
Chapter 1
Reconsidering Information
and Communications Technology
from Life

Hidefumi Sawai

Abstract When we consider the advanced Information and Communication
Technology (ICT), it has appeared to be useful to know deeply about life by recent
studies.

In this chapter (and the latter half part of Chap. 5), several cases for ICT
researchers and practitioners to develop the better ICT will be explained. Here,
these cases include:

• Brain structure and functions as one of the by-products of biological evolution,
and various information processing models with the time and space structure
derived from brain.

• Genetic algorithm as a model of biological evolution itself, and evolutionary
computation algorithm as an extended form of it.

• Algorithm as a model of cell metabolism in the early stage of biological
evolution.

• Algorithm based on a model of sexual selection.
• A useful guideline for constructing a future ICT society which can be obtained

by the survey results of trend in recent complex network science (described in
the latter half part of Chap. 5).
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Where the world ceases to be the scene of our personal hopes
and wishes, where we face it as free beings admiring, asking
and observing, there we enter the realm of Art and Science.

—Albert Einstein

1.1 Connection Between Life and ICT

1.1.1 Proximate Factor and Ultimate Factor

The reasons for drawing inspiration from life are self-evident. Take, for example,
the brain, the seat of intelligence and awareness. The product of four billion years
of sustained evolution, this unparalleled object is most definitely not an overnight
creation.

To be ‘‘inspired by life’’ and to build intelligent information and communication
systems, we must not only investigate the functions of the organisms currently found
on Earth, but penetrate deep to discover how the diverse and ingenious functions
observed today were acquired over the long course of evolution. In other words, we
need to look back at the developmental stages in the evolution of living organisms—
an ultimate factor—in addition to proximate factors, proximate factors being the
adaptation of various organisms to their immediate environments. The relationship
between proximate factors and ultimate factors is briefly discussed below. No
understanding of the historical background and significance of modern life science
or cognitive science is complete without an understanding of this relationship.

1.1.2 Nature’s Hierarchy

The most beautiful thing we can experience is the mysteri-
ous. It is the source of all true art and science. He to whom this
emotion is a stranger, who can no longer pause to wonder and
stand rapt in awe, is as good as dead: his eyes are closed.

—Albert Einstein

It is believed that the universe was created about 15 billion years ago and the
Solar System and the Earth approximately 4.6 billion years ago. Primitive life
forms are believed to have appeared around 3.8–4 billion years ago. Chemical
evolution during the first 600 million years after the formation of Earth eventually
led to the origin of life.

Table 1.1 presents the hierarchy of nature and the disciplines and research
topics associated with each level of this hierarchy. At the smallest scales are
elementary particles, atoms, and molecules. The topics discussed in this book that
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correspond to this level of the hierarchy are artificial chemistry in Chap. 3 and
molecular communications in Chap. 2. The next level of the hierarchy is genetic.
Section 1.3 introduces genetic algorithms and algorithms based on genetic
duplication. Beyond this is the amino-acid level of this hierarchy; topics associated
with this level include chemical genetic algorithms (CGAs) and chemical genetic
programming (CGP), presented in Sect. 1.4. Chapter 2 discusses molecular
communication and motor proteins as topics at the protein level of the hierarchy.

As issues at the cellular level, Sect. 1.2 discusses neural network modeling
based on the model of neurons and synapses. Note that Ca ion diffusion, a topic
discussed in Chap. 2, is also associated with this hierarchical level. At the level of
tissues and organs, researchers are currently pursuing studies of brain machine
interfaces (BMIs) to extract and apply neuronal activity outside the brain as part of
efforts intended to investigate consciousness, the state emerging from the brain
functions. The Origin of Species by Darwin is associated with the organism level
of the hierarchy. Section 1.3.4 discusses algorithms inspired by the theory of
sexual selection. At the level of populations and species, perhaps the most char-
acteristic topic is co-evolution involving multiple agents; the acquisition of
behavioral strategy by multiple agents in CGP discussed in Sect. 1.4.2 is indeed
based on the mechanism of co-evolution. At the ecosystem level, the topic pre-
sented is parallel distributed processing for parameter-free genetic algorithms
(presented in Sect. 1.3.2), a model inspired by the migrational strategies of various
populations. At the level of the Earth, environmental problems such as the miti-
gation of global warming constitute the most pressing topics. At the level of the
universe, when we consider that the origin of life is a lifeless molecule, we

Table 1.1 Nature’s hierarchy

Hierarchical levels Fields and subjects of research

1. Elementary particles, atoms,
and molecules

Nano-bio science, artificial chemistry, molecular
communication

2. Genes Molecular biology, neutral theory of evolution, virus
evolution

3. Amino acids Chemical genetic algorithm/programming (CGA/CGP)
4. Proteins Protein engineering, molecular communication (motor

proteins)
5. Cells Neurons, molecular communication (Ca ion diffusion)
6. Tissues and organs Tissue engineering, brain and mind, consciousness
7. Organism Tissue engineering, brain and mind, consciousness
8. Population Immune system, ESS*, evolution of altruistic behavior,

multi-agent system
9. Species Darwinian theory of evolution, Neo-Darwinism,

co-evolution
10. Ecosystem Theory of habitat segregation, mimicry, migration

strategy of population
11. Earth The Gaia hypothesis, environmental problems
12. The solar system, the galaxy,

and the universe
Origin of life

* ESS Evolutionary Stable Strategy
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understand that the vast scale of the universe is closely linked to small-scale
structures at the level of elementary particles, atoms, and molecules. We also
consider how what we observe of the universe (nature’s hierarchy) reflects a mode
of observation unique to humans.

A satisfactory Theory of Everything, or TOE, that provides a unified explanation
for all levels of the hierarchy presented in Table 1.1 has yet to be established. Micro-
scale theories such as elementary particle theory and quantum mechanics and macro-
scale theories such as electrodynamics, Newtonian dynamics, and Einstein’s general
theory of relativity have resolved many of nature’s mysteries. But the handling of
mesoscale problems remain a challenge, and the respective theories remain works in
progress, despite the emergence of studies on complexity (complex science) through
chaos theory. As is well known, the discovery of DNA’s double helix structure
(shown in Fig. 1.1) by Watson and Crick in 1953 triggered rapid progress in
molecular biology and has pushed the discipline to its current prominence.

In the information sciences, research has declined in the area of artificial
intelligence, applications of which include expert systems that seek to embody
human expertise. However, studies continue on artificial neural networks, artificial
life, and artificial chemistry, which have come to be regarded as fundamental areas
of study. Current chapter and Chap. 3 of this book introduce recent research
achievements in this area. While Descartes’s formulation of the mind–body duality
has sequestered physical and spiritual or mental issues as problems in totally
distinct dimensions, recent progress in cognitive science and the development of
technologies for non-invasive measurement of brain functions such as f-MRI
(functional Magnetic Resonance Imaging), MEG (Magneto Encephalography),
NIRS (Near-Infrared Spectroscopy), and EEG (Electro Encephalography) have
transformed the study of human consciousness and subjective perception into
subjects of natural science (cognitive science). This is a potentially epochal event
in the history of scientific and technological development.

Fig. 1.1 Double helix
structure of DNA
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1.2 Hints from Brain Function

1.2.1 Brain Structures and Their Functions

This section presents a summary of the structure and functions of the brain. As
shown in Fig. 1.2, the brain is divided into left and right hemispheres. The brain can
also be divided into the following units: the cerebrum, consisting of frontal, parietal,
temporal, and occipital lobes; the cerebellum; the brain stem; and the spinal cord.
Each part has a modular structure consistent with its function. The brain constitutes
a system of immense complexity, composed of some 100 billion neurons (counting
both the cerebrum and cerebellum), with each neuron connected to other neurons by
several thousand to tens of thousands of synapses. This complex organ is the
product of evolution. Figures 1.3 and 1.4 present the structures of a neuron and a
neural network, respectively. As shown in Fig. 1.5, a synapse in essence is the

Fig. 1.3 Neuron (nerve cell)
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Fig. 1.2 Brain structure
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space between two neurons across which electric pulses traveling along an axon are
relayed to an adjacent dendrite via chemical transmitters.

A neural network is an example of an information processing model based on
brain function. Presented below are modeling and design methods for neural
network architectures suitable for speech or image pattern recognition.

Special focus will be given to the feature extraction technique tailored to the
temporal structure of speech and the spatial structure (information structure) of
images.

1.2.2 Neural Networks Modeling Brain Function

Figure 1.6 is a model of the neuron proposed by McCulloch & Pitts in 1943. The
input signal xi (i ¼ 1; 2; . . .; n) is input to the neuron, with the links representing
synapses weighted by wi. The resulting internal potential u is the sum of these
products, or Rwixi. The sum is input to the threshold function y = f(u), which is
y = 0 when the value of u is below a certain threshold value of h and y = 1 when

Fig. 1.4 Neural network

Fig. 1.5 Synapse
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u is greater than the threshold. Thus, this neuron model adopts a weighted majority
logic based on threshold value. The threshold function y = f(u) is generalized into
a differentiable sigmoid function y ¼ 1=f1þ expð�xþ hÞg and applied to the
learning rule by error back-propagation for the artificial neural network (ANN)
shown in Fig. 1.7.

Column 1: Artificial Neural Networks and Machine Learning

Artificial neural networks (ANNs) are information processing machines
that model the structure and functions of a brain. However, the structure of
an actual brain consists of vast numbers of neurons (a human brain is said

Fig. 1.6 Formal neuron in McCulloch and Pitts [25]

Fig. 1.7 Artificial neural
network (ANN) [26]
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to contain more than 100 billion neurons) interlinked to form a vast neural
network structure. A brain is an extraordinarily complex system—a super-
complex system. An ANN seeks to abstract the brain’s structure and
functions to extract the essence and to generate the ability to learn.

ANNs can be classified into two categories, depending on learning
method: supervised learning models and unsupervised learning models [1,
2]. Typical examples of supervised learning models include the following:

Rosenblatt’s perceptron
Multi-layer perceptron (MLP)

These examples separate and recognize patterns in a data space using hy-
perplanes. In contrast, the two examples below clusterize patterns by com-
bining basic functions (such as Gaussian functions) called kernel functions.

Radial-basis function (RBF) networks (Fig. 1.8 in this column)
Support vector machines (SVM)

Figure 1.9 shows the differences in pattern classification between MLP
and RBF.

Other examples include statistical and probabilistic computational mod-
els. Two such models are listed below.

Boltzmann machine
Bayesian network

On the other hand, typical examples of the ‘‘unsupervised learning
model’’ include the below.

Kohonen’s self-organizing feature map (SOM). Although not an ANN,
reinforcement learning models [3], inspired by learned behavior in animals,
are machine learning models intermediate between supervised and unsu-
pervised learning models. Two examples are given below.

Time difference (TD) learning
Q-learning

Fig. 1.8 Radial basis
function (RBF) networks
(reproduced from Ref. [1])
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1.2.3 Time-Delay Neural Networks Suitable for Processing
Sequential Information and Their Expansion [4–8]

Figure 1.10 shows a unit used in a time-delay neural network (TDNN) [4]. The
architecture shown here was proposed to process time series data—for example,
speech. To the left is the input unit, which is linked to the host output unit via
synapse W, which can be a non-time-delay concatenation or a time-delay con-
catenation with a delay of D1;D2; . . .;Dn. This architecture is suitable for pro-
cessing speech signal patterns that have temporal structures. Weighted summation
(Rwij xi) is performed on the input signals, and the resulting value is sent to the
sigmoid function f(x) = 1/{1 ? exp(-x)} and the result output.

Figure 1.11 shows the architecture of a TDNN designed to distinguish the
voiced plosives /b, d, g/ in the Japanese language [4]. From bottom to top are the
input layer, hidden layer 1, hidden layer 2, and output layer. The input layer
consists of a total of 240 units, or 15 and 16 units in each of the x- and y-axis
directions.

The x- and y-axis correspond to the time- and frequency-axis, respectively. The
time–frequency spectrum (sound spectrum) produced by frequency analysis per-
formed every 10 ms is input to the input layer. This time–frequency spectrum is
shifted by a time window of 30 ms (3 units) and after being multiplied by the
weighting factors of synapses having time-delay, it is linked to the host unit in
hidden layer 1. As in the input layer, the total of 40 units in hidden layer 1, five
units in the x-axis (time-axis) direction, and the eight units in the y-axis (fre-
quency-axis) direction are linked to hidden layer 2 with the time-delay. In hidden

Fig. 1.9 Differences in pattern classification between MLP and RBF (Reproduced from Ref. [2])
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layer 2, each of the nine units in the x-axis direction is assigned to one of three
categories /b, d, g/, and concatenated to the output unit with the time-delay. This
TDNN is trained by error-propagation. The results of discrimination testing for
input phonemes not used for training indicate that the TDNN achieves a speaker-
dependent recognition rate of approximately 98–99%, representing a reduction in
misrecognition rate to approximately 1/4 that of the conventional HMM (Hidden
Markov Model) widely used for speech recognition applications. (HMM is asso-
ciated with a recognition rate of 91–97%.) By expanding the phonemic category in

Fig. 1.11 Time-delay neural
network (TDNN) architecture

Fig. 1.10 Unit of time-delay neural network (TDNN)
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a similar manner, we should be able to build a TDNN for all Japanese phoneme
groups.

Figure 1.12 shows the modular architecture of a TDNN capable of discrimi-
nating the 18 consonants of the Japanese language [5]. As the figure shows, the 18
consonants are divided into six groups—the voiced plosives /b, d, g/, unvoiced
plosives /p, t, k/, nasals /m, n, N/, fricatives /s, sh, h, z/, affricates /ch, ts/, and
liquids and semi-vowels /r, w, y/. A TDNN capable of distinguishing between the
six phoneme groups is designed so that the results of discrimination processing
within each phoneme group and those from group discrimination processing can
be linked in the output layer.

Figure 1.13 shows a TDNN system with a TDNN capable of distinguishing
between the Japanese language vowels /a, i, u, e, o/ and a TDNN capable of
distinguishing between the six consonant groups and the vowel group added to the
TDNN in Fig. 1.12, in addition to a speaker-dependent recognition TDNN
expanded to operate as a speaker-independent recognition network [6]. As the
figure shows, this TDNN is a large-scale network with a 3D structure. Its scale
enables speech recognition of all Japanese consonants and vowels in speaker-
independent mode. Adding a discrimination unit (Q) for the presence/lack of voice
(voiced/unvoiced) makes it possible to automatically recognize Japanese
phonemes (called phoneme spotting) simply by scanning vocalized speech along
the temporal direction. Readers are referred to Ref. [6] for more information on the
recognition performance of these networks.

Figure 1.14 outlines a different approach that also results in a speaker-adaptive
neural network [7]. The three lowermost layers are neural networks that perform
speech spectra mapping to adapt the speech of an unknown speaker to that of a
standard speaker used in training. This approach—providing the mapping to the

Fig. 1.12 Modular architecture of all consonant network
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TDNN in advance—may represent a highly effective strategy for applying a
TDNN trained to a standard speaker to recognize the speech of unknown speakers.

Figure 1.15 shows an expanded architecture model of a new TDNN designed to
absorb temporal and frequency fluctuations in speech. Time and frequency win-
dows are installed in the input layer, and extractions of feature quantities (the
feature quantity associated with temporal fluctuations and those associated with

Fig. 1.13 Large-scale TDNN architecture for speaker-independent recognition

Fig. 1.14 Large-scale TDNN architecture with speaker-adaptive neural network
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frequency fluctuations) are integrated in hidden layer 1. The signal is ready for
output by the output layer after integration in hidden layer 2. The figure is an
expanded TDNN designed to make precise distinctions within a category con-
sisting of six phonemes associated with high misrecognition rates: the voiced
plosives /b, d, g/ and nasals /m, n, N/.

Figure 1.16 is a neural network with block windows inspired by the ‘‘neo-
cognitron’’, extensively investigated for applications in handwritten letter recog-
nition. As with handwritten letter recognition, it is necessary to absorb fluctuations
in the absorption along the time (x-axis) and frequency (y-axis) directions in
speech pattern recognition. Thus, we can build an architecture that promotes such
absorption by installing block-shaped windows in the lower layers so that the
feature quantities can be integrated in succession as connections are made upward.
The recognition performance of these neural networks is discussed in Ref. [8].

1.2.4 Expansion of Time-Delay Neural Networks to Rotation-
Invariant Pattern Recognition [9]

The architecture in Fig. 1.17 is an expanded NN having axial symmetry created by
expanding the translation invariance of TDNN to rotational invariance. The syn-
apse weighting factors having parallel assignments from the bottom to upper layers
retain the original values acquired through training. This architecture means that if

Fig. 1.15 Frequency-time-shift-invariant TDNN architecture
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Fig. 1.16 Block-windowed
neural network (BWNN)
architecture

Fig. 1.17 Axially symmetric neural network architecture
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the synapse weighting factors can be learned using error back-propagation for every
pattern of the letter pattern class categories (A–Z) input at a given rotational
position (0 deg., for example), the neural network can correctly recognize the class
category and rotation angle when an arbitrary class category is input at any angle.
The figure shows a neural network architecture capable of recognizing the 26 letters
of the alphabet at rotation angle intervals of 45�. From bottom to top are the input
layer, hidden layer 1, hidden layer 2, output layer 2 (for rotation angle recognition),
and output layer 1 (for class category recognition). As this neural network has an
axially symmetric structure, proper execution of the recognition function requires
careful alignment of the center of the pattern of the image fed to the input layer.

1.3 Theory of Evolution and Information Processing Model

An information processing model inspired by biological evolution is a computa-
tional algorithm based on genetic algorithms and evolutionary computation.
Table 1.2 is a compilation of the evolutionary computation algorithms introduced
in this and subsequent sections.

In 1859, Charles Darwin released his book, The Origin of Species [10], which
dealt with the genetics and evolution of organisms. Prompted by the book, John
Holland advanced the idea of genetic algorithms (GA) in the 1960s [11]. Genetic
algorithms have been applied to problems in numerous fields, including functional
optimization, combinatorial optimization, and parameter optimization in machine
design. In recent years, genetic algorithms have been integrated with other tech-
niques such as Evolutionary Strategies (ES) by Rechenberg and Evolutionary
Programming (EP) by L. Fogel to form a research discipline known as Evolu-
tionary Computation (EC).

Column 2: Genetic Algorithms [11, 28, 29]

Genetic algorithms offer certain advantages over the algorithms used in other
information processing systems: they do not need to assume differentiability

Table 1.2 Some examples of evolutionary computation algorithms

Life phenomenon, theory of evolution (from
micro to macro)

Evolutionary computation algorithm

Disparity theory of evolution (Furusawa) [13] Parameter-free GA [12]
Theory of gene-duplication (Ohno) [16] Gene duplicating GA [15]
Codon to amino acid translation Chemical GA [22], Chemical GP [23]
Sexual selection (Darwin) [10] Evolutionary computation based on sexual

selection [19]
Ecosystem Hierarchical parallel distributed GA [14]
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of evaluation functions (functions can be indifferentiable); genetic manipu-
lations such as crossovers and mutations readily circumvent the tendency to
become mired in local solutions; and they offer a superior capacity for global
and local search. Here, we describe the most basic of all such algorithms: the
Simple Genetic Algorithm (SGA). Figure 1.18 shows a flowchart for SGA.

We begin by preparing an initial population consisting of n individuals.
Based o n roulette-wheel selection, we select n individuals at a probability
proportional to the fitness fi of the individual i. Two individuals randomly
selected from the n individuals undergo ‘‘crossover’’ at an arbitrary crossove
r-point on a ‘‘chromosome.’’ This is called a one-point crossover. The ratio
of individuals experiencing crossover to the overall population is known as
the crossover rate. In subsequent ‘‘mutations,’’ the genes of randomly
selected individuals are modified at a specified mutation rate. In a binary
coded genotype, the bit-flip from 1 to 0 or from 0 to 1 is performed at the
probability corresponding to this mutation rate. The operations up to
‘‘selection,’’ ‘‘crossover,’’ and ‘‘mutation’’ correspond to a single GA gen-
eration. If the fitness of the population is sufficient for environmental eval-
uations (that is, if the quality of a given solution for a given problem is
adequate), the process ends. If not, the process returns to ‘‘selection,’’ repeats
the series of genetic manipulations described above for several generations,
in which process the population evolves, possibly leading to a satisfactory
solution population.

In general, SGA is used as an evolutionary method to acquire solutions
for relatively easy problems. As the problems become more difficult, SGA
has increasing difficulty in efficiently acquiring optimal solutions. For this
reason, various other evolutionary computational methods have been pro-
posed. Examples include the parameter-free genetic algorithm (PfGA) [30]
and the chemical genetic algorithm (CGA) [22] described in this document.
Figures 1.19 and 1.20 in this column show, respectively, the multi-point
crossover and block-wise mutation used in PfGA.

Start

yes

no

Mutation

Crossover

Satisfy termination
conditions?

Selection

Initial population 
generated

End

Fig. 1.18 Flow chart of GA
(SGA)
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The migration of individuals from one local population to another makes
it possible to obtain an optimum solution fairly rapidly by parallel distrib-
uted processing while expanding population diversity. This document
describes several methods of parallel distributed processing based on the
PfGA.

1.3.1 Parameter-Free Genetic Algorithms [12] Based on Disparity
Theory of Evolution [13]

This section discusses a new algorithm, the parameter-free genetic algorithm
(PfGA), which requires no initial setting of genetic parameters such as initial
population size, crossover rate, or mutation rate. The PfGA was inspired by and
builds on the disparity theory of evolution proposed by Furusawa et al. [13], which
itself is based on mutations in the double strands of DNA (Figs. 1.21, 1.22).
According to disparity theory, when the double strands of DNA unwind and a copy
of each is created, a difference emerges in the rate of mutation between leading
and lagging strands. This is because the direction of replication in the former is the
same as the direction of unwinding, while the direction of replication in the latter
is in the opposite direction. While mutations are generally rare in the leading

N-point crossover
crossover points

Parent (P1) Parent (P2 )

Offspring(C1)
Offspring (C2)

crossover points

Fig. 1.19 Multi-point
crossover (n-point crossover)
in the parameter-free genetic
algorithm (PfGA)

chromosome

mutated block

bit-flip

Fig. 1.20 Block-wise
mutation in the parameter-
free genetic algorithm
(PfGA)
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strand (conservative), the lagging strand displays comparatively high mutation
rates (innovative). Disparities in replication errors accumulate through crossovers
and mutations over generations, creating DNA diversity within a single population

5‘

3‘

3‘

5‘

+5‘

-3‘

Leading strand
(conservative)

Parental DNA

3‘

5‘

+5‘

-3‘

3‘

5‘

3‘

5‘

Lagging strand
(innovative)

Copy error

Leading strand

Lagging strand

:enzymes

Fig. 1.21 Hypothesis based on the disparity theory of evolution (Reprinted from K. Wada,
‘‘Evolution of Digital Life’’, Fig. 7., page 73, Iwanami Science Library 11, Iwanami Shoten,
1994.)
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3
‘

5
‘:enzymes

3‘
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Leading strand

Lagging strand

Lagging strand

Leading strand

Fig. 1.22 Emergence of diversity according to the disparity theory of evolution (recreated by the
author based on Fig. 7 from Ref. [27])
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via DNA strands experiencing little or no mutation and strands with accumulated
mutations. The former type promotes the stability of the population, while the
latter promotes flexibility. In the case of PfGA, the former corresponds to the
optimized individual at a specific point in time, while the latter corresponds to the
offspring produced by crossover and mutation. Thus, under the disparity theory of
evolution, the mechanism by which diversity is retained while maintaining a
balance between exploitation (localized search) and exploration (global search)
can be understood as a balance between genetic stability and flexibility.

In PfGA, the population is regarded as a set of all possible solutions in the
whole search space. In this whole search space S, a local sub-population S0 is set.
Two individuals are selected from this sub-population S0 as parents. The parents
are subjected to crossover and mutation to generate a family (S00) of four, with two
offspring. The fitness of the four individuals within this family is then evaluated to
select or eliminate individuals to evolve local population S0 and to execute a search
for the solution.

Below are the steps in the basic algorithm for the PfGA (See Fig. 1.23).

1. An individual is randomly extracted from S and is regarded to be initial local
population S0.

2. An individual is randomly extracted from S and added to the local population S0.
3. Two individuals are randomly extracted from local population S0 for use as

parent 1 (P1) and parent 2 (P2) in the multi-point crossover.

yes

no

Generating initial local 
population S’

Start

End

S’ ← x S

yes
no

Crossover

Mutation

Generating family S” and
evaluation

|s’| 2

Satisfy the 
termination 
criteria?

Fig. 1.23 Flowchart of
parameter-free GA (PfGA)
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4. Of the two individuals generated by the crossover, one is randomly selected and
inverse mutation is applied at a random number of points at random positions.

5. Selection and elimination is performed for a total of four individuals (referred
to as a family) consisting of the two generated offspring (C1 and C2) and the
two parents (P1 and P2), by selecting either one or three members of the family
to be returned to local population S0, based on the calculated fitness.

6. If the local population size |S0| C 2, then return to step 3; if |S0| = 1, then return
to step 2 and repeat the cycle.

Multi-point crossover is used as the crossover mode in PfGA. In multi-point
crossover, both the number and positions of crossover points are determined
randomly, and crossover is executed between chromosomes of two different
individuals. Mutations use the erroneous copy of chromosomes generated during
the crossover. Thus, of the two offspring produced, one is randomly selected and a
partial inversion of the gene sequence carried out to create mutations at a random
number of points at random positions. Here, of the two offspring produced by the
crossover, one is left untouched by mutation to allow one offspring to retain at
least a portion of the parents’ traits. In this manner, the PfGA is implemented to
execute genetic manipulation based on random numbers and to minimize ad hoc
choices.

For selection and elimination, to retain the diversity of the local population
while maintaining a balance between global search (exploration) and local search
(exploitation), the fitness of the four members of the family (S00) are compared and
selections made in the manner presented in the following four cases as shown in
the left plot of Fig. 1.24. Local population S0 is evolved while dynamically
maintaining a balance between global and local search and concurrently changing

Fig. 1.24 Population and selection rule in PfGA
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the size of the local population S0 based on an implicit set of rules for switching
between cases 1–4, depending on the relative superiority of the fitness of family
members. This feature improved the search efficiency of PfGA over other GAs of
fixed population size, since it eliminates the need to perform unproductive sear-
ches. In addition, the best individual among the four family members is always
returned to the local population S0. Thus, the family may be said to be adopting an
elite-preserving strategy: The algorithm guarantees the retention of the best indi-
vidual at a given point in time while simultaneously performing an active search
over a very wide (neighborhood) space. If a better individual than the currently
best individual is generated, the center of the search transfers to that offspring; if
not, the current best individual is retained. This avoids fitness degradations during
the course of evolution.

Column 3: The Disparity Theory of Evolution [13, 31 – 33]

Mutation is the driving force of evolution. DNA mutations are now known to
be distributed unevenly—to exhibit disparity. The two strands forming the
double helix of the DNA replicate in opposite directions. While one strand
(the leading strand) is continuously replicated by an enzyme known as
polymerase, the other strand (the lagging strand) is replicated by several
enzymes in a complex process of connecting partially replicated fragments
(called Okazaki fragments), resulting in a relatively high error (mutation)
rate during replication. The error rate for the lagging strand is ten to a
hundred times (or even more) than that of the leading strand. In other words,
a disparity results wherein the rates of mutations in the replicated double
helix strands are unequal. One strand may have many mutations, the other
very few.

Based on what is known as the parity model, mutations were previously
believed to be distributed evenly in a population. However, an excessive
mutation rate will tend to lead to the death of the entire population. The
parity model distributes mutations evenly in the DNA of the offspring. In
contrast, the disparity model produces both DNA without mutations (or
wildtype) and DNA with more mutations than predicted by the parity
model. In short, populations with diverse mutations appear, while the
wildtype is maintained. Figure 1.22 shows the emergence of diversity
according to the disparity theory of evolution. It shows expanding diversity
in a population based on the accumulation of mutations generation after
generation.

These patterns hold not just for lower organisms such as Escherichia
coli, but for more complex organisms. Therefore, it is possible to accel-
erate the rate of evolution by increasing the mutation rate while avoiding
the risk of extinction. Dr. Mitsuru Furusawa, who proposed the disparity
theory of evolution, calls it the ‘‘creation of diversity with guaranteed
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capital.’’ The disparity theory of evolution features both ‘‘conservation,’’
which reduces the risk of extinction by guaranteeing the wildtype after
generations, and ‘‘innovation,’’ which generates the diversity of individuals
needed for evolution. The authors proposed the parameter-free genetic
algorithm (PfGA) [30] as an information processing model that accelerates
evolution while incorporating a dynamic balance between conservation and
innovation.

1.3.2 Expansion of Parameter-Free Genetic Algorithm to Parallel
Distributed Processing Techniques [14]

This section describes techniques for parallel distributed processing related to the
parameter-free genetic algorithm (PfGA) inspired by ecosystems. In general, the
main objective of parallel processing in any processing, including GAs, is to
increase processing speed. However, we can dramatically enhance the efficiency of
search problem processing based on a GA by introducing interactions between
individuals by migration, rather than simply dividing up the task. In the case of a
coarse-grained parallel GA, the local population is treated as the processing unit,
and individuals are migrated between local populations at appropriate frequencies.
In a fine-grained GA, the neighborhood of a given individual is treated as the
processing unit, and overlaps are set among neighbors. The former is frequently
referred to as the island model, wherein a single local population constitutes the
deme of a single species. We use this as the model.

1.3.2.1 Two Parallel Processing Architectures

Two types of parallel processing architectures are used: the uniformly-distributed
type and the master–slave type. The uniformly-distributed type corresponds to a
situation in which all local populations have the same role and local population
monitoring functions are absent.

On the other hand, in the master–slave type, a master local population is
equipped with a function for monitoring the processing of other local populations,
called slaves. Figure 1.25 shows the uniformly-distributed-type PfGA architecture.
From the whole search space S, an N number of local populations Si

0
(i ¼ 1; . . .;N)

is derived; in each local population Si
0
, there exists a family (Si

00
) that performs

PfGA crossovers, mutations, and selection. Migration of individuals may occur
between any of the local populations.

Figure 1.26 shows the master–slave architecture. S0
0

is the master local popu-
lation, while Si

0
(i ¼ 1; . . .;N) are the slave local populations. The master S0

0

consistently (or at constant intervals) seeks to identify the best individual in all
slave populations.
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1.3.2.2 Two Migration Methods

Several migration strategies may come to mind, but here we adopt the following
two. In the first, an individual in a given local population is copied and distributed
to other local populations only when a good individual emerges. This is called the
direct migration type. The disadvantage of this method is that the same individual
is retained by other local populations after migration, threatening system diversity.
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S
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S1’
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S’: local population
S” family
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Fig. 1.25 Uniformly-distributed (UD) type architecture
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Fig. 1.26 Mater–slave (MS) type architecture
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We adopt the second strategy, in which good individuals are gathered from
multiple local populations and two individuals are arbitrarily selected to be the
new parents. They bear two offspring (by crossover and mutation), and one to three
members of the family are distributed according to the selection rules in PfGA to
arbitrarily selected local populations. Since this migration method implements
meta-level PfGA operations from the perspective of the local population, it is
called the hierarchical migration type (Fig. 1.27).

1.3.2.3 Performance Results

We performed parallel processing for the four different combinations of parallel
architecture (uniformly-distributed/master–slave) and migration type (direct/hier-
archical) to investigate the effects of migration.
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Si’

Sj’

Sj’Si’

Sl’

Sk’

C1

C1

MS1 MS2

Sj’Si’

Sk’
Sl’Sj’

Si’
C1

S0’

C1 C1

Fig. 1.27 Migration strategy selection method in UD: direct migration type(UD1) and
hierarchical migration type (UD2). Migration strategy selection method in MS: Direct migration
type (MS1) and hierarchical migration type (MS2)
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An evaluation of search performance showed that increasing the number of
local populations reduced the number of evaluations required before success by a
ratio of 1/N (N: the number of local populations). Among the four types of
architecture/migration method examined, search performance, from high to low,
fell into the following sequence: UD1, MS1, MS2, UD2. We confirmed that
increasing the number of local populations increases the chance of success through
the effects of migration relative to serial processing.

1.3.3 Information Processing Model Based on
Gene Duplication [15]

This section discusses the gene-duplicating GA (GDGA) inspired by the theory of
gene-duplication proposed by Susumu Ohno in the 1970s. The theory of
gene-duplication claims that the replication and reuse of gene fragments in the
evolution of all organisms, from viruses and plants to animals, fuels a drive toward
life-forms of ever-growing sophistication.

Ohno distills this phenomenon into a succinct formula: ‘‘a single creation and
one hundred plagiarisms.’’ [16] Gene duplication is assumed to occur by unequal
crossover between chromatids on a single chromosome, unequal crossover
between homologous chromosomes during the meiotic process, and partial
repetitive duplication of DNA. Inspired by this gene duplication mechanism, we
have proposed four gene duplication models: gene concatenating (Fig. 1.28),
gene-prolonging (Fig. 1.29), gene coupling (Fig. 1.30), and extended gene cou-
pling (Fig. 1.31).

This computational method is based on a divide-and-conquer GA in which a
given problem is broken down into sub-problems, which are then combined to
obtain the solution for the original problem. Each individual concatenates the
partial solution that each had accumulated up to that point in time, then the

x1 x3x2 x4 x5

x1 x2 x3 x4 x5

S’

S1’ S2’ S3’ S4’ S5’Fig. 1.28 Gene duplication
in a gene-concatenating
model
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individual migrates between the local populations. This strategy makes it possible
to obtain the solution more efficiently and quickly.

Gene duplication, a powerful tool in solving multi-dimensional functional
optimization problems, is a genetic operator applicable to individuals of different
gene lengths. It is applied by first coding variables to genes for each sub-dimen-
sion, then setting the fitness function for each subspace and running the GA to
obtain the (quasi) optimum solution. By concatenating individuals owning the
gene corresponding to this (quasi) optimum solution, we can solve an optimization
problem in higher dimensions. This algorithm is implemented by having indi-
viduals with differing gene lengths migrate between local populations. Overall, the
algorithm performs crossover, mutation, and selection within a local population;
between separate local populations, it performs duplication and migration, in that
sequence.

In a simulation evaluating the search performance of the four types, we used a
functional optimization benchmark problem to compare success rates, probabili-
ties, and convergence performance in obtaining the optimum solution. We found
that increasing the number of migrating individuals increases population diversity,
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Fig. 1.29 Gene duplication
in a gene-prolonging model
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thereby confirming improvements in convergence performance and the effective-
ness of this computation method.

Column 4: Theory of Gene Duplication [16 – 18, 34]

Gene duplication refers to the presence of two or more identical genes in the
genome or set of genes (Fig. 1.32). Even if one set of duplicate genes
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Fig. 1.31 Gene duplication in an extended gene-coupling model

The gene duplication region is the region created when living creatures 
copy genes during the process of evolution. This is believed to be 
central to the evolution of higher organisms from lower organisms.

Fig. 1.32 Gene duplication
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undergoes a debilitating mutation that seriously affects its functions, the
functions of the living creature proceed unimpaired if the other continues to
function normally.

According to ‘‘Seimei no Tanjo to Shinka (The Birth and Evolution of
Life)’’ by Susumu Ohno [17], ‘‘evolution by gene duplication’’ [16] can be
summarized as follows:

Since most existing genes have already evolved to a state of near-perfection with regard to
function, evolution is impossible if natural selection monitors all genes. True evolution
can occur only by acquiring genes with unprecedented new functions. For this to occur,
the existing active sites must change. This raises a problem: Natural selection will not
permit this. To evade monitoring by natural selection, one must make copies of oneself
and make the monitoring focus on one of the copies. This is the only way to acquire such
unprecedented new functions.

Gene duplication is one of evolution’s mechanisms. The relationship
between the original gene and the replicated gene corresponds to the rela-
tionship between the leading strand and the lagging strand described in
Column 3: The Disparity Theory of Evolution. It also demonstrates the
importance of the exquisite balance between the conservation strategy based
on guaranteed capital (i.e., the status quo) and an innovation strategy
entailing radical risks (since mutations very rarely generate a preferable
characteristic) in an overall evolution strategy that avoids extinction. The
gene duplicated GA (GDGA) described in the main text, an information
processing model modeling the gene replication process of the theory of
gene duplication, implements various duplication processes while migrating
them between local populations.

1.3.4 Information Processing Model Based
on Sexual Selection [19]

The theory of sexual selection seeks in part to explain the extensive differences
between the phenotype and behavior of the two sexes in certain sexually repro-
ducing organisms. Certain well-known examples include competition between
males (generating antlers) and female preferences (generating peacock plumage)
[20, 21]. Numerous hypotheses based on female preference seek to explain the
evolution of traits that appear disadvantageous from the perspective of natural
selection.

Two famous hypotheses are the runaway hypothesis and the excellent gene
hypothesis. The former assumes that female preferences within a population are
always biased and that male traits are always variable due to random mutations. In
such cases, males with the preferred traits are more likely to father large numbers
of offspring, regardless of fitness in terms of natural selection, thereby conferring
an indirect advantage to the gene manifesting that trait and resulting in the rise of
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the male trait preferred by females. The latter hypothesis claims that the male
shows off the quality of his genes even if doing so comes at some cost, with the
result that the trait and the female preference for that trait grow more common.
However, the actual processes at work in sexual selection remain unclear.

The genetic assignment of sex to individuals has led to a state in which an
individual of one of the sexes effectively observes and chooses the phenotype of
the other, and we will focus on the effect of such asymmetric roles of males and
females on the process of evolution.

We will also examine the role of mutation (the simplest transition rule) as a
genetic operator that drives organisms toward the direction of evolution based on
the fitness landscape. A model is assumed in which a mutation rate is coded in the
gene as a parameter for mutation and in which fitness varies.

We will focus in particular on the interaction between sexual selection and
mutation.

Working from these perspectives, we introduce an evolutionary computational
model in which mutation rates are encoded in the gene and also account for sex
and sexual selection. Based on this model, we investigate how mutation rates
become self-adaptive within a population and how the direction of evolution is
determined in phenotypic space.

Column 5: Sexual Selection [35 – 38]

Male and female individuals of the same species inhabiting a similar
natural environment can take significantly different forms. This cannot be
explained by natural selection and presented a riddle that puzzled Darwin
himself. He focused on the competition between males to win females. In
nature, males must compete to gain access to females, a major factor
leading to the evolution of characteristics like the splendid horns worn by
stags. On the other hand, the beautiful plumage of a peacock (male) is
clearly unlikely to have developed to aid in combat between males. This
characteristic is believed to help females choose a mate in assessments of
courtship displays. Darwin believed females selected males with more
beautiful plumage in the male population, resulting in males in the next
generation with even more striking plumage. In this manner, in a process
called sexual selection, female preference and competition between males
would eventually lead to sexual dimorphism, or differences in character-
istic between males and females. Although the process whereby sexual
selection leads to sexual dimorphism is similar to natural selection, addi-
tional energy and resources are needed to create and maintain the horns of
the stag or the plumage of the peacock. These characteristics may confer
reproductive advantages that offset their disadvantages with regard to
natural selection.
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1.3.4.1 Constructing a Computational Model

How does an asymmetric relationship between the sexes whereby one sex observes
and selects the phenotype of the other affect mutation rates? We propose a model
based on sexual reproduction with its own mutation rate encoded into the genes.
For the sake of convenience, the observing and observed sex, respectively, are
regarded as female and male.

A real-valued genetic algorithm (real-valued GA) is used as the evolutionary
computational model. The methods of genetic recombination are chromosomal
exchange between individuals and isotropic mutation of each gene.

Sexual selection will focus on relative phenotypic value. (Example: a strong
preference for taller individuals or individuals of a certain stronger coloring [e.g.,
bluer].) In such modeling schemes, the direction of the transition of next-gener-
ation males in phenotypic space is determined by the direction of female
preferences.

1.3.4.2 Individual Phenotype

Each individual is assigned a sex and with two broad phenotypic categories, trait
and preference. Traits are expressed in both sexes and determine the individual’s
fitness. In contrast, preferences are expressed only by females and act as a
mechanism by which males are assessed and selected. Preferences do not affect
natural selection. Traits and preferences are represented in phenotypic space by

trait vector t ¼ x1
t ; x

2
t ; . . .; xn

t

� �
and preference vector p ¼ x1

p; x
2
p; . . .; xn

p

� �
in n-

dimension Euclidean space.
Sexually reproducing organisms are diploid in nature, but here, given the

emphasis on interactions due to preference rather than the mode of reproduction
itself, the model assumes that the genotype of each individual is haploid for the
sake of simplicity, and an individual will have three kinds of chromosomes: sex
chromosome, preference chromosome, and a trait chromosome (Fig. 1.33).

The sex gene is coded in a single bit and the other genes are encoded as real
values. However, the preference gene in the male is considered not expressed,
creating a buffer for male preference and sustaining diversity in preference.
Furthermore, we place the gene encoding for the mutation rate (r) for the trait and

px1 npx tx1 ntxexs

Fig. 1.33 Proposed model of
sexual selection
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preference genes on the sex chromosome, making the expressed mutation rate
dependent on sex.

1.3.4.3 Natural Selection

A known hummingbird species displays sexual dimorphism in beak morphology,
with the males and females of the species feeding on flowers of different shapes.
This constitutes habitat segregation in the form of resource partitioning. The male
and female members of this species can be considered to have followed different
paths in natural selection.

Natural selection is posited to operate separately on the sexes. This renders a
constant sex ratio while allowing the sexes to generate different traits (sex
difference).

1.3.4.4 Sexual Selection

Under sexual selection, a female chooses a male to form a pair, and the offspring
produced are one male and one female to maintain the constant sex ratio. All
females will always be part of a pair at least once, while males are allowed to pair
only when selected by a female as a preferred male. In short, this population is
polygamous.

(1) The female i observes M numbers of males at random as potential mates. The
average trait vector ti

0 of the observed male population is calculated, and the
relative trait vector tij = tj - ti

0 of male j ðj ¼ 1; 2; . . .MÞ is used as the
selection target.

(2) The difference in direction hij between tij and the female preference vector pi is
calculated. The strength of preference is defined as given by cos(hij). The male
having a trait vector in the direction closer to the direction of the female
preference vector will be strongly favored.

(3) The most preferred male is selected deterministically.

By using the relative trait vector as the selection target, we can search for the
direction toward which the male population should shift in phenotypic space—or
the direction of evolution—based on the direction of the female preference vector.

In sexual selection, males preferred by more females (i.e., attractive males) gain
the advantage, and selection works directly on the male, manifesting as the number
of offspring in the next generation. While females in this model are exempt from
the direct operation of sexual selection, through genetic exchange with preferred
males, the offspring of females having a genetic preference for males with
advantages in terms of natural and sexual selection is likely to have the advantage
in the next generation. This means sexual selection works indirectly to the
advantage of females having genes for such preferences.
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1.3.4.5 Genetic Manipulation

Two types of chromosomal exchange and mutation are used as methods of genetic
manipulation. With respect to interactions between mutation rate and sexual
selection, parent chromosomes are exchanged at a constant probability when
parent genes are copied to produce offspring.

Mutations are accomplished by imparting perturbations that follow the normal
distribution function N(0, r) on the offspring trait and preference genes
xi

t; x
i
p i ¼ 1; 2; . . .; nð Þ, respectively.

Here, the standard deviation r corresponds to the mutation rate, which is varied
adaptively by gene encoding.

r ¼ rþ d d�N 0; r0ð Þ

Note here that the standard deviation r0 of the normal distribution function of
the perturbation imparted to r is constant.

1.3.4.6 Steps in Simulation

(1) Population is initialized at a sex ratio of 1:1.
(2) The following procedure is repeated until the termination condition is

satisfied:

(a) Natural selection
(b) Sexual selection
(c) Genetic manipulation

1.3.4.7 Problem

Traits and preferences, respectively, are represented using two-dimensional vec-
tors t = (xt, yt) and p = (xp, yp) in examining the following functional maximi-
zation problem.

Max f tð Þ ¼ xt � 2 sinðpxtÞ � 0:001y2
t exp xtð Þ

The initial population is positioned near the point of origin, while each indi-
vidual’s fitness is determined by trait alone. In the above equation, local optimum
solutions may be found on the line yt = 0 with period 2. The problem, then, is to
find a way to balance the search for the local optimum solution and the escape
from the local optimum solution.

The effects of the third term become large with increasing xt as the search
progresses, and a slight transition of yt from 0 results in a precipitous decline in
fitness, rendering the search more difficult. Although there is no upper limit to the
function, GA restricted to isotropic mutation alone places a practical limit on the
search. This extremely simple model is an example of how adaptive acquisition of
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a direction advantageous to evolution (positive xt direction) concurrent with a
search for the optimum solution makes it possible to search as efficiently as
possible. (Fig. 1.34)

Natural selection is executed by performing a roulette-wheel selection based on
g, where g = exp(af (t)) (a: scaling rate) when f(t) is fitness. This is selected to
make the search progress more smoothly when the exponential term in the above
equation starts to have a strong effect on the latter part of the search and when the
average fitness of the population has decreased exponentially.

We use preference vector p = (xp, yp) as the unit vector to normalize the results
after each mutation. This means that the preference selection of a male by a female
is based solely on the direction of the trait.

1.3.4.8 Results of Experiment

As we can see from Fig. 1.35, the search in the proposed method progressed the
most among the three types of strategies (random mating, SGA, and proposed

Fig. 1.34 Validation of the proposed model with an illustrative problem

Fig. 1.35 Experimental
results
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method), indicating the effects of sexual selection on the search. We see no
apparent differences in mutation rates between the sexes for the results of random
mating. Under the proposed method, as the search proceeded, the male mutation
rate surpassed the mutation rate for females, confirming that female preference
triggers unequal mutation rates.

1.3.4.9 Search Process

Under the present method, when the search process becomes trapped in a local
optimum solution, a runaway situation between the male trait and female prefer-
ence results that intermittently drives explosive evolution out of the equilibrium
state. As the search progresses, differences appear in average mutation rates
between male and female populations and a division of roles arises. The sex
exercising choice (female) carries out a conservative search with low mutation
rates and the chosen sex (male) carries out an innovative search. This results in
only the male population performing the search when escaping from the local
optimum solution, while females dedicate themselves to maintaining present
conditions and standing by to move on to better solutions through chromosomal
exchange only after they have been found by the male population. In many sex-
ually reproducing organisms, the production processes differ for reproductive cells
between the sexes, and sperm cells have higher mutation rates than ova. The
similarity between the characteristics of organisms and the proposed method is
quite interesting. The advantages of balancing an innovative and conservative
search during the search process through the acquisition of various mutation rates
have been discussed in relation to the Neo-Darwinian algorithm by Wada et al.
[13]. Since the error frequency varies between the two strands in DNA, they
proposed a model in which the mutation rate varies within a single individual,
thereby permitting a wide range of searches. This realizes a broad range of
mutation rates within the population, allowing them to perform an extensive search
in problems involving a high level of risk while maintaining present conditions.

1.4 Information Processing Based on the Modeling of Cells
in Early Stage of Evolution

1.4.1 Chemical Genetic Algorithm (CGA) [22]

The mechanism of cell metabolism emerged over an astoundingly lengthy evo-
lutionary process. Modeling this process should make it possible to search effi-
ciently for an optimum solution by techniques totally different from conventional
methods. This section discusses the chemical genetic algorithm (CGA), used for
solving difficult problems by dynamically converting them into simpler
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problems—in short, by dynamically changing mapping from the genotype to the
phenotype, as inspired by the mechanism of cell metabolism in the early stages of
the evolutionary process. The section will also discuss chemical genetic pro-
gramming (CGP), in which this solution method is applied to the evolution of
programming, and introduce the problem of symbolic regression in artificial
intelligence and describe the results of its application to the acquisition of multi-
agent behavioral strategy.

1.4.1.1 Mechanisms of Cell Metabolism Generated in the Early Stages
of the Evolutionary Process

In the early stages of cell evolution, cells are believed to have acquired their
present metabolic processes by dynamically changing the mapping behavior from
genotype to phenotype mapping (Fig. 1.36). Figure 1.37 presents a model based
on this mechanism.

Fig. 1.36 Biochemical
reaction for translating
genetic information in a cell

Fig. 1.37 A cell structure
used in the CGA
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1.4.1.2 CGA Generation Cycle (See Fig. 1.38)

The steps in the CGA generation cycle are given below:

1. Initialization: First, we prepare a number, N, of cells having the structure
presented in Fig. 1.37. In the initial state, no cell possesses aminoacyl tRNA
(aa-tRNA), tRNA, or outputs amino acids. However, they do have random
DNA strands and amino values.

2. Chemical reaction: The following 4-step reaction takes place in all cells:
transcription, tRNA-amino acid reaction, translation into internal amino acid,
and translation into output amino acid. In the several generations of the early
stage, this reaction produces new tRNA and aa-tRNA, and their sizes grow.
Within the next few generations, we exceed the size of the molecular pool size.

3. Selection: The fitness of the cell is calculated based on the output amino acid,
and cells marking high fitness are selected by roulette-wheel selection. The
selected cells are regenerated, and the complete internal information (DNA, 3
molecular pools) of each cell is copied to the daughter cell.

4. DNA mutation: As in normal GA, point mutations of genes are performed.
5. DNA crossover and molecular exchange between cells: Gene crossovers occur

as in normal GA, and half the molecules are exchanged between two cells.
6. Calculation of fitness of the cell population: If the termination conditions are

satisfied, the computation is complete. If not, return to step 2.

Roulette Selection of Cells 

DNA Crossover & Molecular Exchange 

(Bits in DNA

DNA Mutation  

 are flipped

Chemical Reaction

 randomly)
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Translated
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In each cell,

Fig. 1.38 Entire algorithm of CGA
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1.4.1.3 GA Evolvability (See Fig. 1.39)

By converting the ‘‘ragged fitness landscape’’ as seen in the genotype space pre-
sented on the left side of Fig. 1.39a into a smoothed landscape on the right side
(Fig. 1.39b), we can improve evolvability.

Three types of deception problems (Types I, II, and III) and 2 benchmark
functions were used to validate the search performance of CGA. SGA (simple GA)
and PfGA (Parameter-free GA) are used for comparisons. In the simple Type I,
F(x) assumes the maximum value (optimum value) of 1 when xk = 1 in all
dimensions of k k ¼ 1; . . .;Kð Þ. Type II is an intermediate complex type, and
F(x) assumes the maximum value of 1 only when, in each dimension k,
fk(x) randomly takes a maximum at xk = 0 or xk = 1. In Type III, F(x) assumes the
maximum value of 1 only when fk(x) assumes a maximum of 1 at xk = ak (ak is a
uniformly random number between 0 and 1) in each dimension of k. As can be
seen from Fig. 1.40, the ratio of the probability of f(x) assuming a maximum
(optimum value) of 1 in each dimension to the probability of taking the localized
optimum value of 0.8 is 1:4. Thus, the probability of f(x) taking optimum values at
all dimensions k ¼ 1; . . .;Kð Þ is (1/5)K. Types I and II constitute special cases of
Type III (Table. 1.3).

1.4.1.4 Results of Analysis

Figures 1.41 and 1.42 present the evolution of the function F(x) of CGA and SGA,
respectively. The dispersion of the function values is large for CGA. In contrast,
the dispersion is small for SGA. The optimum value of CGA (CGA best) is 0.8 or

Genotype space Genotype space

(b)(a)

Fig. 1.39 Evolvability in C(GA)
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higher and attains the status of the optimum solution. On the other hand, the
optimum value of SGA fails to surpass 0.8 and is trapped in a local optimum
solution.

Figures 1.43 and 1.44 present the time series of amino value histograms for
CGA and SGA, respectively. The results are for a 5-dimensional Type III
deception problem. We see that for all ak assuming maximum values at each
dimension of k, the amino value for CGA exceeds a certain value. In contrast, for
SGA, the amino value exceeds a certain value in certain dimensions but not in
others. This is a typical example of a search that has fallen into a local optimum
solution.
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0
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The peak’s location
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Fig. 1.40 Complex deceptive problem (type III)

Table 1.3 Three deceptive Problems

Type Name Features

I Simple type f(x) becomes maximum (optimum) when xk = 1 for all
dimensions k k ¼ 1; 2; . . .;Kð Þ. This type is a special case of
type III.

II Intermediate
type

f(x) becomes maximum (optimum) only when fk(x) becomes 1 at
xk = 1 or 0 randomly for all dimensions k k ¼ 1; 2; . . .;Kð Þ.
This type is a special case of type III.

III Complex
type

f(x) becomes maximum (optimum) only when all fk(x) become
1 at xk = ak (where ak are different uniform random values
between 1 or 0) for all dimensions k k ¼ 1; 2; . . .;Kð Þ. As
the ratio that fk(x) takes the maximum value of 1 and the
value of 0.8 for each dimension, is 1–4, the probability that
takes the optimum value 1 is (1/5)K. This type includes the
type I and II as its special cases.
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1.4.1.5 Performance Comparison Among SGA, CGA and PfGA

Tables 1.4 and 1.5 present comparisons of performance evaluation results for
SGA, CGA, and PfGA.

Table 1.4 gives the results for deception problems. A comparison of the success
rates of CGA and SGA shows that the performance of CGA far outpaces SGA.
Furthermore, PfGA is 100% successful for all types of deception problems.
Table 1.5 gives the results for benchmark problems (Shekel’s foxhole problem,
Langerman function), and we see that CGA gives success rates comparable to PfGA.

Figure 1.45 shows the changes in basin size in the case of CGA. The figure
shows a sudden increase in basin size at a certain point in the evolution (100
generations), considered to reflect the achievement of punctuated equilibrium
associated with the transition stage in the evolution, mapping from genotype
(binary value) to phenotype (function value).

Figure 1.46 presents the values of the codon-amino acid translation table.
Under the initial conditions of evolution, variations in the values in the table
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Fig. 1.42 Evolution of SGA
for deceptive problem (type
III)
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Fig. 1.41 Evolution of CGA
for deceptive problem (type
III)
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appear to be large changes in amino value per single bit of change in the codon
(lower right). But as evolution progresses, the amino value changes only gradually
relative to the change in codon value. This corresponds to the evolution (transition)
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Fig. 1.44 Time series of amino value histogram for SGA
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of the landscape represented by the left plot of Fig. 1.39 into the smooth landscape
represented by the right plot. The evolvability of CGA has greatly increased,
indicating that the algorithm generates a solution method for difficult problems in
an evolutionary manner, while automatically (in evolutionary fashion) converting
difficult problems into easier problems.

The method for improving mapping techniques from genotype to phenotype
through the evolutionary process is a highly generalizable optimization technique.
The following section discusses a method for expanding CGA to genetic pro-
gramming (CGP).

Table 1.5 Success rate for benchmark problems

GA SGA SGA* CGA (WF) CGA (NF) PfGA SGA SGA* CGA (WF) CGA (NF) PfGA

Dimension 5 5 5 5 5 10 10 10 10 10

Codon

length

6 6 6 6 20 6 6 6 6 20

Scaling Linear Linear Exponential Exponential None Linear Linear Exponential Exponential None

Shekel 5% 5% 5% 50% 37% 0% 0% 0% 0% 1.3%

Langerman 41% 47% 13% 35% 83% 0% 0% 0% 3% 1.7%

Fig. 1.45 Increase in basin size for CGA

Table 1.4 Success rate for deceptive problems

GA SGA SGA* CGA PfGA SGA SGA* CGA PfGA

Dimension 5 5 5 5 10 10 10 10
Codon length 6 6 6 20 6 6 6 20
Scaling Linear Linear Exponential None Linear Linear Exponential None
Type I 2% 9% 100% 100% 0% 3% 100% 100%
Type II 12% 20% 100% 100% 0% 5% 100% 100%
Type III 47% 85% 95% 100% 14% 79% 43% 100%
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1.4.2 Chemical Genetic Programming (CGP) [23]

Figure 1.47 shows how CGA is expanded to CGP. A comparison of Figs. 1.38 and
1.47 shows how the genes (DNA sequence) in CGA are converted into a combi-
nation of the rewriting rule numbers and the left sides of the rewriting rules. DNA
is translated into protein synthesized by concatenating amino acids, after which
fitness is calculated. At this point, the other portions of the DNA have been
transcribed into tRNA or translated into amino acids. Aminoacyl tRNA, produced
by their reaction, acts as a catalyst in this translation process. Modeling these

Fig. 1.46 Final translation table in binary-to-real value mapping for CGA

Fig. 1.47 CGP algorithm
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metabolic processes inside the cell results in the evolutionary generation of the
rewriting rule itself, and generates rules completely different from those in the
initial state to make it possible to acquire rules with higher fitness scores.

Column 6: Genetic Programming

The procedures for genetic programming (GP) are basically the same as
those for genetic algorithms (GA). However, while the genotype of the
candidate solution in GA is a bit sequence or a real value sequence, it is a
tree structure in GP. The tree structure in GP consists of a terminal set (a set
of terminal symbols) containing independent variables and constants and a
non-terminal set (also called a function set; a set of non-terminal symbols)
containing functions and the four arithmetic operations of addition, sub-
traction, multiplication, and division. GP randomly generates an initial
population, then evaluates the fitness of the population to select individuals.
Next, as shown in Fig. 1.48, crossovers occur at probability Pc between a
pair of individuals arbitrarily selected from the population. In the example
shown in this figure, the terminal set is {x, y, z, a, b, c}, and the function set
is {+, -, *, %, sin, cos, exp}. The two parents—Parent 1: (x - a)/
z ? sin(b*y) and Parent 2: cos(y ? c)*(x - exp(z))—are each represented
by a tree structure, and subtrees b*y and x - exp(z) are stochastically
selected for the crossover. The end result are the two offspring Offspring 1:
(x - a)/z ? sin(x - exp(z)) and Offspring 2: cos(y ? c)*(b*y).

Fig. 1.48 Crossover in genetic programming
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Next, as shown in Fig. 1.49 in this column, a mutation occurs with
probability Pm in the non-terminal node representing sin. The function in the
node changes from sin to cos, and the phenotype of the individual also
changes from (x - a)/z ? sin(b*y) to (x - a)/z ? cos(b*y). Later, the
population is evaluated. If the solution obtained is satisfactory, the optimum
solution is output, and processing ends. If not, GP repeats the series of
genetic manipulations above while advancing from generation to generation.

Genetic programming is widely applied as an approach to solving real-
world problems in various areas of artificial intelligence, including symbolic
regression problems, system identification, optimization control, planning,
time series predictions, automatic programming, discovery of game strate-
gies, solutions for inverse problems, rules discovery, pattern classification,
evolution of emergent behavior, automatic programming of cellular auto-
mata, and evolvable hardware (EHW).

Chemical genetic programming (CGP), described in the main text, has
expanded and developed from GP and can adapt to various environments by
dynamically changing the mapping from the genotype to the phenotype. In
other words, since feedback from the phenotype to the genotype makes it
possible to maintain diversity in a population with a small number of indi-
viduals, it requires smaller populations than ordinary GP. This reduces the
computational loads and memory required and increases the range of evo-
lutionary possibilities.

1.4.2.1 Example of Application 1: Symbolic Regression Problems [23]

Figure 1.50 compares the fitness evolution curve in CGP and conventional GE
(grammatical evolution). We see that evolution proceeds faster in CGP than GE,
resulting in a good solution after 140 generations. Furthermore, even though the
best solution appears faster, the average fitness of the population consistently
remains below the best value, indicating that population diversity is sustained.

Figure 1.51 compares the solution generated by CGP and GE. For the target
function 2x6 + 3x4 ? 4x2 ? 100, CGP gives 2x6 ? 501, while GE gives 1.9x6.
Since the normalized fitness values are 0.95 and 0.81 for CGP and GE, respec-
tively, we may conclude that CGP is superior.

Fig. 1.49 Mutation in
genetic programming
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1.4.2.2 Example of Application 2: Behavioral Strategy of Agents [24]

Figure 1.52 applies CGP to a multi (2)-agent problem, the game of ‘‘tag.’’ Two
agents use CGP to generate in co-evolutionary fashion a behavioral strategy for
catching the other as quickly as possible, or to evade the other for as long as
possible.

Table 1.6 is a list of basic functions used in CGP.
Figure 1.53 shows the two agents in motion. S denotes the starting point. The

objects numbered 1 and 2 in the center are obstacles. We see how the two agents
(pursuer and evader) skillfully avoid the obstacle in the chase. Table 1.7 presents

Fig. 1.50 Evolution curve of fitness

Fig. 1.51 Generated function: CGP vs. GE
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the behavioral strategies generated by the agents. Although the details are not
given here, we can appreciate how both agents acquire various behavioral strat-
egies through co-evolutionary generation.

Fig. 1.52 The game of tag

Table 1.6 List of basic
functions

Function Usage Description

+ (+ a b) Addition: a ? b
- (- a b) Subtraction: a - b
* (* a b) Multiplication: a * b
% (% a b) If b = 0, then 1, else a 7 b
Min (min a b) If a \ b, then a, else b
Max (max a b) If a [ b, then a, else b
Abs (abs a) Absolute value of a: |a|
Neg (neg a) Negative value of a: -a
Iflte (iflte a b c d) If a 2 b, then c, else d

(a) (b) (c)

Fig. 1.53 Results of agent behavior
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