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Preface

Verified Software: Theories, Tools and Experiments, VSTTE 2010, was held in
Edinburgh, Scotland during August 16-19, 2010. This conference is part of the
Verified Software Initiative (VSI), which is a 15-year international project that
focuses on the scientific and technical challenges of producing verified software.
Previous VSTTE conferences were held in Zurich, Switzerland (in 2005) and
Toronto, Canada (in 2008).

The goal of VSTTE 2010 was to advance the state of the art in the science
and technology of software verification through the interaction of theory develop-
ment, tool evolution, and experimental validation. The accepted papers represent
work on verification techniques, specification languages, formal calculi, verifica-
tion tools, solutions to challenge problems, software design methods, reusable
components, refinement methodologies, and requirements modeling. Several of
the accepted papers also presented case studies, either in response to published
challenge problems or problems of practical interest. Many of the papers were
also concerned with concurrent programs.

As specified in the call for papers, authors submitted 15-page papers electron-
ically. The EasyChair system handled submissions and was used to manage the
reviewing of papers and subsequent discussion. This system aided the Program
Committee in avoiding conflicts of interest during the reviewing and discussion
process. There was electronic discussion among the Program Committee mem-
bers about the merits of each submission, moderated by the Program Committee
Co-chairs.

This year the conference received 32 submissions, of which 11 were accepted,
for an acceptance rate of about 34%. Seven of the accepted papers were co-
authored by members of the Program Committee.

We were pleased to have invited talks by Tom Ball, Gerwin Klein, and
Matthew Parkinson. The authors of these invited talks also graciously consented
to the publication of accompanying invited papers in this volume.

We thank the VSTTE organizers, in particular the conference chair, Andrew
Ireland, for providing essential support and encouragement. We also thank the
authors of all submitted papers. But most of all, we thank the Program Com-
mittee for their hard work in reviewing the papers and making decisions about
the program.

June 2010 Gary T. Leavens
Peter O’Hearn

Sriram K. Rajmani
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Towards Scalable Modular Checking of User-Defined
Properties

Thomas Ball1, Brian Hackett2, Shuvendu K. Lahiri1

Shaz Qadeer1, and Julien Vanegue1

1 Microsoft
2 Stanford University

Abstract. Theorem-prover based modular checkers have the potential to per-
form scalable and precise checking of user-defined properties by combining path-
sensitive intraprocedural reasoning with user-defined procedure abstractions.
However, such tools have seldom been deployed on large software applications
of industrial relevance due to the annotation burden required to provide the pro-
cedure abstractions.

In this work, we present two case studies of applying a modular checker
HAVOC to check properties on large modules in the Microsoft Windows operat-
ing system. The first detailed case study describes checking the synchronization
protocol of a core Microsoft Windows component with more than 300 thousand
lines of code and 1500 procedures. The effort found 45 serious bugs in the com-
ponent with modest annotation effort and low false alarms; most of these bugs
have since been fixed by the developers of the module. The second case study
reports preliminary user experience in using the tool for checking security related
properties in several Windows components. We describe our experience in using
a modular checker to create various property checkers for finding errors in a well-
tested applications of this scale, and our design decisions to find them with low
false alarms, modest annotation burden and high coverage.

1 Introduction

Developing and maintaining systems software such as operating systems kernels and
device drivers is a challenging task. They consist of modules often exceeding several
hundred thousand to millions of lines of code written in low-level languages such as C
and C++. In many cases, these modules evolve over several decades where the original
architects or developers have long ago departed. Such software may become fragile
through the accumulation of new features, performance tuning and bug fixes, often
done in an ad-hoc manner. Given the astronomical number of paths in any real program,
testing can only cover a relatively very small fraction of the paths in a module. Bugs
found in the field often occur in these rarely exercised paths.

Static analysis tools provide an attractive alternative to testing by helping find defects
without requiring concrete inputs. However, the applicability of completely automatic
static tools is limited due to several factors:

– First, most static analysis tools check generic properties of code such as buffer over-
run, null dereference or absence of data-races. These checkers are not extensible,

G.T. Leavens, P. O’Hearn, and S.K. Rajamani (Eds.): VSTTE 2010, LNCS 6217, pp. 1–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 T. Ball et al.

i.e., they cannot be easily augmented to create a checker for a new user-defined
property — testing still remains the only way to check such properties.

– Second, most scalable static analysis tools are based on specific abstract domains
or dataflow facts. These tools generate numerous false alarms when the property
being checked depends on system-specific invariants that fall outside the scope of
the analysis. This happens particularly when the property depends on the heap —
even when the property being checked is a generic property as above.

– Finally, more extensible tools (such as those based on predicate abstraction) have
scalability problems to large modules because they try to automatically find a proof
of the property by searching an unbounded space of proofs. They rely on various
automated refinement strategies which are not robust enough to generate all non-
trivial invariants for large modules.

Contract-based modular checkers such as ESC/Java [17], Spec# [4], HAVOC [5]
and VCC [9] have the potential to perform scalable checking of user-defined properties.
These checkers share the following strengths:

1. They provide the operational semantics of the underlying programs irrespective
of the property being checked. This is in stark contrast to static analyzers based on
data-flow analysis or abstract interpretation, which require defining abstract seman-
tics for each new property.

2. They use a theorem prover to perform precise intraprocedural analysis for loop-free
and call-free programs, in the presence of contracts for loop and called procedures.

3. They provide an extensible contract language to specify the properties of interest,
and contracts. The use of theorem provers allow rich contracts to be specified, when
required, to remove false alarms.

4. Generic interprocedural contract inference techniques (e.g. Houdini [16]) exist to
infer contracts to relieve the user from manually annotating the entire module. By
allowing the user to provide a restricted space of procedure abstractions (contracts)
to search for proofs, the approach allows the user to aid the analysis to find proofs
in a scalable fashion.

5. Finally, the presence of contracts provide incremental checking across changes to
procedures without reanalyzing the entire module, and the contracts can serve as
valuable documentation for maintaining these large codebases.

In spite of the potential benefits offered by modular checkers, such tools have been
seldom deployed successfully on large software applications of industrial relevance.
We believe this is due to the following limitations:

1. The annotation burden for checking a property on such a large code-base can be
substantial, and can often be several times the size of the source code. Although
contract inference has been proposed to relieve the user burden, previous work in
ESC/Java [16,15] does not allow for inferring user-defined contracts. We provide
one particular way for inferring a class of contracts from module invariants [21],
but it has not been shown to scale to modules considered in this work.

2. The problem of capturing the side-effect of each procedure and aliasing between
pointers can be difficult. Various ownership and encapsulation methodologies have
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been proposed [4], but they impose restrictions on the heap manipulation that are
often not satisfied by low-level systems code.

3. Finally, there is a lack of good case studies illustrating the feasibility of using such a
tool on real-world software to provide value in discovering hard-to-find bugs, with
modest investment of user effort.

In this paper, we present a feasibility study of using contract-based modular check-
ers for cost-effective checking of user-defined properties on large modules of indus-
trial relevance. We first describe our experience with applying the modular checker
HAVOC [5,20] on a core component COMP of the Windows kernel — the name of the
module and the code fragments have been modified for proprietary reasons. The code
base has more than 300 thousand lines of C code and has evolved over two decades. The
module has over 1500 procedures, with some of the procedures being a few thousand
lines long — a result of the various feature additions over successive versions. For this
component, we specified and checked properties related to the synchronization protocol
governing the management of its main heap allocated data structures. The correctness
checking of the protocol was decomposed into checking for correct reference counting,
proper lock usage, absence of data races and ensuring that objects are not accessed after
being reclaimed (teardown race). Verification of these properties required expressing
many system-specific intermediate invariants (see Section 2) that are beyond the capa-
bilities of existing static analysis tools. The highlights of the effort that was conducted
over a period of two months were:

1. We found 45 bugs in the COMP module that were confirmed by the developers and
many of them have been fixed at the time of writing. Most of these bugs appear
along error recovery paths indicating the mature and well-tested nature of the code
and signifying the ability of modular checkers to detect subtle corner cases.

2. The checking required modest annotation effort of about 250 contracts for speci-
fying the properties and operating system model, 600 contracts for procedure con-
tracts. The contract inference generated around 3000 simple contracts, a bulk of the
required annotation effort, to relieve the need for annotating such a large code base.
This corresponds to roughly one manual contract per 500 lines of code, or one per
2.5 procedures.

3. The tool currently reports 125 warnings, including the 45 confirmed bugs, when
the checker runs on the annotated code base. The extra warnings are violations of
intermediate contracts that can be reduced with additional contracts.

Next, we report on preliminary user experience in using the tool for checking security
related properties in several other Windows components. Various property checkers
have been constructed using HAVOC to check for correct validation of user pointers,
and restricted class of exploitable buffer overrun problems. The tool has been deployed
on more than 1.3 million lines of code across three or four large components each
measuring several hundred thousand lines of code. The effort has yielded around 15
security vulnerabilities that have been already patched.

We describe the challenges faced in using a modular checker for finding errors in
well-tested applications of this scale, and our design decisions to find them with low
false alarms, modest contract burden and high coverage. Our decisions allowed us to
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typedef struct _LIST_ENTRY{
struct _LIST_ENTRY *Flink, *Blink;

} LIST_ENTRY, *PLIST_ENTRY;

typedef struct _NODEA{
PERESOURCE Resource;
LIST_ENTRY NodeBQueue;
...

} NODEA, *PNODEA;

typedef struct _NODEB{
PNODEA ParentA;
ULONG State;
LIST_ENTRY NodeALinks;
...

} NODEB, *PNODEB;

#define CONTAINING_RECORD(addr, type, field)\
((type *)((PCHAR)(addr) - \

(PCHAR)(&((type *)0)->field))) \

//helper macros
#define ENCL_NODEA(x) \

CONTAINING_RECORD(x, NODEA, NodeBQueue) \
#define ENCL_NODEB(x) \

CONTAINING_RECORD(x, NODEB, NodeALinks) \

Fig. 1. Data structures and macros used in the example

achieve an order of magnitude less false alarms compared to previous case studies us-
ing modular checkers [16], while working on C modules almost an order more complex
than these previous case studies. We believe that the studies also contribute by identify-
ing areas of further research to improve the applicability of these modular checkers in
the hands of a user.

2 Overview

In this section, we use the example of checking data-race freedom on the main data
structures of COMP to illustrate some of complexities of checking properties of systems
software with low-false alarms. In particular, we show that precise checking of even a
generic property such as data-race freedom often requires:

– contracts involving pointer arithmetic and aliasing,
– conditional contracts, and
– type invariants to capture aliasing relationships.

Such requirements are clearly beyond the capabilities of existing automated software
analysis tools that scale to such large components. This justifies the use of modu-
lar checkers that involve the users to decompose the problem using domain-specific
knowledge.

We first describe high-level details of the data structure and the synchronization pro-
tocol, some procedures manipulating these structures, and finally the contracts to check
the absence of data-races.

2.1 Data Structures

Figure 1 describes a few types for the heap-allocated data structures in COMP. The
type LIST ENTRY is the generic type for (circular) doubly-linked lists in most of Win-
dows source code. It contains two fields Flink and Blink to obtain the forward
and backward successors of a LIST ENTRY node respectively in a linked list. An ob-
ject of type NODEA contains a list of children objects of type NODEB using the field
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Blink
Flink

NodeBQueue

Resource

NODEA

Blink
Flink

NodeALinks

ParentA
State

Blink
Flink

NodeALinks

ParentA
State

Blink
Flink

NodeALinks

ParentA
State

NODEB NODEB NODEB

Fig. 2. The list of NODEB children of a NODEA

NodeBQueue. Figure 2 describes the shape of the children list for any NODEA object.
Each child NODEB node also maintains pointers to its parent NODEA object with the
ParentA field.

The macro CONTAINING RECORD (defined in Figure 1) takes a pointer addr to an
internal field field of a structure of type type and returns the pointer to the enclos-
ing structure by performing pointer arithmetic. The helper macros ENCL NODEA and
ENCL NODEB uses the CONTAINING RECORD macro to obtain pointers to enclosing
NODEA and NODEB structures respectively, given a pointer to their LIST ENTRY fields.
The CONTAINING RECORD macro is frequently used and is a major source of pointer
arithmetic.

Since these objects can be accessed from multiple threads, one needs a synchroniza-
tion mechanism to ensure the absence of data-races on the fields of these objects. Each
NODEA structure maintains a field Resource, which is a pointer to an ERESOURCE
structure that implements a reader-writer lock. The lock not only protects accesses to
the fields in the NODEA structure but additionally also protects the fields NodeALinks,
ParentA and State in all of its NODEB children.

2.2 Procedures

Figure 3 describes three procedures that manipulate the NODEA and NODEB objects.
Contracts are denoted by requires, ensures and loop inv. ClearChild
takes a NODEA object NodeA and clears a mask StateMask from the State field of
any NODEB child that has this mask set. It uses the procedure FindChild in a loop
to find all the children that have the StateMask set and then clears the mask on the
child by calling ClearState. Finally, the procedure FindChild iterates over the
children for a NODEA object and returns either the first child that has the mask set, or
NULL if no such child exists.

To encode the data-race freedom property on the fields of NODEA and NODEB ob-
jects, we introduce assertions that each access (read or write) to a field is guarded by
the Resource lock in the appropriate NODEA object. The three procedures clearly
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#define __resA(x) __resource(‘‘NODEA_RES’’,x)
#define __resrA_held(x) __resA(x) > 0

VOID ClearChild(PNODEA NodeA, ULONG StateMask) {
AcquireNodeAExcl(NodeA);
PNODEB NodeB;
FindChild(NodeA, StateMask, &NodeB);

__loop_inv(NodeB != NULL ==> NodeB->ParentA == NodeA)
while (NodeB != NULL) {

ClearState(NodeB, StateMask);
FindChild(NodeA, StateMask, &NodeB);

}
ReleaseNodeA(NodeA);

}

__requires(__resrA_held(NodeA))
__ensures (*PNodeB != NULL ==> (*PNodeB)->ParentA == NodeA)
VOID FindChild(PNODEA NodeA, ULONG StateMask, PNODEB* PNodeB) {

PLIST_ENTRY Entry = NodeA->NodeBQueue.Flink;

__loop_inv(Entry != &NodeA->NodeBQueue ==> ENCL_NODEB(Entry)->ParentA == NodeA)
while (Entry != &NodeA->NodeBQueue) {

PNODEB NodeB = ENCL_NODEB(Entry);
if (NodeB->State & StateMask != 0) {

*PNodeB = NodeB; return;
}
Entry = Entry->FLink;

}
*PNodeB = NULL; return;

}

__requires(__resrA_held(NodeB->ParentA))
VOID ClearState(PNODEB NodeB, ULONG StateMask) {

NodeB->State &= ˜StateMask;
}

Fig. 3. Procedures and contracts for data-race freedom

satisfy data-race freedom since the lock on the NODEA object is acquired by a call to
AcquireNodeAExcl before any of the operations.

2.3 Contracts

Now, let us look at the contracts required by HAVOC to verify the absence of the data-
race in the program. The procedure ClearState has a precondition (an assertion
inside requires) that the Resource field of the NodeB->ParentA is held
at entry; this ensures that the access to NodeB->State is properly protected. The
resrA held(x) macro expands to resource(“NODEA RES”, x > 0), which

checks the value of a ghost field “NODEA RES” inside x. The integer valued ghost
field “NODEA RES” tracks the state of the re-entrant Resource lock in a NODEA ob-
ject — a positive value denotes that the Resource is acquired. For brevity, we skip
the contracts for AcquireNodeAExcl and ReleaseNodeA, which increments and
decrements the value of the ghost field, respectively.

The procedure FindChild has a similar precondition on the NodeA parameter.
The procedure also has a postcondition (an assertion inside ensures) that captures
the child-parent relationship between the out parameters PNodeB and NodeA.
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#define FIRST_CHILD(x) x->NodeBQueue.Flink
#define NEXT_NODE(x) x->NodeALinks.Flink

__type_invariant(PNODEA x){
ENCL_NODEA(FIRST_CHILD(x)) != x ==>
ENCL_NODEB(FIRST_CHILD(x))->ParentA == x

)

__type_invariant(PNODEB y){
NEXT_NODE(y) != &(y->ParentA->NodeBQueue) ==>
y->ParentA == ENCL_NODEB(NEXT_NODE(y))->ParentA

)

Fig. 4. Type invariants for NODEA and NODEB types

Let us inspect the contracts on ClearChild. We need a loop invariant (an asser-
tion inside loop inv) to ensure the precondition of ClearState inside the loop.
The loop invariant states that NodeB is a child of NodeA when it is not NULL. The
postcondition of FindChild ensures that the loop invariant holds at the entry of the
loop and also is preserved by an arbitrary iteration of the loop.

Finally, consider the loop invariant in procedure FindChild: the loop invariant is
required for both proving the postcondition of the procedure, as well as to prove the
absence of a data-race on NodeB->State inside the loop. This loop invariant does
not follow directly from the contracts on the procedure and the loop body.

To prove this loop invariant, we specify two type invariants for NODEA and NODEB
objects using the type invariant annotation in Figure 4. The type invariant on
any NODEA object x states that if the children list of x is non-empty then the parent
field ParentA of the first child points back to x. The type invariant for any NODEB
object y states that if the next object in the list is not the head of the circular list, then
the next NODEB object in the list has the same parent as y. The two type invariants
capture important shape information of the data structures and together imply that all
the NODEB objects in the children list of NodeA point to NodeA.

3 Background on HAVOC

In this section, we provide some background on HAVOC, including the contract lan-
guage, the modular checker and an interprocedural contract inference. In addition to
the details of HAVOC described in earlier works [5,6], we describe the main additions
to the tool for this paper. This includes adding support for resources and type invariants
in contracts, and the instrumentation techniques.

3.1 Contracts

Our contracts are similar in spirit to those found in ESC/Java [17] for Java programs,
but are designed for verifying systems programs written in C. We provide an overview
of the subset of contracts that are used in this work. Throughout this paper, we use the
terms “contracts” and “annotations” interchangeably, although the former is primarily
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used to express an assertion. More details of the contract language are described in the
HAVOC user manual1.

Procedure contracts and loop invariants. Procedure contracts consist of precondi-
tions, postconditions and modifies clauses. The requires contract specifies a
precondition that holds at the entry to a procedure. This assertion is assumed when
analyzing the body of the procedure and checked at all call-sites of the procedure. The
ensures contract specifies a postcondition that holds at exit from the procedure.

The modifies contract specifies a set of locations that are possibly modified by
the procedure; it generates a postcondition that all other locations in the heap remain
unchanged. The postconditions are checked when analyzing the body of the procedure,
and assumed at all call-sites for the procedure.

The loop inv contract specifies a loop invariant — an assertion that holds every
time control reaches the head of the loop. The assertion should hold at entry to the loop,
and should be preserved across an arbitrary iteration of the loop.

Contract expressions. A novel feature of our contract language is that it allows most
call-free and side-effect free C expressions in the assertions. The assertions can refer
to user defined macros, thereby allowing complex assertions to be constructed from
simpler ones. We allow reference to the return value of a procedure with the return
keyword. The postconditions may also refer to the state at the entry to the procedure
using the old keyword as follows:

__ensures (__return == __old(*x) + 1)
__modifies (x)
int Foo (int *x) {*x = *x + 1; return *x;}

Resources. In addition to the C program expressions, we allow the contracts to refer to
”ghost fields” (called resources) of objects. Resources are auxiliary fields in data struc-
tures meant only for the purpose of specification and manipulated exclusively through
contracts. We allow the user to use resource(name, expr) to refer to the value
of the ghost field name in expr. The contract

modifies resource(name, expr)

specifies that the resource name is possibly modified at expr. Consider the following
contract on the procedure ReleaseNodeA that releases the Resource field of a
NODEA object:

#define __resrA(x) __resource(‘‘NODEA_RES’’, x)
#define __modA(x) __modifies_resource(‘‘NODEA_RES’’, x)

#define __releasesA(x) \
__requires (__resrA(x) > 0) \
__ensures (__resrA(x) == __old(__resrA(x)) - 1)\
__modA(x) \

__releasesA(NodeA)
void ReleaseNodeA (NODEA NodeA);

Type invariants. Figure 4 illustrates type invariants for the NODEA and NODEB types,
using the type invariant contract. Type invariants specify assertions that hold

1 Available at http://research.microsoft.com/projects/havoc/
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for all objects of a given type. Such invariants typically hold at all control locations
except for a handful of procedures where an object is being initialized or being torn
down, or may be broken locally inside a basic block (e.g. when an NODEB object is
added as a child for NODEA). The user has the flexibility to specify the control locations
where he or she expects the invariants to be temporarily violated.

3.2 Modular Checker

In this section, we provide a brief overview of the checker for verifying an annotated
procedure. Interested readers can find more details in other works [5]. The main en-
abling techniques in the checker are:

Accurate memory model for C. HAVOC provides a faithful operational semantics for
C programs accounting for the low-level operations in systems code. It treats every C
pointer expression (including addresses of stack allocated variables, heap locations, and
values stored in variables and the heap) uniformly as integers. The heap is modeled as
a mutable map or an array Mem mapping integers to integers. A structure corresponds
to a sequence of pointers and each field corresponds to a compile-time offset within the
structure. A pointer dereference *e corresponds to a lookup of Mem at the address e
and an update *x = y is translated as an update to Mem at address x with value y.
Contract expressions are translated in a similar fashion.

Given an annotated C program, the tool translates the annotated source into an an-
notated BoogiePL [12] program, a simple intermediate language with precise opera-
tional semantics and support for contracts. The resulting program consists of scalars and
maps, and all the complexities of C (pointer arithmetic, & operations, casts etc.) have
been compiled away at this stage. Example of the translation can be found in earlier
work [6].

Precise verification conditions. HAVOC uses the Boogie [4] verifier on the generated
BoogiePL file to construct a logical formula called the verification condition (VC).
The VC is a formula whose validity implies that the program does not go wrong by
failing one of the assertions or the contracts. Moreover, it ensures that the VC generated
for a loop-free and call-free program is unsatisfiable if and only if the program does
not go wrong by failing any assertion or contract present in the code. This is in sharp
contrast to most other static analysis tools that lose precision at merge points.

Scalable checking using SMT solvers. The validity of the VC is checked using a
state-of-the-art Satisfiability Modulo Theories (SMT) solver Z3 [11]. SMT solvers are
extensions of the Boolean Satisfiability (SAT) solvers that handle different logical theo-
ries such as equality with uninterpreted functions, arithmetic and arrays. These solvers
leverage the advances in SAT solving with powerful implementation of theory specific
algorithms. These tools can scale to large verification conditions by leveraging conflict-
driven learning, smart backtracking and efficient theory reasoning. The modular anal-
ysis with efficient SMT solvers provides a scalable and relatively precise checker for
realistic procedures up to a few thousand lines large.
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3.3 Interprocedural Contract Inference

HAVOC, like any other procedure-modular checker, requires contracts for called pro-
cedures. We have implemented a contract inference algorithm in HAVOC based on the
Houdini [16] algorithm in ESC/Java. The algorithm takes as input a partially anno-
tated module along with a finite set of candidate contracts for each procedure in the
module, and outputs a subset of the candidates that are valid contracts for the module.
The candidate contracts are specified by providing an expression inside c requires,
c ensures and c loop inv contracts. For example, the candidate contracts on a

procedure Foo are shown below:

__c_requires (x != NULL)
__c_ensures (__return > __old(*x))
int Foo (int *x) {*x = *x + 1; return *x;}

The Houdini algorithm performs a fixed point algorithm as follows: Initially, the con-
tract for each procedure is the union of the user-provided contracts and the set of can-
didate contracts. At any iteration, it removes a candidate contract that can be violated
during a modular checking of a procedure. The algorithm terminates when the set of
candidate contracts does not change.

3.4 Instrumentation

HAVOC also provides different ways for instrumenting the source code with additional
contracts (either candidate or normal ones), to relieve the user of manually annotating
large modules with similar assertions. The two principle mechanisms of instrumenta-
tion are:

– Access-instrumentation: The user can direct the tool to add any assertion at every
(read, write or both) access to either (i) a global variable, (ii) all objects of a given
type, or (iii) fields of objects of a given type.

– Function-instrumentation: The user can also direct the tool to add a contract (pos-
sibly a candidate contract) to every procedure with a parameter of a given type.

These instrumentations are extremely useful to define properties and thereafter populate
candidate contracts of a given kind. For example, to specify that any access to a field
x->f of an object x of given type T is always protected by a lock x->lock, we use
the access-instrumentation feature to add an assertion x->lock being held before any
access to x->f. On the other hand, one can use the function-instrumentation feature to
populate a class of candidate contracts on all the procedures in a module. For instance,
we can add a candidate precondition that the lock x->ParentA->Resource is ac-
quired, for any procedure that has a parameter x (to be substituted with the formal
parameter) of type NODEB. Note that in the original implementation in ESC/Java, the
Houdini algorithm was used with a fixed set of candidate contracts — namely for check-
ing non-null assertions, index-out-of-bound errors etc. on parameters and return values.
The ability to add user-defined candidate contracts is extremely crucial for allowing the
user to leverage the contract inference while checking user-defined properties.
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4 Challenges and Design Decisions

In this section, we describe the challenges we faced in applying HAVOC to well-tested
codebases of this complexity. We also outline the design decisions that have enabled us
to find serious bugs with relatively low false alarms, modest annotation effort and high
coverage (particularly on COMP).

4.1 Aliasing

Checking properties that depend on the heap can be difficult because of indirect ac-
cesses by pointers; this is because different pointer expressions can evaluate to the same
heap location. The problem affects modular checkers as it is not natural to express alias-
ing constraints as procedure contracts, and may require substantial annotation burden.
Finally, the problem is worse for C programs where the addresses of any two fields
&x->f and &y->g can be aliased, due to the lack of type safety. This results in nu-
merous false alarms while checking properties that depend on the heap. We introduce
two sources of justifiable assumptions that allow us to check the desired properties by
separating concerns about type-safety of the program as explicit assumptions.

– Field safety. We assume that the addresses of two different word-type fields (fields
that are not nested structures or unions) can never alias, i.e., &x->f and &y->g
cannot be equal, whenever f and g are distinct fields. This assumption is mostly
maintained with the exception of cases where the program exploits structural sub-
typing whereby two structures with identical layout of types are considered equiva-
lent, even though the field names might differ. The user only needs to specify these
exceptions to the tool using additional contracts.

– Type assumptions. Many aliasing and non-aliasing constraints can be captured by
type invariants similar to the ones shown in Figure 4. These invariants are estab-
lished after object initialization and are violated at very few places temporarily.
The type invariants are currently assumed but not asserted, and help to reduce false
positives significantly when dealing with unbounded sets of objects in lists.

Although, both field-safety and the type invariants can be verified in HAVOC [6,20,21],
they require reasoning with quantifiers and the annotation overhead can be fairly high.
Discharging these obligations would improve the confidence in the results of the prop-
erty checking.

4.2 Modifies Clauses

Modifies clauses are used to specify the side-effect of a procedure on the globals and
the heap. Specifying a precise set of modified locations for the heap and the resources
may require significant annotation burden. On one hand, using coarse-grained modifies
information may result in invalidating relevant facts at call sites needed for checking a
property; on the other hand, the checker would complain if the specified locations do not
contain the locations that are actually modified. Various ownership and encapsulation
methodologies have been proposed [4], but they impose restrictions on the heap ma-
nipulation that are often not satisfied by low-level systems code. For soundness, these
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methodologies impose additional assertions in the program that might require substan-
tial annotation overhead to discharge.

We have found the two following strategies to achieve a low annotation overhead
without sacrificing significant coverage.

Property state modifies: To keep the annotation burden low for checking, we decided
to make the modifies clauses for the heap unchecked, i.e., they are assumed at the call
sites, but not checked as postconditions. However, for the resources in the property, we
require the user to specify sound modifies clauses. Although this introduces unsound-
ness in our checking and may suppress real bugs, we found it to be pragmatic tradeoff
based on the following observation: most of the pointer fields in the program that point
to other objects in the heap and define the shape of data structures are immutable with
very few exceptions. For instance, the ParentA in a NODEB object is set after initial-
ization and remains immutable afterwards. A quick grep revealed that the ParentA
field in a NODEB object is read at least in 1100 places in the source, however it is writ-
ten to at only 8 places, mostly in the creation path. For fields like ReferenceCount
in NODEA objects that form part of a property, we maintain a resource to track the value
of this field, and thereby support sound modifies clauses.

OUT parameter modifies: Making the modifies clause free for fields in the heap al-
most allowed us to avoid specifying modifies clauses for the fields in the heap. However,
we found the need for specifying modifies clauses for out parameters of a procedure to
avoid the following situation that is quite common in systems code:

void Bar(.., PSCB *LocalScb);

void Foo(...){
PSCB LocalScb = NULL;
....
Bar(..., &LocalScb);
...
if (LocalScb){...}
...

}

If we do not provide a modifies clause for Bar to indicate that the heap has changed at
the location &LocalScb, the checker would assume the code inside the then-branch
of “if(LocalScb)” is unreachable, and therefore be unsound. To avoid this, we used
the contract inference to infer modifies clauses for the parameters that are used as out
parameters.

4.3 Interactive Contract Inference

The typical use of the contract inference engine was to infer a set of simple contracts
that would hold for a large number of procedures, possibly with a few exceptions. The
inference relieves the user by finding the exception set without having to manually in-
spect the complex call graph. For example, for checking data-race freedom, we inferred
the set of procedures where the lock Resource in a NODEA object is held. This can
be achieved by creating candidate contracts about this lock being held on all procedures
that have either a NODEA or a NODEB as a parameter or return value.

However, the precision of the inference crucially depends on the existing contracts.
These contracts could have been manually specified or inferred previously. An attempt
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void CreateChild(PNODEA NodeA, ATTRIBUTE attr,...){
PNODEB NodeB;
AcquireNodeAExcl(NodeA);
CreateNodeB(NodeA, &NodeB,..);
Initialize1(NodeB, attr,...);
...

}

__ensures((*PNodeB)->ParentA == NodeA)
void CreateNodeB(PNODEA NodeA, PNODEB *PNodeB,..);

void Initialize1(PNODEB NodeB, ..){

<modify ParentA, State fields in NodeB >
Initialize2(NodeB, ...);

}

void Initialize2(PNODEB NodeB,..){
<modify ParentA, State fields in NodeB>
Initialize3(NodeB, ...);

}

Fig. 5. Procedure calls chains

to infer contracts without being cognizant of other constraints on the module can lead to
significant loss of precision. Consider the Figure 5, where the procedureCreateChild
creates a child of NodeA in CreateNodeB and then initializes different parts of the
child object and other data structures through several layers of deeply nested calls. Sup-
pose we are interested in inferring the procedures where the Resource in an NODEA
object is held, to check for data-race freedom. Unless the contract on CreateNodeB
is already specified, the inference engine fails to discover that NodeB->ParentA->
Resource is held at entry to all the InitializeX procedures. The contract on
CreateNodeB is more difficult to infer since it involves two objects PNodeB and
NodeA.

Therefore, the process of adding manual contracts and applying inference was cou-
pled with the feedback from each step driving the other.

4.4 Exceptions

COMP (and several other modules in Windows) uses Structured Exception Handling
(SEH) to deal with flow of control due to software and hardware exceptions. In SEH,
the program can use either try/ except blocks to implement an exception handler,
or try/ finally blocks to deal with cleanup along both normal and exceptional
paths.

__try{
//guarded code

} __except (expr) {
//exception handler
//code

}

__try{
//guarded code

} __finally{
//termination code

}

To model exceptions, we introduced a resource variable thrown to denote whether
a procedure call raises an exception. The variable is reset to FALSE at entry to any pro-
cedure, is set to TRUE whenever a kernel procedure that could raise an exception (e.g.
KeRaiseStatus or ExAllocatePoolWithTag) returns with an exception, and
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is reset to FALSE once the exception is caught by an exception handler in except.
We introduced a new contract macro:

#define __may_throw(WHEN) __ensures(!WHEN ==> !__thrown)

A procedure with a may throw(WHEN) contract denotes that the procedure does not
raise an exception if the condition WHEN does not hold at exit from the procedure.
This allows specifying may throw(TRUE) on one extreme to indicate that any call
to the procedure may throw an exception, and may throw(FALSE) on the other
extreme to indicate that the procedure never raises an exception. Every procedure in the
module also has a default modifies clause saying that thrown can be modified by the
procedure.

The presence of exceptions increases the number of paths through a procedure, since
any called procedure can potentially throw an exception and jump to the exit. Our initial
attempt at ignoring the exceptional paths revealed very few bugs, signifying the well-
tested nature and the maturity of the codebase.

To circumvent the problem, we used the inference engine to infer the set of proce-
dures in this module that do not raise an exception. We first annotated the kernel proce-
dures like KeRaiseStatus with may throw(WHEN) to denote the constrains on
its inputs WHEN under which the procedure may throw an exception. Next, we added a
candidate contract may throw(FALSE) to each procedur. The interprocedural infer-
ence algorithm removes may throw(FALSE) from procedures that may potentially
raise an exception. The set of procedures on which may throw(FALSE) is inferred
denotes the procedures that never throw an exception. To improve the precision of in-
ference, we had to manually add contracts for internal procedures that could raise an
exception only under certain conditions.

5 Property Checking on COMP

5.1 COMP

In this section, we briefly describe the core driver COMP from the Windows R©operating
system, and the synchronization protocol that was checked. For the sake of security,
we keep the component and the names of the procedures anonymous. The component
has around 300 thousand lines of code, excluding the sources for the kernel procedures.
There are more than 1500 procedures present in the module. The code for the com-
ponent has evolved over almost two decades, and each new generation inherits a lot
of the code from the previous versions. Some of the procedures in the module have
up to 4,000 lines of code, signifying the complexity and the legacy nature of the code
base. COMP also heavily employs the Microsoft Structured Exception Handling (SEH)
mechanism for C/C++ to deal with flow of control due to exceptions (discussed more
in Section 4.4).

We first provide a brief description of the synchronization protocol governing the
management of the main heap-allocated structures in COMP. We will focus on four
main type of objects: NODE that is the root type which can contain multiple instances
of NODEA, NODEB and NODEC types.
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Each NODE has an ERESOURCE field NodeResource and a mutex NodeMutex
for synchronization. The ERESOURCE structure implements a reader-writer lock in
Windows that can be recursively acquired. The NodeResource acts as a global lock
for access to any NODEA, NODEB and NODEC objects within a given NODE (i.e. it is
sufficient to acquire this lock to access any field in the NODEA, NODEB and NODEC
objects).

Each NODEA object has a list of NODEB children (as described in Section 2) and a
list of NODEC children. Each NODEA has a ERESOURCE field Resource that protects
most of its fields and the fields of its children NODEB and NODEC objects; each NODEA
also has a mutex NodeAMutex that protects a set of other fields in each NODEA and
its NODEB and NODEC children.

Each NODEA also has an integer field ReferenceCount that signifies the num-
ber of threads that have a handle on a particular NODEA object — a positive value of
ReferenceCount on an NODEA object indicates that some thread has a handle on
the object and therefore can’t be freed.

There is a global listExclusiveNodeAListof all theNODEAobjects for which the
Resource has been acquired. A call to the procedure ReleaseNodeAResources
releases the Resource field of any NODEA on the ExclusiveNodeAList.

5.2 Properties

COMP has a synchronization protocol governing the creation, usage and reclamation
of the objects in a multi-threaded setting. The synchronization is implemented by a
combination of reference counting, locks and other counters in these objects, and is
specific to this module. The integrity of the protocol depends on several properties
whose violations can lead to serious bugs:

1. Ref-count usage. We checked that for every execution path, the increments and
decrements of the ReferenceCount field of a NODEA object are balanced. Decre-
menting the count without first incrementing could lead to freeing objects in use and a
net increment in this field would correspond to a resource leak, as the NODEA object
will not be reclaimed.

2. Lock usage. We check for the violation of the locking protocol for the various locks
in NODE and NODEA objects. For a mutex field, we check that the lock is acquired and
released in alternation; for a reader-writer lock which can be acquired recursively, we
check that each release is preceded by an acquire.

3. Data race freedom. This is roughly the property that we described in Section 2,
except that we monitor reads and writes for the other fields in these objects too. Since
the NodeResource in a NODE object acts a global lock, we need the Resource field
in a NODEA object be held only when the global NodeResource lock is not held.

4. Teardown race freedom. We check for races between one thread freeing a NODEA
object, and another thread accessing the same object. Any thread freeing a NODEA object
must hold that NODEA’s Resource exclusive, hold the parent NODE’s NodeMutex,
and ensure that NODEA’s ReferenceCount is zero. Conversely, any thread accessing
a NODEAmust either hold the NODEA’s Resource shared or exclusive, hold the parent
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Annotations LOC
Property 250
Manual 600
Inferred 3000

Total 3850

Property # of bugs
Ref-count 14
Lock usage 12
Data races 13
Teardown 6

Total 45

Fig. 6. Annotation overhead and bugs

NODE’s NodeMutex, or have incremented the ReferenceCount field. These rules
ensure mutual exclusion between threads freeing and accessing NODEA objects, and any
rule violation could lead to a teardown race. This is a domain-specific property which
requires the user to define the property.

5.3 Results

In this section, we describe our experience with applying HAVOC on COMP. Figure 6
summarizes the annotation effort and the distribution of the 45 bugs found for the four
properties listed above. The “Property” annotations are specifications written to de-
scribe the property and also to specify the behavior of kernel procedures. The “Manual”
annotations correspond to procedure contracts, loop invariants and type invariants for
this module. Finally, the “Inferred” annotations are a set of contracts that are automati-
cally generated by the contract inference described in Section 3.3.

Currently, our checker runs on the annotated code for COMP, and generates 125
warnings over the approximately 1500 procedures in 93 minutes — this corresponds to
roughly 3.7 seconds spent analyzing each procedure on average. Most of the runtime
(roughly 70%) is spent in a non-optimized implementation for converting C programs
into BoogiePL programs, which can be significantly improved. Further, each source
file (roughly 60 of them in COMP) in the module can be analyzed separately, and hence
the process can be easily parallelized to reduce the runtime.

Out of the 125 warnings, roughly one third of the warnings correspond to confirmed
violations of the four properties listed above. This is a fairly low false positive rate, given
that we have not invested in various domain-specific filters to suppress the unlikely bugs.

In the following sections, we discuss details of a few bugs, the breakup of the manual
annotations and the inferred annotations, and the assumptions that might lead to missed
bugs.

5.4 Bugs Found

In this section, we describe two representative bugs from the set of 45 violations to the
different properties. An interesting nature of most of the bugs is that they appear along
exceptional paths — paths where some procedure raises an exception. This suggests
the maturity and well-tested nature of the code as well as the fact that HAVOC can
find these subtle corner cases. Besides, some of these synchronization bugs are hard to
reproduce in a dynamic setting; the developers of the codebase suspected a leak in the
ReferenceCount field but had been unable to reproduce it.
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...
__try{

...
NodeA = CreateNodeA(Context, ..);

if (!AcquireExclNodeA(Context, NodeA, NULL, ACQUIRE_DONT_WAIT )) {

NodeA->ReferenceCount += 1;
...
AcquireExclNodeA(Context, NodeA, NULL, 0 );
...
NodeA->ReferenceCount -= 1;

}
...

} __finally {
...

}
...

Fig. 7. Reference count leak

...
if (!AcquireExclNodeA(Context, NodeA, NULL, ACQUIRE_DONT_WAIT)) {

...
AcquireExclNodeA(Context, NodeA, NULL, 0);
...

}

SetFlag(NodeA->NodeAState, NODEA_STATE_REPAIRED);
...
PerformSomeTask(Context, ...);
...
if (FlagOn( ChangeContext.Flags, ... )) {

UpdateNodeAAndNodeB(Context, NodeA, ChangeContext.Flags);
}
...

Fig. 8. Data race on NODEA object

Reference count leak. Figure 7 illustrates an example of a bug that leads to a violation
of the Ref-count usage property. In the example, an object NodeA of type NODEA is
created in CreateNodeA and then an attempt is made to acquire the Resource in
NodeA using the procedure AcquireExclNodeA. This procedure has the behavior
that it can return immediately or perform a blocking wait on the Resource depend-
ing on whether the flag ACQUIRE DONT WAIT is specified or not. Hence, if the first
non-blocking acquire fails in the if statement, then it tries a blocking acquire. Be-
fore doing that, it increments the ReferenceCount field to indicate a handle on
this NODEA object; the field is decremented once the Resource is acquired. How-
ever, if AcquireExclNodeA throws an exception, then the finally block does
not decrement the ReferenceCount field, and hence this NODEA object will always
have a spurious handle and will never be reclaimed.

Data-race. Figure 8 illustrates an example of data-race on the fields of NODEA object.
The procedure first acquires the Resource lock of an object NodeA in the first if
block. The fields of NodeA are modified in the SetFlag macro and in the
UpdateNodeAAndNodeB procedure. The access in SetFlag is protected by the
Resource lock. However, the procedure PerformSomeTask calls the procedure
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ReleaseNodeAResources transitively with a deeply nested call chain, which might
release the Resource lock in any NODEA object. This means that the Resource lock
is not held at entry to UpdateNodeAAndNodeB, although the procedure expects this
lock to be held at entry to modify the fields of NodeA.

5.5 Manual Contracts

We classify the main source of manual contracts in this section. In addition to the alias-
ing constraints and type invariants described in Section 2, we also annotated a variety
of interesting conditional specifications and loop invariants.

Conditional specifications. Consider procedure AcquireExclNodeA that was
present in the two bugs described in Section 5.4 and its contract:

__acquire_nodeA_excl(NodeA, !__thrown && __return != FALSE)
__ensures(!FlagOn(Flags, ACQUIRE_DONT_WAIT) && !__thrown

==> __return != FALSE)
BOOLEAN AcquireExclNodeA (PCONTEXT Context,

PNODEA NodeA, PNODEB NodeB, ULONG Flags);

Recall (from Section 4.4) that thrownindicates whether a procedure has a normal
return or an exceptional return. The first annotation (an annotation macro composed
of requires, ensures and modifies) describes the condition under which
the Resource field of NodeA parameter is acquired. The second annotation specifies
that if ACQUIRE DONT WAIT flag is not set, and the procedure does not throw an
exception, then the return value is never FALSE.

Loop invariants. We also specified loop invariants when the property being checked
depends on state modified inside a loop. The procedure ClearChild in Figure 3 pro-
vides an example of such a loop invariant. But a more common form of loop invariant
arises due to the following code pattern:

BOOLEAN TryAcquireNodeA(PNODEA NodeA,..)
{

BOOLEAN AcquiredFlag = FALSE;
...
__try{

...
__loop_inv(AcquiredFlag == FALSE)
while (true) {

CallMightRaise1();
if (..){

AcquireNodeAExcl(NodeA);
AcquiredFlag = TRUE;
CallMightRaise2();
return TRUE;

}
}

} __finally {
...
if (AcquiredFlag)

ReleaseNodeA(NodeA);
...
return FALSE;

}
}

The callers of TryAcquireNodeA expect that the procedure acquires the resource
of NodeA at normal exit. However, in the absence of the loop invariant, the checker
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Contracts type # of inferred annot
May throw 914
NodeResource held 107
NodeMutex not held 674
NODEAResource held 360
NODEAResource release all 210
OUT parameter modified 271
Parameter flag set 331

Total 2867

Fig. 9. Distribution of inferred contracts

would report a false warning where the ReleaseNodeA tries to release a resource
without first acquiring it. This happens because in the absence of the loop invariant, the
checker will report a path where the value of AcquiredFlag is TRUE at the loop
head, the procedure CallMightRaise1 throws an exception and control reaches the
finally block.

5.6 Inferred Contracts

HAVOC’s automatic inference capability generated a majority of the simple contracts
(around 3000 of them) and was crucial to the automation of the tool for such a complex
codebase (i.e. only 600 manually written contracts on around 1500 functions analyzed
by the tool).

Figure 9 summarizes the main classes of contracts that were generated using the
automated inference mechanism. In addition to the inference about may throw con-
tracts and modifies clauses for the out parameters of a procedure, we employed the
inference engine to infer a certain type-state property on some objects of type NODEA
or NODEB on the procedures in the module.

1. May throw: as described in Section 4.4, this denotes the set of procedures that do
not raise an exception.

2. NodeResource held: infers a set of procedures where the lock NodeResource
on the global NODE object is held at entry to ensure data-race freedom.

3. NodeMutex not held: infers a set of procedures where the NodeMutex field of
the global NODE is not held at entry. Since most procedures acquire and release this
lock locally inside a procedure, this contract is useful for proving that locks are not
acquired twice.

4. NODEAResource held: infers that the Resource field for an NODEA parameter
or the Resource field for the parent of an NODEB or NODEC object is held at
entry to a set of procedures. This along with NodeResource ensures absence of
data-races.

5. NODEAResource release all: infers the set of procedures that could release the
Resource of any NODEA object by a transitive call to Release-
NodeAResources.
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6. OUT parameter modified: adds a modifies(x) contract for an out parameter
x that is modified inside a procedure, as described in Section 4.2.

7. Parameter flag set: infers a set of procedures where a certain field of a param-
eter is set to TRUE on entry to the procedures. The parameter captures the state
of computations that span multiple procedures and is threaded through the nested
procedure calls. The parameter Context in Figures 7 and Figure 8 is an example
of such a parameter.

5.7 Assumptions

HAVOC provides a set of options that allows the user to introduce a class of explicit
assumptions into the verification, which can be enumerated and discharged later with
more contracts or a separate analysis. This allows the user of the tool to control the de-
gree of unsoundness in the verification, and to recover from them using more contracts.
This is in contrast to most other static analysis tools that bake these assumptions into the
analysis and there is no way to recover from them. There are three main sources of such
assumptions in our current analysis: (1) field safety, (2) type invariant assumptions and
(3) free modifies for the heap fields. The first two sources were discussed in Section 4.1
and the third in Section 4.2.

Of the three options, we believe that both field safety and the type invariants hold for
the module with very few exceptions and separate the proof of the high-level properties
from the proofs of type-safety and type/shape invariants. Eliminating the free modi-
fies clauses for the heap fields are the assumptions that we would like to eliminate to
increase the confidence in the checking.

5.8 False Warnings

As mentioned earlier, the tool generates a total of 125 warnings, and roughly one third
of the warnings correspond to confirmed violations of the four properties listed above.
Unlike typical static analyzers, the remaining warnings are not violation of the prop-
erties being checked. Instead, most of these warnings are violations of intermediate
procedure contracts which were used to discharge the properties of interest.

Of course, the soundness of a modular proof can be compromised by the presence
of even a single warning. However, for large code bases, it is very difficult to verify
every contract. To obtain a balance, we require that the remaining warnings are not
violations of automatically generated assertions (for the property), but rather violation
of user-specified contracts. The rationale being that user provided contracts are a result
of understanding the code, and have a good chance of being true (although they may
not be inductive). However, proving these contracts require adding contracts on other
fields of these structures, or devising a new template for contracts (e.g. checking which
fields of an object are non-null).

6 Security Audit

In this section, we briefly describe preliminary experience of applying HAVOC for
checking security vulnerabilities in some of the modules in Microsoft Windows. In spite
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of extensive testing and the application of customized static analysis on these compo-
nents, these components still have bugs that make them vulnerable to malicious attacks.
Careful code audit is essential to safeguard the systems against such attacks, but manual
inspection is expensive and error-prone.
HAVOC has been deployed to check several properties whose violation can often lead

to exploitable attacks:

– ProbeBeforeUse: any pointer that can be passed by a user application (user point-
ers) to the kernel APIs must undergo a call to a procedure Probe before it is deref-
erenced.

– UserDerefInTry: any dereference of a user pointer must happen inside a try
block,

– ProbeInTry: any call to Probe should happen inside a try block to correctly deal
with cases when a user passes illegal pointers,

– Alloc0: ensure that the non-null buffer returned by calling malloc with a size of zero
is handled safely. Although it is legal to call allocation procedures with a size of
zero, such allocations often lead to buffer overruns without proper safeguard [23].

Although the properties are simple, it is non-trivial to ensure the absence of these bugs
primarily due to deep call chains and the presence of deeply nested pointers. For exam-
ple, to check either the ProbeBeforeUse or UserDerefInTry, one needs to know whether
any pointer that is dereferenced in the program can alias with one of the pointers that
are reachable from the globals or parameters to the entry functions of the module. There
can be several thousand dereferences in a large module and validating each of them (es-
pecially those in deeply nested procedures) can be challenging. On the other hand, the
Alloc0 property requires arithmetic reasoning as the allocation size could be 0 because
of an overflow.

The properties were specified quite easily by adding suitable contracts to Probe and
malloc procedures. We have analyzed several modules (with more than a million lines
across all of them) for various subset of these properties. We have created various infer-
ence for interprocedural reasoning including (a) propagation of information about the
pointers that have undergone a call to Probe, (b) the procedures that are always called
from within a try block, etc. Details of the inference and results are outside the scope
of this article, since this is a work in progress. In addition, the user had to provide some
annotations (in the order of a few hundred currently) manually. The effort has lead to
the discovery of four vulnerabilities related to ProbeBeforeUse and around ten vulnera-
bilities related to Alloc0, all of which have been patched. The tool allows the auditor to
only inspect around 2-3% (for modules with around 3000 procedures) of all procedures
for warnings for the ProbeBeforeUse properties and around 10% of the allocation sites
for the Alloc0 sites. We are working to further reduce these false alarms with better in-
ference, loop invariants etc. However, the ability for the user to construct these property
checkers and guide the inference to use the domain knowledge has provided value in
focusing the time of an auditor on the more problematic procedures.
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7 Related Work

There is a rich literature on static analysis tools for finding various defects in software
programs. We discuss some of these tools in this section, to perform a qualitative anal-
ysis of the strengths and weaknesses of using these tools for our case study.

Contract-based checkers. HAVOC is closely based on the principles of ESC/Java
[17] tool for Java programs and Spec# [4] tool for C# programs. The main difference
lies in our intent to analyze systems program written in C, that requires support for
low-level operations in both the source and the contract language. Secondly, although
ESC/Javawas applied to real life Java programs to demonstrate the usefulness of con-
tract inference [16,17], the tool did not allow the user to create customizable inference
for particular contracts. These tools have not been applied to real progams of the scale
considered in this paper to find bugs in a cost-effective manner with low annotation
overhead.
SAL in an annotation language for documenting buffer related properties for C pro-

grams and espX is a checker for the language [18]. This is one of the few examples
of annotation based checker for a specific property. The language is not extensible, and
does not allow specifying new user-defined properties.

Dedicated property checkers. A majority of the numerous static analysis tools de-
veloped for systems software in the last decade fall in this category — we highlight
only a representative sample for the different properties that scale to several thousand
lines of code. Examples of data-race checkers include Relay [24], LOCKSMITH [22],
RacerX [13]. CALYSTO [2] finds null dereference bugs in C programs by using SAT
solvers. The ASTREÉ analyzer [8] uses abstract interpretation [7] to prove the absence
of certain runtime errors such as buffer overruns, integer overflows in embedded safety-
critical software. Most of these tools do not require user annotations, use novel algo-
rithms based on data-flow analysis, often with the intent of finding bugs at the cost of
unsound assumptions.

Extensible property checkers. Tools such as SLAM [3], BLAST [19] and ESP [10]
are examples of software model checkers that check a property by exhaustively ana-
lyzing models of C programs. Their property languages allow specifying simple state-
machines over the typestate of objects, and can express simple lock usage properties.
These tools are most suited for checking properties on global variables, and lose preci-
sion and soundness when dealing with low-level operations and relationships between
objects in the heap. Our case study shows the need for both in checking the synchro-
nization protocol.

Meta-level compilation [14] provides compiler extensions to encode patterns of vi-
olations for system-specific properties in a state-machine language metal, which are
checked at compile time. The technique finds serious errors in systems code, but does
not attempt to maintain soundness or guarantees about the absence of such bugs. These
tools are suitable for describing bug patterns in a code, but once again are poorly suited
for describing detailed properties of the heap (for example the absence of teardown race).
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Saturn [1] uses a logic programming framework to specify static analysis. Saturn
also uses a concrete operational semantics similar to HAVOC. While HAVOC’s
meta-theory is fixed and based on contracts, the meta-theory of Saturn may be
extended by analyses expressed in a logic programming language. The ability to add
inference rules adds flexibility in analysis design but comes at two different costs. First,
extending Saturn requires an expert analysis designer whereas extending HAVOC
could be done by a programmer simply by the use of contracts. Second, the meta-
theory behind the analyses is usually not proved correct and could therefore introduce
unexpected unsoundness into the system.

8 Conclusions

In this work, we have demonstrated the feasibility of applying contract-based checkers
for scalable user-defined property checking, and the challenges involved in scaling such
an approach to large code bases with modest annotation overhead, low false alarms,
without sacrificing a lot of coverage. Our work points out several immediate directions
of future work that would improve the usability of modular checkers such as HAVOC in
the hand of a user: better inference of conditional contracts can relieve a lot of annota-
tion burden, inference of modifies clauses will allow us to remove unsoundness issues
related to the unchecked modifies clauses, and finally, we need easy-to-use annotations
for specifying invariants at the level of types.
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Abstract. Unlike sequential programs, concurrent programs have to ac-

count for interference on shared variables. Static verification of a desired

property for such programs crucially depends on precisely asserting the

conditions for interference. In a static proof system, in addition to pro-

gram variables, auxiliary (history) variables summarizing the past of the

program execution are used in these assertions. Capable of expressing

reachability only, assertions (and history variables) are not as useful in

the proofs of programs using optimistic concurrency. Pessimistic imple-

mentations which allow access to shared data only after synchronization

(e.g. locks) guarantee exclusivity; optimistic concurrency implementa-

tions which check for interference after shared data is accessed abandon

exclusivity in favor of performance.

In this paper, we propose a new construct, tressa, to express proper-

ties, including interference, about the future of an execution. A tressa

claim states a condition for reverse reachability from an end state of

the program, much like an assert claim states a condition for forward

reachability from the initial state of the program. As assertions employ

history variables, tressa claims employ prophecy variables, originally in-

troduced for refinement proofs. Being the temporal dual of history vari-

ables, prophecy variables summarize the future of the program execution.

We present the proof rules and the notion of correctness of a program for

two-way reasoning in a static setting: forward in time for assert claims,

backward in time for tressa claims. We have incorporated our proof rules

into the QED verifier and have used our implementation to verify a small

but sophisticated algorithm. Our experience shows that the proof steps

and annotations follow closely the intuition of the programmer, making

the proof itself a natural extension of implementation.

1 Introduction

The main challenge in proving a concurrent program is reasoning about interac-
tions among threads on the shared memory. In a proof based on validating asser-
tions that specify a program’s desired behavior, one has to consider all possible
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interleavings of conflicting operations. Most existing methods verify programs at
the finest level of granularity of atomic actions: only actions guaranteed to be ex-
ecuted without interruption by the runtime are considered to be atomic. At this
level of granularity, there are a large number of possible interleavings. Proving
at this level requires one to consider concurrency- and data-related properties
at the same time and this results in complicated proofs.

A static verification method called QED alleviates this complexity [1]. A proof
in QED consists of rewriting the input program iteratively using abstraction and
reduction so that, in the limit, one arrives at a program that can be verified by
sequential reasoning methods.

Reduction, due to [2], creates coarse-grained atomic statements from fine-
grained ones. Whether statements can be thus combined depends on their mover
types. For instance, a statement is right-mover if commuting to the right of any
concurrent statement in any execution does not affect the property being verified.
QED is a static verification tool which determines the mover type of each state-
ment via a local check based on pair-wise comparison of all possible statements.
Local checks necessarily abstract away all execution dependent information in-
cluding control flow and synchronization mechanisms. Thus, deciding solely using
local checks, QED will tag a statement accessing a shared variable as non-mover
regardless of that access being lock protected or not. This is where abstraction
comes into picture.

In QED, there are two kinds of abstraction. The first kind is to replace the
statement with a less deterministic one, if the particular statement is of no
consequence to the property being verified. The second kind, which will be our
main concern in this paper, is to confine the local checks, via assertions, to
only pairs of statements that can execute concurrently. For instance, annotating
each access to a lock-protected shared variable with an assertion expressing a
condition on the owner of the lock will effectively declare all these accesses non-
concurrent (at a given time, at most one can execute) making them both (right
and left) movers.

For implementations based on optimistic concurrency, our experience with
QED suggests that expressing facts about concurrency control mechanisms in
the form of assertions over history variables is unnatural and counter-intuitive.
Correct operation of optimistic concurrency, used in the implementation of non-
blocking data structures or Software Transactional Memories (STM’s) [3], do
not depend on exclusive access to shared variables. The idea is to carry out
computation as if no interference will occur and then, prior to committing,
check whether this assumption is correct. If it is, then simply commit; if not,
roll-back any visible global change and, optionally, re-start. In this case, what is
needed is not a claim about reachability from an initial state which an assertion
provides, but a claim about the possibility of reaching a state from the current
state. The desired property is of the form: Either there will be no interference
until the commit point and each shared access satisfies some condition ϕ, or
interference occurs before reaching the commit point. We would like to make
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use of the condition ϕ in a static proof but the truth of ϕ cannot be decided
based on the execution prefix; its truth is a function of the execution suffix.

In this paper, we propose a new construct, tressa, which enables the specifi-
cation of properties about the rest of the program execution. A tressa claim will
typically express what the user believes will happen in case interference does
(or does not) occur. QED can then make use of the absence or presence of in-
terference in the rest of the execution following a statement in order to decide
that statement’s mover type. For instance, imagine a procedure which optimisti-
cally reads a shared variable g, does some computation, reads g again and if no
update has occurred to g in between, it commits. Optimistic read means that
concurrent threads can update g, so claiming non-interference using assertions
is not possible. However, in any execution where this procedure runs without
interference, the first read of g is a right-mover. That is precisely what a tressa
claim will capture.

We incorporate prophecy variables into our static proof system. Frequently,
the desired property that needs to be asserted for a statement depends on
the particular code path or execution prefix reaching that statement. History
variables aid the user in capturing this kind of execution specific information.
Prophecy variables serve a similar purpose for tressa claims. Annotating actions
with prophecy variables allows information about the rest of the execution to be
used in tressa claims which in turn aid in deciding the mover types of actions.

We present the proof rules and the notion of correctness of a program for two-
way reasoning in a static setting: forward in time for assert claims, backward in
time for tressa claims. Building on our initial work [1], we reformulate simula-
tion and mover definitions such that they are now valid for both forward and
backward reasoning. Even though the interaction between the two is non-trivial,
the formalization is intuitive and accessible. We demonstrate how to prove the
atomicity of a representative optimistic concurrency implementation.

Related Work. A variety of techniques have been proposed for static verifi-
cation of concurrent programs (e.g., [4,5,6,7]). Reduction as a means to reduce
the complexity in reasoning for concurrent programs was introduced by Lip-
ton [2] and has been the topic of recent work on concurrent program verification
(e.g.[8,9,10]). Prophecy variables were introduced in [11] and were used to define
refinement mappings between a specification and its implementation in cases
where the mapping between abstract and concrete states depends on the rest of
the execution. Subsequent work on prophecy variables were almost exclusively
on refinement checking (e.g., [12,13]). In the context of program verification,
backward reasoning (or simulation) has been used as an alternative to prophecy
variables with the same goal of establishing a mapping between states [14,12,15].
The only work on prophecy variables in static verification we know of is by Mar-
cus and Pnueli [16]. In the context of a static method for proving refinement
between two transition systems, the authors present two sound ways of augment-
ing a sequential program with assignments that involve temporal logic formulas
with future operators. Their soundness condition for annotating programs with
auxiliary variables is, as expected, similar to ours. In contrast, our proof system
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targets concurrent software and the verification of claims (in the form of assert
and tressa statements) rather than refinement, and uses atomicity as a key rea-
soning tool. To the best of our knowledge, this is the first work that proposes
the use of a construct, tressa, enabling backwards reasoning in reduction based
static verification.

Roadmap. In Sec. 2, we formalize the framework, describing the programming
language syntax and semantics. In Sec. 3, we develop our proof system by re-
defining the notions of correctness, simulation, mover checks to accommodate
tressa claims. We formalize prophecy variables by giving a new proof rule. We
also prove that these modifications do not affect the soundness of our proof
system. In Sec. 4, we show in detail how to reason and use prophecy variables and
tressa annotations in the proof of implementations using optimistic concurrency.
We finish with concluding remarks.

2 Preliminaries

In this section, we will introduce a simple programming language and define the
relevant terminology.

2.1 Syntax

Let e range over arithmetic and logical expressions, p range over logical expres-
sions and x be a variable. A simple statement is either an assignment (x :=
e), a non-deterministic assignment (havoc x), an assertion (assert p), a tressa
claim (tressa p), an assumption (assume p) or a no-op (skip). We assume that
each variable is either global or local. An assignment can contain at most one
global variable. That is, if x is a local variable, e can have at most one occur-
rence of a global variable; if x is a global variable, then no global variable can
appear in e. A statement is either a simple statement, or statements, s1, s2,
combined by sequential composition (s1;s2), conditional branching (if(*) {s1}
else{s2}), looping (while(*) {s1}). A statement can also be an atomic statement
(atomic{s}), where s is a statement not containing a loop. As a syntactic restric-
tion, nested use of atomic is not allowed. By definition, each simple statement
is also an atomic statement. We will omit atomic when it encloses only a simple
statement to avoid cluttering.

A program is a set of statements, each of which is called a proc-statement. For
a given program P , let SP , Simple(P) and Atoms(P) denote the sets containing
all statements, all simple statements and all atomic statements in P , respectively.

In the sample codes given in this paper, we make use of the following syntactic
sugar:

while(e) {s} � while(*) {assume e; s} assume !e;

The formal treatment given in this paper can easily be extended to a program-
ming language allowing a parallel operator and (non-recursive) procedure calls.
Their omission is solely to make the presentation simpler.
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{σ} t : s {σ′}, t ∈ T id

|σ(err)| = 1 x /∈ gV (P)

{σ} t : x := e {σ[(t, x) �→ �e�(σ[tid �→ t])]}
|σ(err)| = 1 k ∈ dom(x)

{σ} t : havoc x {σ[x �→ k]}

|σ(err)| = 1 g ∈ gV (P)

{σ} t : g := e {σ[(g) �→ �e�(σ[tid �→ t])]}
|σ(err)| = 1

{σ} t : skip {σ}

s ∈ {assume p, assert p, tressa p}
|σ(err)| = 1 t.σ � p

{σ} t : s {σ}
σ(err) = 1 t.σ � p

{σ} t : assert p {σ[err �→ 2]}

σ(err) = −2 t.σ � p

{σ} t : tressa p {σ[err �→ −1]}
|σ(err)| = 2 s ∈ SP

{σ} t : s {σ}

Fig. 1. Rules for updating valuations

2.2 Semantics

Valuations. For a program P , let V ar(P) denote the set of variables declared in
P . For any variable x, let dom(x) denote the set of its admissible values. Let T id
be a finite set of thread identifiers. V ar(P) is assumed to contain distinguished
global variables tid (dom(tid) = T id), err (dom(err) = {−2,−1, 1, 2}), all of
which are undeclared in P . Let gV (P) ⊆ V ar(P) be the set of global variables.

A valuation σ is a mapping from T id × V ar to a set of values. Intuitively,
σ(t, x) gives the value of the variable x as seen by thread t. We require for all
t, u ∈ T id, g ∈ gV (P), σ(t, g) = σ(u, g). For simplicity, we let (t.σ)(x) � σ(t, x),
refer to t.σ as a valuation and σ(g) � σ(t, g) whenever g is a global variable. The
notation �e�σ denotes the value of the expression e for the valuation σ under
the standard interpretation of arithmetic and logical operators. A valuation σ is
said to satisfy a boolean expression p, written σ � p, if �p�σ evaluates to true.
Otherwise, σ is said to violate p, written σ � p. For a function f , let f [x �→ v]
be the same as f except f(x) = v, and let | · | denote absolute value.

Let s be a statement in which while does not occur, t be a thread identifier
and σ, σ′ be valuations. The small step execution semantics are given in terms
of triples {σ} t : s {σ′}, called valuation updates, whose rules are given in Fig. 1.

Intuitively, a valuation update {σ} t : s {σ′} defines the effect of executing s
on the values of the variables as seen by thread t represented by the valuations σ
and σ′. The only interesting cases are for the assert and tressa instructions when
the valuation does not satisfy the claim. In both cases, the update is allowed
only if σ′(err) = σ(err)+1. We will see below the effect of the value of err on the
rest1 of the execution.

1 Rest refers to the suffix for err = 1; it refers to the prefix for err = −1.
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� :⊆ S∗
P × Atoms(P)× S∗

P

a ∈ Atoms(P)

aγ
a

� γ

s = s1; s2 s1
a

� s′1

sγ
a

� s′1s2γ

s = while(∗){s1}
sγ

skip
� γ

s1
a

� s′1
s = while(∗){s1}

sγ
a

� s′1sγ

s = if(∗){s1} else{s2}
sγ

skip
� s1γ

s = if(∗){s1} else{s2}
sγ

skip
� s2γ

Fig. 2. Control Flow

Program States. A program state is a pair (σ, Δ). The first component σ
is a valuation for V ar(P). The second component Δ is a mapping from T id
to a string over statements, SP . Intuitively, Δ(t) = d means that thread t is
yet to execute the (not necessarily atomic) statements in d. For instance, for ε
representing the empty string, s representing a proc-statement, Δ(t) = s means
that t has not started executing the procedure s, whereas Δ(t) = ε means that
t has finished its execution.

A program state (σ, Δ) is initial if for all t ∈ T id, Δ(t) = b such that b is a
proc-statement for some procedure in Proc. A program state (σ, Δ) is final if for
all t ∈ T id, Δ(t) = ε.
Program Executions. Let γ be a string over SP and s be a statement. The
evaluation order of a statement is given in Fig. 2. Intuitively, s

a
� s′ means

that a is an atomic statement that can be executed next in statement s where
s′ represents the remaining part to execute.

Program execution is formalized over a labeled transition system defined as:

s ∈ Atoms(P) {σ} t : s {σ′} γ
s

� γ′ Δ(t) = γ Δ′ = Δ[t �→ γ′]

(σ, Δ)
(s,t)−−−→ (σ′, Δ′)

Intuitively, there is a transition from q = (σ, Δ) to r = (σ′, Δ′) with label
(s, t) whenever s is an atomic statement that can be executed by t at q and
the valuations at r are updated according to the statement s (local variables of
threads different from t remain unchanged).

A trace is a sequence of labels, l = 〈l1 . . . lk〉. It moves a state q0 to qk, written
q0

l−→ qk, if there is a sequence of states 〈qi〉0<i≤k, a run of P over l, such that

for all 0 < i ≤ k, qi−1
li−→ qi.

An atomic statement s preserves a predicate p over gV (P), written as p � s, if
for any valuation σ � p, {σ} t : s {σ′} implies σ′ � p. If all the atomic statements
of program P preserve a predicate p over gV (P), p is an invariant of P , written
p � P . We let I range over invariants. A state (σ, Δ) is in I if σ � I. For program
P , P [x �→ y] is the same as P except the statement x is replaced with the
statement y. The addition of a new global variable a into program P is written
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as gV �→ gV ∪ {a}. For atomic statements s = atomic{s1}, s̃ = atomic{s2}, let
s ◦ s̃ = atomic{s1; s2}.

3 The Proof System

In this Section, we will formalize our proof system.
Correctness. A program’s correctness is a property of its terminating runs. Un-
like standard definitions which only consider assertions, our notion of correctness
has to take into account both assert and tressa claims.

Definition 1 (Failing Runs). Let 〈(σi, Δi)〉0≤i≤k be a run of program P. It
is failing if (σ0, Δ0) is an initial state, (σk, Δk) is a final state and σk(err) =
σ0(err)+ 1. It is forward (backward, resp.) failing if it is failing and σ0(err) = 1
(σ0(err) = −2, resp.).

Intuitively, a run starting from an initial state and ending at a final state is
forward failing if some state does not satisfy the assert claim of the statement
executed at that state. Similarly, a run is backward failing if some state does
not satisfy the tressa claim of the statement executed right before reaching that
state. A program is failing for an invariant I, if it contains a failing run starting
from a state in I; the program is safe for I, otherwise.
Remark. Assume that P has a forward failing run. Then, P must have a run
(σ0, Δ0)

l1−→ (σj , Δj)
l2−→ (σk, Δk) such that (σ0, Δ0) is initial, (σk, Δk) is final,

σi(err) = 1 for all 0 ≤ i < j, and σi(err) = 2 for all j ≤ i ≤ k. This is
because every forward failing run necessarily has a prefix where each state has
err assigned to 1, the prefix ends at a state which assigns 2 to err and by the
definition of valuation updates, it is always possible to extend any run whose end
state has err = 2 to a run ending at a final state. The prefix up to and including
qj is a visible execution of the program whereas the suffix is invisible because the
effects of statements on the values of variables are ignored altogether. The visible
execution is the witness to the violation of an assertion in sj . This canonical form
of a forward failing run coincides with the intuitive interpretation of an assertion:
Any execution of the program should not reach a state where an assertion of a
possible transition out of that state evaluates to false.

Now, consider the dual case for tressa claims. Following the argument above, if
a P has a backward failing run, then it must have a run (σ0, Δ0)

l1−→ (σj , Δj)
l2−→

(σk, Δk) such that (σ0, Δ0) is initial, (σk, Δk) is final, σi(err) = −2 for all 0 ≤
i ≤ j and σi(err) = −1 for all j < i ≤ k. It is possible to view this run as an
invisible prefix followed by a visible suffix separated by a state which violates
the tressa claim of the last transition of the prefix. However, referring to the
duality, we prefer the following interpretation: Any backward execution of the
program should not reach a state where the tressa of a possible transition out
of that state evaluates to false. Equivalently, a tressa claim stands for backward
reachability from a final state (and does not necessarily claim anything about
forward reachability).
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Abstraction. Our proof system is based on the concepts of abstraction and
reduction. We start with abstraction which in turn is formalized via a relation
over pairs of atomic statements, called simulation.

Definition 2 (Simulation). Let s1, s2 be two atomic statements and p be a
predicate. Then, s2 simulates s1 with respect to p, written p  s1 � s2, if for any
t and for any t.σ1, t.σ

′
1 � p with {σ1} t : s1 {σ′

1}, one of the following holds:

– exact: {σ1} t : s2 {σ′
1},

– there exist σ2, σ
′
2 with t.σ2, t.σ

′
2 � p such that

• fail-f: σ′
2(err) = 2 and {σ1[err �→ 1]} t : s2 {σ′

2},
• fail-b: σ2(err) = −2 and {σ2} t : s2 {σ′

1[err �→ −1]}.

Intuitively, s2 simulates s1 if s2 makes the same transition as s1 (exact), or for
s1 making a transition from q to q′, an assert claim of s2 fails at q (fail-f) and
a tressa claim of s2 fails at q′ (fail-b). In the case where the program does not
contain any tressa claims, only exact or fail-f needs to hold. Similarly, when
the program does not contain any assert claims, only exact or fail-b is required
to hold. We have the following lemma relating failing runs to simulation.

Lemma 1. Let s1, s2 be atomic statements and I be a predicate such that I 
s1 � s2. If P is failing for I, then so is the program P [s1 �→ s2].

Proof. Let some run q = 〈(σi, Δi)〉0≤i≤k of P be such that it is failing and
σ0 � I. We have to show that a failing run exists for the new program. The
proof is by induction on the number of occurrences of s1 in q. Base case of 0
occurrences is trivial. Let there be n + 1 occurrences of s1 and let the leftmost

occurrence be in the transition (σi−1, Δi−1)
(s1,t)−−−→ (σi, Δi). Then, by defini-

tion of simulation, either (σi−1, Δi−1)
(s2,t)−−−→ (σi, Δi) holds, or there are two

states (σ′
i−1, Δ

′
i−1), (σ

′
i, Δ

′
i) such that (σ′

i−1, Δ
′
i−1)

(s2,t)−−−→ (σi[err �→ −1], Δi),

(σi−1[err �→ 1], Δi−1)
(s2,t)−−−→ (σ′

i, Δ
′
i), σ′

i−1(err) = −2, σ′
i(err) = 2. In the former

case, we obtain a new failing run with n occurrences of s1. In the latter case, if
q was a forward failing run, then the run from (σ0, Δ0) to (σ′

i, Δ
′
i) is a witness

to a forward failing run. Similarly, if q was a backward failing run, then the
run from (σ′

i−1, Δ
′
i−1) to (σk, Δk) is a witness to a backward failing run with n

occurrences of s. ��

Reduction. In order to make sense of the reduction proof rules given in the
following section, we need to formalize the notion of mover. Let l be a sequence
of labels and (σ, Δ) be a state. An assert of l fails at (σ, Δ), written (σ, Δ)�l, if
there exists a state (σ′, Δ′) such that σ′(err) = 2 and (σ[err �→ 1], Δ) l−→ (σ′, Δ′).
Similarly, a tressa of l fails at (σ, Δ), l�(σ, Δ), if there exists a state (σ′, Δ′) such
that σ′(err) = −2 and (σ′, Δ′) l−→ (σ[err �→ −1], Δ).

Definition 3 (Mover). Let s1, s2 ∈ Atoms(P). We say that s1 commutes to
the right of s2 in I if, for all labels l1 = (s1, t), l2 = (s2, u) with t �= u and for

states (σ1, Δ1), (σ2, Δ2) in I, whenever (σ1, Δ1)
〈l1l2〉−−−→ (σ2, Δ2), we have
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– X: (σ1, Δ1)
〈l2l1〉−−−→ (σ2, Δ2), or

– RI: (σ1, Δ1)�〈l1〉 and 〈l1〉�(σ2, Δ2), or
– Rf: (σ1, Δ1)�〈l2〉 and Rb: 〈l2l1〉�(σ1, Δ1).

Intuitively, s1 commutes to the right of s2, if at any state q1 executing (s1, t)
followed by (s2, u) leads to q3, then either (RI) the assert and tressa of (s1, t)
fail at q1 and q3 respectively, or after reversing the order of execution either
(X) the same end state is reached, or (Rf+Rb) it is possible to obtain both
forward and backward failing runs. If we replace RI with (LI) (σ1, Δ1)�〈l2〉 and
〈l2〉�(σ2, Δ2), Rf with (Lf) (σ1, Δ1)�〈l2l1〉, and Rb with (Lb) 〈l1〉�(σ2, Δ2),
s2 is said to commute to the left of s1. Similar to simulation, if the program
does not contain any assertions, then conditions relating to assertion failures are
ignored (first part of RI/LI and Rf/Lf); if there are no tressa claims, tressa
failure conditions are ignored (second part of RI/LI and Rb/Lb).

A statement s ∈ Atoms(P) is right mover (left mover, resp.) with respect to I
if it commutes to the right (left, resp.) of every statement in Atoms(P) for every
state in I. For μ ∈ {R, L}, I  (P , s) : μ denotes that the atomic statement s
has mover type μ in program P .

Lemma 2 (Sequential Reduction). Let s1;s2 be a statement in P such that
s1, s2 ∈ Atoms(P) and let I be an invariant of P. Assume further that either
I  (P , s1) : R or I  (P , s2) : L. Then, the program P [s1;s2 �→ s1 ◦s2] is failing
for I if P is failing for I.

3.1 Proof Rules

A proof frame is a pair (P , I), where I is an invariant for program P . A proof is
a sequence of proof frames 〈Pi, Ii〉0≤i≤n such that each (Pi+1, Ii+1) is obtained
from (Pi, Ii) by an application of a proof rule. The proof rules of our system are
given in Fig. 3.
Modified Rules. With the exception of annot-p, the proof rules are almost
the same as those of [1]. The main difference is due to the modification in the
concepts of simulation and mover types both of which take into account forward
and backward reasoning. The rule annot-h is for annotating simple statements
with a new (history) variable. The rule inv is for strengthening of the invariant.
The rule sim is for abstracting an action by replacing it with one that simulates
it. The rules red-l, red-s, red-c are for reducing loops, sequential composition
and conditional branches of two atomic statements, respectively.
Prophecy Introduction Rule. Let a=:e, reverse assignment, be a syntactic
sugar for {assume a==e′; havoc a; assume a==x; havoc x}, where x is a new vari-
able and e′ is the same as e except every free occurrence of a is replaced with x.

The main concern when adding a new variable into the program is to annotate
statements so that no terminating execution of the original program is left out.
That is why the annot-h rule for introducing history variables into the program
requires a transition for every valuation of the auxiliary variable: if the original
program makes a transition over a certain valuation of variables, so will the new
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annot-h
Simple(P) = {si}i∈J a /∈ V ar(P )

∀i.(s̃i = (a:=ei) ◦ si)

P ,I ��� P [gV �→ gV ∪ {a},∀i.si �→ s̃i], I

inv
I2 ⇒ I1 I2 � P
P , I1 ��� P , I2

sim
I � s  s̃

P , I ��� P [s �→ s̃], I

red-l
I � (P , s) : μ μ ∈ {R, L}

I � s̃ I � skip  s̃ I � s̃ ◦ s  s̃

P , I ��� P [while (∗) {s} �→ s̃], I

red-s
I � (P , s) : R or I � (P , s̃) : L

P , I ��� P [s;s̃ �→ s ◦ s̃], I

red-c
s = if(∗) {atomic{s1}} else{atomic{s2}}

s̃ = atomic{if(∗) {s1} else{s2}}
P ,I ��� P [s �→ s̃], I

annot-p
Simple(P) = {si}i∈J a /∈ V ar(P ) ∀i.(s̃i = (a=:ei) ◦ si)

P , I ��� P [gV �→ gV ∪ {a}, ∀i.si �→ s̃i], I

Fig. 3. Rules of the proof system

program over the same valuation for any value of the history variable. Prophecy
variables satisfy a similar requirement. The condition that has to be satisfied for
prophecy variables, however, is the dual of that of a history variable. Prophecy
variable introduction requires the new transition be defined for all next state
values of the prophecy variable. In other words, prophecy variables are non-
blocking in the backward direction for any value they can assume much like
history variables are non-blocking in the forward direction. This leads to the
following lemma.

Lemma 3. Let ρ1 = (P1, I1) be a proof frame. Let ρ2 be the proof frame obtained
from ρ1 by an application of the annot-p rule. Let 〈qi〉0≤i≤k be a run of P1.
Then, there exists a run 〈q ′

i〉0≤i≤n of P2 such that for all i, qi and q ′
i coincide

on every component except the value of the prophecy variable a introduced by the
annot-p rule.

Proof (Sketch). By induction on the length of the run, k. Construct the run
backwards, starting from the end state qk and make the observation that for
each state, due to the premise of the annot-p rule, there always exists a value
of the prophecy variable in the preceding state such that the transition of P1 is
enabled in P2. ��
We close this section by stating the soundness of the proof system claiming that
failing runs are preserved. A program P is safe for I if P has no failing run that
starts at a state in I.

Theorem 1 (Soundness). Let (P0, I0) ���∗ (Pn, In) be a proof. If Pn is safe
for In, then P0 is safe for In.
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4 Overview of a Sample Proof

Figure 4 presents the Lookup and Insert methods implementing a bounded set
of non-negative integers. Set elements are stored in an array in which duplicates
are allowed. An array slot is taken to be empty if it contains -1. Initially, all slots
are assumed to be empty. The contents of the set are given by the set of values
in non-empty slots. Reads and writes to each array index are atomic.

The Insert method starts from an arbitrary array index in order to reduce
conflicts between concurrent executions of Insert on early array indices. It ex-
amines array slots in increasing order of indices and wraps around at the end of
the array. Insert returns true (succeeds) when it either finds an empty slot to
which it atomically writes the new element, or it finds an occupied slot contain-
ing the element it was trying to insert. It returns false (fails) if all array slots
are occupied by other elements. In this simplified implementation, there is no
removal whose presence would make the other methods non-atomic. Lookup(x)
searches in increasing order of indices for x. It returns true iff for some array
index i, q[i] == x. Since Insert can start from an arbitrary index, Lookup
must examine the entire array before deciding whether or not x is in the set.

We would like to prove that the Lookup method is behaviorally equivalent to
an atomic block that returns true iff for some array index i, q[i] == x.

procedure Insert(y: Data)

returns success: bool;

{

havoc j; // arbitrary

assume 0<=j<n; // array slot

cnt := 0; success := false;

while (cnt<n && !success) {

if (*) {

atomic{

assume q[j]==-1; q[j] := y;

success := true; } }

else if (*) {

atomic{

assume q[j]==y;

success := true; } }

else {

j := j+1 mod n;

cnt := cnt+1; }

}

}

(a) The code for the Insert procedure

procedure Lookup(x: Data)

returns found: bool;

{

found := false;

i := 0;

while (i<n && !found) {

found := (q[i]==x);

i := i+1;

}

}

(b) The Lookup procedure

Fig. 4. An implementation of a bounded set
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Intuition for Atomicity. Observe that all actions of Lookup except the read of
q[i] are thread-local, i.e., they are both movers. Then the only potential conflict
is between the read of q[i] and the update to q[i] done by the Insert method
when q[i] == -1.

Call an iteration of the Lookup loop for some i failing if q[i] != x (denoted
by F (i)) and succeeding (denoted by S(i)) otherwise. Executions of Lookup that
return false are of the following form

..., F (0), ..., F (1), ..., F (2), ..., F (n − 1), ..., F (n), ...

while executions that return true are of the following form

..., F (0), ..., F (1), ..., F (2), ..., F (i − 1), ..., S(i), ...

where ... represents a sequence of actions by other threads. The reduction-based
proof is based on the following intuition. Let “commit action” denote the action
that all other actions of Lookup will be moved and be made adjacent to. For
Lookup(x)’s that return false is F (0) because the set may contain x later in
the execution. For Lookup’s that return true, the commit action is S(i), since
the action that writes the only x to an array slot may immediately precede S(i).

In order to reduce the entire execution of the loop to an atomic action, for
Lookup’s that return false, we need all F (k) to be left-movers in order to group
them next to F (0), while, for Lookup’s that return true, all F (k)’s must be right
movers in order to move immediately to the left of S(i). The two kinds of lookups
require different applications of reduction to prove atomicity.

procedure Lookup(x: Data) returns found: bool;

{

if (*) else

{ atomic{ { atomic{

found := false; found := false;

i := 0; } i := 0; }

while (*) { while (*) {

chkL(i,x); chkR(i,x);

} }

assume !found; assume found;

} }

}

Fig. 5. The Lookup procedure after code transformation

Proof Highlights. To enable different reduction proofs for succeeding and failing
executions of Lookup, we transform Lookup as shown in Fig. 5. This version of
the code is arrived at after the following sound code transformation:

Let s be the statement representing the body of Lookup. Replace s
with if(*) { s; assume!found;} else{ s; assume found;}.
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This transformation is sound because found is a thread-local variable. In the
following, we only present the atomicity proof for the failing branch of Lookup,
as this is the path that involves the use of tressa. Let chk(i,x) be shorthand
for the following atomic statement that is the body of the while loop in Lookup
and wrt(j,y) denote the update action of Insert.

chk(i,x) � {assume i<n && !found; found:= (q[i]==x); i := i+1;}
wrt(j,y) � {assume (q[j]==-1);q[j] := y}

After the code transformation given in Fig. 5, we let chkL(i,x) denote the
copy of chk(i,x) that resides in the failing branch. chkR(i,x) is the copy of
chk(i,x) in the succeeding branch. chkL(i,x) and chkR(i,x) are syntactically
identical. Observe that chkL(i,x), as it stands, is neither a right nor a left-
mover, since it does not commute with wrt(j,y) if j == i and x == y. The key
use of the tressa construct will be to annotate the action chkL(i,x) with the
information that it is part of the failing branch of Lookup, and, therefore, cannot
be immediately preceded by wrt(i,x). An alternative statement of this fact
is as follows. If wrt(i,x) were followed by chkL(i,x), then, when the assume
!found statement is reached at the end of the failing branch, the execution would
block, i.e., only the artificial blocking executions that are by-products of the
code split and not real executions of the program can contain wrt(i,x) followed
by chkL(i,x). We encode this information in the form of a tressa annotation
and abstract chkL(i,x) as atomic{ chkL(i,x); tressa !found;} which yields
the code snippet given in Fig. 6. Executions which violate !found right after
chkL(i,x) have “chosen the wrong branch”, i.e., in order for these executions
to terminate, control should have gone down the other non-deterministic branch.

Let us define LHS as the pair of transitions wrt(i,x) executed by thread t1 fol-
lowed by atomic{ chkL(i,x); tressa !found} executed by thread t2. Let RHS be
the same sequence in reverse order; that is, atomic{chkL(i,x); tressa !found}
executed by thread t2 followed by wrt(i,x) executed by thread t1. Recall the
left-mover check in Sec. 3. Initial-final state pairs (q1, q2) that LHS can give rise to
must be matched by RHS only if !found holds in q2 (due to LI). But, wrt(i,x)
followed by chkL(i,x) always gives rise to found being true. Therefore, the
mover check vacuously holds.

procedure Lookup(x: Data) returns found: bool;

{

...

while (*) {

atomic{ chkL(i,x); tressa !found; }//left-mover

}

assume !found;

...

}

Fig. 6. The failing iterations annotated with tressa
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Intuitively, at this stage of the proof, we make the assumption that if found is
true after chkL(i,x) is executed, then this is an artificially blocking execution
that can be ignored. We will have to validate this assumption later. Using our
loop reduction rule, we can prove that the following action summarizes the while
loop in the failing branch of the Lookup.

atomic{
if (*) { skip; }
else { havoc i,found; tressa !found;

assume i<=n;
assume !found <==> (∀j. j<i ==> q[j]!=x)); }

}

This loop summary and the assume !found following it are combined into a
single atomic block using the reduce-sequential rule. Once this level of atomicity
is reached, the proof assumption that we had expressed as a tressa annotation
is discharged easily by reasoning backwards within the atomic block.

5 Conclusion

In this paper, we incorporated backward reasoning into static verification. We
achieved this by augmenting the static verification tool QED with a new con-
struct, tressa, along with a new proof rule for the introduction of prophecy
variables. We re-defined correctness, simulation and mover checks to allow for rea-
soning in both forward and backward executions. We have demonstrated the usage
of this new approach in the atomicity proof of a non-trivial set implementation.

Tressa claims reflect the user’s belief that any time the tressa is executed, the
remaining execution leads to safe termination only when its claim is satisfied. A
tressa claim can thus be used in specifying properties a program should satisfy
much like an assertion. We are preparing a companion paper in which the use
of tressa claims at the specification level is discussed along with a framework
which can be used in debugging programs whose specifications are given via
tressa claims.

On the static verification front, our next goal is to statically verify STM (Soft-
ware Transactional Memory) implementations. Actually, the need for backward
reasoning and prophecy variables in a static setting manifested itself while we
were doing preliminary work on STM verification.
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Abstract. Hypervisors are system software programs that virtualize the

architecture they run on. They are typically small, safety-critical, and

hard to debug, which makes them a feasible and interesting target for

formal verification. Previous functional verifications of system software

were all based on interactive theorem proving, requiring substantial hu-

man effort complemented by expert prover knowledge. In this paper we

present the first functional verification of a small hypervisor using VCC,

an automatic verifier for (suitably annotated) C developed at Microsoft.

To achieve this goal we introduce necessary system verification tech-

niques, such as accurate modeling of software/hardware interaction and

simulation proofs in a first-order logic setting.

1 Introduction

Hypervisors are small system software programs that virtualize the underlying
architecture, allowing to run a number of guest machines (also called partitions)
on a single physical host. Invented in the 1970s for use in mainframes, hypervi-
sors are becoming more and more important today with shared multi-threading
and shared multiprocessing being part of computer mainstream. Because they
are hard to debug, and because of their small size yet high criticality, hyper-
visors make a viable and interesting target for (system) software verification.
Hypervisor verification is also challenging: a hypervisor functions correctly if it
simulates the execution of its guest systems. Thus, functional correctness of a
hypervisor cannot be established by only proving shallow properties of the code.

In this paper we present the formal verification of a simple hypervisor, which
we call baby hypervisor, using VCC, an automatic verifier for concurrent C (with
annotations) developed at Microsoft [5]. The verification of the baby hypervisor
is part of the Verisoft XT project, which also aims at the verification of the hy-
pervisor of Microsoft’s Hyper-VTM. In comparison, the baby hypervisor and the
architecture it virtualizes are very simple (e.g., neither a multi-core architecture
nor concurrent code are considered). In the project, the baby hypervisor has
played an important role of driving the development of the VCC technology and
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applying it to system verification. For example, the region-based memory model
of previous VCC versions exhibited serious performance problems in an earlier
verification attempt of the baby hypervisor, which also led to the development
of VCC’s current memory model [6]. The baby hypervisor can serve a similar
purpose outside the Verisoft XT project, and act as a benchmark or challenge
for other verification tools.1

Our contribution is twofold: (i) We present the first verification of a hyper-
visor. It includes the initialization of the guest partitions and a simple shadow
page table algorithm for memory virtualization. We verified the simulation of the
guest partitions, and, since our modeling starts at host reset time, the assump-
tions are few and well-defined. (ii) We demonstrate how to apply automated
verification to system software. In particular, we show a way to do simulation
proofs in a first-order prover setting, how to model the underlying hardware,
and reason about its interaction with the (mixed C and assembly) code.

The remainder of this paper is structured as follows. In Sect. 2 we give an
overview of related work. In Sect. 3 we introduce VCC. In Sect. 4 we present
an overview of our architecture, called baby VAMP, which we have formalized in
VCC. In Sect. 5 we introduce the framework we use here for the verification of
system software with VCC. System behavior is modeled by the execution of a
system program that consists of an infinite loop of steps of the host architecture;
system correctness is an invariant of this loop. In Sect. 6 we present an overview
of the baby hypervisor data structures and invariants, and instantiate the simu-
lation framework. The two main proof obligations are (i) the correctness of the
hypervisor’s top-level function and (ii) the simulation of guest steps by steps on
the host in which no host exceptions. In Sects. 7 and 8 we evaluate and conclude.

2 Related Work

There are several projects with substantial results in the system verification area.
The seminal work in pervasive systems verification was the CLI stack, which in-
cluded the (very simple) KIT operating system [4]. More recent work was done in
the projects FLINT, L4.verified, and Verisoft. FLINT focuses on the development
of an infrastructure for the verification of systems software [8]. In L4.verified, the
functional correctness of a high-performance C implementation of a microkernel
was proven [9]. In Verisoft [13] large parts of the ‘academic system’, comprising
hardware, system software, and applications, have been verified (e.g., cf. [1, 2]
for work on the lower system software layers). In contrast to the present work,
all the work above was based on interactive theorem proving, requiring signifi-
cant human interaction and expertise. Of the above work, only KIT and Verisoft
take into account user processes like we do. For microkernels this might be an
acceptable compromise, assuming that a provably correct implementation of the
kernel API already covers a substantial portion of overall system correctness.
For hypervisors, however, the major part of its functionality is the simulation of
the base architecture, and its verification should not be dodged.
1 Verified source is available at http://www.verisoftxt.de/PublicationPage.html

http://www.verisoftxt.de/PublicationPage.html
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There is also related but in-progress work in hypervisor verification. The Robin
project aimed at verifying the Nova microhypervisor using interactive theorem
proving [12]. Although on the specification side much progress has been made,
only small portions of the actual hypervisor code are reported to be verified.
In the Verisoft XT project [14], which the baby hypervisor verification was also
part of, the verification of the hypervisor of Microsoft’s Hyper-VTM using VCC
is being attempted (cf. [10] for verification status). No code or specs are shared
between these hypervisors; our work drove VCC development early on and thus
helped empower VCC for more complex tasks.

3 VCC Overview

The Verifying C Compiler (VCC) is a verifier for concurrent C being developed
at Microsoft Research, Redmond, USA, and the European Microsoft Innovation
Center (EMIC), Aachen, Germany. Binaries and source are openly available and
free for academic use. The VCC methodology aims at a broad class of programs
and algorithms. Our overview here is focussed on our verification target (e.g., we
do not consider concurrency); more information on VCC is available from [5,11].

Workflow. VCC supports adding specifications (e.g., in the form of function con-
tracts or data invariants) directly into the C source code. During regular build,
these annotations are ignored. From the annotated program, VCC generates
verification conditions for (partial) correctness, which it then tries to discharge
(under the hoods using the Boogie verifier [3] and the automatic theorem prover
Z3 [7]). Ideally, all verification conditions can be proven. Otherwise, a counter
example is produced or a violation of resource bounds is reported.

Memory Model. The C standard defines memory as a collection of byte se-
quences. Using this model directly proved to be inefficient. Instead, as a sound
abstraction of the standard model, VCC now implements a typed memory model
[6]. Pointers are modeled as pairs of types and addresses. We distinguish point-
ers to primitive types (e.g., integer) from pointers to non-primitive types (e.g.,
structs); the latter are also called ‘object pointers’. Memory content is a mapping
from primitive pointers to data. To ensure that differently typed pointers (and
fields of different objects) do not overlap, VCC maintains a typedness predicate
on pointers together with appropriate invariants, and inserts verification condi-
tions that only typed memory is referenced. Typedness of pointers is inferred
along structural type dependencies, e.g., a pointer to a field of a structure is
known to be typed if the pointer to the structure is typed, and vice versa. These
dependencies are also used to infer non-aliasing of pointers. For example, two
typed references &p→f and &q→g can be disambiguated if p�= q or f�= g.

To allow for the framing of function calls, VCC maintains a predicate for
writability. At the beginning of a function, all pointers given by the function
contract’s writes clause are writable (and typed). For function calls, writability
of the writes clauses is checked, and after the call memory contents, typedness
and writability for non-written pointers are preserved. Pointers in the writes
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clauses are still writable if the function ensures them to remain typed. Moreover,
pointers may also be ensured as ‘freshly typed’, which will make them writable.

Ownership and Invariants. On top of the memory model, VCC implements and
enforces an ownership model. For each object (i.e., non-primitive pointer), VCC
maintains an owner field and a closed bit. The owner field of an object indicates
which object it is owned by. If an object is closed, all objects it owns must be
closed. The domain of a closed object is the set of all objects it transitively
owns (and their fields). The currently executing thread (denoted as me) is a
special owner, which plays a role in memory reference checking. Pointers owned
by it are called wrapped if closed and mutable otherwise. Extending the earlier
checks, reading of a pointer is allowed if it is mutable or in the domain of a
wrapped object. Writing to a pointer is allowed, if it is mutable and marked
writable. Thus, while a domain remains unopened, its data cannot change. This
allows for extended framing of calls. Ownership information is manipulated via
ghost operations (setting the owner, wrapping, and unwrapping). These oper-
ations require write permissions on the objects they manipulate. Unwrapping
a wrapped object opens it; its fields and owned objects become writable and
wrapped. Wrapping a mutable object with wrapped closed objects closes it; its
fields and owned objects will lose writability.

Objects can be annotated with invariants, which are meant to hold while the
object is closed. Since invariants are only checked when wrapping they cannot
talk about arbitrary state. Rather they may only refer to their domain, which is
checked by VCC in an invariant admissibility check.

Ghosts. In addition to C types, VCC provides ghost types for use in annota-
tions. The additional primitive types include unbounded integers, records, and
maps. Moreover, VCC supports non-primitive ghost structures and ghost unions,
which are fully-fledged objects with invariants. Ghost functions and data can be
used for abstraction and for overcoming limitations of VCC’s first order prover
setting. For example, a linked list may be abstracted as a set of pointers to list
elements with reachability relations being maintained with maps. The modifica-
tion of implementation data in such scenarios typically involves doing a suitable
ghost update. Such updates are done in ghost code inserted by the annotator.
For soundness reasons, ghost code needs to be terminating and may not modify
implementation variables (preventing information flow from ghost to implemen-
tation data). VCC checks this by a mixture of static and dynamic conditions.

Syntax. Object invariants are added to struct declarations using invariant
clauses. Function contracts are given after the function signature. Writes clauses
are given by writes. Pre- and postconditions are specified using requires and
ensures; the clause maintains means both. In postconditions, old can be used
to evaluate an expression in the prestate, result refers to the function’s re-
turn value, and returns(x) abbreviates ensures(result≡ x). Listing 1 shows a
small program with annotations. In the function triple, the bound requirement
is needed to pass the overflow check generated for the arithmetic, the writes
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struct Even {
unsigned v; invariant(v%2≡ 0)

};
unsigned triple(struct Even ∗e)

requires(e→v < 4711)

maintains(wrapped(e))

writes(e) returns(old(e→v))

ensures(e→v≡ 3∗old(e→v))

{
unsigned x = e→v;

unwrap(e);

e→v = x + x + x;

wrap(e);

return x;

}

Listing 1. VCC Syntax Example

clause is needed to allow unwrapping the object e, and the proof that the ob-
ject invariant holds when wrapping e requires that validity of the invariant after
unwrapping.

4 Architecture

The baby VAMP architecture is a 32-bit RISC architecture with 44 instruc-
tions, two privilege levels (user and system mode), single-level address trans-
lation (without TLB), and interrupt handling. In this section we describe the
specification model of the baby VAMP hardware architecture. In VCC, archi-
tecture state and steps are defined using ghost types and functions, respectively.
We use the model to specify (i) transitions of the VAMP simulator modeling
steps of the system (cf. Sect. 5), (ii) effects of assembly code execution, and
(iii) transitions of the abstract guest machines.

Configuration. Words and addresses of the machine are encoded as 32-bit inte-
gers. The memory m is modeled as a map from addresses to words. A page is an
aligned chunk of PG SZ:=1024 words in memory. Accordingly, an address a is
decomposed into a page and a word index, PX(a):=a / PG SZ and WX(a):=a
% PG SZ. For a page index px we define PA(px):=px∗PG SZ.

Listing 2 shows the configuration of the VAMP machine (making use of VCC
maps and records). It consists of the word addressable memory and the processor
configuration. The latter consists of the normal and delayed program counters
pcp and dpc (there is one delay slot) and the general- and special-purpose reg-
ister files gpr and spr. For this paper the following special-purpose registers are

typedef unsigned int32 v word;

typedef v word v mem[unsigned];

typedef struct vcc(record) v proc {
v word gpr[unsigned],

spr[unsigned], dpc, pcp;

} v proc;

typedef struct vcc(record) v mach {
v mem m;

v proc p;

} v mach;

Listing 2. Baby VAMP Configuration
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of interest: (i) PTO and PTL for the page table’s origin and maximum index,
(ii) MODE, equal to 0 and 1 in system / user mode, respectively, and (iii) EPC,
EDPC, EMODE, EDATA for registers used to save the current program coun-
ters, mode, and additional data (as exception cause and data) in case of an
interrupt.

Memory Access. In user mode a memory access to a virtual address is subject
to address translation. This translation is done via a page table in main mem-
ory, which maps virtual page indices to page table entries (PTEs). The start
of the currently active page table is designated by the (physical) page index of
its first entry and the length by its maximum index, stored in the PTO and
PTL registers. Each page table entry pte is a machine word encoding three com-
ponents: (i) the valid bit V(pte):=pte & 1024 indicating whether the entry can
be used for any access, (ii) the protection bit P(pte):=pte & 2048 indicating
whether the entry cannot be used for write access, and (iii) the physical page
index PPX(pte):=PX(pte) indicating the location of the page in physical mem-
ory. To compute the translation of a virtual address a via a page table at a
certain origin pto, we first compute the address of the corresponding page table
entry as v ptea(pto, a):=PA(pto)+ PX(a). Second, we look up the entry in the
memory, v pte(m, a, pto):=m[v ptea(pto,a)]. Finally, the translated address is
obtained by concatenating the PTE’s page index and the word index of the input
address, v ta(m, a, pto):=PA(PPX(v pte(m,a,pto)))+ WX(a). Given a memory,
an input adress, a translation flag, and a page table origin a memory read re-
sult is defined as v mem read(m, a, t, pto):=m[(t ? v ta(m,a,pto): a)]. Likewise,
writing v is formalized with the function v mem write(v, a, t, pto, m), which
returns an updated memory.

Memory accesses may fail and cause an interrupt (a bus error or page fault).
Untranslated accesses fail in case of a bus error, i.e., if the accessed address lies
outside the physical memory whose size is given by the maximum physical page
index max ppx, a machine parameter. Translated accesses fail if (i) the virtual
address is outside virtual memory (virtual page index outside the page table),
(ii) the page-table entry address is outside physical memory, (iii) the page-table
entry is invalid, (iv) the page-table entry is protected and a write is attempted,
or (v) the translated address is outside physical memory. Given the memory,
the maximum physical page index, the address to access, the translation flag,
the page table origin and a flag indicating write or read access, the predicate
v pf(m, max ppx, a, t, pto, ptl, w) indicates the presence of such a failure.

Interrupt Handling. Interrupts may trigger due to internal events like page
faults, illegal / unprivileged instructions, and traps, or due to external events like
reset and device interrupts. For the baby hypervisor verification, the only exter-
nal interrupt considered is reset. Interrupts may be masked by the programmer,
i.e., disabled, by setting corresponding bits in the special-purpose status register
SR. We distinguish between maskable, i.e., interrupts which can be disabled, and
non-maskable interrupts (in our case only reset).
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If an interrupt occurs, the interrupt service routine (ISR) is invoked by: (i) set-
ting exception cause and data registers and saving program counters, mode, and
status registers to the SPR, (ii) setting the program counters to the start of the
ISR, which handles the interrupt, and (iii) masking all maskable interrupts by
setting the status register to zero.

Semantics. The architecture’s main function is the step function with the follow-
ing signature: v mach v step(v mach mach, v word max ppx, bool reset). It
takes as input the current machine state, the maximum physical memory space,
and a reset signal. It returns an updated machine state which is either com-
puted by fetching and executing a single instruction of the machine, or by jump-
ing to the interrupt service routine. Given a machine configuration, instruction
fetch is defined as a simple memory read v mem read(mach.m, mach.p.dpc,
mach.p.spr[MODE], mach.p.spr[PTO])). An interrupt is triggered by the reset
signal, by a page fault during instruction fetch, or during instruction execution.

5 Simulation Framework

In this section we show how to bring VCC and system verification together,
allowing to reason on overall system correctness in an efficient and pervasive
manner. To do this, we model the architecture state and steps in VCC such
that later program verification is not made hard. We then show how to express
top-level system correctness as a system program.

Representing the Architecture. Since C memory is sufficiently low-level, we use
a prefix of it, starting from address zero, to represent the architecture’s memory.
We hold the processor state in a separate structure proc t ∗h located outside
this region; it matches its abstract counterpart v proc with the exception of
arrays being used instead of maps. We define abs p(h) to abstract the processor
state and abs m(max ppx, m):=λ(a; a < PA(max ppx+1)? m[a] : 0) to abstract
memory. Using these definitions, the function abs0(h) abstracts from a processor
configuration and a zero-based memory, returning a state of type v mach.

We perform machine steps by statements of the form il = sim vamp(h,reset).
The function sim vamp takes as inputs the processor state, a Boolean flag in-
dicating reset, and, implicitly, the zero-based memory. It operates directly on
the processor state and the VCC memory, simulating a single instruction. For
simplicity, it also returns the interrupt level associated with the instruction (or
IL NONE if the instruction did not cause an exception and no reset occurred).

The contracts of sim vamp have to be chosen carefully. Contradictory post-
conditions would make VCC unsound. We ensures consistency of the sim vamp
contracts by verifying them (in VCC) against a concrete implementation, which
we refer to as the baby VAMP simulator. Moreover, the contracts have to com-
ply to the (trusted) architecture specification described in the previous section.
The obvious way to achieve this is by describing the effects of sim vamp us-
ing the abstraction abs0 and the transition function v step in a postcondition
ensures(abs0(h)≡ old(v step(abs0(h),max ppx,reset))). However, this straight-
forward contract is impractical, since the caller of sim vamp would have to ensure
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that the complete memory is uniformly typed and writable. We realize a less in-
vasive approach: only the specific memory cells that the architecture accesses in
a certain step need to be typed and mutable (and in case of the store operand
also writable).

Basic Simulation Pattern. A convenient way to show system correctness is to
prove a simulation theorem between the concrete system and some abstraction of
it. The simplest description of a system (which we call system program) is given
by an infinite loop executing steps of the architecture modeled by sim vamp.
The simulation property is stated as a loop invariant. This invariant relates the
initial (i.e., before entering the loop) and the current states of the system under
the abstraction, and claims that the current abstract state is reachable from the
initial abstract state taking steps of the abstract transition system.

In general, reachability cannot be stated in first-order logic. We avoid this
problem by introducing a counter increased in each step. Let mathint denote
the type of unbounded integers. Given an abstract step relation S, the predicate
R(s,t,n) ⇐⇒ (s≡ t ∧ n≡ 0)∨ (n>0 ∧ ∃(mathint u; R(s,u,n−1)∧ S(u,t))) is an
exact first-order definition of n-step reachability.

With the abstraction denoted as A(proc t ∗h) and additional implementation
invariants as I, a basic simulation pattern in VCC has the following form (where
old() here evaluates an expression in the state before entering the loop):

sim vamp(h, true);

while (1)

invariant(I ∧ ∃(mathint n; R(old(A(h)), A(h), n)))

sim vamp(h, false);

Extended Simulation Pattern. Next we want to combine code verification with
the execution of the architecture. Note, that in the system program above we can
first unroll the while-loop, group chunks of sim vamp computations together,
and finally describe their effects by contracts. Such a chunk may be given, e.g., by
the execution of assembly instructions, where the semantics of each instruction
can be expressed in terms of sim vamp. Similarly a chunk may consist of compiled
C code. Since we use the same VCC memory model for the architecture and the
C code verification, and by assuming compiler correctness, we can describe these
chunks by their corresponding C implementation.

We show how to unroll and divide the while-loop into four parts as they might
occur in a typical (sequential) OS kernel verification. (i) The architecture exe-
cutes under sim vamp until some interrupt occurs. (ii) The kernel is entered and
the interrupted state (here: the processor registers) must be saved, which must
be implemented in assembly rather than in pure C. The semantics of assembly
instructions can be fully expressed by sim vamp and the effects of the complete
code by the contracts of a function kernel entry(h). (iii) The kernel’s main func-
tion kernel main(il) implemented in C then handles the interrupt. (iv) Exiting
the kernel and switching to the user again requires an assembly implementation,
the effects of which we specify by the contracts of the function kernel exit(h).
Accordingly, we define a more elaborate simulation pattern, which combines
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reasoning on C code, assembly code, and user steps into a single, pervasive cor-
rectness proof:

il = sim vamp(h, true);
while (1)

invariant(I ∧ ∃(mathint n; R(old(A(h)), A(h), n)))

{ kernel entry(h); kernel main(il); kernel exit(h);

do il = sim vamp(h, false); while (il≡ IL NONE); }

6 Hypervisor Implementation and Correctness

We present the implementation and verification of a simple hypervisor, which
we call baby hypervisor. The baby hypervisor virtualizes the architecture defined
in Sect. 4, and its correctness is expressed and verified using the previously
presented simulation framework.

The recipe for virtualizing the different guest architecture is simple. We always
make the guests run in user mode on the host, regardless of the mode they think
they are in. Hence, we obtain full control over guests, as they run translated and
unprivileged. Under hardware address translation, we virtualize guest memory
by setting up so-called host and shadow page tables for the guest running in
system and user mode, respectively. The host page tables will map injectively
into host memory with different regions allocated for each guest. The shadow
page table of a guest is set up as the ‘concatenation’ of the guest’s own page table
and its host page table. To make sure that the guest cannot break this invariant,
we map all host or shadow page table entries to the guest page table as read-only.
Thus, attempts of a guest to edit its page table and also to perform a privileged
operation (e.g., change the page-table origin) will cause an exception on the
host and be intercepted by the hypervisor. The hypervisor will then emulate the
exception operation in software.

We express the whole system verification scenario following the pattern of our
simulation framework introduced in Sect. 5. The state of the system we intend
to simulate consists of a vector of architecture states (cf. Sect. 4), where each
state represents the state of a guest partition. The transition function is almost
identical to the architecture’s transition function; deviations are that guest traps
in system mode are used to issue hypercalls (we only implement a simple ‘yield’
call for cooperative partition scheduling), and (for implementation reasons) the
guest’s page table length needs to be bounded by a maximum virtual page
index parameter. Based on the hypervisor’s data structure we then define an
abstraction from the implementation state into the simulated, i.e., the guest’s,
state. The instantiation of the system program features the different code parts
of the hypervisor (the hypervisor main function implemented in C, and assembly
portions for hypervisor entry and exit), and architecture steps to model guest
execution on the host. For simulation, we state the reachability of (abstracted)
guest configurations from their initial state as an invariant of the main loop.
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typedef struct guest t {
proc t pcb;

v word max ppx, max vpx,

∗gm, gmo, ∗hpt, hpto, ∗spt, spto;

} guest t;

typedef struct hv t {
v word ng;

guest t ∗g, ∗cg;
} hv t;

Listing 3. Hypervisor Data Structures

Parameters and Memory Map. The hypervisor is configured at boot time by four
parameters encoded in four bytes at the beginning of its data segment at address
DS START: (i) the data segment size DS SIZE, (ii) the number of guests NG,
(iii) the maximum physical page index for each guest MAX PPX, and (iv) the
maximum virtual page index for each guest MAX VPX. At boot time, the data
segment is a byte array DS:=as array((uint8 t∗)DS START,DS SIZE) (where
as array(a,n) denotes an array object with base a and size n). Given the last
three parameters, we can compute the size to allocate and align all global data
structures of the hypervisor. This size must not be larger than DS SIZE, a con-
dition that we abbreviate as VALID DS.

Data Structures. Listing 3 shows the two main data structures of the hypervisor
implementation without invariants. The structure guest t holds all data for a
single partition: (i) the maximum physical and virtual page index for the guest
(that remain constant after initialization), (ii) the processor registers when sus-
pended (modeled by the struct type proc t already used in Sect. 5), (iii) pointers
to the guest’s memory as well as the host and shadow page tables, and (iv) for
each of these, the index of the first (host) page they are stored in. The top-level
data structure hv t holds the number of guests, a pointer to an array of their
data structures, and the current guest pointing into that array. When the boot
procedure completes, a wrapped hv t data structure is returned at the beginning
of the data segment; we abbreviate HV:=((hv t∗)DS START).

Invariants. All data structures have been annotated with invariants on sub-
types, typedness / non-aliasing, ownership, and, in general, data. Importantly,
by the non-aliasing and ownership invariants, all of the guests’ data structures
are separated. The most complex invariants are those for the host and shadow
page tables entries, declared in the guest t structure. Let in pt indicate if a page
index falls into a page table given by pto and ptl, i.e., in pt(x, pto, ptl):=pto
≤ x ∧ (x ≤ pto + (ptl / 1024)) where 1024 is the number of page-table entries
per page. A host PTE with index x must be valid, point to the guest page x as
stored on the host, and be protected if covered by the guest’s page table:

bool inv hpt entry(guest t ∗g, v word x)

returns(V(g→hpt[x]) ∧ PPX(g→hpt[x])≡ g→gmo + x ∧
(P(g→hpt[x]) ⇐⇒ in pt(x, g→pcb.spr[PTO], g→pcb.spr[PTL])));

A shadow PTE with index x is valid iff the translation yields no guest bus error
(i.e. if the address is not in range) and the guest PTE is valid. Validity of the
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shadow PTE then implies that it points to the host page designated by guest
and host translation and it is protected if the guest page is protected or part of
the guest page table. We define

bool inv spt entry(guest t ∗g, v word x)

returns((V(g→spt[x]) ⇐⇒
¬v bus error(v ptea(o, PA(x)),g→max ppx) ∧ PPX(e) ≤ g→max ppx ∧ V(e)) ∧

(V(g→spt[x]) =⇒ (PPX(g→spt[x]) ≡ PPX(g→hpt[PPX(e)]) ∧
(P(e) ∨ in pt(PPX(e),o,l) =⇒ P(g→spt[x])))));

where o:=g→pcb.spr[PTO], l:=g→pcb.spr[PTL], and e:=g→gm[v ptea(o, x)].

Abstraction. Given a guest’s implementation data structure, we can construct
an abstract machine state in terms of the architecture definition from Sect. 4.
This involves constructing the guest’s memory and processor state. The latter
is done in two contexts. When the hypervisor executes, all registers are held in
the guest’s pcb structure. In this case, the abstraction just operates on a guest
pointer g (the expression (R){. . .} defines a record constant):

v mach abs g(guest t ∗g)

returns((v mach) { .p = abs p(&g→pcb), .m = abs m(g→max ppx,g→gm) });
When a guest executes on the host, the partition control block only stores the
guest SPR (accesses to those are emulated) while the GPR and program counters
are stored in the actual host’s processor state. With the host processor state
denoted as h we define guest abstraction in this case as follows (the expression
r / {.a = b} denotes record update):

v mach abs gh(guest t ∗g, proc t ∗h)

returns((v mach) { .p = abs p(h) / { .spr = abs p(&g→pcb).spr },
.m = abs m(g→max ppx, g→gm) });

Let us define how the host’s SPR are set up while the guest runs on it. When
guests execute, the SPR is set up to use address translation and the shadow or
host page table depending on the guest mode; in guest system mode the host
page table origin and the maximum physical page index are used, in guest user
mode the shadow page table origin and the guest’s page table length index are
used. Given a guest structure g and a host processor state h we define

bool spr inv(guest t ∗g, proc t ∗h)

returns(H.spr[MODE] ∧ (G.spr[MODE]

? H.spr[PTO]≡ g→spto ∧ H .spr[PTL]≡ G.spr[PTL]

: H.spr[PTO]≡ g→hpto ∧ H.spr[PTL]≡ g→max ppx));

where H :=abs p(h) and G:=abs p(g). Given this setup, we can (in VCC) prove
the equivalence of memory operations: (i) the absence of host page faults implies
the absence of guest page faults and (ii) if there’s no host page fault the result
of reads (a data word) and writes (an updated memory) are equal.

Simulation Loop. Listing 4 shows the instantiatation of the system program for
the baby hypervisor, where the relation R is n-step reachability of guest transi-
tions. As a boot requirement (i.e., a sim precondition) a writable, large-enough
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void sim(proc t ∗h)

requires(VALID DS ∧ wrapped(h)) writes(h, extent(DS))

{
spec(v word ng = NG, max ppx = MAX PPX;)

v il il;

sim vamp(h, true);

hv dispatch(h→spr[ECA],h→spr[EDATA]);

spec(v mach G0[unsigned] = λ(unsigned i; i < ng; abs g(HV→g+i));)

do
invariant(∀(unsigned i; i < ng; ∃(mathint n;

R(G0[i],abs g(HV→g+i),max ppx,n))))

invariant(wrapped(HV) ∧ wrapped(h))

{
restore guest(h,&HV→cg→pcb);

do
invariant(∀(unsigned i; i < ng; ∃(mathint n; R(G0[i],

HV→g+i≡ HV→cg ? abs gh(HV→cg, h) : abs g(HV→g+i), max ppx, n))))

il = sim vamp(h, false);
while (il≡ IL NONE);

save guest(&HV→cg→pcb,h);

hv dispatch(h→spr[ECA], h→spr[EDATA]);

} while (1);

}

Listing 4. Hypervisor Simulation Loop

data segment and a wrapped and writable host processor state are assumed
(note that we have not yet formalized remaining memory layout, such as the
stack and code segment). Ghost code and declarations are given using the VCC
keyword spec (e.g., the map of initial abstract guest machine configurations).
The code that runs on the host architecture is represented by assembly por-
tions save guest and restore guest (used on kernel entry and exit), hv dispatch,
and (for generic host execution) by sim vamp (cf. Sect. 5). The hypervisor’s
main function hv dispatch takes the architecture’s exception cause and data as
parameters eca and edata. The main code paths of the hypervisor are initializa-
tion (function handle reset) and handling exceptions caused by guests (functions
handle illegal and handle pf); calling hv dispatch with eca≡ IL NONE is not al-
lowed. We sketch the individual components in a little more detail below.

Assembly Parts. A single assembly routine is located at the start of the interrupt
service routine (i.e., address 0). It consists of three parts: (i) save the registers
of the current guest (unless on reset), (ii) set up the stack and call the main C
function of the hypervisor, hv dispatch, (iii) restore the registers of the (possibly
new) current guest. In the simulation loop (which shows dynamic instances of
this code in the execution) we have represented this code in slightly abstracted
form; calls to the dispatcher (including setting up the stack and the parameters)
are represented as a regular call to hv dispatch, we only specify the effects of save
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and restore via function contracts save guest and restore guest, and we simply
omit the save part after reset.2 The specifications of save and restore describe
the copying of register between a guest’s partition control block and the host.

Boot. Calling hv dispatch with eca≡ IL RESET will lead to the execution of the
reset procedure of the hypervisor. Just as sim, the function in this case requires
a writable and valid data segment. Using a boot-time allocator, the reset code of
the hypervisor allocates and initializes its data structures in the data segment,
i.e., the hypervisor structure, the individual guest structures, and for each guest
its memory, shadow page table, and host page table. For verifying this code we
make use of VCC’s memory reinterpretation feature, which allows us to split
and convert the data segment (initially a byte array) into the necessary (page-
aligned) typed objects. As a postcondition, hv dispatch guarantees to return HV
wrapped and with properly initialized guests.

Host Exceptions. On host interrupts hv dispatch gets called after saving the
guest state with a non-reset exception cause eca. Unless the guest issues a hy-
percall (which it does by executing a trap in system mode), the dispatcher has to
emulate an interrupt, a privileged operation, or a page table writes of a guest. In-
terrupt injection is mostly done in hv dispatch directly, while the latter two cases
are implemented by the functions handle illegal and handle pf, respectively.

The non-reset contracts for hv dispatch requires the hypervisor structure HV
to be wrapped and writable and that eca contains an actual interrupt level that
occurred on the host while executing the current guest HV→cg. The function en-
sures to return a wrapped hypervisor structure. For non-continue type interrupts
(in our case every interrupt but a trap), it also guarantees to emulate a guest
step. Trap interrupts are special for two reasons: (i) Traps that the guest executes
in system mode are used to issue hypercalls. There is only a single hypercall in
the baby hypervisor, which is a yield call to switch execution round-robin fash-
ion to the next guest partition. From a guest’s point of view, that call is just
a nop (i.e., it only increments program counters). (ii) Traps reach the hypervi-
sor with the guest’s program counters already pointing to the next instruction.
When emulating traps the hypervisor must not increment them again. We cur-
rently express these peculiarities by a special post condition describing the guest
processor updates. In the context of the simulation loop, the combined effect of
hardware and hypervisor updates give the complete semantics of the guest step.

7 Evaluation

Our work consists of four components (VAMP spec and simulator, hypervisor
implementation, and system program) comprising 2.5k C code tokens and 7.7k
annotation tokens, which comprise data invariants, function contracts (including
loop invariants), ghost code, and (proof) assertions. Roughly a quarter of the

2 Justifying the abstractions is the subject of future work. Note that almost identical

assembly code has been verified previously [1].
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Table 1. Annotation Effort (Tokens) and Runtimes (Average, Standard Deviation)

Code Contract Ghost Code Proof ∅ σ

hv dispatch 158 198 (1.3) 90 (0.6) 441 (2.8) 930s 574s
handle reset 60 150 (2.5) 30 (0.5) 42 (0.7) 545s 295s
handle pf 102 96 (0.9) 40 (0.4) 208 (2.0) 473s 414s
reset guest 125 131 (1.0) 46 (0.4) 53 (0.4) 213s 38s
handle movi2ptl 93 238 (2.6) 6 (0.1) 66 (0.7) 98s 31s
handle movi2pto 69 162 (2.3) 6 (0.1) 57 (0.8) 74s 20s
handle illegal 90 47 (0.5) 48 (0.5) 149 (1.7) 53s 8s
update spt 62 175 (2.8) 0 (0.0) 140 (2.3) 14s 6s
System program 54 587 (10.9) 205 (4.6) 378 (7.0) 1241s 794s

annotation tokens belong to the architecture specification and another quarter
to the system program. Overall proof time is ca. 1 hour on one core of a 2.66
GHz Intel Core Duo machine, depending on random seeds for Z3’s heuristics.
The hypervisor C code consists of 9 loops in 45 functions. In Table 1 we list
token counts and runtimes (for 20 runs) of its 8 most complex functions and the
system program. Particularly, we give ratios of contract, ghost code, and proof
tokens versus C tokens in brackets. The latter ratio may be considered an upper
bound, and will likely decrease with better automation. Measuring person effort
is hard, because VCC has undergone major development since we started, and
therefore annotations had to be often revised. The hypervisor was never tested,
and a number of bugs could be found and fixed during the verification. Notably,
some of these became apparent when doing the proof of the system program, at
the HW/SW boundary (e.g., emulating guest traps, cf. Sect. 6).

8 Future Work and Conclusion

We have presented a technique and framework for pervasively verifying system
correctness based on automated methods. Our approach precisely models the un-
derlying system architecture and represents it in a first-order logic based program
prover (in our case VCC), which is then used to prove the mixed-language system
software correct. We used this framework to show for the first time (i) the func-
tional correctness of a small hypervisor, expressed as the architecture-conforming
simulation of guest machines by the host system, and (ii) the feasibility of ap-
plying automated methods in the context of functional (systems) verification.
We are confident that much of the presented methods can be used as a basis for
further extensions, and that our verification may serve as a valuable benchmark
for the automated reasoning and software verification community. Meanwhile,
the feedback (in form of bug reports and optimization suggestions) provided
by the baby hypervisor verification as first complex and completed proof target
substantially contributed to the development of VCC.

There are several directions of future work, some of them ongoing. The assem-
bly portions of the hypervisor have been specified but not yet verified against
their implementation which almost only consists of straightforward code to copy
register contents. Our framework allows for a seamless integration of assembly
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verification into VCC (using the VAMP simulator). Still, a detailed soundness
proof of the presented approach (including compiler calling convention and cor-
rectness), is ongoing work. Moreover, the presented framework should be ex-
tended to more complex software and hardware designs. On the hardware side,
this should cover the modeling of multi-core systems, buffers (e.g., TLBs), and
devices. On the software side, the step to the verification of multi-threaded or
preemptive kernels is crucial. Parallelism in the code and in the architecture can
be dealt with by using VCC’s concurrency features, as e.g., two-state invariants.
We plan to use two-state invariants for a more general way to express simulation,
which should also scale to a concurrent setting. Adaptation to this new form will
presumably require only little additional proof effort.

Acknowledgments. We wish to thank Ernie Cohen and Micha�l Moskal for many
helpful comments and discussions of our work.
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A Rely-Guarantee Proof System for x86-TSO

Tom Ridge
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Abstract. Current multiprocessors provide weak or relaxed memory

models. Existing program logics assume sequential consistency, and are

therefore typically unsound for weak memory. We introduce a novel Rely-

Guarantee style proof system for reasoning about x86 assembly programs

running against the weak x86-TSO memory model. Interesting features

of the logic include processor assertions which can refer to the local state

of other processors (including their program counters), and a syntac-

tic operation of closing an assertion under write buffer interference. We

use the expressivity of the proof system to construct a new correctness

proof for an x86-TSO version of Simpson’s four slot algorithm. Mech-

anization in the Hol theorem prover provides a flexible tool to support

semi-automated verification.

1 Introduction

Multiprocessors are now widespread, but real multiprocessors provide subtle
relaxed (or weak) memory models. Typically sequential consistency (SC) can be
recovered by appropriate programming disciplines eg the use of locks to guard
access to shared memory. However, there are several areas where the use of
locks is either not possible, or would impose unacceptably high performance
costs. For example, operating system lock implementations cannot assume that
locks are already provided, and non-blocking synchronization techniques avoid
the use of locks to provide good performance and strong progress guarantees.
However, these programs are directly exposed to the weak memory models of
the underlying processors, and consequently there is often considerable doubt
about whether they are correct [Lin99]. Unfortunately existing program logics
are typically no longer sound in this setting.

Our main contribution in Sect. 5 is a proof system for processors executing
x86 assembly code with the x86-TSO memory model, proved sound with respect
to the operational semantics. In Sect. 6 we show that the system is pragmatically
useful by using it to give a novel proof of Simpson’s four slot algorithm [Sim90].
The Hol mechanization1 is a formal version of this paper, including complete
definitions, formal proof rules, formal soundness proofs, the example application
to Simpson’s algorithm, and a mechanized proof environment to tackle further
examples. We now discuss some interesting features of our program logic.

A rigorous semantics for the relaxed x86-TSO memory model has been defined
in higher-order logic and mechanized in the Hol theorem prover [OSS09], see
1 Available online at http://www.cs.le.ac.uk/people/tr61/vstte2010

G.T. Leavens, P. O’Hearn, and S.K. Rajamani (Eds.): VSTTE 2010, LNCS 6217, pp. 55–70, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Sect. 3. We extend this model with an operational semantics for x86 assembly
code in Sect. 4. For x86-TSO, every processor is connected to main memory by a
FIFO write buffer modelled as a list of (address, value) pairs. Each write buffer
process repeatedly removes a write from the head of the queue, and commits
the write to main memory. A processor indirects via its write buffer: a read
returns the value of the last buffered write to the address, if any, otherwise the
value of the address in main memory, as usual. We treat write buffers as active
processes. This is not straightforward: in traditional models, processes cannot
write to or read from each other’s local state, whereas here a processor affects
the local state of its write buffer whenever it tries to write to a memory address.
For x86-TSO, a processor’s write buffer state is writable by that processor, but
inaccessible to other processors. The need for private state, that is shared between
two related processes, is built into our proof system. Write buffers also affect the
semantics of assertions. Traditionally, the validity of a process assertion should
not be affected by the behaviour of other processes. We require that the validity
is unaffected by the behaviour of the write buffer processes. Writing syntactic
assertions that satisfy this constraint is difficult, so we introduce a syntactic
operation of “closing an assertion under write buffer interference”. This is a key
step towards making x86-TSO verification tractable.

The main challenge of low-level x86 assembly code is the non-atomic nature of
individual instructions. For example, the moviload eax, ebx (indirect load) instruc-
tion loads the register eax with the value of the memory address pointed to by
ebx. This accounts for three separate memory/register read/writes. Interference
from other processors can occur between each of these steps. The problem here
is that individual instructions are not atomic. We do not give a general solution,
but try hard to make the proof rules as simple as possible.

In traditional proof systems the notion of state is restricted: program counters
(or equivalent) are not part of the state, and process assertions cannot refer
to the local state of other processes. We lift both these restrictions, thereby
dramatically increasing the expressivity of the system. The new elegant proof of
Simpson’s algorithm we present uses processor assertions that refer to the private
state of other processors. Moreover, it seems very natural to talk about processes
executing different regions of their code, and this essentially involves assertions
about processes’ program counters. A specific motivation for x86-TSO is that a
processor assertion will often refer to the state of the processor’s write buffer.
Unfortunately this increases the complexity of the proof rules. For example, the
familiar assertion {P} nop {P} is no longer valid eg if P is “the next instruction
is nop”, and nop is followed by a non-nop instruction. In order to recover the
familiar {P} nop {P} rule, we require that the assertion P is invariant under
changes to the processor’s current instruction. Fortunately these side conditions
are trivial in practice.

Notation. Formal definitions have been lightly edited before inclusion here.
We use the following notation: function update (f ⊕ (x, y)); list concatena-
tion (xs ++ ys); head and tail of a list (HD xs and TL xs); records with
fields having values ({ fld = v; . . . }); record update of a field with a value
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(r with { fld = v }); domain of a function (DOM f); image of a function or
relation on a set (IMAGE f S); restriction of the domain of a function or relation
to a set (f |S); function application (f pid or fpid).

2 Preview of the Proof System

In this section we give the syntax and semantics of the main proof system judge-
ment informally. The familiar Hoare triple  {P} c {Q} is valid iff starting
from a state satisfying P , execution of the x86 assembly instruction c ends in a
state satisfying Q [Flo67, Hoa69]. To this we add the standard Rely-Guarantee
relations (R, G) to give the judgement (R, G)  {P} c {Q}: We now consider
the execution of c interleaved with steps of other processes, which we can as-
sume are approximated by the set of transitions R (Rely assumption). Dually
we must prove that G approximates c steps (Guarantee commitment) [Jon81].
The judgement is valid iff starting from P , executing c steps interleaved with
R steps, execution ends in Q and furthermore every c step is contained in G2.
Finally we must address what happens when execution jumps to some other ad-
dress. We include in the judgement a component J such that J.invs is a partial
map from code points, to invariants that must hold when execution reaches that
point [CH72]. In the case that c terminates by jumping to a code point lbl, the
final state must satisfy J.invs lbl rather than Q. To this we add the processor
pid that is executing c and the code point ma of the current instruction (both of
which can typically be ignored) to get pid, (R, G), J, ma  {P} c {Q}. If the
judgement is valid, we write pid, (R, G), J, ma |= {P} c {Q}. Some example
judgements are:
– pid, ({}, {(s, s′) | T}), J, ma  {T} nop {ma = ma + 1; ci = [ma + 1]},

where the precondition {T} is unconstrained, and the post-condition states
that the current code point is ma + 1 and the current instruction is whatever
instruction was stored in memory at address ma + 1.

– pid, ({}, {(s, s′) | T}), J, ma  {J.invs lbl} jump lbl {⊥}, where the invariant
that must hold after the jump is already established in the pre-condition.

An example proof rule concerns the instruction movri(r, n), which sets local reg-
ister r to the value n:

wf (pid, (R, G), J, ma � {P} movri(r, n) {Q})
nop conditions pid P Q G

f = update f pid (λ ll. ll with { l = ll.l ⊕ (r, n); ci = nop })
IMAGE f P ⊆ Q f |P ⊆ G

pid, (R,G), J, ma |= {P} movri(r, n) {Q} movri

The first condition checks that the judgement is well-formed, which includes the
usual Rely-Guarantee requirement that P and Q are closed under R3. A formal
2 A key point for x86-TSO (but not in the semantics presented in this section) is that

R includes at least all those steps that can be taken by write buffers. Thus, to prove

a judgement valid using our proof system, it is necessary to take into account the

behaviour of all write buffers.
3 A set P is closed under a relation R iff for all s in P , for all s′, if (s, s′) in R then s′

is also in P .
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definition of judgement well-formedness will be given shortly. In addition there is
a technical side-condition related to nop transitions, which can be safely ignored
for now. The operational semantics for movri(r, n) simply updates the local state
ll.l of processor pid at register r with the value n whilst also updating the current
instruction ci to nop. This is captured by the update function f . The judgement
is valid iff starting from a state s ∈ P , the update function results in a state
f s ∈ Q (ie IMAGE f P ⊆ Q), and in addition the update is allowed by the
guarantee G (ie f |P ⊆ G, where the function f is considered as a set of pairs).

3 The x86-TSO Memory Model

We briefly review the x86-TSO memory model [OSS09], which usefully abstracts
from the details of x86 assembly instructions. The model consists of processors

Read from memory
not blocked s p s.M a = SOME v no pending (s.B p) a

s
Evt p (Access R (Location mem a) v)−−−−−−−−−−−−−−−−−−−−−−→ s

Read from write buffer
not blocked s p s.B p = b1 ++ [(a, v)] ++ b2 no pending b1 a

s
Evt p (Access R (Location mem a) v)−−−−−−−−−−−−−−−−−−−−−−→ s

Read from register
s.R p r = SOME v

s
Evt p (Access R (Location reg p r) v)−−−−−−−−−−−−−−−−−−−−−−→ s

Write to write buffer

s
Evt p (Access W (Location mem a) v)−−−−−−−−−−−−−−−−−−−−−−→ s with { B = s.B ⊕ (p, [(a, v)] ++ (s.B p)) }

Write from write buffer to memory
not blocked s p s.B p = b ++ [(a, v)]

s
Tau−−→ s with { M = s.M ⊕ (a, SOME v); B = s.B ⊕ (p, b) }

Write to register

s
Evt p (Access W (Location reg p r) v)−−−−−−−−−−−−−−−−−−−−−−−→ s with { R = s.R ⊕ (p, (s.R p) ⊕ (r, SOME v)) }

Barrier
s.B p = []

s
Evt p (Barrier Mfence)−−−−−−−−−−−−−→ s

Lock
s.L = NONE s.B p = []

s
lock p−−−−→ s with { L = SOME p }

Unlock
s.L = SOME p s.B p = []

s
unlock p−−−−−→ s with { L = NONE }

Fig. 1. The x86-TSO machine behaviour [OSS09]
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connected via write buffers to a single shared main memory. The model also
includes details of the per-processor local registers. Individual x86 instructions
can be locked (and so execute atomically) which is captured by a lock value
L, indicating which processor if any currently holds the lock. The states of the
x86-TSO machine are records with the following fields:
machine state = {

R : proc → reg → value option; // per processor registers
M : address → value option; // main memory
B : proc → (address × value) list; // per processor write buffers
L : proc option // which processor holds the lock, if any

}
The behaviour of the system is described by the labelled transition
relation s

lbl−→ s′ in Fig. 1. The datatype of labels is label =
Tau | Evt of proc × action | lock of proc | unlock of proc where an action is
either a memory barrier or a read or write to a register or memory address. The
predicate not blocked s p holds if the lock is owned by processor p, or if the lock
is not held by any processor. The predicate no pending xs a checks that there
are no writes to address a in write buffer xs.

4 x86 Assembly Code

We rephrase the model of the previous section and extend it with a model of x86
assembly code. The syntax of assembly instructions is expressed as a datatype:
instruction =

| nop
| movri of reg name × value
| movrr of reg name × reg name
| movrm of reg name × data address

| moviload of reg name × reg name
| jump of flag condition × code point
| lock of instruction
| Barrier Mfence

| . . .

The state of the system, type S, is a record with a field g giving the contents
of the shared memory, a field f giving the local state for each processor, and a
field lck giving the processor that holds the lock, if any. The local state LL for
each processor consists of some code, the address of the current instruction ma,
the state of the current instruction ci, the values of the processor-local registers
l, and the pending writes in the write buffer w.
S = {

g : data address →fin value;
f : proc →fin LL;

lck : proc option
}

LL = {
code : code point →fin instruction;

ma : code point;
ci : instruction;

l : reg name →fin value;
w : (data address × value) list

}
The proc view function gives a processor’s view of memory, taking into account
pending writes in the write buffer:
proc view pid s = list.FOLDR (λ (a, v). λ g. g ⊕ (a, v)) s.g (s.f pid).w
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The semantics is then expressed as a (small-step) state transition relation
TransP pid (s, s′). This uses several auxiliary relations. The first, PreTransP,
gives the basic semantics of commands.
PreTransP pid s =

case (s.f pid).ci of
nop → failwith “PreTransP : nop′′

|| movri(r, n) → update f pid (λ ll. ll with { l = ll.l ⊕ (r, n); ci = nop }) s
|| movrm(r, a) → update f pid (λ ll. ll with { ci = movri(r, proc view pid s a) }) s

. . .

Note that most instructions (including locked instructions) are eventually rewrit-
ten to nop. The evaluation of a nop instruction involves getting the next instruc-
tion at address ma + 1 and releasing the lock if it is taken.
XnopTrans pid (s, s′) =

let ll = s.f pid in
case ll.ci of
nop → (

let ma′ = ll.ma + 1 in
if ma′ �∈ DOM ll.code then ⊥ else
let s1 = update f pid (λ ll. ll with { ma = ma′; ci = (ll.code ma′) }) s in
let s2 = unset lock s1 in
s′ = s2)

|| → ⊥
The lock and jump transitions are handled similarly. TransP is then
TransP pid (s, s′) =

pid ∈ DOM s.f ∧ not blocked pid s ∧ let ll = s.f pid in
case ll.ci of
nop → (XnopTrans pid (s, s′))
|| lock c → (XlockTrans pid (s, s′))
|| jump(c, n) → (XjumpTrans pid (s, s′))
|| → (s′ = PreTransP pid s)

The write buffer for processor pid simply takes the first pending write of value
v to address a and updates the global memory g.
TransWb pid (s, s′) =

let ll = s.f pid in
let (a, v) = HD ll.w in
let s1 = s with { g = s.g ⊕ (a, v) } in
let s2 = update f pid (λ ll. ll with { w = TL ll.w }) s1 in
pid ∈ DOM s.f ∧ ll.w �= [] ∧ (s′ = s2)

The transitions of the system are simply the union of the individual processor
and write buffer transitions, TransS =

⋃
pid{TransP pid ∪ TransWb pid}.

For example, a simple instruction such as movri(r, n) executes in two steps,
the first PreTransP transition updates the local state, and changes the current
instruction to nop. The second XnopTrans transition gets the next instruction
from memory, then updates the current instruction and current address. In the
concurrent setting, these steps are interleaved with steps of write buffers and
other processors. More complicated instructions take more than two steps to
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execute, and each step may involve accessing an address in memory or a local
register. This lack of atomicity impacts considerably on the proof system.

5 Rely-Guarantee Proof System

In this section we give our main contribution, a Rely-Guarantee proof system
for x86 assembly code with the x86-TSO memory model. In Sect. 2 we gave the
syntax and semantics of our judgement, and discussed the movri rule. In Fig. 2
we give selected rules covering further x86 instructions and logical aspects such
as weakening.

Judgement well-formedness and soundness. The non-logical rules use
a judgement well-formedness condition wf, and typically also include a
nop conditions side condition. The main aim of these conditions is to reduce
the complexity of rules, which results from the liberal notion of state and the
non-atomic nature of individual instructions, by making assumptions about
P, Q, R, G. We motivate these conditions by discussing in more detail the
soundness proof for rule movri from Sect. 2. The execution of movri(r, n) is inter-
leaved with R-steps as follows:

s0
R∗
−−→ s1

PreTransP−−−−−−→ s2
R∗
−−→ s3

XnopTrans−−−−−−→ s4
R∗
−−→ s5

We are given that s0 ∈ P , and we need to show s5 ∈ Q. Our well-formedness
assumption gives that P and Q are closed under R (this is a standard assump-
tion), so it suffices to assume s1 ∈ P , and show s4 ∈ Q. Formally, wf is defined
as follows:
wf j = case j of pid (R, G) J ma � P c Q →

wf R pid R ∧ wf G pid G ∧ (closed P R) ∧ (closed Q R)

The judgements wf R, wf G are technical conditions that assert eg that the
rely for a processor preserves for values of that processor’s local registers.
The nop conditions in the premises of the rule require Q to be closed under
XnopTrans pid transitions:
nop conditions pid P Q G =

closed Q (XnopTrans pid)

∧ { (s, s′) | (s, s′) ∈ XnopTrans pid ∧ s′ ∈ Q } ⊆ G

so it suffices to show s2 ∈ Q (using again the fact that Q is
closed under R). In practice, assertions for processor pid do not men-
tion pid’s program counter, and the side condition is trivial. Let f =
update f pid (λ ll. ll with { l = ll.l ⊕ (r, n); ci = nop }). From the definition
of PreTransP, we have that s2 = f s1 ie s2 ∈ IMAGE f P . So the rule is sound
only if IMAGE f P ⊆ Q, one of the premises of the rule. A similar argument can
be used to prove that the Guarantee commitment is satisfied only if f |P ⊆ G.

Composition. Our judgement concerns a single processor pid executing in
some environment R which has so far been largely unconstrained. For x86-
TSO, R should include the transitions of other processors and all write buffers.
The move from the global view of the system with many processors and write
buffers, to the local view of a single processor in environment R is handled
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pid, (R,G), J, ma |= {P ′} c {Q′} P ⊆ P ′ Q′ ⊆ Q

pid, (R,G), J, ma |= {P} c {Q}
Weaken

pid, (R′, G′), J, ma |= {P} c {Q} R ⊆ R′ G′ ⊆ G

pid, (R,G), J, ma |= {P} c {Q}
WeakenRG

pid, (R,G), J ′, ma |= {P} c {Q} J ′ ⊆ J

pid, (R,G), J, ma |= {P} c {Q}
WeakenJ

pid, (R,G), J, ma |= {P} c {Q} pid, (R,G), J, ma |= {P ′} c {Q′}

pid, (R,G), J, ma |= {P ∧ P ′} c {Q ∧ Q′}
Conj

wf (pid, (R,G), J, ma � {P} nop {P}) nop conditions pid P P G

pid, (R,G), J, ma |= {P} nop {P}
nop

wf (pid, (R,G), J, ma � {P} movrr(r1, r2) {Q}) s ∈ P
v = (s.f pid).l r2 f = update f pid (λ ll. ll with { ci = movri(r1, v) })

(s, f s) ∈ G pid, (R,G), J, ma |= {f s} movri(r1, v) {Q}

pid, (R,G), J, ma |= {P} movrr(r1, r2) {Q}
movrr

wf (pid, (R,G), J, ma � {P} movrm(r, a) {Q}) s ∈ P
v = proc view pid s a f = update f pid (λ ll. ll with { ci = movri(r, v) })

(s, f s) ∈ G pid, (R,G), J, ma |= {f s} movri(r, v) {Q}

pid, (R,G), J, ma |= {P} movrm(r, a) {Q}
movrm

wf (pid, (R,G), J, ma � {P} moviload(r1, r2) {Q}) s ∈ P
a = (s.f pid).l r2 f = update f pid (λ ll. ll with { ci = movrm(r1, a) })

(s, f s) ∈ G pid, (R,G), J, ma |= {f s} movrm(r1, a) {Q}

pid, (R,G), J, ma |= {P} moviload(r1, r2) {Q}
moviload

wf (pid, (R,G), J, ma � {P} jump(cnd, ma′) {Q})
nop conditions pid P Q G

closed (J.invs ma′) R IMAGE XjumpTranspid (P ∩ cnd) ⊆ J.invs ma′

IMAGE XjumpTranspid (P ∩ ¬cnd) ⊆ Q XjumpTranspid|P ⊆ G

pid, (R,G), J, ma |= {P} jump(cnd, ma′) {Q}
jump

wf (pid, (R,G), J, ma � {P} lock(c) {Q})
pid, ({}, G), J, ma |= {P} c {Q} XlockTranspid|P⊆ G

pid, (R,G), J, ma |= {P} lock(c) {Q}
lock

wf Ĵ ∧ ∃ R̂ ∃ Ĝ

(∀ pid.
⋃

pid′ �= pid
(Ĝ pid′) ⊆ (R̂ pid))

∧ (∀ pid.
⋃

pid′
(TransWb pid′) ⊆ (R̂ pid))

∧ (∀ ma. let J = Ĵ pid in

let (R, G) = (R̂ pid, Ĝ pid) in
pid, (R,G), J, ma |= {J.invs ma} J.code ma {J.invs (ma+ 1)})

|=Ĵ Ĵ
Comp

Fig. 2. Selected proof rules



A Rely-Guarantee Proof System for x86-TSO 63

by the Comp rule. Ĵ is a function that for each pid gives a J = Ĵ pid. Well-
formedness of Ĵ means that each J should provide a pre and post condition
for each code point (not just jump targets). Similarly R̂, Ĝ give rise to R and
G. The first Rely-Guarantee requirement is that R̂ pid, the rely for pid, should
contain the guarantees of the other processors pid′. The second requirement is
that the rely also contain all write buffer transitions. The final conjunct re-
quires that for every instruction c = J.code ma, there is a valid judgement
pid, (R, G), J, ma |= {J.invs ma} c {J.invs (ma + 1)}. The meaning of the
conclusion |=Ĵ Ĵ is that, providing the system starts in a state s where the in-
struction executed by pid and identified by ma is such that s ∈ (Ĵ pid).invs ma,
then all further invariants given by (Ĵ pid).invs ma′ hold whenever execution
of pid reaches ma′. Thus |=Ĵ Ĵ represents the conjunction of invariants, each of
which are indexed by pid and ma. The invariants themselves can be arbitrary
formulas in higher-order logic, over the whole system state (including program
counters).

The logic in practice. The Comp rule requires that the Rely relations include
at least the transitions of the write buffers. A consequence is that the proof rules
for instructions require assertions to be closed under write buffer transitions.
For example, suppose we write a value v to an address a. We might incorrectly
annotate the write as {w = []}a := v{w = [(a, v)]}, where w informally refers to
the write buffer of the process. However, the assertion {w = [(a, v)]} is not closed,
because at any point after the instruction executes, the write buffer could flush
the write and become empty. A correct assertion, that is closed under write buffer
interference, is {w = [(a, v)] ∨ w = []}. Rather than expanding various possible
states as disjuncts, a more succinct approach is to allow assertions to be explicitly
closed with respect to write buffer interference. If P is an assertion { . . . }, we
write the closure under R as { . . .}R. For example, if R represents interference
from the write buffer, then {w = [(a, v)]}R = {w = [(a, v)] ∨ w = []}. In
practice, rather than deal with the whole write buffer, we often want to refer
to pending writes to a particular address. We introduce the syntax {a

.= xs}
to mean that the contents of the write buffer, filtered to address a (and then
projected onto the written values), is xs. For example, if a �=b, then a write buffer
[(b, 0); (a, 1); (b, 2); (a, 3)] satisfies the assertion {a

.= [1, 3]}.
A key point is that our assertions are higher-order logic predicates over the

entire system state S, and can therefore be almost arbitrarily complicated. More-
over, the fact that our system is embedded in higher-order logic means that we
can readily introduce new syntax for common assertions that arise in practice.

6 Simpson’s Four Slot Algorithm

In this section we show how to apply the proof system to verify Simpson’s
four slot algorithm. We looked at several other examples (Peterson’s mutual
exclusion algorithm and the Linux spin-lock implementation), but Simpson’s
algorithm is considerably more interesting, and exercises several novel features
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State
data[0..1, 0..1]
slot[0..1] // read-only by the reader, slot[ ] ∈ {0, 1}
latest = 0 // read-only by the reader, latest ∈ {0, 1}
reading = 0 // read-only by the writer, reading ∈ {0, 1}
pairW , indexW // writer local state, pairW ∈ {0, 1}, indexW ∈ {0, 1}
pairR, indexR // reader local state, pairR ∈ {0, 1}, indexR ∈ {0, 1}
Writer code

pairW = ¬reading

indexW = ¬slot[pairW ]

. . . //critical section, write to data[pairW , indexW ]

slot[pairW ] = indexW

latest = pairW

Reader code

pairR = latest

reading = pairR

indexR = slot[pairR]

. . . //critical section, read from data[pairR, indexR]

Fig. 3. Simpson’s four slot algorithm in pseudo-code

of our proof system, such as processor assertions that refer to the private state
of other processors (essential for the direct proof we give here). Our approach
mirrors informal algorithm development for weak memory models: First, we
consider the SC case for high-level pseudo-code. Then we incorporate the x86-
TSO memory model, and modify the algorithm by including memory barriers. A
key point is that the proof of correctness in the SC case dictates the positioning of
the memory barriers in the weak case. Finally we refine the pseudo-code to low-
level assembly code. Another key point is that we retain the high-level assertions
in the low-level code, however the reasoning is substantially more complicated
due to the non-atomic execution of individual instructions.

Simpson’s four slot algorithm is designed to ensure mutual exclusion between
a single reader and a single writer of a multi-word datum. Simpson’s algorithm
also satisfies several other desirable properties, but here we focus solely on mu-
tual exclusion. Simpson’s algorithm is non-blocking: the reader can still read
even when the writer is delayed in the critical section, and vice-versa. This is
achieved essentially by maintaining four copies of the underlying data in an ar-
ray data[0..1, 0..1] and ensuring that the reader and writer access different slots
when running concurrently.

The code in Fig. 3 describes the entry and exit protocol run by the reader
and the writer before and after the data array is accessed (the exit protocol for
the reader is trivial). This entry and exit code is invoked whenever the writer
wants to write to data, or the reader wants to read from data. Thus, the code
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Writer code

pairW = ¬reading

{pcR ∈ � −→ (pairW = reading) −→ (indexR = slot[reading]) }
indexW = ¬slot[pairW ]

{pcR ∈ � −→ (pairW = reading) −→ (indexR = slot[reading]), indexW = ¬slot[pairW ]}
. . . //critical section, write to data[pairW , indexW ]

slot[pairW ] = indexW

latest = pairW
Reader code

pairR = latest

reading = pairR

{pcR ∈ ·�, pairR = reading }
indexR = slot[pairR]

{pcR ∈ �, pairR = reading }
. . . //critical section, read from data[pairR, indexR]

Fig. 4. Annotated pseudo-code for SC

above could be executed many times. Between executions, arbitrary other code
may be executed, but crucially it should not access data.

Simpson’s algorithm is correct in the sense that, if the reader and writer are
both in their critical sections, then they access different entries in the data array.
More formally, we introduce the notation pcR ∈ � (pcR ∈ ·�) to mean that the
reader is (is not) in the critical section. We then have the following:

{pcW ∈ � −→ pcR ∈ � −→ (pairW , indexW ) �= (pairR, indexR)}
= //by propositional reasoning

{pcW ∈ � −→ pcR ∈ � −→ (pairW = pairR) −→ (indexR �= indexW )}
= //since pcR ∈ � −→ (pairR = reading)

{pcW ∈ � −→ pcR ∈ � −→ (pairW = reading) −→ (indexR �= indexW )}
= //since pcW ∈ � −→ (indexW = ¬slot[pairW ])

{pcW ∈ � −→ pcR ∈ � −→ (pairW = reading) −→ (indexR = slot[reading])}
ie the algorithm is correct provided the main correctness assertion
pcR ∈ � −→ (pairW = reading) −→ (indexR = slot[reading]) holds in the writer’s
critical section. Of course, we must also ensure that the auxiliary facts we used
in the equality proof above are valid, but this is easy to see from the code. Note
that this writer assertion refers to the program counter and private register state
of the reader. The annotated code is in Fig. 4.

The writer assertions in Fig. 4 are trivially true for the writer if there is no
reader. In the concurrent setting, following Rely-Guarantee [Jon81], we must
check that these assertions are true regardless of steps taken by the reader:
we check that the properties are closed under interference from the reader.
First we express the interference from the reader as a relation between states.
The notation S 	 S′ represents the relation S × S′. Consider the Fig. 4
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annotated code for the reader. Since these statements concern reader thread-
local state pcR and pairR, or global state reading that is read-only by the writer,
these assertions are closed under writer interference. Examining this annotated
code reveals the interference from the reader consists of: Updates to reading
outside the critical section: (pcR ∈ ·�, reading = i) 	 (pcR ∈ ·�, reading =
j), i ∈ {0, 1}, j ∈ {0, 1}; Entrance to the critical region: (pcR ∈ ·�, pairR
= reading) 	 (pcR ∈ �, pairR = reading, indexR = slot[pairR]); Exit from the
critical region: (pcR ∈ �) 	 (pcR ∈ ·�). The only non-trivial interference involves
the reader entering the critical section, but it is immediate that this preserves
the main correctness assertion. A key point is that the reader interference is de-
pendent on which region of code the reader is executing (pcR ∈ ·�, pcR ∈ �).
This is the main motivation for our liberal notion of state, which can be incor-
porated into traditional proof systems unrelated to weak memory. In general, we
expect more complicated algorithms will involve many more “regions”. The key
idea here is to index the rely and guarantee relations by the region in which the
code is executing.

Simpson’s algorithm for x86-TSO. A common approach to adapting algo-
rithms to weak memory models is to insert memory synchronization operations
eg memory barriers. One option is to insert barriers between every instruction,
which is sufficient to regain SC behaviour for x86-TSO. However, synchronization
operations are typically very expensive, so for performance reasons it is impor-
tant to minimize their use. In this section we show how the SC proof dictates
where to place memory barriers in the weak case.

We first examine the interference from the reader, specifically interference
when entering the critical section. The first reader assertion in Fig. 4 states that
the value of the reader’s thread-local register pairR is equal to the main memory
value at address reading. Unfortunately, since writes to memory may be buffered,
this assertion no longer holds. The fix is to insert a memory barrier after the
write to reading.

Now consider the first writer assertion in Fig. 4. Whilst the assertion is closed
under interference from the reader, the writer’s own write buffer may asyn-
chronously flush a write to memory which invalidates the assertion. For example,
there may be a write to slot[pairW ] from a previous execution of the writer’s exit
protocol which is still in the write buffer. The problem is that the assertion is
not closed under write buffer transitions, as required by the proof system. The
simplest fix is to ensure that there are no pending writes in the write buffer
to addresses which are involved in the assertion. The assertion mentions two
addresses, reading and slot[pairW ]. The write buffer will never contain writes to
reading since it is read-only by the writer. Thus, an invariant for the writer is
the assertion {reading

.= []}. To rule out the possibility of a write to slot from a
previous execution of the writer exit protocol, we can insert a memory barrier
at the end of the writer code, see Fig. 5. The alternative, placing the barrier
immediately after the write to slot[pairW ] means that the write to latest may be
delayed, potentially reducing performance, though not correctness.
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Writer code

{reading
.
= [], slot[ ]

.
= [] }

pairW = ¬reading

{reading
.
= [], slot[ ]

.
= [], pcR ∈ �−→ (pairW = reading)−→ (indexR = slot[reading])}

indexW = ¬slot[pairW ]

{reading
.
= [], slot[ ]

.
= [], pcR ∈ �−→ (pairW = reading)−→ (indexR = slot[reading])}

. . . //critical section, write to data[pairW , indexW ]

slot[pairW ] = indexW

latest = pairW

barrier mfence

{reading
.
= [], slot[ ]

.
= [] }

Fig. 5. Annotated pseudo-code for x86-TSO

Simpson’s algorithm in x86 assembly code with x86-TSO. We now refine
the high-level pseudo-code of the preceding section to low-level x86 assembly
code. This makes the whole development more realistic, but the length of the
code increases dramatically, and although high-level assertions are preserved at
the low-level, there are now many intermediate assertions which obscure the
main correctness argument.

The writer pseudo-code starts with pairW = ¬reading, which translates to
the three x86 assembly instructions in Fig. 6. The initial and final assertions
are exactly those of the pseudo-code version, and the expected intermediate
assertions do indeed hold, but for far from obvious reasons. Interested readers
may consult the formal development for further details. To clarify the exposition,
we suppress the trivial assertions reading

.= [], slot[ ] .= [] in these intermediate
assertions. The remaining pseudo-code instructions are tackled in a similar way.

7 Related Work

We have included references to the main sources in the body of the text. The x86-
TSO memory model [OSS09] was introduced in two provably-equivalent styles,
axiomatic and operational, but here it suffices to consider only the operational
model (called the “abstract machine memory model” in [OSS09]). In order to
make our development self-contained, we have reproduced this memory model,
and in addition incorporated a model of x86 instructions. It would be reasonably
straightforward to establish a formal connection between our model and x86-
TSO. Our x86 instruction model is based on that of Myreen [MSG08] which has
been extensively validated in the sequential case; we believe the model is accurate
for the concurrent case considered here. Whilst the model is not intended to be
exhaustive, it should be straightforward to extend it. One of the challenges of
this work was dealing with non-atomic x86 assembly instructions. Similar issues
are the subject of ongoing research [Col08].
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Writer code

{reading
.
= [], slot[ ]

.
= [] }

movrm(eax, reading)

{pcR ∈ � −→ (1 − eax = reading) −→ (indexR = slot (reading)) }
movri(pairW, 1)

{pcR ∈ � −→ (1 − eax = reading) −→ (indexR = slot (reading)), pairW = 1 }
subrr(pairW, eax)

{reading
.
= [], slot[ ]

.
= [], pcR ∈ � −→ (pairW = reading)−→ (indexR = slot[reading])}

Fig. 6. Annotated x86 assembly code for x86-TSO

Our proof for Simpson’s algorithm in the SC case is new, as far as we are
aware. Many other proofs for SC exist in the literature eg [Hen03, Rus02]. As
discussed in previous sections, our proof is unsuited to traditional program logics
because of the need to refer to the private state of other processors. There are
several other approaches to ensuring correctness of programs running on weak
memory models. Data-race free (DRF) programs can be reasoned about using
SC techniques. A strengthening of DRF techniques to x86-TSO is [Owe10]. An
interesting approach that shares some similarities with DRF techniques is [CS09].
Model checking is another technique that has been fruitfully applied in this
area [PD95], and one can always resort to direct operational proofs [Rid07].

8 Conclusion

We presented a proof system for concurrent low-level assembly code and the x86-
TSO memory model. Some features of the proof system, such as the liberal notion
of state, are independent of the memory model and may find use elsewhere. Some
features are specific to x86-TSO, such as the need to use assertions closed under
write buffer interference (and the practical importance of having a syntactic
“closure under write buffer interference” operation) and how to incorporate a
smooth treatment of write buffers as degenerate processes.

Mechanization revealed several unexpected areas for future work. For exam-
ple, intermediate assertions at the assembly code level involved substantially
more complicated proofs than at higher-levels, although intuitively the proof
effort should be similar. One possible explanation is that our proof system can
distinguish intermediate states in the execution of a single instruction, however
in practice assertions do not make such distinctions. Therefore one may expect
that the proof system can be simplified by making further assumptions about
the nature of assertions. Clearly there is a trade-off here between the complexity
of the judgement semantics and the complexity of the proof rules: in this paper
we have chosen to keep the judgement semantics as simple as possible, but other
choices are certainly possible. Our argument for the correctness of the high-level
pseudo-code running against x86-TSO should be made formal, by taking an ap-
propriate model of a high-level language (eg Xavier Leroy’s Clight [BL09]) and
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exposing the low-level memory model. This would involve tracking the memory
model through the different stages of the compilation process. A much easier
alternative would be to design an operational semantics of a high-level language
that incorporates x86-TSO from scratch, and carry out the proofs of correctness
against this model.

We believe that our proof system makes the presentation of proofs much
more palatable. However, the reasoning is still very low-level and operational,
and creating a proof takes significant effort. Having talked with low-level pro-
grammers, it appears that most think very operationally about these programs,
and that few high-level abstractions or concepts have emerged. One can incor-
porate other orthogonal abstractions such as separation logic but it is not clear
that this would make these programs essentially easier to reason about. This
work has uncovered several key requirements, but a key challenge remains: to
establish higher-level notions for reasoning about programs executing with re-
laxed memory models. The author acknowledges funding from EPSRC grants
EP/F036345 and EP/F019394.
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Abstract. We report on the first formal pervasive verification of an op-

erating system microkernel featuring the correctness of inline assembly,

large non-trivial C portions, and concurrent devices in a single seam-

less formal proof. We integrated all relevant verification results we had

achieved so far [21,20,2,5,4] into a single top-level theorem of micro-

kernel correctness. This theorem states the simulation of user processes

with own, separate virtual memories — via the microkernel — by the

underlying hardware with devices. All models, theorems, and proofs are

formalized in the interactive proof system Isabelle/HOL.

1 Introduction

Pervasive Verification: Why Bother? A program proven correct in a high-level
programming language may not execute as expected on a particular computer.
Such correctness proof ignores irregular patterns of control flow which take place
due to multitasking and interrupts on the computer. High-level data types and
operations used to implement the program and formulate its correctness criteria
differ from flip-flops and signals that occur in the hardware. The gap between
what has been proven about the program in the high-level language semantics
and what is actually executed on the underlying hardware may be a source
of errors. The solution to the problem is to verify the execution environment
of the program: the operating system to ensure correct assignment of hardware
resources to the program and non-interference with other programs, the compiler
and assembler to guarantee correct translation from high-level data types and
operations to the machine instruction level, the actual hardware implementation
to make certain that it meets the instruction set architecture. This is known as
pervasive verification [18].

Pervasive verification of complete computer systems stacks from the gate-
level hardware implementation up to the application level is the aim of the
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German Verisoft project1. The context of the current work is ‘academic system’,
a subproject of Verisoft, which covers, among others, a processor with devices,
a microkernel, and an operating system.

In order to ensure that interfaces of all components of the program’s execution
environment fit together a common formal framework — like Isabelle/HOL [23]
in our project — has to be used. By choosing the implementation model of each
layer to be the specification of the next lower layer it is possible to combine
the components into a verified stack. With the program on top of the stack one
achieves the highest degree of assurance in program correctness.

The Challenges in Pervasive Verification of an OS Microkernel. It is fair to put
an operating system microkernel at the heart of a hardware-software stack. By
design, a microkernel inevitably features (i) inline assembly portions — to access
resources beyond the visibility of C variables, e.g., hardware registers, (ii) large
sequential C parts — to implement resource management policies, e.g., user
process scheduling, and (iii) interleaving communications of the processor with
devices — to support, e.g., demand paging. Hence, the task of formal pervasive
verification of a microkernel requires a feasible technology for efficient reason-
ing — in a single proof context — about the aforementioned features. In our
experience, the complexity of the problem turns out to be not in verification of
individual components comprised by a system, but rather in formal integration
of different correctness results achieved separately. For instance, integration of
functional correctness properties of sequential C code into an interleaved hard-
ware computation requires additional reasoning about the memory consumption.

Contributions. This paper gives a bird’s eye view on the first pervasive cor-
rectness proof of an operating system microkernel including such challenging
components as demand paging, devices communications, and process-context
switch. We report on the top-level correctness theorem and its completed (mod-
ulo symmetric cases) formal proof. This proof has motivated development of
formal theories to reason, among others, about inline assembly, memory con-
sumption, and concurrent devices.

Related Work. As Klein’s article [16] provides an excellent and comprehensive
overview of the history and current state of the art in operating systems veri-
fication we limit this paragraph to highlight the peculiarities of our work. We
extend the seminal work on the CLI stack [6] by integrating devices into our
model and targeting a more realistic system architecture regarding both hard
and software. The project L4.verified [11] focuses on the verification of an efficient
microkernel, rather than on formal pervasiveness, as no compiler correctness or
an accurate device interaction is considered. The project produced a 200k-line
formal correctness proof of the seL4 microkernel implementation. In the FLINT
project, an assembly code verification framework is developed and a preemp-
tive thread implementation together with synchronization primitives on a x86
architecture were formally proven correct [13]. A program logic for assembly

1 www.verisoft.de
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code as well as techniques for combining domain-specific and foundational log-
ics are presented [12], but no integration of results into high-level programming
languages is undertaken. The relevant references to our own previous work cov-
ering single pieces of the overall correctness puzzle are as follows: [21] reports
on process-context switch verification, [20] describes the correctness of micro-
kernel primitives, [2] elaborates on interleaved driver verification, and [5] shows
verification of a page-fault handler. The semantic stack used to verify the mi-
crokernel is covered in large detail in [4]. The current paper reports for the first
time on integrating all mentioned previous results into a single formal top-level
correctness theorem of a microkernel.

Outline. In Sect. 2 we introduce CVM, our programming model for microkernels.
Sect. 3 states its top-level correctness theorem. Sect. 4 introduces a semantics
stack used for the theorem’s proof outlined in Sect. 5. We conclude in Sect. 6.

2 CVM Programming Model

We discuss operating system microkernels built following the model of commu-
nicating virtual machines (CVM) [14], a programming model for concurrent user
processes interacting with a microkernel and devices. The purpose of this model
is to provide to the programmer of a microkernel a layer implementing separate
virtual user processes.

CVM is implemented in C with inline assembly as a framework [15,22] fea-
turing isolated processes, virtual memory, demand paging [5,19], and low-level
inter-process and devices communications [2,1]. Most of these features are im-
plemented in the form of so called microkernel primitives [20]. Primitives are
functions with inline assembly parts realizing basic operations which constitute
the kernel’s functionality. The framework can be linked on the source code level
with an abstract kernel, an interface to users, in order to obtain a concrete ker-
nel, a program that can be translated and run on a target machine, the VAMP
processor [7] with devices in our case. As CVM is only parametrized with an
abstract kernel, its computations do not depend on particular shapes of abstract
kernels. Two different abstract kernels were used in Verisoft: a general purpose
microkernel VAMOS [9] and an OSEKtime-like microkernel OLOS [10].

Specification. The state space of the CVM comprises components for (i) user
processes, (ii) the abstract kernel, (iii) devices, (iv) shared interrupt mask, and
(v) the current process identifier. User processes are modeled as a vector of sep-
arate VAMP assembly machines (cf. Sect. 4) with own, large virtual memories.
The abstract kernel is a pure C program with no inline assembly portions. Its
computations are modeled by the small-step semantics of C0 (cf. Sect. 4), a
C-dialect used in Verisoft [17]. Besides ordinary C0 functions the abstract ker-
nel can call a number of special functions, called CVM primitives [20]. These
functions have no implementation within the abstract kernel, and are therefore
called externally. CVM primitives can alter states of user processes and devices
and implement basic means needed for a microkernel programmer: copy data
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Fig. 1. States and transitions of CVM model

between processes, manage size of virtual memory given to processes, send data
to devices, etc. Devices are modeled as deterministic transition systems commu-
nicating with an external environment and the processor via a specified mem-
ory interface. The external environment is used to model non-determinism and
communication.

The transition function of the CVM model (cf. Fig. 1) distinguishes, there-
fore, three top-level cases of an execution corresponding to the mentioned CVM
components: an user step, a kernel step, and a devices step.

A user step distinguishes three cases: (i) an uninterrupted step, (ii) an in-
terrupted step with an abort of user execution, and (iii) a step with interrupt
which nevertheless allows us to perform a step of the user machine before in-
terrupt handling. In the first case the step boils down to an update of the user
process configuration according to the VAMP assembly semantics. In case an
interrupt occurs during the user step, the user has to be suspended and the
kernel’s interrupt handling routine has to be invoked. The actions taken in the
third case are simply a composition of the first and the second case.

Kernel steps come in three flavors: (i) the kernel stays in the idle ‘wait’ state,
(ii) the kernel finishes its execution by switching to the idle state or to a user
process, and (iii) the kernel performs a step of the abstract kernel component.
The last step distinguishes between an ordinary C0 small-step semantics step
of the abstract kernel and a primitive execution. For the case of a primitive
invocation the CVM transition function defines which effect the primitive has
on the user processes and/or the kernel.

A devices step boils down to an external step of the specified device. The
effect of a device step is to update the devices component of the CVM model.

Target Hardware Platform. The main purpose of a microkernel is to provide
multiple users access to shared computational resources like physical memory
and devices. Therefore, a particular target hardware model has to be consid-
ered while reasoning about microkernel correctness. We use the VAMP [7] with
devices hardware platform to run the compiled microkernel.

The VAMP instruction set architecture is a sequential specification of the
VAMP gate-level hardware. The model is defined by a transition function over
the states which comprise bit-vector representations of components for the
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program counters, general and special purpose registers, and memory. The model
features two execution modes, system and user, and address translation in user
mode. VAMP ISA computations could be broken by interrupt signals, either
internal, or external. In this case the execution is switched to the system mode,
and the program counters are set to the start address of the compiled kernel.

Below, we briefly highlight how this hardware platform allows us to implement
some fundamental features of a microkernel. Physical memory sharing is realized
in CVM by memory virtualization: the kernel ensures that each user process has
a notion of its own large address space. User processes access memory by vir-
tual addresses which are translated to physical ones by a memory management
unit [8] on the hardware side, or by the kernel on the software. We allow ad-
dress spaces of user processes to exceed real memory of the physical hardware.
This feature is supported by means of demand paging [5]: we partition available
physical memory into small consecutive portions of data, called pages, which are
stored either in fast but strongly limited in size physical memory, or in large but
slower auxiliary memory, called swap memory. We store the swap memory on a
hard disk [2]. The address translation algorithm of VAMP can determine where
a certain page lies. In case the desired pages resides in the physical memory the
kernel can provide an immediate access. Otherwise, the page is on the hard disk.
The processor signals it by raising a data or instruction page-fault interrupt.
The kernel’s page-fault handler reacts to this interrupt by transferring the page
from the hard disk to the main memory.

Communication of user processes with devices is supported by memory-mapped
devices of the VAMP with devices. Devices are modeled as deterministic tran-
sition systems communicating with an external environment and the processor.
The processor accesses a device by reading or writing special addresses. The de-
vices, in turn, can signal interrupts to the processor. Interaction with the external
environment is modeled by non-deterministic input/output. Several devices and
a processor model could be coupled into a combined system which interleaves de-
vices and processor steps. We refer to this system as VAMP ISA with devices.
Computations of this system are guided by an external oracle, called an execu-
tion sequence, which defines for each point of time which of the computational
sources, either the processor or some device, makes a step.

Implementation. CVM provides a microkernel architecture consisting of two lay-
ers. The general idea behind this layering is to separate a kernel into two parts:
the abstract kernel that can be purely implemented in a high-level programming
language, and the framework that inevitably contains inline assembly code be-
cause it provides operations which access hardware registers, devices, etc. The
CVM framework is implemented with approximately 1500 lines of code from
which 20% constitute inline assembly code. The implementation contains the
following routines.

Process-context switch procedures init () and cvm start() are used for sav-
ing and restoring of contexts of user processes, respectively. The function init ()
distinguishes a reset and non-reset cases. The former occurs after the power was
switched on on the VAMP processor — the kernel memory structure is created.



76 E. Alkassar et al.

In a non-reset case the procedure saves by means of inline assembly code the
content of hardware registers into a special kernel data structure and invokes
the elementary dispatcher of the CVM framework. The cvm start() procedure
is basically an inverse of the context save in a non-reset case. Context-switch
procedures are almost fully implemented in inline assembly.

The page-fault handler of CVM pfh touch addr() features all operations on
handling page faults, software address translation, and guaranteeing for a certain
page to reside in the main memory for a specified period. The necessarily needed
assembly code for talking to the hard disk is isolated in elementary hard-disk
drivers write to disk() and read from disk().

The function dispatcher() is an elementary dispatcher of the CVM frame-
work. It handles possible page faults by invoking pfh touch addr() and calls
dispatcher kernel(), the dispatcher of the abstract kernel. This dispatcher
returns to the CVM framework an identifier of the next-scheduled process or a
special value in case there is no active processes. In the former case the elemen-
tary dispatcher starts the scheduled process by means of cvm start(). In the
latter case cvm wait() is called which implements the kernel idle state.

The remaining part of the CVM framework contains 14 primitives for different
operations for user processes.

3 Verification Objective

The CVM verification objective is to justify correctness of (pseudo-)parallel exe-
cutions of user processes and the kernel on the underlying hardware (cf. Fig. 2).
This is expressed as a simulation theorem between the VAMP ISA with devices
and virtual machines interleaving with the kernel. States of the CVM and VAMP
ISA with devices models are coupled by a simulation relation which is a con-
junction of the claims like (i) the kernel relation which defines how an abstract
kernel is related to the concrete one and — through the C0 compiler correctness
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statement [17] — how the latter is mapped to the VAMP ISA machine, (ii) the
devices relation which claims that devices in CVM and hardware configurations
are equal except for the swap hard disk which is invisible in the CVM model,
(iii) the relation for user processes which states that the user process configu-
rations are encoded in the configuration of the hardware with devices model.
Thus, the top-level correctness theorem of the CVM can be stated as follows.

Theorem 1 (CVM correctness). Given an execution of the VAMP ISA with
devices model we can construct an execution of the CVM model such that the
simulation relation between both holds after each CVM step.

To prove that the CVM abstraction relation holds throughout CVM executions
a number of invariants over the CVM implementation as well as the underlying
hardware model have to hold. The reader can find complete definitions of the
simulation relation and invariants in [22].

4 Semantics Stack

Ultimately, the right level to express overall correctness of system software, as
the CVM kernel, is VAMP ISA with devices; only there all relevant components,
as for example the mode register, become visible. Still, conducting all the code
verification (or even the implementation) at this level seems to be infeasible.
Rather, we introduced a pervasive semantics stack (depicted in Fig. 3), reaching
from the high-level programming language C0, down to VAMP ISA with devices.
On the one hand this semantics stack should provide for each single verification
target with the most adequate reasoning environment. On the other hand the
stack must be sound, i.e. allowing to integrate results of different levels into a
single proof and finally propagate correctness to the low-level hardware model.

The overwhelming part of the microkernel is written in the language C0. C0
was designed as a subset of C which is expressive enough to allow implemen-
tations of all encountered system code in the Verisoft project, while remaining
handy enough for verification. Therefore, we restricted ourselves to a type-safe
fragment of C, without pointer arithmetic. However in the context of system-
code verification we also have to deal with portions of inline assembly code that
break the abstraction of structured C0 programs: low-level hardware intrinsics
as processor registers, explicit memory model and devices become visible.

The semantics stack of the Verisoft project comprises three flavors of C0
reasoning [4]: Hoare logic, small-step semantics and an intermediate big-step
semantics. The Hoare logic provides sufficient means to reason about pre- and
postconditions of sequential, type-safe, and assembly-free C0 programs. In con-
trast to small-step semantics, the Hoare logic features split heap, compound
variables, and implicit typing. The heap model we use excludes explicit address
arithmetic but it is capable to efficiently represent heap structures like lists.

Compiler correctness allows to transfer properties proven in the C0 small
step semantics to the so called VAMP Assembly with devices model [17]. While
attempting to show correctness of assembly portions we have concluded that
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reasoning about the code in the VAMP ISA semantics is unnecessarily hard for
a number of reasons like bit-vector representation of operands and presence of
unwanted interrupts. As a response to this issue we introduced a convenient
abstraction, the VAMP assembly model [22].

Having in mind that devices are executed in parallel with the processor, and
that computations of the processor may be interrupted, only a C0 small-step
semantics is adequate for verifying drivers and interleaved applications. Still,
conducting all the code verification at the level of small step semantics or even
below is not intended. Otherwise, one would abdicate the whole power of Hoare
logic and the corresponding verification condition generator. The solution is to
abstract low-level components by an extended state and to encapsulate the ef-
fects of inline assembly code by so called XCalls, which are atomic specifications
manipulating both the extended state and the original C0 machine. First, by en-
riching the semantics stack with XCalls, we lift assembly code and driver seman-
tics into Hoare logic. Then, by proving implementation correctness of XCalls we
transfer results proven in Hoare logic down to VAMP assembly with devices [1].

All verification levels are glued together by respective simulation theorems [3,4].
This gives us freedom to choose the most efficient level of verification for each
individual parts of the kernel and subsequently — via the simulation theorems —
combine the results at the lowest level, the VAMP ISA.

Next we will describe in more detail three important extensions to the basic
semantics stack which enable us to reason on system software correctness.

Concurrent Devices and Reordering. Device drivers are often an integral part of
operating system kernels. For instance, since CVM features demand paging it
needs correctly implemented hard-disk drivers. Hence, any approach to perva-
sive verification of operating system kernels should deal with driver correctness.
Nonetheless, when proving functional driver correctness it does not suffice to
reason only about code running on a processor. Devices themselves and their
interaction with the processor also have to be formalized.

Obviously, when proving correctness of a concrete driver, an interleaved se-
mantics of all devices is extremely cumbersome. Integration of results into tradi-
tional Hoare logic proofs also becomes hardly manageable. Preferably, we would
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like to maintain a sequential programming model or at least, only bother with
interleaved steps of those devices controlled by the driver we attempt to verify. A
basic observation of our overall model is that device and processor steps that do
not interfere with each other can be swapped. For a processor and a device step,
this is the case if the processor does not access the device and the device does not
cause an interrupt. Similarly, we can swap steps of devices not communicating
with each other. Utilizing this observation we reorder execution sequences into
parts where the processor accesses no device or only one device. All interleaved
and non-interfering device steps are moved to the end of the considered part and
hence a (partially) sequential programming model is obtained.

Note that compiled, pure C0 programs never access devices, because data
and code segments must not overlap with device addresses. Hence, all interleaved
device steps can be delayed until some inline assembler statement is encountered.
More generally, the execution of drivers controlling different (non-interfering)
devices can also be separated, enabling modular verification of device drivers [1].

Inline Assembly and XCalls. The simulation theorems described in Sect. 4 allow
us to transfer program properties from the Hoare logic down to the assembly
level. Recall that CVM contains large chunks of C code involving heap data
structures and, at the same time, rare calls to functions with inline assembly.
It is highly desirable to verify these parts in the Hoare logics, however inline
assembly portions break the abstraction of structured C0 programs: low-level
entities (like the state of a device) may become visible even in the specification
of code that is only a client to the inline assembly parts. To avoid doing all the
verification in the lower semantic levels we extend the Hoare logic to represent
the low-level actions on an abstract extension of the state space by the concept
of XCalls.

XCalls capture the semantical effects of function calls by atomic specifica-
tions. Particularly, when specifying functions with inline assembly portions, as
for example drivers, the use of XCalls is appealing. First, we extend the C0 con-
figuration by additional meta variables, representing those parts of the processor
which are accessed by the assembly code. More general, these ghost variables—
in the following called extended state — may abstract from arbitrary low-level
entities which lie outside the scope of C0, e.g. memory, registers or even device
states. An XCall describes the effect of a function call on the C0 configuration
and on the extended state by one atomic state update. Compiler correctness
remains applicable only in case implementation correctness proofs are provided
for each of the XCalls.

The main charm of XCalls is that they enable us to argue on effects of inline
assembly portions without caring about assembly semantics. Thus, by enriching
the semantics stack with XCalls, we can lift assembly code and driver seman-
tics up to the Hoare logic level. Then, by proving implementation correctness
of XCalls we transfer results proven in Hoare logic down to VAMP assembly
with devices. Note, that for drivers XCalls abstract interleaved executions to
sequential atomic specifications. This is justified by the reordering theory [5,1].
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Memory Consumption. Any code verification effort claiming the label pervasive
has to deal with the concrete memory consumption of the given program and
with memory restrictions of the target machine. The compiler correctness the-
orem, for example, is only applicable if in each step sufficient heap and stack
memory is available in the assembly machine. Often such assumptions are silently
ignored because they are not visible in the semantics of the given high-level lan-
guage. As in the C0 small-step semantics, those models assume some infinite
memory. Memory restrictions do not emerge until results are propagated down
to lower levels, as in the case of the driver correctness.

Conditions on memory consumption should be formalized and verified in a
modular way, i.e., in form of function contracts which do not depend on the
invocation context. Moreover, they should be discharged for the high-level pro-
gramming language, rather than at the level of the target machine.

For the kernel verification we have applied and verified the soundness of two
different approaches to deal with memory restrictions:

– Static (syntactical) program code analysis. An upper bound of the stack con-
sumption of functions with no recursive calls and no pointers to functions
can be computed by a static analysis of the program. In short, this approach
determines the deepest path (in terms of stack consumption) in the invoca-
tion tree of the given code. The soundness of this approach is established by
verifying that executing the analyzed function (in any context) will never
consume more stack memory than the computed upper bound.

– Extending the programming logic. In this approach we extend the Hoare logic
by a ghost variable, which keeps track of the so far consumed heap memory.
Moreover we have to adapt the inference rules for memory allocation to check
and update the meta-variable. The soundness proof of this approach is part
of the soundness proof of the transfer theorems from Hoare logic to C0 small
step semantics. A similar approach could also be used to compute the stack
memory consumption of a program. Note, that this methodology exploits
our knowledge about the C0 compiler, in particular the sizes of its types.

5 Verifying CVM

The proof of the CVM correctness theorem (Theorem 1) is split according to
various types of steps that can be made within the model (cf. Fig. 1). The state-
ment of this theorem is formulated for all possible interleavings of the VAMP
hardware with devices. Many steps of the hardware might be mapped to a sin-
gle step of the CVM model (or even be invisible in it). The execution sequence
of the CVM model must be constructed from the hardware one taking care
about points where the processors detects interrupts. The theorem is proven by
induction on the number of processor steps in the CVM execution sequence.
The construction of this sequence is the starting point in proofs of all cases of
the CVM correctness theorem. We partition all possible cases from Fig. 1 into
two groups on verification of which we elaborate below: the kernel step and the
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Fig. 4. Verification of a kernel step

user step. For each of them we examine the relevant code parts and show their
functional correctness. From that the top-level simulation relation is inferred.

Kernel Step. The kernel step corresponds to such parts of the CVM implemen-
tation as (i) kernel initialization (after reset), (ii) process-context switch: switch
to user and kernel initialization after user interrupt, (iii) primitives execution,
(iv) waiting for interrupts, and (v) abstract kernel step.

Since this part of the CVM implementation features — beside the C code —
many inline assembly portions, its verification proceed in the C0 small-step se-
mantics and VAMP assembly semantics. Moreover, reasoning about instructions
which switch process execution modes involves even the VAMP ISA semantics
because the VAMP assembly model by design lacks support of modes. For each
part of the code we would like to do the formal verification on the highest possi-
ble level of abstraction. Fig. 4–5 reflect this approach and depict correspondence
between the CVM implementation parts and the semantics of verification.

The kernel step (cf. Fig. 4) starts right after the processor detects an interrupt
and the JISR (jump to interrupt service routine) signal is activated. The latter
sets the program counters to the start address of the zero page which, essentially,
is used as a draft to store intermediate results of assembly computations. The
first two instructions of the zero page, however, implement a jump to the kernel
and are verified in the VAMP assembly semantics. The target of this jump is
the function init () which is responsible for the process-context save as well as
kernel initialization and is implemented in inline assembly. The last statement
of init () is a C-call to the CVM’s elementary dispatcher. We verify this call
and the body of the dispatcher in C0 small-step semantics. In order to proceed
with that we have to reconstruct the C0 configuration from the state of VAMP
assembly. For that we maintain an invariant which states that the parts of C0
configuration — called the weak C0 configuration— are permanently encoded
in the VAMP assembly memory. This technique is described in detail in [21].
Next, the CVM’s dispatcher invokes the abstract kernel whereas the latter might



82 E. Alkassar et al.

C0

ASM

ISA
dispatcher()

c
a
ll
c
v
m
w
a
i
t
()

cvm wait()

p
re

p
a
ra

ti
o
n

e
n
d
le

ss
lo

o
p

no interrupts

interrupt(s)

kernel starts

Fig. 5. Verification of the ‘wait’ case (idle loop)

invoke some CVM primitive. Primitives are verified [20] on C and assembly
levels as they access user memory regions and devices. Further verification of
the kernel step is split depending on whether there is at least one user process
which has to be resumed. In case there is one, the verification of the remaining
part is symmetrical: correctness proof of a C call to the process-context restore
cvm start() is followed by reasoning in assembly semantics about its body. The
last instruction of the kernel step chain is the ‘rfe’ (return from exception) which
switches the processor mode to user, and, therefore, has effects defined only in
the VAMP ISA semantics. In case there is no user processes to be resumed the
kernel goes to an idle loop by calling cvm wait() (cf. Fig. 5). Here we are pending
interrupts and, therefore, reason on the VAMP ISA level.

User step. User processes are modeled as virtual assembly machines with an
illusion of their own, large, and isolated memory. Memory virtualization is trans-
parent to user processes: within the CVM model page faults that might occur
during a user step are handled silently by the low-level kernel functionality such
that user can continue its run. During a single user step up to two page faults
might occur: instruction page fault (ipf ) and data page fault (dpf ). The for-
mer might happen on instruction fetch whereas the latter could take place if we
execute a memory operation. Our page-fault handler is designed in a way that
it guarantees that no more than two page faults occur while processing a sin-
gle instruction. The following five situations are possible regarding page faults:
(i) there are no page faults, (ii) there is only an instruction page fault, (iii) there
is only a data page fault, (iv) there is an instruction page fault followed by a data
page fault, and (v) there is a data page fault followed by an instruction page
fault. Fig. 6 depicts verification scheme for these cases. Essentially, the proof of
the user step correctness boils down to a multiple application of the page-fault
handler correctness theorem [5,19].

Page-Fault Handler. The page-fault handler is one of the most involved code
portions of the CVM implementation. It maintains doubly-linked lists on the
heap to implement the user virtual memory management policy and at the same
time calls assembly subroutines implementing the hard disk driver. We verify the
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Fig. 6. Verification of a user step

page-fault handler in the Hoare logic and then transfer its functional correctness
properties down to the level of VAMP ISA with devices semantics. The semantics
of the assembly implemented hard disk drivers is encapsulated in XCalls. While
justifying the correctness of XCalls implementation we have to deal with such
peculiarities as devices steps reordering and estimating the memory consumption
(cf. Sect. 4).

Besides loading the missing pages to the physical memory the page-fault han-
dler servers as a single entry point for the software emulation of address trans-
lation in the kernel. In order to show the correctness of the latter the page-fault
handler maintains a solid number of validity invariants over the page table and
page management lists. One example of such invariants is that the page table
entries always point outside the kernel region. This invariant turns out to be
crucial for tackling the following problem.

Dealing with Self-Modifying Code. Suppose, we want to run the microkernel on
a processor supporting self-modifying code: we can write at the address we have
already fetched from. In system mode this peculiarity is resolved by the hard-
ware. In user mode, however, the problem is affected by the address translation
since now during the fetch we read not only at the fetch address but also the
page tables. In this scenario we have to guarantee that user processes do not
write page tables. By exploiting the aforementioned page-fault handler validity
invariant we conclude that the translated address always lie in the user range.

6 Conclusion

We reported on the first formal and pervasive verification of a microkernel.
Claiming pervasiveness means that all results can be (soundly) translated into
and expressed at the low-level hardware model. We were forced to reason about
many aspects and conditions of the system which are usually under the veil of
‘technically but simple’. They don’t show up until pervasive and formal veri-
fication is conducted. These conditions may be crucial for system correctness,
as we illustrated for memory consumption. We are confident that the verifica-
tion methods introduced to deal with inline assembly code, device drivers, and
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memory restrictions, within the framework of a high-level programming logic as
Hoare logic, can be applied to other, more complex system verification targets.

All models, theorems and proofs leading to the top-level correctness statement
of the CVM have been verified in Isabelle/HOL— modulo symmetric cases (as
the read case of the hard-disk driver and some of the primitives were only spec-
ified but not verified). The CVM implementation is made up of 1200 lines of
C0 and 300 lines of inline assembly code. Altogether we carried out the CVM
verification in almost 100k proof steps in 5k Lemmas.

Integrating the huge amount of specifications, models and proofs emerged as
a highly non-trivial and time-consuming engineering task. This covers, among
other things, a social process, in which the work of many researchers, located
at different places, has to be combined to one uniform and formal Isabelle/HOL
theory. More than 250 Isabelle theories developed by more than 10 researchers
were either directly or indirectly imported to state and verify the top-level cor-
rectness of the microkernel.

Larger efforts should be undertaken to simplify and better organize the formal
verification in a computer aided proof system as Isabelle/HOL. On the one hand
side it would be desirable to have more proof analysis tools as e.g., proof clones
detection. We think, that in projects with such a large theory corpus, ‘proof-by-
search’ technology (as automatically finding already proven similar lemmas) may
be highly promising. On the other hand, the use of automatic tools in Verisoft
often failed due to a huge overhead caused by the integration of external tools.
Linking results obtained by e.g. automatic first-order theorem provers or SAT
solvers is often much harder than proving the requested goal by hand.
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Abstract. Last year, the NICTA L4.verified project produced a formal

machine-checked Isabelle/HOL proof that the C code of the seL4 OS mi-

crokernel correctly implements its abstract implementation. This paper

gives a brief overview of the proof together with its main implications

and assumptions, and paints a vision on how this verified kernel can be

used for gaining assurance of overall system security on the code level

for systems of a million lines of code or more.

1 L4.verified

Last year, we reported on the full formal verification of the seL4 microkernel
from a high-level model down to very low-level C code [7].

To build a truly trustworthy system, one needs to start at the operating system
(OS) and the most critical part of the OS is its kernel. The kernel is defined as
the software that executes in the privileged mode of the hardware, meaning that
there can be no protection from faults occurring in the kernel, and every single
bug can potentially cause arbitrary damage. The kernel is a mandatory part of a
system’s trusted computing base (TCB)—the part of the system that can bypass
security [11]. Minimising this TCB is the core concept behind microkernels, an
idea that goes back 40 years.

A microkernel, as opposed to the more traditional monolithic design of con-
temporary mainstream OS kernels, is reduced to just the bare minimum of code
wrapping hardware mechanisms and needing to run in privileged mode. All OS
services are then implemented as normal programs, running entirely in (unpriv-
ileged) user mode, and therefore can potentially be excluded from the TCB.
Previous implementations of microkernels resulted in communication overheads
that made them unattractive compared to monolithic kernels. Modern design
and implementation techniques have managed to reduce this overhead to very
competitive limits.

A microkernel makes the trustworthiness problem more tractable. A well-
designed high-performance microkernel, such as the various representatives of
the L4 microkernel family, consists of the order of 10,000 lines of code. We have
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demonstrated that with modern techniques and careful design, an OS microker-
nel is entirely within the realm of full formal verification.

The approach we used was interactive, machine-assisted and machine-checked
proof. Specifically, we used the theorem prover Isabelle/HOL [10]. Formally, our
correctness statement is classic refinement: all possible behaviours of the C im-
plementation are already contained in the behaviours of the abstract specifi-
cation. The C code of the seL4 kernel is directly and automatically translated
into Isabelle/HOL. The correctness theorem connects our abstract Isabelle/HOL
specification of kernel behaviour with the C code. The main assumptions of the
proof are correctness of the C compiler and linker, assembly code, hardware, and
boot code. The verification target was the ARM11 uniprocessor version of seL4.
There also exists an x86 port of seL4 with optional multi-processor and IOMMU
support.

The key benefit of a functional correctness proof is that proofs about the C
implementation of the kernel can now be reduced to proofs about the specifica-
tion if the property under investigation is preserved by refinement. Additionally,
our proof has a number of implications, some of them direct security proper-
ties that other OS kernels will find hard to claim. If the assumptions of the
verification hold, we have mathematical proof that, among other properties, the
seL4 kernel is free of buffer overflows, NULL pointer dereferences, memory leaks,
and undefined execution. There are other properties that are not implied, for
instance general security without further definition of what security is or infor-
mation flow guaranties that would provide strict secrecy of protected data. A
more in-depth description of high-level implications and limitations has appeared
elsewhere [6,5].

2 A Secure System with Large Untrusted Components

There are at least two dimensions in which work on the seL4 microkernel could
progress from this state: The first is gaining even more assurance, either by
working on the assumptions of the proof, e.g. by using a verified compiler [9] or
verifying the assembly code in the kernel, or by proving more properties about
the kernel such as a general access control model [3,2]. The second dimension
is using the kernel and its proof to build large high-assurance systems. Below I
explore this second dimension and try to convey a vision of how large, realistic
high-assurance systems can feasibly be built with code-level formal proof.

The key idea is the original microkernel idea that is also widely explored in
the MILS (multiple independent levels of security and safety) space [1]: using
system architectures that ensure security by construction, relying on basic kernel
mechanisms to separate trusted from untrusted code. Security in these systems
is not an additional feature or requirement, but fundamentally determines the
core architecture of how the system is laid out, designed, and implemented. This
application space was one of the targets in the design of the seL4 kernel.

The basic process for building a system in this vision could be summarised as
follows (not necessarily in this order):
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Fig. 1. Secure Access Controller (SAC)

1. Architect the system on a high level such that the trusted computing base
is as small as possible for the security property of interest.

2. Map the architecture to a low-level design that preserves the security prop-
erty and that is directly implementable on the underlying kernel.

3. Formalise the system, preferably on the architecture level.
4. Analyse, preferably formally prove, that it enforces the security property.

This analysis formally identifies the trusted computing base.
5. Implement the system, with focus for high assurance on the trusted compo-

nents.
6. Prove that the behaviour of the trusted components assumed in the security

analysis is the behaviour that was implemented.

The key property of the underlying kernel that can make the security analysis
feasible is the ability to reduce the overall security of the system to the security
mechanisms of the kernel and the behaviour of the trusted components only.
Untrusted components will be assumed to do anything in their power to subvert
the system. They are constrained only by the kernel and they can be as big and
complex as they need to be. Components that need further constraints on their
behaviour in the security analysis need to be trusted to follow these constraints.
They form the trusted components of the system. Ideally these components are
small, simple, and few.

In the following subsections I demonstrate how such an analysis works on an
example system, report on some initial progress we had in modelling, designing,
formally analysing, and implementing the system, and summarise the steps that
are left to gain high assurance of overall system security.

The case study system is a secure access controller (SAC), depicted in Figure 1.
It is a small box with the sole purpose of connecting one front-end terminal to
either of two back-end networks one at a time. The back-end networks A and
B are assumed to be of different classification levels (e.g. top secret and secret)
and potentially hostile and collaborating. The property the SAC should enforce
is that no information may flow through it between A and B. Information is
allowed to flow from A to B through the trusted front-end terminal. The latter
may not be a realistic assumption for a real system; the idea is merely to explore
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Fig. 2. SAC Architecture

system architectures for the SAC, not to build a multi-level secure product with
a secure front-end terminal.

2.1 Architecture

Figure 2 shows the high-level architecture of the system. The boxes stand for
software components, the arrows for memory or communication channel access.
The main components of the SAC are the SAC Controller (SAC-C), the Router
(R), and the Router Manager (RM). The Router Manager is the only trusted
user-level component in the system. The system is implemented on top of seL4
and started up by a user-level booter component. The SAC Controller is an
embedded Linux instance with a web-server interface to the front-end control
network where a user may request to be connected to network A or B. After
authenticating and interpreting such requests, the SAC Controller passes them
on as simple messages to the Router Manager. The Router Manager receives such
switching messages. If, for example, the SAC is currently connected to A, there
will be a Router instance running with access to only the front-end data network
card and the network card for A. Router instances are again embedded Linuxes
with a suitable implementation of TCP/IP, routing etc. If the user requests a
switch to network B, the Router Manager will tear down the current A-connected
Linux instance, flush all network cards, create a new Router Linux and give it
access to network B and the front end only.

The claim is that this architecture enforces the information flow property.
Each Router instance is only ever connected to one back-end network and all
storage it may have had access to is wiped when switching. The Linux instances
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are large, untrusted components in the order of a million lines of code each. The
trusted Router Manager is small, about 2,000 lines of C.

For this architecture to work, there is an important non-functional require-
ment on the Linux instances: we must be able to tear down and boot Linux in
acceptable time (less than 1-2 seconds). The requirement is not security-critical,
so it does not need to be part of the analysis, but it determines if the system is
practical. Our implementation achieves this.

So far, we have found an architecture of the system that we think enforces the
security property. The next sections explore design/implementation and analysis.

2.2 Design and Implementation

The main task of the low-level design is to take the high-level architecture and
map it to seL4 kernel concepts. The seL4 kernel supports a number of objects
for threads, virtual memory, communication endpoints, etc. Sets of these map to
components in the architecture. Access to these objects is controlled by capabili-
ties: pointers with associated access rights. For a thread to invoke any operation
on an object, it must first present a valid capability with sufficient rights to
that object.

Figure 3 shows a simplified diagram of the SAC low-level design as it is im-
plemented on seL4. The boxes in the picture stand for seL4 kernel objects, the
arrows for seL4 capabilities. The main message of this diagram is that it is sig-
nificantly more complex than the architecture-level picture we started out with.
For the system to run on an x86 system with IOMMU (which is necessary to
achieve untrusted device access), a large number of details have to be taken care
of. Access to hardware resources has to be carefully divided, large software com-
ponents will be implemented by sets of seL4 kernel objects with further internal
access control structure, communications channels and shared access need to be
mapped to seL4 capabilities, and so forth.

The traditional way to implement a picture such as the one in Figure 3 is by
writing C code that contains the right sequence of seL4 kernel calls to create
the required objects, to configure them with the right initial parameters, and
to connect them with the right seL4 capabilities with the correct access rights.
The resulting code is tedious to write, full of specific constants, and not easy to
get right. Yet, this code is crucial: it provides the known-good initial capability
state of the system that the security analysis is later reduced to.

To simplify and aid this task, we have developed the small formal domain-
specific language capDL [8] (capability distribution language) that can be used
to concisely describe capability and kernel object distributions such as Figure 3.
A binary representation of this description is the input for a user-level library in
the initial root task of the system and can be used to fully automatically set up
the initial set of objects and capabilities. Since capDL has a formal semantics
in Isabelle/HOL, the same description can be used as the basis of the security
analysis. It can also be used to debug, inspect and visualise the capability state
of a running system.
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Fig. 3. Low-Level Design

For further assurance, we plan to formally verify the user-level library that
translates the static capDL description into a sequence of seL4 system calls. Its
main correctness theorem will be that after the sequence of calls has executed,
the global capability distribution is the one described in the original description.
This will result in a system with a known, fully controlled capability distribution,
formally verified at the C code level.
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For system architectures that do not rely on known behaviour of trusted
components, such as a classic, static separation kernel setup or guest OS virtual-
isation with complete separation, this will already provide a very strong security
argument.

The tool above will automatically instantiate the low-level structure and
access-control design into implementation-level C code. What is missing is provid-
ing the behaviour of each of the components in the system. Currently,
components are implemented in C, and capDL is rich enough to provide a map-
ping between threads and the respective code segments that implement their
behaviour. If the behaviour of any of these components needs to be trusted, this
code needs to be verified — either formally, or otherwise to the required level of
assurance. There is no reason component behaviour has to be described in C —
higher-level languages such as Java or Haskell are being ported to seL4 and may
well be better suited for providing assurance.

3 Security Analysis

Next to the conceptual security architecture of the SAC, we have at this stage
of the exposition a low-level design mapping the architecture to the underlying
platform (seL4), and an implementation in C. The implementation is running
and the system seems to perform as expected. This section explores how we can
gain confidence that the SAC enforces its security property.

The capDL specification corresponding to Figure 3 is too detailed for this
analysis. It contains information that is irrelevant for a security analysis, but is
necessary to construct a running system. For instance, for security we need to
know which components share virtual memory, but we do not necessarily need
to know under which virtual address these shared areas are available to each
component. Instead, we would like to conduct the analysis on a more abstract
level, closer to the architecture picture that we initially used to describe the SAC.

In previous work, we have investigated different high-level access control mod-
els of seL4 that abstract from the specifics of the kernel and reduce the system
state to a graph where kernel objects are the nodes and capabilities are the
edges, labelled with access rights [3,2]. We can draw a simple formal relationship
between capDL specifications and such models, abstracting from seL4 capabil-
ities into general access rights. We can further abstract by grouping multiple
kernel objects together and computing the capability edges between these sets
of objects as the union of the access rights between the elements of the sets.
With suitable grouping of objects, this process results in Figure 4 for the SAC.
The figure shows the initial system state after boot, the objects in parentheses
(R) and (R-mem) are areas of memory which will later be turned into the main
Router thread and its memory frames using the create operation, an abstraction
of the seL4 system call that will create the underlying objects.

This picture now describes an abstract version of the design. We have cur-
rently not formally proved the connection between this model and the capDL
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Fig. 4. SAC Abstraction

specification, neither have we formally proved that the grouping of components
is a correct abstraction, but it is reasonably clear that both are possible in
principle.

The picture is simple enough to analyse. If we proceed with a simple informa-
tion flow analysis based solely on the capabilities in Figure 4, we would have to
conclude that the system is not secure: the component RM possess read/write
capabilities to both network A and B and therefore, without further restriction,
information may flow between A and B. Of course, RM is the trusted component
in the architecture — specifically we trust that it will not transport information
between A and B —, and the security analysis should take its behaviour into
account.

Details on our experience with this analysis will appear elsewhere, below I
only give a short summary.

For a formal analysis, we first need to formally express the behaviour of RM
in some way. In this case, we have chosen a small machine-like language with
conditionals, jumps, and seL4 kernel calls as primitive operations. Any other
formal language would be possible, as long as it has a formal semantics that can
be interleaved with the rest of the system. For all other components, we specify
that at each system step, they may nondeterministically attempt any operation
— it is the job of the kernel configured to the capability distribution in Figure 4
to prevent unwanted accesses.

To express the final information flow property, we choose a label-based security
approach in this example and give each component an additional bit of state:
it is set if the component potentially has had access to data from NIC A. It is
easy to determine which effect each system operation has on this state bit. The
property is then simple: in no execution of the system can this bit ever be set
for NIC B. This state-based property is slightly weaker than a non-interference
based approach [4], because it ignores indirect flows.
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Given the behaviour of the trusted component, the initial capability distri-
bution, and the behaviour of the kernel, we can formally define the possible
behaviours of the overall system and formally verify that the above property is
true. This verification took a 3-4 weeks in Isabelle/HOL and less than a week to
conduct in SPIN, although we had to further abstract and simplify the model
to make it work in SPIN.

4 What Is Missing?

With the analysis described so far, we do not yet have a high-assurance system.
This section explores what would be needed to achieve one.

The main missing piece is to show that the behaviour we have described in
a toy machine language for the security analysis is actually implemented by the
2,000 lines of C code of the Router Manager component. Most of these 2,000 lines
are not security critical. They deal with setting up Linux instances, providing
them with enough information and memory, keeping track of memory used etc.
Getting them wrong will make the system unusable, because Linux will fail to
boot, but it will not make it break the security property. The main critical
parts are the possible sequence of seL4 kernel calls that the Router Manager
generates to provide the Linux Router instance with the necessary capabilities
to access network cards and memory. Classic refinement as we have used it
to prove correctness of seL4 could be used to show correctness of the Router
Manager.

Even with this done, there are a number of issues left that I have glossed over
in the description so far. Some of these are:

– The SAC uses the unverified x86/IOMMU version of seL4, not the verified
ARM version. Our kernel correctness proof would need to be ported first.

– We need to formally show that the security property is preserved by the
existing refinement.

– We need to formally connect capDL and access control models. This includes
extending the refinement chain of seL4 upwards to the levels of capDL and
access control model.

– We need to formally prove that the grouping of components is a correct,
security preserving abstraction.

– We need to formally prove that the user-level root task sets up the initial
capability distribution correctly and according to the capDL specification of
the system.

– We need to formally prove that the information flow abstraction used in the
analysis is a faithful representation of what happens in the system. This is
essentially an information flow analysis of the kernel: if we formalise in the
analysis that a Read operation only transports data from A to B, we need
to show that the kernel respects this and that there are no other channels in
the system by which additional information may travel. The results of our
correctness proof can potentially be used for this, but it goes beyond the
properties we have proved so far.
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5 Conclusion

In this paper I have not aimed to present finished results, but instead to convey a
vision of how one can use a formally verified kernel like seL4 to achieve code-level
security proofs of large-scale systems. I have presented some initial, completed
steps in this vision, and have shown that even if there is clearly still quite some
way to go, there appears to be a feasible path to such theorems.

In an ideal world outcome, the complex proofs such as the information flow
analysis based on a precise machine model, could be done once and for all for a
given platform, and remaining proofs for specific systems and architectures could
be largely or even fully automated: trusted components could be implemented
in high-level languages with verified runtimes and compilers, abstractions for
security analysis could be derived automatically with minimal user input and
automatic correctness proofs, and the security analysis itself could be conducted
fully automatically by model checking, potentially exporting proofs. This would
mean such systems could be implemented with fairly low cost and extremely
high assurance.

Even in a less ideal outcome, high levels of assurance could already be gained.
Not all steps have to be justified by formal proof. Once trusted components and
protection boundaries are clearly identified, the behaviour of a small trusted
component could be assured by code review or testing, or abstractions for the
security analysis could be done manually without proof. There is already value
in merely following the process and only doing a high-level analysis. In our case
study, we found security bugs mainly in the manual, but rigorous abstraction
process from low-level design to high-level security model. What the proof pro-
vides is assurance that the analysis is complete, at the level of abstraction the
theorem provides.
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Abstract. Formal modeling of computing systems yields models that

are intended to be correct with respect to the requirements that have

been formalized. The complexity of typical computing systems can be ad-

dressed by formal refinement introducing all the necessary details piece-

meal. We report on preliminary results that we have obtained for tracing

informal natural-language requirements into formal models across refine-

ment levels. The approach uses the WRSPM reference model for require-

ments modeling, and Event-B for formal modeling and formal refinement.

The combined use of WRSPM and Event-B is facilitated by the rudi-

mentary refinement notion of WRSPM, which provides the foundation

for tracing requirements to formal refinements.

We assume that requirements are evolving, meaning that we have

to cope with frequent changes of the requirements model and the formal

model. Our approach is capable of dealing with frequent changes, making

use of corresponding techniques already built into the Event-B method.

Keywords: Requirements Traceability, WRSPM, Formal Modeling,

Refinement, Event-B.

1 Introduction

We describe an approach for building a formal model from natural language
requirements. Our aim is to increase the confidence that the formal model rep-
resents the desired system, by explaining how the requirements are “realized” in
the formal model. The relationship “realizes” between requirements and formal
models is kept informal. Justifications are maintained with each requirement and
element of a formal model that are linked by “realizes”, tracing requirements into
the model, providing the sought explanation. Hence, the technical problem we
have to solve is how to trace requirements into a formal model.

Requirements traceability provides a justification for a formal model with
respect to the requirements. It is a difficult problem [6,10,15]. Furthermore, it
is a cross-disciplinary problem connecting requirements engineering and formal
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Fig. 1. A traffic light for pedestrians

methods. The benefits of the use of formal methods during requirements en-
gineering has long been recognized. For instance, [5] quantifies the impact of
formal methods in requirements engineering based on industrial case studies.

We assume that the requirements and the formal model need to be changed
frequently and assume that the requirements are incorporated incrementally into
the model. In the process, the requirements may have to be rewritten, corrected,
clarified or split. The formal model may have to be modified correspondingly as
the requirements become better understood [12].

In this paper, we present an approach for establishing robust traceability
between informal requirements and formal models. We focus on natural language
requirements and the Event-B formal method [3], but the ideas presented should
be applicable more generally. We identified the WRSPM reference model [11] as
the foundation for this work.

We consciously limit the scope of our approach. We assume that we start
with a set of “reasonable” user requirements, but do not provide a method for
eliciting them because good elicitation methods exist [14,9].

1.1 Running Example

In Section 3, we use a traffic light controller, as depicted in Figure 1, to demon-
strate our approach. The traffic light for the cars stays green until a pedestrian
requests crossing the street by pressing a button. The requirements also describe
the sequence of lights and other details. In our preliminary study, we applied our
approach to two other examples, a lift controller and a system that controls the
access of people to locations in a building. Moreover, the approach is being used
in an industrial case of a train door control system, employing the B-Method [1]
rather than Event-B.

We show excerpts of the formal model and requirements in boxes, as follows:

Short description

Excerpt of formal model

REQ-1 A textual requirement with the identifier REQ-1
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1.2 State-Based Modeling and Refinement

We demonstrate our ideas using Event-B [3], a formalism and method for discrete
systems modeling. Event-B is a state-based modeling method. The choice of
Event-B over similar methods [7,16] is mostly motivated by the built-in formal
refinement support and the availability of a tool [4] for experimentation with
our approach.

Event-B models are characterized by proof obligations. Proof obligations serve
to verify properties of the model. To a large degree, such properties originate in
requirements that the model is intended to realize. Eventually, we expect that
by verifying the formal model we have also established that the requirements to
which they correspond are satisfied.

We only provide a brief summary of Event-B in terms of proof obligations.
A complete description can be found in [3]. Variables v define the state of a
machine. They are constrained by invariants I(v). Possible state changes are
described by means of events. Each event is composed of a guard G(t, v) and
an action S(t, v, v′), where t are parameters of the event. Actions are usually
written in the form v := E(v) corresponding to the predicate v′ = E(v). The
guard states the necessary condition under which an event may occur, and the
action describes how the state variables evolve when the event occurs. In Event-
B two main properties are proved about formal models: consistency, that is, the
invariant I(v) is maintained

I(v) ∧ G(t, v) ∧ S(t, v, v′) ⇒ I(v′) ,

and refinement. Refinement links abstract events to concrete events aiming at
the preservation of properties of the abstract event when it is replaced by the
concrete event. A concrete event with guard H(u, w) and action T(u, w, w′) re-
fines an abstract event with guard G(t, v) and action S(t, v, v′) if, whenever the
gluing invariant J(v, w) is true:

(i) the guard of of the concrete event is stronger than the guard of abstract
event, and

(ii) for every possible execution of concrete event there is a corresponding ex-
ecution of abstract event which simulates the concrete event such that the
gluing invariant remains true after execution of both events.

Formally,

I(v) ∧ J(v, w) ∧ H(u, w) ∧T(u, w, w′) ⇒ ∃t, v′ · G(t, v) ∧ S(t, v, v′) ∧ J(v′, w′) .

The Event-B method derives proof obligations from these two properties that
are easier to handle and can be efficiently generated by a tool [4].

1.3 WRSPM

Our approach is based on WRSPM by Gunter et. al. [11]. WRSPM is a reference
model for applying formal methods to the development of user requirements and
their reduction to a behavioral system specification.
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WRSPM distinguishes between artifacts and phenomena (see Figure 2).
Phenomena describe the state space (and state transitions) of the domain and
system, while artifacts represent constraints on the state space and the state
transitions. The artifacts are broadly classified into groups that pertain mostly
to the system versus those that pertain mostly to the environment. These are:

Domain Knowledge (W for World) describes how the world is expected to
behave.

Proper Requirements (R) describe how we would like the world to behave.
Specifications (S) bridge the world and the system.
Program (P ) provides an implementation of S.
Programming Platform (M for Machine) provides an execution environ-

ment for P .

In this paper, we use “proper requirements” for the formal artifacts R according
the WRSPM terminology. We use just “requirements” when we talk about nat-
ural language from the stakeholders. Even though they are called requirements
in practice, they may also contain information about the domain, implementa-
tion details, general notes, and all kinds of related information. We call those
requirements REQ.

Artifacts are descriptions that can be written in various languages. In this
paper, we use Event-B. (We discuss some alternatives in Section 4.1.)

We distinguish phenomena by whether they are controlled by the system (be-
longing to set s) or the environment (belonging to set e). They are disjoint
(s ∩ e = ∅), while taken together, they represent all phenomena in the system
(s∪e = “all phenomena”). Furthermore, we distinguish them by visibility. Envi-
ronmental phenomena may be visible to the system (belonging to ev) or hidden
from it (belonging to eh). Correspondingly, system phenomena belonging to sv

are visible to the environment, while those belonging to sh are hidden from it.
Those phenomena are disjoint as well (eh ∪ ev = e, eh ∩ ev = ∅, sh ∪ sv = s,

Fig. 2. WRSPM Artifacts and Phenomena, including Examples
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sh∩sv = ∅). Figure 2 illustrates the relationship between artifacts and phenom-
ena, including a few examples for phenomena from the running example.

The distinction between environment and system is an important one; omit-
ting it can lead to misunderstandings during the development. It is sometimes
regarded as a matter of taste or convenience where the boundary between envi-
ronment and system lies, but it has a profound effect on the problem analysis.
It clarifies responsibilities and interfaces between the system and the world and
between subsystems. If we require ourselves to explicitly make that distinction,
we can avoid many problems at an early stage.

In larger projects, where the system is composed of other sub-systems, this
concept can be used to determine if all the requirements are covered somewhere
in the overall system: Some system phenomena of one sub-system may become
the environment phenomena of the other sub-system.

W and R may only be expressed using phenomena that are visible in the
environment, which is e ∪ sv. Likewise, P and M may only be expressed using
phenomena that are visible to the system, which is s∪ ev. S has to be expressed
using phenomena that are visible to both the system and the environment, which
is ev ∪ sv.

Once a system is modeled following WRSPM, a number of properties can be
verified with regard to the model, the first one being adequacy with respect to S:

∀e s · W ∧ S =⇒ R (1)

Given both hidden and visible environmental (e) and system (s) phenomena, the
system specification (S), under the assumption of the “surrounding” world (W ),
is strong enough to establish the proper requirements (R). The specification
is implemented as the program P in the programming environment M , which
allows us to rewrite (1) as

∀e s · W ∧ M ∧ P =⇒ R (2)

2 Combining WRSPM and Event-B for Requirements
Tracing

Our goal is to establish requirements traceability from natural language require-
ments to an Event-B formal model, using WRSPM to provide structure to both
the requirements and the model. In the following, we first show how an Event-B
model can be structured according to WRSPM, and then how this structure
extends to the natural language requirements to support traceability.

2.1 Relationship between WRSPM and Event-B

As we demonstrate our method with Event-B, we need a relation between WR-
SPM and Event-B, shown in Table 1. An attempt to create a relation between
Problem Frames and Event-B [18] provided similar results, thereby confirming
our results. Event-B has a number of features that are useful for traceability:
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Table 1. Representation of WRSPM elements in Event-B

WRSPM Event-B

e and s Phenomena are typically modeled as constants, sets or variables. They

are associated with type information (invariants for variables, axioms
for constants and sets). They are associated with one or two events that

can modify it: Two events are required if both system and environment

can modify the phenomenon, otherwise one is sufficient.

eh Phenomena hidden from the system are typically not modeled in the for-

mal model. Exceptions are possible (for instance for fault analysis).

W Domain properties are typically modeled as invariants and axioms. The

line between type information and domain property may be blurry. Do-

main properties are typically expressed in terms of e. If they require sv

it should be carefully examined whether the artifact is really a domain

property and not a proper requirement.

R and S In Event-B, it is sometimes difficult to separate proper Requirements from

Specification. Both are typically expressed in terms of e and sv. Both

are often traced to invariants and axioms. We also found dedicated
refinements useful to represent them (see Section 3.4). We can extend

tracing further by using additional formalisms (see Section 4.1).

P The final program P is typically implemented with its own execution

environment (M). The final refinement is often already an incomplete

implementation of P . A conversion into P is often straight forward.

First, many artifacts can be expressed as invariants. Once a proper require-
ment is expressed as an invariant, we can use proof obligations to guarantee that
the invariant will not be violated. Proper requirements that cannot be easily ex-
pressed as invariants can be structured using refinement (see Section 3.4), or
modeled in a different formalism (see Section 4.1).

Second, Event-B supports refinement as described above. WRSPM comes with
a simplified view of refinement very similar to the one described in the introduc-
tion of [13]:

∀e s · W ∧ M ∧ P =⇒ S (3)

If (1) holds, then (3) holds as well, P being a refinement of S. In practice,
an Event-B model consists of several refinements, forming a chain of machines.
Refinements can be used to incorporate more proper requirements R, to make
modeling decisions S or to provide implementation detail P . Event-B allows
to mix these three purposes in one refinement, but we suggest to give every
refinement just one single purpose (described in Section 3.4).

Third, if all Event-B proof obligations are discharged, then we know that the
model is consistent in the sense described above.

Last, Event-B has no intrinsic mechanism to distinguish W , R, P and S. This
means that we have to be careful to track the meaning of Event-B elements
in the context of WRSPM. We suggest to use refinements for structuring and
naming conventions.
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To demonstrate that the WRSPM model does the right thing, we want to
show that

∀e s · W ∧ R ∧ S ∧ P realize REQ (4)

We use “realize” instead of an implication, because REQ is informal. We cannot
prove that (4) holds, we can merely justify it. The aim of our approach is to
make this justification systematic and scalable (see Section 2.3).

The requirements REQ are rarely ready to be modelled according to our
approach in their initial form, as provided by the stakeholders. Figure 4 depicts
the iterative process for building the WRSPM-artifacts from the requirements.

2.2 Traceability to Natural Language Requirements

A key contribution of this paper is the traceability between natural language
requirements and the Event-B model which is structured according to WRSPM.
It allows us to cope with changes in the model and changes in the requirements.
Our approach distinguishes the following three types of traces:

Evolution Traces: As the model evolves over time, there is traceability from
one iteration to the next (as indicated by the horizontal arrows in Figure 3).
This is particularly useful for the stakeholders to verify that changes to
the requirements reflect their intentions. This can be done by exploring the
requirement’s evolution over time, allowing the stakeholder to compare the
original requirement to the modeler’s revision.

Explicit Traces: Each non-formal requirement is explicitly linked to at least
one formal statement. These traces are annotated with a justification that
explains why the formal statement corresponds to the non-formal
requirement.

Implicit Traces: There is implicit traceability within the Event-B model. Those
traces can be discovered via the model relationships (e.g. refinement rela-
tionships, references to model elements or proof obligations). For instance, a
guard that ensures that an invariant holds is implicitly linked to that invari-
ant via a proof obligation. Furthermore, it is possible to use the identifiers

Fig. 3. Traceability between Iterations and within Iterations



104 M. Jastram et al.

of phenomena in the non-formal requirements, in addition to their use in the
formal model. This would allow for implicit traceability to REQ as well, if we
use the identifiers consistently in the natural language requirements.

Tracing an element of the formal model to an original requirement may require
following a chain of traces.

2.3 Dealing with Change in Requirements and Model

The established traceability allows us to validate systematically that every re-
quirement has been modeled as intended. We validate a requirement by using
the justifications of the traces to reason about the requirement and the corre-
sponding model elements.

The Event-B model may contain elements that are not directly associated with
a requirement through a trace. These are elements that are necessary for making
the model consistent. For instance, events may have guards that are necessary
to prevent invariants from being violated. Such elements are implicitly traced,
and can ultimately be traced all the way back to a requirement through a chain
of traces. Allowing to annotate those implicit traces could be useful at times to
explain the shape of a model.

There are also Event-B elements that are part of the design or implementation.
Such elements are not always traced, as the information contained in them may
not be part of REQ. They should be annotated in order to make the model
understandable.

3 Application of the Approach

Now that we introduced our approach, we will demonstrate the concepts with
the running example from Section 1.1. We follow the process depicted in Figure
4 by selecting a requirement to start with.

REQ-2 The traffic light for the cars has the colors red, yellow and green

3.1 Modeling Phenomena

We identify the following five phenomena in the text of REQ-2. We provide the
Event-B identifier in parentheses1:

sv: traffic light for the cars (tl cars). We model the traffic light as the vari-
able tl cars, controlled by the system and visible to the environment.

ev: colors (COLORS). We model colors as a set. This is a phenomenon of the
environment that is visible to the system and provides typing of tl cars.

1 As a convention, we write environmental phenomena in uppercase and system phe-

nomena in lowercase.
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Fig. 4. Processing individual requirements. The running example is described in

Section 3.3.

ev: red, yellow, green (RED, YELLOW, GREEN). We model the actual color val-
ues as constants of type COLOR.

With this information we can rephrase REQ-2 and model the phenomena in
Event-B. First we decompose REQ-2 into two requirements REQ-2-1 and REQ-
2-2. These are connected by evolution traces to REQ-2:
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REQ-2-1 tl cars consists of COLORS

REQ-2-2 COLORS is the set of RED, YELLOW and GREEN

After declaring the phenomena in Event-B, we can create explicit declaration
traces to the corresponding requirements REQ-2-1 and REQ-2-2.

The phenomena are defined through typing invariants (for instance, the typing
of tl cars is tl cars ⊆ COLORS). These traces are implicit, as they can be
extracted from the formal Event-B model.

The requirement REQ-2-1 is realized as an invariant (the same as the typ-
ing invariant) and REQ-2-2 as an axiom (the partitioning of colors). These are
explicit traces that we have to establish by hand.

Last, we have to provide an event to modify the state of the traffic light. There
is an implicit trace (“changed by”) between this event and the variable tl cars.
This is expressed in Event-B as follows:

Controlling the car traffic lights

event carLight
any c where c ⊆ COLORS
then tl cars := c

Note that there is nothing yet constraining which of the three lights are on or
off. At this stage, the system could still evolve into a disco light, because REQ-
2 describes the domain, rather than how it is supposed to behave (the model
elements are part of W ). In subsequent refinements, the behavior is constrained
more and more, as new requirements and design are incorporated into the model.
We will demonstrate this in Section 3.4.

3.2 Modeling Requirements as Invariants

If possible, we model requirements as invariants. Once modeled this way, Event-
B ensures that the invariant will never be violated (assuming that all proof
obligations are discharged). Consider REQ-9:

REQ-9
The lights for pedestrians and cars must never be “go” at the same
time

We omit the declaration and definition of the phenomena for brevity, and go
straight to the rewritten requirement:

REQ-9-1 car go and ped go must never be TRUE at the same time

This can be traced using a “realizes” trace to the following invariant:

Formal representation of REQ-9-1

¬ (cars go = TRUE ∧ peds go = TRUE)
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3.3 Traceability and Data Refinement

In Section 3.1 we introduced tl cars and in Section 3.2 we introduced car go.
These two variables are connected through REQ-10, and we can realize this
connection through refinement in Event-B. This is also depicted in Figure 4.

REQ-10 “go” means green for pedestrians and green or yellow for cars.

This requirement can be rewritten using the previously introduced names for
the phenomena in question:

REQ-10-1 peds go = TRUE means GREEN is active for tl ped

REQ-10-2
cars go = TRUE means GREEN or YELLOW is active for
tl cars.

The phenomena relating to the colors would be introduced in a machine that
refines the one that introduced stop and go. Thus, the relationships (and thus
REQ-10-1 and REQ-10-2) are realized through gluing invariants:

Meaning of Colors for pedestrians

peds go = TRUE ⇔ { GREEN } ⊆ tl peds

Meaning of Colors for cars

cars go = TRUE ⇔ { GREEN } ⊆ tl cars ∨
{ YELLOW } ⊆ tl cars

REQ-10-1 and REQ-10-2 and their gluing invariants are connected via explicit
traces. The Event-B model contains a number of relevant implicit relationships
that ensure that the model is consistent. For instance, the event that modifies
peds go has a corresponding event in the refinement that modifies tl peds.
Due to the gluing invariant, we can only discharge all proof obligations if the
refinement preserves the properties of the abstract model. The corresponding
Event-B is depicted in Figure 4.

3.4 Structuring Requirements Using Refinement

Some requirements are difficult to model as invariants. Consider the following:

REQ-12 The pedestrian light always follows the sequence red – green

REQ-12 is difficult to express as an invariant due to its temporal nature.
We realize it by refining the event pedLight into two distinct events, pedsRed-
ToGreen and pedsGreenToRed. This is the point where the traffic light is forced
to behave differently from a “disco light”. We can verify by inspection, model
checking or animation whether the formal model reflects the requirement. In this
particular case, we could animate the refinement (e.g. using ProB for Rodin [17])
to convince ourselves that red follows green and green always follows red. (This
could also be stated in temporal logic, see Section 4.1).
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Formal representation of REQ-12

event pedsRedToGreen refines pedLight
where
¬({GREEN} ⊆ tl cars ∨ {YELLOW} ⊆ tl cars)
tl peds = { RED }

with @c c = { GREEN }
then tl peds := { GREEN }

event pedsGreenToRed refines pedLight
where
¬({GREEN} ⊆ tl cars ∨ {YELLOW} ⊆ tl cars)
tl peds = { GREEN }

with @c c = { RED }
then tl peds := { RED }

This is an example where the model must be changed in various places. By
using a dedicated refinement for this requirement, the changes in the model
are comprehensible. Thus, we would establish an explicit trace to this Event-B
machine, and we would not make any other changes to this refinement.

3.5 Requirements Outside the Formal Model

Some requirements are very hard to model in Event-B. Consider the following
requirement REQ-16:

REQ-16
The length of the green phase of the pedestrian light has a specified
duration.

Due to the temporal nature of the requirement, this requirement is hard to
express in the formalism we chose. One option would be to introduce the concept
of “ticks” that progress time on a regular basis. But even if we do that, it is not
clear how long a tick is. We could also leave this requirement completely out
of the model, leaving an aspect of the system that is not accounted for in the
formal model. In our approach, this would manifest as a requirement without
a trace to the formal model. Such untraced requirements are easily identified
and must then be accounted for by other means, typically by providing for them
directly in the implementation.

4 Related Work

The issue of traceability has been analyzed in depth by Gotel et. al. [10]. Our
research falls into the area of post-requirements specification traceability.

Abrial [2] recognizes the problem of the transition from informal user require-
ments to a formal specification. He suggests to construct a formal model for
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the user requirements, but acknowledges that such a model would still require
informal requirements to get started. He covers this approach in [3].

The WRSPM reference model [11] was attractive, because it deliberately left
enough room to be tailored to specific needs, as opposed to more concrete meth-
ods like Problem Frames [14] or KAOS [9]. It is also more formal and complete
than the functional-documentation model [20], another well-known approach.

The idea of the WRSPM reference model has been advanced in current re-
search. In [19], the authors introduce a model of formal verification based on non-
monotonic refinement that incorporates aspects of WRSPM. Problem Frames
[14] could be useful for identifying phenomena and for improving the natural
language requirements that we start out with, thereby complementing our ap-
proach. In [18], the authors show how Event-B and Problem Frames are being
applied to an industrial case study. We drew some inspiration from this work,
especially with regard to the relation between WRSPM and Event-B.

Some ideas in this paper are related to KAOS [9], a method for require-
ments engineering that spans from high-level goals all the way down to a formal
model. KAOS requires the building of a data model in a UML-like notation, and
it allows the association of individual requirements with formal real-time tem-
poral expressions. Our approach distinguishes itself from KAOS by being very
lightweight: KAOS uses many more model elements and relationships. KAOS
also covers many more aspects of the system development process than our
approach, which results in an “all or nothing” decision. We believe that our
approach can easily be integrated into existing workflows and processes.

Reveal [22] is an engineering method based on Michael Jackson’s “World and
the Machine” model, which is compatible with WRSPM. Therefore we believe
that our approach could be integrated nicely with Reveal.

4.1 Other Formalisms

Rather than using Event-B to model all artifacts, nothing is preventing us
from choosing different formalisms. We demonstrate this in the following, where
we model a requirement using linear temporal logic (LTL). LTL can actually
be understood as an extension to Event-B, complementing its standard proof
obligations.

LTL consist of path formulas with the temporal operators X (next), F (future),
G (global), U (until) and R (release). Expressions between curly braces are B
predicates which can refer to the variables of the Event-B model.

REQ-11
The traffic light for the cars always follows the sequence: green →
yellow → red → red/yellow

REQ11 Sequence of car-lights (LTL)

G({tl cars = {green}} =⇒ ({tl cars = {green}} U{tl cars = {yellow}})) ∧
G({tl cars = {yellow}} =⇒ ({tl cars = {yellow}} U{tl cars = {red}})) ∧
G({tl cars = {red}} =⇒ ({tl cars = {red}} U{tl cars = {red, yellow}})) ∧
G({tl cars = {red, yellow}} =⇒ ({tl cars = {red, yellow}} U{tl cars =

{green}}))
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This requirement can now be validated through model checking. Rodin can
evaluate LTL expressions with the ProB model checker [21], which exists as a
well-integrated Plug-in for Rodin.

5 Conclusion

In this paper, we presented an approach for building a formal model from natu-
ral language requirements. With our approach, the boundary between informal
requirements and formal model is clearly defined by annotated chains of traces,
which keep track of model evolution and explicit and implicit links. We present a
number of approaches for modeling requirements and for providing traceability:
Some requirements can be traced elegantly to invariants, and those that can not,
can be structured using refinement. We can validate the traces in a systematic
fashion and analyze the impact of changes in the requirements or the model.

In addition to the explicit traceability between requirements and model, we
take advantage of the implicit traceability within the formal model to support
us in verifying the model against the requirements. In particular, we take ad-
vantage of traceability through proof obligations: When all proof obligations are
discharged, we know that the model is consistent. If we trust our traceability,
then we have confidence that our requirements are consistent as well. Common
identifiers can be used in the informal requirements and formal model. A sup-
porting tool could support the user by pointing out matching identifiers.

We will also explore change management further. Requirements model and
formal model are closely linked via the traceability information. Changes in
either model will affect the other.

Our approach has proven successful with a number of small projects. In the
near future, we will tackle bigger case studies; we will incorporate ongoing
research like decomposition [8]. As of this writing the effort for building tool
support within the Rodin platform is well under way2.
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Abstract. A suite of verification benchmarks for software verification tools and
techniques, presented at VSTTE 2008 [12], provides an initial catalogue of bench-
mark challenges for the Verified Software Initiative. This paper presents solutions
to these eight benchmarks using the language and verifier Dafny. A Dafny pro-
gram includes specifications, code, inductive invariants, and termination metrics.
Each of the eight programs is fed to the Dafny verifier, which without further user
interaction automatically performs the verification in a few seconds.

1 The Challenge

The motivation from this work comes from the Verified Software Initiative [4] and the
suite of eight purposefully designed, incremental benchmarks for tools and techniques
to prove total correctness of sequential object-based and object-oriented software, as
presented by Weide et al. at VSTTE 2008 [12]. A solution to part of the first benchmark
is provided, while the main contribution of their paper is the provision of a benchmark
suite that aims to support the assessment of verification tools and the assessment of
techniques to prove total correctness of the functionality of software. The benchmark
suite also aims to provide for the evaluation of the state-of-the-art and to provide a
medium that allows researchers to illustrate and explain how proposed tools and tech-
niques deal with known pitfalls and well-understood issues, as well as how they can be
used to discover and attack new ones.

In this paper, we contribute to this assessment and evaluation by presenting our so-
lutions to the benchmark problems using the language and verifier Dafny [8,7]. The
full programs are available online at boogie.codeplex.com, located by browsing the
source code to access the folder Test/VSI-Benchmarks.

The benchmarks include several requirements of potential solutions, and we believe
we meet these:

– Our Dafny programs contain all formal specifications relevant to the benchmarks,
including user-defined mathematical functions where needed. Externally to the pro-
grams themselves, they rely only on constructs that are part of the Dafny language,
which include sets and sequences.

– The Dafny verifier produces verification conditions via the intermediate verification
language Boogie 2 [10,6]. The Boogie program and the resulting verification condi-
tions can be viewed by using, respectively, the /print and /proverLog switches of

G.T. Leavens, P. O’Hearn, and S.K. Rajamani (Eds.): VSTTE 2010, LNCS 6217, pp. 112–126, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

boogie.codeplex.com
Test/VSI-Benchmarks
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the Dafny verifier. For example, for the benchmark in the file b3.dfy, the command
dafny b3.dfy /print:b3.bpl /proverLog:b3.sx
writes out the intermediate Boogie program as b3.bpl and the theorem-prover in-
put, in S-expression form, as b3.sx.

– The Dafny verification system is described in a conference paper [8] and some
lecture notes [7].

– The Dafny verifier checks for total correctness (that is, including termination). It is
(designed to be) sound, which means it only proves correct programs to be correct.
The Dafny regression test suite (at boogie.codeplex.com) includes many exam-
ples of erroneous programs that, as expected, do not verify. Similarly, any change
to any part of our Dafny solution programs that renders them incorrect will cause
the verifier to no longer verify the programs.

– Dafny uses modular specifications and modular verification. That is, our solu-
tions need not be re-verified when they are incorporated as components in larger
programs.

– Finally, we have alerted the VSI repository of our solution programs (although we
have not seen them formally enter the repository yet).

2 Dafny

Dafny is an imperative, sequential language that supports user-defined generic classes
and algebraic datatypes [8,7]. The language includes specification constructs, like pre-
and postconditions à la Eiffel [11], JML [5], and Spec#[2,9]. In addition to instance
variables and methods, a class can define mathematical functions, which can be used
in specifications. Also, the language allows variables to be defined as ghost, meaning
they are used by the verifier but need not be present at run time.

The types supported by Dafny are booleans, mathematical integers, sets, sequences,
as well as user-defined classes and algebraic datatypes. Classes can be instantiated,
giving rise to object references (i.e., pointers), which makes the language useful for
many common applications. However, as an object-oriented language, Dafny does not
support subclasses and inheritance, except that the built-in type object is a supertype
of all class types. As such, the language Dafny could perhaps be construed as a more
modern version of Pascal or Euclid, or as a safe version of C.

The specification of a method consists of preconditions (introduced by the keyword
requires) and postconditions (keyword ensures), as well as a modification frame (key-
word modifies), which specifies which objects the method may modify, and a termi-
nation metric (keyword decreases), which gives a well-founded ranking function (also
known as a variant function) for proving termination. The specification of a function
consists of preconditions, which specify the domain of the function, a dependency frame
(keyword reads), which indicates on which objects the function’s value may depend,
and a termination metric.

The body of a method consists of an imperative statement, which includes standard
constructs like assignments, field updates, object allocation, conditional statements,
loops, and method calls. A loop can indicate an inductive loop invariant as well as a
termination metric. The body of a function is an expression that defines the value of the
function.

boogie.codeplex.com
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The Dafny verifier, whose basic operation is described in detail in Marktoberdorf
lecture notes [7] and whose source code is available at boogie.codeplex.com, fol-
lows the standard approach of first translating the input program into a program in
an intermediate verification language. In particular, it translates Dafny programs into
Boogie 2 [10,6], from which the Boogie tool [1,10] generates first-order verification
conditions. These verification conditions, in turn, are fed to an automatic satisfiability-
modulo-theories (SMT) solver, namely Z3 [3]. If the SMT solver proves the given for-
mula to be valid, then the Dafny program is correct; if it reports a counterexample, then
the Dafny verifier will report an error message about the Dafny program.

3 Benchmarks Solutions in Dafny

In this section, we present our approach to verifying each of the eight benchmarks in
Dafny. The problem requirements for each benchmark challenge and our solutions to
each follow. In each benchmark, the program text with specifications and other anno-
tations are fed to the Dafny verifier, which then verifies them automatically with no
further user guidance.

3.1 Benchmark #1: Adding and Multiplying Numbers

Problem Requirements: Verify an operation that adds two numbers by repeated incre-
menting. Verify an operation that multiplies two numbers by repeated addition, using
the first operation to do the addition. Make one algorithm iterative, the other recursive.

We present an iterative solution to addition and a recursive solution to multiplication
in Fig. 1. The standard procedural programming constructs arise in these two modu-
lar pieces of code which add and multiply two mathematical integers respectively. In
both methods, the postcondition is verified, as is termination. The iterative method also
requires the verification of a loop invariant.

Our iterative solution to addition is similar to the solution presented in [12], which
uses the RESOLVE language and the SplitDecision simplifier.

When we started answering the benchmarks, Dafny did not verify the absence of
infinite method recursion. When this was implemented, we were both surprised and
embarrassed, at a reported error that showed that we did not do the recursion properly
in our initial recursive solution. The decreases clause in Fig. 1, which uses a lexico-
graphic pair, is used by Dafny to prove termination.

Also, we found that many termination metrics for loops are boring, so we extended
the Dafny verifier with a few simple heuristics for guessing a termination metric from
the loop guard, in case the loop has no explicit decreases clause. This simple trick let
us simplify the program text for several loops. For example, the termination metrics -n
and n, respectively, for the two loops in method Add are found by the verifier.

3.2 Benchmark #2: Binary Search in an Array

Problem Requirements: Verify an operation that uses binary search to find a given
entry in an array of entries that are in sorted order.

boogie.codeplex.com


Dafny Meets the Verification Benchmarks Challenge 115

method Add(x: int, y: int) returns (r: int)
ensures r = x+y;

{
r := x;
if (y < 0) {
var n := y;
while (n �= 0)

invariant r = x+y-n ∧ 0 ≤ -n;
{

r := r - 1; n := n + 1;
}

} else {
var n := y;
while (n �= 0)

invariant r = x+y-n ∧ 0 ≤ n;
{

r := r + 1; n := n - 1;
}

}
}
method Mul(x: int, y: int) returns (r: int)

ensures r = x*y;
decreases x < 0, x;

{
if (x = 0) {
r := 0;

} else if (x < 0) {
call r := Mul(-x, y); r := -r;

} else {
call r := Mul(x-1, y); call r := Add(r, y);

}
}

Fig. 1. Benchmark #1: Adding and multiplying numbers

method BinarySearch(a: array<int>, key: int) returns (result : int)
requires a �= null;
requires (∀ i, j • 0 ≤ i ∧ i < j ∧ j < |a| =⇒ a[i] ≤ a[j]);
ensures -1 ≤ result ∧ result < |a|;
ensures 0 ≤ result =⇒ a[result] = key;
ensures result = -1 =⇒ (∀ i • 0 ≤ i ∧ i < |a| =⇒ a[i] �= key);

Fig. 2. Benchmark #2: Binary search specification

invariant 0 ≤ low ∧ low ≤ high ∧ high ≤ |a|;
invariant (∀ i • 0 ≤ i ∧ i < low =⇒ a[i] < key);
invariant (∀ i • high ≤ i ∧ i < |a| =⇒ key < a[i]);

Fig. 3. Benchmark #2: Loop invariants supplied in the binary search method

The binary search algorithm is straightforward to specify, implement, and verify. We
include the verified binary search method specification and the verified loop conditions
in Fig. 2 and Fig. 3, respectively.
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Improvements were made to Dafny, as a result of this exercise, as an error in the well-
formedness of functions (in particular, the requires clause) was detected and corrected.

3.3 Benchmark #3: Sorting a Queue

Problem Requirements: Specify a user-defined FIFO queue ADT that is generic (i.e.,
parameterized by the type of entries in a queue). Verify an operation that uses this
component to sort the entries in a queue into some client-defined order.

The specification of an integer FIFO queue ADT with standard methods is straight-
forward in Dafny. However, specifying the queue as a generic type (i.e., Queue<T>)
highlighted errors in the translation process from Dafny programs to its representation
as a Boogie program. These errors were corrected and a generic queue was successfully
specified as in Fig. 4.

class Queue<T> {
var contents : seq<T>;

method Init();
modifies this;
ensures |contents| = 0;

method Enqueue(x: T);
modifies this;
ensures contents = old(contents) + [x];

method Dequeue() returns (x: T);
requires 0 < |contents|;
modifies this;
ensures contents = old(contents)[1..] ∧ x = old(contents)[0];

function method Head(): T
requires 0 < |contents|;
reads this;

{ contents[0] }

function method Get(i: int): T
requires 0 ≤ i ∧ i < |contents|;
reads this;

{ contents[i] }
}

Fig. 4. Benchmark #3: Queue specification

A method to sort the queue, by removing the minimum element in the input queue
and inserting it in the output queue, was easily verified. In our solution in Fig. 5, the
ghost out-parameter perm is used to specify that the Sort method’s output queue is a
permutation of its input queue. When we first attempted this benchmark, ghost variables
were not supported in Dafny. The complicated postconditions for the Sort method say
that the output queue is sorted, that perm is a permutation of the input queue, and that
perm describes the relationship between the input and output queues. Corresponding
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method Sort(q: Queue<int>) returns (r: Queue<int>, ghost perm : seq<int>)
requires q �= null;
modifies q;
ensures r �= null ∧ fresh(r); // return a newly allocated Queue object
ensures |r.contents| = |old(q.contents)|;
ensures (∀ i, j • 0 ≤ i ∧ i < j ∧ j < |r.contents| =⇒ r.Get(i) ≤ r.Get(j));
// perm is a permutation
ensures |perm| = |r.contents|;
ensures (∀ i • 0 ≤ i ∧ i < |perm|=⇒ 0 ≤ perm[i] ∧ perm[i] < |perm| );
ensures (∀ i, j • 0 ≤ i ∧ i < j ∧ j < |perm| =⇒ perm[i] �= perm[j]);
// the final Queue is a permutation of the input Queue
ensures (∀ i • 0 ≤ i ∧ i < |perm| =⇒ r.contents[i] = old(q.contents)[perm[i]]);

{
r := new Queue<int>;
call r.Init();
ghost var p := [];
var n := 0;
while (n < |q.contents|)
invariant n ≤ |q.contents| ∧ n = |p|;
invariant (∀ i • 0 ≤ i ∧ i < n =⇒ p[i] = i);

{
p := p + [n]; n := n + 1;

}
perm := [];
ghost var pperm := p + perm;
while (|q.contents| �= 0)
invariant |r.contents| = |old(q.contents)| - |q.contents|;
invariant (∀ i, j • 0 ≤ i ∧ i < j ∧ j < |r.contents| =⇒

r.contents[i] ≤ r.contents[j]);
invariant (∀ i, j • 0 ≤ i ∧ i < |r.contents| ∧ 0 ≤ j ∧ j < |q.contents| =⇒

r.contents[i] ≤ q.contents[j]);
// pperm is a permutation
invariant pperm = p + perm ∧ |p| = |q.contents| ∧ |perm| = |r.contents|;
invariant (∀ i • 0 ≤ i ∧ i < |perm| =⇒ 0 ≤ perm[i] ∧ perm[i] < |pperm|);
invariant (∀ i • 0 ≤ i ∧ i < |p| =⇒ 0 ≤ p[i] ∧ p[i] < |pperm|);
invariant (∀ i, j • 0 ≤ i ∧ i < j ∧ j < |pperm| =⇒ pperm[i] �= pperm[j]);
// the current array is that permutation of the input array
invariant (∀ i • 0 ≤ i ∧ i < |perm| =⇒ r.contents[i] = old(q.contents)[perm[i]]);
invariant (∀ i • 0 ≤ i ∧ i < |p| =⇒ q.contents[i] = old(q.contents)[p[i]]);

{
call m,k := RemoveMin(q);
perm := perm + [p[k]]; // adds index of min to perm
p := p[k+1..] + p[..k]; // remove index of min from p
call r.Enqueue(m);
pperm := pperm[k+1..|p|+1] + pperm[..k] + pperm[|p|+1..] + [pperm[k]];

}
assert (∀ i • 0 ≤ i ∧ i < |perm| =⇒ perm[i] = pperm[i]); // lemma needed to trigger axiom

}

Fig. 5. Benchmark #3: Implementation of a method to sort the elements of a queue. For space
reasons, we have omitted method RemoveMin.

invariants are required to verify the postcondition and while this leads to a high amount
of annotations, Dafny verifies these automatically. We could have existentially quanti-
fied over perm, but chose simply to return the witness of that existential quantification.

When we first attempted the benchmarks, Dafny had (immutable) mathematical se-
quences, but no (mutable) arrays. In our initial versions of Benchmarks #2 and #3, we
therefore coded up an Array class, which we specified in terms of a sequence. When
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arrays were subsequently added to Dafny, we changed our code to use them directly, as
shown here.

Unfortunately, we were unable to sort a generically typed queue. The problem is that
a generic comparable type could not be used, as Dafny has no way of specifying that
the comparable type’s AtMost function (as in Fig. 6) is total and transitive. An alter-
native solution would be to make the Sort operation generic, to pass the instantiation
type and its comparison operator in as parameters, and to use a precondition to specify
the transitive and reflective properties of the comparison operator. However, this is not
possible in Dafny either, so we simply sort the generic queue that is instantiated with
integers into increasing order.

class Comparable {
function AtMost(c: Comparable): bool;
reads this, c;

}

Fig. 6. Benchmark #3: Comparable class

3.4 Benchmark #4: Layered Implementation of a Map ADT

Problem Requirements: Verify an implementation of a generic map ADT, where the
data representation is layered on other built-in types and/or ADTs.

A generic map ADT may be specified using sequences of keys and values where a key
stored at position i in the sequence of keys has its corresponding value stored at po-
sition i in the sequence of values. These are defined as ghost fields as illustrated in
Fig. 7, which means they are part of the specification but not part of the compiled pro-
gram. Built-in equality is used to compare keys. It would be nice to use a user-supplied
comparison operator, but Dafny does not have support for that (cf. the discussion about
operation AtMost in Benchmark #2).

An important part of the specification is to say which pieces of the program state are
allowed to be changed. This is called framing and is specified in Dafny by a modifies
clause. Frames in Dafny are at the granularity of objects with a dynamic frame (called
Repr in Fig. 7) maintained as the set of objects that are part of the receiver’s
representation.

The consistency of an object is often specified using a class invariant [11], but Dafny
does not have a class-invariant construct. Instead, consistency is specified using a func-
tion (called Valid in Fig. 7) that is systematically incorporated in method pre- and
postconditions (see also [7,8]).

We implement the generic map ADT using a linked-list of nodes, where each node
contains a key, its value, and a reference to the next node in the linked list as shown in
Fig. 8. Verification of methods to initialise the mapping, find a value given a key, add a
key/value pair, remove a key, and find the index at which a key is stored, are provided.
We show two of the methods in Fig. 7.
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class Map<Key,Value> {
ghost var Keys : seq<Key>;
ghost var Values : seq<Value>;
ghost var Repr : set<object>;

var head: Node<Key,Value>;
ghost var nodes : seq<Node<Key,Value>>;

function Valid(): bool
reads this, Repr;

{ this in Repr ∧
|Keys| = |Values| ∧ |nodes| = |Keys| + 1 ∧ head = nodes[0] ∧
(∀ i • 0 ≤ i ∧ i < |Keys| =⇒

nodes[i] �= null ∧ nodes[i] in Repr ∧
nodes[i].key = Keys[i] ∧ nodes[i].key �∈ Keys[i+1..] ∧
nodes[i].val = Values[i] ∧ nodes[i].next = nodes[i+1]) ∧

nodes[|nodes|-1] = null
}

method Init()
modifies this;
ensures Valid() ∧ fresh(Repr - {this}) ∧ |Keys| = 0;

{
Keys := [];
Values := [];
Repr := {this};
head := null;
nodes := [null];

}

method Add(key : Key, val: Value)
requires Valid();
modifies Repr;
ensures Valid() ∧ fresh(Repr - old(Repr));
ensures (∀ i • 0 ≤ i ∧ i < |old(Keys)| ∧ old(Keys)[i] = key =⇒

|Keys| = |old(Keys)| ∧ Keys[i] = key ∧ Values[i] = val ∧
(∀ j • 0 ≤ j ∧ j < |Values| ∧ i �= j =⇒

Keys[j] = old(Keys)[j] ∧ Values[j] = old(Values)[j]));
ensures key �∈ old(Keys) =⇒ Keys = [key] + old(Keys);
ensures Values = [val] + old(Values);

{
call p, n, prev := FindIndex(key);
if (p = null) {

var h := new Node<Key,Value>;
h.key := key; h.val := val; h.next := head;
head := h;
Keys := [key] + Keys; Values := [val] + Values;
nodes := [h] + nodes;
Repr := Repr + {h};

} else {
p.val := val;
Values := Values[n := val];

}
}
// . . .

}

Fig. 7. Benchmark #4: Extract of the map ADT implementation
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class Node<Key,Value> {
var key: Key;
var val: Value;
var next: Node<Key,Value>;

}

Fig. 8. Benchmark #4: Node class used in the implementation of the map ADT

3.5 Benchmark #5: Linked Implementation of a Queue ADT

Problem Requirements: Verify an implementation of the queue type specified for
Benchmark #3, using a linked data structure for the representation.

An implementation of the queue specified in Benchmark #3 is provided in terms of a set
of nodes, references to the head and the tail node, and a sequence of values recording
the queue contents.

In our solution, which we adapted from an example in the Marktoberdorf lecture
notes on Dafny [7], the queue elements stored in nodes are generically typed. Elements
are added to the queue by dynamically creating a new node, storing the element to be
added in that node, and linking the queue’s tail node to the new node that contains the
element to be added. Other queue operations are implemented in a similar manner with

class Collection<T> {
var Repr: set<object>;
var elements : seq<T>;

function Valid():bool
reads this, Repr;

{ this in Repr }

method GetCount() returns (c:int)
requires Valid();
ensures 0 ≤ c;

{ c := |elements|; }

method Init()
modifies this;
ensures Valid() ∧ fresh(Repr - {this});

{
elements := []; Repr := {this};

}

method GetIterator() returns (iter :Iterator<T>)
requires Valid();
ensures iter �= null ∧ iter.Valid();
ensures fresh(iter.Repr) ∧ iter.pos = -1;
ensures iter.c = this;

{
iter := new Iterator<T>;
call iter.Init(this);

}

// . . .
}

Fig. 9. Sample collection class for use in Benchmark #6
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Dafny’s built-in set and sequence data types providing the underlying data structures
that allow our solution to be automatically verified.

3.6 Benchmark #6: Iterators

Problem Requirements: Verify a client program that uses an iterator for some collec-
tion type, as well as an implementation of the iterator.

The implementation of both a collection class and an iterator class was necessary to
meet this benchmark in Dafny. A generic collection class was implemented as a se-
quence of generic types with methods to initialise the collection, return an item, add
an item, and get an iterator on collections. See Fig. 9 for an extract of the code. While
we acknowledge that our solution does not meet the original challenge problem1, which
requires that an iterator be invalidated whenever its associated collection is updated, our
solution does address the challenge as presented in the Weide et al. benchmark suite.

class Iterator<T> {
var c: Collection<T>;
var pos: int;
var Repr: set<object>;

function Valid():bool
reads this, Repr;

{ this in Repr ∧ c �= null ∧ -1 ≤ pos ∧ null �∈ Repr }

method Init(coll:Collection<T>)
requires coll �= null;
modifies this;
ensures Valid() ∧ fresh(Repr - {this}) ∧ pos = -1;
ensures c = coll;

{
c := coll;
pos := -1;
Repr := {this};

}

method MoveNext() returns (b:bool)
requires Valid();
modifies Repr;
ensures fresh(Repr - old(Repr)) ∧ Valid();
ensures pos = old(pos) + 1 ∧ b = HasCurrent() ∧ c = old(c);

{
pos := pos+1;
b := pos < |c.elements|;

}

// . . .
}

Fig. 10. Sample implementation of the iterator class for benchmark #6

Our client program uses an iterator over this collection type. This program stores
the elements of the collection in a sequence and we verify that the iterator returns the
correct elements. We also verify that the iterator does not destroy the collection that it
iterates over.

1 Issued at SAVCBS 2006.
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3.7 Benchmark #7: Input and Output Streams

Problem Requirements: Specify simple input and output capabilities such as charac-
ter input streams and output streams. Verify an application program that uses them in
conjunction with one of the components from the earlier benchmarks.

Our specification of streams is implemented as a stream of integers with methods to
create a stream for writing, open a stream, write an integer to a stream, read an inte-
ger from a stream, check for the end of a stream, and close a stream. Sample method
implementations are presented in Fig. 11.

A client program that reads integers, stores them in a Queue (specified in Benchmark
#3), sorts them (using the algorithm from Benchmark #3) and writes them to a stream,
is verified using Dafny. Note that we assume finite streams and that if we were required
to prove termination, then we would need some way to signal the end of a stream.

class Stream {
var Repr: set<object>;
var stream : seq<int>;
var isOpen : bool;

function Valid(): bool
reads this, Repr;

{ null �∈ Repr ∧ this in Repr ∧ isOpen }

method GetCount() returns (c:int)
requires Valid();
ensures 0 ≤ c;

{ c := |stream|; }

method Create() //writing
modifies this;
ensures Valid() ∧ fresh(Repr - {this});
ensures stream = [];

{
stream := [];
Repr := {this};
isOpen:= true;

}

method Open() //reading
modifies this;
ensures Valid() ∧ fresh(Repr - {this});

{
Repr := {this};
isOpen :=true;

}

method PutChar(x: int)
requires Valid();
modifies Repr;
ensures Valid() ∧ fresh(Repr - old(Repr));
ensures stream = old(stream) + [x];

{ stream:= stream + [x]; }
}

Fig. 11. Benchmark #7: Sample implementation of input and output streams
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3.8 Benchmark #8: An Integrated Application

Problem Requirements: Verify an application program with a concisely stated set of
requirements, where the particular solution relies on the integration of at least a few of
the previous benchmarks.

The application program that we verify implements a dictionary as a mapping between
words and sequences of words. To set up the dictionary, we read a stream of words
(adapting code from Benchmark #7) and put them into a mapping where the first word
in the stream is the term to be defined. The subsequent words on the same line in the
stream form that terms definition. Reading the stream again provides the next term
followed by its definition and so on until nothing remains to be read. The map ADT
used in this application is that verified in Benchmark #4. The sort method and the queue
data type verified in Benchmark #3, are used to sort the words into alphabetical order.
Some sample code is provided in Fig. 12.

var rs := new ReaderStream;
call rs.Open();
var glossary := new Map<Word,seq<Word>>;
call glossary.Init();
var q := new Queue<Word>;
call q.Init();

while (true)
invariant rs.Valid() ∧ fresh(rs.Repr);
invariant glossary.Valid();
invariant glossary �∈ rs.Repr;
invariant null �∈ glossary.keys;
invariant (∀ d • d in glossary.values =⇒ null �∈ d);
invariant q �∈ rs.Repr;
invariant q.contents = glossary.keys;
decreases *; // we leave out the decreases clause - unbounded stream

{
call term,definition := readDefinition(rs);
if (term = null) {
break;

}
call present, d := glossary.Find(term);
if (¬present) {
call glossary.Add(term,definition);
call q.Enqueue(term);

}
}
call rs.Close();
call q,p := Sort(q);

Fig. 12. Sample code verified in the solution to Benchmark #8

For this benchmark, we were unsure about how much would be reasonable to specify.
For example, would one want to go as far as to say the output is a stream of characters
that, interpreted as HTML and rendered by a standard web browser, provides a list of
words with clickable hyperlinks that lead to other words on the page, and all words and
definitions shown are those from the input? We chose a specification closer to the other
end of the spectrum, namely to specify just enough to prove the absence of run-time
errors in the code.
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4 Dafny Success

The performance measures of the proofs, all of which are completed automatically, are
presented in Fig. 13. Evidence that the tool automatically detects an incorrect solution
can be generated by simple edits to the Dafny implementations. As noted in the presen-
tation of our solutions, some errors in Dafny were detected as a result of attempting to
verify our benchmark solutions. These errors were corrected while other Dafny features
were added or improved.

Benchmark # # of Verifications Time (in seconds)
1 10 3.5
2 6 3.7
3 10 8.0
4 11 4.9
5 22 7.8
6 21 3.9
7 23 3.9
8 42 5.1

Fig. 13. Performance measurements of program verifications. Times shown take the average of
3 runs. For some of the benchmarks, these times also include some client code we added to the
program files.

Notable enhancements to Dafny, since our first attempt at these benchmarks, in-
clude support for verifying recursion termination, heuristics that eliminate the need for
many decreases clauses, the addition of ghost variables, the addition of arrays, and
the redesign of the encoding of generics. This redesign includes improvements to the
encoding of built-in types set and seq (see Boogie/Binaries/DafnyPrelude.bpl on
codeplex.boogie.com). The syntax of Dafny has improved with additions such as the
�∈ operator, introduced on sets and sequences, and the Dafny call statement which now
automatically declares left-hand sides as local variables, if they were not already local
variables.

In early versions of our benchmark solutions, we often needed to supply lemmas
to assist the automatic verification of sequence properties. Such a lemma is usually
supplied as an assert statement, as shown in Fig. 5. The asserted expression, which
is proved by the verifier, mentions terms that are relevant to the program’s correctness,
and the mention of these terms prompts the SMT solver to instantiate related axioms
and other quantifications, as may be required in the proof. The treatment of sequences
in Dafny has since been improved, allowing the verification to be completed mostly
without the use of lemmas to trigger the proof.

In early versions of our benchmark solutions, we often needed to supply lemmas to
assist the verifier in triggering the correct axioms to verify sequence properties. The
treatment of sequences in Dafny has since been improved, allowing the verification to
be completed mostly without the use of lemmas to trigger the proof.

Boogie/Binaries/DafnyPrelude.bpl
codeplex.boogie.com
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We are aware that there are some limitation to our solutions. For example, Dafny
uses mathematical integers, not the bounded integers found in most popular program-
ming languages. This means that there is no issue of overflow in Dafny, which (is really
a feature but) may be considered a limitation of what is verified. A more obvious short-
coming is in meeting Benchmark #3, where we couldn’t sort a generic Queue into some
client-defined order. However, this too is informative and will help us to compare Dafny
with other tools that take up the benchmark challenges.

5 Conclusions

We have attempted to meet the given verification benchmarks using the language and
verifier Dafny and are pleased with the results. We were not concerned about how
the benchmarks themselves were designed, but tried to meet their original specifica-
tions. Our experience was that it is often tempting to make the benchmark fit your tool
rather than to try to solve the benchmark itself. We hope that ongoing discussions with
the benchmark authors, and discussions with others who will write solutions for these
benchmarks, will help shape future revisions of these and other benchmarks. In partic-
ular, we would like to see that the next revision of the benchmarks would make it easier
to constrain solutions so that it is easier to compare language features and verification
techniques. A more detailed framework for comparing languages and verifiers, to be
used in conjunction with the benchmarks, is also desirable. Further benchmarks that we
hope to explore include the original iterator and the composite problems2 which would
help compare Dafny to other verifiers based on the dynamic framing paradigm.

The exercise allowed us to explore the strengths and weaknesses of Dafny and con-
tributed towards improving both the syntax of the language and the verification process.
We strongly encourage others to take up the verification challenge as this will help the
community to compare and improve existing languages and tools. Having a number
of problems solved in different languages will also assist researchers in learning about
another’s favourite language and how it compares to their own.

Acknowledgments. We thank the authors of [12] and their research students for feed-
back on our initial attempts at these verification benchmarks. We also thank the anony-
mous referees, for their thoughtful and helpful comments.
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Abstract. Reusable software components need expressive specifications. This
paper outlines a rigorous foundation of model-based contracts, a method to
equip classes with strong contracts that support accurate design, implementa-
tion, and formal verification of reusable components. Model-based contracts con-
servatively extend the classic Design by Contract approach with a notion of
model, which underpins the precise definitions of such concepts as abstract object
equivalence and specification completeness. Experiments applying model-based
contracts to libraries of data structures suggest that the method enables accurate
specification of practical software.

1 Introduction

The rationale for precise software specifications involves several well-known argu-
ments; in particular, specifications help understand the problem before building a so-
lution, and they are necessary for verifying implementations. In the context of reusable
software components, there is another essential application of specifications: providing
client programmers with an accurate description of the API. Design by Contract tech-
niques [9] enable authors of reusable modules to equip them with specification elements
known as “contracts” (routine pre and postconditions, class invariants).

While specification methods primarily intended for formal verification typically use
notations based on mathematics, Design by Contract approaches, such as Eiffel [9],
JML [8] and Spec# [2], rely instead on an assertion language embedded in the pro-
gramming language. This adds a significant benefit: assertions can be evaluated during
execution. As a consequence, contracts have played a major role in testing, especially
for Eiffel, where an advanced testing environment, AutoTest [10], takes advantage of
executable specifications for automatic test generation. More generally, Eiffel program-
mers routinely rely on runtime contract evaluation for testing and debugging. Another
practical benefit of Design by Contract is approachability: programmers do not need to
learn a separate notation for specifications.

These advantages of contracts have traditionally come at a price: expressiveness. The
lack of an advanced mathematical notation makes it harder to express the full specifica-
tion of components (see examples in Section 2). An extensive study [3] indicates that in
practice Eiffel classes contain many contracts, but they cover only part of the intended
functional properties.

Can we get all the advanced benefits of expressive formal specifications while retain-
ing an executable specification language that does not introduce complex notation? The
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present paper proposes a positive answer, based on the idea of models. Specifications, in
this approach, are expressed in terms of the abstract model of a class, defined through
one or more model queries. Model queries return instances of model classes: direct
translations of mathematical concepts (such as sets or sequences) into the programming
language.

The idea of using model classes and model queries in contracts is not new; our pre-
vious work [13,12] and, among others, JML [8] introduced the concepts and provided
libraries of model classes. Two main contributions of the present paper are developing
a rigorous and systematic approach to model-based specifications and confirming the
applicability of the approach through two realistic case studies.

Section 3 shows how the interface of a class defines unambiguously a notion of
abstract object space that determines the class model. Section 3 also outlines precise
guidelines for writing contracts that refer to model queries. The guidelines come with
a definition of specification completeness (with respect to the model). The definition is
formal, yet amenable to informal reasoning; it is practically useful in assessing whether
a contract is sufficiently detailed or is likely omitting some important details.

Section 4 describes two case studies applying model-based contracts to Eiffel-
Base [4], Eiffel’s standard collection of fundamental data structures, and to the devel-
opment of EiffelBase2, intended to replace EiffelBase and to contribute to the Verified
Software Repository [14]. The results show that the method is successful in deliver-
ing well-engineered components with expressive — usually complete — specifications.
Most advantages of standard Design by Contract are retained, while pushing a more ac-
curate evaluation of design choices and an impeccable definition of interfaces. The ex-
ecutability of most model classes supports the reuse of Eiffel’s AutoTest infrastructure
with more expressive contracts, which boosts the effectiveness of automated testing in
finding defects in production software.

For lack of space, the rest of the paper omits some examples and references, which
are available in an extended version [11].

2 Motivation and Overview

Design by Contract uses the same notation for expressions in the implementation and
in the specification. This restriction ultimately impedes the formalization and verifica-
tion of full functional correctness, as demonstrated below on two examples from the
EiffelBase library [4].

Lines 1–13 in Figure 1 show a portion of class LINKED LIST. Features (members)
count and index record respectively the number of elements stored in the list and the
position of the internal cursor. The routine put right inserts an element, v, to the right of
the cursor. The precondition of the routine (require) demands that the cursor not be after
the last element. The postcondition (ensure) asserts that inserting an element increments
count by one but does not change index. This is correct, but it does not capture the
essence of the insertion semantics: in particular, it doesn’t prevent the implementation
from changing elements that were in the list before.

Expressing such complex properties is impossible or exceedingly complicated with
the standard assertion language; as a result most specifications are incomplete in the
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1 class LINKED LIST [G]
2 put right (v: G)
3 −− Add ‘v’ to the right of cursor.
4 require 0 ≤ index ≤ count
5 do . . .
6 ensure
7 count = old count + 1
8 index = old index
9 end

10

11 count: INTEGER −− Number of elements

12 index: INTEGER −− Current cursor position
13 end
14

15 class TABLE [G, K]
16 put (v: G ; k: K)
17 −− Associate value ‘v’ with key ‘k’.
18 require . . .
19 deferred
20 end
21 end

Fig. 1. Snippets from the EiffelBase classes LINKED LIST (lines 1–13) and TABLE (lines 15–21)

sense that they fail to capture precisely the semantics of routines. Specification weak-
ness hinders formal verification in two ways. First, establishing weak postconditions
is simple, but confidence in the full functional correctness of a verified routine will be
low. Second, weak contracts affect negatively verification modularity: it is impossible
to establish what a routine r achieves, if r calls another routine s whose contract is not
strong enough to document its effect within r precisely.

Weak assertions limit the potential of many other applications of Design by Con-
tract. Specifications, for example, should document the abstract semantics of opera-
tions in deferred (abstract) classes. Incomplete contracts cannot fully do so; as a result,
programmers have fewer safeguards to prevent inconsistencies in the design and fewer
chances to make deferred classes useful to clients through polymorphism.

The feature put in class TABLE (lines 16–20 in Figure 1) is an example of such a
phenomenon. It is unclear how to express the abstract semantics of put with standard
contracts. In particular, the absence of a postcondition leaves it undefined what should
happen when an element is inserted with a key that is already present: should put re-
place the existing element with the new one or leave the table unchanged? Indeed,
some child classes of TABLE, such as class ARRAY, implement put with a replacement
semantics, while others, such as class HASH TABLE, disallow overriding of preexisting
mappings with put. HASH TABLE even introduces another feature force that implements
the replacement semantics. This obscures the behavior of routines to clients and makes
it questionable whether put has been introduced at the right point in the inheritance
hierarchy.

Enhancing Design by Contract with Models. This paper presents an extension of
Design by Contract that addresses the aforementioned problems. The extension con-
servatively enhances the standard approach with model classes: immutable classes
representing mathematical concepts that provide for more expressive specifications.
Wrapping mathematical entities with classes supports richer contracts without any need
to extend the Design by Contract notation, familiar to programmers. Contracts using
model classes are called model-based contracts.

Figure 2 shows an extensions of the examples in Figure 1 with model-based con-
tracts. LINKED LIST is augmented with a query sequence that returns an instance of
class MML SEQUENCE, a model class representing a mathematical sequence; the im-
plementation, omitted for brevity, builds sequence according to the actual content of the
list. The meta-annotation note declares the two features sequence and index as the model
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1 note model: sequence, index
2 class LINKED LIST [G]
3 sequence: MML SEQUENCE [G]
4 −− Sequence of elements
5 do . . . end
6

7 index: INTEGER −− Current cursor position
8

9 put right (v: G)
10 −− Add ‘v’ to the right of cursor.
11 require 0 ≤ index ≤ count
12 do . . .
13 ensure
14 sequence = old ( sequence.front (index).
15 extended (v) + sequence.tail (index + 1) )
16 index = old index
17 end
18 end

19 note model: map
20 class TABLE [G, K]
21 map: MML MAP [G, K]
22 −− Map of keys to values
23 deferred end
24

25 put (v: G ; k: K)
26 −− Associate value ‘v’ with key ‘k’.
27 require map.domain [k]
28 deferred
29 ensure
30 map = old map.replaced at (k, v)
31 end
32 end

Fig. 2. Classes LINKED LIST (left) and TABLE (right) with model-based contracts

of the class; all contracts will be written in terms of them. In particular, the postcon-
dition of put right can precisely describe the effect of the routine: the new sequence is
the concatenation of the old sequence up to index, extended with element v, with the tail
of the old sequence starting after index. We can assert that the new postcondition — in-
cluding the clause about index — is complete with respect to the model of the class,
because it defines the effect of put right on the abstract model unambiguously. This no-
tion of completeness is a powerful guide to writing accurate specification that makes
for well-defined interfaces and verifiable classes.

The mathematical notion of a map — encapsulated by the model class MML MAP
— is a natural model for the class TABLE. Feature map cannot have an implementa-
tion yet, because TABLE is deferred and hence it is not committed to any representation
of data. Nonetheless, availability of the model makes it possible to write a complete
postcondition of put already at this abstract level, which in turn requires to commit to a
specific semantics for insertion. The example in Figure 2 chooses the replacement se-
mantics; correspondingly, all children of TABLE will have to conform to this semantics,
guaranteeing a coherent reuse of TABLE throughout the class hierarchy.

3 Foundations of Model-Based Contracts

3.1 Specifying Classes with Models

Interfaces, References, and Objects. A class C denotes a collection of objects. Ex-
pressions such as o : C define o as a reference to an object of class C; the notation
is overloaded for conciseness, so that occurrences of o can denote the object it refer-
ences or the reference itself, according to the context. Each class C defines a notion of
reference equality ≡C and of object equality 
C ; both are equivalence relations. Two
references o1, o2 : C can be reference equal (written o1 ≡C o2) or object equal (written
o1 
C o2). Reference equality is meant to capture whether o1 and o2 are aliases for the
same memory location, whereas object equality is meant to hold for (possibly) distinct
copies of the same actual content.
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1 note model: sequence, index
2 class LINKED LIST [G]
3 . . .
4 item: G
5 −− Value at cursor position
6 require sequence.domain [index]
7 do . . .
8 ensure
9 Result = sequence [index]

10 end

11 duplicate (n: INTEGER): LINKED LIST [G]
12 −− A copy of at most ‘n’ elements
13 −− starting at cursor position
14 require n ≥ 0
15 do . . .
16 ensure
17 Result.sequence = sequence.interval (index, index + n − 1)
18 Result.index = 0
19 end
20 end

Fig. 3. Snippets of class LINKED LIST with model-based contracts (continued from Figure 2)

The principle of information hiding prescribes that each class define an interface [9].
It is good practice to partition features into queries and commands; queries are functions
of the object state, whereas commands modify the object state but do not return any
value. IC = QC ∪MC denotes the interface of a class C partitioned in queries QC and
commands MC .1 It is convenient to partition all queries into value-bound queries and
reference-bound queries. Value-bound queries create fresh objects to return (or more
generally objects that were unknown to the client before calling the query), whereas
reference-bound queries give the client direct access, through a reference, to preexisting
objects. In other words, clients of a value-bound query should not rely on the identity
of its result. The classification in value-bound and reference-bound extends naturally to
arguments of features.

Example 1. Query item of class LINKED LIST (Figure 3) is reference-bound, as the
client receives a reference to the same memory location that was earlier inserted in the
list. Query duplicate is instead value-bound, as it returns a copy of a portion of the list.

Abstract Object Space. The interface IC induces an equivalence relation �C over
objects of class C called abstract equality and defined as follows: o1 �C o2 holds for
o1, o2 : C iff for any applicable sequence of calls to commands m1, m2, . . . ∈ MC and
a query q ∈ QC returning objects of some class T , the qualified calls o1.m1; o1.m2; · · ·
and o2.m1; o2.m2; · · · (with identical actual arguments where appropriate) drive o1 and
o2 in states such that if q is reference-bound then o1.q ≡T o2.q, and if q is value-bound
then o1.q 
T o2.q. Intuitively, two objects are equivalent with respect to �C if a client
cannot distinguish them by any sequence of calls to public features. Abstract equality
defines an abstract object space: the quotient set AC = C/ �C of C by �C . As
a consequence, two objects are equivalent w.r.t. �C iff they have the same abstract
(object) state. Any concrete set that is isomorphic to AC is called a model of C.

Example 2. Consider a class implementing a queue. If the remove operation were not
part of the interface, no element in the queue would be accessible to clients but the
one that was enqueued first; the model of such a class would be � × G: a set of pairs
recording the number of elements and the head element of generic type G. Including
remove in the interface, as it usually is the case for queues, allows clients to access
all the elements in the order of insertion. Hence, two queues with full interfaces are

1 Constructors need no special treatment and can be modeled as queries returning new objects.
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indistinguishable iff they have all the same elements in the same order, which makes
G∗ (sequences of elements) a model for queues.

Model Classes. The model of a class C is expressed as a tuple DC = D1
C × D2

C ×
. . . × Dn

C of model classes. Model classes are immutable classes designed for spec-
ification purposes; essentially, they are wrappers of rigorously defined mathematical
entities: elementary sorts such as Booleans, integers, and object references, as well as
more complex structures such as sets, bags, relations, maps, and sequences. The Mathe-
matical Model Library (MML) [12] provides a variety of such model classes, equipped
with features that correspond to common operations on the mathematical structures
they represent, including first-order quantification. For example, class MML SET mod-
els sets of elements of homogeneous type; it includes features such as membership test
and quantification.

Model Queries. Every class C provides a collection of public model queries SC =
s1

C , s2
C , . . . , sn

C , one for each component model class in DC . Each model query si
C

returns an instance of the corresponding model class Di
C that represents the current

value of the i-th component of the model. Clauses in the class invariant can con-
strain the values of the model queries to match precisely the abstract object space.
Consider, for example, the model of LINKED LIST (Figure 2): model query index:
INTEGER returning the cursor position should be constrained by an invariant clause
0 ≤ index ≤ sequence.count + 1. A meta-annotation note model: s1

C , s2
C , . . . lists all model

queries of the class.
It is likely that some model queries (such as index in the example above) are already

used in the implementation before models are added explicitly; additional model queries
(such as sequence) return the remaining components of the model for specification pur-
poses. Our approach prefers to implement such additional model queries as functions
rather than attributes. This choice facilitates a purely descriptive usage of references to
model queries in specifications. In other words, instead of augmenting routine bodies
with bookkeeping instructions that update model attributes, routine postconditions are
extended with clauses that describe the new value returned by model queries in terms of
the old one. This has the advantage of enforcing a cleaner division between implemen-
tation and specification, while better modularizing the latter at routine level (properties
of model attributes are typically gathered in the class invariant).

Model-Based Contracts. Let C be a class equipped with model queries and let its
interface IC be partitioned into queries QC and commands MC . QC now includes the
model queries SC ⊆ QC together with other queries RC = QC \ SC . The rest of the
section contains guidelines to writing model-based contracts for commands in MC and
queries in RC .

The precondition of a feature is a constraint on the abstract states of its value-bound
arguments and, possibly, on the actual references to its reference-bound arguments.
The target object, in particular, can be considered an implicit value-bound argument.
For example, the precondition map.domain [k] of feature put in class TABLE (Figure 2),
refers to the abstract state of the target object, given by the model query map, and to its
actual reference-bound argument k.
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Postconditions should refer to abstract states only through model queries. This em-
phasizes the components of the abstract state that a feature modifies or relies upon,
which in turn facilitates understanding and reasoning on the semantics of a feature.

The postcondition of a command defines a relation between the prestate and the post-
state of its arguments and the target object. More precisely, the postcondition mentions
only abstract values of its value-bound arguments and possibly the actual references to
its reference-bound arguments; the target object is considered value-bound both in the
prestate and in the poststate.

It is common that a command only affects a few components of the abstract state
and leaves all the others unchanged. Accordingly, the closed world assumption is con-
venient: the value of any model query s ∈ SC that is not mentioned in the postcon-
dition is assumed not to be modified by the command, as if s = old s were a clause of
the postcondition. When the closed world assumption is wrong, explicit clauses in the
postcondition should establish the correct semantics.

The postcondition of a query defines the result as a function of its arguments and
the target object (with the usual discipline of mentioning only abstract values of value-
bound arguments and target object and possibly actual references to reference-bound
arguments). Value-bound queries define the abstract state of the result, whereas
reference-bound queries describe an actual reference to it. For example, compare the
postcondition of the reference-bound query item from class LINKED LIST (Figure 3)
with the postcondition of the value-bound query duplicate in the same class.

A clear-cut separation between queries and commands assumes abstract purity for
all queries: executing a query leaves the abstract state of all its arguments and of the
target object unchanged.

Inheritance and Model-Based Contracts. A class C′ that inherits from a parent class
C may or may not re-use C’s model queries to represent its own abstract state. For every
model query sC ∈ SC of the parent class that is not among the child’s model queries
SC′ , C′ should provide a linking invariant: a formula that defines the value returned
by sC in terms of the values returned by the model queries SC′ of the inheriting class.
This guarantees that the new model is indeed a specialization of the previous model, in
accordance with the notion of sub-typing inheritance.

A properly defined linking invariant ensures that every inherited feature has a definite
semantics in terms of the new model. However, the new semantics may be weaker; that
is, incompleteness is introduced (see Section 3.2).

Example 3. Consider class COLLECTION in Figure 4, a generic container of elements
whose model is a bag. Class DISPENSER inherits from COLLECTION and specializes
it by introducing a notion of insertion order; correspondingly, its model is a sequence.
The linking invariant of DISPENSER defines the value of the inherited model query bag
in terms of the new model query sequence and ensures that the semantics of features
is empty and wipe out is unambiguously defined also in DISPENSER. At the same time,
the model-based contract of command put in COLLECTION and the linking invariant are
insufficient to characterize the effects of put in DISPENSER, as the position within the
sequence where the new element is inserted is irrelevant for the bag.
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1 note model: bag
2 class COLLECTION [G]
3 bag: MML BAG [G]
4

5 is empty: BOOLEAN
6 ensure Result = bag.is empty end
7

8 wipe out
9 ensure bag.is empty end

10

11 put (v: G)
12 ensure bag = old bag.extended (v) end
13 end

14 note model: sequence
15 class DISPENSER [G]
16 inherit COLLECTION [G]
17

18 sequence: MML SEQUENCE [G]
19

20 invariant
21 bag.domain = sequence.range
22 bag.domain.for all ( agent (x: G): BOOLEAN
23 bag [x] = sequence.occurrences (x) )
24 end

Fig. 4. Snippets of classes COLLECTION (left) and DISPENSER (right) with model-based contracts

3.2 Completeness of Contracts

The notion of completeness for the specification of a class gives an indication of how
accurate the contracts are with respect to the model of that class. An incomplete contract
does not fully capture the effects of a feature, suggesting that the contract may be more
detailed or, less commonly, that the model of the class — and hence its interface — is
not abstract enough. A dual notion of soundness is definable along the same lines; for
brevity, this section only presents the more interesting notion of completeness.

Completeness of a Model-Based Contract. The specification of a feature f of class
C denotes two predicates pref and postf . pref represents the set of objects of class
C that satisfy the precondition2. If f is a command, postf has signature C × C and
denotes the pairs of target objects before and after executing the command. If f is a
query with return type T , postf has signature C × T ; it denotes the pairs of target
and returned objects for value-bound queries; and the pairs of target object and returned
reference for reference-bound queries. In both cases postf does not refer to the target
object after executing the query because all queries are assumed to be abstractly pure.

– The postcondition of a command m is complete iff: for every o, o′1, o
′
2 : C such that

prem(o), postm(o, o′1), and postm(o, o′2) it is o′1 �C o′2.
– The postcondition of a value-bound query q is complete iff: for every o : C and

t1, t2 : T such that preq(o), postq(o, t1), and postq(o, t2) it is t1 �T t2.
– The postcondition of a reference-bound query q is complete iff: for every o : C and

t1, t2 : T such that preq(o), postq(o, t1), and postq(o, t2) it is t1 ≡T t2.

A postcondition is complete if all the pairs of objects that satisfy it are equivalent (ac-
cording to the right model of equivalence). This means that the complete postcondition
of a command defines its effect as a mathematical function (as apposed to a relation)
from AC to AC . Similarly, the complete postcondition of a query defines the result as
a function from AC to AT if the query is value-bound and to the set of references if the
query is reference-bound.

2 For simplicity, the following definitions do not mention feature arguments; introducing them
is, however, straightforward.
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Example 4. The contracts of features is empty, wipe out, and put in class COLLECTION
(Figure 4) are complete; the postcondition of put, in particular, is complete as it defines
the new value of bag uniquely. In the child class DISPENSER, however, the inherited
postcondition of put becomes incomplete: the linking invariant does not uniquely define
sequence from bag, hence inequivalent sequences (for example, one with v inserted at
the beginning and another one with v at the end) satisfy the postcondition.

Completeness in Practice. As the previous example suggests, reasoning informally —
but precisely — about completeness of model-based contracts is often straightforward
and intuitive, especially if the guidelines of Section 3.1 have been followed. Complete-
ness captures the uniqueness of the (abstract) state described by a postcondition, hence
postconditions in the form Result = exp and similar, where exp is a side-effect free ex-
pression, are painless to check for completeness.

Example 5. Consider the following example, from class ARRAY whose model is a map.

1 fill (v: G ; l, u: INTEGER) −− Put ‘v’ at all positions in [‘l’, ‘u’].
2 require map.domain [l] and map.domain [u]
3 ensure map.domain = old map.domain
4 ( map | {MML INT SET} [[l, u]] ).is constant (v)
5 ( map | (map.domain − {MML INT SET} [[l, u]]) ) =
6 old ( map | (map.domain − {MML INT SET} [[l, u]]) )
7 end

The following reasoning shows that the postcondition is complete: a map is uniquely
defined by its domain and by a value for every key in the domain. The first clause of
the postcondition (line 3) defines the domain completely. Then, let k be any key in
the domain. If k ∈ [l, u] then the second clause (line 4) defines map (k)= v; otherwise
k �∈ [l, u], and the third clause (lines 5–6) postulates map(k) unchanged.

How useful is completeness in practice? As a norm, completeness is a valuable yard-
stick to evaluate whether the contracts are sufficiently detailed. This is not enough to
guarantee that the contracts are correct — and meet the original requirements — but the
yardstick is serviceable methodologically to focus on what a routine really achieves and
how that is related to the abstract model. As a result, inconsistencies in specifications
are less likely to occur, and the impossibility of systematically writing complete con-
tracts is a strong indication that the model is incorrect, or the implementation is faulty.
Either way, a warning is available before attempting a correctness proof.

While complete postconditions should be the norm, there are recurring cases where
incomplete postconditions are unavoidable or even preferable. Two major sources of
benign incompleteness are:

– inherently nondeterministic or stochastic specifications and
– usage of inheritance to factor out common parts of (complete) specifications.

As an example of the latter consider class DISPENSER in Figure 4, a common parent
of STACK and QUEUE. Based on the interface, its model has to be isomorphic to a
sequence, but the postcondition of feature put cannot define the exact position of the
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1 note mapped to: ”Sequence G”
2 class MML SEQUENCE [G]
3 extended (x: G): MML SEQUENCE[G]
4 −− Current sequence extended with ‘x’ at the end
5 note mapped to: ”Sequence.extended(Current, x)”
6 do . . . end
7 . . .
8 end

9 type Sequence T = [ int ] T ;
10 function Sequence.extended 〈T〉 (Sequence T, T)
11 returns (Sequence T);
12 axiom (∀ 〈T〉 s: Sequence T, x:T •
13 Sequence.extended( s, x) =s[Sequence.count(s)+1 := x]) ;
14 axiom (∀ 〈T〉 s: Sequence T, x: T •
15 Sequence.count(Sequence.extended( s, x) ) =
16 Sequence.count(s)+1);
17 . . .

Fig. 5. Snippets from class MML SEQUENCE (left) and the corresponding Boogie theory (right)

new element in that sequence: a choice compatible with the semantics of STACK will
be incompatible with QUEUE and vice versa.

In such cases, reasoning about completeness is still likely to improve the under-
standing of the classes and to question constructively the choices made for interfaces
and inheritance hierarchies.

3.3 Verification: Proofs and Runtime Checking

This subsection outlines the main ideas behind using model-based contracts for verifi-
cation with formal correctness proofs and with runtime checking for automated testing.
Its goal is not to detail any particular proof or testing technique, but rather to sketch
how to express the semantics of model-based contracts within standard verification
frameworks.

Proofs. The axiomatic treatment of model classes [12] is quite natural: the semantics
of a model class is defined directly in terms of a theory expressed in the underlying
proof language, rather than with “special” contracts. The mapping often has the advan-
tage of reusing theories that are optimized for effective usage with the proof engine
of choice. In addition, the immutability (and value semantics) of model classes makes
them very similar to mathematical structures and facilitates a straightforward translation
into mathematical theories.

We are currently developing an accurate mapping of model classes and model-based
contracts into Boogie [2]. First, the mapping introduces axiomatic definitions of MML
model classes as Boogie theories; annotations in the form note mapped to connect MML
classes to the corresponding Boogie types (see Figure 5 for an example). Then, each
model query in a class with model-based contracts maps to a Boogie function that
references a representation of the heap. For example, the model query sequence in
LINKED LIST becomes function LinkedList . sequence(HeapType, ref ) returns (Sequence
ref ). Axioms that connect the value returned by the function to the attributes of the
translated class are generated from the postconditions of model queries. The issue of
providing such postconditions (abstraction functions) is outside the scope of current
paper as here we are only concerned with interface specifications. Finally, model-based
contracts are translated into Boogie formulas according to the mapped to annotations in
model classes.

Runtime Checking and Testing. Most model classes represent finite mathematical
objects, such as sets of finite cardinality, sequences of finite length, and so on. All these
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classes can have an implementation of their operations which is executable in finite
time; this supports the runtime checking of assertions that reference these model classes.

Testing techniques can leverage runtime checkable contracts to fully automate the
testing process: generate objects by randomly calling constructors and commands;
check the precondition of a routine on the generated objects to filter out valid inputs;
execute the routine body on a valid input and check the validity of the postcondition on
the result; any postcondition violation on a valid input is a fault in the routine.

This approach to contract-based testing has proved very effective at uncovering
plenty of bugs in production code [10], hence it is an excellent “lightweight” pre-
cursor to correctness proofs. Contract-based testing, however, is only as good as the
contracts are; the weak postconditions of traditional Design by Contract, in particular,
leave many real faults undetected. Runtime checkable model-based contracts can help
in this respect and boost the effectiveness of contract-based testing by providing more
expressive specifications. Section 4 describes some testing experiments that support
this claim.

4 Model-Based Contracts at Work

This section describes experiments in developing model-based contracts for real object-
oriented software written in Eiffel. The experiments target two non-trivial case studies
based on data-structure libraries (described in Section 4.1) with the goal of demonstrat-
ing that deploying model-based contracts is feasible, practical, and useful. Section 4.2
discusses the successes and limitations highlighted by the experiments.

4.1 Case Studies

The first case study targeted EiffelBase [4], a library of general-purpose data struc-
tures widely used in Eiffel programs; EiffelBase is representative of mature Eiffel
code exploiting extensively traditional Design by Contract. We selected 7 classes from
EiffelBase, for a total of 304 features (254 of them are public) over more that 5700
lines of code. The 7 classes include 3 widely used container data structures (ARRAY,
ARRAYED LIST, and LINKED LIST) and 4 auxiliary classes. Our experiments system-
atically introduced models and conservatively augmented the contracts of all public
features in these 7 classes with model-based specifications.

The second case study developed EiffelBase2, a new general-purpose data struc-
ture library. The design of EiffelBase2 is similar to that of its precursor EiffelBase;
EiffelBase2, however, has been developed from the start with expressive model-based
specifications and with the ultimate goal of proving its full functional correctness —
backward compatibility is not one of its primary aims. This implies that EiffelBase2
rediscusses and solves any deficiency and inconsistency in the design of EiffelBase that
impedes achieving full functional correctness or hinders the full-fledged application of
formal techniques. EiffelBase2 provides containers such as arrays, lists, sets, tables,
stacks, queues, and binary trees; iterators to traverse these containers; and comparator
objects to parametrize containers with respect to arbitrary equivalence and order rela-
tions on their elements. The current version of EiffelBase2 includes 46 classes with 460
features (403 of them are public) totaling about 5800 lines of code; these figures make
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EiffelBase2 a library of substantial size with realistic functionalities. The latest version
of EiffelBase2 is available at http://eiffelbase2.origo.ethz.ch.

4.2 Results and Discussion

How Many Model Classes? Model-based contracts for EiffelBase used model classes
for Booleans, integers, references, (finite) sets, relations, and sequences. EiffelBase2
additionally required (finite) maps, bags, and infinite maps and relations for special
purposes (such as modeling comparator objects). This suggests that a moderate number
of well-understood mathematical models suffices to specify a general-purpose library
of data structures.

Determining to what extent this is generalizable to software other than libraries of
general-purpose data structures is an open question which belongs to future work. Some
problem domains may indeed require domain-specific model classes (e.g., real-valued
functions, stochastic variables, finite-state machines), and application software that in-
teracts with a complex environment may be less prone to accurate documentation with
models. However, even if writing model-based contracts for such systems proved ex-
ceedingly complex, some formal model is required if the goal is formal verification. In
this sense, focusing model-based contracts on library software is likely to have a great
payoff through extensive reuse: the many clients of the reusable components can rely
on expressive contracts not only as detailed documentation but also to express their own
contracts and interfaces by combining a limited set of well-understood, highly depend-
able components.

Another interesting remark is that the correspondence between the limited number
of model classes needed in our experiments and the classes using these model classes
is far from trivial: reusable data structures are often more complex than the mathemat-
ical structures they implement. Consider, for example, class SET: EiffelBase2 sets are
parameterized with respect to an equivalence relation, hence the model of SET is a pair
of a mathematical set and a relation; correspondingly, the postcondition of feature has
relies on the model by defining Result = not (set ∗ relation.image of (v)).is empty. Another
significant example is BINARY TREE: instead of introducing a new model class for trees
or graphs, BINARY TREE concisely represents a tree as a map of paths to values, where
paths are encoded as sequences of Booleans.

How Many Complete Contracts? Reasoning informally, but rigorously, about the
completeness of postconditions — along the lines of Section 3.2 — proved to be
straightforward in our experiments. Only 18 (7%) out of 254 public features in Eiffel-
Base with model-based contracts and 17 (4%) out of 403 public features in EiffelBase2
have incomplete postconditions. All of them are examples of “intrinsic” incompleteness
mentioned at the end of Section 3.2; EiffelBase2, in particular, was designed trying to
minimize the number of features with intrinsically incomplete postconditions.

These results indicate that model-based contracts make it feasible to write system-
atically complete contracts; in most cases this was even relatively straightforward to
achieve. Unsurprisingly, using model-based contracts dramatically increases the com-
pleteness of contracts in comparison with standard Design by Contract. For example,
42 (66%) out of 64 public features of class LIST in the original version of EiffelBase

http://eiffelbase2.origo.ethz.ch
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(without model-based contracts) have incomplete postconditions, including 20 features
(31%) without any postcondition.

Contract-Based Testing with Model-Based Contracts. The standard EiffelBase li-
brary has been in use for many years and has been extensively tested, both manually
and automatically. Are the expressive contracts based on models enough to boost au-
tomated testing finding new, subtle bugs? While preliminary, our experiments seem to
answer in the affirmative. Applying the AutoTest testing framework [10] on EiffelBase
with model-based contracts for 30 minutes discovered 3 faults; none of them would
have been detectable with standard contracts. Running these tests did not require any
modification to AutoTest or model classes, because the latter include an executable
implementation.

The 3 faults reveal subtle mistakes that have gone undetected so far. For exam-
ple, consider an implementation of routine merge right in LINKED LIST (not shown for
brevity); the routine merges a linked list other into the current list at the cursor position
by modifying references in the chain of elements. The routine deals in a special way
with the case when the cursor in the current list is before the first element; in this case
the first element reference is attached directly to the first element of the other list. This is
not sufficient, as the routine should also link the end of the other list to the front of the
current one, otherwise all elements in the current list become inaccessible. The original
contract does not detect this fault; in particular the postcondition clause count = old count
+ old other.count is satisfied as the attribute count is updated correctly, but its value does
not reflect the actual content of the new list. On the contrary, the clause sequence = old
(sequence.front (index)+ other.sequence + sequence.tail (index + 1)) of the complete model-
based postcondition specifies the desired configuration of the list after executing the
command, which leads to easily detecting the error.

5 Related Work

Hoare pioneered the usage of mathematical models to define and prove correctness of
data type implementations [7]. This idea spawned much related work; the following
paragraphs shortly summarize a few significant representatives, with particular focus
on the approaches that are closest to the one in the present paper.

Algebraic Notations. Algebraic notations formalize classes in terms of (uninterpreted)
functions and axioms that describe the mutual relationship among the functions. The
most influential work in algebraic specifications is arguably Guttag and Horning’s [6]
and Gougen et al.’s [5], which gave a foundation to much derivative work. The former
also introduced a notion of completeness. Algebraic notations emphasize the calcula-
tional aspect of a specification. This makes them very effective notations to formalize
and verify data types at a high level of abstraction, but does not integrate as well with
real programming languages to document implementations in the form of pre and post-
conditions.

Descriptive Notations. Descriptive notations formalize classes in terms of simpler
types — ultimately grounded in simple mathematical models such as sets and rela-
tions — and operations defined as input/output relations. Descriptive notations can be
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used in isolation to build language-independent models, or to give a formal semantics
to concrete implementations. Languages and methods such as B [1] pursue the for-
mer approach; other specification languages and tools such as Jahob [15] are examples
of the latter approach. Descriptive notations are apt to develop correct-by-construction
designs and to accurately document implementations, often with the goal of verifying
functional correctness; using them in contracts, however, introduces a new notation on
top of the programming language, which requires additional effort and expertise from
the programmer. This weakness is shared by algebraic notations alike.

Design by Contract Approaches. Design by Contract [9] introduces formal specifica-
tions in programs using the same notation for implementation and annotations, in an at-
tempt to make writing the contracts as congenial as possible to programmers. The Eiffel
programming language epitomizes the Design by Contract methodology, together with
many similar solutions for other languages such as Spec# [2] for C#. As we discussed
also in the rest of the paper, using a subset of the programming language in annota-
tions often does not provide enough expressive power to formalize (easily) “complete”
functional correctness.

Model-Based Annotation Languages. The Java Modeling Language (JML) [8] is
likely the approach that shares the most similarities with ours: JML annotations are
based on a subset of the Java programming language and the JML framework provides
a library of model classes mapping mathematical concepts. While sharing a common
outlook, the approaches in JML and in the present paper differ in several details. At the
technical level, JML prefers model variables while our method leverages model queries;
each approach has its merits, but model queries have some advantages (discussed in
Section 3.1). A notational difference is that JML extends Java’s expressions with no-
tations for logic operators, while our method reuses Eiffel notation such as agents to
express quantifications and other aspects. In terms of scope, our approach strives to
be more methodological and systematic, with the primary target of fully contracting
complete libraries of data structures, while keeping the additional effort required to the
programmer to a minimum. The present paper extends in scope the previous work of
ours on model-based contracts [13,12], and systematically applies the results to the re-
design and re-implementation of a rich library of data structures. The experience gained
in this practical application also prompted us to refine and rethink aspects of the previ-
ous approach, as we discussed at length in the rest of the paper.

6 Conclusions and Future Work

The present work introduces a method to write strong interface specifications for
reusable object-oriented components. The method is soundly based on the concept of
model and features a notion of specification completeness which is formal, yet easy to
reason about. The application of the method to the development of a library of general-
purpose data structures demonstrates its practicality and its many uses in analysis, de-
sign, and verification.

Future work includes short- and long-term goals. Among the former, we plan to
apply model-based contracts to more real-life examples, including application soft-
ware from diverse domains. A user study will try to confirm the preliminary evidence
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that model-based contracts are easy to write, understand, and reason about informally.
Longer term work envisions integrating model-based contracts within a comprehensive
verification environment.

Acknowledgements. To Marco Piccioni, Stephan van Staden, and Scott West for com-
ments on a draft of this paper.
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Reusable Verification of a Copying Collector
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Abstract. Garbage collectors are very hard to implement correctly due

to their low-level manipulation of memory. In this paper, we construct a

copying garbage collector which we have proved to be functionally cor-

rect. Our verification proof is structured as a sequence of refinements to

aid clarity and proof reuse; it is the first to map implementations into

three different machine languages and, unlike some noteworthy published

proofs, our verified implementations of memory allocation handle termi-

nation and the ‘out-of-memory’ case properly. The work presented here

has been developed in the HOL4 theorem prover.

1 Introduction

Garbage collectors are important cornerstones of any implementation of a func-
tional programming language and most object-oriented programming languages.
They are hard to implement correctly due to their low-level manipulation of
memory and very hard to test for faults since the property of a correct execu-
tion is rather abstract: every execution must produce a heap which is,

– isomorphic to the original heap, i.e. must be equivalent to the original heap
modulo renaming of addresses, and

– minimal in the sense that it must not contain unnecessary heap elements,
i.e. elements that are not reachable from root addresses.

In this paper we present the construction of a copying collector that we have
proved formally correct, i.e. for which we know that the above properties hold
for every possible execution of the verified code. A sample of the verified ARM,
x86 and PowerPC code is listed in Figure 6.

There are numerous publications on the topic of garbage collector verification
and some very impressive recent work on proving the correctness of assembly
and C-like implementations of copying garbage collectors. These proofs, which
we will describe in Section 2, are unfortunately tied to specific programming log-
ics and mix reasoning for why the algorithm is correct (how heap isomorphism
is achieved) with implementation specific details (such as how specific heap ele-
ments are represented in memory). As a result published proofs are cumbersome
to adapt to new settings.

This paper attempts to remedy these shortcomings by presenting a verification
proof which has been carefully designed to be reusable for any stop-the-world
copying collector. The main contributions of this paper are as follows:

G.T. Leavens, P. O’Hearn, and S.K. Rajamani (Eds.): VSTTE 2010, LNCS 6217, pp. 142–156, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Reusable Verification of a Copying Collector 143

– We present a verification proof which is sufficient for proving low-level im-
plementations correct and at the same time independent of any particular
programming logic. The proof cleanly separates reasoning about the correct-
ness of the core algorithm from all implementation specific details.

– Data refinement is used to map our proofs down to the level of verified ARM,
x86 and PowerPC machine code. This is the first paper to construct garbage
collectors that have been proved correct with respect to realistic models of
machine languages.

– These collectors are the first verified collectors to be used as mere building
blocks in a much larger verification effort: our verified garbage collectors are
part of verified implementations of Lisp.1

– Our verified implementations of allocation handle the ‘out-of-memory’ case
properly. They terminate with an error message in case there is an insufficient
amount of memory available after a full garbage collection. This is in contrast
to noteworthy published work [3,12] which only prove partial correctness of
code that diverges in the ‘out-of-memory’ case.

The work presented here has been developed inside the HOL4 theorem prover.2

2 Related Work

There are number of publications on the topic of specification and verification of
garbage collection routines, e.g. [5,6,7,11,16]. However, few have proved copying
collectors correct with respect to detailed models of realistic execution environ-
ments. Notable exceptions are work by Birkedal et al. [3], McCreight et al. [12],
and Hawblitzel and Petrank [9].

Birkedal et al. used a version of separation logic to verify, on paper it seems,
the correctness of a C-like program implementing the Cheney algorithm for a
stop-the-world copying collector. McCreight et al. developed a general frame-
work for collector proofs, in Coq, and verified MIPS-like code for several dif-
ferent collector algorithms, including two copying collector, one of which was
incremental. The allocators verified by McCreight et al. and Birkedal et al. enter
an infinite loop in case the heap is full after a complete collection cycle. In con-
trast, the allocators verified here have been proved to terminate: they terminate
in the ‘out-of-memory’ case by jumping to code that can produce an appropriate
error message.

In some very impressive recent work by Hawblitzel and Petrank, a copying
collector and a mark-and-sweep collector, with competitive real-world perfor-
mance, were verified mechanically. They did not use a theorem prover, instead
they used the Boogie verification generator which links to the Z3 SMT solver.
This system proved their x86-like implementations correct automatically given
low-level code decorated with a substantial amount of annotations. They did

1 Our work on verified Lisp interpreters has been published before [13], but the proof

of its garbage collectors is published here for the first time.
2 Our proofs are available at hol.sf.net in SVN under HOL/examples/machine-code
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not prove termination but were able to run a suite of benchmarks which showed
that their collectors have competitive performance compared with other collec-
tors. Similar proofs might be possible in theorem provers in the future, even in
LCF-style provers, as their support for SMT solvers is starting to mature [4].

None of the above mentioned verified copying collectors have been used as
a building block inside a verified run-time, i.e. it has not been tried whether
the resulting correctness theorems are usable as components in further formal
developments. Our verified garbage collectors have been used inside verified Lisp
interpreters [13]. However, these Lisp interpreters fall short of being practically
useful at present due to the restrictive subset of Lisp which they implement. As
far as we know, the VLISP project [8] is the only project which has successfully
built a usable verified run-time which included a verified garbage collector. The
VLISP verification consists of lengthy pen-and-paper-style proofs.

Novel work by Benton on specification and verification of a memory alloca-
tor [1] should also be mentioned. Benton verified, using Coq, an implementation
of an allocator in an invented assembly language. Instead of using conventional
unary predicates for describing program properties, he used quantified binary
relations and stated program properties in terms of contextual equivalence. This
allowed him to show that his allocator transfers ownership of memory states to
the client program and that the client program is parametrised by the allocator.
The allocator specification presented here does not provide such clean logical
separation, instead the allocator always ‘owns’ the allocated memory and the
client is forced to view the heap as an abstraction of the real memory. However,
it remains unclear whether the cost of adding these extra features to the specifi-
cations is worth the effort since Benton’s proofs seem to have been frustratingly
hard work, as he commented in a separate note [2]. However, this might have
been caused the fact that this was the first time Benton seriously used a theorem
prover, instead of any feature in his approach that might have made it ill-suited
for the automation provided by modern theorem provers.

3 Method

This paper presents verified garbage collectors which have been constructed
through a sequence of refinements, starting from a high-level specification and
going down to concrete machine code. We use the following refinement layers.

L1. We start with a specification which states what a full garbage collection
is to achieve, namely, to remove unreachable heap elements and rename
addresses in a consistent manner. At this level of abstraction, which we call
L1, garbage collection is a single transition.

L2. At the second level of abstraction, we provide an abstract implementation
of L1 as the transitive closure of a step relation. We prove that any complete
execution of these steps implements L1. This proof, which is only 300 lines
long, verifies the core idea behind the correctness of copying collection.
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L3. At the third level of abstraction, we refine the non-deterministic implemen-
tation from L2 into a deterministic function which operates over a more
concrete notion of memory: heap elements now have sizes and temporary
reference cells are stored in memory alongside heap elements.

L4. At the next level, we introduce actual implementation types, e.g. addresses
become real machine addresses (aligned 32-bit words). We also subdivide
memory accesses into individual 32-bit memory reads and writes.

L5. At the lowest level of abstraction, we have the concrete ARM, x86 and
PowerPC machine code. These implementations are automatically synthe-
sised from the L4 implementation using a previously developed compiler
which produces a proof of correspondence for each compilation.

Each refinement is proved correct with respect to the layers above it. The sizes
of the manual proofs are approximately 300, 800 and 700 lines for L1/L2, L2/L3
and L3/L4, respectively. In total these proofs are less than half of the length of
the proofs described in McCarthy et al. [12].

3.1 Specification – L1

We start by formalising what we mean by garbage collection in terms of a heap
represented as a finite partial (⇀) mapping h where addresses are natural num-
bers. The domain of h is a finite subset of N and the codomain of h consists of
pairs (as, d) where as is a list of addresses and d is some data. The type of heap
h is defined as the following using two type variables null and data. We let null
pointers be of arbitrary type so that later refinements can store data inside null
pointers, which is often done in practice.

N ⇀ (N + null) list × data

We define the set of reachable addresses as the smallest inductively defined set
such that a is reachable whenever a is a root or a is pointed to by some reachable
element b. Let set as be the set of non-null addresses in the list as.

a ∈ set roots

a ∈ reach (h, roots)

a ∈ set as ∧ h(b) = (as, data) ∧ b ∈ reach (h, roots)

a ∈ reach (h, roots)

The most abstract notion of garbage collection can now simply be defined as
a function filter which restricts (�) the domain of a heap mapping h to only
elements reachable from the root nodes.

filter (h, roots) = (h�(reach (h, roots)), roots)

In this paper we consider the verification of a copying garbage collector, i.e. one
which must also have the right to rearrange heap elements. For this we define a
function rename which updates all addresses in h by a given function f : N → N.
Let map f update all non-null addresses of a list by application of f .

domain (rename f h) = image f (domain h)
(rename f h)(f(x)) = (map f as, d) whenever h(x) = (as, d)
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Using rename, we define a valid rearrangement as a relation translate−→ which relates
two heaps whenever one heap can be converted into the other by applying a
global swap function f , i.e. a function such that f ◦ f = id.

f ◦ f = id

(h, roots) translate−→ (rename f h, map f roots)

We can now define that a garbage collection is a relation gc−→ which filters out
unreachable heap elements and renames the addresses.

x gc−→ y = (filter x) translate−→ y

3.2 Abstract Implementation – L2

Our first refinement is to split the single-step implementation of garbage collec-
tion from L1 into a sequence of small step updates, and prove that the transitive
closure of this step update implements L1. The step relation step−→ is defined,
below, using three rules that operate over a state which consists of:

h — the heap, a finite partial mapping, mentioned above for L1,
x — address set: completely processed heap elements,
y — address set: moved elements with pointers to not-yet-moved elements,
z — address set: elements that are still to be moved,
f — a function which records where elements have been moved: N → N

The main operation performed by the collector is to move an element a ∈ z to
a new unused location b �∈ domain h. The source and target location must not
have been part of earlier move operations, i.e. we must have f(a) = a∧f(b) = b.
The new address b is inserted into the set of moved but not complete elements
y, the addresses as stored at h(a) are inserted into the set of addresses to be
moved z and the swap of addresses a ↔ b is recorded in function f .

a ∈ z ∧ b �∈ domain h ∧ f(a) = a ∧ f(b) = b ∧ h(a) = (as, d)

(h, x, y, z, f) step−→ (h[b �→ (as, d)] − {a}, x, y ∪ {b}, z ∪ set as, f [a �→ b][b �→ a])

Addresses a that have been moved, i.e. for which f(a) �= a, but which are still
in the set of addresses that are to be moved z can be deleted from set z.

a ∈ z ∧ f(a) �= a

(h, x, y, z, f) step−→ (h, x, y, z − {a}, f)

Once all of the addresses as, stored at some heap location a ∈ y, have been
removed from set z, i.e. set as ∩ z = {}, then we can finalise this heap element
h(a) by updating the addresses as with mapping f and moving address a from
set y to set x.

a ∈ y ∧ h(a) = (as, d) ∧ set as ∩ z = {}
(h, x, y, z, f) step−→ (h[a �→ (map f as, d)], x ∪ {a}, y − {a}, z, f)
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Correctness. The formal connection between L1 and L2 is summed up in the
following theorem, which states that any execution of the transitive closure of
the step relation step−→∗, which starts with x = y = {} and z initialised to the
root addresses and ends in a state y = z = {}, is in fact a correct execution of
the garbage collector gc−→ defined for L1. The domain of the resulting heap h2 is
restricted to the set of moved addresses x, i.e. h2�x.

∀h h2 roots x f.

(h, {}, {}, set roots, id) step−→∗ (h2, x, {}, {}, f) ∧ ok heap (h, roots) =⇒
(h, roots) gc−→ (h2�x, map f roots)

where ok heap (h, roots) = pointers h ∪ set roots ⊆ domain h

pointers h = { x | ∃a as d. x ∈ set as ∧ h(a) = (as, d) }

Invariant. Instead of delving into the details of our proof, we present the in-
variant inv which allows us to prove the above theorem.

∀x s t. inv x s ∧ s step−→ t =⇒ inv x t

The full definition of our invariant is shown in Figure 1. It took approximately
one week to get this invariant completely right. We believe that this invariant is
sufficiently independent of the lower-level implementations L3, L4, L5 to be of
use also in verification proofs of significantly different versions of L3, L4 and L5.
A complete understanding of the invariant is not necessary to follow the rest of
this paper. However, for those who are interested: line 0 defines an abbreviation
old to denote the set of addresses that were originally the domain of h; line 1
states that x and y are disjoint and that f must be its own inverse; line 2 states
that all pointers from within h restricted to addresses x must point to heap
elements in x or y; line 3 ensures that all pointers outside of h restricted to x,
i.e. inside h restricted to the complement of x, are in the set of old addresses;
line 4 guarantees that elements from x, y and z are reachable; lines 5-6 state

inv (h0, roots) (h, x, y, z, f) =

0 let old = (domain h ∪ { a | f(a) �= a }) − (x ∪ y) in
1 (x ∩ y = {}) ∧ (f ◦ f = id) ∧
2 pointers (h�x) ⊆ x ∪ y ∧
3 pointers (h�xc) ⊆ old ∧
4 pointers (h�y) ∪ set roots ⊆ image f (x ∪ y) ∪ z ⊆ reach (h0, roots) ∧
5 (∀a. a ∈ z =⇒ if f(a) = a then a ∈ old else f(a) ∈ x ∪ y) ∧
6 (∀a. f(a) �= a =⇒ ¬(a ∈ x ∪ y ⇐⇒ f(a) ∈ x ∪ y)) ∧
7 (∀a. a ∈ x ∪ y ⇐⇒ f(a) �= a ∧ a ∈ domain h) ∧
8 domain h = image f (domain h0) ∧
9 (∀a as d. f(a) ∈ domain h ∧ h(f(a)) = (as, d) =⇒

h0(a) = if f(a) ∈ x then (map f as, d) else (as, d))

Fig. 1. The invariant used for proving a connection between L1 and L2
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when f is allowed to point into x ∪ y; line 7 states that x ∪ y is the set of new
addresses; lines 8-9 ensure that f relates h to h0.

Our proofs using this invariant are relatively small, the proof connecting L1
and L2 is approximately 300 lines long. We achieve this brevity by stating the
invariant in terms of sets and set operations, which leads to subgoals that are
easily discharged using a standard first-order prover [10].

3.3 Implementation with Memory – L3

The next refinement introduces a memory which makes the memory layout con-
crete. At this level of abstraction intermediate reference cells, called Ref elements,
keep a record of renaming function f in memory alongside data stored in Block
elements. The memory, we call it m, is a mapping from N to a data-type with
type constructors:

Block (as, l, d) — a block of length l which contains addresses as and data d
Ref a — a reference cell containing the address a
Emp — an empty location or ‘don’t care’

Memory m is a correct representation of h and f whenever, for any a:

m(a) = Block (h(a)) if a ∈ domain h
m(a) = Ref (f(a)) if a �∈ domain h and f(a) �= a
m(a) = Emp if a �∈ domain h and f(a) = a

Here the type variable data in the type of h has been instantiated to N×data to
make h(a) a triple of type: (N + null) list×N× data. We will refer to the above
relation between m, h and f as ref mem (h, f, m).

As mentioned above, each m(a) = Block (as, l, data) stores a length l. Based
on this we have a well-formedness criteria which states that the next l memory
locations m(a+1), m(a+2), . . . , m(a+l) must be Emp.

empty (a, l) m = ∀i ∈ N. i < l =⇒ m(a + i + 1) = Emp

We formalise this criterion as an inductively defined relation part heap (a, b) m k
which states that the memory locations in the range a...b (we write a...b to mean
{ n ∈ N | a ≤ n ∧ n < b }) form a well-formed heap containing blocks of data
that have a combined length of k.

part heap (a, a) m 0

m(a) = Block (as, l, data) ∧ empty (a, l) m ∧ part heap (a + l + 1, b) m k

part heap (a, b) m (l + 1 + k)

(m(a) = Ref i ∨ m(a) = Emp) ∧ part heap (a + 1, b) m k

part heap (a, b) m k

Finally, the memory is split into two disjoint spaces, the so called to-space and
from-space. During execution heap blocks are moved from the from-space into
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move (RHS n, j, m) = (RHS n, j, m)

move (LHS a, j, m) = case m(a) of
Ref i → (LHS i, j, m)

| Block (as, l, d) →
let m = m[a �→ Ref j] in
let m = m[j �→ Block (as, l, d)] in

(LHS j, j + l + 1, m)

move roots ([], j, m) = ([], j, m)

move roots (r::rs, j, m) =

let (r, j, m) = move (r, j, m) in
let (rs, j, m) = move roots (rs, j, m) in

(r::rs, j, m)

readBlock (Block x) = x
cut (i, j) m = λk. if i ≤ k ∧ k < j then m j else Emp

loop (i, j, m) =

if i = j then (i, m) else
let (as, l, d) = readBlock (m i) in
let (as, j, m) = move list (as, j, m) in
let m = m[i �→ Block (as, l, d)] in

loop (i + l + 1, j, m)

collector (roots, b, i, e, b2, e2, m) =

1 let (b2, e2, b, e) = (b, e, b2, e2) in
2 let (roots, j, m) = move list (roots, b, m) in
3 let (i, m) = loop (b, j, m) in
4 let m = cut (b, i) m in

(roots, b, i, e, b2, e2, m)

Fig. 2. Implementation at level L3

the to-space. The to-space consists of locations b...e and the from-space are at
locations b2...e2.

Our implementation of copying collection is listed in Figure 2. The top-level
function is called collector. We give a brief overview of how it works here. Line
1 flips the meaning of the to-space and the from-space, i.e. what used to be
the to-space is now the from-space. All elements are assumed to lie within the
from-space at this stage. Line 2 then moves all heap elements pointed to by root
addresses into the to-space. Line 3 starts a loop which moves all other reachable
elements from the from-space into the to-space. Finally line 4 overwrites the
entire from-space with ‘don’t care’ elements Emp.

Correctness. We have proved that our implementation at level L3, listed in
Figure 2, is correct with respect to our definition at level L1, via L2. In order
to state this formally, we define ok mem heap to assert what suffices as a valid
initial/final state of memory as follows. Line 1: the heap must be split into two
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disjoint semi-heaps, b . . . e and b2 . . . e2, of equal size, with an index i into heap
b . . . e. Line 2: the memory inside of b...i must form a well-formed heap and all
other parts of the heap are empty. And line 3: the memory m must be related
to some well-formed heap h according to ref mem and ok heap.

ok mem heap (h, roots) (b, i, e, b2, e2, m) =
1 b ≤ i ≤ e ∧ b2 ≤ e2 ∧ e2 − b2 = e − b ∧ (e < b2 ∨ e2 < b) ∧
2 (∃k. part heap (b, i) m k) ∧ (∀a. a �∈ b...i =⇒ m(a) = Emp) ∧
3 ref mem (h, id) m ∧ ok heap (h, roots)

The guarantee for the final state is slightly stronger: the final state satisfies
part heap (b, i) m (i − b). Let precise (b, i, . . . , m) = part heap (b, i) m (i − b).

The correctness of our L3 implementation is now stated as the following theo-
rem: for any valid initial state x, which is related to high-level state (h, roots), an
execution of collector produces a state y, for which there exists a corresponding
abstract heap h2 such that our top-level definition of garbage collection ( gc−→)
relates the initial heap h to the new heap h2.

∀h roots roots2 x y.
ok mem heap (h, roots) x ∧ collector (roots, x) = (roots2, y) =⇒
∃h2. ok mem heap (h2, roots2) y ∧ (h, roots) gc−→ (h2, roots2) ∧ precise y

The presence of precise y is important for proving allocation correct, Section 4.

Invariant. We will again not go into details of the correctness proof, but instead
only explain the invariant which was used for the proof. Our invariant, called
mem inv, was used for proving the following property of the main loop:

mem inv (h0, roots0, h, f) (b, i, j, e, b2, e2, m, pointers (h�(i...j))) ∧
loop (i, j, m) = (i2, m2) =⇒
∃h2 f2. mem inv (h0, roots0, h2, f2) (b, i2, i2, e, b2, e2, m2, {}) ∧

j ≤ i2 ∧ ∀a. f(a) �= a =⇒ f2(a) = f(a)

The definition of our invariant mem inv is listed in Figure 3. The main idea
behind this invariant should be clear from lines 5 and 6. They state that memory
m is a refinement of (h, f) and that (h, f) is related, through the reflexive-
transitive closure of step−→, to an initial state (h0,roots0) which satisfies ok heap.
Lines 2–4 are less interesting; they ensure that the memory is correctly organised.
Line 1 states that the heap is split into two semi-heaps, and that i and j are
indexes in the to-heap.

3.4 Implementation with Concrete Types – L4

The previous refinements layer, called L3, produced an implementation with
memory and concrete memory layout of the heap. However, L3 made no com-
mitment to how memory elements, Block and Ref, are to be represented in actual
memory. In this layer, called L4, we make all types concrete: addresses and data
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mem inv (h0, roots0, h, f) (b, i, j, e, b2, e2, m, z) =

1 b ≤ i ≤ j ≤ e ∧ (e < b2 ∨ e2 < b) ∧
2 (∀a. a �∈ b2...e2 ∪ b...j =⇒ m(a) = Emp) ∧
3 part heap (b, i) m (i − b) ∧ part heap (i, j) m (j − i) ∧
4 (∃k. part heap (b2, e2) m k ∧ k ≤ e − j) ∧
5 ref mem (h, f) m ∧ ok heap (h0, roots0) ∧
6 (h0, {}, {}, set roots0, id) step−→∗ (h, domain h ∩ (b...i), domain h ∩ (i...j), z, f)

Fig. 3. The invariant which relates implementations L3 with L2

are bit strings and memory is a partial function from machine addresses (aligned
32-bit words) to 32-bit words.

We choose to represent each Block as a sequence of 32-bit words. The header
word contains a 22-bit number n which contains the length of the payload (a
list of 32-bit words: w1, w2, . . . , wn), an 8-bit field for data called the tag, and a
1-bit field b which indicates whether the payload consists of data, in case b = 0,
or addresses, in case b = 1. The header is followed by the payload.

[n.tag.1.b], [w1], [w2], [w3], . . . , [wn]

We also allow data to be stored into ‘null-addresses’. A 32-bit word appearing
in the place of an address but which is not word-aligned (i.e. not a multiple of
four) is considered to be data. The reason for why this works with the abstraction
layers above is that we left the type of null addresses as a type variable null, as
mentioned at the start.

Our garbage collector is implemented at level L4 as a functional program
which uses only concrete machine types. An extract of the lengthy implementa-
tion is listed in Figure 4, which shows the L4 implementation mx move of the
function move from level L3 (i.e. the code which copies a Block element from
the from-heap to the to-heap). The first test, r2 & 3 �= 0, tests whether the ad-
dress is a real address (not a null-address). The second test, r4 & 3 = 0, checks
whether the word that was read from memory is a header of a Block element or
a references cell Ref. If the first word is the header of a Block element then we
copy over the payload using the tail-recursive function mc move loop.

Correctness. The correctness of the L4 implementation is stated concisely in
the following theorem: if level L3 state y is related to level L4 state z then an
execution of the L3 function collector on y is related to L4 function mc collector
applied to z. The definition of ok mc heap will be presented below.

∀x y z. ok mc heap x y z =⇒ ok mc heap x (collector y) (mc collector z)

Invariant. In order to keep our statements and proofs clean and concise even at
this low-level of abstraction, we will use some light-weight separation logic [15]
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mc move loop (r2, r3, r4, g) =

if r4 = 0 then (r2, r3, r4, g) else
let r5 = g(r2) in
let r4 = r4 − 1 in
let r2 = r2 + 4 in
let g = g[r3 �→ r5] in
let r3 = r3 + 4 in

mc move loop (r2, r3, r4, g)

mc move (r1, r2, r3, g) =

if (r2 & 3 �= 0) then (r1, r3, g) else
let r4 = g(r2) in

if r4 &3 = 0 then
let g = g[r1 �→ r4] in
(r1, r3, g)

else
let g = g[r1 �→ r3] in
let g = g[r3 �→ r4] in
let g = g[r2 �→ r3] in
let r4 = r4 � 10 in
let r3 = r3 + 4 in
let r2 = r2 + 4 in
let (r2, r3, r4, g) = mc move loop (r2, r3, r4, g) in
(r1, r3, g)

Fig. 4. The invariant used for proving a connection between L1 and L2

for memory assertions. We need the separating conjunction ∗, which we define
over sets: p ∗ q is true for set s if s can be partitioned into two sets t and u such
that p holds for t and q holds for u.

(p ∗ q) s = ∃t u. p t ∧ q u ∧ t ∪ u = s ∧ t ∩ u = {}

Now let fun2set map a partial function to a set of pairs, let one (x, y) assert the
value of a pair in such a set, and let emp assert that the set is empty:

fun2set g = { (a, g(a)) | a ∈ domain g }
one (x, y) = λs. (s = {(x, y)})

emp = λs. (s = {})
〈b〉 = λs. (s = {}) ∧ b

With these we can define ref, in Figure 5, which allows us to state that segments
of L3 memory m are present in L4 memory g, e.g. the following line states that
memory locations b...e and b2...e2 from memory m are represented correctly in
L4 memory g, i.e. both halves of the heap are correctly represented.

(ref (b, e) m ∗ ref (b2, e2) m ∗ p) (fun2set g)
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ref heap addr (RHS n) = 2 × n + 1

ref heap addr (LHS a) = 4 × a

one list a [] = emp
one list a (x :: xs) = one (a, x) ∗ one list (a+4) xs

header (n, b, tag) = 1024 × n + 4 × tag + 2 + (if b then 1 else 0)

ref aux a Emp = ∃x. one (a, x)

ref aux a (Ref n) = one (a, 4 × n)

ref aux a (Block (xs, l, (tag, b, ys))) =

let zs = (if b then map ref heap addr xs else ys) in
one (a, header (length zs, b, tag)) ∗ one list (a+4) zs

ref inc a Emp = 1

ref inc a (Ref n) = 1

ref inc a (Block (xs, l, d)) = 1 + l

ref (a, e) m =

if e ≤ a then 〈a = e〉 else
ref aux (4 × a) (m(a)) ∗ ref (a+ref inc (m(a)), e) m

Fig. 5. Part of the invariant which relates L3 to L4

The main part of each proof is to show that this type of ref-relationship is
maintained between m and g throughout execution of the two implementations.

There is still a further well-formedness criteria for memory m that needs to be
mentioned: all lists in Block elements must be of reasonable size and the length
field l must correspond to the actual payload:

ok memory m =
∀a l xs b t ys.

m(a) = Block (xs, l, (b, t, ys)) =⇒
length ys < 222 ∧ length xs < 222 ∧
if t then l = length xs else l = length ys ∧ xs = []

3.5 Machine-Code Implementations – L5

The final leap from low-level functional implementations (L4) to concrete ma-
chine code (L5) would be very tedious to prove manually. To avoid a manual
proof we use a previously developed compiler to produce correct machine code
automatically from the functional implementation at level L4.

Our compiler is not verified, but instead produces a proof for each compilation
run, i.e. the compiler steers the theorem prover to a proof which certifies that
the input function is correctly executed by the generated machine code. For ex-
ample, the following theorem is produced when the compiler compiles function
mc move from Figure 4 into ARM machine code. This theorem certifies that
any execution of the machine code which starts at a state where (r1, r2, r3, g)
describes the values of registers 1, 2, 3 and memory, terminates in a state where
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tst r2, #3 test ecx, 3 andi. 0, 2, 3

bne L0 jne L0 bne L0

ldr r4, [r2] mov ebx, [ecx] lwz 4, 0(2)

tst r4, #3 test ebx, 3 andi. 0, 4, 3

streq r4, [r1] jne L2 bne L2

beq L0 mov [eax], ebx stw 4, 0(1)

str r3, [r1] jmp L0 b L0

str r4, [r3] L2: mov [eax], edx L2: stw 3, 0(1)

str r3, [r2], #4 mov [edx], ebx stw 4, 0(3)

mov r4, r4, LSR #10 mov [ecx], edx stw 3, 0(2)

add r3, r3, #4 shr ebx, 10 srawi 4, 4, 10

L1: cmp r4, #0 add edx, 4 addi 3, 3, 4

beq L0 add ecx, 4 addi 2, 2, 4

ldr r5, [r2] L1: cmp ebx, 0 L1: cmplwi 4,0

sub r4, r4, #1 je L0 beq L0

add r2, r2, #4 mov edi, [ecx] lwz 5, 0(2)

str r5, [r3] dec ebx addi 4, 4, -1

add r3, r3, #4 add ecx, 4 addi 2, 2, 4

b L1 mov [edx], edi stw 5, 0(3)

L0: add edx, 4 addi 3, 3, 4

jmp L1 b L1

L0: L0:

Fig. 6. Verified ARM, x86 and PowerPC code, respectively, for mc move from Figure 4

mc move (r1, r2, r3, g) accurately describes the value of registers 1, 3 and mem-
ory. This is stated in terms of a machine-code Hoare triple [14], and conditioned
on an automatically generated precondition mc move pre.

∀r1 r2 r3 g p.

mc move pre (r1, r2, r3, g) =⇒
{ r1 r1 ∗ r2 r2 ∗ r3 r3 ∗ r4 ∗ r5 ∗ memory g ∗ s ∗ pc p }
p : E3120003 1A000010 E5924000 E3140003 05814000 0A00000C E5813000

E5834000 E5823000 E1A04524 E2833004 E2822004 E3540000 15925000

12444001 12822004 15835000 12833004 1AFFFFF8

{ let (r1, r3, g) = mc move (r1, r2, r3, g) in

r1 r1 ∗ r2 ∗ r3 r3 ∗ r4 ∗ r5 ∗ memory g ∗ s ∗ pc (p+76) }

We have used our proof-producing compiler to compile the top-level L4 function
mc collector into ARM, x86 and PowerPC code. Each of the resulting certificate
theorems are conditioned on a precondition mc collector pre. This precondition
simply asserts that each memory access was done properly, no load/store to
unaligned addresses. We have proved that these preconditions are always met:

∀x y z. ok mc heap x y z =⇒ mc collector pre z
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4 Using the Verified Garbage Collectors

In this section we will briefly explain how the verified garbage collectors have
been used as components in the construction of verified interpreters for Lisp [13].

For our Lisp case study, we define allocation of a cons cell as follows at ab-
straction level L3. Note that it is tempting to define allocate cons as recursive
function to avoid writing has space twice, but that would result in an unsatis-
factory infinite loop when allocation runs out of memory (and allow for a trick
if only partial correctness is to be proved).

has space (roots, b, i, e, b2, e2, m) = 3 ≤ e − i
alloc fail (r1::r2::roots, b, i, e, b2, e2, m) = (nil::r2::roots, b, i, e, b2, e2, m)
alloc ok (r1::r2::roots, b, i, e, b2, e2, m) =

(LHS i::r2::roots, b, i+3, e, b2, e2, m[i �→ Block ([r1, r2], 2, (T, 0, []))])

allocate cons state =
if has space state then alloc ok state else

let state = collector state in
if has space state then alloc ok state else alloc fail state

We write a similar L4 implementation and from these generate L5 implementa-
tions. The correctness theorems used in the Lisp case study for cons allocation
are stated as follows. The following theorems use a heap assertion lisp which
states that Lisp s-expressions v1 . . . v6 are stored in a heap with a capacity for l
cons cells. Allocation of a new cons cell is guaranteed to be successful if the size
of the six root s-expressions is strictly less than the heap limit l:

size v1 + size v2 + size v3 + size v4 + size v5 + size v6 < l ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E50A3018 E50A4014 E50A5010 E50A600C ... E51A8004 E51A7008

{ lisp (cons v1 v2, v2, v3, v4, v5, v6, l) ∗ pc (p + 324) }

We also have a different theorem describing all executions: all executions of the
allocator will terminate either in a successful state, or jump to a special program
point (lisp out of memory) which generates an error message.

{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E50A3018 E50A4014 E50A5010 E50A600C ... E51A8004 E51A7008

{ lisp (cons v1 v2, v2, v3, v4, v5, v6, l) ∗ pc (p + 324) ∨ lisp out of memory }

5 Conclusions and Future Work

We aimed for a clear, understandable and reusable verification. By structuring
the verification as a sequence of refinements, our work separates reasoning about
the algorithm from implementation level details and as a result made each part
of the proof (refinement step) clearly focused on separate aspects of the verifi-
cation. The fact that only the lowest level of abstraction (L5) is tied to specific
programming logics and program semantics ought to aid proof reuse.
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Why did we not verify a generational garbage collector? The short answer is
that we did not need one. However, we believe a generational collector is only a
refinement step away (from implementation L3): the idea is to treat all pointers
to previous generations as if they were pure data stored in null pointers.
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To Goto Where No Statement Has Gone Before
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Abstract. This paper presents a method for deriving an expression from the low-
level code compiled from an expression in a high-level language. The input is the
low-level code represented as blocks of code connected by goto statements, i.e.,
a control flow graph (CFG). The derived expression is in a form that can be used
as input to an automatic theorem prover. The method is useful for program ver-
ification systems that take as input both programs and specifications after they
have been compiled from a high-level language. This is the case for systems that
encode specifications in an existing programming language and do not have a
special compiler. The method always produces an expression, unlike the heuris-
tics for decompilation which may fail. It is efficient: the resulting expression is
linear in the size of the CFG by maintaining all sharing of subgraphs.

0 Introduction

A program verifier checks that a given program satisfies its specifications. Some pro-
gramming languages such as Eiffel [16], Java with JML [12], or Spec# [3] provide the
programmer a nice syntax for writing the specifications in the source text. This has
many advantages, e.g., that programmers are immediately aware of the relationship be-
tween their code and its specification. However, in a multi-language platform like .NET,
one would like to have one program verifier that works for any language, regardless of
what special syntax, if any, each language may provide. In this paper, we consider one
issue that arises in such a multi-language setting.

Code Contracts for .NET [1] is a library-based framework for writing specifications
in .NET code. Programmers use the methods from the contract library to write specifi-
cations within their program (written in any .NET language, like C#, Visual Basic, or
F#) as stylized method calls at the beginning of a method’s body. For example, Figure 0
shows a method with a postcondition, expressed as a call to Contract.Ensures. The
regular .NET compiler for the source program is invoked to produce bytecode. Code
Contracts then has several tools which operate on the resulting bytecode, for example
the runtime checker rewrites the bytecode to move the evaluation of postconditions to
all of the method body’s exit points.

We are connecting an existing program verifier to the Code Contracts framework by
translating the compiled bytecode into an intermediate verification language, Boogie 2
[0,15,13], and then generating verification conditions for a theorem prover (we primar-
ily use the SMT solver Z3 [7]). Source-program uses of Code Contracts show up in the
bytecode as calls to the contract methods, preceded by a snippet of code that evaluates
the arguments. For the example in Figure 0, the bytecode computes the postcondition
and then passes that boolean value as the argument to Contract.Ensures.

G.T. Leavens, P. O’Hearn, and S.K. Rajamani (Eds.): VSTTE 2010, LNCS 6217, pp. 157–168, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Therefore, expressions in the source language become code. In general, the code is a
linearized form of a DAG, with a high degree of sharing.

The problem is that the verification conditions needed by the theorem prover must
be first-order formulas. While there are various contexts in which this can be avoided,
the body of a quantifier must be a genuine expression, not code.

We propose to convert the code representing a boolean expression back into a gen-
uine expression in two steps. First, our program verifier identifies the code snippets in
the bytecode and converts them into code expressions of the form

{{ var b; S ; return e }}

where S denotes some code in the intermediate verification language, e denotes the
value returned by the code expression, and b denotes a list of local variables that may
be used in S and e. Defining code expressions in the intermediate verification language
has the advantage that we can make use of facilities in the intermediate verification
language that expect expressions, like pre- and postconditions and bodies of logical
quantifiers.

Second, we define the meaning of a code expression in terms of a first-order formula.
We show how to construct this formula from the code expression. The resulting formula
is “efficient”: it maintains the sharing in the DAG, and is thus linear in the size of the
control-flow graph of the code expression.

In this paper, we also give some healthiness conditions for what it means to interpret
code as a genuine expression.

1 The Starting Point

An example program in the C# programming language using Code Contracts is shown
in Figure 0. The example shows a simple method that has a postcondition (encoded
using the method Contract.Ensures). It states that the return value (encoded with
Contract.Result) has the same length as the parameter A and that each element is the
division of k by the corresponding element of A, except in the case that the element is
zero0. In order to state that, it uses a quantifier: the method Contract.Forall is given
three arguments, an inclusive lower bound, an exclusive upper bound, and an anony-
mous delegate. The latter is the .NET form for a lambda expression, i.e., a functional
value. The type of Forall restricts the function to take a single argument of type int
and return a boolean1. In the example, the function’s parameter is named i. In traditional
notation, the function would be written as (λ i : int . A[i ] �= 0 ⇒ result [i ] = k/A[i ]).
Anonymous delegates are lexically scoped and “capture” references, such as to the
method’s parameter A.

0 The method Contract.Result is generic and must be instantiated since its type cannot be
inferred from its arguments because it is a nullary method (hence the open-close parentheses).
Type instantiation is indicated by referring to the return type of the method, int[], within
angled brackets. This shows why it is so nice to have a language provide surface syntax for
specifications!

1 There is another version of Forall that allows a more general predicate.
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using System.Diagnostics.Contracts;
public class C {

public int[] M(int[] A, int k) {
Contract.Ensures(

Contract.Result<int[]>().Length == A.Length &&

Contract.ForAll(
0, Contract.Result<int[]>().Length,
i => A[i] == 0 || Contract.Result<int[]>()[i] == k/A[i]

)
);
...

}
}

Fig. 0. A portion of a C# program using Code Contracts

The source-language compiler (in this case the C# compiler) is used to compile the
program to MSIL. Since we do not have control over the C# compiler, the specifications
are compiled into MSIL just as the “real” program is. In particular, short-circuit boolean
expressions are compiled into code expressions. These are a linearized DAG of basic
blocks with assignment statements and goto statements where the value of the boolean
expression is left on the stack. For the current example, Figure 1 shows the MSIL that
the anonymous delegate in Figure 0 compiles into. A more readable form written in
C# is:

bool Anonymous(int i) {
bool b;
if (A[i] == 0) goto L_0024;
if (result[i] == k/A[i]) goto L_0024;
b := false;
goto L_0028;
L_0024: b := true;
L_0028: return b;

}

2 The Midpoint: Boogie

An intermediate verification language serves a purpose analogous to that of an interme-
diate representation in a compiler: it separates the concerns of defining source-language
semantics from the concerns of generating formulas for a theorem prover. Many pro-
gram verifiers are built around an architecture that uses an intermediate verification
language (e.g., [0,10,5]).
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Fig. 1. The bytecode compiled from the body of the anonymous delegate in Figure 0. The labels
on each line are the byte offsets of the instructions. The code from offset 0x0 to 0x7 represents
the left disjunct A[i ] == 0. The right disjunct, Contract.Result<int[]>()[i] == k/A[i], is
computed in the code from offset 0x0a to 0x20. “arg 0” refers to this, the implicit receiver and
“arg 1” refers to the parameter i. There is an implicit receiver because the captured variables in an
anonymous delegate become fields on a compiler-generated class in order to retain the necessary
state in between invocations. In this case, there are fields for A and k.

2.0 Previously. . .

We reiterate the language from [2], which forms the core of the Boogie intermediate
verification language:

Program ::= Block+

Block ::= BlockId : Stmt ; Goto
Stmt ::= VarId := Expr | havoc VarId

| Stmt ; Stmt | skip
| assert Expr | assume Expr

Goto ::= goto BlockId∗
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In our core language, a program consists of a set of basic blocks, where the unstructured
control flow between blocks is given by goto statements. A goto with multiple target labels
gives rise to a non-deterministic choice; a goto with no target labels gives rise to normal
termination. The BlockId ’s listed in a goto statement are the successors of the block.

The semantics of the core language is defined over traces, i.e., sequences of program
states. Each finite trace either terminates normally or ends in an error. There are two as-
signment statements: x := e sets variable x to the value of expression e, and havoc x
sets x to an arbitrary value. Semi-colon is the usual sequential composition of state-
ments, and skip, which is the unit element of semi-colon, terminates normally without
changing the state. The assert statement assert e behaves as skip if e evaluates to
true; otherwise, it causes the trace to end in an error (we say the trace goes wrong).
The assume statement assume e is a partial command [18]: it behaves as skip if e
evaluates to true; otherwise, it leads to no traces at all. The assume statement is thus
used to describe which traces are feasible.

The normally terminating traces of a block are extended with the traces of the block’s
successors.

Note that the core language does not have a method call as a primitive statement;
a method call is encoded as a sequence of statements that assert the method’s precon-
dition, use havoc statements to set the locations that the method may modify to an
arbitrary value, and then assume the method’s postcondition.

Verification condition generation proceeds by first converting the program into pas-
sive form, where loops are cut (see [2]) and where all assignment statements are replaced
by assumptions expressed over a single-assignment form of the program variables [11].
For example, a statement

x := y ; x := x + y ; assert y < x

is converted into a passive form like

assume x1 = y0 ; assume x2 = x1 + y0 ; assert y0 < x2

where y0, x1, and x2 are fresh variables.
The passive program is turned into a formula via weakest preconditions [9]. For

any passive statement S and any predicate Q characterizing a set of post-states of S ,
wp[[S ,Q ]] is a predicate that characterizes those pre-states from which execution of S
will not go wrong and will end in a state described by Q . The weakest-precondition
equations for passive statements are as follows:

wp[[skip,Q ]] = Q
wp[[S ; T , Q ]] = wp[[S ,wp[[T ,Q ]]]]
wp[[assert e,Q ]] = e ∧ Q
wp[[assume e,Q ]] = e ⇒ Q

In each of the last two equations, the occurrence of e on the left-hand side is an expres-
sion in Boogie, whereas its occurrence on the right-hand side must be an expression in
the input language of the theorem prover. These expressions are usually so similar that
we do not mind glossing over this difference; however, for code expressions this makes
an important difference.
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To deal with (unstructured) control flow, we introduce a variable Aok for every block
labeled A, and we define Aok to be true iff no execution from A goes wrong [2]. In
particular, for any block A with body S and successors Succ(A), we define

Aok = wp[[S ,
∧

B∈Succ(A)

Bok ]]

2.1 Adding Code Expressions to Boogie

We extend the core language to include code expressions. Previously [2], we left im-
plicit the definition of Expr (and its implementation did not allow code expressions).
Now, we explicitly extend the definition of Expr to include them:

Expr ::= Expr op Expr | MethodCall | CodeExpr
CodeExpr ::= {{ LocalDecl∗ CodeBlock+ }}
LocalDecl ::= VarId : Type
CodeBlock ::= BlockId : Stmt ; Transfer
Transfer ::= Goto | Return
Return ::= return Expr

We need each code expression to be a self-contained unit. In order to achieve that, we
assume that each code expression is well-formed by meeting the following conditions:

– A transfer command comprising a goto statement has at least one successor.
– All successors are other blocks within the code expression.
– No block in a code expression is a successor of any block not in the code expression.
– The graph induced on the blocks by the successor relation is acyclic.
– All paths within the code expression end with a block whose transfer command

comprises a return statement.

We also assume each code expression has a first block labeled “Start”, which is the
entry point to the code expression.

2.2 When Is Code an Expression?

It is one thing to syntactically allow code expressions in Boogie, but we still must
consider when a code expression really does represent a genuine expression, i.e., when
we are justified in using the same semantics for them as for genuine expressions. Thus
the question of this section: when can we look at a chunk of code and consider it a
genuine expression?

It must meet four requirements:

0. It must be deterministic. (All branches are mutually exclusive.)
1. It must be total in terms of not being a partial command.
2. It must be total, in the “expression sense”. That is, its execution does not go wrong

(i.e., failing an assertion, like dereferencing null or dividing by zero).
3. It must not have any side effects (on variables other than the local variables it in-

troduces).



To Goto Where No Statement Has Gone Before 163

In our setting, the first two requirements are satisfied since our code expressions are
the output of a .NET compiler. That is, .NET bytecode (IL) obeys Dijkstra’s “Law of
the Excluded Miracle” [9] and does not contain any non-deterministic features. (If we
were to allow code expressions to contain partial commands, then our scheme derives
the value true in states where the partiality comes into play.)

We enforce the third requirement by omitting all assertions within a code expres-
sion. Such definedness checks, e.g., that a divisor is non-zero, are enforced by many
verifiers [14] for expressions separately from the expressions themselves by inserting
extra checks which guarantee that the expression is total.

The fourth requirement is enforced by making sure that all assignment statements
within a code expression are to its local variables and that all method calls are to pure
methods, i.e., methods whose Boogie encoding do not have any modifies clauses.

3 The Endpoint: Deriving an Expression from Code

But now we have a mismatch: we have code expressions in places where they need to
be translated to expressions in the prover’s language. We either need a new definition
for the weakest precondition when an expression is a code expression or we need a
translation scheme that produces a genuine expression from a code expression.

We take the latter approach and, for now, restrict ourselves to boolean code expres-
sions, i.e., the value they return is a boolean. For boolean code expressions that meet the
requirements in Section 2.2, we compute an equivalent boolean expression (that does
not contain any code expressions). For the code expression

{{ var b; S ; return e }}
the equivalent boolean expression is

(∀ b • wp[[S , e]] ) (0)

This presumes that S is a structured command, i.e., control flows from S to the return
statement. When the code expression is unstructured, then we form the block equations
as in Section 2.0. The only difference is that for any block A whose transfer statement
comprises a return statement return e, we define the block equation as:

Aok = wp[[S , e]]

Because code expressions are acyclic, we can avoid having to quantify over the block
variables by defining them via let-expressions. (Z3 supports the SMT-LIB format [19],
which allows let-expressions in the verification condition.)

So the body of the anonymous delegate can be represented in Boogie as:

{{ b : bool;
Start : skip ; goto L0,L1;
L0 : assume A[i ] = 0 ; goto L2;
L1 : assume A[i ] �= 0 ; goto L3,L4;
L2 : b := true ; goto L5;
L3 : assume result [i ] = k/A[i ] ; goto L2;
L4 : assume result [i ] �= k/A[i ] ; b := false ; goto L5;
L5 : skip ; return b; }}
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We first convert it into passive form by introducing a new incarnation of a variable each
time it is assigned. Join points (e.g., L5) also produce a new incarnation with equations
pushed into each predecessor relating the value of the variable in that branch with that
of the join point’s incarnation.

{{ b : bool;
Start : skip ; goto L0,L1;
L0 : assume A[i ] = 0 ; goto L2;
L1 : assume A[i ] �= 0 ; goto L3,L4;
L2 : assume b0 = true ; assume b2 = b0 ; goto L5;
L3 : assume result [i ] = k/A[i ] ; goto L2;
L4 : assume result [i ] �= k/A[i ] ; assume b1 = false ; assume b2 = b1 ; goto L5;
L5 : skip ; return b2; }}

Then the block equations, written as let-expressions, are:

let L5ok = wp[[skip, b2]] in
let L2ok = wp[[assume b0 = true ; assume b2 = b0,L5ok ]] in
let L3ok = wp[[assume result [i ] = k/A[i ],L2ok ]] in
let L4ok = wp[[assume result [i ] �= k/A[i ] ; assume b1 = false ;

assume b2 = b1,L5ok ]] in
let L1ok = wp[[assume A[i ] �= 0,L3ok ∧ L4ok ]] in
let L0ok = wp[[assume A[i ] = 0,L2ok ]] in
let Startok = wp[[skip,L0ok ∧ L1ok ]] in

Startok

After simplifying2 the expression is equivalent to:

let L5ok = b2 in
let L2ok = b0 = true ⇒ b2 = b0 ⇒ L5ok in
let L3ok = result[i ] = k/A[i ] ⇒ L2ok in
let L4ok = result[i ] �= k/A[i ] ⇒ b1 = false ⇒ b2 = b1 ⇒ L5ok in
let L1ok = A[i ] �= 0 ⇒ L3ok ∧ L4ok in
let L0ok = A[i ] = 0 ⇒ L2ok in
let Startok = L0ok ∧ L1ok in

Startok

If we denote that entire expression by R, then the genuine expression which is equiva-
lent to the body of the anonymous delegate is:

(∀ b0, b1, b2 • R )

and the entire postcondition of the method in Figure 0 is:

result.Length = A.Length ∧
(∀ i • 0 ≤ i < result.Length ⇒ (∀ b0, b1, b2 • R ))

2 Yes, we realize it doesn’t look particularly simple. We mean that we have applied the definition
of the weakest-precondition.
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Looking closely3, one can see that the truth value of this expression is equivalent to the
original postcondition.

We perform this translation in a depth-first traversal of the program, replacing each
code expression from innermost to outermost.

4 Non-boolean Code Expressions

In this section, we extend our translation of boolean code expressions to code expres-
sions of any type. The basic idea is to distribute the non-boolean code expression to a
context where its value can be stated as a boolean antecedent.

Let G[·] denote an expression context with a “hole”. That is, if we place an expres-
sion e in the hole, written G[e], we get an expression with an occurrence of e as a
subexpression. We assume bound variables in G are suitably renamed so as to always
avoid name capture of the free variables of e.

Now, let e be a code expression of an arbitrary type (that is, not necessarily boolean),
and let VC [e] be the verification condition (in other words, the verification condition
contains an occurrence of e). We now show how to transform expression VC [e] to an
equivalent expression that does not contain this occurrence of e but instead contains a
boolean code expression. First, for any variable x occurring free in e and introduced in
the verification condition by a let binding let x = t in u , replace x by t in e. Then,
consider any context G such that G[e] is a boolean subexpression of VC [e]; that is,
G[e] is some subexpression of VC [e] such that the free variables of e are also free
variables of G[e]. Specifically, if e is contained in a quantifier, then G[e] can be the
body of the innermost such quantifier; if e is not contained in any quantifier, then G[e]
can simply be VC [e].

Since G[e] is boolean, it is equivalent to the expression

(∀ k • k = e ⇒ G[k ] )

where k is a fresh variable. Considering that e is a code expression, we have:

(∀ k • k = {{ var b; S ; return d }} ⇒ G[k ] )
= { distribute “k =” over the code expression }

(∀ k • {{ var b; S ; return k = d }} ⇒ G[k ] )

The transformation we have just showed can thus be used to replace non-boolean code
expressions with boolean ones, after which the semantics that we have defined for
boolean code expressions earlier in the paper can be used.

5 Related Work

An alternative means for recovering boolean expressions would be to decompile the
MSIL back into a high-level expressions [6]. For the trivial example with which we
have demonstrated our scheme, this clearly would be quite easy.

3 Squinting helps too.
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However, we believe all decompilers are heuristic and so may not always be able
to successfully decompile an expression, certainly not without perhaps introducing the
same redundancy as a tree-encoding of the DAG, compared to the linear size of our
derived expression. Also, a decompiler’s goal is to produce an expression which is
“close” to a boolean expression that a programmer would write. We are not concerned
with making the expression “readable”, but instead just need to be able to communicate
it to a theorem prover.

There are other approaches that derive a functional form, i.e., an expression, from
imperative code [17,4], but it isn’t clear whether their results are more usable by an
SMT solver than ours. It also isn’t clear whether the sharing represented in the compiled
CFG is preserved.

6 Conclusions

In Section 0, we noted that there are contexts in which code expressions do not need
to be converted back into a genuine expression. For instance, Boogie encodes precon-
ditions (respectively, postconditions) as assume (respectively, assert) statements in the
Boogie program itself. Instead of forming the verification condition P ⇒ wp[[S ,Q ]] for
a program S , precondition P , and postcondition Q , it computes the weakest precondi-
tion with respect to true of the program:

assume P ;
S ;
assert Q

This means that if P or Q are code expressions, they can be in-lined and the assume
(assert) “distributed” so that any return statement in the code expression, return e,
becomes an assertion (assumption) on e. Then, the definitions of wp in Section 2 will
produce a first-order formula that is accepted by theorem provers.

But this cannot be done for quantifiers: instead they must be translated into an equiv-
alent quantifier in the input language of the theorem prover, which does not include code
expressions. Therefore, we need to perform our technique only for code expressions oc-
curring within a quantifier. As we progress with the implementation of this scheme in
Boogie, we will need to see if the introduction of the quantifier in Equation 0 leads to
problems with triggering. (A trigger is the pattern a Simplify-like SMT solver requires
before it instantiates a quantifier [8].)

The general form for a quantifier is:

(Q x : T
⎪⎪⎪ x ∈ D • P(x ) )

It has four parts that are defined by the specification language: Q , T , D , and P . The
kind of the quantifier is Q , which is usually either universal or existential quantifica-
tion. T is the type of the bound variable x . Different specification languages also may
restrict the kind of domain, D , that a bound variable may be drawn from. For instance,
Spec# restricts D to be a finite, computable set that has an interpretation at runtime.
Our technique is concerned only with the fourth part: representing the body P(x ). The
choices made for the other three are completely orthogonal.
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In summary, in this paper, we have adapted our previous work on verification condi-
tion generation [2] to provide a scheme for turning code that represents an expression
back into an expression in order for it to be easily translated into input for an automatic
theorem prover. The scheme avoids decompilation and is efficient. We also outlined four
healthiness conditions for ensuring that a code expression can be treated as a genuine
expression.

Acknowledgements

We would like to thank Manuel Fähndrich, Francesco Logozzo, and Michał Moskal for
valuable help and insight. Comments by the anonymous referees were also helpful.

References

0. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

1. Barnett, M., Fähndrich, M., Logozzo, F.: Embedded contract languages. In: ACM SAC -
OOPS, March 2010. ACM, New York (2010)

2. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: PASTE
2005: The 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering, pp. 82–87. ACM Press, New York (2005)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Charguéraud, A.: Program verification through characteristic formulae. In: ACM SIGPLAN
International Conference on Functional Programming (to appear, 2010)

5. Chatterjee, S., Lahiri, S.K., Qadeer, S., Rakamarić, Z.: A reachability predicate for analyzing
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The Next 700 Separation Logics
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Microsoft Research Cambridge

Abstract. In recent years, separation logic has brought great advances

in the world of verification. However, there is a disturbing trend for each

new library or concurrency primitive to require a new separation logic.

I will argue that we shouldn’t be inventing new separation logics, but

should find the right logic to reason about interference, and have a pow-

erful abstraction mechanism to enable the library’s implementation de-

tails to be correctly abstracted. Adding new concurrency libraries should

simply be a matter of verification, not of new logics or metatheory.

Landin’s seminal paper, The Next 700 Programming Languages [33], opens with:

Most programming languages are partly a way of expressing things in
terms of other things and partly a basic set of given things.

The same sentiment should be true for programming logics. There are some fun-
damental features that the logic must reason about directly; the other language
features can be reasoned about in terms of these fundamental features. In this
paper, I outline my perspective on how to achieve Landin’s vision in the context
of programming logics. Unfortunately, I am not in as strong a position as Landin
was: I don’t know exactly what the right core logic is, although recent work on
deny-guarantee [17,15] suggests one route to this core.

Recently there have been many separation logics [27,48] developed to reason
about different libraries, concurrency primitives and program constructs. For
example, there have been extensions to separation logic to deal with statically
allocated locks [38,9], dynamically allocated locks [22,26], reentrant locks [23],
channels [25,2,54,55], and event driven programs [31]. Each separation logic pro-
vides the appropriate abstractions for a particular library or program feature. To
reason about the feature the logics introduce new predicates to describe the state
of this feature and ability to perform operations on this feature, for example, we
may introduce a predicate representing the state of a channel, or a predicate for
the ability to send messages on a channel. The problem with this proliferation
of logics is that each logic requires a new soundness proof. Moreover, if we want
a logic that deals with both locks and channels, then we will require a new logic
that combines the previous ones. We are in effect building a new logic for each
concurrency primitive or combination of concurrency primitives.

These language features can be implemented in terms of lower-level concepts.
We should be able to mirror this implementation by realising the high-level

G.T. Leavens, P. O’Hearn, and S.K. Rajamani (Eds.): VSTTE 2010, LNCS 6217, pp. 169–182, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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reasoning principles in terms of the low-level principles, thus, deriving many of
these separation logics. For example, a logic that supports dynamically allocated
locks is required for reasoning about most concurrent programs, but the lock
may be implemented in terms of hardware atomic instructions: for instance, a
spin lock might use atomic Compare-And-Swap (CAS) and write instructions.
If we have a logic to reason about these hardware atomic instructions, then we
should be able derive the logic for dynamically allocated locks. After all, that is
exactly what the programmer does. Our logics should provide at least the level
of abstraction provided in our programming language.

Moreover, the module programmer actually isolates the client from the im-
plementation details. They provide a high-level interface that does not require
understanding of the precise implementation details. Thus, changes to the im-
plementation should not affect the client. Similarly, the details of the verification
should not be exposed to the client. There should be sufficient abstraction such
that if the implementation of the lock is changed, then the verification of the
client should not be affected. This means our logic requires a powerful abstrac-
tion mechanism that naturally mirrors the programmer’s informal reasoning.

Some might take this paper to mean “no more separation logics, please”.
That is simply not my intent. The scientific method requires us to perform
experiments, conjecture theories based on the experiments, and perform new
experiments to test these theories. I view each separation logic as an experiment
in verification, and what I am proposing is a more general theory that captures
the results of these experiments, which we then need to validate against new
programs and libraries. Deny-guarantee points the way to a more general theory.

Each of the logics mentioned above [38,9,22,26,23,25,2,54,55,31] requires the
addition of axioms and new primitive predicates to the logic to deal with the
infrastructure the feature provides. These additions hide the underlying interfer-
ence or interaction, but in doing so, require this hiding to be proved sound. Deny-
guarantee [17,15] takes a different approach. It enables interference to be directly
described and even abstracted in the logic. The predicates that describe the lan-
guage features, such as locks or channel ends, can be defined by the state changes
they allow (changing the flag from locked to unlocked) and the possible current
states. We do not need to resort to extending the logic with new bespoke predi-
cates. We can simply define the predicates in the logic, and use abstract predicates
to hide the details. We do not require a new soundness proof for each library.

The rest of the paper is a survey of the research that led to my search for a
general logic. I will present a survey of research on separation logic focusing on
abstraction and concurrency. I have included footnotes where possible to highlight
additional related work that doesn’t fit with the flow of the overall paper.

1 Separation

Let us begin with a brief overview of separation logic [27,48]. The core idea be-
hind separation logic is Local reasoning [39], that is, verification should focus on
what changes, not what doesn’t change. To achieve this, separation logic takes
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a different starting point to Hoare logic: instead of pre- and post-conditions de-
scribing the (global) state, they just describe a part of the state. A pre-condition
must describe the parts of memory that a command accesses, and everything not
mentioned in a pre-condition is implicitly left unchanged. Intuitively, you can
see the pre-condition as giving the command the abilities to access parts of the
memory. More formally, the judgment  {P }C{Q } means: when executing the
command C in a partial state satisfying the assertion P , the command will not
access memory outside this partial state and, moreover, if it terminates, then the
resulting partial state will satisfy Q. To capitalise on this property separation
logic introduces a new logical connective: the separating conjunction P ∗R, that
says the current (partial) state can be split into two disjoint parts, one satisfying
P , and the other R. This connective enables the frame rule, which epitomises
local reasoning:

 {P }C{Q }
 {P ∗ R }C{Q ∗ R } (Frame)

The frame rule says: anything disjoint from the pre-condition P of C is auto-
matically preserved by the command. This rule captures the key insight in local
reasoning: only describe what you access; the rest will stay the same. This leads
to clean verification of sequential heap-manipulating programs.

Somewhat surprisingly it even extends naturally to concurrency [38,9]. We
can reason about disjoint concurrency simply by saying the two threads must
access disjoint memory.

 {P1 }C1{Q1 }
 {P2 }C2{Q2 }
 {P1 ∗ P2 }C1‖C2{Q1 ∗ Q2 }

(DisjPar)

If C1 will only access the P1 part of the memory, and C2 the P2 part, then they
can happily execute side-by-side without interfering in a state satisfying P1 ∗P2.

Earlier in the semantics of judgments we used the phrase “will not access
memory outside [the pre-condition]”. You may think that only the overall effect
on a location matters: writing to a location and then changing the value back to
its original value would be okay. This is the case with normal modifies clauses in
Hoare logic, but with separation logic it is not. The specification is capturing the
abilities the command requires to execute, as well as its input/output behaviour.

In the parallel rule (DisjPar), the abilities C1 requires are distinct from the
abilities C2 requires. Capturing the abilities required by a command is a key
feature of separation logics, and is the crux of all that follows, as it will enable
abstraction.

2 Hiding from Separation

The early ideas of modules developed by Hoare [24], Parnas [45] and others
said the internal state of a module should be hidden from its clients, so that
clients cannot depend on the internal details. Hoare’s seminal paper [24] on data
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abstraction showed how to hide the internal state of a module. The difference be-
tween the internal and external views has been aptly named “Hoare’s mismatch”
by Naumann and Banerjee [37].

Separation logic supports hiding with the hypothetical frame rule [40]:

{P1 } f1{Q1 }, . . . , {Pn } fn{Qn }  {P }C{Q }
{P1 ∗ R } f1{Q1 ∗ R }, . . . , {Pn ∗ R } fn{Qn ∗ R }  {P ∗ R }C{Q ∗ R }

(HypFrm)
This says that if we can verify a program, C, which uses some procedures
f1, . . . , fn, then we can extend the specifications of these procedures with R
and know that the client preserves R between each call to a procedure. The
informal understanding is simple: to prove {P }C{Q } we know the client code
doesn’t depend on any additional state, in particular R, so the code cannot affect
the additional state. When we extend the specifications of the procedures, we
know automatically that only the procedures will update this additional state.

A quintessential example of this reasoning is the specification of a memory
manager. Typically it has an internal list of free blocks. Consider a simple mem-
ory manager that allocates two-word blocks, x �→ , . The client should use the
specifications:

{ empty } x := malloc(){ x �→ , }
{ x �→ , } free(x){ empty }

but the actual implementation of the library will be validated against the spec-
ifications:

{ freelist } x := malloc(){ freelist ∗ x �→ , }
{ freelist ∗ x �→ , } free(x){ freelist }

The client code uses the simple specifications that do not mention the freelist.
Using the hypothetical frame rule, we can extend the proof of a client to the
actual specification of a memory manager with an internal freelist. Note the
modules operations must all preserve the internal invariant.1,2

The hypothetical frame rule enables two views of a module, and thus the
client code is independent of the internal invariant of the module, following
Parnas’s advice.
1 The hypothetical frame rule has been extended to reason about both higher-order

functions [5] and higher-order store [49], and even anti-frame rules that hide the

internal state of a module that fits more naturally with type systems [46,50]. Nau-

mann and Banerjee have provided a similar notion to the hypothetical frame rule in

region logic [37].
2 This form of reasoning can naturally be extended to a concurrent setting. Concurrent

separation logic [38,9] uses the same principles to associate state to a lock, such that

when the lock is acquired that state becomes available to the client. It carefully hides

the internal interference of an algorithm from the external observers. It can be viewed

as taking the hypothetical frame rule and adding a lock to the code. Whenever a lock

is acquired, the thread gets more state. This has then been extended from statically

allocated locks, to dynamically allocated locks [22,26] and even reentrant locks [23].

The invariant hides the details of the interaction, but the mechanism is tied directly

to the implementation.
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3 Being Opaque

The problem with the hypothetical frame rule is that it only deals with single
instances of the hidden data structure. Hence, it cannot be used for many com-
mon forms of abstraction, including ADTs and classes, where we require multiple
instances of the hidden resource. To deal with this in separation logic, Parkinson
and Bierman took a different approach: abstract predicates [44,42,43].

Instead of hiding the internal state of the module it is abstracted. Intuitively,
abstract predicates are used like abstract data types. Abstract data types have
a name, a scope and a concrete representation. Operations defined within this
scope can freely exchange the data type’s name and representation, but oper-
ations defined outside the scope can only use the data type’s name. Similarly
abstract predicates have a name and a formula. The formula is scoped: code
verified inside the scope can use both the predicates name and its body, while
code verified outside the scope must treat the predicate atomically. We are just
using the theory of abstract data types developed in the 80s [47,35] for reasoning
in a program logic. Instead of using type variables to provide abstraction, we
use predicate variables to provide abstraction.

The whole approach can be summarised by the following rule:

Δ; Γ  {P }C{Q }
Δ, α(x) def= R; Γ  {P }C{Q }

(AbsIntro)

We perform verification in a context of functions, Γ , and of predicate definitions
Δ. At any point in a verification, we can specialise a predicate α to a precise
definition R. The verification of C in the premise cannot depend on the definition
of α, so we can specialise it to any definition soundly.

As an illustration, let us consider making our earlier malloc able to allocate
arbitrary sized blocks. The standard specification [29] of free only requires it to
deallocate blocks provided by malloc. It is undefined on all other arguments.
Using abstract predicates we are able to provide an adequate specification. We
can provide a predicate with each block allocated by malloc, and require that
predicate in the pre-condition of free:

{ empty } x := malloc(n){ x �→ ∗ ... ∗ (x + n − 1) �→ ∗ MBlock(x, n) }
{ x �→ ∗ ... ∗ (x + n − 1) �→ ∗ MBlock(x, n) } free(x){ empty }

This is important, as without the MBlock predicate it is hard to see how much
memory should be deallocated by free, since it does not take an explicit size
parameter. MBlock can be seen as a module-specific ability to call free.

An actual implementation of malloc and free will have to realise this predicate
in terms of some concrete state, for instance:

MBlock(x, n) def= (x − 1) �→ n

The memory manager will use this definition to know how much memory has
been returned by the client. The client will be verified independently of this
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definition, so cannot rely on the location before the block containing the length of
the block, or even being allocated. Importantly, the client can only access things
they have the ability to access. As they do not know what abilities MBlock gives
them, they cannot use them. The client cannot use the implication

MBlock(x, n) ⇒ (x − 1) �→ n

as they must treat the MBlock predicate as a variable. This implication is how-
ever, critical for the module to be able to meet its specification.3

4 Nobody Likes to Share

Separation provides an elegant abstraction. However, there are problems when
we don’t have separation. If we need to expose several independent properties
of the same state to the clients, then we cannot achieve abstraction through
separation. We have sharing, and thus no separation.4

The simplest example of this is read-sharing. In the standard model of sep-
aration logic it is not possible for the same location to be used in two threads,
hidden in two invariants or predicates even if it will only be used in a read-only
way. This difficulty led to fractional permissions in separation logic [8,6]. Here
the notion of separation logic is adapted to enable locations to be split into
fractions, the whole gives the ability to write, and any smaller non-zero fraction
gives the ability to read. This deals with sharing where there is no mutation,
but what if we want sharing when there is mutation?

Let us consider a slightly more complex memory manager that exhibits this
problem [56]. The memory manager contains a list of all contiguous blocks, and a
flag to say if the block is allocated or not. We illustrate the kind of arena below.

There is a cyclic list that goes through each block. Here we have two free blocks
(white) and two allocated blocks (grey), and between each block a pointer to
the next block, with a bit signifying if the block is allocated (black), or not
(white). We would like the MBlock(x, n) predicate to signify that the block at
x is reachable in the list from the start. For example, we might define it as

MBlock(x, n) def= mlist(start, x − 1) ∗ (x − 1) �→ n

3 This form of reasoning has very natural connections with higher-order quantification

as found in higher-order separation logic (HOSL) [4,3]. HOSL has been used to verify

some design patterns abstractly [30], and a similar approach is taken in Hoare Type

Theory (HTT) [36] to deal with abstraction of data types.
4 I think we are a long way from having “nice” proofs of arbitrary sharing. There have

been some proofs of graph algorithms [57,7] and garbage collectors [51,34]. Here I

will only consider fairly simple sharing patterns.
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That is, a list of malloc blocks starting at start going to x − 1 and then con-
taining the length of the block n. Unfortunately, this requires many MBlock
predicates to describe the same state, for instance, all of them will describe the
contents of start. We cannot simply use this definition with our earlier specifi-
cation of malloc and free.

Intuitively, the system works because freeing a block does not invalidate any
other MBlock predicates. They are separate at an algorithmic level, but not
in terms of the actual state that represents them. We would like the MBlock
predicate to have sufficient knowledge of the other abilities to alter the list, so
that it knows the block will remain in the list.

The situation worsens when we get to the concurrent setting. For example,
we also get sharing when we consider implementations of locks. Many threads
will all have access to the same piece of state, but once it is locked they know no
one else will be able to acquire the lock. Again, we cannot directly abstract the
sharing required for concurrency in separation logic. Hence, each concurrency
primitive or concurrent library requires its own separation logic.

This is not a scalable solution. We need sufficient abstraction that a library can
provide an illusion of separation.5 The internal changes that are not externally
visible need to be hidden from the client. We need to deal with the internal
interference of the module directly.

5 Coping with Change

There has been a long line of research on dealing with the interference caused by
concurrent threads, beginning with the Owicki-Gries method [41], which allows
assertions about the global state of the program to be made. Each assertion
must be checked against all the potential parallel commands to ensure it does
not interfere with the assertion. For example, the command x := x+1 interferes
with assertion x = 5 but not with x ≥ 5. If the latter is true and the command
executes, it is still true. By using assertions that are unaffected by the context
the proof is sound even in a concurrent setting.

However, checking each assertion against each command does not scale well,
because the number of checks grows rapidly with the number of threads and
commands. The rely-guarantee method [28] abstracts this approach. Instead of
directly inspecting each command of the other threads, two relations are used to
approximate the interference: the rely, R, the interference a thread can tolerate
from the environment; and the guarantee, G, the interference that a command
is allowed to cause. Each assertion about the shared state must be stable with
respect to the rely, that is, closed under the relation. The reasoning is perhaps
best expressed by the parallel composition rule:

5 This illusion was perhaps first observed when trying to connect the high-level context

logic reasoning about trees [11,12] to the low-level heap representations. To make

this relationship precise one has to introduce a notion of crust [16], a context that

is changed, but only in a superficial way, to preserve the data structure’s internal

invariant.
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G2 ⊆ R1

G1 ⊆ R2

R1, G1  {P1 }C1{Q1 }
R2, G2  {P2 }C2{Q2 }
R1 ∩ R2, G1 ∪ G2  {P1 ∧ P2 }C1‖C2{Q1 ∧ Q2 }

(RGPar)

To compose two threads, the interference tolerated by the first thread R1 must
contain the interference caused by the second G2, and similarly R2 must contain
G1. The parallel composition can thus tolerate the interference expected by both
threads R1∩R2, and the combination can cause the interference of either thread
G1 ∪ G2.

The concepts of rely-guarantee have been combined with separation logic,
SAGL [19] and RGSep [52,53], to allow the manipulation of heap-based data
structures using fine-grain or non-blocking concurrency control. Separation is
used to restrict the effects of interference, and the interference is carefully de-
scribed using relations as in rely-guarantee. Both approaches allow pre- and
post-conditions to describe both local and shared heaps. For example, in RGSep,
the assertion language allows assertions to be made about the shared state: P
means the shared state contains P . The separating conjunction then only sepa-
rates the assertions about the local state, and just behaves like conjunction on
the shared state. Interference only affects the shared state; the local state cannot
be changed by other threads.

We can give the parallel rule from RGSep:

G2 ⊆ R1

G1 ⊆ R2

R1, G1  {P1 }C1{Q1 }
R2, G2  {P2 }C2{Q2 }
R1 ∩ R2, G1 ∪ G2  {P1 ∗ P2 }C1‖C2{Q1 ∗ Q2 }

(RGSepPar)

Note that it only differs by substitution of ∗ for ∧ from the previous rule (RG-
Par). Importantly, if the pre- and post-conditions only describe shared state then
this degenerates to the (RGPar) rule, and if it only mentions the local state then
it degenerates to the separation logic rule for disjoint concurrency (DisjPar).

Although these logics allow local reasoning about the state in a concurrent
system, the interference is global. The interference of a library has to be con-
sidered by its clients: we don’t get the same principles of information hiding as
with the hypothetical frame rule. The rely and guarantee affect the whole proof.
Feng has begun to address this problem, by allowing a more flexible structure
to the relations, in local rely guarantee (LRG) [18]. However, it still cannot ab-
stract internal interference for a library. As the interference in rely-guarantee is
separate from the assertions there is no way to use abstract predicates to hide
the details of the interference. If we could make the interference specification
part of the assertion language, then we would be able to use abstract predicates.
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6 Embracing Change

One observation we might make is that the guarantee is about ability to change,
and similarly the separation logic assertions are about ability to change a part
of the state. RGSep, SAGL and LRG all treat these as two different notions.
Recently, a new logic, deny-guarantee [17,15], has emerged that alters the fun-
damental building block of separation logic to be no longer about state, but
instead about action (state change).

In deny-guarantee, we have assertions that describe the ability to perform a
state change. Earlier we mentioned read-permissions, an extension to separation
logic to allow multiple readers single writer to a particular heap location. We
can see this concept as really saying no one can change that location, that is, a
deny on the changing that location in the state, e.g. a read permission x

r�→ y
could be defined as

x
r�→ y

def= x �→ y ∗ �o,n. [x �→ o 	 x �→ n]deny

That is, the shared state contains the location x with contents y, x �→ y ; and
we deny any change to that locations value. The assertion [x �→ o 	 x �→ n]deny

means that we forbid changing x from containing o to n.6 The quantifier �o,n is
∗ iterated over all values of n and o.

Similarly we provide assertion that allow certain actions called a guarantee
permission. Consider an increment permission, it might be defined as a deny on
the location being decreased in value, and allowing the location to be increased
in value, e.g.

x
i�→ y

def= x �→ y ∗ �o,n. n < o ⇒ [x �→ o 	 x �→ n]deny

∧ n > o ⇒ [x �→ o 	 x �→ n]guar

Our assertion language is defined over worlds that define both state and state
change. We can extract the rely and guarantee from these worlds, and combine
these worlds, written σ, with a commutative ∗ operation. This gives the ∗ in
the logic by lifting it to sets. The ∗ is partial as we cannot combine a guarantee
and a deny permission for the same action of state change. For example, the
following logical implication holds,

[x �→ o 	 x �→ n]deny ∗ [x �→ o 	 x �→ n]guar ⇒ false

This principle leads to the important property:

σ1 ∗ σ2 defined ⇒ guarantee(σ2) ⊆ rely(σ1)

6 We have to associate permissions (fractions) to actions to ensure the underlying

structure is cancellative. Without this we would not get a well behaved separation

logic [13], see [17] for details. Note an operation ⊕ is cancellative if m1 ⊕ m3 =

m2 ⊕ m3 implies m1 = m2.
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Here you can see that the rely-guarantee parallel rule is captured directly by the ∗.
The parallel rule in deny-guarantee is just the same as originally in separation logic.

 {P1 }C1{Q1 }
 {P2 }C2{Q2 }
 {P1 ∗ P2 }C1‖C2{Q1 ∗ Q2 }

(DGPar)

Now the ∗ captures the compatibility of interference inside the assertion language
rather than as an additional context. We can also defined an assertion as stable,
if it is closed under the interference it allows the environment to perform.

We can now use the abstract predicates from separation logic to hide both
interference and state. Hence, the bespoke predicates that were added to the
logic can now be defined in the logic. Consider the specification of dynamically
allocated locks [22,26]:

{ isLock(x, P ) } lock(x){Locked(x, P ) ∗ isLock(x, P ) ∗ P }
{Locked(x, P ) ∗ P } unlock(x){ empty }
Locked(x, P ) ∗ Locked(x, Q) ⇒ false

The predicate isLock(x, P ) holds of a location that can be used as a lock pro-
tecting a resource P .7 Here, we specify that calling lock returns the Locked
predicate, and this is required to call unlock. We also specify that we cannot
have the Locked predicate twice. Hence, only one person can hold the lock.
This specification does not reveal any details about the implementation of the
lock, just an abstract interface to use it. Both Hobor et al. and Gotsman et al.
then provide a soundness proof of the logic extended with these predicates with
respect to an operational semantics that assumes locks as a primitive command.

In deny-guarantee we can simply define these predicates in terms of the state
changes they permit and the current state. For a spin lock, the Locked(x) pred-
icate says that the shared state at location x contains 1 and the local state con-
tains the unique ability to change it from 1 to 0 while putting P in the shared
state. The isLock predicate says the local state contains a non-exclusive ability
to change the shared state from 0 to 1 while removing P from the shared state,
and that either the shared state at x contains 0, the resource P and the ability
to change it from 1 to 0 while putting P in the shared state, or the shared state
contains 1. These predicates describe both the state and the ability to change it.
The module can prove the definitions are self-stable: cannot be invalidated by
the environment. Hence, the client does not need any knowledge of the internal
interference. The client is independent of these definitions.

The specification is sufficiently abstract that we can prove other implemen-
tation meet this specification. For example, we have verified [15] a variant of
Lamport’s bakery algorithm [32] used in the Linux Kernel. This changes the
internal interference and the representation in memory, but these changes are
not visible to the client.
7 We currently haven’t published how to use higher-order parameters to predicates in

deny-guarantee, and it isn’t supported by the model presented in [15]. But it will be

the subject of a forthcoming paper.
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On top of this abstract specification of a lock we have verified two different im-
plementations of a set that use the lock to deal with concurrency. The first uses a
single lock to protect the set, while the second uses one lock per element in the set.

In deny-guarantee, we can build an abstraction of a concurrency primitive
directly in the logic. To prove the soundness of the two lock libraries is simply a
matter of verification not meta-theory.

7 Deny Everything?

We now almost have 700 programming languages.8 But I don’t think we will ever
have 700 separation logics. The important point of this paper is that we should
find the right core principles to verify libraries and provide abstract specifications
of them, rather than using similar principles in many slightly different ways. By
finding the right core logic, we can concentrate on the difficult problems.

With deny-guarantee we can begin to see a route to a solution. It has demon-
strated that we can encode several concurrency primitives into it, and we do not
have to perform arguments outside the program logic. We can remain in a single
verification framework and use abstraction to hide the details. For any solution
to be successful, we must consider many large examples, and push to see what
can and cannot be achieved. This is an exciting time for verification.

Feng et al. [21] present a contrasting view to this paper. They propose a
system for integrating a collection of different logics, where each logic is tailored
to a specific problem. Their claim is code typically only has one or two difficult
features, for instance, the boot loader deals with the mutation of code [10], but
not system interrupts [20], and typically the scheduler doesn’t have to deal with
code mutation, but does have to deal with interrupts. I think there will be cases
where the derivation approach I propose will be easier, and times when their
many integrated logics will be easier.

One could view Dijkstra’s language of guarded commands [14], and thus systems
like Boogie [1], as approaching my aims for a core logic. Boogie has been used in
many impressive verifications without needing extensions. However, language fea-
tures like the heap and frame properties are encoded into Boogie by adding axioms.
This means that metaproofs are required to ensure the soundness of the system. I
like Boogie and the tools built on top of it: it shows how to architect a platform for
verification that language features can be encoded onto. However, the correctness
of these encodings typically require a research paper to support them. I want to be
able to define language features simply by giving a low-level implementation and
abstracting the details. This should just be done in the same logic; it shouldn’t
require metaproofs of the soundness of this library.

Ultimately separation logic has been a great inspiration to deny-guarantee.
Separation logic provides a logical operation to split states. Deny-guarantee sim-
ply builds a logical operation to split state changes. This tiny shift has enabled
more flexible reasoning and abstraction. What the right core logic is remains an
8 Wikipedia listed 692 programming languages on June 2 2010,

http://en.wikipedia.org/wiki/Alphabetical_list_of_programming_languages

http://en.wikipedia.org/wiki/Alphabetical_list_of_programming_languages
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open question. But hopefully we are a step closer to a situation in which adding
new language features and concurrency primitives to a logic is simply a case of
verifying their implementation rather than resorting to meta-theory. If you See
What I Mean?
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Abstract. The Composite design pattern is an exemplar of specification and ver-
ification challenges for sequential object-oriented programs. Region logic is a
Hoare logic augmented with state dependent “modifies” specifications based on
simple notations for object sets. Using ordinary first order logic assertions, it sup-
ports local reasoning and also the hiding of invariants on encapsulated state, in
ways similar to separation logic but suited to off-the-shelf SMT solvers. This pa-
per uses region logic to specify and verify a representative implementation of the
Composite design pattern. To evaluate efficacy of the specification, it is used in
verifications of several sample client programs including one with hiding. Veri-
fication is performed using a verifier for region logic built on top of an existing
verification condition generator which serves as a front end to an SMT solver.

1 Introduction

The Composite pattern [7] captures a frequently encountered idiom in program design.
The pattern centers on a collection of mutable data objects organized hierarchically,
forming a rooted and possibly ordered tree. The operations include the addition and
removal of subtrees anywhere in the tree. In contrast with the use of a tree as an encap-
sulated representation for an abstract set, this pattern exposes an interface that allows
clients to directly access every node. The pattern was featured in a recent survey of
challenges for reasoning about sequential object-oriented programs [11] and was the
challenge problem of a workshop [18]. In this paper we present a novel solution aimed
at current verification tools: indeed we machine-check the verification of the pattern
and some sample clients using the Z3 SMT solver [6] via its Boogie 2 [14] front end.

The usual presentation of the Composite pattern involves two classes:
class Component has subclass Composite, and the latter maintains a set of children
of type Component . For brevity we sometimes refer to objects of type Component
as nodes. Any particular use of the Composite pattern will involve application-specific
operations, often supported by invariants that involve many or all of the nodes. The
challenge problem [11,18] is an illustrative example. There is an operation, getTotal ,
that returns the number of descendants of a given node, counting the node itself. Method
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getTotal is declared in Component , because one purpose of the pattern is to provide
clients with a single interface for components, whether or not they are composite. If
getTotal is invoked more often than adding and removing subtrees, it may be desirable
to cache the result by declaring in Component an integer field, total , and to main-
tain the invariant that each node’s total is the number of all descendants of the node.
An invocation n.add(p), which adds component p as child of composite n , increases
the number of descendants of node n and of each of its ancestors. Method add must
reestablish the ancestors’ invariants and the challenge problem is how to streamline the
specification and verification.

An attractive technique for reasoning about object-oriented programs is to focus on
object invariants, declared in classes and pertaining to each instance individually. For an
example, suppose Composite declares field children which is a sequence of objects.
Consider the parameterized predicate ok(o), defined at the top of Fig. 1, which says
that the total at o is one plus the sum of total of all the children of o. This has the
attractive feature of being “local” to node o and its children. Moreover, if every1 o of
type Composite satisfies ok(o) then each o.total is in fact the number of descendants.

The beauty of this formulation (stipulated in [11]) is that it does not involve recur-
sion, which makes it more amenable to automated first-order reasoning. The notion
of sequence sum, however, is inherently recursive. In other works this is avoided by
treating composites as having exactly two children, as it is not the central issue of the
challenge. Our work, however, alleviates reasoning about sequence sum by appealing
to “local reasoning”.

Because adding p as child of n falsifies ok for ancestors of n , class Component
includes field parent :Composite (with “protected” visibility). Parent pointers can be
traversed in order to fix the invariant at each ancestor. But what forces the implementa-
tion of add to fix the invariants of ancestor nodes? What lets us conclude that no other
node’s total needs to be updated? How can the specifications be formulated so that
clients are neither able to break the invariant nor directly be responsible for maintaining
it? We shall answer these questions without using specialized invariant disciplines or
higher-order logic.

For some design patterns, reasoning about object invariants can be based on the idea
that a client-visible object “owns” its reps, i.e., the objects that comprise its internal
representation [19]. A discipline is imposed to ensure that the object invariant depends
only on the reps and that clients cannot update the reps directly, so clients cannot fal-
sify a candidate invariant. Thus the invariant may be hidden [8] in the sense that it is
not mentioned in the public specification of a method like add . (While verifying the
implementation of add , the invariant is assumed as the precondition and asserted as
postcondition.) Ownership also supports reasoning that is “local” to the relevant part of
the heap. A client can reason that the value of some query method invocation o.m() is
preserved over updates of some distinct object o′, if o.m() is known to depend only on
the reps of o and moreover distinct objects have disjoint reps.

The Composite pattern was posed as a challenge problem because client access to
internal nodes of a tree, rather than just the root, is incompatible with ownership disci-
plines. There are other design patterns, such as Observer and Iterator [7], that do not fit

1 Quantification in region logic is bounded by a region expression.
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well with ownership due to back and forth dependencies and reentrant callbacks. Pro-
posed extensions of ownership that support hiding of invariants in these patterns [16,21]
seem ad hoc. The difficulties led some researchers to abandon the traditional notion of
hiding encapsulated invariants [8] in favor of making them explicit in contracts, ab-
stracted in some way for information hiding [5]. We address the first posed question by
using explicit invariants—each visible method’s pre- and postconditions are conjoined
with all the invariants; e.g., specification of add requires and ensures that the total is
correct for each (allocated) node.

Procedure specifications are often phrased in terms of an effect (or “modifies”) clause,
separate from the designated postcondition (“ensures” clause), which lists the variables
that may be written by the procedure. To deal with anonymous objects in the heap,
and to hide effects on objects not supposed to be visible to clients, one technique is
for the semantics of specifications to allow owned objects to be updated even when
not explicitly mentioned in a write effect. Kassios [10] introduced a much more gen-
eral technique, not for hiding but rather for abstracting from write effects. Auxiliary
(“ghost”) state is used in expressions that denote sets of locations2—for example, an
object field reps may be used to hold the locations of the fields of all its rep objects—
and such expressions are used in effect specifications. This is called dynamic framing
because the locations on which an effect is allowed may be designated by an expres-
sion involving mutable ghost variables or fields of type “set of location”. Others have
explored this idea using pure methods that return sets of locations [26]. By specifying
expressive (write) effects, we address the second question; i.e., effect specification of
add allows us to conclude that the total field of any node other than an ancestor was
not written.

In previous work [1], we formalized dynamic frames in region logic, a straightfor-
ward adaptation of Hoare logic that allows ghost fields/variables of type region in effect
clauses. Regions are sets of object references. Our assertion language and effect clauses
feature expressions of the form G‘f where G is itself a region expression and f a field
name. As an r-value, G‘f is the set of values in f -fields of objects in G . Effect specifica-
tions refer to the l-value, i.e., the locations of those fields. As witnessed in our previous
work [2], a judicious use of regions in effect specifications facilitates local reasoning
(c.f. [22]) and its automation, which served as impetus for this work. We also find that
regions support information hiding, without recourse to induction, higher-order logic,
or method calls in specifications [26]. The solution to the last posed question is sketched
in Sect. 5 where we show how to hide a conjunct from a client’s view of the specification
of add .

This paper. Using a simplified version of our specification of the Composite pat-
tern, Sect. 2 reviews the basics of region logic. It also introduces our approach of
using explicitly quantified invariants as opposed to hiding quantification via a built-
in notion of object invariant. In Sect. 3 we discuss automated verification in our ap-
proach, i.e., using an automated prover for code annotated with loop invariants and other
assertions.

2 We are considering a Java-like state model, so the mutable locations are pairs (o, f ) with o an
object reference and f a field name.
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A number of publications on reasoning about design patterns [4,9,24] focus on ver-
ifying the classes that make up the pattern. But the test of specifications is in their use
by clients. Sect. 4 refines the specifications of Sect. 2 and shows their use in reason-
ing about nontrivial clients that manipulate several composites. Information hiding is
sketched in Sect. 5. Sect. 6 discusses our experience and related work.

Contribution. We have successfully applied region logic to specify and verify the orig-
inal challenge problem, and beyond, including well-chosen clients, which hints at the
usability of our specification. We have implemented a verifier for region logic, VERL,
built on top of the Boogie 2, Z3 tool chain. All of our code has been mechanically
verified. It is available together with the verifier in [23].

2 Region Logic in a Composite Nutshell

In this section, we consider a simple illustrative implementation of the Composite pat-
tern accompanied by specifications in region logic. Salient features of region logic are
introduced as we explain the specifications.3

Implementation. Fig. 1 depicts a simple implementation (including all annotations)
of the composite pattern. The pattern centers on a collection of mutable data objects
organized as a tree. Class Comp is used to represent leaf nodes as well as internal
nodes of the tree. Field parent contains an immediate ancestor (if any) of the current
object (self) and field total contains a count of all descendants including self. Field
children is a sequence of objects. We use a mathematical sequence for simplicity, to
avoid the distraction of heap-allocated arrays. Addition of an element to a sequence is
performed using the + operation. Sequence membership is written as o ∈ p.children ,
which is a shorthand for ∃i : int | 0≤ i < len(p.children)∧o = p.children[i ]. Note that
the specifications in Fig. 1 are preliminary; later we refine them to provide more precise
write effects suitable for clients and to illustrate hiding of some of the invariants.

Specification of add . Public method add inserts an existing composite into the children
of self and then invokes private method addToTotal which repairs the total of self and
all of its ancestors (if any).

As usual, requires and ensures clauses express pre- and postconditions. The effects
clause expresses write effects, that is, what variables and fields (of objects in add ’s pre
state, i.e., state which satisfies the preconditions) may be written. We list write effects
following keyword wr. A region is a set of references; region expressions, G , have
type rgn and can occur in assertions and in effects. The region expression ∅ denotes
the empty region, whereas {E} (singleton region) denotes a singleton set containing
the value, possibly null, denoted by expression E . Region expressions of the form G‘f
(read “G’s image under f ”) when used for their r-values are restricted to fields f of
reference type or of type rgn. If f is a field of reference type then the r-value of G‘f is

3 For a more thorough exposition of region logic please refer to [1]. In the journal version (under
preparation) we generalize and simplify some of the features of the logic, and those changes
are also adopted herein.



Local Reasoning and Dynamic Framing for the Composite Pattern and Its Clients 187

ok(o) : o.total = 1+(sum i ; 0 ≤ i < len(o.children) | o.children[i ].total)

I 0: ∀o :Comp | o.total ≥ 1
I 1(r :rgn) : ∀o :Comp ∈ alloc− r | ok(o)
I 2: ∀p :Comp,o :Comp | o ∈ p.children ⇔ o.parent = p
I 3: ∀o :Comp, i : int, j : int | 0 ≤ i < j < len(o.children) ⇒

o.children[i ] �= o.children[j ]
I (r :rgn) : I 0∧ I 1(r)∧ I 2∧ I 3 and I =̂ I (∅)

public class Comp {
seq<Comp> children; int total ; // initially total = 1 and children is empty sequence
Comp parent; // initially parent = null

void add(Comp c)
requires c �= null ∧ c.parent = null;
requires self �= c ∧ I;
ensures c.parent = self ∧ I;

effects wr {c}‘parent, {self}‘children;

effects wr alloc‘total;
{

assert c �∈ self.children;
preserves I1({self}) {

c.parent := self;
self.children := [c] + self.children;

}
self.addToTotal(c.total);

}

int getTotal()
requires I;
ensures result = self.total ∧ I;

{
result := self.total;

}

void addToTotal(int t)
requires t ≥ 1;
requires self.total + t =

1 + sum i; 0 ≤ i < len(self.children) |
self.children[i].total;

requires I({self});
ensures I;

effects wr alloc‘total;
{

Comp p; int prv total;
p := self;
while (p �= null)

inv I({p})
inv p �= null ⇒ p.total + t =

1 + sum i; 0 ≤ i < len(p.children) |
p.children[i].total;

{
assert p.parent �= null ⇒

p ∈ p.parent.children;
preserves I1({p} + {p.parent}) {

prv total := p.total;
p.total := prv total + t;

}
assert p �= p.parent ⇒ p �∈ p.children;
p := p.parent;

}
}

Fig. 1. Composite pattern: preliminary specifications and implementation. Complete code and
annotations lifted from the VERL input file, composite.rl.
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the set of v such that v = o.f for some o ∈G . However, if f :rgn then the r-value of G‘f
denotes the union of the f -images (so we have no sets of sets). In effects, a use of G‘f
refers to its l-value, and then f can have any type (c.f. wr{c}‘parent , wralloc‘total in
Fig. 1 ).

The assertions G ⊆ G ′ and G # G ′ say, respectively, that region G is a subset of
G ′ and G∩G ′ ⊆ {null}. In particular, G‘f ⊆ G says that G is closed under f and
G‘f #G ′ says that G ′ is disjoint from G’s f -image (but allows null in the intersection).
The dual of write effects is read effects. Whereas write effects express a footprint of
a command, read effects express a frame of an assertion, that is, variables and fields
whose modification may cause a change in the assertion’s denotation. A read effect
rdG‘f of an assertion says that the meaning of the assertion can vary with updates to
f fields of G-objects, i.e., it depends on those fields.

In quantified assertions such as I 0 (see Fig. 1), the bound variable ranges over allo-
cated (thus non-null) references only. The default range is alloc, i.e., the region of all
allocated references,4 but any smaller range can be specified as bound. Thus in I 2, both
p and o range over alloc whereas the o in I 1(r) ranges over all objects in the region
alloc− r . Here ’−’ denotes set subtraction. Write I 1 for I 1(∅) and I for I (∅).

Leaving aside condition I , the specification of add says: Given an initial state where
c is an allocated component distinct from self and has no ancestors (c.parent = null),
a final state is one in which c’s parent is self. Furthermore the following updates (but
no other) are licensed by the write effects: the parent field of c, the children field
of self, and the total field of any allocated component. Condition I is intended to be
invariant in the sense that it holds in all client-visible states; so it appears as both pre-
and postcondition of add and getTotal . The conjunct I 0 says every component’s total
is positive; I 1(r) says every component except those in r has as total one more than the
sum of its children’s total ; I 2 says that p is o’s unique parent iff o is p’s child; I 3 says
that children does not contain any duplicates. In conjunction with the invariant, I , the
specification of add says that c was added to children of self: initially, c.parent = null
and I 2 together entail c �∈ self.children; finally, c.parent = self and I 2 together entail
c ∈ self.children . An astute reader will note that the specification is partially correct,
but not totally correct. The reason is that the precondition of add does not preclude the
creation of a multi-node cycle; e.g., consider b.add(a) where a �= b and a.parent =
null but b.parent = a. In such a case the call to add will diverge. Note, however, that
the I -invariants entail5 acyclicity. The strengthened preconditions in Sect. 4 prevent
add from creating any cycle. (They should suffice to show total correctness of add .)

Last but not least, Fig. 1 contains the requisite annotations. Aside from the standard
ones, i.e., loop invariants and assert statements, there appear preserves annotations.
We shall explain them in Sect. 3 under the rubric of “Localized framing”.

Proof system by example. The proof system of region logic features “local rules”
empowered by the FRAME rule which we will see soon. The formal details can be
gleaned from [1]; here we explain those informally. Let’s consider proving a part of the

4 The semantics is instrumented in that newly allocated objects are automatically added to alloc.
A command that allocates must report effect wralloc.

5 The proof has not been mechanized but can be easily shown by induction.
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specification needed in the proof of add , in particular, establishing the assertion
I 1({self}) which is required, as a conjunct of I ({self}), immediately before the in-
vocation of addToTotal . From the local specification (“small axiom”) of c.parent :=
self we get c �= null as the precondition, c.parent = self as the postcondition, and
wr{c}‘parent as the write effect which licenses the update. Observe locality at play:
the rule refers only to the immediate state of the assignment at hand: c,self and {c}
‘parent ; the write effect specifies only the location which is pertinent to the field up-
date. Intuitively, one can deduce that an assertion that does not “depend” on the write
effect must be preserved by the field update: in this case, the truth of I 1 is unaffected by
the update of c.parent because I 1 does not read the parent field of any object in alloc.
Consequently, we can conjoin I 1 to the pre- and postconditions. Then by the standard
rule of CONSEQUENCE we can weaken the postcondition to obtain I 1({self}). For the
next command that updates self.children , I 1({self}) holds in the pre-and postcondition
because the write effect is {self}‘children , whereas I 1({self}) reads the children field
of all objects in alloc except self.

The above informal discourse is justified by the FRAME rule of region logic,

FRAME

 {P } C {P ′ } [ε] P  δ frm Q P ⇒ δ ·/. ε
 {P ∧Q } C {P ′ ∧Q } [ε]

read: Q is preserved by C under precondition P if ε , the write effects of C , is separate
from δ , the read effects of Q . The frames judgement P  δ frm Q asserts δ are at
least the read effects of Q . (We use syntax-driven analysis for read effects of atomic
assertions, and an inductive definition of this judgement for all other formulas [1].) The
antecedent P ⇒ δ ·/. ε asserts that the precondition may be assumed to prove that the
read effects are separate from the write effects. We call δ ·/. ε a separator. The func-
tion ·/. computes a conjunction R of disjointness formulas such that in R-states, writes
allowed by ε cannot falsify a formula framed by δ . (Frames judgements in conjunction
with separators formalize the notion of (in)dependence—whether or not an assertion
may depend on write effects.)

Above, the read effects of I 1 are rdalloc,alloc‘children,alloc‘total , which do not
refer to parent , hence are separated from wr{c}‘parent ; thus I 1 can be conjoined by
FRAME. Read effects of I 1({self}) are rdalloc,self,(alloc−{self})‘children,(alloc−
{self})‘total . These are separated from wr{self}‘children because alloc−{self} is
disjoint from {self}. So I 1({self}) can be conjoined by FRAME.

3 Region Logic Can Boogie: Automated Verification

We describe key steps in translating programs specified in region logic to Boogie 2 pro-
grams. We also share our experience with the translation and verification as it pertains
to the Composite.

VERL. Our VErifier for Region Logic [23] translates a program specified in region
logic to a Boogie 2 [14] program. We started with Dafny [13] and adapted its specifica-
tion language while keeping its programming language mostly the same. Key features
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of VERL’s specification language include the full generality of region assertions and
effects as well as “localized framing”—code blocks annotated with formulas whose
truth must be preserved by essentially appealing to FRAME. A distinguishing feature of
VERL is an automatic (syntax-directed) computation6 of read effects of formulas and
expressions. For example, only the sum expression needed a read effect specification;
read effects of all other formulas and invariants were inferred automatically.

Boogie. The Boogie 2 [14] verification platform consists of an intermediate procedu-
ral verification language Boogie [14], a verification condition generator (VCGen) and
an SMT solver. Given a specified Boogie program, and a list of procedures to verify,
VCGen computes the weakest precondition of each specified procedure relative to its
implementation and specified loop invariants. These verification conditions (VCs) are
handed off to a prover, such as Z3, together with the “background predicate” that axiom-
atizes the semantics of Boogie and any additional user-defined axioms (which typically
encode the semantics of the source language).

A Boogie program may consist of logical declarations and definitions, procedures, as
well as specifications thereof. The logical definitions may consist of variables, constants,
function symbols and axioms. Procedure implementation can use ordinary assignment,
control-flow commands such as while, typically annotated with loop invariants, if-then-
else, return and goto, procedure call commands, as well as special (meta) commands:
assume,assert,havoc. Procedure specifications consist of pre-/postconditions and write
effects (of global variables). Specifications can be two-state, allowing a postcondition
to refer to the pre state by way of old; e.g., old(x ) = x equates the values of x in the
pre- and post states. Boogie comes equipped with some primitive types: bool, int, type
constructors, as well as map types (corresponding to the theory of arrays). For example,
given a type constructor ref we can define the map type rgn =̂ ref → bool to encode
regions as characteristic functions.

Encoding region logic. The encoding of the heap is similar to Dafny, except allocated
objects are represented by the alloc region. Thus, the heap is essentially a pair consisting
of the global variable Heap—a map indexed by (ref,Fieldα) pairs, where α ranges
over any type [17], and the global region variable alloc; e.g., in(o,alloc) says that o is
allocated, where in :ref× rgn → bool.

The translation of region assertions and hence pre- and postconditions is straightfor-
ward. To translate write effects, including for example wrG‘f , we conjoin the follow-
ing postcondition in Boogie:

∀〈α〉o :ref,g :Fieldα | in(o,old(alloc)) ⇒
Heap[o,g] = H [o,g]∨ (in(o, [[G]]H )∧ g = f )

where H =̂ old(Heap), and [[·]]H is a translation function from VERL to Boogie, pa-
rameterized by the heap variable; e.g., [[x .f ]]H =̂ H [x , f ]. That is, for any object o,
allocated in the pre state, and any field g , if the value o.g has changed, then o must
belong to G , evaluated in the pre state, and g must be f . There will be additional dis-
juncts if additional write effects are specified. When wralloc is not specified in the

6 Derived from frames judgements formalized in our earlier work [1].
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write effects, we also conjoin the postcondition old(alloc) = alloc that asserts absence
of allocation.

Localized framing. Local reasoning can aid the prover in two ways: firstly, by avoiding
direct reasoning about complex formulas, and secondly by reducing the number of case
splits performed when reasoning about heap updates. VERL supports code blocks anno-
tated with preserves clauses as already witnessed in Fig. 1. For example, the preserves
annotation in add instructs VERL to conjoin I 1({self}) by essentially instantiating
FRAME. In detail, preserves P {C} is encoded as

H := Heap; [[C ]]Heap ; assert H ,Heap agree on ε ; assume [[P ]]H = [[P ]]Heap ;

where  ε frm P has been established, e.g., by a syntax-directed analysis. Prior to ex-
ecuting C we snapshot the heap into H . The assert statement ensures the heaps, before
and after the execution of C , agree on the read effects ε—roughly, for every o which
was allocated before the execution of C , and for every rdG‘f in ε , if in(o, [[G]]H ),
then H [o, f ] = Heap[o, f ]—thus we can assume P is preserved by C . The soundness
of the above is a direct consequence of the frame agreement lemma [1, Lemma 4] that
underlies soundness of the FRAME rule. Therefore, a preserves annotation establishes
preservation of arbitrary formulas over the enclosed updates by merely appealing to the
formulas’ read effects as opposed to using the formulas’ actual meaning. We call this
“localized framing” to contrast with “framing axioms” [26,13].

Our experience. The sequence sum axiomatization draws on the axioms of Leino and
Monahan [15]. We needed an additional axiom to express that the sum distributes over
catenation. Our earlier verification efforts relied on framing axioms of [13] for all in-
variants. However, the prover exhibited difficulty (manifested by timeouts) in reasoning
about the preservation of formulas containing sum. By switching to localized framing
we were able to avoid timeouts and remove a significant number of assert annotations
needed to guide the prover. By default, VERL does not generate framing axioms. How-
ever, a declaration of a function can be tagged to override the default. We used this
feature to generate a single framing axiom for the function which encodes sequence
sum. While the preserves annotations deal with the framing of I 1, the generated fram-
ing axiom is used to reason about the preservation of sum expressions.

4 Refining Specifications: Smaller Footprints for Client Reasoning

The specifications in Fig. 1 are weak: they permit cycle creation (c.f. Sect. 2) and the
effect wralloc‘total is too imprecise for some client reasoning (as we see soon). This
section refines the specification of add .

Consider a simple client program: a.add(b), where a,b :Comp. By method call
rule, we substitute actuals a and b for formals self and c resp. in the specification
of add in Fig. 1, to obtain {P } a.add(b) {P ′ } [ε], where P =̂ b �= null∧ b �= a ∧
b.parent = null, P ′ =̂ b.parent = a, ε =̂ wr{b}‘parent , {a}‘children, alloc‘total ,
and we elide the invariant I . A client could appeal to FRAME to show, e.g., a.parent = x
is preserved: the obligation is to show P ⇒ (rd{a}‘parent ,x ) ·/. ε which amounts to
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P ⇒{a}#{b}. The disjointness evaluates to true using P . On the other hand, reasoning
about total will not work because the effect, wralloc‘total , is too coarse. In detail,
if the assertion to be preserved is b.total = t , then FRAME requires establishing the
disjointness {b} # alloc — which is patently false.

We now consider clients that want to reason about total across calls to the add
method. Our solution is based on exposing smaller, fine-grained footprints to the client.
Consider composites c0, . . . ,c4 and the client code in Fig. 2. Here the composite tree

tBefore := c2.getTotal();
c0.add(c1); c1.add(c2); c0.add(c3); c3.add(c4);
tAfter := c2.getTotal();
assert tBefore = tAfter; // c2’s total is preserved

Fig. 2. Client reasoning about the preservation of total across calls to add

at c0 is updated so that c2 is a child of c1 which in turn is a child of c0; similarly c3
is a child of c0 and c4 is a child of c3. To show the preservation of c2’s total , the key
information that the client needs is disjointness: roughly, the trees need to have disjoint
descendants and c1, . . . ,c4 must be roots (i.e., their parents are null). Furthermore, the
effect specification of add must pin down the region whose total field is permitted to be
written so that the client can deduce that c2 is not in this region. Consequently we need
revised specifications for add and addToTotal — see Fig. 3. The figure also contains
the definition of ancestors (in terms of descendants), and the supporting invariants
J ,K that capture sufficient “structural” information.

Specifications of add . We add ghost field desc :rgn to keep track of the set of descen-
dants of a node. We also add ghost field root :Comp to point to the root of a composite
tree. Note, by maintaining descendants and roots, we can express a common idiom:
components with distinct roots have disjoint descendants. The set of ancestors is de-
fined in terms of descendants by a means of a comprehension expression. (This saves
us a ghost field declaration and corresponding updates.) Invariants J0,J1 constrain
desc to be a reflexive, transitive relation; J2 states that root is always non-null, and
that descendants of o.root include those of o; J3 states that components with distinct
roots have disjoint descendants; J4,J5 constrain every parent path to have the same
root; J6 says that for any o which is a proper descendant of p, o.parent .desc must be
included in p.desc, whence by J1, o.parent ∈ p.desc. So J6 helps pin down that desc
contains only reachable components.

The above ghost fields and invariants were derived out of necessity to strengthen the
specification of add . We are currently unaware of any general technique to derive the
“right” set of essential annotations. However, we have some evidence to believe that
the chosen invariants may be helpful in reasoning about other tree-like structures. For
example, we can prove using induction on the length of a parent path, that desc is the
smallest, owing to J6 and acyclicity which follows, by induction, from the I invariants.

The postcondition of add is the same as before but with J ∧K conjoined. However,
note that c ∈ self.root .desc is entailed by the postcondition. (From c.parent = self and
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requires c �= null∧c.parent = null∧c.root �= self.root ∧ I ∧J ∧K
ensures c.parent = self∧ I ∧J ∧K

effects wr{c}‘parent , ancestors(self)‘(total ,desc), c.desc‘root , {self}‘children

ancestors(o :Comp) : {p | o ∈ p.desc}
J0: ∀o :Comp | o.desc‘desc ⊆ o.desc
J1: ∀o :Comp | o ∈ o.desc
J2: ∀o :Comp | o.root �= null∧o.desc ⊆ o.root .desc
J3: ∀o :Comp,p :Comp,q :Comp | o ∈ p.desc∧o ∈ q .desc ⇒ p.root = q .root
J4: ∀o :Comp | o.parent = null ⇒ o.root = o
J5: ∀o :Comp | o.parent �= null ⇒ o.root = o.parent .root ∧o ∈ o.parent .desc
J6: ∀o,p :Comp | o ∈ p.desc∧o �= p ⇒ o.parent �= null∧o.parent .desc ⊆ p.desc
I : I 0∧ I 1∧ I 2∧ I 3 (as in Fig. 1)
J : J0∧J1∧J2∧J3∧J4∧J5∧J6
K : ∀o :Comp | ∀i : int | 0 ≤ i < len(o.children) ⇒ o.children[i ] ∈ o.desc

Fig. 3. Strengthened specification of add , definition of ancestors and invariants. In J0,
o.desc‘desc is a region expression whose r-value is the union of all p.desc where p ranges
over elements of the region o.desc.

J5, we obtain c ∈ self.desc; J2 finishes the proof.) Finally, the most precise write effect
for field total is wrancestors(self)‘total . It says that add may modify total of every
ancestor of self (including self). Observe how cycles are precluded by the precondition
c.root �= self.root , which, together with J3 entails that c’s descendants are disjoint
from self’s descendants.

Client verification. We have mechanically verified the client in Fig. 2 using add ’s speci-
fication in Fig. 3. Note, the client code needs no annotations; Z3 proves the preservation
of c2’s total automatically. For a lack of space, we do not sketch a decutive proof but
note the key insight: wrc.desc‘root helps establish the requisite root disjointedness
after each add which in turn with wrancestors(c)‘total establishes that c2.total was
not written.

Implementation of add . We require two changes to Fig. 1: subsequent to the addition
of c to self.children , we perform two bulk updates7 of ghost fields desc and root .
The desc field of all objects in ancestors(self) is updated to contain c, and the root
field of all objects in c.desc is updated to point to self.root . See composite.rl in
distribution; methods add simple, addToTotal simple correspond to Fig. 1 while
add, addToTotal correspond to the strengthened version, i.e., this section.

5 Information Hiding

One dimension of the Composite challenge problem that we explore is information hid-
ing. We argue that representation invariants—of which I 1 is an example—should be

7 Specification statements as embodied in Dafny and more generally in refinement calculus.
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completely hidden from clients, to streamline the specifications and avoid unnecessary
proof obligations on clients. The idea is very standard. The implementation of a method
is verified with respect to a contract in which the invariant is an explicit pre- and post-
condition, but the invariant does not appear in the contract used to reason about clients
[8]. This mismatch is justified as follows: the invariant is supposed to depend only on
the state that is encapsulated, and clients cannot write to that part of the state.

As a more general technique for hiding of internal invariants, we propose [20] that a
module can declare a dynamic boundary, i.e., a read effect, in suitably abstract terms,
that delimits its encapsulated state and frames the invariant to be hidden. (It is dynamic
in that our effects are stateful, just like dynamic frames in method contracts.) Framing
of the invariant involves nothing more than the framing judgement discussed in Sects. 2
and 3. For it to be sound to hide the invariant, client code must respect the dynamic
boundary: it is subject to the proof obligation that it does not write within the dynamic
boundary. In other words, intermediate steps in client code execution are required to
respect the boundary, so that the write effects of the client are separate from the bound-
ary. This notion can be captured by a second order rule of framing, as exemplified and
formalized in [20].

In the sequel, we consider the clients from Sect. 4. Let us consider the invariants I
and K . These can be framed by the effect rdalloc‘(desc,parent ,children,root , total).
For this to be a dynamic boundary, we require that clients never write any of these fields.
In general, enforcement of a dynamic boundary may require reasoning about regions,
but in this case it is entirely a matter of scope. Field children should be private to class
Comp. Because they are used in public contracts, the other fields need to be private,
spec-public in the terminology of JML and similar formalisms. That is, they cannot be
read or written in client code but are allowed in specifications visible to clients. Because
it is impossible for the clients to write within the boundary, it is sound to hide I and K ,
i.e., omit them from the specifications with respect to which the clients are verified.

Invariant J is framed by rdalloc‘(desc,parent ,root) and again for reasons of scope
the clients respect the boundary rdalloc‘(desc,parent ,children,root , total). Invariant
J provides information needed for reasoning about clients as in Sect. 4. So J could
be exported to the client as a public invariant [12]. That is, like I and K it is omit-
ted from the public contracts, so clients are not responsible for establishing it. But it
may be assumed at any point in client code. Boogie does not include this feature and
instead of complicating our translation, we found it suffices to include J as explicit
pre- and post-condition in the public specification of add . (In the distribution, the ver-
sion with hidden invariants is in files composite.rl, client.rl; look for methods
addHidden, client hiding, resp.)

6 Discussion

On automating local reasoning about global invariants. In order to have a precise
footprint for add we need to consider the ancestors of a node; ancestors are defined
in terms of descendants. To reason about descendants we need universally quantified
formulas with explicit ghost state (such as desc,root ). There are two aspects to this
reasoning: we need enough invariants—but not necessarily the minimal set—to get the
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inductive properties of interest (e.g., transitivity of descendants, and a limited form of
reachability) and we need to tackle framing issues that arise because of universally
quantified formulas.

The ubiquitous use of global invariants, as witnessed by the prevalence of universal
quantifiers (often nested), ostensibly contradicts notions such as object-centric invari-
ants, locality, or adherence to a particular programming methodology (see, e.g., the
Composite verification in [27]). However, as we demonstrated, our approach is to use
local reasoning in order to establish global invariants. In many cases, when updates
are “shallow”, the prover can automatically find the right instantiations without going
astray. In more difficult cases, typically involving definitions inductive in flavor, we ap-
peal to the user to add preserves annotations. Relying on such annotations is not all that
different from relying on loop invariants; the user usually has some intuition about what
invariants and where in the code. Arguably, we still achieve a high degree of automation
in exchange for a reasonable request of user guidance.

Related work. We draw heavily on Kassios’ [10] dynamic framing, which has been
explored in a number of research efforts (e.g., [26]), as well as the frame rule and local
reasoning in separation logic [22]. Because Kassios developed his ideas in a relational
calculus of refinement, his effect specifications can be freely mixed with functional
specifications, e.g., to express that a write effect takes place only under a certain condi-
tion. In contrast, our adoption of the popular “modifies clause” format fits with standard
verification techniques. In recent work, Smans et. al. [25] avoid the need for a modifies
clause somewhat in the manner of separation logic, but instead of a non-standard con-
nective they use special “access predicates”, acc, with a permission-based semantics
and special program constructs. Every read/write of an expression E .f is permitted by
asserting acc(E .f ).

The most closely related works directly address the Composite challenge. Bierhoff
and Aldrich [4] achieve fully automated checking of the add implementation using
typestates (and no theorem proving at all) to express the total invariant, our I 1, in finite
state form (i.e., the parity of each total ). Permissions and data groups are used to track
dependencies between typestates of different objects, to enforce separation and allow
sharing (fractional permissions) where needed. The program needs to be instrumented
with pack/unpack notations, to an extent similar to the ghost assignments needed in
our approach. The specification notations also use operators from linear type systems.
Presumably, their types and permissions could be used for reasoning about clients at the
level of precision we have considered.

Jacobs et al [9] present a specification of the Composite using separation logic with a
number of inductive definitions, e.g., instead of the non-inductive I 1 the main invariant
uses an inductive definition of the descendant count to specify the value of total at each
node. The logic has been implemented in a tool that verifies the implementation of add
as well as a client that constructs a tree with several nodes. A very interesting feature
is that the specification describes a tree together with a focus node, to facilitate client
access at any node. A “lemma function” is used in annotations to move the focus around,
with the effect of folding and unfolding the inductive definition of a tree-with-focus. A
dispose operation is included. Abstract predicates are used for hiding, as in [5].
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Shaner et al [24] address invariant I 1 and an implementation of add essentially like
ours (which follows [11] but avoids arrays). The specification of add uses JML’s model
program feature which stipulates the implementation must call addToTotal properly.
The idea is to ensure preservation of a hidden invariant by specifying “mandatory calls”
that must also be made in any override of a method like add . Framing for clients is not
addressed in detail.

Summers and Drossopoulou [27] propose a methodology for (a) specifying object
invariant semantics, i.e., which invariant(s) must hold and at what (program) location;
(b) verifying preservation of invariants by computing an upper approximation on the set
of objects for which an invariant may get invalidated and asserting the invariant holds
for this set, thereby establishing that the invariant holds for all objects. The methodol-
ogy is applied to the Composite problem by specifying and verifying an implementation
of add which is nearly identical, (but weaker, e.g., no effects are specified and postcon-
dition “forgets” that c was added) to our preliminary specification depicted in Fig. 1.

We expect that in future other automatic verification tools will address the Compos-
ite challenge as well. Rustan Leino has recently informed us of his specification and
implementation of the Composite in Dafny (personal communication, May 2010).

Future work. While Sect. 5 shows how invariants I and K may be hidden, the full
handling of abstraction is outside the scope of this paper. For that, one would need to
verify that representations of internal heap-based data structures are such that client
reasoning is unaffected: to wit, whether children is stored in an array or a list instead
of a sequence, should not affect the behavior of add on client observable objects.

Automatically inferred preserves clauses could potentially relieve a number of re-
quired user annotations. A simple static analysis which computes the write effects of
a command can be used to infer locations in code where relevant assertions must be
preserved owing to separation (of reads from writes).

VERL currently uses quantified axioms to encode region assertions. Such an en-
coding does not constitute a decision procedure, yet we conjecture that an integrated
decision procedure would improve reasoning about regions. A decision procedure for
quantifier-free region assertions has been sketched in the first author’s thesis proposal
and will be implemented in an SMT solver.

Conclusion. Bierhoff and Aldrich [4] nicely summarize the challenge of the Composite
pattern: “If nodes depend on invariants over their children then it becomes challenging
to verify that adding a child to a node correctly notifies the node’s parents of changes.”
We have used elementary and mostly familiar means to specify the Composite pattern
and to mechanically verify its implementation and its clients. In our view, the specifi-
cations of the methods are fairly succinct and transparent. Their verification, and the
verification of interesting client code, relies on a number of global invariants that cap-
ture inductive properties in non-inductive ways.
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Abstract. Local reasoning has become a well-established technique in

program verification, which has been shown to be useful at many different

levels of abstraction. In separation logic, we use a low-level abstraction

that is close to how the machine sees the program state. In context

logic, we work with high-level abstractions that are close to how the

clients of modules see the program state. We apply program refinement to

local reasoning, demonstrating that high-level local reasoning is sound for

module implementations. We consider two approaches: one that preserves

the high-level locality at the low level; and one that breaks the high-level

‘fiction’ of locality.

1 Introduction

Traditional Hoare logic is an important tool for proving the correctness of pro-
grams. However, with heap programs, it is not possible to use this reasoning in
a modular way. This is because it is necessary to account for the possibility of
multiple references to the same data. For example, a proof that a program re-
verses a list cannot be used to establish that a second, disjoint list is unchanged;
disjointness conditions must be explicitly added at every step in the proof.

Building on Hoare logic, O’Hearn, Reynolds and Yang addressed this problem
by introducing separation logic [12] for reasoning locally about heap programs.
The fundamental principle of local reasoning is that, if we know how a local com-
putation behaves on some state, then we can infer the behaviour when the state
is extended: it simply leaves the additional state unchanged. Separation logic
achieves local reasoning by treating state as resource. A program is specified in
terms of its footprint – the resource necessary for it to operate – and a frame rule
is used to infer that any additional resource is indeed unchanged. For example,
given a proof that a program reverses a list, the frame rule can directly establish
that the program leaves a second, disjoint list alone. Consequently, separation
logic enables modular reasoning about heap programs.

Abstraction and refinement are also essential for modular reasoning. Abstrac-
tion takes a concrete program and produces an abstract specification; refinement
takes an abstract specification and produces a correct implementation. Both ap-
proaches result in a program that correctly implements an abstract specification.
Such a result essential for modularity because it means that a program can be
replaced by any other program that meets the same specification. Abstraction
and refinement are well-established techniques in program verification, but have
so far not been fully understood in the context of local reasoning.

G.T. Leavens, P. O’Hearn, and S.K. Rajamani (Eds.): VSTTE 2010, LNCS 6217, pp. 199–215, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Parkinson and Bierman have used abstract predicates to provide abstraction
for separation logic [13]. An abstract predicate is, to the client, an opaque object
that encapsulates the unknown representation of an abstract datatype. They
inherit some of the benefits of locality from separation logic: an operation on one
abstract predicate leaves others alone. However, the client cannot take advantage
of local behaviour that is provided by the abstraction itself.

Consider a set module. The operation of removing, say, the value 3 from the
set is local at the abstract level; it is independent of whether any other value is
in the set. Yet, consider an implementation of the set as a sorted, singly-linked
list in the heap, starting from address h. The operation of removing 3 from the
set must traverse the list from h. The footprint therefore comprises the entire
list segment from h up to the node with value 3. With abstract predicates, the
abstract footprint corresponds to the concrete footprint and hence, in this case,
includes all the elements of the set less than or equal to 3. Consequently, abstract
predicates cannot be used to present a local abstract specification for removing 3.

Calcagno, Gardner and Zarfaty introduced context logic [2], a generalisation
of separation logic, to provide such abstract local reasoning about structured
data. Context logic has been used to reason about programs that manipulate
e.g. sequences, multisets and trees [3]. In particular, it has been successfully ap-
plied to reason about the W3C DOM tree update library [8]. Thus far, context
logic reasoning has always been justified with respect to an operational semantics
defined at the same level of abstraction as the reasoning. In this paper, we com-
bine abstract local reasoning about structured data with data refinement [10,5]
in order to refine such abstract local specifications into correct implementations.

Mijajlović, Torp-Smith and O’Hearn previously combined data refinement
with local operational reasoning [11] to demonstrate that module implementa-
tions are equivalent for well-behaved clients, specifically dealing with aliasing
issues in the refinement setting. By contrast, we relate axiomatic abstract local
reasoning about a module with axiomatic reasoning about its implementations.

The motivating example of this paper is the stepwise refinement of a tree
module T. The refinement is illustrated in Fig. 1. We show how the tree module
T may be correctly implemented using the familiar separation-logic heap module
H and an abstract list module L. We then show how this list module L can be
correctly implemented in terms of the heap module H. Our approach is modular,
so this refinement can be extended with a second instance of the heap module H

(illustrated with a dotted arrow). Finally, we show that the double-heap module
H + H can be trivially implemented by the heap module H, completing the
refinement from the tree module T to the heap module H. As a contrast, we also
briefly consider a direct refinement of the tree module T using the heap module
H, although the details of this example are given in the full paper [7].

H

L

H + HH + LT

Fig. 1. Module Translations
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Our development provides two general techniques for verifying module imple-
mentations with respect to their local specifications, using locality-preserving and
locality-breaking translations. Locality-preserving translations, broadly speaking,
relate locality at the abstract level with locality of the implementation. However,
implementations typically operate on a larger state than the abstract footprint,
for instance, by performing pointer surgery on the surrounding state. We intro-
duce the notion of crust to capture this additional state. This crust intrudes on
the context, and so breaks the disjointness that exists at the abstract level. We
therefore relate abstract locality with implementation-level locality through a
fiction of disjointness.

With locality-breaking translations, locality at the abstract level does not
correspond to locality of the implementation. Even in this case, we can think
about a locality-preserving translation using possibly the whole data structure as
the crust. Instead, we prove soundness by establishing that the specifications of
the module commands are preserved under translation in any abstract context,
showing the soundness of the abstract frame rule. We thus establish a fiction of
locality at the abstract level.

The full proofs of our results may be found in the full version of this paper [7].

2 Preliminaries

We begin by introducing two key concepts: the definition of a context algebra to
model program state, and an axiomatic semantics, based on context algebras,
to describe the behaviour of an imperative programming language.

2.1 State Models

We work with multiple data structures at multiple levels of abstraction. To
handle these structures in a uniform way, we model our program states using
context algebras. Context algebras are a generalisation of separation algebras [4]
to more complex data structures. Whereas separation algebras are based on
a commutative combination of resource, context algebras are based on non-
commutative resource, which is necessary to handle structured data. We will see
that many interesting state models fit the pattern of a context algebra.

Definition 1 (Context Algebra). A context algebra A = (C,D, •, ◦, I,0)
comprises:

– a non-empty set of state contexts, C;
– a non-empty set of abstract states, D;
– a partially-defined associative context composition function, • : C × C ⇀ C;
– a partially-defined context application function, ◦ : C × D ⇀ D,

with c1 ◦ (c2 ◦ d) = (c1 • c2) ◦ d (undefined terms are considered equal);
– a distinguished set of identity contexts, I ⊆ C; and
– a distinguished set of empty states, 0 ⊆ D;
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having the following properties: for all c ∈ C, d ∈ D, and i′ ∈ I

– i ◦ d is defined for some i ∈ I, and whenever i′ ◦ d is defined, i′ ◦ d = d;
– the relation {(c, d) | ∃o ∈ 0. c ◦ o = d} is a total surjective function;
– i • c is defined for some i ∈ I, and whenever i′ • c is defined, i′ • c = c;
– c • i is defined for some i ∈ I, and whenever c • i′ is defined, c • i′ = c.

Example 1. The following are examples of context algebras:

(a) Heaps h ∈ H are defined as:

h ::= emp | n �→ v | h ∗ h

where n ∈ N+ ranges over unique heap addresses, v ∈ Val ranges over
values, and ∗ is associative and commutative with identity emp. (Heaps are
thus finite partial functions from addresses to values.) Heaps form the heap
context algebra, H = (H,H, ∗, ∗, {emp}, {emp}). All separation algebras [4]
can be viewed as context algebras in this way.

(b) Variable stores σ ∈ Σ are defined as:

σ ::= emp | x ⇀⇁ v | σ ∗ σ

where x ∈ Var ranges over unique program variables, v ∈ Val ranges over val-
ues, and ∗ is associative and commutative with identity emp. Variable stores
form the variable store context algebra, V = (Σ, Σ, ∗, ∗, {emp}, {emp}).

(c) Trees t ∈ T and tree contexts c ∈ C are defined as:

t ::= ∅ | n[t] | t� t
c ::= − | n[c] | t� c | c� t

where n ∈ N+ ranges over unique node identifiers, and � is associative with
identity ∅. Context composition and application are standard (substituting
a tree or context in the hole), and obviously non-commutative. Trees and
tree contexts form the tree context algebra, T = (C,T, •, ◦, {−}, {∅}).

(d) Given context algebras, A1 and A2, their product A1 ×A2 (defined as one
would expect) is also a context algebra. For example, H × V and T × V
combine, respectively, heaps and trees with variable stores.

2.2 Predicates

Predicates are either sets of abstract states (denoted p, q) or sets of state contexts
(denoted f, g). We do not fix a particular assertion language, although we do
use standard logical notation for conjunction, disjunction, negation and quan-
tification. We lift operations on states and contexts to predicates: for instance,
x �→ v denotes the predicate {x �→ v}; ∃v. x �→ v denotes {x �→ v | v ∈ Val};
p ∗ q denotes {d1 ∗ d2 | d1 ∈ p∧ d2 ∈ q}; the separating application f ◦ p denotes
{c ◦ d | c ∈ f ∧ d ∈ p}; and so on. We also use

∏∗ to denote iterated ∗. We use
set-theoretic notation for predicate membership (∈) and containment (⊆).
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2.3 Language Syntax

Our programming language has a simple imperative core with standard con-
structs for variables, conditionals, iteration, and procedures. We tailor this lan-
guage to different domains (heaps, trees, etc.) by choosing an appropriate set of
basic commands for each domain.

Definition 2 (Programming Language). Given a set of basic commands Φ,
ranged over by ϕ, the language LΦ is defined by the following grammar:

C ::=skip | ϕ | x := E | C; C | if B then C else C | while B do C |
procs −→r 1 := f1(−→x 1){C}, · · · ,−→r k := fk(−→x k){C} in C |
call −→r := f(

−→
E ) | local x in C

where x , r , . . . ∈ Var range over program variables, E , E 1, . . . ∈ ExpVal range
over value expressions, −→x ,

−→
E , . . . represent vectors of program variables or ex-

pressions, B ∈ ExpBool ranges over boolean expressions, and f, f1, . . . ∈ PName
range over procedure names.

2.4 Axiomatic Semantics

We give the semantics of the language LΦ as a program logic based on local
Hoare reasoning. We model the state with the context algebra, A × V , which
combines two context algebras: the context algebra, A, manipulated only by
the commands of Φ; and the variable store context algebra, V , used to interpret
program variables. By treating variables as resource [1], we are able to avoid side-
conditions in our proof rules. A set of axioms Ax ⊆ P(DA×Σ)×Φ×P(DA×Σ)
provides the semantics for the commands of Φ, where DA is the set of abstract
states from A and Σ is the set of variable stores from V .

The judgments of our proof system have the form Γ  {p} C {q}, where
p, q ∈ P(DA × Σ) are predicates, C ∈ LΦ is a program and Γ is a procedure
specification environment. A procedure specification environment associates pro-
cedure names with pairs of pre- and postconditions (parameterised by the ar-
guments and return values of the procedure respectively). The interpretation of
judgments is that, in the presence of procedures satisfying Γ , when executed
from a state satisfying p, the program C will either diverge or terminate in a
state satisfying q.

The proof rules of the program logic are given in Fig. 2. The semantics of
value expressions �E �σ is the value of E in variable store σ. The variable store
predicate ρ denotes an arbitrary variable store that evaluates all of the program
variables that are read but not written in each command under consideration.
We write vars(ρ) and vars(E ) to denote the variables in ρ and E respectively.

The Axiom rule allows us to use the given specifications of our basic com-
mands and the Frame rule is the natural generalisation of the frame rule for
separation algebras to context algebras. The rules Assgn, Local, PDef and
PCall are standard, adapted to our treatment of variables as resource. The
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(p, ϕ, q) ∈ Ax

Γ � {p} ϕ {q} Axiom
Γ � {p} C {q}

Γ � {f ◦ p} C {f ◦ q} Frame

vars(ρ) = vars(E ) − {x }
Γ � {0A × (x ⇀⇁ v ∗ ρ)} x := E

{
0A × (x ⇀⇁ �E �(x ⇀⇁v∗ρ) ∗ ρ)

} Assgn

Γ � {(IA × x ⇀⇁ −) ◦ p} C {(IA × x ⇀⇁ −) ◦ q} (IA × x ⇀⇁ −) ◦ p �= ∅
Γ � {p} local x in C {q} Local

∀(fi :P → Q) ∈ Γ. Γ ′, Γ �
{∃−→v . P (

−→v ) × (
−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −)}
Ci

{∃−→w . Q(−→w ) × (−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w )}
∀(f : P → Q) ∈ Γ.∃i. f = fi Γ ′, Γ � {p} C {q}

Γ ′ � {p} procs −→r 1 := f1(
−→x 1){C1}, . . . ,−→r k := fk(−→x k){Ck} in C {q} PDef

vars(ρ) = vars(E ) − {−→r }

Γ, (f : P → Q) �

{
P (�

−→
E �(−→r ⇀⇁−→v ∗ρ)) × (−→r ⇀⇁ −→v ∗ ρ)

}
call −→r := f(

−→
E )

{∃−→w. Q(−→w ) × (−→r ⇀⇁ −→w ∗ ρ)}

PCall

Fig. 2. Selected local Hoare logic rules for LΦ

Assgn rule not only requires the resource x ⇀⇁ v, but also the resource ρ contain-
ing the other variables used in E . For the Local rule, recall that the predicate
p specifies a set of pairs consisting of resource from DA and variable resource.
The predicate (IA × x ⇀⇁ −) ◦ p therefore extends the variable component with
variable x of indeterminate initial value. If a local variable block is used to re-
declare a variable that is already in scope, the Frame rule must be used add the
variable’s outer scope after the Local rule is applied. For the PDef and PCall
rules, the procedure f has parametrised predicates P = λ−→x .p and Q = λ−→r .q
as its pre- and postcondition, with P (−→v ) = p[−→v /−→x ] and Q(−→w ) = q[−→w/−→r ];
the parameters carry the call and return values of the procedure. We omit the
Cons, Disj, Skip, Seq, If and While rules, which are standard. For all of our
examples, the conjunction rule is admissible; in general, this is not the case.

3 Abstract Modules

The language given in §2 and its semantics are parameterised by a context
algebra, a set of commands and a set of axioms. These parameters constitute an
abstract description of a module. We shall use this notion of an abstract module
to show how to correctly implement one module in terms of another.

Definition 3 (Abstract Module). An abstract module A = (AA, ΦA,AxA)
consists of a context algebra AA with abstract state set DA, a set of commands
ΦA and a set of axioms AxA ⊆ P(DA × Σ) × ΦA × P(DA × Σ).
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Notation. We write LA for the language LΦA
. We write A for the proof judgment

determined by the abstract module. When A can be inferred from context, we
may simply write  instead of A.

3.1 Heap Module

The first and most familiar abstract module we consider is the abstract heap
module, H = (H, ΦH,AxH), which extends the core language with standard
heap-update commands. The context algebra H was defined in Example 1. We
give the heap update commands in Definition 4, and the axioms for describing
the behaviour of these commands in Definition 5.

Definition 4 (Heap Update Commands). The set of heap update commands
ΦH comprises: allocation, n := alloc(E ); disposal, dispose(E , E ′); mutation,
[E ] := E ′; and lookup n := [E ].

Definition 5 (Heap Axioms). The set of heap axioms AxH comprises:{
emp × n ⇀⇁ v ∗ ρ
∧ �E �ρ∗n ⇀⇁v ≥ 1

}
n := alloc(E )

⎧⎨⎩
∃x. x �→ − ∗ ...
∗ x + �E �ρ∗n⇀⇁v �→ −
× n ⇀⇁ x ∗ ρ

⎫⎬⎭{
�E �ρ �→ − ∗ ...
∗ �E �ρ + �E ′�ρ �→ − × ρ

}
dispose(E , E ′) {emp × ρ}

{�E �ρ �→ − × ρ} [E ] := E ′ {�E �ρ �→ �E ′�ρ × ρ}
{�E �ρ∗n ⇀⇁v �→ x × n ⇀⇁ v ∗ ρ} n := [E ] {�E �ρ∗n ⇀⇁v �→ x × n ⇀⇁ x ∗ ρ}

3.2 Tree Module

Another familiar abstract module that we consider is the abstract tree module,
T = (T , ΦT,AxT), which extends the core language with tree update commands
acting on a single tree, similar to a document in DOM. The tree context algebra
T was defined in Example 1. We give the tree update commands in Definition 6
and their corresponding axioms in Definition 7.

Definition 6 (Tree Update Commands). The set of tree update commands
ΦT comprises: relative traversal, getUp, getLeft, getRight, getFirst, getLast;
node creation, newNodeAfter; and subtree deletion deleteTree.

Definition 7 (Tree Axioms). The set of tree update axioms AxT includes:{
�E �ρ∗n⇀⇁n[t]�m[t′]
× n ⇀⇁ n ∗ ρ

}
n := getRight(E )

{
�E �ρ∗n⇀⇁n[t]�m[t′]
× n ⇀⇁ m ∗ ρ

}
{

m[t′� �E �ρ∗n ⇀⇁n[t]]
× n ⇀⇁ n ∗ ρ

}
n := getRight(E )

{
m[t′� �E �ρ∗n⇀⇁n[t]]
× n ⇀⇁ null ∗ ρ

}
{
�E �ρ∗n⇀⇁n[t′�m[t]]
× n ⇀⇁ n ∗ ρ

}
n := getLast(E )

{
�E �ρ∗n⇀⇁n[t′�m[t]]
× n ⇀⇁ m ∗ ρ

}
{
�E �ρ∗n ⇀⇁n[∅]
× n ⇀⇁ n ∗ ρ

}
n := getLast(E )

{
�E �ρ∗n⇀⇁n[∅]
× n ⇀⇁ null ∗ ρ

}
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{�E �ρ[t] × ρ} newNodeAfter(E ) {∃m. �E �ρ[t]�m[∅] × ρ}
{�E �ρ[t] × ρ} deleteTree(E ) {∅ × ρ}

The omitted axioms are analogous to those given above.

3.3 List Module

We will study an implementation of the tree module using lists of unique ad-
dresses. We therefore define an abstract module for manipulating lists whose
elements are unique, L = (L, ΦL,AxL). The list context algebra L is given in
Definition 10. The list update commands are given in Definition 11 and their
corresponding axioms are given in Definition 12.

Superficially, our abstract list stores resemble heaps, in the sense that we have
multiple lists each with a unique address. We write (i �⇒v1+v2+v3)∗(j �⇒w1+v1)
to denote a list store consisting of two separate lists v1 + v2 + v3 and w1 + v1,
at different addresses i and j. However, unlike heaps, our list store contexts also
allow us to consider separation within lists. For example, the same list store can
be written as (i �⇒v1 +−+ v3) ◦ (i �⇒v2 ∗ j �⇒w1 + v1), describing a list context
v1 + − + v3 at address i applied to the list store i �⇒ v2 ∗ j �⇒ w1 + v1: the
application puts list v2 at i into the context hole.

Furthermore, we make a distinction between lists j �⇒w1 + v1 which can be
extended by list contexts, and completed lists j �⇒ [w1 + v1] which cannot be
extended. The reason to work with completed lists is that sometimes we need
to know which elements are the first or last elements in a list. For example, the
command getHead will return the first element of a list, so this element must be
fully determined and not subject to change if a frame is applied. Completed lists
may be separated into contexts and sublists, for example j �⇒ [w1 +−]◦ j �⇒v1 is
defined, but may not be extended, for example j �⇒w1+−◦j �⇒ [v1] is undefined.

Definition 8 (List Stores and Contexts). Lists l ∈ L, list contexts lc ∈ Lc,
list stores ls ∈ Ls, and list store contexts lsc ∈ Lsc are defined by:

l ::= ε | v | l + l ls ::= emp | i �⇒ l | i �⇒ [l] | ls ∗ ls

lc ::= − | lc + l | l + lc lsc ::= ls | i �⇒ lc | i �⇒ [lc] | lsc ∗ lsc

where v ∈ Val ranges over values, which are taken to occur uniquely in each list
or list context, i ∈ Laddr ranges over list addresses, which are taken to occur
uniquely in each list store or list store context, + is taken to be associative with
identity ε, and ∗ is taken to be associative and commutative with identity emp.

Our context application ◦ actually subsumes our separating operator ∗, in that
as well as extending existing lists, we can also add new lists to the store, for
example (j �⇒w1 + v1) ◦ (i �⇒v1 + v2 + v3) = (j �⇒w1 + v1) ∗ (i �⇒v1 + v2 + v3).

Definition 9 (Application and Composition). The application of list store
contexts to list stores ◦ : Lsc × Ls ⇀ Ls is defined inductively by:

emp ◦ ls = ls

(lsc ∗ i �⇒ l) ◦ ls = (lsc ◦ ls) ∗ i �⇒ l

(lsc ∗ i �⇒ [l]) ◦ ls = (lsc ◦ ls) ∗ i �⇒ [l]
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(lsc ∗ i �⇒ lc) ◦ (ls ∗ i �⇒ l) = (lsc ◦ ls) ∗ i �⇒ lc[l/−]

(lsc ∗ i �⇒ [lc]) ◦ (ls ∗ i �⇒ l) = (lsc ◦ ls) ∗ i �⇒ [lc[l/−]]

where lc[l/−] denotes the standard replacement of the hole in lc by l. The result
of the application is undefined when either the right-hand side is badly formed
or no case applies. The composition • : Lsc× Lsc ⇀ Lsc is defined similarly.

Definition 10 (List-Store Context Algebra). The list-store context alge-
bra, L = (Lsc,Ls, •, ◦, {emp}, {emp}) is given by the above definitions.

Definition 11 (List Update Commands). The set of list commands ΦL com-
prises: lookup, getHead, getTail, getNext, getPrev; stack-style access, pop,
push; value removal and insertion, remove, insert; and construction and de-
struction, newList, deleteList.

Definition 12 (List Axioms). The set of list axioms AxL includes the follow-
ing axioms: (the omitted axioms are analogous){

�E �ρ∗v⇀⇁v �⇒ [ v′ + l ]
× v ⇀⇁ v ∗ ρ

}
v := E.getHead()

{
�E �ρ∗v⇀⇁v �⇒ [ v′ + l ]
× v ⇀⇁ v′ ∗ ρ

}
{
�E �ρ∗v ⇀⇁v �⇒ [ ε ]
× v ⇀⇁ v ∗ ρ

}
v := E.getHead()

{
�E �ρ∗v⇀⇁v �⇒ [ ε ]
× v ⇀⇁ null ∗ ρ

}
{
�E �ρ∗v ⇀⇁v �⇒�E ′�ρ∗v ⇀⇁v+u
× v ⇀⇁ v ∗ ρ

}
v := E.getNext(E ′)

{
�E �ρ∗v⇀⇁v �⇒�E ′�ρ∗v⇀⇁v +u
× v ⇀⇁ u ∗ ρ

}
{
�E �ρ∗v ⇀⇁v �⇒ [ l+�E ′�ρ∗v ⇀⇁v ]
× v ⇀⇁ v ∗ ρ

}
v :=E.getNext(E ′)

{
�E �ρ∗v⇀⇁v �⇒ [ l+�E ′�ρ∗v⇀⇁v ]
× v ⇀⇁ null ∗ ρ

}
{�E �ρ �⇒ [ l ] × ρ ∧ (�E ′�ρ �∈ l)} E.push(E ′) {�E �ρ �⇒ [ �E ′�ρ + l ] × ρ}

{�E �ρ �⇒�E ′�ρ × ρ} E.remove(E ′) {�E �ρ �⇒ε × ρ}{
�E �ρ �⇒ [ l+�E ′�ρ+l′ ] × ρ
∧ (�E ′′�ρ �∈ l + �E ′�ρ + l′)

}
E.insert(E ′, E ′′)

{
�E �ρ �⇒ [ l + �E ′�ρ+

�E ′′�ρ + l′ ] × ρ

}
{∅ × i ⇀⇁ i} i := newList() {∃j. j �⇒ [ ε ] × i ⇀⇁ j}

{�E �ρ �⇒ [ l ] × ρ} E.deleteList() {∅ × ρ}

3.4 Combining Abstract Modules

We provide a natural way of combining abstract modules that enables programs
to be written that intermix commands from different modules. For example, we
will use the heap and list module combination H + L in §5.1 as the basis for
implementing T. The combination comprises both commands for manipulating
lists and commands for manipulating heaps, defined so that they do not interfere
with each other.

Definition 13 (Abstract Module Combination). Given abstract modules
A1 = (AA1 , ΦA1 ,AxA1) and A2 = (AA2 , ΦA2 ,AxA2), their combination A1+A2 =
(AA1 ×AA2 , ΦA1 ⊕ ΦA2 ,AxA1 + AxA2) is defined by:



208 T. Dinsdale-Young, P. Gardner, and M. Wheelhouse

– AA1 ×AA2 is the product of context algebras;
– ΦA1 ⊕ ΦA2 = (ΦA1 × {1}) ∪ (ΦA2 × {2}) is the disjoint union of command

sets;
– AxA1 +AxA2 is the lifting of the axiom sets AxA1 and AxA2 using the empty

states from AxA2 and AxA1 : formally, AxA1 + AxA2 =
{(π1p, (ϕ, 1), π1q) | (p, ϕ, q) ∈ AxA1} ∪ {(π2p, (ϕ, 2), π2q) | (p, ϕ, q) ∈ AxA1},
where π1p = {(d,o,σ) | (d,σ)∈ p, o∈ 02}, π2p = {(o,d,σ) | (d,σ)∈ p, o∈ 01}.

When the command sets ΦA1 and ΦA2 are disjoint, we may drop the tags when
referring to the commands in the combined abstract module. When we do use
the tags, we indicate them with an appropriately placed subscript.

4 Module Translations

We define what it means to correctly implement one module in terms of another,
using translations which are reminiscent of downward simulations in [9].

Definition 14 (Sound Module Translation). A module translation A → B

from abstract module A to abstract module B consists of

– a state translation function �−� : DA → P(DB), and
– a substitutive implementation function �−� : LA → LB obtained by substi-

tuting each basic command of ΦA with a call to a procedure written in LB.

A module translation is sound if, for all p, q ∈ P(DA × Σ) and C ∈ LA,

A {p} C {q} =⇒ B {�p�} �C� {�q�} .

where the predicate translation �−� : P(DA × Σ) → P(DB × Σ) is the natural
lifting of the state translation given by �p� =

∨
(d,σ)∈p�d� × σ.

We will see that sometimes the module structure is preserved by the translations
and sometimes it is not; also, sometimes the proof structure is preserved, some-
times not. Notice that, since we are only considering partial correctness, it is
always acceptable for the implementation to diverge. In order to make termina-
tion guarantees, we could work with total correctness; our decision not to is for
simplicity and based on prevailing trends in separation logic and context logic
literature [12,4,2]. It is possible for our predicate translation to lose information.
For instance, if all predicates were unsatisfiable under translation, it would be
possible to implement every abstract command with skip; such an implementa-
tion is useless. It may be desirable to consider some injectivity condition which
distinguishes states and predicates of interest. Our results do not rely on this.

Modularity. A translation A1 → A2 can be naturally lifted to a translation
A1+B → A2+B, for any module B. We would hope that the resulting translations
would be sound, but it is not clear that this holds for all sound translations
A1 → A2. When it is does hold, we say that the translation A1 → A2 is modular.
The techniques we consider in this paper provide modular translations, because
they inductively transform proofs from module A1 to proofs in module A2.
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5 Locality-Preserving Translations

Sometimes there is a close correspondence between locality in an abstract mod-
ule and locality in its implementation. We introduce locality-preserving module
translations, and provide a general result that such translations are sound. Re-
call Fig. 1 of the introduction. We show that module translations T → H + L

and H + H → H are locality preserving.

(a) (b) (c)

Fig. 3. An abstract tree from T (a), and its representations in H (b) and H × Ls (c)

Consider Fig. 3 which depicts a simple tree (a), and representations of it in
the heap module H (b), and in the combined heap and list module H + L (c).
In (b), a node is represented by a memory block of four fields, recording the
addresses of the left sibling, parent, right sibling and first child. In (c), a node
is represented by a list of the child nodes (shown as boxes) and a block of two
fields, recording the address of the parent and the child list. Just as the tree in
(a) can be decomposed into a context and a disjoint subtree (as shown by the
dashed lined), its representations can also be decomposed: the representations
preserve context application. However, we must account for the pointers in the
representations which cross the boundary between context and subtree. This
means that the representation of a tree must be parameterised by an interface
to the surrounding context. Similarly, contexts are parameterised by interfaces
both to the inner subtree and outer context. We split the interface I into two
components: the reference the surrounding context makes in to the subtree (the
in part), and the reference the subtree makes out to the surrounding context
(the out part).

Consider deleting the subtree indicated by the dashed lines in the figure.
In the abstract tree, this deletion only operates on the subtree: the axiom for
deletion has just the subtree as its precondition. In the implementations however,
the deletion also operates on the representation of some of the surrounding
context: in (b), this is the parent node and right sibling; in (c), the parent
node and child list. We therefore introduce the idea of a crust predicate, F

I ,
that comprises the minimal additional state required by an implementation. The
crust is parameterised by interface I and an additional crust parameter F that
fully determine it. In the figure, the crusts for the subtree in (b) and (c) are
shown shaded. (In the list-based representation, all the sibling nodes form part
of the crust because they are required for node insertion.)
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We define locality-preserving translations which incorporate three key proper-
ties: application preservation, crust inclusion, and axiom correctness. Application
preservation, we have seen, requires that the low-level representations of abstract
states can be decomposed in the same manner as the abstract states themselves.
Crust inclusion requires that an abstract state’s crust is subsumed by any con-
text that is applied (together with the context’s own crust). This allows us to
frame on arbitrary contexts despite the crust already being present – we simply
remove the state’s crust from the context before applying it. (Since the crust
represents an effective overlap between what represents a state and what repre-
sents its context, the abstract view that the two are disjoint is really a fiction of
disjointness.) Finally, axiom correctness requires that the implementations of the
basic commands meet the specifications given by the abstract module’s axioms.

Definition 15 (Locality-Preserving Translation). For interface set I =
Iin × Iout and crust parameter set F , a locality-preserving translation A → B

comprises:

– representation functions 〈〈−〉〉− : DA ×I → P(DB) and 〈〈−〉〉−− : CA×I×I →
P(CB);

– a crust predicate F
I , parameterised by I ∈ I and F ∈ F ; and

– a substitutive implementation function �−� : LA → LB,

for which the following properties hold:

1. application preservation: for all f ∈ P(CA), p ∈ P(DA) and I ∈ I,

〈〈f ◦A p〉〉I = ∃I ′. 〈〈f〉〉II′ ◦B 〈〈p〉〉I′
;

2. crust inclusion: for all
−→
out′,

−→
out ∈ Iout, F ∈ F , c ∈ CA, there exist f ∈

P(CB), F ′ ∈ F such that, for all
−→
in ∈ Iin,(

∃−→in′. F−→
in′,−→out′

• 〈〈c〉〉
−→
in′,−→out′−→
in,

−→
out

)
= f • F ′

−→
in,

−→
out

; and

3. axiom correctness: for all (p, ϕ, q) ∈ AxA,
−→
out ∈ Iout and F ∈ F ,

B

{
(|p|)

−→
out,F

}
�ϕ�

{
(|q|)

−→
out,F

}
,

where (|p|)
−→
out,F =

∨
(d,σ)∈p(∃

−→
in. F−→

in,
−→
out

◦ 〈〈d〉〉
−→
in,

−→
out) × σ.

Notice that this locality-preserving translation is a module translation, with the
state translation function �−� : DA → P(DB) defined by �d� = ∃−→in. F−→

in,
−→
out

◦

〈〈d〉〉
−→
in,

−→
out, for some choice of

−→
out ∈ Iout and F ∈ F .

Theorem 1. A locality-preserving translation A → B is a sound translation.
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This theorem is proved by inductively transforming a high-level proof in A to the
corresponding proof in B, preserving the structure. Application preservation and
crust inclusion allow us to transform a high-level frame into a low-level frame,
and axiom correctness allows us to soundly replace the high-level commands
with their implementations. The remaining proof rules transform naturally. If
we chose to include the conjunction rule in our proof system, then we would need
to additionally verify that our representation functions preserve conjunction and
also that the crust predicate ∃−→in. F−→

in,
−→
out

is precise.

5.1 Module Translation: T → H + L

We study a list-based implementation of the tree module which uses a combina-
tion of the heap and list modules given in §3. We shall see that this implemen-
tation provides a locality-preserving translation of our abstract tree module. To
define a locality-preserving translation we need to give a representation function,
a crust predicate and a substitutive implementation function for the translation.

The representation functions for trees and tree contexts are given below. As
we have seen, each node of the tree is represented by a list of addresses of the
node’s children and a memory block of two fields that record the addresses of
the parent node and child list. The in part of the interface, l ∈ (N+)∗, is a list of
the addresses of the top-level nodes of the subtree. The out part of the interface,
u ∈ N+, is the address of the subtree’s parent node. We use the notation x �→ y,z
to mean x �→ y ∗ x + 1 �→ z and also write E 1

.= E 2 to mean emp ∧ (E 1 = E 2).
We also abuse notation slightly, freely combining heaps and list stores with ∗.

〈〈∅〉〉ε,u ::= emp

〈〈n[t]〉〉n,u ::= ∃i, l. n �→ u,i ∗ i �⇒ [ l ] ∗ 〈〈t〉〉l,n

〈〈t1 � t2〉〉l,u ::= ∃l1, l2. (l
.= l1 + l2) ∗ 〈〈t1〉〉l1,u ∗ 〈〈t2〉〉l2,u

〈〈−〉〉l,ul′,u′ ::= (l .= l′) ∗ (u .= u′)

〈〈n[c]〉〉n,u
I′ ::= ∃i, l. n �→ u,i ∗ i �⇒ [ l ] ∗ 〈〈c〉〉l,nI′

〈〈t� c〉〉l,uI′ ::= ∃l1, l2. (l
.= l1 + l2) ∗ 〈〈t〉〉l1,u ∗ 〈〈c〉〉l2,u

I′

〈〈c� t〉〉l,uI′ ::= ∃l1, l2. (l
.= l1 + l2) ∗ 〈〈c〉〉l1,u

I′ ∗ 〈〈t〉〉l2,u

The crust, F
I , parameterised by interface I = l, u and free logical variables

F = (l1, l2, u′), is defined as follows:

l1,l2,u′
l,u ::= ∃i. u �→ u′,i ∗ i �⇒ [ l1 + l + l2 ] ∗

( ∗∏
n∈l1+l2

n �→ u

)

This crust predicate captures the shaded part of the tree shown in Fig. 3(c) which
includes the parent node u of the subtree and the list of u’s children, including
the top level nodes l of the subtree. These are needed by the implementations
of commands that lookup siblings or parents, or delete a subtree. The crust also
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n .parent � n

n .children � n + 1

n := newNode() � n := alloc(2)

disposeNode(n ) � dispose(n , 2)

proc n ′ := getLast(n ){
local x in
x := [n .children] ;
n ′ := x .getTail()

}

proc n ′ := getRight(n ){
local x , y in

x := [n .parent] ;
y := [x .children] ;
n ′ := y .getNext(n )

}

proc deleteTree(n ){
local x , y , z in
x := [n .parent] ;
y := [x .children] ;
y .remove(n ) ;
y := [n .children] ;
z := y .getHead() ;
while z �= null do
call deleteTree(z ) ;
z := y .getHead()

disposeList(y ) ;
disposeNode(n )

}

Fig. 4. Selected procedures for the list-based implementation

includes the other sibling nodes as these are needed by the implementation of
the node insertion command.

A selection of the procedures that constitute the substitutive implementation
function is given in Fig. 4.

Theorem 2. The representation function, crust predicate and substitutive im-
plementation given above constitute a locality-preserving translation.

5.2 Module Translation: H + H → H

Another example of a locality-preserving translation is given by implementing a
pair of heap modules H+H in a single heap H, by simply treating the two heaps
as disjoint portions of the same heap.

The representation function is the same both for states and for contexts:
〈〈(h1, h2)〉〉 = {h1} ∗ {h2}. The interface set is trivial (just a single-element set).
The crust parameter set is also trivial, and the crust predicate is simply emp. The
substitutive implementation �C� is defined to be the detagging of C: that is, heap
commands from both abstract modules are substituted with the corresponding
command from the single abstract module. For example:

�n := alloc1(E )� = n := alloc(E ) = �n := alloc2(E )�

Theorem 3. The representation function, crust predicate and substitutive im-
plementation given above constitute a locality-preserving translation.

(Note, the representation function in this case does not preserve conjunction.)

6 Locality-Breaking Translations

There is not always a close correspondence between locality in an abstract mod-
ule and locality in its implementation. For example, consider an implementation
of our list module that represents each list as a singly-linked list in the heap.
In the abstract module, the footprint of removing a specific element from a list
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is just the element of the list. In the implementation however, the list is tra-
versed from its head to reach the element, which is then deleted by modifying
the pointer of its predecessor. The footprint is therefore the list fragment from
the head of the list to the element, significantly more than the single list node
holding the value to be removed. While we could treat this additional footprint
as crust, in this case it seems appropriate to abandon the preservation of locality
and instead give a locality-breaking translation that provides a fiction of locality.

Consider a translation from abstract module A to B. With the exception of the
frame rule and axioms, the proof rules for A can be mapped to the corresponding
proof rules of B: that is, from the translated premises we can directly deduce the
translated conclusion. To deal with the frame rule, we remove it from proofs in
A by ‘pushing’ applications of the frame rule to the leaves of the proof tree. In
this way, we can transform any local proof to a non-local proof.

Lemma 1 (Frame-free Derivations). Let A be an abstract module. If there
is a derivation of A {p} C {q} then there is also a derivation that only uses
the frame rule in the following ways:

Γ  {p} C {q} (†)

Γ  {f ◦ p} C {f ◦ q}

...
Γ  {p} C {q}

Γ  {(IA × σ) ◦ p} C {(IA × σ) ◦ q}

where (†) is either Axiom, Skip or Assgn.

By transforming a high-level proof of A {p} C {q} in this way, we can establish
B {�p�} �C� {�q�} provided that we can prove that the implementation of each
command of ΦA satisfies the translation of each of its axioms under every frame.
(We can reduce considerations to singleton frames by considering any given
frame as a disjunction of singletons and applying the Disj rule.)

Definition 16 (Locality-breaking Translation). A locality-breaking trans-
lation A → B is a module translation such that, for all c ∈ CA and (p, ϕ, q) ∈
AxA, the judgment B {�{c} ◦ p�} �ϕ� {�{c} ◦ q�} holds.

Theorem 4. A locality-breaking translation is a sound translation.

If we include the conjunction rule, then we must verify that every singleton
context predicate is precise (i.e. the context algebra must be left-cancellative).
Note that, whilst there is less to prove when working with locality-breaking
translations than with locality-preserving translations, the actual proofs may
be more difficult as we have to show that the axioms are preserved in every
context. Our examples show that the two approaches are suited to different
circumstances.

6.1 Module Translation: L → H

We provide a locality-breaking translation L → H, which implements abstract
lists with singly-linked lists in the heap.
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The state translation from list stores to heaps is defined inductively by:

�∅� ::= emp �i �⇒ l ∗ ls� ::= False

�i �⇒ [ l ] ∗ ls� ::= ∃x. i �→ x ∗ 〈〈l〉〉(x,null ) ∗ �ls�

where 〈〈ε〉〉(x,y) ::= (x .= y) 〈〈v〉〉(x,y) ::= x �→ v,y

〈〈l + l′〉〉(x,y) ::= ∃z. 〈〈l〉〉(x,z) ∗ 〈〈l′〉〉(z,y)

Note that not all list stores are realised by heaps: only ones in which every list is
complete. The intuition behind this is that partial lists are purely abstract no-
tions that provide a useful means to our ultimate end, namely reasoning about
complete lists. The abstract module itself does not provide operations for creat-
ing or destroying partial lists, and so we would not expect to give specifications
for complete programs that concern partial lists. A selection of the procedures
that constitute the substitutive implementation function is given in Fig. 5.

x .value � x

x .next � x + 1

x := newNode() � x := alloc(2)

disposeNode(x ) � dispose(x , 2)

proc i.remove(v ){
local u , x , y , z in
x := [i ] ;
u := [x .value] ;
y := [x .next] ;
if u = v

then
[i ] := y ;
disposeNode(x )

else
u := [y .value] ;
while u �= v do

x := y ;
y := [x .next] ;
u := [y .value]

z := [y .next] ;
[x .next] := z ;
disposeNode(y )

}

proc v := i.getNext(v ′){
local x in

x := [i ] ;
v := [x .value] ;
while v �= v ′ do

x := [x .next] ;
v := [x .value]

x := [x .next] ;
if x = null then v := x
else v := [x .value]

}

Fig. 5. Selected procedures for the linked-list implementation

Theorem 5. The state translation and substitutive implementation given above
constitute a locality-breaking translation.

7 Conclusions

We have shown how to refine module specifications given by abstract local rea-
soning into correct implementations. We have identified two general approaches
for proving correctness: locality-preserving and locality-breaking translations.
Locality-preserving translations relate the abstract locality of a module with the
low-level locality of its implementation. This is subtle since disjoint structures
at the high-level are not quite disjoint at the low-level, because of the addi-
tional crust that is required to handle the pointer surgery. Locality-preserving
translations thus establish a fiction of disjointness. Meanwhile, locality-breaking
translations establish a fiction of locality, by justifying abstract locality even
though this locality is not matched by the implementation.

This paper has focused on refinement for abstract local reasoning in the se-
quential setting. With Dodds, Parkinson and Vafeiadis, Dinsdale-Young and
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Gardner have introduced concurrent abstract predicates [6] as a technique for
verifying correct implementations of concurrent modules. They achieve local
reasoning and disjoint concurrency at the abstract level, by abstracting from a
low-level resource model with fine-grained permissions. Our next challenge is to
extend our refinement techniques to the setting of disjoint concurrency.
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