases which makes the ranking fluctuate. This experiment
shows that the randomized method is still viable in very high dimensions.

Speed Comparison. We evaluate the running time of the randomized method
against the nonrandomized version of LOF using the Magic, Physics, and Kdd
Cup ’99 datasets. In these datasets, Magic is the smallest (19K points) while Kdd
is the largest (80K points). In Figure 3a, the running time of the nonrandomized
version grows quickly when the size of the datasets increase from 19K to 80K.
However, the running time of the randomized method grows slower. In addition
to Magic, Physics, and KDD Cup ’99 datasets, we use a synthetic dataset with
200 dimensions and 100K points. The synthetic dataset contains five randomly
generated Gaussians and ten random outliers. According to the experiment, the
randomized method is consistently faster than the original LOF method.

Running Time. We randomly generate the Gaussian clusters with different
means and standard deviations for the sizes from 50K to 400K. We randomly
injects the top 10 outliers in the datasets. We generate the datasets for d = 50,
100 and 200. According to the results, all the generated outliers are detected as
the top outliers. Figure 3b shows the running time for different datasets. The
vertical axis shows the running time in seconds. In the figure, the running time
is linear with the size of the dataset for different dimensions. The experiments
show that the algorithm can scale well with high dimensionality.



Randomized Method for Local Density-Based Outlier Detection 225

Convergence Rate. The method relies on multiple iterations in order to rule
out false outliers. We will evaluate how the iterations affect the effectiveness
of the method. We observe that in the first iteration there will be many false
outliers. However, when the number of iterations (Niter) increases, these outliers
will be ruled out in subsequent iterations. The quality of detected outliers will
become at some iteration. We will evaluate it based on the changes in the scores.
This experiment aims to identify a good value of Niter in practice. Figure 3c
shows the rate of change in the size of outliers for the Magic, Physics, and KDD
dataset (after filtering out the low score outliers). As expected, the figure shows
that the number of outliers changes rapidly in the first few iterations and the
rate of change becomes stable when Niter approaches 10. The rate of change
is insignificant when Niter > 10. We perform multiple runs with the datasets
and found that in general, Niter = 10 is a reasonable choice for the randomized
algorithm.

6 Conclusion

We have shown that it is unnecessary to perform the KNN computation for the
entire dataset in order to identify local density-based outliers. We introduced
a randomized method to compute the local outlier scores very fast with high
probability without finding KNN for all data points by exploiting the outlier
consistency property of local outliers. We also introduced a hybrid version for
the randomized method by recomputing the scores and combining the scores
using multiple runs of the algorithm to improve its accuracy and stability. The
parameters can be selected intuitively. We have evaluated the performance of
our method on a variety of real and synthetic datasets. The experiments have
shown that the scores computed by the randomized method and the original
LOF are similar. The experiments also confirm that the randomized method is
fast and scalable for very high dimensional data.

References

1. Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: SIG-

MOD 2001: Proceedings of the 2001 ACM SIGMOD International Conference on

Management of Data, pp. 37–46. ACM, New York (2001)

2. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time

with randomization and a simple pruning rule. In: KDD 2003: Proceedings of the

Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 29–38. ACM, New York (2003)

3. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: an efficient

and robust access method for points and rectangles. SIGMOD Rec. 19(2), 322–331

(1990)

4. Berchtold, S., Keim, D.A., Kriegel, H.-P.: The x-tree: An index structure for high-

dimensional data. In: VLDB 1996: Proceedings of the 22th International Confer-

ence on Very Large Data Bases, pp. 28–39. Morgan Kaufmann Publishers Inc., San

Francisco (1996)



226 M.Q. Nguyen et al.

5. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based

local outliers. SIGMOD Rec. 29(2), 93–104 (2000)

6. Chandola, V., Banerjee, A., Kumar, V.: Outlier detection: A survey. ACM Com-

puting Surveys, 1–72 (September 2009)

7. Young, C., et al.: KDD Cup 2004: Quantum physics dataset (2004)

8. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large

datasets. In: VLDB 1998: Proceedings of the 24rd International Conference on Very

Large Data Bases, pp. 392–403. Morgan Kaufmann Publishers Inc., San Francisco

(1998)

9. Freidman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches

in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977)

10. Hawkins, D.: Identification of outliers. Chapman and Hall, London (1980)

11. Korn, F., Pagel, B.-U., Faloutsos, C.: On the ‘dimensionality curse’ and the ‘self-

similarity blessing’. IEEE Transactions on Knowledge and Data Engineering 13(1),

96–111 (2001)

12. Kriegel, H.-P., Hubert, M.S., Zimek, A.: Angle-based outlier detection in high-

dimensional data. In: KDD 2008: Proceeding of the 14th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, pp. 444–452. ACM,

New York (2008)

13. Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: KDD 2005:

Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge

Discovery in Data Mining, pp. 157–166. ACM, New York (2005)

14. Mannila, H., Pavlov, D., Smyth, P.: Prediction with local patterns using cross-

entropy. In: KDD 1999: Proceedings of the Fifth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 357–361. ACM, New

York (1999)

15. Kamber, M., Han, J.: Data Mining: Concepts and Techniques, 2nd edn. Morgan

Kaufmann Publishers, San Francisco (March 2006)

16. Nguyen, M.Q., Omiecinski, E., Mark, L.: A Fast Feature-based Method to Detect

Unusual Patterns in Multidimensional Data. In: 11th International Conference on

Data Warehousing and Knowledge Discovery (August 2009)

17. Newman, C.B.D., Merz, C.: UCI repository of machine learning databases (1998),

http://archive.ics.uci.edu/ml/

18. Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: LOCI: Fast outlier

detection using the local correlation integral. In: Proceedings of the 19th Interna-

tional Conference on Data Engineering: 2003, pp. 315–326. IEEE Computer Society

Press, Los Alamitos (March 2003)

http://archive.ics.uci.edu/ml/


Specialty Mining

Hanuma Kumar, Rohit Paravastu, and Vikram Pudi

International Institute of Information Technology, Hyderabad 500032, India
{hanuma,prohit}@research.iiit.ac.in, vikram@iiit.ac.in

Abstract. In this paper, we consider the problem of mining the special proper-
ties of a given record in a relational dataset. In our formulation, a property is a
combination of multiple attribute-value pairs. The support of a property is the
number of records that satisfy it. We consider a property as special if its support
occurs to us as a shock and the measure of this shock factor is more than a user
defined threshold η. We provide a way to define this notion of shock based on en-
tropy. We also output the shock factor for records in the dataset in a convenient,
easily-interpretable manner. An illustrated example is provided on how users can
interpret the results. Experiments on real and synthetic data sets reveal interesting
properties of data records that cannot be mined using traditional approaches.

1 Introduction

In this paper, we consider the problem of mining special properties of a given record in
a relational data set. Our goal is to discover special properties of any given record that
distinguish it from most other records. There are many scenarios in which this kind of
mining can be useful:

1. A student comes to a faculty member in a university asking for a project. It would
be nice for the faculty to know how the student is different from other students in
terms of marks in various subjects.

2. A shopper can select from a range of products by analyzing the special proper-
ties of each product in comparison with the other products. For example, there are
many varieties of mobile phones in the market and it would be convenient for the
customer to know how each mobile phone differs from the remaining group.

Intuitively, we say that a property is special if it is present in only a few objects. How-
ever, we argue that if similar properties are present in a large number of objects, then
even such a property shouldn’t be considered special. For example, in a database of 20
people if only 2-3 persons know English, they are special with respect to the language
attribute. However, if for every language in the database, there are only 2-3 people who
know that language, then it means that all people are special with respect to the lan-
guage attribute.

This is absurd – if everyone is special, no one is truly special. To ensure that the
definition of specialty captures this intuition in an elegant fashion, we use concepts from
information theory such as surprisal and entropy. Our specialty mining technique uses
ideas from clustering [1,2], frequent itemset mining [3] and concepts from information
theory.

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 227–238, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



228 H. Kumar, R. Paravastu, and V. Pudi

We experimentally evaluate our approach on two datasets. The first is a synthetic
dataset which contains the information about students in a university. The data set is de-
scribed over seven attributes and contains ten thousand records. The second is a cricket
dataset which contains the statistics of 2527 players described over 25 attributes. We
also showed the scalability of our approach over huge number of data points and at-
tributes generated synthetically.

The remainder of the paper is organized as follows: In Section 2 we formulate the
specialty mining problem. In Section 3 we present our algorithm and experimentally
evaluate it in Section 4. Related work that seems connected to the problem definition or
the algorithm is reviewed in Section 5. Finally, in Section 6, we summarize the conclu-
sions of our study.

2 The Specialty Mining Problem

In this section we formulate the specialty mining problem.

Definition 1. Candidate Property: A boolean property P that is computable for all
objects in a dataset D is a candidate property if at least σ objects in D satisfy P .

Candidate properties form the search space for mining special properties. Generally we
fix σ = 1. The reason for this will be clarified later.

In a relational database D, the candidate properties are defined on the attributes of
D. Without loss of generality, we treat attributes as being either categorical or numeric.
Example candidate properties in a student database could be: “Major of this student
= Computer Science” (categorical) or “Marks in Data Structures is in the range (70,
80)” (numeric). We also allow properties to be combinations of several categorical and
numeric attributes along with their corresponding values and ranges.

Definition 2. Support of a Property: The support of a boolean property P is the frac-
tion of records in D that satisfy P , i.e. | {y: y ∈ D ∧ P (y) = True} | / | D |.

Definition 3. Generalization of a Property: The generalization G of a property P is
the set of attributes of P with their values left unspecified.

The generalization of the property “Is the CGPA of the student in the range (6, 7) and
Major = Computers?” would be “CGPA = ? and Major = ?”.

Definition 4. Specialization of a Property: The specialization of a property P is
achieved by adding additional attributes to P .

For example consider a property “Major of the student = Computer Science?”. Special-
izations of this property include: “Major = Computer Science and Range of CGPA =
(6,7)”, “Major = Computer Science and Range of CGPA =(6,7) and Grade = B”, etc.

Definition 5. Instance of a Generalization: An instance of a generalization G is
achieved by specifying values to all attributes in G.



Specialty Mining 229

Specifying values to attributes of G results in boolean properties. For example consider
a generalization “Major = ?”. Instances of this property include: “Major = Computer
Science?”, “Major = Electronics?”, and so on for all the major degrees that the univer-
sity is offering to the students.

Lemma 1. Any record X satisfies exactly one instance among the instances of a gen-
eralization G.

Lemma 2. All instances of a generalization are not candidate properties.

There may be some instances of a generalization which may not be satisfied by at least
σ data points(σ=1). One possible instance of this generalization may be CGPA in the
range(5.5 - 6) and Grade=‘A’. This property may not be satisfied by a single data point.
For mining specialty of data points, we are not interested in properties that are not
actually present in the data set and for this reason, we keep σ = 1.

Definition 6. Sibling Property: The set of all possible candidate instances of the gen-
eralization of a property P are said to be sibling properties of P .

For example consider a property: “Major of the student = Computer Science?”. The
generalization for this property is “Major of the student = ?”. So its sibling properties
will be the set of all the major degrees that the university is offering to the students i.e.
“Major of the student = Electronics ”, “ Major of the student = Civil ” etc.

Definition 7. Uncertainty of a Generalization: The uncertainty H(G) of a generaliza-
tion G is the entropy of G calculated over its candidate properties Pi, i.e. H(P ) =

−
∑

i

p(Pi) log2 p(Pi)

The intuition behind this definition is as follows: If we take a record at random and we
are to guess the property that it satisfies, the uncertainty in that guess is given by the
above quantity, which is the uncertainty of the generalization.

Note that the logarithm is taken to the base 2 and so the outcome is in bits. We chose
to measure the uncertainty in bits because then it can be interpreted in an intuitive
manner – the user can get a feel for how much information (in bits) is uncertain. This
ease of interpretation is important in decision support scenarios where the end-users
may not be tech-savvy data mining specialists.

The ease of interpretation is illustrated in the following example: The uncertainty of
a coin toss experiment is equal to 1 bit. The uncertainty in guessing the correct answer
for a multiple choice question containing four options is equal to 2 bits.

Definition 8. Surprisal of a Property: The surprisal of a property P is the measure of
the information content associated with P w.r.t. its generalization, i.e.− log2 p(P )

By definition, the amount of surprisal contained in a property P depends only on its
probability (support). The smaller its probability, the larger the surprisal associated with
receiving the information that a record indeed satisfied that property. Consider a sce-
nario where you need to guess the outcome of a toss of an unbiased coin. Suppose you



230 H. Kumar, R. Paravastu, and V. Pudi

guessed heads and the coin indeed landed with heads up, the amount of surprise you
feel corresponds to one bit. Two bits of surprise corresponds to guessing two heads
when two coins are tossed simultaneously.

Intuitively, the uncertainty of a generalization can be thought of as the average or
expected surprisal of all its instances.

Definition 9. Shock Factor of a Property: The shock factor of a property P is the dif-
ference between its surprisal and the uncertainty of its generalization, i.e.

{− log2 p(P )} − {−
∑

i

p(Pi) log2 p(Pi)}

Intuitively, we compare the surprisal contained in a property with the total uncertainty
present in the property’s generalization. If the surprisal contained in a property is greater
than the uncertainty in its generalization then it is more surprising than its average
sibling.

Example: In the coin toss example described above, the uncertainty present in guess-
ing the coin toss is 1 bit for both heads and tails. Thus, the average uncertainty for a coin
toss event is also 1 bit. The surprise associated with an event of ‘heads up’ is the same
as the average surprise of all coin toss events. Thus, there is no “shock” in observing a
‘heads up’ event. The corresponding shock factor turns out to be zero.

Definition 10. Special Property: A property P is special with respect to a threshold η
if its shock factor is greater than or equal to η.

NOTE: If the user is not interested in giving any shock factor threshold as input then
all the properties whose shock factor is greater than 0 are special properties.

Theorem 1. If E is the entropy of a generalization G, and suppose that all the candi-
dates of G are equiprobable, then the number of candidates of G is equal to !2E".

Definition 11. Infimum of a Generalization: The number of equiprobable properties
that are possible for a generalization with entropy E is called infimum for that general-
ization and is denoted by Pinf .

Definition 12. Bias of a Generalization: Bias of a generalization BG is the ratio of
infimum of a generalization, Pinf to the total number of sibling properties Psib for that
generalization, i.e

BG = Pinf/Psib

Theorem 2. The infimum of a generalization is always less than or equal to the total
number of sibling properties of the generalization.

Lemma 3. The bias of a generalization ranges between 0 and 1, i.e., 0 < BG ≤ 1.

A generalization is unbiased if BG = 1 and highly biased when the value of BG nears
zero but it is never equal to zero. The bias of generalization increases as the value of
BG approaches zero while the randomness in the generalization increases as the value
approaches one.



Specialty Mining 231

Our intention is to prune away generalizations that are highly random and uninter-
esting. We cannot do this by only looking at the bias of a generalization G, because the
specializations of these generalizations may be interesting.

Definition 13. Chaotic Generalization: If BG > θ and if the number of candidate
properties in a generalization G is greater than or equal to δ% times the size of the
dataset D, then the generalization is a chaotic generalization.

Generally we keep θ = 0.5, because the generalization should be random enough in
order to become a chaotic generalization. After the number of candidate properties cross
the δ threshold, the data points are expected to be distributed among the candidate
properties just by chance and not by virtue of the property. At this point, the dataset
size is too small to infer anything for this number of candidate properties in G. The
specializations of G contains even more number of candidate properties than G and
can be ignored. Therefore, if G is a chaotic generalization we can neither have any
special properties from this generalization nor from the generalizations containing the
specializations of properties of G. The value of the δ threshold depends upon the type
of dataset. If the dataset is a dense dataset, we should have a low δ threshold and if it is
a sparse dataset we should have a little bit higher δ threshold as the number of candidate
properties is expected to be higher.

3 The Specialty Mining Algorithm

In this section we describe our algorithm for the specialty mining problem that was
formulated in the previous section. The Specialty Mining algorithm consists of many
steps and is shown in Figure 2.

FormBaseProperties(D, θ, δ, O)
Input:Dataset D,Threshold θ, δ, Ontology O
1. For each categorical attribute A:
2. if Ontology O is provided for A:
3. For each level in the O:
4. A′ = generalize(A,O,D)

5. Add A′ to the list of attributes
6. Compute and store frequency of values in A′

7. if A �= ChaoticGeneralization:
8. compute and store frequency of values in A
9. else:
10. Prune(A)//ignore A from now on
11. For each numerical attribute A:
12. cluster the values of attribute A
13. Compute and store the frequency of each cluster.

Fig. 1. Forming Base Properties



232 H. Kumar, R. Paravastu, and V. Pudi

3.1 Forming Base Properties

The pseudo code for mining base properties is shown in Figure 1.

Numeric Attributes: Consider a dataset of 10,000 students having CGPA as one of
the attributes. Suppose a student has a CGPA of 7.75. Even if only this one student has
a CGPA of 7.75, it does not imply he is special because all the 10,000 students may
have unique CGPA’s as CGPA is a continuous valued numeric attribute.

The solution to this problem is to divide the whole continuous range of CGPA into
a discrete set of ranges. These ranges form the base properties for specialty mining.
There is a wide range of methods for discretization such as binning by equal depth [4],
or clustering. Partitional clustering algorithms find well separated clusters and these
clusters serve our purpose well as we want to differentiate between data points.

3.2 Mining Candidate Properties

In addition to base properties, we also allow properties to be combinations of several
categorical and numeric attributes along with their corresponding values and ranges.
The total space of possible attribute combinations is exponential.

If we observe carefully, candidate properties follow the downward closure property
which was first used in the Apriori algorithm [3] for mining frequent itemsets – All
subsets of a frequent itemset are frequent. In our case, we use this principle to prune
away all specializations of a non-candidate property.

Candidate Property Generation: The specialty mining algorithm utilizes the can-
didate property generation procedure shown in figure 3 to mine candidate properties
efficiently. The candidate generation procedure generates new candidate properties of
length k, using the candidate properties of length k − 1. This method is similar to the
one in apriori [3]. However, because of the different nature of our problem from apriori,
other optimizations can be made which increases the overall efficiency of the algorithm.

Exploiting nature of Relational Datasets

Lemma 4. A candidate property P can have at most one occurrence of each relational
attribute.

We can further prune the search space by utilizing the above lemma. For example, no
record in a relational dataset can contain two CGPA values. Thus when forming candi-
date properties in our approach, we ensure that only one occurrence of each attribute is
generated. Also, the maximum length of a candidate property set will be equal to the
number of attributes/dimensions present in the relational dataset. This is much more
efficient than the generic apriori that is exponential in the number of base properties.

The above lemma is implemented in the candidate property generation procedure by
introducing the condition Gen(L1[k−1])! = Gen(L2[k−1]), which is shown in figure
3 in line 9. The condition ensures that two candidate properties of length k−1 are joined
if and only if the (k − 1)th base properties of both belong to different generalizations.



Specialty Mining 233

Input: D, Relational database
Threshold θ, δ, Ontology O

Output: S=All special properties
Algorithm:
1. S={}
2. L1 = FormBaseProperties(D,θ, δ,O)

3. Convert(D,L1) //Convert values in all records to their
4. respective base properties.
5. for(k=2;Lk−1 �= φ,k + +)
6. Lk={}
7. Ck = Candidate Gen(Lk−1)

8. Gk = {} // A hash map whose values are also hash maps
9. for each record rεD :

10. Ct = subset(Ck, r)
11. for each candidate cεCt :

12. hash increment(c,Gk)

13. //i.e hash to its respective generalization
14. and increment its count.
15. for each k-length generalization gεGk :

16. Eg = Entropy(g)
17. if ChaoticGeneralization(Eg):
18. for each candidate cεEg :

19. Delete(c, Ck)

20. for each candidate cεCk:
21. if count(c) > 0:
22. Add(c, Lk)

23. if shock factor(c) > 0 :

24. Add(S, c, shock factor(c))

Fig. 2. Specialty Mining Algorithm

3.3 Chaotic Generalization

The formulation of Chaotic generalization 13 helps us to further prune the search space.

Lemma 5. All properties of a chaotic generalization are non-candidate properties.

From definition 13 it is clear that we can neither have any special properties from
a chaotic generalization G nor from the generalizations containing specializations of
properties of G. So it is unnecessary to create specializations of properties of chaotic
generalizations and hence these properties are treated as non-candidate properties. As
a result, all the properties that belong to a chaotic generalization are removed from the
set of candidate properties which is reflected in the specialty mining algorithm shown
in figure 2.

3.4 Mining Special Properties

The candidate properties whose support count is greater than zero and whose shock
factors are positive become special properties. When the user provides a query record



234 H. Kumar, R. Paravastu, and V. Pudi

Candidate Gen(Lk−1)

1. if k − 1 == len of a record(r):
2. Ck = φ

3. return Ck

4. for each property l1εLk−1

5. for each property l2εLk−1

7. if l1[1] = l2[1] and l1[2] = l2[2] and .....and
8. l1[k − 2] = l1[k − 2] and l1[k − 1] = l2[k − 1] and
9. Gen(l1[k − 1])! = Gen(l2[k − 1]) :

10. C = l1 �� l2
11. if NonCandidateSubset(c1Lk−1) :

12. delete c
13. else:
14. add c to Ck

15. return Ck

Fig. 3. Candidate Property Generation

and threshold η, we traverse through all the stored special properties and output those
whose shock factor is greater than or equal to η. These properties put together determine
the ways in which that record is special relative to other records in the dataset.

3.5 Scalability

Our algorithm for mining candidate properties is linear with respect to the size of
dataset. Without any optimizations for mining candidate properties we have to do an
exhaustive search of the attribute combinations which is exponential. The lemma 5
in addition to the optimizations described for mining candidate properties help us to
deal with this exponential complexity effectively. As the complexity of a generalization
increases, the number of candidate properties possessed by the generalization also in-
creases and thereby increasing the chance to become chaotic generalization. This nature
of relational datasets helps us to handle large number of attributes efficiently.

4 Performance Study

In this section, we evaluated the specialty mining algorithm discussed earlier using
synthetic and real datasets. In these experiments we attempt to demonstrate that the
algorithm and framework are useful in mining special properties of records.

4.1 Experiment 1

We generated a synthetic dataset containing 1,00,000 records replicating student in-
formation. The attributes on which the student database is built are Name, Gender(M,
F), Major (Computers, Electronics, Mechanical,...), Date of Birth, Telephone, City of
residence, CGPA, Major Course Grade(A, A-, B, B-, C, C-, D, F). A total of 8 major
degrees are issued and the domain for City of residence contains 10 values.



Specialty Mining 235

 0

 2000

 4000

 6000

 8000

 10000

 2  4  6  8  10  12  14

N
um

be
r 

of
 P

oi
nt

s

Shock Factor

Shock Factor Vs No of Points

Fig. 4. Student Dataset

 0

 20

 40

 60

 80

 100

 120

 140

 0  2  4  6  8  10

A
vg

 n
o:

 o
f s

pe
ci

al
 p

ro
pe

rt
ie

s

Shock Factor

Shock Factor Vs Average number of Special properties

Fig. 5. Shock Factor Vs Avg no of properties

While forming base properties the attributes Name, Phone and Date of Birth were
pruned as they are chaotic generalizations and have too many distinct values. The nu-
merical attribute CGPA was clustered using the K-means partitional clustering algo-
rithm. The parameter K should be carefully selected as the quality of the results de-
pend upon the quality of the clusters formed. Run the k-means algorithm with different
parameters of K and select the K for which the squared error is minimum. For this
experiment, we have σ = 1, δ = 20%.

Table 1. Sample Output

Property # Records Shock Factor
{Hyderabad, India, 6.03-6.28} 19 7.284
{A, 6.03-6.28} 12 10.92
{Female, A, 6.03-6.28} 7 7.12

The number of records for which we can extract at least one special property for a
shock factor η is shown in Figure 4. Notice in this figure 4 the number of records which
have at least one special property decrease as the η increases. This is because it becomes
increasingly difficult for the record to possess special properties which occur to us as a
shock at this threshold. With this figure 4 we assume that the user gets a clear picture
of the dataset and this can be used to set the η threshold appropriately.

We demonstrate the utility of the specialty mining approach with the following
typical trial-run yielding special properties that cannot be mined using traditional ap-
proaches. Consider a record in the database:

Sita, Female, Electronics, Hyderabad, CGPA=6.23, ‘A’, 6 Sept. 1986, 9885445278
The output given by our algorithm for Sita when η=7 bits is shown in Table 1. In this

manner the special properties of any student are generated and the user can know how
special a student is relative to all other students in the data set.

4.2 Experiment 2

In this experiment we evaluated our algorithm on a real life cricket dataset. It contains
statistics of 2,527 players described over 25 attributes. This data is collected by parsing
the website cricinfo.com.



236 H. Kumar, R. Paravastu, and V. Pudi

 0

 500

 1000

 1500

 2000

 2500

 0  2  4  6  8  10  12

N
o 

of
 P

oi
nt

s

Shock Factor

Shock Factor Vs No of Points

Fig. 6. Cricket Dataset

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 50  100  150  200  250

R
el

at
iv

e 
E

xe
cu

tio
n 

T
im

e

Number of Points(’000s)

Execution Time Vs No of Records

delta=20%
delta=25%

Fig. 7. Execution Time Vs # Records

Name of the Player becomes a chaotic generalization and hence removed. We used
K-means to find clusters that describe individual attributes. For this experiment we
have, σ = 1 and δ = 20%. The number of records for which we can extract atleast one
special property for a shock factor η is shown in Figure 6.

From the graph in Figure 6 it is clear that all the players are special with respect to
at least one property upto a threshold of η=1.5 bits. From η=1.5 bits to 2 bits there is a
drastic decrease in the number of players because majority of the players have all their
special properties in that range of threshold.

Table 2. Top 3 players for a threshold η=2.5 bits

Player No of Spl Properties Avg. Shock Factor
Sachin Tendulkar 72 8.64
Jacques Kallis 55 7.2
Ricky Ponting 47 8.1

The graph in figure 5 shows the average number of properties by which a player is
special with respect to a shock factor threshold η. We also calculated the top k-players
i.e sorted w.r.t number of special properties and their average shock factors. As an ex-
ample, the top 3 players mined are shown table2. Suppose a user who is not too familiar
with cricket wants to know about Sachin Tendulkar, who is one of the greatest players in
world cricket. By directly looking at the statistics of Sachin, the user will not be able to
comprehend whether those statistics are really special. By applying our specialty min-
ing algorithm and for a threshold η=2.5 bits, Sachin Tendulkar is special with respect
to 72 properties which is far greater than the average, which is 21 properties. So, the
result of the specialty mining algorithm coupled with the actual data gives a better idea
than providing only the actual data to the user.

4.3 Scalability and Accuracy

The student data set described in Experiment 1 is a synthetic data set and we increased
the number of records, attributes to test the scalability of our algorithm. The running
time for the algorithm can be divided into two parts.



Specialty Mining 237

1. Counting Support for the Properties: The time for this is linear as the underlying
apriori based approach is expected to scale linearly w.r.t number of records. This is
confirmed by figure 7 which shows the relative execution time as we increase the
number of records from 50,000 to 2,50,000. The times are normalized with respect
to the times for 50,000 records. The experiment is conducted for 25 attributes with
thresholds σ = 1 and δ = 20% and δ = 25%.

 10

 20

 30

 40

 50

 10  20  30  40  50  60  70  80  90

R
el

at
iv

e 
E

xe
cu

tio
n 

T
im

e

Number of attributes

Execution Time Vs No of Attributes

#points=100000
#points=150000

Fig. 8. Execution Time Vs # Attributes

2. Mining Candidate Properties: The time for this depends more on the number of
attributes present in the dataset. Our algorithm is scalable with respect to number
of attributes present in the dataset. This is explained clearly in the subsection 3.5
and is reflected in the figure 8. The times are normalized with respect to the times
for 5 attributes. The experiment is conducted with a threshold δ = 20% and for
1,00,000, 1,50,000 points, respectively.

3. Accuracy of the Results: We purposefully put some records with some combina-
tion of attribute values which are very rare in the dataset. Our algorithm is able
to identify those combinations as properties with very good shock factors. How-
ever, the choice of δ threshold effects the nature of results. From our experiments,
δ = 20% provided good results for dense datasets, while δ = 30% gave good
results for sparse datasets respectively.

5 Related Work

The specialty mining problem introduced in this paper is related to several other areas
such as subspace clustering [5], outlier mining [6,7] and frequent itemset mining [3].
Our problem is significantly different from the normal outlier mining algorithms as it
considers each and every subspace to be important and looks for records with outlier
properties in that space without applying any complex algorithms on that subspace.
Also, distance functions work well when the data is in pure numerical form. But most
of the real world data is a mixture of both numerical and categorical values. In this
scenario, outlier detection algorithms that are based on pure distance functions do not
serve our purpose well. Frequent itemsets when used effectively is a good tool to exploit



238 H. Kumar, R. Paravastu, and V. Pudi

relations between data in the presence of both numerical and categorical values. We
used frequent itemset mining ideas effectively in our algorithm.

Our problem may also initially appear as a version of subspace clustering. However,
upon analysis, the two problems are quite different. Subspace clustering algorithms
such as Clique [5] seek to find clusters as dense contiguous regions that occur in any
subspace. In our approach, we only form clusters in single dimensions which represent
natural groupings in those single dimensions. These single-dimensional clusters are
then used to form candidate properties in higher dimensions – these properties do not
represent clusters in those higher dimensions. Thus, the problem addressed in this paper
is different from the task of mining clusters in sub-spaces.

For example, in this paper, a property such as {A in Programming, CGPA in 6.03-
6.28} could represent a candidate special property. However, this property may only be
part of a much larger contiguous cluster in that sub-space. Moreover, this larger cluster
may be of arbitrary shape and so it may not be possible to represent it concisely in terms
of simple range constraints on attributes. Our task is not to mine such clusters. Instead,
we are interested in identifying succinct properties that are easily interpretable by the
user and can be represented in terms of simple constraints on attributes.

6 Conclusions

In this paper we introduced the problem of specialty mining on relational datasets. We
are interested in determining what makes a given record special or different from major-
ity of the records. To this end, we used ideas from information theory to define notions
such as shock factor and special properties. We discussed several applications where
this kind of mining is useful. Our solution uses ideas from clustering, attribute-oriented
induction and frequent itemset mining. We demonstrated the merit and scalability of
our approach using synthetic and real datasets.

References

1. Kanungo, T., Mount, D.M., Netanyahu, N.S., Paitko, C.D., Silverman, R.: An efficient k-
means clustering algorithm algorithm: Analysis and implementation. IEEE Trans. Pattern
Analysis and Machine Intelligence (2002)

2. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in
large spatial databases with noise. In: Intl. Conf. on Knowledge Discovery and Data Mining,
KDD (1996)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of Intl. Conf.
on Very Large Databases (VLDB) (September 1994)

4. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In:
Proc. of ACM SIGMOD Intl. Conf. on Management of Data (June 1996)

5. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high
dimensional data for data mining applications. In: Proc. of ACM SIGMOD Intl. Conf. on
Management of Data (1998)

6. Agrawal, C., Yu, P.: Outlier detection for high dimensional data. In: Proc. of ACM SIGMOD
Intl. Conf. on Management of Data (2001)

7. Ng, R., Breunig, M., Kriegel, H., Sander, J.: Identifying density based local outliers. In: Proc.
of ACM SIGMOD Intl. Conf. on Management of Data (2000)



Region of Interest Based Image Categorization

Ashraf Elsayed1, Frans Coenen1, Marta Garćıa-Fiñana2, and Vanessa Sluming3

1 Department of Computer Science, University of Liverpool,

Ashton Building, Ashton Street, Liverpool L69 3BX, United Kingdom
2 Centre for Medical Statistics and Health Evaluation, University of Liverpool,

Shelley’s Cottage, Brownlow Street, Liverpool L69 3GS, United Kingdom
3 School of Health Sciences, University of Liverpool,

Thompson Yates Building, The Quadrangle, Brownlow Hill,

Liverpool L69 3GB, United Kingdom

{a.el-sayed,coenen,m.garciafinana,vanessa.sluming}@liv.ac.uk

Abstract. Region Of Interest Based Image Classification (ROIBIC) is a

mechanism for categorising images according to some specific component

or object that features across a given image set. This paper describes and

compares two such approaches. The first is founded on a weighted graph

mining technique whereby the ROI is represented using a tree structure

which allows the application of a weighted graph mining technique to

identify features of interest, which can then be used as the foundation

with which to build a classifier. The second approach is founded on a

time series analysis technique whereby the ROI are represented as time

series which can then be used as the foundation for a Case Based Rea-

soner. The presented evaluation focuses on MRI brain scan data where

the classification is focused on the corpus callosum, a distinctive region

in MRI brain scan data. Two scenarios are considered: distinguishing

between musicians and non-musicians and epilepsy patient screening.

Keywords: Image mining, Image categorisation.

1 Introduction

Image categorisation is concerned with the labelling of images into one or more
predefined classes. The principal challenge of image categorisation is the capture
of the significant features within images that facilitate the desired classification.
Edge detection, segmentation and registration all have a significant part to play
in this process. One method of simplifying the image categorisation process is to
focus on some particular feature or Region Of Interest (ROI) within the image
set. The advantage offered is that the remainder of the image can be ignored and
thus computational advantages gained. Alternatively, the representation can be
more detailed. We refer to this approach is ROI Based Image Categorisation
(or ROIBIC). Of course ROIBIC is not suited to every image categorisation
application; not all such applications include a significant and identifiable ROI
the appears across the data set. The most appropriate applications for ROIBIC
are those where the data set includes a common feature whose size and shape

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 239–250, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



240 A. Elsayed et al.

strongly influences the categorisation, i.e. a set of images that can be categorised
according to the shape of some object that consistently appears across the image
set. The focus of the work described in this paper is the categorisation of Mag-
netic Resonance Imaging (MRI) brain scan data according to a specific feature
within the data called the corpus callosum.

This paper describes and compares two approaches to ROIBOC: graph based
and time series based. Both approaches, although operating in very different
manners, are essentially supervised learning mechanisms where by a pre labelled
training set is used to build a “classifier” which can be applied to unseen data.
The first approach uses a tree based representation for the common feature, one
tree per image. A graph mining technique is then applied to identify frequently
occurring sub-graphs (sub-trees). The identified set of trees are then used to
describe the image set in terms of a set of attributes each of which equates to a
frequently occurring sub-tree. A classification algorithm is then applied to this
attribute set to build a classifier to be applied to “unseen” data. The second
approach is founded on a time series representation coupled with a Case Based
Reasoning (CBR) technique. The features of interest, when identified, are rep-
resented as time series, one per image. These time series are then stored in a
Case Base (CB) which can be used to categorise unseen data. The unseen data
is compared with the categorisation on the CB using a Dynamic Time Warping
(DTW) based similarity checking mechanism, the categorisation associated with
the most similar time series (case) in the CB is then adopted as the categori-
sation for the unseen data. Both approaches require the application of a regis-
tration process and segmentation, and this will entail the established difficulties
encountered when conducting this process (i.e. poor image contrast, intensity
inhomogeneities and partial-volume effects). Both approaches are intended to
preserve the size and shape of the feature of interest (ROI).

The rest of this paper is structured as follows. In section 2 a brief overview
of related previous work is presented, followed in section 3 with an overview of
the application that acts as the focus for this paper. The advocated approaches
are described in Sections 4 and 5 respectively. A complete evaluation of these
approaches is reported in Section 6, followed by some conclusions in Section 7.

2 Previous Work

Current image categorisation techniques can be divided into two groups accord-
ing to the image features used for the classification: global approaches and ROI
based approaches. The first use features that reflect all the information con-
tained within image sets. One such technique is the use of colour histograms
to represent images. For example in [20] a k-nearest neighbour classifier is ap-
plied to colour histogram represented images to discriminate between “indoor”
and “outdoor” images, in [12] a time series technique is applied to classify his-
togram represented retina images, and in [21] a Bayesian classifiers is applied
to edge direction histograms to categorise city and landscape images. Support
Vector Machines (SVMs) built on colour histograms were applied to classify im-
ages containing a generic set of objects in [3]. Although the global features can



Region of Interest Based Image Categorization 241

usually be computed with little cost and are effective for certain classification
tasks, a significant drawback is that structural and relative spatial information
is lost. Furthermore, for many applications (such as medical applications) image
attributes such as colour and intensity have limited discriminative power.

A number of ROI-based approaches have been proposed to maintain local and
spatial properties of an image using the concept of regions or blocks. In [9] city-
scape images are divided into 16 non-overlapping equal-sized blocks. Dominant
orientations are then computed for each block, and the images classified as city
or suburb as determined by the majority orientations of blocks. In [23] graph
and photograph images are divided into blocks and each block assigned to one
of two categories. If the percentage of blocks classified as photograph is higher
than a threshold, the image is marked as a photograph; otherwise, the image is
marked as a graph. A disadvantage of this approach is that a rigid partition of
an image into fixed-size blocks often breaks an object into several blocks or puts
different objects into a single block. Thus visual information about objects may
be destroyed by a rigid partition. In [19] an alternative approach is described
where images are classifying according to spatial orderings of regions where each
region is represented by a symbol corresponding to an entry in a pattern library.
Image segmentation is one way to extract object information whereby an image
is decomposes into a collection of regions, each corresponding to an object. There
are many examples where image segmentation has been applied successfully to
the image categorisation problem. ROIBIC, as described in this paper, advocates
an approach where the focus is on a single ROI common across the image set.

3 Application Domain

Although generally applicable, the ROIBIC approaches described in this paper
are directed at MRI brain scan data, more specifically the categorisation of MRI
data according to a specific object contained in these images called the corpus
callosum. The corpus callosum is a highly visible structure in MRI scans whose
function is to connect the left and right hemispheres of the brain, and to provide

Corpus Callosum

Fornix

Fig. 1. Corpus callosum in a midsagittal brain MR image



242 A. Elsayed et al.

the communication conduit between these two hemispheres. Figure 1 gives an
example MRI scan, the corpus callosum is located in the centre of the image. A
related structure, the fornix is also indicated. The fornix often “blurs” into the
corpus callosum and thuds presents a particular challenge in the context of the
segmentation of these images so as to isolate the corpus callosum ROI.

The corpus callosum is of interest to medical researchers for a number of rea-
sons. The size and shape of the corpus callosum has been shown to be correlated
to sex, age, neurodegenerative diseases and various lateralized behaviour in peo-
ple. It is also conjectured that the size and shape of the corpus callosum reflects
certain human characteristics (such as a mathematical or musical ability). Sev-
eral studies indicate that the size and shape of the corpus callosum, in humans,
is correlated to sex [1,6,18], age [18,24], brain growth and degeneration [11,15],
handedness [5], epilepsy [4,17,22] and brain disfunction [7,13].

4 Graph Based Approach

In this and the following section the two proposed techniques, graph bases
ROIBIC and time series based ROIBIC, are described commencing with graph
based ROIBIC. A schematic of the graph based process is given in Figure 2.
The process commences with segmentation and registration to isolate the ROI.
The details of the identified ROI are then acquired by tessellating the images
into homogeneous sub-regions, according to (say) colour or intensity, and then
storing the result in a quad-tree data structure. A weighted sub-graph mining
approach is then applied to the tree represented image set (one tree per image)
to identify frequent sub-graphs. The identified sub-trees (graphs) then form the
fundamental elements of a feature space, i.e. a set of attributes with which to
describe the image set. Experiments conducted by the authors have revealed
that, for many image sets, the graph mining process can identify a great many
frequent sub-graphs; more than required for the desired categorisation. There-
fore a feature selection strategy is applied so that only those sub-graphs that
serve as the best discriminators are retained. Each image is then described in
terms of a binary-valued feature vector indicating the selected attributes (sub-
graphs) that appear in each image. Once the image set has been represented in
this manner any appropriate classifier generator may be applied; for the corpus
callosum application Quinlan’s C4.5 algorithm was used [16].

4.1 Tessellation

The tessellation process comprises the recursive decomposition of the identified
ROI, for each image, into quadrants. The tessellation proceeds until either suffi-
ciently homogeneous tiles are identified or some user specified level of granularity
is reached. The result is then stored in a quadtree data structure such that each
roots node represents a tile in the tessellation. Nodes nearer the root of the tree
represent larger tiles than nodes further away from the root. Thus the tree is
“unbalanced” in that some root nodes cover larger areas of the ROI than others.



Region of Interest Based Image Categorization 243

Fig. 2. Framework of graph mining ROIBIC

Note also that the relative location of the each tile is maintained in the structure
of the tree. Thus the advantage of the representation is thus that information
about the relative location and size of groups of pixels is maintained.

The tessellation can be conducted according to a variety of image features such
as colour or intensity. With respect to the corpus callosum application a binary
encoding was used, the tiles included in the corpus callosum were allocated a
“1” (black) and tiles not included a “0” (white). Sufficiently homogeneous was
defined as a tile that was 95% black or white. The research team experimented
with a number of “granularity” settings as reported in the evaluation described
in Section 6. Interested readers may like to refer to a previously published work
by the authors [8] regarding further details of the tessellation process.

4.2 Weighted Graph Mining

As noted above, in the quad-tree representation nodes nearer the root can be
considered to be more significant than others (because they cover a larger area).
A weighted frequent sub-graph mining algorithm was therefore developed to
identify commonly occurring features across the tree represented image set. The
weightings were calculated according to the proximity of individual nodes to
the root node in each tree. This weighting concept was built into a variation of
the well known gSpan algorithm [25]. The algorithm operates in a depth first
search manner, level by level, following a “generate, calculate support, prune”
loop. Candidate sub-graphs are pruned if their support (frequency of occurrence
across the graph set) is below a user defined “support threshold”. The lower the
threshold the greater the number of frequent sub graphs that will be identified.
Space restrictions preclude further discussion of this weighted sub-graph mining
algorithm here, however, interested readers are referred to [14].

Experimentation with respect to the Corpus Callosum application indicated
that, to capture the necessary level of detail, a low support threshold was re-
quired. However this produced a large number of frequent sub-graphs many of



244 A. Elsayed et al.

which were redundant. A feature selection operation (discussed in the following
subsection) was thus applied to the identified frequent sub-graphs.

4.3 Feature Selection and Classifier Generation

Feature selection is a well understood process, in the context of Data Mining, for
removing irrelevant data from a feature space so as to enhance computational
efficiency. Feature selection has attracted a great deal of attention from the data
research community, especially in the context of classification and prediction
where the aim is to identify features that are “strong discriminators”. For the
corpus callosum application described here, a straightforward wrapper method
was adopted whereby a decision tree generator was applied to the feature set
(an approach also advocated by other practitioners, see for example [10]). The
advantage of decision tree algorithms, with respect to feature selection, is that
they inherently estimate the suitability of features for the separation of objects
representing different classes. Features that are included as “choice points” in
the decision tree were thus selected, while all remaining features were discarded.
For the work described here, the well established C4.5 algorithm [16] was used.

Fig. 3. Framework of time series based ROIBIC

5 Time Series Based Approach

In this section the time series based ROIBIC approach is described; a schematic
is presented in Figure 3. As for the graph based approach the process commences
with the segmentation and registration of the input images. The identified ROI
are then encoded as time series. Each time series is conceptualised as a proto-
type or case contained in a Case Base (CB), to which a Case Based Reasoning
(CBR) mechanism may be applied. Thus an unseen record is classified according
to the “best match” discovered in the CB. The CBR community has proposed
many techniques to identify the desired best match. In this paper the authors
advocate a Dynamic Type Warping (DTW) time series comparison mechanism
that operates regardless of the length of the individual time series [2].

5.1 The Time Series Representation

After the identification of the individual ROI, using segmentation, the regis-
tration process was undertaken by fitting each ROI into a Minimum Bounding



Region of Interest Based Image Categorization 245

Fig. 4. Conversion of corpus callosum into time series

Rectangle (MBR). Individual time series is then derived, according to the bound-
ary line circumscribing the ROI, using an ordered sequence of N vectors radiating
out from a reference point. The time series was then expressed as a series of val-
ues (one for each of the N vectors) describing the size (length) of intersection of
the vector with the ROI. It should be noted that the representation maintains
the structural information (shape and size) of the ROI. It should also be noted
that N is variable due to the differences of the shape and size of the individual
ROI within the image data set.

With respect to the corpus callosum application the time series generation
process is illustrated in Figure 4. The midpoint of the lower edge of the MBR
was selected as the reference point. The vectors were derived by rotating an arc
about the reference point pixel by pixel, thus the value of N will very across
the image set. In this manner time series curves were generated of the form
described in the top half of Figure 4 where the X-axis represents the vector
(arc) number, and the Y-axis the “pixel-distance” where the vector intersects
the corpus callosum.

5.2 The Dynamic Time Warping Algorithm

DTW [2] is a time series analysis technique for comparing curves. The advantage
offered is that DTW is able to find the optimal alignment between two time series
Q and C, of length n and m respectively. It is often used: to determine time series
similarity for classification, or to find corresponding regions between two time
series. The DTW-distance between the two time series Q and C is D(M, N),
which we calculate in a dynamic programming approach using:



246 A. Elsayed et al.

D(i, j) = d(qi, cj) + min {D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)} (1)

Backtracking along the minimum cost index pairs w(i, j)k starting from (M, N)
yields the DTW warping path.

An example is given in Figure 5 where the warping path between two time
series Q and C of different length is presented. Note that given two identical
curves the warping path would be the straight line connecting the two opposite
corners of the grid. The degree of similarity can thus be determined by comparing
the calculated warping path with the “ideal path”.

Fig. 5. An example warping path

6 Evaluation

The two advocated approaches to ROIBIC are evaluated and compared in this
section with respect to the corpus callosum application. This section describes
the evaluation of the proposed technique using an appropriate MRI image set.
The evaluation was undertaken in terms of classification accuracy, sensitivity and
specificity. Two studies have been used for the investigation: (i) a comparison
between musician and non-musician MRI scans, and (ii) an epilepsy screening
process. The studies are discussed in detail in Sub-sections 6.1 and 6.2 below.

6.1 Musicians v. Non-musicians

For the musicians study a data set comprising 106 MRI scans was used, 53 repre-
senting musicians and 53 non-musicians (i.e. two equal classes). The study was of
interest because of the conjecture that the size and shape of the corpus callosum



Region of Interest Based Image Categorization 247

reflects human characteristics (such as a mathematical or musical ability). Table
1 shows the Ten Cross Validation (TCV) results obtained. The G-ROIBIC and
T-ROIBIC columns indicate the results using the graph based and time series
based approaches respectively. For the graph based approach a quad tree depth
of six coupled with a 30% support threshold was used. For comparison purposes
the results using other support threshold and depth settings are given in Table
2. The best result for each level is indicated in bold font. Inspection of Tables 1
and 2 demonstrate that the overall classification accuracy of the ROIBIC time
series based approach significantly improves over that obtained using the graph
based approach. In many TCV cases the time series based approach obtains
100% accuracy although visual inspection of the corpus callosums in the data
set does not allow for the clear identification of any defining feature.

Table 1. TCV Classification Results for Musicians Study

Test G-ROIBIC T-ROIBIC

set ID Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

1 92.45 94.12 90.91 91 100 85.71

2 96.23 94.55 98.04 100 100 100

3 95.28 96.15 94.44 91 100 85.71

4 93.40 94.23 92.59 100 100 100

5 97.17 96.3 98.08 100 100 100

6 94.34 96.08 92.73 100 100 100

7 97.17 96.3 98.08 100 100 100

8 95.28 96.15 94.44 100 100 100

9 96.23 94.55 98.04 100 100 100

10 95.28 96.15 94.44 100 100 100

Average 95.28 95.458 95.179 98.2 100 97.14

SD 1.54 0.95 2.7 3.8 0.0 6.03

Table 2. TCV Classification accuracy (%) using graph based ROIBIC

Support Threshold (%)

Levels 20 30 40 50 60 70 80 90

4 70.75 69.81 68.87 71.70 68.87 61.32 52.83 50.94

5 90.57 83.96 80.19 85.85 80.19 81.13 80.19 70.75

6 85.85 95.28 84.91 83.96 90.57 83.96 77.36 75.47

7 83.80 85.85 89.62 86.79 87.74 75.47 76.42 78.30

6.2 Epilepsy Screening

For the epilepsy study three data sets were used. The first comprised the control
group from the musicians study together with 53 MRI scans from epilepsy pa-
tients. The Second data set used all 106 MRI scans from the musicians study and
the 53 epilepsy scans. The third data set comprised the 106 MRI scans from the
musicians study augmented with 106 epilepsy cases. The objective was to seek
support for the conjecture that the shape and size of the corpus callosm is influ-
ence by conditions such as epilepsy ([4,17,22]). Tables 3 and 4 show the Ten Cross



248 A. Elsayed et al.

Validation (TCV) classification results for the three epilepsy data sets. Again the
G-ROIBIC and T-ROIBIC columns indicate the results obtained using the graph
based and time series based ROIBIC approaches respectively. A quad-tree depth
of six was again used, coupled with a 30% support threshold, as this had been
found to give the best results in the case of the musicians study. Inspection of Ta-
bles 3 and 4 indicates that the graph based approach significantly out-performs
the time series based approach. Best results are obtained using the large, 212 MRI
scan data set, because this includes many more training examples.

Table 3. TCV Classification results for Epilepsy Study (Data Sets 1 and 2)

Test 106 MR scans 159 MR scans

set G-ROIBIC T-ROIBIC G-ROIBIC T-ROIBIC

ID Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.

1 88.68 87.27 90.2 72.73 80.00 66.67 86.79 76.67 92.93 75.00 70.00 83.33

2 85.85 86.54 85.19 81.82 83.33 80.00 79.25 65.63 88.42 81.25 85.71 77.78

3 85.85 86.54 85.19 72.73 80.00 66.67 82.39 69.84 90.63 75.00 70.00 83.33

4 82.08 82.69 81.48 81.82 83.33 80.00 84.28 72.58 91.75 81.25 85.71 77.78

5 76.42 75.93 76.92 81,82 83.33 80.00 83.65 72.13 90.82 81.25 85.71 77.78

6 85.85 86.54 85.19 81.82 83.33 80.00 86.79 76.67 92.93 75.00 70.00 83.33

7 72.64 74 71.43 63.64 66.67 60.00 78.62 64.62 88.3 81.25 85.71 77.78

8 85.85 86.54 85.19 81.82 83.33 80.00 82.39 69.84 90.63 68.75 66.67 71.43

9 88.68 87.27 90.2 72.73 80.00 66.67 86.79 76.67 92.93 68.75 66.67 71.43

10 82.08 82.69 81.48 63.64 66.67 60.00 79.25 65.63 88.42 81.25 85.71 77.78

Average 83.40 83.60 83.25 75.46 79.0 72.0 83.02 71.03 90.78 76.88 77.19 78.18

SD 5.25 4.88 5.75 7.48 6.67 8.78 3.22 4.73 1.89 5.15 9.06 4.37

Table 4. TCV Classification results for Epilepsy Study (Data Set 3)

Test 212 MR scans

Test G-ROIBIC T-ROIBIC

set ID Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

1 85.38 85.71 85.05 81.82 88.89 76.92

2 84.91 86.27 83.64 77.27 80.00 75.00

3 87.74 89.22 86.36 81.82 88.89 76.92

4 89.15 89.52 88.79 77.27 80.00 75.00

5 86.32 87.38 85.32 68.18 70.00 66.67

6 85.85 86.54 85.19 72.73 77.78 69.23

7 84.91 86.27 83.64 77.27 80.00 75.00

8 84.43 84.11 84.76 81.82 88.89 76.92

9 83.96 83.33 84.62 72.73 77.78 69.23

10 87.74 89.22 86.36 81.82 88.89 76.92

Average 86.04 86.76 85.38 77.27 82.11 73.78

SD 1.68 2.12 1.52 4.79 6.51 3.89



Region of Interest Based Image Categorization 249

6.3 Discussion

With respect to classification accuracy both algorithms performed well although
the time series approach produced the best results for the musicians study while
the graph based approach produced the best results for the epilepsy study. There
is no obvious reason why this might be the case, visual inspection of the MRI
scans does not indicate any obvious distinguishing attributes with respect to
the size and shape of he corpus callosum. With respect to computational com-
plexity image segmentation and the application of DTW for classification are
both computationally expensive processes. The time complexity for the image
segmentation was about 30 seconds per image. For the given data sets the appli-
cation of DTW took 90 seconds on average to categorise the test set. The graph
based approach was significantly faster.

7 Conclusion

Two approaches to Region of Interest Based Image Classification (ROIBIC) have
been described. The first was founded on a graph representation to which graph
mining techniques could be applied to obtain a feature space. The second used a
time series based approach. The work was directed at the classification of MRI
scans according to the nature of the corpus callosum featured within these im-
ages. Two studies were used for the evaluation: (i) distinguishing musicians from
non-musicians, and (ii) epilepsy screening. However, the approach has more gen-
eral applicability. The research team are also interested in alternative methods
of pre-processing MRI data, and mechanism for the post-processing of results to
provide explanations for specific classifications. The latter is seen as particularly
significant in the context of medical research involving MRI scan data.

References

1. Allen, L., Richey, M., Chain, Y., Gorski, R.: Sex differences in the corpus callosum

of the living human being. Journal of Neuroscience 11, 933–942 (1991)

2. Berndt, D., Clifford, J.: Using dynamic time warping to find patterns in time

series. In: AAAI 1994 Workshop on Knowledge Discovery in Databases, Seattle,

Washington, pp. 359–370 (1994)

3. Chapelle, O., Haffner, P., Vapnik, V.: Support vector machines for histogram-

based image classification. IEEE Transactions on Neural Networks 10(5), 1055–

1064 (1999)

4. Conlon, P., Trimble, M.: A study of the corpus callosum in epilepsy using magnetic

resonance imaging. Epilepsy Res. 2, 122–126 (1988)

5. Cowell, P., Kertesz, A., Denenberg, V.: Multiple dimensions of handedness and the

human corpus callosum. Neurology 43, 2353–2357 (1993)

6. Davatzikos, C., Vaillant, M., Resnick, S., Prince, J., Letovsky, S., Bryan, R.: A

computerized approach for morphological analysis of the corpus callosum. Journal

of Computer Assisted Tomography 20, 88–97 (1996)



250 A. Elsayed et al.

7. Duara, R., Kushch, A., Gross-Glenn, K., Barker, W., Jallad, B., Pascal, S., Loewen-

stein, D., Sheldon, J., Rabin, M., Levin, B., Lubs, H.: Neuroanatomic differences be-

tween dyslexic and normal readers on magnetic resonance imaging scans. Archives

of Neurology 48, 410–416 (1991)

8. Elsayed, A., Coenen, F., Jiang, C., Garćıa-Fiñana, M., Sluming, V.: Corpus Callo-

sum MR Image Classification. In: Proc. AI 2009, pp. 333–346. Springer, Heidelberg

(2009)

9. Gorkani, M., Picard, R.: Texture Orientation for Sorting Photos “at a glance”. In:

Proc. 12th Int’l Conf. on Pattern Recognition, pp. 459–464 (1994)

10. Grabczewski, K., Jankowski, N.: Feature selection with decision tree criterion. In:

Proc. 5th Int. Conf. on Hybrid Intelligent Systems (HIS 2005), pp. 212–217 (2005)

11. Hampel, H., Teipel, S., Alexander, G., Horwitz, B., Teichberg, D., Schapiro, M.,

Rapoport, S.: Corpus callosum atrophy is a possible indicator of region and cell

type-specific neuronal degeneration in Alzheimer disease. Archives of Neurology 55,

193–198 (1998)

12. Hijazi, M.H.Q.A., Coenen, F., Zheng, Y.: A Histogram Based Approach to Screen-

ing of Age-related Macular Degeneration. In: Proc. Medical Image Understanding

and Analysis (MIUA 2009), pp. 154–158 (2009)

13. Hynd, G., Hall, J., Novey, E., Eliopulos, D., Black, K., Gonzalez, J., Edmonds,

J., Riccio, C., Cohen, M.: Dyslexia and corpus callosum morphology. Archives of

Neurology 52, 32–38 (1995)

14. Jiang, C., Coenen, F.: Graph-based Image Classification by Weighting Scheme. In:

Proc. AI 2008, pp. 63–76. Springer, Heidelberg (2008)

15. Lyoo, I., Satlin, A., Lee, C.K., Renshaw, P.: Regional atrophy of the corpus callo-

sum in subjects with Alzheimer’s disease and multi-infarct dementia. Psychiatry

Research 74, 63–72 (1997)

16. Quinlan, R.: C4.5: A program for machine learning. Morgan Kaufmann, San Fran-

cisco (1993)

17. Riley, J.D., Franklin, D.L., Choi, V., Kim, R.C., Binder, D.K., Cramer, S.C., Lin,

J.J.: Altered white matter integrity in temporal lobe epilepsy: Association with

Cognitive and Clinical Profiles (2010) (to appear in Epilepsia)

18. Salat, D., Ward, A., Kaye, J., Janowsky, J.: Sex differences in the corpus callosum

with aging. Journal of Neurobiology of Aging 18, 191–197 (1997)

19. Smith, J., Li, C.: Image Classification and Querying Using Composite Region Tem-

plates. Int’l J. Computer Vision and Image Understanding 75(1/2), 165–174 (1999)

20. Szummer, M., Picard, R.: Indoor-Outdoor Image Classification. In: Proc. IEEE

Int’l Workshop on Content-Based Access of Image and Video Databases, pp. 42–

51 (1998)

21. Vailaya, A., Figueiredo, M., Jain, A., Zhang, H.: Image Classification for Content-

Based Indexing. IEEE Transactions on Image Processing 10(1), 117–130 (2001)

22. Weber, B., Luders, E., Faber, J., Richter, S., Quesada, C.M., Urbach, H., Thompson,

P.M., Toga, A.W., Elger, C.E., Helmstaedter, C.: Distinct regional atrophy in the

corpus callosum of patients with temporal lobe epilepsy. Brain 130, 3149–3154 (2007)

23. Wang, J., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive integrated

matching for picture libraries. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 23(9), 947–963 (2001b)

24. Weis, S., Kimbacher, M., Wenger, E., Neuhold, A.: Morphometric analysis of the

corpus callosum using MRI: Correlation of measurements with aging in healthy

individuals. American Journal of Neuroradiology 14, 637–645 (1993)

25. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: ICDM 2002:

2nd IEEE Conf. Data Mining, pp. 721–724 (2002)



Meta-learning for Post-processing of Association
Rules

Petr Berka1,2 and Jan Rauch1

1 University of Economics, W. Churchill Sq. 4, 130 67 Prague
2 Institute of Finance and Administration, Estonska 500, 101 00 Prague

Abstract. The paper presents a novel approach to post-processing of

association rules based on the idea of meta-learning. A subsequent asso-

ciation rule mining step is applied to the results of ”standard” associa-

tion rule mining. We thus obtain ”rules about rules” that help to better

understand the association rules generated in the first step.

We define various types of such meta-rules and report some experi-

ments on UCI data. When evaluating the proposed method, we use the

apriori algorithm implemented in Weka.

1 Introduction

The term association rules was coined by R. Agrawal in the early 90th in re-
lation to so called market basket analysis [2]. In this analysis, transaction data
recorded by point-of-sale (POS) systems in supermarkets are analyzed in order to
understand the purchase behavior of groups of customers, and use it to increase
sales, and for cross-selling, store design, discount plans and promotions. This
idea of association rules has been later generalized to any data in the tabular,
attribute-value form. So data describing properties (values of attributes) of some
examples can be analyzed in order to find associations between conjunctions of
attribute-value pairs (categories). Let us denote these conjunctions as Ant and
Suc and the association rule as

Ant =⇒ Suc.

The two basic characteristics of an association rule are support and confi-
dence. Support is the estimate of the probability P (Ant ∧ Suc), (the frequency
of Ant∧Suc is the absolute support), confidence is the estimate of the probability
P (Suc|Ant). So an example of a rule based on Table 1 is

income(high) ∧ balance(high) =⇒ loan(yes)

with the support 0.1667 and the confidence 1.
In association rule discovery the task is to find all syntactically correct rules

Ant =⇒ Suc (i.e. rules, in which two different values of an attribute cannot
occur) such that the support and confidence of the rules are above the userdefined
thresholds minconf and minsup. There is a number of algorithms, that perform

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 251–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



252 P. Berka and J. Rauch

Table 1. Running example data

client income balance sex unemployed loan

c1 high high female no yes

c2 high high male no yes

c3 low low male no no

c4 low high female yes yes

c5 low high male yes yes

c6 low low female yes no

c7 high low male no yes

c8 high low female yes yes

c9 low medium male yes no

c10 high medium female no yes

c11 low medium female yes no

c12 low medium male no yes

this task. The main idea of these algorithm is to repeatedly generate a rule in a
”top-down” way by rule specialization (i.e. by adding categories to an existing
combination) and test, if this rule meets the thresholds minconf and minsup.
The probably best-known algorithm called apriori proceeds in two steps. All
frequent itemsets are found in the first step. A frequent itemset is a set of items
that is included in at least minsup transactions. Then, association rules with a
confidence of at least minconf are generated in the second step [2].

There is also an alternative approach to association rules mining, the so called
GUHA method that originates from the research of a group of Czech researchers
from mid. 60th [6]. The aim of the GUHA method is to offer all interesting facts
hidden in the analyzed data and relevant to the given problem. The method is
realized by GUHA-procedures. The input of the GUHA procedure consists of
the analyzed data and of a simple definition of a set of relevant (i.e. potentially
interesting) patterns. GUHA procedure automatically generates each particular
pattern and tests if it is true in the analyzed data. The output of the procedure
consists of all prime patterns. The pattern is prime if it is true in the analyzed
data and if it does not immediately follow from the other more simple output
patterns [6].

The most important GUHA procedure is the procedure ASSOC [6]. This pro-
cedure mines for patterns that can be understood as a generalization of patterns
now called association rules [2]. The most used current implementation of proce-
dure ASSOC is the procedure 4ft-Miner [9]. This procedure mines for association
rules of the form

ϕ ≈ ψ or ϕ ≈ ψ/χ

where ϕ, ψ, and χ are Boolean attributes. The rule ϕ ≈ ψ means that ϕ and ψ
are associated in the way given by the symbol ≈. The conditional rule ϕ ≈ ψ/χ
means that ϕ and ψ are associated in the way given by the symbol ≈ if the
condition given by χ is satisfied. The symbol ≈ is called 4ft-quantifier, ϕ is
called antecedent, ψ is called succedent and χ is condition. The 4ft-quantifier ≈



Meta-learning for Post-processing of Association Rules 253

corresponds to a condition concerning a four-fold contingency table 4ft(ϕ, ψ,M)
of ϕ and ψ in the analyzed data matrix M.

The Boolean attributes ϕ, ψ, and χ are automatically derived from the columns
of the analyzed data matrix. Basic Boolean attributes are created first. The basic
Boolean attribute has a form of A(α) where A is an attribute i.e. a column of the
analyzed data matrix and α is a set of its possible values. The basic Boolean at-
tribute A(α) is true in the row o of the data matrix if the value A(o) of attribute
A in row o belongs to α, formally if A(o) ∈ α. An example of basic Boolean at-
tribute of the data matrix in Tab. 1 is balance(medium, high) which is true for
clients c1, c2, c4, c5, c9, c10, c11, c12 and false for clients c3, c6, c7, c8. Literal is
basic Boolean attribute A(α) or its negation¬A(α). Partial cedent is a conjunction
or a disjunction of literals. Antecedent, succedent and condition are conjunctions
of partial cedents. There are very fine tools to define a set of association rules to
be generated and verified.

The rule ϕ ≈ ψ is true in analyzed data matrix M if the condition related
to 4ft-quantifier ≈ is satisfied in four-fold contingency table 4ft(ϕ, ψ,M) of ϕ
and ψ in data matrix M. It is a quadruple 〈a, b, c, d〉 where a is the number of
rows of M satisfying both ϕ and ψ, b is the number of rows of M satisfying ϕ
and not satisfying ψ etc., see Tab. 2. The conditional association rule ϕ ≈ ψ/χ
is true in data matrix M if the rule ϕ ≈ ψ is true in data matrix M/χ. Data
matrix M/χ consists of all rules of M satisfying χ.

Table 2. 4ft(ϕ, ψ,M)

M ψ ¬ψ
ϕ a b

¬ϕ c d

There are 17 various 4ft-quantifiers implemented in 4ft-Miner. An example is
the 4ft-quantifier ∼+

p,B of above average dependence which is defined in [8] by
the condition a

a+b ≥ (1 + p) a+c
a+b+c+d ∧ a ≥ B for 0 < p and B > 0. This means

that the relative frequency of objects satisfying ψ among the objects satisfying ϕ
is at least 100p per cent higher than the relative frequency of objects satisfying
ψ among all the observed objects and that there are at least B objects satisfying
both ϕ and ψ. Thus an example of a rule found in data shown in Table 1 can
be

balance(medium, high)∧ ¬(unemployed(yes)) ∼+
0.5,100 loan(yes) .

This rule says that among clients with medium or high balance on account which
are not unemployed, there are 50 % higher frequency of clients which will get
the loan that among all clients and that there are at least 100 such clients.

So

– GUHA method offers more types of relations (so called quantifiers) between
Ant and Suc,

– GUHA method offers more expressive syntax of Ant and Suc.



254 P. Berka and J. Rauch

But still the algorithms for mining this type of rules are based on generating
and testing of huge set of potential rules.

The main drawback of the association rules mining is the fact, that the result
of an analysis will consist of many (hundreds, thousands) rules which have to
be visually interpreted and evaluated by the domain expert. So some kind of
post-processing of the results would be very helpful for the user. And indeed,
various approaches have been used to post-process the huge list of found associ-
ations: filtering, selection, visualization, grouping and clustering. In our paper,
we present an alternative approach based on the idea of meta-learning.

The rest of the paper is organized as follows: section 2 defines the association
meta-rules, section 3 shows experimental evaluation of the proposed method, sec-
tion 4 reviews other approaches to association rules post-processing and section
5 gives directions for our future work.

2 Association Meta-rules

The inspiration of our method comes from the area of meta-learning. Meta learn-
ing is a subfield of machine learning where automatic learning algorithms are
applied to meta-data about machine learning experiments. The mostly used ap-
proaches to meta-learning (or combining classifiers) are bagging, boosting and
stacking [4]. In bagging each classifier in the ensemble votes with equal weight
when classifying new example; in order to promote model variance, bagging
trains each classifier in the ensemble using a randomly-drawn subset of the train-
ing set. In boosting the ensemble of classifiers is built incrementally by training
each new classifier to emphasize the training instances that previous classifiers
miss-classified. In stacking a meta-classifier is build on top of the results of so
called base classifiers that are each separately trained to classify the data.

We propose to apply association rule mining algorithm to the set of origi-
nal association rules obtained as a result of a particular data mining task. This
idea thus follows the stacking concept that is used to combine classifiers, but
that has not been presented yet for descriptive tasks. The input to the proposed
meta-learning step will be association rules encoded in a way suitable for asso-
ciation rule mining algorithm; the result will be a set of association meta-rules
uncovering relations between various characteristics of the original set of rules.

We will distinguish two types of association meta-rules: qualitative and quanti-
tative. Qualitative rules will represent the meta-knowledge in the form ”if original
association rules contain a conjunction of categories Ant, then they also contain
the conjunction of categories Suc”, i.e qualitative rules have the form

Ant =⇒ Suc.

Quantitative rules will represent the meta-knowledge in the form ”if origi-
nal association rules contain a conjunction of categories Ant, then they have
quantitative characteristics Q”, i.e

Ant =⇒ Q.



Meta-learning for Post-processing of Association Rules 255

or, ”if original association rules have quantitative characteristics Q, then they
contain a conjunction of categories Suc”, i.e

Q =⇒ Suc.

where Q can be e.g ”confidence ∈ [0.9, 1]”.
We can also search for conjunctions of categories, that frequently occur in the

list of original association rules (let call them frequent cedents).
To find association meta-rules, standard association rule mining algorithms

can be used. Encoding of the original rules is thus the key problem in our ap-
proach. Ant and Suc can be encoded either (1) using binary attributes, where
each attribute represents one possible literal or (2) using the attributes from the
original data set. In both cases we can (or need not) also consider whether the
literal occurs in Ant or Suc. We can thus consider four different representation
schemes. So to encode the rule

income(high) ∧ balance(high) =⇒ loan(yes)

1. when using the encoding based on binary attributes without distinguishing
between Ant and Suc, this rule will be represented using the categories
income high(true), balance high(true) and loan yes(true).

2. when using the encoding based on original attributes without distinguishing
between Ant and Suc, this rule will be represented using the categories
income(high), balance(high) and loan(yes).

3. when using the encoding based on binary attributes with distinguishing be-
tween Ant and Suc, this rule will be represented using the categories Ant
income high(true), Ant balance high(true) and Suc loan yes(true).

4. when using the encoding based on original attributes with distinguishing
between Ant and Suc, this rule will be represented using the categories
Ant income(high), Ant balance(high) and Suc loan(yes).

Another open question concerning the representation of a rule is whether cat-
egories not occurring in the rule should be treated as missing or as negative
ones. In the first approach, attributes not used in the rule will be encoded using
missing value code. In the second approach, when using the binary representa-
tion, categories not used in the rule will get the value false, and when using the
original attributes, categories not used in the rule will get a new special value
interpreted as not used. Our initial experiments show that using missing value
code is more suitable as it will prevent the meta-learning step to generate a great
number of meta-rules about non-occurrence of literals in the original rules, this
option also corresponds to the original notion of association rules where only
items that do occur in the market baskets are taken into consideration.

The selection of a proper representation formalism is closely related to the type
of association rules to be analyzed. For apriori like rules, the formalism using
the same attributes as for the original data is sufficient. On the contrary, to be
able to represent the GUHA like rules (that can contain disjunctions of values of
a single attribute or negations of literals) we have to encode each value of each



256 P. Berka and J. Rauch

attribute (i.e. each category) as a single binary attribute. This attribute takes
value ”true” if the encoded category occurs in positive literal, value ”false” if the
encoded category occurs in negative literal, or value ”missing” if the encoded
category does not occur in the rule. So the rule

balance(high∨medium) ∧ ¬(unemployed(yes))⇒ loan(yes) / sex(male)

will be encoded using the categories balance high(true), balance medium
(true), unemployed yes(false), loan yes(true) and sex male(yes).

Quantitative characteristics can be encoded using numerical attributes that
must be discretized in advance. There is no difference between the apriori-like
and GUHA-like association rules in this encoding.

Anyway, all possible methods of rule encoding will result in building a data
table (each rule represented by a single row) that can easily be analyzed using
association rule mining algorithm to obtain the meta-rules. The obvious question
of this approach is: does such post-processing make sense from the users point
of view? We believe that it does, if we answer positively the following questions:

– Do the meta-rules give better insight into the list of ”original” association
rules?

– Is the list of meta-rules easier to evaluate?

We performed several experiments to find answers to these questions.

3 Experimental Evaluation

To evaluate our ideas, we performed several experiments on data. We carried
out the experiments using Weka (a data mining system that is freely available
from University of Waikato) [14]. In all of our experiments, we encoded the
input rules using the original attributes without distinguishing if the category
occurs in Ant or in Suc (in this case, the representation of the rules has the
most similar structure to the original data) and encoding attributes not present
in a rule as missing values.

3.1 Running Example

Let us start with a closer look on our running example. When applying the
apriori algorithm (the Weka implementation) to the data shown in Table 1, we
will obtain (for parameters minsup = 0.2, i.e. 2 instances and minconf = 0.8)
72 association rules, first 10 of them shown in Table 3. This set of rules has been
post-processed in the first series of experiments. We choose the representation of
Ant and Suc based on the original attributes and encode categories not occurring
in the rule as ”missing”. Refer to Table 4 for the encoding of the first ten rules.
Notice, that

– the numeric attributes support and confidence have been discretized; we used
equifrequent discretization into 2 intervals for both support and confidence
in this example,



Meta-learning for Post-processing of Association Rules 257

– we added the attribute true (for technical reasons, to let Weka to find the
frequent cedents).

At first we will look for quantitative meta-rules. Table 5 shows the listing of all
quantitative meta-rules for the parameters minsup = 0.1 and minconf = 0.8;
we intentionally used the same setting of parameters as for the analysis of the
original data to compare the number of found rules and meta-rules.

Due to the way how the rules have been encoded for meta-learning, the meta-
rules have the same syntax as the original rules. But their meaning is completely
different. Recall that the rules are obtained from the original data but the meta-
rules are obtained from rules. So the third rule from Table 3 says, that there
are 4 clients in the analyzed data with high balance, all of them belonging to
category loan=yes. But the ”same” meta-rule (the rule 10 from Table 5) says
that there are 22 rules having the category balance=high in Ant or in Suc, and
18 out of them have also the category loan=yes (in Ant or in Suc). We thus
have found a (quite a large) subset of the original rules referring to the same
characteristics of the clients.

Table 3. Association rules

1. income=high 5 ==> loan=yes 5 conf:(1)

2. loan=no 4 ==> income=low 4 conf:(1)

3. balance=high 4 ==> loan=yes 4 conf:(1)

4. income=high unemployed=no 4 ==> loan=yes 4 conf:(1)

5. income=high sex=female 3 ==> loan=yes 3 conf:(1)

6. income=low sex=female 3 ==> unemployed=yes 3 conf:(1)

7. unemployed=yes loan=no 3 ==> income=low 3 conf:(1)

8. balance=high unemployed=no 2 ==> income=high 2 conf:(1)

9. income=high balance=high 2 ==> unemployed=no 2 conf:(1)

10. income=high balance=high 2 ==> loan=yes 2 conf:(1)

. . .

72. income=high 5 ==> unemployed=no loan=yes 4 conf:(0.8)

Table 4. Encoded association rules

Id true income balance sex unemp. loan abssup conf

1 t high ? ? ? yes (2.5-inf) (0.915-inf)

2 t low ? ? ? no (2.5-inf) (0.915-inf)

3 t ? high ? ? yes (2.5-inf) (0.915-inf)

4 t high ? ? no yes (2.5-inf) (0.915-inf)

5 t high ? female ? yes (2.5-inf) (0.915-inf)

6 t low ? female yes ? (2.5-inf) (0.915-inf)

7 t low ? ? yes no (2.5-inf) (0.915-inf)

8 t high high ? no ? (-inf-2.5] (0.915-inf)

9 t high high ? no ? (-inf-2.5] (0.915-inf)

10 t high high ? ? yes (-inf-2.5] (0.915-inf)



258 P. Berka and J. Rauch

Table 5. Qualitative meta-rules

1. income=low loan=yes 7 ==> balance=high 7 conf:(1)

2. unemployed=yes loan=yes 7 ==> balance=high 7 conf:(1)

3. balance=high unemployed=yes 9 ==> income=low 8 conf:(0.89)

4. income=low balance=high 9 ==> unemployed=yes 8 conf:(0.89)

5. balance=high unemployed=no 8 ==> income=high 7 conf:(0.88)

6. income=high balance=high 8 ==> unemployed=no 7 conf:(0.88)

7. balance=medium loan=no 8 ==> unemployed=yes 7 conf:(0.88)

8. balance=medium unemployed=yes 8 ==> loan=no 7 conf:(0.88)

9. loan=no 18 ==> income=low 15 conf:(0.83)

10. balance=high 22 ==> loan=yes 18 conf:(0.82)

11. income=high 26 ==> loan=yes 21 conf:(0.81)

Table 6. Quantitative meta-rules

1. abssup=(-inf-2.5] 59 ==> conf=(0.915-inf) 59 conf:(1)

2. balance=high 22 ==> conf=(0.915-inf) 22 conf:(1)

3. loan=no 18 ==> conf=(0.915-inf) 18 conf:(1)

4. balance=high loan=yes 18 ==> conf=(0.915-inf) 18 conf:(1)

5. sex=female 15 ==> conf=(0.915-inf) 15 conf:(1)

6. income=low loan=no 15 ==> conf=(0.915-inf) 15 conf:(1)

7. balance=medium 12 ==> abssup=(-inf-2.5] 12 conf:(1)

8. balance=medium 12 ==> conf=(0.915-inf) 12 conf:(1)

9. sex=male 12 ==> abssup=(-inf-2.5] 12 conf:(1)

10. sex=male 12 ==> conf=’(0.915-inf)’ 12 conf:(1)

11. balance=medium 12 ==> abssup=(-inf-2.5] conf=(0.915-inf) 12 conf:(1)

The next step in our running example will be the mining for quantitative
meta-rules. The input data (encoded rules) remain the same as in the previous
step. We again used the parameters minsup = 0.1 and minconf = 0.8 and we
obtained 11 meta-rules shown in Table 6. Like in the set of original rules and the
set of qualitative meta-rules, we can again find in the listing a meta-rule dealing
with the categories balance=high and loan=yes. The meta-rule no.4 says, that
all original rules having balance=high and loan=yes in Ant or Suc, have the
confidence greater than 0.915.

To be able to use the Weka system also for the last type of analysis, for
looking for frequent cedents, we added a dummy category true=T to the data
that encoded the original association rules. We are thus able to identify frequent
cedents from the rules

true = T =⇒ Suc,

that have sufficiently high confidence. Table 7 shows the 12 respective rules for
minsup = 0.25 thus showing the cedents Suc that occur in at least 25 percents
of the original association rules. We can e.g. see that the category loan=yes
occurs in more than one half of the original rules.



Meta-learning for Post-processing of Association Rules 259

Table 7. Frequent cedents

1. true=t 72 ==> loan=yes 37 conf:(0.51)

2. true=t 72 ==> income=low 30 conf:(0.42)

3. true=t 72 ==> unemployed=no 28 conf:(0.39)

4. true=t 72 ==> unemployed=yes 27 conf:(0.38)

5. true=t 72 ==> income=high 26 conf:(0.36)

6. true=t 72 ==> balance=high 22 conf:(0.31)

7. true=t 72 ==> income=high loan=yes 21 conf:(0.29)

8. true=t 72 ==> income=low unemployed=yes 21 conf:(0.29)

9. true=t 72 ==> income=high unemployed=no 20 conf:(0.28)

10. true=t 72 ==> unemployed=no loan=yes 20 conf:(0.28)

11. true=t 72 ==> loan=no 18 conf:(0.25)

12. true=t 72 ==> balance=high loan=yes 18 conf:(0.25)

3.2 Further Experiments

The next set of experiments was carried out on larger (and more realistic) data.
We used several data sets from the UCI Machine Learning Repository [13]. The
characteristics of the data (number of examples and number of attributes) are
summarized in Table 8.

Table 9 summarizes the results of our analysis (both mining association rules
and meta-rules) for different data sets. The numbers in the table show the num-
ber of found association rules, the number of qualitative meta-rules, the number
of quantitative meta-rules, and the number of frequent cedents. To make the
numbers comparable, we used the same settings of minsup and minconf during
both learning and meta-learning for corresponding data (minconf was in all
experiments set to 0.2). The frequent cedents were obtained for minconf = 0.1.
We used equifrequent discretization into 5 intervals for support and equidistant
discretization into 4 intervals for confidence.

The results support our working hypothesis, that the number of meta-rules
will be significantly smaller than the number of original rules. Thus the interpre-
tation of meta-rules by domain expert will be significantly less time consuming
and difficult compared to the interpretation of the original association rules.

Table 8. Description of used data

Data no. examples no. attributes

Brest cancer 286 10

Lenses 24 5

Monk1 123 7

Mushroom 8124 23

Tic-tac-toe 958 10

Tumor 339 18

Vote 435 17



260 P. Berka and J. Rauch

Table 9. Summary of the results

Data
assoc
rules

qualitative

rules

quantiative

rules

frequent

cedents

Breast cancer 18742 167 341 80

Lenses 89 13 47 34

Monk1 124 29 30 33

Mushroom 100000 135 109 550

Tic-tac-toe 506 69 30 24

Tumor 100000 234 633 66

Vote 100000 6007 12 150

4 Related Work

The various approaches to post-processing of association rules can be divided
into several groups. One group are methods for visualization, filtering or selection
of the created rules. This are the standard options in most systems.

Second group contains methods that use some algorithms to further process
the rules: clustering, grouping or using some inference methods fits into this
group as well as our approach. An application of deduction rules to post-process
the results of GUHA method is described in [8]; these rules define allow to
remove association rules that are logical consequences of another association
rules. Similar idea, but applied to ”Agrawal-like” association rules can be found
in [12]. This paper also describes clustering of association rules that have the
same consequent; the distance between two rules is defined ”semantically”, i.e.
as the number of examples covered only by one of the rules. Both semantical
and syntactical (i.e. based on the lists of attribute-value pairs that occur in the
rules) clustering of association rules can be found e.g. in [11].

The third possibility is to post-process the rules using some domain knowl-
edge. So e.g. An et all use expert-supplied taxonomy of items for clustering the
discovered association rules with respect to the taxonomic similarity ([1]), or
Domingues and Rezende ([5]) iteratively scan the itemset rules and updates a
taxonomy that is then used to generalize the association mining results.

An additional possibility is to filter out consequences of domain knowledge
via application of logic of association rules [8]. This approach is introduced
in [10].

5 Conclusions

We present a novel idea of using meta-learning approach to post-process the
results of association rule mining. When looking at the two questions from the
end of section 2, we can say, that the answer to the first question depends on the
domain where association rule mining (and rule post-processing) is applied and
that the answer must be given by the domain expert. The answer to the second
question can be found in the table 9, where we can see that in all the experiments



Meta-learning for Post-processing of Association Rules 261

the number of meta-rules is significantly lower than the number of ordinary rules
(and thus should take less time for the domain expert to go through it). Anyway,
more experiments and the interpretation of the found meta-rules are necessary
to validate the usefulness of the proposed method.

So far we focused on the classical apriori algorithm. Our future work will be
oriented on following open issues:

– different types of association rules: the association rules analyzed so far are
of the classical form as generated e.g. by the apriori algorithm. Another
systems, e.g. LISp-Miner can produce different types of association rules;
this brings us to the next issue.

– different types of meta-rules: also the meta-rules created so far are in the
form of implications between two conjunctions of attribute-value pairs. When
using LISp-Miner for building meta-rules, we can benefit from different types
of associations implemented there.

– postprocessing of meta-rules: what will happen if we apply the proposed
approach to the meta-rules, i.e. if we perform meta-meta learning?

Acknowledgement

The work is supported by the grant MSMT 1M06014 (from the Ministry of
Education of the Czech Republic) and the grant GACR 201/08/0802 (from the
Grant Agency of the Czech Republic).

References

1. An, A., Khan, S., Huang, X.: Objective and Subjective Algorithms for Grouping

Association Rules. In: Third IEEE Conference on Data Mining (ICDM 2003), pp.

477–480 (2003)

2. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of

Items in Large Databases. In: SIGMOD Conference, pp. 207–216 (1993)

3. Baesens, B., Viaene, S., Vanthienen, J.: Post-processing of association rules. In:

The Sixth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD 2000), Boston, Massachusetts, August 20-23 (2000)

4. Bauer, E., Kohavi, R.: An Empirical Comparison of Voting Classification Al-

gorithms: Bagging, Boosting, and Variants. Machine Learning 36(1/2), 105–139

(1999)

5. Domingues, M.A., Rezende, S.O.: Using Taxonomies to Faciliate the Analysis of

the Association Rules. In: Second International Workshop on Knowledge Discovery

and Ontologies (KDO 2005), ECML/PKDD, Porto (2005)

6. Hájek, P., Havránek, T.: Mechanising Hypothesis Formation - Mathematical Foun-

dations for a General Theory. Springer, Heidelberg (1978)

7. Jorge, A., Poas, J., Azevedo, P.J.: Post-processing Operators for Browsing Large

Sets of Association Rules. Discovery Science 2002, 414–421

8. Rauch, J.: Logic of association rules. Applied Intelligence 22, 9–28 (2005)

9. Rauch, J., Šimünek, M.: An Alternative Approach to Mining Association Rules.

In: Lin, T.Y., Ohsuga, S., Liau, C.J., Tsumoto, S. (eds.) Proc. Foundations of Data

Mining and Knowledge Discovery. Springer, Heidelberg (2005)



262 P. Berka and J. Rauch

10. Rauch, J.: Considerations on Logical Calculi for Dealing with Knowledge in Data

Mining. In: Ras, Z.W., Dardzinska, A. (eds.) Advances in Data Management, pp.

177–202. Springer, Heidelberg (2009)

11. Sigal, S.: Exploring interestingness through clustering. In: Proc. of the IEEE Int.

Conf. on Data Mining (ICDM 2002), Maebashi City (2002)

12. Toivonen, H., Klementinen, M., Roikainen, P., Hatonen, K., Mannila, H.: Pruning

and grouping discovered association rules. In: Workshop notes of the ECML 1995

Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases,

Heraklion, pp. 47–52 (1995)

13. UCI Machine Learning Repository,

http://www.ics.uci.edu/~mlearn/MLRepository.html

14. Weka - Data Mining with Open Source Machine Learning Software,

http://www.cs.waikato.ac.nz/ml/weka/

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.cs.waikato.ac.nz/ml/weka/


A Relational Approach for Discovering Frequent
Patterns with Disjunctions

Corrado Loglisci, Michelangelo Ceci, and Donato Malerba

Department of Computer Science, University of Bari

Via E.Orabona 4, 70126, Bari-Italy

{loglisci,ceci,malerba}@di.uniba.it

Abstract. Traditional pattern discovery approaches permit to identify

frequent patterns expressed in form of conjunctions of items and repre-

sent their frequent co-occurrences. Although such approaches have been

proved to be effective in descriptive knowledge discovery tasks, they can

miss interesting combinations of items which do not necessarily occur

together. To avoid this limitation, we propose a method for discovering

interesting patterns that consider disjunctions of items that, otherwise,

would be pruned in the search. The method works in the relational data

mining setting and conserves anti-monotonicity properties that permit

to prune the search. Disjunctions are obtained by joining relations which

can simultaneously or alternatively occur, namely relations deemed sim-

ilar in the applicative domain. Experiments and comparisons prove the

viability of the proposed approach.

1 Introduction

Discovery of frequent patterns in large collections of transactions or tuples has
become one of the broadly investigated topics in data mining[1,4]. Patterns rep-
resent statistical regularities of co-occurrences (expressed as conjunctions) of the
items present in the transactions. The most interesting patterns are those that
express conjunctions which occur in at least a user-defined number of transac-
tions. Typically, such conjunctions are obtained by the intersection of the trans-
actions in which the items occur under the assumption that the items occur
independently of each other. This poses some limitations to the mining process
and, in particular, leaves unexplored two potentialities of the pattern discov-
ery: i) discovering interesting patterns when items are not present in a sufficient
number of transactions, and ii) discovering forms of relationships among items
different from the classical conjunctions. Indeed, the two potentialities are not in-
dependent each other since the discovery of patterns including other relationships
between items may lead to discover patterns that otherwise would be discarded.

Although traditional frequent patterns discovery approaches are based on the
items which co-occur, other forms of relationships among items have been actu-
ally investigated in the literature. In particular, some works propose to accom-
modate a domain-dependent taxonomy over the items in the mining process in

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 263–274, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



264 C. Loglisci, M. Ceci, and D. Malerba

addition to the classical conjunction. This allows to consider the generalization re-
lationship (is-a relationship) among the items[13]. The presence of items at higher
levels of the taxonomy in the patterns implies the presence of the items at lower
levels related with the former through is-a relationships. For instance, given a com-
plete taxonomy for which, milk is-a food, coffee is-a food, fruit juice is-a food,
the pattern 〈food, soap〉 can be interpreted as the pattern 〈(milk ∨ fruitjuice∨
coffee), soap〉where the occurrence of food implies the occurrence of at least one
among milk, bread or fruitjuice, that is food = (milk ∨ fruitjuice ∨ coffee).
The accommodation of a taxonomy thus allows to represent relationships among
items in the form of fixed disjunctions.

Independently from the accommodation of a domain taxonomy in the mining
process, the discovery of patterns with items in disjunction has been already
investigated in the literature with approaches that permit to mine disjunctive
association rules from transactions or tuples [10][12]. In [10], the authors provide
a statistical framework based on a set operations (union and intersection) among
transaction sets to identify itemsets (called contexts) that can potentially con-
tain disjunctions. Then, these contexts are combined and explored to generate a
preliminary set of disjunctive rules. Finally, the application of propositional logic
techniques on this set allows to infer rules with items related by inclusive logi-
cal disjunction and exclusive logical disjunction. Differently, in [12], the authors
extend traditional algorithms to mine associations among item groups formed
by items in disjunction. Each group is generated by aggregating items on the
basis of their conceptual distance. The items are accommodated in a weighted
directed graph provided as background information, whereas the conceptual dis-
tance between two items is expressed as the weight of their relative edge. The
conceptual distance is thus exploited to aggregate two rules, which present con-
ceptually close items, into only one rule: the final rule will incorporate a group
of close items in relationship of disjunction and thus it will be more frequent.

Although the first approach allows to discover disjunctive patterns without
requiring background information about the items, it could join unrelated items
(e.g., 〈milk ∨ jackets〉) and then produce rules that are difficult to understand
and which do not exploit the potentialities of the disjunction of representing the
occurrence of at least one between two related events (e.g., 〈milk ∨ coffee〉).
An important common aspect of both approaches is that they work on tuples,
namely on items represented in form of attribute-value pairs which lead to con-
sider the disjunction only among the discrete, categorical or taxonomic values.
Although simple and reasonably more effective, this representation, also known
as propositional, can turn out to be too restrictive in applications where data
are naturally complex, and moreover, trasforming such data in tuples could
lead to information loss. Several studies in the literature have proved that in
those cases resorting to the relational representation [6] permits to directly deal
with the complex structure of data, to conduct a realistic investigation which
distinguishes the main subjects of analysis from other subjects as well as to
represent their interaction. Examples of such subjects can be found in spatial
analysis where the location and the extension of spatial objects define spatial



A Relational Approach for Discovering Frequent Patterns with Disjunctions 265

relations, such as those topological (e.g., the region A is contained in the region
B - contained in(A, B)), and spatial properties, such as those geometrical (e.g.,
shape of a region - rectangle shape(A)) [7]. Existing approaches to disjunctive
patterns discovery do not consider complex data, and, in particular, they ana-
lyze neither possible interactions among them nor the sets of possible descriptive
properties.

In this paper we propose a relational data mining approach for discover-
ing frequent patterns that include disjunctions. Patterns are represented in
terms of atoms [3]. The approach allows to mine frequent patterns with dis-
junctions among atoms that can express relations (e.g., contained in(A, B) ∨
overlaps(A, B)) or properties (rectangle shape(A) ∨ square shape(A)) of the
analyzed data. It extends an existing logic-based method for conjunctive pat-
tern mining [8] to the discovery of disjunctive patterns, where disjunctions are
generated among similar relations or properties. Similarity between relations or
properties is defined in the user defined background knowledge in form of con-
ceptual distance. The approach takes advantage of the representation and rea-
soning techniques developed in the field of inductive logic programming (ILP).
In particular, the expressive power of logic formalism is profitably used to rep-
resent relations, properties and background knowledge in the natural form of
n-ary logic predicates. This way of using the disjunction permits to combine the
occurrences of the involved relations in order to produce patterns with higher
frequency, that, potentially, can be more interesting.

The paper is organized as follows. In the next section, motivation and overview
of the proposed approach are presented. In Section 3, the approach is presented
in detail. In Section 4 experimental results on real world data are reported.
Finally, conclusions are drawn and future works are presented.

2 Motivation and Overview of the Approach

The motivation behind the usage of disjunctive forms is that the set of pat-
terns discovered with traditional approaches strongly depends on frequency-
based thresholds (e.g., support, confidence, lift) so, when these assume high
values, many interesting patterns are missed: conjunctions of atoms, for which
the considered statistical measure does not exceed the minimum thresh-
old, are ignored. The introduction of the disjunctive forms would permit
to include the atoms which occur simultaneously with or alternatively to
other atoms with the effect of increasing the values of the considered mea-
sures associated to the patterns. For instance, by supposing that the atom
overlaps(A, B) may occur also when contained in(A, B) does not occur, the
pattern 〈district(A), (contained in(A,B) ∨overlaps(A,B)), marketplace(B)〉 might
be frequent while both 〈district(A), contained in(A,B), marketplace(B〉 and
〈district(A), overlaps(A,B), marketplace(B〉 might not be frequent.

This advocates the starting point of our approach, which is that of con-
sidering infrequent conjunctive patterns. These patterns are re-evaluated and
extended to the disjunctive form by inserting disjunctions which involve atoms
already present in the patterns. Disjunctions are created among atoms which are



266 C. Loglisci, M. Ceci, and D. Malerba

semantically related in the application domain. The semantic relatedness is in-
tended as background knowledge on the atoms and permits us to numerically
quantify the dissimilarity or conceptual distance between atoms. It guarantees
that meaningful disjunctions are created. In this work we exploit the ILP system
SPADA [8] to identify infrequent conjunctive patterns, but this does not exclude
the possibility of using other methods for mining infrequent relational patterns
in the initial processing step.

The proposed approach follows a three-stepped procedure. First, it extracts
the infrequent conjunctive patterns which can be considered in disjunctive pat-
terns. In particular, the patterns whose frequency is lower than the classical
minimum threshold but exceeds a new ad-hoc threshold are selected. These
thresholds determine therefore the set of patterns to be extended to the
disjunctive form. Second, by following the main intuition proposed in [12], back-
ground knowledge is accommodated to exploit the information on the dissimilar-
ity among the atoms in the process of generation of disjunctive patterns. Third,
disjunctive patterns are produced by iteratively integrating disjunctions into the
patterns by means of a pair-wise joining. The final result consists of patterns,
in form of conjunctions of disjunctions of atoms, whose frequency is greater
than the traditional minimum threshold. For instance, given the patterns P1 :

〈district(A), contained in(A,B),marketplace(B)〉, P2 : 〈district(A), overlaps(A,B),

marketplace(B)〉 and let contained in(·, ·) and overlaps(·, ·) be two ”similar”
atoms according to the background knowledge, P1 and P2 can be joined in
〈district(A), (contained in(A,B) ∨ overlaps(A,B)), marketplace(B)〉.

Working in the relational setting adds additional sources of complexity to the
problem of joining patterns due to the linkedness property [9]. In fact, in the
relational representation atoms in a pattern are dependent each other due to the
presence of variables (differently from the items in the propositional representa-
tion [12]). In this work, patterns to be joined should differ in only one atom (if
the atoms are similar) and share the remaining atoms up to a redenomination of
variables. For instance, consider the patterns P1 : 〈district(A), contained in(A,B),

crossed by(A,C),marketplace(B)〉,P2 : 〈district(A),crossed by(A,B),overlaps(A,C),

marketplace(C)〉. The pattern 〈district(A), (contained in(A,B) ∨ overlaps(A,B)),

crossed by(A,C),marketplace(B)〉 can be extracted since B in contained in(A, B)
is involved in marketplace(B) of the first pattern, as well as C in overlaps(A, C)
is involved in marketplace(C) of the second pattern.

3 Mining Disjunctive Relational Patterns

Before formally defining the problem we face in this work, some notions are
necessary. In the relational setting, when handling complex data, different roles
can be played by different sorts of data. In our formulation complex data are
distinguished into target objects of analysis (TO) and non-target objects of
analysis (NTO). The former are data on which patterns are enumerated and
contribute to compute the frequency of a pattern, while the latter contribute to
define the former and they can be involved in a pattern. We denote the set of TO



A Relational Approach for Discovering Frequent Patterns with Disjunctions 267

as S and the sets of NTO by means of the sets Rk (1 ≤ k ≤M), where M is the
number of sorts of data that are not considered to be TO. NTOs, belonging to
a set Rk, can be organized hierarchically according to a user defined taxonomy.
Target objects and non-target objects are represented in Datalog language [3]
as ground atoms and populate the extensional part DE of a deductive database
D. A ground atom is an n-ary logic predicate symbol applied to n constants.

Some predicate symbols are introduced in order to express both properties
and relationships of TO and NTO. They can be categorized into four classes: 1)
key predicate identifies the TO in DE (e.g., in the examples above, district(·));
2) property predicates are binary predicates which define the values taken by
an attribute of a TO or of an NTO; 3) structural predicates are binary predi-
cates which relate NTO as well as TO with others NTO (e.g., in the examples
above, contained in(·,·)); 4) is a predicate is a binary taxonomic predicate which
associates NTO with a symbol contained in the user defined taxonomy.

The intensional part DI of the deductive database D includes the definition of
the domain knowledge that permits us to express the dissimilarity among atoms
in the form of Datalog weighted edges of a graph. An example of the Datalog
weighted edge is the following:

external touch to - (crosses - 0.88)

It states that the dissimilarity between the relationships external touch to(·,·)
and crosses(·,·) is 0.88. More generally, it represents an undirected edge e be-
tween two vertices vi, vj (e.g., external touch to, crosses) with weight wij (e.g.,
0.88) and it is denoted as e(vi, vj , w). A finite sequence of undirected edges
e1, e2,. . . ,em which links two vertices vi, vj is called path and denoted as ρ(vi, vj).
The complete list of such undirected edges represents the background informa-
tion on the dissimilarity among atoms and allows to join patterns by introducing
disjunctions (externa touch to(A,B) ∨ crosses(A,B)).

Discovered patterns are conjunctions of Datalog non-ground atoms and dis-
junctions of non-ground atoms, which can be expressed by means of a set no-
tation. A Datalog non-ground atom is an n-ary predicate symbol applied to n
terms (either constants or variables), at least one of which is a variable. A formal
definition of pattern of our interest is reported in the following:

Definition 1. A disjunctive pattern P is a set of atoms and disjunctions of
atoms p0(t10), (p1(t11, t21)|p2(t12, t22)|. . .),. . . , (pk(t1k, t2k)|. . . |pk+h(t1k+h, t2k+h)) where
p0 is the key predicate, while pi, i = 1, . . . , k + h, is either a structural predicate
or a property predicate or an is a predicate. Symbol “ | ” indicates disjunctions.

Terms tji are either constants, which correspond to values of property predicates,
or variables, which identify target objects or non-target objects. Each pi is a
predicate occurring in DE (extensionally defined predicate).

Some examples of disjunctive patterns are the following:
P1 ≡ district(A), (comes from(A,B)|external ends at(A,B)), shape(A,rectangle)

P2 ≡ district(A), (external ends at(A,B)|runs along boundary and goes in(A,B)),

transport net(A, roads)



268 C. Loglisci, M. Ceci, and D. Malerba

where the variables A denote target objects, and variables B denote some non-
target objects, while the predicates district(A) identify the key predicate in P1

and P2, shape(A, rectangle) and transport net(A, roads) are property predi-
cates and the others are structural predicates. All variables are implicitly exis-
tentially quantified.

We now can give a formal statement of the problem of discovering relational
frequent patterns with disjunctions:
1. Given: the extensional part DE of a deductive database D, and two thresholds
minSup ∈ [0; 1], nSup ∈ [0; 1], the former represents a minimum frequency value
while the latter represents maximum frequency value (nSup < minSup), Find:
the collection IR of the relational infrequent patterns whose support is included
in [nSup; minSup).
2. Given: the collection IR, the intensional part DI of a deductive database D,
and two thresholds minSup and γ ∈ [0; 1] (γ defines the maximum dissimilarity
value of atoms involved in the disjunctions), Find: relational disjunctive patterns
whose frequency exceeds minSup and whose dissimilarity of atoms involved in
the disjunctions does not exceed γ.

3.1 Mining Infrequent Conjunctive Patterns

The intuition underlying the discovery of pattern with disjunctions is that of ex-
tending infrequent conjunctive patterns with disjunctive forms until the threshold
minSup is exceeded. Each conjunctive pattern P is associated with a statistical
parameter sup(P, D) (support of P on D), which is the percentage of units of
analysis in D covered by P . More precisely, a unit of analysis of a target object
s ∈ S is a subset of ground atoms in DE defined as follows:

D[s] = is a(R(s)) ∪D[s|R(s)] ∪
⋃

ri∈R(s)

D[ri|R(s)], (1)

where R(s) is the set of NTO directly or indirectly related to s, is a(R(s)) is
the set of is a atoms which define the sorts of ri ∈ R(s), D[s|R(s)] contains
properties of s and relations between s and some ri ∈ R(s), D[ri|R(s)] contains
properties of ri and relations between ri and some rj ∈ R(s). By assigning a
pattern P with an existentially quantified conjunctive formula eqc(P ) obtained
by transforming P into a Datalog query, the units of analysis D[s] are covered
by a pattern P if D[s] |= eqc(P ), namely D[s] logically entails eqc(P )).

Conjunctive patterns are mined with SPADA which however enables the dis-
covery of relational patterns whose support exceeds minSup (frequent patterns).
SPADA performs a breadth-first search of the space of patterns, from the most
general to the more specific ones, and prunes portions of the space which contain
only infrequent patterns, which are the conjunctive patterns of our interest. The
pruning strategy guarantees that all infrequent patterns are removed and, at
this aim, uses a generality ordering based on the notion of θ-subsumption [11]:

Definition 2. P1 is more general than P2 under θ-subsumption (P1 $θ P2) if
and only if P1 θ-subsumes P2, i.e. a substitution θ exists, such that P1θ ⊆ P2.



A Relational Approach for Discovering Frequent Patterns with Disjunctions 269

For instance, given P1≡district(A), crosses(A,B), P2≡district(A), crosses(A,B),

is a(B, transport net), P3 ≡ district(A), crosses(A,B), is a(B, transport net),

along(A,C) we observe that P1 θ-subsumes P2 (P1 $θ P2) and P2 θ-subsumes
P3 (P2 $θ P3) with substitutions θ1 = θ2 = %. The generality order is mono-
tonic with respect to the pattern support, so whenever P1 will be infrequent the
patterns more specific of it (e.g., P2, P3) will be infrequent too.

The search is based on the level-wise method and implements a two-stepped
procedure: i) generation of candidate patterns with k atoms (k -th level) by con-
sidering the frequent patterns with k − 1 atoms ( (k-1 )-th level); ii) evaluation
of the frequency with k atoms. So, the patterns whose support does not exceeds
minSup will be not considered for the next level: the patterns discarded (infre-
quent) at each level are rather considered for the generation of disjunctions. The
collection IR is thus composed of a subset of infrequent patterns, more precisely
those with support greater than or equal to nSup (and less than minSup). A
detailed description on SPADA can be found in [8].

3.2 Extending Relational Patterns with Disjunctions

The generation of disjunctive patterns is performed by creating disjunctions
among similar atoms in accordance to the background knowledge: two patterns
which present similar atoms are joined to form only one. The implemented algo-
rithm (see Algorithm 1) is composed of two sub-procedures: the first one (lines
2-12) creates a graph GD with the patterns of IR by exploiting the knowledge
defined in DI , while the second one (lines 13-32) joins two patterns (vertices) on
the basis of the information (weight) associated to their edge.

In particular, for each pair of patterns which have the same length (namely,
at the same level of the level-wise search method) it checks whether they differ
in only one atom and share the remaining atoms up to a redenomination of
variables (line 3). Let α and β be the two atoms differentiating P from Q (α in
P, β in Q), a path ρ which links α to β (or viceversa) is searched among the
weighted edges according to DI : in the case the sum ω of the weights found in
the path is lower than the maximum dissimilarity γ the vertices P and Q are
inserted into GD and linked through an edge with weight ω (lines 4-9). Note that
when there is more than one path between α and β, then the path with lowest
weight is considered. Intuitively, at the end of the first sub-procedure, GD will
contain, as vertices, the patterns which meet the condition at the line 3, and
it will contain, as edges, the weights associated to the path linking the atoms
differentiating the patterns.

Once we have GD, a list LD is populated with the vertices and edges of GD: an
element of LD is a triple 〈P, Q, ω〉 composed of a pair of vertices-patterns (P,Q)
with their relative weight. Elements in LD are ranked in ascending order with
respect to the values of ω so that the pairs of patterns with lower dissimilarity
will be joined for first. This guarantees that disjunctions with very similar atoms
will be preferred to the others (line 13). For each element of LD whose weight ω
is lower than γ the two patterns P, Q are joined to generate a pattern J composed
by the conjunction of the same atoms in common to the two patterns P, Q and of



270 C. Loglisci, M. Ceci, and D. Malerba

(a) (b)

Fig. 1. Extending relational pattern with disjunctions: an example (γ=0.7)

the disjunction formed by the two different (but similar) atoms (lines 14-15). This
joining procedure permits to have patterns with the same length of the original
ones and which occur when at least one of original patterns occurs. Therefore,
if a pattern J is obtained by joining P and Q, it covers a set of units of analysis
equal to the union of those of P and Q: the support of J is determined as in line 16
and, generally, it is higher than the support of P and Q. In the case the support
of J exceeds minSup then it can be considered statistically interesting and no
further processing is necessary (lines 16-17). Otherwise, J is again considered
and inserted into GD as follows. The edges which linked another pattern R of GD
to P and Q are modified in order to keep the links from R to J: the weight of the
edges between one pattern R and J will be set to the average value of the weights
of all the edges which linked R to P and Q (lines 19-27). The modified graph
GD contains conjunctive patterns (those of IR) and pattern with disjunctions
(those produced by joining). Thus, GD is re-evaluated for further joins and the
algorithm proceeds iteratively (line 29-30) until no additional disjunctions can
be done (namely, when LD is empty or the weights ω are higher than γ). At
each iteration, the patterns P and Q are removed from GD (line 32).

An explanatory example is illustrated in Figure 1. Consider the background
knowledge DI on the dissimilarity among four atoms and the set IR containing
four infrequent conjunctive patterns as illustrated in Figure 1a and γ equal
to 0.7. The first sub-procedure of the algorithm 1 analyzes P1, P2, P3, P4 and
discovers that they differ in only one atom, while the other atoms are in common.
Then, it creates the graph GD by collocating P1, P2, P3 in three different vertices
and linking them through edges whose weights are taken from the paths ρ in
DI . P4 is not considered because the vertex overlaps has dissimilarity with
internal ends at higher than γ (row (1) in Figure 1b). The second sub-procedure
starts by ordering the weights of the edges: the first disjunction is created by
joining P1 and P3 given that the dissimilarity value is lower than γ and the
lowest (row (2) in Figure 1b). Next, the pattern so created and P2 are checked



A Relational Approach for Discovering Frequent Patterns with Disjunctions 271

Algorithm 1. Extending Relational Pattern with Disjunctions
1: input: IR,DI , γ,minSup output: J // J set of disjunctive patterns

2: for all (P,Q) ∈ IR × IR, Q �= P do
3: if P.length = Q.length and check atoms(P,Q) then
4: (α, β) := atoms diff(P,Q) //α, β atoms differentiating P,Q

5: if ρ(α,β) �= � then
6: ω :=

∑
e(vi,vj ,wij) in ρ(α,β)

wij

7: if ω ≤ γ then
8: addNode(P,GD); addNode(Q,GD); addEdge(P,Q, ω,GD)

9: end if
10: end if
11: end if
12: end for
13: LD ← edges of GD // list of edges of GD ordered in ascending mode w.r.t. ω
14: while LD �= � and ∀e(P,Q,ω) ∈ GD ω ≤ γ do
15: J ← join(P, Q); J.support := P.support+Q.support− (P ∩Q).support;
16: if J.support ≥ minSup then
17: J := J∪ {J}
18: else
19: for all R such that ∃ e(P,R, ω1) ∈ GD and ∃ e(Q,R, ω2) ∈ GD do
20: addEdge(R,J, (ω1 + ω2)/2, GD)

21: end for
22: for all R such that ∃ e(P,R, ω1) ∈ GD and � e(Q,R, ω2) ∈ GD do
23: addEdge(R,J, ω1,GD)

24: end for
25: for all R such that ∃ e(Q,R,ω2) ∈ GD and � e(P,R, ω1) ∈ GD do
26: addEdge(R,J, ω2,GD)

27: end for
28: LD ← edges of GD
29: update LD
30: end if
31: removeNode(P,GD); removeNode(Q,GD)

32: end while

for joining. Both have the same length and differ in only one atom. Although the
first presents a disjunction and the second presents a “simple” atom, dissimilarity
is lower than γ and a new disjunctive pattern is created (row (3) in Figure 1b).

4 Experiments

The described approach has been implemented as the upgrading of the system
SPADA to discover relational patterns with disjunctions: the system (afterwards
jSPADA) is now able to mine relational conjunctive patterns and disjunctive pat-
terns as well. The experiments were performed in order to evaluate the viability
of jSPADA and to compare it with SPADA from a quantitative and qualitative



272 C. Loglisci, M. Ceci, and D. Malerba

standpoint1. In this section we present the application of both systems in spatial
data mining [2] in order to discover statistical regularities in the spatial objects
which can be exploited in decision making for transportation planning.

More precisely, frequent relational patterns are mined from a dataset con-
cerning census and digital maps of Stockport, one of the ten districts in Greater
Manchester, to investigate the accessibility to the Stepping Hill Hospital from
the actual residence of people living within in the area served by the hospital. To
define the accessibility we used the Ordnance Survey data on transport network,
namely the layers of roads, railways and bus priority lines. Frequent patterns can
relate five areal spatial objects or districts (non-target objects) which are close to
the Stepping Hill Hospital with one-hundred and fifty-two districts distant from
the hospital (target objects) through the transport network lines (non-target
objects). DE contains 1147 ground atoms for 152 target objects.

Property predicates represent discretized numerical census data in TO and
describe the households (people) with car, more precisely these are: no car(),
one car(), two cars(), three more cars(). Structural predicates represent binary
topological relations between districts and roads, railways or bus lines, and cor-
respond to the twelve feasible relations between a region and a line according to
the 9-intersection model [7]. Here, background knowledge DI has been defined
on the structural predicates and the dissimilarity values have been manually
determined by applying the Sokal-Michener dissimilarity measure on the matrix
representation of the twelve relations[5]. In this sense, the goal of jSPADA is of
discovering disjunctive patterns defined among the twelve relations which can
express information otherwise discarded by SPADA.

Experiments were performed by tuning the thresholds minSup, nSup, γ and
the results are reported in Figure 2. A comparison between SPADA and jSPADA
has been conducted by varying minSup, while, for jSPADA, the values of nSup
and γ are set to 0.005 and 0.6 respectively. As we see the histogram values in
Figure 2a, jSPADA discovers an higher number of patterns than that of SPADA.
Indeed, jSPADA returns a set which includes those frequent conjunctive (gener-
ated by SPADA) and those disjunctive generated by re-evaluating the infrequent
conjunctive ones. Thus, as minSup increases, the range [nSup; minSup) becomes
wider and, generally, more disjunctive patterns are extracted while the number
of conjunctive frequent patterns decreases.

As expected, also the threshold nSup has influence on the patterns discovered
by jSPADA. Indeed, from the figures 2c, 2d (minSup = 0.025 and γ = 0.6) we
note that jSPADA is highly sensitive to nSup since the number of disjunctive pat-
terns is reduced of one order of magnitude (from 20 to 0) as nSup is increased by
factor of two (from 0.01 to 0.02). By comparing the plots a), c) and d) we note
that, by varyingminSup, have a limited capacity in unearthing infrequent patterns
(but potentially interesting) than when varying nSup. This confirms the viability
of the approach to discover new forms of interesting patterns. Another quantitative
analysis can be done with respect to the dissimilarity of the disjunctions (Figure
2b). At high values of γ disjunctions can be created also between atoms whose

1 Data and results are accessible at http://www.di.uniba.it/∼loglisci/jSPADA/



A Relational Approach for Discovering Frequent Patterns with Disjunctions 273

(a) (b)

(c) (d)

Fig. 2. Number of patterns discovered by tuning minSup, nSup, γ

similarity is small, so the patterns present disjunctions with several atoms and the
final set is larger. On the contrary, lower values of γ permit of identifying disjunc-
tions only between very similar atoms, so the disjunctions present less atoms and
the final set is smaller: when γ is set to 0.4 no disjunction is created since the min-
imum value of similarity between atoms amounted to 0.44.

A comparison between jSPADA and SPADA can also be done from a qual-
itative viewpoint. jSPADA enables the discovery of patterns which enrich the
information conveyed by the patterns of SPADA. For instance, the pattern dis-
covered by SPADA
P1 : district(A), comes from(A,B), is a(B, road), comes from(A,C), is a(C, road)

[support : 12%] is enriched by
P2 discovered by jSPADA:
P2 : district(A), [comes from(A,C)|external ends at(A,C)], is a(C, road),

comes from(A,B), is a(B, rail) [support : 16%]

which introduces the disjunctions comes from(A, C)|external ends at(A, C)
between two structural predicates. P2 expresses the information that the road
named as C can be connected to the district named as A through two possible
simultaneous or alternative ways, comes from(A, C) (C starts in A and termi-
nates outside A) and external ends at(A, C) (C starts outside A and terminates
inside A). Remarkably the support of P2 is higher than that of P1. jSPADA per-
mits also the discovery of completely novel patterns that SPADA neglects. One
of these is the following:
P3 : district(A), [external ends at(A,B)|along(A,B)|comes from(A,B)],

three more cars(A, [0.033; 0.114]) [support : 11.1%]



274 C. Loglisci, M. Ceci, and D. Malerba

which introduces a property predicate (i.e., the percentage of households owing
more three cars included in [0.033;0.114]) and expresses in the disjunction three
possible forms of accessibility to the district A by the transport line B.

5 Conclusion

In this paper we present a relational data mining approach that discovers fre-
quent patterns that consider disjunctive forms. We advocate to the relational
approach to properly deal with the complexity of real-world data. The approach
enables the discovery of disjunctive patterns by re-evaluating the infrequent con-
junctive patterns and extending them with disjunctions created through the ex-
ploitation of a background knowledge. We applied the algorithm to the domain
of the spatial analysis and the experimental results prove the advantages of the
proposed algorithm with respect to traditional algorithms of frequent pattern
mining. As future work, we intend to apply jSPADA to other domains.

Acknowledgement. This work is partial fulfillment of the research objectives
of the projects ”DM19410 - The Molecular Biodiversity LABoratory Initiative”
and ”ATENEO 2008 - Scoperta di conoscenza in domini relazionali”.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery

of association rules. In: Advances in Knowledge Discovery and Data Mining, pp.

307–328. AAAI/MIT Press (1996)

2. Appice, A., Ceci, M., Lanza, A., Lisi, F.A., Malerba, D.: Discovery of spatial as-

sociation rules in geo-referenced census data: A relational mining approach. Intell.

Data Anal. 7(6), 541–566 (2003)

3. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,

Heidelberg (1990)

4. Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Min.

Knowl. Discov. 3(1), 7–36 (1999)

5. Diday, E., Esposito, F.: An introduction to symbolic data analysis and the sodas

software. Intell. Data Anal. 7(6), 583–601 (2003)

6. Dzeroski, S., Lavrac, N.: Relational Data Mining. Springer, Heidelberg (2001)

7. Egenhofer, M.J., Franzosa, R.D.: Point set topological relations. International Jour-

nal of Geographical Information Systems 5, 161–174 (1991)

8. Lisi, F.A., Malerba, D.: Inducing multi-level association rules from multiple rela-

tions. Machine Learning 55(2), 175–210 (2004)

9. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg

(1987)

10. Nanavati, A.A., Chitrapura, K.P., Joshi, S., Krishnapuram, R.: Mining generalised

disjunctive association rules. In: CIKM, pp. 482–489. ACM Press, New York (2001)

11. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5, 153–163

(1970)

12. Roddick, J.F., Fule, P.: Semgram - integrating semantic graphs into association

rule mining. In: Proc. of AusDM, vol. 70, pp. 129–137 (2007)

13. Srikant, R., Agrawal, R.: Mining generalized association rules. In: VLDB, pp. 407–

419. Morgan Kaufmann, San Francisco (1995)



An Occurrence Based Approach to Mine
Emerging Sequences

Kang Deng and Osmar R. Zäıane

Department of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8

{kdeng2,zaiane}@ualberta.ca

Abstract. An important purpose of sequence analysis is to find the dis-

tinguishing characteristics of sequence classes. Emerging Sequences (ESs),

subsequences that are frequent in sequences of one group and less frequent

in the sequences of another, can contrast sequences of different classes and

thus facilitating sequence classification.Different approaches havebeen de-

veloped to extract ESs, in which various mining criterions are applied. In

our work we compare Emerging Sequences fulfilling different constraints.

By measuring ESs with their occurrences, introducing gap constraint and

keeping the uniqueness of items, our ESs demonstrate desirable discrim-

inative power. Evaluating against two mining algorithms based on sup-

port and no gap constraint subsequences, the experiments on two types of

datasets show that the ESs fulfilling our selection criterions achieve a satis-

factory classification accuracy: an average F-measure of 93.2% is attained

when the experiments are performed on 11 datasets.

Keywords: Emerging Sequences, Classification, Occurrence Count.

1 Introduction

Sequence comparison is an significant Data Mining Task [4], where the distin-
guishing subsequences play an important role in the contrast. Given two sequence
groups, Emerging Sequences (ESs) is defined as subsequences that are frequent
in sequences of one group and less frequent in the sequences of another, and
thus distinguishing or contrasting sequences of different classes [3]. With the
discriminative power of emerging sequences, prediction models trained by using
ESs perform well and achieve satisfactory classification accuracies on labeling
sequence instances.

Different approaches have been developed to extract ESs, in which various
mining criterions are applied. For instance, in bioinformatics, researchers align
genome by using substrings [7], in which, items have to appear immediately next
to each other in the original sequence. However, Lo et al. [8] removed the restric-
tion that related events must occur close together in a sequence, i.e. the distance
between two events could be arbitrarily large. Furthermore, most sequential
mining algorithms regard support of features (the number of transactions that
contain the feature) as the selection standard, while the total occurrence of the
feature is also crucial.

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 275–284, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



276 K. Deng and O.R. Zäıane

In our research, we compare Emerging Sequences fulfilling different constraints
and try to find the important factors for ESs. Besides the frequency distinction,
we discover that the following criterions are also significant in the sequence
classification:

– Occurrences of subsequences are more informative than supports.
– Items are unique (i.e. not repeated) in a given subsequence.
– Any two adjacent items in the subsequence should be close in the original

sequence.

To mine subsequences fulfilling the above conditions, we provide an algorithm
as well as a pruning strategy based on a previous work [6]. After ES candidates
are extracted, we perform feature selection by F-ratio [10], by which the distin-
guishing subsequences are selected to represent the original sequence groups. To
evaluate the discriminative power of emerging sequences, a SVM classifier [2] is
trained by using ESs to classify sequence instances. In this learning framework,
higher prediction accuracy indicates better emerging sequences.

For comparison, we perform controlled experiments on two recent and well-
known sequence mining algorithms. One algorithm, ConsGapMiner [6] can con-
trol the gap between related events, while another algorithm [8] removes the
gap constraint and extracts iterative patterns. We choose two types of datasets,
one is the UNIX user command sequences [1], the other is a software behavior
history [9].

The experiments demonstrate the effectiveness of our emerging sequences:
the classifier based on ESs outperforms the other two baseline algorithms. The
prediction accuracy measured by the average F-measure is 93.2% when the ex-
periments are performed on 11 datasets. On the datasets CVS-Omission and
MySQL [9], our model perfectly labels the sequences with a prediction accuracy
of 100%.

In the next section, we introduce some terminology. In Section 3, we describe
the sequence mining algorithm and the feature selection strategy. We present the
prediction performance of our proposed approach in Section 4. Finally, Section 5
presents our conclusions.

2 Preliminaries

Let I = {i1, i2, . . . , ik} be a set of all items, or the alphabet, a sequence is
an ordered list of items from I. Given a sequence S = 〈s1, s2, . . . , sm〉 and a
sequence S′ = 〈s′1, s′2, . . . , s′n〉, we say that S′ is a subsequence of S or S contains
S′, denoted as S′ � S, if there exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m such
that s′1 = sj1 , s′2 = sj2 , . . ., s′n = sjn .

Definition 1 (Subsequence Occurrence). Given a sequence S = 〈s1, . . . , sn〉
and a subsequence S′ = 〈s′1, s′2, . . . , s′m〉 of S, an occurrence of S′ is a sequence
of indices {i1, i2, . . . , im}, whose items represent the positions of elements in S.

For instance, if sequence S = 〈B, C, B, C, A, C〉, and its subsequence S′ =
〈B, C〉. There are 5 occurrences of S′ in S: {1, 2}, {1, 4}, {1, 6}, {3, 4} and
{3, 6}.



An Occurrence Based Approach to Mine Emerging Sequences 277

Definition 2 (Gap Constraint). The gap constraint is specified by a positive
integer g. In a subsequence occurrence os = {i1, i2, i3, . . . , im}, the difference of
any two adjacent indices is ik+1− ik. If ik+1− ik ≤ g + 1, we say the occurrence
os fulfills the g-gap constraint.

For example, if g = 1, the occurrences of S′ {1, 2} and {3, 4} fulfill the 1-gap
constraint (also 0-gap) but {1, 4}, {1, 6} and {3, 6} do not.

Definition 3 (Support and Occurrence Count). Given a sequence dataset
Dc, where c is a class label, Dc consists of a set of sequences. The support of
a subsequence α is the number of sequences in Dc that contain α, while the
occurrence count is the number of non-overlapping occurrences of α in Dc.

For example, in Table 1, if the gap constraint is 1, the support of the sequence
α = 〈a, b〉 in Dpos is 3, meaning all sequences contain α while fulfilling 1-gap
constraint. The occurrence count of α is 4, because α appears twice in Sequence
1. One thing we need to notice is that the total occurrences of α fulfilling 1-gap
constraint in Sequence 1 is 5. However, some of them are overlapped, so the
non-overlapping count is 2.

In this paper, related support and count, denoted as support(α,Dc) and
count(α,Dc) respectively, are used to measure the frequency of subsequences.
As for the example above, support(α,Dc) = 3

3 and count(α,Dc) = 4
3 .

Table 1. A sequence dataset example

sequence ID sequences labels

1 aabbcab pos
2 cadb pos
3 bcab pos

4 acabd neg
5 bda neg

The notion of Emerging Sequences (ESs) was introduced by Zäıane et al. [11],
here we generalize this notion and define:

Definition 4 (Emerging Sequences). Given two contrasting sequence classes,
Emerging Sequences (ESs) are subsequences that are frequent in sequences of one
group and less frequent in the sequences of another, and thus distinguishing or con-
trasting sequences of different classes.

3 Sequence Mining and Feature Selection

To distinguish one group of sequence data from another, representative subse-
quences must be extracted. In this section, we explain how we first extract the
ES candidates; then implement a dynamic feature selection to mine the most
discriminative subsequences.



278 K. Deng and O.R. Zäıane

3.1 Mining Criterion

To mine the representative subsequences, one fundamental question is:“what
kind of sequences should we choose?” An essential selection criterion is that fea-
tures should be discriminative. LetDpos andDneg be two classes of sequences; the
occurrence counts of a ES candidate α in both classes, denoted as count(α,Dpos)
and count(α,Dneg), need to meet the following conditions:

count(α,Dpos) > θ (1)

count(α,Dneg) ≤ θ (2)

where θ is the minimum count threshold.
Instead of supports, we use the occurrence counts of subsequences to mea-

sure their discriminative power, because repetitive features within a sequence is
important. For instance, a UNIX user may repeatedly type the same command
pattern within one session.

Another mining principle we apply is that items are unique in one sequence
pattern. Since the multiple occurrences of patterns in each original sequence are
counted, it is not necessary to consider subsequences with repetitive items.

The last standard is that items have to appear closely with each other in the
original sequence, as items far apart are less relevant in the decision making. An
example is the relationships between words in a long sentence. A verb probably
serves as the predicate of a subject if they are close to each other. Therefore,
gap constraints need to be considered in subsequence mining.

3.2 ES Candidates Extraction

To control the gap constraint when mining emerging sequences, our mining
model is based on a previous work, ConsGapMiner [6]. In their approach, how-
ever, they choose support as the selection criterion, and items are not unique in
the sequence pattern.

Fig. 1. Candidate Generation Tree



An Occurrence Based Approach to Mine Emerging Sequences 279

We enumerate ES candidates by a Depth First Search. Given an ES candi-
date, an item from the vocabulary is appended at the ending of the current
subsequence, so a new candidate is generated. Figure 1 shows the candidate
generation tree. Given a vocabulary I = {a, b, c, d}, the root of the tree is an
empty set. For a subsequence 〈a〉, if it fulfills the discriminative conditions 1, 2
and the gap constraint, three new candidates are generated by appending b, c
and d respectively. Sequence pattern 〈a, a〉 is not taken into consideration, be-
cause items ought to be unique in our emerging sequences. This pruning strategy
can greatly reduce the searching space and improve the scalability of the tree
generation algorithm.

3.3 Support Calculation

Given an ES candidate, the next problem is to validate if the candidate fulfills the
discriminative conditions and the gap constraint. In [6], a bitset operation-based
algorithm is proposed because the bit is the basic operation unit in computers.

A bitset is a sequence of bits which each takes the value 0 or 1, indicating
the subsequence occurrences in the original sequence. The bitset of the length-1
subsequence is easy to generate, i.e. 1 indicates the appearance of the item, while
other digits are 0s. Given the sequence 〈aabbcab〉, the bitset of the subsequence
〈a〉 is simply 1100010. And the occurrence count of a length-1 subsequence is
also straightforward: it is the number of 1s in the bitset and the gap constraint
is irrelevant. Therefore, the occurrence count of 〈a〉 is 3.

For a subsequence whose length is larger than 1, the calculation of its oc-
currence count is more complicated, because the gap constraint is taken into
account. It has three steps:

1. Perform right shift operation on the bitset of its parent to generate the mask
bitset.

2. Attain the subsequence bitset by AND operation.
3. Calculate the occurrence count based on the bitset.

The first step is to generate the mask bitset by the parent of the target subse-
quence. From the last example, given a subsequence α = 〈a, b〉, the bitset of its
parent αp = 〈a〉 is known. To calculate the mask bitset when the gap constraint
is g, we right shift the bitset of αp for g + 1 times, then perform OR operation
on the results. As the bitset of αp is 1100010, the process is as follows:

1100010 >> 0110001
0110001 >> 0011000

OR >> 0111001

So the mask bitset is 0111001.
Based on the mask bitset and the bitset of the last item of α, the bitset of

α is generated by ANDing them. Taking the last example, the mask bitset is
0111001 and the bitset of 〈b〉 is 0011001, by ANDing them:



280 K. Deng and O.R. Zäıane

0111001
0011001

AND 0011001

the bitset of α = 〈a, b〉 is 0011001.
Finally, it is the calculation of the occurrence count. Since there is more than

one item in the subsequence, we cannot simply count the number of 1s in the
bitset. Given a bitset and a gap constraint g, for each 1 in the bitset, the following
g digit(s) must be set to 0. Then the occurrence count is the number of 1s in
the bitset. For the last example, the bitset 0011001 is converted to 0010001, so
the occurrence count of the pattern α = 〈a, b〉 in the sequence 〈aabbcab〉 is 2.

3.4 Feature Selection

By combining the candidate generation tree and the bitset operation, numerous
ES candidates are extracted. In this subsection, we refine the result and select
the most discriminative subsequences as ESs.

Given several sequence groups {G1,G2, . . . ,Gm} and a set of subsequences
{s1, s2, . . . , sk}, the objective is to find the most discriminative subsequences.
For an ideal emerging sequence, its occurrence counts in several groups should
differ greatly, i.e. the variance between groups should be much larger than that
within each group. To solve this classic analysis of variance (ANOVA) problem,
we apply F-ratio to measure the discriminative power:

F − ratio =
MSbetween

MSwithin
(3)

where MSbetween is the mean square (variance estimate) explained by the dif-
ferent groups, and MSwithin is mean square (variance estimate) that is due to
chance (unexplained). Given the number of groups m and the total number of
sequences N , MSbetween and MSwithin are defined as:

MSbetween =
∑

i ni(ci − c)2

m− 1
(4)

MSwithin =

∑
ij(cij − ci)2

N −m
(5)

where ni is the number of sequences in group i, cij is the occurrence count in
the jth sequence of the ith group, ci is the mean of the occurrence counts in
Group i, and c is the mean of those for all samples. As m and N are fixed for
all subsequences, the F-ratio can be simplified as:

F − ratio =
∑

i ni(ci − c)2∑
ij(cij − ci)2

(6)

From Equation 6, we can see that, for an ES candidate, when the variance of
the occurrence count between groups is large and that within groups is small,



An Occurrence Based Approach to Mine Emerging Sequences 281

its F-ratio become large. Based on the F-ratio, we rank the ES candidates, and
the highly-ranked ones are more discriminative.

To avoid numerous ESs, we then perform a dynamic feature selection strat-
egy [5], i.e. only the top-m subsequences, based on F-ratio, are kept. It guarantees
that each sequence can be represented by at least m ESs (the high-ranked ones)
and the database does not become too large due to the possible sheer number
of candidate subsequences.

4 Experimental Results

In the last section, emerging sequences are selected by our occurrence count
based mining framework. To verify the discriminative power of ESs, we then
perform the controlled experiments on ESs.

4.1 Evaluation Methodology

To perform the experiments, the sequence datasets are transformed to transac-
tional datasets in order to be in a suitable form for learning algorithms, i.e. each
sequence is represented by a set of attribute-value pairs, where the attribute
represents an emerging sequence, and the value is its occurrence count in this
sequence. Then, a classifier is trained by using the transactional datasets. In
this paper, we choose a well-developed classification package LIBSVM [2] as the
prediction model. Finally, we perform a 6-folder cross validation on the classifi-
cation framework. The average prediction accuracy, represented by f-measures,
indicates the performance of the selected features.

For comparison, we chose two other recent and well-known mining algorithms
to extract different features from the original datasets:

– Minimal Distinguishing Subsequences (MDSs): this kind of sequences are
mined by ConSGapMiner [6]. There are two main differences between MDSs
and our ESs: 1. they use support as the selection criterion, while occurrence
count is applied in our mining model. 2. Items are unique in ESs but can be
repetitive in MDSs.

– Iterative Patterns (IPs) [8]: IPs achieve satisfactory performance on classi-
fying software behaviour sequences. As opposed to our ESs, they remove the
restriction that related events must occur close together in a sequence, i.e.
the distance between two events could be arbitrarily large.

These two kinds of features are selected and used in the validation framework
above. By comparing the prediction accuracies of those features, we can verify
the effectiveness of our selection criterions:

– Occurrences of subsequences are more informative than supports.
– Items are unique in the subsequences (i.e. not repeated).
– Any two adjacent items in the subsequence should be close in the original

sequence.



282 K. Deng and O.R. Zäıane

4.2 UNIX User Command Dataset

The first type of datasets we use is the UNIX user commands dataset from the
UCI Machine Learning Repository [1]. It contains 9 sets of sanitized user data
drawn from the command histories of 8 UNIX computer users at Purdue Univer-
sity. This dataset only keeps command names, flags, and shell meta characters,
while removing filenames, user names, directory structures etc. For each user,
we select 100 sequences. In each experiment, two users’ commands are chosen,
and the F-measures and standard deviations are presented in Table 2.

Table 2. Classification performances on the UNIX dataset

Datasets Length Size MDSs IPs ESs

user 0 and 1 28 176 0.770 ± 0.053 0.776 ± 0.065 0.806± 0.048
user 1 and 8 33 268 0.938 ± 0.045 0.959± 0.024 0.958 ± 0.035
user 2 and 3 39 231 0.970 ± 0.018 0.948 ± 0.078 0.965 ± 0.032
user 3 and 6 36 231 0.918 ± 0.058 0.913 ± 0.044 0.929± 0.044
user 5 and 6 49 278 0.865 ± 0.092 0.865 ± 0.060 0.903± 0.062
user 5 and 7 44 284 0.908 ± 0.028 0.905 ± 0.031 0.920± 0.029

In Table 2, column Length represents the average sequence length of this
user pair, while column Size means the vocabulary size. We observe that the
prediction accuracy of our ESs-based approach is comparable or better than the
other two features. This demonstrates that our selection criterions are effective
with various average sequence length and vocabulary size.

4.3 Software Behaviour Dataset

The second type of datasets is the set of software behaviour sequences. Software
behavior is the way a program executes. From the start of the program until its
termination, the execution events are recorded. A software behaviour, composed
by a sequence of normal individual execution events, could be broken down by
their interaction in an undesirable order. Therefore, the objective of the analy-
sis is to distinguish deviant software behaviours from regular ones by sequence
mining.

Lo et al. [8] focus on this type of data and proposed Iterative Patterns (IPs)
mining algorithm, which achieves satisfactory performance and improves the
prediction accuracy greatly. So in this subsection, we focus on the comparison
between IPs and ESs. The same datasets as in [8] are chosen to perform the
experiment. For more information about the dataset, please refer to [8].

Table 3 presents the comparison between the IPs-based and the ESs-based
SVM classifiers. Compared with IPs which was designed specifically for software
behaviour datasets, our emerging sequences also achieve satisfactory classifica-
tion accuracy.



An Occurrence Based Approach to Mine Emerging Sequences 283

Table 3. Classification performances on the software behaviour dataset

Datasets Length Size IPs ESs

CVS-Mix 9 16 0.935 ± 0.060 0.945± 0.058
CVS-Omission 10 16 1 ± 0 1 ± 0

CVS-Ordering 9 16 0.857 ± 0.031 0.951± 0.032
MySQL 24 16 1 ± 0 1 ± 0

X11 4 8 0.979± 0.015 0.888 ± 0.024

5 Conclusion

In this paper, we focus on Emerging Sequences (ESs), which are frequent in
sequences of one group and less frequent in the sequences of another, and thus
distinguishing or contrasting sequences of different classes. After comparing ESs
of various characteristics, we find that: 1. the occurrence count can measure
the discriminative power of ESs more precisely; 2. the uniqueness of items in a
subsequence is important; 3. the gap constraint is relevant in the decision making.
A mining model is proposed to extract ESs fulfilling our selection criterions.

The experiments demonstrate the effectiveness of our emerging sequences: an
average F-measure of 93.2% is achieved when the experiments are performed on
11 datasets. In the datasets CVS-Omission and MySQL [9], our model perfectly
labels the sequences with a prediction accuracy of 100%.

However, since our candidate generation algorithm is based on the Depth First
Search Tree, the scalability of our current approach is not desirable. As a future
work, we are looking into the possibility of a more efficient mining algorithm
or pruning strategies, while preserving and potentially improving the prediction
accuracy of the classification model.

Acknowledgement

The execution program and datasets for the iterative patterns were provided by
the original author, Dr. Lo et al. We would like to acknowledge their help in this
regard.

References

1. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

2. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001),

http://www.csie.ntu.edu.tw/~cjlin/libsvm

3. Deng, K., Zäıane, O.R.: Contrasting sequence groups by emerging sequences. Dis-

covery Science, 377–384 (2009)

4. Han, J., Kamber, M.: Data Mining, Concepts and Techniques. Morgan Kaufmann,

San Francisco (2001)

5. Jazayeri, S.V., Zäıane, O.R.: Plant protein localization using discriminative and

frequent partition-based subsequences. In: ICDM Workshops, pp. 228–237 (2008)

http://www.csie.ntu.edu.tw/~cjlin/libsvm


284 K. Deng and O.R. Zäıane

6. Ji, X., Bailey, J., Dong, G.: Mining minimal distinguishing subsequence patterns

with gap constraints. Knowl. Inf. Syst. 11(3), 259–286 (2007)

7. Kurtz, S.: Reputer: fast computation of maximal repeats in complete genomes

(1995)

8. Lo, D., Cheng, H., Han, J., Khoo, S.-C.: Classification of software behaviors for

failure detection: A discriminative pattern mining approach. In: KDD (2009)

9. Lo, D., Cheng, H., Han, J., Khoo, S.-C.: Technical report, School of Information

Systems, Singapore Management University (2009),

http://www.mysmu.edu/faculty/davidlo/kdd09.htm

10. Lomax, R.G., Hahs-Vaughn, D.L., Lomax, R.G.: Statistical Concepts: A Second

Course, 3rd edn. Routledge, New York (2007)

11. Zäıane, O.R., Yacef, K., Kay, J.: Finding top-n emerging sequences to contrast

sequence sets. Technical Report TR07-03, Department of Computing Science, Uni-

versity of Alberta (February 2007)

http://www.mysmu.edu/faculty/davidlo/kdd09.htm


Mining Closed Itemsets in Data Stream Using
Formal Concept Analysis

Anamika Gupta, Vasudha Bhatnagar, and Naveen Kumar

Department of Computer Science, University of Delhi, India

{agupta,vbhatnagar,nk}@cs.du.ac.in

Abstract. Mining of frequent closed itemsets has been shown to be more

efficient than mining frequent itemsets for generating non-redundant asso-

ciation rules. The task is challenging in data stream environment because

of the unbounded nature and no-second-look characteristics.

In this paper, we propose an algorithm, CLICI, for mining all recent

closed itemsets in landmark window model of online data stream. The

algorithm consists of an online component, which processes the transac-

tions arriving in the stream without candidate generation and updates

the synopsis appropriately. The offline component is invoked on demand

to mine all frequent closed itemsets. User can explore and experiment by

specifying the support threshold dynamically.

The synopsis, CILattice, stores all recent closed itemsets in the stream.

It is based on Concept Lattice - a core structure of Formal Concept

Analysis (FCA). Closed itemsets stored in the form of lattice facilitate

generation of non-redundant association rules and is the main motivation

behind using lattice based synopsis.

Experimental evaluation using synthetic and real life datasets demon-

strates the scalablility of the algorithm.

Keywords: Closed Itemsets, Data Stream, Landmark Window Model

Formal Concept Analysis.

1 Introduction

A data stream is an unbounded sequence of data often coming at a high speed.
The problem of mining data stream is more challenging than mining static
datasets in view of following aspects[2,3,10]. First, stream is a continuous flow
of data and hence data must be processed at a rate faster than its arrival. Sec-
ond, each element of stream must be examined only once. Third, memory usage
should be bounded even though the stream is continuously growing. Further, the
results should be instantly available in real time and error in the results, if any,
should be bounded. Since stream evolves with time, capturing recent information
is another vital issue in data stream mining.

Mining of frequent itemsets (FI) for association rules has been studied exten-
sively in both static datasets [6] and data stream [3]. Researchers have recently
explored the idea of mining frequent closed itemsets (FCI) instead of frequent
itemsets for discovering non-redundant association rules [11,12,16]. Set of FCI

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 285–296, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



286 A. Gupta, V. Bhatnagar, and N. Kumar

has been shown to be a complete, loss-less and reduced representation of set
of FI [11]. Mining FCI instead of FI saves computation efforts and memory us-
age. Several algorithms like Closet, CHARM, Closet+, CHARM-L, FP-Close,
DCI-Closed [6] have been proposed to generate FCIs in static datasets.

Mining frequent closed itemsets in data stream throws newer challenges. Since
every transaction in stream is a closed itemset [13], it leads to addition of at
least one entity in the synopsis. The computational challenge is an immediate
consequence of the large size of the synopsis and may result into loss of data
because of higher per-transaction-processing time.

Traditionally, algorithms for mining frequent closed itemsets (FCI) in data
stream use either sliding window model [4,7,9,14] or landmark window model
[10] to meet the dual objective of ’maintaining recency’ and ’constrained memory
usage’. Sliding window model constrains the size of the synopsis by fixing the
number of transactions in the window, leading to nearly constant per transaction
processing time. However, the model falls short of monitoring the continuous
variation of data stream.

Landmark window model considers entire data starting from a particular land-
mark to the curent time [2]. Although this model enables monitoring of gradual
changes in the data stream, capturing recent data and keeping the size of syn-
opsis under control is a challenging task.

State of the Art. Moment [14], CFI-Stream [7], NewMoment [9] and GC-
Tree [4] are some of the known algorithms for mining FCI in sliding window
model of data stream. Moment, CFI-Stream, and GC-Tree algorithms store cur-
rent transactions in a memory based window. On arrival of a new transaction,
these algorithms make multiple scans of the window for finding support of dis-
covered itemsets. NewMoment stores bitwise representation of all the transac-
tions along with 1-itemsets to find support of itemsets. Moment and CFI-Stream
generate all candidates while processing new transaction, leading to increased
per-transaction-processing time.

To the best of our knowledge, FP-CDS [10] algorithm has been recently pro-
posed for discovery of frequent closed itemsets in landmark window model. The
algorithm works in a batch mode, dividing the landmark window into several ’ba-
sic’ windows, using them as updating units. However, in this process it ignores the
recency of discovered itemsets. Recency in landmark window model has been han-
dled by estDec [2], an algorithm for mining frequent itemsets. The effect of older
transactions is diminished by decaying their old occurences and later pruning the
decayed ones periodically, thus maintaining only the recent data.

Formal Concept Analysis Technique. Recently, data mining researchers
have exploited Formal Concept Analysis(FCA), a field of applied mathematics
[5], for discovery of closed itemsets. Zaki [16], Pasquier et al. [11] and Stumme
et al. [12] proved that intent of concept (section 2) represents closed itemset and
all concept generating algorithms generate closed itemsets as well. FCA based
algorithms generate all the concepts (closed itemsets) and have been shown to
work well on small datasets [8,15].



Mining Closed Itemsets in Data Stream Using Formal Concept Analysis 287

Substantial reduction in the set of generated rules is the main motivation
for exploring concept lattice in association rule mining. FCA based mining al-
gorithms store the closed itemsets in the form of a concept lattice. Concept
lattice facilitates the efficient generation of non-redundant association rules [16].
One look characteristic of the updation algorithms for concept lattice is another
advantage of using lattice in discovery of closed itemsets.

High memory and computational requirement of FCA based algorithms pro-
hibits their use in data stream environment. Each node of the concept lattice
stores the extent (set of transactions) alongwith the intent (closed itemset) which
contribute to high memory usage. Further, processing of a new transaction in-
volves computation of intersection of its extent with extent of different nodes in
the lattice making it computationally expensive.

Further, decaying and pruning away older data to capture recent changes in
the dataset has not been addressed in these algorithms and hence makes them
unsuitable for data stream.

Our Contribution. In this paper, we present an algorithm for mining recent
closed itemsets in landmark window model of on-line data stream. The proposed
algorithm has an online component that processes the transactions without can-
didate generation and stores the results in a synopsis data structure. Offline
component is invoked on demand and mines the closed itemsets from the synop-
sis based on dynamically specified support threshold. The salient features of the
proposed algorithm CLICI (Concept Lattice based Incremental Closed Itemset)
are listed below:

1. The algorithm mines all recent closed itemsets in landmark window model
of online data stream. It fades out the obsolete information of old trans-
actions using a decay function and later prunes the decayed information,
thereby ensuring the recency of closed itemsets and in turn keeping size of
the synopsis under control.

2. The algorithm processes the transactions without any candidate generation.
3. The algorithm is based on sound mathematical foundation of Formal Con-

cept Analysis and stores the closed itemsets in a lattice based synopsis,
CILattice. Following advantages accrue due to use of lattice based synopsis.
(a) Generation of non-redundant association rules is naturally facilitated.
(b) Data is scanned only once for maintaining the synopsis.
(c) Only closed itemsets are stored in CILattice, unlike concept lattice where

set of transactions are stored additionally.
4. CILattice maintains all closed itemsets, thereby providing a valuable facility

for experimentation with varying support threshold without any overhead.
5. Experimental evaluation using synthetic and real life datasets demonstrates

the scalablility of the algorithm.

The remainder of this paper is organized as follows. Section 2 defines closed item-
sets and presents the background of Formal Concept Analysis (FCA). Section 3
describes the algorithm in detail for mining closed itemsets in landmark window
model. Section 4 presents the experimental results and section 5 concludes the
paper.



288 A. Gupta, V. Bhatnagar, and N. Kumar

2 Background

Given a database D of N transactions and a set I of n items in D. A transaction
t ∈ D is a set of items and is associated with a unique identifier TID. A set of
one or more items belonging to I is termed as an itemset. A k − itemset is an
itemset of cardinality k. An itemset X is frequent closed itemset (FCI) if
it is frequent and there exists no proper superset Y of X such that support of
Y is same as that of X .

Formal Concept Analysis.Following Ganter and Wille [5], we give some def-
initions and a theorem used in the paper.

Definition 1. A formal context K = (G, M, I) consists of two sets G (objects)
and M (attributes) and a relation I between G and M . For a set X ⊆ G of
objects, the set of all attributes common to the objects in X is defined as X ′ =
{m ∈ M |gIm for all g ∈ X} . Correspondingly, for a set Y of attributes, the set
of objects common to the attributes in Y is defined as Y ′ = {g ∈ G|gIm for all
m ∈ Y }. A formal concept of the context (G, M, I) is a pair (X, Y ) with X ⊆ G,
Y ⊆ M , X ′ = Y and Y ′ = X. X is called the extent and Y is the intent of the
concept (X, Y ).

Definition 2. If (X1, Y1) and (X2, Y2) are concepts of a context, (X1, Y1) is
called a subconcept of (X2, Y2), provided that X1 ⊆ X2 (which is equivalent to
Y2 ⊆ Y1). In this case, (X2, Y2) is a superconcept of (X1, Y1) and we write
(X1, Y1) ≤ (X2, Y2). The relation ≤ is called the hierarchical order of the con-
cepts. The set of all concepts of (G, M, I) ordered in this way is called the concept
lattice of the context (G, M, I).

Definition 3. For an object g ∈ G, g′ = {m ∈ M |gIm} is object intent of g.
Correspondingly, m′ = {g ∈ G|gIm} is the attribute extent of the m.

Theorem 1. Each Concept of a context (G, M, I) has the form (X ′′, X ′) for
some subset X ⊆ G and the form (Y ′, Y ′′) for some subset Y ⊆ M . Conversely
all such pairs are Concepts. This implies every extent is the intersection of at-
tribute extents and every intent is the intersection of object intents.

For proof of the theorem, please refer to [5].

3 CLICI Algorithm

CLICI algorithm mines all recent closed itemsets without candidate generation
in landmark window model of data stream. Use of landmark window model
facilitates continuous monitoring of changes in the stream. Maintaining all recent
closed itemsets allow user to experiment with varying support thresholds. The
algorithm has an online component that processes the transactions in stream and
stores the results in a synopsis called CILattice. The algorithm inserts the new
transaction in the lattice, if not already there. Offline component is invoked on
demand and mines the closed itemsets from the synopsis based on dynamically
specified support threshold.



Mining Closed Itemsets in Data Stream Using Formal Concept Analysis 289

3.1 Terminology and Data Structure

Let DN denote the current data stream with N transactions seen so far and I
denote the set of n items in DN . The incoming transactions are inserted in a
data structure, CILattice, which has two components i) a lattice L ii) header
table Itable. L is a complete lattice, with topnode & and bottom node ⊥. A
node X of L represents a closed itemset IX and stores its frequency fX along
with links to its parents and children nodes. Itable is an array storing items and
pointers to the nodes corresponding to first occurrence of that item in L, which
aids efficient traversal during search and insert procedure. The definitions and
observations used later in the algorithm are given below:

Let A(X), D(X), P (X) and C(X) denote the set of ancestors, descendants,
parents and children respectively of the node X in L.

Definition 4. A node X is ancestor of node Y iff IX ⊂ IY (IX 	= IY ).

Definition 5. A node X is descendant of node Y iff IX ⊃ IY (IX 	= IY ).

Definition 6. A node X is parent of a node Y if X ∈ A(Y ) and 	 ∃ any Z ∈
A(Y ) : X ∈ A(Z) and Z 	= X.

Definition 7. A node X is a child of node Y if X ∈ D(Y ) and 	 ∃ any Z ∈
D(Y ) : X ∈ D(Z) and Z 	= X.

It is obvious from the above definitions that ancestor nodes are generalizations
of the descendant nodes. Further, parents of a node are its immediate ancestors
(generalizations) and children of a node are its immediate descendants (special-
izations).

Observation 1. If node X has a child node Y in L then closed itemset of Y
is minimal superset of all descendants of X. Similarly closed itemset of X is
maximal subset of all ancestors of Y .

Definition 8. First Node Fi of an item i is a node X in the L where i ∈ IX

and 	 ∃ a node Y such that i ∈ IY and Y ∈ A(X).

Naturally there is exactly one Fi for each item i ∈ I and Itable stores the
pair (i, Fi). Fig. 1 shows a toy database and the corresponding data structure
< L, IT able >.

Example 1. Fig. 1 shows a toy database and the corresponding < L, Itable >.

3.2 Capturing Recent Closed Itemsets

CLICI algorithm maintains all closed itemsets starting from the set landmark
point. The effect of older transactions is diminished by decaying their old oc-
curences and later pruning the decayed ones, thus maintaining only the recent
closed itemsets. This feature controls the size of lattice also.



290 A. Gupta, V. Bhatnagar, and N. Kumar

a

b

c

d

e

abde

acd

,5

a,4 b,3

ac,2 ad,3 ab,2 be,2

abc,1

abcde,0

abde,1acd,1

TID Items

1 abc

2 ad

3 be

4

5

item Fi

φ

(a) (b)

(c)

A(X) = 

D(X) = (abc,1) (abde,1) (abcde,0)

(a,4) (b,3) (φ,5)

P(X) = (a,4) (b,3)

C(X) =  (abc,1) (abde,1)

X

(d)

For the marked node X (ab,2)

Fd = (ad,3)

Fig. 1. (a) Toy Database (b) Itable (c) L (d) Set of ancestors, descendants, parents

and children of node X

Chang and Lee [2] define a decay factor d which is associated with each trans-
action in the stream and is defined as d = b−1/h (b > 1, h ≥ 1, b−1 ≤ d < 1),
where decay-base b determines the amount of weight reduction per a decay-unit
and decay-base-life h is defined by the number of decay-units that makes the
current weight be b−1. When a new transaction tk arrives at time k, number
of transactions in the current stream |D|k is updated as |D|k = |D|k−1 ∗ d + 1.
Decayed frequency of all nodes corresponding to itemsets of tk is updated as
(fk = f ∗ dk−(MRtidpre) + 1), where f denote the decayed frequency of node and
MRtid is the transaction identifier of most recent transaction that contain tk.
MRtidk is set to k. Decayed support count of nodes is calculated as f/(|D|k).

Periodically, the lattice is traversed and all nodes having support count less
than threshold for pruning (Sprn) are removed from L. Note here that Sprn,
which is also user specified parameter, is distinctly different from support thresh-
old. While support threshold deals with the frequency of the itemset, Sprn takes
into account the effect of age of the itemset. Higher values of Sprn leads to con-
siderable reduction in the size of the synopsis. Since, data characteristics of the
stream change with time, guessing the correct value of Sprn is a difficult task.
An alternative approach, though somewhat crude, is to fix the size of synopsis
based on total available memory and remove decayed nodes from the lattice so
as to keep the recent and repetitively occurring itemsets intact.

3.3 Processing of Transaction

Each incoming transaction t is a closed itemset [13]. In case transaction t exist
already as a node in L, then the support of the relevant nodes is updated as
mentioned in section 3.2. Otherwise processing of t results into insertion of one
or more nodes in L.

If t exists as a node in L then we write t ∈ L for simplicity purposes.
We present below the procedures for search, insert and delete a node.

Search Procedure. This procedure checks whether incoming transaction t ex-
ists as a node in L or not. The bruteforce approach of searching L for node



Mining Closed Itemsets in Data Stream Using Formal Concept Analysis 291

containing t would be to start search either from & or ⊥. This approach is com-
putationally expensive as the lattice has a tendency to grow in size as the stream
progresses. Proposition 1 permits an optimization by searching First Node cor-
responding to any one of the items in the transaction and its descendents.

Proposition 1. Let t be the transaction to be searched in L. It is necessary and
sufficient to search among Fi and its descendants, for an arbitrarily chosen i,
i ∈ t.

Proof. If t = IFi for an arbitrarily chosen i, i ∈ t, then t ∈ L.
By definition 5 and 8, i ∈ IFi ∀i ∈ t. D(Fi) is a set containing all supersets of

IFi . If t ∈ L then t is a superset of IFi and hence t exists as a descendant of Fi.
Thus t is necessarily a descendant of each of the items contained in t.

By definition 5 and 8, no other node except nodes belonging to D(Fi) contain
i. Since i ∈ t so if t ∈ L then t is among the descendants of Fi. Hence it is
sufficient to search among descendants of Fi.

Thus, if t contains an item i for which Fi does not exist, then t /∈ L. Otherwise
it needs to be searched among Fi and its descendants corresponding to any one
of the arbitrarily chosen item i in t.

Insert Procedure. If transaction t does not already exists as a node in L then
it is added as a new node N in L, with IN = t. Subsequently N is linked to
its child nodes as well as parents node in L. Insert Procedure determines the
minimal superset of IN to find the child nodes and the maximal subsets of IN

to find the parents of IN (Observation 1). Proposition 2 states that Node N can
have only one child in L.

Proposition 2. If N is the node corresponding to transaction t that has been
just added to lattice L, then |C(N)| = 1.

Proof. We prove this assertion by contradiction. Let, if possible, |C(N)| = m >
1. Let C(N) = C1, C2, . . . , Cm be the set of children of N in L. By definition,
IN = IC1∩IC2 . . .∩ICm . According to theorem 1, intersection of extents of nodes
in lattice is always an extent of a node in lattice i.e. there must exist a node
X in L such that IX = IC1 ∩ IC2 . . . ∩ ICm . But then X and N are the same
nodes. This contradicts the fact that N is a new node. Hence the assumption
that |C(N)| = m > 1 is not correct.

Further m cannot be zero because bottom node ⊥ of L contains all the items
and is always a superset of transaction t. Hence m = 1. �

The insert procedure traverses L using ITable for finding the child node and par-
ent nodes of N . The use of Proposition 2 reduces the effort involved in searching
children nodes of N as it can have only one child in L. However, potential number
of ancestors can be 2|IN |. The exact number of immediate ancestors i.e. parents
is unpredictable and may involve rigorous searching in the lattice L. This pro-
cess of searching immediate ancestors i.e. parents of N is speeded up using Fi of



292 A. Gupta, V. Bhatnagar, and N. Kumar

Itable, i ∈ t. Fi provides the entry point for search in L. However the involved
task depends on the relationship of Fi and N . Following three cases arise:

Case 1: Fi is ancestor of N i.e. IFi ⊂ IN . Child of N is among the descendants
of Fi. Parent(s) of N is either the node Fi itself or some of Fi’s descendant(s).
If closed itemset of any of the child node X of Fi is superset of IN then Fi

is the parent of N and X is the child of N . Otherwise we search amongst the
descendants of Fi till we find a node X such that IX is superset of IN and closed
itemset of one of the parent Y of X is subset of IN . In that case, X is the child
of N and Y is the parent of N .

Case 2: Fi is descendant of N i.e. IFi ⊃ IN . Fi is the child of N and First
Node Fi corresponding to i ∈ IN is set to N . We search among the parents of
Fi for finding parents of N . If closed itemset of those parents is subset of IN ,
then those parents are parents of N also. If no such parent exist then top node
& of L is the parent of N .

Case 3: Fi is neither ancestor nor descendent of N i.e. IFi 	⊂ IN , IFi 	⊃ IN

and IFi ∩IN 	= φ. In this case, common parent of Fi and N with closed itemset
as IFi ∩ IN may exist in L or it may not exist.

Case 3.1: IFi∩IN exists as closed itemset of a node X in L. If such a node
X exists in L then X is the parent of N . Child of N is among the descendants
of Fi. We check all the descendants of Fi till we get a node whose closed itemset
is minimal superset of closed itemset of N , that node becomes the child of N .

Case 3.2: IFi ∩ IN does not exist as closed itemset of a node in L. A
new node X is created with IX = IFi ∩ IN and added to L. X becomes the
parent of N and child of N is among the descendants of Fi. We check all the
descendants of Fi till we get a node whose closed itemset is minimal superset of
closed itemset of N , that node becomes the child of N . Next step is to find the
child and parents of X . Parents of X are among ancestors of Fi. We check all
the ancestors of Fi. If we get a node Y such that closed itemset of Y is superset
of X and closed itemset of one of the parent Z of Y is subset of X , then Z
becomes the parent of X . If we find an ancestor Y of Fi such that Y is neither
ancestor nor descendent of X , then a new node U is created with IU = IY ∩ IX .
Then we repeat the process to find child and parents of node U .

The algorithm for inserting a new transaction is given in Algorithm 27.

Delete procedure. L is traversed from bottom and all nodes having decayed
support less than Sprn are removed by invoking delete procedure. Bottom node
is never removed from the L so as to maintain the whole structure of L. We
may note here that if decayed support count of a node is less than Sprn then
decayed support count of all its subsets is also less than Sprn i.e. if a node has
been removed from L then all its descendents (except bottom) have already been
removed from L.

Let N denotes the node to be deleted. Node N will have one child node i.e.
bottom and can have more than one parent. Delete procedure removes link of



Mining Closed Itemsets in Data Stream Using Formal Concept Analysis 293

N from its parents and child nodes. Two cases may arise: i) child node of N
(i.e. bottom node) has no parent. In that case, parents of N become parents for
bottom. ii) parent nodes of N has no child. In that case, bottom become child
for parents of N .

Input: L - lattice of closed itemsets, t - transaction to insert

Output: L - updated lattice

Process:

create a new node N with IN = t
for all item i ∈ t in L do

if Fi is ancestor of N then
find child and parents of N among the descendants of Fi

else
if Fi is descendant of N then

child of N is Fi and parents of N are among the ancestors of Fi

else
if common parent X of Fi and N exist in L then

parent of N is X and child of N is among the descendants of Fi

else
create a new node X where IX = IFi ∩ IN

parent of N is X and child of N is among descendants of Fi

children of X are Fi and some ancestor of N .

parents of X are among the ancestors of Fi.

if X is neither ancestor nor descendent of node Y ∈ L and IX ∩ IY �= φ
then

create a new node U such that IU = IY ∩ IX

find child and parents of node U
end if

end if
end if

end if
Update frequency of N .

end for

Algorithm 1. Insert Procedure

Update ITable. If N is added as an ancestor node of Fi in L, First Node Fi

corresponding to i ∈ IN is set to N . If a node N is deleted from L then First
Node Fi corresponding to i ∈ IN is set to bottom as all the descendents of N
(except bottom) have already been removed from L.

4 Experimental Analysis

Since there is no algorithm known for mining all recent closed itemsets in
landmark window model, it is not possible to perform a comparative analy-
sis. We evaluate our algorithm for scalability using several synthetic and real



294 A. Gupta, V. Bhatnagar, and N. Kumar

life datasets. All experiments were done on a 2GHz AMD Dual-Core PC with
3 GB main memory, running redhat linux operating system. All algorithms are
implemented in C++ and compiled using g++ compiler without optimizations.
In all experiments, the transactions of each dataset are examined one by one in
sequence to simulate the environment of an online data stream.

Experiments on Synthetic data
We generated four different datasets T3I4D100K, T5I4D100K, T8I4D100K,
T10I4D100K using IBM data generator [1]. Three numbers of each dataset de-
note the average transaction length (T), average maximum potential frequent
itemset size (I) and the total number of transactions (D) respectively.

Fig. 2 (a) shows the effect of pruning threshold Sprn on per-transaction-
processing time in the dataset T10I4D100K, as stream progresses. Higher values
of Sprn lead to substantial reduction in the size of synopsis. Hence per-transaction-
processing time is nearly constant. As value of Sprn decreases, size of the synop-
sis increases, leading to increase in rate of growth of per-transaction-processing
time. However if size of synopsis is fixed, per transaction processing time is nearly

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  20  40  60  80  100

pe
r-

tr
an

sa
ct

io
n-

pr
oc

es
si

ng
 ti

m
e(

in
 s

ec
)

Number of Transactions (x 1000)

Sprn = 0.0009
Sprn = 0.0007
Sprn = 0.0005
Sprn = 0.0003
Sprn = 0.0001

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

pe
r-

tr
an

sa
ct

io
n-

pr
oc

es
si

ng
 ti

m
e 

(in
 s

ec
)

Number of Transactions (x 1000)

20K Closed Itemsets
40K Closed Itemsets
60K Closed Itemsets
80K Closed Itemsets

100K Closed Itemsets

(b)

Fig. 2. Per-transaction-processing time corresponding to (a) different values of Sprn

(b) fixed size of synopsis in T10I4D100K dataset

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  20  40  60  80  100

pe
r-

tr
an

sa
ct

io
n-

pr
oc

es
si

ng
 ti

m
e(

in
 s

ec
)

Number of Transactions (x 1000)

Sprn = 0.0009
Sprn = 0.0007
Sprn = 0.0005
Sprn = 0.0003
Sprn = 0.0001

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0  20  40  60  80  100

pe
r-

tr
an

sa
ct

io
n-

pr
oc

es
si

ng
 ti

m
e 

(in
 s

ec
)

Number of Transactions (x 1000)

20K Closed Itemsets
40K Closed Itemsets
60K Closed Itemsets
80K Closed Itemsets

100K Closed Itemsets

(b)

Fig. 3. Per-transaction-processing time corresponding to (a) different values of Sprn

(b) fixed size of synopsis in BMS-Web-View-1 dataset



Mining Closed Itemsets in Data Stream Using Formal Concept Analysis 295

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  20  40  60  80  100

pe
r-

tr
an

sa
ct

io
n-

pr
oc

es
si

ng
 ti

m
e(

in
 s

ec
)

Number of Transactions (x 1000)

Sprn = 0.0009
Sprn = 0.0007
Sprn = 0.0005
Sprn = 0.0003
Sprn = 0.0001

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  20  40  60  80  100

pe
r-

tr
an

sa
ct

io
n-

pr
oc

es
si

ng
 ti

m
e 

(in
 s

ec
)

Number of Transactions (x 1000)

20K Closed Itemsets
40K Closed Itemsets
60K Closed Itemsets
80K Closed Itemsets

100K Closed Itemsets

(b)

Fig. 4. Per-transaction-processing time corresponding to (a) different values of Sprn

(b) fixed size of synopsis in BMS-POS dataset

constant. Fig 2 (b) shows the results for different sizes of synopsis. This establishes
the scalability of the algorithm.

Experiments on Real Life datasets
We experimented on two real life datasets, BMS-Web-View-1 and BMS-POS
[17]. BMS-Web-View-1 contains a few months of clickstream data from an e-
commerce web site [17]. There are 59602 transactions with 497 items; average
transaction length is 2.5 and maximum transaction length is 267. BMS-POS
contains several years of point of sale data from a large electronics retailer [17].
There are 515,597 transactions with 1657 items; average transaction length is
6.5 and maximum transaction length is 164.

Fig. 3 (a) and Fig. 4 (a) shows graph depicting per-transaction-processing time
when CLICI runs on BMS-Web-View-1 and BMS-POS datasets respectively.
Different values of pruning threshold Sprn are tested and it is observed that
higher values of Sprn leads to reduced size of the synopsis and hence reduced
per-transaction-processing time. It is also observed that rate of growth of per-
transaction-processing time increases with decrease in pruning threshold. Fig. 3
(b) and Fig. 4 (b) present results on different sizes of the synopsis, 20K, 40K,
60K, 80K, 100K closed itemsets. As depicted in the graphs, per-transaction-
processing time remains nearly constant on a particular size of the synopsis and
increases with increase in size of synopsis.

5 Conclusion and Future Work

We have proposed CLICI algorithm to mine all recent closed itemsets in land-
mark window model of data stream. The algorithm is based on Formal Concept
Analysis, a well established discipline in applied mathematics. The proposed
algorithm maintains a lattice of recent closed itemsets in the stream and deliv-
ers frequent closed itemsets to the user on demand, based on the dynamically
specified support threshold. Use of lattice as a synopsis facilitates efficient for-
mulation of non-redundant association rules as shown in earlier works. Since the



296 A. Gupta, V. Bhatnagar, and N. Kumar

synopsis is independent of the support threshold, user is encouraged to explore
and experiment.

References

1. Agarwal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: 20th

International Conference on Very Large Databases, pp. 487–499 (1994)

2. Chang, J., Lee, W.: Finding Recent Frequent Itemsets Adaptively over Online Data

stream. In: 9th ACM SIGKDD, pp. 487–492. ACM Press, New York (2003)

3. Cheng, J., Ke, Y., Ng, W.: A Survey on Algorithms for Mining Frequent Itemsets

over Data stream. KAIS Journal 16(1), 1–27 (2008)

4. Chen, J., Li, S.: GC-Tree: A Fast Online Algorithm for Mining Frequent Closed

Itemsets. In: Proceeding of PAKDD Workshop of HPDMA, pp. 457–468 (2007)

5. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.

Springer, Heidelberg (1999)

6. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent Pattern Mining: Current Status

and Future Directions. Journal of Data Mining and Knowledge Discovery 15, 55–

86 (2007)

7. Jiang, N., Gruenwald, L.: CFI-Stream: Mining Closed Frequent Itemsets in Data

stream. In: 12th ACM SIGKDD, Poster Paper, pp. 592–597. ACM Press, New York

(2006)

8. Kuznetsov, S.O., Obiedkov, S.A.: Comparing Performance of Algorithms for Gen-

erating Concept Lattices. JETAI 14, 189–216 (2002)

9. Li, H., Ho, C., Lee, S.: Incremental Updates of Closed Frequent Itemsets Over

Continuous Data stream. Expert Systems with Applications 36, 2451–2458 (2009)

10. Liu, X., Guan, J., Hu, P.: Mining Frequent Closed Itemsets from a landmark win-

dow over online data stream. Journal of Computers and Mathematics with Appli-

cations 57(6), 927–936 (2009)

11. Pasquier, N., et al.: Efficient Mining of Association Rules using Closed Itemset

Lattices. Journal of Information Systems 24(1), 25–46 (1999)

12. Stumme, G., et al.: Computing Iceberg Concept Lattices with Titanic. Journal on

Knowledge and Data Engineering 42(2), 189–222 (2002)

13. Valtchev, P., Missaoui, R., Godin, R.: A framework for incremental generation of

closed itemsets. Discrete Applied Mathematics 156(6), 924–949 (2008)

14. Chi, Y., Wang, H., Yu, P.S., Muntz, R.R.: Catch the Moment: Maintaining Closed

Frequent Itemsets over a Stream Sliding Window. Journal of Knowledge and In-

formation Systems 10, 265–294 (2006)

15. Yahia, S.B., Hamrouni, T., Nguifo, E.M.: Frequent Closed Itemset Based Algo-

rithms: A thorough structural and analytical survey. ACM SIGKDD Explorations

Newsletter 8, 93–104 (2006)

16. Zaki, M.J.: Generating Non-Redundant Association Rules. In: 6th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 34–43.

ACM Press, New York (2000)

17. Zheng, Z., Kohavi, R., Mason, L.: Real World Performance of Association Rule

Algorithms. In: Proceedings of the 2001 International Conference Knowledge Dis-

covery and Data Mining, SIGKDD 2001 (2001)



XML Data Fusion

Frantchesco Cecchin1, Cristina Dutra de Aguiar Ciferri2,
and Carmem Satie Hara1

1 Federal University of Paraná – Curitiba, PR – Brazil

{frantchesco,carmem}@inf.ufpr.br
2 University of São Paulo – São Carlos, SP – Brazil

cdac@icmc.usp.br

Abstract. Ensuring high quality data when collecting and integrating

information from heterogeneous sources into a data warehouse is a chal-

lenging problem. In this paper, we propose a model for XML data fu-

sion, which allows the integrator to define data cleaning rules for solving

value conflicts that may have been detected during the integration pro-

cess. These rules resemble decisions that are made by users when data

are manually curated and, once defined, conflicts detected in subsequent

integration processes that are within the context of existing rules can be

automatically solved without user intervention. We also introduce a no-

tion of fusion policy validation that prevents conflicting resolution rules

to be defined. To validate our proposal, we developed XFusion, a rule-

based cleaning tool that stores curated data in a integrated repository.

1 Introduction

Nowadays companies of all sizes and from different segments maintain a repos-
itory of data imported from a number of sources. The integration of imported
data in a single repository provides a unified view of the available information,
and also constitutes the basis for applying data analysis techniques, such as data
mining and multidimensional analysis. In fact, data warehousing has emerged as
an area in recognition of the value and role of information, providing integrated
and high quality information targeted at decision support.

Imported data are often inconsistent. Thus, for achieving full integration,
data usually goes through an iteration of integration and cleaning processes.
Here, integration refers to the problem of identifying overlapping data in differ-
ent sources. This problem has been the subject of extensive research on relational
[8], entity-relationship [10], and XML [15] data models. Cleaning refers to the
process of solving attribute value conflicts. The problem arises when two or
more sources contain information on the same entity or attribute, but disagree
on their values. A number of approaches have been proposed in the literature for
addressing this problem, including data profiling, data mining, constraint-based,
and ontology-based techniques [12,17,8]. Recently, the process of combining mul-
tiple records representing the same real-world object into a single, consistent, and
clean representation has been denoted as data fusion [3].

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 297–308, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



298 F. Cecchin, C.D.A. Ciferri, and C.S. Hara

The majority of existing systems for data fusion considers data structured on
relational format. Nevertheless, given that XML has become the standard for
data exchange on the Web, it is natural to also consider this format for the inte-
gration process. In addition to the fact that currently most data sources provide
their data in XML, features that make this format suitable for data exchange are
also desirable for data cleaning. One of these features is its hierarchical structure,
which naturally represents relationships between entities.

Data cleaning usually requires some manual user intervention, even though
this is an error-prone and time-consuming process. In this paper we propose a
data fusion model for minimizing the amount of user mediation for data cleaning
in integration processes. The model is based on establishing a policy, composed of
a set of rules, which resemble decisions that are usually made by users when data
are manually curated. Once the policy is defined, conflicts detected in subsequent
integration processes that are within its context can be automatically solved
without user intervention.

The data integration scenario we consider is depicted in Figure 1. The input
for an integration tool is a set a data sources S1, . . . , Sn. This tool is responsible
for identifying corresponding entities among sources, and also for detecting value
conflicts. The user defines a set of rules for solving these conflicts, which are
stored in a policy base. Rules are then applied by a cleaning tool. “Discarded”
data values are stored in a resolution log, and a clean, consistent view of the
data is provided to the user by the data repository.

Data Repository

S1

S2

Sn

..
. Integration

Process

User Decisions

Policy
 Base

Cleaning
Process

Resolution
Log

Fig. 1. Integration process with policy-based conflict resolutions for data cleaning

store

name item

“Fast”

manufacturer model color price

item

“HP” “dv6000” “black” “2980”

1

1.1

1.1.1

1.2

1.2.2 1.2.51.2.3 1.2.4

1.2.5.11.2.2.1 1.2.3.1 1.2.4.1

1.3

@serial
“007”

1.2.1

(a) XML tree from S1

company

name

“HP” product

model color country

category

“dv6000” “white” “USA”

2

2.1 2.2

2.2.2.1

2.1.1

2.2.2.2 2.2.2.3

2.2.2.1.1 2.2.2.2.1 2.2.2.3.1

product
2.2.32.2.2

@type
“notebook”

2.2.1

(b) XML tree from S2

Fig. 2. Samples of XML tree representation



XML Data Fusion 299

repository

product

manufacturer model color quotation

product

“HP” “dv6000”

“black”

product

Source_1 Source_2

“white”

(a) Conflicting element.

repository

product

manufacturer model color quotation

product

“HP” “dv6000”

product

“white”
2.2.2.2.12.2.2.1.1

1.2.3.11.2.2.1
2.1.1

(b) Conflict solved.

Fig. 3. Data repository tree with temporary inconsistency [14] and after cleaning

Example 1. Consider two data sources providing data on products as depicted
in Figure 2. Data from source S1 are extracted to populate a data repository,
depicted in Figure 3(a), as follows. Each item element is mapped to a product,
along with its subelements manufacturer, model, and color. The item’s price
is mapped to a child of the product’s quotation, which stores price values from
different stores. For S2, the value for manufacturer is extracted from company’s
name, and values for the remaining subelements are given by subelements of
category/product. We assume that product elements in the repository are
identified by their manufacturer and model. Since both S1 and S2 provide data
on products that coincide on the values of these elements, they are merged in
the repository. Nevertheless, they disagree on the value of the product’s color.
Following the integration model proposed in [14], value conflicts are explicitly
represented as depicted in Figure 3(a), along with their provenance, i.e. the
sources that provided the conflicting data.

A cleaning strategy for solving the conflict may determine that whenever a
data item provided from S2 disagrees with any other source, we should choose
S2’s value over the others, since S2 contains data provided by the product manu-
facturer while other sources are resellers. As a result of applying this strategy, the
data repository keeps a single consistent value for all product’s subelements, as
shown in Figure 3(b). In our model, a rule expressing a cleaning strategy is stored
in the policy base, while the discarded value of product’s color (‘‘black’’) is
kept in the resolution log, which helps us consider the value in future conflict
resolution processes. As an example, suppose that data from a new source S3

is imported into the repository, and that S3 also provides the value ‘‘black’’
for the same product. If the strategy for solving the conflict is modified for
choosing the value provided by the majority of the sources, we would be unable
to determine that the value for color in the repository should be changed to
‘‘black’’. This action is only possible because our model stores the discarded
value of product’s color in the resolution log.

Rules for solving value conflicts can be defined on different contexts of an
XML tree. They may involve a single element or a set of subtrees. The ability to
define contexts on subtrees may generate inconsistencies among conflict resolu-
tion rules. As an example, suppose that the rule for choosing S2 over other data
sources is to be applied on all subtrees for which the product’s manufacturer



300 F. Cecchin, C.D.A. Ciferri, and C.S. Hara

is HP, and a second rule for choosing the value provided by the majority of
the sources is defined on all subtrees for which the product’s model is dv6000.
Since both rules apply to the product in our running example, we need a notion
of policy validation for avoiding such inconsistencies and for deterministically
determine which rule should be applied for solving a given one.

Contributions. In this paper we make the following contributions.

– We propose a model for XML data fusion based on a set of rules for solving
value conflicts in data integration processes. Cleaning rules resemble deci-
sions commonly made by users for handling value conflicts, and minimize
manual intervention for data curation.

– We define a fusion policy validation on a set of conflict resolution rules. Our
fusion policy validation prevents inconsistent rules to be defined on the same
element of the repository.

– We present a tool, called XFusion, that has been developed based on our
model. It supports both XML data integration and cleaning processes.

Organization. The rest of the paper is organized as follows. Section 2 presents
preliminary definitions used as the basis for our proposal, while Section 3 intro-
duces our model for XML data fusion. Fusion policy validation is the subject of
Section 4, and Section 5 presents the XFusion tool. Section 6 discusses related
work and Section 7 concludes the paper.

2 Preliminary Definitions

Before describing our fusion model, we present a definition of XML trees, the
integration model considered in this paper, and strategies for data fusion previ-
ously proposed in the literature.

2.1 XML Trees and Integration Model

An XML document is typically modeled as a node-labeled tree T , in which the
set of nodes V can be of one of three types: element, attribute and text nodes.
For each node n in T we define the following functions: (1) lab(n) assigns a label
to n if n is an element or attribute node, and a distinct label L if n is a text
node; (2) val(n) assigns a string to attribute and text nodes, and is undefined
for element nodes; (3) ele(n) and att(n) define the edge relation of T : if n is an
element then ele(n) is a list of elements and text nodes in V and att(n) is a set
of attributes in V ; if n is an attribute or a text node then ele(n) and att(n) are
undefined; (4) id(n) assigns a unique identifier to n, which represents the path
from the root r of the tree to n. We assume that each XML tree has a distinct
identifier S which denotes its source, and that id(r) = S. That is, the root’s
node identifier coincides with the XML tree source identity.

Examples of XML trees are given in Figures 2(a) and 2(b), where each node
n is represented with its identifier (id(n)), a label (lab(n)) if it is an element



XML Data Fusion 301

or attribute node, and a value (val(n)) if it is an attribute or text node. The
encoding adopted by the identifier function id is called Dewey Order [5], which
provides a global node ordering. Since in our model each data source has a
distinct source identifier, which coincides with the root identifier, in Figure 2(a),
id(r) = 1 and in Figure 2(b), id(r) = 2.

In this paper, we adopt the model proposed in [14] for identifying correspond-
ing entities among data sources, and for explicitly representing value conflicts.
This model assumes that the data repository has a fixed schema, and a set of
XML keys [4] for identifying elements in a document. The repository is popu-
lated with data imported from data sources through a transformation language
that maps source data to the repository schema. Whenever two source elements
are mapped to an entity in the repository that coincide on their key values, they
are merged. The repository stores provenance information on every imported
data item, and explicitly represents value conflicts detected after the merging.

Example 2. Consider again XML data sources depicted in Figures 2(a) and 2(b),
and the XML tree resulting from merging them given in Figure 3(a). Following
the syntax proposed in [4], the XML keys that determine how elements are
merged in the repository can be defined as follows.

– k1 : (ε, (product, {manufacturer, model})): in the context of the entire doc-
ument (ε denotes the root), a product is identified by its manufacturer and
model number;

– k2 : (product, (color, {})): within the context of any subtree rooted at a
product node, there exists at most one color element; that is, it is identified
by an empty set of values.

Observe that in the repository, manufacturer is populated with nodes reached
by path /item/manufacturer in S1, and nodes reached by path /name in S2.
Similarly, element model is populated with nodes reached by path /item/model
in S1 and path /category/product/model in S2. Given that values of nodes
reached by both paths in sources S1 and S2 coincide, they are be merged in the
repository according to k1. The resulting tree is depicted in Figure 3(a).

In the repository, leaf nodes are annotated with provenance information. These
annotations are important not only to determine the origin of data, but they
also allow the portion of source XML tree used to populate the data repository
to be reconstructed [14].

XML keys involve path expressions. An algorithm for deciding path contain-
ment for the fragment of XPath involved in defining keys is presented in [4],
while [11] and [6] investigate the problem for larger fragments of XPath. It has
been shown that for some of these fragments containment can be checked in
PTIME. The problem of determining intersection of XPath expressions has also
been investigated in the context of query optimization [7].

2.2 Strategies for Data Fusion

There are a number of strategies proposed in the literature for solving value
conflicts. We adopt a subset of strategies proposed in [2], described as follows.



302 F. Cecchin, C.D.A. Ciferri, and C.S. Hara

Trust Your Friends. This strategy is based on a reliability criterion. The user
assigns a confidence rate for each source, and a value conflict is solved by choosing
the one provided by the source with the highest confidence rate.

Meet In The Middle. This is a strategy to mediate the conflict by generating
a new value that is a compromise among all conflicting values, e.g., an average
of all conflicting numeric values.

Cry With The Wolves. This strategy is defined for choosing the value reported
by the majority of data sources.

Roll The Dice. This strategy randomly chooses one value among the conflict-
ing ones.

Pass It On. This is a non-resolving strategy. Although in most cases the user
wants a single value for each data item, for some items she may want to keep
all the conflicting values in the repository. When this is the case, this choice can
explicitly be made applying the Pass It On strategy.

In [2] these strategies are integrated to the relational model by developing
functions that can be used within SQL sentences to solve inconsistencies from the
resulting data set. Next section presents our model, which extends this strategy-
based conflict resolution approach for XML.

3 XML Fusion Model

Our model for solving conflicts detected during the integration process is based
on the definition of a fusion policy, which consists of a set of data conflict reso-
lution rules, defined as follows.

Definition 1. A conflict resolution rule is a pair 〈σ, Σ〉, where
(1) σ is a path expression representing the context covered by the rule;
(2) Σ is a non empty list of strategies for handling instance-level conflicts on

nodes reached by following the context path σ.

The context of a rule is defined by a path expression σ and therefore it may
cover not only a single element or attribute node, but a set of nodes reached
by following σ. Furthermore, a rule may define a list of strategies for solving a
conflict. Thus, if the first strategy is not able to single out a value for a given
data item, the following strategies are considered one by one until either the end
of the list is reached or the conflict is solved. If the conflict is solved, we say that
the rule effectively solves the value conflict.

Example 3. Consider the value conflict between a product’s color depicted in
Figure 3(a). Suppose the following rule has already been defined in the fusion pol-
icy: 〈/product[manufacturer = “HP”]/color, [Trust Your Friends,Cry With
the Wolves]〉. It determines that whenever there is a value conflict on element
color of product, and the manufacturer of product is ‘‘HP’’, then the strat-
egy Trust Your Friends should be applied, followed by Cry With the Wolves.
Assuming that the confidence rate of S2 is higher than S1, strategy Trust Your
Friends is applied and the value ‘‘white’’ from S2 is chosen to be stored in
the repository, as shown in Figure 3(b).



XML Data Fusion 303

Observe that some strategies for solving conflicts may depend on the provenance
of the data, as exemplified in the previous example by strategy Trust Your
Friends. Data provenance should also be kept for discarded values. In our model
this information is kept in a resolution log, which is defined as follows.

Definition 2. A resolution log is a set of records, where each record refers to
a data value v that has been discarded during the cleaning process. Given that v
has been populated from an element e of a data source S, the record that refers
to v contains the following attributes: (1) key values of the element or attribute
with value v in the repository; (2) the discarded value v; (3) id(e) in the original
source S; (4) the path from the root to e in the source S; (5) the strategy s ∈ Σ
applied for solving the conflict.

We need to keep the keys for the element for which a value has been discarded in
order to retrieve all the discarded values for the same data item in the repository.
This may be necessary for automatically reapplying a conflict resolution rule in
future cleaning processes. Both the identity and the original path of the element
which provides v are stored in the log for keeping provenance information. By
storing the strategy executed to solve the conflict, we can trace back why value
v has been discarded.

Example 4. Consider again the value conflict depicted in Figure 3(a) and the
conflict resolution rule in Example 3. The record for S1’s discarded value
‘‘black’’ stored in the resolution log contains the following data:
(key: /product[manufacturer=‘‘HP’’ and model=‘‘dv6000’’]/color,
value: ‘‘black’’, id: 1.2.4.1, path: /item/color, strategy: Trust
Your Friends). Recall that from the value of id it is also possible to get the
source identification, given that the first number of the sequence corresponds to
the root element, which coincides with the source identifier.

To illustrate how the log is used in future fusion processes, consider that source
S3, as defined in Example 1, has been integrated into the repository, and that
it has the same confidence rate as S2. Given that both sources S2 and S3 have
the same confidence rate, and that S3 provides the value ‘‘black’’ for color,
strategy Trust Your Friends is not able to solve the conflict. Then, the next
strategy, Cry With The Wolves is applied. In this case, ‘‘black’’ is chosen to
be stored in the repository, since this strategy chooses the value reported by the
majority of the sources. Our model is only able to make such a decision because
the log maintains S1’s discarded value for color.

Given the definitions of conflict resolution rules and repository log, we are now
ready to define our fusion model.

Definition 3. A data fusion model D is a 5-tuple 〈R, T ,K,P ,L〉, where:
(1) R is a set of pairs (S, rank), where S is an XML data source, and rank

its confidence rate; the value of rank is greater for sources with higher reliability;
(2) T is the data repository tree with a set of nodes V such that each leaf node

v ∈ V is annotated with a set of pairs (idn, p), where idn is the identifier of a



304 F. Cecchin, C.D.A. Ciferri, and C.S. Hara

node n in a source XML tree TS used to populate v, and p is the path in TS from
its root to n;

(3) K is the set of XML keys defined on T . Every element node in T can be
uniquely identified according to keys in K;

(4) P is a set of conflict resolution rules that define strategies for solving data
conflicts;

(5) L is the resolution log for storing data discarded during a fusion process.

An example of a data repository tree is given by the XML tree depicted in Figure
3(b). Observe that leaf nodes have been annotated with node identifiers from
Source 1 and Source 2. Paths traversed from the root have been omitted for
simplicity.

4 Fusion Policy Validation

Recall that conflict resolution rules are defined on contexts described as path
expressions. Since a path expression σ denotes a set of nodes in a XML tree
reached by following σ, there may exist nodes that are covered by more than
one rule. In order to deterministically single out a rule for solving a value conflict,
we introduce a notion of policy validity.

In the following definition, we denote as Nodes(r) the set of nodes covered by
a rule r. That is, given a rule r = (σ, Σ) and an XML tree T , Nodes(r) is the
set of nodes in T reached by following σ in T .

Definition 4. Given two rules r1 and r2, we say that r1 is valid with respect
to r2 if they satisfy one of the following conditions:

(1) Nodes(r1) ⊂ Nodes(r2) or
(2) Nodes(r1) ⊃ Nodes(r2) or
(3) Nodes(r1) ∩Nodes(r2) = ∅.

Intuitively, rules can be related either by specialization (Case 1) or generalization
(Case 2), or not related at all (Case 3). Following the traditional definition of
class hierarchy, Cases 1 and 2 allow rules to be defined on different levels of a tree
hierarchy. That is, there may exist a general rule for solving value conflicts, but
it may be overridden by rules defined for treating specific cases, that are restrict
to subsets of nodes covered by the general rule, and are used in the cleaning
process instead of the general rule.

Rules with intersecting coverage that are not related by specialization / gen-
eralization are not allowed. This is because there is no deterministic way of
deciding which rule should be applied for solving conflicts on nodes covered by
both rules. For determining the validity of a fusion policy, each conflict resolution
rule should be valid with respect to all others. Checking validity involves check-
ing both path expressions containment and intersection. Some previous work on
these subjects are presented in Section 2. The model we propose in this paper
is orthogonal to the path language adopted. The following definition establishes
an order for applying conflicting resolution rules in a fusion policy.



XML Data Fusion 305

Definition 5. Let v be an element or attribute with conflicting values, and P a
fusion policy, consisted of a set of rules that are valid with respect to each other.
Rule rv ∈ P is applied for solving the value conflict on v if:

(1) v ∈ Nodes(rv) and rv effectively solves the value conflict;
(2) there exists no rule ri ∈ P that satisfies condition (1), such that

Nodes(ri) ⊂ Nodes(rv) .

Example 5. Consider the data repository depicted in Figure 4, and four conflict
resolution rules, defined as follows:
ra = (/product[manufacturer = “HP” and model = “tx1220”]/color, Σa)
rb = (/product[manufacturer = “HP”]/color, Σb)
rc = (/product/quotation[store = “Fast”]/price, Σc)
rd = (/product[manufacturer = “Sony”]/quotation/price, Σd)

repository

product

manufacturer model color quotation

product

“HP” “tx1220” “black” store price

manufacturer model color quotation

product

“HP" “dv6000” “white” store price

“Fast” “1,250”“Fast” “3,249”

a bb

c c

Fig. 4. Example of conflict between resolution rules

Rules ra and rb are defined on color elements, while rc and rd are defined on
price. Observe that ra is a specialization of rb, since Nodes(ra) ⊂ Nodes(rb),
and they are valid with respect to each other. On the other hand, rc is not valid
with respect to rd since it is not true that for all possible XML trees Nodes(rc)∩
Nodes(rd) = ∅, although in the tree depicted in Figure 4 this condition holds.

5 XFusion

In order to validate the proposed XML fusion model and fusion policy validation,
we have developed the XFusion tool. The tool integrates several data sources into
a data repository, and presents to the user the detected value conflicts along with
a set of available strategies for solving them.

Two screenshots of XFusion’s interface are presented in Figure 5. Screenshot
A is the main screen of the tool. It shows in the Data Repository panel the
data repository in a tree format, and in the Integrated Sources panel the source’s
names that have been considered in the integration process. In this panel, the
DBA represents the source of data items that have not been imported from
external sources, but locally produced. The tool assigns a distinct color for each
of the integrated sources, so that value conflicts are shown along with “colored”
representation of sources that provided them (little squares that precede each
value). Furthermore, screenshot A contains buttons to perform actions over the



306 F. Cecchin, C.D.A. Ciferri, and C.S. Hara

A

B

Fig. 5. XFusion screenshots: A – Main screen; B – Resolution screen

data repository, such as add new source ( ), resolve conflicting values ( ),
and navigate through conflicts ( ). To add a new data source, the user
must provide a mapping that determines how source data are extracted and then
inserted into the repository. She also defines the confidence rate to be assigned
to the new source.

Data fusion is the main functionality of the tool based on the model proposed
in this paper. When the user selects an existing conflict and clicks on the resolve
button, the screen depicted in screenshot B of Figure 5 is shown. Observe that
the user has three main options for solving a conflict: choose one among the
conflicting values, manually insert a new value, or apply some of the available
strategies, which are described in Section 2.2. Strategies are chosen by clicking
on direction buttons in the middle of the screen, determining the order in which
they should be considered.

Below the strategies boxes, the Context of the rule is presented. This path is
originally set to uniquely identify the conflicting element or attribute, accord-
ing to the XML keys defined on the repository. Nevertheless, the user can edit
the path for applying the list of strategies on different contexts. In the current
implementation, we only consider simple XPath expressions (without wildcards)
with simple predicates involving elements, attributes and string values. When
the user edits the context of the rule, our tool validates the rule with respect
to all existing ones according to the policy validation described in Section 4.
Finally, when she clicks on Clean button, the new rule is inserted into the pol-
icy base and its execution propagates the chosen value to the repository, and



XML Data Fusion 307

the discarded ones to the resolution log. XFusion allows the user to define rules
incrementally. That is, in the first iteration a single strategy may be defined on
a context path and applied. The user can then check whether the strategy has
been effective for solving all conflicts within the rule’s context. If not, she may
decide to extend the rule by defining additional strategies to be applied.

XFusion has been implemented in Java, using the Swing graphical package.
For manipulating XML documents we used JDOM. The data repository is stored
on eXist-db [9], a native XML database system. XFusion implements the XML
integration model proposed in [14] combined with our fusion model, showing the
feasibility of our approach.

6 Related Work

Data integration and cleaning have been studied extensively by the database
community [1,3]. Most of previous works consider data on relational format, but
recently it has been stressed the need for investigating the problem of solving
conflicts on semi-structured data. XClean [17] is a system that allows declarative
and modular specification of a cleaning process. As oppose to our approach,
which adopts strategies, XClean is based on operators. Systems like Potter’s
Wheel [16] and Fusionplex [13] are also strategy-based systems, but they allow
the definition of a single cleaning strategy. To the best of our knowledge, our
fusion model is the first to define a general framework for applying strategy-
based techniques for solving value conflicts that maintains discarded data values
in a log repository. This approach allows strategies to be applied in subsequent
integration processes, and also keeps provenance information for tracing back
cleaning processes. Our model also builds on previous works for determining
XPath expressions containment [11,6] and intersection [7] in order to determine
fusion policy validity.

7 Conclusion

In the relational model, fusion strategies are usually defined on the context of
an attribute value. The model proposed in this paper naturally extends this
notion by allowing strategies to be defined on subtrees of an XML document.
Our notion of policy validation also extends relational fusion policies by allowing
strategies to be defined on subsets (supersets) of nodes reached by previously
defined rules, by specialization (generalization). Furthermore, we guarantee that
there are no two rules that can be applied on a data item, except for those related
by specialization/generalization. The ability to define value conflict resolution
rules on subtrees can drastically reduce the amount of user mediation on data
cleaning processes, given that conflicts detected in subsequent integration pro-
cesses that are within the context of existing rules can be automatically solved.
The repository log plays an important role in keeping the necessary data for
supporting this functionality, while also storing provenance data for tracing pur-
poses. The model has been validated by developing XFusion, a tool based on the



308 F. Cecchin, C.D.A. Ciferri, and C.S. Hara

proposed model, which shows that it can be incorporated in a data integration
and cleaning application.

Some issues that need to be further investigated include: (1) integration of the
model to a technique for incrementally updating the data repository when new
versions of data sources become available; (2) extensions to the fusion policy,
by supporting new strategies and a declarative definition of rules application,
allowing for instance, conditional execution of strategies; (3) experimental study
for solving conflicts in real-world applications and for determining the cost of
applying our rule-based cleaning policy.

Acknowledgments. This work has been supported by the following Brazilian
research agencies: FAPESP, CNPq, CAPES, INEP and FINEP.

References

1. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. IEEE

Data Eng. Bull. 29(2), 4–12 (2006)

2. Bleiholder, J., Naumann, F.: Conflict handling strategies in an integrated informa-

tion system. In: Proceedings of IIWeb (2006)

3. Bleiholder, J., Naumann, F.: Data fusion. ACM Comp. Surveys 41(1), 1–41 (2008)

4. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.C.: Reasoning about keys

for XML. Information Systems 28(8), 1037–1063 (2003)

5. Chan, L.M., Mitchell, J.S.: Introduction to the Dewey Decimal Classification

(2003), http://www.oclc.org/dewey/versions/ddc22print/intro.pdf
6. Genevès, P., Layäıda, N.: Deciding XPath containment with MSO. Data & Knowl-

edge Eng. 63(1), 108–136 (2007)

7. Hammerschmidt, B.C., Ad Volker Linnemann, M.K.: On the intersection of XPath

expressions. In: Proc of IDEAS, pp. 49–57 (2005)

8. Lim, E.P., Srivastava, J., Prabhakar, S., Richardson, J.: Entity identification in

database integration. Information Sciences 89(1) (1996)

9. Meier, W.: eXist-db open source native XML database (2000),

http://exist.sourceforge.net
10. Menestrina, D., Benjelloun, O., Garcia-Molina, H.: Generic entity resolution with

data confidences. In: Proc. of VLDB Work. on Clean Databases (2006)

11. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J.

of the ACM 51(1), 2–45 (2004)

12. Milano, D., Scannapieco, M., Catarci, T.: Using ontologies for XML data cleaning.

In: OTM Workshops, pp. 562–571 (2005)

13. Motro, A., Anokhin, P.: Fusionplex: resolution of data inconsistencies in the inte-

gration of heterogeneous information sources. Info. Fusion 7(2), 176–196 (2006)

14. do Nascimento, A.M., Hara, C.S.: A model for XML instance level integration. In:

Proc. of SBBD, pp. 46–60 (2008)

15. Poggi, A., Abiteboul, S.: XML data integration with identification. In: Proc. of

DBPL (2005)

16. Raman, V., Hellerstein, J.M.: Potter’s wheel: An interactive data cleaning system.

In: Proc. of VLDB, pp. 381–390 (2001)

17. Weis, M., Manolescu, I.: Declarative XML data cleaning with XClean. In: Krogstie,

J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495,

pp. 96–110. Springer, Heidelberg (2007)

http://www.oclc.org/dewey/versions/ddc22print/intro.pdf
http://exist.sourceforge.net


An Efficient Duplicate Record Detection Using
q-Grams Array Inverted Index

Alfredo Ferro, Rosalba Giugno, Piera Laura Puglisi, and Alfredo Pulvirenti

Dept. of Mathematics and Computer Sciences

University of Catania

{ferro,giugno,lpuglisi,apulvirenti}@dmi.unict.it

Abstract. Duplicate record detection is a crucial task for data cleaning

process in data warehouse systems. Many approaches have been pre-

sented to address this problem: some of these rely on the accuracy of the

resulted records, others focus on the efficiency of the comparison pro-

cess. Following the first direction, we introduce two similarity functions

based on the concept of q-grams that contribute to improve accuracy of

duplicate detection process with respect to other well known measures.

We also reduce the number and the running time of record comparisons

by building an inverted index on a sorted list of q-grams, named q-grams
array. Then, we extend this approach to perform a clustering process

based on the proposed q-grams array. Finally, an experimental analy-

sis on synthetic and real data shows the efficiency of the novel indexing

method for both record comparison process and clustering.

Keywords: Duplicate record detection, q-grams, inverted index,

bitmaps, clustering.

1 Introduction

The quality of data can significantly affect the reliability of decision support
systems. Real-world data are neither carefully controlled for quality nor defined
in a consistent way due to the fact that they have huge size and come from
multiple sources [10]. Thus, data mining techniques have to take into account
incomplete or missing values, constraints violations, noisy and inconsistent data.
Misspellings and different conventions result in a multiple and not unique repre-
sentation of objects. The process of resolving such identification problems refers
to the data heterogeneity term [3].

There are two different types of data heterogeneity: structural and lexical.
Structural heterogeneity occurs when the fields of the tuples in the database
have different structures in different databases [8]. For example, in one database
the customer address might be recorded in one field named addr, while in an-
other database the same information might be stored in multiple fields (street,
city, state and zipcode). Lexical heterogeneity occurs when the tuples have
identically structured fields across databases, but the data use different repre-
sentations to refer to the same real-world object. For example, in one database

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 309–323, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



310 A. Ferro et al.

the first and last name of a person can be stored using this format: Ilary Patri-
cia Doe, while another database can use different convention: I. P. Doe. Based
on this consideration, two records can be considered equivalent if they are se-
mantically equal. The similarity between records is computed by metrics which
measure the semantic equivalence through a score. Record pairs with high simi-
larity scores (above a specified threshold) are treated as duplicates. In this paper,
we focus on the problem of lexical heterogeneity.

In addition to the accuracy of classifying records pairs into matches and mis-
matches, the central issue consists of improving the speed of comparisons. For
this reason, many techniques have been proposed to reduce the quadratic com-
plexity of comparing two tables and the running time of a single comparison.

After a brief review of existing techniques, we propose a new method, called
DDEBIT, that efficiently solves the Duplicate record DEtection problem using
BITmaps. By introducing two similarity functions based on q-grams [9] and
Monge-Elkan [17] distances, DDEBIT improves the accuracy of comparison pro-
cess with respect to other well known approaches. Next, we show that DDEBIT
can also be used to cluster records in a table. Finally, in the experimental section
we demonstrate the efficacy of our method on synthetic and real data.

2 Related Work

Duplicate record detection typically relies on string comparison techniques such
as, edit distance [13], Smith-Waterman [19], Jaro [11], Monge-Elkan [17] and oth-
ers [18,23]. Although effective, all these measures are computationally expensive
(quadratic on the length of the strings) and therefore, they are not suitable for
record detection cause of the size of databases. Therefore, approximate similarity
metrics have been designed [21,20,9]. They are based on the notions of q-grams
and positional q-grams [22].

Related to efficiency, different methods have been proposed to support du-
plicate detection process. Common techniques, such as Standard Blocking [12],
divide the database into blocks and compare only the records that fall into the
same block. The blocking is performed by grouping records having the same
blocking key, that could be an attribute value or a concatenation of more at-
tribute values. The risk is to miss some matches due to errors in the blocking
step (records assigned to the wrong block) or having false mismatches caused by
the failure of comparing records that do not agree on the blocking field.

The Sorted Neighborhood Approach [14] is based on the idea that the proba-
bility that similar records will be closer after sorting data, according to the value
of the blocking key, is high.

Suffix-array indexing [1] uses a suffix array [15] as an inverted index to dy-
namically generate blocks of associated records using blocking keys.

In [2], blocking key values are converted into lists of bigrams (q-grams with
q=2) alphabetically sorted. Then, sub-lists of all possible combinations are built
using a threshold and inserted in an inverted index. The number of sub-lists
depends on both the length of the key value and the threshold. In [5], Christen



An Efficient Duplicate Record Detection 311

and Gayler present similarity-aware and materialized similarity-aware inverted
indexes for large real-world data sets. The basic idea is to store the similarity in
the inverted index and use it to reduce the computation at query time.

Monge and Elkan [17] proposed a technique called Canopy clustering to im-
prove the performance of record comparisons by assuming that duplicate de-
tection is transitive. They use a union-find structure in which duplicate records
are merged into a cluster and only a representative of the cluster is kept for
subsequent comparisons. Several methods define metric similarity as a canopy
distance [7,4]. In particular McCallum et al. [16] propose the use of canopies
to cluster large high-dimensional datasets. The key idea is to use a cheap and
approximate distance measure to efficiently group records into overlapping clus-
ters. Then, a more expensive function can be used to achieve a better accuracy
when similar record pairs are compared.

3 DDEBIT: A Duplicate Record Detection Algorithm
Based on Bitmaps and q-Grams

Here, we introduce a new approach to efficiently solve the duplicate record detec-
tion problem by extending the strategy adopted in [16]. The method is based on
the use of two similarity functions together with an efficient indexing technique.

First, a lightweight function filters out record pairs with a lower ’global’ sim-
ilarity. This produces a set of candidate pairs whose global similarity is above
a minimum loose threshold. Next, a more accurate function performs compar-
isons between candidate pairs that passed the above filter. This function detects
potentially duplicated records whose ’local’ similarity is above a tight threshold.

The intuition behind this method is that record pairs with a higher global
similarity are likely to be duplicated and can be successively compared to de-
termine a better accuracy using a finer and local similarity function. Moreover,
the increase of accuracy due to the combination of global and local similarities
reduces the number of potential false positives and negatives.

To support an efficient duplicate detection process in large datasets, we pro-
pose a two-phase approach:

1. Create index. We implement an indexing technique based on a sorted list
of q-grams named q-grams array. For each q-gram, we generate an inverted
index by using bitmaps.

2. Record detection. After indexing q-grams in the previous phase, we use
bitmaps to perform a fast comparison process or an efficient clustering.

Next Sections describe the method in more details.

3.1 DDEBIT Similarity Functions

Before introducing the new similarity functions, we report some basic properties
of q-grams.



312 A. Ferro et al.

Basic Definitions. Let Σ be a finite alphabet of size |Σ|. Let s1 ∈ Σ∗ be a
string of length n. The q-grams are short characters substrings of length q of
the database strings. Given a string s1, its positional q-grams are obtained by
sliding a window of length q over the characters of s1. Q-grams at the beginning
and the end of the string can have fewer than q characters. Therefore, new
characters ”#” and ”$” not in Σ are used to extend the string (1) by prefixing
it with q-1 occurrences of # and (2) suffixing it with q-1 occurrences of $.

For example, the positional q-grams of length q=2 for string tom smith are:
{ (1,#t), (2,to), (3,om), (4,m ), (5, s), (6,sm), (7,mi), (8,it), (9,th), (10,h$) }.
The set of all positional q-grams of a string s1 is the set of all the |s1| + q -
1 pairs constructed from all q-grams of s1. The intuition behind the use of q-
grams is that when two strings s1 and s2 have a small edit distance, they have
many q-grams in common. The use of positional q-grams will involve comparing
positions of matching q-grams within a certain distance. With the appropriate
use of hash-based indexes, the average time required for computing the q-gram
overlap between two strings s1 and s2 is O(max(|s1|, |s2|)).

Follows the formal definitions of the proposed similarity functions. These are
inspired by Monge-Elkan [17] and q-grams [9] distances. The first one better
detects typographical errors and block movements whereas, the q-gram distance
allows a quick computation of the edit distance to filter non-similar strings.

Definition 3.11. (Lightweight similarity). Let R be a relation and X, Y be
strings representing two tuples in R. Let qX and qY be the sets of distinct q-grams
of X and Y , respectively. The function dlight,q is defined as follows:

dlight,q(X, Y ) =
|qX

⋂
qY |

max(|qX |, |qY |)
(1)

This function computes the ratio of the number of distinct q-grams that two
strings have in common over the number of q-grams of the longest string. This
score represents a ’global’ similarity on the compared strings. It does not take
into account the position of common q-grams within the strings. In Figure 1 (a),
for each string, the distinct bigrams (q=2) are listed in a lexicographical order.
The computation of dlight,2, for all possible string pairs, is reported in Figure 1
(b). In some cases, dlight returns a low value also for pairs that could represent
the same real world entity. Here, the strings S2 and S3 differ on an high number
of q-grams, caused by the word ’professor’ and a typographical error (Stewen in
place of Steven). To refine the score of this type of string pairs, a more accurate
function combines dlight with Monge-Elkan distance [17].

Definition 3.12. (Accurate similarity). Let R be a relation and X, Y be
strings representing two tuples in R. Let Xi and Yj be the tokens or atomic
strings (i.e. a sequence of alphanumeric characters delimited by punctuation
characters) of strings X and Y , respectively. Let |X | and |Y | be the number
of tokens of X and Y respectively, and |X | ≥ |Y |. The function dacc,q is defined
as follows:



An Efficient Duplicate Record Detection 313

(a)

(b)

Fig. 1. (a) List of sorted q-grams. (b) dlight,2 and dacc,2 scores for all string pairs.

dacc,q(X, Y ) =
1
|X |

|X|∑
i=1

|Y |
max
j=1

dlight,q(Xi, Yj) (2)

Before computing dacc,q, Xi and Yj are divided into q-grams and dlight,q is
computed for all token pairs in order to find the best matches. The sum of these
maximal scores is then normalized by the maximum number of tokens given by
|X |. Intuitively, this function computes the number of common q-grams locally,
giving more importance to tokens similarity than global strings similarity. Notice
that, to increase the accuracy of similarity of tokens Xi which are prefixes of Yj ,

dlight,q within dacc,q is replaced with a function dprefix(Xi, Yj) = 1 − |qYj
\qXi

|
|qYj

||qXi
|

which yields a score that better captures the prefix similarity. Furthermore, since
dacc,q is a local similarity measure, missing short tokens (i.e. Xi with no more
than 4 bigrams) could cause lower and biased values for dacc,q. Thus, pseudo-
counters βi proportional to 1/|qXi | are added to the similarity measure dacc,q.
In Figure 1 (b), the values of dacc,2 are also reported for strings in Figure 1
(a). Typically, dacc,q increases the score of a strings pair with respect to dlight,q

in presence of prefixes, missing of short words, exact matches or high similarity
between token pairs. The function dacc,q can be generalized to work with records
of k fields.

Definition 3.13. Let R be a relation, let rx and ry be two records in R projected
on k fields. Let pi, 1 ≤ i ≤ k, be a weight associated to i-th field.



314 A. Ferro et al.

dacck,q(rx, ry) =
k∑

i=1

pi × dacc,q(rx[i], ry[i]) (3)

where p1 + p2 + ... + pk = 1 and rx[i] is the projection of rx to the i− th field.

Here, the comparison key is composed of k fields, and dacc,q is computed sep-
arately for each field. The contribution of the i − th field depends also on the
value of pi, that can give a higher or lower weight to the i− th attribute in the
comparison process. Unfortunately, this function is quadratic with respect to
the length of the strings. To overcome this limitation, we introduce a secondary
memory indexing technique on the list of distinct q-grams. This index makes
similarity computation linear in the number of q-grams of the longest string.

3.2 DDEBIT Indexing

The indexing phase contributes to quickly detect candidate records having an
high global similarity (i.e. high values of dlight,q) and to reduce the running time
of dacc,q. The key idea is based on the concept of q-grams array. Given a table T ,
a q-grams array is a sorted list of all distinct q-grams in T . Prefix q-grams of
the form #c1..cq are listed at the beginning, followed by q-grams without special
symbols, which are followed by suffix q-grams ending with the symbol $. In our
implementation, we use bigrams (i.e. q=2) sorted in a lexicographical order.

Figure 3 reports the pseudocode of the algorithm Create Index. Given the
dataset and the list of fields used for comparisons, the algorithm generates three
index files. For each record of the dataset, all distinct q-grams are inserted in
the q-grams array. More precisely, in line {1..3}, the q-grams array index is
created and stored in secondary memory (dataset.grm). In line {5, 6}, for each
element of the q-grams array, an inverted index is generated allocating a bitmap
of n bits (n is the size of the dataset). For each record and for each field, the
algorithm stores the position of its q-grams (obtained from the q-grams array)
in the index file (dataset.idx). Moreover, if a q-gram occurs in the i− th record,
the corresponding bitmap is updated (line 13) by setting the i− th bit. Finally,
in line {15, 16} bitmaps are stored in a binary file (dataset.bin). Figure 2 (a)
shows an example of dataset and corresponding index files.

Concerning the complexity, let m be the number of records, n be the size
of the q-grams array and r be the number of q-grams of the longest string.
The running time of Create Index algorithm is O(m*n), whereas the secondary
memory required by the index files is O(n) for the q-grams array, O(m*r) for
saving q-grams ids and O(m*n) for the binary file. Finally, the method requires
O(n*m) bits of memory.

3.3 DDEBIT Record Comparisons

The duplicate record detection problem treated in this paper is defined as follows.

Definition 3.31. Let B be a base table and Q be a query table. Let l be the loose
threshold and t be the tight threshold. Let rx ∈ Q and ry ∈ B be two records



An Efficient Duplicate Record Detection 315

(a) (b)

(c)

Fig. 2. (a) Indexing construction. (b) dlight computation. (c) dacc computation.

projected on k fields. rx is considered a duplicate of ry, if dlight,q(x, y) ≥ l and
dacck,q(rx, ry) ≥ t.

The novelty introduced by DDEBIT consists in reducing both the number and
the cost of the expensive record comparisons using information stored in the
index files previously generated for each dataset. More precisely, the inverted in-
dexes stored in the binary files (dataset.bin) are used to quickly compute dlight,q ,
while record index files (dataset.idx) are used to reduce the complexity of dacc,q.
Notice that, when base table B and query table Q do not coincide index files
(.grm, .idx, and .bin) are constructed for both B and Q.



316 A. Ferro et al.

DDEBIT Create Index(D dataset of n records, a list of k fields (f1, f2, . . . , fk))

OUTPUT: Three index files: dataset.grm, dataset.idx, dataset.bin

1 for each record reci in D do // Create file dataset.grm

2 insert all q grams (reci, q-grams array);

3 write (q-gram array, dataset.grm);

4

5 for each q-gram qj in q-gram array do // Allocate bitmaps

6 bitmap[qj ] = allocate bitmap (n); // n is the size of D

7

8 for each record reci in D do // Create file dataset.idx

9 for each field fy do
10 for each q-gram qj do
11 pos q gram = find q gram position (qj , q-gram array);

12 write (pos q gram, dataset.idx);

13 bitmap[qj ] [reci] = 1; // Update bitmap for qj

14

15 for each q-gram qi in q-gram array do // Create file dataset.bin

16 write (bitmap[qj ], dataset.bin);

Fig. 3. The Create Index procedure of DDEBIT

The pseudo code of duplicate detection algorithm is showed in Figure 4. In
line {1..4}, for each base record, the algorithm (i) retrieves for each field and for
each token, all q-grams from record index and loads them in memory by setting a
bitmap whose size is equal to the length of the q-grams array, and (ii) maintains
the total number of distinct q-grams. The construction of bitmapB table (line 3)
is not expensive; for each base record rb, it is linear in the total number of q-grams
of rb. In line 5, the algorithm remaps the ids of q-grams in datasetQ.idx with the
corresponding ids from the datasetB.grm. If a q-gram of query table does not
occur in the q-grams array of base table, its id is set to -1. In lines {7..19}, the
comparison process between query table and base table is performed. DDEBIT,
by using information stored in the binary file, maintains a counter associated to
each base record storing the number of common q-grams with the query records
(line 10). Such a counter allows to quickly detect base records sharing at least one
q-gram with the query record (see Figure 2). We compute (line 14) the dlight,q

similarity between the query record and each base record whose id corresponds
to a value of record counter greater than 0. If the value of dlight,q is above the
loose threshold, the algorithm computes dacck,q to verify the local similarity. The
candidate records are considered duplicated if dacck,q is above the tight threshold
(see Figures 2 (b),(c) for an example of computation).

Using information stored in the index files, if g is the number of q-grams
of the query records, dacc,q requires O(g) comparisons. The reason behind this
complexity relies on fact that, for each q-gram i of a query record, the method
tests only the i-th bit of the bitmap corresponding to each token of the base
record. Thus, the complexity of the method is O(m*n*g), where m is the number
of records of the query table, n is the number of records of the base table, and



An Efficient Duplicate Record Detection 317

DDEBIT Duplicate Detection(datasetB.∗: Base table, datasetQ.∗: Query table;

a list of k fields (f1, f2, . . . , fk); loose threshold l; tight threshold t)
OUTPUT: for each query record, a list of potential duplicated records

1 for each record recb in B do //Load base table in memory

2 for each field fi in recb do //Read record ids from file datasetB.idx

3 bitmapB table[recb][fi]= Allocate and set List bitmaps();

4 num q-grams B[recb]=total num distinct q-grams();

5 new datasetQ.idx = Remap(datasetQ.idx, datasetB.grm);

6

7 for each record recq in Q do // Comparison process

8 for each q-gram qj in recq do
9 for each i− th set bit of datasetB.bin[qj ] do

10 record counter[i]++;

11 num q-grams Q[recq]=total num distinct q-grams();

12

13 for each i such that record counter[i]> 0 do //Find candidate pairs

14 dlight=
record counter[i]

max(num q−grams B[i],num q−grams Q[recq ])
;

15 if (dlight == 1.0 ) then output(Exact match);

16 else if ( dlight ≥ l ) then
17 dacck = compute score(bitmapB table[i], new datasetQ.idx[recq]);
18 if (dacck ≥ t) then
19 output (Record i and record recq are duplicated!);

Fig. 4. The Duplicate Detection procedure of DDEBIT

g << n is the maximum number of q-grams in the records. Moreover, the method
requires O(n*m) bits of main memory.

3.4 Application to Clustering

The key idea for detecting duplicates presented in this paper can be used for
clustering. Extending a strategy proposed in [16], we introduce a new clustering
technique which consists of partitioning the dataset into non-overlapping clus-
ters. Using the similarity measures dlight and dacc, the method groups into the
same cluster records considered duplicated according to the strategy described
in the previous sections. Differently from comparisons process, number of com-
parisons are slightly reduced. This is due to the fact that a record associated to
a cluster will not be used for further comparisons. The complexity is O(n*g*c),
where c is the number of clusters, n is the number of records, and g << n is the
maximum number of q-grams in the records.

4 Performance Analysis

Experimental analysis was performed on a server HP Proliant DL380 with 4GB
RAM, equipped with Linux Debian Operating System. DDEBIT was imple-
mented in C++ language. In all our experiments, q has been set to 2.



318 A. Ferro et al.

Accuracy of DDEBIT measures. We compared DDEBIT with q-grams and
positional q-grams [9], Jaro [11], Jaro Winkler [23] and edit distance [13]. To per-
form comparisons, we used Python implementation of these metrics available in
Febrl package1. We measured the accuracy of similarity metrics on real datasets
concerning information about restaurants, by comparing 331 tuples from Za-
gat’s website with 533 tuples from the Dept. of Health website. We selected the
fields name, street, city, and phone and computed Recall, Precision and the
F1 measure defined as 2×Recall×Precision

Recall+Precision .
Table 1 shows the accuracy of the metrics related to the best performances

for each method. Results clearly show that the proposed method has a better
behavior with respect to the other metrics. DDEBIT outperforms q-grams and
edit distance since it uses a combination of local and global similarities. More-
over, due to the fact that DDEBIT better captures the similarity in presence of
prefixes and missing of short tokens, it also yields an higher value of F1 with
respect to Jaro and Jaro Winkler. However, a limitation of DDEBIT is that it
does not detect string swaps between attributes neither potential similar strings
which differ on an high number of tokens or contain missing values.

Table 1. Comparison among DDEBIT and q-grams, positional q-grams, edit distance,

Jaro and Jaro-Winkler

Metric Tight(Loose) Real Correct Pred. Predicted Precision Recall F1

threshold Duplicates Duplicates Duplicates

q-gram(q=2) 0,7 112 107 210 0,51 0,96 0,66

Positional 0,7 112 49 61 0,8 0,44 0,57

Jaro 0,8 112 78 178 0,44 0,70 0,54

Edit 0,75 112 72 140 0,51 0,64 0,57

Jaro Winkler 0,85 112 103 173 0,60 0,92 0,72

DDEBIT 0,8 (0,65) 112 97 106 0,92 0,87 0,89

DDEBIT 0,75 (0,6) 112 107 134 0,8 0,96 0,87

DDEBIT 0,7 (0,6) 112 110 181 0,61 0,98 0,75

Efficiency and accuracy of DDEBIT method. By evaluating the indexing
construction time on synthetic data2, we observed a linear trend on both the
number of fields (see Figure 5 (a)) and the size of the dataset (see Figure 5
(b)). Concerning the record comparisons time, by performing a self comparison
of a base table of 10k and varying number of fields, DDEBIT took a maximum
running time of 15,41 sec. (Figure 6 (a)). In Figure 6 (b) we report the average
time for query record varying the size of the dataset. The query time increases
for larger datasets due to the higher number of candidate records. Figure 7 (a)
reports a record comparison between a query table of size 10k and a base table
of size 100k. A naive approach (which does not use filtering) performs 10k*100k

1 http://sourceforge.net/projects/febrl/
2 We used the generator provided at http://dbgen.sourceforge.net/.



An Efficient Duplicate Record Detection 319

(a) (b)

Fig. 5. DDEBIT indexing time. (a) Size of dataset is 100k. (b) Number of fields is 4.

(a) (b)

Fig. 6. DDEBIT record comparisons time with light threshold and tight threshold

equal to 0.7 and query table of size 10k. (a) Time w.r.t. fields. (b) Number of fields

is 4.

comparisons, computing dacc,q on all possible record pairs. dlight,q computes an
high number of comparisons however the cost of dlight,q is lower than dacc,q

(common q-grams are retrieved directly from index files). Moreover, it reduces
the number of expensive comparisons filtering out non similar record pairs. For
example, by setting k = 3, dacc3,2 performs only 12.294 record comparisons in
place of 10k*100k. In Figure 7 (b), DDEBIT drops down the running time up to
the 92% with respect to the naive approach. Although the different programming
languages, we compared DDEBIT with SB (Standard Blocking with Soundex
encoding) [6], QI (Q-gram Indexing) [2], SA and MSA [5] (Similarity Aware
and Materialized Similarity Aware using Jaro winkler and 1-gram comparisons
metrics)3. We generated uniformly distributed synthetic datasets having size
ranging from 500k to 1.5M. We computed the index construction time (Figure 8
(a) top) and the average query time (Figure 8 (a) bottom) using a query table
of 2k records.

3 We thank prof. Peter Christen for providing the software.



320 A. Ferro et al.

(a) (b)

Fig. 7. (a) Number of comparisons using dlight,q, dacc,q and the naive approach. (b)

Running time of DDEBIT vs the naive approach.

We also compared the accuracy of the above methods on synthetic datasets
of size 100 with different distributions (uniform, Poisson and zipf) and 4 fields.
Each query record is a duplicate of one base record with 1 modification per field
and 3 modifications per record. We also used two real data selecting randomly
100 records from ucdPeopleMatch4 dataset which contains prefixes and swap
of words within attributes, and cora5 dataset containing citations clustered into
groups referring to the same scientific paper.

For real datasets, the number of true matches is slightly increased with respect
to the other algorithms (see Figure 8 (b)). Figure 8 (c) shows the Recall of
DDEBIT for different values of light and tight thresholds for the cora dataset.
Notice that, using proper thresholds, DDEBIT is able to reach a very high Recall.
Finally, Figure 8 (d) contains different F1 values varying the weights pi associated
to the attributes, used in dacck,q. Assigning 1/2 to title and 1/6 to the other
attributes, DDEBIT yields a very good accuracy with respect to the uniform
weights assignment (first row in the table).

Clustering. In order to test the accuracy of DDEBIT clustering, we generated
synthetic datasets (using the Febrl generator) having at most 4 modifications per
attribute and 15 modifications per record. Each dataset contains one duplicate
per record. We used a light threshold equal to 0.6 and a tight threshold equal to
0.65. Results clearly show that F1 (see Figure 9 (a)) is higher using more fields
in the comparisons process, due to the fact that dacc,q is highly discriminating
and gives a more accurate score using a larger number of fields.

We also tested running time of our clustering approach. Figure 9 (b) shows
that, by fixing the number clusters to 10 and varying the size of dataset, DDEBIT
has a better running time with respect to fix the percentage of duplicates per
record (10%) and varying the number of clusters.

The proposed clustering technique does not take into account, for further com-
parisons, records already assigned to a cluster. This improves clustering efficiency
at cost of inserting some records in wrong blocks. Finally, in Figure 10 we report

4 http://fingolfin.user.cis.ksu.edu/ERICRAWLER/data/
5 http://www.hpi.uni-potsdam.de/naumann/projekte/repeatability/datasets/



An Efficient Duplicate Record Detection 321

(a) (b)

(c) (d)

Fig. 8. (a) DDEBIT vs other techniques on synthetic datasets. Top shows index con-

struction time, bottom query time. (b) True matches (0-100) on different datasets. (c)

DDEBIT Recall on cora dataset. (d) DDEBIT accuracy on cora dataset wrt pi.

(a) (b)

Fig. 9. Clustering. (a) F1 w.r.t. the size of dataset. (b) Running time with fields=5.

a direct comparison between DDEBIT clustering technique and a naive approach
that does not filter candidate record pairs. DDEBIT slightly reduces execution
time and the number of comparisons. Moreover, accuracy is lower in some cases
(records = 1000), because dacc,q introduces some false positives or negatives; but
we observed an increased value of Recall in the other cases (records equal to 10k
and 20k), due to the fact that dlight,q sometimes discards false positives that
dacc,q would consider as duplicates.



322 A. Ferro et al.

Fig. 10. Clustering vs naive approach. Fields=5, light and tight threshold equal to 0.7.

5 Conclusions and Future Work

In this paper we proposed DDEBIT, an indexing method for fast and accurate
duplicate record detection. The novelty of this approach consists of using a two-
step similarity comparisons process which results more efficient and effective
than using a single measure. Moreover, comparisons are optimized by using a
q-grams array indexed with bitmaps. Finally, the efficiency of DDEBIT has been
confirmed by a new clustering technique based on it. Future work will investigate
the memory usage reduction through an efficient bitmap compression and the
refinement of similarity metrics to increase accuracy of resulted records.

References

1. Aizawa, A., Oyama, K.: A fast linkage detection scheme for multi-source infor-

mation integration. In: International Workshop on Challenges in Web Information

Retrieval and Integration, pp. 30–39 (2005)

2. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods

for record linkage. In: ACM SIGKDD 2003 Workshop on Data Cleaning, Record

Linkage, and Object Consolidation, pp. 25–27 (2003)

3. Chatterjee, A., Segev, A.: Data manipulation in heterogeneous databases. ACM

SIGMOD Record 20, 64–68 (1991)

4. Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and efficient fuzzy

match for online data cleaning. In: SIGMOD 2003, pp. 313–324 (2003)

5. Christen, P., Gayler, R.: Towards scalable real-time entity resolution using a

similarity-aware inverted index approach. Proceedings of AusDM 2008, Glenelg,

Adelaide 87, 30–39 (2008)

6. Christen, P., Churches, T.: Febrl: Freely extensible biomedical record linkage Man-

ual (2002)

7. Cohen, W., Richman, J.: Learning to match and cluster large high-dimensional

data sets for data integration. In: SIGKDD 2002 (2002)

8. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate record detection: A survey.

TKDE 19 (2007)

9. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Sri-

vastava, D.: Approximate string joins in a database (almost) for free. In: VLDB

2001, pp. 491–500 (2001)



An Efficient Duplicate Record Detection 323

10. Han, J., Kamber, M.: The data warehouse ETL toolkit: Practical techniques for

extracting, cleaning, conforming, and delivering data. John Wiley and Sons, Chich-

ester (2004)

11. Jaro, M.A.: Unimatch: A record linkage system: User’s manual. Technical report,

U.S. Bureau of the Census, Washington, D.C (1976)

12. Jaro, M.A.: Advances in record linkage methodology as applied to matching the

1985 census of tampa, florida. Journal of the American Statistical Society 84, 414–

420 (1989)

13. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-

versals. Doklady Akademii Nauk SSSR 163, 845–848 (1965)

14. Hernandez, M., Stolfo, S.: The merge/purge problem for large databases. In: Pro-

ceedings of the ACM SIGMOD International Conference on Management of Data

(1995)

15. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.

SIAM Journal on Computing 22, 935–948 (1993)

16. McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional

data sets with application to reference matching. In: ACM SIGKDD, pp. 169–178

(2000)

17. Monge, A.E., Elkan, C.P.: An efficient domain-independent algorithm for detecting

approximately duplicate database records. In: Proceedings of DMKD 1997, pp. 23–

29 (1997)

18. Ramos, J.: Using tf-idf to determine word relevance in document queries. In: Pro-

ceedings of the First Instructional Conference on Machine Learning (2003)

19. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.

Journal of Molecular Biology 147, 195–197 (1981)

20. Sutinen, E., Tarhio, J.: On using q-gram locations in approximate string match-

ing. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 327–340. Springer,

Heidelberg (1995)

21. Ukkonen, E.: Approximate string matching with q-grams and maximal matches.

Theoretical Computer Science 92, 191–211 (1992)

22. Ullman, J.: A binary n-gram technique for automatic correction of substitution,

deletion, insertion, and reversal errors in words. The Computer Journal 20, 141–147

(1977)

23. Winkler, W.E.: The state of record linkage and current research problems. In:

Statistics of Income Division (1999)



Modelling Complex Data by Learning Which
Variable to Construct

Françoise Fessant, Aurélie Le Cam, Marc Boullé, and Raphaël Féraud

Orange Labs,

2 avenue Pierre Marzin, 22307 Lannion, France

{francoise.fessant,aurelie.lecam,marc.boulle,
raphael.feraud}@orange-ftgroup.com

http://www.orange.com/en_EN/innovation/

Abstract. This paper addresses a task of variable selection which con-

sists in choosing a subset of variables that is sufficient to predict the

target label well. Here instead of trying to directly determine which vari-

ables are better, we make use of prior knowledge to learn the properties

of good variables and guide the selection towards the most relevant di-

mensions. For this purpose we assume that a variable can be represented

by a set of indicators that describe both the properties of the variable

and its potential relationship to the targeting problem. This approach

enables the prediction of the relevance of variables without measuring

their value on the training instances. We devise a selection methodology

that can efficiently search for new good variables in the presence of a

huge number of variables and to dramatically reduce the number of vari-

able measurements needed. Our algorithm is illustrated on an industrial

CRM application.

Keywords: Variable selection, classification, scoring, CRM.

1 Introduction

Customer Relationship Management (CRM) is a key element of modern market-
ing strategies. The most practical way to build knowledge on customers in a CRM
system is to produce scores to detect churn, propensity to subscribe to a new ser-
vice, etc. A score (the output of a model) is an evaluation for all target variables to
explain. The score is computed using customer records represented by a number of
variables or features. Scores are then used by the information system for example
to personalize the customer relationship. The rapid and robust detection of the
most predictive variables can be a key factor in a marketing application.

An industrial customer platform has been developed at Orange Labs to indus-
trialize the data mining process for marketing purpose. The platform, capable
of building predictive models for datasets having a very large number of input
variables (thousands) and instances (hundreds of thousands), is currently in use
by Orange marketing. Its fully automated data processing machinery includes:
data preparation, model building, and model deployment. The system extracts a

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2010, LNCS 6263, pp. 324–335, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.orange.com/en_EN/innovation/


Modelling Complex Data by Learning Which Variable to Construct 325

large number of features from a relational database, selects a subset of informa-
tive variables and efficiently builds in a few hours an accurate classifier. When
the models are deployed, the platform exploits sophisticated indexing structures
and parallelization in order to compute the scores of millions of customers, us-
ing the best representation. The platform allows building predictive models using
two orders of magnitude more exploratory variables than the current state of the
art, resulting in a dramatic improvement of performances. Performances of the
in-house platform have been benchmarked in an academic context through
the recent challenge KDD cup 2009 [1].

Experiments on several marketing campaigns have shown that the improve-
ment of the quality of scoring models is strongly correlated to the number of
explicative variables that can be explored. However the processing time associ-
ated with data table flattening remains the main limitation to the exploration of
even larger data spaces. The variables are very expensive to compute; the evalu-
ation times growing linearly with the number of variables. For the moment, the
platform is limited to the analysis of about 20 000 variables for strong industrial
time constraints. The efficient exploration of such huge spaces therefore requires
the conception of an exploration technique guiding the flattening towards the
most promising areas.

This paper presents a methodology for the exploration of a large space of vari-
ables consistent with the time constraints. Our idea is to estimate the predictive
power of input variables without measuring them and so to avoid the flattening
of all variables. A variable is characterized by a set of indicators that describe
both the properties of the variable and its potential relationship to the scoring
problem. The link between the indicators and the predictive importance of the
variables is modelized with a subset of evaluated variables. The learned model
is then used to infer the predictive importance of many new variables. Then the
set of best variables can be selected for final scoring. In this way, we can explore
a large set of variables while measuring only a few of them. What’s more we are
able to characterize the most important variables and to judge new variables.

We describe the complete methodology of exploration and its evaluation on a
raw marketing campaign. The paper is organized as follows: section 2 gives an
overall view of the in house Orange customer analysis platform. Section 3 details
the methodology of exploration. Experimental results are presented in section 4.
We conclude with some further research directions in section 5.

2 Platform Description

Two main steps of the Orange in-house customer analysis platform, data prepa-
ration and model building, are described in this section. More about the platform
can be found in [2].

2.1 Data Folder

Unlike the current practice of data mining architecture, the explanatory variables
are not designed and computed once in a datamart. In our platform architecture,



326 F. Fessant et al.

the input data from information system are structured, and stored in a simple re-
lational database called the data folder. The explanatory variables are constructed
and selected automatically for each specific marketing project. The data folder
model provides a unique view of the available input data sources, normalized ac-
cording to a star schema:

– The primary table is related to the marketing domain. For customer data
analysis, this table contains all the fields directly connected to the customer,
such as his name or address,

– The secondary tables have a N-0 relationship with the primary table. Each
instance of the primary table may be related to a variable number of in-
stances of a secondary table. For telecommunication data for example, the
secondary table contains the list of services, of usages of theses services, the
call details.

The star schema offers an efficient trade-of between single table data mining
and full multi-relational data mining: it has a large expressiveness, suitable for
many data mining problem, and it allows efficiently build aggregated variables
from secondary tables. Finally, this star schema allows to design formatted and
restricted data extraction languages in order to facilitate automatic control of
data extraction.

2.2 Data Extraction

The platform uses a feature construction language dedicated to the marketing
domain, to build tens of thousands of features in order to create a rich data
representation space. The data extraction functionality of the platform is pa-
rameterized using dedicated languages.

– a selection language to filter the instances,
– a construction language to build a flat instance x variables representation

from the data folder,
– a preparation language to specify the recoding of the explanatory variables.

These languages are both simple enough to be automatically exploited by the
process of variable selection and expressive enough to build a large variety of
explanatory variables. Each language expression deals with at most two tables:
the primary table plus eventually one secondary table. The join key always
belongs to the primary table, and the selection and construction operands exploit
the fields of any table, primary or secondary.

We focus on the construction language because it represents one of the sources
of prior knowledge exploited in our methodology. A unified framework is used
to write each language expression. It is composed of several successive fields (an
example is given table 1). The first one is the identification of the variable (”Id”),
the second is the type of the variable (”Type” whose values can be numeric or
symbolic). The third is the name of the table of origin (the primary table or a
secondary one). Fourth item is the name of the operator (several type of opera-
tors are used, simple selection with ”Get”, calculation with ”Mean”, ”Count” or



Modelling Complex Data by Learning Which Variable to Construct 327

”Total” and more complex like date and trends). Next item ”Operand” identifies
the selected field in the table. The four following items correspond to a selection
expression. A selection expression is defined by a naming rule ”Sel Id 1”, the
choice of another field of the table ”Sel Operand 1”, one or more selection val-
ues ”Sel Value 1”, and the choice of a new operator ”Sel TranscodingOperator 1
that can be a ranking operator or a date. The selection expression enables to
specify some crosses between several fields of a given table. The language ex-
pression can contain from 1 to 4 selection expressions allowing more or less
complex crosses. For example, to build the total turnover for several successive
quarters for all customers, one single language expression needs to be specified
(the expression is illustrated table 1). The table of origin is the secondary table
“Photo”, the name of the selected field is the operand identifying the turnover
“CA”. The operator working on the operand is the calculation operator “ Total’.
The selection expression is defined by the choices of the other field of the table
(”M Photo”), a transcoding operator (“DiffDate”) and some values for the se-
lection ([0,1,2] means that the total amount of CA is evaluated on the three last
months stored in the data folder). The language expression generates 3 variables
of numerical type (the turnover for 3 successive quarters) labelled ”CA3M t1”,
”CA3M t2” and ”CA3M t3”.

It is then possible to specify up to thousands of variables to construct, using
one single expression of the construction language.

Table 1. The expression generates 3 explicative variables about the turnover for 3

successive quarters (CA3M t1, CA3M t2, CA3M t3). It is composed of successive fields:

Id, type of the variable (N for numerical in this case), source table name, operator,

operand, selection id for variable identification, operand of selection, selection values

and trancoding operator. A single expression can contain from 0 to 4 selection id,

selection operands, selection values and trancoding operators according to the required

complexity.

Id Type Table Operator Operand Sel Id 1 Sel Sel Sel Trancoding

Operand 1 Value 1 Operator 1

CA3M N Photo Total CA −t M Photo [0, 1, 2]; DiffdateM

[3, 4, 5];
[6, 7, 8]

2.3 Data Preparation

The platform architecture allows to easily build flat data tables with up to tens
of thousands of constructed variables. In order to select the best representation,
that is the best subset of informative variables, a robust and efficient variable
selection method has been implemented. Explicative variables are individually
evaluated by means of a supervised discretization method in the numerical case
or by means of an optimal value grouping method in the categorical case. Su-
pervised discretization [3] (or value grouping [4]) is treated as a non parametric
model of conditional probability of the output variable given an input variable



328 F. Fessant et al.

with the MODL approach (Minimum Optimized Description Length). The dis-
cretization is turned into a model selection problem and solved in a Bayesian way.
The best discretizations and value groupings are optimized using the bottom-up
greedy heuristic described in [3]. One advantage of this filter approach is that
non informative variables are discretized in one single interval and can thus be
reliably discarded. This approach also quantitatively evaluates the predictive
importance of each variable for the target.

2.4 Modelling

The orange in house platform uses the Khiops scoring tool which implements
an extension of the naives Bayes classifier (including model averaging) called
Selective Nave Bayes classifier. The system has no hyper-parameter to adjust.
The tool is designed for the management of large datasets, with hundreds of
thousands of instances and tens of thousands of variables, and was successfully
evaluated in international data mining challenges. Khiops can be downloaded
here: http://www.khiops.com/. Once learned, the model is finally deployed to
produce scores for all instances on all the explanatory variables.

3 Predicting the Relevance of a Variable

3.1 Related Work

Our problem can be seen as a problem of variable selection. Classical variable se-
lection task is to choose a small subset of variables that is sufficient to predict the
target well. The main motivations for variable selection are computation com-
plexity, reduction of the cost of measurements, improving classification accuracy
or problem understanding [5]. The main approaches studied in the literature
are filter and wrapper [6]. Filter methods consider the correlation between the
input variables and the output variable as a pre-processing step, independently
of the chosen classifier. Wrapper methods search the best subset of variables for
a given classification technique, used as a black box. Wrapper methods which
are time consuming [7] are restricted to the modelling phase of data mining, as
a post-optimization of a classifier. Filter methods are better suited for the data
preparation phase, since they are time efficient and can be combined with any
data modelling approach.

Classical methods of variable selection tell us which variables are better, they
don’t tell us what characterizes these variables or how to judge new variables
which were not measured in the training data. On the basis of these observa-
tions Krupka [8] has recently developed another approach to variable selection.
Instead of selecting a set of better variables out of a given set, his algorithm
learns the relation between some descriptors coming from prior knowledge on
initial data and the variable usefulness. This in turn enables him to predict the
quality of unseen variables. The scenario is based on an extension of Recursive
Feature Elimination [9], a wrapper selection method for linear SVM. Subsets of
variables with poor usefulness are successively removed with a recursive process.



Modelling Complex Data by Learning Which Variable to Construct 329

Other ideas about the exploitation of prior knowledge about relevance of vari-
ables can be found in the literature. For instance, [10] performs transfer learning
across tasks, acquiring prior knowledge on one dataset and using it as partial
supervision on others. [11] is another example of transfer learning. Our work is
based on an idea similar to [8] that consists in exploiting prior knowledge we
have on initial variables and linking it to variable relevance. The modelization
is completely based on the Khiops tool.

3.2 Acquisition of Prior Knowledge on Variables

As introduced section 2, the platform allows the generation of many variables
with very few language expressions. The definition of an expression is composed
of several choices: table, variable, operators, operands, values, ... and specifica-
tions for the exploitation of the expression, like id for labelling the variable. The
language used for the construction of the variables provides the first source of
prior knowledge we want to exploit. The initial data are stored in a data folder
and this data folder is another source of prior information. For example, we know
for a categorical variable details about its modalities (number, frequency) and
for a numerical variable the spread of values.

List of descriptors. Each variable has been described by a set of descriptors
from these two sources of knowledge. 15 descriptors have been directly retained
from the structure of construction of the variable or derived from it:

– Type of the variable (a variable can be categorical or numerical),
– Table name (one of the table of the data folder),
– Operator (the name of the calculation operator: Get, Count, Mean, Trend,

...)
– Type of operator (an operator can be a simple selection or more complex:

calculation, date, trend or count),
– Flag for the presence or absence of an operand (yes or no),
– Operand name (the name of one field of the selected table),
– Total number of transcoding operators in the expression (examples of tran-

coding operators: WeekDay, Diffdate, HourNumber, AscendingRanking, ...),
– Transcoding operator names (vector of 2 dimensions, in our applicative con-

text an expression can have at most 2 items filled),
– Number of transcoding operator in each type (vector of 2 dimensions, a

transcoding operator can be a date or a ranking),
– Number of selection operands (a selection operand is a field item of the

selected table),
– Names of selection operands (vector of 4 dimensions, in our construction

scheme a language expression can have up to 4 items filled in the selection
expression),

– Length of the language expression (total number of items in the language
expression),

– Flag for the complexity of the expression (yes or no, an expression is consid-
ered as complex if at least a part of a selection expression is filled in),



330 F. Fessant et al.

– Number of selection Id (a selection Id is used to label the variable),
– Number of selection values in each type (vector of 6 dimensions, a value can

be a single numerical or categorical value, an interval of numerical values, a
group of numerical or categorical values, a null value).

The 5 descriptors retained from the initial data in data folder are:

– Operand type (an operand can be numerical, categorical , a date or a time
value),

– Number of operands in the table,
– Number of modalities for a categorical operand,
– Entropy for a numerical operand,
– Ratio between the interquartile interval and the median for a numerical

operand.

Finally, prior knowledge on an explicative variable is represented by a vector of
30 dimensions.

3.3 Model of Variable Importance

We now define a new supervised problem. The original variables are the in-
stances. The descriptors listed above become the new variables. The target is
the predictive importance evaluated by the scoring model. As recalled section
2.3, Khiops analyses each variable independently for the target and return a
value that is directly its predictive importance. Khiops is used once again as a
classification model to find the required mapping from descriptors to predictive
importance. The algorithmic protocol is decomposed into the learning and test
steps:

Learning Step: We are able to build a set of N variables from a set of P
feature construction expressions. We assume that we evaluate only a subset of
these N variables with the scoring platform (it means that only these variables
are flattening and a predictive importance is available for each of them). The
descriptors associated to this subset of variables correspond to our learning set.
We use it to learn the relation between the descriptor values and the variable
importance. The problem we learn is not the exact prediction of the importance
value but the class of importance (i.e. if the predictive importance value is null
(not important) or positive (important)).

Test Step: Based on the previous modelization, the goal is now to generalize
to unseen variables. We predict the importance class for the instances of the
test set represented by the descriptors of the whole variables including variables
that were not part of the training set. This in turn enables us to choose the
most relevant variables for the final scoring. The process of variable importance
prediction can be summarized as follows:



Modelling Complex Data by Learning Which Variable to Construct 331

– Variable and descriptor sets constitution
Variable set: build variables from a limited number of language expressions
Descriptor set: extract descriptors for each variable

15 descriptors based on the language framework
5 descriptors based on the data stored in the data folder

– Learning of the model of importance
– Generalization on all the constructed variables

Selection of the most important variables.

4 Experimental Validation

We report in this section practical experiments that have been made on a raw
marketing campaign.

4.1 Data Description

For the evaluation, the platform is suppliedwithdata collected on a sample of 30000
customers. The information comes from decisional applications of Orange Com-
pany. The goal of the task presented here is to prevent a customer to switch ADSL
provider. For this problem we have 24, 3% of positive instances. The feature con-
struction language is used to generate 20000 initial explicative variables from 600
feature construction expressions (an example of such expression is given table 1).

4.2 Evaluation Process

The final evaluation concerns the scores produced with the platform. We compared
the scores for several sizes of subsets in themodel of predictive importance (itmeans
that only the variables corresponding to these subsets are initially flattened and
evaluated with the platform). The complete algorithmic protocol is as follows:

– Learning set constitution
Repeat

Random selection of a language expression
Random selection of a variable among those generated by the
expression

Until the expected number of variables is reached
Evaluation of the importance associated to variables with the scoring
platform
Building of the set of descriptors for the set of variables

– Learning of the model of importance

– Generalization on all the constructed variables
Selection of the most important variables

– Final scoring with the selected variables
Scoring evaluation.



332 F. Fessant et al.

4.3 Results

We successively experimented with a sample of 2, 5, 10, 20 and 40 percent of the
initial explicative variables. In other words, the model of importance has been
built with respectively 400, 1000, 2000, 4000 and 8000 instances (the instances
being selected as described section 4.2). The predictive model is evaluated using
the area under the ROC curve (AUC) [12] (the higher the criteria, the better,
with 1.00 indicating perfect performance).

Table 2 shows for each sample, the number of variables evaluated for the
constitution of the learning step, the time of flattening, the AUC of the classifier
on the test set, the number of variables that have been classified with a positive
predictive importance after generalization and the number of variables really
important among them. 1072 variables have been labelled as important when the
scoring has been achieved directly with the flattening of all the initial explicative
variables. A evaluated variable is tagged as really important if it belongs to this
set. 70% of the users are used for the modelization steps, the remaining 30% are
kept for the final scoring evaluation.

We observed that less than 4% of the whole variables is considered as impor-
tant for the targeting by the model. This number regularly increases with the
size of the subset used in the learning step. A detailed analysis of the model of
importance can help us to characterize good variables (for instance, the descrip-
tors with high level in the model are the name of the operand, the names of the
first and second selection operand in the expression and the name of the table).

Only the variables predicted as important are considered now and flattened
for final scoring.

We compared the scores produced for the 5 sets of variables predicted as
important to those given by the current operational model. The current model
requires the direct flattening of 20000 explicative variables.

The performance of a model is measured with the cumulative gain curve. It is
a graphical representation of the advantage of using a predictive model to choose
which customers to contact. The x-axis gives the proportion of the population
with the best probability to correspond to the target, according to the model.

Table 2. Sample parameters for learning the model of importance, flattening time

(in minutes), AUC of the classifier on the test set, number of variables classified as

important and number of really important variables. It takes 375 minutes to flatten

the initial set of 20000 explicative variables.

Sample size of the learning set flattening nb of variables nb of variables

rate for importance time (m) AUC classified really

prediction as important important

2 % 400 35 0.858 284 177

5 % 1000 51 0.850 513 413

10 % 2000 67 0.905 595 439

20 % 4000 121 0.908 604 450

40 % 8000 210 0.913 775 513



Modelling Complex Data by Learning Which Variable to Construct 333

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

 Percentage of customers selected by the platform, ranked by score

 P
er

ce
nt

ag
e 

of
 o

bs
er

ve
d 

cu
st

om
er

s

 

 

Random
Optimal
Current model
model, sampling 2%
model, sampling 5%
model, sampling 10%
model, sampling 20%
model, sampling 40%

Fig. 1. Lift curves of scoring models

The y-axis gives the percentage of the targeted population reached. The curves
are plotted on Figure 1. The diagonal represents the performance of a random
model. If we target 20% of the population with the random model, we are able
to reach 20% of the fragile customers. With the current model, when 20% of the
population is contacted, 40% of the fragile customers is reached.

The curves corresponding to the sampling rates of 5%, 10%, 20% and 40% are
almost confused and this remains true for the entire cumulative gain curve. The
performance slightly decreases for the sampling at 2%. Numerical results in table
3 complete the previous observations. We give the AUC of the different scoring
models. The lowest sampling rate excepted, the scoring based on the variable
selection scenario has led to the same scoring accuracy than the actual model.
For instance, a sampling of 5% of the initial variables means that 1000 variables
among 20000 are first flattened in order to build the model of predictive impor-
tance. At the end of the generalization, 513 variables considered as important
are retained. In the end the complete scoring process required the evaluation of
about 1500 variables. Therefore we can conclude that a reduction of a factor 12
of the number of evaluated variables has been achieved without damage on the
final scoring.

The experimental results confirmed the interest of the approach. We obtained
similar scoring performances to the actual model with a significant reduction of
measurements. A consequence is an important saving of time for the global scor-
ing process. Another point with the method is that we are able to characterize
the properties of good variables. An in depth analysis of the 20 best variables
kept by the targeting models shows that they share 40% of similar variables



334 F. Fessant et al.

Table 3. Final scoring model performances (AUC)

model (sample rate) AUC

Current model 0.744

2 % 0.728

5 % 0.735

10 % 0.739

20 % 0.738

40 % 0.740

with the current model. We can notice that efficient scoring can be achieved
with several combinations of variables.

5 Conclusion

We have described in this paper a methodology of variable selection whose main
idea is to take benefit from prior knowledge on variables to guide the exploration
of the input space towards the most promising areas. The approach consists in
predicting the quality of variables with measuring few of them. A variable is
described by a set of indicators and the link between these indicators and the
predictive importance of the variable is modelized. The model is then used to
predict the importance of new variables. Only the variables predicted as im-
portant are retained and evaluated for final scoring, the other being discarded.
The result is a dramatically reduction of the number of variable measurement
needed for a similar scoring performance. With this approach, for a given num-
ber of variables we can explore more quickly or explore more variables in a fixed
duration.

The validity of the approach has been demonstrated on a raw marketing
campaign for several thousands of variables. This preliminary work needs to be
extended. The exploration of even larger input spaces raises the question of over-
fitting and the risk that a variable becomes informative by accident. A solution
could be a regularization procedure to penalize variables whose computational
cost is high. Another research perspective is to combine our methodology with
another learning method. A promising example is discussed in [13] where variable
selection is formalized as a reinforcement learning problem.

References

1. Guyon, I., Lemaire, V., Boullé, M., Dror, G., Vogel, D.: Analysis of the kdd cup

2009: Fast scoring on a large orange customer database. Journal of Machine Learn-

ing Research: Workshop and Conference Proceedings 7, 1–22 (2010)

2. Féraud, F., Boullé, M., Clérot, F., Fessant, F., Lemaire, V.: The orange customer

analysis platform. In: Perner, P., Ahlemeyer-Stubbe, A. (eds.) Proceedings of the

10th Industrial Conference on Data Mining. Springer, Heidelberg (2010)



Modelling Complex Data by Learning Which Variable to Construct 335

3. Boullé, M.: MODL: a Bayes optimal discretization method for continuous at-

tributes. Machine Learning 65(1), 131–165 (2006)

4. Boullé, M.: A Bayes optimal approach for partitioning the values of categorical

attributes. Journal of Machine Learning Research 6, 1431–1452 (2005)

5. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal

of Machine Learning Research 3, 1157–1182 (2003)

6. Kohavi, R., John, G.: Wrappers for feature selection. Artificial Intelligence 97(1-2),

273–324 (1997)

7. Féraud, R., Clérot, F.: A methodology to explain neural network classification.

Neural Networks 15, 237–246 (2001)

8. Krupka, E., Navot, A., Tishby, N.: Learning to select features using their properties.

Journal of Machine Learning Research 9, 2349–2376 (2008)

9. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-

cation using support vector machines. Machine Learning 46(1-3), 389–422 (2002)

10. Lee, S., Chatalbashev, V., Vickrey, D., Koller, D.: Learning a meta-level prior for

feature relevance from multiple related tasks, pp. 489–496 (2007)

11. Helleputte, T., Dupont, P.: Partially supervised feature selection with regularized

linear models. In: Bottou, L., Littman, M. (eds.) Proceedings of the 26th Interna-

tional Conference on Machine Learning, Montreal, Omnipress, pp. 409–416 (June

2009)

12. Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. Tech-

nical Report HPL-2003-4, HP Laboratories (2003)

13. Gaudel, R., Sebag, M.: Feature selection as a one-player game. In: Proceedings

of the second NIPS Workshop on Optimization for Machine Learning, OPT 2009

(2009)



Author Index

Bellatreche, Ladjel 89, 105

Benkrid, Soumia 89

Berka, Petr 251

Bhatnagar, Vasudha 285

Boukhalfa, Kamel 105

Boullé, Marc 324

Carmè, Andrea 13

Cecchin, Frantchesco 297

Ceci, Michelangelo 263

Chen, Qiming 190

Chou, Bin-Hui 52

Ciferri, Cristina Dutra de Aguiar

40, 297

Ciferri, Ricardo Rodrigues 40

Coenen, Frans 77, 239

Cuzzocrea, Alfredo 89

de Almeida Gago Júnior, Everton

Luiz 203

dell’Aquila, Carlo 1

Deng, Kang 275

de Souza Mendes, Leonardo 203

Di Tria, Francesco 1

Eavis, Todd 172

Elsayed, Ashraf 239

Faerber, Franz 117

Féraud, Raphaël 324

Ferro, Alfredo 309

Fessant, Françoise 324

Garćıa-Fiñana, Marta 239

GauthierDickey, Chris 157

Giugno, Rosalba 309

Goethals, Bart 142

Gómez, Leticia 25

Gupta, Anamika 285

Hara, Carmem Satie 297

Hsu, Meichun 190

Irani, Danesh 215

Jiang, Chuntao 77

Kompatsiaris, Yiannis 65

Kumar, Hanuma 227

Kumar, Naveen 285

Laurent, Dominique 142

Le Cam, Aurélie 324

Lefons, Ezio 1

Lemke, Christian 117

Le Page, Wim 142

Loglisci, Corrado 263

Malerba, Donato 263

Mampaey, Michael 130

Mark, Leo 215

Marques, Eduardo Zanoni 203

Mazón, Jose-Norberto 13

Miani, Rodrigo Sanches 203

Nguyen, Minh Quoc 215

Omiecinski, Edward 215

Papadopoulos, Symeon 65

Paravastu, Rohit 227

Phillips, Taylor 157

Pudi, Vikram 227

Puglisi, Piera Laura 309

Pulvirenti, Alfredo 309

Rauch, Jan 251

Rizzi, Stefano 13

Sattler, Kai-Uwe 117

Sluming, Vanessa 239

Siqueira, Thiago Lúıs Lopes 40

Suzuki, Einoshin 52

Tabbara, Hiba 172

Taleb, Ahmad 172

Tangorra, Filippo 1

Thurimella, Ramki 157

Times, Valéria Cesário 40

Vaisman, Alejandro 25

Vakali, Athena 65

Zäıane, Osmar R. 275

Zeier, Alexander 117

Zimányi, Esteban 25

Zito, Michele 77


	Title Page
	Preface
	Organization
	Table of Contents
	Data Warehouse Modeling and Spatial Data Warehouses
	Logic Programming for Data Warehouse Conceptual Schema Validation
	Introduction
	Related Work
	Metadata Modelling
	Conceptual Schema Validation
	Inferential Engine
	Goal

	Compiler
	Syntactical Analyzer
	Lexical Analyzer

	Testing Scenario
	Conclusions
	References

	A Model-Driven Heuristic Approach for Detecting Multidimensional Facts in Relational Data Sources
	Introduction
	Related Work
	Model-Driven Heuristic Approach for Detecting Facts
	Obtaining CWM Models of Data Sources
	Detecting Facts
	Deriving Multidimensional Elements

	Conclusions and Future Work
	References

	Physical Design and Implementation of Spatial Data Warehouses Supporting Continuous Fields
	Introduction
	Related Work
	Preliminaries
	A Physical Model for DWs with Continuous Fields
	The Field and Temporal Field Data Types
	A SOLAP Language That Supports Fields
	Implementing the Operators
	Implementing the Language
	Conclusion and Future Work
	References

	Benchmarking Spatial Data Warehouses
	Introduction
	Related Work
	The Spadawan Benchmark Schemas
	Data Generation and Loading
	Loading the Redundant Schema
	Loading the Hybrid Schema
	Increasing Data Volumes

	Queries
	Ad Hoc Spatial Query Windows
	Query Types 1, 2 and 3
	Query Type 4

	Case Study
	Conclusions and Future Work
	References


	Mining Social Networks and Graphs
	Discovering Community-Oriented Roles of Nodes in a Social Network
	Introduction
	Motivation and Problem Setting
	Community-Oriented Roles
	Bridges, Gateways and Hubs
	Discovery Priority of Bridges, Gateways and Hubs

	Evaluation by Experiments
	Synthetic Data
	DBLP Data
	Analysis on the Proposed Orientation of Community

	Conclusions and Future Work
	References

	A Graph-Based Clustering Scheme for Identifying Related Tags in Folksonomies
	Introduction
	Related Work
	Description of HGC
	Core Set Discovery
	Parameter Space Exploration
	Core Set Expansion

	Evaluation
	Conclusions
	References

	Frequent Sub-graph Mining on Edge Weighted Graphs
	Introduction
	Problem Definition
	Graph Weighting Mechanisms
	Average Total Weighting (ATW)
	Affinity Weighting (AW)
	Utility Based Weighting (UBW)

	Experiments and Results
	The Cattle Tracking System Database
	Comparison between Weighted and Non-weighted Approaches
	Comparison of Weighting Schemes
	Quality of Results

	Conclusions
	References


	Physical Data Warehouse Design
	$F&A$: A Methodology for Effectively and Efficiently Designing Parallel Relational Data Warehouses on Heterogenous Database Clusters
	Introduction
	Related Work
	Formalization of the PRDW Design Problem on Heterogeneous Database Clusters
	$F&A$: A Combined PRDW Design Methodology over Heterogeneous Database Clusters
	Data Partitioning
	Naive Solution
	Improved Solution
	Data Allocation
	$F&A$ Algorithm

	Experimental Assessment and Results
	Conclusions and Future Work
	References

	Yet Another Algorithms for Selecting Bitmap Join Indexes
	Introduction
	Background
	Algorithms for Selecting BJIs
	Single Attribute BJI Selection
	Multiple Attributes BJI Selection

	Performance Study
	Theoretical Evaluation
	Validation on Oracle 10g

	Conclusion
	References

	Speeding Up Queries in Column Stores A Case for Compression
	Introduction
	Related Work
	Data Structures for Column Compression
	Query Operators for Compressed Columns
	Basic Operators
	Aggregate Operators

	Experimental Evaluation
	Experiments without SSE (Streaming SIMD Extensions)
	Experiments with SSE

	Conclusion
	References


	Dependency Mining
	Mining Non-redundant Information-Theoretic Dependencies between Itemsets
	Introduction
	Related Work
	Preliminaries and Notation
	Strong Dependence Rules
	Definitions
	Properties
	Closedness
	Derivability

	Rule Redundancy
	Closure-Based Redundancy
	Augmentation Redundancy

	The μ-Miner Algorithm
	Mining Itemsets
	Efficiently Computing Entropy
	Mining Non-redundant Dependence Rules

	Experimental Evaluation
	Datasets
	Experiments

	Conclusions
	References

	Discovery and Application of Functional Dependencies in Conjunctive Query Mining
	Introduction
	Formal Model
	Background
	Query Comparison

	Mining Queries under Functional Dependencies
	Algorithm Conqueror$^+$
	Join Loop
	Projection Loop
	Selection Loop
	Handling and Discovering Functional Dependencies

	Experimental Results
	Impact of Dependency Discovery

	Related Work
	Concluding Remarks
	References

	Using Transitivity to Increase the Accuracy of Sample-Based Pearson Correlation Coefficients
	Introduction
	Background
	Motivation
	Pearson Product-Moment Correlation Coefficient
	Overfitting

	Algorithms
	Heuristics
	Transitive PMCC

	Experimental Methodology
	Results
	Heuristics
	Transitive PMCC
	Error Distributions of PMCC Estimations
	Data Density

	Conclusions and Future Work
	References


	Business Intelligence and Analytics
	The NOX Framework: Native Language Queries for Business Intelligence Applications
	Introduction
	Related Work
	NOX: Native Language OLAP Query eXecution
	The NOX Components

	Conceptual Model
	OLAP Algebra
	The NOX Grammar

	Client Side API
	The NOX Preprocessor
	Application Programming
	Result Sets

	Future Work
	Conclusions
	References

	Experience in Extending Query Engine for Continuous Analytics
	Introduction
	The Problem
	The Prior Art
	The Solution

	Stream Processing as Continuous Querying
	Stream Source Function
	Stream Analytics through UDF

	Cycle Based Continuous Query
	Continuous Querying with Continuous Persisting (CQCP)
	Query Cycle Based Transaction Model
	Continuous Persisting

	Example and Experiments
	Modeling the Linear Road Benchmark
	Experimental Setup
	Performance under Stress Test Mode
	Performance under the Real-Time Input Mode

	Conclusions
	References

	Development of a Business Intelligence Environment for e-Gov Using Open Source Technologies
	Introduction
	Related Work
	Technical Background
	Business Intelligence
	Eletronic Government

	Proposal
	ETL Layer
	Data Storage and View Providing Layer
	End Users Applications Layer

	Case Study
	Conclusion
	References


	Outlier and Image Mining
	A Fast Randomized Method for Local Density-Based Outlier Detection in High Dimensional Data
	Motivation
	Related Work
	Generalized Local Density-Based Outlier
	Algorithm
	Query Time of New Point
	Time Complexity Analysis

	Experiments
	2D Example
	Real Datasets
	Performance

	Conclusion
	References

	Specialty Mining
	Introduction
	The Specialty Mining Problem
	The Specialty Mining Algorithm
	Forming Base Properties
	Mining Candidate Properties
	Chaotic Generalization
	Mining Special Properties
	Scalability

	Performance Study
	Experiment 1
	Experiment 2
	Scalability and Accuracy

	Related Work
	Conclusions
	References

	Region of Interest Based Image Categorization
	Introduction
	Previous Work
	Application Domain
	Graph Based Approach
	Tessellation
	Weighted Graph Mining
	Feature Selection and Classifier Generation

	Time Series Based Approach
	The Time Series Representation
	The Dynamic Time Warping Algorithm

	Evaluation
	Musicians v. Non-musicians
	Epilepsy Screening
	Discussion

	Conclusion
	References


	Pattern Mining
	Meta-learning for Post-processing of Association Rules
	Introduction
	Association Meta-rules
	Experimental Evaluation
	Running Example
	Further Experiments

	Related Work
	Conclusions
	References

	A Relational Approach for Discovering Frequent Patterns with Disjunctions
	Introduction
	Motivation and Overview of the Approach
	Mining Disjunctive Relational Patterns
	Mining Infrequent Conjunctive Patterns
	Extending Relational Patterns with Disjunctions

	Experiments
	Conclusion
	References

	An Occurrence Based Approach to Mine Emerging Sequences
	Introduction
	Preliminaries
	Sequence Mining and Feature Selection
	Mining Criterion
	ES Candidates Extraction
	Support Calculation
	Feature Selection

	Experimental Results
	Evaluation Methodology
	UNIX User Command Dataset
	Software Behaviour Dataset

	Conclusion
	References

	Mining Closed Itemsets in Data Stream Using Formal Concept Analysis
	Introduction
	Background
	CLICI Algorithm 
	Terminology and Data Structure
	Capturing Recent Closed Itemsets
	Processing of Transaction

	Experimental Analysis
	Conclusion and Future Work
	References


	Data Cleaning and Variable Selection
	XML Data Fusion
	Introduction
	Preliminary Definitions
	XML Trees and Integration Model
	Strategies for Data Fusion

	XML Fusion Model
	Fusion Policy Validation
	XFusion
	Related Work
	Conclusion
	References

	An Efficient Duplicate Record Detection Using q-Grams Array Inverted Index
	Introduction
	Related Work
	DDEBIT: A Duplicate Record Detection Algorithm Based on Bitmaps and q-Grams
	DDEBIT Similarity Functions
	DDEBIT Indexing
	DDEBIT Record Comparisons
	Application to Clustering

	Performance Analysis
	Conclusions and Future Work
	References

	Modelling Complex Data by Learning Which Variable to Construct
	Introduction
	Platform Description
	Data Folder
	Data Extraction
	Data Preparation
	Modelling

	Predicting the Relevance of a Variable
	Related Work
	Acquisition of Prior Knowledge on Variables
	Model of Variable Importance

	Experimental Validation
	Data Description
	 Evaluation Process
	Results

	Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




