

Lecture Notes in Computer Science 6225
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stefan Mangard
François-Xavier Standaert (Eds.)

Cryptographic Hardware
and Embedded Systems –
CHES 2010

12th International Workshop
Santa Barbara, USA, August 17-20, 2010
Proceedings

13

Volume Editors

Stefan Mangard
Chip Card & Security, Infineon Technologies
Am Campeon 1-12, 85579 Neubiberg, Germany
E-mail: stefan.mangard@infineon.com

François-Xavier Standaert
UCL Crypto Group, Université catholique de Louvain
Place du Levant 3, 1348 Louvain-la-Neuve, Belgium
E-mail: fstandae@uclouvain.be

Library of Congress Control Number: Applied for

CR Subject Classification (1998): E.3, D.4.6, K.6.5, E.4, C.2, H.2.7, G.2.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-15030-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15030-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© International Association for Cryptologic Research 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Since 1999, the workshop on Cryptographic Hardware and Embedded Systems
(CHES) is the foremost international scientific event dedicated to all aspects
of cryptographic hardware and security in embedded systems. Its 12th edition
was held in Santa Barbara, California, USA, August 17–20, 2010. Exceptionally
this year, it was co-located with the 30th International Cryptology Conference
(CRYPTO). This co-location provided unique interaction opportunities for the
communities of both events. As in previous years, CHES was sponsored by the
International Association for Cryptologic Research (IACR).

The workshop received 108 submissions, from 28 different countries, of which
the Program Committee selected 30 for presentation. Each submission was re-
viewed by at least 4 committee members, for a total of 468 reviews. Two invited
talks completed the technical program. The first one, given by Ivan Damg̊ard
and Markus Kuhn, was entitled “Is Theoretical Cryptography Any Good in
Practice?”, and presented jointly to the CRYPTO and CHES audiences, on
Wednesday, August 18, 2010. The second one, given by Hovav Shacham, was
entitled “Cars and Voting Machines: Embedded Systems in the Field.”

The Program Committee agreed on giving a best paper award to Alexandre
Berzati, Cécile Canovas-Dumas and Louis Goubin, for their work “Public Key
Perturbation of Randomized RSA Implementations.” These authors will also be
invited to submit an extended version of their paper to the Journal of Cryptology,
together with the authors of two other contributions. First, Jean-Philippe Au-
masson, Luca Henzen, Willi Meier and Maŕıa Naya-Plasencia, authors of “Quark:
a Lightweight Hash.” Second, Luca Henzen, Pietro Gendotti, Patrice Guillet, En-
rico Pargaetzi, Martin Zoller and Frank K. Gürkaynak, for their paper entitled
“Developing a Hardware Evaluation Method for SHA-3 Candidates.” These pa-
pers illustrate three distinct areas of cryptographic engineering research, namely:
physical (aka implementation) security, the design of lightweight primitives and
the efficient hardware implementation of cryptographic algorithms.

We would like to express our deepest gratitude to the various people who
helped in the organization of the conference and made it a successful event. In
the first place, we thank the authors who submitted their works. The quality of
the submissions and the variety of the topics that they cover are reflective of an
evolving and growing research area, trying to bridge the gap between theoretical
advances and their practical application in commercial products. The selection
of 30 papers out of these strong submissions was a challenging task and we sin-
cerely thank the 41 Program Committee members, as well as the 158 external
reviewers, who volunteered to read and discuss the papers over several months.
They all contributed to the review process with a high level of professionalism,
expertise and fairness. We also acknowledge the great contribution of our in-
vited speakers. We highly appreciated the assistance of Çetin Kaya Koç and

VI Preface

Jean-Jacques Quisquater, the General Co-chairs of CHES 2010, and the help of
the local staff at the University of California Santa Barbara. A big thank-you to
Tal Rabin, the Program Chair of CRYPTO 2010, for the good collaboration and
discussions which allowed a nice interaction between CRYPTO and CHES. We
owe our gratitude to Shai Halevi, for maintaining the review website, to Jens-
Peter Kaps, for maintaining the CHES website, and to the staff at Springer, for
making the finalization of these proceedings an easy task. We also express our
gratitude to our generous sponsors, namely: Cryptography Research, Riscure,
Technicolor, Oberthur Technologies, the Research Center for Information Se-
curity and Telecom ParisTech. And finally, we would like to thank the CHES
Steering Committee for allowing us to serve at such a prestigious workshop.

August 2010 Stefan Mangard
François-Xavier Standaert

CHES 2010

Workshop on Cryptographic Hardware and Embedded Systems
Santa Barbara, California, USA, August 17–20, 2010

Sponsored by International Association for Cryptologic Research

General Co-chairs

Çetin Kaya Koç University of California Santa Barbara, USA
Jean-Jacques Quisquater Université catholique de Louvain, Belgium

Program Co-chairs

Stefan Mangard Infineon Technologies, Germany
François-Xavier Standaert Université catholique de Louvain, Belgium

Program Committee

Lejla Batina Radboud University Nijmegen,
The Netherlands and

KU Leuven, Belgium
Daniel J. Bernstein University of Illinois at Chicago, USA
Guido Bertoni STMicroelectronics, Italy
Jean-Luc Beuchat University of Tsukuba, Japan
Christophe Clavier Université de Limoges, France and Institut

d’Ingénierie Informatique de Limoges, France
Jean-Sébastien Coron University of Luxembourg, Luxembourg
Josep Domingo-Ferrer Universiat Rovira i Virgili, Catalonia
Hermann Drexler Giesecke & Devrient, Germany
Viktor Fischer Université de Saint-Étienne, France
Wieland Fischer Infineon Technologies, Germany
Pierre-Alain Fouque ENS, France
Kris Gaj George Mason University, USA
Louis Goubin Université de Versailles, France
Aline Gouget Gemalto, France
Johann Großschädl University of Luxembourg, Luxembourg
Jorge Guajardo Philips Research, The Netherlands
Kouichi Itoh Fujitsu Laboratories, Japan
Marc Joye Technicolor, France

VIII Organization

Çetin Kaya Koç University of California Santa Barbara, USA
François Koeune Université catholique de Louvain, Belgium
Soonhak Kwon Sungkyunkwan University, South Korea
Kerstin Lemke-Rust University of Applied Sciences

Bonn-Rhein-Sieg, Germany
Marco Macchetti Nagravision SA, Switzerland
Mitsuru Matsui Mitsubishi Electric, Japan
Michael Neve Intel, USA
Elisabeth Oswald University of Bristol, UK
Máire O’Neill Queens University Belfast,UK
Christof Paar Ruhr-Universität Bochum, Germany
Eric Peeters Texas Instruments, Germany
Axel Poschmann Nanyang Technological University, Singapore
Emmanuel Prouff Oberthur Technologies, France
Pankaj Rohatgi Cryptography Research, USA
Akashi Satoh Research Center for Information Security,

Japan
Erkay Savas Sabanci University, Turkey
Patrick Schaumont Virginia Tech, USA
Werner Schindler Bundesamt für Sicherheit

in der Informationstechnik (BSI), Germany
Sergei Skorobogatov University of Cambridge, UK
Tsuyoshi Takagi Kyushu University, Japan
Stefan Tillich Graz University of Technology, Austria
Mathias Wagner NXP Semiconductors, Germany
Colin Walter Royal Holloway, UK

External Reviewers

Manfred Aigner
Abdulkadir Akin
Toru Akishita
Jean-Philippe Aumasson
Aydin Aysu
Jean-Claude Bajard
Selçuk Baktir
Brian Baldwin
Alessandro Barenghi
Timo Bartkewitz
Adolf Baumann
Florent Bernard
Alexandre Berzati
Peter Birkner
Markus Bockes
Andrey Bogdanov
Lilian Bossuet

David A. Brown
Cécile Canovas-Dumas
Jiun-Ming Chen
Zhimin Chen
Chen-Mou Cheng
Jung Hee Cheon
Sylvain Collange
Guillaume Dabosville
Joan Daemen
Jean-Luc Danger
Blandine Debraize
Jérémie Detrey
Sandra Dominikus
Emmanuelle Dottax
Benedikt Driessen
Miloš Drutarovský
Nicolas Estibals

Junfeng Fan
Benôıt Feix
Martin Feldhofer
Georges Gagnerot
Berndt Gammel
Max Gebhardt
Laurie Genelle
Benedikt Gierlichs
Christophe Giraud
Tim Güneysu
Guy Gogniat
Gilbert Goodwill
Sylvain Guilley
Jian Guo
Xu Guo
Dong-Guk Han
Takuya Hayashi

Organization IX

Stefan Heyse
Naofumi Homma
Yohei Hori
Michael Hutter
Arni Ingimundarson
Josh Jaffe
Pascal Junod
Marcelo Kaihara
Dina Kamel
Markus Kasper
Michael Kasper
Timo Kasper
Toshihiro Katashita
Tino Kaufmann
Yuto Kawahara
Chang Hoon Kim
Inyoung Kim
Mario Kirschbaum
Ilya Kizhvatov
Miroslav Knezevic
Kazuyuki Kobayashi
Noboru Kunihiro
Taekyoung Kwon
Yun-Ki Kwon
Cédric Lauradoux
Mun-Kyu Lee
Manfred Lochter
Patrick Longa
Liang Lu
Yingxi Lu
Raimondo Luzzi
Abhranil Maiti
Marcel Medwed
Nicolas Meloni
Filippo Melzani
Giacomo de Meulenaer

Marine Minier
Amir Moradi
Ernst Mülner
Elke De Mulder
Takao Ochiai
Rune Odegard
Siddika Berna Örs
David Oswald
Pascal Paillier
Young-Ho Park
Hervé Pelletier
Ludovic Perret
Carlo Peschke
Christophe Petit
Thomas Peyrin
Gilles Piret
Thomas Plos
Thomas Popp
Jürgen Pulkus
Bo Qin
Michael Quisquater
Denis Réal
Francesco Regazzoni
Christof Rempel
Mathieu Renauld
Matthieu Rivain
Thomas Roche
Francisco Rodŕıguez-H.
Mylène Roussellet
Vladimir Rožić
Heuisu Ryu
Minoru Saeki
Kazuo Sakiyama
Gokay Saldamli
Jörn-Marc Schmidt
Peter Schwabe

Yannick Seurin
Martin Seysen
Saloomeh Shariati
Hideo Shimizu
Takeshi Shimoyama
Masaaki Shirase
Abdulhadi Shoufan
Chang Shu
Hervé Sibert
Yannick Sierra
Michal Sramka
Oliver Stein
Marc Stöttinger
Takeshi Sugawara
Daisuke Suzuki
Alexander Szekely
Robert Szerwinski
Masahiko Takenaka
Yannick Teglia
Arnaud Tisserand
Lionel Torres
Leif Uhsadel
Gilles Van Assche
Jérôme Vasseur
Vincent Verneuil
David Vigilant
Yi Wang
Lei Wei
Ralf-Philipp Weinmann
Jiang Wu
Qianhong Wu
Jun Yajima
Dai Yamamoto
Lei Zhang
Ralf Zimmermann

Table of Contents

Low Cost Cryptography

QUARK: A Lightweight Hash . 1
Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and
Maŕıa Naya-Plasencia

PRINTcipher: A Block Cipher for IC-Printing . 16
Lars Knudsen, Gregor Leander, Axel Poschmann, and
Matthew J.B. Robshaw

Sponge-Based Pseudo-Random Number Generators 33
Guido Bertoni, Joan Daemen, Michaël Peeters, and
Gilles Van Assche

Efficient Implementations I

A High Speed Coprocessor for Elliptic Curve Scalar Multiplications
over Fp . 48

Nicolas Guillermin

Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves 65
Raveen R. Goundar, Marc Joye, and Atsuko Miyaji

Efficient Techniques for High-Speed Elliptic Curve Cryptography 80
Patrick Longa and Catherine Gebotys

Side-Channel Attacks and Countermeasures I

Analysis and Improvement of the Random Delay Countermeasure of
CHES 2009 . 95

Jean-Sébastien Coron and Ilya Kizhvatov

New Results on Instruction Cache Attacks . 110
Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher

Correlation-Enhanced Power Analysis Collision Attack 125
Amir Moradi, Oliver Mischke, and Thomas Eisenbarth

Side-Channel Analysis of Six SHA-3 Candidates . 140
Olivier Benôıt and Thomas Peyrin

XII Table of Contents

Tamper Resistance and Hardware Trojans

Flash Memory ‘Bumping’ Attacks . 158
Sergei Skorobogatov

Self-referencing: A Scalable Side-Channel Approach for Hardware
Trojan Detection . 173

Dongdong Du, Seetharam Narasimhan,
Rajat Subhra Chakraborty, and Swarup Bhunia

When Failure Analysis Meets Side-Channel Attacks 188
Jerome Di-Battista, Jean-Christophe Courrege, Bruno Rouzeyre,
Lionel Torres, and Philippe Perdu

Efficient Implementations II

Fast Exhaustive Search for Polynomial Systems in F2 203
Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng,
Tung Chou, Ruben Niederhagen, Adi Shamir, and Bo-Yin Yang

256 Bit Standardized Crypto for 650 GE – GOST Revisited 219
Axel Poschmann, San Ling, and Huaxiong Wang

Mixed Bases for Efficient Inversion in F((22)2)2 and Conversion Matrices
of SubBytes of AES . 234

Yasuyuki Nogami, Kenta Nekado, Tetsumi Toyota,
Naoto Hongo, and Yoshitaka Morikawa

SHA-3

Developing a Hardware Evaluation Method for SHA-3 Candidates 248
Luca Henzen, Pietro Gendotti, Patrice Guillet, Enrico Pargaetzi,
Martin Zoller, and Frank K. Gürkaynak

Fair and Comprehensive Methodology for Comparing Hardware
Performance of Fourteen Round Two SHA-3 Candidates
Using FPGAs . 264

Kris Gaj, Ekawat Homsirikamol, and Marcin Rogawski

Performance Analysis of the SHA-3 Candidates on Exotic Multi-core
Architectures . 279

Joppe W. Bos and Deian Stefan

XBX: eXternal Benchmarking eXtension for the SUPERCOP Crypto
Benchmarking Framework . 294

Christian Wenzel-Benner and Jens Gräf

Table of Contents XIII

Fault Attacks and Countermeasures

Public Key Perturbation of Randomized RSA Implementations 306
Alexandre Berzati, Cécile Canovas-Dumas, and Louis Goubin

Fault Sensitivity Analysis . 320
Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga,
Junko Takahashi, and Kazuo Ohta

PUFs and RNGs

An Alternative to Error Correction for SRAM-Like PUFs 335
Maximilian Hofer and Christoph Boehm

New High Entropy Element for FPGA Based True Random Number
Generators . 351

Michal Varchola and Milos Drutarovsky

The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch
Shapes . 366

Daisuke Suzuki and Koichi Shimizu

New Designs

Garbled Circuits for Leakage-Resilience: Hardware Implementation and
Evaluation of One-Time Programs . 383

Kimmo Järvinen, Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and
Thomas Schneider

ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to
Hardware . 398

Stéphane Badel, Nilay Dağtekin, Jorge Nakahara Jr., Khaled Ouafi,
Nicolas Reffé, Pouyan Sepehrdad, Petr Sušil, and Serge Vaudenay

Side-Channel Attacks and Countermeasures II

Provably Secure Higher-Order Masking of AES . 413
Matthieu Rivain and Emmanuel Prouff

Algebraic Side-Channel Analysis in the Presence of Errors 428
Yossef Oren, Mario Kirschbaum, Thomas Popp, and Avishai Wool

Coordinate Blinding over Large Prime Fields . 443
Michael Tunstall and Marc Joye

Author Index . 457

Quark: A Lightweight Hash�

Jean-Philippe Aumasson1, Luca Henzen2,
Willi Meier3,��, and Maŕıa Naya-Plasencia3,���

1 Nagravision SA, Cheseaux, Switzerland
2 ETH Zurich, Switzerland

3 FHNW, Windisch, Switzerland

Abstract. The need for lightweight cryptographic hash functions has
been repeatedly expressed by application designers, notably for imple-
menting RFID protocols. However not many designs are available, and
the ongoing SHA-3 Competition probably won’t help, as it concerns
general-purpose designs and focuses on software performance. In this
paper, we thus propose a novel design philosophy for lightweight hash
functions, based on a single security level and on the sponge construc-
tion, to minimize memory requirements. Inspired by the lightweight ci-
phers Grain and KATAN, we present the hash function family Quark,
composed of the three instances u-Quark, d-Quark, and t-Quark.
Hardware benchmarks show that Quark compares well to previous
lightweight hashes. For example, our lightest instance u-Quark con-
jecturally provides at least 64-bit security against all attacks (collisions,
multicollisions, distinguishers, etc.), fits in 1379 gate-equivalents, and
consumes in average 2.44 �W at 100 kHz in 0.18 �m ASIC. For 112-
bit security, we propose t-Quark, which we implemented with 2296
gate-equivalents.

1 Introduction

In 2006, Feldhofer and Rechberger [1] pointed out the lack of lightweight hash
functions for use in RFID protocols, and gave recommendations to encourage
the design of such primitives. But as recently observed in [2] the situation has
not much evolved in four years1, despite a growing demand; besides RFID,
lightweight hashes are indeed relevant wherever the cost of hardware matters,
be it in embedded systems or in smartcards.

� This work was partially supported by European Commission through the ICT pro-
gramme under contract ICT-2007-216676 ECRYPT II.

�� Supported by the Hasler foundation www.haslerfoundation.ch under project
number 08065.

��� This work was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme.

1 Note the absence of “Hash functions” category in the ECRYPT Lightweight Cryp-
tography Lounge (http://www.ecrypt.eu.org/lightweight/).

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 1–15, 2010.
c© International Association for Cryptologic Research 2010

2 J.-P. Aumasson et al.

The ongoing NIST “SHA-3” Hash Competition [3] aims to develop a general-
purpose hash function, and received as many as 64 original and diverse sub-
missions. Most of them, however, cannot reasonably be called “lightweight”,
as most need more than (say) 10 000 gate equivalents (GE)2. An exception is
CubeHash [5], which can be implemented with 7630GE in 0.13 �m ASIC [6] to
return digests of up to 512 bits. For comparison, Feldhofer and Wolkerstorfer [7]
reported a 8001GE implementation of MD5 (128-bit digests, 0.35 �m ASIC),
O’Neill [8] implemented SHA-1 (160-bit, 0.18 �m) with 6122GE, and the com-
pression function MAME by Yoshida et al [9] (256-bit, 0.18 �m) fits in 8100GE.
These designs, however, are still too demanding for many low-end environments.

A major step towards lightweight hashing is the work by Bogdanov et al. [10],
which presented constructions based on the lightweight block cipher present [11];
they for example proposed to instantiate the Davies-Meyer (Em(h)⊕h) construc-
tion with present-80, giving a hash function with 64-bit digests implemented
with as few as 1600GE, in 0.18 �m ASIC.

Another interesting approach was taken with Shamir’s SQUASH [12], which
processes short strings only, offers 64-bit preimage resistance, and is expected to
need fewer than 1000GE. However, SQUASH is not collision resistant—as it tar-
gets RFID authentication protocols where collision resistance is unnecessary—
and so is inappropriate for applications requiring a collision-resistant hash
function.

In this paper, we present a novel approach to design lightweight hashes, illus-
trated with the proposal of a new family of functions, called Quark.

2 Description of the Quark Hash Family

2.1 Sponge Construction

Quark uses the sponge construction, as depicted in Fig. 1. Following the no-
tations introduced in [13], it is parametrized by a rate (or block length) r, a
capacity c, and an output length n. The width of a sponge construction is the size
of its internal state b = r + c ≥ n.

Given an initial state, the sponge construction processes a message m as
follows:

1. Initialization: The message is padded by appending a ’1’ bit and sufficiently
many zeroes to reach length a multiple of r.

2. Absorbing phase: The r-bit message blocks are xored into the last r bits
of the state (i.e., Yb/2−r, . . . , Yb/2−1), interleaved with applications of the
permutation P .

3. Squeezing phase: The last r bits of the state are returned as output,
interleaved with applications of the permutation P , until n bits are returned.

2 For example, the “5000 GE” implementation of Keccak reported in [4, §7.4.3] is only
that of the coprocessor, without the memory storing the 1600-bit internal state.
Hence the total gate count of the complete design is well above 10 000.

Quark: A Lightweight Hash 3

�

�

�

�

c

r

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

P P P P P P

�

�

�

�

�

�

�

�

�

�

�

�

��

m0

��

m1

��

m2

��

m3

absorbing squeezing

�

z0

�

z1

�

z2

Fig. 1. The sponge construction as used by Quark, for the example of a 4-block
(padded) message

2.2 Permutation

Quark uses a permutation P inspired by the stream cipher Grain and by the
block cipher KATAN (see §3.3 for details), as depicted in Fig. 2.

The permutation P relies on three non-linear Boolean functions f , g, and h,
on a linear Boolean function p, and on an internal state composed, at epoch
t ≥ 0, of

– an NFSR X of b/2 bits set to Xt = (Xt
0, . . . , X

t
b/2−1);

– an NFSR Y of b/2 bits set to Y t = (Y t
0 , . . . , Y t

b/2−1);
– an LFSR L of �log 4b� bits set to Lt = (Lt

0, . . . , L
t
�log 4b�−1).

P processes a b-bit input in three stages, as described below:

Initialization. Upon input s = (s0, . . . , sb−1), P initializes its internal state as
follows:

– X is initialized with the first b/2 input bits: (X0
0 , . . . , X0

b/2−1) := (s0, . . . , sb/2−1);
– Y is initialized with the last b/2 input bits: (Y 0

0 , . . . , Y 0
b/2−1) := (sb/2, . . . , sb−1);

– L is initialized to the all-one string: (L0
0, . . . , L

0
�log 4b�−1) := (1, . . . , 1).

State update. From an internal state (Xt, Y t, Lt), the next state (Xt+1, Y t+1,
Lt+1) is determined by clocking the internal mechanism as follows:

1. The function h is evaluated upon input bits from Xt, Y t, and Lt, and the
result is written ht: ht := h(Xt, Y t, Lt);

2. X is clocked using Y t
0 , the function f , and ht:

(Xt+1
0 , . . . , Xt+1

b/2−1) := (Xt
1, . . . , X

t
b/2−1, Y

t
0 + f(Xt) + ht) ;

3. Y is clocked using the function g and ht:

(Y t+1
0 , . . . , Y t+1

b/2−1) := (Y t
1 , . . . , Y t

b/2−1, g(Y t) + ht) ;

4. L is clocked using the function p:

(Lt+1
0 , . . . , Lt+1

�log 4b�) := (Lt
1, . . . , L

t
�log 4b�−1, p(Lt)) .

4 J.-P. Aumasson et al.

Computation of the output. Once initialized, the state of Quark is updated
4b times, and the output is the final value of the NFSR’s X and Y , using the
same bit ordering as for the initialization.

NFSR X NFSR Y

h

�
�

�

�

f g

LFSR L

�

� �

� �

��� � �

Fig. 2. Diagram of the permutation of Quark (for clarity, the feedback of the LFSR
with the function p is omitted)

2.3 Proposed Instances

There are three different flavors3 of Quark: u-Quark, d-Quark, and t-Quark.
For each, we give its rate r, capacity c, width b, digest length n, and its functions
f , g, and h. The function p, used by the data-independent LFSR, is the same
for all three instances: given a 10-bit register L, p returns L0 + L3.

u-Quark is the lightest flavor of Quark. It was designed to provide 64-bit
security, and to admit a parallelization degree of 8. It has sponge numbers r =
8, c = 128, b = 2× 68, n = 128.

Given a 68-bit register X , f returns

X0 + X9 + X14 + X21 + X28 + X33 + X37 + X45 + X50 + X52 + X55

+X55X59 + X33X37 + X9X15 + X45X52X55 + X21X28X33

+X9X28X45X59 + X33X37X52X55 + X15X21X55X59

+X37X45X52X55X59 + X9X15X21X28X33 + X21X28X33X37X45X52 .

Given a 68-bit register Y , g returns

Y0 + Y7 + Y16 + Y20 + Y30 + Y35 + Y37 + Y42 + Y49 + Y51 + Y54

+Y54Y58 + Y35Y37 + Y7Y15 + Y42Y51Y54 + Y20Y30Y35

+Y7Y30Y42Y58 + Y35Y37Y51Y54 + Y15Y20Y54Y58

+Y37Y42Y51Y54Y58 + Y7Y15Y20Y30Y35 + Y20Y30Y35Y37Y42Y51 .

3 In particle physics, the u-quark is lighter than the d-quark, which itself is lighter than
the t-quark; our eponym hash functions compare similarly.

Quark: A Lightweight Hash 5

Given 68-bit registers X and Y , and a 10-bit register L, h returns

L0 + X1 + Y2 + X4 + Y10 + X25 + X31 + Y43 + X56 + Y59

+Y3X55 + X46X55 + X55Y59 + Y3X25X46 + Y3X46X55

+Y3X46Y59 + L0X25X46Y59 + L0X25 .

d-Quark is the second-lightest flavor of Quark. It was designed to provide 80-
bit security, and to admit a parallelization degree of 8. It has sponge numbers
r = 16, c = 160, b = 2× 88, n = 160.

d-Quark uses the same function f as u-Quark, but with taps 0, 11, 18, 19,
27, 36, 42, 47, 58, 64, 67, 71, 79 instead of 0, 9, 14, 15, 21, 28, 33, 37, 45, 50, 52,
55, 59, respectively.

d-Quark uses the same function g as u-Quark, but with taps 0, 9, 19, 20,
25, 38, 44, 47, 54, 63, 67, 69, 78 instead of 0, 7, 15, 16, 20, 30, 35, 37, 42, 49, 51,
54, 58, respectively.

Given 88-bit registers X and Y , and a 10-bit register L, h returns

L0 + X1 + Y2 + X5 + Y12 + Y24 + X35 + X40 + X48 + Y55 +

Y61 + X72 + Y79 + Y4X68 + X57X68 + X68Y79 + Y4X35X57 +

Y4X57X68 + Y4X57Y79 + L0X35X57Y79 + L0X35 .

t-Quark is the less light flavor of Quark. It was designed to provide 112-bit
security, and to admit a parallelization degree of 16. It has sponge numbers
r = 32, c = 224, b = 2× 128, n = 224.

t-Quark uses the same function f as u-Quark, but with taps 0, 16, 26, 28,
39, 52, 61, 69, 84, 94, 97,103,111 instead of 0, 9, 14, 15, 21, 28, 33, 37, 45, 50,
52, 55, 59, respectively.

t-Quark uses the same function f as u-Quark, but with taps 0, 13, 28, 30,
37, 56, 65, 69, 79, 92, 96,101,109 instead of 0, 7, 15, 16, 20, 30, 35, 37, 42, 49,
51, 54, 58, respectively.

Given 128-bit registers X and Y , and a 10-bit register L, h returns

L0 + X1 + Y3 + X7 + Y18 + Y34 + X47 + X58 + Y71 + Y80 + X90 + Y91 +

X105 + Y111 + Y8X100 + X72X100 + X100Y111 + Y8X47X72 + Y8X72X100 +

Y8X72Y111 + L0X47X72Y111 + L0X47 .

3 Design Rationale

3.1 Single Security Level

An originality of Quark is that its expected security level against second preim-
ages differs from its digest length (see §4.2 for a description of the generic at-
tack). In particular it offers a similar security against generic collision attacks
and generic second preimage attacks, that is, approximately 2c/2. Note that the
sponge construction ensures a resistance of approximately max(c, n) bits against

6 J.-P. Aumasson et al.

preimages, as recently shown in [14, §4.2]4. Hence, Quark provides increased
resistance to preimage attacks.

A disadvantage of this approach is that one “wastes” half the digest bits,
as far as second preimage resistance is concerned. However, this little penalty
brings dramatic performance gains, for it reduces memory requirements of about
50% compared to classical designs with a same security level. For instance, u-

Quark provides 64-bit security against collisions and second preimages using
146 memory bits (i.e., the two NFSR’s plus the LFSR), while dm-present pro-
vides 64-bit security against preimages but only 32-bit security against collisions
with 128 bits of required memory.

3.2 Sponge Construction

The sponge construction [13] seems the only real alternative to the classical
Merkle-Damg̊ard construction based on a compression function (although several
“patched” versions were proposed, adding counters, finalization functions, etc.).
It rather relies on a single permutation, and message blocks are integrated with
a simple XOR with the internal state. Sponge functions do not require storage
of message blocks nor of “feedforward” intermediate values, as in Davies-Meyer
constructions, however they need a larger state to achieve traditional security
levels, which compensates those memory savings.

The sponge construction was proven indifferentiable from a random oracle (up
to some bound) when instantiated with a random permutation or transforma-
tion, which is the highest security level a hash construction can achieve. But its
most interesting feature is its flexibility: given a fixed permutation P , varying
the parameters r, c, and n offers a wide range of trade-offs efficiency/security5.

3.3 Permutation Algorithm

We now briefly justify our design choices regarding the permutation P . To avoid
“reinventing the wheel”, we borrowed most design ideas from the stream cipher
Grain and from the block cipher KATAN, as detailed below.

Grain. The stream cipher Grain-v1 was chosen in 2008 as one of the four
“promising new stream ciphers” by the ECRYPT eSTREAM Project6. It con-
sists of two 80-bit shift registers combined with three Boolean functions, which
makes it one of the lightest designs ever. Grain’s main advantages are its simplic-
ity and its performance flexibility (due to the possibility of parallelized imple-
mentations). However, a direct reuse of Grain fails to give a secure permutation
for a hash function, because of “slide distinguishers” (see §4.5), of the existence
of differential characteristics [16], and of (conjecturally) statistical distinguishers
for Grain-128 [17].
4 The expected workload to find a preimage was previously estimated to 2n + 2c−1

in [15, §5.3], although that was not proven optimal.
5 See the interactive page “Tune Keccak to your requirements” at
http://keccak.noekeon.org/tune.html

6 See http://www.ecrypt.eu.org/stream

Quark: A Lightweight Hash 7

KATAN. The block cipher family KATAN [18] (CHES 2009) is inspired by the
stream cipher Trivium [19] and builds a keyed permutation with two NFSR’s
combined with two light quadratic Boolean functions. Its small block sizes (32,
48, and 64 bits) plus the possibility of “burnt-in key” (with the KTANTAN
family) lead to very small hardware footprints. KATAN’s use of two NFSR’s with
short feedback delay contributes to a rapid growth of the density and degree of
implicit algebraic equations, which complicates differential and algebraic attacks.
Another interesting design idea is its use of a LFSR acting both as a counter of
the number of rounds, and as an auxiliary input to the inner logic (to simulate
two distinct types of rounds). Like Grain, however, KATAN is inappropriate for
a direct reuse in a hash function, because of its small block size.

Taking the best of both. Based on the above observations, Quark borrows
the following design decisions from Grain:

– A mechanism in which each register’s update depends on both registers.
– Boolean functions of high degree (up to six, rather than two in KATAN) and

high density.

And KATAN inspired us in choosing

– Two NFSR’s instead of a NFSR and a LFSR; Grain’s use of a LFSR was mo-
tivated by the need to ensure a long period during the keystream generation
(where the LFSR is autonomous), but this seems unnecessary for hashing.
Moreover, the dissimetry in such a design is a potential threat for a secure
permutation.

– An auxiliary LFSR to act as a counter and to avoid self-similarity of the
round function.

Choice of the Boolean functions. The quality of the Boolean functions in
P determines its security. We thus first chose the functions in Quark according
to their individual properties, according to known metrics (see, e.g., [20]). The
final choice was made by observing the empirical resistance of the combination
of the three functions to known attacks (see §4.3-4.4).

In Quark, we chose f and g functions similar to the non-linear function of
Grain-v1. These functions achieve good, though suboptimal, non-linearity and
resilience (see Table 1). They have degree six and include monomials of each
degree below six. Note that having a relatively high degree (e.g., six rather than
two) is cheap, since logical AND’s need fewer gates than XOR’s (respectively,
approximately one and 2.5). The distinct taps for each register break the sym-
metry of the design (note that KATAN also employs similar functions for each
register’s feedback).

As h function, distinct for each flavor of Quark, we use a function of lower
degree than f and g, but with more linear terms to increase the cross-diffusion
between the two registers.

8 J.-P. Aumasson et al.

Table 1. Properties of the Boolean functions of each Quark instance (for h, we con-
sider that the parameter L0 is zero)

Hash Boolean
Var. Deg. Non-lin. (max) Resil.function function

Quark (all) f 13 6 3440 (4056) 3
Quark (all) g 13 6 3440 (4056) 3

u-Quark h 12 3 1280 (2016) 6
d-Quark h 15 3 10240 (16320) 9
t-Quark h 16 3 20480 (32640) 10

4 Preliminary Security Analysis

4.1 The Hermetic Sponge Strategy

Like for the hash function Keccak [4], we follow the hermetic sponge strategy,
which consists in adopting the sponge construction with a permutation that
should not have exploitable properties. The indifferentiability proof of the sponge
construction [13] implies that any non-generic attack on a Quark hash function
implies a distinguisher for its permutation P (but a distinguisher for P does not
necessarily leads to an attack on Quark). This reduces the security of P to that
of the hash function that uses it.

More precisely, the indifferentiability proof of the sponge construction ensures
an expected complexity at least

√
π2c/2 against any differentiating attack, inde-

pendently of the digest length (of course, practical attacks of complexity below
that bound exist when short digests are used, but these apply as well to a ran-
dom oracle). This proof covers collision and (second) preimage attacks, as well as
more specific attacks as multicollision or herding attacks [21]. As Quark follows
the hermetic sponge strategy, the proof of [13] is directly applicable.

4.2 Generic Second Preimage Attack

The generic second preimage attack against Quark is similar to the generic
preimage attack against the hash function CubeHash [5], which was described
in [22] and discussed in [23]. It has complexity equivalent to more than 2c/2+1

evaluations of P and so to more than b2c/2+3 clocks of P ’s mechanism, that is,
274, 290, and 2123 clocks for u-, d-, and t-Quark respectively.

4.3 Resistance to Cube Attacks and Cube Testers

The recently proposed “cube attacks” [24] and “cube testers” [25] are higher-order
differential cryptanalysis techniques that exploit weaknesses in the algebraic
structure of a cryptographic algorithm. These techniques are mostly relevant
for algorithms based on non-linear components whose ANF has low degree and
low density (e.g., the feedback function of an NFSR). Cube testers were for

Quark: A Lightweight Hash 9

example applied [17] to the stream cipher Grain-128 [26]. Cube attacks/testers
are thus tools of choice to attack (reduced version of) Quark’s permutation,
since it resembles Grain-128.

Recall that Quark targets security against any nontrivial structural distin-
guisher for its permutation P . We thus applied cube testers—i.e., distinguishers—
rather than cube attacks—i.e., key recovery attacks—to the permutation of each
Quark flavor. We followed a methodology inspired by [17], using bitsliced C im-
plementations of P and an evolutionary algorithm to optimize the parameters
of the attack.

In our simplified attack model, the initial state is chosen uniformly at random
to try our distinguishers. Table 2 reports our results.

Table 2. Highest number of rounds t such that the state (Xt, Y t) could be distin-
guished from random using a cube tester with the given complexity. Percentage of the
total number of rounds is given in parentheses.

Instance Total Rounds attacked
rounds in 28 in 216 in 224

u-Quark 544 109 111 114 (21.0 %)
d-Quark 704 144 144 148 (21.0 %)
t-Quark 1024 213 220 222 (21.7 %)

One observes from Table 2 that all Quark flavors showed a similar resistance
to cube testers, with a fraction ≈ 21% of the total number of rounds attacked
with an effort 224. How many rounds would we break with a higher complexity?
It cannot be determined analytically (to our present knowledge), however heuris-
tical arguments can be given, based on previous results [24,25, 17]: the number
of rounds attackable seems indeed to evolve logarithmically rather than linearly,
as a function of the number of variables used. A worst-case assumption (for the
designers) is thus that of a linear evolution. Under this assumption, one could
attack 126 rounds of u-Quark in 264 (23.2% of the total), 162 rounds of d-

Quark in 280 (23.0%), and 271 rounds of t-Quark in 2112 (26.5%). Therefore,
Quark is unlikely to be broken by cube attacks or cube testers.

Note that 220 of Grain-128’s 256 rounds could be attacked in [17] in 224; this
result, however, should not be compared to the value 222 reported in Table 2,
since the latter attack concerns any bit of the internal state, while the former
concerns the first keystream bit extracted from the internal state after 220 rounds.
One could thus attack at least 220+127 = 347 rounds of Grain-128 by observing
any bit of the internal state. Therefore, although t-Quark uses registers of same
length as Grain-128, it is significantly more resistant to cube testers.

4.4 Resistance to Differential Attacks

Differential attacks covers all attacks that exploit nonideal propagation of dif-
ferences in a cryptographic algorithm (or components thereof). A large majority

10 J.-P. Aumasson et al.

of attacks on hash functions are at least partially differential, starting with the
breakthrough results on MD5 and SHA-1. It is thus crucial to analyze the resis-
tance of new designs to differential attacks, which means in our case to analyze
the permutation of Quark against differential distinguishers.

We consider a standard attack model, where the initial state is assumed chosen
uniformly at random and where we seek differences in the initial state that give
biased differences in the state obtained after the (reduced-round) permutation.
We focus on “truncated” differentials in which the output difference concerns a
small subset of bits (e.g., a single bit), because these are sufficient to distinguish
the (reduced-round) permutation from a random one, and are easier to find for
an adversary than differentials on all the b bits of the state.

First, we observe that it is easy to track differences during the first few rounds,
and in particular to find probability-1 (truncated) differential characteristics for
reduced-round versions. For example, in u-Quark, a difference in the bit Y 0

29
in the initial state never leads to a difference in the output of f or of h at the
30th round; hence after (67 + 30) = 97 rounds, X97

0 will be unchanged. Similar
examples can be given for 117 rounds of d-Quark and 188 rounds of t-Quark.
For higher number of rounds, however, it becomes difficult to manually track
differences, and so an automated search is necessary. As a heuristical indicator
of the resistance to differential attacks, we programmed an automated search
for high-probability truncated differentials, given an input difference in a single
bit. Table 3 presents our results, showing that we could attack approximately as
many rounds with truncated differentials as with cube testers (see Table 2).

Table 3. Highest number of rounds t such that the state (Xt, Y t) could be distin-
guished from random using a simple differential distinguisher with the given complex-
ity. Percentage of the total number of rounds is given in parentheses.

Instance
Total Rounds attacked
rounds in 28 in 216 in 224

u-Quark 544 109 116 119 (21.9 %)
d-Quark 704 135 145 148 (21.0 %)
t-Quark 1024 206 211 216 (21.1 %)

We expect advanced search techniques to give differential distinguishers for
more rounds (e.g., where the sparse difference occurs slightly later in the in-
ternal state, as in [16]). However, such methods seem unlikely to apply to the
4b rounds of Quark’s permutation. For example, observe that [16] presented a
characteristic of probability 2−96 for the full 256-round Grain-128; for compar-
ison, t-Quark makes 1024 rounds, uses more complex feedback functions, and
targets a security level of 112 bits; characteristics of probability greater than
2−112 are thus highly improbable, even assuming that the adversary can control
differences during (say) the first 256 rounds.

Quark: A Lightweight Hash 11

4.5 Resistance to Slide Distinguishers

Suppose that the initial state of the LFSR of Quark is not the all-one string,
but instead is determined by the input of P—that is, P is redefined to accept
(b + 10) rather than b input bits. It is then straightforward to distinguish P
from a random transform: pick a first initial state (X0, Y 0, L0), and consider
the second initial state (X ′0, Y ′0, L′0) = (X1, Y 1, L1), i.e., the state obtained
after clocking the first state once. Since all rounds are identical, the shift will
be preserved between the two states, leading to final states (X4b, Y 4b, L4b) and
(X ′4b, Y ′4b, L′4b) = (X4b+1, Y 4b+1, L4b+1). One thus obtains two input/output
pairs satisfying a nontrivial relation, which is a distinguisher for the modified
P considered. The principle of the attack is that of slide attacks on block ci-
phers [27]; we thus call the above a slide distinguisher.

The above idea is at the basis of “slide resynchronization” attacks on the
stream cipher Grain [16, 28], which are related-key attacks using as relation a
rotation of the key, to simulate a persistent shift between two internal states.

To avoid the slide distinguisher, we use a trick previously used in KATAN:
making each round dependent on a bit coming from a LFSR initialized to a fixed
value, in order to simulate two distinct types of rounds. It is thus impossible to
have two valid initial states shifted of one or more clocks, and such that the shift
persists through the 4b rounds.

5 Hardware Implementation

This section reports our hardware implementation of the Quark instances. Note
that Quark is not optimized for software (be it 64- or 8-bit processors), and
other types of designs are preferable for such platforms. We thus focus on hard-
ware efficiency. Our results arise from pure simulations, and are thus not sup-
ported by real measurements on a fabricated chip. However, we believe that this
evaluation gives a fair and reliable overview of the overall VLSI performance of
Quark.

5.1 Architectures

Three characteristics make Quark particularly attractive for lightweight hash-
ing: first, the absence in its sponge construction of “feedforward” values, which
normally would require additional dedicated memory components; second, its
use of shift registers, which are extremely easy to implement in hardware; and
third, the possibility of several space/time implementation trade-offs. Based on
the two extremal trade-off choice, we designed two architecture variants of u-

Quark, d-Quark, and t-Quark:

– Serial: Only one permutation module, hosting the circuit for the functions
f , g, and h, is implemented. Each clock cycle, the bits of the registers X , Y ,
and L are shifted by one. These architectures corresponds to the most com-
pact designs. They contain the minimal circuitry needed to handle incoming
messages and to generate the correct output digests.

12 J.-P. Aumasson et al.

– Parallel: The number of the implemented permutation modules corresponds
to the parallelization degree given in §2.3. The bits in the registers are accord-
ingly shifted. These architectures increase the number of rounds computed
per cycle—and therefore the throughput—at extra area costs.

In addition to the three feedback shift registers, each design has a dedicated
controller module that handles the sponge process. This module is made up of
a finite-state machine and of two counters for the round and the output digest
computation. After processing all message blocks during the absorbing phase,
the controller switches automatically to the squeezing phase (computation of
the digest), if no further r-bit message blocks are given. This implies that the
message has been externally padded.

5.2 Methodology

We described the serial and parallel architectures of each Quark instance in
functional VHDL, and synthesized the code with Synopsys Design Vision-2009.06
targeting the UMC 0.18 �m 1P6M CMOS technology with the FSA0A C cell li-
brary from Faraday Technology Corporation. We used the generic process (at
typical conditions), instead of the low-leakage for two reasons: first the leakage
dissipation is not a big issue in 0.18 �m CMOS, and second, for such small cir-
cuits the leakage power is about two orders of magnitude smaller than the total
power. To provide a thorough and more reliable analysis, we extended the imple-
mentation up to the back-end design. Place and route have been carried out with
the help of Cadance Design Systems Velocity-9.1. In a square floorplan, we set a
98% row density, i.e., the utilization of the core area. Two external power rings
of 1.2 �m were sufficient for power and ground distribution. In this technology
six metal layers are available for routing. However, during the routing phase, the
fifth and the sixth layers were barely used. The design flow has been placement,
clock tree synthesis, and routing with intermediate timing optimizations.

Each architecture was implemented at the target frequency of 100 kHz. As
noted in [10, 18], this is a typical operating frequency of cryptographic modules
in RFID systems. Power simulation was measured for the complete design un-
der real stimuli simulations (two consecutive 512-bit messages) at 100 kHz. The
switching activity of the circuit’s internal nodes was computed generating Value
Change Dump (VCD) files. These were then used to perform statistical power
analysis in the velocity tool. Besides the mean value, we also report the peak
power consumption, which is a limiting parameter in RFID systems ([7] suggests
a maximum of 27 �W). Table 4 reports the performance metrics obtained from
our simulations at 100kHz.

5.3 Discussion and Comparison with Present-Based Designs

As reported in Table 4, the three serial designs need fewer than 2300GE, thus
making 112-bit security affordable for restricted-area environments. Particularly

Quark: A Lightweight Hash 13

appealing for ultra-compact applications is the u-Quark function, which offers
64-bit security but requires only 1379GE and dissipates less than 2.5 �W. To the
best of our knowledge, u-Quark is lighter than all previous designs with com-
parable security claims. We expect an instance of Quark with 256-bit security
(e.g., with r = 64, c = 512) to fit in 4500GE.

Note that in the power results of the Quark circuits, the single contributions
of the mean power consumption are 68% of internal, 30% of switching, and 2 %
of leakage power. Also important is that the peak value exceeds maximally 27%
of the mean value.

As reported in Table 4, dm-present-80/128 and h-present-128 also offer
implementation trade-offs. For a same (second) preimage resistance of at least 64
bits, u-Quark fits in a smaller area, and even the 80-bit-secure d-Quark does
not need more GE than dm-present-128. In terms of throughput, however,
Quark underperforms present-based designs. This may be due to its high
security margin (note that 26 of the 31 rounds of present, as a block cipher,
were attacked [29], suggesting a thin security margin against distinguishers in
the “open key” model of hash functions).

Table 4. Compared hardware performance of present-based and Quark lightweight
hash functions. Security is expressed in bits (e.g., “128” in the “Pre.” column means
that preimages can be found within approximately 2128 calls to the function). Through-
put and power consumption are given for a frequency of 100 kHz.

Hash function
Security Block Areaa Lat. Thr. Power [�W]

Pre. Coll. [bits] [GE] [cycles] [kbps] Mean Peak

dm-present-80 64 32 80 1600 547 14.63 1.83 -
dm-present-80 64 32 80 2213 33 242.42 6.28 -
dm-present-128 64 32 128 1886 559 22.90 2.94 -
dm-present-128 64 32 128 2530 33 387.88 7.49 -
h-present-128 128 64 64 2330 559 11.45 6.44 -
h-present-128 128 64 64 4256 32 200.00 8.09 -

u-Quark 128 64 8 1379 544 1.47 2.44 2.96
u-Quark×8 128 64 8 2392 68 11.76 4.07 4.84
d-Quark 160 80 16 1702 704 2.27 3.10 3.95
d-Quark×8 160 80 16 2819 88 18.18 4.76 5.80
t-Quark 224 112 32 2296 1024 3.13 4.35 5.53
t-Quark×16 224 112 32 4640 64 50.00 8.39 9.79

a One GE is the area of a 2-input drive-one NAND gate, i.e., in the target 0.18 �m
technology, 9.3744 �m2.

Acknowledgments

We would like to thank Gilles Van Assche for helpful comments.

14 J.-P. Aumasson et al.

References

1. Feldhofer, M., Rechberger, C.: A case against currently used hash functions in
RFID protocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Work-
shops. LNCS, vol. 4277, pp. 372–381. Springer, Heidelberg (2006)

2. Preneel, B.: Status and challenges of lightweight crypto. Talk at the Early Sym-
metric Crypto (ESC) seminar (January 2010)

3. NIST: Cryptographic hash algorithm competition,
http://www.nist.gov/hash-competition

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak sponge function family
main document. Submission to NIST, Round 2 (2009),
http://keccak.noekeon.org/Keccak-main-2.0.pdf

5. Bernstein, D.J.: CubeHash specification (2.B.1). Submission to NIST, Round 2
(2009), http://cubehash.cr.yp.to/submission2/spec.pdf

6. Bernet, M., Henzen, L., Kaeslin, H., Felber, N., Fichtner, W.: Hardware implemen-
tations of the SHA-3 candidates Shabal and CubeHash. In: CT-MWSCAS. IEEE,
Los Alamitos (2009)

7. Feldhofer, M., Wolkerstorfer, J.: Strong crypto for RFID tags - a comparison of low-
power hardware implementations. In: ISCAS, pp. 1839–1842. IEEE, Los Alamitos
(2007)

8. O’Neill, M.: Low-cost SHA-1 hash function architecture for RFID tags. In: Work-
shop on RFID Security RFIDsec. (2008)

9. Yoshida, H., Watanabe, D., Okeya, K., Kitahara, J., Wu, H., Kucuk, O., Preneel, B.:
MAME: A compression function with reduced hardware requirements. In:
ECRYPT Hash Workshop (2007)

10. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,
Y.: Hash functions and RFID tags: Mind the gap. In: Oswald, E., Rohatgi, P. (eds.)
CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

11. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

12. Shamir, A.: SQUASH - a new MAC with provable security properties for highly
constrained devices such as RFID tags. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 144–157. Springer, Heidelberg (2008)

13. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiability of the
sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 181–197. Springer, Heidelberg (2008)

14. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge-based pseudo-random
number generators. In: CHES (to appear, 2009)

15. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions,
http://sponge.noekeon.org/SpongeFunctions.pdf

16. Cannière, C.D., Kücük, O., Preneel, B.: Analysis of Grain’s initialization algorithm.
In: SASC 2008 (2008)

17. Aumasson, J.P., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA
implementations of highly-dimensional cube testers on the stream cipher Grain-
128. In: SHARCS (2009)

18. Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

http://www.nist.gov/hash-competition
http://keccak.noekeon.org/Keccak-main-2.0.pdf
http://cubehash.cr.yp.to/submission2/spec.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf

Quark: A Lightweight Hash 15

19. Cannière, C.D., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidelberg (2008)

20. Sarkar, P., Maitra, S.: Construction of nonlinear boolean functions with impor-
tant cryptographic properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 485–506. Springer, Heidelberg (2000)

21. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

22. Bernstein, D.J.: CubeHash appendix: complexity of generic attacks. Submission to
NIST (2008), http://cubehash.cr.yp.to/submission/generic.pdf

23. Aumasson, J.-P., Brier, E., Meier, W., Naya-Plasencia, M., Peyrin, T.: Inside the
hypercube. In: Boyd, C., Nieto, J.M.G. (eds.) ACISP 2009. LNCS, vol. 5594, pp.
202–213. Springer, Heidelberg (2009)

24. Dinur, I., Shamir, A.: ube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2010)

25. Aumasson, J.P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) Fast Software
Encryption. LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)

26. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: IEEE International Symposium on Information Theory, ISIT 2006 (2006)

27. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

28. Lee, Y., Jeong, K., Sung, J., Hong, S.: Related-key chosen IV attacks on Grain-
v1 and Grain-128. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 321–335. Springer, Heidelberg (2008)

29. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

http://cubehash.cr.yp.to/submission/generic.pdf

PRINTcipher: A Block Cipher for IC-Printing

Lars Knudsen1, Gregor Leander1,
Axel Poschmann2,�, and Matthew J.B. Robshaw3

1 Technical University Denmark, DK-2800 Kgs. Lyngby, Denmark
2 School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore
3 Orange Labs, Issy les Moulineaux, France
{Lars.R.Knudsen,G.Leander}@mat.dtu.dk,

aposchmann@ntu.edu.sg, matt.robshaw@orange-ftgroup.com

Abstract. In this paper we consider some cryptographic implications
of integrated circuit (IC) printing. While still in its infancy, IC-printing
allows the production and personalisation of circuits at very low cost.
In this paper we present two block ciphers PRINTcipher-48 and
PRINTcipher-96 that are designed to exploit the properties of IC-printing
technology and we further extend recent advances in lightweight block
cipher design.

Keywords: symmetric cryptography, block cipher, IC-printing, hard-
ware implementation.

1 Introduction

New technologies open new applications and often bring challenging new prob-
lems at the same time. Most recently, advances in device manufacture have
opened the possibility for extremely low-cost RFID tags. However, at the same
time, their exceptional physical and economic constraints mean that we must
leave behind much of our conventional cryptography. This has spurred the de-
velopment of the field of lightweight cryptography.

This paper considers another technological advance, that of integrated circuit
printing or IC-printing. Using silicon inks, circuits can quite literally be printed
onto a range of materials using high-definition printing processes. The technology
remains in its infancy and its true potential is yet to be fully understood. But the
claimed advantages include the ability to print on to thin and flexible materials
and, since the conventional fabrication process is by-passed, to be much cheaper
than silicon-based deployments [19]. Since the main driver for IC-printing is
economic, the typically-cited areas of application overlap closely with the typical
domains for lightweight cryptography. Indeed, one of the oft-stated applications
of IC-printing is in the fabrication of cheap RFID tags [13]. Therefore there

� The research was supported in part by the Singapore National Research Foundation
under Research Grant NRF-CRP2-2007-03.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 16–32, 2010.
c© International Association for Cryptologic Research 2010

PRINTcipher: A Block Cipher for IC-Printing 17

is much in common between some of the techniques proposed for conventional
RFID tags and those that will be used on printed tags.

However IC-printing has some interesting properties and these allow us to
take a fresh look at our cryptography and to see how it might be adapted to this
new field. In this paper, therefore, we consider the task of adding some simple
security functionality to a printed tag, and following what has now become a
reasonably well-trodden path, we start out with the design of a block cipher.

Block ciphers make a natural starting point for several reasons. Not only can
they be used in many different ways, but as a community we feel somewhat more
at ease with their design and analysis. That said, for such extreme environments
as IC-printing, we are working right at the edge of established practice and we are
forced to consider and highlight some interesting problems. This is the purpose
behind the block cipher PRINTcipher.

2 Design Approach to PRINTcipher

Just as for other constrained environments, the size of implementation will be a
dominant issue in IC-printing. Our work will therefore have close links with other
block cipher work in the field of lightweight cryptanalysis. In fact our starting
point for the work in this paper will be the block cipher present [1] which
appears to offer a range of design/implementation trade-offs. However we will
re-examine the structure of present in the particular context of IC-printing.

Conceptually we can imagine that within a block cipher we need an “encryp-
tion computation” and a “subkey computation”. For the first, there are limits
to the short-cuts we can make since we are constrained by the attentions of the
cryptanalyst. This means, for the most part, that proposals for a given secu-
rity level and a given set of block cipher parameters would occupy pretty much
the same space. If we wanted to reduce the space occupied by an implementa-
tion then we would most likely reduce the block size, something that has been
proposed independently elsewhere [2]. However, for the “subkey computation”
things are a little different and exactly how a key should be used is not always
clear. This highlights two separate issues.

The first issue is whether a key is likely to be changed in an application. In
fact there is probably not too much debate about this issue and many commen-
tators over the years [1,21] have made the point that for RFID applications it is
very unlikely that one would want to change the key. Indeed some other RFID
implementation work [20] has demonstrated that the overhead in supporting a
change of key can be significant.

The second issue is the exact form of the key schedule. Some block ciphers,
e.g. idea [14], have a very simple key schedule in which subkeys are created
by sampling bits of the user-supplied key. This is, in effect, the approach used
in the ktantan family of ciphers. The advantage of this approach is that no
working memory is needed for the subkey computations. Other lightweight block
ciphers have some key schedule computation, e.g. present, while another pro-
posal cgen [21] proposes to use no key schedule; the user-supplied key is used
without any sampling or additional computation.

18 L. Knudsen et al.

Returning to the situation at hand, conventional silicon manufacturing uses
lithographic techniques to massively duplicate an implementation across a silicon
wafer. This gives the economy of scale to offset the fabrication costs but at the
same time requires that all implementations are identical. In this paper, we take
advantage of the properties of IC-printing to propose another approach. Regular
IC manufacture requires all versions of the cipher to be identical and so while
a specific tag can be personalised with a unique key, this is a post-fabrication
step. With a printer, however, there is essentially no cost in changing the circuit
that is printed at each run. This means that part—or all—of the secret key
can be embedded into the algorithm description. The algorithms that appear on
different printed labels will be subtly different from one another.

The PRINTcipher family was designed with this approach in mind.
PRINTcipher-48 is a 48-bit block cipher which uses a fixed 48-bit secret key
and derives an additional 32 bits of security via the secret algorithm variability.
Different trade-offs can be established either reducing the effective security, say
to 64 bits, and/or independently increasing the block size to 96 bits. In fact this
is a particularly useful block size since it matches the length of an electronic
product code (EPC) [5]. However we will tend to concentrate our attentions in
this paper on two proposals PRINTcipher-48 and PRINTcipher-96. Given
the amount of work in the area of block ciphers, some points of similarity with
other proposals in the literature are inevitable. For instance, 3-bit S-boxes have
been used in 3-way [4] and the Scaleable Encryption Algorithm (SEA) [26] while
key-dependent algorithm features have appeared in a variety of block ciphers
including Blowfish [24], Twofish [25], and GOST [10].

3 PRINTcipher-48 and PRINTcipher-96

PRINTcipher is a block cipher with b-bit blocks, b ∈ {48, 96}, and an effective
key length of 5

3 × b bits. The essential structure of PRINTcipher is that of an

xor sk1

xor rci

S S S S S S S S S S S S S S S S
p p p p p p p p p p p p p p p p

Fig. 1. One round of PRINTcipher-48 illustrating the bit-mapping between the 16
3-bit S-boxes from one round to the next. The first subkey is used in the first xor, the
round counter is denoted RCi, while key-dependent permutations are used at the input
to each S-box.

PRINTcipher: A Block Cipher for IC-Printing 19

SP-network with r = b rounds. It follows that PRINTcipher-48 operates on
48-bit blocks, uses an 80-bit key and consists of 48 rounds while PRINTcipher-
96 operates on 96-bit blocks, uses a 160-bit key and consists of 96 rounds. Each
round of encryption consists of the following steps:

1. The cipher state is combined with a round key using bitwise exclusive-or
(xor).

2. The cipher state is shuffled using a fixed linear diffusion layer.
3. The cipher state is combined with a round constant using bitwise xor.
4. The three-bit entry to each S-box is permuted in a key-dependent permuta-

tion layer.
5. The cipher state is mixed using a layer of b

3 non-linear S-box substitutions.

Key xor. The current state of the cipher is combined using bitwise xor with
an b-bit subkey sk1. This subkey is identical in all rounds.

Linear diffusion. The pLayer is a simple bit permutation that is specified in
the following way. Bit i of the current state is moved to bit position P (i) where

P (i) =
{

3× i mod b− 1 for 0 ≤ i ≤ b − 2,
b − 1 for i = b− 1.

Round counter RCi. The round counter RCi for 1 ≤ i ≤ r is combined
using xor to the least significant bits of the current state. The values of the
round counter are generated using an n-bit shift register (n = �log2 r�) in the
following way. Denote the state of the register as xn−1|| . . . ||x1||x0 and compute
the update as follows:

t = 1 + xn−1 + xn−2
xi = xi−1 for n− 1 ≥ i ≥ 1
x0 = t

The shift register is initialised to all zeros, i.e. 000000 or 0000000, and is then
incremented at the start of every round. The round counter RCi takes the current
value of the register xn−1|| . . . ||x1||x0.

Keyed permutation. Each set of three bits, namely the input bits to each
of the S-boxes, are permuted among themselves. For each of the b

3 S-boxes the
permutation can be the same or different and it is chosen in a key-dependent
manner from a set of four. However for each S-box the same permutation—
once chosen—is used in the same position in every round. In other words, b

3
permutations (of three bits) are picked from a set of four in a key-dependent
manner. This gives 4b/3 possible mini-permutation layers which is equivalent to
2
3 × b key bits.

sBoxLayer. A single 3- to 3-bit S-box is applied b
3 times in parallel. For the

sBoxLayer the current state is considered as b
3 3-bit words, each word is processed

20 L. Knudsen et al.

using the same S-box, and the next state is the concatenation of the outputs.
The action of the S-box is given by the following table.

x 0 1 2 3 4 5 6 7
S[x] 0 1 3 6 7 4 5 2

3.1 Deriving the Permutations from the User Key

The 5
3 × b-bit user-supplied key k is considered as consisting of two subkey

components k = sk1||sk2 where sk1 is b bits long and sk2 is 2
3 × b bits long. The

first subkey is used, unchanged, within the xor layer of each and every round.
The second subkey sk2 is used to generate the key-dependent permutations in

the following way. The 2
3×b-bits are divided into b

3 sets of two bits and each two-
bit quantity a1||a0 is used to pick one of four of the six available permutations of
the three input bits. Specifically, the three input bits c2||c1||c0 are permuted to
give the following output bits according to the value of a1||a0. Of course one can
combine the bitwise permutation with the fixed S-box to give, conceptually, four
virtual S-boxes. These are given below and testvectors for both PRINTcipher

variants can be found in the appendix.

a1||a0 x 0 1 2 3 4 5 6 7
00 c2||c1||c0 V0[x] 0 1 3 6 7 4 5 2
01 c1||c2||c0 V1[x] 0 1 7 4 3 6 5 2
10 c2||c0||c1 V2[x] 0 3 1 6 7 5 4 2
11 c0||c1||c2 V3[x] 0 7 3 5 1 4 6 2

3.2 Security Goals

Our security goals behind PRINTcipher are the usual security claims for a
block cipher with the operational parameters of PRINTcipher. Note that in
the case of PRINTcipher-48 even though we have a regular sized 80-bit key,
we only have a 48-bit block cipher and this greatly limits the opportunities for
an attacker.

We follow much of the established literature on lightweight cryptography and
do not consider side-channel attacks in this paper. While this is certainly a
factor for consideration, typical applications are very low-cost and the potential
gains for an attacker are minor. Even in a relatively well-developed field such as
RFID tags for the supply chain it is not clear what level of protection is really
appropriate for most deployments of lightweight cryptography. For IC-printing
this is even more unclear, and there are some concerns that are particular to
IC-printing for which appropriate precautions will likely be needed, such as the
use of opaque masks to shield the circuit from simple inspection. Note that,
shielding protection is not exclusively an issue for PRINTcipher where the key
is part of the circuit, but also for more standard ciphers where the key is stored
in memory, as it is in principle possible to inspect memory in similar ways (see
for example [23]) .

PRINTcipher: A Block Cipher for IC-Printing 21

Where we differ from some other work in the field, however, is that for
PRINTcipher we are not particularly concerned by related-key attacks. This is
not because we believe that PRINTcipher is in some way particularly vulner-
able to them (see Section 4.3 for details). Instead it is because we believe that
related-key attacks are so alien to the intended use of PRINTcipher that there
is no point in considering them. Recall that a (printed) device will be initialised
with a key in a random way. To mount a related-key attack one has to somehow
find a pair of deployed devices that, by chance, satisfy a stated condition. We
consider this to be an entirely unrealistic threat.

3.3 Some Features of the Design

During the design of PRINTcipher there were some interesting choices to make.
Certainly, to improve the implementation efficiency we required that each round
was identical, even as far as having an identical subkey in each round. However
having the same round key in every round meant that we were restricted to 48-bit
keys. So to increase the effective key length we used some additional permutation
steps that could be key-dependent. Permutations cost nothing in hardware and,
for our application of IC-printing, they incur effectively no additional cost during
the printing of the cipher. It can be shown that there are no equivalent keys in
the sense that there are no two pairs of subkey components (sk1, sk2) that will
yield the same round function. Note that since every round is identical—to the
point of having the same round key—we needed to introduce a round-dependent
value to prevent slide attacks and this was done using a shift register-based
counter as outlined above.

The S-box. The 3-bit S-box that we chose is optimal with respect to linear
and differential properties. However we cannot avoid the existence of single-bit to
single-bit differences or masks and so our specific choice of S-box minimizes there
occurrence. That is, for a given single-bit input difference (resp. mask) exactly
one single-bit output difference (resp. mask) occurs with non-zero probability
(resp. non-zero bias). We generated all 3-bit S-boxes with this property and it
turns out that there are exactly 384 such S-boxes in total.

Clearly, permuting the input bits and (xor) adding constants before or after
the S-box preserves the desired properties. Up to these changes, there is only
one possible choice of S-box, i.e. all 384 S-boxes fulfilling the desired criteria can
be constructed from any one of them by permuting the input bits and adding
constants before and after the S-box (indeed 384 = 6 · 23 · 23).

Thus in the design of PRINTcipher there is, in effect, only one suitable
choice of S-box. Choosing any other of the 384 possible S-boxes would result in
the same cipher for a different key, up to an additional xor with a constant to the
plaintext and the ciphertext. More formally, given two S-boxes S0, S1 out of
the 384 possible choices and any key (sk1, sk2) there exist a key (sk′

1, sk
′
2) and

constants c1, c2 such that

PRINTcipherS0,sk1,sk2
(p) = PRINTcipher

S1,sk′
1,sk′

2
(p⊕ c1)⊕ c2

for any plaintext p.

22 L. Knudsen et al.

Those observations imply another interesting property of the S-box of
PRINTcipher. Namely, instead of permuting the input bits of the S-box one
could permute the output bits of the S-box and xor suitable constants before
and after the S-box. More precisely, denoting the PRINTcipher S-box by S,
for any bit permutation P , there exist constants c and d such that

S(P (x)) = P (S(x⊕ c))⊕ d ∀x.

Note that, while this might give some freedom in implementing the cipher we
did not see any security implications of this.

The bit permutation. We choose the permutation so as to give the potential
for full dependency after a minimal number of rounds, i.e. after 4 = �log3 48�
rounds. Note that in general, given an SP-network with block size b and s bit
Sboxes, where s divides b, it can be shown that the bit permutation

P (i) =
{

s× i mod b− 1 for 0 ≤ i ≤ b− 2,
b− 1 for i = b− 1.

provides optimal diffusion in the sense that full dependency is reached after
�logs b� rounds. The bit permutation – or rather its inverse – used for the block
cipher present is a special case of this general result.

4 Security Analysis

In this section we analyze the security of our proposal with respect to the main
cryptanalytic methods known. Though we focus on PRINTcipher-48, the se-
curity analysis can be easily extended to PRINTcipher-96.

4.1 Differential and Linear Characteristics

Let p be the probability of a linear characteristic, then define the correlation of
the linear characteristic as q = (2p− 1)2 [18]. As mentioned above, the S-box in
PRINTcipher was chosen with good differential and linear properties. These
properties are inherited by the other three virtual S-boxes, and so if we com-
bine the key-dependent permutation with the S-box operation any differential
characteristic over any S-box has a probability of at most 1/4, and any linear
characteristic over any S-box has a correlation of at most 1/4.

Any characteristic over s rounds of PRINTcipher would have at least one
active S-box per round. Consequently, an s-round differential characteristic will
have a probability of at most 2−2s and any s-round linear characteristic will
have a correlation of at most 2−2s. Thus, conventional differential and linear
characteristics are unlikely to play a role in the cryptanalysis of PRINTcipher

with the specified 48 respectively 96 rounds.

PRINTcipher: A Block Cipher for IC-Printing 23

We furthermore experimentally checked for differential effects, i.e., the prob-
ability of differentials compared to the probability of characteristics. Consider
the following one-round iterative characteristic (octal representation):

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1) → (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1).

Only the S-box in the least significant bits is active. This characteristic has
probability 1/4 when the active S-box is V0 or V1. The iterative characteristic
above has an expected probability of 2−24 for 12 rounds.

We implemented experiments with 20 keys, each randomly chosen but such
that the S-box in the least significant bits is either V0 or V1. For each key we
generated 228 pairs of texts of the above difference. The number of pairs of the
expected difference after 12 rounds of encryption was 16.6 on the average, where
16 is expected for the characteristic. In similar tests over 14 rounds using 230

pairs, the average number of pairs obtained was 4.5 on average, where 4 was
expected. Here the expected probability of the iterative characteristic is 2−28.
These tests suggest that there is no significant differential effect for the charac-
teristic. Computing the exact differential effect for a characteristic over many
more rounds of PRINTcipher is a very complex task. However since the proba-
bility of the iterative characteristic is very low, e.g. 2−80 for 40 rounds, we expect
that good probability differentials are unlikely to exist for PRINTcipher.

4.2 High Order Differentials and Algebraic Attacks

The algebraic degree of the S-box is 2 and due to the large number of 48 rounds
we expect the total degree of the cipher to be close to the maximum. This
assumption is supported by the following experiments. It is well-known that for
a function of algebraic degree d, a dth-order differential will be a constant, and
the value of a (d+1)st-order differential will be zero. Consequently, if a dth-order
differential over s rounds for one key is not zero, then the algebraic degree of this
encryption function is at least d − 1. For seven rounds of PRINTcipher and
for ten randomly chosen keys we computed the values of two different 25th-order
differentials. In all cases the values were nonzero. The experiments suggest that
the algebraic degree of PRINTcipher reaches its maximum after much less than
the specified 48 rounds. Due to this observations, we expect PRINTcipher to
be secure against higher order differential attacks.

Regarding the so-called algebraic attacks, first observe that there exist quadrac-
tic equations over all 3-bit S-boxes, also those of PRINTcipher. Therefore, the
secret key of one particular encryption can be described as the solution to a
number of quadratic equations. However such a system of equation for PRINT-

cipher will be huge because of the large number of rounds, and with the tech-
niques known today, there is not much hope that such systems can be solved in
time faster than simply trying all values of the key. Moreover, the key depen-
dent permutations potentially make the resulting systems of equation even more
complex and harder to solve.

24 L. Knudsen et al.

4.3 Related-Key Attacks

As stated above, we consider related-key attacks to be an entirely unrealistic
threat. However, in the spirit of academic completeness, we consider the issue
here.

The four S-boxes in PRINTcipher are closely related. As an example, S-box
0 and S-box 1 produce the same output for each of four inputs and similarly for
S-boxes 2 and 3 and for S-boxes 4 and 5. Consider two keys different only in
the selection of one S-box, say, the leftmost one. Assume further that one key
selects S-box V0 and the other key selects S-box V1. It follows that for one round
of encryption, the encryption function induced by the two keys will be equal
for half the inputs. Consequently, the encryption functions over s rounds can be
expected to produce identical ciphertexts for one in 2s texts.

There are other related keys. Consider two keys different only in xor halves
and only in the input to one S-box. For such two keys it may be possible to specify
a keyed differential characteristic where the differences in the texts are canceled
by the differences in the xor key in every second round. If in all other rounds
it is assumed that there is only one active S-box and that the difference in the
inputs equal the difference in the outputs, then one gets an s-round differential
characteristic of probability 2−s (for even s).

The observations in this section can potentially be used to devise related-key
attacks which could recover a key for PRINTcipher using a little less than 2b

texts. It is clear, however, that if the keys of PRINTcipher are chosen uniformly
at random it is very unlikely that one would find keys related as described above.

4.4 Statistical Saturation Attacks

Statistical saturation attacks have been presented in [3] and successfully applied
to round-reduced versions of present. The key idea for statistical saturation
attacks is to make use of low diffusion trails in the linear layer of present. As
PRINTcipher uses a very similar linear layer, it seems natural that the attack
applies to reduced round versions of PRINTcipher as well. We identified low
diffusion trails for any number of S-boxes involved, see Table 1 for examples of
the most promising ones using up to eight S-boxes in a trail. One example of
such a low diffusion trail is given below.

As explained in [3] increasing the number of S-boxes in the trail makes esti-
mating the complexity of the attack very complicated. Thus, in our experiments
we focused only on the case of three active S-boxes in the trail. All four possible

PRINTcipher: A Block Cipher for IC-Printing 25

Table 1. Promising trails of different sizes

S-boxes in the trail # of bits in the trail Ratio
{0, 1, 5} 5 5/9

{0, 1, 5, 15} 7 7/12
{4, 10, 12, 14, 15} 9 9/15
{0, 1, 2, 5, 6, 7} 12 12/18

{3, 8, 9, 10, 11, 13, 15} 14 14/21
{0, 1, 4, 5, 10, 12, 14, 15} 18 18/24

Table 2. Estimated squared distance (log2) for low diffusion trails with ratio 5/9

S-boxes in the trail {0, 1, 5} {2, 6, 7} {10, 14, 15} {8, 9, 13}
Round 1 0 0 0 0
Round 2 -3.72 -3.72 -3.74 -3.73
Round 3 -6.67 -6.74 -6.89 -6.65
Round 4 -9.14 -8.98 -9.19 -9.05
Round 6 -13.08 -13.17 -13.17 -13.10
Round 8 -16.92 -17.25 -16.96 -17.10
Round 10 -21.02 -20.88 -20.87 -21.03
Round 12 -25.38 -25.33 -24.82 -24.93
Round 14 -28.72 -28.94 -29.19 -28.94
Round 16 -32.83 -33.05 -33.27 -33.00

Fig. 2. The estimated squared bias with the number of rounds on the x-axis and the
log2 of the squared bias given on the y-axis

trails gave very similar results. We estimated the bias for 50 randomly chosen
keys for up to 10 rounds and for 20 randomly chosen keys for up to 15 rounds.
Table 2 and Figure 2 show the squared euclidian distance between the distribu-
tion in the trail and the uniform distribution. The data complexity for attacking
r + 3, resp. r + 4 rounds, depending on how many key bits are guessed, is ap-
proximately the reciprocal of the squared euclidian distance for r rounds. While
our experiments are certainly limited, the results strongly suggest that no more
than 30 rounds of PRINTcipher can be broken using this attack.

26 L. Knudsen et al.

input

State
[gReg-3/48/96]

KeyXOR

output

3

6/7

3 3

3
S-box

pLayer

randPerm

gen RCi

done

NLFSR

RC XOR

 48/96

 48/96

3

(a) serial 3-bit datapath.

input

State
[Reg-48/96]

KeyXOR

output

48/96

6/7

48/96

pLayer

sBoxLayer

gen RCi

done RC XOR

48/96

 48/96

(b) round-based 48/96-bit datap-
ath.

Fig. 3. Two architectures for PRINTcipher

5 Implementation Results

To demonstrate the efficiency of our proposal we have implemented both
PRINTcipher variants in VHDL and used Synopsys DesignVision 2007.12 [27]
to synthesize them using the Virtual Silicon (VST) standard cell library
UMCL18G212T3, which is based on the UMC L180 0.18μm 1P6M logic process
and has a typical voltage of 1.8 Volt [29].

Before presenting the results we stress the unique deployment environment
offered by IC-printing. While our implementation efforts allow us to obtain a
reasonable estimate of the space required, in terms of gate equivalents (GE),
for an IC-printing implementation of PRINTcipher, any attempts to compare
the likely power consumption with other implementations of lightweight cryp-
tography are not just difficult (as is usually the case), but they are essentially
meaningless. For this reason our performance results and comparisons will con-
centrate on the space occupied by an implementation.

Figure 3 depicts two architectures that were implemented: a serialized one
with a datapath of 3-bits and a round-based one with a datapath of 48 or 96
bits. Components that contain mainly sequential logic are presented in rectangles
while purely combinational components are presented in ovals.

The first serialized implementation of PRINTcipher-48 used a finite state
machine (FSM) that required 120 GE out of which 95 GE were occupied by two
arithmetic counters: 59 GE were occupied by the 6-bit round counter and addi-
tional 36 GE were required for a 4-bit counter to keep track of the 3-bit chunks
of the serialized state. Similar to KATAN [2] we replaced the arithmetic round
counter by a shift register-based counter, which saved 28 GE (or 47%) while
having better distribution properties. The second counter was also replaced by a
register-based counter which decreased the gate count by another 12 GE (35%).
Finally we completely omitted the FSM and replaced it with some combinatorial

PRINTcipher: A Block Cipher for IC-Printing 27

gates to generate the control signals required (e.g. for the MUX). In total, by
omitting the FSM and optimizing the control logic, we were able to save 54 GE
(45%).

As part of our quest for a minimal S-box, we used the Boolean minimization
tool BOOM II [7,8] to obtain the boolean functions of all 48 S-box variants that
can be generated from a 3-bit S-box, by permuting the output bits and XORing
a hardwired constant. Our synthesis results show that the results vary between
10.67 and 12 GE, and we chose a minimal S-box.

In order to be able to present a detailed break down for each component
of PRINTcipher (see the accompanying table), we advised the compiler to
compile simple, i.e. to keep the hierarchy of the components. The smallest area
footprint is achieved, however, if the compiler uses the compile ultra command,
which allows the merging and optimization of different components simultane-
ously. Since the key xor is hardwired, the area requirements for the KeyXOR
component are dependent on the Hamming weight of the key. The implemen-
tation figures of Figure 4 used a key with Hamming weight 24, thus the area
footprint of a serialized implementation of PRINTcipher-48 is bounded by 386
GE and 418 GE for keys with Hamming weight 0 and 48, respectively (694 GE
and 758 GE for PRINTcipher-96). The results show that both PRINTcipher

PRINTcipher-n n = 48 n = 96
serial round serial round

cycles 768 48 3072 96
throughput @100 KHz (Kbps.) 6.250 100 3.125 100
compile ultra sum 402 503 726 967
compile simple sum 411 528 733 1011
sequential: State 288 288 576 576

genRCi 31 31 36 36
NLFSR 23 0 30 0

combinational: MUX 7 0 7 0
KeyXOR 16 16 32 32
pLayer 0 0 0 0
RC XOR 16 16 19 19
sBoxLayer 11 171 11 342
control 12 4 15 4
other 7 2 7 2

Fig. 4. Implementation figures for PRINTcipher

variants scale nicely; by spending more area for additional S-boxes, the through-
put can be scaled (nearly) linearly. At this point it is noteworthy to highlight
the significant overhead (43 GE or 10.5%) that is required for additional control
logic in a serialized PRINTcipher-48 implementation. This shows that it is
hard to gain further area reductions. Furthermore, note that a 6-bit xor with
the round constant RCi requires the same area as the 48-bit hardwired xor with
a key with a typical Hamming weight of 24.

28 L. Knudsen et al.

While observing our earlier caveats about the use of power estimates in the
context of IC-printing, we did make some measurements for the likely power con-
sumption of more conventional silicon-based implementations. We used Synopsys
PowerCompiler version A-2007.12-SP1 [28] to estimate the performance of our
implementations. Measurements using the smallest wire-load model (10K GE) at
a supply voltage of 1.8 Volt and a frequency of 100 KHz suggested a power con-
sumption below 2.6 μW; a good indication that all PRINTcipher variants are
well-suited to demanding applications including printed passive RFID tags. It is
a well-known fact that at low frequencies, as typical for low-cost applications, the
power consumption is dominated by its static part, which is proportional to the
amount of transistors involved. Furthermore, the power consumption strongly
depends on the used technology and greatly varies with the simulation method.
Thus we refer to the area figures (in GE) as the most important measure and to
have a fair comparison we do not include the power values in Table 3.

Table 3 compares a selection of lightweight block and stream cipher imple-
mentations that have been optimized for a minimal area footprint. It can be seen
that the serialized implementation of PRINTcipher requires the least amount
of area for its block and key sizes (402 GE). Moreover, spending additional 100
GE (or 25%) the throughput can be increased 16 fold to 100 Kpbs at a frequency

Table 3. Hardware implementation results of some symmetric encryption algorithms

key block cycles/ Throughput Tech. Area
Algorithm size size block (@100 KHz) [μm] [GE]

Stream Ciphers

Trivium [9] 80 1 1 100 0.13 2,599
Grain [9] 80 1 1 100 0.13 1,294

Block Ciphers

PRESENT [22] 80 64 547 11.7 0.18 1,075
SEA [17] 96 96 93 103 0.13 3,758
mCrypton [16] 96 64 13 492.3 0.13 2,681
HIGHT [12] 128 64 34 188 0.25 3,048
AES [6] 128 128 1,032 12.4 0.35 3,400
AES [11] 128 128 160 80 0.13 3,100
DESXL [15] 184 64 144 44.4 0.18 2,168

KATAN32 [2] 80 32 255 12.5 0.13 802
KATAN48 [2] 80 48 255 18.8 0.13 927
KATAN64 [2] 80 64 255 25.1 0.13 1054
KTANTAN32 [2] 80 32 255 12.5 0.13 462
KTANTAN48 [2] 80 48 255 18.8 0.13 588
KTANTAN64 [2] 80 64 255 25.1 0.13 688

PRINTcipher-48 80 48 768 6.25 0.18 402
PRINTcipher-48 80 48 48 100 0.18 503
PRINTcipher-96 160 96 3072 3.13 0.18 726
PRINTcipher-96 160 96 96 100 0.18 967

PRINTcipher: A Block Cipher for IC-Printing 29

of 100 KHz, while still having a remarkably small area footprint. The resulting
throughput per area ratio of 198.8 Kpbs per GE is even suited for high-speed
applications though our main focus is on a low area footprint.

It is noteworthy to stress that we designed PRINTcipher to be secure even
in the absence of a key schedule. This allows for significant area savings, because
no flipflops to store the key state are required. Of course one could hardwire
all the roundkeys for any cipher with a key schedule and, theoretically, this
would allow for similar savings. In practice, however, this is not the case. Since
all low-area implementations are serialized or round-based designs, one needs
complex additional logic to select the right roundkey or even the right part of
the roundkey. For a serialized AES for example, one would need a 128-bit wide
11-to-1 MUX to select the correct roundkey plus an 8-bit wide 16-to-1 MUX to
select the right chunk of the roundkey. Our experiments reveal that a 128-bit
wide 8-to-1 MUX already consumes 1276 GE, which makes it more efficient to
store the key state in flipflops (768 GE) than to hardwire the roundkeys.

Though they have not been the focus of our design, for those interested in
software implementations we estimate the performance of PRINTcipher on
a 64-bit platform to be around 5-10 times slower than an optimized AES im-
plementation: merging the permutation and using 6-bit S-boxes could give an
implementation with 9-12 cycles per round. With 48 rounds this amounts to
72-95 cycles per byte while AES runs in 10-20 cycles per byte.

6 Conclusions

In this paper we have considered the technology of IC-printing and we have
seen how it might influence the cryptography that we use. In particular we
have proposed the lightweight block cipher PRINTcipher that explicitly takes
advantage of this new manufacturing approach. Naturally it must be emphasized
that PRINTcipher-48 is intended to be an object of research rather than being
suitable for deployment. It is also intended to be a spur to others who might
be interested in considering this new technology. Certainly we believe that the
properties of IC-printing could be an interesting line of work and we feel that
it helps to highlight several intriguing problems in cryptographic design, most
notably how best to use a cipher key.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: Present - An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

2. de Cannière, C., Dunkelman, O., Knezević, M.: KATAN and KTANTAN–A Family
of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K.
(eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

3. Collard, B., Standaert, F.-X.: A Statistical Saturation Attack against the Block
Cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
195–211. Springer, Heidelberg (2009)

30 L. Knudsen et al.

4. Daemen, J., Govaerts, R., Vandewalle, J.: A new approach to block cipher design.
In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 18–32. Springer, Heidelberg
(1994)

5. EPCglobal. Organisation information, http://www.epcglobal.com
6. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of

Sand. IEE Proceedings of Information Security 152(1), 13–20 (2005)
7. Fǐser, P., Hlavička, J.: BOOM - A Heuristic Boolean Minimizer. Computers and

Informatics 22(1), 19–51 (2003)
8. Fǐser, P., Hlavička, J.: Two-Level Boolean Minimizer BOOM-II. In: Proceedings of

6th Int. Workshop on Boolean Problems – IWSBP’04, pp. 221–228 (2004)
9. Good, T., Benaissa, M.: Hardware Results for Selected Stream Cipher Candidates.

In: State of the Art of Stream Ciphers (SASC 2007), Workshop Record (February
2007), www.ecrypt.eu.org/stream

10. GOST. Gosudarstvennyi standard 28147-89, cryptographic protection for data pro-
cessing systems. Government Committee of the USSR for Standards (1989) (in
Russian)

11. Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and Imple-
mentation of Low-Area and Low-Power AES Encryption Hardware Core. In: DSD,
pp. 577–583 (2006)

12. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

13. Kovio. Company information available via, http://www.kovio.com
14. Lai, X., Massey, J., Murphy, S.: Markov ciphers and differential cryptanalysis.

In: Davies, D. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

15. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

16. Lim, C., Korkishko, T.: mCrypton - A Lightweight Block Cipher for Security of
Low-cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

17. Mace, F., Standaert, F.-X., Quisquater, J.-J.: ASIC Implementations of the Block
Cipher SEA for Constrained Applications. In: RFID Security — RFIDsec 2007,
Workshop Record, Malaga, Spain, pp. 103–114 (2007)

18. Matsui, M.: New Structure of Block Ciphers with Provable Security against Differ-
ential and Linear Cryptanalysis. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039,
pp. 205–218. Springer, Heidelberg (1996)

19. PolyIC. Information available via, http://www.polyIC.com
20. Poschmann, A., Robshaw, M.J.B., Vater, F., Paar, C.: Lightweight Cryptography

and RFID: Tackling the Hidden Overheads. In: Lee, D., Hong, S. (eds.) Proceedings
of ICISC ’09. Springer, Heidelberg (to appear, 2009)

21. Robshaw, M.J.B.: Searching for Compact Algorithms: cgen. In: Nguyên, P.Q. (ed.)
VIETCRYPT 2006. LNCS, vol. 4341, pp. 37–49. Springer, Heidelberg (2006)

22. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implemen-
tations for Smart Devices - Security for 1000 Gate Equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer,
Heidelberg (2008)

http://www.epcglobal.com
www.ecrypt.eu.org/stream
http://www.kovio.com
http://www.polyIC.com

PRINTcipher: A Block Cipher for IC-Printing 31

23. Samyde, D., Skorobogatov, S., Anderson, R., Quisquater, J.: On a New Way to
Read Data from Memory. In: SISW ’02: Proceedings of the First International IEEE
Security in Storage Workshop, pp. 65–69. IEEE Computer Society, Los Alamitos
(2002)

24. Schneier, B.: Description of a new variable-length key, 64-bit block cipher (Blow-
fish). In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 191–204. Springer,
Heidelberg (1994)

25. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, Ferguson., N.: Twofish: A
128-bit block cipher. Submitted as candidate for AES, www.nist.gov/aes

26. Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: A Scalable
Encryption Algorithm for Small Embedded Applications. In: Domingo-Ferrer, J.,
Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236.
Springer, Heidelberg (2006)

27. Synopsys. Design Compiler User Guide - Version A-2007.12 (December 2007),
http://tinyurl.com/pon88o

28. Synopsys. Power Compiler User Guide - Version A-2007.12 (March 2007),
http://tinyurl.com/lfqhy5

29. Virtual Silicon Inc. 0.18 μm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 μm Generic II Technology:
0.18μm (July 2004)

Appendix A: Testvectors

Table 4. Testvectors for PRINTcipher-96 in hexadecimal notation

Testvector 1 Testvector 2
plaintext 5A97E895A9837A50CDC2D1E1 A83BB396B49DAA6286CD7834

key 953DDBBFA9BF648FF6940846 D83F1CEF1084E8131AA14510

permkey 70F22AF090356768 62C67A890D558DD0

ciphertext 45496A1283EF56AFBDDC8881 EE5A079934D98684DE165AC0

Testvector 3 Testvector 4
plaintext 5CED2A5816F3C3AC351B0B4B 61D7274374499842690CA3CC

key EC5ECFEF020442CF3EF50B8A 2F3F647A9EE6B4B5BAF0B173

permkey 68EA816CEBA0EFE5 A07CF36902B48D24

ciphertext 7F49205AF958DD440ED35D9E 3EB4830D385EA369C1C82129

Table 5. Sequence of RCi for PRINTcipher-96 in hexadecimal notation

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
RCi 01 03 07 0F 1F 3F 7E 7D 7B 77 6F 5F 3E 7C 79 73 67 4F 1E 3D 7A 75 6B 57

i 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
RCi 2E 5C 38 70 61 43 06 0D 1B 37 6E 5D 3A 74 69 53 26 4C 18 31 62 45 0A 15

i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
RCi 2B 56 2C 58 30 60 41 02 05 0B 17 2F 5E 3C 78 71 63 47 0E 1D 3B 76 6D 5B

i 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
RCi 36 6C 59 32 64 49 12 25 4A 14 29 52 24 48 10 21 42 04 09 13 27 4E 1C 39

www.nist.gov/aes
http://tinyurl.com/pon88o
http://tinyurl.com/lfqhy5

32 L. Knudsen et al.

Table 6. Cipher example for PRINTcipher-48 in hexadecimal notation

plaintext key permkey ciphertext

4C847555C35B C28895BA327B 69D2CDB6 EB4AF95E7D37

Rd. RC keyAddition pLayer RC XOR S-box perm. S-box

1 01 8E0CE0EFF120 ED9921498D92 ED9921498D93 ED92A24B0AE3 5B12FB6E89BE

2 03 999A6ED4BBC5 A9DE9DEC68E1 A9DE9DEC68E2 65BF1EEC6991 C765F5585F59

3 07 05ED60E26D22 0D8345DB891C 0D8345DB891B 0D88C67B886B 1B0F85D50E66

4 0F D987106F3C1D 90FA448917F7 90FA448917F8 517A442917F8 7DA8472D9C90

5 1F BF20D297AEEB EAEB7C66A29B EAEB7C66A284 E76AFCC6C484 46D997A676C7

6 3E 8451021C44BC 84015030F6C4 84015030F6FA 4800D09277B9 6C0198FFAD51

7 3D AE890D459F2A A21FEB888A8E A21FEB888AB3 621FEB2A0CB3 C394A62F8AEE

8 3B 011C3395B895 21B2166079C3 21B2166079F8 21D815C079F8 234E1CA02E90

9 37 E1C6891A1CEB D21646B4A739 D21646B4A70E D21C45B6464D BF9A4493FC4C

10 2F 7D12D129CE37 7E6B4E01D46B 7E6B4E01D444 BE6ACD033304 8BD98C02E3C7

11 1E 495119B8D1BC 343C0771F644 343C0771F65A 385607D37729 344C02BEADE1

12 3C F6C497049F9A F273FBB01388 F273FBB013B4 F279FBB014F4 5FAE969C17AF

13 39 9D26032625D4 80C9572711F0 80C9572711C9 4122D78591CA 61B39AE7108B

14 33 A33B0F5D22F0 8284BE2EFCA6 8284BE2EFC95 43053D8EFAA6 6287D4FA28FD

15 27 A00F41401A86 8A120A28096C 8A120A28094B 46180988094B 679E09EC0F0E

16 0E A5169C563D75 C2B7C50CF1F1 C2B7C50CF1FF C35DC60E71FF A2CA851BA092

17 1D 604210A192E9 323008758223 32300875823E 325008D7043D 3FC008B28614

18 3A FD489D08B46F F2FDC6148E49 F2FDC6148E73 F377C5160F33 5EAC841385EE

19 35 9C2411A9B795 A0F94B631543 A0F94B631576 6172CBC19375 C1A38EA3132C

20 2B 032B1B192157 00A437063C6F 00A437063C44 01443704DB04 01F62A04C9C7

21 16 C37EBFBEFBBC F5B6BF73FFF0 F5B6BF73FFE6 F9DD3FD3FFD5 574BD2BD249C

22 2C 95C3470716E7 8851DEB480FF 8851DEB480D3 4431DDB601A3 6460B493817E

23 18 A6E82129B305 A3912B930C43 A3912B930C5B 6390AB318B2B C110E63F09E6

24 30 039873853B9D 09B23FE05AC3 09B23FE05AF3 05D83FE03DB3 074E12406B6E

25 21 C5C687FA5915 D41397D93571 D41397D93550 D81997795360 B41F5AD5C338

26 02 7697CF6FF143 7ED5B38D45BF 7ED5B38D45BD BF35B32D22FE 8AE76E39B395

27 05 486FFB8381EE 792C13768B7E 792C13768B7B B4C613D68D7B 90FC1EB20B16

28 0B 52748B08396D 50D63316C741 50D63316C74A 913C3316A749 FDEA2E123D09

29 17 3F62BBA80F72 436F7F579428 436F7F57943F 82EEFF57923F E25592711212

30 2E 20DD07CB2069 028092DCCF17 028092DCCF39 0301117E2E7A 0281D9CBB453

31 1C C0094C718628 B804C809AA06 B804C809AA1A 7405480B4C29 D007080EFA21

32 38 128F9DB4C85A 6466A2C53BAC 6466A2C53B94 A86D21655CE4 8C5BF9C5CBBF

33 31 4ED36C7FF9C4 3D9FA1BD64F6 3D9FA1BD64C7 3D9FA2BD6387 2B157B89D342

34 23 E99DEE33E139 FF8C9581FB17 FF8C9581FB34 FF8716237C74 490DDD22AA6F

35 06 8B8548989814 A81E24C03544 A81E24C03542 641E24605341 C4143FC04301

36 0D 069CAA7A717A 4595318DFF18 4595318DFF15 8994B22F7E66 EF16EB3AA47D

37 1B 2D9E7E809606 2B3DDCC04968 2B3DDCC04973 26D7DC602973 264CB7C03F2E

38 36 E4C4227A0D55 9303519D3551 9303519D3567 5288D23D5357 7E0F9B29C31A

39 2D BC870E93F161 A6DD91C4A137 A6DD91C4A11A 6B3792664069 CEED5BC7F061

40 1A 0C65CE7DC21A 6C0D981B378E 6C0D981B3794 AC079819D6E4 980D70174DBF

41 34 5A85E5AD7FC4 5DDAEBE505C6 5DDAEBE505F2 9DBB6BE503F1 EB69264582A9

42 29 29E1B3FFB0D2 63B816FF349E 63B816FF34B7 A3D215FDD2B7 81421C4B42EA

43 12 43CA89F17091 549426F93823 549426F93831 991425F95832 F5963C55CE2B

44 24 371EA9EFFC50 67D7664D5DB2 67D7664D5D96 ABBCE54D3AE5 8D6BBC79E9BC

45 08 4FE329C3DBC7 351F2FFE007F 351F2FFE0077 389EAFFC8137 3494E24881EA

46 11 F61C77F2B391 BBF1BB697911 BBF1BB697900 77F1BBC97840 D12156ADAE40

47 22 13A9C3179C3B 68527682BA9F 68527682BABD A4387522DCBE 846E6C224AD5

48 04 46E6F99878AE 5DB722F2A768 5DB722F2A76C 9DDCA1F2C75C EB4AF95E7D37

Sponge-Based Pseudo-Random Number
Generators

Guido Bertoni1, Joan Daemen1, Michaël Peeters2, and Gilles Van Assche1

1 STMicroelectronics
2 NXP Semiconductors

Abstract. This paper proposes a new construction for the generation of
pseudo-random numbers. The construction is based on sponge functions
and is suitable for embedded security devices as it requires few resources.
We propose a model for such generators and explain how to define one on
top of a sponge function. The construction is a novel way to use a sponge
function, and inputs and outputs blocks in a continuous fashion, allowing
to interleave the feed of seeding material with the fetch of pseudo-random
numbers without latency. We describe the consequences of the sponge
indifferentiability results to this construction and study the resistance
of the construction against generic state recovery attacks. Finally, we
propose a concrete example based on a member of the Keccak family
with small width.

Keywords: pseudo-random numbers, hash function, stream cipher,
sponge function, indifferentiability, embedded security device, Keccak.

1 Introduction

In various cryptographic applications and protocols, random numbers are used
to generate keys or unpredictable challenges. While randomness can be extracted
from a physical source, it is often necessary to provide many more bits than the
entropy of the physical source. A pseudo-random number generator (PRNG)
provides a way to do so. It is initialized with a seed, generated in a secret or
truly random way, and it then expands the seed into a sequence of bits.

For cryptographic purposes, it is required that the generated bits cannot be
predicted, even if subsets of the sequence are revealed. In this context, a PRNG
is pretty similar to a stream cipher. If the key is unknown, it must be infeasible
to infer anything on the key stream, even if it is partially known.

The state of the PRNG must have sufficient entropy, from the point of view
of the adversary, so that the prediction of the output bits cannot rely on simply
guessing the state. Hence, the seeding material must provide sufficient entropy.
Physical sources of randomness usually provide seeding material with relatively
low entropy rate due to imbalance of or correlations between bits. To increase
entropy, one may use the seeding material from several randomness sources.
However, this entropy must be transferred to the finite state of the PRNG.
Hence, we need a way to gather and combine seeding material coming from

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 33–47, 2010.
c© International Association for Cryptologic Research 2010

34 G. Bertoni et al.

several sources into the state of the PRNG. Loading different seeds into the
PRNG shall result in different output sequences. The latter implies that different
seeds result in different state values. In this respect, a PRNG is similar to a
cryptographic hash function that should be collision-resistant.

It is convenient for a pseudo-random number generator to be reseedable, i.e.,
one can bring an additional source of entropy after pseudo-random bits have been
generated. Instead of throwing away the current state of the PRNG, reseeding
combines the current state of the generator with the new seeding material. From
a user’s point of view, a reseedable PRNG can be seen as a black box with an
interface to request pseudo-random bits and an interface to provide fresh seeds.

The remainder of this paper is organized as follows. We continue our introduc-
tion with the advantages and limitations of our construction and an illustrative
example of a pseudo-random number generator mode of a hash function. We
then define the reference model of a reseedable PRNG in Section 2 and specify
and motivate our sponge-based construction in Section 3. We discuss the security
aspects of our proposal in Section 4 and provide a concrete example in Section 5.

1.1 Advantages and Limitations of Our Construction

With their variable-length input and variable-length output, sponge functions
combine in a unified way the functionality of hash functions and stream ciphers.
They make therefore a natural candidate for building PRNGs, taking the seeding
material as input and producing a sequence of pseudo-random bits as output.

In this paper, we provide a clean and efficient way to construct a reseedable
PRNG with a sponge function. The main idea is to integrate in the same con-
struction the combination of the various sources of seeding material and the
generation of pseudo-random output bits. The only requirement for seeding ma-
terial is to be available as bit sequences, which can be presented as such without
any additional preprocessing. So both seeding and random generation can work
in a continuous fashion, making the implementation simple and avoiding extra
iterations when providing additional seeding material.

In the context of an embedded security device, the efficiency and the simplicity
of the implementation is important. In our construction we can keep the state
size small thanks to two reasons. First, the use of a permutation preserves the
entropy of the state (see Section 1.2). Second, we have strong bounds on the
expected complexity of generic state recovery attacks (see Section 4.2).

Making sure that the seeding material provides enough entropy is out of scope
of this paper. This aspect has been studied in the literature, e.g., [10,16] and
is fairly orthogonal to the problem of combining various sources and generating
pseudo-random bits.

In our construction, forward security must be explicitly activated. Forward se-
curity (also called forward secrecy) requires that the compromise of the current
state does not enable the attacker to determine the previously generated pseudo-
random bits [2,9]. As our construction is based on a permutation, revealing the
state immediately allows the attacker to backtrack the generation up to the pre-
vious combination of that state and seeding material. Nevertheless, reseeding

Sponge-Based Pseudo-Random Number Generators 35

regularly with sufficient entropy already prevents the attacker from going back-
wards. Also, an embedded security device such as a smartcard in which such a
PRNG would be used is designed to protect the secrecy of keys and therefore
reading out the state is expected to be difficult. Yet, we propose in Section 4.3
a simple solution to get forward secrecy at a small extra cost. Hence, if forward
security is required, one can apply this mechanism at regular intervals.

1.2 Using a Hash Function for Pseudo-Random Number Generation

Sponge functions are a generalization of hash functions and using the latter
for generating pseudo-random bits is not new, e.g., [12,14]. For instance, NIST
published a recommendation for random number generation using deterministic
random bits generators [14]. They specify how to implement a PRNG using a
hash function, a keyed hash function, a block cipher or an elliptic curve. When
using a hash function H , the state of the PRNG is essentially determined by two
values, V and C, each of the size of the input block of H .

– At initialization, both V and C are obtained by hashing the seeding material,
a nonce and an optional personalization string. If V and C are larger than
the output size of H , a specific derivation function is used to produce a
longer digest.

– The pseudo-random bits are produced by hashing V . If more than one output
block is requested, further blocks are produced by hashing V + i, where i
is the index of the produced output block. The value of V is then updated
by combining it with, amongst others, H(V) and C. The value C is not
modified in this process.

– When reseeding, the new value of V is obtained by hashing the old value of
V together with the new seeding material. The value C is derived from the
new value of V by hashing.

For a PRNG based on a hash function, there are two aspects we wish to draw
attention to.

First, due to the requirements they must satisfy, cryptographic hash function
are not injective. Iterating the function, i.e., computing H(H(. . . H(x)) . . .) re-
duces the size of the range resulting in entropy loss. To prevent this, one can
for instance keep the original seed along with the evolving state. In the hash
function based PRNG specified in [14], the value V evolves by iterated hashing
every time output bits are produced, but the value C does not and therefore
keeps the full entropy of the seed. This comes at the cost of keeping a state
twice the block size of the hash function.

Second, when reseeding, the current state or the original seed must be hashed
together with the seeding material. However, the current state V and the seed
C are already the result of a hashing process.

The sponge-based construction we propose below addresses these two aspects
more efficiently. First, by using a P-sponge, i.e., a sponge function based on a
permutation, no entropy is lost when iterating the permutation and this allows

36 G. Bertoni et al.

one to have a smaller state for the same security level. Second, the current state
of our construction is precisely the state of the sponge function. Hence, reseeding
is more efficient than in the example above, as the current state can be reused
immediately instead of being hashed again.

Finally, the use of a sponge function for PRNG is conceptually simpler than
existing constructions.

2 Modeling a Reseedable Pseudo-Random Number
Generator

We define a reseedable PRNG as a stateful entity that supports two types of
requests, in any order:

– feed request, feed(σ), injects a seed consisting of a non-empty string σ ∈ Z+
2

into the state of the PRNG;
– fetch request, fetch(l), instructs the PRNG to return l bits.

The seeding material is the concatenation of the σ’s received in all feed requests.
Informally, the requirements for a reseedable PRNG can be stated as follows.

First, its output (i.e., responses to fetch requests) must depend on all seeding
material fed (i.e., payload of feed requests). Second, for an adversary not know-
ing the seeding material and that has observed part of the output, it must be
infeasible to infer anything on the remaining part of the output.

To have more formal security requirements, one often defines a reference sys-
tem that behaves ideally. For sponge functions, hash functions and stream ciphers
the appropriate reference system is the random oracle [1]. For reseedable PRNG
we cannot just use a random oracle as it has a different interface. However, we
define an ideal PRNG as a particular mode of use of a random oracle.

The mode we define is the following. It keeps as state the sequence of all
feed and fetch requests received, the history h. Upon receipt of a feed request
feed(σ), it updates the history by incorporating it. Upon receipt of a fetch
request fetch(l), it queries the random oracle with a string that encodes the
history and returns the bits z to z + l − 1 of its response to the requester, with
z the number of bits requested in the fetch requests since the last feed request.
Hence, concatenating the responses of a run of fetch requests is just the response
of the random oracle to a single query. This is illustrated in Figure 1. We call this
mode the history-keeping mode with encoding function e(h). The definition of a
history-keeping mode hence reduces to the definition of this encoding function.

As the output of the PRNG must depend on the whole seeding material re-
ceived, the encoding function e(h) must be injective in the seeding material.
In other words, for any two sequences of requests with different seeding ma-
terials, the two images through e(h) must be different. We call this property
seed-completeness. With a seed-complete encoding function, the response of the
mode to a fetch request corresponds with non-overlapping parts of the response
of the random oracle to different input strings. It follows that the PRNG returns
independent and a priori uniformly distributed bits.

Sponge-Based Pseudo-Random Number Generators 37

Fig. 1. Response of an ideal reseedable PRNG to fetch requests

We thus propose the following definition of an ideal PRNG. In the sequel, we
will use PRNG to indicate a reseedable pseudo-random number generator.

Definition 1. An ideal PRNG is a history-keeping mode calling a random or-
acle with an encoding function e(h) that is seed-complete.

3 Constructing a PRNG Using a Sponge Function

In general, the history-keeping mode is not practical as it needs to store all past
queries and hence requires ever growing amounts of memory. In this section we
will show that if we use a sponge function instead of a random oracle we can
define an encoding function that can work with a limited amount of memory.

3.1 The Sponge Construction

The sponge construction [3] is a simple iterated construction for building a func-
tion S[f] with variable-length input and arbitrary output length based on a
fixed-length transformation (or permutation) f operating on a fixed number b of
bits. Here b is called the width. A sponge function, i.e., a function implementing
the sponge construction provides a particular way to generalize hash functions
and has the same interface as a random oracle.

For given values of r and c, the sponge construction operates on a state of
b = r+c bits. The value r is called the bitrate and the value c the capacity. First,
all the bits of the state are initialized to zero. The input message is padded and
cut into blocks of r bits. The sponge construction then proceeds in two phases:
the absorbing phase followed by the squeezing phase.

– In the absorbing phase, the r-bit input message blocks are XORed into the
first r bits of the state, interleaved with applications of the function f . When
all message blocks are processed, the sponge construction switches to the
squeezing phase.

– In the squeezing phase, the first r bits of the state are returned as output
blocks, interleaved with applications of the function f . The number of output
blocks is chosen at will by the user.

The last c bits of the state are never directly affected by the input blocks and
are never output during the squeezing phase. The capacity c actually determines
the attainable security level of the construction [4].

38 G. Bertoni et al.

3.2 Reusing the State for Multiple Feed and Fetch Phases

It seems natural to translate the feed of seeding material into the absorbing
phase and the fetch of pseudo-random numbers into the squeezing phase of a
sponge function, as illustrated in Figure 2. However, as such, a sponge function
execution has only one absorbing phase (i.e., one input), followed by a single
squeezing phase (i.e., one output, of arbitrary length), and thus cannot be used
to provide multiple “absorbing” phases and multiple “squeezing” phases.

Fig. 2. The sponge construction with multiple feed and fetch phases

This apparent difficulty is easy to circumvent. Conceptually, it suffices to
consider that each time pseudo-random bits are fetched, a different execution of
the sponge function is queried with a different input, as illustrated in Figure 3.
When entering the squeezing phase of each of these queries (so before pseudo-
random bits are requested), one must thus guarantee that the data absorbed so
far compose a valid sponge input, i.e., the input is properly padded [3]. This can
be achieved by defining an encoding function adapted to the particular sponge.

In the sponge construction, an input message m ∈ Z∗
2 must be cut into blocks

of r bits and padded. Let us denote as p(m) the function that does this, and we
assume that this function only appends bits after m (as in the padding of most,
if not all, practical hash functions). Let us assume that we wish to reuse the
state of the sponge whose input was the string m1 and from which l > 0 output
bits have been squeezed. The state of the sponge function at this point is as if
the partial message m′

1 = p(m1)||0r(�l/r�−1) was absorbed. Note that the zero
blocks account for the extra iterations due to the squeezing phase. Restarting
the sponge from this point means that the input is going to be a message m2 of
which m′

1 is a prefix.

3.3 Constructing a Reseedable Pseudo-Random Number Generator

To define a PRNG formally, we need to specify a seed-complete encoding function
e(h) that maps the sequence h of feed and fetch requests onto a string of bits,
as in Section 2. The output of e(h) is then used as input to the sponge function.
In practice, the idea is not to call the sponge function with the whole e(h) every
time a fetch is requested. Instead, the construction uses the sponge function in

Sponge-Based Pseudo-Random Number Generators 39

Fig. 3. The multiple feed and fetch phases of Figure 2 can be viewed as a sponge func-
tion queried multiple times, each having only one absorbing and one squeezing phase. In
this example, P0||P1, P0||P1||P2 and P0||P1||P2||0r ||P3 must all be valid sponge inputs.

a cascaded way, reusing the state as explained in Section 3.2. To allow the state
of the sponge function to be reused as described above, e(h) must be such that
if h′ = h||fetch(l)||feed(σ), then p(e(h))||0r(�l/r�−1) is a prefix of e(h′).

We now explain how to link a mode to a practical implementation. To make
the description easier, we describe a mode with two restrictions. We later discuss
how to implement a more elaborate mode without these restrictions. The first
restriction is on the length of the seed requests. For a fixed integer k, we require
that the length of the seeding material σ in any feed request feed(σ) is such that
|p(σ)| = kr. In other words, after padding, the seeding material covers exactly
k blocks of r bits. The second restriction is that the first request must be feed.

The mode is stateful, and its state is composed of m ∈ N, the number of bits
fetched since the last feed. We start with a new execution of a sponge function,
and we set m = 0. Depending on the type of requests, the following operations
are done on the sponge function on the one hand and on the encoding function
e(h) on the other. We denote by e a string that reflects e(h) as the requests are
appended to the history h.

– If the request is fetch(l), the following is done.
• The implementation produces l output bits by squeezing them from the

sponge function. Formally, e will be adapted during the next feed request.
• The value of m is adapted: m ← m + l.

40 G. Bertoni et al.

– If the request is feed(σ), the following is done.
• Formally, this feed request triggers a query to the sponge function with

e as input. If it is not the first request, e is up-to-date only up to the last
feed request. So, the effect of the fetch requests since the last feed request
must be incorporated into e, as if e was previously absorbed. First, e
becomes p(e) to simulate the padding when switching to the squeezing
phase after the previous feed request. Then �m/r�− 1 blocks of r zeroes
are appended to e to account for the extra calls to the f function during
the subsequent fetch requests. Now m is reset: m ← 0. (This part affects
only e formally; nothing needs to be done in the implementation.)

• Then, the implementation absorbs σ. Formally, this is reflected by ap-
pending σ to e.

• Finally, the implementation switches the sponge function to the squeez-
ing phase. This means that the absorbed data must be padded and the
permutation f is applied to the state. (Formally, this does not change e,
as the padding is by definition performed when switching to the squeez-
ing phase.)

To show that the encoding function is seed-complete, let us demonstrate how to
find the seeding material from it. If e(h) is empty, no feed request has been done
and the seeding material is the empty string. If e(h) is not empty, it necessarily
ends with the fixed amount of seeding material from the last feed request, which
we extract. Before that, there can be one or more blocks of r bits equal to zero.
This can only come from blocks that simulate fetch requests, as the padding
function p would necessarily create a non-zero block. So, we can skip backwards
consecutive blocks of zeroes, until the beginning of e(h) is reached or a non-zero
block is encountered. In this last case, we can extract the seeding material from
the k blocks of r bits and move backwards by the same amount. Finally, we
repeat this process until the beginning of e(h) is reached.

The construction, described directly on top of the permutation f , is given in
Algorithm 1. For completeness, we also give in Algorithm 2 an implementation
of the squeezing phase of a sponge function, although it follows in a straight-
forward way from the definition [3]. The cost of a feed request is always k calls
to the permutation f . Consecutive fetch requests totalling m bits of output cost
�m/r� − 1 calls to f . So a fetch(l) with l ≤ r just after a feed request is free.

The restriction of fixed-size feed requests is not essential and can be removed.
The description of the mode would be only a bit more complex, but would
distract the reader from the aspects of this construction that tightly integrate
to a sponge function and its underlying function f . In fact, the restriction of
fixed-size feed requests makes it easy to ensure and to show that the encoding
function is seed-complete. To allow for variable length seeding materials and
retain seed-completeness, some form of padding within the encoding function
must be introduced to make sure that the boundaries of the seeding material
can be identified. Furthermore, one may have to add a way to distinguish blocks
of zero-valued seeding material from zero blocks due to fetch requests. This can
be done, e.g., by putting a bit 1 in every block that contains seeding material.

Sponge-Based Pseudo-Random Number Generators 41

Algorithm 1. Direct implementation of the PRNG using the permutation f

s = 0r+c

m = 0
while requests are received do

if the request is fetch(σ) with |p(σ)| = kr then
P1|| . . . ||Pk = p(σ)
for i = 1 to k do

s = s ⊕ (Pi||0c)
s = f(s)

end for
m = 0

end if
if the request is fetch(l) then

Squeeze l bits from the sponge function (see Algorithm 2)
end if

end while

Algorithm 2. Implementation of the squeezing of l bits from the sponge function
Let a be the number of available bits, i.e., a = r if m = 0 or a = (−m mod r)
otherwise
while l > 0 do

if a = 0 (we need to squeeze the sponge further) then
s = f(s)
a = r

end if
Output l′ = min(a, l) bits by taking bits r − a to r − a + l′ − 1 of the state
Subtract l′ from a and from l, and add l′ to m

end while

The restriction of the first request being a feed request can be removed, even
though it makes little sense generating pseudo-random bits without first feeding
seeding material. If the first request is a fetch, the implementation immediately
pads the (empty string) input, switches the sponge function to the squeezing
phase and produces output bits by squeezing. Formally, in the next feed request,
this must be accounted for in e by setting e to p(empty string)||0r(�m/r�−1).

4 Security

Hash functions are often designed in two steps. In the first step, one chooses
a mode of operation that relies on a cryptographic primitive with fixed input
size (e.g., a compression function or a permutation) and builds a function that
can process a message of arbitrary size. If the security of the mode of opera-
tion can be proven, it then guarantees that any potential flaw can only come
from the underlying cryptographic primitive, and thereby reduces the scope of
cryptanalysis.

42 G. Bertoni et al.

We proceed similarly to assess the security of the PRNG, in two steps. First,
we look at the security of the construction against generic attacks, i.e., against
attacks that do not use the specific properties of f . We do this in the following
subsections. Then, the security of the PRNG depends on the actual function f
and we give an example in Section 5.

4.1 Indifferentiability

Indifferentiability is a concept developed by Maurer, Renner and Holenstein and
allows one to compare the security of a system to that of an ideal object, such
as the random oracle [11]. The system can use an underlying cryptographic
primitive (e.g., a compression function or a permutation) as a public subsystem.
For instance, many hash function constructions have been proven to be indif-
ferentiable from a random oracle when using an ideal compression function or a
random permutation as public subsystem (e.g., [8]).

By using indifferentiability, one can build a construction that does not have
any generic flaw, i.e., any undesired property or attack that does not rely on the
specific properties of the underlying primitive.

Theorem 1. The pseudo-random number generator P [F] that uses a permuta-
tion F is (tD, tS , N, ε)-indifferentiable from an ideal PRNG, for any tD, tS =
O(N2), N < 2c and any ε with ε > N2/2c+1 when 1
 N .

Proof. The proof follows immediately from [4, Theorem 2], where the (tD, tS , N, ε)-
indifferentiability is proven between the sponge construction and a random or-
acle. In [4, Theorem 2], the adversary has access to two interfaces: one to the
permutation F or its simulator, and one to input a message m ∈ Z∗

2. In the
context of this theorem, the same settings apply, except that the adversary does
not have a direct access to the latter interface but only through the encoding
function e(h). The same restriction applies both on the side of the sponge con-
struction and on the side of the random oracle. Since the adversary has no better
access than in [4, Theorem 2], her probability of success cannot be higher. ��
Distinguishing the sponge-based PRNG calling a random permutation from an
ideal PRNG defined in Section 2 takes about 2c/2 operations. In other words,
the former is as secure as the latter if c is large enough.

4.2 Resistance against State Recovery

Indifferentiability provides a proof of resistance against all possible generic at-
tacks on the construction. However, in practice, we can also look at the resistance
of the construction against generic attacks with a specific goal. In this case, the
resistance cannot be lower than 2c/2 but may be higher.

The main purpose of the PRNG is to avoid that an adversary, who has seen
some of the generated bits, can predict other values. A way to predict other
output bits is to recover the state of the PRNG by observing the generated
pseudo-random bits. In fact, since we use a permutation, the adversary can

Sponge-Based Pseudo-Random Number Generators 43

equivalently recover the state at any time during a fetch request. She can also
determine the state before or after a feed request if she can guess the seeding
material input during that request.

Let the state of a sponge function be denoted as (a, x), where a is the outer
part (i.e., the r-bit part output during the squeezing phase) and x represents
inner part (i.e., the remaining c bits). Let (a0, a1, . . . , a�) be a sequence of
known output blocks. The goal of the adversary is to find a value x0 such that
f(ai−1, xi−1) = (ai, xi) for 1 ≤ i ≤ � and some values xi. Notice that once x0
is fixed, the values xi, 1 ≤ i ≤ � follow immediately. Furthermore, since f is a
permutation, the adversary can choose to first determine xi for some index i and
then compute all the other xj �=i from (ai, xi by applying f and f−1.

An instance of the passive state recovery problem is given by a vector (a0, a1,
. . . , a�) of r-bit values. We focus on the case where such a sequence of values
was actually observed, so that we are sure there is at least one solution. Also, we
assume that there is only one solution, i.e., one value x0. This is likely if �r > c,
and the probability that more than one solution exists decreases exponentially
with �r − c. The adversary wants to determine unseen output blocks, so she
wants to have only one solution anyway and will ask for more output blocks to
remove any ambiguity.

The adversary can query the permutation f with values (a, x) and get f(a, x)
or its inverse to get f−1(a, x). If f is a random permutation, we wish to compute
an upper bound on the success probability after N queries.

Theorem 2. Given an instance of the passive state recovery problem A = (a0,
a1, . . . , a�) and knowing that there is one and only one solution x0, the success
probability after N queries is at most N2−cm(A), with m(A) the multiplicity
defined as

m(A) = max{mf(A), mb(A)}, with
mf(A) = max

a∈Zr
2

|{i : 0 ≤ i < � ∧ ai = a}|, and

mb(A) = max
a∈Zr

2

|{i : 1 ≤ i ≤ � ∧ ai = a}|.

Proof. Let F1(A) be the set of permutations f such that there is only one so-
lution to the state recovery problem with instance A. For a given value (a, x),
within F1(A), the inner part of f(a, x) (or f−1(a, x)) can be symmetrically cho-
sen among the 2c possible values as the problem instance does not express any
constraints on the inner parts. In other words, if x is such that the outer part
of f(a, x) is b, then for any x′ �= x there exists another permutation f ′ ∈ F1(A)
where x′ is such that the outer part of f ′(a, x′) is b too. Such symmetries exist
also for multiple inner values, independently of each other, as long as the corre-
sponding outer values are different. E.g., if a1 �= a2 and (x1, x2) is such that the
outer parts of f(ai, xi) are bi for i = 1, 2, then for any (x′

1, x
′
2) �= (x1, x2) there

exists another permutation f ′ ∈ F1(A) where (x′
1, x

′
2) verifies the same equality.

Let us first consider that � = 1. In this case, m(A) = 1.
Let F1(A, x0, x1) be the subset of F1(A) where the value x0 is the solution

and f(a0, x0) = (a1, x1). The sets F1(A, x0, x1) partition the set F1(A) into 22c

44 G. Bertoni et al.

subsets of equal size identified by x0 and x1, or in other words, x0 and x1 cut
the set in an orthogonal way.

The goal of the adversary is to determine in which subset F1(A, x0, x1) the
permutation f is. To do so, she is going to make queries of the form (a0, x0) and
check if the outer part of f(a0, x0) is a1 (called forward queries), or she can make
queries to the inverse permutation and check if f−1(a1, x1) gives a0 as outer part
(called backward queries). As the subsets F1(A, x0, x1) cut F1(A) orthogonally
in x0 and x1, forward queries help determine whether x0 is the solution but
without reducing the set of possible values for x1, and vice-versa for backward
queries. So, after Nf forward queries and Nb backward queries, the probability
that one of them gives the solution is 1− (1−Nf/2c)(1−Nb/2c) ≤ N/2c, where
the probability is taken over all permutations f drawn uniformly from F1(A).

Let us now consider the general case where � > 1. The reasoning can be gen-
eralized in a straightforward way if all the ai are different, but some adaptations
have to be made to take into account the values appearing multiple times. Given
a set of indexes {i1, . . . , im} such that ai1 = ai2 = · · · = aim , there may or may
not be constraints on the possible values that the corresponding inner values
xi1 , xi2 , . . . , xim can take. For instance, if ai1−1 �= ai2−1 or if ai1+1 �= ai2+1, then
necessarily xi1 �= xi2 . In another example, A can be periodic, allowing the xi

values to be equal.
Let i(j, k) be a partition of the indexes 0 to � such that ai(j,k) = ai(j′,k′)

iff j = j′, i.e., the j index identifies the subsets and the k index the indices
within that subset. Let F1(A, x0, x1, . . . , x�) be the subset of F1(A) such that
(x0, x1, . . . , x�) is the solution. Here, the set F1(A) is again cut into subsets of
equal size if we use the n vectors (xi(j,1), . . . , xi(j,mj)) as identifiers, and each of
these vectors cut F1(A) in an orthogonal way. (In general, however, the values
x corresponding to identical values a do not cut F1(A) in an orthogonal way.)

The adversary can make a forward query to check whether f(ai(j,k), xi(j,k))
gives ai(j,k)+1 as outer value. Using the same query, she can also check whether
f(ai(j,k′), xi(j,k)) yields ai(j,k′)+1 for any other k′ (as long as i(j, k′) < �). The
same reasoning goes for backward queries: does f−1(ai(j,k′), xi(j,k)) yield ai(j,k′)−1
for any k′ (as long as i(j, k′) > 0). So, a forward (resp. backward) query can
count as up to mf(A) (resp. mb(A)) chances to hit the correct outer value. Af-
ter N queries, the probability that one of them gives the solution is at most
m(A)N/2c, where the probability is taken over all permutations f drawn uni-
formly from F1(A). ��
The previous theorem also imposes an upper bound on the success probability
of preimage attacks, generically against a sponge function. This follows from the
fact that finding a preimage implies that the state can be recovered.

This theorem covers the case of a passive adversary who observes output
blocks. Now, the PRNG implementation could allow seeding material to be pro-
vided from outside, hence allowing an active adversary to absorb blocks of his
choice. This case is covered in the next theorem. We assume that the adversary
controls the blocks bi that are injected at each iteration, i.e., the PRNG computes

Sponge-Based Pseudo-Random Number Generators 45

f(ai ⊕ bi, xi) = (ai+1, xi+1) and the adversary observes ai+1. Now an instance
of the problem is also determined by the injected blocks B = (b0, b1, . . . , b�).

Theorem 3. Given an instance of the active state recovery problem A = (a0,
a1, . . . , a�), B = (b0, b1, . . . , b�) and knowing that there is one and only one
solution x0, the success probability after N queries is at most N2−c�.

Proof. The reasoning is the same as in Theorem 2, except that the queries are
slightly different. In a forward query, the adversary checks if the outer part
of f(ai ⊕ bi, xi) is ai+1. In a backward query, she checks if the outer part of
f−1(ai, xi) is ai−1⊕bi−1. Another difference is that now the forward multiplicity
to be considered is

mf(A, B) = max
a⊕b∈Zr

2

|{i : 0 ≤ i < � ∧ ai ⊕ bi = a⊕ b}|,

as one forward query can be used to check inner values at up to mf(A, B) in-
dexes at once. Furthermore, the adversary can influence the multiplicity, e.g.,
by making sure ai ⊕ bi is always the same value. So m(A) ≤ � and the success
probability after N queries is at most N2−c�. ��
An active attacker can use � = 2c/2 output blocks and the complexity of her
attack is going to be N = 2c/2, a result in agreement with the indifferentia-
bility result of Theorem 1. However, here we can distinguish between the data
complexity, i.e., the available number of output data of the PRNG and the time
complexity, the number of queries to f , of the attack. If the implementation of a
PRNG limits the number of output blocks to some value �max < 2c/2, the time
complexity of a generic attack is bounded by N = 2c/�max > 2c/2.

4.3 Forward Security

Our construction does not inherently provide forward security, but it can be
explicitly triggered by using the following technique. One can fetch r′ ≤ r bits
out of the current PRNG and feed them immediately afterwards. This way, the
r′ bits of the outer part of the state will be set to zero, making this process an
irreversible step. By repeating this process �c/r′� times, the adversary has to
guess at least c bits when evaluating the state backwards. This process can be
activated, for instance, at regular intervals.

5 A Concrete Example with Keccak

Keccak is a family of sponge functions submitted to the SHA-3 contest or-
ganized by NIST [13,6,7]. The family uses seven permutations ranging from
a width of 25 bits to a width of 1600 bits. While the SHA-3 proposal uses
Keccak-f [1600] only, other members of the family with a smaller width can
be interesting in the context of a PRNG in an embedded device. For instance,
Keccak[r=96, c=104] and Keccak[r=64, c=136] both use Keccak-f [200]

46 G. Bertoni et al.

as underlying permutation. This permutation is suitable for devices with scarse
resources as the state can be stored in only 25 bytes. In hardware it can be
built in a very compact core and in software it can be implemented with bitwise
Boolean instructions and rotations within bytes only. These sponge functions
can produce 96 and 64 pseudo-random bits, resp., per call to Keccak-f [200].

In terms of security, Keccak follows what is called the hermetic sponge strat-
egy [7,5]. This means that the Keccak-f permutations are designed with the
target that they cannot be distinguished from a randomly-chosen permutation.
Biased output bits on one of the Keccak members, for instance, would imply
a distinguisher on the underlying permutation Keccak-f and would therefore
contradict the design strategy.

Against passive state recovery attacks in the generic case, Theorem 2 proves
a resistance of 2c/m(A). If a sequence of �r output bits is known, the expected
value of m(A) is close to 1 unless � > 2r/2. One can limit to r2r/2 the number
of output bits between times where the state has gained at least c bits of fresh
seeding material. This way, Keccak[r=96, c=104] and Keccak[r=64, c=136]
provides a resistance of about 2104 and 2136, resp., against state recovery, at least
as long as no distinguisher on Keccak-f [200] is found.

If the PRNG allows the user to provide seeding material, active state recovery
attacks must also be considered. Here, the implementation can limit, e.g., to
�max = 224 or 232 output blocks before the state has again been fed with c
bits of fresh seeding material. In this case, Keccak[r=64, c=136] provides a
resistance of about 2112 and 2104, respectively.

We have implemented our PRNG based on Keccak[r=96, c=104] and
Keccak[r=64, c=136] and passed the statistical tests proposed by NIST [15].
The tests were performed on 200 sequences of 106 bits each. The sequences were
generated by squeezing 2 × 108 bits after providing the empty string as input,
namely �Keccak[r=96, c=104]()�2×108 and �Keccak[r=64, c=136]()�2×108 .

6 Conclusions

We have presented a construction for building a reseedable pseudo-random num-
ber generator using a sponge function. This construction is efficient in terms of
memory use and processing, and inherits the provable security properties of the
sponge construction. We have provided bounds on generic state recovery attacks
allowing the use of a small state. We have given a concrete example of such
a PRNG based on Keccak with a state of only 25 bytes that is particularly
suitable for embedded devices.

References

1. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security 1993, pp. 62–73 (1993)

2. Bellare, M., Yee, B.: Forward-security in private-key cryptography, Cryptology
ePrint Archive, Report 2001/035 (2001), http://eprint.iacr.org/

http://eprint.iacr.org/

Sponge-Based Pseudo-Random Number Generators 47

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
Ecrypt Hash Workshop 2007 (May 2007), also available as public comment to
NIST,
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/

2007 May.html

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008), http://sponge.noekeon.org/

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponges
(2009), http://sponge.noekeon.org/

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications, ver-
sion 2, NIST SHA-3 Submission (September 2009), http://keccak.noekeon.org/

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family main document, NIST SHA-3 Submission (updated) (September 2009),
http://keccak.noekeon.org/

8. Coron, J., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How to
construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

9. Desai, A., Hevia, A., Yin, Y.L.: A practice-oriented treatment of pseudorandom
number generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 368–383. Springer, Heidelberg (2002)

10. Ferguson, N., Schneier, B.: Practical cryptography. John Wiley & Sons, Chichester
(2003)

11. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

12. NIST: Federal information processing standard 186-2, digital signature standard
(DSS) (May 1994)

13. NIST: Announcing request for candidate algorithm nominations for a new crypto-
graphic hash algorithm (SHA-3) family. Federal Register Notices 72(212), 62212–
62220 (2007),
http://csrc.nist.gov/groups/ST/hash/index.html

14. NIST: NIST special publication 800-90, recommendation for random number gen-
eration using deterministic random bit generators (revised) (March 2007)

15. NIST: NIST special publication 800-22, a statistical test suite for random and pseu-
dorandom number generators for cryptographic applications (revision 1) (August
2008)

16. Viega, J.: Practical random number generation in software. In: ACSAC ’03: Pro-
ceedings of the 19th Annual Computer Security Applications Conference, Wash-
ington, DC, USA, p. 129. IEEE Computer Society, Los Alamitos (2003)

http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://csrc.nist.gov/groups/ST/hash/index.html

A High Speed Coprocessor for Elliptic Curve
Scalar Multiplications over Fp

Nicolas Guillermin1,2

1 DGA Information Superiority, Bruz, France
2 IRMAR, Université Rennes 1, France

Abstract. We present a new hardware architecture to compute scalar
multiplications in the group of rational points of elliptic curves defined
over a prime field. We have made an implementation on Altera FPGA
family for some elliptic curves defined over randomly chosen ground fields
offering classic cryptographic security level. Our implementations show
that our architecture is the fastest among the public designs to com-
pute scalar multiplication for elliptic curves defined over a general prime
ground field. Our design is based upon the Residue Number System,
guaranteeing carry-free arithmetic and easy parallelism. It is SPA resis-
tant and DPA capable.

Keywords: elliptic curve, high speed, RNS, prime field, FPGA.

1 Introduction

Twenty five years after their introduction for cryptographic applications [14],
elliptic curves are well established in the field of public key cryptography. A
standard of the National Institute of technology (NIST) recommends their use
for digital signature [17]. The most time consuming operation in elliptic curve
based protocols is the scalar multiplication. As a consequence, scalar multiplica-
tion has attracted a lot of attention in public literature. Available designs may
differ greatly depending on the target implementation (GPGPUs, CPUs, ASICs,
FPGAs) and the aim they try to achieve which may be related to speed, size,
power consumption or security issues. We refer the reader to [3,25,10,21] for
example of known implementations.

In this paper, we describe the fastest available architecture for computing [k]G
over curves defined over Fp for general prime p in FPGA. Our architecture is
based on Residue Number Systems (RNS) and is resistant against side channel
attacks. We have made a FPGA implementation of our design. Actually, FPGA
implementations are particularly interesting for at least two reasons : they are
well suited to provide a good local protection level, and they constitute generally
the first step towards faster ASIC implementations.

Target application of such special purpose designs are all the fields where both
high speed, low latency and high level resistance against attacks are required
(example : IPSEC set-top box).

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 48–64, 2010.
c© International Association for Cryptologic Research 2010

A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over Fp 49

Related work : A great overview of high speed hardware accelerator for ECC
is given by [13]. Designs can be split in two categories : those which support
elliptic curves over F2n , and those over Fp. Architectures of the first group give
the best speed to security ratio. It is mostly due to the field structure (No carry
is propagated). State of the art implementations show a latency under 20 μs for
a 280 security [8]. Nevertheless large characteristic remain interesting, mostly
because Fp offers less structure than F2n , and may be safer. Some architecture
can also support both field types [22].

Some implementations are specific to a pseudo-Mersenne prime [7]. These
implementations may be faster than the one which do not depend on the relying
field. Nevertheless the ability of changing the curve is also an asset for security
(finding weak curves is still an active research area). Our architecture is of this
kind. To our knowledge the best architecture is the one of Mentens [11], which
computes a 1 ms 160 bit scalar multiplication on a Xilinx Virtex 2 pro. Most of
the implementations are based on a multi-precision Montgomery representations
of numbers, allowing reduction without expensive divisions.

Another way to represent big numbers is the Residue Number System. It
provides fast and carry free arithmetic. A modified version of the Montgomery
algorithm [1] makes it suitable for arithmetic in Fp. Szerwinski et al [25] used it to
produce the fastest software implementation of scalar multiplication. Kawamura
et al [10,16] proposed a very efficient architecture for RSA signature on an ASIC.
Their contribution is analysed in section 3, since it is the starting point of our
work.

The higher p is, the more efficient RNS is (because its high parallelization
ability). Then we could think that applying RNS to ECC will be less interesting
than RSA. We show in this paper that this drawback is compensated by 2
advantages. First, the RNS ability to execute patterns like AB + CD in only
one reduction, while both products are almost free, reduces the time of point
operations in ECC while it is useless for RSA (2.2). Second, ECC operations are
parallelizable, therefore we can deepen the pipelines while keeping a high rate
occupation (3.2).

Our contribution : We present a complete redefinition of main module of
Kawamura. Thanks to it we can use elliptic curve and we reach high speed on a
FPGA. We design the first architecture to break 1 ms for 160 bit elliptic curve
scalar multiplication over prime field of any characteristic, even on a 130 nm
node FPGA (the Altera Stratix family in our case). Our scalable architecture
keeps its advantage even for larger groups (up to 512 bits). We also propose an
algorithm for RNS-Radix transformation that does not cost a single gate, and
base choice considerations for RNS use with elliptic curves.

Structure of the paper : The section 2 deals with mathematical backgrounds
of RNS and elliptic curves. The section 3 describes and analyses the choices
that are made to improve Kawamura’s architecture, and and the section 4 gives
the results of implementations, and compares it to other existing design. Design
schemes are at the end of the paper.

50 N. Guillermin

2 Mathematical Background

Notations : In all the paper, for a, b ∈ N, we denote by |a|b the result of a
modulo b.

2.1 RNS

Overview : Let B = {m1, · · · , mn} be a set of co-prime natural integers, and
M =

∏n
i=1 mi. The residue number system (RNS) representation {X}B of X ∈

N such that 0 ≤ X < M is the unique set of positive integers {x1, · · · , xn} with
xi = |X |mi. This representation allows fast arithmetic in Z/MZ since

{X � Y }B = {|x1 � y1|m1 , · · · , |xn � yn|mn} (1)

for � ∈ (+,−,×, /), / being only available for Y coprime with M . The integer
X is recovered thanks to the Chinese remainder theorem :

X =

∣∣∣∣∣
n∑

i=1

|xi ×M−1
i |mi ×Mi

∣∣∣∣∣
M

where Mi =
M

mi
. (2)

Note that M−1
i is then well defined in Z/miZ. In the rest of the paper, B is

called a RNS base and the {mi}i=1,...,n are called channels of B, since every
calculation are done independently modulo these channels.

RNS Montgomery reduction algorithm : The Montgomery reduction ap-
plication was first introduced in [15] for the purpose of multiprecision arithmetic.
The paper [1] presents an adaptation in the context of RNS representation.

In the following we recall the main results of this last paper. Let p be a prime,
α > 2 an integer, B and B̃ be two RNS bases with their channel products M
and M̃ such that M > αp and M̃ > 2p. For all input a < αp2 given in B and
B̃ the Montgomery algorithm computes S in B and B̃ such that S < 2p and
|S|p = |a × M−1|p. The factor M−1 is not a concern if a lot of computation
in modular arithmetic are to be done in a row, which is the case in most ap-
plications related to cryptography. Actually, thanks to the use of Montgomery
representative φ(X) = |XM |p (see [15]), one only needs a transformation at
the beginning of any calculation φ(X) = RedMontg(X × |M2|p, p, B, B̃) and the
corresponding invert transformation φ−1(Y) = RedMontg(Y, p, B, B̃) at the end.

The base change Bext(X, B, B̃) is due to the fact that one can not divide
by M in B. The second base extension computes {S}B from {S}B̃. Both are
then available for another computation. Unlike the multiprecision Montgomery
algorithm, we can not execute the final reduction, since it is not easy to know if S
is more or less than p (comparison is a greedy operation in RNS representation).
The result S is then kept between 0 and 2p. The main consequence is that M̃
has to be up to 2p. The choice of B depends on the maximal number we wish
to reduce. Proposition 1 shows that M̃ does not need to be more than M . Even
if Q̃ is not equal to Q but to |Q|M̃ , the algorithm still gives the correct output.

A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over Fp 51

Algorithm 1. RedMontg(X, p, B, B̃)

Require: B and B̃ RNS bases with M > αp and M̃ > 2p
Require: p co-prime with M and M̃
Require: {X}B and {X}B̃ RNS representation of X < αp2 in B and B̃
Require: precalculations : {| − p−1|M}B ,{|M−1|M̃}B̃ and {p}B̃

Require: algorithm Bext(A, B1, B2) computing {|A|M2}B2 from {A}B1

Ensure: {S}B and {S}B̃ such that |S|p = |XM−1|p and S < 2p
1: Q ← X × | − p−1|M in B
2: Q̃ ← Bext(Q,B, B̃)
3: R̃ ← X + Q̃ × p in B̃
4: S̃ ← R̃ × M−1 in B̃
5: S ← Bext(S, B̃, B)
6: return S and S̃

Proposition 1. Given α > 2, if M > αp and M̃ > 2p then RedMontg(X, p, B, B̃)
gives the correct output for every X between 0 and αp2.

Proof. Be X < αp2, M > αp and M̃ > 2p. Q = |XP−1|M , therefore Q < M .
By Bext , Q̃ = |Q|M̃ . As XB̃ = |X |M̃ and p < M̃ , S̃ is equal to |(X +Qp)/M |M̃ .
As Q < M , T = (X + Qp)/M < 2p. Therefore S̃ = T , and as α > 2 S = T too.
As T ≡ |XM−1|p, we can conclude that S and S̃ are the expected results.

RNS base extension : The greediest steps of this algorithm are the two base
extensions Bext(X, B, B̃) and Bext(X, B̃, B). They are a classical O(n2) algo-
rithm, where n is the RNS base size, and the elementary operation is a modular
multiplication/addition on a channel. The main concern of every algorithm im-
plementing Bext is to provide a way to compute the final reduction by M , to
calculate γ such that

X =
n∑

i=1

|xi ×M−1
i |mi ×Mi − γM. (3)

Once γ is calculated, X is easily recovered on every channel m̃i by multiplying and
accumulating the result. Three different algorithm are proposed by literature :

– a Mixed Radix System (MRS) approach [2] which natively avoids final re-
duction, but is hard to implement in hardware because of the structure of
the algorithm, but remains a good alternative in software,

– an extra modulus approach proposed by Shenoy and Kumaresan [24]. The
idea of this algorithm is to have a me coprime with M and M̃ , and to use
X [me] to compute γ. The main drawback of this approach is that we need
to keep |X |me all along during the calculation, while we just need it during
the base extension,

– a floating point approach proposed by Posch and Posch [19], and improved
by Kawamura et al. [10]. The main idea is to transform the equation 3 as
follow:

X =
n∑

i=1

Mξi

mi
−M�

n∑
i=1

ξi

mi
�with ξi = |xiM

−1
i |mi (4)

52 N. Guillermin

Algorithm 2. Montg − ladder(k, G,Cp,a4,a6)
Require: k ∈ N =

∑
ki.2i, G a point of Cp,a4,a6

Ensure: R = (k]G
1: R ← O ; S ← G
2: for i from log2(k) to 0 do
3: if (ki = 0) then
4: R ← 2R ; S ← R + S
5: else
6: S ← 2S ; R ← R + S
7: end if
8: end for
9: return R

The main drawback of the floating point approach is a potential emergence
of an offset due to the approximation while computing �∑n

i=1 ξi/mi�. In [10]
ξi/mi is approximated by ξi/2r where r is chosen as word depth in the proposed
architecture. As mi is chosen as a pseudo-Mersenne prime near 2r, the offset
of the calculation may be easily limited to 1/2. In [10] is explained how this
possible error can be without consequences for the result, as soon as M̃ < 6p.
The output of RedMontg will be less than 3p, whatever the input is (proposition
1 is then easily adapted, with M̃ > 6p and α > 3 the output of the algorithm 1
will be less than 3p).

2.2 Elliptic Curves

Overview : In this paper, considered elliptic curves Cp,a4,a6 are seen as sets
of couples (x, y) ∈ F2

p verifying the following equation, with p prime and extra
conditions on a4 and a6 which are not discussed here.

y2 = x3 + a4x + a6 (5)
Together with the point at infinity O, Cp,a4,a6 is an abelian group. The compo-
sition law has a geometric meaning described by the vertical and tangent. Some
specific curve shapes (forms of the equation) spare multiplications and reduction
while computing P + Q and 2P over Cp,a4,a6 [9,5].Nevertheless the Weierstrass
form represents all elliptic curves over prime fields (through isomorphism over
F2

p). Other representations can only represent curves with subgroups (e.g order
4 for Edwards curves and Montgomery form, order 3 for Hessian curves...). Here
we consider general curves in Weierstrass form, given by 5.

Addition and doubling formulæ : The Montgomery ladder [9] algorithm
is a SPA-resistant square and multiply algorithm, computing [k]G over Cp,a4,a6

using one double and one add per bit of k.
Moreover, one can use projective coordinates XP , YP , ZP of point P =

xP , yP where xP = XP /ZP and yP = YP /ZP when ZP �= 0. With projective
coordinates every point of the curve has p−1 different representation. This can be
used to execute leak-resistant computation (by changing the point representation
before realizing the scalar multiplication) [4]. Point additions and doubling are
then computed without inversion in Fp.

A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over Fp 53

Combined with algorithm 2, we can spare the computation of Y[k]G (y[k]G is
recomputed at the end of the algorithm if necessary). Formulæ for adding and
doubling points optimized for RNS are given in [20]. We briefly recall them in
the following table.

P + Q 2P
A ← ZP XQ + XP ZQ E ← Z2

p

B ← 2XP XQ F ← 2XP ZP

C ← 2ZP ZQ G← X2
P

D ← a4A + a6C H ← −4a6E
ZP+Q ← A2 − BC I ← a4E

XP+Q ← BA + CD + 2xP−QZP+Q X2P ← FH + (G− I)2

Z2P ← 2F (G + I)− EH

At the end of the scalar multiplication, an inversion is needed to recompute
x[k]G = X[k]G/Zk[G]. In our results this final inversion is taken in account, con-
sidering that we use little Fermat’s theorem to compute the inversion (which is
possible with our design, and does not cost any gate except in the sequencer).

The main feature of RNS compared to classical representation is that mul-
tiplication is almost free while all the computation complexity is on reduction.
Therefore, it is interesting to find AB+CD pattern in the addition and doubling
law of the curve. This is done by the table given above in 13 reductions for 1
Montgomery ladder step (1 point-addition and 1 point doubling).

2.3 Base Choice

Our purpose is to use Kawamura’s base extension in a massively parallel ar-
chitecture. A value r is set as the word depth, and B and B̃ are chosen to be
pseudo-Mersenne values mi = 2r − εi, with εi < 2q and q < r/2. B̃ is chosen
exactly the same manner. Regarding addition and doubling formulæ, we can
set α of algorithm 1 to 45. Indeed, the maximum value we have to reduce is
Z2P ← 2F (G+ I)−EH . As F ,G,H and I are less than 3p, 2F (G+ I) is at most
36p2. Since we can not afford to set negative input in RedMontg, and we are
unable to verify that 2F (G + I) > EH , we have to calculate (3p− E)H which
is positive, and less than 9p2. Therefore M > 45p. As it is shown in Radix-RNS
transformation subsection, 2r is set as the m0 value. In order to spare gates
in our design, q has to be as small as possible. If the targeted technology is a
Stratix family FPGA, we will use 18 × 18 or 36 × 36 multipliers. Here are the
main features of chosen bases for the use of 18 × 18 and 36 × 36 multipliers (r
is the word size in bits, n is the number of parallel rower modules and q is the
max size of the εi in bits) :

curve 160 192 256 384 512 160 192 256 384 512
r 17 18 18 18 18 34 33 33 36 35
n 10 11 15 22 29 5 6 8 12 15
q 7 7 8 8 9 5 6 6 7 8

54 N. Guillermin

cox row1 row2

sequencer

command

in
out

main bus

rown

sequencer

cox

ROM

main bus registers out

ALU

cox

main bus

ROMcoxROMmi

Fig. 1. General architecture and focus on the Cox and Rower design

3 Hardware Architecture

3.1 Architecture Overview

Already published architecture using RNS : Kawamura [10] proposed an
architecture suitable for RSA calculation using his base extension algorithm.
His general architecture is the same as ours and is given by the upper outline
of the figure 1. He divided his design in multiple ”Rower” modules, which were
in charge of calculating |∑n

i=1(Mξi)/mi|mj . and a ”Cox” module in charge of
calculating �∑n

i=1(ξi/2r)�. “Cox” design is very simple (a small adder). In [16]
an improvement took the advantage of setting one cox per Rower. He then
spared one cycle per reduction, computing γ in the same cycle. The results were
interesting, but the Rower pipeline was not deep enough to reach high clock
frequency (3 stages).

Improvements in our design : Our architecture is an improvement of Kawa-
mura’s [10] [16] which makes it

A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over Fp 55

– suitable for elliptic curves,
– able to provide protections against side-channel attacks,
– designed to reach high clock frequencies.

The first limitation of Kawamura’s architecture is the usage of only one RAM per
channel. It only can execute a squaring, or multiply by a ROM data. This is not
a limitation for RSA, the exponentiation algorithm only executes a square and
a multiply by a constant, and so does the base reduction. This limitation is no
more acceptable for elliptic curves. A general purpose register file (GPRs) must
be added in order to multiply 2 local variables. Also the needed precalulation
must be redefined. This point is focused in the subsection 3.3.

The second limitation of Kawamura’s architecture is the design of the pipeline
core, which executes the operation acc = |x× y + acc|mi . Kawamura’s goal was
to keep busy every pipeline stage 100% of the cycles. To do so, he designed
a 3 stage pipeline, and needed to use 3 times less Rower than the number of
channels he had in B and B̃. Our architecture increases the pipeline depth to
reach higher clock frequencies. We show that a 100% pipeline occupation is not
really necessary for elliptic curves : it is easy to keep a good pipeline occupation
even with deeper pipelines, with as many Rower as channels in B and B̃, and
with less channels for elliptic curves than for RSA (considering 160 bits curves
versus 1024 bits bases for RSA). This point is focused in the subsection 3.2.

Our architecture is showed on figure 1. It is the same as in [10] for the upper
scheme part. Thus the Rower design (lower part of the scheme) is completely
different. It is mainly composed with n parallel channels which execute acc =
|x× y + acc|mi at each cycle and get operands and put the result from/in one of
the 16 General Purpose Registers (GPR). Therefore, our architecture is able to
compute a multiplication in Z/MZ at each clock cycle. Our Rower architecture
is described in 3.2.

We propose a RNS-Radix transformation in subsection 3.4, and eventually
discuss about consequences of our choice for resistance against side channel at-
tacks in 3.5.

3.2 Pipeline Architecture

In order to get high speed, the Arithmetical and Logical Unit(ALU) must execute
|r1 × r2|m and accumulate the result at each clock cycle.

Considering this constraint, algorithm 3 computes the modular multiplication
for any pseudo-Mersenne number. The accumulation may be executed at every
step of the algorithm. For every value P ,Plsb are the r less significant bits of P ,
while Pmsb = �P/2r�.

As it is shown in algorithm 3 , there are in the proposed pipeline structure
only 5 generic operands:

– a r × r multiplier,
– a r × q multiplier,
– a q × q multiplier,

56 N. Guillermin

Algorithm 3. MM(r1, r2, mi)
Require: r1 and r2 < 2r

Require: mi = 2r − εi a pseudo-Mersenne number
Ensure: |r1 × r2|mi

1: P = r1 × r2

2: Q = Pmsb × εi R = |Plsb|mi

3: R = Qmsb × εi S = |Qlsb + Plsb|mi

4: T = |R + S|mi

5: return T

Algorithm 4. 3add(P, Q, R)
Require: P ,Q and R : vector(r)
Ensure: P + Q + R
1: X : vector(r) = P xor Q xor R
2: C : vector(r) = MAJ(P ,Q,R)
3: return X + 2C

– 2 r modulo-adder taking two entries less than mi, (4 if we consider accumu-
lation, see the pipeline subsection)

– a r modulo-adder taking one over two entries less than mi, the other being
less than 2r.

The multipliers are not an issue for FPGA, since both Altera Stratix and Xilinx
Virtex families have got multiplier blocks. The following assumption are taken :

– A a × b multiplier will be implemented in a single FPGA DSP block, for
every a and b < 36 , even if b is 9 bit wide.

– A a× b multiplier will be implemented in a single 9× 9 blocks if both a and
b are smaller than 9.

These facts have been verified for every synthesis during this study.
Modular addition takes advantage on the fact that an addition by three

operands of size r only costs one LUT pass through and one addition of r + 1
operands, by using algorithm 4. Then, if a and b are less than mi, |a + b|mi can
be computed by computing in parallel r1 = a + b and r2 = a + b + εi and by
considering the carry of r2 to choose the correct result. Figure 2 describes the
adder design. If mi < a ≤ 2r, an extra addition a + b + 2εi is required.

Two pipeline architectures are proposed in this paper (figure 2). Both try to
balance the pipeline stages with one another, but make different assumptions :

– The first one makes the assumption that the a modular addition is twice
faster than a multiplication.

– The second one makes the assumption that a modular addition runs as fast
as multiplication.

To increase the pipeline occupation, we overlap independent operations : for
example, the computation of B and C start before the one of A is finished. Then,

A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over Fp 57

a b εi

|a + b|mi

εi εi

εi εi

Mcox Mcox

in1 in1 in2in2

out

out

Fig. 2. 5 and 6 stage pipeline, and an adder modulo mi

the wait states of the calculation of A, are taken up by B and C. This technique
increases the pipeline occupation, but may increase the number of needed general
purpose registers. This is a trade-off. It is analysed in the subsection 3.3.

On an Altera Stratix II chip, the maximum clock frequency of the 5 stage
pipeline is 110 MHz, while the 6 stage reaches 158 MHz. At is is shown in
subsection 3.3, the percentage of idle states is respectively 95% and 90% for a
pipeline of depth 5 and 6, and a design with 5 channels (for a 160 bit curve with
a channel length of 33 bits). This is the worst case of this study for pipeline
occupation. We can then conclude that the 6 stage pipeline is the best choice for
Stratix II technology. This study has to be done again for each target technology
(including ASICs).

3.3 Memory

Precalculations and ROM content : The Rower main ROM is filled with
the precalculated values described in this subsection.

Not considering reduction, we need during the calculation the following 3
variables : a4, a6 and 3p : a4 and a6 to compute D and I, 3p to compute any
subtraction (for example ZP+Q and Z2P). To compute H it is possible to precom-
pute −4a6. Eventually we need |M2|p to compute Montgomery representatives.
For computation we also need 0, 1 and −1 for every channel. For radix-RNS
transformation we need 2r and for RNS-radix we need 2−r and −2−r only on B̃
(see subsection 3.4).

58 N. Guillermin

Algorithm 5. Reduction(GPR1, GPR2) on a single Rower
Require: X a value we wish to reduce GPR1 = |X|mi and GPR2 = |X|m̃i

Ensure: RedMontg(X, p, B, B̃) in GPR1 and GPR2

1: cycle 1 : GPR1 ← |GPR1 × p−1M−1
i |mi

2: wait 1 : wait for GPR1

3: cycle 1′ : out ← GPR1

4: cycle 2+ j (j ∈ [0, · · · , n− 1]) : GPR1 accumulates |in×Mjp(MM̃i)−1 + Mcox|m̃i

5: cycle 2 + n : GPR1 accumulates |GPR2 × (MM̃i)−1|m̃i

6: wait 2 : wait for GPR1

7: cycle 3 + n : out ← GPR1 and GPR2 ← |GPR1 × M̃i|m̃i

8: cycle 4 + n + j (j ∈ [0, · · · , n − 1]) : GPR1 accumulates |in × M̃j + Mcox|mi

9: wait 3 : wait for GPR1

Algorithm 5 gives a fast version of the algorithm in our architecture. Cycle 1′

can be executed with another instruction. During cycles 2+ j and 4 +n + j, the
main bus is set to out[j] the output of the jth channel. The needed precomputed
values are

– for a channel mi of B (modulo mi) :
p−1M−1

i , M̃j for j ∈ [0; · · · ; n− 1].
– for a channel m̃i of B̃ (modulo m̃i) :

Mjp(MM̃i)−1 for j ∈ [0; · · · ; n− 1] , (MM̃i)−1.

For a FPGA implementation, all these values may be set in ROMs, a curve
change can be done by loading a different bitstream. Our results are given for
fixed ROM. If it is necessary to change the curve during runtime, or if an ASIC
implementation is needed, user may choose between 2 options :

– use RAMs instead of ROMs. This allows to change bases too, but all the
values above have to be computed.

– reduce the number of curve-dependant values. Only 5 precomputed values
per channel are needed : p, a4, a6, |M2|p and | − p−1|M . It costs 2 extra
cycles and 2 extra wait per reduction.

For each Rower design, two extra small ROMs are needed, each one containing
two values. The ROMmi holds mi and m̃i. The ROMcox holds the value | −
MpM̃i

−1|m̃i and | − M̃ |mi when the cox module set up the signal cox, these
values are injected in the pipeline.

General purpose register file : Elliptic curves formulæ use local variables
which have to be multiplied with one another, contrary to RSA which only has
to square or multiply by a constant. That is why our architecture uses for every
channel a general purpose register file (GPRs). Since every local variable has to
be evaluated in M and M̃ , one need twice as GPR as the maximum of local
variables.

As it is explained in the pipeline subsection, operations are overlapped : inter-
mediate result computation may start before the previous is finished. This may
implicate an increase of the number of needed registers.

A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over Fp 59

The following table shows that 16 GPR are enough : local variables are limited
to 7 and reductions are at least executed by 2, most of time by 3. An 8th local
variable is taken by xG the exponentiated point abscissa. This leads to a pipeline
fill rate of 90% for the 6 stage pipeline and 16 GPR per channels. This is a good
trade-off.

step calculation living variables
1 A B C XP ZP A B C
2 D ZP+Q XP ZP A B C D ZP+Q

3 XP+Q E F XP E F ZP+Q XP+Q

4 G H I E F G H I ZP+Q XP+Q

5 X2P Z2P X2P Z2P ZP+Q XP+Q

3.4 Radix-RNS Transformation

The RNS representation is not practical for using outside the design. Moreover,
there is no need for extra material either to transform a number X from its
classical multiprecision representation (Xn−1, · · · , X0) where X =

∑n−1
i=0 Xi2i)

to its RNS representation (x1,...xn), nor the contrary. Using our architecture,
the Radix-RNS transformation is trivial, if the sequencer can set up the main
bus to the Xi values, and |2r|mi is in ROM.

For RNS-Radix transformation, the main idea is to set the channel m0 of
B to 2r. If it is so, X0 = x0. To find X1, all we need to do is to compute
X ← (X − x0)/2r. As 2r is not co-prime with M , this computation is done over
B̃, and the use of Bext(X, B̃, B) gives X1 ← x0. By repeating this operation we
compute X2, · · · , Xn.

This algorithm is not the most efficient but does not cost a single gate in
our architecture. It never costs more than 0.3% of the total scalar multiplication
time.

3.5 Side Channel Attacks

Our architecture supports an inherent capability to treat simple power analy-
sis (SPA), or differential power analysis (DPA) and fault threats. Indeed, the
Montgomery ladder is particularly efficient to counter both side channel attacks
and fault attacks (no operation is dummy). Our finite state sequencer does not
have any branch capability, bits of k are only read at the beginning of each
Montgomery-ladder step to invert registers. Therefore no information leaks from
the computation time.

Moreover, randomness can be introduced at the very beginning of the al-
gorithm by changing G representation, replacing (xG, 1) by (xG × a1, a1) and
O = (a2, 0), where a1 and a2 are random values. This countermeasure avoids
Fouque’s attacks [6] on collisions. The only SPA vulnerability is address-bit SPA
attack [12], which is difficult to realize on real design. Moreover, to be DPA
resistant k may be added with a3 ×#Cp,a4,a6 where a3 is a random value. The
impact on speed is log(a3)/log(p) on the speed. There is no impact on the design
size. More robust randomizations of k are also possible.

60 N. Guillermin

4 Result and Comparison

In this section we give the overall results, and compare it to different architecture
given in the open literature.

4.1 Results

Our target technology is the Altera Stratix family. This choice has very few
impact on results compared to Xilinx Virtex family [18]. We chose Altera because
of the availability of the Quartus toolchain during the study. Among all the
Altera products, we focus on 2 generations. First Stratix are the Altera FPGA
at the 130 nm process node. The Xilinx equivalent is the Virtex II-pro. We also
have fit our design in the Stratix II generation FPGA (the 90 nm process node),
much more efficient. The equivalent is the Virtex IV by Xilinx.

We randomly chose elliptic curves of the following size : 160, 192, 256, 384
and 512 bits. No restriction were given for p, a4 and a6 but to be a valid elliptic
curve. The result given below does not depend on the effective choice of p but
only on log2(p). The number of Rower n as well as the word depth r are also
given. These values are the most efficient considering the curve size.

For every fit we give the considered FPGA family and the exact reference of
the chip. The maximum reachable frequency as well as the computation time for
a whole scalar multiplication [k]G are given. The size of the exponent k is the
same as the size of p. The final inversion, the y[k]G recalculation, the Radix-RNS
and RNS-Radix transformations are included in the result.

Eventually the FPGA occupation is given. The Stratix FPGA are composed
by logic elements (LE). LE are equivalent to the Look-Up Table (LUT) of the
Virtex II-pro. Therefore a Virtex II-pro slice counts for two LE. No equivalent to
the slice exists in the Stratix family. On the Stratix II family Altera introduced
the Altera Logic Module (ALM), the Virtex IV slice equivalent. The number of
used DSP blocks (multipliers) is also given. Altera gives the DSP occupation in
numbers of 9× 9 multipliers used. Stratix and Stratix II DSP blocks can indeed
be configured as one 36× 36 multiplier, two 18× 18 or eight 9× 9 multipliers.

Family curve model n r size DSP frequency speed
Stratix 160 EP1S20F484C5 5 34 11431 LE 74 92.6 0.57 ms

192 EP1S30F780C5 6 33 12480 LE 80 89.6 0.72 ms
256 EP1S60F780C5 8 33 16200 LE 125 90.7 1.17 ms
384 EP1S80F1020C5 11 36 25279 LE 176 90.0 2.25 ms

512 1 EP1S80F1020C5 15 35 48305 LE 176 79.6 4.03 ms
Stratix II 160 EP2S30F484C3 5 34 5896 ALM 74 165.5 0.32 ms

192 EP2S30F484C3 6 33 6203 ALM 92 160.5 0.44 ms
256 EP2S30F484C3 8 33 9177 ALM 96 157.2 0.68 ms
384 EP2S60F484C3 11 36 12958 ALM 177 150.9 1.35 ms
512 EP2S60F484C3 15 35 17017 ALM 244 144.97 2.23 ms

1 The EP1S80 does not have enough DSP blocks, multipliers are fitted in the LE
blocks, and frequency falls.

A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over Fp 61

The results given above show some properties of the chosen design. First the
maximum frequency hardly falls with the size of the design. Indeed, no carry is
propagated on the whole size of the operands due to RNS. The critical path is
then not related to the design structure. For some fit it is in the sequencer, and
for some other in a Rower. No further instruction has been given to the fitter
except the pursuit of the maximal frequency.

As speed was our main concern, no RAM blocks were used. If size is a matter,
ROMs and GPR may be fitted in RAM blocks, to spare logic. The Stratix family
lacks some DSP for 512 bit curves, while Stratix II have far enough resources to
fit for any cryptographic size (the EP2S60F484C3 is a middle size matrix in the
Stratix 2 family).

4.2 Comparison

In this subsection we compare our design with other papers in the open literature.
Our architecture supports any elliptic curve over Fp and is resistant to side
channel attacks. We compare it with 3 papers we consider significant:

– the first one is another design based on RNS. In this paper, modular multi-
plication is realized through an Horner scheme. To our knowledge it is the
only implementation using RNS for curves. It is realized by Schinianakis et
al [23]. It is implemented on an ASIC and on a FPGA.

– the second one is described in [11], and is based on a multi-precision algo-
rithm. The main idea is an important work on the pipeline architecture for
the classical multiprecision algorithm and on long word additions, through
carry-look adder. It is realized on a Virtex II-pro. The scalar multiplication is
based on a NAF recoding. This is to our knowledge the fastest implementa-
tion of elliptic curve scalar multiplication with generic curves. It outperforms
every implementation given in [13] and is as fast as [21] using less resources.

– the third one is described in [7]. The design is specific to a particular curve,
p being a pseudo Mersenne value. The main idea is a dual clock design,
according DSP blocks to run at their maximum speed in Virtex 4 design,
500 MHz. It is the fastest FPGA implementation of elliptic curve scalar
multiplication over Fp, but with restrictions on p.

paper curve FPGA family FPGA model size freq.(MHz) speed
This work 160 any Stratix EP1S20F484C5 11431 LE 92.6 0.57 ms

256 any Stratix EP1S60F780C5 16200 LE 90.7 1.17 ms
160 any Stratix II EP2S30F484C3 6203 ALM 165.5 0.32 ms
256 any Stratix II EP2S30F484C3 9177 ALM 157.2 0.68 ms

[23] 160 any Virtex XCV1000E-8 21000 LUT 58 1.77 ms
256 any Virtex XCV1000E-8 36000 LUT 39.7 3.95 ms

[11] 160 any Virtex II-pro XC2VP30 2171 sl. 72 1 ms
256 any Virtex II-pro XC2VP30 3529 sl. 67 2.27 ms

[7] 224 NIST Virtex 4 XC4VFX12 1580 sl. 487 0.36 ms
256 NIST Virtex 4 XC4VFX12 1715 sl. 490 0.49 ms

62 N. Guillermin

As a conclusion, our implementation is largely faster and smaller than [23].
Architecture [11] has got a better time surface trade-off (the ratio is about 1.5
if we consider that a Virtex 2 pro slice is equal to 2 Stratix LE, slices having
not correspondant in Stratix products). Nevertheless it does not compute k[G]
as fast as ours, even on comparable technologies. It is eventually not resistant
against side channel attacks. An overhead is needed to be SPA resistant. Ours
is natively SPA resistant.

Architecture described in [7] is faster and presents a better size-area tradeoff
regarding to ours (assuming that a Stratix II ALM and a Virtex IV slice are
equivalent, and only considering slices). Guneysu’s work only computes [k]P
over NIST curves, using pseudo-mersenne p. We can consider that using pseudo
mersenne primes reduces the time complexity by a factor between 2 and 1.68 if
lazy reduction is used. Then we can see that our results is competitive in term of
latency regarding to his for 224 bit, and becomes better for 256 bits. Moreover,
Guneysu’s clock speed (500 MHz) is particularly high and may represent an
obstacle for industrial integration, and for an ASIC implementation (making
the multipliers work twice as fast as the rest of the design would be impossible).
Of course it is difficult to realize a fair comparison at this point since the two
designs do not target the same curves, but RNS is a competitive alternative for
general Fp curves, especially for high security levels.

5 Conclusion

In this paper is presented a hardware architecture realizing elliptic curve scalar
multiplication over any curve in Fp, which uses RNS representations to speed
up the computation. RNS supports a wide parallelization capability for arith-
metic in Fp. The overhead given by the elementary operation (|a× b|m) is well
pipelineable, even with large pipelines (6 stages), and contrary to RSA, the in-
herent parallelism of elliptic curve operations allows to easily fill the pipeline.
Capability to support high clock frequency does not fall with the curve size.

In our future work, we will study other technologies like ASICs (with the usage
of RAMs instead of the actual ROMs, other curve shapes, or other operations
in elliptic curve cryptography, like pairings.

Acknowledgement : We would like to thank the anonymous referees for their
detailed review of this paper and their helpful suggestion. Thanks to David
Lubicz, Sylvain Duquesne and Jeremie Detrey for their contribution to this work.

References

1. Bajard, J.-C., Didier, L.-S., Kornerup, P.: An rns montgomery modular multipli-
cation algorithm. IEEE Transactions on Computers 47(7), 766–776 (1998)

2. Bajard, J.-C., Imbert, L., Liardet, P.-Y., Teglia, Y.: Leak resistant arithmetic.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 116–145.
Springer, Heidelberg (2004)

A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over Fp 63

3. Chen, L., Yanpu, C., Zhengzhong, B.: An implementation of fast algorithm for
elliptic curve cryptosystem over GF(p). Journal of Electronics (China) 21(4),
346–352 (2004)

4. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

5. Edwards, H.: A normal form for elliptic curves. Bull. Amer. Math. Soc. 44 (2007)
6. Fouque, P.-A., Valette, F.: The doubling attack – why upwards is better than down-

wards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 269–280. Springer, Heidelberg (2003)

7. Güneysu, T., Paar, C.: Ultra high performance ecc over nist primes on commercial
fpgas. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 62–78.
Springer, Heidelberg (2008)

8. Jarvinen, K.U., Skytta, J.O.: High-speed elliptic curve cryptography accelerator
for koblitz curves. In: Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 109–118 (2008)

9. Joye, M., Sung-Min-Yen: The montgomery powering ladder. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

10. Kawamura, S., Koike, M., Sano, F., Shimbo, A.: Cox-rower architecture for fast par-
allel montgomery multiplication. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 523–538. Springer, Heidelberg (2000)

11. Mentens, N.: Secure and Efficient Coprocessor Design for Cryptographic Applica-
tions on FPGAs. PhD thesis, Ruhr-University Bochum (2007)

12. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular
exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS,
vol. 1717, pp. 144–157. Springer, Heidelberg (1999)

13. de Dormale, G.M., Quisquater, J.-J.: High-speed hardware implementations of el-
liptic curve cryptography: A survey. J. Syst. Archit. 53(2-3), 72–84 (2007)

14. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

15. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44, 519–521 (1985)

16. Nozaki, H., Motoyama, M., Shimbo, A., Kawamura, S.-i.: Implementation of rsa
algorithm based on rns montgomery multiplication. In: Koç, Ç.K., Naccache, D.,
Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 364–376. Springer, Heidelberg
(2001)

17. National Institute of Science and Technology. The digital signature standard.
Technical report,
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf

18. White Paper. Stratix vs. virtex-ii pro fpga performance analysis. Technical report,
http://www.altera.com/literature/wp/wpstxvrtxII.pdf

19. Posch, K.C., Posch, R.: Modulo reduction in residue number systems. IEEE Trans.
Parallel Distrib. Syst. 6(5), 449–454 (1995)

20. Ecegovac, M., Duquesne, S., Bajard, J.C.: Combining leak-resistant arithmetic for
elliptic curves define over Fp and rns representation

21. Sakiyama, K., Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: Reconfig-
urable modular arithmetic logic unit for high-performance public-key cryptosys-
tems. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds.) ARC 2006. LNCS,
vol. 3985, pp. 347–357. Springer, Heidelberg (2006)

http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://www.altera.com/literature/wp/wpstxvrtxII.pdf

64 N. Guillermin

22. Satoh, A., Takano, K.: A scalable dual-field elliptic curve cryptographic processor.
IEEE Transactions on Computers 52, 449–460 (2003)

23. Schinianakis, D.M., Fournaris, A.P., Michail, H.E., Kakarountas, A.P., Stouraitis,
T.: An rns implementation of an fpelliptic curve point multiplier. Trans. Cir. Sys.
Part I 56(6), 1202–1213 (2009)

24. Shenoy, P.P., Kumaresan, R.: Fast base extension using a redundant modulus in
rns. IEEE Trans. Comput. 38(2), 292–297 (1989)

25. Szerwinski, R., Gayneysu, T.: Exploiting the power of GPUs for asymmetric cryp-
tography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
79–99. Springer, Heidelberg (2008)

Co-Z Addition Formulæ and Binary Ladders on
Elliptic Curves

(Extended Abstract)

Raveen R. Goundar1, Marc Joye2, and Atsuko Miyaji1

1 Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

raveen.rg@gmail.com, miyaji@jaist.ac.jp
2 Technicolor, Security & Content Protection Labs

1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France
marc.joye@technicolor.com

Abstract. Meloni recently introduced a new type of arithmetic on elliptic curves
when adding projective points sharing the same Z-coordinate. This paper presents
further co-Z addition formulæ for various point additions on Weierstraß elliptic
curves. It explains how the use of conjugate point addition and other implementa-
tion tricks allow one to develop efficient scalar multiplication algorithms making
use of co-Z arithmetic. Specifically, this paper describes efficient co-Z based
versions of Montgomery ladder and Joye’s double-add algorithm. Further, the re-
sulting implementations are protected against a large variety of implementation
attacks.

Keywords: Elliptic curves, Meloni’s technique, Jacobian coordinates, regular bi-
nary ladders, implementation attacks, embedded systems.

1 Introduction

Elliptic curve cryptography (ECC), introduced independently by Koblitz [16] and
Miller [23] in the mid-eighties, shows an increasing impact in our everyday lives where
the use of memory-constrained devices such as smart cards and other embedded sys-
tems is ubiquitous. Its main advantage resides in a smaller key size. The efficiency of
ECC is dominated by an operation called scalar multiplication, denoted as kP where
P ∈ E(Fq) is a rational point on an elliptic curve E/Fq and k acts as a secret scalar.
This means adding a point P on elliptic curve E, k times. In constrained environments,
scalar multiplication is usually implemented through binary methods, which take on
input the binary representation of scalar k.

There are many techniques proposed in the literature aiming at improving the effi-
ciency of ECC. They rely on explicit addition formulæ, alternative curve parameteriza-
tions, extended point representations, extended coordinate systems, or higher-radix or
non-standard scalar representations. See e.g. [1] for a survey of some techniques.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 65–79, 2010.
c© International Association for Cryptologic Research 2010

66 R.R. Goundar, M. Joye, and A. Miyaji

In this paper, we target the basic operation, namely the point addition. More specif-
ically, we propose new co-Z addition formulæ. Co-Z arithmetic was introduced by
Meloni in [22] as a means to efficiently add two projective points sharing the same
Z-coordinate. The initial co-Z addition formula proposed by Meloni greatly improves
on the general point addition. The drawback is that this fast formula is by construction
limited to Euclidean addition chains. The efficiency being dependent on the length of
the chain, Meloni suggests to represent scalar k in the computation of kP with the
so-called Zeckendorf’s representation and proposes a “Fibonacci-and-add” algorithm.
The resulting algorithm is efficient but still slower than its binary counterparts. We
take a completely different approach in this paper and consider conjugate point addi-
tion [11,19]. The basic observation is that the addition of two points, R = P + Q,
yields almost for free the value of their difference, S = P −Q. This combined oper-
ation is referred to as a conjugate point addition. We propose efficient conjugate point
addition formulæ making use of co-Z arithmetic and develop a new strategy for the
efficient implementation of scalar multiplications. Specifically, we show that the Mont-
gomery ladder [24] and its dual version [14] can be adapted to accommodate our new
co-Z formulæ. As a result, we get efficient co-Z based scalar multiplication algorithms
using the regular binary representation.

Last but not least, our scalar multiplication algorithms resist against certain im-
plementation attacks. Because they are built on highly regular algorithms, our algo-
rithms inherit of their security features. In particular, they are naturally protected against
SPA-type attacks [17] and safe-error attacks [26,27]. Moreover, they can be combined
with other known countermeasures to protect against other classes of attacks. Finally,
we note that, unlike [5,9,13,21], our version of the Montgomery ladder makes use of
the complete point coordinates and so offers a better resistance against (regular) fault
attacks [4].

2 Preliminaries

Let Fq be a finite field with characteristic �= 2, 3. Consider an elliptic curve E over Fq

given by the Weierstraß equation y2 = x3 +ax+ b, with discriminant Δ = −16(4a3 +
27b2) �= 0. This section explains how to get efficient arithmetic on elliptic curves over
Fq. The efficiency is measured in terms of field multiplications and squarings. The cost
of field additions is neglected. We let M and S denote the cost of a multiplication and
of a squaring in Fq , respectively. A typical ratio is S/M = 0.8.

2.1 Jacobian Coordinates

In order to avoid the computation of inverses in Fq, it is advantageous to make use of
Jacobian coordinates. A finite point (x, y) is then represented by a triplet (X : Y : Z)
such that x = X/Z2 and y = Y/Z3. The curve equation becomes

E/Fq
: Y 2 = X3 + aXZ4 + bZ6 .

Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves 67

The point at infinity, O, is the only point with a Z-coordinate equal to 0. It is
represented by O = (1 : 1 : 0). Note that, for any nonzero λ ∈ Fq, the triplets
(λ2X : λ3Y : λZ) represent the same point.

It is well known that the set of points on an elliptic curve form a group under the
chord-and-tangent law. The neutral element is the point at infinity O. Let P = (X1 :
Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points on E, with P , Q �= O. The inverse of
P is −P = (X1 : −Y1 : Z1). If P = −Q then P + Q = O. If P �= ±Q then their
sum P + Q is given by (X3 : Y3 : Z3) where

X3 = R2 + G− 2V, Y3 = R(V −X3)− 2K1G, Z3 = ((Z1 + Z2)2 − I1 − I2)H

with R = 2(K1 −K2), G = FH , V = U1F , K1 = Y1J2, K2 = Y2J1, F = (2H)2,
H = U1 − U2, U1 = X1I2, U2 = X2I1, J1 = I1Z1, J2 = I2Z2, I1 = Z1

2 and
I2 = Z2

2 [7].1 We see that that the addition of two (different) points requires 11M + 5S.
The double of P = (X1 : Y1 : Z1) (i.e., when P = Q) is given by (X(2P) :

Y(2P) : Z(2P)) where

X(2P) = M2−2S, Y(2P) = M(S−X(2P))−8L, Z(2P) = (Y1 +Z1)2−E−N

with M = 3B + a N2, S = 2((X1 + E)2−B−L), L = E2, B = X1
2, E = Y1

2 and
N = Z1

2 [2]. Hence, the double of a point can be obtained with 1M + 8S + 1c, where
c denotes the cost of a multiplication by curve parameter a.

An interesting case is when curve parameter a is a = −3, in which case point dou-
bling costs 3M + 5S [6]. In the general case, point doubling can be sped up by repre-
senting points (Xi : Yi : Zi) with an additional coordinate, namely Ti = aZi

4. This
extended representation is referred to as modified Jacobian coordinates [7]. The cost of
point doubling drops to 3M + 5S at the expense of a slower point addition.

2.2 Co-Z Point Addition

In [22], Meloni considers the case of adding two (different) points having the same Z-
coordinate. When points P and Q share the same Z-coordinate, say P = (X1 : Y1 : Z)
and Q = (X2 : Y2 : Z), then their sum P + Q = (X3 : Y3 : Z3) can be evaluated
faster as

X3 = D −W1 −W2, Y3 = (Y1 − Y2)(W1 −X3)−A1, Z3 = Z(X1 −X2)

with A1 = Y1(W1 − W2), W1 = X1C, W2 = X2C, C = (X1 − X2)2 and D =
(Y1 − Y2)2. This operation is referred to as the ZADD operation. The key observation
in Meloni’s addition is that the computation of R = P +Q yields for free an equivalent
representation for input point P with its Z-coordinate equal to that of output point R,
namely

(X1(X1 −X2)2 : Y1(X1 −X2)3 : Z3) = (W1 : A1 : Z3) ∼ P .

1 Actually, Cohen et al. in [7] reports formulæ in 12M + 4S. The above formulæ in 11M + 5S
are essentially the same: A multiplication is traded against a squaring in the expression of Z3

by computing Z1 · Z2 as (Z1 + Z2)2 − Z1
2 − Z2

2. See [2,18].

68 R.R. Goundar, M. Joye, and A. Miyaji

The corresponding operation is denoted ZADDU (i.e., ZADD with update) and is
presented in Algorithm 1. It is readily seen that it requires 5M + 2S.

Algorithm 1. Co-Z point addition with update (ZADDU)
Require: P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z)
Ensure: (R, P) ← ZADDU(P , Q) where R ← P +Q = (X3 : Y3 : Z3) and P ← (λ2X1 :

λ3Y1 : Z3) with Z3 = λZ1 for some λ �= 0

function ZADDU(P , Q)
C ← (X1 − X2)2

W1 ← X1C; W2 ← X2C
D ← (Y1 − Y2)2; A1 ← Y1(W1 − W2)
X3 ← D − W1 − W2; Y3 ← (Y1 − Y2)(W1 − X3) − A1; Z3 ← Z(X1 − X2)
X1 ← W1; Y1 ← A1; Z1 ← Z3

end function

3 Binary Scalar Multiplication Algorithms

This section discusses known scalar multiplication algorithms. Given a point P in
E(Fq) and a scalar k ∈ N, the scalar multiplication is the operation consisting in
calculating Q = kP — that is, P + · · ·+ P (k times).

We focus on binary methods, taking on input the binary representation of scalar k,
k = (kn−1, . . . , k0)2 with ki ∈ {0, 1}, 0 � i � n − 1. The corresponding algorithms
present the advantage of demanding low memory requirements and are therefore well
suited for memory-constrained devices like smart cards.

A classical method for evaluating Q = kP exploits the obvious relation that kP =
2(�k/2�P) if k is even and kP = 2(�k/2�P) + P if k is odd. Iterating the process
then yields a scalar multiplication algorithm, left-to-right scanning scalar k. The result-
ing algorithm, also known as double-and-add algorithm, is depicted in Algorithm 2.
It requires two (point) registers, R0 and R1. Register R0 acts as an accumulator and
register R1 is used to store the value of input point P .

Algorithm 2. Left-to-right binary method
Input: P ∈ E(Fq) and k=(kn−1, . . . , k0)2∈N

Output: Q = kP

1: R0 ← O; R1 ← P
2: for i = n − 1 down to 0 do
3: R0 ← 2R0

4: if (ki = 1) then R0 ← R0 + R1

5: end for
6: return R0

Algorithm 3. Montgomery ladder
Input:P ∈E(Fq) and k=(kn−1, . . . , k0)2∈ N

Output: Q = kP

1: R0 ← O; R1 ← P
2: for i = n − 1 down to 0 do
3: b ← ki; R1−b ← R1−b + Rb

4: Rb ← 2Rb

5: end for
6: return R0

Although efficient (memory- and computation-wise), the left-to-right binary method
is subject to SPA-type attacks [17]. From a power trace, an adversary able to distinguish
between point doublings and point additions can easily recover the value of scalar k.

Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves 69

A simple countermeasure is to insert a dummy point addition when scalar bit ki is 0.
Using an additional (point) register, say R−1, Line 4 in Algorithm 2 can be replaced
with R−ki ← R−ki + R1. The so-obtained algorithm, called double-and-add-always
algorithm [8], now appears as a regular succession of a point doubling followed by
a point addition. However, it also becomes subject to safe-error attacks [26,27]. By
timely inducing a fault at iteration i during the point addition R−ki ← R−ki + R1,
an adversary can determine whether the operation is dummy or not by checking the
correctness of the output, and so deduce the value of scalar bit ki. If the output is correct
then ki = 0 (dummy point addition); if not, ki = 1 (effective point addition).

A scalar multiplication algorithm featuring a regular structure without dummy op-
eration is the so-called Montgomery ladder [24] (see also [15]). It is detailed in Algo-
rithm 3. Each iteration is comprised of a point addition followed by a point doubling.
Further, compared to the double-and-add-always algorithm, it only requires two (point)
registers and all involved operations are effective. Montgomery ladder provides thus a
natural protection against SPA-type attacks and safe-error attacks. A useful property
of Montgomery ladder is that its main loop keeps invariant the difference between
R1 and R0. Indeed, if we let Rb

(new) = Rb + R1−b and R1−b
(new) = 2R1−b

denote the registers after the updating step, we observe that Rb
(new) − R1−b

(new) =
(Rb + R1−b) − 2R1−b = Rb −R1−b. This allows one to compute scalar multipli-
cations on elliptic curves using the x-coordinate only [24] (see also [5,9,13,21]).

Algorithm 4. Right-to-left binary method
Input: P ∈E(Fq) and k=(kn−1, . . . , k0)2 ∈ N

Output: Q = kP

1: R0 ← O; R1 ← P
2: for i = 0 to n − 1 do
3: if (ki = 1) then R0 ← R0 + R1

4: R1 ← 2R1

5: end for
6: return R0

Algorithm 5. Joye’s double-add
Input:P ∈E(Fq) and k=(kn−1, . . . , k0)2∈ N

Output: Q = kP

1: R0 ← O; R1 ← P
2: for i = 0 to n − 1 do
3: b ← ki

4: R1−b ← 2R1−b + Rb

5: end for
6: return R0

There exists a right-to-left variant of Algorithm 2. This is another classical method
for evaluating Q = kP . It stems from the observation that, letting k =

∑n−1
i=0 ki 2i

the binary expansion of k, we can write kP =
∑

ki=1 2iP . A first (point) register R0

serves as an accumulator and a second (point) register R1 is used to contain the suc-
cessive values of 2iP , 0 � i � n − 1. When ki = 1, R1 is added to R0. Register
R1 is then updated as R1 ← 2R1 so that at iteration i it contains 2iP . The detailed
algorithm is presented in Algorithm 4. It suffers from the same deficiency as the one
of the left-to-right variant (Algorithm 2); namely, it is not protected against SPA-type
attacks. Again, the insertion of a dummy point addition when ki = 0 can preclude these
attacks. Using an additional (point) register, say R−1, Line 3 in Algorithm 4 can be
replaced with Rki−1 ← Rki−1 + R1. But the resulting implementation is then prone
to safe-error attacks. The right way to implement it is to effectively make use of both

70 R.R. Goundar, M. Joye, and A. Miyaji

R0 and R−1 [14]. It is easily seen that in Algorithm 4 when using the dummy point
addition (i.e., when Line 3 is replaced with Rki−1 ← Rki−1 + R1), register R−1

contains the “complementary” value of R0. Indeed, before entering iteration i, we have
R0 =

∑
kj=1 2jP and R−1 =

∑
kj=0 2jP , 0 � j � i − 1. As a result, we have

R0 + R−1 =
∑i−1

j=0 2jP = (2i − 1)P . Hence, initializing R−1 to P , the successive
values of 2iP can be equivalently obtained from R0 + R−1. Summing up, the right-
to-left binary method becomes

1: R0 ← O; R−1 ← P ; R1 ← P
2: for i = 0 to n− 1 do
3: b← ki; Rb−1 ← Rb−1 + R1

4: R1 ← R0 + R−1

5: end for
6: return R0

Performing a point addition when ki = 0 in the previous algorithm requires one more
(point) register. When memory is scarce, an alternative is to rely on Joye’s double-
add algorithm [14]. As in Montgomery ladder, it always repeats a same pattern of
[effective] operations and requires only two (point) registers. The algorithm is given
in Algorithm 5. It corresponds to the above algorithm where R−1 is renamed as R1.
Observe that the for-loop in the above algorithm can be rewritten into a single step as
Rb−1 ← Rb−1 + R1 = Rb−1 + (R0 + R−1) = 2Rb−1 + R−b.

4 New Implementations

In [22], Meloni exploited the ZADD operation to propose scalar multiplications based
on Euclidean addition chains and Zeckendorf’s representation. In this section, we aim at
making use of ZADD-like operations when designing scalar multiplication algorithms
based on the classical binary representation. The crucial factor for implementing such
an algorithm is to generate two points with the same Z-coordinate at every bit execution
of scalar k.

To this end, we introduce a new operation referred to as conjugate co-Z addition
and denoted ZADDC (for ZADD conjugate), using the efficient caching technique as
described in [11,19]. This operation evaluates (X3 : Y3 : Z3) = P + Q = R with
P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z), together with the value of P −
Q = S where S and R share the same Z-coordinate equal to Z3. We have −Q =
(X2 : −Y2 : Z). Hence, letting (X3 : Y3 : Z3) = P − Q, it is easily verified
that X3 = (Y1 + Y2)2 − W1 − W2 and Y3 = (Y1 + Y2)(W1 − X3) − A1, where
W1, W2 and A1 are computed during the course of P + Q (cf. Algorithm 1). The
additional cost for getting P − Q from P + Q is thus of only 1M + 1S. Hence, the
total cost for the ZADDC operation is of 6M + 3S. The detailed algorithm is given
hereafter.

Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves 71

Algorithm 6. Conjugate co-Z point addition (ZADDC)
Require: P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z)
Ensure: (R, S) ← ZADDC(P , Q) where R ← P +Q = (X3 : Y3 : Z3) and S ← P −Q =

(X3 : Y3 : Z3)

function ZADDC(P , Q)
C ← (X1 − X2)2

W1 ← X1C; W2 ← X2C
D ← (Y1 − Y2)2; A1 ← Y1(W1 − W2)
X3 ← D − W1 − W2; Y3 ← (Y1 − Y2)(W1 − X3) − A1; Z3 ← Z(X1 − X2)
D ← (Y1 + Y2)2

X3 ← D − W1 − W2; Y3 ← (Y1 + Y2)(W1 − X3) − A1

end function

4.1 Left-to-Right Scalar Multiplication

The main loop of Montgomery ladder (Algorithm 3) repeatedly evaluates the same two
operations, namely

R1−b ← R1−b + Rb; Rb ← 2Rb .

We explain hereafter how to efficiently carry out this computation using co-Z arithmetic
for elliptic curves.

First note that 2Rb can equivalently be rewritten as (Rb + R1−b) + (Rb −R1−b).
So if T represents a temporary (point) register, the main loop of Montgomery ladder
can be replaced with

T ← Rb −R1−b

R1−b ← Rb + R1−b; Rb ← R1−b + T .

Suppose now that Rb and R1−b share the same Z-coordinate. Using Algorithm 6, we
can compute (R1−b, T)← ZADDC(Rb, R1−b). This requires 6M+3S. At this stage,
observe that R1−b and T have the same Z-coordinate. Hence, we can directly apply
Algorithm 1 to get (Rb, R1−b) ← ZADDU(R1−b, T). This requires 5M+2S. Again,
observe that Rb and R1−b share the same Z-coordinate at the end of the computation.
The process can consequently be iterated. The total cost per bit amounts to 11M + 5S
but can be reduced to 9M + 7S (see § 4.4) by trading two (field) multiplications against
two (field) squarings.

In the original Montgomery ladder, registers R0 and R1 are respectively initial-
ized with point at infinity O and input point P . Since O is the only point with its
Z-coordinate equal to 0, assuming that kn−1 = 1, we start the loop counter at i = n−2
and initialize R0 to P and R1 to 2P . It remains to ensure that the representations of P
and 2P have the same Z-coordinate. This is achieved thanks to the DBLU operation
(see § 4.3).

Putting all together, we so obtain the following implementation of the Montgomery
ladder. Remark that register Rb plays the role of temporary register T .

72 R.R. Goundar, M. Joye, and A. Miyaji

Algorithm 7. Montgomery ladder with co-Z addition formulæ
Input: P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with kn−1 = 1
Output: Q = kP

1: R0 ← P ; (R1, R0) ← DBLU(R0)
2: for i = n − 2 down to 0 do
3: b ← ki

4: (R1−b, Rb) ← ZADDC(Rb , R1−b)
5: (Rb, R1−b) ← ZADDU(R1−b, Rb)
6: end for
7: return R0

4.2 Right-to-Left Scalar Multiplication Algorithm

As noticed in [14], Joye’s double-add algorithm (Algorithm 5) is to some extent the
dual of the Montgomery ladder. This appears more clearly by performing the double-
add operation of the main loop, R1−b ← 2R1−b + Rb, in two steps as

T ← R1−b + Rb; R1−b ← T + R1−b

using some temporary register T . If, at the beginning of the computation, Rb and R1−b

have the same Z-coordinate, two consecutive applications of the ZADDU algorithm
allows one to evaluate the above expression with 2× (5M + 2S). Moreover, one has to
take care that Rb and R1−b have the same Z-coordinate at the end of the computation
in order to make the process iterative. This can be done with an additional 3M.

But there is a more efficient way to get the equivalent representation for Rb. The
value of Rb is unchanged during the evaluation of

(T , R1−b) ← ZADDU(R1−b, Rb); (R1−b, T)← ZADDU(T , R1−b)

and thus Rb = T −R1−b — where R1−b is the initial input value. The latter ZADDU
operation can therefore be replaced with a ZADDC operation; i.e.,

(R1−b, Rb)← ZADDC(T , R1−b)

to get the expected result. The advantage of doing so is that Rb and R1−b have the
same Z-coordinate without additional work. This yields a total cost per bit of 11M+5S
for the main loop.

It remains to ensure that registers R0 and R1 are initialized with points sharing the
same Z-coordinate. For the Montgomery ladder, we assumed that kn−1 was equal to
1. Here, we will assume that k0 is equal to 1 to avoid to deal with the point at infin-
ity. This condition can be automatically satisfied using certain DPA-type countermea-
sures (see § 5.2). Alternative strategies are described in [14]. The value k0 = 1 leads
to R0 ← P and R1 ← P . The two registers have obviously the same Z-coordinate
but are not different. The trick is to start the loop counter at i = 2 and to initialize
R0 and R1 according the bit value of k1. If k1 = 0 we end up with R0 ← P and

Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves 73

R1 ← 3P , and conversely if k1 = 1 with R0 ← 3P and R1 ← P . The TPLU
operation (see § 4.3) ensures that this is done so that the Z-coordinates are the same.

The complete resulting algorithm is depicted below. As for our implementation of
the Montgomery ladder (Algorithm 7), remark that temporary register T is played by
register Rb.

Algorithm 8. Joye’s double-add algorithm with co-Z addition formulæ
Input: P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with k0 = 1
Output: Q = kP

1: b ← k1; Rb ← P ; (R1−b, Rb) ← TPLU(Rb)
2: for i = 2 to n − 1 do
3: b ← ki

4: (Rb, R1−b) ← ZADDU(R1−b, Rb)
5: (R1−b, Rb) ← ZADDC(Rb , R1−b)
6: end for
7: return R0

It is striking to see the resemblance (or duality) between Algorithm 7 and Algo-
rithm 8: they involve the same co-Z operations (but in reverse order) and scan scalar k
in reverse directions.

4.3 Point Doubling and Tripling

Algorithms 7 and 8 respectively require a point doubling and a point tripling operation
updating the input point. We describe how this can be implemented.

Initial Doubling Point. We have seen in Section 2 that the double of point P = (X1 :
Y1 : Z1) can be obtained with 1M + 8S + 1c. By setting Z1 = 1, the cost drops to
1M + 5S:

X(2P) = M2 − 2S, Y(2P) = M(S −X(2P))− 8L, Z(2P) = 2Y1

with M = 3B + a, S = 2((X1 + E)2 − B − L), L = E2, B = X1
2, and E = Y1

2.
Since Z(2P) = 2Y1, it follows that

(S : 8L : Z(2P)) ∼ P with S = 4X1Y1
2 and L = Y1

4

is an equivalent representation for point P . Updating point P such that its Z-coordinate
is equal to that of 2P comes thus for free. We let (2P , P̃) ← DBLU(P) denote the
corresponding operation, where P̃ ∼ P and Z(P̃) = Z(2P). The cost of DBLU
operation (doubling with update) is 1M + 5S.

Initial Tripling Point. The triple of P = (X1 : Y1 : 1) can be evaluated as 3P = P +
2P using co-Z arithmetic [20]. From (2P , P̃) ← DBLU(P), this can be obtained as

74 R.R. Goundar, M. Joye, and A. Miyaji

ZADDU(P̃ , 2P) with 5M+2S and no additional cost to update P for its Z-coordinate
becoming equal to that of 3P . The corresponding operation, tripling with update, is
denoted TPLU(P) and its total cost is of 6M + 7S.

4.4 Combined Double-Add Operation

A point doubling-addition is the evaluation of R = 2P + Q. This can be done in
two steps as T ← P + Q followed by R ← P + T . If P and Q have the same
Z-coordinate, this requires 10M + 4S by two consecutive applications of the ZADDU
function (Algorithm 1).

Things are slightly more complex if we wish that R and Q share the same
Z-coordinate at the end of the computation. But if we compare the original Joye’s
double-add algorithm (Algorithm 5) and the corresponding algorithm we got us-
ing co-Z arithmetic (Algorithm 8), this is actually what is achieved. We can com-
pute (T , P) ← ZADDU(P , Q) followed by (R, Q) ← ZADDC(T , P). We let
(R, Q) ← ZDAU(P , Q) denote the corresponding operation (ZDAU stands for co-
Z double-add with update).

Algorithmically, we have:

1: C′ ← (X1 −X2)2

2: W ′
1 ← X1C

′; W ′
2 ← X2C

′

3: D′ ← (Y1 − Y2)2; A′
1 ← Y1(W ′

1 −W ′
2)

4: X ′
3 ← D′−W ′

1−W ′
2; Y ′

3 ← (Y1−Y2)(W ′
1−X ′

3)−A′
1; Z ′

3 ← Z(X1−X2)
5: X1 ←W ′

1; Y1 ← A′
1; Z1 ← Z ′

3
6: C ← (X ′

3 −X1)2

7: W1 ← X ′
3C; W2 ← X1C

8: D ← (Y ′
3 − Y1)2; A1 ← Y ′

3(W1 −W2)
9: X3 ← D−W1−W2; Y3 ← (Y ′

3−Y1)(W1−X3)−A1; Z3 ← Z ′
3(X

′
3−X1)

10: D ← (Y ′
3 + Y1)2

11: X2 ← D −W1 −W2; Y2 ← (Y ′
3 + Y1)(W1 −X2)−A1; Z2 ← Z3

A close inspection of the above algorithm shows that two (field) multiplications can be
traded against two (field) squarings. Indeed, with the same notations, we have:

2Y ′
3 = (Y1 − Y2 + W ′

1 −X ′
3)

2 −D′ − C − 2A′
1 .

Also, we can skip the intermediate computation of Z ′
3 = Z(X1 − X2) and obtain

directly 2Z3 = 2Z(X1 −X2)(X ′
3 −X1) as

2Z3 = Z
(
(X1 −X2 + X ′

3 −X1)2 − C′ − C
)

.

These modifications (in Lines 4 and 9) require some rescaling. For further optimiza-
tion, some redundant or unused variables are suppressed. The resulting algorithm is
detailed hereafter (Algorithm 9). It clearly appears that the ZDAU operation only re-
quires 9M + 7S.

Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves 75

Algorithm 9. Co-Z point doubling-addition with update (ZDAU)
Require: P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z)
Ensure: (R, Q) ← ZDAU(P , Q) where R ← 2P + Q = (X3 : Y3 : Z3) and Q ← (λ2X2 :

λ3Y2 : Z3) with Z3 = λZ for some λ �= 0

function ZDAU(P , Q)
C′ ← (X1 − X2)2

W ′
1 ← X1C

′; W ′
2 ← X2C

′

D′ ← (Y1 − Y2)2; A′
1 ← Y1(W ′

1 − W ′
2)

X̂ ′
3 ← D′ − W ′

1 − W ′
2

C ← (X̂ ′
3 − W ′

1)2

Y ′
3 ← [(Y1 − Y2) + (W ′

1 − X̂ ′
3)]2 − D′ − C − 2A′

1

W1 ← 4X̂ ′
3C; W2 ← 4W ′

1C
D ← (Y ′

3 − 2A′
1)2; A1 ← Y ′

3(W1 − W2)
X3 ← D − W1 − W2; Y3 ← (Y ′

3 − 2A′
1)(W1 − X3) − A1

Z3 ← Z
(
(X1 − X2 + X̂ ′

3 − W ′
1)2 − C′ − C

)
D ← (Y ′

3 + 2A′
1)2

X2 ← D − W1 − W2; Y2 ← (Y ′
3 + 2A′

1)(W1 − X2) − A1; Z2 ← Z3

end function

The combined ZDAU operation immediately gives rise to an alternative implemen-
tation of Joye’s double-add algorithm (Algorithm 5). Compared to our first implemen-
tation (Algorithm 8), the cost per bit amounts to 9M + 7S (instead of 11M + 5S).

Algorithm 10. Joye’s double-add algorithm with co-Z addition formulæ (II)
Input: P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with k0 = 1
Output: Q = kP

1: b ← k1; Rb ← P ; (R1−b, Rb) ← TPLU(Rb)
2: for i = 2 to n − 1 do
3: b ← ki

4: (R1−b, Rb) ← ZDAU(R1−b, Rb)
5: end for
6: return R0

Similar savings can be obtained for our implementation of the Montgomery ladder
(i.e., Algorithm 7). However, as the ZADDU and ZADDC operations appear in reverse
order, it is more difficult to handle. It is easy to trade 1M against 1S. In order to trade
2M against 2S, one has to consider two bits of scalar k at a time so as to allow to have
the ZADDC operation performed prior to the ZADDU operation. The two previous
M/S trade-offs can then be applied.

76 R.R. Goundar, M. Joye, and A. Miyaji

5 Discussion

5.1 Performance Analysis

Table 1 summarizes the cost of different types of addition and doubling-addition for-
mulæ on elliptic curves. Each type of formula presents its own advantages depending
on the coordinate system and the underlying scalar multiplication algorithm. Symbols
J and A respectively stand for Jacobian coordinates and affine coordinates.

Table 1. Performance comparison of addition and doubling-addition formulæ

Operation Notation System Cost

Point addition:
− General addition [2] ADD (J ,J) → J 11M + 5S
− Co-Z addition [22] ZADD (J ,J) → J 5M + 2S
− Co-Z addition with update [22]a ZADDU (J ,J) → J 5M + 2S
− General conjugate addition [19] ADDC (J ,J) → J 12M + 6S
− Conjugate co-Z addition (Alg. 6) ZADDC (J ,J) → J 6M + 3S

Point doubling-addition:
− General doubling-addition [18] DA (J ,J) → J 13M + 8S
− Mixed doubling-addition [20] mDA (J ,A) → J 11M + 7S
− Co-Z doubling-addition with update (Alg. 9) ZDAU (J ,J) → J 9M + 7S

a See also Algorithm 1.

For the sake of comparison, we consider the typical ratio S/M = 0.8. Similar re-
sults can easily be derived for other ratios. We see that the co-Z addition (with or
without update) improves the general addition by a speed-up factor of 56%. Almost
as well, our conjugate co-Z addition formula improves the general conjugate addition
by a factor of 50%. For the doubling-addition operations, our co-Z formula (including
the update) is always faster; it is even faster than the best mixed doubling-addition for-
mula. It yields a respective speed-up factor of 25% and of 12% compared to the general
doubling-addition and to the mixed doubling-addition. In addition to speed, our new for-
mulæ are also very efficient memory-wise. See [12, Appendix A] for detailed register
allocations.

Table 2 compares the performance of our co-Z implementations with previous ones.
Our improved right-to-left co-Z scalar multiplication algorithm (i.e., Algorithm 10)
requires 9M + 7S per bit of scalar k. An application of Joye’s double-add algorithm
with the best doubling-addition (DA) formula [18] requires 13M + 8S per bit. Hence,
with the usual ratio S/M = 0.8, our co-Z version of Joye’s double-add algorithm yields
a speed-up factor of 25%.

Furthermore, our left-to-right co-Z algorithm (i.e., Algorithm 7 as modified in § 4.4)
offers a speed competitive with known implementations of Montgomery ladder for

Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves 77

Table 2. Performance comparison of scalar multiplication algorithm

Algorithm Operations Cost per bit

Joye’s double-add algorithm [14]: R → L
− Basic version DA 13M + 8S
− Co-Z version (Algorithm 10) ZDAU 9M + 7S

Montgomery ladder [24]: L → R
− Basic version DBL and ADD 14M + 10Sa

− X-only version [5,9,13] XDBL and XADD 9M + 7Sb

− Co-Z version (Algorithm 7) ZADDC and ZADDU 9M + 7Sc

a The cost assumes that curve parameter a is equal to −3. This allows the use of the faster point
doubling formula: 3M + 5S instead of 1M + 8S + 1c; cf. Section 2.

b The cost assumes that multiplications by curve parameter a are negligible; e.g., a = −3.
It also assumes that input point P is given in affine coordinates; i.e., Z(P) = 1. See [12,
Appendix B] for a detailed implementation.

c With the improvements mentioned in § 4.4. The direct implementation of Algorithm 7 has a
cost of 11M + 5S per bit.

general2 elliptic curves. It only requires 9M+7S per bit of scalar k. Moreover, we note
that this cost is independent of the curve parameters.

5.2 Security Considerations

As explained in Section 3, Montgomery ladder and Joye’s double-add algorithm
are naturally protected against SPA-type attacks and safe-error attacks. Since our
implementations are built on them and maintain the same regular pattern of instructions
without using dummy instructions, they inherit of the same security features. More-
over, our proposed co-Z versions (i.e., Algorithms 7, 8 and 10) can be protected against
DPA-type attacks; cf. [1, Chapter 29] for several methods.

Yet another important class of attacks against implementations are the fault at-
tacks [3,4]. An additional advantage of Algorithm 7 (and of Algorithms 8 and 10) is
that it is easy to assess the correctness of the computation by checking whether the
output point belongs to the curve. We remark that the X-only versions of Montgomery
ladder ([5,9,13]) do not permit it and so may be subject to (regular) fault attacks, as was
demonstrated in [10].

6 Conclusion

Co-Z arithmetic as developed by Meloni provides an extremely fast point addition for-
mula. So far, their usage for scalar multiplication algorithms was confined to Euclidean
addition chains and the Zeckendorf’s representation. In this paper, we developed new

2 Montgomery introduced in [24] a curve shape that nicely combines with the X-only ladder,
leading to a better cost per bit. But this shape does not cover all classes of elliptic curves. In
particular, it does not apply to NIST recommended curves [25, Appendix D].

78 R.R. Goundar, M. Joye, and A. Miyaji

strategies and proposed a co-Z conjugate point addition formula as well as other com-
panion co-Z formulæ. The merit of our approach resides in that the fast co-Z arithmetic
nicely combines with certain binary ladders. Specifically, we applied co-Z techniques
to Montgomery ladder and Joye’s double-add algorithm. The so-obtained implementa-
tions are efficient and protected against a variety of implementation attacks. All in all,
the implementations presented in this paper constitute a method of choice for the effi-
cient yet secure implementation of elliptic curve cryptography in embedded systems or
other memory-constrained devices.

As a side result, this paper also proposed the fastest point doubling-addition formula.

Acknowledgments. The authors would like to thank Jean-Luc Beuchat, Francisco
Rodrı̀guez Henrı̀quez, Patrick Longa, and Francesco Sica for helpful discussions. We
would also like to thank the anonymous referees for their useful comments. In particu-
lar, we thank the referee pointing out that the cost with the Montgomery ladder can be
reduced to 9M + 7S per bit for general elliptic curves.

References

1. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Hand-
book of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005)

2. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD/jacobian.html

3. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryptosystems.
In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146. Springer, Heidelberg
(2000)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in crypto-
graphic computations. Journal of Cryptology 14(2), 110–119 (2001); Extended abstract in
Proc. of EUROCRYPT’97 (1997)

5. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Naccache, D.,
Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg (2002)

6. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition in formal
groups and new primality and factorization tests. Advances in Applied Mathematics 7(4),
385–434 (1986)

7. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordi-
nates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer,
Heidelberg (1998)

8. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosys-
tems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer,
Heidelberg (1999)

9. Fischer, W., Giraud, C., Knudsen, E.W., Seifert, J.-P.: Parallel scalar multiplication on gen-
eral elliptic curves over Fp hedged against non-differential side-channel attacks. Cryptology
ePrint Archive, Report 2002/007 (2002), http://eprint.iacr.org/

10. Fouque, P.-A., Lercier, R., Réal, D., Valette, F.: Fault attack on elliptic curve Montgomery
ladder implementation. In: Breveglieri, L., et al. (eds.) Fault Diagnosis and Tolerance in
Cryptography (FDTC 2008), pp. 92–98. IEEE Computer Society, Los Alamitos (2008)

http://www.hyperelliptic.org/EFD/jacobian.html
http://eprint.iacr.org/

Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves 79

11. Galbraith, S., Lin, X., Scott, M.: A faster way to do ECC. Presented at 12th Workshop
on Elliptic Curve Cryptography (ECC 2008), Utrecht, The Netherlands, September 22–24
(2008), Slides available at,
http://www.hyperelliptic.org/tanja/conf/ECC08/
slides/Mike-Scott.pdf

12. Goundar, R.R., Joye, M., Miyaji, A.: Co-Z addition formulæ and binary ladders on elliptic
curves. Cryptology ePrint Archive, Report 2010/309 (2010),
http://eprint.iacr.org/

13. Izu, T., Takagi, T.: A fast parallel elliptic curve multiplication resistant against side chan-
nel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 280–296.
Springer, Heidelberg (2002)

14. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Paillier, P.,
Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer, Heidelberg
(2007)

15. Joye, M., Yen, S.-M.: The Montgomery powering ladder. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003)

16. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209
(1987)

17. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

18. Longa, P.: ECC Point Arithmetic Formulae (EPAF),
http://patricklonga.bravehost.com/Jacobian.html

19. Longa, P., Gebotys, C.H.: Novel precomputation schemes for elliptic curve cryptosystems.
In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS,
vol. 5536, pp. 71–88. Springer, Heidelberg (2009)

20. Longa, P., Miri, A.: New composite operations and precomputation for elliptic curve cryp-
tosystems over prime fields. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 229–247.
Springer, Heidelberg (2008)

21. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF (2m) without precompu-
tation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer,
Heidelberg (1999)

22. Meloni, N.: New point addition formulæ for ECC applications. In: Carlet, C., Sunar, B. (eds.)
WAIFI 2007. LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg (2007)

23. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985.
LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

24. Montgomery, P.L.: Speeding up the Pollard and elliptic curve methods of factorization. Math-
ematics of Computation 48(177), 243–264 (1987)

25. National Institute of Standards and Technology. Digital Signature Standard (DSS). Federal
Information Processing Standards Publication, FIPS PUB 186-3 (June 2009)

26. Yen, S.-M., Joye, M.: Checking before output may not be enough against fault-based crypt-
analysis. IEEE Transactions on Computers 49(9), 967–970 (2000)

27. Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: A countermeasure against one physical crypt-
analysis may benefit another attack. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp.
414–427. Springer, Heidelberg (2002)

http://www.hyperelliptic.org/tanja/conf/ECC08/slides/Mike-Scott.pdf
http://www.hyperelliptic.org/tanja/conf/ECC08/slides/Mike-Scott.pdf
http://eprint.iacr.org/
http://patricklonga.bravehost.com/Jacobian.html

Efficient Techniques for High-Speed Elliptic
Curve Cryptography

Patrick Longa and Catherine Gebotys

Department of Electrical and Computer Engineering,
University of Waterloo, Canada

{plonga,cgebotys}@uwaterloo.ca

Abstract. In this paper, a thorough bottom-up optimization process
(field, point and scalar arithmetic) is used to speed up the computation
of elliptic curve point multiplication and report new speed records on mod-
ern x86-64 based processors. Our different implementations include
elliptic curves using Jacobian coordinates, extended Twisted Edwards co-
ordinates and the recently proposed Galbraith-Lin-Scott (GLS) method.
Compared to state-of-the-art implementations on identical platforms the
proposed techniques provide up to 30% speed improvements. Addition-
ally, compared to the best previous published results on similar platforms
improvements up to 31% are observed. This research is crucial for advanc-
ing high speed cryptography on new emerging processor architectures.

Keywords: Elliptic curve cryptosystem, point multiplication, point op-
eration, field arithmetic, incomplete reduction, software implementation.

1 Introduction
Elliptic curve point multiplication, defined as [k]P , where P is a point with order
r on an elliptic curve E(IFp) and k ∈ [1, r − 1] is an integer, is the central and
most time-consuming operation in Elliptic Curve Cryptography (ECC). Hence,
its efficient realization on commodity processors, such as the new generation
based on the x86-64 ISA, has gained increasing importance in recent years.

In this work, we combine several efficient techniques at the different compu-
tational levels of point multiplication to achieve significant speed improvements
on x86-64 based CPUs:
– At the field arithmetic, code scheduling on hand-written assembly modules is

carefully tuned for high performance field operations. Furthermore, optimal
combination of well-known techniques such as incomplete reduction (IR) [21]
and elimination of conditional branches is performed.

– At the point arithmetic, the cost of explicit formulas is reduced further by
minimizing the number of additions/subtractions and small constants and
maximizing the use of operations exploiting IR. Also, we study the nega-
tive effect of (true) data dependencies between “close” field operations and
propose three techniques to reduce their effect: field arithmetic scheduling,
merging of point operations and merging of field operations.

– At the scalar arithmetic, we discuss our choice of recoding method and pre-
computation scheme and describe their efficient implementation.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 80–94, 2010.
c© International Association for Cryptologic Research 2010

Efficient Techniques for High-Speed Elliptic Curve Cryptography 81

Our implementations are carried out on elliptic curves using Jacobian and (ex-
tended) Twisted Edwards coordinates [13]. We also present results when apply-
ing the GLS method [8] that exploits an efficiently computable endomorphism
to speed up the point multiplication over a quadratic extension field.

By efficiently combining the aforementioned techniques and other optimiza-
tions, we are able to compute a 256-bit point multiplication for the case of Ja-
cobian and (extended) Twisted Edwards coordinates in only 337000 and 281000
cycles, respectively, on one core of an Intel Core 2 Duo processor. Compared to
the previous results of 468000 and 362000 cycles (respect.) by Hisil et al. [14],
our results achieve an improvement of about 28% and 22% (respect.). In the
case of the GLS method, for Jacobian and (extended) Twisted Edwards coordi-
nates, we compute one point multiplication in about 252000 and 229000 cycles
(respect.) on the same processor, which compared to the best previous results
by Galbraith et al. [7,8] (326000 and 293000 cycles, respect.) translate to im-
provements of about 23% and 22%, respectively.

Our implementations use the well-known MIRACL library by M. Scott [20],
which contains an extensive set of cryptographic functions that simplified the
development/optimization process of our crypto routines. Our programs, based
on M. Scott’s software, are faster due to several improvements discussed in this
paper. We greatly thank M. Scott for making his software freely available for
educational purposes.

Although our programs are portable to any x86-64 based CPU, in this work
we present test results on three processors: 2.66GHz Intel Core 2 Duo E6750,
2.83GHz Intel Xeon E5440 and 2.6GHz AMD Opteron 252.

Our work is organized as follows. In Section 2, we briefly introduce ECC over
prime fields and the GLS method, and summarize the most relevant features of
x86-64 based processors. In Sections 3, 4 and 5 we describe the different tech-
niques employed for the speed-up of point multiplication at the field, point and
scalar arithmetic levels. In Section 6, we discuss how our optimizations apply
to implementations using GLS. Finally, in Section 7, we present our timings for
point multiplication and compare them to the best previous results.

2 Preliminaries

For a background in elliptic curves, the reader is referred to [12]. In this work,
we consider the standard elliptic curve equation E: y2 = x3 + ax+ b (also known
as short Weierstrass equation) over a prime field IFp, where a, b∈ IFp.

Representation of points using (x, y) is known as affine coordinates (A). It
is common practice to replace this representation with projective coordinates
since affine coordinates are expensive over prime fields due to costly field inver-
sions. In this work, we use Jacobian coordinates (J), where each projective point
(X : Y : Z) corresponds to the affine point (X/Z2, Y/Z3), Z �= 0. The negative
of (X : Y : Z) is (X : −Y : Z), and (X : Y : Z) = {(λ2X, λ3Y, λZ) : λ ∈ IF∗

p}.
The central operation, namely point multiplication (denoted by [k]P , for a

point P ∈E(IFp)), is traditionally carried out through a series of point doublings
and additions using some algorithm such as double-and-add. More efficiently, a

82 P. Longa and C. Gebotys

doubling followed by another doubling can be computed as J ← 2J and every
doubling followed by an addition can utilize the new doubling-addition by [15,19]
to compute J ← 2J+A or J ← 2J+J . All these formulas can also be found
in our database of state-of-the-art formulas using Jacobian coord. [16].

Different curve forms exhibiting faster group arithmetic have been studied
during the last few years. A good example is given by Twisted Edwards. This
curve form, proposed in [2], is a generalization of Edwards curves [3] and has the
equation ax2+y2 = 1+dx2y2, where a,d∈ IFp are distinct nonzero elements. For
this case, each triplet (X : Y : Z) corresponds to the affine point (X/Z, Y/Z), Z �=
0, in homogeneous projective coordinates (denoted by E). Later, Hisil et al. [13]
introduced an extended system (called extended Twisted Edwards coord.; de-
noted by Ee), where each point (X : Y : Z : T) corresponds to (X/Z, Y/Z, 1, T/Z)
in affine, T = XY/Z and (X : Y : Z : T) = {(λX, λY, λZ, λT) : λ ∈ IF∗

p}.
Hisil et al. [13] also suggest the map (x, y) �→ (x/

√−a, y) to convert the previ-
ous curve to −x2 +y2 = 1+d′x2y2, where d′ =−d/a, allowing further reductions
in the cost of point operations. For the point multiplication, they ultimately pro-
pose to compute a doubling followed by an addition as Ee ← 2E and E ← Ee+Ee

or E ← Ee+A (which can be unified into a doubling-addition operation with the
form E ← (2E)e+Ee or E ← (2E)e+A), and the remaining doublings as E ← 2E .

In Table 1, we have summarized the cost of formulas1 using J and E/Ee.
Although variations to these formulas exist [16], these sometimes involve an in-
creased number of “small” operations such as additions/subtractions. On some
platforms, the extra cost may not be negligible. Formulas in Table 1 have been
selected so that the overall cost is minimal on the targeted platforms. In Section
4, we apply some techniques to minimize the number of such “small” operations
and, thus, to reduce the cost of point operations further.

Table 1. Cost of point operations on Weierstrass and Twisted Edwards curves

Point Operation Coord.
Weierstrass

Coord.
Twisted Edw.

(a = −3) (a = −1)

Doubling J ← 2J 4M+4S E ← 2E 4M+3S

Mixed addition J ← J+A 8M+3S E ← Ee+A 7M

General addition J → J+J 11M+3S (1) E ← Ee+Ee 8M

Mixed doubling-addition J ← 2J+A 13M+5S E ← (2E)e+A 11M+3S

General doubling-addition J → 2J+J 16M+5S (1) E ← (2E)e+Ee 12M+3S

(1) Using cached values.

A recent method to improve the computation of point multiplication was
proposed by Galbraith et al. [8], in which the computation is performed on a
quadratic twist of a curve E over IFp2 with an efficiently computable homomor-
phism ψ(x, y)→ (αx, αy), ψ(P) = λP . Then, following [9], [k]P can be computed
as a multiple point multiplication with the form [k0]P + [k1](λP), where k0 and
k1 have approximately half the bitlength of k. See [7,8] for complete details.

1 Field operations: M = multiplication, S = squaring, Add = addition, Sub = sub-
traction, Mulx = multiplication by x, Divx = division by x, Neg = negation.

Efficient Techniques for High-Speed Elliptic Curve Cryptography 83

In this work, we present two “traditional” implementations (on Weierstrass
and Twisted Edwards curves) and another two using the GLS method (again,
one per curve). For the traditional case (and to be competitive with other im-
plementations in the literature), we have written the underlying field arithmetic
over IFp using assembly language. On the other hand, for the GLS method we
reuse the efficient modules for IFp2 field arithmetic provided with MIRACL.

For IFp, we consider for maximal speed-up a pseudo-Mersenne prime with the
form p = 2m − c, where m = n.w on an w -bit platform, n ∈ ZZ+, and c is
a “small” integer (i.e., c < 2w). These primes are highly efficient for perform-
ing modular reduction and support other optimizations such as elimination of
conditional branches. Similarly, for the GLS method, field arithmetic over IFp2

provided by MIRACL considers a Mersenne prime p = 2t − 1 (i.e., t is prime).
For a more in-depth treatment of the techniques exploited in our implemen-

tations, the reader is referred to the extended paper version [18].

2.1 The x86-64 Based Processor Family

Modern CPUs from the desktop and server classes have decisively adopted the
64-bit x86 ISA (a.k.a. x86-64). This new instruction set expands general-purpose
registers (GPRs) from 32 to 64 bits, allows arithmetic and logical operations on
64-bit integers and increments the number of GPRs, among other enhancements.

It seems that the move to 64 bits, with the inclusion of a powerful 64-bit inte-
ger multiplier, favors prime fields. Although the analysis becomes complex and
processor dependent, our tests on the targeted processors suggest that SSE2 and
its extensions seem not to be advantageous by themselves for the IFp arithmetic.
This is probably due to the lack of carry handling and the fact that SSE2 mul-
tipliers can perform vector-multiplication with operands up to 32 bits only [11].
However, this outcome could change with improved SIMD extensions.

Another relevant feature of modern CPUs is their highly pipelined archi-
tectures. For instance, experiments by [6] suggest that Core 2 Duo and AMD
architectures have pipelines with 15 and 12 stages, respectively. Although so-
phisticated branch prediction techniques exist, it is expected that the “random”
nature of crypto computations, specifically of modular reduction, causes expen-
sive mispredictions that force the pipeline to flush. In this work, we present
experimental data quantifying the performance improvement obtained by elim-
inating branches in the field arithmetic (see Section 3).

Another direct consequence of highly pipelined architectures is that data de-
pendencies between “close” instructions may insert a high penalty. Data depen-
dencies that are relevant to our application are read-after-write (RAW), which
can be found between a considerable number of field operations when the result
of a previous operation is required as input by the next operation. Our tests
show that, if field operations are not scheduled properly, RAW dependencies can
cause the pipeline to stall for several cycles degrading the performance signifi-
cantly. In this work, we propose several techniques that help to minimize this
problem, enhancing the performance of point multiplication (see Section 4).

84 P. Longa and C. Gebotys

3 Optimizations at the Field Arithmetic Level

In this section, we discuss the algorithms and optimizations that were applied
to modular operations. All tests described were performed on our assembly lan-
guage module implementing the field arithmetic over IFp.

3.1 Field Multiplication

Schoolbook and Comba are the methods of choice for performing this operation
on general purpose processors (GPPs). Methods such as Karatsuba multiplica-
tion theoretically reduce the number of integer multiplications but increase the
number of other (cheaper) operations, which are not inexpensive in our case.

In x86-64 based CPUs, integer multiplication is relatively expensive. For in-
stance, on an Intel Core 2 Duo, 64-bit multiplications can be executed every
5 clock cycles in a dependence chain [5]. A strategy to reduce costs is to in-
terleave other (cheaper) operations with integer multiplications to exploit the
instruction-level parallelism (ILP) found in modern processors. Precisely, both
schoolbook (also known as operand scanning) and Comba’s method (also known
as product scanning) exhibit this attractive feature. Both methods require n2 w -
bit multiplications when multiplying two n-digit numbers. However, we choose to
implement Comba’s method since it requires approximately 3n2 w -bit additions,
whereas schoolbook requires 4n2 (see Section 5.3.1 of [4]).

3.2 Other “Cheaper” Operations

There are two key techniques that we exploit to reduce the cost of additions,
subtractions, and divisions/multiplications by small constants:

Incomplete Reduction (IR). This technique was introduced by Yanik et al.
[21]. Given two numbers in the range [0, p− 1], it consists of allowing the result
of an operation to stay in the range [0, 2s−1] instead of executing a complete
reduction, where p< 2s < 2p−1, s = n.w, w is the wordlength (e.g., w = 64) and
n is the number of words. If the modulus is a pseudo-Mersenne prime with form
2m−c such that m = s and c < 2w, the method gets even more advantageous. For
example, in the case of addition the result can be reduced by first discarding the
carry bit in the most significant word and then adding the correction value c.

In Table 2, we summarize the cost of field operations and the gain in perfor-
mance when exploiting IR. As can be seen, in our experiments using p = 2256− 189
we obtain significant reductions in cost ranging from 20% to up to 41%.

It is important to note that, because multiplication and squaring accept in-
puts in the range [0, 2s − 1], an operation using IR can precede any of these
two operations. Then it turns out that virtually all additions and multiplica-
tions/divisions by small constants can be implemented with IR in our software.

Elimination of Conditional Branches. Following the trend of other crypto
implementations [10,20] and to avoid the high cost of branch misprediction on
highly pipelined processors, we have implemented field addition, subtraction and
multiplication/division by small constants without conditional branches [18].

Efficient Techniques for High-Speed Elliptic Curve Cryptography 85

Table 2. Cost (in cycles) of modular operations when using incomplete reduction (IR)
against complete reduction (CR) (p = 2256 − 189)

Modular Operation

Core 2 Duo E6750 Opteron 252

IR CR
Cost reduction

IR CR
Cost reduction

(%) (%)

Addition 20 25 20% 13 20 35%

Multiplication by 2 19 24 21% 10 17 41%

Multiplication by 3 28 43 35% 15 23 35%

Division by 2 20 25 20% 11 18 39%

In Table 3, we present the difference in performance for several field opera-
tions. In our tests using the prime p = 2256− 189, we observed cost reductions as
high as 50%. Remarkably, it can be seen that the greatest performance gains are
obtained for operations exploiting IR. In conclusion, elimination of conditional
branches favors more strongly our implementations, which are based on IR.

Table 3. Cost (in cycles) of modular operations without conditional branches (w/o
CB) against operations using conditional branches (with CB) (p = 2256 − 189)

Modular Operation

Core 2 Duo E6750 Opteron 252

w/o with Cost reduction w/o with Cost reduction

CB CB (%) CB CB (%)

Subtraction 21 37 43% 16 23 30%

Addition with IR 20 37 46% 13 21 38%

Addition 25 39 36% 20 23 13%

Mult. by 2 with IR 19 38 50% 10 19 47%

Multiplication by 2 24 38 37% 17 20 15%

Table 4. Cost (in cycles) of modular operations

Modular Operation

Intel Core 2 Duo AMD Opteron

This work mpFq [10] This work mpFq [10]

p = 2256 − 189 p = 2255 − 19 p = 2256 − 189 p = 2255 − 19

Addition 20 (1) 21 13 (1) 19

Subtraction 21 24 16 22

Multiplication by 2 19 (1) N/A 10 (1) N/A

Division by 2 20 (1) N/A 11 (1) N/A

Squaring 101 107 65 72

Multiplication 110 141 80 108

(1) Using incomplete reduction.

Finally, Table 4 summarizes the cost of field operations optimized with the
techniques discussed above and used in our implementations, and compare them
with mpFq [10], a well-known and highly-efficient crypto library. Note that tim-
ings for mpFq are reported for Intel Core 2 Duo 6700 and AMD Opteron 250
[10], which have very similar architectures to those used for our tests. Although
our modular operations and those from mpFq are based on a different modulus

86 P. Longa and C. Gebotys

p, comparisons in Table 4 are useful to explain part of the performance improve-
ment obtained by our implementations in comparison with the implementation
of curve25519 using mpFq (see comparisons in Section 7).

4 Optimizations at the Point Arithmetic Level

In this section, we describe our choice of point formulas and some techniques to
reduce their costs further. Also, we analyze how to reduce the computing cost
of point multiplication by minimizing the number of pipeline stalls caused by
contiguous field operations holding (true) data dependencies.

4.1 Our Choice of Explicit Formulas

For our programs, we choose the execution patterns based on doublings and
doubling-additions proposed by Longa [15] and Hisil et al. [13] for J and E/Ee,
respectively (see Section 2). For J , we take as starting points the doubling
formula from pp. 90 of [12] that costs 4M+4S, and the doubling-addition formula
(3.5), pp. 37 of [15], that costs 13M+5S (16M+5S in the general case [16]). For
E/Ee, we choose the doubling formula on pp. 400 of [2] that costs 4M+3S and
the (dedicated) doubling-(dedicated) addition formulas from pp. 332-333 of [13]
which cost in total 11M+3S (12M+3S in the general case). The previous costs
(which are minimal on the targeted platforms in terms of mults and squarings)
are obtained by setting a =−3 on J and a=−1 on E/Ee [13] and avoiding the
S-M tradings. Moreover, following [13], we precalculate (X2+Y2), (X2−Y2), 2Z2
and 2T2 to save two Adds and two Mul2 in the (dedicated) addition formula.

4.2 Minimizing the Cost of Point Operations

Further cost reduction of point operations can be achieved by exploiting the
equivalence relation of projective coordinates. Consider, for example, the dou-
bling formula using J in pp. 90-91 of [12] that has an overall cost of 4M+4S+
1Add+4Sub+2Mul2+1Mul3+1Div2. If we fix λ = 2−1 ∈ IF∗

p that formula can
be modified to the following

X2 = A2 − 2B, Y2 = A (B −X2)− Y 4
1 , Z2 = Y1Z1 (1)

where A = 3(X1 + Z2
1)(X1 − Z2

1)/2, B = X1Y
2
1 . With formula (1), the op-

eration count is reduced to 4M+4S+1AddIR+5Sub+1Mul3IR+1Div2IR (where
operationIR represents an operation using incomplete reduction), replacing two
multiplications by 2 with one subtraction and allowing the optimal use of in-
complete reductions (every addition and multiplication/division by constants
precedes a multiplication or squaring).

Additionally, depending on the relative cost of additions and subtractions
(and the feasibility of using efficient “fused” subtractions such as a−2b (modp);
see Section 4.3) one may “convert” additions to subtractions (or vice versa) by
applying λ = −1 ∈ IF∗

p to a given formula. Refer to Appendix A for the details
of the revised formulas exploiting these techniques.

Efficient Techniques for High-Speed Elliptic Curve Cryptography 87

4.3 Minimizing the Effect of Data Dependencies

Next, we present three techniques that help to reduce the number of memory
stalls caused by RAW dependencies between successive field operations. For the
remainder (and abusing notation), we define as contiguous data dependence if
the output of a field operation is required as input by the immediately following
operation causing the pipeline to stall in certain processor architecture.

Scheduling of Field Operations. The simplest solution to eliminate contigu-
ous data dependencies is to perform a careful scheduling of the field operations
inside point formulas. However, there is no unique solution and finding the op-
timal “arrangement” could be quite difficult and compiler/platform dependent.
Instead, we demonstrate that some effort minimizing the number of these de-
pendencies increases the overall performance significantly.

We tested several field operation “arrangements” to observe the potential im-
pact of scheduling field operations. We detail here a few of our tests with field
multiplication on an Intel Core 2 Duo. For example, let us consider the operation
sequences given in Table 5. As can be seen, Sequence 1 involves a series of “ideal”
data-independent multiplications, where the output of a given operation is not an
input to the immediately following operation. In this case, the execution reaches
its maximal performance with approx. 110 cycles/multiplication (see Table 4).
Contrarily, the second sequence is highly-dependent because each output is re-
quired as input in the following operation. This is the worst-case scenario with
an average of 128 cycles/mult., which is about 14% less efficient than the “ideal”
case. We also studied other possible arrangements such as Sequence 3, in which
operands of Sequence 2 have been reordered. This slightly amortizes the impact
of contiguous data dependencies, improving the performance to 125 cycles/mult.

Table 5. Various sequences of field operations with different levels of contiguous data
dependence. Mult(opi,opj,resk) denotes the field operation resk←opi ∗opj

Sequence 1 Sequence 2 Sequence 3
> Mult(op1,op2,res1) > Mult(op1,op2,res1) > Mult(op1,op2,res1)

> Mult(op3,op4,res2) > Mult(res1,op4,res2) > Mult(op4,res1,res2)

> Mult(op5,op6,res3) > Mult(res2,op6,res3) > Mult(op6,res2,res3)

> Mult(op7,op8,res4) > Mult(res3,op8,res4) > Mult(op8,res3,res4)

Similarly, we have also tested the effect of contiguous data dependencies on
other field operations, and detected that the cost reduction obtained by switching
from an execution with strong contiguous data dependence (worst-case scenario,
Sequence 2) to an execution with no contiguous data dependencies (best-case sce-
nario, Sequence 1) ranges from approx. 9% to up to 33% on an Intel Core 2 Duo.

Merging point operations. This technique complements and increases the
gain obtained by scheduling field operations. As expected, in some cases it is
not possible to eliminate all contiguous data dependencies in a point formula by
simple rescheduling. A clever way to increase the chances of eliminating more of
these dependencies is by “merging” successive point operations.

88 P. Longa and C. Gebotys

It appears natural to merge successive doublings or a doubling and an addi-
tion. For our implementations, we use wNAF with window size w = 5 to recode
the scalar (see Section 5). Then, at least five successive doublings between addi-
tions are expected. An efficient solution is to merge four consecutive doublings
in a separate function and merge each addition with the precedent doubling in
another function. In this way, we have been able to minimize most contiguous
data dependencies and improve the overall performance further. As a side-effect,
the number of function calls to point formulas is also reduced dramatically.

Merging field operations. If certain field operations are merged (and there
are enough registers available) one can directly avoid memory stalls caused by
dependencies between the writing to memory of the result and its posterior read-
ing in the following field operation. A positive side-effect of this approach is that
memory accesses (and potential cache misses) are also minimized.

Some crypto libraries have already experimented with this approach to cer-
tain extent. For example, MIRACL includes a double subtraction operation that
executes a−b−c (mod p) and a multiplication by 3 executed as a+a+a (mod p).
However, in this work we have maximized the use of registers and included
other combinations such as a−2b (modp) and the merging of a−b (mod p) and
(a−b)−2c (mod p). We remark that this list is not exhaustive. Different plat-
forms with more registers or different coordinate systems/underlying fields may
enable a much wider range of merging options (for instance, see Section 6 for
the merging options suggested for quadratic extension fields).

To illustrate the impact of scheduling field operations, merging point oper-
ations and merging field operations, we show in Table 6 the cost of a point
doubling when using these techniques in comparison with a näıve implementa-
tion with a high number of dependencies.

Table 6. Cost (in cycles) of point doubling with different number of contiguous data
dependencies (Jacobian coordinates, p = 2256 − 189)

Technique

contiguous Core 2 Duo E6750 Opteron 252

data-depend. Cost per Relative Cost per Relative

per doubling doubling reduction (%) doubling reduction (%)

“Unscheduled” 10 1115 – 786 –

Scheduled/merged 1.25 979 12% 726 8%

As shown in Table 6, by reducing the number of dependencies from ten to
about one per doubling, minimizing function calls and reducing the number of
memory reads/writes, we are able to reduce the cost of a doubling by 12% and
8% on Core 2 Duo and Opteron processors, respectively.

Following the strategies presented in this section, we have first minimized the
cost of point operations (cf. §4.2) and then carefully scheduled (merged) field
operations inside (merged) point operations so that memory stalls and memory
accesses are minimized. See Appendix A for costs and scheduling details of most
relevant point operations used in our implementations and discussed in §4.1.

Efficient Techniques for High-Speed Elliptic Curve Cryptography 89

5 Optimizations at the Scalar Arithmetic Level

In this section, we describe our choice of algorithms for the computation of point
multiplication and precomputation.

For scalar recoding we use width-w Non-Adjacent Form (wNAF), which of-
fers minimal nonzero density among signed binary representations for a given
window width [1]. In particular, we use Alg. 3.35 of [12] for conversion from inte-
ger to wNAF representation. Although left-to-right conversion algorithms exist
[1], which save memory and allow on-the-fly computation of point multiplica-
tion, they are not advantageous on the targeted CPUs. In fact, our tests show
that converting the scalar to wNAF and then executing the point multiplication
achieves higher performance than interleaving both stages. This could be ex-
plained by the fact that the latter approach “interrupts” the otherwise smooth
flow of point multiplication by calling the conversion function at every iteration
of the double-and-add algorithm.

For precomputation on J , we have chosen a variant of the LM scheme [19]
that does not require inversions (see Section 7.1 of [17]). This method achieves
the lowest precomputing cost, given by (5L+2)M+(2L+4)S, where L repre-
sents the number of non-trivial points (note that we avoid here the S-M trading
in the first doubling). On E/Ee coordinates, we precompute points using the tra-
ditional sequence P + 2P + . . .+ 2P , adding 2P with general additions. Because
precomputed points are left in projective coordinates no inversion is required
and the cost is given by (8L + 4)M+2S. For both J and E/Ee, we have chosen
a window with size w = 5 (i.e., precomputing {P, [3]P, . . . , [15]P}, L = 7), which
is optimal and slightly better than fractional windows using L = 6 or L = 8.

6 Implementation Using GLS

For our implementations using GLS, we apply similar techniques to those de-
scribed in Sections 4 and 5 for the elliptic curve arithmetic. As mentioned previ-
ously, we use the optimized assembly implementation of the field arithmetic over
IFp2 by M. Scott [20]. This library exploits the “nice” Mersenne prime 2127 − 1,
which allows a very simple reduction step with no conditional branches.

Note that the field arithmetic over IFp2 in fact translates to a bunch of IFp

operations, where p has 127 bits in our case. For instance, each multiplication
using Karatsuba (as implemented in [20]) involves 3 IFp multiplications and 5
IFp additions/subtractions. Thus, the scheduling and merging of field operations
described in Section 4.3 are first applied to this underlying layer over IFp and
then extended to the upper layer over IFp2 .

For the point arithmetic, we slightly modify formulas described in Section 4
and Appendix A since in this case these require a few extra multiplications with
the twisted curve parameter μ (see Appendix B). For example, the (dedicated)
addition using E/Ee with cost 8M has to be replaced with a formula that costs
9M (discussed in pp. 332 of [13] as “9M+1D”). Moreover, field arithmetic over
IFp2 enables a much richer opportunity for merging field operations. In our imple-
mentations, we include a− 2b (modp), (a + a + a)/2 (modp), a + b− c (modp),

90 P. Longa and C. Gebotys

the merging of a+b (modp) and a−b (modp), the merging of a−b (modp) and
c− d (modp), and the merging of a + a (modp) and a + a + a (modp). For com-
plete details about point formulas and their implementation for the GLS method,
the reader is referred to Appendix B in the extended paper version [18].

For the multiple point multiplication [k0]P +[k1](λP), each of the two scalars
k0 and k1 is converted using fractional wNAF, and then the evaluation stage is
executed using interleaving (see Alg. 3.51 of [12]). Again, we remark that the
separation of the conversion and evaluation stages yields better performance
in our case. For precomputation on J , we use the LM scheme (see Section 4
of [19]) that has minimal cost among methods using only one inversion, i.e.,
1I+(9L+1)M+(2L+5)S (we avoid here the S-M trading in the first doubling).
A fractional window with L = 6 achieves the optimal performance in our case.
Again, on E/Ee we precompute points using general additions in the sequence
P + 2P + . . .+ 2P . Precomputed points are better left in projective coordinates,
in which case the cost is given by (9L+4)M+2S. In this case, an integral win-
dow w = 5 (i.e., L = 7) achieves optimal performance. As pointed out by [8],
precomputing {P, [3]ψ(P), . . . , [2L+1]ψ(P)} can be done on-the-fly at low cost.

7 Implementation Results

In this section, we summarize the timings obtained by our “traditional” im-
plementations using E/Ee and J (called ted256189 and jac256189, respect.),
and our implementations using GLS (called ted1271gls and jac1271gls, respect.),
when running them on a single core of the targeted x86-64 based CPUs. The
curves used in these implementations are described in detail in Appendix B. For
verification of each implementation, the results of 104 point multiplications with
“random” scalars were all validated using MIRACL. Several “random” point
multiplications were also verified with Magma.

All the tested programs were compiled with gcc v4.4.1 on the Intel Core 2 Duo
E6750 and with gcc v4.3.4 on the Intel Xeon E5440 and Opteron 252 processors.
For measuring computing time, we follow [10] and use a method based on cycle
counts. To obtain our timings, we ran each implementation 105 times with ran-
domly generated scalars, averaged and approximated the results to the nearest
1000 cycles. Table 7 summarizes our results, labeled as ted1271gls, jac1271gls,
ted256189 and jac256189. All costs include scalar conversion, the point multipli-
cation computation (precomputation and evaluation stages) and the final nor-
malization step to affine. Table 7 also shows the cycle counts that we obtained
when running the implementations by M. Scott (displayed as gls1271-ref4 and
gls1271-ref3 [20]) on exactly the same platforms. Finally, the last 5 rows of the
table detail cycle counts of several state-of-the-art implementations as reported
in the literature. However, these referenced results are used only to provide an
approximate comparison since the processor platforms are not identical (though
they use very similar processors).

As can be seen in Table 7, our fastest implementation on the targeted plat-
forms is ted1271gls, using E/Ee with the GLS method. This implementation is
about 22% faster than the previous record set by gls1271-ref4 [7] on a slightly

Efficient Techniques for High-Speed Elliptic Curve Cryptography 91

Table 7. Cost (in cycles) of point multiplication

Implementation Coord. Field Arithm.
Core 2 Duo

Xeon E5440 Opteron 252
E6750

ted1271gls E/Ee IFp2 , 127-bit 229000 230000 211000

jac1271gls J IFp2 , 127-bit 252000 255000 238000

ted256189 E/Ee IFp, 256-bit 281000 289000 232000

jac256189 J IFp, 256-bit 337000 343000 274000

gls1271-ref4 [20] E inv IFp2 , 127-bit 295000 296000 295000

gls1271-ref3 [20] J IFp2 , 127-bit 332000 332000 341000

gls1271-ref4 [7] E inv IFp2 , 127-bit 293000 (1) – –

gls1271-ref3 [8] J IFp2 , 127-bit 326000 (1) – –

curve25519 [10] Montgomery IFp, 255-bit 386000 (2) – 307000 (4)

Hisil et al. [14] E/Ee IFp, 256-bit 362000 (3) – –

Hisil et al. [14] J IFp, 256-bit 468000 (3) – –

(1) On a 1.66GHz Intel Core 2 Duo. (2) On a 2.66GHz Intel Core 2 Duo E6700.

(3) On a 2.66GHz Intel Core 2 Duo E6550. (4) On a 2.4GHz AMD Opteron 250.

different processor (1.66GHz Intel Core 2 Duo). A more precise comparison,
however, would be between measurements on identical processor platforms. In
this case, ted1271gls is approx. 22%, 22% and 28% faster than gls1271-ref4 [20]
on Intel Core 2 Duo E6750, Intel Xeon E5440 and AMD Opteron 252, respec-
tively. Although [20] uses inverted Twisted Edwards coordinates (E inv), the im-
provement with the change of coordinates only explains a small fraction of the
speed-up. Similarly, in the case of J combined with GLS, jac1271gls is about
23% faster than the record set by gls1271-ref3 [8] on a 1.66GHZ Intel Core 2
Duo. When comparing cycle counts on identical processor platforms, jac1271gls
is 24%, 23% and 30% faster than gls1271-ref3 [20] on Intel Core 2 Duo E6750,
Intel Xeon E5440 and AMD Opteron 252, respect. Our implementations are
also significantly faster than the implementation of Bernstein’s curve25519 by
Gaudry and Thomé [10]. For instance, ted1271gls is 41% faster than curve25519
[10] on a 2.66GHz Intel Core 2 Duo.

If GLS is not considered, the fastest implementations using E/Ee and J are
ted256189 and jac256189, respectively. In this case, ted256189 and jac256189
are 22% and 28% faster than the previous best cycle counts due to Hisil et al.
[14] using also E/Ee and J , respect., on a 2.66GHz Intel Core 2 Duo.

It is also interesting to note that the performance boost given by the GLS
method depends on the characteristics of a given platform. For instance, ted1271gls
and jac1271gls are about 19% and 25% faster than their “counterparts” over IFp,
namely ted256189 and jac256189, respect., on a Core 2 Duo E6750. However,
on the AMD Opteron processor the gap between the costs of field operations
over IFp and IFp2 is shorter. As consequence, on Opteron 252 ted1271gls and
jac1271gls only achieve a reduction of approx. 9% and 13% with respect to
ted256189 and jac256189, respectively. For the record, ted1271gls achieves the
best cycle count on an AMD Opteron with an advantage of about 31% over the
best previous result in the literature, i.e., curve25519 [10].

92 P. Longa and C. Gebotys

In summary, this paper has illustrated that a significant speed-up can be
achieved using a combination of optimizing techniques applied to all levels of
the ECC computation and adapted to the architectural features of modern pro-
cessors. This research is crucial for advancing the state-of-the-art crypto imple-
mentations in present and future platforms. Also, although our implementations
(in their current form) only compute [k]P where k and P vary, several of the
optimizations discussed in this work are generic and can be easily adapted to
speed up other implementations using a fixed point P , digital signatures and
different coordinate systems/curve forms/underlying fields.

Acknowledgments. This work was made possible by the facilities of the Shared
Hierarchical Academic Research Computing Network (SHARCNET) and Com-
pute/Calcul Canada. We would like to thank the Natural Sciences and
Engineering Research Council of Canada (NSERC) and the Ontario Centres
of Excellence (OCE) for partially supporting this work. We would also like to
thank Mike Scott, Hiren Patel and the reviewers for their useful comments.

References

1. Avanzi, R.: A Note on the Signed Sliding Window Integer Recoding and its Left-to-
Right Analogue. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357,
pp. 130–143. Springer, Heidelberg (2004)

2. Bernstein, D., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Ed-
wards Curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023,
pp. 389–405. Springer, Heidelberg (2008)

3. Edwards, H.: A Normal Form for Elliptic Curves. Bulletin of the American Math-
ematical Society 44, 393–422 (2007)

4. Erdem, S.S., Yanik, T., Koç, Ç.K.: Fast Finite Field Multiplication. In: Koç, Ç.K.
(ed.) Cryptographic Engineering, ch. 5. Springer, Heidelberg (2009)

5. Fog, A.: Instruction Tables: Lists of Instruction Latencies, Throughputs and Micro-
operation Breakdowns for Intel, AMD and VIA CPUs (2009),
http://www.agner.org/optimize/#manuals (accessed, January 2010)

6. Fog, A.: The Microarchitecture of Intel, AMD and VIA CPUs (2009),
http://www.agner.org/optimize/#manuals (accessed, January 2010)

7. Galbraith, S., Lin, X., Scott, M.: Endomorphisms for Faster Elliptic Curve Cryp-
tography on a Large Class of Curves. Cryptology ePrint Archive, Report 2008/194
(2008)

8. Galbraith, S., Lin, X., Scott, M.: Endomorphisms for Faster Elliptic Curve Cryp-
tography on a Large Class of Curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 518–535. Springer, Heidelberg (2010)

9. Gallant, R., Lambert, R., Vanstone, S.: Faster Point Multiplication on Elliptic
Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

10. Gaudry, P., Thomé, E.: The mpFq Library and Implementing Curve-Based Key
Exchanges. In: SPEED 2007, pp. 49–64 (2007)

11. Hankerson, D., Menezes, A., Scott, M.: Software Implementation of Pairings.
In: Joye, M., Neven, G. (eds.) Identity-Based Cryptography, ch. 12. IOS Press,
Amsterdam (2009)

12. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)

http://www.agner.org/optimize/#manuals
http://www.agner.org/optimize/#manuals

Efficient Techniques for High-Speed Elliptic Curve Cryptography 93

13. Hisil, H., Wong, K., Carter, G., Dawson, E.: Twisted Edwards Curves Revisited.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer,
Heidelberg (2008)

14. Hisil, H., Wong, K., Carter, G., Dawson, E.: Jacobi Quartic Curves Revisited.
Cryptology ePrint Archive, Report 2009/312 (2009)

15. Longa, P.: Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems
over Prime Fields. Master’s Thesis, University of Ottawa (2007),
http://patricklonga.bravehost.com/publications.html#thesis

16. Longa, P.: ECC Point Arithmetic Formulae, EPAF (2008),
http://patricklonga.bravehost.com/jacobian.html

17. Longa, P., Gebotys, C.: Setting Speed Records with the (Fractional) Multibase
Non-Adjacent Form Method for Efficient Elliptic Curve Scalar Multiplication.
CACR technical report, CACR 2008-06 (2008)

18. Longa, P., Gebotys, C.: Analysis of Efficient Techniques for Fast Elliptic Curve
Cryptography on x86-64 based Processors (2010),
http://patricklonga.bravehost.com/publications.html

19. Longa, P., Miri, A.: New Composite Operations and Precomputation Scheme for
Elliptic Curve Cryptosystems over Prime Fields. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)

20. Scott, M.: MIRACL - Multiprecision Integer and Rational Arithmetic C/C++
Library (1988-2007), ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip

21. Yanik, T., Savaş, E., Koç, Ç.K.: Incomplete Reduction in Modular Arithmetic. IEE
Proc. of Computers and Digital Techniques 149(2), 46–52 (2002)

A Point Operations Using J and E/Ee Coordinates

The Maple scripts below verify most representative formulas used in our “tradi-
tional” implementations. Revised formulas for the GLS method can be found in
the extended paper version [18]. Note that field operations are carefully merged
and scheduled to reduce pipeline stalls and memory reads/writes. Temporary
registers are denoted by ti, DblSub represents a−2b (mod p) and SubDblSub
merges a−b (mod p) and (a−b)−2c (modp). Underlined operations are merged.

Weierstrass curve (for verification):
x1:=X1/Z1^2; y1:=Y1/Z1^3; x2:=X2/Z2^2; y2:=Y2/Z2^3; ZZ2:=Z2^ 2; ZZZ2:=Z2^ 3; a:=-3;
x3:=((3*x1^2+a)/(2*y1))^2-2*x1; y3:=((3*x1^2+a)/(2*y1))*(x1-x3)-y1;
x4:=((y1-y2)/(x1-x2))^2-x2-x1; y4:=((y1-y2)/(x1-x2))*(x2-x4)-y2;
x5:=((y1-y4)/(x1-x4))^2-x4-x1; y5:=((y1-y4)/(x1-x4))*(x4-x5)-y4;

DBL, J ← 2J : (Xout, Yout, Zout) ← 2(X1, Y1, Z1). Cost = 4M+4S+3Sub+
1DblSub+1AddIR+1Mul3IR+1Div2IR; 5 contiguous data depend.
In practice, Xout,Yout,Zout reuse the registers X1,Y1,Z1 for all cases below.
t4:=Z1^2; t3:=Y1^2; t1:=X1+t4; t4:=X1-t4; t0:=3*t4; t5:=X1*t3; t4:=t1*t0; t0:=t3^ 2; t1:=t4/2;
t3:=t1^2; Zout:=Y1*Z1; Xout:=t3-2*t5; t3:=t5-Xout; t5:=t1*t3; Yout:=t5-t0;
simplify([x3-Xout/Zout^2]), simplify([y3-Yout/Zout^3]); # Check

4DBL, J ← 8J : (Xout, Yout, Zout) ← 8(X1, Y1, Z1). Cost = 4*(4M+4S+3Sub+
1DblSub+1AddIR+1Mul3IR+1Div2IR); 1.25 contiguous data depend./doubling
t4:=Z1^2; t3:=Y1^2; t1:=X1+t4; t4:=X1-t4; t2:=3*t4; t5:=X1*t3; t4:=t1*t2; t0:=t3^ 2; t1:=t4/2;
Zout:=Y1*Z1; t3:=t1^2; t4:=Z1^2; Xout:=t3-2*t5; t3:=t5-Xout; t2:=Xout+t4; t5:=t1*t3; t4:=Xout-
t4; Yout:=t5-t0; t1:=3*t4; t3:=Yout^ 2; t4:=t1*t2; t5:=Xout*t3; t1:=t4/2; t0:=t3^2; t3:=t1^2;

http://patricklonga.bravehost.com/publications.html#thesis
http://patricklonga.bravehost.com/jacobian.html
http://patricklonga.bravehost.com/publications.html
ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip

94 P. Longa and C. Gebotys

Zout:=Yout*Zout; Xout:=t3-2*t5; t4:=Zout^2; t3:=t5-Xout; t2:=Xout+t4; t5:=t1*t3; t4:=Xout-t4;
Yout:=t5-t0; t1:=3*t4; t3:=Yout^2; t4:=t1*t2; t5:=Xout*t3; t1:=t4/2; t0:=t3^2; t3:=t1^ 2;
Zout:=Yout*Zout; Xout:=t3-2*t5; t4:=Zout^2; t3:=t5-Xout; t2:=Xout+t4; t5:=t1*t3; t4:=Xout-t4;
Yout:=t5-t0; t1:=3*t4; t3:=Yout^2; t4:=t1*t2; t5:=Xout*t3; t1:=t4/2; t0:=t3^ 2; t3:=t1^ 2;
Zout:=Yout*Zout; Xout:=t3-2*t5; t3:=t5-Xout; t5:=t1*t3; Yout:=t5-t0;

DBLADD,J ← 2J+J : (Xout, Yout, Zout) ← 2(X1, Y1, Z1)+(X2, Y2, Z2, Z
2
2 , Z3

2).
Cost = 16M+5S+7Sub+2DblSub+1AddIR+1Mul2IR; 3 contiguous data depend.
t0:=X1*ZZ2; t5:=Z1^ 2; t7:=Y1*ZZZ2; t4:=X2*t5; t6:=t5*Z1; t1:=t4-t0; t5:=Y2*t6; t6:=t1^ 2; t2:=
t5-t7; t4:=t2^2; t5:=t6*t0; t0:=t1*t6; t3:=t4-2*t5; t6:=Z1*t1; t3:=t3-t5; t4:=Z2*t6; t3:=t3-t0;
t6:=t7*t0; Zout:=t4*t3; t4:=t2*t3; t1:=2*t6; t0:=t3^2; t1:=t1+t4; t4:=t0*t5; t7:=t1^ 2; t5:=t0*t3;
Xout:=t7-2*t4; Xout:=Xout-t5; t3:=Xout-t4; t0:=t5*t6; t4:=t1*t3; Yout:=t4-t0;
simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check

Twisted Edwards curve (for verification):
x1:=X1/Z1; y1:=Y1/Z1; x2:=X2/Z2; y2:=Y2/Z2; T2:=X2*Y2/Z2; a:=-1;
x3:=(2*x1*y1)/(y1^2+a*x1^2); y3:=(y1^2-a*x1^2)/(2-y1^ 2-a*x1^2);
x4:=(x3*y3+x2*y2)/(y3*y2+a*x3*x2); y4:=(x3*y3-x2*y2)/(x3*y2-y3*x2);

DBL, E←2E : (Xout, Yout, Zout)←2(X1, Y1, Z1). Cost = 4M+3S+1SubDblSub+
1AddIR+1Mul2IR+1Neg; no contiguous data dependencies
t1:=2*X1; t2:=X1^2; t4:=Y1^2; t3:=Z1^2; Xout:=t2+t4; t4:=t4-t2; t3:=t4-2*t3; t2:=t1*Y1; Yout:=
-t4; Zout:=t4*t3; Yout:=Yout*Xout; Xout:=t3*t2;
simplify([x3-Xout/Zout]), simplify([y3-Yout/Zout]); # Check
Iterate this code n times to obtain nDBL with cost n(4M+3S+1SubDblSub+1AddIR+1Mul2IR+1Neg)

MergedDBL–ADD, E ←(2E)e+Ee: (Xout, Yout, Zout)← 2(X1, Y1, Z1)+((X2+Y2),
(X2 − Y2), 2Z2, 2T2). Cost = 12M+3S+3Sub+1SubDblSub+4AddIR+ 1Mul2IR;
no contiguous data dependencies
t1:=2*X1; t5:=X1^2; t7:=Y1^ 2; t6:=Z1^2; Xout:=t5+t7; t7:=t7-t5; t6:=t7-2*t6; t5:=t1*Y1; t8:=t7*
Xout; t0:=t7*t6; t7:=t6*t5; t6:=Xout*t5; Xout:=t7+t8; t1:=t7-t8; t7:=(2*T2)*t0; t5:=(2*Z2)*t6;
t0:=(X2-Y2)*t1; t1:=t5+t7; t6:=(X2+Y2)*Xout; Xout:=t5-t7; t7:=t0-t6; t0:=t0+t6; Xout:=Xout*t7;
Yout:=t1*t0; Zout:=t0*t7;
simplify([x4-Xout/Zout]), simplify([y4-Yout/Zout]); # Check

B The Curves

The curves below provide approximately 128-bit level of security and were found
by using a modified version of the Schoof’s algorithm provided with MIRACL.
– Jac256189 uses the Weierstrass curve Ew : y2 = x3−3x+B over IFp with J ,

where p = 2256−189, B = 0xfd63c3319814da55e88e9328e96273c483dca6cc84
df53ec8d91b1b3e0237064 and #Ew(IFp) = 10r (r is a 253-bit prime).

– Ted256189 uses the Twisted Edwards curve Etedw :−x2+y2=1+358x2y2 over
IFp with E/Ee, where p=2256−189 and #Etedw(IFp)=4r (r is a 255-bit prime).

– Jac1271gls uses the quadratic twist E′
w−gls: y

2 =x3− 3μx+ 44μ of the Weier-
strass curve Ew−gls(IFp2), where μ = 2 + i ∈ IFp2 is non-square, Ew−gls/IFp:
y2 = x3− 3x+ 44 and p = 2127− 1. In this case, #E′

w−gls(IFp2) is a 254-bit
prime. The same curve is also used in [8].

– Ted1271gls uses the quadratic twist E′
tedw−gls : −μx2 + y2 = 1 + 109μx2y2

of the Twisted Edwards curve Etedw−gls(IFp2), where μ= 2+ i ∈ IFp2 is non-
square, Etedw−gls/IFp : −x2 + y2 = 1 + 109x2y2 and p = 2127 − 1. In this
case, #E′

tedw−gls(IFp2) = 4r where r is a 252-bit prime.

Analysis and Improvement of the Random Delay
Countermeasure of CHES 2009

Jean-Sébastien Coron and Ilya Kizhvatov

Université du Luxembourg
6, rue Richard Coudenhove-Kalergi

l-1359 Luxembourg
{jean-sebastien.coron,ilya.kizhvatov}@uni.lu

Abstract. Random delays are often inserted in embedded software to
protect against side-channel and fault attacks. At CHES 2009 a new
method for generation of random delays was described that increases
the attacker’s uncertainty about the position of sensitive operations. In
this paper we show that the CHES 2009 method is less secure than
claimed. We describe an improved method for random delay generation
which does not suffer from the same security weakness. We also show
that the paper’s criterion to measure the security of random delays can
be misleading, so we introduce a new criterion for random delays which
is directly connected to the number of acquisitions required to break
an implementation. We mount a power analysis attack against an 8-bit
implementation of the improved method verifying its higher security in
practice.

Keywords: Side channel attacks, DPA, countermeasures, random delays.

1 Introduction

Embedded software implementations of cryptographic algorithms are threatened
by physical attacks like Differential Power Analysis (DPA) or fault injection.
The simplest method of protection against such attacks consists in randomizing
the flow of the operations by shuffling the order of the operations or inserting
random delays composed of dummy operations. These hiding countermeasures
offer less security than masking countermeasures but have smaller implementa-
tion and performance costs. For the general background on physical attacks and
countermeasures we refer the reader to the book [6].

Random delays in software. Software random delays are implemented as
loops of “dummy” operations that are inserted in the execution flow of an
algorithm being protected. A single delay can be removed relatively easy by
static alignment of side-channel traces, e.g. with cross-correlation techniques [4].
Therefore, the execution should be interleaved with delays in multiple places. To
minimize the performance overhead in this setting, individual delays should be
possibly shorter. An attacker would typically face a cumulative sum of the delays

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 95–109, 2010.
c© International Association for Cryptologic Research 2010

96 J.-S. Coron and I. Kizhvatov

between the synchronization point (which would usually be at the start or at
the end of the execution) and the target event. So the cumulative delay should
increase the uncertainty of an attacker about the location of the target event in
time. For further discussion on random delays in software we refer the reader
to [3] and [8]. We also note that elastic alignment techniques were reported in
[9] to be able to reduce the effect of multiple delays. Within the scope of this
paper we do not verify these techniques, assuming an attacker without elastic
alignment.

Previous work. An efficient method for random delay generation in embedded
software was suggested in CHES 2009 [3] under the name of Floating Mean. The
central idea of the method is to generate the delays non-independently within
one run of a protected algorithm. In this way, the adversary facing the effect of
the cumulative sum of the delays will have to cope with much larger variance
and thus will require significantly more side channel measurements compared
to other methods with independently generated random delays such as [8]. We
recall the Floating Mean method in Sect. 2.

Our contributions. Here we discover that the Floating Mean method of [3] can
suffer from an improper parameter choice, offering less security than expected.
We perform a detailed statistical analysis of the Floating Mean method of [3]
and we show how to choose correct parameters (see Sect. 3).

However these new parameters require longer delays, which means the number
of delays should be relatively small to keep a reasonable performance overhead.
This is not good for security because, as discussed above, in general few long
delays are easier to detect and remove than multiple short delays. Therefore we
propose an improved method for random delay generation which can work with
short delays (Sect. 4). Our new method is easy to implement; we describe a
concrete implementation in assembly language (Appendix B).

We also show that the criterion in [3] to measure the efficiency of random
delays can be misleading and derive a new efficiency criterion that is information-
theoretically sound (Sect. 5). Finally, we mount a practical DPA attack against
the implementation of our improved method on an 8-bit AVR microcontroller to
verify its higher security. With these results, we target practical designers who
implement the timing randomization countermeasures for protection of their
embedded software implementations.

2 The Floating Mean Method

Here we recall the Floating Mean method introduced in [3]. Most methods
for random delay generation use independent individual delays; in this way,
the cumulative sum of many delays which an adversary is facing in an attack
tends to normal distribution with the variance being the sum of variances of
the individual delays. Instead the core idea of the Floating Mean method from

Analysis and Improvement of the Random Delay Countermeasure 97

[3] is to generate random delays non-independently, in order to increase the
variance of the cumulative sum. More precisely, the delays are generated as
follows:

1. Initially the integer parameters a and b are chosen so that b < a, where a
determines the worst-case delay and b determines the variance of the delays
within a single run of a protected algorithm;

2. Before each run of a protected algorithm, a integer value m is generated
independently and uniformly on [0, a− b];

3. Within each run, the integer lengths of individual delays are generated in-
dependently and uniformly on [m, m + b].

0 0.5 1 1.5 2 2.5

x 10
4

2

4

6

x 10
−4

Cumulative delay

R
el

at
iv

e
fr

eq
ue

nc
y

Plain uniform

Benoit-Tunstall

Floating Mean

Fig. 1. Empirical distributions of the sum of 100 delays for random delay generation
algorithms, for the case of equal means (based on [3]; delay length counted in atomic
delay units)

As shown in [3] the variance of the cumulative sum of the delays in an ex-
ecution becomes quadratic in the number N of delays instead of linear when
the delays are generated independently. This is a significant improvement over
the plain independent uniform delays or the table-based method of Benoit and
Tunstall [8]. An illustrative example of the distribution of the cumulative sum
of 100 delays for the Floating Mean compared to other methods is illustrated by
Figure 1 based on [3]. The parameters for the Floating Mean here are a = 200,
b = 40; the parameters for other methods are chosen so that all the methods
yield the same mean cumulative delay.

However in practice it is better to have many short random delays rather
than long delays, as recommended in [3]; this is because it is more complex to
distinguish and remove many short delays than just few long delays. Therefore
under this recommendation one should choose smaller values of a and b, for
example a = 18 and b = 3 as used in [3] for the practical implementation.
However in the next section we show that for such range of parameters the
Floating Mean method provides less security than expected.

98 J.-S. Coron and I. Kizhvatov

3 The Real Behavior of Floating Mean

In this section, we show that the Floating Mean method from [3] provides less
security than expected for small a and b.

We begin with taking a detailed look at the distributions of different meth-
ods by simulating them with the exact experimental parameters used in the
implementation of [3]. In Figure 2 we present histograms of the distributions for
different methods. Namely, the number of delays in the sum is N = 32 and the
parameters of the Floating Mean method are a = 18, b = 3. The histograms
present the relative frequency of the cumulative delay against its duration1. We
clearly see a multimodal distribution for the Floating Mean method: the his-
togram has a distinct shape of a saw with 16 cogs, and not a flat plateau as one
would expect from [3].

0 100 200 300 400 500 600

0.005

0.01

0.015

Cumulative delay

R
el

at
iv

e
fr

eq
ue

nc
y

Plain uniform

Benoit-Tunstall

Floating Mean

Fig. 2. Empirical distributions of the sum of 32 delays in the experiment of [3]

These cogs are not good for security since they make it easier for an attacker
to mount an attack. The classical DPA will be more efficient since the signal is
concentrated on the top of the 16 cogs instead of being spread over the clock
cycles. In case of an attack with windowing and integration [2], the attacker
would integrate the values around cog maximums, omit the minimums to reduce
the noise (assuming noise is the same in all the points of the trace) and thus
gain a reduction in the number of traces required for an attack.

3.1 Explaining the Cogs

Here we explain how cogs arise in the distribution of the Floating mean and we
show how to choose the parameters to avoid the cogs.
1 As in Figure 1, the duration in Figure 2 is expressed in atomic delay units, i.e. as

the total number of delay loop iterations. To obtain the value in clock cycles one
should multiply this by the length of a single delay loop, which is 3 clock cycles in
the implementation of [3].

Analysis and Improvement of the Random Delay Countermeasure 99

The distribution for the Floating Mean is in fact a finite mixture [7] of a−b+1
components with equal weights. Every component corresponds to a given integer
value m in [0, a−b]. For a given m, the cumulative sum of random delay durations
is the sum of N random variables uniformly and independently distributed in
[m, m + b]. Therefore it can be approximated by a Gaussian distribution with
mean

μm = N · (m + b/2)

and variance

V = N
(b + 1)2 − 1

12
.

Therefore the probability density of the distribution for random integer m ∈
[0, a− b] can be approximated by:

f(x) =
a−b∑
m=0

1
(a− b + 1)σ

√
2π

exp
(
− (x− μm)2

2σ2

)
where all components have the same standard deviation σ =

√
V :

σ =
√

N ·
√

(b + 1)2 − 1
12

.

The cog peaks are the modes of the components, located in their means μm. The
distance between the means of successive components is μm+1 − μm = N . We
can consider the cogs distinguishable by comparing the standard deviation σ of
the components to the distance N between the means. Namely, the distribution
becomes multimodal whenever σ
 N . In the case of practical implementation
in [3], we have a = 18, b = 3 and N = 32, which gives σ = 6.3; therefore we
have σ < N which explains why the 16 cogs are clearly distinguishable in the
distribution in Figure 2. However for a = 200, b = 40 and N = 100 we get
σ = 118 so σ > N which explains why the cogs are indistinguishable in Figure 1
and a flat plateau is observed instead.

3.2 Choosing Correct Parameters

From the above we derive the simple rule of thumb for choosing Floating Mean
parameters. To ensure that no distinct cogs arise, parameter b should be chosen
such that σ � N . For sufficiently large b we can approximate σ by:

σ �
√

3
6
· b ·

√
N

Therefore this gives the condition:

b �
√

N . (1)

However as observed in [3] it is better to have a large number of short random
delays rather than a small number of long delays; this is because rare longer
delays are a priori easier to detect and remove than multiple short delays. But

100 J.-S. Coron and I. Kizhvatov

we see that condition (1) for Floating Mean requires longer delays since by
definition the length of random delays is between [m, m + b] with m ∈ [0, a− b].
In other words, condition (1) contradicts the requirement of having many short
random delays.

In the next section we describe a variant of the Floating Mean which does not
suffer from this contradiction, i.e. we show how to get short individual random
delays without having the cogs in the cumulative sum.

4 Improved Floating Mean

In the original Floating Mean method an integer m is selected at random in
[0, a− b] before each new execution and the length of individual delays is then
a random integer in [m, m + b]. The core idea of the new method is to improve
the granularity of random delay generation by using a wider distribution for m.
More precisely the new method works as follows:

1. Initially the integer parameters a and b are chosen so that b < a; additionally
we generate a non-negative integer parameter k.

2. Prior to each execution, we generate an integer value m′ in the interval
[0, (a− b) · 2k[.

3. Throughout the execution, the integer length d of an individual delay is
obtained by first generating a random integer d′ ∈ [m′, m′ + (b + 1) · 2k[and
then letting d← �d′ · 2−k�.

4.1 Analysis

We see that as in the original Floating Mean method, the length of individual
delays is in the interval [0, a]. Moreover if the integer m′ generated at step 2 is
such that m′ = 0 mod 2k, then we can write m′ = m · 2k and the length d of
individual delays is uniformly distributed in [m, m+b] as in the original Floating
Mean method.

When m′ �= 0 mod 2k, writing m′ = m · 2k + u with 0 ≤ u < 2k, the delay’s
length d is distributed in the interval [m, m + b + 1] with a slightly non-uniform
distribution:

Pr[d = i] =

⎧⎪⎪⎨⎪⎪⎩
1

b+1 · (1− u · 2−k) for i = m

1
b+1 for m + 1 ≤ i ≤ m + b

1
b+1 · u · 2−k for i = m + b + 1

Therefore when m′ increases from m · 2k to (m + 1) · 2k the distribution of the
delay length d moves progressively from uniform in [m, m + b] to uniform in
[m + 1, m + b + 1]. In Appendix A we show that for a fixed m′:

E[d] = m′ · 2−k +
b

2

Var[d] = E[d2]− E[d]2 =
(b + 1)2 − 1

12
+ 2−k · u · (1 − 2−k · u)

where u = m′ mod 2k.

Analysis and Improvement of the Random Delay Countermeasure 101

For a fixed m′ the cumulative sum of random delay durations is the sum of N
independently distributed random variables. Therefore it can be approximated
by a Gaussian distribution with mean:

μm′ = N · E[d] = N ·
(

m′ · 2−k +
b

2

)
(2)

and variance

Vm′ = N ·Var[d] = N ·
(

(b + 1)2 − 1
12

+ 2−k · u · (1− 2−k · u)
)

For random m′ ∈ [0, (a − b) · 2k[the probability density of the cumulative sum
can therefore be approximated by:

f(x) =
(a−b)·2k−1∑

m′=0

1
(a− b)2kσm′

√
2π

exp
(
− (x− μm′)2

2σ2
m′

)
where σm′ =

√
Vm′ . We have:

σm′ > σ =
√

N ·
√

(b + 1)2 − 1
12

where σ is the same as for the original Floating Mean method.
As previously we obtain a multimodal distribution. The distance between the

means of successive components is μm′+1−μm′ = N ·2−k and the standard devi-
ation of a component is at least σ. Therefore the cogs become indistinguishable
when σ � N · 2−k which gives the condition:

b �
√

N · 2−k

instead of b � √
N for the original Floating Mean. Therefore by selecting a

sufficiently large k we can accommodate a large number of short random delays
(large N and small b). In practice, already for k as small as 3 the effect is
considerable; we confirm this practically in Sect. 5.3.

We now proceed to compute the mean and variance of the cumulative sum
for random m′. Let denote by SN the sum of the N delays. We have from (2):

E[SN] = E[μm′] = N ·
(a

2
− 2−k−1

)
which is the same as the original Floating Mean up to the 2−k−1 term.

To compute the standard deviation of SN , we represent an individual delay as
a random variable di = m+vi where m = �m′ ·2−k� and vi is a random variable
in the interval [0, b + 1]. Since m′ is uniformly distributed in [0, (a− b) · 2k[, the
integer m is uniformly distributed in [0, a− b[; moreover the distribution of vi is
independent of m and the vi’s are identically distributed. From

SN =
N∑

i=1

di = Nm +
N∑

i=1

vi .

102 J.-S. Coron and I. Kizhvatov

we get:
Var(SN) = N2 · Var(m) + N · Var(v1)

For large N we can neglect the term N ·Var(v1) which gives:

Var(SN) � N2 ·Var(m) = N2 · (a− b)2 − 1
12

which is approximately the same as for the original Floating Mean method. As
for the original Floating Mean the variance of the sum of N delays is in Θ

(
N2

)
in comparison to plain uniform delays and the method of [8] that both have
variances in Θ (N).

0 100 200 300 400 500 600

1

2

3

4

x 10
−3

Cumulative delay

R
el

at
iv

e
fr

eq
ue

nc
y

Floating Mean Improved Floating Mean

Fig. 3. Improved Floating Mean with k = 3 compared to the original method of [3];
a = 18, b = 3 and N = 32 for both methods

4.2 Illustration

The result is shown in Figure 3 compared to the original Floating Mean. The
parameters of both methods were the same as in Figure 2: a = 18, b = 3 and
N = 32. We take k = 3 for our Improved Floating Mean method. We can
see that we have flattened out the cogs while keeping the same mean. This is
because we still have σ � 6.3 but the distance between successive cogs is now
N ·2−k = 32 ·2−3 = 4 instead of 32 so the cogs are now almost indistinguishable.

4.3 Full Algorithm

The Improved Floating Mean method is formally defined by Algorithm 1. Fol-
lowing [3], by DU [y, z[we denote discrete uniform distribution on [y, z[, y, z ∈ Z,
y < z. Note that as in [3] we apply the technique of “flipping” the mean in the
middle of the execution to make the duration of the entire execution independent
of m′. In Appendix B we show that Improved Floating Mean can be efficiently
implemented on a constrained platform by describing an implementation in as-
sembly language.

Analysis and Improvement of the Random Delay Countermeasure 103

Algorithm 1. Improved Floating Mean
Input: a, b, k, M ∈ N, b ≤ a,N = 2M

m′ ← DU [0, (a − b) · 2k[
for i = 1 to N/2 do

di ←
⌊(

m′ + DU [
0, (b + 1) · 2k

[) · 2−k
⌋

end for
for i = N/2 + 1 to N do

di ←
⌊(

a · 2k − m′ −DU [
0, (b + 1) · 2k

[) · 2−k
⌋

end for
Output: d1, d2, . . . , dN

5 The Optimal Criterion of Efficiency

In [3], the ratio σ/μ called coefficient of variation was suggested as a criterion for
measuring the efficiency of the random delays countermeasure, where σ is the
standard deviation of the cumulative sum of the delays, and μ the mean of the
cumulative sum2, where a higher ratio meant a better efficiency. Here we argue
that this measure is misleading and suggest a new criterion.

5.1 Drawbacks of the Coefficient of Variation

We first take a closer look at the experimental data from [3] and establish con-
sistency with the theoretical expectations. In Figure 4(a) we present the relation
between the standard deviation σ of the cumulative sum of 32 delays and the
number Tcpa of traces required for a successful CPA attack on the implementation
without the random delays countermeasure (no delays, ND) and with different
random delay generation methods: plain uniform (PU), Benoit-Tunstall (BT),
Floating Mean (FM). The data were taken from Table 2 of [3].

Following [2] and [5] one would expect that without integration, which was
the case for the experiments in [3], the number of traces grows quadratically
with the standard deviation σ. However, from Figure 4(a) one can see that Tcpa

exhibits growth with σ that is almost linear and not quadratic as one would have
expected.

The problem is that standard deviation σ is in general a very rough way to
estimate the number of traces which only works for very similar distributions
(like two normal distributions). If we look at the figures in Table 2 in [3], we
will see that σ for Floating Mean is 5.3 times larger than that for the plain
uniform delays. If one expects the number of traces to be in σ2 in the attack
without integration, then 5.32 = 28 more traces are expected to attack the
Floating Mean. But observed was only 45000/2500 = 18 times increase. This
means that by looking at the variance, one can overestimate the security level
of the countermeasure.
2 Here σ is the standard deviation of the cumulative sum across various executions,

as opposed to Sections 2 and 4 where σ was the standard deviation for a single
execution with a fixed m.

104 J.-S. Coron and I. Kizhvatov

0 100 200 300 400 500

1

2

3

4

5
x 10

4

σ

T
c
p
a

ND
BT

PU

FM

(a) Tcpa against σ

0 100 200 300

1

2

3

4

5
x 10

4

1/p̂

T
C

P
A

BT

FM

PU
ND

(b) Tcpa against 1/p̂

Fig. 4. Attack complexity as a function of cumulative sum distribution parameters

We illustrate this with a simple example. Consider the uniform distribution U
of integers on some interval [a, b], a, b ∈ Z, and the distribution X with Pr[X =
a] = Pr[X = b] = 1/2. We have Var(U) = ((a − b + 1)2 − 1)/12 and Var(X) =
(a−b)2/4, so Var(X) > Var(U). Therefore the efficiency of X counted in σ/μ will
be higher than for U . But with X the DPA signal is only divided by 2 instead of
(b− a+1) with U , so the number of traces required to break an implementation
with U will be smaller than with X . So in this case the criterion from [3] is
misleading.

An accurate estimate is the maximum p̂ of the probability mass function
(p.m.f.)3 of the distribution of the cumulative sum. From [2] and [5] we recall
that the number of traces T required for a DPA attack is determined by the
maximal correlation coefficient ρmax observed in the correlation trace for the
correct key guess. Namely, the number of traces can be estimated as

T = 3 + 8

⎛⎝ Zα

ln
(

1+ρmax

1−ρmax

)
⎞⎠2

(3)

where Zα is a quantile of a normal distribution for the 2-sided confidence interval
with error 1−α. For ρmax < 0.2, ln

(
1+x
1−x

)
≈ 2x holds, so we can approximate (3)

for Zα=0.9 = 1.282 as T ≈ 3/ρ2
max. So the number of traces is in ρ−2

max. In turn,
the effect of the timing disarrangement on ρmax is in p̂ in case no integration is
used. So the number of traces is in 1/p̂2.

We now compute p̂ for the distributions shown in Figure 2 and plot Tcpa from
[3] against 1/p̂ in Figure 4(b). We can now see that quadratic dependency has
become clear, which can be verified by the computations: p̂ suggests that the
3 And not p.d.f. since the distribution is discrete.

Analysis and Improvement of the Random Delay Countermeasure 105

number of traces for the Floating Mean will be 13 times higher than for plain
uniform delays. Now we have underestimation, but the relation of the number
of traces to p̂ is still more accurate than to σ. Note that such calculations will
not hold for the case without delays since in this case ρmax was about 0.6 (see
Figure 5 in [3]), whereas in the other cases ρmax < 0.2 holds.

5.2 The New Criterion

We propose a better criterion for the efficiency E of the random delays counter-
measure:

E = 1/(2p̂ · μ)

where p̂ is the maximum of the probability mass function and μ is the mean of the
distribution of the cumulative sum of the delays. This criterion is normalized and
optimal with respect to the desired properties of the countermeasure, as shown
below.

With the countermeasure, we want to maximize the number of traces in an
attack, i.e. minimize p̂, while keeping the smallest possible overhead, i.e. smallest
mean μ. One can see that from all distributions with the given p̂, the one with
the smallest μ is uniform on [0, 1/p̂]. In this case, μ = 1/(2p̂) and the criterion
E is equal to 1. In all other cases (same p̂ but larger μ) the value of the criterion
will be smaller, and the closer to zero – the farther is the distribution from the
optimal one (i.e. the uniform one).

This tightly relates the criterion to the entropy of the distribution. Namely,
the new criterion is directly linked to min-entropy, which is defined for a random
variable S as

H∞(S) = − log max
i

pi = −log p̂.

Note that H∞(S) ≤ H(S), where H(S) = −∑
i pi log pi is the Shannon entropy,

so min-entropy can be considered as a worst-case measure of uncertainty. Now
we have p̂ = 2−H∞(S) and the new efficiency criterion is expressed as

E =
2H∞(S)−1

μ
.

Indeed, for a fixed worst-case cumulative delay, the distributions with the higher
entropy, i.e. maximizing uncertainty for the attacker, will have lower p̂, larger
number of traces to attack and thus more efficient as a countermeasure.

This criterion is easily computable once the designer have simulated the real
distribution for the concrete parameters of a method (taking into consideration
the number of clock cycles per delay loop) and obtained p̂.

5.3 Comparing Efficiency

In our example in Sect. 4.2 with parameters a = 18, b = 3 and N = 32, with the
Improved Floating Mean (IFM) method we have decreased p̂ by a factor 2, as
illustrated in Figure 3. So the number of traces for the successful straightforward

106 J.-S. Coron and I. Kizhvatov

Table 1. New efficiency criterion for different methods

ND PU BT [8] FM [3] IFM [this paper]

μ, cycles 0 720 860 862 953

p̂ 1 0.0144 0.0092 0.0040 0.0020

E = 1/(2p̂μ) − 0.048 0.063 0.145 0.259

Tcpa, traces 50 2500 7000 45000 > 150000

DPA attack will be in principle almost 4 times larger (around 160000), and
according to the optimal criterion the efficiency is almost 2 times higher. Table
1 below revises Table 2 of [3] with the new criterion and the new method.

We have performed a practical power analysis attack against an AES-128
implementation with the new IFM method running on ATmega16, an 8-bit AVR
microcontroller. To be consistent with the previous results, the implementation
and the measurement setup were as in [3]. Namely, there were 10 random delays
per round, and 3 dummy rounds were added before and after the encryption,
so N = 32 delays occur between the start of the execution (the synchronization
point) and the 1-st S-Box lookup of the 1st encryption round the attack target.
The parameters for IFM were a = 19, b = 3, k = 3. Note that a different value
for a was chosen to ensure efficient implementation of the method as described
in Appendix B, so the mean for IFM is larger, but still the efficiency is 1.8
times higher. We could not break this implementation by a CPA attack [1] with
150 · 103 traces, which corresponds to the theoretical expectations.

Due to its definition, the new criterion reflects well the number of traces
observed in the experimental attack. For example, looking at the new criterion we
expect the number of traces for the Floating Mean be 0.1452/0.0632 = 5.3 times
higher than for the table method of Benoit and Tunstall [8]. In the experiment,
it was 45000/7000 = 6.4 times higher.

6 Conclusion

We have shown that the Floating Mean method for random delay generation in
embedded software [3] exhibits lower security if its parameters are improperly
chosen. We have suggested how to choose the parameters of the method so
that it generates a good distribution; however this requires to generate longer
delays while in practice it is preferable to have multiple shorter delays. We
have proposed an improved method that allows for a wider choice of parameters
while having an efficient implementation. Finally, we have suggested an optimal
criterion for measuring the efficiency of the random delays countermeasure.

References

1. Brier, E., Clavier, C., Benoit, O.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 135–152.
Springer, Heidelberg (2004)

Analysis and Improvement of the Random Delay Countermeasure 107

2. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

3. Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in
embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747,
pp. 156–170. Springer, Heidelberg (2009)

4. Homma, N., Nagashima, S., Sugawara, T., Aoki, T., Satoh, A.: A high-resolution
phase-based waveform matching and its application to side-channel attacks. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. E91-A(1), 193–202 (2008)

5. Mangard, S.: Hardware countermeasures against DPA – a statistical analysis of their
effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 222–235.
Springer, Heidelberg (2004)

6. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

7. McLachlan, G., Peel, D.: Finite Mixture Models. John Wiley & Sons, Chichester
(2000)

8. Tunstall, M., Benoit, O.: Efficient use of random delays in embedded software. In:
Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.) WISTP 2007.
LNCS, vol. 4462, pp. 27–38. Springer, Heidelberg (2007)

9. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving Differential Power
Analysis by elastic alignment (2009),
http://www.riscure.com/fileadmin/images/Docs/elastic_paper.pdf

A Distribution of Delay’s Length d

We have:

E[d] =
1

(b + 1)2k

m′+(b+1)·2k−1∑
i=m′

�i · 2−k�

Write m′ = m · 2k + u with 0 ≤ u < 2k. This gives:

E[d] =
1

(b + 1)2k

(m+b+1)2k+u−1∑
i=m2k+u

	i · 2−k

=
1

(b + 1)2k

⎛⎝(m+1)2k−1∑
i=m2k+u

	i · 2−k
 +
(m+b+1)2k−1∑

i=(m+1)2k

	i · 2−k
 +
(m+b+1)2k+u−1∑

i=(m+b+1)2k

	i · 2−k

⎞⎠

=
1

(b + 1)2k

(
m · (2k − u) + 2k

m+b∑
j=m+1

j + (m + b + 1) · u
)

=
1

(b + 1)2k

(
m · 2k + (b + 1) · u + b · 2k ·

(
m +

b + 1
2

))
=

1
(b + 1)2k

(
m · (b + 1) · 2k + (b + 1) · u + b · 2k · b + 1

2

)
= m + u · 2−k +

b

2
= m′ · 2−k +

b

2

http://www.riscure.com/fileadmin/images/Docs/elastic_paper.pdf

108 J.-S. Coron and I. Kizhvatov

Similarly we have:

E[d2] =
1

(b + 1)2k

(m+b+1)2k+u−1∑
i=m2k+u

i · 2−k�2

=
1

(b + 1)2k

⎛⎝ (m+1)2k−1∑
i=m2k+u

i · 2−k�2 +
(m+b+1)2k−1∑

i=(m+1)2k

i · 2−k�2 +
(m+b+1)2k+u−1∑

i=(m+b+1)2k

i · 2−k�2
⎞⎠

=
1

(b + 1)2k

⎛⎝m2 · (2k − u) + 2k
m+b∑

j=m+1

j2 + (m + b + 1)2 · u

⎞⎠
After simplifications this gives:

Var[d] = E[d2]− E[d]2 =
(b + 1)2 − 1

12
+ 2−k · u(1− 2−ku)

B Efficient Implementation of Improved Floating Mean

Here we show that our new Improved Floating Mean method can be efficiently
implemented and introduces only a slight additional performance overhead com-
pared to the original Floating Mean (cf. Appendix B of [3]).

In the Improved Floating Mean method one has to generate the mean and the
individual delays in a broader range but then round them. The former is done
by modifying the mask for truncating the random numbers so it is k bits longer,
the latter – by shifting the register with the delay right by k bits.

As a reference, the new implementation of the delay loop in the 8-bit AVR
assembly (cf. [3]) for the Improved Floating Mean is:

rcall randombyte ; obtain a random byte in RND

and RND, MASKBK ; truncate to the desired length including k

add RND, FM ; add ’floating mean’

lsr RND ;

... ; logical shit right by k bits

lsr RND ;

tst RND ; balancing between zero and

breq zero ; non-zero delay values

nop

nop

dummyloop:

dec RND

brne dummyloop

zero:

ret

and the generation of m in register FM in the beginning of the execution looks
like:

rcall randombyte ; obtain a random byte in RND

and RND, MASKMK ; truncate to the desired length including k

mov FM, RND ; store ’floating mean’ on register FM

Analysis and Improvement of the Random Delay Countermeasure 109

Here, the masks have the following form:

MASKBK = 0 . . . 0 1 . . .1︸ ︷︷ ︸
t

1 . . . 1︸ ︷︷ ︸
k

MASKMK = 0 . . . 0 1 . . . 1︸ ︷︷ ︸
s

1 . . . 1︸ ︷︷ ︸
k

where 2t − 1 = b and 2s = a − b (we note that this choice of parameters is
slightly different from the one for efficient implementation of the Floating Mean,
and therefore a was set to 19 for b = 3 in our experiments reported in Sect 5.3).
To ensure that the operations are performed on a single register and no over-
flow occurs on an n-bit microcontroller, s, t, and k should be chosen such that
max(s, t) + k + 1 ≤ n.

Note that the number of cycles per delay loop itself did not change. What
changed is the additional overhead per delay. In the case of the 8-bit AVR im-
plementation it is k additional cycles required for k-bit shift right. For a small
k like k = 3 the impact is therefore insignificant.

New Results on Instruction Cache Attacks

Onur Acıiçmez1, Billy Bob Brumley2,�, and Philipp Grabher3,��

1 Samsung Electronics, USA
o.aciicmez@samsung.com

2 Aalto University School of Science and Technology, Finland
billy.brumley@tkk.fi

3 University of Bristol, UK
grabher@cs.bris.ac.uk

Abstract. We improve instruction cache data analysis techniques with
a framework based on vector quantization and hidden Markov models.
As a result, we are capable of carrying out efficient automated attacks
using live I-cache timing data. Using this analysis technique, we run
an I-cache attack on OpenSSL’s DSA implementation and recover keys
using lattice methods. Previous I-cache attacks were proof-of-concept: we
present results of an actual attack in a real-world setting, proving these
attacks to be realistic. We also present general software countermeasures,
along with their performance impact, that are not algorithm specific and
can be employed at the kernel and/or compiler level.

1 Introduction

Cache-timing attacks are emerging attack vectors on security-critical software.
They belong to a larger group of cryptanalysis techniques within side-channel
analysis called Microarchitectural Attacks (MA). Microarchitectural Cryptanal-
ysis focuses on the effects of common processor components and their func-
tionalities on the security of software cryptosystems. The main characteristic
of microarchitectural attacks, which sets them aside from classical side-channel
attacks, is the simple fact that they exploit the microarchitectural behavior of
modern computer systems. MA techniques have been shown to be effective and
practical on real-world systems. For example, Osvik et. al. used cache attacks
on dm-crypt application to recover AES keys [11]. Ristenpart et. al. successfully
applied cache attacks in Amazon’s EC2 cloud infrastructure and showed the
information leakage from one virtualized machine to another [14]. Several stud-
ies showed the effectiveness of these attacks on various cryptosystems including
AES [11,5], RSA [13,4,3], and ECC [6]. Popular cryptographic libraries such as
OpenSSL have gone under several revisions to mitigate different MA attacks,
c.f. e.g. [1].

� Supported in part by the European Commission’s Seventh Framework Programme
(FP7) under contract number ICT-2007-216499 (CACE).

�� Supported in part by EPSRC grant EP/E001556/1.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 110–124, 2010.
c© International Association for Cryptologic Research 2010

New Results on Instruction Cache Attacks 111

There are usually two types of caches in today’s processors, data cache and
instruction cache, which have different characteristics, and hence we have two
different types of cache-timing attacks. Our work presented in this paper deals
only with instruction caches. I-cache attacks rely on the fact that instruction
cache misses increase the execution time of a software. An adversary executes
a so-called spy process on the same machine that his target software (e.g. an
encryption application) is running on and this spy uses some techniques to keep
track of the changes in the state of I-cache during the execution of the tar-
get software. Knowing the state changes in I-cache may allow the adversary
to extract the instruction flow of the target software. Cipher implementations
that have key-dependent instruction flows can be vulnerable to I-cache attacks
unless effective countermeasures are in place. I-cache analysis technique was in-
troduced in [2]. We have seen I-cache attack vulnerabilities in widely used RSA
implementations [4]. Previous works on I-cache analysis were, in a sense, only
proof-of-concept attacks. Spy measurements were either taken within the cipher
process or in a simplified experimental setup.

In this paper, we present several contributions related to I-cache attacks, their
data analysis, and countermeasures. We apply the templating cache-timing data
analysis framework [6] to I-cache data. It makes use of Vector Quantization (VQ)
and Hidden Markov Models (HMM) to automate the side-channel data analysis
step. This allows us to mount a lattice attack on an unmodified OpenSSL-DSA
implementation and successfully recover DSA keys. These are the first published
results of a real-life I-cache attack on a cryptosystem. In a nut-shell, our contri-
butions in this paper include:

– improving I-cache data analysis techniques,
– mounting a lattice attack on OpenSSL’s DSA implementation using this

improved analysis,
– presenting results of I-cache Analysis in a real-world attack settings,
– and outlining possible countermeasures to prevent I-cache attacks and mea-

suring their performance impacts.

We give an overview of the original I-cache attack of [2] in Section 2 and present
the details of our improved attack and our results on OpenSSL-DSA in Section 3.
Our results prove the dangers of I-cache attacks and the necessity of employing
appropriate countermeasures. We studied some of the possible countermeasures
and analyzed their impacts on cipher performance and also on the performance
of the entire system. We discuss these countermeasures and present our results
in Sections 4 and 5.

2 I-Cache Attack Concept

I-cache analysis relies on the fact that instruction cache misses increase the ex-
ecution time of software applications. Each I-cache miss mandates an access
to a higher level memory, i.e., a higher level cache or main memory, and thus
results in additional execution time delays. In I-cache analysis, an adversary

112 O. Acıiçmez, B.B. Brumley, and P. Grabher

runs a so-called spy process that monitors the changes in I-cache. They spy
process continuously executes a set of “dummy” instructions in a loop in a
particular order and measures how much time it takes to bring the I-cache to a
predetermined state. Sec. 3.1 contains an example of such a spy routine.

If another process is running simultaneously with the spy on the same physical
core of an SMT processor, the instructions executed by this process will alter
the I-cache state and cause evictions of spy’s dummy instructions. When the
spy measures the time to re-execute its instructions, the latency will be higher
for any evicted dummy instructions that must be fetched from a higher memory
level. In this manner the spy detects changes in the I-cache state induced by the
other (i.e., “spied-on”) process and can follow the footprints of this process.

[2] shows an attack on OpenSSL’s RSA implementation. They take advantage
of the fact that OpenSSL employs sliding window exponentiation which gen-
erates a key dependent sequence of modular operations in RSA. Furthermore,
OpenSSL uses different functions to compute modular multiplications and square
operations that leaves different footprints on I-cache. Thus, a spy can monitor
these footprints and can easily determine the operation sequence of RSA. [2]
uses a different spy than the one we outline in Sec. 3.1. They try to extract the
sequence of multiplication and square operations and thus their spy monitors
only the I-cache sets related to these functions. Furthermore, their spy does not
take timing measurements for each individual I-cache set, but instead considers
a number of sets as a group and takes combined measurements. In our work, the
spy takes individual measurements for each I-cache set so that we can monitor
each set independently and devise template I-cache attacks.

3 Improved Attack Techniques

In this section, we present our improvements to I-cache timing data analysis and
subsequently apply the results to run an I-cache attack on OpenSSL’s DSA im-
plementation (0.9.8l) to recover keys. We concentrate on Intel’s Atom processor
featuring Intel’s HyperThreading Technology (HT).

3.1 Spying on the Instruction Cache

The templating framework in [6] used to analyze cache-timing data assumes
vectors of timing data where each component is a timing measurement for a
distinct cache set. We can realize this with the I-cache as well using a spy process
that is essentially the I-cache analogue of Percival’s D-cache spy process [13]. It
pollutes the I-cache with its own data, then measures the time it takes to re-
execute code that maps to a distinct set, then repeats this procedure indefinitely
for any desired I-cache sets.

To this end, we outline a generic instruction cache spy process; the exam-
ple here is for the Atom’s 8-way associative 32KB cache, c = 64 cache sets,
but is straightforwardly adaptable to other cache structures. We lay out con-
tiguous 64-byte regions of code (precisely the size of one cache line) in labels

New Results on Instruction Cache Attacks 113

xor %edi, %edi .endr .rept 49
mov <buffer addr>, %ecx ... nop
rdtsc L64: .endr
mov %eax, %esi jmp L128 ...
jmp L0 .rept 59 L511:
.align 4096 nop rdtsc
L0: .endr sub %esi, %eax

jmp L64 ... movb %al, (%ecx,%edi)
.rept 59 L448: add %eax, %esi
nop rdtsc inc %edi
.endr sub %esi, %eax cmp <buffer len>, %edi

L1: movb %al, (%ecx,%edi) jge END
jmp L65 add %eax, %esi jmp L0
.rept 59 inc %edi
nop jmp L1

Fig. 1. Outline of a generic I-cache spy process

L = {L0, L1, . . . , L511}. Denote subsets Li = {Lj ∈ L : j mod c = i} in this
case each with cardinality eight, where all regions map to the same cache set yet
critically do not share the same address tag. These subsets naturally partition
L =

⋃c−1
i=0 Li. Observe that stepping through a given Li pollutes the correspond-

ing cache set i and repeating for all i completely pollutes the entire cache.
The spy steps iteratively through these Li and measures their individual ex-

ecution time. For example, it begins with regions that map to cache set zero:
L0 = {L0, L64, L128, . . . , L448}, stores the execution time, then continues with
cache set one: L1 = {L1, L65, . . . , L449} and so on through all 0 ≤ i < c. For each
i we get a single latency measurement, and for all i a vector of measurements:
repeating this process gives us the desired side-channel. For completeness, we
provide a code snippet in Fig. 1. The majority of the code is nop instructions,
but they are only used for padding and never executed. Note rdtsc is a clock
cycle metric.

3.2 Realizing the DSA

We use the following notation for the DSA. The parameters include a hash
function h and primes p, q such that g ∈ F∗

p generates a subgroup of order q.
Currently, a standard choice for these would be a 1024-bit p and 160-bit q. Parties
select a private key x uniformly from 0 < x < q and publish the corresponding
public key y = gx mod p. To sign a message m, parties select nonce k uniformly
from 0 < k < q then compute the signature (r, s) by

r = gk mod p mod q (1)

s = (h(m) + xr)k−1 mod q (2)

and note OpenSSL pads nonces to thwart traditional timing attacks by adding
either q or 2q to k.

The performance bottleneck for the above signatures is the exponentiation in
(1); extensive literature exists on speeding up said operation. Arguably the most
widely implemented method in software is based on the basic left-to-right square-
and-multiply algorithm and employs a standard sliding window (see [8, 14.85]).

114 O. Acıiçmez, B.B. Brumley, and P. Grabher

It is a generalization where multiple bits of the exponent can be processed during
a given iteration. This is done to reduce the total number of multiplications using
a time-memory trade-off. With the standard 160-bit q, a reasonable choice (and
what OpenSSL uses) is a window width w = 4.

The OpenSSL library includes an implementation of this algorithm, and uses
it for DSA computations. Its speed is highly dependent on how the modular
squaring and multiplication functions are implemented. Computations modulo
p are carried out in a textbook manner using Montgomery reduction. Outside
of the reduction step, the actual squaring and multiplication are implemented
in separate functions; this is because we can square numbers noticeably faster
than we can multiply them.

3.3 The Attack

We aim to determine partial nonce data during the computation of (1) by ob-
serving I-cache timings and use said partial data on multiple nonces to mount a
lattice attack on (2) to recover the private key x.

In Sec. 3.2 we mention that squaring and multiplication are implemented as
two distinct functions. In light of this, it is reasonable to assume that:

– All portions of these two sections of code are unlikely to map to the same
I-cache sets;

– The load and consequentially execution time of (1) is dependent on their
respective availability in the I-cache;

– An attacker capable of taking I-cache timings by executing their own code
as outlined in Sec. 3.1 in parallel with the computation of (1) can deduce
information about the state of the exponentiation algorithm—thus obtaining
critical information about k.

The resulting side-channel is a list of vectors where each vector component is
a timing measurement for a distinct cache set. We illustrate in Fig. 2, where
we hand picked 16 of 64 possible I-cache sets that seemed to carry pertinent
information.
Analyzing Timing Data. Next, we analyze this data to determine the se-
quence of states the exponentiation algorithm passed through. Just the se-
quence of squarings and multiplications that the sliding window algorithm passes
through implies a significant amount of information about the exponent input.
We utilize the framework of [6] to analyze the timing data, obtain a good guess
at the algorithm state sequence, and infer a number of bits for each nonce. The
steps include:

– For each operation we wish to distinguish (for example, squaring and mul-
tiplication), take a number of exemplar timing vectors that represent the
I-cache behavior during said operation; [6, Sec. 4.2] calls this “templating”.

– With these templates, create a Vector Quantization (VQ) codebook for each
operation; this is done using a standard supervised learning method called
LVQ. This can help eliminate noise and reduce the size of the codebook.

New Results on Instruction Cache Attacks 115

– Create a Hidden Markov Model (HMM) that accurately reflects the control
flow of the considered algorithm. The observation input to the HMM is the
output from VQ.

– Use the Viterbi algorithm to predict the most likely state sequence given a
(noisy) observation sequence (VQ output of I-cache timing data).

Vector Quantization. We categorize timing vectors using VQ, which maps the
input vectors to their closest (Euclidean distance-wise) representative vector in
a fixed codebook. We obtain codebook vectors during a profiling stage of the
attack, where we examine timing data from known input to classify the vectors
in the codebook. Essentially, this means we setup an environment similar to the
one under attack, obtain side-channel and DSA signatures with our own known
key, then partition the obtained vectors into a number of sets with fixed labels.
These sets represent the I-cache access behavior of the algorithm in different
states, such as multiplication and squaring; these are the labels. When running
the attack, we classify the incoming timing vectors using VQ. The algorithm
state guess is the label of the closest vector in the codebook. To summarize, we
guess at the algorithm state based on previously observed (known) algorithm
state.

Hidden Markov Models. We also build and train the HMM during the profiling
stage, using the classical Baum-Welch algorithm. The training data is the output
from VQ above: the observation domain for the HMM is the range of VQ (the
labels). As multiplication and squaring steps in the algorithm span multiple
timing vectors in the trace, we consider these steps as meta-states, represented
explicitly in the HMM by a number of sub-states corresponding to this span.
When running the attack, we feed the trace through VQ and send the output
to the HMM. The classical Viterbi algorithm outputs the state sequence that
maximizes the probability of the observation sequence. To summarize, we guess
the algorithm state sequence that best explains the side-channel observations.

Example. In addition to the timing data (rows 0-15) in Fig. 2, we give the
VQ output (rows 16-17) and HMM state prediction (rows 18-19). Normally the
purpose of any HMM in signal processing is to clean up a noisy signal, but in
this case we are able to obtain extremely accurate results from VQ. This leaves
little work in the end for the HMM. We chose to template squaring (the dark
gray), multiplication (black), and what we can only assume is the Montgomery
reduction step (light gray).

Using Partial Nonce Data. Having obtained a state sequence guess and thus
partial information on nonces k for many signatures, the endgame is a lattice
attack.

In such an attack it is difficult to utilize sparse key data, thus an attacker
usually concentrates on a fairly long run of consecutive (un)known bits, and
obtains more equations instead. Furthermore, we experienced that guesses on
bits of k get less accurate the farther away they are from the LSB. We sidestep
these issues by concentrating on signatures where we believe k has {0, 1}{0}6 in

116 O. Acıiçmez, B.B. Brumley, and P. Grabher

Time
 0

 8

 16

C
ac

he
 S

et

 30

 60

 90

 120

Fig. 2. Live I-cache timing data produced by a spy process running in parallel with an
OpenSSL DSA sign operation; roughly 250 timing vectors (in CPU cycles), and time
moves left-to-right. The bottom 16 rows are the timing vector components on 16 out
of 64 possible cache sets. The top four are meta-data, of which the bottom two are the
VQ classification and the top two the HMM state guess given the VQ output. Seven
squarings are depicted in dark gray and two multiplications in black.

the LSBs—that is, six zeros followed by a zero or one. The top bit is fixed due
to the padding, giving us a total of eight known bits separated by a single long
run of unknown bits. Experiments suggest we need 37 such signatures to recover
the long term key x.

Results. We obtained 17K signatures, messages, and corresponding I-cache tim-
ing data. Considering we expect the given bit pattern in k with probability 2−6,
this number seems unnecessarily high at first glance. Like many practical side-
channel attacks, this is due to inherent issues such as noise, context switching,
OS scheduling, and lack of synchronization. As our spy process is truly decoupled
from the OpenSSL code, running as an independent process, we get absolutely
no guarantee that they will execute simultaneously—or when they happen to,
for how long.

After obtaining these 17K signatures, our analysis resulted in 75 signatures
believed to match the pattern. We ran the lattice attack on five Intel Core2 quad
core machines, taking random samples of size 37 until the result yielded a private
key that corresponded to the given public key. The first core to succeed did so
in 54 minutes, after roughly 3200 lattice attack iterations. Checking afterwards,
59 of these guesses were correct and 16 incorrect.

4 Closing the Instruction Cache Side-Channel

Countermeasures to mitigate the I-cache side-channel can be employed at a
hardware and/or a software level. Hardware countermeasures require changes
to the micro-architecture and it might take a while until such a new processor
generation is available on the market. Previous work in this area proposed us-
ing alternative cache hardware, such as Partitioned Caches [12], Partition-locked
Caches and Random-permutation Caches [16]. Most current processor designs
are driven by performance and power criteria, leaving security as a secondary
consideration; it is questionable whether this view will change in the foreseeable
future. In this work, we focus solely on software techniques to address this vulner-
ability. Such countermeasures can be applied instantly by a software engineer as

New Results on Instruction Cache Attacks 117

long as no hardware equivalents are present. In contrast to previously proposed
software techniques, which are usually algorithm specific (e.g., Montgomery’s
powering ladder [9]), our aim is to provide generic methods be employed at the
kernel and/or compiler level.

In the following discussion, we have to distinguish between countermeasures
applicable to architectures which support SMT and conventional single-threaded
processors. While in both architectures multiple threads can exist at the same
time, there is a substantial difference in how they are scheduled. Processors
with SMT support essentially split a single physical processor into two logical
processors by duplicating some sections of the micro-architecture responsible for
architectural state. In this way, the OS can schedule two threads/processes to
be executed simultaneously on the same processor. These two threads execute
literally simultaneously, not in a time-sharing fashion. Memory accesses of both
execution threads alter the cache states at the same time.

In contrast, single-threaded processors are only capable to execute a single pro-
cess/thread at any given point in time. In such architectures, execution time is
allocated in time slices to the different processes/threads; by frequently switching
between processes/threads, it gives an outward impression that multiple tasks are
executed simultaneously. This type of execution is called quasi-parallel execution.

Cache attacks can work on both SMT processors and single-threaded proces-
sors. It is easier to run these attacks on SMT because spy and cipher can run
simultaneously on different virtual cores in a single physical processor and spy
can monitor cipher execution while cipher is performing its computations. Run-
ning cache attacks on single-threaded processors is more difficult. An attacker
needs to use some tricks to have a “ping-pong” effect between the spy and ci-
pher processes. [10] showed that it is possible to pause the cipher execution at
a determined point and let a spy to examine the cache state. [10] exploited an
OS scheduling trick to achieve this functionality and devised an attack on the
last round of AES. A similar OS trick was shown in [15] to let a malicious party
monopolize CPU cycles. [15] proposes to exploit OS scheduling mechanism to
steal CPU cycles unfairly. Their cheating idea and the source code can easily be
adapted to cache attacks on single-threaded processors.

Disable Multi-threading. In general, cache-based side-channel attacks take
advantage of the fact that modern computer systems provide multi-threading
capability. This fact allows an attacker to introduce an unprivileged spy pro-
cess to run simultaneously with a security-critical code, thereby deriving secret
key information from the state of the I-cache. A simple solution to eliminate
this vulnerability is to turn off multi-threading when a security-critical process
is scheduled to be executed: since it is the task of the OS to schedule pro-
cesses/threads, it can simply decide to ignore all unprivileged processes/threads
and not run them. On processors with SMT capability, the OS can adopt a
scheduling policy that does not permit to execute another process in parallel
with the crypto process. Alternatively, SMT can be turned off in the BIOS. Ac-
cording to Intel, SMT improves performance of multi-threaded applications by
up to 30 %. Therefore it needs to be decided on a case-by-case basis if disabling

118 O. Acıiçmez, B.B. Brumley, and P. Grabher

SMT for a more secure processing platform is acceptable from a performance
point of view. Disabling multi-threading alone does not suffice to close I-cache
side channel. I-cache attacks can be used on single-threaded processors without
SMT capability as we explained above.

Fully Disable Caching. Another intuitively simple solution to close the in-
formation leakage through the I-cache is to disable the cache entirely. The Intel
x86 architecture makes the cache visible to the programmer through the CD
flag in the control register cr0 : if said flag is set, caching is enabled otherwise
it is disabled. However, such an approach severely affects the performance of
the system as a whole. A more fine-grained control sees the cache only disabled
when security-critical code is scheduled to be executed.

Partially Disable Caching. The x86 caches allow the OS to use a different
cache management policy for each page frame. Of particular interest in this
context is the PCD flag in control register cr0 which determines whether the
accessed data included in the page frame is stored in the cache or not. In other
words, by setting the PCD flag of the page frames containing security-critical
code it is possible to partially disable the caching mechanism. While such an
approach successfully eliminates the I-cache side-channel we argue that is has a
considerable negative impact on performance (albeit not as severe as with com-
pletely turning off the cache). The reason is that most cryptographic primitives
spend the vast majority of the execution time in some small time-critical code
sections; hence, not caching parts of these sections will be reflected in longer
execution times.

Cache Flushing. Ideally, the processor would provide an instruction to flush
the content of the L1 I-cache only. Unfortunately, such an instruction is not yet
available on Intel’s x86 range of processors. Instead, the WBINVD instruction [7]
can be executed during context switches to flush the L1 I-cache. Note, that this
instruction invalidates all internal caches, i.e., the instruction cache as well as
the data cache; modified cache lines in the data cache are written back to main
memory. After that, the instruction signals the external caches, i.e., the L2 and
L3 cache to be invalidated. Invalidation and writing back modified data from
the external caches proceeds in the background while normal program execution
resumes, which partly mitigates the associated performance overhead. OS can
flush the cache when a security-critical process such as a cipher switched out
and thus the next process scheduled right after the cipher cannot extract any
useful information from the cache state. This countermeasure is not effective on
SMT systems because flushing happens during context switch and spy that runs
simultaneously with a cipher on SMT can still monitor cipher’s execution.

Partial Cache Flushing. Flushing the entire L1 I-cache negatively affects
performance of both the security application as well as of all the other existing
threads. This performance impact can be reduced when following a more fine-
grained approach: instead of flushing the entire I-cache we propose to invalidate
only those cache sets that contain security-critical instructions via some kind of
OS support.

New Results on Instruction Cache Attacks 119

The x86 processor does not include such a mechanism that allows flushing
of specific cache sets. Instead, some architectures provide the CLFLUSH in-
struction [7] capable of invalidating a cache line from the cache hierarchy. This
instruction takes the linear address of the cache line to be invalidated as an ar-
gument. Consequently, flushing an entire cache set with this instruction would
require the knowledge of both the linear address space of the spy process as well
as of the security-critical code sections of the crypto process. While the later can
be made easily available to the OS, it is much more difficult to reason about the
linear address space of the spy process. This instruction is not suitable for our
purposes as a result.

However, flushing of specific cache sets on x86 processors can still be accom-
plished by beating an attacker at his own game. The simple idea is to divert
the spy process from its intended use by employing it as defence mechanism;
essentially, the kernel integrates a duplicate spy process into the context switch.
This permits the eviction of security-critical code sections from the I-cache each
time security-critical code is switched out.

At first glance, it might seem that invalidating only those cache lines contain-
ing security-critical code before giving control to another process (possibly the
spy process) can defeat the I-cache attack. However, from the spy’s point of view,
it makes no difference whether lines with security-critical code have been inval-
idated or not: in any case, the spy process will measure a longer execution time
since the crypto process has evicted a cache line belonging to the spy. Therefore,
invalidating only cache lines with security-critical code is not sufficient and the
entire sets that hold them need to be invalidated. Similar to flushing the entire
cache, partial flushing is not effective on SMT processors as explained above.

Cache-conscious Memory Layout. Fundamentally, I-cache attacks rely on
the premise that the security-critical code sections or parts of them map to dif-
ferent regions in the I-cache. By mapping these security-critical code sections
exactly to the same regions in the cache, the I-cache attacks can no longer re-
cover the operation sequence. However, in some cases this approach might not
be sufficient. For example, consider the case of two security-critical code sections
that are of equal size and map to the same sets, where the majority of execu-
tion time of the two security-critical code sections is spent in disjoint cache sets.
In such a scenario, it is still highly likely that the spy observes distinct traces
despite the appropriate alignment in memory. Cache-conscious memory layout
can be accomplished either by a compiler or via OS support. Given the I-cache
parameters and the security-critical code sections, a compiler can generate an
executable resistant against I-cache attacks by appropriately aligning said sec-
tions. To balance the sizes of these sections, it might be necessary to add some
dummy instructions, e.g., NOPs, before and/or after the sections; this padding
with dummy operations implies some performance penalty and results in an in-
crease in the size of the executable. Alternatively, the OS can be in charge of
placing the security-critical code sections in such a way in memory that they
map to the same regions in the cache if the cache is physically addressed. For
that, the executable needs to specify the memory sections with security-critical

120 O. Acıiçmez, B.B. Brumley, and P. Grabher

information. Similar to the compiler approach, additional dummy operations
might be required to make the security-critical code sections equal in size. None
of the above countermeasures provide an effective yet practical mechanism for
SMT systems, except cache-conscious memory layout . This countermeasure in-
curs very low overhead as we will explain in the next section and it is also
effective on SMT systems.

5 Performance Evaluation

All our practical experiments were conducted on a Intel Core Duo machine
running at 2.2 GHz with a Linux (Ubuntu) Operating System. To minimize the
variations in our timing measurements due to process-interference we used the
process affinity settings to bind the crypto process to one core and assigned all
the other processes to the other core.

Performance impact on the crypto process. For the performance evalu-
ation of our proposed software countermeasures we used the RSA decryption
function of OpenSSL (version 0.9.8d) as a baseline. Table 1 summarizes the
performance impact of our proposed countermeasures upon OpenSSL/RSA in
comparison to the baseline implementation; results are given for different key
lengths, i.e., 1024-bits, 2048-bits and 4096-bits.

Table 1. Performance evaluation of the proposed countermeasures

Implementation 1024-bit 2048-bit 4096-bit
Baseline OpenSSL/RSA Execution time (in ms) 1.735 9.606 57.9

Decryptions/s 576.3 104 17.3
OpenSSL/RSA with Execution time (in ms) 1273 7204 45060

cache disabled Decryptions/s 0.8 0.1 0.02
OpenSSL/RSA with Execution time (in ms) 1.888 11.192 60.6

cache flushing Decryptions/s 530 89.3 16.5
OpenSSL/RSA with Execution time (in ms) 1.734 9.535 58.2

partial flushing Decryptions/s 576.8 104.9 17.1
OpenSSL/RSA with Execution time (in ms) 1.755 9.727 58.2

cache-conscious layout Decryptions/s 570 102.8 17.2

The performance evaluation supports our claim that turning the cache off re-
sults in an immense performance overhead. For instance, execution of a 1024-bit
OpenSSL/RSA with a disabled cache leads to a 3-orders of magnitude degrada-
tion in performance. This experiment was conducted with the help of a simple
kernel module which turns the cache off when loaded into the kernel and turns
the cache on again when unloaded. Similarly, we expect an unacceptable im-
pact on performance when just partially disabling the cache since this forces the
processor to repeatedly fetch instructions from the slow main memory; for that
reason we refrained from investigating this approach in more detail. Flushing the
cache hierarchy during a context switch incurs a performance overhead of about

New Results on Instruction Cache Attacks 121

5− 15 % for the different key sizes. Even more severe than this non-trivial per-
formance penalty is the significant increase in context switch time: using Intel’s
RDTSC instruction, we measured a 10-fold increase. The performance overhead
from both an application as well as OS point of view can be significantly re-
duced when only invalidating the cache sets containing security-critical code.
For that, we aligned the spy process appropriately in the context switch routine
to evict the cache sets that hold data of both the OpenSSL/RSA multiplication
and squaring routines; in total, it was necessary to evict 29 sets (i.e., 18 sets
are occupied by multiplication instructions and 11 sets by squaring instructions)
from the instruction cache.

From Table 1 it appears that no noticeable performance overhead is associated
with this countermeasure. This result is somewhat expected since the overhead
of bringing the evicted instructions from the L2 cache back into the instruction
cache is negligible.

Finally, we investigated the cache-conscious memory layout approach. It was
necessary to pad the OpenSSL/RSA squaring routine with 406 NOP instruc-
tions in total so that it matches the size of the OpenSSL/RSA multiplication.
However, having the same code size alone does not prevent information leakage;
the security-critical code sections also need to be aligned in memory in such
a way that they map into the same cache sets. This can be done by rewriting
the linker script to control the memory layout of the output file. In more de-
tail, we first used the gcc compiler option “-ffunction-sections” to place the two
security-critical code sections in a separate ELF section each. Then, we redefined
the memory model so that each section is placed at a known address such that
they will be placed in the same sets in the cache. The performance overhead
associated with this countermeasure is so minimal that in practice it can be
regarded as negligible.

Performance impact on the system caused by the countermeasures.
Our proposed software countermeasures may have a negative impact on other
processes that are running concurrently with a security-critical application. This
impact might be in particular noticeable for the solution where the entire cache
content is flushed during a context switch.

To estimate the impact on the system as a whole, we ran the SPEC2000int
benchmark simultaneously with a security-critical application; this means the
processor’s entire cache hierarchy is invalidated at regular intervals, i.e., every
time the security-critical process is switched out. Figure 3 illustrates this per-
formance impact on the SPEC benchmark in presence of this countermeasure.

On average, invalidation of the cache during context switches results in a 10 %
degradation in performance. This decline is caused by bringing data back into the
cache after it has been discarded during the context switch. Note, this overhead
gives an estimation for the worst-case scenario and the impact will typically be
less severe on systems where security-critical applications are executed less fre-
quently. Figure 3 also shows the run time of the SPEC benchmark in presence of
partial cache eviction as a countermeasure instead. Essentially, the performance
impact on the system as a whole is negligible in this case. Further, some of our

122 O. Acıiçmez, B.B. Brumley, and P. Grabher

bzip2

gcc

mcf

gobmk

hmmr

sjeng

libquantum

h264ref

omnetpp

astar

xalancbmk

Partial Flushing

Full Flushing

0 500 1000 1500 2000 2500

perlbench

bzip2

gcc

mcf

gobmk

hmmr

sjeng

libquantum

h264ref

omnetpp

astar

xalancbmk

Run Time (s)

Partial Flushing

Full Flushing

No Flushing

Fig. 3. Performance impact of cache flushing on the SPEC2000int benchmark

countermeasures can influence the time it takes to perform a context switch. If
there is no process using our countermeasures, which will probably be the case
most of the time, the only extra work that needs to be done is to check a flag (i.e.,
the flag that indicates whether the current process needs to be protected). How-
ever, switching out a security-critical process possibly requires some additional
work for the scheduler which results in a longer execution time of the context
switch. This behaviour is in particular apparent when using the cache flushing
approach since the scheduler needs to wait until all dirty data cache lines have
been written back to maintain memory coherence. Consequently, depending on
the type of process that is switched out, a different amount of time is spent in
the context switch routine. This can pose a serious problem to real-time systems,
where highly deterministic behaviour is required. Note that partial eviction has
a considerably smaller impact on the context switch; in theory, for each cache
set that contains security-critical instructions, the OS simply needs to execute
a small number of appropriately aligned dummy instructions and this number
needs to be equal or larger than the associativity of the I-cache.

6 Conclusions

We presented improved I-cache analysis techniques based on vector quantization
and hidden Markov models. The analysis is automated and fast, capable of
analyzing large volumes of concrete I-cache timing data. This can be used to
perform automated I-cache attacks.

We demonstrated its effectiveness by carrying out an I-cache attack on an un-
modified version of OpenSSL’s DSA implementation (0.9.8l). We used the frame-
work to process the timing data from thousands of signatures and subsequently

New Results on Instruction Cache Attacks 123

recovered keys using lattice methods. This attack is automated, recovering a
DSA private key within an hour.

Our study clearly proves that I-cache cryptanalysis is realistic, practical, and a
serious security threat for software systems. We believe it is necessary to conduct
a thorough analysis on current software cryptosystems to detect I-cache analy-
sis (more generally Microarchitectural Analysis) vulnerabilities. We already saw
several MA vulnerabilities in cryptographic software like OpenSSL and they
were fixed by specific algorithm-level solutions such as removing extra reduction
step from Montgomery multiplication. However, it is crucial to design generic
algorithm-agnostic mitigation mechanisms.

Mitigation mechanisms can be employed at a hardware and/or a software
level. Hardware countermeasures require changes to the micro-architecture and
much longer time to hit the market compared to software countermeasures. Thus,
we focused solely on generic software-level mitigations in our work and presented
some countermeasures to close I-cache side channel. We studied their impacts
on cipher performance and also on the performance of the overall system. Naive
approaches such as disabling cache or flushing the entire cache before or after
the execution of security critical software have high performance overheads as-
sociated with them. Thus, such approaches are far from gaining wide usage due
to their low practicality even though they can eliminate I-cache side channel
leakage. However, we presented two practical approaches, “partial flushing” and
“cache conscious memory layout”, that have very low performance overheads.

We realized that even very primitive support from the hardware can be very
helpful towards designing and developing low-cost mitigations. For instance, if
a processor’s ISA includes an instruction permitting to flush cache sets, miti-
gations like partial flushing become much easier to implement and have lower
performance overheads.

As our final remark, we want to emphasize that our results stress the sig-
nificance of considering security as a dimension in processor design space and
paying it the same level of attention as cost, performance, and power.

Acknowledgments. The authors would like to thank Dan Page for his input
throughout the duration of this work.

References

1. http://cvs.openssl.org/chngview?cn=16275

2. Acıiçmez, O.: Yet another microarchitectural attack: Exploiting I-cache. In: Pro-
ceedings of the 1st ACM Workshop on Computer Security Architecture (CSAW
2007), pp. 11–18. ACM Press, New York (2007)

3. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: On the power of simple branch predic-
tion analysis. In: Proceedings of the 2nd ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS 2007), pp. 312–320. ACM Press,
New York (2007)

4. Acıiçmez, O., Schindler, W.: A vulnerability in rsa implementations due to in-
struction cache analysis and its demonstration on openssl. In: Malkin, T.G. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 256–273. Springer, Heidelberg (2008)

http://cvs.openssl.org/chngview?cn=16275

124 O. Acıiçmez, B.B. Brumley, and P. Grabher

5. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attacks on the
AES. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer,
Heidelberg (2006)

6. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 667–684. Springer, Heidelberg (2009)

7. Intel Corporation: Intel(R) 64 and IA-32 Architectures Software Developer’s Man-
ual, http://developer.intel.com/Assets/PDF/manual/253667.pdf

8. Menezes, A., Vanstone, S., van Oorschot, P.: Handbook of Applied Cryptography.
CRC Press, Inc., Boca Raton (1996)

9. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

10. Neve, M., Seifert, J.P.: Advances on access-driven cache attacks on AES. In: Bi-
ham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer,
Heidelberg (2007)

11. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

12. Page, D.: Partitioned cache architecture as a side-channel defense mechanism.
Cryptology ePrint Archive, Report 2005/280 (2005), http://eprint.iacr.org

13. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan 2005
(2005), http://www.daemonology.net/papers/htt.pdf

14. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
Exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security (CCS 2009),
pp. 199–212. ACM Press, New York (2009)

15. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Secretly monopolizing the CPU without
superuser privileges. In: Proceedings of the 16th USENIX Security Symposium
(SECURITY 2007), pp. 239–256. USENIX Association (2007)

16. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side-
channel attacks. In: Proceedings of the 34th Annual International Symposium on
Computer Architecture (ISCA 2007), pp. 494–505. ACM Press, New York (2007)

http://developer.intel.com/Assets/PDF/manual/253667.pdf
http://eprint.iacr.org
http://www.daemonology.net/papers/htt.pdf

Correlation-Enhanced Power Analysis
Collision Attack

Amir Moradi1, Oliver Mischke1, and Thomas Eisenbarth2

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
2 Department of Mathematical Sciences, Florida Atlantic University, FL, USA

{moradi,mischke}@crypto.rub.de, teisenba@fau.edu

Abstract. Side-channel based collision attacks are a mostly disregarded
alternative to DPA for analyzing unprotected implementations. The ad-
vent of strong countermeasures, such as masking, has made further re-
search in collision attacks seemingly in vain. In this work, we show that
the principles of collision attacks can be adapted to efficiently break some
masked hardware implementation of the AES which still have first-order
leakage. The proposed attack breaks an AES implementation based on
the corrected version of the masked S-box of Canright and Batina pre-
sented at ACNS 2008. The attack requires only six times the number of
traces necessary for breaking a comparable unprotected implementation.
At the same time, the presented attack has minimal requirements on the
abilities and knowledge of an adversary. The attack requires no detailed
knowledge about the design, nor does it require a profiling phase.

1 Introduction

Ten years after the introduction of side-channel attacks [2,10,13,15,23], the cre-
ation of a DPA-resistant cryptographic hardware implementation remains a
challenge. During the last years several countermeasures to prevent power and
EM-analysis have been proposed [12,20,21,29,30]. One of the main targets of
the side-channel community are implementations of the AES. AES [19], having
been the NIST symmetric encryption standard for about 10 years, is proba-
bly the most widely used cipher in practical applications. Despite of its high
cryptographic security in a black box scenario, implementations of AES are a
popular and easy target for side-channel attacks such as DPA and SPA. Cor-
respondingly, the efficient and leakage-minimized implementation of AES is a
well-studied problem [8,9,21,24,25].

At the same time attacking techniques have been improved and defeated many
of these countermeasures. The first practical evaluation was performed on one
additive and one multiplicative masking scheme of AES [16]. It has been shown
that though they are resistant to classical DPA attacks considering standard
Hamming Weight (HW) and Hamming Distance (HD) models, more sophisti-
cated attacks using more precise power models, e.g., the toggle count model [16],
are capable of overcoming the masking countermeasure. However, these attacks
usually require detailed information about the implementation such as the netlist

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 125–139, 2010.
c© International Association for Cryptologic Research 2010

126 A. Moradi, O. Mischke, and T. Eisenbarth

of the target device. Later it was shown in [17] that XOR gates of the mask mul-
tipliers of the masked S-box play the most significant role in the susceptibility
of the evaluated schemes, but to our knowledge the proposed solutions have not
been practically evaluated.

Another approach for attacking implementations using a power or EM side-
channel are collision attacks. Here, the attacker concludes from the leakage that
two identical intermediate values have been processed and uses this information to
cryptanalize the encryption scheme. The practicability of these attacks has been
shown against DES in [14,27]. Successful attacks against AES have been presented
in [6,26]. Collision attacks remain less popular than DPA-like attacks because of
their sometimes complicated setup, their strong dependence on noise, and the more
complex key recovery phase. Although the number of traces actually used in an at-
tack is usually lower than that of classical DPAs, the number of traces needed to
generate a collision normally makes the attacks less efficient than, e.g., correlation
DPAs. Finally, with the advent of randomizing-like countermeasures, collision at-
tacks seem to be infeasible against protected implementations.

Our Contribution. In this work we present a method to identify and exploit
collisions between masked S-boxes in a very efficient manner. In fact, we use cor-
relation to combine the leakage of all possible collisions and thereby including
the full set of obtained measurements in the attack. Since practical evaluation of
attacks and countermeasures by means of making a state of the art ASIC chip is
not a time- and cost-effective approach, we have applied our attack on a masked
version of the AES, implemented on a Xilinx Virtex-II Pro chip mounted on
the Side-channel Attack Standard Evaluation Board (SASEBO) [1]. Our imple-
mentation generates all masks for each plaintext byte uniformly at random and
none of the mask bytes is reused in later encryptions. Our investigation shows
that the applied masking scheme is capable of resisting against those first-order
DPA attacks which use common and well-known power models, e.g., HD and
HW. From the results of [16] it can be expected that the masking scheme can be
overcome when using a more accurate power model, e.g., toggle count, or when
applying template-based DPA attacks. These attacks, however, assume a power-
ful adversary, because detailed knowledge such as a back annotated netlist of the
layout is needed, or a profiling phase using a controllable target implementation
has to be performed. None of these requirements have to be met to perform the
attack presented in this article.

Our proposed attack reduces the effect of randomness by means of averaging
over known (not chosen) inputs, and detects the collisions on the S-box input/
output by examining the leakage of averaged power traces. In fact, our attack re-
veals that in our target implementation even uniformly distributed masks can-
not prevent a first-order leakage depending on the unmasked values. It should be
noted that our attack does not depend on a specific leakage model. The experi-
mental results show that our attack is able to recover the key by means of less than
20 000 traces while the secret starts leaking out by a zero value attack using at least
1 000 000 traces of the same implementation. For a second-order zero-offset DPA,
even around 8 000 000 traces are needed to recover the secret key.

Correlation-Enhanced Power Analysis Collision Attack 127

Organization. The remainder of this article is organized as follows: Section 2
describes the target implementation of the AES and sets it into the context
of related work. In Section 3 we analyze the AES implementation with classi-
cal methods, before we detail on the proposed collision attack in Section 4. A
conclusion is given in Section 5.

2 Hardware Implementation of the AES

Several optimizations for hardware implementations of the AES have been pro-
posed. To minimize circuit area consumption of the AES, Rijmen [24] suggested
the use of subfield arithmetic in GF (24) to compute the inverse in GF (28).
The idea was taken further by Satoh et al. [25] using the "composite-field"
approach/"tower-field" representation by Paar [22] to implement the inversion
in GF (24) by the use of sub-subfield arithmetic in GF (22). Along with other
innovations this resulted in a very compact AES S-box, which was further im-
proved by Canright [8] through choosing the normal bases which yielded the
smallest circuit size.

Several masking schemes have been proposed to create a masked AES S-box
using either multiplicative or additive methods. Unfortunately, multiplicative
ones [4,11] are vulnerable to certain attacks, especially the so-called zero-value
attack, because a zero input value does not get masked by multiplication. The
solution is to use the tower-field representation for an additive masking scheme
because the inversion in GF (22) is equivalent to squaring which is linear. The first
at least algorithmically provable secure additive masking scheme was proposed
by Blömer et al. [5]. Later Oswald et al. [21] proposed a more efficient scheme by
using different bases and reusing some mask parts. Canright et al. [9] applied this
idea to his very compact S-box resulting in the most compact masked S-box to
date. [33] is also another design showing the interest of the research community
on this topic.

2.1 Our Implementation

Our goal is the evaluation of a hardware implementation of the AES that is sup-
posed to be secure against first-order side-channel attacks. To cover a wide range
of possible implementations, we decided to implement two different architectures
of the AES. The first one is designed to achieve low power consumption and has
a low area requirement. This is achieved by choosing an 8-bit data path and
features a single S-box that is sequentially used for SubBytes operations and the
key scheduling. All registers are implemented as byte-wise shift-registers which
can be clocked independently. The full data path of the complete AES engine
excluding the key registers is masked. The mask values are generated internally
by means of a PRNG, and the (uniform) distribution of the generated random
values have been verified. The masks are different for each plaintext byte and
differ in each execution of the encryption. The high level architecture of our AES

128 A. Moradi, O. Mischke, and T. Eisenbarth

Plaintext KeyMask mMask n

AddRoundKey
Add Mask m

State
Registers

Mask m
Registers

ShiftRows

Mask n
Registers

Key
Registers

Masked
MixColumns

AddRoundKey
Remove Mask n

Masked
Sbox

Ciphertext

Final Round

Final Round

Round

KeySchedule 0 1

0 1

ShiftRows KeySchedule

AddRoundKey

32

8

8

32

32

32

32

32

32

32

8

88

8

8

32

32

32

128

128
128

128
128

128

128

Fig. 1. Architecture of the AES design

design is depicted in Fig. 1. Unless stated otherwise, our analysis focuses on this
implementation. To verify that our attack also works in the presence of noise,
we implemented a second AES engine that has a 32-bit data path and features
four parallel S-boxes. Details on this engine can be found in Appendix B of [18].

The design of the masked S-box is identical to [9] which uses two independent
masks, m and n to randomize the input and the output. We retrieved the Verilog
code from author’s website and paid special attention that the order of the
operations and other suggestions to maintain the masking scheme have been
strictly kept by the synthesis tool.

Encryption starts by providing 128-bit plaintext, key, and masks m and n. The
masks are independent and uniformly distributed and differ for each plaintext
byte and each encryption execution. At the beginning of each round ShiftRows
is performed on both the masked data state and the input mask m. The S-box
is then first used by the key schedule unit to compute the first 32-bit part of
the next round key without using any masks. In the following four clock cycles
the masked S-box performs the SubBytes transformation on the first column.
The consecutive masked MixColumns and AddRoundKey transformations are
performed using a 32-bit wide datapath. During this operation the mask of the
state is also changed back to mask m because during SubBytes the input mask m
is replaced by the output mask n. This sequence of four times SubBytes followed
by MixColumns and AddRoundkey is repeated four times to complete the round
function.

Correlation-Enhanced Power Analysis Collision Attack 129

Optimized
xor/sq/scl/

mul
4

XORS

input
mask

output
mask

Fig. 2. Block diagram of the used masked GF (28) inverter

2.2 Details on the Masked AES S-Box

The general structure of the used masked S-box is depicted in Fig. 2 omitting
the tower-field conversion. While only the GF (28)/GF (24) module is shown,
the GF (24)/GF (22) module uses the same structure the only difference being
that instead of an GF (22) inversion module, this step is merged as squaring to
the overall design. As can be seen the additional elements in the datapath are
all additive (XORs). It is important to introduce a new mask before adding the
masked products since the distribution of the sum of two masked products is oth-
erwise not uniformly distributed as explained in [9]. By doing all summations in
the correct order the result of every computation is either uniformly distributed
or has the random product distribution independent of the used plaintext and
key. Therefore, as stated in [9], the scheme is considered to theoretically achieve
perfect masking on an algorithmic level by the definition of [5].

3 Analysis of the AES Implementation

The whole design has been implemented on a Xilinx Virtex-II Pro FPGA (xc2vp7)
of a SASEBO circuit board which is particularly designed for side-channel attack
experiments [1]. To better understand the leakage of our implementation we per-
formed several tests of our platform. We performed tests to identify when certain
leakages occur. Subsequently we analyzed the vulnerability of our implementa-
tion to first-order DPA attacks based on correlation, both in the unmasked and
in the masked case.

All tests are performed on the power consumption of the Virtex-II FPGA
containing our implementation. Measurements are performed using a LeCroy
WP715Zi 1.5GHz oscilloscope at a sampling rate of 5GS/s1 and by means of
a differential probe which captures the voltage drop over an 8Ω resistor in the
1 This oversampling is not essential here; however, since glitches and toggles in hard-

ware occur at very high frequencies, we decided to keep a high sampling rate, but we
have confirmed the feasibility of the attacks using lower sampling rates, e.g., 1GS/s.

130 A. Moradi, O. Mischke, and T. Eisenbarth

VDD (3.3V) supply of the FPGA. In all the experiments the clock signal is
provided by a 24MHz oscillator which is divided by 8 using a frequency divider,
i.e., our cryptographic engine is clocked at a frequency of 3MHz.

3.1 Analysis of the Unprotected Architecture

In a first step we analyze the leakage of an unprotected implementation that
employs the highly compact unmasked AES S-box design of Canright [8]. A
power trace of this unprotected implementation during the first 12 clock cycles
is shown in Fig. 3(a). The processing order and hence the occurrence of leakages
over clock cycles will pretty much stay the same for the masked implementation,
as the high level architecture remains constant.

Similarly to what was observed in [16], DPA attacks using the HW of the S-
box input/output are not successful. We get a good estimation about the leakage
strength of the implementation platform performing a DPA attack predicting the
HD of 8 bits of the state register2. The result of this HD-based DPA is shown
by Fig. 3(b). As shown in Fig. 3(d), the leakage of approx. 3 000 traces suffices
to perform a successful attack using a HD model.

As explained in [15], most of the time implementations of the AES S-box
consume less power for the zero input value than for the other cases. It holds
here as well, and an attack using the zero value model is possible which is shown
by Fig. 3(c). Moreover, according to Fig. 3(d) 4 000 measurements are required
for succeeding with the zero value attack.

3.2 Analysis of the Masked Architecture

Moving towards the masked version of the implementation, we should emphasize
that neither the attacks using the HW model predicting S-box input/output nor
those which use the HD model on the state register are expectedly able to reveal
the secrets. Since in our architecture the state and the mask registers are shifted
in the same fashion, both masked values and the masks are processed at the same
time. Therefore, one can perform a zero-offset second-order DPA attack [31] by
squaring the power values and by means of a HD model to predict the transitions
in the state register. In practice higher-oder attacks usually require much more
traces in comparison to the first-order ones, and we collected 10 000 000 traces to
clearly distinguish the correct key guess amongst the others. The result of such
an attack is shown by Fig. 4 indicating that around 8 000 000 traces are needed to
have a successful attack. In our experiments we have examined several possible
power models in first-order attacks, and interestingly the secret starts leaking
by a zero value DPA attack using 1 000 000 traces. The relevant result is shown
by Fig. 5. It shows that power consumption of the target implementation is not
really independent of the unmasked values, and this issue motivated us to try
for an alternative approach in order to decrease the number of measurements
and to distinguish the secret more clearly. It should be emphasized that in our
2 Note that to predict the HD of the state register in our target architecture, two key

bytes amongst 216 hypotheses should be guessed at the same time.

Correlation-Enhanced Power Analysis Collision Attack 131

(a)

(b)

(c)

(d)

Fig. 3. (a) A measured power traces of an undefended implementation, (b) DPA attack
result predicting toggles in the state register, (c) DPA attack using zero value model
predicting the S-box input, and (d) the required number of traces in attacks using (left)
HD model and (right) zero value model

Fig. 4. Result of a zero-offset second-order DPA attack on the masked implementation
using a HD model (left) by 10 000 000 traces and (right) at point 2.9μs over the number
of traces

132 A. Moradi, O. Mischke, and T. Eisenbarth

Fig. 5. Result of a zero value DPA on the masked implementation by 1 million traces

target implementation the mask values are internally generated by means of a
PRNG, and the (uniform) distribution of the generated random values has been
verified. Furthermore, the masks are different for each plaintext byte and differ
in each execution of the encryption.

Before introducing our collision attack, we first explain some issues which we
observed during practical experiments. As mentioned before, we acquired millions
of traces for the aforementioned attacks. It should be noted that these traces have
been recorded on randomly chosen plaintext bytes. To learn about the behavior
of the implementation, we computed the average over the traces (measured from
the masked implementation) based on a plaintext byte and thereby obtained 256
mean traces. By examining the variance of the mean traces we can detect in which
clock cycle a function, e.g. the S-box, relevant to the selected plaintext byte is
computed, if the mean traces are not ideally close to each other. If such features
are detectable in the power traces, the mean traces are not independent of the
unmasked values. In Fig. 6 two variance traces over the mean traces of plaintext
byte 0 and byte 5 are shown3. The figure shows that a function over these two
plaintext bytes is computed in two consecutive clock cycles, which fits to the tar-
get architecture. We have used 1 000 000 measurements to generate the variance
traces shown in Fig. 6, but we have examined using less number of traces, e.g.,
50 000, and the result had the same shape and the same feature.

Since the mean traces depend on the unmasked values, a couple of attacks
are possible. For example, as expected by the authors of [9], a DPA using the
toggle-count model should work here. Yet, for that attack the adversary needs
to have access to the target netlist or layout to simulate and extract the toggle-
count model. Moreover, a template-based DPA attack also might work, but the
adversary needs to first create profiles for a known key. The aim of our attack is
to avoid such limitations and strong assumptions.

4 Correlation-Enhanced Collision Attack

Based on the observations described in Section 3, we adapt collision attacks to
be able to exploit any first-order leakage without knowing the precise hypothet-
ical power model. The attack targets collisions in the full S-box computation.
Detected collisions have the same 8-bit input and consequently the same 8-bit
3 Note that the mean traces are computed based on each plaintext byte independently.

Correlation-Enhanced Power Analysis Collision Attack 133

Fig. 6. Variance of mean traces for plaintext byte 0 and 5

output value. Please keep in mind that these values are always masked, with
different masks for each measurement and each S-box. The developed attack
does not require any sort of profiling phase with a known-key device. Of course,
knowledge about the position of the execution of the S-box computation are
helpful, but all information needed can be extracted from the measurements
of the device under attack. As described in section 3.2, one way would be to
compute the mean traces and perform a variance check. Alternatively, such in-
formation can be gained by combing through the power traces with an offset of
e.g. one clock cycle [28]. We split the attack into a measurement phase, which
is comparable to previous collision attacks against unmasked implementations,
and an enhanced detection phase.

During the measurement phase we record the power consumption traces Ti

of the encryption of random known plaintexts Pi =
{
pi

j

}15
j=0

. We know that
each trace Ti contains the leakage of every S-box computation of the first round
si

j = S(pi
j ⊕ kj), which we target in our collision attack. In our model, a collision

occurs when two S-box computations at the byte position j1 = a and j2 = b
collide, i.e., have equal output si1

a = si2
b and due to the bijectivity of the S-box

also equal input pi1
a ⊕ ka = pi2

b ⊕ kb. We can define the input difference Δa,b as

Δa,b = pi1
a ⊕ pi2

b = ka ⊕ kb

Hence, this type of collision reveals a linear relation between two key bytes,
depending only on the known difference Δa,b. By finding more first-round colli-
sions, eventually we will have relations for all 16 key bytes ki, reducing the key
entropy to 8 bits (i.e. 256 key candidates for the full 128-bit AES key), which
can easily be recovered by trial and error. This attack is labeled linear collision
attack on AES in [6]. In theory, this attack is prevented by masking, since both
input and output of the S-box are masked, destroying any relation between in-
put difference Δ and the plaintexts pi1

a and pi2
b . Yet, we show that there is a

remaining leakage in the masked Canright/Batina S-box that can be exploited
by an adaption of the linear collision attack we describe in the following.

The measurement phase is the same as for the normal linear collision attack.
Yet, we apply a different detection phase to identify many collisions at once.
As described above, we first have to detect where the leakage of the individual
S-boxes occurs. To reduce the influence of the masks, we average the power

134 A. Moradi, O. Mischke, and T. Eisenbarth

consumption for equal input bytes pj . We do this by browsing all of our traces
T and averaging only those traces where the jth plaintext byte equals a certain
value α ∈ GF (28). Hence, we get 28 average traces Mα

j for each plaintext byte
position j, where Mα

j is the average of all traces Ti where pi
j = α.

Mα
j = Ti · δ(pi

j = α)

Unlike the classical linear collision attack, we do not try to detect a single colli-
sion, but directly include all possible collisions between two byte positions j = a
and j = b. We know that for one particular key pair ka and kb, the difference
Δa,b = ka ⊕ kb is constant. Hence, a collision occurs whenever the plaintexts at
position a and b show the same difference, i.e., pa = α and pb = α ⊕Δa,b. Our
approach is to guess the difference Δa,b and verify our guess by detecting all re-
sulting collisions pa = α and pb = α⊕Δa,b for all α ∈ GF (28) at the same time.
For detecting the correct Δa,b, we correlate the averaged power consumption
Mα

a of the S-box lookup of pa = α to the averaged power consumption M
α⊕Δa,b

b

of the S-box lookup of pb = α⊕Δa,b for all α ∈ GF (28). The correct difference
Δa,b of the two key bytes ka and kb is then given by:

argmax
Δa,b

ρ
(
Mα

a , M
α⊕Δa,b

b

)
The correlation ρ

(
Mα

a , M
α⊕Δa,b

b

)
is computed over all α ∈ GF (28) and can

be computed for every point in time. It is maximum if Δa,b is correct. For
wrong differences Δ, the correlation approaches zero. Hence, this attack behaves
similar to a correlation attack. Unlike correlation based DPA, which correlates
the power consumption to a power model that will never truly represent the real
power consumption, our attack correlates the power consumption of one S-box
computation to the power consumption of a different instantiation of the same
S-box (processing the same value). Compared to classical collision attacks, our
attack is stronger because all traces are included in calculating the correlation
coefficient ρ, i.e. leakage from all traces Ti is used to recover the key relations.

If we go back to the last experimental results described in section 3.2, where
millions of traces have been collected from the masked implementation while all
256 mask bits are randomly generated for each measured encryption, we had
the mean traces for plaintext byte 0, M0, and for plaintext byte 5, M5. Also,
we have shown that a function, here the S-box, exists, which processes a value
depending on these two plaintext bytes at two consecutive clock cycles. Then
we shift for example M5 with the length of a clock cycle to the left to align
the traces and perform the attack algorithm. The result of the attack is shown
by Fig. 7 in which the correct hypothesis is obviously distinguishable amongst
others. As mentioned before, our attack computes the correlation between the
power consumption of two instances of the S-box computation; this explains
why we get such a high correlation value for a correct guess of Δ. It should be
noted that while initially 1 000 000 traces have been used to compute the mean
traces, around 20 000 traces are enough to distinguish the correct key relation.
The relevant figure for the number of required traces is also shown in Fig. 7.

Correlation-Enhanced Power Analysis Collision Attack 135

10000 20000 30000 40000 50000
−0.3

0

0.3

0.6

C
or

re
la

tio
n

Number of Traces

Fig. 7. (top) The result of collision attack using the mean traces of byte 0 and byte 5,
(bottom) the result of the attack over the number of used measurements

Repeating this attack on other sets of mean traces, e.g., between M0 and
M1, M0 and M2, and so on, will reveal 15 relations between all key bytes4. The
correct AES key can easily be distinguished from the remaining 256 candidates
by simple trial and error. In cases where this might not be feasible or to recover
the full key of an implementation of AES-256, we simply extend our attack to
the second round. An alternative for the case when ciphertexts are unknown is
to compute the output of MixColumns of the first round (of AES) for each of
the 256 possible key candidates and perform only one (collision) attack using the
leakages of the second round for each of the 256 128-bit key candidates separately.
The attack would be possible for only one of the key candidates since the use
of others will lead to wrong input bytes for the AddRoundKey and therefore to
incorrect averages (to make the mean traces). In fact, a variance test approach
on mean traces of the second round can reveal the correct 128-bit key candidate,
and performing the attack on the second round is not even necessary to recover
the full key of AES-128. No new measurements are needed for this extension.

Knowing only the ciphertext bytes the same attack is possible using the power
traces covering the last round of the encryption because of the absence of Mix-
Columns at the last round. Similarly to the attack on the start of the encryption,
256 128-bit candidates will remain as the last round key. Then, for each of them
the input of MixColumns of the 9th round can be computed which is also the
output of the S-box of the same round. Therefore, the variance check approach as
mentioned above will reveal the correct key. We practically performed the afore-
mentioned attack, and were able to extract the secret using the same number of
traces as in the known-plaintext attack.

Resemblance to Template DPA: A better understanding of how and why the
attack works can be gained by a comparison to a template-based DPA as described
4 In fact, 120 key byte relations can be computed and possibly all be evaluated by

voting techniques [6,32].

136 A. Moradi, O. Mischke, and T. Eisenbarth

in [3,15]. Since we do not have a profiling phase, the creation of templates is differ-
ent. We create templates Mα

j for each input (or output) value pj = α (like in some
template attacks) and also for each input (or output) byte position j. The sepa-
rate templates for different byte positions j are necessary, as we cannot match our
templates Mα

j to specific states (or input-output combinations) of the S-boxes, be-
cause we lack knowledge about the key. In the next step, we compare pairs of these
templates for two positions j1 = a and j2 = b by correlating them to each other.
A template-based DPA attack, as described in [15], instead uses the template as
power model which is correlated to each individual power trace. Due to the noise in
each trace, the resulting correlation values are much lower when compared to our
case. Our attack correlates two sets of templates, which have a much lower noise
due to the averaging process. The relative distance between the correlation of the
right and the wrong key hypotheses is quite similar in both attacks. Compared to
a template-based DPA, our attack assumes a much weaker adversary that neither
needs access to a known key implementation nor requires a profiling phase.

Attack on parallel architectures/Influence of noise: All the practical
results shown are for an 8-bit architecture, and each S-box is computed in a
separate clock cycle. In order to investigate the feasibility of the proposed attack
in the presence of increased (switching) noise, we have examined the same attack
on a 32-bit architecture where four S-boxes are executed in parallel at each clock
cycle. The power consumption of the three unpredicted S-boxes enters the mean
traces as noise, which can be reduced by increasing the number of measurements.
According to the experimental results shown in the Appendix B of [18], the
secret is revealed in the same way using around 300 000 measurements which
shows the strength of the attack. We expect a similar behavior if the shuffling
countermeasure [12,15] would be applied to the serial 8-bit architecture. For the
case where just 4 S-boxes are shuffled (to avoid conflicts with MixColumns),
we expect a similar behavior as in the 32-bit implementation, if the attacker
applies combing [28]. If a full shuffling on all 16 S-boxes is applied or the 32-bit
architecture is shuffled, the number of traces would accordingly increase further.

The proposed attack is not specific to the applied masking scheme which still
has a first-order leakage. It should be efficient for any case where the mean
traces are slightly different. For example, the attack works on an unprotected
implementation as well, i.e., the adversary does not even need to know whether
a countermeasure has been applied in the target device. We have practically
evaluated this issue as well; as a result around 3 000 traces are required for the
attack on an unprotected implementation using an 8-bit architecture.

Leakage due to an implementation error? One may ask about the source
of the leakage which we found here since we have presented the practical result
on a whole AES implementation, and if some flaws in the design architecture
have caused the observed strong leakage. We should emphasize that as expressed
before in Section 2, we have made sure to keep all necessary requirements sug-
gested in the original design of the masked S-box [9], like the correct order of the
product additions and the masked summation of these. Keep in mind that this
design does not take glitches and their effect on the DPA leakage into account.

Correlation-Enhanced Power Analysis Collision Attack 137

Moreover, we have implemented only one masked S-box on the same platform
and have examined its leakage when the S-box input (including masked input
and masks) solely change. The relevant results are shown in Appendix A of [18],
and confirm that the S-box computation is the source of information leakage
which caused the observed vulnerability. Although we have not performed a
simulation to extract the toggle-count model, we believe that the source of the
observed first-order leakage also is toggles and glitches of the combinational cir-
cuits similar to [16], which was already predicted by [9].

Applicability to other Algorithms: On other algorithms exhibiting a similar
structure of a key addition operation followed by some kind of S-box operation
(e.g. typical SPN structures), the attack can be applied in a similar fashion.
One important property of the attack algorithm is the number of values which
contribute to the computation of the correlation coefficient. In the case of AES,
α can take 256 different values such that the correlation is computed over 256
points, which is not too high, but still yields a suitable estimation of the correla-
tion. The estimation gets less reliable for target algorithms with smaller S-boxes,
e.g., PRESENT [7] with α ∈ GF (24). To solve this problem one can define a
window and perform the attack not only on a single point in time, but also using
other adjacent power points, i.e., to compute the correlation in a 2-dimensional
domain which equals to make vectors from matrices and get the correlation over
two vectors. Alternatively, two S-boxes can be attacked in parallel by viewing
them as a single one and predicting the difference Δ on two keys at the same
time, if the S-boxes are processed at the same time.

5 Conclusion

In this work we have presented a collision attack that efficiently breaks a masked
implementation with a remaining first-order leakage. We have further shown that
combining all possible collisions via the correlation coefficient generates a highly
efficient attack. The number of traces needed to overcome an implementation
of the masking countermeasure of [9] only increases by a small factor of six
when compared to a DPA on an unprotected implementation. Unlike other ad-
vanced attacks, the described attack is as general as a classical DPA attack,
because it makes minimal assumptions about the adversary. In fact, the attack
makes almost no assumptions about the leakage and does not require any de-
tailed knowledge about the implementation (such as general architecture, layout,
and netlist). Furthermore, the attack works out-of-the-box without requiring a
profiling phase. The attack succeeds on any implementation as long as a leak-
age yields distinguishable differences in the means of the power consumption
traces for certain inputs.To the best of our knowledge the presented attack is
the first successful collision-based attack on a masked implementation. We have
practically confirmed that not considering glitches in the implementation of al-
gorithmic masking schemes leads to an exploitable side-channel leakage.

Acknowledgment. The authors would like to thank Akashi Satoh and RCIS
for the prompt and kind help in obtaining SASEBOs.

138 A. Moradi, O. Mischke, and T. Eisenbarth

References

1. Side-channel Attack Standard Evaluation Board (SASEBO). Further information
are available via, http://www.rcis.aist.go.jp/special/SASEBO/index-en.html

2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

3. Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-channel Attacks. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 2–16. Springer, Heidelberg
(2003)

4. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

5. Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

6. Bogdanov, A.: Multiple-Differential Side-Channel Collision Attacks on AES. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008)

7. Bogdanov, A., Leander, G., Knudsen, L., Paar, C., Poschmann, A., Robshaw, M.,
Seurin, Y., Vikkelsoe, C.: PRESENT - An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

8. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005), The HDL
specification is available at author’s official webpage,
http://faculty.nps.edu/drcanrig/pub/index.html

9. Canright, D., Batina, L.: A Very Compact "Perfectly Masked" S-Box for AES.
In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS
2008. LNCS, vol. 5037, pp. 446–459. Springer, Heidelberg (2008), the corrected
version is available at Cryptology ePrint Archive, Report 2009/011 (2009),
http://eprint.iacr.org/2009/011

10. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

11. Golić, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003)

12. Herbst, C., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resis-
tant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

13. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

14. Ledig, H., Muller, F., Valette, F.: Enhancing Collision Attacks. In: Joye, M.,
Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 176–190. Springer,
Heidelberg (2004)

15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

16. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

http://www.rcis.aist.go.jp/special/SASEBO/index-en.html
http://faculty.nps.edu/drcanrig/pub/index.html
http://eprint.iacr.org/2009/011

Correlation-Enhanced Power Analysis Collision Attack 139

17. Mangard, S., Schramm, K.: Pinpointing the Side-Channel Leakage of Masked AES
Hardware Implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 76–90. Springer, Heidelberg (2006)

18. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis
Collision Attack. Cryptology ePrint Archive, Report 2010/297 (2010),
http://eprint.iacr.org/2010/297

19. National Institute of Standards and Technology (NIST). Announcing the Advanced
Encryption Standard (AES) (November 2001), http://www.nist.gov/

20. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

21. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

22. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. PhD thesis, Institure for Experimental Mathematics, University of Essen,
Germany (1994)

23. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

24. Rijmen, V.: Efficient Implementation of the Rijndael S-box (2000)
25. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware

Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

26. Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES: Com-
bining Side Channel- and Differential-Attack. In: Joye, M., Quisquater, J.-J. (eds.)
CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)

27. Schramm, K., Wollinger, T., Paar, C.: A New Class of Collision Attacks and
Its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887,
pp. 206–222. Springer, Heidelberg (2003)

28. Tillich, S., Herbst, C.: Attacking State-of-the-Art Software Countermeasures -
A Case Study for AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS,
vol. 5154, pp. 228–243. Springer, Heidelberg (2008)

29. Tiri, K., Akmal, M., Verbauwhede, I.: A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power
Analysis on Smart Cards. In: European Solid-State Circuits Conference - ESS-
CIRC 2002, pp. 403–406 (2002)

30. Trichina, E., Korkishko, T., Lee, K.-H.: Small Size, Low Power, Side Channel-
Immune AES Coprocessor: Design and Synthesis Results. In: Dobbertin, H.,
Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 113–127. Springer,
Heidelberg (2005)

31. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

32. Yu, P., Schaumont, P.: Secure FPGA Circuits using Controlled Placement and
Routing. In: Hardware/Software Codesign and System Synthesis - CODES+ISSS
2007, pp. 45–50. ACM, New York (2007)

33. Zakeri, B., Salmasizadeh, M., Moradi, A., Tabandeh, M., Shalmani, M.T.M.: Com-
pact and Secure Design of Masked AES S-Box. In: Qing, S., Imai, H., Wang, G.
(eds.) ICICS 2007. LNCS, vol. 4861, pp. 216–229. Springer, Heidelberg (2007)

http://eprint.iacr.org/2010/297
http://www.nist.gov/

Side-Channel Analysis of Six SHA-3 Candidates

Olivier Benôıt and Thomas Peyrin

Ingenico, France
forename.name@ingenico.com

Abstract. In this paper we study six 2nd round SHA-3 candidates from
a side-channel cryptanalysis point of view. For each of them, we give the
exact procedure and appropriate choice of selection functions to perform
the attack. Depending on their inherent structure and the internal prim-
itives used (Sbox, addition or XOR), some schemes are more prone to
side channel analysis than others, as shown by our simulations.

Keywords: side-channel, hash function, cryptanalysis, HMAC, SHA-3.

1 Introduction

Hash functions are one of the most important and useful tools in cryptogra-
phy. A n-bit cryptographic hash function H is a function taking an arbitrarily
long message as input and outputting a fixed-length hash value of size n bits.
Those primitives are used in many applications such as digital signatures or key
generation. In practice, hash functions are also very useful for building Mes-
sage Authentication Codes (MAC), especially in a HMAC [5,33] construction.
HMAC offers a good efficiency considering that hash functions are among the
fastest bricks in cryptography, while its security can be proven if the underlying
function is secure as well [4].

In recent years, we saw the apparition of devastating attacks [38,37] that broke
many standardized hash functions [36,30]. The NIST launched the SHA-3 com-
petition [32] in response to these attacks and in order to maintain an appropri-
ate security margin considering the increase of the computation power or further
cryptanalysis improvements. The outcome of this competition will be a new hash
function security standard to be determined in 2012 and 14 candidates have been
selected to enter the 2nd round of the competition (among 64 submissions).

Differential and Simple Power Analysis (DPA and SPA) were introduced in
1998 by Kocher et al. [25] and led to a powerful class of attacks called side-
channel analysis. They consist in two main steps. First, the power consumption,
the electro-magnetic signal [1] or any others relevant physical leakage from an
integrated circuit is measured during multiples execution of a cryptographic
algorithm. Then, one performs a hypothesis test on subkeys given the algorithm
specification, the algorithm input and/or output values and the traces obtained
during the first step. This second step requires to compute an intermediary
results of the algorithm for a given key guess and all the input/output and
analyze correlation [13] with the actual experimental traces. The intermediary
result is the output of what we will call hereafter the “selection function”.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 140–157, 2010.
c© International Association for Cryptologic Research 2010

Side-Channel Analysis of Six SHA-3 Candidates 141

Because of the widely developed utilization of HMAC (or any MAC built
upon a hash function) in security applications, it makes sense to consider phys-
ical security of hash functions [27,17,28,19,34]. Indeed, those functions usually
manipulate no secret and have been at little bit left apart from side-channel
analysis for the moment. In practice, the ability to retrieve the secret key that
generates the MACs with physical attacks is a real threat that needs to be
studied and such a criteria is taken in account by the NIST for the candidates
selections [23].

Our contributions. We present a side-channel analysis of six hash functions
selected to the 2nd round of the SHA-3 competition: ECHO [7], Grøstl [18],
SHAvite-3 [11] (three AES-based hash functions), BLAKE [3], CubeHash [9] and
HAMSI [35]. This paper aims at finding the appropriate selection function for
each SHA-3 candidates in a MAC setting and evaluating the relative efficiency
through simulations of the corresponding attacks. Then, we draw conclusions
concerning the relative complexity for protecting each candidate against first
order side-channel cryptanalysis.

Of course, the intend of this paper is not to show that some particular hash
functions can be broken with side-channel analysis, which should be easy in
general when the implementation is not protected. However, we believe there
are constructions that are naturally harder to attack or easier to implement in
a secure and relatively efficient way.

2 How to Perform Side-Channel Attacks on Hash
Functions

2.1 Message Authentication Codes with Hash Functions

A Message Authentication Code (MAC) is an algorithm that takes as input a
arbitrary long message M and a secret key K and outputs a fixed-length value
V = MAC(M, K). One requires that it should be computationally impossible for
an attacker to forge a valid MAC without knowing the secret key K, or to retrieve
any information about K. This primitive allows the authentication of messages
between two parties sharing the same secret key. MACs can be built upon block
ciphers (i.e. CBC-MAC [6]) or hash functions in the case of HMAC [5,33]. HMAC
instantiated with the hash function H is defined as follows:

HMAC(K,M) =

H((K ⊕ opad)||H((K ⊕ ipad)||M))

CV in
0 h

K ⊕ ipad

CV in
1

h

M1

h

Mk

Hin

CV out
0 h

K ⊕ opad

CV out
1

h Hout

where || denotes the concatenation of bit strings and ⊕ represents the bitwise
exclusive or (XOR) boolean function. The two words opad and ipad are two
constants of the size of a message block in the iterative hash function. This point

142 O. Benôıt and T. Peyrin

is important: HMAC implicitly considers that H is an iterative hash function.
Thus, for each iteration i we have an internal state (so-called chaining variable)
CVi that is updated thanks to a compression function h and a message block
Mi : CVi+1 = h(CVi, Mi). The first chaining variable CV0 is initialized with
an initial vector IV and the hash output is the very last chaining variable or a
truncated version of it.

It is easy to see that when computing the first hash function call of HMAC
(Hin = H((K ⊕ ipad)||M))), the first iteration is CV1 = h(IV, K ⊕ ipad) and
one only needs to guess CV1 to complete the rest of this hash function com-
putation, whatever the message M . Then, for the second hash function call
(Hout = H((K⊕opad)||Hin)), the same remark applies: one only needs to guess
CV1 to complete the MAC computation whatever Hin. We denote by CV in

i the
chaining variables for the first hash call and CV out

i the chaining variables for the
second one. In practice, one can speed up the implementation by precomputing
the CV in

1 and CV out
1 and starting the two hash processes with those two new

initial chaining variables.
Therefore, when attacking HMAC with a side-channel technique, it is very

interesting to recover CV in
1 and CV out

1 . We are now left with the problem of
being able to retrieve a fixed unknown chaining variable with random message
instances. This will have to be done two times, first for CV in

1 and then for
CV out

1 . The attack process will be identical for each call, so in this article we
only describe how to recover the unknown chaining variable with several known
random message instances. However, note that attacking CV in

1 should be easier
than attacking CV out

1 because in the former the attacker has full control over
the message M , which is not the case in the latter (the incoming message for
the second hash call is Hin, over which the attacker has no control). For some
SHA-3 candidates, the ability to control the incoming message may reduce the
number of power traces needed to recover CV in

1 . However, the maximal total
improvement factor is at most 2 since the leading complexity phase remains the
recovering of CV out

1 .
In the case of the so-called stream-based hash functions (for example Grindahl

[24] or RadioGatún [10]), for which the message block size is rather small (smaller
than the MAC key and hash output lengths), the HMAC construction is far less
attractive and one uses in general the prefix-MAC construction: MAC(K, M) =
H(K||M). In order to avoid trivial length-extension attacks (which makes classi-
cal Merkle-Damg̊ard [29,14] based hash functions unsuitable for the prefix-MAC
construction), the stream-based hash functions are usually composed of a big
internal state (much bigger than the hash output length) and define an output
function composed of blank rounds (iterations without message blocks incorpo-
ration) and a final truncation phase. However, the corresponding side-channel
attack for breaking the prefix-MAC construction will not change here and our
goal remains to recover the full internal state.

In this paper, we will study the 256-bit versions of the hash functions consid-
ered, but in most of the case the analysis is identical for the 512-bit versions.
Moreover, when available, the salt input is considered as null. For all candidates

Side-Channel Analysis of Six SHA-3 Candidates 143

reviewed, the message to hash is first padded and since we only give a short de-
scription of the schemes, we refer to the corresponding specification documents
for all the details. Finally, since our goal is to recover the internal state before the
message digesting phase, there is no need to consider potential output functions
performed after all the message words have been processed.

2.2 Side-Channel Attacks

Regardless of the compression function h(CV, M) considered, at some point in
the algorithm (usually in the very first stage), the incoming chaining variable CV
will be combined with the incoming message block M . The selection functions
will be of the form:

w = f(cv, m)

where cv is a subset of CV and m is a subset from M . Usually w, cv and m have
the same size (8 bits in the case of AES), but strongly compressing bricks (such
as the DES Sbox) may impose a smaller w. Ideally the selection function must
be non-linear and a modification of 1-bit in one of the input should potentially
lead to multiple-bit modifications in the output. For example, the output of a
substitution table (Sbox) is a good selection function: block cipher encryption
algorithms such as DES [16] or AES [15] are very sensitive to side-channel analysis
because they both use an Sbox in their construction (a 6 �→ 4-bit Sbox for DES
and a 8 �→ 8-bit Sbox for AES).

Some algorithms or SHA-3 candidates (i.e. BLAKE or CubeHash) do not use such
substitution table, while they rely exclusively on modular addition �, rotation ≪
and XOR ⊕ operations (so-called ARX constructions). In this case, side-channel
analysis is still possible but the XOR or modular addition selection functions are
less efficient than for the Sbox case. Moreover, it has been theoretically proven
that the XOR selection function is less efficient that the modular addition oper-
ations [27]. Indeed, the propagation of the carry in the modular addition leads
to some non-linearity whereas the XOR operation if completely linear. More pre-
cisely, we can quantify the efficiency difference between the AES Sbox, the HAMSI
Sbox, the XOR and the modular addition selection functions by looking at the
theoretical correlation results in the so-called hamming-weight model. The rest
of this paper exclusively deals with the Hamming weight model since in practice
this model leads to good results for the majority of the target devices.

In order to estimate the efficiency of a selection function f(k, m), it is interest-
ing to look at the theoretical correlation c(j, r) between the data set xi for a key
guess j and the data set yi for an arbitrary real key r. Where xi = HW (f(j, mi))
and yi = HW (f(r, mi)), with i ∈ [0, . . . , 2N − 1], N being the number of bits of
the selection function input message m and HW (w) being the Hamming Weight
of the word w. We also denote by x (respectively y) the average value of the
data set xi (respectively yi).

c(j, r) =
∑

(xi − x)(yi − y)√∑
(xi − x)2.

√∑
(yi − y)2

Of course, when the key guess is equal to the real key (j = r), we have c(j, r) = 1.

144 O. Benôıt and T. Peyrin

The Figure 1 displays c(j, 8) for j ∈ [0, . . . , 255] for the AES selection function
Sbox(k, m), for the XOR selection function k⊕m and for the modular addition
selection function k�m. HAMSI is specific because the selection function is using
a subset of the Sbox for a given key, therefore, the following table displays c(j, r)
for j ∈ [0, . . . , 3] and r ∈ [0, . . . , 3]. Only two bits of the message and two bits of
the key are handled in this selection function.

���������key value
key guess

j = 0 j = 1 j = 2 j = 3

r = 0 +1.00 −0.17 −0.56 −0.87
r = 1 −0.17 +1.00 +0.87 −0.09
r = 2 −0.56 +0.87 +1.00 +0.17
r = 3 −0.87 −0.09 +0.17 +1.00

The efficiency E(f) of the selection function f is directly linked with the
correlation contrast cc between the correct key guess (correlation = 1) and the
strongest wrong key guess (correlation = cw). The higher this contrast, the more
efficient the selection function will be to perform a side-channel analysis. Indeed,
it will be able to sustain a much higher noise level.

cc = 1−|cw|
|cw|

selection AES modular XOR1 HAMSI
function Sbox addition Sbox

cw 0.23 0.75 −1 0.87
cc 3.34 0.33 0 0.15

The values of cw are extracted from Figure 1 by measuring the highest correlation
peak (except the peak with correlation equal to 1 which corresponds to the
correct guess). The result of this theoretical/simulation study is the following:

E(AES Sbox) > E(modular addition) > E(HAMSI Sbox) > E(XOR)

In the rest of this article, we will search for the best selection function for each
SHA-3 candidate analyzed with this conclusion in mind.

3 AES-Based SHA-3 Candidates

In this section, we analyze ECHO [7], Grøstl [18] and SHAvite-3 [11], three AES-
based SHA-3 candidates. We recall that the round function of AES is composed
of four layers (we use the order AddRoundKey, SubBytes, ShiftRows and Mix-
columns) and we refer to [31] for a complete specification of this block cipher.
1 In practice, if the attacker managed to characterize the chip leakage, he eventually

can distinguish the wrong guess from the correct guess by taking in consideration the
correlation sign (positive or negative). Note that a contrast of zero does not means
that the XOR selection function is not yielding any information. Indeed, the attacker
have reduced the subkey space from 256 to 2 values (with correlation 1 and -1).

Side-Channel Analysis of Six SHA-3 Candidates 145

j

correlation (AES Sbox)

1

j

correlation (XOR)

1

−1

j

correlation (modular addition)

1

−0.5

Fig. 1. Correlations c(j, 8) in the Hamming Weight model for the AES Sbox, XOR and
modular addition selection function respectively

3.1 ECHO

Description. ECHO [7] is an iterated hash function whose chaining variable CVi

is 512-bit long. Its compression function h maps CVi and a 1536-bit message
block Mi to a new chaining variable CVi+1. More precisely, with CVi and Mi

the compression function h initializes a 2048-bit internal state which is viewed
as a 4× 4 matrix of 128-bit words (CVi initializes the first column while Mi fills
the three other ones). A fixed-key permutation PE is applied to this internal
state and the output chaining variable is built by calling the shrink256 function
that XORs all the 512-bit columns together after a feedforward:

CVi+1 = shrink256(PE(CVi||Mi)⊕ (CVi||Mi)).

The permutation PE contains 8 rounds, each composed of three functions very sim-
ilar to the AES ones, but on 128-bitwords instead of bytes. First, the BIG.SubBytes

146 O. Benôıt and T. Peyrin

function mimics the application of 128-bit Sboxes on each state word by apply-
ing 2 AES rounds with fixed round keys (determined by the iteration and round
numbers). Then, BIG.ShiftRows rotates the position in their matrix column of
all the 128-bit words according to their row position (analog to the AES). Finally,
BIG.MixColumns is a linear diffusion layer updating all the columns indepen-
dently. More precisely, for one matrix column, it applies sixteen parallel AES
MixColumns transformations (one for each byte position in a 128-bit word).

Side-channel analysis. The incoming chaining variable CV fills the first 128-
bit words column (denoted cvi in Figure 2) of the matrix representing the internal
state, while the three other columns are filled with the known random incoming
message (denoted mi in Figure 2). The goal of the attacker is therefore to retrieve
the words cvi.

The first layer (BIG.SubBytes) handles each 128-bit word individually. The
known and secret data are not mixed yet (cvi �→ cv′i and mi �→ m′

i) and therefore
it is not possible to derive a selection function at this point. The same comment
applies to the second layer (BIG.ShiftRows) and one has to wait for the third
layer (BIG.MixColumns) to observe known and secret data mixing: each column
will depend on one secret word cv′i and three known words m′

i (see Figure 2).
More precisely, for each 128-bit word column, BIG.MixColumns applies sixteen
parallel and independent AES MixColumns transformations (one for each byte
position) and each MixColumns call manipulates one byte of secret and three
bytes of known data. Overall, in the end of the first round, every byte w[b] of
an internal state word w (we denote w[b] the b-th byte of w) can be written as
the following affine equation (see the AES MixColumns definition for the α, β, γ
and δ values):

wi0 [b] = α · cv′i1 [b]⊕ β ·m′
i2 [b]⊕ γ ·m′

i3 [b]⊕ δ ·m′
i4 [b]

with b ∈ [0, . . . , 15], i0 ∈ [0, . . . , 15], i1 ∈ [0, . . . , 3] and i2, i3, i4 ∈ [0, . . . , 11]. One
could use those wi[b] as selection functions, but the mixing operation would be
the exclusive or. As already explained, the selection function involving an XOR
is the least efficient one. It seems much more promising to wait the first layer
from the second round of the ECHO internal permutation.

cv0

cv1

cv2

cv3

m0

m3

m6

m9

m1

m4

m7

m10

m2

m5

m8

m11

Big.SB
cv′

0

cv′
1

cv′
2

cv′
3

m′
0

m′
3

m′
6

m′
9

m′
1

m′
4

m′
7

m′
10

m′
2

m′
5

m′
8

m′
11

Big.ShR
cv′

0

m′
3

m′
7

m′
11

m′
0

m′
4

m′
8

cv′
3

m′
1

m′
5

cv′
2

m′
9

m′
2

cv′
1

m′
6

m′
10

Big.MC

w0

w4

w8

w12

w1

w5

w9

w13

w2

w6

w10

w14

w3

w7

w11

w15

Fig. 2. Recovering the internal state for ECHO. The gray cells represent the words that
depends on the initial secret chaining variable. Each cell represents a 128-bit word.

Indeed, the BIG.SubBytes transformation applies directly two AES rounds
independently for each words wi. The first function of the first AES round is
the subkey incorporation and in the case of ECHO those subkeys are fully known

Side-Channel Analysis of Six SHA-3 Candidates 147

constants (we denote them ti). Then, the second function of the first AES round
applies the AES Sbox to each byte of the internal state. Therefore, we obtain the
words w′

i on the output:

w′
i[b] = Sbox(wi[b]⊕ ti[b]).

These equations can be used as selection functions manipulating only the AES
Sbox which is much more efficient than the XOR case. Overall, one has to per-
form 64 AES Sbox side-channel attacks in order to guess all the words cv′i byte
per byte. By inverting the BIG.SubBytes layer from the words cv′i, one recovers
completely CV . Note that for each byte of cv′i, one gets 4 selection functions
involved. Thus, the overall number of curved can be reduced by a factor 4 at
maximum by using and combining this extra information.

3.2 Grøstl

Description. Grøstl [18] is an iterated hash function whose compression func-
tion h maps a 512-bit chaining variable CVi and a 512-bit message block Mi to
a new chaining variable CVi+1. More precisely, two fixed-key permutations PG

and QG, only differing in the constant subkeys used, are applied:

CVi+1 = PG(CVi ⊕Mi)⊕QG(Mi)⊕ CVi.

Each permutation is composed of 10 rounds very similar to the AES ones, except
that they update a 512-bit state, viewed as a 8 × 8 matrix of bytes (instead of
4 × 4). Namely, for each round, constant subkeys are first XORed to the state
(AddRoundConstant), then the AES Sbox is applied to each byte (SubBytes),
the matrix rows are rotated with distinct numbers of positions (ShiftBytes) and
finally a linear layer is applied to each byte column independently (MixBytes).
This is depicted in Figure 3.

AddConstant

8 bytes

8 bytes

⊕

⊕i
for PG

i ⊕ 0xff

for QG

SubBytes

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

ShiftBytes MixBytes

Fig. 3. One round of the internal permutation PG of Grøstl. Each cell represents a
byte.

Side-channel analysis. The Grøstl case is very simple. One can see that
the incoming message block M is processed trough the QG permutation. Since
the output of this permutation only depends on the message block and not on
the incoming chaining variable CV , we can completely ignore this part of the
compression function. Then, the permutation PG takes as input M ⊕ CV and

148 O. Benôıt and T. Peyrin

one may be tempted to perform the side-channel attack during this operation.
As demonstrated earlier, it is much more convenient to wait for the opportunity
to attack the AES Sbox instead. The first layer of the permutation PG is the
AddConstant function which XORs the round number i (the counting starting
from 0) to the top left byte of the internal and therefore the operation is fully
transparent. Then, the second layer of the first PG round is the SubBytes function
which applies the AES Sbox to every byte of the internal state w = M ⊕ CV :

w[b] = m[b]⊕ CV [b]

with b ∈ [0, . . . , 63]. The output state is denoted w′ and we obtain the following
selection function which recovers CV byte per byte:

w′[b] = Sbox(w[b]).

Note that it is possible to improve this attack when dealing with CV in
1 (the

unknown chaining variable for the first hash call) by choosing appropriately the
message. More precisely, one can divide the number of power traces by a factor
64 when choosing all m[b] as equals. Indeed, this allows to perform in parallel
the side-channel analysis of the 64 unknown bytes.

3.3 SHAvite-3

Description. SHAvite-3 [11] is an iterated hash function whose compression
function h maps a 256-bit chaining variable CVi and a 512-bit message block
Mi to a new chaining variable CVi+1. Internally, we have a block cipher ES in
classical Davies-Meyer mode

CVi+1 = CVi ⊕ ES
Mi

(CVi).

This block cipher derives many subkeys thanks to a key schedule (all subkeys
depending on the message Mi only) and is composed of 12 rounds of a 2-branch
Feistel scheme (128 bits per branch). The basic primitive in the Feistel rounds
is the application of 3 AES rounds with subkeys incoming from the key schedule.

Side-channel analysis. For SHAvite-3, we divide the attack in two phases
(see Figure 4). In the first one, we recover the right part (in the Feistel separa-
tion) of the incoming chaining variable (CV R) during the first round. Once this
first phase succeeded, we recover the left part of the incoming chaining variable
(CV L) during the second round. The message expansion maps the incoming mes-
sage M to three 128-bit message words (mj

0,m
j
1,m

j
2) for each round j. One round

j of SHAvite-3 consists in executing sequentially three AES round functions with
as input one branch of the current SHAvite-3 state and (mj

0,m
j
1,m

j
2) as subkeys.

Consequently, for the first SHAvite-3 round, the secret vector (CV R) is mixed
with the known message word m1

0 during the AddRoundKey layer of the first
AES round and we note:

w[b] = CV R[b]⊕m1
0[b].

Side-Channel Analysis of Six SHA-3 Candidates 149

with b ∈ [0, . . . , 15]. One could use this equation as the selection function, but it
is more appropriate to use the output of the very next transformation instead,
i.e. the SubBytes layer:

w′[b] = Sbox(w[b]).

Before executing the second round of SHAvite-3, the left part of the chaining
variable (CV L) is XORed with the output w′′ of the three AES rounds. Then, this
word is mixed with m2

0[b] just before the first AES round of the second SHAvite-3
round and we note:

z[b] = CV L[b]⊕ w′′[b]⊕m2
0[b].

Obviously, after a successful first phase, it is possible to compute w′′[b] and
therefore CV L is the only unknown constant. Once again, one could use this
equation as the selection function, but it is more appropriate to use the output
of the very next transformation instead, i.e. the SubBytes layer:

z′[b] = Sbox(z[b]).

Overall, we recover byte per byte the CV L and CV R values.

CV L ⊕ w′′CV R

AES

m2
2

AES

m2
1

AES

m2
0

z

second round

CV RCV L

AES

m1
2

w′′

AES

m1
1

AES

m1
0

w

first round

Fig. 4. Recovering the internal state for SHAvite-3. The AES rounds we use for recov-
ering the internal state are depicted in black.

4 Other SHA-3 Candidates

In this section, we analyze BLAKE [3], CubeHash [9] and HAMSI [35], three 2nd
round SHA-3 candidates.

4.1 BLAKE

Description. BLAKE [3] is an iterated hash function whose compression function
h maps a 256-bit chaining variable CVi and a 512-bit message block Mi to a new

150 O. Benôıt and T. Peyrin

chaining variable CVi+1. Internally, the update is done with a block cipher EB ,
keyed with the message block (see Figure 5):

CVi+1 = final(EB
Mi

(init(CVi)), CVi).

where the init function initializes the 512-bit internal state with CVi and con-
stants. The final function computes the output chaining variables according to
CVi, constants and the internal state after the application of EB . The internal
state is viewed as a 4 × 4 matrix of 32-bit words and the block cipher EB is
composed of 10 rounds, each consisting of the application of eight 128-bit sub-
functions Gi. Assume an internal state for BLAKE with vi+4j representing the
32-bit word located on row j and column i, one round of EB is:

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
G4(v0, v5, v10, v15) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)

A sub-function Gi incorporates 32-bit message chunks mi and is itself made of
additions, XORs and rotations. During the round r, the function Gs(a, b, c, d)
processes the following steps:

a ← (a � b) � (mi ⊕ kj)
d← (d⊕ a) ≫ 16
c ← (c � d)
d← (b⊕ c) ≫ 12
a ← (a � b) � (mj ⊕ ki)
d← (d⊕ a) ≫ 8
c ← (c � d)
d← (b⊕ c) ≫ 7

where≫ xdenotes the right rotationofxpositions, i = σr(2s)and j = σr(2s = 1).
The notation σr represents a family of permutations on {0, . . . , 15} defined in
the specifications document.

CVi

cv4 cv5 cv6 cv7

cv0 cv1 cv2 cv3

Initialisation

t4 t5

cv4 cv5

t2 t3

cv2 cv3

t6 t7

t0 t1

cv6 cv7

cv0 cv1

EB

Mi

Finalization

CVi+1

Fig. 5. The compression function of BLAKE

Side-channel analysis. The sixteen 32-bit internal state words are initialized
with the eight secret chaining value CV words (denoted cvi) and constants values
ti (see Figure 5). Then, the eight Gi functions during the first BLAKE round are
applied to the internal state and one can check that the two first parameters of

Side-Channel Analysis of Six SHA-3 Candidates 151

G0, G1, G2 and G3 are (cv0, cv1), (cv2, cv3), (cv4, cv5) and (cv6, cv7) respectively.
Our goal is therefore to recover a0 and b0 when applying Gi(a0, b0, c0, d0) with
0 ≤ i ≤ 3. The functions Gi consist in a sequence of eight transformations, the
five first being:

a1 = (a0 � b0) � mk

d1 = (d0 ⊕ a1) � 16
c1 = c0 � d1

b1 = (b0 ⊕ c1)� 12
a2 = a1 � b1 � ml

In practice, the first transformation will be computed in one of the three following
way:

first a ← a � b then a ← a � mi

first a ← a � mi then a ← a � b

first x← b � mi then a ← a � x

For the second and third case, a0 and b0 can be found by two side-channel analy-
sis applied successively to the two modular addition selection function (working
byte per byte):

wi = cvi � mk and zi = cvi+1 � wi.

For the first case, a0�b0 can be recovered by performing the side-channel analysis
on the second modular addition selection function. In order to solve the problem
and estimate a0 and b0 the attacker has to target the output of the fourth
transformation of Gi. However, in this case the selection function would be based
on the XOR operation. Therefore it seems more interesting to aim for the fifth
transformation of Gi, a modular addition.

4.2 CubeHash

Description. CubeHash [9] is an iterated hash function whose compression func-
tion h maps a 1024-bit chaining variable CVi and a 256-bit message block Mi to
a new chaining variable CVi+1. Internally, the update is done with a permutation
PC :

CVi+1 = PC(CVi ⊕ (Mi||{0}768)).
The internal state is viewed as a table of 32 words of 32 bits each. The permuta-
tion PC is composed of 16 identical rounds and one round is made of ten layers
(see Figure 6): two intra-word rotation layers, two XOR layers, two 232 modular
addition layers and four word positions permuting layers.

Side-channel analysis. The attack is divided into 4 steps. The incoming chain-
ing variable CV fills an internal state represented by a vector of four 256-bit words
or eight 32-bit words (denoted cvi). The known random incoming message M is
first XORed with cv0 and then starts the first round of permutation PC . Thus, the
first selection function is of XOR type and recovers cv0 byte per byte:

w[b] = cv0[b]⊕M [b].

152 O. Benôıt and T. Peyrin

w

cv1

cv2

cv3

rot

7

cv′
1

cv′
1

z

x

rot

11

Fig. 6. Recovering the internal state of CubeHash during one round of the internal
permutation PC . Each cell represents a 32-bit word.

with b ∈ [0, . . . , 7]. Once this first step successfully performed, the attacker fully
knows w and the first layer of PC adds each 32-bit words from w to those from
cv2 modulo 232 (and each words from cv1 to those from cv3). The second selection
function is therefore of modular addition type and recovers cv2 byte per byte
(starting from the LSB of the modular addition):

z[b] = cv2[b] � w[b].

The second layer of PC applies a rotation to each 32-bit word of w and cv1 and
then XORs z to this rotated version of cv1 (denoted cv′1). The selection function
for the third step is then of XOR type and recovers cv′1 byte per byte:

y[b] = cv′1[b]⊕ z[b].

Finally, going backward in the computation to the first PC layer, the selection
function for the fourth step is of modular addition type and recovers cv3 byte
per byte (starting from the LSB of the modular addition):

x[b] = cv3[b] � cv1[b].

Note that each step must be successful, otherwise it would compromise the
results of the following steps.

4.3 HAMSI

Description. HAMSI [35] is an iterated hash function whose compression func-
tion h maps a 256-bit chaining variable CVi and a 32-bit message block Mi to
a new chaining variable CVi+1. First, the message block is expanded into eight

Side-Channel Analysis of Six SHA-3 Candidates 153

Mi
expansion(Mi)

m4 m5 m6 m7

m0 m1 m2 m3

CVi

cv4 cv5 cv6 cv7

cv0 cv1 cv2 cv3

Concatenation

cv6 cv7

cv4 cv5

cv2 cv3

cv0 cv1

m6 m7

m4 m5

m2 m3

m0 m1

PH

Truncation

CVi+1

Fig. 7. The compression function of HAMSI. Each cell represents a 32-bit word.

32-bit words mi that are concatenated to CVi in order to initialize a 512-bit
internal state (viewed as a 4 × 4 matrix of 32-bit words). Then a permutation
PH is applied to the state and a truncation allows to extract 256 bits. In the
end, there is a feedforward of the chaining variable (see Figure 7):

CVi+1 = trunc(PH(CVi||expansion(Mi)))⊕ CVi.

The permutation PH contains three identical rounds. One round is composed of
three layers: constants are first XORed to the internal state, then 4-bit Sboxes
are applied to the whole state by taking one bit of each 32-bit word of the
same column of the 4× 4 matrix and repeating the process for all bit positions.
Finally, a linear layer is applied to four 32-bit words diagonals of the 4×4 matrix
independently (see Figure 8).

Constant Layer Substitution Layer

4-bit Sbox

Diffusion Layer

Fig. 8. One round of the internal permutation PH of HAMSI. Each cell represents a
32-bit word.

Side-channel analysis. The known random message M (after expansion) and
the secret chaining variable CV fill the internal state matrix as shown in Figure 7

154 O. Benôıt and T. Peyrin

(32-bit words are denoted mi and cvi). The first layer of the permutation PH

XORs each matrix element with a constant ti:

m′
i = mi ⊕ ti and cv′i = cvi ⊕ ti+8.

Then is applied the HAMSI Sbox layer. This Sbox is acting over 4-bits (one bit
per word located in the same column of the state matrix). Therefore, the input
of each Sbox is composed of 2 known message bits and 2 unknown chaining
variable bits. The generic selection function for HAMSI can therefore be written
as:

w = Sbox(m′
i[b]||cv′i+2[b]||m′

i+4[b]||cv′i+6[b])

or
w = Sbox(cv′i[b]||m′

i+2[b]||cv′i+4[b]||m′
i+6[b])

for i ∈ [0, 1] and b ∈ [0, . . . , 127] where b is the bit index in a 128-bits word. Over-
all, one recovers two bits of cv′i at a time with a total of 4 times 128 correlation
computations (with 4 guess each).

5 Conclusion and Discussions

For each hash proposal considered in this article, we described an appropriate
selection function for an efficient side-channel attack.

In the case of the AES-based SHA-3 candidates, we did not found significant
differences of performance when choosing the selection function. Indeed, in ECHO,
Grøstl and SHAvite-3, one has to compute several AES Sbox side-channel at-
tacks in order to retrieve the full secret internal state. Up to a small complex-
ity/number of power traces factor, the three schemes seem to provide the same
natural vulnerability to side-channel cryptanalysis. As expected, their situation
is therefore very close to the real AES block cipher.

Attacking BLAKE seems feasible in practice since we managed to derive a mod-
ular addition selection function for recovering the 256 bits of unknown chaining
variable. The modular addition non-linearity is very valuable for the attacker as it
increases the correlation contrast. Then, for CubeHash (a typical ARX function)
we tried to force the selection function to be of modular addition type as much
as possible. Overall, 512 bits can be recovered with modular addition selection
function and 512 bits with XOR selection function. In practice, depending on
the underlying hardware, it could be challenging to mount the attack. One must
notice that the internal state is bigger for CubeHash than for other candidates.
This is an additional strength since in practice, if the side-channel attack gives
only probabilistic results, the final exhaustive search complexity will be higher.
Finally, for HAMSI, the attack would be difficult to mount despite the fact that
a substitution table is used. Indeed, the correlation contrast for this primitive is
quite low compared to the AES Sbox. We believe that a better selection function
involving a modular addition might possibly be found in the inner layer.

Side-Channel Analysis of Six SHA-3 Candidates 155

Of course, those results concern unprotected implementations and the ranking
would be really different if we also considered methods for hardening the side-
channel cryptanalysis. For example, in the case of AES-based hash functions, one
could perform secure round computations and leverage all the research achieved
so far on this subject [2,20]. Also, as ECHO processes parallel AES rounds, we
believe it could benefit from secure bit-slice implementations regarding some
side-channels attacks [26], while maintaining its normal use efficiency. Finally,
ECHO and SHAvite-3 can take advantage of the natural protection inherited
from the hardware implementations of the AES round such as the new AES NI
instruction set on Intel microprocessor [8].

Side-channel countermeasures for ARX constructions such as BLAKE or
CubeHash are of course possible, but they will require to constantly switch from
boolean to arithmetic masking. As a consequence, one will observe an important
decrease of the speed performance for secure implementations. AES-based hash
functions seem naturally easier to attack regarding side-channel cryptanalysis,
but are also easier to protect.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s).
In: Jr., et al. (eds.) [22], pp. 29–45.

2. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

3. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE.
Submission to NIST (2008)

4. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. Cryptology ePrint Archive, Report 2006/043 (2006), http://eprint.
iacr.org/

5. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

6. Bellare, M., Kilian, J., Rogaway, P.: The Security of Cipher Block Chaining.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–355. Springer,
Heidelberg (1994)

7. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 Proposal: ECHO. Submission to NIST (2008), http://crypto.
rd.francetelecom.com/echo/

8. Benadjila, R., Billet, O., Gueron, S., Robshaw, M.J.B.: The Intel AES Instructions
Set and the SHA-3 Candidates. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 162–178. Springer, Heidelberg (2009)

9. Bernstein, D.J.: CubeHash specification (2.B.1). Submission to NIST, Round 2
(2009)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Radiogatun, a belt-and-mill
hash function. Presented at Second Cryptographic Hash Workshop, Santa Barbara,
August 24-25 (2006), http://radiogatun.noekeon.org/

11. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Submission to
NIST, Round 2 (2009), http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.
15.09.09.pdf

http://eprint.iacr.org/
http://eprint.iacr.org/
http://crypto.rd.francetelecom.com/echo/
http://crypto.rd.francetelecom.com/echo/
http://radiogatun.noekeon.org/
http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.15.09.09.pdf
http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.15.09.09.pdf

156 O. Benôıt and T. Peyrin

12. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
13. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.

In: Joye, Quisquater (eds.) [21], pp. 16–29
14. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard (ed.) [12], pp.

416–427
15. FIPS 197. Advanced Encryption Standard. Federal Information Processing Stan-

dards Publication 197, U.S. Department of Commerce/N.I.S.T. (2001)
16. FIPS 46-3. Data Encryption Standard. Federal Information Processing Standards

Publication, U.S. Department of Commerce/N.I.S.T. (1999)
17. Fouque, P.-A., Leurent, G., Réal, D., Valette, F.: Practical Electromagnetic Tem-

plate Attack on HMAC. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747,
pp. 66–80. Springer, Heidelberg (2009)

18. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(2008), http://www.groestl.info

19. Gauravaram, P., Okeya, K.: An Update on the Side Channel Cryptanalysis of
MACs Based on Cryptographic Hash Functions. In: Srinathan, K., Pandu Rangan,
C., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 393–403. Springer,
Heidelberg (2007)

20. Golic, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Jr, et al. (eds.) [22], pp. 198–212

21. Joye, M., Quisquater, J.-J. (eds.): CHES 2004, MA, USA, August 11-13. LNCS,
vol. 3156. Springer, Heidelberg (2004)

22. Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.): CHES 2002. LNCS, vol. 2523. Springer,
Heidelberg (2003)

23. Kelsey, J.: How to Choose SHA-3, http://www.lorentzcenter.nl/lc/web/2008/
309/presentations/Kelsey.pdf

24. Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl Hash Functions. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 39–57. Springer, Heidelberg
(2007)

25. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

26. Könighofer, R.: A Fast and Cache-Timing Resistant Implementation of the AES.
In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 187–202. Springer,
Heidelberg (2008)

27. Lemke, K., Schramm, K., Paar, C.: DPA on n-Bit Sized Boolean and Arithmetic
Operations and Its Application to IDEA, RC6, and the HMAC-Construction. In:
Joye, Quisquater (eds.) [21], pp. 205–219

28. McEvoy, R.P., Tunstall, M., Murphy, C.C., Marnane, W.P.: Differential Power
Analysis of HMAC Based on SHA-2, and Countermeasures. In: Kim, S., Yung, M.,
Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 317–332. Springer, Heidelberg
(2008)

29. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard (ed.) [12], pp.
428–446

30. National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard
(April 1995), http://csrc.nist.gov

31. National Institute of Standards and Technology. FIPS PUB 197, Advanced En-
cryption Standard (AES). Federal Information Processing Standards Publication
197, U.S. Department of Commerce (2001)

http://www.groestl.info
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Kelsey.pdf
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Kelsey.pdf
http://csrc.nist.gov

Side-Channel Analysis of Six SHA-3 Candidates 157

32. National Institute of Standards and Technology. Announcing Request for Candi-
date Algorithm Nominations for a NewCryptographic Hash Algorithm (SHA-3)
Family. Federal Register, 27(212):62212–62220 (November 2007), http://csrc.

nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf (2008/10/17)
33. NIST. FIPS 198 – The Keyed-Hash Message Authentication Code (HMAC) (2002)
34. Okeya, K.: Side Channel Attacks Against HMACs Based on Block-Cipher Based

Hash Functions. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS,
vol. 4058, pp. 432–443. Springer, Heidelberg (2006)

35. Kücük, Ö.: The Hash Function Hamsi. Submission to NIST (updated) (2009)
36. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992),

http://www.ietf.org/rfc/rfc1321.txt

37. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

38. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www.ietf.org/rfc/rfc1321.txt

Flash Memory ‘Bumping’ Attacks

Sergei Skorobogatov

University of Cambridge, Computer Laboratory,
15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

sps32@cam.ac.uk

Abstract. This paper introduces a new class of optical fault injection
attacks called bumping attacks. These attacks are aimed at data extrac-
tion from secure embedded memory, which usually stores critical parts
of algorithms, sensitive data and cryptographic keys. As a security mea-
sure, read-back access to the memory is not implemented leaving only
authentication and verification options for integrity check. Verification is
usually performed on relatively large blocks of data, making brute force
searching infeasible. This paper evaluates memory verification and AES
authentication schemes used in secure microcontrollers and a highly se-
cure FPGA. By attacking the security in three steps, the search space can
be reduced from infeasible > 2100 to affordable ≈ 215 guesses per block of
data. This progress was achieved by finding a way to preset certain bits
in the data path to a known state using optical bumping. Research into
positioning and timing dependency showed that Flash memory bumping
attacks are relatively easy to carry out.

Keywords: semi-invasive attacks, fault injection, optical probing.

1 Introduction

Confidentiality and integrity of sensitive information stored in smartcards, se-
cure microcontrollers and secure FPGAs is a major concern to both security
engineers and chip manufacturers. Therefore, sensitive data like passwords, en-
cryption keys and confidential information is often stored in secure memory,
especially in Flash memory. This is mainly because data extraction from an em-
bedded Flash memory is believed to be extremely tedious and expensive [1,2]. In
addition, Flash memory offers re-programmability and partial updating, useful
for keeping firmware, keys and passwords up to date, and replacing compromised
ones. However, in some cases, the Flash memory is vulnerable to several types of
attacks. Sometimes the memory access path is the weakest link. In order to pre-
vent unauthorised access to the memory, chip manufacturers widely use security
fuses and passwords in microcontrollers, FPGAs, smartcards and other secure
chips. This approach did not prove to be very effective against semi-invasive
attacks [3]. Furthermore, to make the protection more robust and to prevent
some known attacks on the security fuses, some chip manufacturers decided not
to implement direct access to internal data from the external programming and

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 158–172, 2010.
c© International Association for Cryptologic Research 2010

Flash Memory ‘Bumping’ Attacks 159

debugging interfaces. That way, read access to the embedded memory was un-
available to the external interface and only the verify operation in a form of
comparison with uploaded data was left for data integrity check. Usually, such
verification is carried over large chunks of data in order to prevent brute force
attacks.

Optical fault injection attacks proved to be very effective against many pro-
tection schemes [4]. As these attacks require visibility of the chip surface without
the need of any mechanical contact, they should be classified as semi-invasive.
Backside approach can be used on modern sub-micron chips with multiple metal
layers that cover the surface and prevent direct access. Such an approach is sim-
pler than the front-side as it does not require special chemicals for opening up
the chip package. Moreover, there is no danger of mechanical damage to the die
as the thick silicon substrate protects the active area. Mechanical milling is used
to open up the package followed by polishing of the silicon surface. Very cheap
engraving tools proved to be sufficient for that.

The results presented in this paper show that optical fault injection can be
successfully used to circumvent verify-only protection scheme in secure devices.
This technique was demonstrated on the Flash program memory of a “secure”
microcontroller and on the Flash array of a “highly secure” FPGA. However, it
can be applied to any device, that allows verification of the internal data against
uploaded one. The attack was carried out in three steps. The first step was aimed
at separating of the whole verification packet into blocks of data according to
the communication protocol. The second step, later called ‘bumping’, involved
splitting the data in each block into words corresponding to the width of the
data bus. The third step, later called ‘selective bumping’, was used to reduce
the number of guesses required to pass the verification within each word of data.
Using these techniques the data extraction time can be dramatically reduced to
hours and days compared with many years required for brute force attacks. As
these attacks do not require expensive equipment they can pose a big problem
to the hardware community. Without proper countermeasures in place security
in some devices could be easily compromised.

Another interesting direction of the research presented in this paper concerns
the possibility of AES key extraction using bumping attacks on the AES-based
authentication process. For that, a secure FPGA and a secure microcontroller
were tested. Both chips have hardware AES decryption engines for authentica-
tion and decryption of firmware updates. Research into positioning and timing
dependability of the bumping attacks was carried out. It was found that Flash
memory bumping attacks do not require precise positioning on the chip surface
and just reasonable timing precision, thus being also suitable for asynchronously
clocked chips. For selective bumping attacks some non-linear effects were ob-
served where the sequence of bits set to a known state depended on the point of
fault injection.

This paper is organised as follows. Section 2 describes protection mechanisms
used in secure chips and background on the bumping attacks. Section 3 intro-
duces experimental setup, while Section 4 shows the results. Section 5 discusses

160 S. Skorobogatov

limits and further improvements to these attacks. Some possible countermeasures
are presented in the concluding section.

2 Background

Target of my experiments was embedded Flash memory. It uses floating-gate
transistors to store the information [5]. Fig. 1 shows the overall structure of a
typical Flash memory, the layout of the memory cells and the details of the
floating-gate transistor operation modes. Data inside the Flash memory array
can only be accessed one row at a time, with the row itself being sent in smaller
chunks via read sense amplifiers. The number of the latter usually matches the
width of the data bus.

Fig. 1. Structure of Flash memory, layout of memory cells and modes of operation

High voltages are required to operate the Flash memory. Although they are
not necessary for reading the memory, the requirement for a special high-voltage
control logic and large charge pumps forces chip designers to place the Flash
memory separately from the rest of the chip logic. From a security point of view
this makes finding and attacking it easier. There are several places where the
attack could be targeted. One is the memory cells, but this way is not very
practical as it requires precise focusing and positioning not achievable with a
backside approach. Another place is the read sense amplifiers, however, in spite
of an easy way of locating and attacking them, the number of attack points in-
creases with the width of data bus. Even for a narrow 8-bit data bus, mounting
eight lasers will be a non-trivial task. The same difficulties apply to the attack
point where the data bus itself is addressed. Contrary to the above mentioned
attack points, attacking the control logic that enables the output of the memory
array seems to be the most practical way as it requires only a single laser to
carry out the attack. Within the control logic itself there might be several vul-
nerable places ranging from reference current sources to the array and reference
voltages for the read sense amplifiers to the data latches and data bus output
control. From the implementation point of view, attacking voltage and current
sources could be easier both from the locating prospective and laser injection.

Flash Memory ‘Bumping’ Attacks 161

There are some references to previous attacks carried out on old smartcards with
external programming voltage Vpp [6]. A similar effect can be achieved with a
laser interfering with the operation of the internal high-voltage supply.

In order to implement optical fault-injection attacks, the chip surface needs
to be accessible. This can be done from both front and rear sides. Modern chips
have multiple metal layers obstructing the view and preventing optical attacks.
Therefore, the only practical way of implementing optical fault injection on chips
fabricated with 0.35 μm or smaller technology is from their rear side. Silicon is
transparent to infrared light with wavelengths above 1000 nm, thus making it pos-
sible to observe the internal structure of the chip with non-filtered CCD cameras.
Optical fault injection can be carried out using inexpensive infrared laser diodes.
The effective frequency at which lasers can inject signals inside operating chips
is limited to several megahertz, as free carriers created by photons require some
time for recombination. Therefore, although lasers offer a relatively inexpensive
way of controlling internal signals, they are not as effective for direct signal injec-
tion as microprobing techniques [7]. One important thing to know is that for Flash
memory, optical fault injection causes either ‘0’ to ‘1’ or ‘1’ to ‘0’ state changes,
depending on the location of injection, but never both at the same time.

Older microcontrollers had a security protection fuse. Once activated it dis-
abled access to the on-chip memory. This has proved to be not very secure as
such fuses are relatively easy to locate and disable using various attacks. Semi-
invasive attacks made security-fuse disabling even easier [3]. As a precaution, chip
manufacturers started abandoning readback access to the embedded memory by
implementing verify-only approach. In this case the content of memory was com-
pared with uploaded data and a single-bit response in the form of pass/fail was
sent back. So far this helped a lot, especially when the length of verified blocks
was long enough to prevent brute force searching. Moving from 8-bit data bus
to 16-bit and later to 32-bit helped in keeping exhaustive searching attacks even
further away. All these steps, provided there are no errors in the design, improve
security. The verification process can take place both in hardware or in software.
It is impossible to verify the whole memory in one go, so the process is split
into blocks with their size limited by the available SRAM buffer or hardware
register. The result of the verification is either available immediately on the first
incorrect block, or it can be checked in a status register, or rarely available only
at the end of the whole memory check.

Fig. 2 illustrates an example of a typical secure verify-only implementation.
Very often the result of the verify operation is known only at the end. How-
ever, due to the limited size of buffers and registers, smaller blocks of data are
verified with the result accumulated inside the chip. The division into blocks
can usually be observed on the data transfer protocol or via eavesdropping on
the communication line. That way the device under test can be put into a mode
where it discloses the result of the verification operation for each block. However,
for some devices, the intermediate verification result is available as a part of the
standard protocol or can be easily requested. It becomes more complicated when
the block consists of multiple words of data, for example, if the verification is

162 S. Skorobogatov

performed after receiving every packet of 16 bytes. Still, as the verification is
done in hardware, memory contents must be read before the values are com-
pared and this is done via a data bus of limited width. This way there will be
some inevitable delay between each word of data read from the memory. Hence,
with a fast enough fault injection one can influence the value of each word of the
data. This will be an example of a bumping attack (Fig. 2b). More interesting
results should be expected if the data latching time is slightly changed or if the
value of data is influenced on its way to the latches. This is possible because the
bits of data cannot reach the registers exactly at the same time. If this process
can be influenced with fault injection attacks it may allow certain bits of data to
be kept to a known state, thus making it possible to brute force the remaining
bits. There are two possible ways of applying selective bumping attacks – on the
rising edge of the fault injection or on the falling (Fig. 2b). However, both events
should happen close to the time when the data from memory is latched into the
data bus drivers.

Fig. 2. Timing diagram of a verify-only operation: (a)data blocks, (b)data words level

Term ‘bumping’ originally comes from a certain type of physical attack on
door locks [8]. The idea is to force the key bits into a desired state which will allow
access. In the context of the hardware security of semiconductors, ‘bumping’ shall
mean here bypassing the verification of a certain block of data by forcing the
data bus into a known state. Alternatively, ‘selective bumping’ shall mean that
certain bits of data are forced into known states allowing the remaining bits to
be searched through all possible combinations. Some parallels with lock bumping
can be observed. For example, Flash memory bumping attacks allow bypassing
the verification for certain words of data without knowing their real value. The
more powerful selective bumping attack allows masking of certain bits of data
within each word thus substantially reducing the attack time.

3 Experimental Method

There are not many microcontrollers that lack readback access, as this com-
plicates their programming algorithm and many chip manufacturers found this

Flash Memory ‘Bumping’ Attacks 163

security feature excessive. However, some recent microcontrollers, marketed as
“secure”, benefit from verify-only feature, as well as AES authentication and
SHA-1 integrity check for the firmware. On the other hand, recent non-volatile
FPGA chips use a verify-only approach in the high-end security market. Such
chips are also marketed as “highly secure”.

For my first set of experiments I chose a secure low-end 8-bit microcontroller,
the NEC 78K/0S μPD78F9116 with 16 kB of embedded Flash [9]. The chip is
fabricated in 0.35 μm and has 3 metal layers. The on-chip firmware bootloader
allows the following memory access commands to be executed via SPI, IIC or
UART interfaces: Erase, Pre-Write, Write, Verify and Blank check [10]. Only the
‘Verify’ command seems useful for attempts of data extraction.

My next set of experiments was carried out on a so-called highly secure Flash
FPGA, the Actel ProASIC3 A3P250 [11]. Fabricated with a 0.13 μm process
with 7 metal layers, this chip incorporates 1,913,600 bits of bitstream configura-
tion data. According to the manufacturer’s documentation on this chip: “Even
without any security measures, it is not possible to read back the programming
data from a programmed device. Upon programming completion, the program-
ming algorithm will reload the programming data into the device. The device will
then use built-in circuitry to determine if it was programmed correctly”. More
information on the programming specification can be obtained indirectly from a
programming file which is usually in STAPL format [12]. Alternatively, all the
necessary information can be obtained by eavesdropping on the JTAG interface
during device programming. The analysis of a simple programming file revealed
the following operations on embedded Flash array: Erase, Program and Verify.
Again, only the ‘Verify’ operation can access the internal configuration. Apart
from the Flash Array, this FPGA has an AES hardware decryption engine with
authentication for firmware updates. As the AES key is stored in Flash memory,
it was also evaluated against bumping attacks.

For a detailed demonstration of the bumping attacks I used an engineering
sample of a secure microcontroller with AES authentication of the firmware. It
was provided by an industrial collaborator under a non-disclosure agreement
and is therefore not identified here. This microcontroller has non-volatile pro-
grammable memory for an AES key and other security features. As the memory
had an independent power supply pin I was able to carry out bumping attacks
using non-invasive power glitching. On one hand, it simplified the setup, on the
other, it allowed better timing accuracy for characterisation.

Opening up the first two chips was not a difficult task, since only the backside
access was a suitable option. No chemicals are required for opening up chips from
the rear side. The plastic can be milled away with low-cost hobbyist engraving
tools available from DIY shops. The copper heatsink, often attached to the
die, can be removed with a knife, followed by removing the glue underneath
mechanically and finally cleaning the die with a solvent.

For the experiments both the microcontroller and the FPGA were soldered on
test boards (Fig. 3). As the FPGA requires four separate power supply sources,
it was plugged into another board with power connectors. The microcontroller

164 S. Skorobogatov

board was receiving its power supply from a control board. Both test boards had
a power-measurement 10 Ω resistor in the supply line for later power analysis
experiments. The microcontroller and the FPGA were programmed with some
test data using a universal programmer.

Fig. 3. Test boards with NEC microcontroller and FPGA

A special control board was built for communicating with the tested chips
(Fig. 4a). This board was receiving commands from a PC via UART interface
and was controlling the test boards. The core of the control board was the
Microchip PIC24 microcontroller with 40 MIPS performance thus capable of
generating laser fault injection events with 25 ns timing precision. The infrared
1065 nm 100 mW laser diode module was mounted on an optical microscope with
20× NIR objectives and the test board with the chip was placed on a motorised
XYZ-stage (Fig. 4b).

Fig. 4. Test setup: (a)control board, (b)test board under the microscope

The experiments started with finding the minimum length of block verification
and possibility of obtaining any intermediate results. Then optical fault injection
attacks were used to reduce the verification length down to a single word of the

Flash Memory ‘Bumping’ Attacks 165

data bus. In this way the width of the data bus can be determined. Alterna-
tively, the width of the data bus can be determined by counting the number of
read sense amplifiers under a microscope. As a preliminary step for optical fault
injection, laser scanning was performed. This can significantly reduce the area
of search for successful fault injection. Also, some power analysis measurements
[13] were made using a digital storage oscilloscope to estimate the internal tim-
ings of the verification process. This can assist in carrying out selective bumping
attacks later, thereby saving the time otherwise required for exhaustive search.

4 Results

Initial experiments were aimed at finding places sensitive to optical fault injec-
tion. For that, both chips were exposed to laser scanning imaging, also called
OBIC imaging [14]. The same setup as for optical fault injection was used, with
the difference being that the photo-current produced by the laser’s photons was
registered with a digital multimeter. The result of the laser scan is presented in
Fig. 5 and allows identification of all major areas. Flash arrays are quite large
and easily identifiable structures on a chip die. However, for bumping attacks
of more interest is the memory control logic. As that is usually placed next to
the array, obvious places for exhaustive search are located nearby. The area for
search is designated in Fig. 5 as ‘Flash control’. For the NEC microcontroller,
many places within the control area were sensitive to optical bumping causing
the memory to change its state to all ‘0’ when the laser was switched on for
the whole verification process. For the FPGA, an exhaustive search for areas
sensitive to bumping was made across the whole chip with a 20 μm grid and the
result is presented in Fig. 6a. Each point was verified against the correct initial
value and against all ‘1’. White areas represent successful bumping with all bits
set to ‘1’, black areas correspond to faulty verification, while grey area represent
no change. Surprisingly, no success was achieved when AES authentication was
targeted in the FPGA (Fig. 6b). Only faulty authentications were received for a
small area which are of no use since the attacker has no means of observing the
result of AES decryption, so he cannot mount differential fault attacks [15]. This
could be the result of abandoning read sense amplifiers in the Flash memory that
stores the AES key and using direct Flash switches instead, or it could be that
some countermeasures against optical fault injection attacks were in place.

Further experiments were aimed at splitting the full verification process into
blocks of data. The NEC microcontroller has 16384 bytes of internal memory.
According to the Flash memory write application note [10], each verification
command receives 128 bytes of data via the serial programming interface before
starting the verification process. However, the status register is not updated
with the result until all 16384 bytes of data are received and verified. That
means there is no simple non-invasive way of splitting up the data sequence.
However, the fact that each verification is run on 128-bytes blocks means that it
is fairly easy to apply a bumping attack for the duration of the verify operation
on all blocks except the chosen one. For the Actel FPGA, splitting 1,913,600

166 S. Skorobogatov

Fig. 5. Laser scanning images: (a)NEC microcontroller, (b)FPGA

bits of the verification data into 832-bit blocks came from the analysis of both
the STAPL programming file and the JTAG communication protocol. These 832
bits of data are sent as 32 packets of 26 bits, however, the verification is done on
all 832 bits simultaneously in hardware. Moreover, the result of the verification
is available after each 832-bit block, making further analysis easier compared to
the above microcontroller, as there is no need to do bumping on other blocks.

Fig. 6. Fault injection sensitivity mapping: (a)Verify Array operation, (b)AES authen-
tication operation

The next step was aimed at splitting the verification blocks into words down
to the width of the memory data bus. Power analysis measurements were carried
out on both chips revealing the exact timing for the internal verification process
in the form of higher power consumption (Fig. 7). For easier observation, a
10× zoom is presented at the bottom. Block verification takes 16.4 ms for the
microcontroller and only 40 μs for the FPGA. Moreover, for the microcontroller
128 peaks in the power consumption are clearly distinguishable making it clear

Flash Memory ‘Bumping’ Attacks 167

that 8 bits are verified at a time (Fig. 7a). For the FPGA, the granularity of
the verification process was invisible in the power trace. However, the number of
read sense amplifiers observed under a microscope suggested that the memory
data bus is 32 bits wide resulting in 1.5 μs verification time per word. This was
later confirmed with bumping experiments.

Fig. 7. Power analysis on block verification: (a)NEC microcontroller, (b)FPGA

It was not possible to distinguish any difference between correct and incorrect
words of data in the power trace because the signal was too noisy. Averaging
might help, but will substantially increase the attack time making it not prac-
tical. Therefore, on its own, power analysis was not useful for breaking into the
Flash of these chips. However, it gave important information about the timing
of the internal verification process which was useful for carrying out bumping
and selective bumping attacks later.

Bumping attack to separate words of data on the microcontroller was straight-
forward as it uses an external clock signal. That way the attack can be easily
synchronised to the chips operations. It takes 128 μs to verify each word of data
by the internal firmware of the microcontroller. Hence, in order to turn certain
bytes into a known zero state the laser should be turned on during that time.

The process was trickier for the FPGA. It runs on its internal clock, which is
not very stable and was changing over time. It takes only 1.5 μs to verify each
word of data for the on-chip hardware of the FPGA. However, timing control
with sub-microsecond precision is not a problem for the laser. The bumping
attack aimed at the separation of the words of data within the block worked
reliably even for the internally clocked FPGA. As the clock jitter was less than
2%, there was no overlapping between verifications of each word, since there
were only 26 words per block.

The last step was aimed at implementing the selective bumping attacks. Trig-
gering the laser pulse at the precise time for data latching in the microcontroller
was achieved without much trouble. However, there was no large improvement
compared to the standard bumping attack – only reduction of the search field
from 28 to 25 per byte in the block, totalling 212 attempts per whole block. One
important thing to know is that for each attempt the full verification process
must be run and it takes at least five seconds to get the result of the verification

168 S. Skorobogatov

at the end. Hence, selective bumping will improve the full data extraction time
from four months to two weeks. Applying the selective bumping attack to the
FPGA was much more difficult due to the lack of synchronisation. Therefore,
the probability of hitting the data latching at a particular time was reduced by
a factor of the data bus width. However, this was not the only obstacle for the
selective bumping. It turned out that some bits within the 32-bit word have very
close timing characteristics, so it was extremely hard to separate them reliably.
Fortunately, as mentioned earlier, there are many points on the chip where the
bumping attacks can be applied. By testing different points, I found that some of
them offer better separation of bits in time. Selective bumping does not require
knowledge about the sequence of bits as this information can be easily obtained
during the experiment. Since the all-‘1’ state always pass the verification, the
next attempt involves selective bumping into 32 possible combinations with a
single ‘0’ bit. Then followed by 31 combinations of two ‘0’ bits, and so on until
the whole word is recovered. The best case has required only 213 attempts per re-
covery of the word value, totalling 218 searches per 832-bit block. This is slightly
more than the theoretically predicted 28 per word and 213 per block because of
the jitter caused by the internally clocked hardware of the chip. Although each
block can be verified independently, it cannot be addressed separately. That
means it takes longer to verify higher blocks, on average 10 ms. That way the
whole configuration bitstream can be extracted in about one month. Without
the use of selective bumping attacks, that is with only bumping attacks, such
extraction would take more than fifty thousand years. This is a far more signif-
icant improvement than with the microcontroller. However, this was expected
for 16-bit and 32-bit chips, which no longer could be brute forced through all
possible values within reasonable time.

The final set of experiments was carried out on a secure microcontroller with
AES authentication. As the chip under test was not in production at the time
of testing, the details of the setup are omitted. Only the statistical results for
optical bumping attacks are presented. However, this experiment shows how the
selective bumping helps in dramatic reduction of the search field.

Since the chip has a sophisticated secure AES key programming method,
it was supplied pre-programmed by the industrial collaborator. Authentication
required a special high-speed hardware setup that was also provided. Therefore,
my work was limited to finding a way of forcing the chip into bumping and
selective bumping and this was achieved by means of just non-invasive power
supply glitching attacks. The bumping caused certain bits of key to change to
‘1’. The result of the authentication was either pass or fail. Further analysis
revealed that the key was transferred from the internal secure memory in 8
words, which means the memory bus is 16-bit wide. The probability of bumping
depended from the time of glitching with low probability suggesting the time for
selective bumping (Fig. 8a).

The result of the selective bumping attack is presented in Fig. 8b showing
which bits are changing at a particular time of glitching for one word. It is
clear that the bits are well separated in time thus allowing easy key recovery.

Flash Memory ‘Bumping’ Attacks 169

Fig. 8. Attacking AES authentication: (a)bumping, (b)selective bumping

Although the bumping attack was enough to extract the whole key in about
one week, since each word was only 16-bit wide, selective bumping brought this
figure down to a few minutes.

5 Implications and Further Improvements

The above results were achieved on two microcontrollers and one FPGA. It
would be interesting to compare the results with other chips. However, it is
not easy to find candidates since most microcontrollers do have readback access
through programming or debugging interface. However, when it comes to the
AES authentication and hash functions, there might be many chips which store
keys in Flash memory. In the FPGA industry, very few manufacturers offer non-
volatile chips. The bumping attacks could also be compared with another sample
of the same chip, to see if the sequence of bits masked by selective bumping
remains the same.

In order to improve the speed of the bumping attacks, a more efficient algo-
rithm could be used. For example, an exhaustive timing analysis could be applied
to the first block of data. That way, selective bumping would give faster results
for the following blocks.

One can argue that power analysis might give a better result as it was used
to break many security protection schemes. However, applying power analysis to
the verification process will require too many power traces to be acquired and
analysed. This will inevitably lead to a very long extraction time, not practical
for a real attack. However, this might work if only a few bytes of data would
have to be extracted, for example, a password or an encryption key.

I noticed that FPGA security relies heavily on obscurity. That ranges from
the lack of any documentation on the JTAG access interface, and absence of
information on the internal operations, down to the data formats. This works well
unless an attacker is that determined to find all this information on their own. My
experiments showed how some information can be found via systematic testing
of device operations. That way, for example, I found the correspondence between
bits in the 832-bit verification data and bits in the data bus. Alternatively, for
some chips more information can be gained through analysis of development
tools and programming files.

170 S. Skorobogatov

On the security of Flash FPGA, one can argue that the demonstrated attack
will not entirely compromise its security. This is because on top of the verify-only
access control there are other security protection mechanisms, such as FlashLock
access control and AES bitstream encryption with proprietary integrity-check al-
gorithm [15]. This is true, but the fact that verify-only schemes do not provide
the level of protection anticipated by the manufacturer should cause concern,
especially as there might be the possibility of failures in other protection mech-
anisms. Furthermore, some users were relying solely on the fact that there was
no readback capability in the FPGAs.

Bumping attacks demonstrated in this paper used only one parameter – time.
It might be possible to find two independent parameters, for example, time and
laser power, or time and positioning. That way, more powerful 2D bumping
attacks could be implemented.

6 Conclusion

Two types of bumping attacks were introduced – bumping and selective bump-
ing. The first is aimed at bypassing the verification of a block, while the other
is aimed at presetting certain bits of data inside the block. Successful attacks
on a microcontroller with secure memory verification, on an FPGA with secure
firmware verification and on a secure microcontroller with AES authentication
were presented. Verify-only memory protection scheme is used in some chips as
a more secure alternative to access protection fuses.

The attack was carried out in three steps. The first step was aimed at sep-
arating the process into blocks. The second step involved splitting the data in
each block into words corresponding to the width of the data bus. The third
step was used to reduce the number of guesses required to pass the verification
within each word of data. Although for the 8-bit bus selective bumping was not
very useful, only a reduction from 28 to 25 searches, for the 32-bit bus selective
bumping attack allowed a tremendous reduction from 232 to just 213 searches,
which makes it practical. This is very important as the width of data bus in
modern devices is more often 16 or 32 bits rather than 8 bits as in old micro-
controllers. The attack was possible because each individual bit within a word
has different sensitivity to fault injection thus allowing reliable separation from
the others.

My research proved that a verify-only approach does not work on its own.
Even from a so-called highly secure FPGA the configuration can be extracted
using bumping attacks. Fortunately, this is not the only protection that is avail-
able in Actel FPGAs. In addition to the verify-only scheme, the FlashLock can
be activated or even more robust AES bitstream encryption with proprietary
integrity check algorithm. The latter prevents verification on arbitrary data [16].
Nevertheless, manufacturer’s claims that data extraction from these FPGAs is
not possible is no longer true. Although the FPGA was developed with some
security in mind and has independent clocking and a reasonably wide data bus,
it was still possible to successfully apply bumping attacks and get significant
improvements over brute force attacks.

Flash Memory ‘Bumping’ Attacks 171

My experiments showed that bumping attacks are easy to apply even on chips
clocked from an internal asynchronous source. My attempts of applying conven-
tional power analysis to distinguish a single-bit change in the Hamming weight
of data were unsuccessful. However, the results from the power analysis were
useful for optimising the timing of bumping attacks. Using selective bumping
technique the data extraction time can be dramatically reduced to hours and
days compared with many years required for brute-force searching. As these at-
tacks do not require expensive equipment they can pose a big problem to the
hardware community. As protection against bumping attacks, similar techniques
can be used as for other types of optical fault injection attacks. For example,
light sensors might prevent optical attacks, while a robust verification process
could make bumping attacks very difficult to use. Alternatively, a very long ver-
ification process could make finding of each bit not very practical. In addition,
clock jitters and dummy cycles would make bumping much harder to synchro-
nise. Secure Flash memory design could also prevent bumping as it was shown
on the secure Flash memory storing AES key in the FPGA.

Bumping attacks can find their way in partial reverse engineering of the in-
ternal chip structure and its operation. For example, data scrambling in the
configuration bitstream of the FPGA could be found using bumping attacks.
Flash memory bumping attacks do not require precise positioning on the chip
surface and just reasonable timing precision, hence, easily applied. Flash memory
bumping attacks complement other semi-invasive methods, such as optical prob-
ing [4], laser scanning [14] and optical emission analysis [17]. However, bumping
gives the result faster and does not require stopping the clock frequency or plac-
ing the device in an idle state which sometimes is not feasible. Once again,
semi-invasive attacks such as optical fault injection proved their effectiveness for
deep sub-micron chips which should be of concern to secure chip manufacturers.
Very likely this will result in the introduction of new countermeasures during
the design of semiconductor chips.

References

1. Xilinx CoolRunner-II CPLDs in Secure Applications. White Paper,
http://www.xilinx.com/support/documentation/white_papers/wp170.pdf

2. Design Security in Nonvolatile Flash and Antifuse FPGAs. Security Backgrounder,
http://www.actel.com/documents/DesignSecurity_WP.pdf

3. Skorobogatov, S.: Semi-invasive attacks – A new approach to hardware security
analysis. Technical Report UCAM-CL-TR-630, University of Cambridge, Com-
puter Laboratory (April 2005),
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf

4. Skorobogatov, S., Anderson, R.: Optical Fault Induction Attacks. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
2–12. Springer, Heidelberg (2003)

5. Brown, W.D., Brewer, J.E.: Nonvolatile semiconductor memory technology: a
comprehensive guide to understanding and using NVSM devices. IEEE Press,
Los Alamitos (1997)

http://www.xilinx.com/support/documentation/white_papers/wp170.pdf
http://www.actel.com/documents/DesignSecurity_WP.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf

172 S. Skorobogatov

6. Anderson, R.J., Kuhn, M.G.: Tamper resistance – a cautionary note. In: The Sec-
ond USENIX Workshop on Electronic Commerce, Oakland, California (November
1996)

7. Wagner, L.C.: Failure Analysis of Integrated Circuits: Tools and Techniques.
Kluwer Academic Publishers, Dordrecht (1999)

8. Tobias, M.W.: Opening locks by bumping in five seconds or less: is it really a threat
to physical security? A technical analysis of the issues, Investigative Law Offices,
http://podcasts.aolcdn.com/engadget/videos/lockdown/bumping_040206.pdf

9. NEC PD789104A, 789114A, 789124A, 789134A Subseries User’s Manual. 8-Bit
Single-Chip Microcontrollers,
http://www2.renesas.com/maps_download/pdf/U13037EJ1V0PM00.pdf

10. NEC 78K/0, 78K/0S Series 8-Bit Single-Chip Microcontrollers. Flash Memory
Write. Application Note,
http://www.necel.com/nesdis/image/U14458EJ1V0AN00.pdf

11. Actel ProASIC3 Handbook. ProASIC3 Flash Family FPGAs,
http://www.actel.com/documents/PA3_HB.pdf

12. Actel: ISP and STAPL. Application Note AC171,
http://www.actel.com/documents/ISP_STAPL_AN.pdf

13. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

14. Ajluni, C.: Two new imaging techniques promise to improve IC defect identifica-
tion. Electronic Design 43(14), 37–38 (1995)

15. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)

16. Actel ProASIC3/E Production FPGAs. Features and Advantages,
http://www.actel.com/documents/PA3_E_Tech_WP.pdf

17. Skorobogatov, S.: Using Optical Emission Analysis for Estimating Contribution to
Power Analysis. In: 6th Workshop on Fault Diagnosis and Tolerance in Cryptogra-
phy (FDTC 2009), Lausanne, Switzerland, September 2009, pp. 111–119. IEEE-CS
Press, Los Alamitos (2009) ISBN 978-0-7695-3824-2

http://podcasts.aolcdn.com/engadget/videos/lockdown/bumping_040206.pdf
http://www2.renesas.com/maps_download/pdf/U13037EJ1V0PM00.pdf
http://www.necel.com/nesdis/image/U14458EJ1V0AN00.pdf
http://www.actel.com/documents/PA3_HB.pdf
http://www.actel.com/documents/ISP_STAPL_AN.pdf
http://www.actel.com/documents/PA3_E_Tech_WP.pdf

Self-referencing: A Scalable Side-Channel
Approach for Hardware Trojan Detection

Dongdong Du, Seetharam Narasimhan,
Rajat Subhra Chakraborty, and Swarup Bhunia

Case Western Reserve University, Cleveland OH-44106, USA
sxn124@case.edu

Abstract. Malicious modification of integrated circuits (ICs) in un-
trusted foundry, referred to as “Hardware Trojan”, has emerged as a
serious security threat. While side-channel analysis has been reported
as an effective approach to detect hardware Trojans, increasing process
variations in nanoscale technologies pose a major challenge, since pro-
cess noise can easily mask the Trojan effect on a measured side-channel
parameter, such as supply current. Besides, existing side-channel ap-
proaches suffer from reduced Trojan detection sensitivity with increasing
design size. In this paper, we propose a novel scalable side-channel ap-
proach, named self-referencing, along with associated vector generation
algorithm to improve the Hardware Trojan detection sensitivity under
large process variations. It compares transient current signature of one re-
gion of an IC with that of another, thereby nullifying the effect of process
noise by exploiting spatial correlation across regions in terms of process
variations. To amplify the Trojan effect on supply current, we propose a
region-based vector generation approach, which divides a circuit-under-
test (CUT) into several regions and for each region, finds the test vectors
which induce maximum activity in that region, while minimizing the ac-
tivity in other regions. We show that the proposed side-channel approach
is scalable with respect to both amount of process variations and design
size. The approach is validated with both simulation and measurement
results using an FPGA-based test setup for large designs including a
32-bit DLX processor core (∼ 105 transistors). Results shows that our
approach can find ultra-small (<0.01% area) Trojans under large process
variations of up to ± 20% shift in transistor threshold voltage.

Keywords: hardware Trojan, side-channel analysis, self-referencing.

1 Introduction

Global economics dictates increasing out-sourcing of Integrated Circuit (IC) fab-
rication to off-shore facilities. Though cost-effective, out-sourcing brings up po-
tential risks for an adversary to maliciously modify a circuit. Such malicious
modifications are referred as Hardware Trojans. A typical Hardware Trojan
would cause an IC to have altered functional behavior during operation in the
field, potentially with disastrous consequences in safety-critical applications. The

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 173–187, 2010.
c© International Association for Cryptologic Research 2010

174 D. Du et al.

Fig. 1. (a) A circuit with hardware Trojan along with models of two types of Trojans.
(b) A taxonomy of existing hardware Trojan detection techniques.

threat of Hardware Trojans has emerged as a major security concern [1], espe-
cially since several unexplained military mishaps are attributed to the presence
of malicious hardware Trojans [2,3]. Such hardware Trojans can also be inserted
in a design house during the design of an IC. Here, we focus on the problem of
detecting hardware Trojans inserted during fabrication in an untrusted foundry.

An intelligent adversary can incorporate a hardware Trojan, which is ex-
tremely difficult to detect during conventional post-manufacturing test. Due to
their stealthiness, Trojans can be triggered only under rare conditions. Upon
triggering, they can either cause malfunction by altering internal node values [4]
or leak secret information through covert channels [5]. They can also be used
to assist software attacks by providing a hardware backdoor [3]. Fig. 1(a) shows
an example circuit with Trojan inserted inside one of its constituent blocks.
Broadly two types of Trojan can be inserted in a digital circuit: combinational
Trojans, which are activated by a rare combination of values at internal circuit
nodes and sequential Trojans, which are activated through a sequence of rare
events. Several approaches to detect hardware Trojans have been proposed in
recent literature [5]. We show a classification of the Trojan detection techniques
in Fig. 1(b). Destructive testing of a chip by de-packaging, de-metallization and
micro-photography based reverse-engineering is highly expensive (in time and
cost) and not a feasible solution because an attacker may selectively insert Tro-
jan into a small subset of the manufactured ICs [7]. Conventional logic testing,
both functional and structural, performs poorly in detecting Trojans, due to their
stealthiness, arbitrary nature and size [8]. An alternative approach is to mea-
sure a side-channel parameter, such as supply current or path delay, which can
be affected due to unintended design modifications. However, the effectiveness
of side-channel analysis is limited by large device parameter variations in mod-
ern nanometer technologies leading to variations in the measured side-channel
parameter, which can mask the effect of a small Trojan.

The issue of process variations on side-channel analysis based Trojan detec-
tion has been considered in [9], which explores signal processing techniques to
reduce effect of process noise on supply current. Another approach based on
power-supply transient [6], measures current signal from multiple power ports
and uses a statistical characterization of process noise. Path delays of output

Self-referencing: A Scalable Side-Channel Approach 175

Fig. 2. (a) An simple test circuit: a 4-bit Arithmetic Logic Unit (ALU). (b) A combi-
national Trojan inserted into the subtractor.

ports have also been used as the fingerprint [11], with extensive characterization
for process variations. In this paper, we propose a scalable side-channel approach
to hardware Trojan detection based on a concept called “self-referencing”. The
basic idea is to use supply current signature of one region of a chip as reference
to that of another to eliminate the process noise. Such calibration or referenc-
ing is possible due to the spatial correlation of process variation effects across
regions in a chip. We show that such an approach can be extremely effective
in nullifying all forms of process noise, namely inter-die, intra-die random and
intra-die systematic variations [13]. Since process noise is eliminated by compar-
ing current signature of regions in an IC, the method is scalable with increasing
process noise, unlike existing approaches [9]. To increase the Trojan detection
sensitivity, we propose a region-based vector generation approach, which tries
to maximize the Trojan effect while minimizing the background current. Cur-
rent values of n regions are then compared with all other using a slope heuristic
and the resultant region slope matrix is used to compare a chip with another.
We validate the proposed approach using both simulation and measurements
for several large open source designs. Simulation results shows high detection
sensitivity in presence of large process variations and scalability of the approach
with increasing design size. The measurement results with a custom test board
validates the effectiveness of the approach.

The rest of the paper is organized as follows. In section 2, we describe the mo-
tivation of the proposed self-referencing method. Section 3 presents the method-
ology along with theoretical analysis. Simulation and experimental results are
described in section 4. Section 5 concludes the paper.

2 Motivation of Self-referencing Approach

The idea of self-referencing can be illustrated using an example 4-bit ALU, as
shown in Fig. 2(a). The ALU contains four distinct functional units (FUs) -
adder, subtractor, multiplier and shifter, which are activated based on the input
“opcode” value. There are two 4-bit operands and a 4-bit output. In such a
circuit, a single region or FU can be selectively activated by proper choice of
opcode, we can easily generate test vectors which target separate activation of
the four regions. We consider three different process corners (nominal ±25%) for

176 D. Du et al.

Fig. 3. (a) Comparison of supply current between golden and tampered chip for four
regions of a 4-bit ALU. (b) Correlation of region currents at different process points
for golden and tampered ICs.

the entire design (modeled as a change in the transistor threshold voltage VT)
and simulate the design in HSPICE for four different vector pairs which activate
each of the four regions separately. We also measure the background current.
The Trojan circuit, as shown in Fig. 2(b) was designed to invert an output bit
of the subtractor if two input bits were equal. We simulated the circuit with
the Trojan in the subtractor module (occupying 2.7% area of the ALU) at the
nominal process corner for the same set of vectors.

Fig. 3(a) shows the plot of the average IDDT values for the four different
vectors activating the four different regions without the background current. We
can observe the tampered circuit consumes more current for the vector which
activates the subtractor region. We plot the current for one region (adder) with
respect that for another (subtractor) for a set of golden and tampered chips at
20 different process points in Fig. 3(b). We expect a correlation between the
region currents across process corners. However, since there is a Trojan in the
subtractor, it shows uncorrelated behavior in supply current. Hence, the current
for the adder can be used to calibrate the process noise and check for the presence
of Trojan in other modules. In real life, since we do not know the region which
contains the Trojan, we need to compare each region with all others. This also
allows us to cancel out the effect of random and systematic intra-die process
variations, as explained later.

3 Methodology

For a large design, the golden supply current for a high activity vector can be
large compared to the additional current consumed by a small Trojan circuit,
and the variation in the current value due to process variation can be very large.
This can mask the effect of the Trojan on the measured current, leading to
difficulty in detecting a Trojan-infected chip. Most side-channel analysis based
approaches perform calibration of the process noise by using golden chips at
different process corners. This helps us obtain a limiting threshold value beyond
which any chip is classified as Trojan. Since the variation in the measured value

Self-referencing: A Scalable Side-Channel Approach 177

can cause a golden chip to be misclassified as a Trojan (we refer to this case as
a false positive - FP), the limit line has to be close to the nominal golden value.
On the other hand, if the Trojan effect does not change the value beyond the
limit, the Trojan-containing chip can be misclassified as a golden one (we refer
to this case as a false negative - FN). To limit the probability of false positives
and false negatives, the limiting values need to be chosen carefully.

The Trojan detection sensitivity of this approach reduces with decreasing Tro-
jan or increasing circuit size. In order to detect small sequential/combinational
Trojans in large circuits (> 105 transistors), we need to improve the SNR (Signal-
to-Noise Ratio) using appropriate side-channel isolation techniques. At a single
VT point the sensitivity, for an approach where transient current values are com-
pared for different chips, can be expressed as:

Sensitivity =
Itampered,nominal − Igolden,nominal

Igolden,process variation − Igolden,nominal
(1)

Clearly, the sensitivity can be improved by increasing the current contribution
of the Trojan circuit relative to that of the original circuit. We can divide the
original circuit into several small regions and measure the supply current (IDDT)
for each region. The relationship between region currents also helps to cancel
the process variation effects. In Fig. 3(a), if we consider the “slope” or relative
difference between the current values of ‘add’ and ‘sub’ regions, we can see that
there is a larger shift in this value due to Trojan than in the original current
value due to process variations. We refer to this approach as the Self-Referencing
approach, since we can use the relative difference in the region current values to
detect a Trojan by reducing the effect of process variations. In the appendix, we
present an analysis regarding how the self-referencing approach can help cancel
the effect of process variations.

The major steps of the self-referencing approach are as follows. First, we
need to perform a functional decomposition to divide a large design into several
small blocks or regions, so that we can activate them one region at a time.
Next, we need a vector generation algorithm which can generate vectors that
maximize the activity within one region while producing minimum activity in
other regions. Also, the chosen set of test vectors should be capable of triggering
most of the feasible Trojans in a given region. Then, we need to perform self-
referencing among the measured supply current values. For this we use a Region
Slope Matrix as described in the appendix. Finally, we reach the decision making
process which is to compare the matrix values for the test chip to threshold
values derived from golden chips at different process corners, in order to detect
the presence or absence of a Trojan. Next we describe each of the steps in detail.

Functional Decomposition: The first step of the proposed self-referencing
approach is decomposition of a large design into functional blocks or regions.
Sometimes, the circuit under test is designed with clearly-defined functional
blocks which can be selectively activated by using control signals, like the 4-bit
ALU circuit which we considered for our example in Section 2. Another type
of circuit which is amenable to simple functional decomposition is a pipelined

178 D. Du et al.

processor, where the different pipeline stages correspond to the different regions.
However, there can be circuits which are available as a flattened gate-level netlist.
For this we could use a hyper-graph based approach to identify partitions which
have minimum cut-sets between them. This allows us to isolate the activity in one
partition from causing activity in other regions. The region-based partitioning
described in [7] can also be used for creating partitions in circuits which do not
have well-defined functional blocks or for creating sub-blocks within a functional
block. The decomposition should follow a set of properties to maximize the
effectiveness of the approach:

1. The blocks should be reasonably large to cancel out the effect of random pa-
rameter variations, but small enough to minimize the background current.
It should also be kept in mind that if the regions are too small, the num-
ber of regions can become unreasonably large for the test vector generation
algorithm to handle.

2. The blocks should be functionally as independent of each other as possible
so that the test generation process can increase the activity of one block (or
few blocks) while minimizing the activity of all others.

3. The decomposition process can be performed hierarchically. For instance,
a system-on-a-chip (SoC) can be divided into the constituent blocks which
make up the system. But, for a large SoC, one of the blocks could itself
be a processor. Hence, we need to further divide this structural block into
functional sub-blocks.

Statistical test vector generation: In order to increase the Trojan detection
sensitivity, proper test vector generation and application are necessary to reduce
the background activity and amplify the activity inside the Trojan circuit. If we
partition the circuit into several functional and structurally separate blocks, we
can activate them one at a time and observe the switching current for that block
with respect to the current values for other blocks. The test vector generation
algorithm needs to take into account two factors:

1. Only one region must be activated at a time. If the inputs to different mod-
ules are mutually exclusive and the regions have minimal interconnection, it
is easy to maximally activate one region while minimizing activity in other
regions. If complex interconnections exist between the modules, the inputs
need to be ranked in terms of their sensitivity towards activating different
modules and the test generation needs to be aware of these sensitivity values.

2. When a particular region is being activated, the test vectors should try to
activate possible Trojan trigger conditions and should be aimed at creating
activity within most of the innumerable possible Trojans. This motivates us
to consider a statistical test generation approach like the one described in [12]
for maximizing Trojan trigger coverage. Note that, unlike functional testing
approaches, the Trojan payload need not be affected during test time, and
the observability of Trojan effect on the side-channel parameter is ensured
by the region-based self-referencing approach described earlier.

Self-referencing: A Scalable Side-Channel Approach 179

Fig. 4. The major steps of the proposed self-referencing methodology. The steps for
test vector generation for increasing sensitivity and threshold limit estimation for cal-
ibrating process noise are also shown.

Fig. 4 shows a flow chart of the test vector generation algorithm on the right.
For each region, we assign weights to the primary inputs in terms of their ten-
dency to maximize activity in the region under consideration while minimizing
activity in other regions. This step can also identify control signals which can
direct the activity exclusively to particular regions. Next, we generate weighted
random input vectors for activating the region under consideration and perform
functional simulation using a graph-based approach, which lets us estimate the
activity within each region for each pair of input vectors. We sort the vectors
based on a metric Cij which is higher for a vector pair which can maximally ac-
tivate region Ri while minimizing activity in each of the other regions. Then, we
prune the vector set to choose a reduced but highly efficient vector set generated
by a statistical approach such as MERO [12]. In this approach (motivated by the
N-detect test generation technique), within a region, we identify internal nodes
with rare values, which can be candidate trigger signals for a Trojan. Then we
identify the subset of vectors which can take the rare nodes within the region
to their rare values at least N times, thus increasing the possibility of triggering
the Trojans within the region. Once this process is completed for all the regions,
we combine the vectors and generate a test suite which can be applied to each
chip for measuring supply current corresponding to each of its regions.

For functional test of a multi-core processor, we can use specially designed
small test programs which are likely to trigger and observe rare events in the
system such as events on the memory control line or most significant bits of the
datapath multiple times. In general a design is composed of several functional
blocks and activity in several functional blocks can be turned off using input
conditions. For example in a processor, activity in the floating point unit (FPU),
branch logic or memory peripheral logic can be turned off by selecting an integer
ALU operation. Many functional blocks are pipelined. In these cases, we will
focus on one stage at a time and provide initialization to the pipeline such that

180 D. Du et al.

the activities of all stages other than the one under test are minimized by en-
suring that the corresponding stage inputs do not change. Next we describe how
the self-referencing approach can be applied to compare the current values for
different regions and identify the Trojan-infected region.

Side-Channel Analysis using Self-Referencing: In this step, we measure
the current from different blocks which are selectively activated, while the rest of
the circuit is kept inactive by appropriate test vector application. Then the av-
erage supply current consumed by the different blocks is compared for different
chip instances to see whether the relations between the individual block currents
are maintained. Any discrepancy in the “slope” of the current values between
different blocks indicates the presence of Trojan. This approach can be hierar-
chically repeated for further increasing sensitivity by decomposing the suspect
block into sub-blocks and checking the self-referencing relationships between the
current consumed by each sub-block.

The flowchart for this step is shown in Fig. 4. Note that the best Trojan
detection capability of region-based comparison will be realized if the circuit is
partitioned into regions of similar size. The Region Slope Matrix is computed
by taking the relative difference between the current values for each region. We
estimate the effect of process variations on the “slopes” to determine a threshold
for separating the golden chips from the Trojan-infested ones. This can be done
by extensive simulations or measurements from several known-golden chips. For
a design with n regions, the Region Slope Matrix is an n×n matrix, with entries
that can be mathematically expressed as:

Sij =
Ii − Ij

Ii
∀i, j ∈ [1, n] (2)

For each region, we get 2n−1 slope values, of which one of them is ‘0’, since the
diagonal elements Sii will be zero.

The intra-die systematic variation is eliminated primarily because we use the
current from an adjacent block, which is expected to suffer similar variations, to
calibrate process noise of the block under test. The intra-die random variations
can be eliminated by considering switching of large number of gates. In our
simulations we find that even switching of 50 logic gates in a block can effectively
cancel out random deviations in supply current.

Decision Making Process: In this step, we make a decision about the existence
of Trojan in a chip. The variation in slope values for different regions for a chip
from the golden nominal values are combined by taking the L2 norm (sum of
squares of difference of corresponding values) between the two Region Slope
matrices. This difference metric for any chip ‘k’ is defined as

D(k) =
N∑

i=1

N∑
j=1

(Sij |Chip k − Sij |golden,nominal)2. (3)

Self-referencing: A Scalable Side-Channel Approach 181

The limiting “threshold” value for golden chips can be computed by taking the
difference D(golden, process variations) as defined by

Threshold =
N∑

i=1

N∑
j=1

(Sij |golden,process variation − Sij |golden,nominal)2. (4)

Any variation beyond the threshold is attributed to the presence of a Trojan.
The steps for computing the golden threshold limits are illustrated on the left
side of Fig. 4. Since unlike conventional testing, a go/no-go decision is difficult
to achieve, we come up with a measure of confidence about the trustworthiness
of each region in a chip using an appropriate metric. We compare the average
supply current consumed by the different blocks for different chip instances to
see whether the expected correlation between the individual block currents is
maintained. The Trojan detection sensitivity of the self-referencing approach
can be defined as

Sensitivity =
D(tampered, nominal)

Threshold
(5)

Since, the slope values are less affected by process variations compared to the cur-
rent values alone, we expect to get better sensitivity compared to eqn. (1). Note
that since we perform region-based comparison, we can localize a Trojan and
repeat the analysis within a block to further isolate the Trojan. This approach
can be hierarchically repeated to increase the detection sensitivity by decom-
posing a suspect block further into sub-blocks and applying the self-referencing
approach for those smaller blocks. We can also see that the region-based self-
referencing approach is scalable with respect to design size and Trojan size. For
the same Trojan size, if the design size is increased two-fold, we can achieve same
sensitivity by dividing the circuit into twice as many regions. Similarly we can
divide the circuit into smaller regions to increase sensitivity towards detection
of smaller Trojan circuits.

4 Results

4.1 Simulation Results

We used two test cases to validate the proposed Trojan detection approach:
1) a 32-bit integer Arithmetic Logic Unit (ALU), and 2) a Finite Impulse Re-
sponse (FIR) digital filter. The size of the ALU circuit can be scaled by changing
the word size parameter. We considered 4 structurally different blocks - adder
(add), subtracter (sub), multiplier (mul) and shifter (shift) which can be selec-
tively activated by the opcode input bits. However, the FIR filter had a flattened
netlist and was manually partitioned into four regions with the minimum in-
terconnections, and the test vector generation tool (written in MATLAB) was
used to generate test vectors to selectively activate each block. We inserted a
small (<0.01% of total area) Trojan in the subtracter of the ALU and the 4th

182 D. Du et al.

Fig. 5. Self-referencing methodology for detecting Trojan in the 32-bit ALU and FIR
circuits. Blue and red lines (or points) denote golden and Trojan chips, respectively.

region of the FIR filter. Both designs were synthesized using Synopsys Design
Compiler and mapped to a LEDA standard cell library. Circuit simulations were
carried out for the 70nm Predictive Technology Model (PTM) [15] using Synop-
sys HSPICE. To estimate the effect of process variations, we used Monte Carlo
simulations for a maximum of ±20% variation in the nominal VT value, inter-
die variations with σ = 10% and random intra-die variations with σ = 6%. We
simulated the circuits and separately measured the supply current for different
regions for 500 golden chips and 500 infected chips.

The simulated Region Slope Matrix values are plotted in Fig. 5(a). The Trojan-
infected chip instances can be easily distinguished from the golden ones, even
in the presence of process noise. The row and column corresponding to the
subtracter (2nd region) show visibly different values for the golden (blue) and
Trojan (red) values. Next, we performed simulations with multiple vector pairs
activating the same module to show that the Trojan in the subtracter is only
selectively activated on the application of one of the two vector pairs activat-
ing the subtracter module. The Region Slope Matrix for this case is shown in
Fig. 5(b). This matrix contains 8 regions since each of the four structurally sep-
arate regions of the ALU are further divided into two sub-blocks, corresponding

Self-referencing: A Scalable Side-Channel Approach 183

Fig. 6. Sensitivity analysis with (a) different number of regions, (b) different circuit
sizes, and (c) different Trojan sizes

Table 1. Probability of Detection and probability of False Alarm (False Positives)

Circuit Name TN(%) FP(%) FN(%) TP(%)

32-bit ALU 99.10 0.90 5.90 94.10
FIR 97.72 2.28 6.60 93.40

to the two different vector pairs which share the same opcode values. It can be
readily observed that increasing the number of regions increases the sensitivity
of Trojan detection.

Fig. 5(c) shows the simulation results for the FIR design. The test vectors
are chosen by the MATLAB tool and used to dominantly activate different re-
gions of the design. The Region Slope Matrix is computed for 50 golden chips
and 50 Trojan-infected chips and we can successfully detect the Trojan-infected
region (region 4). Fig. 6 shows the variation in sensitivity of the self-referencing
approach by varying different parameters of the ALU. For a 16-bit ALU, we see
that increasing the number of regions helps increase the sensitivity in Fig. 6(a).
In Fig. 6(b), we plot the sensitivity of the approach for increasing circuit sizes.
Finally in Fig. 6(c), we show that increasing the number of regions also helps
to keep the sensitivity nearly constant as we scale down the Trojan size. The
percentage of true positives, true negatives, false positives and false negatives as
obtained from the Monte Carlo simulations are presented in Table 1. We used
a process point with 20% VT variation to compute the threshold. For smaller
circuits and larger Trojans the sensitivity is higher and hence, the accuracy of
classification is also better.

4.2 Experimental Results

We used a custom test board with socketed Xilinx Virtex-II XC2V500 FPGAs
to measure current from eight individual supply pins as well as the total current,
using 0.5Ω precision current sense resistors to sense the IDDT and an Agilent
mixed-signal oscilloscope (100MHz, 2 Gsa/sec) to record the data. The test
circuit was a 32-bit DLX processor with a 5-stage pipeline which contains the
previously-described 32-bit ALU as part of its execution unit, occupying over
80% of the FPGA slices. The Trojan circuit was a 16-bit serial-in parallel-out

184 D. Du et al.

Fig. 7. Experimental results for 8 golden and 2 tampered FPGA chips. Region slope
matrix for (a) 32-bit DLX processor; (b) 32-bit ALU. The limit lines are obtained by
analyzing the 8 golden chips. The red points denote the values for the Trojan-containing
test chips while the blue points denote the values for the golden chips.

shift register (sequential Trojan) occupying 0.08% of total area. We performed
experiments with 10 FPGA chips from the same lot. We insert a Trojan in two
of the ten chips inside the subtracter sub-region of the ALU. The Region Slope
Matrix is constructed using the measured current values for the five pipeline
stages of the DLX processor in the 10 FPGA chips. We use the 8 golden chips
to determine the threshold limit and use our self-referencing approach to test
4 test chips (2 golden and 2 Trojan). As can be clearly seen from Fig. 7, the
Trojan containing chips are easily identified as well as the region which contains
the Trojan in both cases. Next, we repeat the procedure using test vectors which
only activate the four sub-regions inside the 32-bit ALU and identify that the
Trojan is located within the subtracter.

5 Conclusion

We have presented a side-channel hardware Trojan detection approach that ex-
ploits the intrinsic relationship between active-mode current among the different
regions of a chip to achieve high signal-to-noise ratio in presence of process vari-
ations. We have shown that the self-referencing approach coupled with efficient
vector generation provides scalability in terms of increasing process variations
(thus being amenable to future scaled technologies) and increasing design size.
As a by-product, such an approach also helps to localize the Trojan, which can
be helpful for diagnosis. Simulation results for different circuits are supported
by the experimental validation for a 32-bit DLX processor core. The approach
can be easily extended to multi-core SoC, where the cores can be hierarchically
partitioned into multiple regions or functional units. Another possible applica-
tion involves detecting instances of re-marked chips in a lot of manufactured ICs,
which pass functional testing but can cause in-field failure.

Self-referencing: A Scalable Side-Channel Approach 185

References

1. DARPA: TRUST in Integrated Circuits, TIC (2007),
http://www.darpa.mil/MTO/solicitations/baa07-24

2. Adee, S.: The hunt for the kill switch. IEEE Spectrum 45(5), 34–39 (2008)
3. King, S., et al: Designing and implementing malicious hardware. In: LEET (2008)
4. Wolff, F., et al.: Towards Trojan-free trusted ICs: Problem analysis and detection

scheme. In: DATE, pp. 1362–1365 (2008)
5. Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware Trojan: threats and

emerging solutions. In: HLDVT (2009)
6. Rad, R., Plusquellic, J., Tehranipoor, M.: A sensitivity analysis of power signal

methods for detecting hardware Trojans under real process and environmental
conditions. IEEE Tran. VLSI (2010)

7. Banga, M., Hsiao, M.: A region based approach for the identification of hardware
Trojans. In: HOST, pp. 40–47 (2008)

8. Adamov, A., Saprykin, A., Melnik, D., Lukashenko, O.: The problem of hardware
Trojans detection in system-on-chip. In: CADSM, pp. 178–179 (2009)

9. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: Trojan detection
using IC fingerprinting. In: Symposium on Security and Privacy, pp. 296–310 (2007)

10. Rad, R., Wang, X., Tehranipoor, M., Plusquellic, J.: Taxonomy of Trojans and
methods of detection for IC trust. In: ICCAD (2008)

11. Jin, Y., Makris, Y.: Hardware Trojan detection using path delay fingerprint. In:
HOST (2008)

12. Chakraborty, R.S., Wolff, F., Paul, S., Papachristou, C., Bhunia, S.: MERO: A
statistical approach for Hardware Trojan detection. In: CHES (2009)

13. Borkar, S., et al.: Parameter variations and impact on circuits and micro-
architecture. In: DAC, pp. 338–342 (2003)

14. Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes,
4th edn. McGraw-Hill, New York (2002)

15. Predictive Technology Model, http://www.eas.asu.edu/~ptm/

Appendix

Analysis of the Effect of Process Variations. In order to increase the hard-
ware Trojan detection sensitivity for a large design with ultra-small Trojan, we
need to amplify the Trojan effect while nullifying the impact of process variations
in the side-channel parameter. There are two types of process variations [13] –
inter-die variations and intra-die variations, with the latter having a systematic
component and a random component. Inter-die variations are the parameter vari-
ations from one die to another on a wafer and can be modeled by a variation in
the transistor threshold voltage (VT) for the entire design. Intra-die variations
are the variations within the same die which can cause different parametric vari-
ations than that predicted by inter-die variations. They have a random compo-
nent which causes random variation in VT of each transistor about the VT of the
die. There can also be a systematic component to these variations since there
are spatial correlations among the VT variations of the transistors. Fig. 8 shows
the effect of the different components of process variation on the VT of devices in

http://www.darpa.mil/MTO/solicitations/baa07-24
http://www.eas.asu.edu/~ptm/

186 D. Du et al.

Fig. 8. The effect of process variation on device threshold voltage in an IC

an IC, where each of the “inter-die” and “intra-die” components are modeled as
normal distribution with certain mean (μ) and standard deviation (σ).

Consider an IC that has been partitioned into N different regions, such
that each region can be preferentially activated while the activity of the other
partitions are minimized. Consider that the region Ri has been preferentially
activated, and consider a gate g ∈ Ri. Then, the switching current of g is
approximately given by Ig = k(VDD − VTg)2, where k is a constant depend-
ing on the process and the nature of the gate, VDD is the supply voltage and
VTg is the threshold voltage of the i-th gate. Now, VTg can be expressed as
VTg = VT + ΔVTi + ΔvTg1 + ΔvTg2, Here, ΔVTi represents the effect of the
“systematic intra-die” component of variation, and has the same value for all
gates in the region Ri; ΔvTg1 represents the effect of the “inter-die” component
of process variation, and has the same value for all gates in the IC, and ΔvTg2
is the effect of the “random intra-die” component of process variation, and has
random values for different gates of the IC. Hence,

Ig = k [VDD − (VT + ΔVTi + ΔvTg1 + ΔvTg2)]
2

= k
[
(Vov −ΔvTg1)

2 + (ΔVTi + ΔvTg2)
2 − 2 (Vov −ΔvTg1) (ΔVTi + ΔvTg2)

]
(6)

where Vov = VDD − VT is the gate overdrive. Ignoring all second order terms
involving both random and systematic shifts of the threshold voltage, the above
equation can be approximated by:

Ig ≈ k
[
V 2

ov − 2Vov(ΔvTg1 + ΔVTi)
]︸ ︷︷ ︸

constant for each gate g∈Ri

− 2VovΔvTg2︸ ︷︷ ︸
random for each gate g∈Ri

(7)

Summing the currents for all the switching gates of the region Ri, the total
switching current for region Ri is:

Ii =
∑
g∈Ri

Ig = kni

[
V 2

ov − 2Vov(ΔvTg1 + ΔVTi)
]− 2Vov

∑
g∈Ri

ΔvTg2 (8)

where ni is the number of switching gates in region Ri. Now, the term
∑
g∈Ri

ΔvTg2

represents the sum of ni (normally distributed) random variables, each with

Self-referencing: A Scalable Side-Channel Approach 187

mean μ = 0 and standard deviation σT (let). Hence, by the Central Limit Theo-
rem [14], the term

∑
g∈Ri

ΔvTg2 is approximately normally distributed with mean

μ = 0 and a reduced standard deviation σT√
ni

. Hence, for reasonably large value
of ni, this term is approximately equal to zero, and the expression for Ii can be
approximated by:

Ii ≈
∑
g∈Ri

Ig = kni

[
V 2

ov − 2Vov(ΔvTg1 + ΔVTi)
]

(9)

Similarly, for a region Rj . the switching current is given by:

Ij ≈
∑

g∈Rj

Ig = knj

[
V 2

ov − 2Vov(ΔvTg1 + ΔVTj)
]

(10)

Hence, the difference between the currents of regions Ri and Rj can be expressed
as:

Ii − Ij |observed = k
[
V 2

ov − 2VovΔvTg1
]
(ni − nj)− 2kVov(niΔVTi − njΔVTj)

= c1(ni − nj) + c2(niΔVTi − njΔVTj)︸ ︷︷ ︸
due to systematic intra-die variation

(11)

where c1, c2 are constants. If the contribution due to the intra-die systematic
component is negligible, the above expression can be re-written as:

Ii − Ij |observed ≈ c1(ni − nj) and Ii|observed ≈ c1ni (12)

Hence, the mutual Region Slope metric for regions Ri and Rj is

Sij,observed =
Ii − Ij

Ii
=

ni − nj

ni
(13)

In the nominal case, in the absence of any process variation effects, ΔVTi =
ΔVTj = ΔvTg1 = ΔvTg2 = 0; hence , Ii − Ij |golden = c3(ni − nj), Ii = c3ni and

Sij,golden =
ni − nj

ni
= Sij,observed (14)

Similarly, it can be shown that Sji,golden = Sji,observed. This shows that un-
der negligible systematic intra-die variations, the ratio of the difference in the
switching currents of two regions and the current of each region should remain
approximately unchanged. This equality fails to be satisfied in case one of the re-
gions is modified by the insertion of a Trojan, because then the switching current
of the gates constituting the Trojan circuit disturbs the balance. This observa-
tion is the main motivation behind using the Region Slope values for reducing
the process noise. For a circuit with N regions, if we compute the Region Slope
values for all pairs of regions, we obtain an N × N matrix, with zero diagonal
elements. It is observed that systematic variations still cause some variations in
the Region Slope values, but the effect of process variation has been reduced
greatly compared to the variations in individual current values, thus giving us
improved sensitivity for Trojan detection.

When Failure Analysis Meets Side-Channel
Attacks

Jerome Di-Battista1,2, Jean-Christophe Courrege1,
Bruno Rouzeyre2, Lionel Torres2, and Philippe Perdu3

1 Thales ITSEF,
18 Avenue Edouard Belin, 31400 Toulouse, France

jerome.dibattista@cnes.fr
2 Université de Montpellier, Laboratoire du LIRMM,

161 rue Ada, 34095 Montpellier Cedex 5, France
3 Centre National d’Etudes Spatiales CNES,

18 Avenue Edouard Belin, 31400 Toulouse, France

Abstract. The purpose of failure analysis is to locate the source of a
defect in order to characterize it, using different techniques (laser stim-
ulation, light emission, electromagnetic emission...). Moreover, the aim
of vulnerability analysis, and particularly side-channel analysis, is to ob-
serve and collect various leakages information of an integrated circuit
(power consumption, electromagnetic emission ...) in order to extract
sensitive data. Although these two activities appear to be distincted, they
have in common the observation and extraction of information about a
circuit behavior. The purpose of this paper is to explain how and why
these activities should be combined. Firstly it is shown that the leak-
age due to the light emitted during normal operation of a CMOS circuit
can be used to set up an attack based on the DPA/DEMA technique.
Then a second method based on laser stimulation is presented, improv-
ing the “traditional” attacks by injecting a photocurrent, which results
in a punctual increase of the power consumption of a circuit. These tech-
niques are demonstrated on an FPGA device.

Keywords: Side-channel, Failure analysis, Light emission, Laser stim-
ulation, FPGA.

1 Introduction

During the last 20 years, failure analysis has become a serious concern for the
electronics industry. Its purpose is to locate the source of a defect in order to
characterize it, the defect being a problem linked to the environmental condi-
tions, an intrinsic problem in the circuit, or both. More generally, failure analysis
should ensure that the detected problem does not occur again [1]. The strongest
constraints are the size reduction for CMOS technology components and the in-
creasing complexity of integrated chips (several millions of gates). Currently the
most used analysis tools are based on laser stimulation and light emission tech-
niques. Concurrently, during the last 10 years, non-invasive and semi-invasive

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 188–202, 2010.
c© International Association for Cryptologic Research 2010

When Failure Analysis Meets Side-Channel Attacks 189

techniques have received a lot of attention from the hardware security commu-
nity. Among them, so-called side-channel attacks are the most popular. Different
leakage sources [2][3] such as power consumption, electromagnetic field, or time
response of the circuit, are correlated to the processed data. Thus, by inspecting
this information, and with the help of appropriate software tools, it is possible
to retrieve the secret data used in the embedded cryptography circuits, typically
the cipher key. From an attacker point of view, side-channel attacks present
many advantages, as most of them require only low-cost instrumentations, and
they are non-destructive.

These two activities apparently different can be combined. Indeed, the failure
analysis techniques can be used to extract another kind of side-channel signal
or to improve existing side-channel attacks. Inversely, the vulnerability analysis
can be used to extract complementary information about the circuit behavior.
In this paper two examples of application, light emission and laser stimulation,
are presented.

The light emission phenomenon has been mainly studied for failure analysis.
Many techniques have been developed to extract and process the light emitted
by the electronic components in order to localize different kinds of defects [4]
(junction avalanche, oxide breakdown...). In this paper we mainly focus on the
light emitted by NMOS transistors during commutation. Indeed, in [5], the au-
thor demonstrates the possibility to set up an attack based on light emission,
by implementing part of an AES algorithm on a PIC16F84A microcontroller
previously opened from the backside. The purpose of this attack was to recover
the secret key stored in the microcontroller RAM. Using this work as a starting
point, two approaches have been developed; in [6] the author demonstrates the
possibility of using a low-cost system to perform the same kind of experiments
on a PIC16F628 and provides some interesting results for a FPGA circuit. In
parallel, we had chosen to study the Time Resolved Emission (TRE) technique
which allows us to count the number of photons emitted by a transistor or by a
group of transistors as a function of time, implemented on a more expensive fail-
ure analysis equipment [7]. Our purpose is to show that the extracted TRE signal
can be used to gather sensitive data, such as a side-channel signal, exploitable
by a statistical post-processing method (e.g. DPA or CPA).

In the same way as light emission, the techniques based on laser stimulation
have been mainly developed in failure analysis [8][9]. On the one hand, the laser
stimulation at a 1064 nm wavelength allows to induce a local photocurrent [10],
either to detect a latch-up mechanism and inter-level shorts or to locate open
circuits and direct semiconductor damage (LIVA, OBIC). On the other hand, the
laser stimulation at a 1340 nm wavelength can also induce a thermal variation to
detect a resistance variation by measuring the power consumption across a circuit
(TIVA, OBIRCH). In [11], the author demonstrates the possibility to increase
the consumption of a SRAM cell transistors in a microcontroller by applying a
photocurrent (639 nm laser). Starting from these experiments, we studied the
possibility to use this method to improve a side-channel attack, by reducing the
number of power consumption curves necessary to perform the attack.

190 J. Di-Battista et al.

We experimented both methods on an FPGA Actel Proasic3 A3PE600 in flash
technology (0.13μm, 7 metal layers, 600k system gates, single chip). This type
of circuit offers a very high flexibility, as it is completely customizable, reconfig-
urable and non-volatile. These particularities make the FPGA a good test sample
to be analyzed on different testing or failure analysis equipments. However FP-
GAs make the analysis more difficult than ASICs, as the regular structure of
FPGA logic elements does not permit to localize sensitive components such as
SRAMs or EEPROMs (by using for instance an optical microscope). Further-
more, the attacked microchip is in 0.13μm technology, which may complicate the
measurements due to lower power supply and light emission. To overcome this
problem, the acquisitions have to be performed from the backside of the chip,
even though this requires a more sophisticated sample preparation [12].

2 Light Emission as a Side-Channel Signal

2.1 Background

Currently, most digital circuits are based on CMOS technology. One of the par-
ticularities of CMOS transistors is that photons are emitted during their com-
mutation. Indeed when a current flows between the source and the drain, the
electrons gain energy and accelerate due to the electrical field. The radiative “de-
excitation” of the charge carriers in the pinch-off zone generates photons which
are visible in the near-infrared spectral range [13]. This emission is predominant
for a transition from 0 to 1. For a 1 to 0 transition the emission is usually too
low to be acquired. This phenomenon produces an asymmetric light emission
profile for the two transition types (0 to 1 and 1 to 0). This asymmetry can then
be used to extract relevant information from the circuit.

To observe the light emitted, the chip needs to be opened either from its
backside or frontside, depending on its package type. Furthermore, the light
emission quality depends on the quality of the package opening process [14]. For
the backside package opening, the silicon substrate is mechanically thinned down
and polished. Indeed the thinning is necessary to decrease the absorption rate
of the silicon substrate, and also to maximize the generation of photocarriers in
the silicon [15]. On the other hand, when working on the frontside, a chemical
process is used, which is easier to perform. Nevertheless, because of the increasing
number of metal layers in the circuits that act as a light screen, this technique
is less and less used.

The photons emitted can be collected by a specific device equipped with a
high sensitivity photon sensor mounted on the optical axis of a conventional
microscope. Many types of optical sensors, working with different wavelength
efficiencies, can be used (CCD, InGaAs, InSb...). However, due to small transistor
size and high silicon doping in the most recent technologies, at normal power
supply voltage, the photon emission is maximum in the 900 nm - 1100 nm
range. In this spectral range InGaAs detectors have the best quantum efficiency,
as shown in Fig.1.

When Failure Analysis Meets Side-Channel Attacks 191

Fig. 1. Comparison of sensor technologies in relation to the silicon transmittance: re-
sponse as a function of wavelength

In order to perform our experiments we identified two main complementary
techniques able to produce time and spatial information: the Picosecond Imaging
Circuit Analysis (PICA) and TRE techniques.

The PICA system acquires the light emitted, conserving time and space in-
formation. More precisely, the PICA sensor delivers the time and position of
each photon emitted by the targeted circuit zone [16]. This technique has been
initially developed to identify any functionality problem using temporal infor-
mation during backside inspections [17].

The PICA system can be coupled with the TRE technique to target a single
transistor or a specific zone in the circuit under inspection. The TRE can produce
an histogram of the number of photons emitted as a function of time [18]. These
histograms are called “TRE curves” and are shown in Fig.4.

2.2 Experimental Method

Since the light emitted depends on the operation executed, there is a straight
correlation between TRE waveforms and the cryptographic calculations. This
correlation can be exploited through a DPA process. The aim of the DPA is
to reveal the secret keys of cryptographic devices based on a large number of
power consumption traces that have been recorded during the data encryption
of a cipher algorithm. The main advantage of this process is that it only requires
knowledge of the cryptographic algorithm that is executed [2]. After extraction of
part of a sub-key, the missing parts can be gathered by iterating the process. For
our purpose, we replaced the power consumption acquisitions by light emission
traces (TRE).

The acquisition system used is a Hamamatsu Tri-PHEMOS equipment [19].
This equipment is composed of an InGaAs camera coupled with a photon count-
ing system. Thanks to this apparatus, we were able to carry out a successful
measurement campaign using a Hamamatsu high performance InGaAs camera
(high infrared sensitivity in the 950 nm to 1400 nm range). The optical sensor

192 J. Di-Battista et al.

of the InGaAs camera (resolution of 640x480 with a pixel size of 20μm x 20μm)
associated with a Solid Immersion Lens (SIL) allows to obtain a resolution of
300 nm and to observe a structure on a 65 nm chip. Moreover, the Tri-PHEMOS
equipment is able to perform both static and dynamic light emission measure-
ments with very high precision.

For the experiment we choose to implement part of a cipher algorithm on a
FPGA device as shown in Fig.2. A specific test board was built, as shown in
Fig.3. It is composed of a FPGA mechanically opened from the backside (silicon
s down to 70μm), and laid upside down. In addition, a built-in potentiometer
can be used to increase the FPGA core voltage (1.5V to 3V) in order to increase
the light emission activity. In this experiment we performed the measurements
at the typical voltage level (1.5V).

Fig. 2. Different view and informations about the FPGA Actel Proasic3e a) x-ray
image b) Picture of the FPGA open from the backside c) Layout informations [20]
with location of the DES implementation

The target of our attack was a fragment of a Data Encryption Standard
(DES) cipher algorithm. Indeed, in order to simplify our experiment and lighten
the data processing, the chosen target was the first round of the DES algorithm,
and more specifically the first SBOX. Our goal was to validate the theory and
the method efficiency on a small part of the DES algorithm.

Prior to these acquisitions, the light emission activity induced by the ’crypto-
processor’ needs to be localized in order to start the acquisition. This is done by
a static scan, consisting in acquiring the light emitted for a few minutes in order
to obtain a photon cartography of the whole FPGA. During this time, the cryp-
toprocessor encrypts the same message. Then the acquisition window is placed
on the emissive area of the cryptoprocessor. Indeed, one asset of this method is
that, if the cryptoprocessor can be turn on/off it can be easy to locate the area
where it is implemented. The most relevant point is that it is usually sufficient
to know the location of the cipher block in order to position a TRE acquisition

When Failure Analysis Meets Side-Channel Attacks 193

Fig. 3. FPGA test board

window on it. Furthermore, it is not necessary to know either the architecture of
the algorithm, or its implementation, as the overall light emission of the cipher
block is collected instead of a specific area (SBOX output, XOR operation...).
It is then the data post-treatment on the TRE curves which will give us the
expected results.

2.3 Results

In Fig.4 the light emission activity of the area where the cipher algorithm is
implemented and the corresponding TRE curves are shown. A first message M1
(Fig.4a) is sent to the algorithm, followed by a second M2 (Fig.4b). We can
notice that the variation of the input vector sent to the cipher algorithm gen-
erates a time and space variation of the emitted light, producing some sensitive
differences between the TRE curves. In this way we obtain a TRE curve for each
cryptographic calculation, which can then be used as a side-channel signal.

The full set of message vectors (26 = 64) is sent to the device. In order to
obtain the TRE curves, each of the vectors is sent at a frequency of 10MHz
during 20 seconds, also it has been verified that 5 seconds are sufficient. We
used a longer acquisition time to ensure that the camera acquired a number of
photons high enough to generate meaningful TRE curves. Each vector is sent to
the FPGA in alternance with a zero message. This alternation is needed to force
the transisitors to reset. When reseted transistors switch to 1, light emission
happens; therefore reseting the transistors force them to emit light. This process
generates a set of 64 TRE curves.

Once the TRE curves are acquired, it becomes possible to process them in
order to try to extract the key. In our case, the chosen discriminant to classify
the curves in the transition groups (0 to 1 or 0 to 0) is based on the chosen

194 J. Di-Battista et al.

Fig. 4. Variation of TRE curves in function of the light emission activity

bit at the SBOX output, since during the acquisition we forced a reset between
each message by sending a zero value. The differential curves resulting from the
statistical processing on each output bit are shown in Fig.5.

Fig. 5. Differential curves of the 64 key hypothesis for each output bit (number of
photons emitted as a function of time(μs))

The attack performed on the third bit reveals the right key; however, the
attacks on the first, second and fourth bits are inconclusive. On the other hand, if
we sum up the four output bits to enhance the differences between the differential
curves [21] we obtain the results shown in Fig.6. These results show that the
curve for the right sub-key stands out. This result demonstrate, by targeting the
whole cipher block with a TRE acquisition window (without a real precision),

When Failure Analysis Meets Side-Channel Attacks 195

the possibility to extract a sub-key by using light emission leakage. In the next
section, we propose to demonstrate that laser stimulation coupled with the DPA
method could be an innovative technique for side-channel analysis.

Fig. 6. Sum of differential curves for each output bit (number of photons emitted as a
function of time(μs))

3 Laser Stimulation to Improve Side-Channel Attacks

3.1 Background

The photoelectric laser stimulation is a failure analysis technique that uses a
scanning laser beam to induce a current flow. This one can be collected and
analyzed to generate images that represent the semiconductor sample properties
[10]. Indeed, when the laser beam scans the surface of the sample, some electrons
into the conduction band are excited thanks to the ’single-photon absorption’
phenomenon. In the single-photon absorption process, a single photon excites
one conduction band electron. This can only occur if that single photon carries
enough energy to overcome the band gap of the semiconductor (1.2 eV for Silicon)
and provide the electron with enough energy to make it jump into the conduction
band. The creation of charge carriers by excitation of the semiconductor with an
optical beam results in a current flow that can be collected and used for imaging.
The IC current variations induced by the laser beam is converted into a contrast
variation to form an image [8].

One limitation of this technique is that for modern integrated circuits, it is
hard to transmit light uniformly to the semiconductor itself. This non-uniform
transmission of light is caused by the presence of several metal layers and other
materials above the semiconductor. In such instances, one solution is to perform
the imaging from the backside through the substrate. However the spatial reso-
lution is limited due to a compromise between being able to transmit the beam

196 J. Di-Battista et al.

through the substrate, and allowing the beam to be absorbed by the semicon-
ductor for the generation of electron-hole pairs that are measurable as a current,
as shown in Fig.7.

Fig. 7. Absorption coefficient and penetration depth as a function of wavelength [22]

The laser stimulation can be performed by a specific device equipped with
a laser beam mounted on the optical axis of a conventional microscope. Two
types of laser beams, working with different wavelength, can be used: 1064 nm
to induce a photocurrent effect and 1360 nm to induce a thermal effect (and a
small photocurrent effect as well). However, the present experiment involves the
use of the photocurrent effect, thus the 1064 nm (or less) wavelength is chosen.

3.2 Experimental Method

The aim of this experiment is to extend the method described by Skorobogatov
[11] to a DPA attack on a DES cipher algorithm, implemented on a FPGA.
With the help of a scanning laser equipment used in failure analysis activities,
it becomes possible to scan a chosen area into the FPGA corresponding to the
location where a critical function (SBOX, end of round, XOR) of the DES is
implemented. Theoretically, the laser induces a current on the chosen scanning
area. This additional current should increase the consumption of the circuit
during the algorithm encryption, and thus improve the attack by reducing the
number of power consumption acquisitions.

The light source used is the Meridian I acquisition system from DCG Sys-
tems [23], equipped with a laser scanning microscope system (LSM) with two
different lasers for induced current and thermal stimulation (1064 nm and 1340
nm). For the experiment, we implemented a full DES cipher algorithm on the
same FPGA device (Actel Proasic3) as for the light emission experiment. This
FPGA is opened from the backside and mounted on the same specific test board.
The main interest of the FPGA implementation is that it is possible to choose
the area where the different DES sub-blocks are implemented on the FPGA
programmation grid, as shown in Fig.8.

When Failure Analysis Meets Side-Channel Attacks 197

Fig. 8. Location of the DES SBOX on the FPGA programmation grid

The first challenge is the choice of the power laser source, since it is necessary
to ensure that the power is neither too low to generate enough photocurrent nor,
too strong to avoid a fault injection. For the considerate wavelength, several tests
revealed that the maximum power at which the algorithm generates errors is 15-
18 mW, therefore a laser power of 10-11 mW is chosen. The second challenge is
to select an area for the laser scan, for instance SBOX area. After several trials
we selected the area including the 4th, 7th and 8th SBOX (dotted in Fig.8),
offering the possibility to scan three SBOX at the same time with a 1μm laser
spot size at 20x zoom lens. Once these steps are complete, a first DPA attack
is performed without any laser scan in order to have a reference, followed by a
second DPA attack with the laser scan on the area previously identified.

3.3 Results

During the first acquisition process, without any scanning laser, 16000 random
messages are sent. The differential process results, considerate as a reference,
are shown in the table in Fig.9. The table details the attack results on each bit
of each SBOX. The discriminant used is on the one hand a DPA chosen bit at
the End of Round (first four rows), and on the other hand a CPA [24] Hamming
Weight at the End of round (last row).

A second acquisition process with a scanning laser (with a scan frequency
of 200 khz) is then performed, with the same random messages. In Fig.10 the
table shows the comparison between the numbers of power traces necessary
to perform the attack with and without the laser scan. The discriminant used

198 J. Di-Battista et al.

Fig. 9. DPA result laser stimulation at the end of the round without (16000 curves)

is again a DPA chosen bit at the End of Round (first eight columns), or a CPA
Hamming Weight at the End of round (last two columns). In each case the
number of curves necessary to obtain the right sub-key is shown.

Fig. 10. Comparison between both DPA results with and without laser stimulation and
numbers of curves necessary to perform the attack - (laser 1064 nm / power 11 mW)

These results highlight several interesting facts. First, the number of curves
required to perform a successful attack are decreased by approximately half
on bits (0,1) of SBOX 4 and bits (2,3) of SBOX 7. Moreover, the attack on
bits (2,3) of SBOX 4 and bits (0,1) of SBOX 7 with the laser scan allows to
recover the good sub-key, whereas the attack on the same bits without laser
stimulation are unsuccessful. Likewise, the CPA on SBOX 4 is successful. These
results suggest that the laser has a real influence on the power consumption
of the circuits and in particular on the targeted SBOX. Fig.11 highlights the
amplitude differences between differential curves with and without a scanning
laser (16000 power consumption curves were used). This comparison underlines
the influence of laser scans on the efficiency of the attack. Nevertheless the 8th
SBOX, although scanned by the laser, is not so impacted (this fact is not yet
explained). On the opposite, bits (0,1,3) of SBOX 6 and bits (0,1) of SBOX 5
seems to react to the laser stimulation in a lesser extent. This could be explained

When Failure Analysis Meets Side-Channel Attacks 199

Fig. 11. Amplitude comparison between differential curves on the right key with and
without laser stimulation (DPA in 16000 curves on bit 0 of SBOX 4)

by a spreading of photocurrent neighboring SBOX, or by an indirect influence
of the scanning laser on the interconnection lines between the two SBOX (e.g. 6
and 7).

4 Conclusion

These different experiments show how failure analysis tools could be effectively
applied to perform or enhance side-channel attacks. The light emission tech-
niques allow to localize the different functions implemented on a circuit. With
only partial knowledge of the circuit design and by using the TRE technique,
light emission enables determination of the internal behavior of the circuit func-
tions. Using the DPA method, we have shown that a differential light emission
analysis allows retrieval of the cipher sub-key from a fraction of the DES al-
gorithm implemented on an FPGA that uses a 130 nm technology. Many de-
velopments can be carried out based on this method, and multiple perspectives
can be considered. First, the efficiency of this technique should be compared to
other side-channel methods to further highlight the specific contributions of this
method. Moreover, in the experiments reported here, only time information is
used. Space information, which is also available, offers the opportunity to refine
the process and to improve the method. On the other hand, some countermea-
sures for this type of attacks have to be developed. A “natural” one is certainly
the lack of resolution of the sensors versus the latest CMOS technologies (45 nm
or less). The light emission profiles are yet to be investigated for these technolo-
gies. A countermeasure, for FPGA devices, could be a dynamic reconfiguration
to change the light emission profile, or the insertion of sensors inside the package
to detect its opening. We can also notice that the number of TRE curves that

200 J. Di-Battista et al.

need to be acquired to break this type of unprotected implementation is much
higher than those for EMA and DPA.

The second experiment based on a laser stimulation technique allows to par-
tially increase the power consumption of a circuit, by scanning a specific area
during the encryption of the cipher algorithm. This way it is possible to signifi-
cantly reduce the number of curves necessary to perform a DPA attack. For this
technique also many developments and perspective can be considered. These re-
cent results require further investigation in order to specify how the laser method
could be used. For example it could be interesting to repeat several DPA attacks
by scanning the SBOX individually (or all the SBOX chained) to establish a
comparative statement detailing how the laser method improves the attack. It
would be also interesting to apply this method on a secure cipher algorithm, for
instance that uses dual rail implementation [25]. Laser scans could be used to
induce an unbalance power consumption and thus extract the sub-key. Concern-
ing the method itself, it would also be interesting to reproduce the attack using
a laser with a wavelength below 1064 nm to increase the photogeneration of free
carriers, or to attempt to use other light source (such as halogen light) instead
of monowave light laser source. The using of a static laser (without scan mode)
to continuously illuminate the area of interest would also be interesting.

The main constraint for these methods is the backside opening of the compo-
nent and more particularly the silicon thinning step, a process quite hard to con-
trol. In any case, at the present time, due to the price of the equipments used in
these experiments (beyond 2M euros for the Tri-PHEMOS and 500K euros for the
Meridian), the cost of these attack-enhancing method appears to be very high. An
interesting point for future research will be to re-do these experiments on a low-
cost sytems to validate the real benefit of them, for example in [6] [11] the author
shows the possibility to design a low-cost system based on PMT detector coupled
with a CCD camera to perform light emission experiments and a 639 nm laser cou-
pled with a CCD camera to perform laser experiments. However, proof that failure
analysis and side-channel attacks are compatible has been provided, and further
studies are currently under way based on these promising results.

Acknowledgment

We would like to thank the Hamamatsu Photonics company that allowed us to
perform a successful measurement campaign on their Tri-PHEMOS system, and
also the Hamamatsu team for their technical support. Thanks also to Fabien
Battistela and Kevin Sanchez for their precious advice and discussions.

References

1. Perdu, P.: Contribution a l’Etude et au Developpement de Techniques de Locali-
sation de Defauts dans les Circuits Intgrs VLSI, Ph.D. diss., Bordeaux University
(2001)

2. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

When Failure Analysis Meets Side-Channel Attacks 201

3. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

4. Barton, D.L., Tangyunyong, P., Soden, J.M., Liang, A.Y., Low, F.J., Zaplatin,
A.N., Shivanandan, K., Donohoe, G.: Infrared Light Emission from Semiconductor
Devices. In: 22th International Symposium for Testing and Failure Analysis, pp.
9–17 (1996)

5. Ferrigno, J., Hlavac, M.: When AES Blinks: Introducing Optical side-channel. IET
Information Security 2(3), 94–98 (2008)

6. Skorobogatov, S.: Using Optical Emission Analysis for Estimating Contribution to
Power Analysis. In: 6th Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy (FDTC), pp. 111–119. IEEE-CS Press, Los Alamitos (2009)

7. Di-Battista, J., Perdu, P., Courrege, J.C., Rouzeyre, B., Torres, L., Lionel: Light
emission analysis on FPGA: a new side channel possibility. In: 7th Workshop
on Cryptographic Architectures Embedded in Reconfigurable Devices, CryptArchi
2009 (2009)

8. Stevens, K.C., Wilson, T.J.: Locating IC Defects in Process Monitors and Test
Structures Using Optical Beam Induced Current. Microelectronic Engineering 12,
397–404 (1990)

9. Soelkner, G.: Optical beam testing and its potential for electronic device charac-
terization. Microelectronic Engineering 24, 341–353 (1994)

10. Fritz, J., Lackman, R.: Optical Beam Induced Currents in MOS Transistors. Mi-
croelectronic Engineering 12, 381–388 (1990)

11. Skorobogatov, S.: Optically Enhanced Position-Locked Power Analysis. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 61–75. Springer,
Heidelberg (2006)

12. Desplats, R., Beaudoin, F., Perdu, P.: Chip Unzip for Backside Sample Preparation.
In: 27th International Symposium for Testing and Failure Analysis, pp. 179–187
(2001)

13. Wallinger, T.: Characterization of Device Structure by Spectral Analysis of Pho-
toemission. In: 17th International Symposium for Testing and Failure Analysis, pp.
325–334 (1991)

14. Barton, D.L., Bernhard-Hofer, K., Cole Jr., E.I.: Flip-Chip and Backside tech-
niques. Microelectronics Reliability 39, 721–730 (1999)

15. Baudouin, F.: Localisation de defaut par la face arriere des circuits integres. Ph.D.
diss., Bordeaux University, 38–40 (2002)

16. Tsang, J.C., Kash, J.A., Vallett, D.P.: Picosecond imaging circuit analysis. IBM
Journal of Research and Development 44, 583–603 (2000)

17. McManus, M.K., Kash, J.A., Steen, S.E., Polansky, S., Tsang, J.C., Knebel, D.R.,
Huott, W.: Huott: PICA: Backside Failure Analysis of CMOS Circuits Using
Picosecond Imaging Circuit Analysis. Microelectronic Reliability 40, 1353–1358
(2000)

18. Kolzer, J., Boit, C., Dallmann, A., Deboy, G., Otto, J., Weinmann, D.: Quantitative
Emission Microscopy. Journal of Applied Physics 71(11), R23–R41 (1992)

19. Hamamatsu Photonics, http://www.hamamatsu.com/
20. Actel Proasic3 Handbook: 144, http://www.actel.com/products/pa3/docs.aspx
21. Bevan, R., Knudsen, E.: Ways to Enhance Differential Power Analysis. In: Lee, P.J.,

Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 327–342. Springer, Heidelberg
(2003)

http://www.hamamatsu.com/
http://www.actel.com/products/pa3/docs.aspx

202 J. Di-Battista et al.

22. Sanchez, K.: Développement et applications de techniques d’analyse par stimula-
tion dynamique laser pour la localisation de défauts et le diagnostic de circuits
intégrés. Ph.D. diss., Bordeaux University (2007)

23. DCG systems, http://www.dcgsystems.com/
24. Brier, E., Clavier, C., Oliver, F.: Correlation Power Analysis with a Leakage Model.

In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

25. Bystrov, A., Yakovlev, A., Sokolov, D., Murphy, J.: Design and Analysis of Dual-
Rail Circuits for Security Applications. IEEE Transactions on Computers 54(4),
449–460 (2005)

http://www.dcgsystems.com/

Fast Exhaustive Search for Polynomial Systems in F2

Charles Bouillaguet1, Hsieh-Chung Chen2, Chen-Mou Cheng3,
Tung Chou3, Ruben Niederhagen3,4, Adi Shamir1,5, and Bo-Yin Yang2

1 Ecole Normale Supérieure, Paris, France
charles.bouillaguet@ens.fr

2 Institute of Information Science, Academia Sinica, Taipei, Taiwan
{kc,by}@crypto.tw

3 National Taiwan University, Taipei, Taiwan
{doug,blueprint}@crypto.tw

4 Technische Universiteit Eindhoven, The Netherlands
ruben@polycephaly.org

5 Weizmann Institute of Science, Israel
adi.shamir@weizmann.ac.il

Abstract. We analyze how fast we can solve general systems of multivariate
equations of various low degrees over F2; this is a well known hard problem
which is important both in itself and as part of many types of algebraic crypt-
analysis. Compared to the standard exhaustive search technique, our improved
approach is more efficient both asymptotically and practically. We implemented
several optimized versions of our techniques on CPUs and GPUs. Our technique
runs more than 10 times faster on modern graphic cards than on the most pow-
erful CPU available. Today, we can solve 48+ quadratic equations in 48 binary
variables on a 500-dollar NVIDIA GTX 295 graphics card in 21 minutes. With
this level of performance, solving systems of equations supposed to ensure a se-
curity level of 64 bits turns out to be feasible in practice with a modest budget.
This is a clear demonstration of the computational power of GPUs in solving
many types of combinatorial and cryptanalytic problems.

Keywords: multivariate polynomials, solving systems of equations, exhaustive
search, parallelization, Graphic Processing Units (GPUs).

Extended Version of this paper is at eprint.iacr.org/2010/313.

1 Introduction

Solving a system of m nonlinear polynomial equations in n variables over Fq is a natu-
ral mathematical problem that has been investigated by various research communities.
The cryptographers are among the interested parties since an NP-complete problem
whose random instances seem hard could be used to design cryptographic primitives,
as witness the development of multivariate cryptography in the last few decades, us-
ing one-way trapdoor functions such as HFE, SFLASH, and QUARTZ [12,20,21], as
well as stream ciphers such as QUAD [4]. Conversely, in “algebraic cryptanalysis” one
distills from a cryptographic primitive a system of multivariate polynomial equations

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 203–218, 2010.
c© International Association for Cryptologic Research 2010

204 C. Bouillaguet et al.

with the secret among the variables. This does not break AES as first advertised, but
does break KeeLoq [11], for a recent example, and find a faster collision on 58-round
SHA-1 [24].

Since the pioneering work by Buchberger [9], Gröbner-basis techniques have been
the most prominent tool for this problem, especially after the emergence of faster al-
gorithms such as F4 or F5 [15,16], which broke the first HFE challenge [17]. The
cryptographic community independently rediscovered some of the ideas underlying ef-
ficient Gröbner-basis algorithms as of the XL algorithm [13] and its variants. They also
introduced techniques to deal with special cases, particularly that of sparse systems
[1,23].

In this paper we take a different path, namely improving the standard and seemingly
well-understood exhaustive search algorithm. When the system consists of n randomly
chosen quadratic equations in n variables, all the known solution techniques have ex-
ponential complexity. In particular, Gröbner-basis methods have an advantage on very
overdetermined systems (with many more equations than unknowns) and systems with
certain algebraic “weaknesses”, but were shown to be exponential on “generic” enough
systems in [2,3]. In addition, the computation of a Gröbner basis is often a memory-
bound process; since memory is more expensive than time at the scale of interest, such
sophisticated techniques can be inferior in practice when compared to simple testing of
all the possible solutions, which uses almost no memory.

For “generic” quadratic systems, experts believe [2,25] that Gröbner basis methods
will go up to degree D0, which is the minimum possible D where the coefficient of tD

in (1 + t)n(1 + t2)−m goes negative, and then require the solution of a system of linear
equations with T �

(
n

D0−1

)
variables. This will take at least poly(n)·T 2 bit-operations,

assuming we can afford a sufficiently large amount of memory and that we can solve
such a linear system of equations with non-negligible probability in O(N2+o(1)) time
for N variables. For example, if we assume we can operate a Wiedemann solver on
a T × T submatrix of the extended Macaulay matrix of the original system, then the
polynomial is 3n(n − 1)/2. When m = n = 200, D0 = 25, making the value of T
exceeds 2102; even taking into consideration guessing before solving [6,26], we can still
easily conclude that Gröbner-basis methods would not outperform exhaustive search in
the practically interesting range of m = n ≤ 200.

The questions we address are therefore: how far can we go, on both theoretical and
practical sides, by pushing exhaustive search further? Is it possible to design more effi-
cient exhaustive search algorithms? Can we get better performance using different hard-
ware such as GPUs? Is it possible to solve in practice, with a modest budget, a system
of 64 equations in 64 unknowns over F2? Less than 15 years ago, this was considered
so difficult that it even underlied the security of a particular signature scheme [19]. In-
tuitively, some people may consider an algebraic attack that reduces a cryptosystem to
64 equations of degree 4 in 64 F2-variables to be a successful practical attack. However,
the matter is not that easily settled because the complexity of a naïve exhaustive search
algorithm would actually be much higher than 264: simply testing all the solutions in a
naïve way results in 2 ·(644) ·264 ≈ 284 logical operations, which would make the attack
hardly feasible even on today’s best available hardware.

Fast Exhaustive Search for Polynomial Systems in F2 205

Our Contribution. Our contribution is twofold. On the theoretical side, we present a
new type of exhaustive search algorithm which is both asymptotically and practically
faster than existing techniques. In particular, we show that finding all zeroes of a single
degree-d polynomial in n variables requires just d · 2n bit operations. We then extend
this technique and show how to find all the common zeroes of m random quadratic
polynomials in log2 n · 2n+2 bit operations, which is only slightly higher. Surprisingly,
this complexity is independent of the number of equations m.

On the practical side, we have implemented our new algorithms on x86 CPUs and
on NVIDIA GPUs. While our CPU implementation is fairly optimized using vector in-
structions, our GPU implementation running on one single NVIDIA GTX 295 graphics
card runs up to 13 times faster than the CPU implementation using all four cores of an
Intel quad-code Core i7 at 3 GHz, one of the fastest CPUs currently available. Today,
we can solve 48+ quadratic equations in 48 binary variables using just an NVIDIA GTX
295 graphics card in 21 minutes. This device is available for about $500. It would be
36 minutes for cubic equations and two hours for quartics. The 64-bit signature chal-
lenge [19] can thus be broken with 10 such cards in 3 months, using a budget of $5000.
Even taking into account Moore’s law, this is still quite an achievement.

Table 1. Performance results for n = 48 and projected budgets for solving n = 64 in one month

Time (minutes) Testing platform #cores est. cost
d = 2 d = 3 d = 4 GHz Arch. Name USD (#used) (USD)

1217 2686 3191 2.2 K10 Phenom 9550 120 4(1) 54,000
1157 1992 2685 2.3 K10+ Opteron 2376 184 4(1)

113,316
142 240 336 2.3 K10+ Opteron 2376×2 368 8(8)
780 1364 1819 2.4 C2 Xeon X3220 210 4(1) 60,720
671 1176 1560 2.83 C2+ Core2 Q9550 225 4(1)

55,575
179 294 390 2.83 C2+ Core2 Q9550 225 4(4)
761 1279 1856 2.26 Ci7 Xeon E5520 385 4(1)

78,720
95 154 225 2.26 Ci7 Xeon E5520×2 770 8(8)
41 73 271 1.3 G200 GTX 280 n/a 240 n/a
21 36 126 1.25 G200 GTX 295 500 480 15,500

In contrast, the implementation of F4 in MAGMA-2.16, often cited as the best
Gröbner-basis solver commercially available today, will completely use up 64 GB of
RAM in solving just 25 cubic equations in as many F2-variables. We have also tested it
with overdefined systems, for which Gröbner-basis algorithms are known to work bet-
ter. While it does not run out of memory, the results are not satisfying: 2.5 hours to solve
20 cubic equations in 20 variables, half an hour for 45 quadratic equations in 30 vari-
ables, and 7 minutes for 60 quadratic equations in 30 variables on one 2.2-GHz Opteron
core. Some very recent improvements on Gröbner-basis solvers have reported speed-up
over MAGMA F4 of two- to five-fold [10]. However, even with such significant im-
provements, Gröbner-basis solvers do not seem to be able to compete with exhaustive
search algorithms in this range, as each of the above is solved in a split second using
negligible amount of memory on the same CPU by the latter.

206 C. Bouillaguet et al.

Implications. The new exhaustive search algorithm can be used as a black box in
cryptanalysis that needs to solve quadratic equations. This includes, for instance, several
algorithms for the Isomorphism of Polynomials problem [7,22], as well as attacks that
rely on such algorithms, e.g., [8].

We also show with a concrete example that (relatively simple) computations requir-
ing 264 operations can be easily carried out in practice with readily available hardware
and a modest budget. Lastly, we highlight the fact that GPUs have been used success-
fully by the cryptographic community to obtain very efficient implementations of com-
binatorial algorithms or cryptanalytic attacks, in addition to the more numeric-flavored
cryptanalysis algorithm demonstrated by the implementation of the ECM factorization
algorithm on GPUs [5].

Organization of the Paper. Section 2 establishes a formal framework of exhaustive
search algorithms including useful results on Gray Codes and derivatives of multivari-
ate polynomials. Known exhaustive search algorithms are reviewed in Section 3. Our
algorithm to find the zeroes of a single polynomial of any degree is given in Section 4,
and it is extended to find the common zeroes of a collection of polynomials in Sec-
tion 5. Section 6 describes the two platforms on which we implemented the algorithm,
and Section 7 describes the implementation and performance evaluation results.

2 Generalities

In this paper, we will mostly be working over the finite vector space (F2)
n. The canon-

ical basis is denoted by (e0, . . . , en−1). We use ⊕ to denote addition in (F2)
n, and +

to denote integer addition. We use i
 k (resp. i � k) to denote binary left-shift (resp.
right shift) of the integer i by k bits.

Gray Code. Gray Codes play a crucial role in this paper. Let us denote by bk(i) the
index of the k-th lowest-significant bit set to 1, or −1 if the hamming weight of i is less
than k. For example, bk(0) = −1, b1(1) = 0, b1(2) = 1 and b2(3) = 1.

Definition 1. GRAYCODE(i) = i⊕ (i � 1).

Lemma 1. For i ∈ N: GRAYCODE(i + 1) = GRAYCODE(i)⊕ eb1(i+1).

Derivatives. Define the F2 derivative ∂f
∂i of a polynomial with respect to its i-th vari-

able as ∂f
∂i : x �→ f(x + ei) + f(x). Then for any vector x, we have:

f(x + ei) = f(x) +
∂f

∂i
(x) (1)

If f is of total degree d, then ∂f
∂i is a polynomial of degree d − 1. In particular, if f is

quadratic, then ∂f
∂i is an affine function. In this case, it is easy to isolate the constant

part (which is a constant in F2) : ci = ∂f
∂i (0) = f(ei) + f(0). Then, the function

x �→ ∂f
∂i (x) + ci is by definition a linear form and can be represented by a vector

Di ∈ (F2)
n. More precisely, we have Di[j] = f (ei + ej) + f (ei) + f (ej) + f (0).

Then equation (1) becomes:

f(x + ei) = f(x) + Di · x + ci (2)

Fast Exhaustive Search for Polynomial Systems in F2 207

Enumeration Algorithms. We are interested in enumeration algorithms, i.e., algo-
rithms that evaluate a polynomial f over all the points of (F2)

n to find its zeroes. Such
an enumeration algorithm is composed of two functions: INIT and NEXT. INIT(f, x0, k0)
returns a State containing all the information the enumeration algorithm needs for
the remaining operations. The resulting State is configured for the evaluation of f
over x0 ⊕ (GRAYCODE(i)
 k0), for increasing values of i. NEXT(State) advance
to the next value and updates State. Three values can be directly read from the state:
State.x, State.y and State.i. These are linked at all times by State.y = f(State.x),
State.x = x0⊕(GRAYCODE(State.i)
 k0), NEXT(State).i = State.i+1. Finding
all the zeroes of f is then achieved with the loop shown below.

1: procedure ZEROES(f)
2: State ← INIT(f, 0, 0)
3: for i from 0 to 2n − 1
4: if State.y = 0 then State.x is a zero of f
5: NEXT(State)
6: end for
7: end procedure

3 Known Techniques for Quadratic Polynomials

We briefly discuss the enumeration techniques known to the authors.

Naïve Evaluation. The simplest way to implement an enumeration algorithm is to
evaluate the polynomial f from scratch at each point of (F2)

n. This requires two AND
per quadratic monomial, and (almost) as many XORs. Since the evaluation takes place
many times for the same f with different values of the variables, we will usually as-
sume that the polynomial can be hard-coded, i.e., that it is not necessary to include the
terms for which aijk = 0. Each call to NEXT would then require at most n(n + 1) bit
operations, half-AND and half-XOR (not counting the cost of enumerating (F2)

n, i.e.,
incrementing a counter). This can be improved a bit, by factoring out the monomials:

f(x) =
∑n−1

i=0 xi ·
(∑n−1

j=i aij · xj

)
+ c (3)

The bit-operation count falls down to n(n + 3)/2, and in general for degree-d polyno-
mials to a sum dominated by

(
n
d

)
. This method is simple but not without its advantages,

chiefly (a) insensitivity to the order in which the points of (F2)
n are enumerated, and

(b) we can bit-slice and get a speed up of nearly ω, where ω is the maximum width of
the CPU logical instructions.

The Folklore Differential Technique. It was pointed out in Sec. 2 that once f(x)
is known, computing f(x + ei) amounts to compute ∂f

∂i (x), and this derivative hap-
pens to be a linear function which can be efficiently evaluated by computing a vector-
vector product and a few scalar additions. This strongly suggests to evaluate f on (F2)

n

208 C. Bouillaguet et al.

using a Gray Code, i.e., an ordering of the elements of (F2)
n such that two consecutive

elements differ in only one bit. This leads to the algorithm shown below.

1: function INIT(f, _, _)
2: i ← 0
3: x ← 0
4: y ← f(0)
5: For all 0 ≤ k ≤ n − 1,

initialize ck and Dk

6: end function

1: function NEXT(State)
2: i ← i + 1
3: k = b1(i)
4: z ← VECTORVECTORPROD(Dk,x) ⊕ ck

5: y ← y ⊕ z
6: x ← x ⊕ ek

7: end function
(a) Initialize (b) Update

We believe this technique to be folklore, and in any case it appears more or less ex-
plicitly in the existing literature. Each call to NEXT requires n ANDs, as well as n + 2
XORs, which makes a total bit operation count of 2(n+1). This is about n/4 times less
than the naive method. Note that when we describe an enumeration algorithm, the vari-
ables that appear inside NEXT are in fact implicit functions of State. The dependency
has been removed to lighten the notational burden.

4 A Faster Recursive Algorithm for Any Degree

We now describe one of the main contributions of this paper, a new algorithm which is
both asymptotically and practically faster than standard exhaustive search in enumer-
ating the solutions of one polynomial equation, as summarized by Theorem 1 below.

Theorem 1. All the zeroes of a single multivariate polynomial f in n variables of de-
gree d can be found in essentially d · 2n bit operations (plus a negligible overhead),
using nd−1 bits of read-write memory, and accessing nd bits of constants, after an
initialization phase of negligible complexity O (

n2d
)
.

The proof is given in the full version.

Construction of the Recursive Enumeration Algorithm. We will construct an enu-
meration algorithm in two stages. First, if f is of degree 0, then we only need to “enu-
merate” through all vectors by updating with x← x⊕ eb1(i) at the i-th step.

When f is of higher degree, we need a little more effort. The main idea is that in the
folklore differential algorithm of Sec. 3, the computation of z essentially amounts to
evaluate ∂f

∂k on something that looks like a Gray Code. We may then use the enumera-
tion algorithm recursively on ∂f

∂k , since it is a polynomial of strictly smaller degree. The
resulting algorithm is shown below.

It is not difficult to see that the complexity of NEXT isO (d), where d is the degree of
f . The temporal complexity of INIT is nd times the time of evaluating f , which is itself
upper-bounded by nd and its spatial complexity is also of order O (

nd
)
. This means

that the complexity of the algorithm is O (
d · 2n + n2d

)
. When d = 2, this is about n

times faster than the algorithm described in Sec. 3.

Fast Exhaustive Search for Polynomial Systems in F2 209

1: function INIT(f, k0, x0)
2: i ← 0
3: x ← x0
4: y ← f(x0)
5: for i from 0 to 2n − 1
6: x′

0 ← x0 ⊕ GRAYCODE
(
2k+k0

)
7: D[k] ← INIT

(
∂f

∂k + k0
, k + k0 + 1, x′

0

)
8: end for
9: end function

1: function NEXT(State)
2: i ← i + 1
3: k = b1(i)
4: x ← x ⊕ ek+k0
5: y ← y ⊕ D[k].y
6: NEXT(D[k])

7: end function

1: y ← f(0)
2: if y = 0 then 0 is a zero of f
3: z[0] ← c0
4: y ← y ⊕ z[0]
5: for u from 1 to n − 1
6: if y = 0 then GRAYCODE(2u − 1) is a zero
7: z[u] ← Du[u − 1] ⊕ cu

8: y ← y ⊕ z[u]
9: for v from 0 to 2u − 2
10: if y = 0 then GRAYCODE(2u + v) is a zero
11: k ← b1(2u + v + 1)
12: � ← b2(2u + v + 1)
13: z[k] ← z[k] ⊕ Dk[�]
14: y ← y ⊕ z[k]
15: end for

16: end for

(a) General Setting (b) Unrolled version for quadratic f

5 Common Zeroes of Several Multivariate Polynomials

We will use several time the following simple idea: all the techniques we discussed
above perform a sequence of operations that is independent of the coefficients of the
polynomials. Therefore, m instances of (say) algorithm in Sec. 4 could be run in parallel
on f1, . . . , fm. All the parallel runs would execute the same instruction on different
data, making it efficient to implement on vector or SIMD architectures. In each iteration
of the main loop, it is easy to check if all the polynomials vanished on the current point
of (F2)

n. Evaluating all the m (quadratic) polynomials in parallel using algorithm in
Sec. 4 would take 2m2n bit operations. The point of this section is that it is possible to
do much better than this.

Note that for the sake of simplicity, we limit our discussion to the case of quadratic
polynomials (this case being the most relevant in practice). Our objective is now to
show the following result.

Theorem 2. The common zeroes of m (random) quadratic polynomials in n variables
can be found after having performed in expectation log2 n · 2n+2 bit operations.

We sketch a proof (a complete one given in the extended version) to the theorem. Let
us introduce a useful notation. Given an ordered set U , we denote the common zeroes
of f1, . . . , fm belonging to U by Z([f1, . . . , fm], U). Let us also denote Z0 = (F2)

n,
and Zi = Z ([fi], Zi−1). It should be clear that Z = Zm is the set of common zeroes
of the polynomials, and therefore the object we wish to obtain.

The key idea is to compute Zk using k parallel runs of algorithm in Sec. 4, and then
computing Zk+1, . . . , Zm one by one. Computing Zk requires 2k2n bit operations. It
then remains to compute Zm from Zk, and to find the best possible value of k. If we
use the naïve evaluation strategy with early abort to compute Zm from Zk, then it can
be shown that the best value of k is k = 2 log2 n− log2 log2 n + o(log log n), yielding
a total complexity of about 8 log2 n · 2n. In general, for degree-d systems, the same
reasoning would lead to a total complexity of about 4d · log2 n ·2n. In practice, it makes
more sense to choose k to be the word width on a microprocessor in order to use the
hardware in the most efficient way.

210 C. Bouillaguet et al.

6 A Brief Description of the Hardware Platforms

6.1 Vector Units on x86-64

The most prevalent SIMD (single instruction, multiple data) instruction set today is
SSE2, available on all current Intel-compatible CPUs. SSE2 instructions operate on 16
architectural xmm registers, each of which is 128-bit wide. We use integer operations,
which treat xmm registers as vectors of 8-, 16-, 32- or 64-bit operands.

The highly non-orthogonal SSE instruction set includes Loads and Stores (to/from
xmm registers, memory — both aligned and unaligned, and traditional registers), Pack-
ing/Unpacking/Shuffling, Logical Operations (AND, OR, NOT, XOR, Shifts Left,
Right Logical and Arithmetic — bit-wise on units and byte-wise on the entire xmm
register), and Arithmetic (add, substract, multiply, max-min) with some or all of the
arithmetic widths. The interested reader is referred to Intel and AMD’s manuals for de-
tails on these instructions, and to references such as [18] for throughput and latencies.

6.2 G2xx-Series Graphics Processing Units from NVIDIA

We choose NVIDIA’s G2xx GPUs as they have the least hostile GPU parallel program-
ming environment called CUDA (Compute Unified Device Architecture). In CUDA,
we program in the familiar C/C++ programming language plus a small set of GPU
extensions.

An NVIDIA GPU contains anywhere from 2–30 streaming multiprocessors (MPs).
There are 8 ALUs (streaming processors or SPs in market-speak) and two super func-
tion units (SFUs) on each MP. A top-end “GTX 295” card has two GPUs, each with
30 MPs, hence the claimed “480 cores”. The theoretical throughput of each SP per cy-
cle is one 32-bit integer or floating-point instruction (including add/subtract, multiply,
bitwise AND/OR/XOR, and fused multiply-add), and that of an SFU 2 floating-point
multiplications or 1 special operation. The arithmetic units have 20+-stage pipelines.

Main memory is slow and forms a major bottleneck in many applications. The read
bandwidth from memory on the card to the GPU is only one 32-bit read per cycle per
MP and has a latency of > 200 cycles. To ease this problem, the MP has a register file
of 64 KB (16,384 registers, max. of 128 per thread), a 16-bank shared memory of 16
KB, and an 8-KB cache for read-only access to a declared “constant region” of at most
64 KB. Every cycle, each MP can achieve one read from the constant cache, which can
broadcast to many thread at once.

Each MP contains a scheduling and dispatching unit that can handle a large number
of lightweight threads. However, the decoding unit can only decode once every 4 cycles.
This is typically 1 instruction, but certain common instructions are “half-sized”, so two
such instructions can be issued together if independent. Since there are 8 SPs in an
MP, CUDA programming is always on a Single Program Multiple Data basis, where
a “warp” of threads (32) should be executing the same instruction. If there is a branch
which is taken by some thread in a warp but not others, we are said to have a “divergent”
warp; from then on only part of the threads will execute until all threads in that warp
are executing the same instruction again. Further, as the latency of a typical instruction
is about 24 cycles, NVIDIA recommends a minimum of 6 warps on each MP, although
it is sometimes possible to get acceptable performance with 4 warps.

Fast Exhaustive Search for Polynomial Systems in F2 211

7 Implementations

We describe the structure of our code, the approximate cost structure, our design choices
and justify what we did. Our implementation code always consists of three stages:

Partial Evaluation: We substitute all possible values for s variables (xn−s, . . . , xn−1)
out of n, thus splitting the original system into 2s smaller systems, of w equations
each in the remaining (n − s) variables (x0, . . . , xn−s−1), and output them in a
form that is suitable for ...

Enumeration Kernel: Run the algorithm of Sec. 4 to find all candidate vectors x sat-
isfying w equations out of m (≈ 2n−w of them), which are handed over to ...

Candidate Checking: Checking possible solutions x in remaining m− w equations.

7.1 CPU Enumeration Kernel

Typical code fragments from the unrolled inner loops can be seen below:

(a) quadratics, C++ x86 instrinsics (b) quadratics, x86 assembly
...
diff0 ^= deg2_block[1];
res ^= diff0;
Mask = _mm_cmpeq_epi16(res, zero);
mask = _mm_movemask_epi8(Mask);
if(mask) check(mask, idx, x^155);
...

.L746:
movq 976(%rsp), %rax //
pxor (%rax), %xmm2 // d_y ^= C_yz
pxor %xmm2, %xmm1 // res ^= d_y
pxor %xmm0, %xmm0 //
pcmpeqw %xmm1, %xmm0 // cmp words for eq
pmovmskb %xmm0, %eax // movemask
testw %ax, %ax // set flag for branch
jne .L1266 // if needed, check and

.L747: // comes back here

.L1624:
movq 2616(%rsp), %rax // load C_yza
movdqa 2976(%rsp), %xmm0 // load d_yz
pxor (%rax), %xmm0 // d_yz ^= C_yza
movdqa %xmm0, 2976(%rsp) // save d_yz
pxor 8176(%rsp), %xmm0 // d_y ^= d_yz
pxor %xmm0, %xmm1 // res ^= d_y
movdqa %xmm0, 8176(%rsp) // save d_y
pxor %xmm0, %xmm0 //
pcmpeqw %xmm1, %xmm0 // cmp words for eq
pmovmskb %xmm0, %eax
testw %ax, %ax // ...
jne .L2246 // branch to check

.L1625: // and comes back

...
diff[0] ^= deg3_ptr1[0];
diff[325] ^= diff[0];
res ^= diff[325];
Mask = _mm_cmpeq_epi16(res, zero);
mask = _mm_movemask_epi8(Mask);
if(mask) check(mask, idx, x^2);
...

(c) cubics, x86 assembly (d) cubics, C++ x86 instrinsics

testing. All zeroes in one byte, word, or dword in a XMM register can be tested cheaply
on x86-64. We hence wrote code to test 16 or 32 equations at a time. Strangely enough,
even though the code above is for 16 bits, the code for checking 32/8 bits at the same
time is nearly identical, the only difference being that we would subtitute the intrin-
sics _mm_cmpeq_epi32/8 for _mm_cmpeq_epi16 (leading to the SSE2 instruc-
tion pcmpeqd/b instead of pcmpeqw). Whenever one of the words (or double words
or bytes, if using another testing width) is non-zero, the program branches away and
queues the candidate solution for checking.

unrolling. One common aspect of our CPU and GPU code is deep unrolling by upwards
of 1024× to avoid the expensive bit-position indexing. To illustrate with quartics as an
example, instead of having to compute the positions of the four rightmost non-zero bits
in every integer, we only need to compute the first four rightmost non-zero bits in bit 10

212 C. Bouillaguet et al.

or above, then fill in a few blanks. This avoids most of the indexing calculations and all
the calculations involving the most commonly used differentials.

We wrote similar Python scripts to generate unrolled loops in C and CUDA code.
Unrolling is even more critical with GPU, since divergent branching and memory ac-
cesses are prohibitively expensive.

7.2 GPU Enumeration Kernel

register usage. Fast memory is precious on GPU and register usage critical for CUDA
programmers. Our algorithms’ memory complexity grows exponentially with the de-
gree d, which is a serious problem when implementing the algorithm for cubic and
quartic systems, compounded by the immaturity of NVIDIA’s nvcc compiler which
tends to allocate more registers than we expected.

Take quartic systems as an example. Recall that each thread needs to maintain third
derivatives, which we may call dijk for 0 ≤ i < j < k < K , where K is the number of
variables in each small system. For K = 10, there are 120 dijk’s and we cannot waste
all our registers on them, especially as all differentials are not equal — dijk is accessed
with probability 2−(k+1).

Our strategy for register use is simple: Pick a suitable bound u, and among third
differentials dijk (and first and second differentials di and dij), put the most frequently
used — i.e., all indices less than u — in registers, and the rest in device memory (which
can be read every 8 instructions without choking). We can then control the number of
registers used and find the best u empirically.

fast conditional move. We discovered during implementation an undocumented fea-
ture of CUDA for G2xx series GPUs, namely that nvcc reliably generates conditional
(predicated) move instructions, dispatched with exceptional adeptness.

...
xor.b32 $r19, $r19, c0[0x000c] // d_y^=d_yz
xor.b32 $p1|$r20, $r17, $r20
mov.b32 $r3, $r1
mov.b32 $r1, s[$ofs1+0x0038]
xor.b32 $r4, $r4, c0[0x0010]
xor.b32 $p0|$r20, $r19, $r20 // res^=d_y
@$p1.eq mov.b32 $r3, $r1
@$p1.eq mov.b32 $r1, s[$ofs1+0x003c]
xor.b32 $r19, $r19, c0[0x0000]
xor.b32 $p1|$r20, $r4, $r20
@$p0.eq mov.b32 $r3, $r1 // cmov
@$p0.eq mov.b32 $r1, s[$ofs1+0x0040] // cmov
...

...
diff0 ^= deg2_block[3]; // d_y^=d_yz
res ^= diff0; // res^=d_y
if(res == 0) y = z; // cmov
if(res == 0) z = code233; // cmov
diff1 ^= deg2_block[4];
res ^= diff1;
if(res == 0) y = z;
if(res == 0) z = code234;
diff0 ^= deg2_block[0];
res ^= diff0;
if(res == 0) y = z;
if(res == 0) z = code235;
...

(a) decuda result from cubin (b) CUDA code for a inner loop fragment

Consider, for example, the code displayed above right. According to our experi-
mental results, the repetitive 4-line code segments average less than three SP (stream-
processor) cycles. However, decuda output of our program shows that each such code
segment corresponds to at least 4 instructions including 2 XORs and 2 conditional
moves [as marked in above left]. The only explanation is that conditional moves can
be dispatched by the SFUs (Special Function Units) so that the total throughput can
exceed 1 instruction per SP cycle. Further note that the annotated segment on the right
corresponds to actual instructions far apart because an NVIDIA GPU does opportunis-
tic dispatching but is nevertheless a purely in-order architecture, so proper scheduling
must interleave instructions from different parts of the code.

Fast Exhaustive Search for Polynomial Systems in F2 213

testing. The inner loop for GPUs differs from CPUs due to the fast conditional moves.
Here we evaluate 32 equations at a time using Gray code. The result is used to set a

flag if it happens to be all zeroes. We can now conditional move of the index based on
the flag to a register variable z, and at the end of the loop write z out to global memory.

However, how can we tell if there are too many (here, two) candidate solutions in one
small subsystem? Our answer to that is to use a buffer register variable y and a second
conditional move using the same flag. At the end of the thread, (y, z) is written out to
a specific location in device memory and sent back to the CPU.

Now subsystems which have all zero constant terms are automatically satisfied by
the vector of zeroes. Hence we note them down during the partial evaluation phase
include the zeros with the list of candidate solutions to be checked, and never have
to worry about for all-zero candidate solution. The CPU reads the two doublewords
corresponding to y and z for each thread, and:

1. z==0 means no candidate solutions,
2. z!=0 but y==0 means exactly one candidate solution, and
3. y!=0 means 2+ candidate solutions (necessitating a re-check).

7.3 Checking Candidates

Checking candidate solutions is always done on CPU because the programming in-
volves branching and hence is difficult on a GPU even with that available. However, the
checking code for CPU enumeration and GPU enumeration is different.

CPU. With the CPU, the check code receives a list of candidate solutions. Today the
maximum machine operation is 128-bit wide. Therefore we should collect solutions
into groups of 128 possible solutions. We would rearrange 128 inputs of n bits such that
they appear as n __int128’s, then evaluate one polynomial for 128 results in parallel
using 128-bit wide ANDs and XORs. After we finish all candidates for one equation,
go through the results and discard candidates that are no longer possible. Repeat the
result for the second and any further equations (cf. Sec. 3).

We need to transpose a bit-matrix to achieve the effect of a block of w inputs n-bit
long each, to n machine-words of w-bit long. This looks costly, however, there is an
SSE2 instruction PMOVMSKB (packed-move-mask-bytes) that packs the top bit of each
byte in an XMM register into a 16-bit general-purpose register with 1 cycle throughput.
We combine this with simultaneous shifts of bytes in an XMM and can, for example,
on a K10+ transpose a 128-batch of 32-bit vectors (0.5kB total) into 32 __int128’s
in about 800 cycles, or an overhead of 6.25 cycles per 32-bit vector. In general the
transposition cost is at most a few cycles per byte of data, negligible for large systems.

GPU. As explained above, for the GPU we receive a list with 3 kinds of entries:

1. The knowledge that there are two or more candidate solutions within that same
small system, with only the position of the last one in the Gray code order recorded.

2. A candidate solution (and no other within the same small system).
3. Marks to subsystems that have all zero constant terms.

For Case 1, we take the same small system that was passed into the GPU and run the
Enumerative Kernel subroutine in the CPU code and find all possible small systems.

214 C. Bouillaguet et al.

Since most of the time, there are exactly two candidate solutions, we expected the Gray
code enumeration to go two-thirds of the way through the subsystem. Merge remaining
candidate solutions with those of Case 2+3, collate for checking in a larger subsystem
if needed, and pass off to the same routine as used in the CPU above. Not unexpectedly,
the runtime is dominated by the thread-check case, since those does millions of cycles
for two candidate solutions (most of the time).

7.4 Partial Evaluation

The algorithm for Partial Evaluation is for the most part the same Gray Code algorithm
as used in the Enumeration Kernel. Also the highest degree coefficients remain constant,
need no evaluation and and can be shared across the entire Enumeration Kernel stage.
As has been mentioned in the GPU description, these will be stored in the constant
memory, which is reasonably cached on NVIDIA CUDA cards. The other coefficients
can be computed by Gray code enumeration, so for example for quadratics we have
(n− s)+ 2 XOR per w bit-operations and per substitution. In all, the cost of the Partial

Evaluation stage for w′ equations is ∼ 2s w′
8

((
n−s
d−1

)
+ (smaller terms)

)
byte memory

writes. The only difference in the code to the Enumerative Kernel is we write out the
result (smaller systems) to a buffer, and check for a zero constant term only (to find
all-zero candidate solutions).

Peculiarities of GPUS. Many warps of threads are required for GPUs to run at full
speed, hence we must split a kernel into many threads, the initial state of each small
system being provided by Partial Evaluation. In fact, for larger systems on GPUs, we
do two stages of partial evaluation because

1. there is a limit to how many threads can be spawned, and how many small systems
the device memory can hold, which bounds how small we can split; but

2. increasing s decreases the fast memory pressure; and
3. a small systems reporting two or more candidate solutions is costly, yet we can’t

run a batch check on a small system with only one candidate solution — hence, an
intermediate partial evaluation so we can batch check with fewer variables.

7.5 More Test Data and Discussion

Some minor points which the reader might find useful in understanding the test data, a
full set of which will appear in the extended version.

Candidate Checking. The check code is now 6–10% of the runtime. In theory (cf.
Sec. 3) evaluation should start with a script which hard-wires a system of equations into
C and compiling to an excutable, eliminating half of the terms, and leading to

(
n−s

d

)
SSE2 (half XORs and half ANDs) operations to check one equation for w = 128 inputs.
The check code can potentially become more than an order of magnitude faster. We do
not (yet) do so presently, because compiling may take more time than the checking
code. However, we may want to go this route for even larger systems, as the overhead
from testing for zero bits, re-collating the results, and wasting due to the number of
candidate solutions is not divisible by w would all go down proportionally.

Fast Exhaustive Search for Polynomial Systems in F2 215

Without hard-wiring, the running time of the candidate check is dominated by loading
coefficients. E.g., for quartics with 44 variables, 14 pre-evaluated, K10+ and Ci7 aver-
ages 4300 and 3300 cycles respectively per candidate. With each candidate averaging
2 equations of

(44−14
4

)
terms each, the 128-wide inner loop averages about 10 and 7.7

cycles respectively per term to accomplish 1 PXOR and 1 PAND.

Partial Evaluation. We point out that Partial Evaluation also reduces the complexity of
the Checking phase. The simplified description in Sec. 5 implies the cost of checking
each candidate solution to be ≈ 1

w

(
n
d

)
instructions. But we can get down to ≈ 1

w

(
n−s

d

)
instructions by partially evaluating w′ > w equations and storing the result for check-
ing. For example, when solving a quartic system with n = 48, m = 64, the best CPU
results are s = 18, and we cut the complexity of the checking phase by factor of at least
4× even if it was not the theoretical 7× (i.e.,

(
n
d

)
/
(
n−s

d

)
) due to overheads.

The Probability of Thread-Checking for GPUs. If we have n variables, pre-evaluate
s, and check w equations via Gray Code, then the probability of a subsystem with

2n−s vectors including at least two candidates ≈ (2n−s

2

)
(1 − 2−w)2

n−s

(2−w)2 ≈
1/22(s+w−n)+1, provided that n < s+w. As an example, for n = 48, s = 22, w = 32,
the thread-recheck probability is about 1 in 213, and we must re-check about 29 threads
using Gray Code. This pushes up the optimal s for GPUs.

Architecture and Differences. All our tests with a huge variety of machines and video
cards show that the kernel time in cycles per attempt is almost a constant of the ar-
chitecture, and the speed-up in multi-cores is almost completely linear for almost all
modern hardware. So we can compute the time complexity given the architecture, the
frequency, the number of cores, and n. The marked cycle count difference between Intel
and AMD cores is explained by Intel dispatching three XMM (SSE2) logical instruc-
tions to AMD’s two per cycle and handling branch prediction and caching better.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 3 4

cy
cl

es

degree

K10
K10+

C2
C2+
Ci7

G200

Fig. 1. Cycles per candidate tested for degree 2,3 and 4 polynomials

216 C. Bouillaguet et al.

As the Degree d increases. We plot how many cycles is taken by the inner loop (which
is 8 vectors per core for CPUs and 1 vector per SP for GPUs) on different architectures
in Fig. 1. As we can see, all except two architectures have inner loop cycle counts that
are increasing roughly linearly with the degree. The exceptions are the AMD K10 and
NVIDIA G200 architectures, which is in line with fast memory pressure on the NVIDIA
GPUs and fact that K10 has the least cache among the CPU architectures.

More Tuning. We can conduct a Gaussian elimination among the m equations and such
that m/2 selected terms in m/2 of the equations are all zero. We can of course make this
the most commonly used coefficients (i.e., c01, c02, c12, . . . for the quadratic case). The
corresponding XOR instructions can be removed from the code by our code generator.
This is not yet automated and we have to test everything by hand. However, this clearly
leads to significant savings. On GPUs, we have a speed up of 21% on quadratic cases,
18% for cubics, and 4% for quadratics. [The last is again due to the memory problems.]

Table 2. Efficiency comparison: cycles per candidate tested on one core

n = 32 n = 40 n = 48 Testing platform
d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 GHz Arch. Name USD

0.58 1.21 1.41 0.57 1.27 1.43 0.57 1.26 1.50 2.2 K10 Phenom9550 120
0.57 0.91 1.32 0.57 0.98 1.31 0.57 0.98 1.32 2.3 K10+ Opteron2376 184
0.40 0.65 0.95 0.40 0.70 0.94 0.40 0.70 0.93 2.4 C2 Xeon X3220 210
0.40 0.66 0.96 0.41 0.71 0.94 0.41 0.71 0.94 2.83 C2+ Core2 Q9550 225
0.50 0.66 1.00 0.38 0.65 0.91 0.37 0.62 0.89 2.26 Ci7 Xeon E5520 385
2.87 4.66 15.01 2.69 4.62 17.94 2.72 4.82 17.95 1.296 G200 GTX280 n/a
2.93 4.90 14.76 2.70 4.62 15.54 2.69 4.57 15.97 1.242 G200 GTX295 500

Notes and Acknowledgements

C. Bouillaguet thanks Jean Vuillemin for helpful discussions. The Taiwanese authors
thank Ming-Shing Chen for assistance with programming and fruitful discussion,
Taiwan’s National Science Council for partial sponsorship under grants NSC96-2221-
E-001-031-MY3,98-2915-I-001-041,and 98-2219-E-011-001(Taiwan Information Se-
curity Center), and Academia Sinica for the Career Development Award. Questions and
esp. corrections about the extended version should be addressed to by@crypto.tw.

References

1. Bard, G.V., Courtois, N.T., Jefferson, C.: Efficient methods for conversion and solution
of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-solvers,
http://eprint.iacr.org/2007/024

2. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis computation of
semi-regular overdetermined algebraic equations. In: Proc. Int’l Conference on Polynomial
System Solving, pp. 71–74 (2004) INRIA report RR-5049

http://eprint.iacr.org/2007/024

Fast Exhaustive Search for Polynomial Systems in F2 217

3. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic expansion of the degree of
regularity for semi-regular systems of equations. In: Proc. MEGA 2005 (2005)

4. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A practical stream cipher with provable secu-
rity. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 109–128. Springer,
Heidelberg (2006)

5. Bernstein, D.J., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.: ECM on graphics cards.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 483–501. Springer, Heidelberg
(2010)

6. Bettale, L., Faugére, J.-C., Perret, L.: Hybrid approach for solving multivariate systems over
finite fields. J. Math. Crypto. 3(3), 177–197 (2009)

7. Bouillaguet, C., Faugére, J.-C., Fouque, P.-A., Perret, L.: Differential-algebraic algorithms
for the isomorphism of polynomials problem, http://eprint.iacr.org/2009/583

8. Bouillaguet, C., Fouque, P.-A., Joux, A., Treger, J.: A family of weak keys in HFE (and the
corresponding practical key-recovery), http://eprint.iacr.org/2009/619

9. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes
nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck (1965)

10. Buchmann, J., Cabarcas, D., Ding, J., Mohamed, M.S.E.: Flexible Partial Enlargement
to Accelerate Gröbner Basis Computation over F� . In: Bernstein, D.J., Lange, T. (eds.)
AFRICACRYPT 2010. LNCS, vol. 6055, pp. 69–81. Springer, Heidelberg (2010)

11. Courtois, N., Bard, G.V., Wagner, D.: Algebraic and slide attacks on Keeloq. In: Nyberg, K.
(ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg (2008)

12. Courtois, N., Goubin, L., Patarin, J.: SFLASH: Primitive specification (second revised ver-
sion) (2002), https://www.cosic.esat.kuleuven.be/nessie

13. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solv-
ing overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000), Extended
ver., http://www.minrank.org/xlfull.pdf

14. de Bruijn, N.: Asymptotic methods in analysis. 2nd edition. Bibliotheca Mathematica. Vol.
4., 200 p. P. Noordhoff Ltd. XII, Groningen (1961)

15. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J. of Pure and
Applied Algebra 139, 61–88 (1999)

16. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5). In: ACM ISSAC 2002, pp. 75–83 (2002)

17. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equations (HFE) using
Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer,
Heidelberg (2003)

18. Fog, A.: Instruction Tables. Copenhagen University, College of Engineering, Lists of In-
struction Latencies, Throughputs and micro-operation breakdowns for Intel, AMD, and VIA
CPUs (February 2010),
http://www.agner.org/optimize/instruction_tables.pdf

19. Patarin, J.: Asymmetric cryptography with a hidden monomial. In: Koblitz, N. (ed.)
CRYPTO 1996. LNCS, vol. 1109, pp. 45–60. Springer, Heidelberg (1996)

20. Patarin, J.: Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP): two new
families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 33–48. Springer, Heidelberg (1996), Extended ver.:
http://www.minrank.org/hfe.pdf

21. Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-bit long digital signatures. In:
Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer, Heidelberg
(2001), http://www.minrank.org/quartz/

http://eprint.iacr.org/2009/583
http://eprint.iacr.org/2009/619
https://www.cosic.esat.kuleuven.be/nessie
http://www.minrank.org/xlfull.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.minrank.org/hfe.pdf
http://www.minrank.org/quartz/

218 C. Bouillaguet et al.

22. Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for Isomorphisms of Polynomi-
als. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–200. Springer,
Heidelberg (1998); Extended ver.: http://www.minrank.org/ip6long.ps

23. Raddum, H.: MRHS equation systems. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007.
LNCS, vol. 4876, pp. 232–245. Springer, Heidelberg (2007)

24. Sugita, M., Kawazoe, M., Perret, L., Imai, H.: Algebraic cryptanalysis of 58-round SHA-1.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 349–365. Springer, Heidelberg (2007)

25. Yang, B.-Y., Chen, J.-M.: Theoretical analysis of XL over small fields. In: Wang, H.,
Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–288. Springer,
Heidelberg (2004)

26. Yang, B.-Y., Chen, J.-M., Courtois, N.: On Asymptotic Security Estimates in XL and Gröb-
ner Bases-Related Algebraic Cryptanalysis. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS
2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidelberg (2004)

http://www.minrank.org/ip6long.ps

256 Bit Standardized Crypto for 650 GE
– GOST Revisited�

Axel Poschmann, San Ling, and Huaxiong Wang

Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore
{aposchmann,lingsan,hxwang}@ntu.edu.sg

Abstract. The former Soviet encryption algorithm GOST 28147-89 has
been standardized by the Russian standardization agency in 1989 and ex-
tensive security analysis has been done since. So far no weaknesses have
been found and GOST is currently under discussion for ISO standardiza-
tion. Contrary to the cryptographic properties, there has not been much
interest in the implementation properties of GOST, though its Feistel
structure and the operations of its round function are well-suited for
hardware implementations. Our post-synthesis figures for an ASIC im-
plementation of GOST with a key-length of 256 bits require only 800
GE, which makes this implementation well suitable for low-cost pas-
sive RFID-tags. As a further optimization, using one carefully selected
S-box instead of 8 different ones -which is still fully compliant with the
standard specifications!- the area requirement can be reduced to 651 GE.

Keywords: lightweight cryptography, ASIC, GOST.

1 Introduction

Increasingly, everyday items are enhanced to pervasive devices by embedding
computing power and their interconnection leads to Mark Weiser’s famous vi-
sion of ubiquitous computing (ubicomp) [27], which is widely believed to be the
next paradigm in information technology. Pervasiveness requires mass deploy-
ment which in turn implies harsh cost constraints on the used technology. The
cost constraints imply in particular for Application Specific Integrated Circuits
(ASICs) that power, energy, and area requirements must be kept to a minimum.
One counter-argument might be that Moore’s Law will provide abundant com-
puting power in the near future. However, Moore’s Law needs to be interpreted
contrary here: rather than doubling of performance, the price for constant com-
puting power halves each 18 months. This interpretation leads to interesting
conclusions, because many foreseen applications require a minimum amount of
computing power, but at the same time have extremely tight cost constraints

� The research was supported in part by the Singapore National Research Foundation
under Research Grant NRF-CRP2-2007-03.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 219–233, 2010.
c© International Association for Cryptologic Research 2010

220 A. Poschmann, S. Ling, and H. Wang

(e.g. RFID on consumer items). As a consequence these applications are not
realized yet, simply because they do not pay off. Moore’s law however halves
the price for a constant amount of computing power every 18 months, and con-
sequently enables such applications after a certain period of time. Therefore, a
constant or even increasing demand for the cheapest (read lightweight) solutions
can be foreseen.

There are physical limits for the chip area: the smaller the area of a chip, the
higher the relative costs for handling, packing and cutting of each of the chips,
and thus there exists an optimal minimal chip area. Sometimes in the literature
it is concluded that there is no need to develop lightweight cryptographic algo-
rithms, because Moore’s Law will provide an ever growing amount of computing
power for this minimal area. However, we disagree with this viewpoint due to
the following points. Firstly, there are plenty of engineering optimisation efforts
ongoing to ever minimize the cutting losses and improve other manufacturing
steps. Thus the optimal minimal chip area is constantly shrinking. Secondly,
and more importantly, there are many envisioned functionalities for pervasive
devices, security being only one amongst them. Thus decreasing the area demand
for cryptographic primitives, on which security solutions are based, will increase
the available space for other functionalities, that are maybe more valued by the
users. In fact for RFID-tags used in supply chains there is a strong demand for
storage in order to store status information directly on the tag. Thirdly, the
smaller the overhead for cryptographic primitives is, the more likely security
functionalities will be deployed.

1.1 Previous Work

The demand for small hardware area implementations of cryptographic algo-
rithms has been widely recognised and so different approaches have been pub-
lished. A lightweight AES core requiring 3400 GE and more than 1000 clock
cycles has been first published in [7]. A different implementation of the AES re-
quires only 3100 GE and is more than six times faster than the previous one [9].
In [14] a different approach is followed: DES and DESX have been slightly modi-
fied to DESL/DESXL and yield a more compact implementation without scruti-
nizing the security. There are also block cipher designs from scratch that aim at
lightweight hardware implementations. Most notably are here PRESENT [2],[20],
which requires only 1000 GE and is currently under ISO standardization and the
recently proposed KTANTAN family [5], that can be scaled down to 462 GE,
with hardwired key and block size of only 32 bits though.

In this paper we follow the first approach of optimizing the implementation of
an existing standardized block ciphers, but we shift our focus far back in time,
even before the demand of lightweight cryptography has been recognised. Back
in 1989 the Soviet Union has standardized the block cipher GOST 28147-89
as a counterpart to DES (sometimes it is also called the “Russian DES”). For
the sake of simplicity in the following we use the term GOST as a synonym
for the encryption algorithm GOST 28147-89, though GOST is an abbreviation
for Gosudarstvennyi Standard, the meaning of Government Standard in russian

256 Bit Standardized Crypto for 650 GE – GOST Revisited 221

language. Over the past 20 years quite some security analysis on GOST has been
published, which we will briefly summarize here.

In [13] it has been shown that using a related key differential characteristic,
GOST can be distinguished from a random permutation with probability 1 −
2−64. The authors propose further attacks on reduced-round versions of GOST
and on full GOST, but can only obtain 12 bits of the master key, which leaves
another 244 bits. Kara has performed a reflection attack on the full-round GOST
in [12]. The attack assumes that the S-boxes are bijective and works only on a
subset of approximately 2224 keys. Furthermore it requires 232 chosen plaintexts
and has a time complexity of 2192 steps, which is impractical.

A plain differential cryptanalysis can break up to 13 rounds of GOST using
251 chosen plaintexts [23]. Combining this result with a related-key attack 21
rounds of GOST can be broken using 256 chosen plaintexts [23].

The iterated structure of GOST can be exploited by slide attacks and in [1] a
method is presented to break reduced-round versions of GOST with time com-
plexity of 263 encryptions. In case the S-boxes are known an adversary can break
up to 30 rounds and 24 rounds if they are not known. In summary we can con-
clude that despite a considerable cryptanalytic effort has been spent over the
past 20 years, GOST is still not broken and provides a security level of 256 bits.

Contrary to the cryptographic properties, there has not been much interest
in the implementation properties of GOST. Software implementations of GOST
have been presented in [18], but to the best of our knowledge there have been
no hardware implementations of GOST reported so far. Therefore one contribu-
tion of this article is to provide lightweight hardware implementation details of
GOST. Furthermore, we exploit the fact that the S-boxes in GOST can be chosen
freely and propose to use the same S-box that has been used in PRESENT [2] to
further decrease the area footprint. Our results reveal that GOST is well suited
as an encryption algorithm for passive RFID-tags.

1.2 Outline

The remainder of this article is organized as follows: In the next Section we
are going to briefly introduce the GOST encryption algorithm. Since the S-
boxes are not specified in the original standard, we discuss the selection of an
appropriate approach for the selection of S-boxes in the subsequent Section 3.
There we also compare the linear and differential properties of the S-boxes as
used by the Central Bank of Russian Federation and the PRESENT S-box. We
propose a standard conform variant of GOST that uses the cryptographically
strong PRESENT S-box. The hardware implementation results of both variants
are presented in Section 4. Finally, this paper is concluded in Section 5.

2 Description of the GOST Encryption Algorithm

The former Soviet encryption standard GOST 28147-89 was published in [17].
There is an IETF draft [6] on GOST and GOST is currently discussed for in-
clusion into the ISO/IEC Standard 18033-3 on Block Ciphers [11]. GOST has a

222 A. Poschmann, S. Ling, and H. Wang

<<11 S-layer

Li RiKi

Ri+1
Li+1

32

32

32

3232

32

S1

S2

S3

S4

S5

S6

S7

S8

4

4

4

44

4

4

4

32 32

Fig. 1. One round of the Feistel network of GOST (left) and a detailed view of the
S-layer (right)

block size of 64 bits and a key size of 256 bits. Its overall structure is a two branch
Feistel network with 32 rounds and its inner roundfunction F consists of an in-
teger addition, a non-linear substitution layer and an 11 bits left rotation. Let
us denote the 64-bit data state of GOST by STATEi = Li||Ri, where || denotes
concatenation, then STATE0 is the plaintext and STATE32 the ciphertext. The
integer addition adds the 32 bits roundkey Ki to the right halve of the state Ri,
the result is then substituted by eight 4-bit to 4-bit S-box look-up tables and
finally rotated by 11 bits to the left. The result of the roundfunction F (Ki, Ri)
is XORed to the left halve of the state Li and is stored as the right halve of the
subsequent round Ri+1 , while Ri is stored without any modifications as Li+1.
In a formal notation we have

Li+1 = Ri,

Ri+1 = Li ⊕ (S(Ki + Ri mod 232)
 11),

where ⊕ denotes a bitwise exclusive OR and
 a a rotation to the left by a
bits. In the final round, the halves are not swapped, i.e. R32 = R31 and L32 =
L31 ⊕ (S(K31 + R31 mod 232)
 11). This enables to use the same hardware
with the reverse round-key order for decryption. Figure 1 depicts one round of
GOST graphically.

There is no real key schedule for GOST, instead the 256-bit key K is con-
sidered as eight 32-bit keys, K = K0||K1||K2||K3||K4||K5||K6||K7. For rounds
0 ≤ r ≤ 23 the roundkey Ki is derived as Ki = K(r mod 8) and for the last
eight rounds 24 ≤ r ≤ 31 the order is reversed, i.e. Ki = K7−(r mod 8). Table 1
provides an overview of the roundkeys used in every round.

Table 1. Key scheduling of GOST

Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Key K0 K1 K2 K3 K4 K5 K6 K7 K0 K1 K2 K3 K4 K5 K6 K7

Round 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Key K0 K1 K2 K3 K4 K5 K6 K7 K7 K6 K5 K4 K3 K2 K1 K0

256 Bit Standardized Crypto for 650 GE – GOST Revisited 223

3 The Choice of a Set of S-Boxes

The GOST standard does not specify a set of S-boxes. In fact, one aim of the
designers was to have an encryption algorithm with a flexible security level [4],
and the selection of the S-boxes was part of the secret key. There are 28 · 16!
possible sets of such S-boxes [21] and thus the theoretical security level of GOST
would be 256+log2(28 ·16!) = 256+354 = 610 bits. However, Saarinen has shown
in [21] that a chosen key attack can reveal the set of S-boxes with a complexity
of only 232 encryptions.

Schneier states that the Central Bank of Russian Federation has been using
the S-boxes described in Table 2. This set of S-boxes serves as one example
of GOST, but according to the standard the appropriate choice of S-boxes is
a design decision. It is clear that the selection of the S-boxes has a significant
influence on the cryptographic strength of the cipher, thus a careful selection is
crucial. Please note that the standard does neither specify if the S-boxes used
shall be different. Thus, with a small area footprint in mind, we opt for selecting
one S-box that is used eight times in parallel – a similar approach as used in
DESL/DESXL [14]. While DESL/DESXL lead to a slightly modified standard
algorithm, in the case of GOST we end up with a solution that is even conform
to the standard. As Biham et al. have pointed out in [1], the S-boxes do not
even have to be permutations. Hence theoretically, it would be even possible
to use simple wiring, which further decreases the area footprint. Of course the
differential and linear properties of such an implementation will be very weak
and thus this is not an interesting option.

Table 2. Set of GOST S-boxes as used by the Central Bank of Russian Federation [22]

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S1(x) 4 A 9 2 D 8 0 E 6 B 1 C 7 F 5 3
S2(x) E B 4 C 6 D F A 2 3 8 1 0 7 5 9
S3(x) 5 8 1 D A 3 4 2 E F C 7 6 0 9 B
S4(x) 7 D A 1 0 8 9 F E 4 6 C B 2 5 3
S5(x) 6 C 7 1 5 F D 8 4 A 9 E 0 3 B 2
S6(x) 4 B A 0 7 2 1 D 3 6 8 5 9 C F E
S7(x) D B 4 1 3 F 5 9 0 A E 7 6 8 2 C
S8(x) 1 F D 0 5 7 A 4 9 2 3 E 6 B 8 C

Instead we focus on the linear and the differential properties and use the
classification of 4-bit S-boxes published in [15] as a guideline for the selection of
an appropriate S-box. In fact we have chosen to use the present S-box, since
it is strong with regard to linear and differential properties and has the lowest
area footprint of 4-bit S-boxes [2]. Let us denote the Fourier coefficient of S by

SW
b (a) =

∑
x∈F 4

2

(−1)<b,S(x)>+<a,x>.

224 A. Poschmann, S. Ling, and H. Wang

Further, we denote a fixed non-zero input difference with ΔI ∈ F
4
2 and a fixed

non-zero output difference with ΔO ∈ F
4
2. The design criteria of the present

S-box are [2]:

1. For any fixed non-zero input difference ΔI ∈ F
4
2 and any fixed non-zero

output difference ΔO ∈ F
4
2 we require

#{x ∈ F
4
2 |S(x) + S(x + ΔI) = ΔO} ≤ 4.

2. For any fixed non-zero input difference ΔI ∈ F
4
2 and any fixed output differ-

ence ΔO ∈ F
4
2 such that wt(ΔI) = wt(ΔO) = 1 we have

{x ∈ F
4
2 |S(x) + S(x + ΔI) = ΔO} = ∅.

3. For all non-zero a ∈ F
4
2 and all non-zero b ∈ F

4
2 it holds that |SW

b (a)| ≤ 8.
4. For all a ∈ F

4
2 and all non-zero b ∈ F

4
2 such that wt(a) = wt(b) = 1 it holds

that |SW
b (a)| ≤ 4.

We have calculated the differential and linear distribution tables of the S-boxes
used by the Central Bank of Russian Federation (S1 to S8) and PRESENT (SPS)
and list them in the appendix. From Table 3, where we summarize the linear and
differential characteristics of these S-boxes, it becomes clear that the PRESENT
S-box is stronger both with regard to linear and differential cryptanalysis due to
the strict design criteria. Therefore in the following we will also consider a GOST
implementation that uses eight times the PRESENT S-box. We will refer to this
variant with the term GOST-PS while GOST-FB denotes the GOST variant
that uses the S-boxes as used by the Central Bank of Russian Federation.

Table 3. Linear and Differential characteristics of GOST and PRESENT S-boxes

Sbox S1 S2 S3 S4 S5 S6 S7 S8 SPS

max SW
b 8 12 12 12 12 12 12 12 8

max DC 6 6 6 6 4 6 8 8 4

4 Hardware Implementations

A round-based implementation of GOST can be done straight forwardly, while
a serialized implementation poses some challenges for a hardware designer. Thus
we spare the details of the former architecture and focus on the latter with a data
path width of 4 bits. Most challenging is the permutation step, since it rotates by
11 bit positions. Thus it is not possible to operate on 4 bit chunks, but instead we
have to operate on the whole state. In our architecture (see Figure 2) it takes 8
clock cycles to process all chunks of the state and to perform one round of GOST.
Then we swap the content of the registers as it is required by the Feistel structure
within one clock cycle, i.e. we operate on the whole state. We use this clock cycle to
perform the 11 bit rotation, but in our architecture we have XORed both halves
of the state already. Thus we have to shift the right halve in the previous clock

256 Bit Standardized Crypto for 650 GE – GOST Revisited 225

cycles by 11 bit positions to the right, before storing it as the new left halve. Then
when the XOR sum of both halves is rotated by 11 bit positions to the left, the
final step of one round of GOST is performed. In short, the following operations
are carried out when the content of the registers is swapped:

Li+1 = Ri � 11,

Ri+1 = (Li ⊕ S(Ki + Ri mod 232))
 11.

input

State R
[Reg-4/32]

output

4
4 44

S-layer

control
done

counter
[5bit]

4

+

State L
[Reg-4/32]

4

4

32

32

32

>>11<<11

3232

4

k0

k1

k2

k3

k4

k5

k6

k7

4

4

4

NLFSR
[3bit]

3

3

5

3
reset

Fig. 2. Architecture of a lightweight hardware architecture with a 4-bit data path for
GOST

Recall that the key schedule of GOST is very simple: in every round a 32-
bit chunk of the 256-bit key is used as the round key and for the last eight
rounds the order is swapped (see Table 1). Thus apart from a 32-bit wide 8-
to-1 MUX to select the right round key there is only very little logic required
for a round-based implementation. For a serialized implementation we need an
additional 4-bit wide 8-to-1 MUX to select the right chunk of the round key. In
total the key schedule sums up to only 99 GE for a serialized implementation
and 50 GE for a round-based. If the application requires the key to be updated,
256 additional flip-flops are required for storage. However, especially in passive
RFID-tag scenarios it is very unlikely that the key needs to be changed – as [2,19]
have pointed out before. Therefore the main target for our implementations are
applications with a fixed key. Then only a small amount of (cheap) tie cells are
required to hard-wire the key.

For functional simulation we used Mentor Graphics ModelSimXE 6.4b and
Synopsys DesignCompiler version A-2007.12-SP1 [24] was used to synthesize
the designs to the Virtual Silicon (VST) standard cell library UMCL18G212T3,
which is based on the UMC L180 0.18μm 1P6M logic process and has a typical
voltage of 1.8 Volt [26]. Table 4 summarizes the synthesis results and compares
them to a selection of other lightweight hardware implementations.

226 A. Poschmann, S. Ling, and H. Wang

When the synthesis compiler is advised to use the compile ultra option, the
smallest area can be achieved. In this case the compiler optimizes the whole
design without taking care of the single entities, which makes it very difficult (if
not impossible) to assign the area requirements to a single component. Thus we
also advised the compiler to use the compile simple option, in which case the
area is larger, but a more detailed breakdown is possible. Below we give such a
breakdown of both GOST variants. Recall that GOST-FB refers to the variant
that uses the set of S-boxes as used by the Central Bank of Russian Federation
while GOST-PS refers to the variant that uses eight times the PRESENT S-box.
It is noteworthy to highlight again that both variants are fully standard conform.

GOST Federal Bank PRESENT
serial round serial round

cycles 264 32 264 32
t’put @100 KHz (Kbps.) 24.24 200 24.24 200
compile ultra sum 800 1000 651 1017
compile simple sum 876 1028 664 1055
sequential: State 384 384 384 384

Round counter 50 41 50 41
serial counter 23 0 23 0

combinational: MUX 15 0 15 0
KeyAdd 41 271 41 271
rotation 0 0 0 0
sBoxLayer 239 187 27 214
XOR 11 85 11 85
key scheduling 99 50 99 50
control 14 10 14 10

As one can see, a serialized implementation leads to smaller area requirements,
mostly due to a scaled down key addition module (saves 230 GE) and XOR
gates (saves 70 GE). However, the serialized architecture also introduces some
area overhead, because additional MUXes are required: one for the state register
(15 GE) and one to select the right chunk of the round key (49 GE). If the
GOST variant uses different S-boxes such as GOST-FB, but not GOST-PS,
another MUX is required to select the correct S-box (52 GE). Furthermore, an
NLFSR (23 GE) is required as a serial counter and the key addition requires a
flip-flop to store the carry bit. The round counter is smaller in the round-based
architectures, which we believe is because in the serialized architecture gated
registers are required, but not in the round-based.

The sBoxLayer module in the serialized GOST-PS is by far the smallest of
all our variants, because we only need to implement one PRESENT S-box, while
GOST-FB needs all 8 S-boxes and an additional MUX. It is also interesting to
see that the S-boxes of GOST-FB require less area than the PRESENT S-box.
We believe that this is closely related to the fact that these S-boxes are weaker
with regard to differential and linear cryptanalysis (see Table 3 and the tables
in the appendix).

256 Bit Standardized Crypto for 650 GE – GOST Revisited 227

Table 4. Hardware implementation results of selected symmetric encryption algo-
rithms. GOST-FB uses eight different S-boxes as used by the Central Bank of Russian
Federation and GOST-PS uses eight times the PRESENT-S-box. Note that both vari-
ants are fully standard compliant.

key block cycles/ Throughput Tech. Area
Algorithm size size block (@100 KHz) [μm] [GE]

Stream Ciphers

Trivium [8] 80 1 1 100 0.13 2,599
Grain [8] 80 1 1 100 0.13 1,294

Block Ciphers

KATAN32 [5] 80 32 255 12.5 0.13 802
KATAN48 [5] 80 48 255 18.8 0.13 927
KATAN64 [5] 80 64 255 25.1 0.13 1054
KTANTAN32 [5] 80 32 255 12.5 0.13 462
KTANTAN48 [5] 80 48 255 18.8 0.13 588
KTANTAN64 [5] 80 64 255 25.1 0.13 688

PRESENT [20] 80 64 547 11.7 0.18 1,075
SEA [16] 96 96 93 103 0.13 3,758
mCrypton [3] 96 64 13 492.3 0.13 2,681
HIGHT [10] 128 64 34 188 0.25 3,048
AES [7] 128 128 1,032 12.4 0.35 3,400
AES [9] 128 128 160 80 0.13 3,100
DESXL [14] 184 64 144 44.4 0.18 2,168

GOST-FB 256 64 264 24.24 0.18 800
GOST-FB 256 64 32 200 0.18 1000
GOST-PS 256 64 264 24.24 0.18 651
GOST-PS 256 64 32 200 0.18 1017

We used Synopsys PowerCompiler version A-2007.12-SP1 [25] to estimate the
power consumption of our implementations. All power estimates for the smallest
wire-load model (10K GE) at a supply voltage of 1.8 Volt and a frequency of
100 KHz are below 2.6 μW, which indicates that all GOST variants are well
suited for demanding applications, including passive RFID tags. However, the
accuracy level of simulated power figures greatly depends on the simulation
tools and parameters used. Furthermore, the power consumption also strongly
depends on the target library used. Thus to have a fair comparison, we do not
include any power figures in Table 4.

5 Conclusions

In this paper we have revisited the former Soviet encryption standard GOST
28147-89, that has been standardized since 1989 already. Despite considerable

228 A. Poschmann, S. Ling, and H. Wang

cryptanalytic efforts spent in the past 20 years, GOST is still not broken. Since
to the best of our knowledge no hardware implementations of GOST have been
published so far, we have implemented GOST in hardware with a focus on a
low area footprint to close this gap. As a further optimization, we exploit the
fact that the standard does not specify a set of S-boxes and use a single S-box
repeated eight times. We have selected the PRESENT S-box, which has the
best linear and differential properties among all 4-bit S-boxes while at the same
time requiring the least amount of area. Our synthesis results show that a stan-
dard conform GOST variant that uses the PRESENT S-box requires only 651
GE.

Many of the recently proposed lightweight block ciphers are not yet mature
for standardization, while others, i.e. PRESENT and HIGHT, are currently un-
dergoing standardization by ISO. At the same time, GOST is already standard-
ized since 20 years. Furthermore, GOST offers 256 bits of security, while many
lightweight proposal are limited to 128 or 80 bits. It is therefore an interest-
ing candidate for low-cost applications that also require a very strong security
level.

References

1. Biham, E., Dunkelman, O., Keller, N.: Improved slide attacks. In: Biryukov, A.
(ed.) FSE 2007. LNCS, vol. 4593, pp. 153–166. Springer, Heidelberg (2007)

2. Bogdanov, A., Leander, G., Knudsen, L., Paar, C., Poschmann, A., Robshaw, M.,
Seurin, Y., Vikkelsoe, C.: PRESENT - An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

3. Lim, C., Korkishko, T.: mCrypton - A Lightweight Block Cipher for Security of
Low-cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

4. Charnes, C., O’Connor, L., Pieprzyk, J., Safavi-Naini, R., Zheng, Y.: Further com-
ments on the soviet encryption algorithm. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 433–438. Springer, Heidelberg (1995)

5. de Cannière, C., Dunkelman, O., Knezević, M.: Katan and ktantan–a family of
small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

6. Dolmatov, V.: Gost 28147-89 encryption, decryption and mac algorithms
(December 3, 2009),
http://tools.ietf.org/html/draft-dolmatov-cryptocom-gost2814789

7. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of
Sand. IEE Proceedings of Information Security 152(1), 13–20 (2005)

8. Good, T., Benaissa, M.: Hardware Results for Selected Stream Cipher Candidates.
In: State of the Art of Stream Ciphers 2007 (SASC 2007), Workshop Record (Febru-
ary 2007), http://www.ecrypt.eu.org/stream

9. Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and Imple-
mentation of Low-Area and Low-Power AES Encryption Hardware Core. In: DSD,
pp. 577–583 (2006)

http://tools.ietf.org/html/draft-dolmatov-cryptocom-gost2814789
http://www.ecrypt.eu.org/stream

256 Bit Standardized Crypto for 650 GE – GOST Revisited 229

10. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

11. ISO/IEC. International Standard ISO/IEC 18033 Information technology – Secu-
rity techniques – Encryption algorithms – Part 3: Block ciphers

12. Kara, O.: Reflection cryptanalysis of some ciphers. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 294–307. Springer,
Heidelberg (2008)

13. Ko, Y., Hong, S., Lee, W.L.S., Kang, J.-S.: Related Key Differential Attacks on 27
Rounds of XTEA and Full-Round GOST. In: Roy, B., Meier, W. (eds.) FSE 2004.
LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)

14. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

15. Leander, G., Poschmann, A.: On the classification of 4-Bit s-boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007)

16. Mace, F., Standaert, F.-X., Quisquater, J.-J.: ASIC Implementations of the Block
Cipher SEA for Constrained Applications. In: RFID Security — RFIDsec 2007,
Workshop Record, Malaga, Spain, pp. 103–114 (2007)

17. National Soviet Bureau of Standards. Informtation Processing System - Crypto-
graphic Protection - Cryptographic Algorithm GOST 28147-89 (1989)

18. Oreku, G.S., Li, J., Pazynyuk, T., Mtenzi, F.J.: Modified s-box to archive ac-
celerated gost. IJCSNS International Journal of Computer Science and Network
Security 7(6), 88–98 (2007)

19. Robshaw, M.: Searching for compact algorithms: cgen. In: Nguyen, P. (ed.)
VIETCRYPT 2006. LNCS, vol. 4341, pp. 37–49. Springer, Heidelberg (2006)

20. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implemen-
tations for Smart Devices - Security for 1000 Gate Equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer,
Heidelberg (2008)

21. Saarinen, M.-J.: A chosen Key attack against the secret S-boxes of GOST (unpub-
lished manuscript) (1998)

22. Schneier, B.: Applied Cryptography, 2nd edn. John Wiley & Sons, Chichester
(1996)

23. Seki, H., Kaneko, T.: Differential Cryptanalysis of Reduced Rounds of GOST. In:
Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 315–323. Springer,
Heidelberg (2001)

24. Synopsys. Design Compiler User Guide - Version A-2007.12 (December 2007),
http://tinyurl.com/pon88o

25. Synopsys. Power Compiler User Guide - Version A-2007.12 (March 2007),
http://tinyurl.com/lfqhy5

26. Virtual Silicon Inc. 0.18 μm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 μm Generic II Technology:
0.18μm (July 2004)

27. Weiser, M.: The computer for the 21st century. ACM SIGMOBILE Mobile Com-
puting and Communications Review 3(3), 3–11 (1999)

http://tinyurl.com/pon88o
http://tinyurl.com/lfqhy5

230 A. Poschmann, S. Ling, and H. Wang

Appendix

The following tables display the differential and linear properties of the PRESENT
S-box (SPS) and the GOST S-boxes as used by the Central Bank of Russian
Federation (S1 to S8).

SPS

DC ΔO LC b
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

ΔI

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0 1 0 0 0 0 0 -8 0 -8 0 0 0 0 0 -8 0 8
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0 2 0 0 4 4 -4 -4 0 0 4 -4 0 8 0 8 -4 4
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0 3 0 0 4 4 4 -4 -8 0 -4 4 -8 0 0 0 -4 -4
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0 4 0 0 -4 4 -4 -4 0 8 -4 -4 0 -8 0 0 -4 4
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0 5 0 0 -4 4 -4 4 0 0 4 4 -8 0 8 0 4 4
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4 6 0 0 0 -8 0 0 -8 0 0 -8 0 0 8 0 0 0
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4 7 0 0 0 8 8 0 0 0 0 -8 0 0 0 0 8 0
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4 8 0 0 4 -4 0 0 -4 4 -4 4 0 0 -4 4 8 8
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0 9 0 8 -4 -4 0 0 4 -4 -4 -4 -8 0 -4 4 0 0
A 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0 A 0 0 8 0 4 4 4 -4 0 0 0 -8 4 4 -4 4
B 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0 B 0 -8 0 0 -4 -4 4 -4 -8 0 0 0 4 4 4 -4
C 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0 C 0 0 0 0 -4 -4 -4 -4 8 0 0 -8 -4 4 4 -4
D 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0 D 0 8 8 0 -4 -4 4 4 0 0 0 0 4 -4 4 -4
E 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0 E 0 0 4 4 -8 8 -4 -4 -4 -4 0 0 -4 -4 0 0
F 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4 F 0 8 -4 4 0 0 -4 -4 -4 4 8 0 4 4 0 0

S1

DC ΔO LC b
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

ΔI

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 2 2 0 2 0 0 2 0 4 4 0 1 0 -4 8 -4 -4 0 4 0 8 4 0 4 -4 0 4 0
2 0 0 2 0 0 0 2 4 2 0 0 0 2 4 0 0 2 0 0 -4 4 -4 4 0 0 -4 4 0 0 -8 -8 4 -4
3 0 0 0 4 2 0 2 0 2 0 6 0 0 0 0 0 3 0 4 -4 0 -8 -4 -4 0 4 0 -8 4 4 0 0 -4
4 0 2 2 0 4 0 0 0 0 4 0 0 2 0 0 2 4 0 4 0 -4 4 -8 -4 -8 0 4 0 -4 -4 0 4 0
5 0 0 4 0 0 0 0 4 0 4 0 0 4 0 0 0 5 0 0 0 0 0 -8 8 0 0 0 0 0 0 -8 -8 0
6 0 0 0 4 6 0 2 0 2 0 2 0 0 0 0 0 6 0 4 -4 0 0 -4 -4 8 4 0 8 4 -4 0 0 4
7 0 2 0 0 0 2 0 0 0 0 4 2 0 0 4 2 7 0 8 4 4 -4 4 0 0 4 4 0 -8 0 0 -4 4
8 0 2 2 0 0 2 0 2 2 0 2 0 0 2 2 0 8 0 8 4 -4 4 4 0 0 -4 4 0 8 0 0 -4 -4
9 0 0 2 4 0 2 0 0 0 0 0 2 2 0 0 4 9 0 -4 4 8 0 -4 -4 0 -4 8 0 4 4 0 0 4
A 0 2 0 0 0 2 2 2 2 2 0 2 0 0 0 2 A 0 0 8 0 0 0 -8 0 0 -8 0 0 0 -8 0 0
B 0 0 2 0 2 0 0 0 2 2 0 2 0 2 2 2 B 0 -4 0 -4 -4 0 -4 0 0 4 8 -4 4 0 -4 -8
C 0 4 2 4 0 2 0 0 0 0 0 2 2 0 0 0 C 0 -4 -4 0 0 4 -4 -8 4 0 0 4 -4 0 -8 4
D 0 0 0 0 0 0 2 2 0 0 2 2 2 2 2 2 D 0 0 4 4 -4 -4 0 0 -4 -4 0 0 -8 8 -4 -4
E 0 2 0 0 2 2 2 0 0 2 0 0 2 2 2 0 E 0 4 0 4 -4 0 4 -8 0 -4 8 4 4 0 4 0
F 0 2 0 0 0 2 2 2 2 2 0 2 0 0 0 2 F 0 0 0 8 8 0 0 0 8 0 0 0 0 0 0 -8

256 Bit Standardized Crypto for 650 GE – GOST Revisited 231

S2

DC ΔO LC b
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

ΔI

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 0 0 0 4 0 2 2 2 0 2 2 0 0 0 1 0 8 0 0 -4 4 4 4 4 4 4 -4 0 0 -8 0
2 0 0 2 0 0 2 0 4 0 2 4 0 0 0 2 0 2 0 0 -8 0 0 0 0 8 4 4 -4 4 4 4 4 -4
3 0 0 6 2 0 0 0 0 0 2 0 2 2 0 0 2 3 0 8 0 -8 4 -4 4 -4 0 0 0 0 4 4 4 4
4 0 0 2 0 2 0 4 0 4 0 0 2 0 2 0 0 4 0 4 0 4 4 -8 -4 0 0 -4 0 -4 4 0 -4 -8
5 0 2 0 6 2 2 0 0 0 0 0 0 0 2 2 0 5 0 4 0 -4 0 4 0 -4 -4 0 -4 8 -4 0 -4 -8
6 0 6 2 0 0 0 2 2 2 0 2 0 0 0 0 0 6 0 -4 -8 -4 4 0 -4 0 -4 0 4 0 0 4 -8 4
7 0 2 0 0 4 0 2 0 0 2 2 2 0 0 0 2 7 0 -4 0 -4 -8 4 0 -4 0 -4 0 -4 8 4 0 -4
8 0 0 0 2 0 0 2 0 2 0 4 0 4 2 0 0 8 0 4 -4 0 -8 -4 -4 0 -8 4 4 0 0 -4 4 0
9 0 2 0 0 2 2 2 0 0 2 0 0 0 4 0 2 9 0 -4 -4 0 -4 -8 8 -4 4 0 0 4 0 -4 -4 0
A 0 0 0 2 2 0 4 0 0 0 2 0 0 2 0 4 A 0 -4 4 -8 0 -4 4 8 -4 0 0 -4 -4 0 0 -4
B 0 0 0 2 0 0 0 2 4 0 2 0 0 0 2 4 B 0 4 -4 0 -4 0 0 4 0 -12 -4 0 -4 0 0 4
C 0 2 0 0 2 2 0 2 0 0 0 2 2 0 4 0 C 0 0 4 4 -4 -4 0 0 0 0 4 4 -4 12 0 0
D 0 0 2 0 0 2 0 0 0 4 0 2 0 2 2 2 D 0 0 4 -4 0 0 -4 4 4 -4 8 8 4 -4 0 0
E 0 0 2 0 2 0 0 0 0 2 0 4 2 2 2 0 E 0 0 -4 4 4 4 8 0 -4 -4 8 0 0 0 4 -4
F 0 0 0 2 0 2 0 4 2 0 0 0 4 0 2 0 F 0 0 4 4 0 0 4 4 -8 0 -4 4 8 0 -4 4

S3

DC ΔO LC b
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

ΔI

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 2 0 0 0 4 0 0 2 0 2 2 2 0 0 1 0 4 4 -8 -4 -8 0 -4 0 -4 4 0 -4 0 0 4
2 0 2 2 0 2 2 0 0 2 0 0 2 0 0 2 2 2 0 4 -4 0 0 4 4 8 0 -4 4 0 0 -4 -4 8
3 0 0 0 2 0 0 0 2 4 6 0 0 0 2 0 0 3 0 0 -8 -8 -4 4 -4 4 0 0 0 0 -4 4 4 -4
4 0 0 0 0 0 4 0 0 2 0 0 2 2 0 0 6 4 0 -4 4 0 -8 4 4 0 -4 -8 0 -4 4 0 0 -4
5 0 0 2 2 0 0 2 2 0 4 0 0 0 0 4 0 5 0 0 0 0 4 -4 -4 4 4 -4 4 -4 8 8 0 0
6 0 2 0 0 2 0 0 4 0 0 4 2 0 0 2 0 6 0 0 0 0 0 0 0 0 -4 4 4 -4 -4 4 -12 -4
7 0 2 2 0 0 2 2 4 0 0 0 0 4 0 0 0 7 0 -4 4 0 -4 0 0 4 4 0 0 12 0 4 -4 0
8 0 0 0 2 0 0 0 2 0 2 2 2 2 4 0 0 8 0 0 4 -4 4 4 -8 0 4 -4 0 0 0 -8 -4 -4
9 0 2 0 0 0 2 4 0 0 0 4 2 0 0 0 2 9 0 -4 0 4 0 4 0 -4 4 0 12 0 -4 0 4 0
A 0 0 6 2 0 0 0 0 2 2 0 0 0 0 0 4 A 0 -4 0 4 4 0 -4 0 -4 -8 -4 0 -8 4 0 4
B 0 2 2 2 6 0 0 0 0 0 2 0 0 0 2 0 B 0 0 4 -4 0 8 -4 -4 -4 4 0 0 4 4 0 8
C 0 0 0 2 2 2 2 0 6 0 0 0 2 0 0 0 C 0 -4 8 -4 4 0 4 8 0 4 0 -4 -4 0 4 0
D 0 0 0 2 2 4 0 0 0 0 2 0 0 2 4 0 D 0 -8 -4 -4 0 0 4 -4 8 0 -4 -4 0 0 -4 4
E 0 0 0 2 2 0 2 2 0 0 2 0 2 4 0 0 E 0 8 4 4 -4 4 0 0 8 0 -4 -4 -4 4 0 0
F 0 4 0 0 0 0 0 0 0 0 0 4 2 2 2 2 F 0 -4 0 4 -8 -4 -8 4 0 4 0 -4 0 -4 0 4

232 A. Poschmann, S. Ling, and H. Wang

S4

DC ΔO LC b

0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

ΔI

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 4 0 2 2 6 2 0 0 0 0 1 0 0 -4 -4 0 0 4 4 0 0 4 4 -8 8 4 4
2 0 2 0 0 0 0 0 2 4 2 0 0 2 2 2 0 2 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 -12
3 0 2 4 0 0 0 2 4 2 0 0 0 0 0 0 2 3 0 -4 -4 8 0 -4 4 0 0 -4 4 0 8 4 4 0
4 0 0 0 4 0 4 2 2 0 0 0 0 0 0 2 2 4 0 4 0 -4 -8 -4 0 -4 0 -4 0 4 0 -4 8 -4
5 0 0 0 0 0 4 0 0 2 2 0 0 2 2 0 4 5 0 4 -12 0 0 4 4 0 0 -4 -4 0 0 -4 -4 0
6 0 0 2 0 0 0 0 2 0 2 2 2 0 2 4 0 6 0 -8 0 0 -8 0 0 0 0 0 0 8 0 0 -8 0
7 0 4 2 0 4 0 0 2 2 0 0 0 0 2 0 0 7 0 0 4 -4 0 0 4 -4 0 -8 -4 -4 0 8 -4 -4
8 0 0 0 0 0 0 0 0 0 4 2 2 6 2 0 0 8 0 -4 4 0 4 8 8 -4 -4 0 0 4 0 -4 4 0
9 0 0 2 6 0 0 2 2 0 0 4 0 0 0 0 0 9 0 4 0 4 4 0 -4 -8 4 0 -4 8 0 4 0 4
A 0 4 2 0 2 4 0 0 0 0 0 2 0 2 0 0 A 0 0 4 4 -4 4 0 8 4 -4 -8 0 0 0 4 4
B 0 0 0 2 2 0 0 0 0 0 0 6 0 2 2 2 B 0 0 0 0 -4 4 4 -4 12 4 4 -4 0 0 0 0
C 0 0 2 2 0 0 0 0 0 0 0 0 4 0 2 6 C 0 -8 -4 -4 4 4 -8 0 4 -4 0 0 0 0 4 -4
D 0 0 0 0 4 4 4 0 0 4 0 0 0 0 0 0 D 0 0 0 8 -4 4 -4 -4 -4 -4 4 -4 -8 0 0 0
E 0 2 2 2 2 0 2 2 0 0 0 2 0 0 2 0 E 0 -4 -4 0 -4 0 0 -4 -4 8 -8 -4 0 4 4 0
F 0 2 0 0 2 0 0 0 4 0 2 0 2 2 2 0 F 0 -4 0 4 4 -8 4 0 4 0 -4 0 -8 -4 0 -4

S5

DC ΔO LC b

0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

ΔI

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 2 2 2 0 2 4 0 0 0 2 0 1 0 -4 4 0 -4 0 0 4 4 8 0 4 -8 4 4 0
2 0 4 0 0 2 0 0 2 2 0 0 2 0 4 0 0 2 0 4 0 4 -4 0 -4 0 4 0 4 0 0 -4 0 12
3 0 0 4 2 0 0 0 2 2 0 2 2 0 2 0 0 3 0 8 4 -4 0 0 4 4 8 0 4 -4 0 0 -4 -4
4 0 0 2 4 2 0 0 0 0 4 2 0 2 0 0 0 4 0 4 0 -4 -4 -8 4 -8 0 -4 0 4 -4 0 4 0
5 0 0 0 0 0 2 0 2 0 4 2 2 2 0 0 2 5 0 0 -4 4 0 0 4 -4 4 4 -8 0 -4 -4 -8 0
6 0 0 2 0 2 0 0 0 2 2 0 2 0 2 2 2 6 0 8 0 0 0 0 -8 0 -4 4 -4 -4 -4 -4 4 -4
7 0 4 0 0 2 0 2 0 2 0 2 0 0 0 4 0 7 0 -4 -4 0 -4 -8 0 4 0 4 4 0 4 -8 0 -4
8 0 0 2 0 0 2 4 0 0 0 2 0 2 0 2 2 8 0 -4 4 0 -8 4 4 0 0 -4 -4 -8 0 -4 4 0
9 0 0 0 2 0 0 2 0 4 2 0 0 2 0 0 4 9 0 0 -8 -8 -4 4 -4 4 4 -4 -4 4 0 0 0 0
A 0 0 2 2 0 0 0 0 0 0 0 4 0 4 2 2 A 0 0 -4 -4 -4 -4 0 0 -4 4 0 -8 0 8 -4 4
B 0 0 0 0 2 4 0 2 4 0 0 0 0 2 2 0 B 0 -4 0 -4 8 -4 0 4 0 -4 0 -4 -8 -4 0 4
C 0 2 0 2 2 2 4 0 0 0 0 0 2 0 0 2 C 0 0 -4 4 4 -4 0 0 8 0 -4 -4 4 4 8 0
D 0 2 0 2 0 4 0 0 0 0 2 2 2 0 0 2 D 0 4 -8 4 0 4 8 4 -4 0 4 0 -4 0 4 0
E 0 2 4 0 0 0 0 2 0 2 0 0 2 2 2 0 E 0 4 4 0 0 -4 4 8 -4 0 -8 4 4 0 0 4
F 0 2 0 0 4 0 2 4 0 0 0 2 2 0 0 0 F 0 0 0 -8 4 4 4 -4 0 8 0 0 4 -4 4 4

S6

DC ΔO LC b

0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

ΔI

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 0 0 0 6 0 0 0 0 2 0 2 2 0 2 1 0 -4 0 4 4 0 4 -8 0 -4 0 4 -4 -8 -4 0
2 0 0 2 2 0 0 4 0 0 0 0 4 0 0 2 2 2 0 0 -4 4 0 -8 -4 -4 4 4 -8 0 -4 4 0 0
3 0 2 0 4 2 0 2 2 0 0 2 0 0 0 2 0 3 0 -4 4 0 -4 0 0 4 4 0 0 12 0 4 -4 0
4 0 0 0 2 0 0 0 2 0 2 4 4 0 2 0 0 4 0 4 0 4 4 0 -4 8 4 0 4 0 -8 -4 0 4
5 0 2 0 0 0 0 4 2 0 0 2 0 2 0 0 4 5 0 8 0 0 0 0 -8 0 -4 -4 -4 4 4 -4 -4 -4
6 0 2 2 0 0 2 2 0 2 2 0 0 2 2 0 0 6 0 -4 -4 0 -4 -8 0 4 0 4 4 0 4 -8 0 -4
7 0 0 0 0 2 0 0 2 2 4 2 0 2 2 0 0 7 0 0 4 4 0 0 -4 -4 8 0 4 -4 8 0 -4 4
8 0 0 2 2 0 2 0 2 0 0 0 0 0 2 6 0 8 0 0 0 0 4 4 -4 -4 4 4 4 4 0 0 8 -8
9 0 0 4 0 0 0 0 0 4 0 0 4 0 0 0 4 9 0 4 0 -4 -8 -4 0 -4 4 -8 4 0 -4 0 4 0
A 0 2 0 0 0 0 2 0 4 2 0 0 4 0 2 0 A 0 0 -4 4 -4 4 0 0 0 0 4 -4 -4 4 -8 -8
B 0 2 0 4 2 0 0 0 0 2 0 0 2 4 0 0 B 0 4 4 8 -8 4 4 0 0 4 -4 0 0 -4 4 0
C 0 0 0 0 4 2 0 2 2 2 0 0 0 2 2 0 C 0 4 0 4 0 -4 0 -4 -8 4 8 4 0 4 0 4
D 0 4 2 0 4 2 0 0 2 0 0 0 0 0 0 2 D 0 0 0 -8 -4 4 -4 -4 0 8 0 0 -4 -4 -4 4
E 0 0 2 2 0 2 0 2 0 0 0 4 2 0 0 2 E 0 -4 12 0 0 -4 -4 0 -4 0 0 -4 -4 0 0 -4
F 0 0 2 0 2 0 2 2 0 2 4 0 0 0 2 0 F 0 8 4 -4 4 -4 8 0 4 4 0 0 0 0 -4 -4

256 Bit Standardized Crypto for 650 GE – GOST Revisited 233

S7

DC ΔO LC b
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

ΔI

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 2 2 0 0 2 2 0 4 0 4 0 1 0 4 0 -4 -4 0 -4 8 8 4 0 4 4 0 -4 0
2 0 0 0 0 4 0 4 0 0 2 2 0 0 2 2 0 2 0 0 -4 4 4 4 0 8 -4 4 0 0 0 -8 4 4
3 0 0 0 0 2 0 0 2 0 0 8 0 2 0 0 2 3 0 -4 4 0 0 -4 4 0 4 0 -8 4 4 0 8 4
4 0 2 2 0 2 0 2 0 2 0 0 2 2 0 2 0 4 0 0 0 0 0 0 0 0 0 0 8 8 0 0 8 -8
5 0 0 4 0 2 2 0 0 4 0 0 0 2 2 0 0 5 0 4 8 4 -4 0 4 0 -8 4 0 4 4 0 -4 0
6 0 0 4 0 0 0 2 2 4 0 0 0 0 0 2 2 6 0 0 4 -4 4 4 -8 0 -4 4 0 0 0 8 4 4
7 0 2 2 0 2 0 2 0 2 0 0 2 2 0 2 0 7 0 -4 4 0 0 12 4 0 4 0 0 -4 4 0 0 -4
8 0 2 0 0 0 4 2 4 0 0 2 0 0 2 0 0 8 0 -12 4 0 0 -4 -4 0 0 4 4 0 0 -4 -4 0
9 0 0 0 2 0 0 0 2 0 4 0 6 0 0 0 2 9 0 0 4 4 -4 4 -8 0 0 -8 -4 4 -4 -4 0 0
A 0 4 0 6 2 0 0 0 0 0 0 2 2 0 0 0 A 0 -4 -8 4 -4 0 -4 0 -4 0 -4 0 8 4 0 -4
B 0 2 0 0 0 2 0 0 0 0 2 0 0 4 2 4 B 0 0 0 -8 8 0 0 0 -4 -4 -4 4 4 -4 -4 -4
C 0 0 0 4 0 2 2 0 0 0 0 4 0 2 2 0 C 0 4 4 0 0 -4 -4 0 0 4 -4 -8 0 -4 4 -8
D 0 0 2 2 0 2 0 2 2 2 0 0 0 2 0 2 D 0 0 -4 -4 -4 4 0 -8 0 8 -4 4 -4 -4 0 0
E 0 0 2 2 0 2 0 2 2 2 0 0 0 2 0 2 E 0 -4 0 -4 -4 0 4 8 -4 0 -4 0 -8 4 0 -4
F 0 4 0 0 2 0 0 2 0 4 0 0 2 0 0 2 F 0 0 0 -8 -8 0 0 0 -4 -4 4 -4 4 -4 4 4

S8

DC ΔO LC b
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

ΔI

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 0 2 0 0 0 0 0 0 2 0 6 4 0 1 0 -4 4 -8 4 0 0 4 0 -4 -4 0 -4 -8 0 4
2 0 0 0 2 0 0 0 2 0 0 2 0 4 0 2 4 2 0 -8 -4 -4 0 0 4 -4 4 4 0 -8 -4 4 0 0
3 0 6 2 2 0 0 0 2 0 0 2 0 0 2 0 0 3 0 4 8 -4 -4 -8 4 0 4 0 4 0 0 4 0 4
4 0 0 2 0 4 0 0 2 2 2 0 2 0 0 0 2 4 0 -4 0 -4 4 0 4 0 0 4 0 4 12 0 -4 0
5 0 0 2 0 2 0 4 0 0 2 4 0 0 0 0 2 5 0 -8 4 4 0 -8 -4 -4 0 0 -4 4 0 0 4 -4
6 0 2 0 0 0 4 0 2 2 0 0 4 0 0 2 0 6 0 4 4 0 4 0 0 -12 -4 0 0 -4 0 -4 -4 0
7 0 0 0 0 0 8 0 0 4 0 4 0 0 0 0 0 7 0 0 0 0 8 0 8 0 -4 -4 4 4 -4 4 4 -4
8 0 0 2 2 0 0 0 0 4 0 0 0 2 2 4 0 8 0 -4 4 0 -4 8 0 -4 4 0 8 4 0 -4 4 0
9 0 2 0 6 0 0 4 0 0 0 0 0 2 0 2 0 9 0 0 0 -8 0 0 -8 0 -4 -4 4 -4 4 4 4 -4
A 0 2 4 0 2 0 0 0 0 0 0 2 2 2 0 2 A 0 -4 0 4 -4 0 4 0 0 -12 0 -4 4 0 -4 0
B 0 2 2 0 0 0 0 0 0 4 0 0 2 0 0 6 B 0 0 4 4 8 0 -4 4 8 0 4 -4 0 0 -4 -4
C 0 0 0 0 2 4 0 2 0 2 2 0 4 0 0 0 C 0 0 4 4 0 0 4 4 -4 4 0 -8 4 -4 8 0
D 0 2 0 0 2 0 0 4 2 2 2 0 0 0 2 0 D 0 4 0 -4 -4 0 4 0 4 0 -4 0 0 -4 0 -12
E 0 0 0 4 0 0 4 0 0 4 0 4 0 0 0 0 E 0 0 -8 0 0 -8 0 0 0 0 8 0 0 -8 0 0
F 0 0 0 0 2 0 4 2 2 0 0 2 0 4 0 0 F 0 4 -4 0 4 0 0 -4 8 -4 -4 0 4 0 8 4

Mixed Bases for Efficient Inversion in F((22)2)2

and Conversion Matrices of SubBytes of AES

Yasuyuki Nogami, Kenta Nekado, Tetsumi Toyota,
Naoto Hongo, and Yoshitaka Morikawa

Graduate School of Natural Science and Technology, Okayama University
3-1-1, Tsushima–naka, Kita–ku, Okayama, Okayama 700-8530, Japan

nogami@trans.cne.okayama-u.ac.jp

Abstract. A lot of improvements and optimizations for the hardware
implementation of SubBytes of Rijndael, in detail inversion in F28 have
been reported. Instead of the Rijndael original F28 , it is known that its
isomorphic tower field F((22)2)2 has a more efficient inversion. For the
towerings, several kinds of bases such as polynomial and normal bases
can be used in mixture. Different from the meaning of this mixture of
bases, this paper proposes another mixture that contributes to the re-
duction of the critical path delay of SubBytes. To the F(22)2–inversion
architecture, for example, the proposed mixture inputs and outputs ele-
ments represented with normal and polynomial bases, respectively.

1 Introduction

SubBytes of the Advanced Encryption Standard (AES), that is Rijndael, uses
arithmetic operations in F28 , especially inversion [8]. From the viewpoint of
hardware implementation, it is said that tower field technique efficiently works
and then a lot of efficient techniques have been reported [4,9]. In detail, instead
of the Rijndael original F28 , its isomorphic tower field F((22)2)2 is efficiently ap-
plied for calculating an inversion in SubBytes. According to Canright’s work [2],
there are 432 possible combinations of the modular polynomials and bases for
constructing tower field F((22)2)2 . Morioka et al’s work [7] adopted only polyno-
mial bases and Canright’s work [2] did only normal bases; however, the difference
causes little influence for the critical path delays. For example, another efficient
construction that is introduced at Sec. 2.4 of this paper has the same critical
path delay. It uses two normal bases and one polynomial basis for the towering
bases in mixture. Different from the meaning of this mixture of bases, this paper
proposes to use normal and polynomial bases in mixture.

When the tower field F((22)2)2 is used in SubBytes, it needs certain conversion
matrices between the Rijndael original F28 and the tower field F((22)2)2 . A few
papers [2,6] have discussed the efficiency of conversion matrices. Most of those
previous works just discuss the number of 1’s in the conversion matrices; how-
ever, this paper focuses on their critical path delays only, in detail, the Hamming
weights of the row vectors of the conversion matrices. It has been experimen-
tally shown that there are some rare conversion matrices whose row vectors all
have the Hamming weights less than or equal to 4. It is very important for

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 234–247, 2010.
c© International Association for Cryptologic Research 2010

Mixed Bases for Efficient Inversion in F((22)2)2 and Conversion Matrices 235

the hardware implementation. For such efficient conversion matrices, Canright’s
approach [2] such as greedy algorithm and tree structure analysis will be also
applied to decrease the number of 1’s in the matrices.

The mixture of bases proposed in this paper, in brief mixed bases, means the
following usage of two different bases such as polynomial and normal bases. Let
A = a0β + a1β

4, a0, a1 ∈ F22 be a non–zero element represented with normal
basis {β, β4} in F(22)2 , where β is a zero of g(x) = x2 + x + α and α is a zero of
e(x) = x2 + x + 1. Then, calculate its inverse D = A−1 in F(22)2 as

D = A−1 = (a0β + a1β
4)−1 = d0 + d1β, d0, d1 ∈ F22 . (1)

The most important point is that the input A is represented with normal basis
{β, β4} but the output D is represented with polynomial basis {1, β}. This pa-
per especially applies the mixed bases to the inversions in F(22)2 and F((22)2)2 .
It is shown that the former contributes to the reduction of the critical path de-
lay of F((22)2)2–inversion and the latter connects the F((22)2)2–inversion to some
efficient conversion matrices. As previously introduced, the conversion matrices
have smaller critical path delays and they are quite rare cases. In addition, it is
shown that the use of the mixed bases has little influence to the number of gates
needed for the logical architectures but reduces the critical path delays.

2 Preliminaries

This section briefly introduces the conventional construction of an inversion in
tower field F((22)2)2 for the use in S-Box (SubBytes) of AES. In detail, let us
review the adopted bases, modular polynomials, calculation procedure of an in-
version in F((22)2)2 , and then Morioka’s work [7], Canrigt’s work [2], and another
efficient construction. Since the tower field is used with two conversion matrices
for the isomorphism between F28 and F((22)2)2 , the conventional viewpoints of
the efficiency of conversion matrices are also introduced.

2.1 Extension Field F28 and Its Tower Construction F((22)2)2

8-bit inputs and outputs of the S-Box are dealt as elements in binary field of
extension degree 8, that is F28 . Among the arithmetic operations in the binary
field, inversion plays an important role in SubBytes. In detail, the SubBytes cal-
culates the multiplicative inverse A−1 of a non–zero input element A ∈ F∗

28 and
then carries out a certain Affine transformation. For the preparation of F28 , AES
[8] originally adopts an irreducible polynomial x8 +x4 +x3 +x+1 as the modu-
lar polynomial; however, it is well known that its isomorphic tower construction
F((22)2)2 achieves a more efficient inversion together with Itoh–Tsujii inversion
algorithm (ITA) [5]. In detail, first construct F22 by using the irreducible poly-
nomial e(x) = x2 + x + 1 over F2

1, then construct F(22)2 by using a certain
irreducible polynomial f(x) of degree 2 over F22 , and then construct F((22)2)2

by using a certain irreducible polynomial g(x) of degree 2 over F(22)2 . Thus,
the efficiencies of the arithmetic operations in F((22)2)2 are closely related to the

1 Any other irreducible polynomials of degree 2 over F2 does not exist.

236 Y. Nogami et al.

selection of the modular polynomials and the bases for the towerings. For exam-
ple, polynomial and normal bases are efficient for multiplication and Frobenius
mapping, respectively. In the case that the characteristic is equal to 2 such as
AES, Frobenius mapping is equivalent to squaring.

2.2 Morioka’s Construction [7]

Conventional works such as [4] have often referred to Morioka et al.’s construc-
tion [7] for achieving efficient inversion in F((22)2)2 . Morioka’s work [7] adopts
e(x) = x2 +x+1 with its polynomial basis {1, α} for F22 , f(x) = x2 +x+α with
its polynomial basis {1, β} for F(22)2 , and g(x) = x2 + x + λ, λ = α2β with its
polynomial basis {1, γ} for F((22)2)2 , where α ∈ F22 , β ∈ F(22)2 , and γ ∈ F((22)2)2

are zeros of e(x), f(x), and g(x), respectively. Note that it adopts polynomial
bases for all towerings. Its critical path delays are summarized in Table 1.

2.3 Canright’s Construction [2]

Different from Morioka’s work, Canright’s work [2] adopts e(x) = x2 +x+1 with
its normal basis {α, α2} for F22 , f(x) = x2 +x+α with its normal basis {β, β4}
for F(22)2 , and g(x) = x2 + x + λ, λ = α2β with its normal basis {γ, γ16} for
F((22)2)2 , where α ∈ F22 , β ∈ F(22)2 , and γ ∈ F((22)2)2 are zeros of e(x), f(x),
and g(x), respectively. It is noted that it adopts normal bases for all towerings.
Its critical path delays are summarized in Table 1.

2.4 Another Efficient Construction

This section introduces another efficient construction. Different from Morioka’s
and Canright’s works, it adopts e(x) = x2 + x + 1 with its normal basis {α, α2}
for F22 , f(x) = x2 +x+α with its polynomial basis {1, β} for F(22)2 , and g(x) =
x2 + x + λ, λ = α2β with its normal basis {γ, γ16} for F((22)2)2 , where α ∈ F22 ,
β ∈ F(22)2 , and γ ∈ F((22)2)2 are zeros of e(x), f(x), and g(x), respectively. Its
critical path delays are summarized in Table 1.

The improvements proposed in this paper are started from this construction,
thus in what follows let us briefly review its arithmetic operations in F22 , F(22)2 ,
and F((22)2)2 . Their calculation architectures are summarized in App. A.

Arithmetic operations in F22. In the same of Canright’s work [2], construct
F22 with the modular polynomial e(x) = x2 +x+1 and its normal basis {α, α2}
as follows. According to the coefficients of e(x) whose zero is α, α + α2 = 1 and
α3 = 1. Let A = a0α+a1α

2, B = b0α+ b1α
2, a0, a1, b0, b1 ∈ F2 , a multiplication

C = AB becomes as follows (Fig. 7).

AB = (a0α + a1α
2)(b0α + b1α

2)
= a1b1α + a0b0α

2 + (a1b0 + a0b1)(α + α2)
= {(a0 + a1)(b0 + b1) + a0b0}α + {(a0 + a1)(b0 + b1) + a1b1}α2

= c0α + c1α
2 = C. (2)

Mixed Bases for Efficient Inversion in F((22)2)2 and Conversion Matrices 237

For a non–zero element A in F22 , Frobenius mapping with respect to F2 , that
is squaring, is equivalent to inversion as follows (Fig. 8).

A2 = A−1 = (a0α + a1α
2)2 = a0α

2 + a1α
4 = a1α + a0α

2. (3)

Times α and times α2 are carried out as follows (Fig. 9).

αA = a0α
2 + a1α

3 = a1α + (a0 + a1)α2, (4a)
α2A = a0α

3 + a1α
4 = (a0 + a1)α + a0α

2. (4b)

Arithmetic operations in F(22)2 . In the same of Morioka et al.’s work [7], con-
struct F(22)2 with the modular polynomial g(x) = x2 + x+ α and its polynomial
basis {1, β}. Thus, the arithmetic operations and calculation procedures become
as follows. Let A = a0 + a1β, B = b0 + b1β, a0, a1, b0, b1 ∈ F22 , a multiplication
C = AB in F(22)2 is carried out as follows (Fig. 10).

AB = (a0 + a1β)(b0 + b1β)
= (a0b0 + a1b1α) + {(a0 + a1)(b0 + b1) + a0b0}β

= c0 + c1β = C. (5)

Frobenius mapping of A with respect to F22 , that is 4–th power operation,
becomes as follows.

A22
= a0 + a1β

4 = a0 + a1(β + 1) = (a0 + a1) + a1β. (6)

The square of A is calculated as follows (Fig. 11).

A2 = a2
0 + a2

1β
2 = a2

0 + a2
1(β + α) = (a2

0 + a2
1α) + a2

1β. (7)

Let A be a non–zero element in F(22)2 , its inverse D = A−1 is calculated by ITA
as follows (Fig. 12).

A−1 = (AA4)−1A4

=
{
(a0 + a1β)(a0 + a1β

4)
}−1

((a0 + a1) + a1β)

=
{
a0(a0 + a1) + a2

1α
}−1

((a0 + a1) + a1β)
= d0 + d1β = D. (8)

Times λ = (α+1)β = α2β, that is the constant term of the modular polynomial
g(x), is carried out as follows (Fig. 13).

α2βA = a0α
2β + a1α

2β2 = a0α
2β + a1α

2(β + α) = a1 + (a0 + a1)α2β. (9)

Inversion in F((22)2)2 . In the same of Canright’s construction [2], construct
F((22)2)2 with the modular polynomial g(x) = x2+x+λ, λ = α2β with its normal

238 Y. Nogami et al.

basis {γ, γ16}. Let A = a0γ + a1γ
16, a0, a1 ∈ F(22)2 be a non–zero element in

F((22)2)2 , ITA calculates its inverse D = A−1 as follows (Fig. 14).

A−1 = (AA16)−1A16

=
{
a0a1(γ + γ16)2 + (a2

0 + a2
1)γγ16}−1 (

a1γ + a0γ
16)

=
{
a0a1 + (a0 + a1)2λ

}−1 (
a1γ + a0γ

16)
= d0γ + d1γ

16 = D. (10)

Efficiencies of various tower fields. One of typical features of Morioka’s
work [7] is that all of the towering bases are polynomial bases such as {1, α}
for F22 . As introduced in Canright’s work [2], not only polynomial bases but
also normal bases are available for the towering bases and it is said that there
are 432 possible combinations. Canright’s work [2] has introduced an efficient
construction of tower field F((22)2)2 that uses normal bases for all towerings.
As introduced in [2], it will be one of the best combinations for tower field
F((22)2)2 ; however, such good constructions of inversion in tower field F((22)2)2

have a comparable compactness. According to his detail report [3], the best
inversion introduced in [2] and that shown in Sec. 2.4 have almost the same
compactness. In addition, the improvements and optimizations introduced in
Morioka et al.’s and Canright’s works [7], [2] will be also efficiently applied to
the inversions shown in this paper. Thus, this paper focuses on the inversion in
F((22)2)2 and the conversion matrices with the viewpoint of critical path delay
and without discussing the compactness.

2.5 Conversion Matrices with the Viewpoint of Conjugates

As shown in Fig. 1 and the following Eqs. (12), when the inversion in the iso-
morphic tower field F((22)2)2 is applied to SubBytes instead of that of the Rijndael
original F28 , the input 8–bit vector needs to be converted to the corresponding
element in F((22)2)2 . Then, after calculating its inverse in F((22)2)2 , the result
needs to be returned to the Rijndael–original vector representation. Thus, two
conversion matrices together with a certain Affine transformation are required
before and after the inversion in F((22)2)2 (Fig. 1).

(b) decryption phase

(a) encryption phase

Inversion

in F((22)2)2

�� ×M � ×AM̄ � outputintput
8 8

�� ×M̄ � ×MĀ � inputoutput
8 8

Fig. 1. Sharing the inversion for encryption/decryption with conversion matrices

Mixed Bases for Efficient Inversion in F((22)2)2 and Conversion Matrices 239

In detail, let {1, ω, · · · , ω6, ω7} be the polynomial basis of F28 , where ω is a
zero of the modular polynomial x8 + x4 + x3 + x + 1, the Rijndael originally
represents 8–bit vector as an element X̃ in F28 as follows.

X̃ = x̃0 + x̃1ω + · · ·+ x̃6ω
6 + x̃7ω

7 = (x̃0, x̃1, · · · , x̃6, x̃7). (11)

Then, SubBytes for encryption phase calculates

Z̃T = A
(
M̄

((
MX̃T

)−1
))

+ (0, 1, 1, 0, 0, 0, 1, 1)T , FS (12a)

where M, M̄ = M−1, and A denote the conversion, inverse conversion, and
Affine transformation matrices, respectively. Thus, X = MX̃ becomes an ele-
ment in the tower field F((22)2)2 and then its inverse X−1 is efficiently calculated
in F((22)2)2 . As understood from Eq. (12a), AM̄ is precomputed.

Inversely, SubBytes for decryption phase calculates

X̃T = M̄
((

M
(
ĀZ̃T + (0, 0, 0, 0, 0, 1, 0, 1)T

))−1
)

.BS (12b)

In this case, Z = M
(
ĀZ̃T + (0, 0, 0, 0, 0, 1, 0, 1)T

)
becomes an element in the

tower field F((22)2)2 and then its inverse Z−1 is efficiently calculated in F((22)2)2 .
In the same of the encryption phase, MĀ and M(0, 0, 0, 0, 0, 1, 0, 1)T are pre-
computed. Note here that the inversions in encryption phase Eq. (12a) and
decryption phase Eq. (12b) can be carried out in the same procedure such as
Fig. 14. Thus, previous works such as Canright’s [2] works have mostly focused
on the compact construction of inversion in tower field F((22)2)2 but not together
with the efficiency of the conversion matrices in detail.

In the case of the efficient construction shown in Sec. 2.4, for example, the
conversion matrices are given as follows (Table 1).

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 1 0 0
1 0 0 0 1 0 1 0
0 0 1 1 1 1 0 0
0 1 0 1 0 1 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 0 1
0 1 0 0 0 1 1 1
0 0 1 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. AM̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 1 1 0 0
0 1 1 1 0 1 1 1
0 1 0 0 0 1 1 0
1 0 0 1 1 1 1 1
0 1 1 0 0 0 1 0
1 0 0 0 0 0 1 0
0 0 0 1 1 0 1 0
0 1 1 1 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13a)

M̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
1 0 1 0 1 0 1 0
1 0 1 0 0 1 1 1
0 1 1 0 1 0 1 1
1 0 1 0 0 1 0 0
1 0 0 1 0 1 1 0
0 1 1 1 0 1 1 0
1 0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. MĀ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 0 0
1 0 1 0 0 1 0 0
1 1 0 0 1 0 0 1
1 1 0 1 0 1 1 1
1 0 0 1 0 0 0 0
0 1 0 1 0 0 1 1
1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13b)

240 Y. Nogami et al.

Efficiency of conversion matrices. These conversion matrices are easily de-
termined but they are not uniquely determined because the modular polynomials
such as e(x) = x2 +x+1 have conjugate elements as zeros. In detail, in the case
of Sec. 2.2, since α has its conjugate α2 with respect to F2 , {1, α2} can be the
basis of F22 . In the same, {1, β4} and {1, γ16} can be the towering bases of F(22)2

and F((22)2)2 , respectively. Thus, there are 8 variants for each matrix and they
play the same role on the connection to Rijndael original F28 . Most of previous
works such as Mentens’s work [6] have basically focused on the number of 1’s in
the conversions matrices to evaluate their efficiencies.

This paper focuses on that every Hamming weight of row vectors of M shown
in Eq. (13a) is smaller than or equal to 4. It is very important for the hardware
implementation. For example, let us consider the following vector multiplications
(inner products). Its hardware calculation will be implemented as Fig. 2.

(1, 1, 1, 1, 0, 0, 0, 0)(x0, x1, x2, x3, x4, x5, x6, x7)T , (14a)

(1, 1, 1, 1, 1, 0, 0, 0)(x0, x1, x2, x3, x4, x5, x6, x7)T . (14b)

�
��

��
+ �

�
��

��
+

x0 x1 x2

�
��

��
+ �

�

x3

�
��

��
+ �

x0 x1 x2

�
��

��
+ �

x3

�
��

��
+ �

�
��

��
+ �

x4

Eq. (14a) Eq. (14b)

Fig. 2. Implementations of Eq. (14a) and Eq. (14b)

Thus, in the case of Eq. (13a), since every Hamming weight of row vectors of
M is smaller than or equal to 4, it is efficiently implemented as shown in Fig. 2
and then its critical path delay becomes 2 TX, where in what follows TX and TA

denote the delays of XOR and AND, respectively. Such an efficient conversion
matrix is a quite rare case, therefore, as shown in Eqs. (13), M has the efficiency
but the other matrices such as AM̄ do not (Table 1).

Since it has been introduced that the Hamming weights of the matrices are
reduced by some techniques such as tree structure [2], this paper does not dis-
cuss the weights of matrices into detail. Then, from the viewpoint of critical
path delay, this paper proposes an efficient inversion in F((22)2)2 and conversion
matrices to which polynomial and normal bases are used in mixture.

3 Main Proposal

This paper proposes an efficient architecture for inversion in tower field F((22)2)2

to which, different from Morioka et al.’s proposal [7] and Canright’s approaches
[2], polynomial and normal bases are used in mixture, in brief mixed bases.

Mixed Bases for Efficient Inversion in F((22)2)2 and Conversion Matrices 241

Table 1. Comparison of the efficiencies of three constructions

construction # of 1’s critical path delay‡

M 32 3 TX

AM̄ 29 3 TX

Morioka et al. [7] inv. in F((22)2)2 – 17 TX + 4 TA

M̄ 27 2 TX

MĀ 29 3 TX

M 32 3 TX

AM̄ 25 3 TX

Canright [2] inv. in F((22)2)2 – 15 TX + 4 TA

M̄ 29 3 TX

MĀ 26 3 TX

M 28 2 TX

another efficient AM̄ 33 3 TX

construction inv. in F((22)2)2 – 15 TX + 4 TA

M̄ 31 3 TX

MĀ 26 3 TX

Especially based on the inversion in F((22)2)2 constructed as Fig. 14, the mixed
bases are mainly applied to two calculation parts: I4 and I8. In detail, denote
their new versions by Î4 and Î8, respectively,

– Î4 has the input and output for F(22)2–elements represented with normal
basis {β, β4} and polynomial basis {1, β}, respectively,

– Î8 has the input and output for F((22)2)2–elements represented with normal
basis {γ, γ16} and polynomial basis {1, γ}, respectively.

Then, the critical path delay for encryption phase of SubBytes of AES becomes

2 TX + (14 TX + 4 TA) + 2 TX. (15)

Together with the meaning of the mixed bases, in what follows, several improve-
ments using mixed bases especially at I4 and I8 are shown in detail. Note here
that the modular polynomials and bases are as introduced in Sec. 2.4.

3.1 Mixed Bases for I4 of Fig. 14

As also introduced in [2], it is often said that inversion with normal basis is more
efficient than that with polynomial basis because several Frobenius mappings
are needed in ITA–based inversion. Inversely, it is often said that multiplication
with polynomial basis is more efficient than that with normal basis because
Karatsuba–based multiplication needs polynomial multiplications [1].

242 Y. Nogami et al.

First, let us consider an inversion in F(22)2 with the normal basis {β, β4},
where β is a zero of g(x) = x2 + x + α. Let A = a0β + a1β

4 be a non–zero
element in F(22)2 , its inverse D = A−1 is calculated by ITA as follows.

A−1 = (AA4)−1A4

=
{
(a0β + a1β

4)(a1β + a0β
4)
}−1 (

a1β + a0β
4)

=
{
a0a1 + (a0 + a1)2α

}−1 (
a1β + a0β

4)
= d0β + d1β

4 = D. (16a)

However, the following multiplications in F(22)2 denoted by M4 in Fig. 14 cannot
accept F(22)2–elements represented with the normal basis. Because, they accept
ones represented with the polynomial basis {1, β}. Thus, consider the following
inversion in F(22)2 with a non–zero element A = a0β + a1β

4.

A−1 = (AA4)−1A4

=
{
(a0β + a1β

4)(a1β + a0β
4)
}−1 (

a1β + a0β
4)

=
{
a0a1 + (a0 + a1)2α

}−1
((a0 + a1) + a0β)

= d0 + d1β = D. (16b)

Based on Eq. (16b), the calculation architecture of the new version Î4 is con-
structed as Fig. 3. It is the meaning of mixed bases. If I4 in Fig. 14 that is
constructed with the polynomial basis {1, β} is replaced to the inversion with
normal basis {β, β4}, that is denoted by Î4 (Fig. 3), the critical path delay of
I8 constructed as Fig. 14 is reduced to 14 TX + 4 TA.

Î4

��

��
+

�

�
d0

d1

�

�

�

I2 �
�

M2

M2

×α �� �

�

S2

M2

2

2

output (Polynomial basis)

�

�

�

N P

�
��

��
+

�

�

�
a0

a1

2

2

input (Normal basis)

�

�

Fig. 3. Inversion in F(22)2 with normal and polynomial bases (Î4)

On the other hand, Î4 (Fig. 3) needs a non–zero input represented with the
normal basis {β, β4} in F(22)2 . Without increasing the critical path delay, it needs
two changes at ×λ and M4 in Fig. 14 before the inversion in F(22)2 . Their out-
put elements are originally represented with the polynomial basis {1, β}. Thus,
change them so as to output F(22)2–elements represented with the normal ba-
sis {β, β4}. In detail, let A = a0 + a1β, B = b0 + b1β, a0, a1, b0, b1 ∈ F22 and

Mixed Bases for Efficient Inversion in F((22)2)2 and Conversion Matrices 243

based on the following calculations, their new versions denoted by ×λ̂ and M̂4
are constructed as Fig. 4 and Fig. 5, respectively.

λA = a0α
2β + a1α

2β2

= {a1 + (a0 + a1)α2}β + a1β
4

= (a1α + a0α
2)β + a1β

4. (17)

AB = (a0 + a1β)(b0 + b1β)
= {(a0 + a1)(b0 + b1) + a1b1α} β + (a0b0 + a1b1α)β4

= c0β + c1β
4 = C. (18)

×λ̂

��

� ×α2 �
��

��
+

×α

�

�

�
a1

a0

2

2

2

2

c1

c0

input (Polynomial basis) output (Normal basis)

P N

Fig. 4. Times λ in F(22)2 with polynomial and normal bases (×λ̂)

��

��
+

��

��
+

��

��
+

�

�
�

�
��

�
�

�

�
�

��

��
+�

�

�

c0

c1

a0

a1

b0

b1

M2

M2

M2

�

�

�

�

2

2

2

2

2

2

�� ×α �

M̂4

�

output (Normal basis)input (Polynomial basis)

P N

Fig. 5. Multiplication in F(22)2 with polynomial and normal bases (M̂4)

3.2 Mixed Bases for the Inversion in F((22)2)2

The input and output elements for the inversion architecture constructed as Fig.
14 both need to be represented with the normal basis {γ, γ16}. However, this
paper changes only the representation of the output element to that with the
polynomial basis {1, γ}. In detail, let A = a0γ + a1γ

16, a0, a1 ∈ F(22)2 be a
non–zero element in F((22)2)2 , based on ITA, calculate its inverse D = A−1 as

A−1 = (AA16)−1A16

=
{
a0a1(γ + γ16)2 + (a2

0 + a2
1)γγ16}−1 (

a1γ + a0γ
16)

=
{
a0a1 + (a0 + a1)2λ

}−1 {a0 + (a0 + a1)γ}
= d0 + d1γ = D. (19)

244 Y. Nogami et al.

Note that, for a non–zero input represented with the normal basis {γ, γ16}, it
calculates its inverse represented with the polynomial basis {1, γ}. Fig. 6 shows
its calculation architecture to which Î4, M̂4, and ×λ̂ are also applied.

��

��
+

�

�

�

Î4 �
�

M4

M4

×λ̂ ��

�

S4

M̂4

�

�

d0

d1

�

�

4

4

�
�
�

�
��

��
+ �

�
�

a0

a1

4

4
� P N

P N

N N

N P

output (Polynomial basis)input (Normal basis)

Î8
N P

Fig. 6. Inversion in F((22)2)2 with normal and polynomial bases

As previously introduced, this inversion achieves 14 TX + 4 TA; however, the
last mixed bases used in Eq. (19) is not related to this efficiency. It is related
to the efficiency of the conversion matrices. When the output is represented
with the normal basis {γ, γ16}, the calculated inverse A−1 is multiplied by the
conversion matrix AM̄ shown in Eqs. (13a). On the other hand, in the case
of the inversion constructed as Fig. 6, since the output is represented with the
polynomial basis {1, γ}, it needs to be multiplied by the following conversion
matrix AM̄M′,

AM̄×M′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 1 1 0 0
0 1 1 1 0 1 1 1
0 1 0 0 0 1 1 0
1 0 0 1 1 1 1 1
0 1 1 0 0 0 1 0
1 0 0 0 0 0 1 0
0 0 0 1 1 0 1 0
0 1 1 1 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 0 1
0 0 0 0 0 1 1 1
0 0 1 0 0 1 0 0
0 1 1 0 1 0 0 1
0 1 0 0 0 1 1 0
1 0 1 0 1 0 0 0
1 0 1 1 0 0 0 1
0 1 0 0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20a)

where M′ is given by

M′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20b)

and it converts the vector representation with the polynomial basis {1, γ} to
that with the normal basis {γ, γ16}. According to Eq. (20a), the conversion
matrix AM̄M′ after the inversion in F((22)2)2 shown in Fig. 6 fortunately has
the efficiency introduced in Sec. 2.5. Such an efficient conversion matrix is a
quite rare case and it is experimentally found. Thus, the last mixed bases shown
in Fig. 6 is just for obtaining this efficient conversion matrix AM̄M′.

Mixed Bases for Efficient Inversion in F((22)2)2 and Conversion Matrices 245

3.3 Evaluation

Finally, the proposed architecture with conversion matrices, especially its en-
cryption phase, has the critical path delays shown in Table 2.

Table 2. Critical path delays of the proposed architecture

construction # of 1’s critical path delay‡

M Eq. (13a) 28 2 TX

proposal AM̄M′ Eq. (20a) 27 2 TX

inv. in F((22)2)2 Fig. 6 – 14 TX + 4 TA

According to the result, this paper could show that the mixed bases contributes
to some improvements of SubBytes of AES with tower field technique.

4 Conclusion and Future Work

This paper has proposed an efficient architecture for inversion in tower field
F((22)2)2 to which, different from the conventional works, polynomial and nor-
mal bases are used in mixture, in brief mixed bases. Then, this paper has espe-
cially shown some improvements of the inversion architecture in F((22)2)2 and
the conversion matrices in the encryption phase. As a future work, using mixed
bases, those in the decryption phase should be also improved. Then, the detailed
comparison with some other efficient implementations is needed. After that, a
consideration for side channel attacks will be also required.

Acknowledgments

The authors would like to thank the anonymous referees for detailed review. We
adequately appreciate their observations and helpful suggestions.

References

1. Bailey, D., Paar, C.: Optimal Extension Fields for Fast Arithmetic in Public–Key
Algorithms. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 472–485.
Springer, Heidelberg (1998)

2. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

3. Canright, D.: Naval Postgraduate School Technical Report: NPS–MA–05–001
(2005), http://web.nps.navy.mil/~dcanrig/pub/NPS-MA-05-001.pdf

4. Canright, D., Batina, L.: A Very Compact ”Perfectly Masked” S–Box for AES. In:
Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 446–459. Springer, Heidelberg (2008)

5. Itoh, T., Tsujii, S.: A Fast Algorithm for Computing Multiplicative Inverse in
GF(2m) using Normal Basis. Inf. Comput. 78, 171–177 (1988)

http://web.nps.navy.mil/~dcanrig/pub/NPS-MA-05-001.pdf

246 Y. Nogami et al.

6. Mentens, N.: Secure and Efficient Coprocessor Design for Cryptographic Applica-
tions on FPGAs, Doctor thesis, Katholieke Universiteit Leuven (2007)

7. Morioka, S., Satoh, A.: An optimized S–box circuit arthitecture for low power AES
design. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 172–186. Springer, Heidelberg (2003)

8. National Institute of Standards and Technology (NIST), Advanced Encryption Stan-
dard (AES), FIPS publication 197 (2001),
http://csrc.nist.gov/encryption/aes/index.html

9. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware
architecture with S-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

A Architectures of the Construction Shown in Sec. 2.4

��

��
+

×
��

��
+

��

��
+

�

�
�

�
��

�
�

�

�

�×
��

��
+�

�

�
×

� �

c0

c1

a0

a1

b0

b1

M2

�

�

�

�

�

1

1

1

1

1

1

��

��
+ ×XOR AND

Fig. 7. Multiplication in F22 (M2)

�

�a0

a1

S2 I2

1 1

1 1

Fig. 8. Squaring (Frobenius mapping) in F22 (S2, I2)

�

�

��

��
+ �
�

a0

a1

�

�
��

��
+ �

�

a0

a1

×α2×α
�

1

1

1

1

1

1

1

1

�

Fig. 9. Times α and times α2 in F22 (×α, ×α2)

http://csrc.nist.gov/encryption/aes/index.html

Mixed Bases for Efficient Inversion in F((22)2)2 and Conversion Matrices 247

��

��
+

��

��
+ ��

��
+�

�

�
�

�
��

�
�

�
�

�

�
��

��
+�

�

� �

c0

c1

a0

a1

b0

b1

×α

M2

M2

M2 M4

�

�

�

�

�
2

2

2

2

2

2

Fig. 10. Multiplication in F(22)2 (M4)

S4

a1 � S2 �

�

×α

�

�a0 S2 �
��

��
+ �

�

2

2

2

2

Fig. 11. Squaring in F(22)2 (S4)

� �S2 ×α

��

��
+

�

�
�M2

�
�

��

��
+

�

� I2

M2�
�

d0

�

�

� d1
M2

a0

a1 � �

�

� �

2

2

2

2

Fig. 12. Inversion in F(22)2 (I4)

�a0

a1

×α2�
��

��
+

�
×λ

�

��

2

2

2

2

Fig. 13. Times λ in F(22)2 (×λ)

��

��
+

�

�
d0

d1

�

�

�

I4 �
�

M4

M4

×λ �
��

��
+

�

� �

�
�

�

�

a0

a1

S4

M4

4

4

4

4

�

��

�

�

I8

Fig. 14. Inversion in F((22)2)2

Developing a Hardware Evaluation Method for SHA-3
Candidates

Luca Henzen1, Pietro Gendotti2, Patrice Guillet2, Enrico Pargaetzi2,
Martin Zoller2, and Frank K. Gürkaynak3

1 Integrated Systems Laboratory, ETH Zurich
henzen@iis.ee.ethz.ch

2 Department of Information Technology and Electrical Enginnering, ETH Zurich
{gpietro,pguillet,penrico,mzoller}@ee.ethz.ch

3 Microelectronics Designs Center, ETH Zurich
kgf@ee.ethz.ch

Abstract. The U.S. National Institute of Standards and Technology encouraged
the publication of works that investigate and evaluate the performances of the
second round SHA-3 candidates. Besides the hardware characterization of the
14 candidate algorithms, the main goal of this paper is the description of a reli-
able methodology to efficiently characterize and compare VLSI circuits of cryp-
tographic primitives. We took the opportunity to apply it on the ongoing SHA-3
competition. To this end, we implemented several architectures in a 90 nm CMOS
technology, targeting high- and moderate-speed constraints separately. Thanks to
this analysis, we were able to present a complete benchmark of the achieved post-
layout results of the circuits.

1 Introduction

In 2007, the U.S. National Institute of Standards and Technology (NIST) started a pub-
lic competition aiming at the selection of a new standard for cryptographic hashing [9].
Hash functions are cryptographic primitives that generate a sort of digital fingerprint
of an arbitrary-length file, following some fundamental principles. Due to their flexi-
bility, hash functions are used in a wide range of communication protocols where they
provide data integrity, user authentication and many other security features. The moti-
vation behind the NIST competition has been the growing concern of the security of
two widely deployed hash functions MD5 and SHA-1 following a series of successful
attacks [12,1,2]. The structural similarity of MD5 and SHA-1 with the current standard
SHA-2 encouraged the NIST to start a new evaluation and selection process similar to
the competition which promoted the Rijndael block cipher as new Advanced Encryp-
tion Standard (AES) in 2001. The cryptographic community was asked to propose new
hash functions and to evaluate the security level of other candidates. In 2008, a total of
51 functions were accepted to the first round, while in July 2009 this number has been
reduced to 14 second round candidates. The final decision, i.e., the proclamation of the
winner algorithm, has been scheduled for 2012. To this end, the organizers are not only
interested in the cryptographic strength of the candidates but also in the evaluation of
the performance of the algorithm implemented in different platforms. The new SHA-3

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 248–263, 2010.
© International Association for Cryptologic Research 2010

Developing a Hardware Evaluation Method for SHA-3 Candidates 249

standard is indeed expected to provide at least the security of SHA-2 with significantly
improved efficiency. Several applications, from multi-gigabit mass storage devices to
radio-frequency identification (RFID) tags, are expected to utilize SHA-3. It is there-
fore crucial that the final SHA-3 function should be flexible enough to be used in both
high-performance and resource constrained environments. From a pure hardware point
of view, the SHA-3 algorithm should provide good performance in terms of speed, area,
and power.

Our interest in the SHA-3 selection process started with our involvement with the
development of the candidate algorithm BLAKE. We participated in the algorithm spec-
ification, providing relevant information on the hardware performance and possible op-
timizations in this direction. When the SHA-3 competition entered the second phase,
we started a VLSI characterization of several candidates within three separate student
projects at our institute. The resulting designs were manufactured in three different
ASICs, each containing a dedicated interface for I/O communication and the selected
algorithms. At this time, we had implemented twelve out of fourteen candidate algo-
rithms (all apart from ECHO and SIMD). We then decided to extend the analysis to all
candidate algorithms.

In this paper we develop and present one methodology to evaluate the ASIC im-
plementation of all SHA-3 second round algorithms. Rather than going for extremes of
performance (fastest or smallest implementation) we propose to optimize all algorithms
for multiple clearly defined specifications. We have applied our methodology and have
evaluated several architectural variations of all candidate algorithms and presented the
results.

The organization of the paper is as follows: A discussion of our methodology is the
focus of Sect. 2. We present our approach to have a fair comparison, provide details and
reasoning for key design decisions. Implementation details are given in Sect. 3. Due to
limited space we were unable to provide implementation details for the architectures,
an abbreviated summary of all architectures is provided in the Appendix. The results
of our evaluation are presented in Sect. 4 together with a subsection that explains the
errors in our methodology. We hope that this “open” approach will allow independent
researchers to validate our findings. Finally in Sect. 5 we have concluding remarks.

2 Evaluation Methodology

In this work we will attempt to make a fair comparison between VLSI implementations
of a set of algorithms all of which realize a similar function, but have very different
structures. The main difficulty in this particular evaluation is the lack of concrete hard-
ware specifications for the secure hash function candidates.

In practice, the specifications of the hardware are determined by the application. The
hardware designers can then make several well-known trade-offs to come up with a
design that offers the best compromise between, the required silicon area, the amount
of energy required for the operation and the throughput/latency of the operation. For this
study the requirements state efficient hardware implementation without being specific1.

1 This should not necessarily be understood as criticism for the NIST specifications. However,
lack of concrete specifications make a fair comparison more difficult.

250 L. Henzen et al.

In some cases, such as telecommunication algorithms which have to fulfill require-
ments of certain well-defined standards, the application field alone sets sufficient con-
straints on the system. However cryptographic functions, like the SHA-3 hash function
candidates that is the topic of this paper, are used for a very wide range of applications
with different requirements. This makes it difficult to determine which of the perfor-
mance parameters is more important. A hash function that is part of a battery operated
wireless transmitter would probably be optimized for energy consumption, while the
same algorithm when implemented in a telecommunication base station would most
likely favor a high-throughput realization.

For comparative studies, if concrete specifications are not present, the authors will
usually determine one parameter to be more important (i.e. throughput) [11,8,7], or will
come up with aggregate performance metrics such as throughput per mm2 [10, 3, 5].
Both approaches have their problems. Focusing on one parameter will favor algorithms
which are strong on one parameter (i.e. throughput), but will not merit algorithms which
perform better in other scenarios. Aggregate performance metrics on the other hand,
may end up hiding the absolute performance of an implementation, impractical design
corners (i.e. very large area, very low throughput) may perturb the results.

In the following subsection we will first define the performance metrics that we will
consider in this evaluation. The next step will be to define specifications that will set
limits on these performance metrics.

2.1 Performance Metrics

The most common metrics for hardware include the operation speed, the circuit area
and the power consumption. For this analysis we have decided to use the following
three main metrics for performance:

– Circuit Area
Generally speaking the cost of an ASIC implementation of a function for a particu-
lar technology directly depends on the area required to realize the function2. In this
evaluation we will use the net circuit area of a placed and routed design, includ-
ing the overhead for power routing, clock trees. The area will be reported in kilo
gate equivalents (kGE), where a gate equivalent corresponds to the area of a nom-
inal drive strength 2-input NAND (or NOR) gate in the standard cell library used
for the design realization. This metric covers the evaluation criteria 4.B.ii Memory
requirements in the NIST specification [9].

– Throughput
We need a measure to determine how fast the implementation is. To this end we
define the throughput of a hash function as the amount of message (input informa-
tion) in bits for which a message digest can be computed per second. Furthermore,
we assume that the hash function has been properly initialized, and the message
sizes are matched to individual candidate functions for best case performance. The

2 This is only true if the area is within a certain range. Extremely large circuits will have yield
penalties, while very small circuits will not be able to justify the overhead associated with
manufacturing.

Developing a Hardware Evaluation Method for SHA-3 Candidates 251

throughput numbers are given in Gigabits per second (Gbps). This metric covers
the evaluation criteria 4.B.i Computational Efficiency in the NIST specification [9].

– Energy Consumption
Power and energy metrics have gained more importance in recent years. On one
hand there are power density limits the circuits have to comply for sub 100 nm tech-
nologies, and on the other hand for systems with scarce energy resources (handheld
devices, smartcards, RFID devices etc.) reduced energy consumption equals to in-
creased functionality or longer operating time. In this evaluation we will consider
the energy consumption as our metric and will calculate the energy per bit of input
information processed by the hash function. This will be obtained by dividing the
total power consumption (in Watts) by the throughput (Gigabits/s) described above.
The energy consumption will be given in milli Joules per Gigabit (mJ/Gbit). This
metric partly covers the evaluation criteria 4.C.i.b Flexibility in the NIST specifi-
cation [9] as the energy efficiency is a deciding factor for implementation in con-
strained environments.

2.2 SHA-3 Parameters

The SHA-3 Minimum Acceptability Requirements state that all candidates should sup-
port message digest sizes of 224,256, 384, and 512 bits, and support a maximum mes-
sage length of at least 264− 1 bits. All algorithms process the message in blocks. The
so-called message block size differs from algorithm to algorithm. In addition several
submissions have included a salt input that can be used as a parameter in the hash
function.

In our evaluation we have chosen:

– Message Digest Size of 256
Several algorithms use (slightly) different architectures for different output lengths.
Additional circuitry is then required to support all possible digest sizes. By select-
ing a single length, we aim to focus on the core algorithm which also simplifies
certain architectural decisions. Out of the four required sizes, we have eliminated
224 and 384 as they are not a power of two (always an advantage in hardware de-
sign). We have settled on 256 as it will usually result in smaller hardware and faster
implementations.

– Use the largest message block size available
For each algorithm we have used the largest message block size and we have as-
sumed that the message has already been padded (i.e. the length of the padded
message is an exact multiple of the message block size). For throughput computa-
tion we always give the maximum achievable values, e.g., very long message for
algorithms that have an initialization procedure.

– No salt inputs
Since not all algorithms provide such an input, we have not included any salt inputs.
For algorithms that provide a salt, the inputs are set to their default values according
to the specification, and these constants have been propagated during synthesis to
allow further optimizations whenever possible.

252 L. Henzen et al.

2.3 Defining Specifications

As mentioned earlier, the main difficulty in this evaluation is the lack of precise specifi-
cations that the candidate algorithms have to fulfill. Hardware design is based on find-
ing a compromise between competing parameters that determine circuit performance.
For example, there are several architectural transformations that allow to increase the
throughput at the expense of the circuit area (see [6]). Without guiding specifications, it
is difficult to determine which of the circuit metrics is more important for a design.

In summary, the NIST specifications in [9] require that the candidate algorithms to
be computationally efficient (4.B.i), have limited memory requirements (4.B.ii), to be
flexible (4.C.i) and simple (4.C.ii) 3.

The classical way to perform this analysis would be to concentrate on only the
throughput metric and try to find out which algorithms are the fastest. In the last year,
several groups presented comparative works and, almost certainly, others will be pub-
lishing new results to this effect. However, if only the maximum throughput requirement
is investigated the flexibility of candidate algorithms may not be visible. Therefore we
suggest to use two separate specifications: an aggressive high-throughput target and a
moderate-throughput target.

The high throughput target has been chosen to be beyond the expected performance
of most algorithms, and would therefore still be able to rank the algorithms in their
maximum throughput capability. Our observation has been that even with older fabri-
cation technologies, such as 180 nm CMOS, several candidate algorithms are able to
reach throughputs of multiple Gigabits/s.

There are certainly applications which could make use of such throughputs, however
such data rates are way beyond the requirements for many applications. For the moder-
ate throughput requirement we have decided to determine a throughput which is at least
two orders of magnitude lower than that used in the first case.

Fixing one of the performance metrics, allows us to make a fairer comparison be-
tween the remaining performance metrics (area and energy), and by considering two
distinct throughput targets, we hope to uncover the flexibility of the candidate algo-
rithms for different operational requirements. In particular, we will be interested in the
circuit area for our high-throughput target, while we will be more interested in the en-
ergy consumption for our moderate-throughput target.

The maximum achievable throughput by a circuit implementing a cryptographic al-
gorithm depends on the specific technology into which the circuit will be mapped. A
throughput value that is easily achieved in 65 nm process, may not be feasible at all
when using a 180 nm process. Therefore the specifications for our two scenarios have
to be chosen while considering the capabilities of our target process.

We have decided to use the 90 nm CMOS process by UMC with the free libraries
from Faraday Technology Corporation, mainly because we already had experience in
designing ASICs with this technology and it was readily available within our design
environment at the time of this study.

3 Note that, computational efficiency could be interpreted in different ways, however, in the
NIST specification it is stated that the “computational efficiency essentially refers to the speed
of the algorithm”. Similarly the memory requirements refer to the circuit area in hardware
implementations.

Developing a Hardware Evaluation Method for SHA-3 Candidates 253

Fig. 1. From left to right: Photograph of the fabricated 90 nm chip implementing BLAKE, Cube-
hash, Hamsi, Keccak, Luffa and Shabal. Photograph of the 180 nm chips implementing BMW,
Fugue, Grøstl, JH, SHAvite and Skein.

Table 1. Post-Layout results of the implemented algorithms

Algorithm Area Throughput Energy Technology
[kGE] [Gbps] [mJ/Gbit] [nm]

BLAKE-32 33.55 7.314 15.291 UMC 90
BMW-256 95.00 3.527 31.407 UMC 180
CubeHash16/32-256 39.69 8.000 20.700 UMC 90
Fugue-256 26.00 2.806 122.506 UMC 180
Grøstl-256 65.00 4.064 73.075 UMC 180
Hamsi-256 32.25 7.467 23.624 UMC 90
Hamsi-512 68.66 7.467 46.605 UMC 90
JH-256 44.00 2.371 72.885 UMC 180
Keccak-256† 27.85 39.822 5.726 UMC 90
Keccak-512† 26.94 19.911 11.933 UMC 90
Luffa-256 29.70 22.400 9.482 UMC 90
Shabal-256 35.99 4.923 30.713 UMC 90
SHAvite-3256 48.00 2.452 93.764 UMC 180
Skein-256-256 27.00 1.917 44.329 UMC 180

† First round specification.

Our experiences from designing the three ASICs (one of which was manufactured
using this target technology) have given us a good estimation for the expected perfor-
mance of all algorithms in the 90 nm process. We have decided to use 20 Gigabits/s for
our high throughput target and 0.2 Gigabits/s for our moderate performance specifica-
tions. In the high-speed mode, almost all designs should be pushed to their speed limit,
while with the latter we could evaluate the scalability and therefore the flexibility of
each candidate algorithm.

2.4 ASIC Realizations

During this work twelve out of the fourteen second round SHA-3 candidates (some with
several architectural variations) were fabricated in three different ASICs as shown in
Fig. 1. Table 1 shows a list of algorithms that were implemented and their performances
measured on the manufactured chips.

254 L. Henzen et al.

Actually implementing the designs in real silicon is certainly the best way to validate
a design and determine its true potential. However, during this work we have realized
that several practical factors have affected these results. The maximum available silicon
area (that can be afforded for this project), the total number of I/O pins, the capabilities
of the test infrastructure that is available for the test of the ASIC have all set limits on
the implementations.

Since none of the designs was large enough to merit its own ASIC, each ASIC com-
prised of several independent modules. All modules shared a common interface which
provided the inputs and collected the outputs from individual hash function realizing
cores. For practical reasons, cores with similar clock frequencies were grouped together
and were optimized using common constraints. In many cases compromises had to be
made to allow two or more cores to be optimized at the same time. All of these had
non-negligible influence on the outcome.

Practical considerations for testing of the systems has brought even more constraints.
The necessity to include test structures (scan chains) adds some overhead, but more im-
portantly, the maximum achievable clock rate greatly depends on the capabilities of
the ASIC test infrastructure available. Designs with a high clock frequency (more than
500 MHz for 90 nm designs) put yet other constraints. When compared to designs run-
ning at lower frequencies, these designs suffer more from clock and power distribution
problems, and are difficult to test at speed.

When designing these three ASICs we were forced to make many design decisions
(i.e. blocks running faster than 700 MHz were deemed to be impractical within our envi-
ronment) based on practical constraints which had its influence on the results. Schedul-
ing constraints have also played a role in the choice of technology used to implement
the designs. For the last two ASICs, there were no feasible 90 nm MPW (Multi Project
Wafer) runs available. Consequently we had to submit these designs to a 180 nm run,
which in turn made direct comparisons more difficult.

For this reason we have taken the design experience from the actual implementation
of the individual cores, and have decided to re-implement all cores without considering
these practical limitations. In particular we have decided:

– No limits on the clock frequency
In this study we will not set any artificial limits on the clock rate. Obviously designs
with high clock rates will still face the penalties for clock distribution, but we will
not deal with practical considerations such as test, crosstalk and I/O limitations.

– No test structures
Testing is an essential part of IC design. The exact overhead for testing depends on
many factors, such as the desired test quality, and a one-size fits all solution is difficult
to find4. Since the designs in this study will not be manufactured directly we chose
not to include any test specific structures into the designs to have a fair comparison.

– Assumed an ideal interface
The candidate algorithms differ in the number of I/Os they require. We have as-
sumed that these core will eventually be part of a larger system which has an

4 Simply using a full-scan methodology for example would not ensure that all designs have
the same test coverage. Furthermore certain designs could be partially tested using functional
vectors, or would be more amenable to BIST structures.

Developing a Hardware Evaluation Method for SHA-3 Candidates 255

adequate I/O interface matching the requirements of each core. In this way, ev-
ery function could express its maximum potentiality without suffering from any
external limiation. However, we made no assumptions about how long the inputs
stayed valid, all required inputs were sampled by the cores at the beginning of the
operation. In other words, we implemented an internal message block memory for
designs that require the input to be stable for more than one clock cycle.

– No macro blocks
We have not used any macro blocks to realize look-up tables or register files for
portability reasons. All look-up tables and memory blocks were realized by stan-
dard cells.

3 Implementation

3.1 Design Flow

The same design procedure was used for all candidate algorithms. We have first devel-
oped a golden model based on the Known Answer Tests provided by the submission
package. This golden model was then used to generate the stimuli vectors and expected
responses that we have used to verify the RTL description of the algorithm written in
VHDL.

We have then used Synopsys Design Vision-2009.06 to map the RTL description to the
UMC 90 nm technology using the fsd0a_a_2009Q2v2.0 RVT standard cell library from
Faraday Technology Corporation. All outputs are assumed to have a capacitive loading
of 50 fF (equivalent to the input capacitance of about 9 medium strength buffers), and
the input drive strength is assumed to be that of a medium strength buffer (BUFX8).

We use the worst case condition (1.08 V, 125 °C) characterization of the standard cell
libraries. We have decided to use worst case characterized libraries in order to guarantee
that we can meet the specifications. Table 2 is given as a reference to be able to compare
the three characterizations that are commonly available (worst, typical, best) for one of
the candidate algorithms.

Table 2. Comparison of different characterizations, synthesis results for the ECHO algorithm

Worst Case Typical Case Best Case

Supply Voltage 1.08 V 1.2 V 1.32 V
Temperature 125 °C 27 °C -40 °C
Critical Path 3.49 ns 2.24 ns 1.59 ns
Throughput 13.75 Gbps 21.42 Gbps 30.19 Gbps
Relative Performance 64.2 % 100 % 140.9 %

Depending on the throughput requirements, we try different architectural transfor-
mations such as parallelization, pipelining to come up with an architecture that meets
(or comes closest to meeting) the requirements. We then use the Cadence Design Sys-
tems Velocity-9.1 tool for the back-end design. The technology used in this evaluation
uses 8 metal layers (metallization option 8m026), out of which the top-most two are

256 L. Henzen et al.

double pitch (wider and thicker). A square floorplan is generated, leaving 30 µm space
around the core for the power connections. For all designs we have used a 85 % uti-
lization of the core area, in other words we have left 15 % of the area for post-layout
optimization and power and ground distribution overhead. For power routing we have
used a power grid utilizing Metal-7 and Metal-8.

Then the design is placed, a clock tree is synthesized and subsequently the design
is routed. After every step the timing is checked, and if necessary a timing optimiza-
tion is performed. At the end, if a valid layout without any Design Rule Check (DRC)
violations are found, the total core area is reported as the area of the system. The to-
tal core area excludes the 30 µm space reserved for power rings, but includes all the
available area that the placement and routing tool can use for the design. By default,
all designs start with a 15 % overhead for post-layout optimizations. Depending on
the design some amount of this overhead is used during various optimization phases
during the back-end design. However it is difficult to quantify the minimum required
overhead for every design reliably. We have decided to start all designs with the same
initial placement density, and verified that the final design was not overly-congested. In
a congested design, the routing solution includes many detours which adversely affect
timing. For these designs the initial row utilization would have been reduced by 5 %,
increasing the overhead. This was not necessary for any designs in this study5. In some
designs, the routing resources are sparsely utilized. Such designs could have benefited
from a higher initial row utilization, which could have resulted in a slightly smaller cir-
cuit without noticeable timing penalties. As mentioned earlier, it is not trivial to make
sure that two designs have exactly the same amount of overhead. Therefore, we have not
considered changing the default row utilization, unless there was a noticeable problem.

The timing results are taken from the finalized design. First, the Velocity tool is
used to extract the post-layout parasitics and an SDF file containing the delays of all
interconnections and instances is generated. The final netlist and the SDF files is read
by the Mentor Graphics Modelsim-6.5a simulator and the functionality of the design is
verified. At the same time, a Value Change Dump (VCD) file that records the switching
activity of all the nodes during the simulation is produced. To have more realistic results,
the start of the VCD file is chosen after the circuit has been properly initialized. This
VCD file is then read back into the Velocity tool and a statistical power analysis is
performed. The Total Power number is used to determine the energy consumption of
the system.

3.2 Algorithms

For a given candidate algorithm, there are several well-known architectural transfor-
mations such as parallelization, pipelining, loop-unrolling etc. that will allow differ-
ent trade-offs between circuit size and throughput. In addition, within the submission
document, the authors often suggest different computational methods to perform a spe-
cific transformation of their candidate function. A good example is the frequently used

5 Note that the initial density strongly depends on the technology options such as used metal
layers. We have used 85 % as a result of our previous experience with this particular technology.

Developing a Hardware Evaluation Method for SHA-3 Candidates 257

substitution boxes. They can be implemented as look-up tables, or can be realized as a
circuit that computes the underlying function mathematically. To make matters worse,
the exact trade-off between alternative realizations may only be visible after placement
and routing. All these aspects broaden the spectrum of the possible hardware architec-
tures. For a single candidate, there is often a large set of circuits with different trade-offs
between size and speed. To identify the best design among many possibilities is not a
trivial task. Despite all attempts to formalize architectural exploration, our experience
has been that optimizing the circuit still remains a manual task, that relies on the skill
and experience of the designer.

In this work, for each candidate algorithm we have selected what we believe was
the most appropriate architecture that was able to reach the target throughput (20 and
0.2 Gbps) with minimal resources. For every candidate we designed and implemented
two different architectures. The specifications of the single designs used within this
work, is given in App. A. We make no claims that any of the architectures we have
reported in this paper is the best possible architecture for a given candidate algorithm.
In our opinion, it is not possible to make such a claim, and the exact implementations
should be open to public scrutiny and review. For this purpose we have made all the
source code that was used for this evaluation public on our www site [4].

4 Results

In this section we present the performance of the circuits implemented for high and
moderate speed environments. The comparison between these two scenarios gives a
further overview of the efficiency and flexibility of the candidate algorithms. We will
refrain from concluding remarks about the performance of the algorithms, as we do not
consider the results complete without public scrutiny.

For each architecture we report two operating frequencies/throughputs. The Max-
imum Clock Frequency is the maximum achievable clock frequency of the given ar-
chitecture. When operating with this clock frequency the circuit can achieve the given
Maximum Achievable Throughput. In most cases, this throughput is not exactly the
same as the required throughput (either 20 or 0.2 Gbps). The second clock frequency
states the clock frequency required to reach the target throughput. The final value in the
tables is a relative indicator of how close the architecture is in achieving the target clock
frequency. A number lower than one means that the architecture failed to achieve the
target throughput. One can take this as a ratio of how closely we were able to optimize
the circuit to the given target performance.

4.1 High Throughput Scenario

As expected, not all the circuits optimized for high-speed were able to reach the target
throughput. Only two algorithms, Keccak and Luffa, were able to achieve the constraint.
Table 3 lists the main performance figures for all architectures. In this scenario both area
and energy were sacrificed to achieve high-throughput. The corresponding layouts can
be seen in Fig. 2. The scale is given in the lower right corner of the figure. Circuits with
a higher congestion rate (i.e. BMW or SIMD) require indeed the entire core for routing,

258 L. Henzen et al.

Fig. 2. The final layouts of all candidate algorithms for a target throughput of 20 Gbps

and would probably reach a faster throughput with more core area, i.e., a lower row
utilization. Particularly interesting is also the local congestion for the 8-bit LUT-based
S-boxes which makes them easily identifiable within ECHO, Grøstl, Fugue, and partly
SHAvite.

4.2 Medium Throughput Scenario

The moderate-throughput circuits match the target throughput of 0.2 Gbps without diffi-
culty. As can be seen in Table 4 the maximum achievable clock rate always exceeds the
clock frequency required for 0.2 Gbps operation. To some extent, the additional speed
can be traded to reduce the overall energy consumption, by lowering the supply voltage.
It must be noted that there is a lower limit for the supply voltage (around 0.5 V for this
process). Such voltage scaling techniques were not considered in this comparison, all
results are listed for 1.2 V supply voltage.

Since in this scenario, timing was quite relaxed, the main figure of merit becomes the
area and the energy dissipation. The layouts of all fourteen architectures are compared
in Fig. 3, with the scale indicated on the bottom left.

The most interesting result is that a smaller area (or indeed throughput) does not
always equal lower energy consumption (see Hamsi or Skein compared to BMW or
SIMD). It must be noted that, no special precautions were taken for a low-power de-
sign (i.e. proper clock-gating, input-silencing). In addition some architectural decisions
resulted in increased number of operations and/or increased circuit activity which af-
fected the energy consumption differently for separate algorithms. We believe that there
is much room for improvement in terms of low-power performance of the architectures.
We must conclude that the present specifications do not necessarily result in low-power
realizations in the medium-throughput corner. In a next step, the design methodology
could be extended to provide a low-power scenario.

Developing a Hardware Evaluation Method for SHA-3 Candidates 259

Table 3. Post-layout performances of all candicate algorithms for a target throughput of 20 Gbps
in the UMC 90 nm process

Maximum Clock Freq. Max. / Target
Achievable Clock for 20 Gbps Frequency

Algorithm Area Energy Throughput Frequency Throughput Ratio
[kGE] [mJ/Gbit] [Gbps] [MHz] [MHz]

BLAKE-32 47.5 11.00 9.752 400 820 0.49
BMW-256 150.0 16.86 8.486 298 703 0.42
CubeHash16/32-256 42.5 13.71 10.667 667 1250 0.53
ECHO-256 260.0 43.41 13.966 291 417 0.70
Fugue-256 55.0 15.60 8.815 551 1250 0.44
Grøstl-256 135.0 14.13 16.254 667 820 0.81
Hamsi-256 45.0 15.90 8.686 814 1876 0.43
JH-256 80.0 17.54 10.807 760 1406 0.54
Keccak-256 50.0 2.42 43.011 949 441 2.15
Luffa-256 55.0 6.92 23.256 727 625 1.16
Shabal-256 45.0 14.83 6.819 693 2033 0.34
SHAvite-3256 75.0 19.21 7.999 562 1406 0.40
SIMD-256 135.0 35.66 5.177 364 1406 0.26
Skein-256-256 50.0 30.47 3.558 264 1484 0.18

Fig. 3. The final layouts of all candidate algorithms for a target throughput of 0.2 Gbps

4.3 Sources of Error

Although we have tried our best to ensure a fair comparison, there are many factors that
could have influenced the results. In this section we try to outline the possible sources
of error in our results, and outline what we have done to address them.

– Conflict of interest
One of the authors of this paper, Luca Henzen, is involved with the SHA-3 candi-
date algorithm BLAKE. Our interest in implementing the SHA-3 candidate algo-
rithms has started by investigating optimal hardware implementations of BLAKE.
We have tried to be as impartial as possible when implementing other candidate

260 L. Henzen et al.

Table 4. Post-layout performances of all candidate algorithms for a target throughput of 0.2 Gbps
in the UMC 90 nm process

Maximum Clock Freq. Max. / Target
Achievable Clock for 0.2 Gbps Frequency

Algorithm Area Energy Throughput Frequency Throughput Ratio
[kGE] [mJ/Gbit] [Gbps] [MHz] [MHz]

BLAKE-32 16.0 13.00 0.463 73.282 31.646 2.32
BMW-256 85.0 14.04 1.845 64.876 7.031 9.23
CubeHash16/32-256 16.0 10.50 1.741 217.581 25.000 8.70
ECHO-256 60.0 59.44 0.204 137.061 134.771 1.02
Fugue-256 19.0 9.02 1.828 114.260 12.500 9.14
Grøstl-256 25.0 22.28 0.412 128.750 62.500 2.06
Hamsi-256 15.0 35.12 0.200 150.083 149.925 1.00
JH-256 37.5 13.03 1.909 134.228 14.063 9.54
Keccak-256 27.5 5.50 6.767 149.276 4.412 33.83
Luffa-256 22.0 21.79 1.265 118.624 18.751 6.33
Shabal-256 25.0 26.57 0.399 128.634 64.475 2.00
SHAvite-3256 25.0 11.43 1.871 131.527 14.063 9.35
SIMD-256 90.0 32.49 0.943 66.295 14.063 4.71
Skein-256-256 19.0 32.67 0.200 118.765 118.765 1.00

algorithms. However, it is true that we are more familiar with this algorithm than
any other algorithm.

– Designer experience
The algorithms have been implemented by a group of students over a period of
several months. Different designers may have more or less success in optimizing a
given design. We have confidence in our team, but it is possible that for some al-
gorithms we have inadvertently missed a possible optimization while for the others
we were more successful. In addition, over time the designers naturally gain more
experience and are more successful with the designs.
We believe that the most important aspect of a fair comparison is openness. For
this reason we have made the source code and run scripts for the EDA tools used to
implement all designs presented in this paper available on our website [4]. In this
way, other groups can replicate our results, and can find and correct any mistakes
we might have made in the process.

– Accuracy of numbers
The numbers delivered by synthesis and analysis tools rely on the library files pro-
vided by the manufacturer. The values in the libraries are essentially statistical en-
tities and sometimes have large uncertainties associated with it. In addition most of
the design process involves heuristic algorithms which depending on a vast num-
ber of parameters can return different results. Our experience with synthesis tools
suggest that the results have around ± 5% variation. We therefore consider results
that are within 10% of each other to be comparable.
In an effort to be more accurate we have chosen to report post-layout area numbers
that include clock and power distribution overhead. We have designed all circuits
with the same overhead. For some circuits this overhead is adequate, for others it
is too much, and for others is insufficient. We made sure that there is an acceptable
solution for all cases.

Developing a Hardware Evaluation Method for SHA-3 Candidates 261

– Bias through specification
We have chosen two design corners in our applications, these specifications have
helped us to have a common base for comparing all 14 algorithms. Regardless of
how these specifications are chosen, it is possible that they benefit some algorithms
more than the others. We hope that, similar studies by other groups which use dif-
ferent specifications will help to give a clearer picture.

– Simplification due to assumptions
All our assumptions, the specific choices we made for SHA-3 parameters and the
practical choices we made in the design flow will have some effect on the results.
For example, we have decided not take IR-drop or crosstalk effects into account.
As a result, the cores that achieve their reported performance by using very high
clock frequencies will be more difficult to realize in practice. The assumptions in
the design flow are a practical necessity and were designed to create a methodology
in which the same solution could be used for all designs.

5 Conclusions

In this paper we have presented a methodology to compare the SHA-3 candidate al-
gorithms. Our previous experiences in designing ASIC implementations of candidate
algorithms (Table 1) has been instrumental in developing what we believe is a fair set
of specifications. Rather than targeting outright performance, we have set limits for
one performance metric (throughput) and re-implemented all algorithms to meet two
distinct throughput requirements. This enabled us to compare the flexibility of the algo-
rithms (Tables 3 and 4).

A public selection process, such as the SHA-3 invariably attracts a large number of
submissions with many different algorithms. In early stages of the selection process,
the sheer number of algorithms (51 in the first round) makes it impractical to employ a
detailed analysis for hardware suitability. Our experience has shown that even with the
14 second round candidates, it is difficult to present an authoritative and fair evaluation
of all candidates. We believe that for the final round of evaluations, a similar approach
to what we have demonstrated in this paper should be utilized: Clear constraints should
be set for the implementations, preferably more than one performance corner should
be targeted, the evaluation process should be well documented and the errors in the
evaluation process should be openly discussed. We would also suggest the addition of
a low-power corner that also considers voltage scaling for low-power operation to our
methodology.

In many parts of this paper, we have extensively commented on limitations of our
methodology, and have included a whole subsection on sources of error. We strongly
believe that any such comparison must be thorough with its analysis of error sources
and clear with its performance metrics.

References

1. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: General results and applica-
tions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer,
Heidelberg (2006)

262 L. Henzen et al.

2. De Cannière, C., Rechberger, C.: Preimages for reduced SHA-0 and SHA-1. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer, Heidelberg (2008)

3. El-Hadedy, M., Gligoroski, D., Knapskog, S.J., Aas, E.J.: Low area FPGA and ASIC imple-
mentations of the hash function “Blue Midnight Wish-256”. In: International Conference on
Computer Engineering & Systems, ICCES 2009, Cairo, pp. 10–14 (2009)

4. Gürkaynak, F.K., Henzen, L., Gendotti, P., Guillet, P., Pargaetzi, E., Zoller, M.: Hardware
evaluation of the second-round SHA-3 candidate algorithms (2010),
http://www.iis.ee.ethz.ch/~sha3/

5. Gürkaynak, F.K., Luethi, P., Bernold, N., Blattmann, R., Goode, V., Marghitola, M., Kaeslin,
H., Felber, N., Fichtner, W.: Hardware evaluation of eSTREAM candidates: Achterbahn,
grain, mickey, mosquito, sfinks, trivium, vest, zk-crypt. eSTREAM, ECRYPT Stream Cipher
Project, Report 2006/015 (2006), http://www.ecrypt.eu.org/stream

6. Kaeslin, H.: Digital Integrated Circuit Design, from VLSI Architectures to CMOS Fabrica-
tion. Cambridge University Press, Cambridge (2008)

7. Kobayashi, K., Ikegami, J., Matsuo, S., Sakiyama, K., Ohta, K.: Evaluation of hardware per-
formance for the SHA-3 candidates using SASEBO-GII. Cryptology ePrint Archive, Report
2010/010 (2010), http://eprint.iacr.org/

8. Namin, A.H., Hasan, M.A.: Hardware implementation of the compression function for se-
lected SHA-3 candidates. CACR 2009-28 (2009),
http://www.vlsi.uwaterloo.ca/~ahasan/hasan_report.html

9. NIST. Announcing request for candidate algorithm nominations for a new cryptographic hash
algorithm (SHA-3) family. Federal Register 72(212) (2007),
http://www.nist.gov/hash-competition

10. Tillich, S., Feldhofer, M., Issovits, W., Kern, T., Kureck, H., Mühlberghuber, M., Neubauer,
G., Reiter, A., Köfler, A., Mayrhofer, M.: Compact hardware implementations of the SHA-
3 candidates ARIRANG, BLAKE, Grøstl, and Skein. Cryptology ePrint Archive: Report
2009/349 (2009)

11. Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., Schmidt, J.-M., Szekely, A.: High-speed
hardware implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue,
Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein. Cryptology ePrint
Archive, Report 2009/510 (2009)

12. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

A Hardware Architectures

Table 5 gives an overview of the architectures, used within this work. For some can-
didates we used the same design for the 20 Gbps (HS) and 0.2 Gbps (MS) analysis. In
such cases, different optimization parameters were used. The detailed description of the
architectures has been omitted because of the limited article length. Refer to [4] for the
complete source code for all the architectures used in this evaluation

http://www.iis.ee.ethz.ch/~sha3/
http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/
http://www.vlsi.uwaterloo.ca/~ahasan/hasan_report.html
http://www.nist.gov/hash-competition

Developing a Hardware Evaluation Method for SHA-3 Candidates 263

Table 5. Design specification of the HS and MS-target architectures. For the latency, the enclosed
value refers to the finalization cycles.

Algorithm Message Block Size Arch. Latency Implementation details
[bits] [cycles]

BLAKE 512
HS 21

Four parallel G function modules, anticipation of the first message-
constant addition.

MS 81 One G function module.

BMW 512 HS-MS 18 (+18)
f0 and f2 computed in one cycle, while f1 iteratively decomposed in a
single expand block.

CubeHash 256
HS 16 (+160) Single round per cycle, initial state stored.

MS 32 (+320) Half round, initial state stored.

ECHO 1536
HS 32 8 AES rounds per clock cycle.

MS 1034 Single 32-bit AES core, one parallel BigMixColumn unit.

Fugue
32 HS 2 (+37) S-box as LUT.

MS 2 (+37) S-box as composite field logic.

Grøstl 512
HS 21 (+21)

Interleaved P and Q permutation with one pipeline stage, SubBytes as
LUT.

MS 160 (+160) Single-column round (64-bit datapath), SubBytes as composite field.

Hamsi 32
HS 3 (+6)

Message expansion in three 256×256 LUTs, single round per cycle,
substitution layer as logic.

MS 24 (+48) Same as HS, datapath reduced to 128 bits.

JH 512 HS-MS 36 S-boxes S0 and S1 stored in LUTs, constants stored.

Keccak 1088 HS-MS 24 Single round per cycle.

Luffa 256
HS 8 Three parallel Step function modules, SubCrumb function as logic.

MS 24 One Step function modules, SubCrumb function as logic.

Shabal 512
HS 52 (+156)

One keyed permutation round per cycle. In total, 30 adders and 16 sub-
tractors.

MS 165 One adder and one subtractor only.

SHAvite-3 512
HS 36

One AES round for message expansion and one AES round for the F3

round, SubBytes as LUT.

MS 36 Same as HS, SubBytes in composite field.

SIMD 512 HS-MS 36 (+36)† Four parallel Feistel modules, message expansion based on NNT8 and
eight multipliers for tweadle mult.

Skein 256
HS 19 (+19) Four unrolled Threefish rounds.

MS 152 (+152) Half Threefish round.

† Further 36 cycles of initialization required for message expansion.

Fair and Comprehensive Methodology for
Comparing Hardware Performance of Fourteen
Round Two SHA-3 Candidates Using FPGAs�

Kris Gaj, Ekawat Homsirikamol, and Marcin Rogawski

ECE Department, George Mason University, Fairfax, VA 22030, U.S.A.
{kgaj,ehomsiri,mrogawsk}@gmu.edu

http://cryptography.gmu.edu

Abstract. Performance in hardware has been demonstrated to be an
important factor in the evaluation of candidates for cryptographic stan-
dards. Up to now, no consensus exists on how such an evaluation should
be performed in order to make it fair, transparent, practical, and ac-
ceptable for the majority of the cryptographic community. In this pa-
per, we formulate a proposal for a fair and comprehensive evaluation
methodology, and apply it to the comparison of hardware performance
of 14 Round 2 SHA-3 candidates. The most important aspects of our
methodology include the definition of clear performance metrics, the de-
velopment of a uniform and practical interface, generation of multiple
sets of results for several representative FPGA families from two major
vendors, and the application of a simple procedure to convert multiple
sets of results into a single ranking.

Keywords: benchmarking, hash functions, SHA-3, FPGA.

1 Introduction and Motivation

Starting from the Advanced Encryption Standard (AES) contest organized by
NIST in 1997-2000 [1], open contests have become a method of choice for select-
ing cryptographic standards in the U.S. and over the world. The AES contest in
the U.S. was followed by the NESSIE competition in Europe [2], CRYPTREC
in Japan, and eSTREAM in Europe [3].

Four typical criteria taken into account in the evaluation of candidates are:
security, performance in software, performance in hardware, and flexibility. While
security is commonly recognized as the most important evaluation criterion, it is
also a measure that is most difficult to evaluate and quantify, especially during
a relatively short period of time reserved for the majority of contests. A typical
outcome is that, after eliminating a fraction of candidates based on security
flaws, a significant number of remaining candidates fail to demonstrate any easy
� This work has been supported in part by NIST through the Recovery Act Mea-

surement Science and Engineering Research Grant Program, under contract no.
60NANB10D004.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 264–278, 2010.
c© International Association for Cryptologic Research 2010

Fair and Comprehensive Methodology for Comparing Hardware Performance 265

to identify security weaknesses, and as a result are judged to have adequate
security.

Performance in software and hardware are next in line to clearly differentiate
among the candidates for a cryptographic standard. Interestingly, the differences
among the cryptographic algorithms in terms of hardware performance seem to
be particularly large, and often serve as a tiebreaker when other criteria fail
to identify a clear winner. For example, in the AES contest, the difference in
hardware speed between the two fastest final candidates (Serpent and Rijndael)
and the slowest one (Mars) was by a factor of seven [1][4]; in the eSTREAM
competition the spread of results among the eight top candidates qualified to the
final round was by a factor of 500 in terms of speed (Trivium x64 vs. Pomaranch),
and by a factor of 30 in terms of area (Grain v1 vs. Edon80) [5][6].

At this point, the focus of the attention of the entire cryptographic community
is on the SHA-3 contest for a new hash function standard, organized by NIST
[7][8]. The contest is now in its second round, with 14 candidates remaining in
the competition. The evaluation is scheduled to continue until the second quarter
of 2012.

In spite of the progress made during previous competitions, no clear and
commonly accepted methodology exists for comparing hardware performance
of cryptographic algorithms [9]. The majority of the reported evaluations have
been performed on an ad-hoc basis, and focused on one particular technology and
one particular family of hardware devices. Other pitfalls included the lack of a
uniform interface, performance metrics, and optimization criteria. These pitfalls
are compounded by different skills of designers, using two different hardware de-
scription languages, and no clear way of compressing multiple results to a single
ranking. In this paper, we address all the aforementioned issues, and propose
a clear, fair, and comprehensive methodology for comparing hardware perfor-
mance of SHA-3 candidates and any future algorithms competing to become a
new cryptographic standard.

The hardware evaluation of SHA-3 candidates started shortly after announc-
ing the specifications and reference software implementations of 51 algorithms
submitted to the contest [7][8][10]. The majority of initial comparisons were lim-
ited to less than five candidates, and their results have been published at [10].
The more comprehensive efforts became feasible only after NISTs announcement
of 14 candidates qualified to the second round of the competition in July 2009.
Since then, two comprehensive studies have been reported in the Cryptology
ePrint Archive [11][12]. The first, from the University of Graz, has focused on
ASIC technology, the second from two institutions in Japan, has focused on the
use of the FPGA-based SASEBO-GII board from AIST, Japan. Although both
studies generated quite comprehensive results for their respective technologies,
they did not quite address the issues of the uniform methodology, which could
be accepted and used by a larger number of research teams. Our study is in-
tended to fill this gap, and put forward the proposal that could be evaluated
and commented on by a larger cryptographic community.

266 K. Gaj, E. Homsirikamol, and M. Rogawski

2 Choice of a Language, FPGA Devices, and Tools

Out of two major hardware description languages used in industry, VHDL and
Verilog HDL, we choose VHDL. We believe that either of the two languages is
perfectly suited for the implementation and comparison of SHA-3 candidates, as
long as all candidates are described in the same language. Using two different
languages to describe different candidates may introduce an undesired bias to
the evaluation.

FPGA devices from two major vendors, Xilinx and Altera, dominate the mar-
ket with about 90% of the market share. We therefore feel that it is appropriate
to focus on FPGA devices from these two companies. In this study, we have
chosen to use seven families of FPGA devices from Xilinx and Altera. These
families include two major groups, those optimized for minimum cost (Spartan
3 from Xilinx, and Cyclone II and III from Altera) and those optimized for high
performance (Virtex 4 and 5 from Xilinx, and Stratix II and III from Altera).
Within each family, we use devices with the highest speed grade, and the largest
number of pins.

As CAD tools, we have selected tools developed by FPGA vendors themselves:
Xilinx ISE Design Suite v. 11.1 (including Xilinx XST, used for synthesis) and
Altera Quartus II v. 9.1 Subscription Edition Software.

3 Performance Metrics for FPGAs
Speed. In order to characterize the speed of the hardware implementation of
a hash function, we suggest using Throughput, understood as a throughput
(number of input bits processed per unit of time) for long messages. To be
exact, we define Throughput using the following formula:

Throughput =
block size

T · (HTime(N + 1)−HTime(N))
(1)

where block size is a message block size, characteristic for each hash function
(as defined in the function specification, and shown in Table 3), HTime(N) is
a total number of clock cycles necessary to hash an N-block message, T is a
clock period, different and characteristic for each hardware implementation of a
specific hash function.

In this paper, we provide the exact formulas for HTime(N) for each SHA-3
candidate, and values of f = 1/T for each algorithm–FPGA device pair (see
Tables 3 and 6).

For short messages, it is more important to evaluate the total time required
to process a message of a given size (rather than throughput). The size of the
message can be chosen depending on the requirements of an application. For
example, in the eBASH study of software implementations of hash functions,
execution times for all sizes of messages, from 0-bytes (empty message) to 4096
bytes, are reported, and five specific sizes 8, 64, 576, 1536, and 4096 are featured
in the tables [13]. The generic formulas we include in this paper (see Table 3)
allow the calculation of the execution times for any message size.

Fair and Comprehensive Methodology for Comparing Hardware Performance 267

In order to characterize the capability of a given hash function implementa-
tion for processing short messages, we present in this study the comparison of
execution times for an empty message (one block of data after padding) and a
100-byte (800-bits) message before padding (which becomes equivalent for ma-
jority, but not all, of the investigated functions to 1024 bits after padding).

Resource Utilization/Area. Resource utilization is particularly difficult to
compare fairly in FPGAs, and is often a source of various evaluation pitfalls.
First, the basic programmable block (such as CLB slice in Xilinx FPGAs) has
a different structure and different capabilities for various FPGA families from
different vendors. Taking this issue into account, we suggest avoiding any com-
parisons across family lines. Secondly, all modern FPGAs include multiple ded-
icated resources, which can be used to implement specific functionality. These
resources include Block RAMs (BRAMs), multipliers (MULs), and DSP units
in Xilinx FPGAs, and memory blocks, multipliers, and DSP units in Altera FP-
GAs. In order to implement a specific operation, some of these resources may be
interchangable, but there is no clear conversion factor to express one resource in
terms of the other.

Therefore, we suggest in the general case, treating resource utilization as a
vector, with coordinates specific to a given FPGA family. For example,

Resource UtilizationSpartan3 = (#CLBslices,#BRAMs, #MULs) (2)

Taking into account that vectors cannot be easily compared to each other, we have
decided to opt out of using any dedicated resources in the hash function implemen-
tations used for our comparison. Thus, all coordinates of our vectors, other than
the first one have been forced (by choosing appropriate options of the synthesis
and implementation tools) to be zero. This way, our resource utilization (further
referred to as Area) is characterized using a single number, specific to the given
family of FPGAs, namely the number of CLB slices (#CLBslices) for Xilinx FP-
GAs, the number of Logic Elements (#LE) for Cyclone II and Cyclone III, and
the number of Adaptive Look-Up Tables (#ALUT) in Stratix II and Stratix III.

4 Uniform Interface

In order to remove any ambiguity in the definition of our hardware cores for
SHA-3 candidates, and in order to make our implementations as practical as
possible, we have developed an interface shown in Fig. 1a, and described below.
In a typical scenario, the SHA core is assumed to be surrounded by two standard
FIFO modules: Input FIFO and Output FIFO, as shown in Fig. 1b. In this
configuration, SHA core is an active module, while a surrounding logic (FIFOs)
is passive. Passive logic is much easier to implement, and in our case is composed
of standard logic components, FIFOs, available in any major library of IP cores.

Each FIFO module generates signals empty and full, which indicate that the
FIFO is empty and/or full, respectively. Each FIFO accepts control signals
write and read, indicating that the FIFO is being written to and/or read from,
respectively.

268 K. Gaj, E. Homsirikamol, and M. Rogawski

Fig. 1. a) Input/output interface of a SHA core. b) A typical configuration of a SHA
core connected to two surrounding FIFOs.

The aforementioned assumptions about the use of FIFOs as surrounding mod-
ules are very natural and easy to meet. For example, if a SHA core implemented
on an FPGA communicates with an outside world using PCI, PCI-X, or PCIe
interface, the implementations of these interfaces most likely already include In-
put and Output FIFOs, which can be directly connected to the SHA core. If
a SHA core communicates with another core implemented on the same FPGA,
then FIFOs are often used on the boundary between the two cores in order to
accommodate for any differences between the rate of generating data by one core
and the rate of accepting data by another core.

Additionally, the inputs and outputs of our proposed SHA core interface do
not need to be necessarily generated/consumed by FIFOs. Any circuit that can
support control signals src ready and src read can be used as a source of data.
Any circuit that can support control signals dst ready and dst write can be used
as a destination for data.

The exact format of an input to the SHA core, for the case of pre-padded
messages, is shown in Fig. 2. Two scenarios of operation are supported. In the
first scenario, the message bitlength after padding is known in advance and is
smaller than 2w. In this scenario, shown in Fig. 2a, the first word of input rep-
resents message length after padding, expressed in bits. This word has the least
significant bit, representing a flag called last, set to one. This word is followed
by the message length before padding. This value is required by several SHA-
3 algorithms using internal counters (such as BLAKE, ECHO, Shavite-3, and
Skein), even if padding is done outside of the SHA core. These two control words
are followed by all words of the message.

The second format, shown in Fig. 2b, is used when either message length is
not known in advance, or it is greater than 2w. In this case, the message is pro-
cessed in segments of data denoted as seg 0, seg 1,. . . ,seg n-1. For the ease of
processing data by the hash core, the size of the segments, from seg 0 to seg n-2
is required to be always an integer multiple of the block size b, and thus also of
the word size w. The least significant bit of the segment length expressed in bits
is thus naturally zero, and this bit, treated as a flag called last, can be used to
differentiate between the last segment and all previous segments of the message.

Fair and Comprehensive Methodology for Comparing Hardware Performance 269

Fig. 2. Format of input data for two different operation scenarios: a) with message
bitlength known in advance, and b) with message bitlength unknown in advance. No-
tation: msg len – message length after padding, msg len bp – message length before
padding, seg i len – segment i length after padding, seg i len bp – segment i length
before padding, last – a one-bit flag denoting the last segment of the message (or
one-segment message), “|” – bitwise OR.

The last segment before padding can be of arbitrary length < 2w. Scenario a) is a
special case of scenario b). In case the SHA core supports padding, the protocol
can be even simpler, as explained in [14].

5 Optimization Target and Design Methodology

Our study is performed using the following assumptions. Only the SHA-3 can-
didate variants with a 256-bit output are compared in this paper. Padding is
assumed to be done outside of the hash cores (e.g., in software). All investigated
hash functions have very similar padding schemes, which would lead to similar
absolute area overhead if implemented as a part of the hardware core.

Only the primary mode of operation is supported for all functions. Special
modes, such as tree hashing or MAC mode are not implemented. The salt val-
ues are fixed to all zeros in all SHA-3 candidates supporting this special input
(namely BLAKE, ECHO, SHAvite-3, and Skein).

We believe that the choice of the primary optimization target is one of the
most important decisions that needs to be made before the start of the com-
parison. The optimization target should drive the design process of every SHA-3
candidate, and it should also be used as a primary factor in ranking the obtained
SHA-3 cores. The most common choices are: Maximum Throughput, Minimum
Latency, Minimum Area, Throughput to Area Ratio, etc.

Our choice is the Throughput to Area Ratio, where Throughput is defined as
Throughput for long messages, and Area is expressed in terms of the number of
basic programmable logic blocks specific to a given FPGA family. This choice has
multiple advantages. First, it is practical, as hardware cores are typically applied

270 K. Gaj, E. Homsirikamol, and M. Rogawski

in situations, where the size of the processed data is significant and the speed of
processing is essential. Otherwise, the input/output latency overhead associated
with using a hardware accelerator dominates the total processing time, and the
cost of using dedicated hardware (FPGA) is not justified. Optimizing for the best
ratio provides a good balance between the speed and the cost of the solution.

Secondly, this optimization criterion is a very reliable guide throughout the
entire design process. At every junction where the decisions must be made,
starting from the choice of a high-level hardware architecture down to the choice
of the particular FPGA tool options, this criterion facilitates the decision process,
leaving very few possible paths for further investigation.

On the contrary, optimizing for Throughput alone, leads to highly unrolled
hash function architectures, in which a relatively minor improvement in speed
is associated with a major increase in the circuit area. In hash function cores,
latency, defined as a delay between providing an input and obtaining the corre-
sponding output, is a function of the input size. Since various sizes may be most
common in specific applications, this parameter is not a well-defined optimization
target. Finally, optimizing for area leads to highly sequential designs, resembling
small general-purpose microprocessors, and the final product depends highly on
the maximum amount of area (e.g., a particular FPGA device) assumed to be
available.

Our design of all 14 SHA-3 candidates followed an identical design method-
ology. Each SHA core is composed of the Datapath and the Controller. The
Controller is implemented using three main Finite State Machines, working in
parallel, and responsible for the Input, Main Processing, and the Output, re-
spectively. As a result, each circuit can simultaneously perform the following
three tasks: output hash value for the previous message, process a current block
of data, and read the next block of data. The parameters of the interface are
selected in such a way that the time necessary to process one block of data is
always larger or equal to the time necessary to read the next block of data. This
way, the processing of long streams of data can happen at full speed, without any
visible input interface overhead. The finite state machines responsible for input
and output are almost identical for all hash function candidates; the third state
machine, responsible for main data processing, is based on a similar template.
The similarity of all designs and reuse of common building blocks assures a high
fairness of the comparison.

The design of the Datapath starts from the high level architecture. At this
point, the most complex task that can be executed in an iterative fashion, with
the minimum overhead associated with multiplexing inputs specific to a given
iteration round, is identified. The proper choice of such a task is very important,
as it determines both the number of clock cycles per block of the message and
the circuit critical path (minimum clock period).

It should be stressed that the choice of the most complex task that can be
executed in an iterative fashion should not follow blindly the specification of a
function. In particular, quite often one round (or one step) from the description
of the algorithm is not the most suitable component to be iterated in hardware.

Fair and Comprehensive Methodology for Comparing Hardware Performance 271

Table 1. Main iterative tasks of the hardware architectures of SHA-3 candidates op-
timized for the maximum Throughput to Area ratio

Function Main Iterative Task Function Main Iterative Task

BLAKE Gi..Gi+3 JH Round function R8

BMW entire function Keccak Round R
CubeHash one round Luffa The Step Function, Step
ECHO AES round/AES round/ Shabal Two iterations

BIG.SHIFTROWS, BIG.MIXCOLUMNS of the main loop
Fugue 2 subrounds SHAvite-3 AES round

(ROR3, CMIX, SMIX)
Groestl Modified AES round SIMD 4 steps of the

compression function
Hamsi Truncated Non-Linear Skein 8 rounds of

Permutation P Threefish-256

Table 2. Major operations of SHA-3 candidates (other than permutations, fixed shifts
and fixed rotations). mADDn denotes a multioperand addition with n operands.

Function NTT Linear S-box GF MUL MUL mADD ADD Boolean
code /SUB

BLAKE mADD3 ADD XOR
BMW mADD17 ADD,SUB XOR
CubeHash ADD XOR
ECHO AES 8x8 x02, x03 XOR
Fugue AES 8x8 x04..x07 XOR
Groestl AES 8x8 x02..x07 XOR
Hamsi LC[128, Serpent XOR

16,70] 4x4
JH Serpent x2, x5 XOR

4x4
Keccak NOT,AND,XOR
Luffa 4x4 x2 XOR
Shabal x3, x5 ADD,SUB NOT,AND,XOR
SHAvite-3 AES 8x8 x02, x03 NOT,XOR
SIMD NTT128 x185, x233 mADD3 ADD NOT,AND,OR
Skein ADD XOR
SHA-256 mADD5 NOT,AND,XOR

Either multiple rounds (steps) or fractions thereof may be more appropriate.
In Table 1 we summarize our choices of the main iterative tasks of SHA-3 can-
didates. Each such task is implemented as combinational logic, surrounded by
registers.

The next step is an efficient implementation of each combinational block
within the DataPath. In Table 2, we summarize major operations of all
SHA-3 candidates that require logic resources in hardware implementations.
Fixed shifts, fixed rotations, and other more complex permutations are omit-
ted because they appear in all candidates and require only routing resources
(programmable interconnects). The most complex out of logic operations are
the Number Theoretic Transform (NTT) [15] in SIMD, linear code (LC) [16] in
Hamsi, and basic operations of AES (8x8 AES S-box and multiplication by a

272 K. Gaj, E. Homsirikamol, and M. Rogawski

constant in the Galois Field GF(28)) in ECHO, Fugue, Groestl, and SHAvite-3;
and multioperand additions in BLAKE, BMW, SIMD, and SHA-256.

For each of these operations we have implemented at least two alternative
architectures. NTT was optimized by using a 7-stage Fast Fourier Transform
(FFT) [15]. In Hamsi, the linear code was implemented using both logic (matrix
by vector multiplications in GF(4)), and using look-up tables. AES 8x8 S-boxes
(SubBytes) were implemented using both look-up tables (stored in distributed
memories), and using logic only (following method described in [17], Section
10.6.1.3). Multi-operand additions were implemented using the following four
methods: carry save adders (CSA), tree of two operand adders, parallel counter,
and a “+” in VHDL. Finally, integer multiplications by 3 and 5 in Shabal have
been replaced by a fixed shift and addition.

All optimized implementations of basic operations have been applied uni-
formly to all SHA-3 candidates. In case the initial testing did not provide a
strong indication of superiority of one of the alternative methods, the entire
hash function unit was implemented using two alternative versions of the basic
operation code, and the results for a version with the better throughput to area
ratio have been listed in the result tables.

All VHDL codes have been thoroughly verified using a universal testbench,
capable of testing an arbitrary hash function core that follows interface described
in Section 4 [18]. A special padding script was developed in Perl in order to pad
messages included in the Known Answer Test (KAT) files distributed as a part of
each candidates submission package. An output from the script follows a similar
format as its input, but includes apart from padding bits also the lengths of the
message segments, defined in Section 4, and shown schematically in Fig. 2b. The
generation of a large number of results was facilitated by an open source tool
ATHENa (Automated Tool for Hardware EvaluatioN) [18]. This benchmarking
environment was also used to optimize requested synthesis and implementation
frequencies and other tool options.

6 Results

In Table 3, we summarize the major parameters of our hardware architectures for
all 14 SHA-3 candidates, as well as the current standard SHA-256. Block size, b,
is a feature of the algorithm, and is described in the specification of each SHA-3
candidate. The I/O Data Bus Width, w, is a feature of our interface described in
Section 4. It is the size of the data buses, din and dout, used to connect the SHA
core with external logic (such as Input and Output FIFOs). The parameter w
has been chosen to be equal to 64, unless there was a compelling reason to make
it smaller. The value of 64 was considered to be small enough so that the SHA
cores fit in all investigated FPGAs (even the smallest ones) without exceeding
the maximum number of user pins. At the same time, setting this value to any
smaller power of two (e.g., 32) would increase the time necessary to load input
data from the input FIFO and store the hash value to the output FIFO. In some
cases, it would also mean that the time necessary for processing a single block

Fair and Comprehensive Methodology for Comparing Hardware Performance 273

Table 3. Timing characteristics of our hardware architectures of SHA-3 candidates.
Notation: T – minimum clock period in ns (specific for each algorithm and each FPGA
device, see Table 6), N - Number of blocks of an input message after padding.

Function Block size, b I/O Data Bus Time to hash Throughput
[bits] Width, w N message blocks [Mbit/s]

[bits] [clock cycles]

BLAKE 512 64 2+8+20·N+4 512/(20·T)
BMW 512 64 2+
8/8�+N+
4/8� 512/T
CubeHash 256 64 2+4+16·N+160+4 256/(16·T)
ECHO 1536 64 3+24+27·N+4 1536/(27·T)
Fugue 32 32 2+N+18+8 32/T
Groestl 512 64 3+8+21·N+4 512/(21·T)
Hamsi 32 32 3+1+3·(N-1)+6+8 32/(3·T)
JH 512 64 3+8+36·N+4 512/(36·T)
Keccak 1088 64 3+17+24·N+4 1088/(24·T)
Luffa 256 64 3+4+9·N+9+4 256/(9·T)
Shabal 512 64 3+8+1+25·N+3·25+4 512/(25·T)
Shavite-3 512 64 3+8+37·N+4 512/(37·T)
SIMD 512 64 3+8+8+9·N+4 512/(9·T)
Skein 256 64 2+4+9·N+4 256/(9·T)
SHA-256 512 32 2+1+65·N+8 512/(65·T)

of data would be smaller than the time of loading the next block of data, which
would decrease the overall throughput. The only exceptions are made in case of
Fugue and Hamsi, which have a block size b equal to 32 bits. Additionally, in the
old standard SHA-256, the input/output data bus is set naturally to 32-bits, as
the message scheduling unit accepts only one word of data per clock cycle.

In case of BMW, an additional faster i/o clock was used on top of the main
clock shown in Fig. 1a. This faster clock is driving input/output interfaces of the
SHA core, as well as surrounding FIFOs. The ratio of the i/o clock frequency
to the main clock frequency was selected to be 8, so the entire block of message
(512 bits) can be loaded in a single clock cycle of the main clock (8 cycles of the
fast i/o clock).

The forth column of Table 3 contains the detailed formulas for the number
of clock cycles necessary to hash N blocks of the message after padding. The
formulas include the time necessary to load the message length, load input data
from the FIFO, perform all necessary initializations, perform main processing,
perform all required finalizations, and then send the result to the output FIFO.
Finally, the last column contains the formula for the circuit throughput for long
messages as defined by equation (1).

In Table 4, we list absolute values of the major parameters describing our
implementations for one particular FPGA family, Xilinx Virtex 5. According to
this table the highest throughput to area ratio is achieved by Keccak, Luffa,
Groestl, and CubeHash. The highest absolute throughput is accomplished by

274 K. Gaj, E. Homsirikamol, and M. Rogawski

Table 4. Major performance measures of SHA-3 candidates when implemented in
Xilinx Virtex 5 FPGAs. Notation: Tempty – Time to hash an empty message (after this
message is padded in software), T100B – Time to hash a 100-byte message (after this
message is padded in software).

Function Clk Freq Area Throughput Throughput Tempty T100B

[MHz] [CLB slices] [Mbits/s] to Area Ratio [ns] [ns]

BLAKE 102.0 1851 2610.6 1.4 333.4 529.5
BMW 10.9 4400 5576.7 1.3 459.1 550.9
CubeHash 199.4 730 3189.8 4.4 922.9 1163.7
ECHO 178.1 6453 10133.4 1.6 308.8 308.8
Fugue 98.5 956 3151.2 3.3 304.6 558.5
Groestl 355.9 1884 8676.5 4.6 101.2 160.2
Hamsi 248.1 946 2646.2 2.8 96.7 399.1
JH 282.2 1275 4013.5 3.1 180.7 308.3
Keccak 238.4 1229 10806.5 8.8 201.4 201.4
Luffa 281.5 1154 8008.0 6.9 103.0 198.9
Shabal 128.1 1266 2624.0 2.1 905.4 1100.5
SHAvite-3 208.6 1130 2885.9 2.6 249.3 426.8
SIMD 40.9 9288 2325.9 0.3 635.9 1076.2
Skein 49.8 1312 1416.1 1.1 381.6 924.0
SHA-256 207.0 433 1630.5 3.8 352.7 1294.7

Table 5. Results for the reference design of SHA-256

Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III

Max. Clk Freq. 90.8 183.0 207.0 111.0 126.9 158.1 212.8
[MHz]

Throughput 715.6 1441.6 1630.5 874.7 999.3 1245.2 1676.3
[Mbit/s]

Area 838 838 433 1655 1653 973 963
Throughput 0.85 1.72 3.77 0.53 0.60 1.28 1.74
to Area Ratio

Table 6. Clock frequencies of all SHA-3 candidates and SHA-256 expressed in MHz
(post placing and routing)

Function Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III

BLAKE 41.87 79.82 101.98 52.40 52.37 85.77 109.21
BMW 4.19 12.37 10.89 7.69 8.41 13.45 16.45
CubeHash 84.70 187.58 199.36 115.67 133.83 179.40 237.64
ECHO 52.10 131.90 176.24 N/A 105.70 109.50 164.20
Fugue 39.67 72.86 98.47 53.25 60.71 83.75 123.64
Groestl 105.72 234.74 355.87 132.00 148.46 216.73 270.27
Hamsi 90.37 200.88 248.08 148.83 183.52 193.87 294.81
JH 119.36 221.58 282.20 173.43 215.89 267.45 364.30
Keccak 96.32 202.47 238.38 165.07 174.28 198.65 296.30
Luffa 129.84 260.28 281.53 171.64 173.43 219.88 307.31
Shabal 30.99 114.03 128.12 69.57 68.76 105.40 126.87
SHAvite-3 84.60 152.23 208.55 95.40 114.40 170.00 255.00
SIMD 17.20 29.25 40.89 21.66 23.97 37.07 47.40
Skein 18.22 38.16 49.79 22.30 25.14 38.89 52.29
SHA-512 90.84 183.02 207.00 111.04 126.86 158.08 212.81

Fair and Comprehensive Methodology for Comparing Hardware Performance 275

Table 7. Throughput of all SHA-3 candidates normalized to the throughput of SHA-
256. N/A means that the design did not fit within any device of a given family.

Function Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall

Keccak 6.10 6.37 6.63 8.56 7.91 7.23 8.01 7.21
ECHO 4.14 5.21 6.15 N/A 6.02 5.00 5.57 5.30
Luffa 5.16 5.14 4.91 5.58 4.94 5.02 5.21 5.13
Groestl 3.60 3.97 5.32 3.68 3.62 4.24 3.93 4.02
BMW 3.00 4.39 3.42 4.50 4.31 5.53 5.02 4.48
JH 2.37 2.19 2.46 2.82 3.07 3.05 3.09 2.70
CubeHash 1.89 2.08 1.96 2.12 2.14 2.31 2.27 2.10
Fugue 1.77 1.62 1.93 1.95 1.94 2.15 2.36 1.95
SHAvite-3 1.64 1.46 1.77 1.51 1.58 1.89 2.11 1.70
Hamsi 1.35 1.49 1.62 1.82 1.96 1.66 1.88 1.67
BLAKE 1.50 1.42 1.60 1.53 1.34 1.76 1.67 1.54
Shabal 0.89 1.62 1.61 1.63 1.41 1.73 1.55 1.46
SIMD 1.37 1.15 1.43 1.41 1.36 1.69 1.61 1.38
Skein 0.72 0.75 0.87 0.73 0.72 0.89 0.89 0.79

Table 8. Area (utilization of programmable logic blocks) of all SHA-3 candidates
normalized to the area of SHA-256

Function Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall

CubeHash 1.81 1.81 1.69 1.87 1.88 1.99 2.01 1.86
Hamsi 2.17 2.16 2.18 1.92 1.94 2.40 2.41 2.16
BLAKE 4.96 4.87 4.27 2.17 2.16 2.00 2.04 2.96
Luffa 3.28 3.29 2.67 2.74 2.77 3.40 3.43 3.07
Skein 3.41 3.45 3.03 3.28 3.34 3.68 3.74 3.41
Shabal 3.75 3.84 2.92 3.67 3.68 3.90 3.74 3.63
Keccak 3.97 3.99 2.84 3.77 3.62 4.20 4.63 3.82
JH 4.84 4.78 2.94 4.37 4.31 3.18 3.24 3.88
SHAvite-3 4.91 4.91 2.61 5.68 5.64 2.57 2.59 3.89
Fugue 4.26 4.44 2.21 5.85 5.87 3.70 3.73 4.11
Groestl 15.96 16.01 4.35 4.60 4.50 3.21 3.22 5.86
BMW 12.07 13.45 10.16 12.00 12.02 12.99 13.12 12.24
SIMD 20.97 19.99 21.45 18.53 18.57 23.03 23.24 20.39
ECHO 30.87 28.48 14.90 N/A 39.77 22.29 22.52 25.29

Table 9. Throughput to Area Ratio of all SHA-3 candidates normalized to the through-
put to area ratio of SHA-256

Function Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall

Keccak 1.54 1.60 2.34 2.27 2.18 1.72 1.73 1.89
Luffa 1.57 1.56 1.84 2.04 1.78 1.48 1.52 1.67
CubeHash 1.04 1.15 1.16 1.13 1.14 1.16 1.13 1.13
Hamsi 0.62 0.69 0.74 0.94 1.01 0.69 0.78 0.77
JH 0.49 0.46 0.84 0.65 0.71 0.96 0.95 0.70
Groestl 0.23 0.25 1.22 0.80 0.81 1.32 1.22 0.69
BLAKE 0.30 0.29 0.37 0.71 0.62 0.88 0.82 0.52
Fugue 0.42 0.36 0.88 0.33 0.33 0.58 0.63 0.47
SHAvite-3 0.33 0.30 0.68 0.27 0.28 0.74 0.81 0.44
Shabal 0.24 0.42 0.55 0.44 0.38 0.44 0.41 0.40
BMW 0.25 0.33 0.34 0.38 0.36 0.43 0.38 0.37
Skein 0.21 0.22 0.29 0.22 0.21 0.24 0.24 0.23
ECHO 0.13 0.18 0.41 N/A 0.15 0.22 0.25 0.21
SIMD 0.07 0.06 0.07 0.08 0.07 0.07 0.07 0.07

276 K. Gaj, E. Homsirikamol, and M. Rogawski

Fig. 3. Relative performance of all Round 2 SHA-3 Candidates in terms of the over-
all normalized throughput and the overall normalized area (with SHA-256 used as a
reference point)

Keccak, ECHO, Groestl, Luffa, and BMW. The smallest hashing time for an
empty message is achieved by Hamsi, Groestl, Luffa, and JH. For a 100 byte
message, the list of the first four candidates changes to Groestl, Luffa, Keccak,
and JH. As one can see, the execution time for small messages is not strongly cor-
related with the throughput for long messages, and therefore it must be treated
as a separate evaluation criterion (as discussed in Section 3).

In Table 5, we summarize the absolute results obtained for our implemen-
tation of the current standard SHA-256. The results are repeated for all seven
FPGA families used in our study. As hardware architecture, we have selected the
architecture by Chaves et al., presented at CHES 2006 [19]. This architecture has
been specifically optimized for the maximum throughput to area ratio [19][20],
and is considered one of the best known SHA-2 architectures of this type.

In Table 6, the maximum clock frequencies are listed for each pair: hash
algorithm–FPGA family. These frequencies can be used together with the for-
mulas provided in Table 3, in order to compute the exact execution times of each
algorithm (depending on the number of the message blocks, N) and the values
of the throughputs for long messages.

In the following analysis, the absolute values of the three major performance
measures: throughput, area, and the throughput to area ratio, for all SHA-3
candidates, have been normalized by dividing them by the corresponding values
for the reference implementation of SHA-256. The corresponding ratios, referred
to as normalized throughput, normalized area, and normalized throughput to
area ratios are summarized in Tables 7, 8, and 9. The Overall column represents
the geometric mean of all normalized results available for a given algorithm.
The candidate algorithms are ranked based on the value of this Overall metric,
representing the performance for a wide range of different FPGA families.

Fair and Comprehensive Methodology for Comparing Hardware Performance 277

Interestingly, based on Table 9, only three candidates, Keccak, Luffa, and
CubeHash outperform SHA-256 in terms of the throughput to area ratio. The
additional four candidates, Hamsi, JH, Groestl, and BLAKE, have the overall
normalized ratio higher than 0.5.

In Fig. 3, we present a two dimensional diagram, with Normalized Area on the
X-axis and Normalized Throughput on the Y-axis. The algorithms seem to fall
into several major groups. Group with the high normalized throughput (>5),
medium normalized area (<4), and the high normalized throughput to area
ratio (>1.5), include Keccak and Luffa. Groestl, BMW, and ECHO, have all
high normalized throughput (>4), but their normalized area varies significantly
from about 6 in case of Groestl, through 12 for BMW, up to over 25 in case of
ECHO. SIMD is both relatively slow (less then 2 times faster than SHA-256)
and big (more than 20 times bigger than SHA-256). The last group includes 8
candidates covering the range of the normalized throughputs from 0.8 to 2.7,
and the normalized areas from 1.9 to 4.1.

7 Conclusions and Future Work

Our evaluation methodology, applied to 14 Round 2 SHA-3 candidates, has
demonstrated large differences among competing candidates. The ratio of the
best result to the worst result was equal to about 9 in terms of the throughput
(Keccak vs. Skein), over 13 times in terms of area (CubeHash vs. ECHO), and
about 27 in terms of our primary optimization target, the throughput to area
ratio (Keccak vs. SIMD). Only three candidates, Keccak, Luffa, and CubeHash,
have demonstrated the throughput to area ratio better than the current standard
SHA-256. Out of these three algorithms, Keccak and Luffa have also demon-
strated very high throughputs, while CubeHash outperformed other candidates
in terms of minimum area. All candidates except Skein outperform SHA-256 in
terms of the throughput, but at the same time none of them matches SHA-256
in terms of the area.

Future work will include the evaluation of the remaining variants of SHA-3
candidates (such as variants with 224, 384, and 512 bit outputs, and an all-in-one
architecture). The uniform padding units will be added to each SHA core, and
their cost estimated. We will also investigate the influence of synthesis tools from
different vendors (e.g., Synplify Pro from Synopsys). The evaluation may be also
extended to the cases of hardware architectures optimized for the minimum area
(cost), maximum throughput (speed), or minimum power consumption. Each
algorithm will be also evaluated in terms of its suitability for implementation
using dedicated FPGA resources, such embedded memories, dedicated multipli-
ers, and DSP units. Finally, an extension of our methodology to the standard-cell
ASIC technology will be investigated.

Acknowledgments. The authors would like to acknowledge all students from
the Fall 2009 edition of the George Mason University course entitled “Digital
System Design with VHDL,” for conducting initial exploration of the design
space of all SHA-3 candidates.

278 K. Gaj, E. Homsirikamol, and M. Rogawski

References

1. Nechvatal, J., et al.: Report on the Development of the Advanced Encryption
Standard (AES), http://csrc.nist.gov/archive/aes/round2/r2report.pdf

2. NESSIE, https://www.cosic.esat.kuleuven.be/nessie/
3. eSTREAM, http://www.ecrypt.eu.org/stream/
4. Gaj, K., Chodowiec, P.: Fast Implementation and Fair Comparison of the Final

Candidates for Advanced Encryption Standard Using Field Programmable Gate
Arrays. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 84–99. Springer,
Heidelberg (2001)

5. Hwang, D., Chaney, M., Karanam, S., Ton, N., Gaj, K.: Comparison of FPGA-
targeted Hardware Implementations of eSTREAM Stream Cipher Candidates. In:
State of the Art of Stream Ciphers Workshop, SASC 2008, February, pp. 151–162
(2008)

6. Good, T., Benaissa, M.: Hardware Performance of eStream Phase-III Stream Ci-
pher Candidates. In: State of the Art of Stream Ciphers Workshop, SASC 2008,
February 2008, pp. 163–173 (2008)

7. SHA-3 Contest, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
8. SHA-3 Zoo, http://ehash.iaik.tugraz.at/wiki/TheSHA-3Zoo
9. Drimer, S.: Security for Volatile FPGAs. ch. 5: The Meaning and Reproducibility

of FPGA Results. Ph.D. Dissertation, University of Cambridge, Computer Labo-
ratory, uCAM-CL-TR-763 (Nov 2009)

10. SHA-3 Hardware Implementations,
http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations

11. Tilich, S., et al.: High-speed Hardware Implementations of Blake, Blue Mid-
night Wish, Cubehash, ECHO, Fugue, Groestl, Hamsi, JH, Keccak, Luffa, Shabal,
Shavite-3, SIMD, and Skein. Cryptology, ePrint Archive, Report 2009/510 (2009)

12. Kobayashi, K., et al.: Evaluation of Hardware Performance for the SHA-3 Candi-
dates Using SASEBO-GII. Cryptology, ePrint Archive, Report 2010/010 (2010)

13. ECRYPT Benchmarking of Cryptographic Systems, http://bench.cr.yp.to
14. CERG GMU Group: Hardware Interface of a Secure Hash Algorithm (SHA),

http://cryptography.gmu.edu/athena/index.php?id=interfaces

15. Meyer-Baese, U.: Digital Signal Processing with Field Programmable Gate Arrays,
ch. 6, 7, 3rd edn., pp. 343–475. Springer, Heidelberg (2007)

16. van Lint, J.H.: Introduction to Coding Theory, 2nd edn. Springer, Heidelberg
(1992)

17. Gaj, K., Chodowiec, P.: FPGA and ASIC Implementations of AES. In: Crypto-
graphic Engineering, ch. 10, pp. 235–294. Springer, Heidelberg (2009)

18. ATHENa Project Website, http://cryptography.gmu.edu/athena
19. Chaves, R., Kuzmanov, G., Sousa, L., Vassiliadis, S.: Improving SHA-2 Hardware

Implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 298–310. Springer, Heidelberg (2006)

20. Chaves, R., Kuzmanov, G., Sousa, L., Vassiliadis, S.: Cost Efficient SHA Hard-
ware Accelerators. IEEE Trans. Very Large Scale Integration Systems 16, 999–1008
(2008)

http://csrc.nist.gov/archive/aes/round2/r2report.pdf
https://www.cosic.esat.kuleuven.be/nessie/
http://www.ecrypt.eu.org/stream/
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://ehash.iaik.tugraz.at/wiki/TheSHA-3Zoo
http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations
http://bench.cr.yp.to
http://cryptography.gmu.edu/athena/index.php?id=interfaces
http://cryptography.gmu.edu/athena

Performance Analysis of the SHA-3 Candidates
on Exotic Multi-core Architectures

Joppe W. Bos1 and Deian Stefan2

1 Laboratory for Cryptologic Algorithms, EPFL, CH-1015 Lausanne, Switzerland
2 Dept. of Electrical Engineering, The Cooper Union, NY 10003, New York, USA

Abstract. The NIST hash function competition to design a new crypto-
graphic hash standard ‘SHA-3’ is currently one of the hot topics in cryp-
tologic research, its outcome heavily depends on the public evaluation
of the remaining 14 candidates. There have been several cryptanalytic
efforts to evaluate the security of these hash functions. Concurrently,
invaluable benchmarking efforts have been made to measure the per-
formance of the candidates on multiple architectures. In this paper we
contribute to the latter; we evaluate the performance of all second-round
SHA-3 candidates on two exotic platforms: the Cell Broadband Engine
(Cell) and the NVIDIA Graphics Processing Units (GPUs). Firstly, we
give performance estimates for each candidate based on the number of
arithmetic instructions, which can be used as a starting point for eval-
uating the performance of the SHA-3 candidates on various platforms.
Secondly, we use these generic estimates and Cell-/GPU-specific opti-
mization techniques to give more precise figures for our target platforms,
and finally, we present implementation results of all 10 non-AES based
SHA-3 candidates.

Keywords: Cell Broadband Engine, Graphics Processing Unit, Hash
function, SHA-3.

1 Introduction

The design and analysis of cryptographic hash functions have come under re-
newed interest with the public competition1 commenced by the US National In-
stitute of Standards and Technology (NIST) to develop a new cryptographic hash
algorithm intended to replace the current standard Secure Hash Algorithm-2
(SHA-2) [28]. The new hash algorithm will be called ‘SHA-3’ and will be sub-
ject to a Federal Information Processing Standard (FIPS), similar to the Ad-
vanced Encryption Standard (AES) [27]. The competition is NIST’s response
to recent advances in the cryptanalysis of hash functions, particularly those af-
fecting widely deployed algorithms, including MD5 and SHA-1. Although these
breakthroughs have no direct consequence on the current cryptographic hash
standard SHA-2, a successful attack on SHA-2 would have catastrophic effects
on the security of applications relying on hash functions (e.g., digital signatures).
1 See http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 279–293, 2010.
c© International Association for Cryptologic Research 2010

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

280 J.W. Bos and D. Stefan

Such attacks are believed to be quite probable due to the structural similarities
between SHA-2 and its broken ancestors.

Competition History. The NIST competition officially started in late
October 2008 with various contributions from academia, industry and govern-
ment institutions. A total of 64 proposals were submitted worldwide, of which
51 met the minimum submission requirements and were announced as the first-
round candidates. Compared to the AES competition, which had 15 candidates,
this number was quite large. In late July 2009, NIST narrowed the number of
candidates for the second round to a more manageable size of 14. The total num-
ber of candidates is expected to be reduced to about 5 (finalists) by the third
quarter of 2010. The new hash function standard(s) will be announced in 2012.

Motivation. The candidates are reviewed based on three main evaluation cri-
teria: security, cost, and algorithmic and implementation characteristics [29].
Through the second round, nearly all of the eliminated algorithms were found
to suffer from either efficiency or security flaws. Furthermore, despite suffering
from minor security issues, some of the high-performing candidates survived the
elimination process [35]; this clearly highlights the importance of efficiency in
the evaluation procedure.

One of the motivations behind this work is NIST’s predisposition for algo-
rithms with greater flexibility [29]; specifically, NIST states that is it preferable
if “the algorithm can be implemented securely and efficiently on a wide vari-
ety of platforms.” We endeavor to evaluate the performance of the remaining
candidates on two exotic platforms: the high-end Cell Broadband Engine ar-
chitecture (Cell) and the NVIDIA Graphics Processing Units (GPUs). For these
platforms, which allow the use of vectorization optimization techniques, multiple
input streams of equal length are processed at once using SIMD (single instruc-
tion, multiple data) and SIMT (single instruction, multiple threads) techniques
for the Cell and GPUs, respectively. Due to the low prices, wide availability,
and shift in architecture design towards many-core processors [34], it is of valu-
able interest to evaluate the performance of the Cell and GPUs as cryptologic
accelerators.

There are numerous cryptographic applications in which the computation of a
message digest of a fixed-length message is necessary. For instance, the work of
Bellare and Rogaway [3], standardized in [36,21,1], proposes a mask generation
function used in optimal asymmetric encryption that is based on a hash function
which takes a fixed-length input. Further, protocols which use hash-based mes-
sage authentication codes (HMAC) require the computation of a message digest
of fixed-length blocks. Specifically, given hash function H , message m, and key k,
HMAC is defined as: H((k⊕ opad)||H((k⊕ ipad)||m)). In this case, || denotes con-
catenation, and opad and ipad are fixed-length constants such that the outermost
hash is of a fixed-length block (cf. [22] for more details). Thus, computing the mes-
sage digest of a batch of such fixed-length input messages, e.g., in high-end servers,
can be efficiently accomplished with the implementations proposed in this work.

Performance Analysis of the SHA-3 Candidates 281

Additionally, in a cryptanalytic setting such implementationsmaybeused to speed
up brute-force password cracking, allow for hash function cube attack/tester anal-
ysis using high-dimensional cubes, among many other applications.

Our Contribution. We present a new software performance analysis of all
second-round SHA-3 candidates on the Cell and GPU. Our results are three-fold:

1. We present an in-depth performance analysis of all SHA-3 candidates by
investigating their internal operations. It is worth noting that the aim of this
work is not to claim that our techniques are optimal (hence, the provided
estimates are indeed subject to change). Rather, our intended goal is to make
a fair, reliable, and accurate comparison between all second-round SHA-3
candidates, which might serve as a reference before the final candidates are
announced. Due to the significant number of candidates, all using different
techniques, this is not a straightforward task. To facilitate the analysis, we
separate the AES-inspired candidates from the others. For the former case,
we make extensive use of the work by Osvik et al. [33], which introduced
the fastest results of AES on our target architectures. For the latter case,
however, a more careful analysis, starting from scratch, is required.

2. We propose specific optimization techniques for each of our target platforms;
in combination with our estimation framework, more precise estimates per
architecture are given for all second-round SHA-3 candidates.

3. We complement this framework by providing real implementations of all non-
AES based candidates on the target platforms. We show that our techniques
are indeed applicable, and that the base estimates are usually realistic.

Related Work. The PlayStation 3 (PS3) video game console, which contains
the Cell architecture, has been previously used to find chosen-prefix collisions for
the cryptographic hash function MD5 [37]. Fast multi-stream implementations
of MD5, SHA-1 and SHA-256 for the Cell are presented in [10]; from this work,
we use the performance numbers for SHA-256 as a comparison to the perfor-
mance of the SHA-3 candidates, as they outperform the single stream results
from [13] by an order of magnitude. Graphics cards have similarly been used
for MD5 collision searches [8], password cracking [26], and accelerating crypto-
graphic applications [38,25]. To the best of our knowledge, there is no previous
work implementing second-round SHA-3 candidates on the Cell architecture or
NVIDIA GT200 GPUs.

Organization. We start with a brief introduction to our target platforms in
Section 2. Several optimization techniques are described in Section 3, directly
addressing our main target architectures. Then, in Section 4 and 5 we introduce
our performance analysis and implementation results on AES-inspired and other
second round candidates, respectively. We conclude in Section 6.

2 Target Platforms

Cell Broadband Engine Architecture. The Cell architecture [20], jointly
developed by Sony, Toshiba, and IBM, is equipped with one dual-threaded, 64-bit

282 J.W. Bos and D. Stefan

in-order Power Processing Element (PPE) based on the Power 5 architecture
and 8 Synergistic Processing Elements (SPEs). Our interest is in the SPEs [39],
the main computational cores of the Cell. Each SPE consists of a Synergistic
Processing Unit (SPU), 256 KB of private memory called Local Store (LS), and
a Memory Flow Controller (MFC). To avoid the complexity of sending explicit
direct memory access requests to the MFC, all code and data must fit within
the LS.

The SPU is equipped with a large register file containing 128 registers of
128 bits each. Most SPU instructions work on 128-bit operands denoted as
quadwords. The instruction set is partitioned into two sets: one set consists of
(mainly) 4- and 8-way SIMD arithmetic instructions, while the other consists
of instructions operating on the whole quadword (including the load and store
instructions) in a single instruction, single data (SISD) manner. The SPU is an
asymmetric processor; each set of instructions is executed in a separate pipeline,
denoted by the even and odd pipeline for the SIMD and SISD instructions, re-
spectively. For instance, the {4, 8}-way SIMD left-rotate instruction is an even
instruction, while the instruction left-rotating the full quadword is dispatched
into the odd pipeline. When dependencies are avoided, a single pair of even and
odd instructions can be dispatched every clock cycle.

One of the first applications of the Cell processor was to serve as the heart of
Sony’s PS3 game console. Although the Cell contains 8 SPEs, in the PS3, one is
disabled and a second is reserved by Sony. Thus, with the first generation PS3s
the programmer has access to six SPEs, this has been disabled in the current
version of the game console. In subsequent applications, serving the supercom-
puting community, the Cell has been placed in blade servers, with newer vari-
ants containing the PowerXCell 8i, a derivative of the Cell that offers enhanced
double-precision floating-point capabilities. The SPEs are particularly useful as
(cryptographic) accelerators. For this purpose, PCIe cards are available (either
equipped with a complete Cell processor or a stripped-down version containing
4 SPEs) so that workstations can benefit from the computational power of the
SPEs.

NVIDIA Graphics Processing Units. Unlike the Cell, there are many dif-
ferent GPU architectures, though, most share the primary goal of accelerating
3-dimensional graphics (rendering) applications, such as games. In this work, we
focus on programming NVIDIA GPUs using the Compute Unified Device Archi-
tecture (CUDA) extension of the C language. With the latest GPUs implement-
ing the Fermi architecture [32], availability and interest in the older G80 series
GPUs, which have also been used for cryptologic applications (cf. [25,33,19]),
is rapidly decreasing. We therefore restrict our focus to the more-recent GT200
series GPUs.

Each GPU is equipped with several Simultaneous Multiprocessors (SMs),
varying from 24 in the GTX 260 to 30 in each of the GPUs of the GTX 295
graphics card. Each SM consists of a large register file (16384 32-bit registers),
fast 16-way banked on-chip 16KB shared memory, 8 Scalar Processors (SPs), 2
special function units (used for transcendentals), an instruction scheduler, and

Performance Analysis of the SHA-3 Candidates 283

(6-8KB) texture and (8KB) constant memory caches. The SPs are capable of
executing many instructions, including 32-bit integer arithmetic and bitwise op-
erations, which can be used to implement most cryptologic algorithms.

Although explicit SIMD access of the SM compute units (the SPs) is desirable
for many applications, the programmer is limited to writing parallel code at the
thread level [31]. Specifically, using CUDA, the programmer writes code for a
kernel which is executed by many threads (all executing the same instructions
of the kernel, though operating on different data) on the SPs. In the SIMT
programming model, threads are grouped into a thread block, which is executed
on a single SM and, consequently, these threads may synchronize execution and
use the shared memory to communicate. When launching a kernel, it is common
(and highly recommended) to execute multiple thread blocks, grouped in a grid,
which the hardware then assigns to the available SMs; to hide various latencies,
it is recommended that at least 2 blocks be available for scheduling on each
SM [31]. Note that although each SM has many resources, the shared memory
is divided among the ‘co-located’ thread blocks, and similarly the registers are
divided among the individual threads—careful consideration of an application’s
use of these resources is critical when trying to achieve high performance. Despite
these design ‘restrictions’, GPUs are very commonly being used as accelerators
for workstations, given their wide availability as moderately-priced PCIe cards.

3 Porting the SHA-3 Candidates to the Cell and GPU

Cell Broadband Engine Architecture. On the SPE architecture, all distinct
binary operations f : {0, 1}2 → {0, 1} are available, making it a suitable platform
to implement hash functions. Operations frequently used by the hash candidates,
such as rotations, shifts, and additions, are available as 4-way SIMD instructions
operating on the 4 32-bit words of a quadword, in parallel. When possible, we
use the 32-bit optimized reference code of the SHA-3 candidates as a base and
further optimize this code for the SPE architecture.

To make the code more suitable for execution on the Cell, the use of branches
is eliminated or reduced to a minimum, since all four input strings need to
be processed in an identical way. Most of the instructions used in the various
compression functions are arithmetic instructions, which go in the even pipeline.
When naively porting the code to the SPE architecture, this results in a highly
unbalanced implementation where the odd pipeline is underutilized. In order to
improve performance, some even operations, when feasible, are implemented by
a sequence of odd instructions (following a similar approach to that described
in [33]). This increases the latency of this operation, but if these instructions
can be dispatched for free with the surrounding even instructions, the overall
number of cycles decreases (while the number of overall instructions increases).

One obvious way to do this is to make use of the shuffle instruction that is
dispatched in the odd pipeline. The shuffle instruction can pick any 16 bytes
of the 32-byte (two 128-bit registers) input or select one of the byte-constants
{0x00, 0xFF, 0x80} and place them in any of the 16-byte positions of the 128-
bit output register. For example, when a 4-way SIMD shift or rotate by x (to the

284 J.W. Bos and D. Stefan

left or right) is required this is typically implemented using the even shift or
rotate instruction. When x ≡ 0 mod 8, this is simply a reordering of bytes, and
can be done for 4 32-bit integer values in parallel using the shuffle instruction.

Converting a 4-way SIMD left rotation of a quadword V by x �≡ 0 mod 8 bits
to odd instructions can be done using two odd shuffle and two odd quadword
shift instructions. When using an odd quadword rotate operation, the bits
rotated out from each 32-bit boundary are dislocated. To address this, create a
quadword W which contains, on byte positions 4i and 4i + 1, the values from
the byte location 3 + 4i and 4i from V respectively, where 0 ≤ i ≤ 3 and the
most (least) significant byte position is labeled as 0 (15). The other bytes in W ,
at byte positions 4i + 2 and 4i + 3, are set to zero. Next, V and W are shifted
left by x mod 8 using the odd quadword shift instruction. Finally, shuffle the
three bytes from V and single byte from W per word to the correct positions to
complete the 4-way SIMD rotation. This technique allows one to trade 1 even
rotate instruction for 4 odd instructions. Note that the latency of the operation
has increased from 4 cycles for the even rotate to 4×4 = 16 for the odd variant.

One of the NIST submission requirements is to provide an implementation of
the SHA-3 candidate suitable to run on a 32- and 64-bit platform [29]. However,
some of the candidates, e.g., Skein, provide a 32-bit implementation which re-
quires the use of a 64-bit data type in the compression function. This requires
to implement fast 64-bit additions and rotations built from 32-bit instructions,
since these operations, on the SPE, are only available in 32-bit flavors. A 2-way
SIMD addition can be implemented as follows. First, a 4-way SIMD carry gener-
ation (even) instruction is used to provide the carries going from the least to the
most significant 32-bit word. An odd shuffle instruction is then used to put the
two carries in the correct position, while the other two carries corresponding to
the most significant 32-bit word of each 64-bit integer are ignored. Finally, the
4-way SIMD extended addition, an addition with carry, is used to add the two
quadwords consisting of four 32-bit values considering the carries. Thus, a 64-bit
addition can be implemented using a single odd and two even instructions.

To implement an efficient 2-way SIMD rotate, the select instruction, which
is dispatched in the even pipeline, is used when a rotation by x �≡ 0 mod 8
is required. The select instruction acts as a 2-way multiplexer: depending on
the input pattern, the corresponding bit from either the first or the second
input quadword is selected as output. The approach is to first perform a full
quadword rotation to the left by x bit-positions and store this in a quadword
V1. Then, put the incorrectly-positioned rotated bits in the correct positions of
a separate quadword V2 by swapping the 64-bit double-words. Use the select
instruction to get the correct bits from the two quadwords, using a pattern,
defined by concatenating twice the 64-bit unsigned integer value 2x−1, selecting
the corresponding bit position from V1 or V2 if the bit position in the pattern
is set to zero or one respectively. Since the SPE architecture has a quadword
rotation instruction up to 7 bits and another instruction rotating by bytes, the
2-way SIMD rotation costs 3 odd rotations and one even selection for rotating
by x > 8. When x < 8, the cost is reduced by one odd rotation.

Performance Analysis of the SHA-3 Candidates 285

NVIDIA Graphics Processing Units. Compared to the SPE instruction set
architecture (ISA), the GPU parallel thread execution (PTX2) ISA [30] is con-
siderably less rich. With respect to integer arithmetic operations, programmers
have access to 32-bit bitwise operations (and, or, xor, etc.), left/right shifts, 32-
bit additions (with carry-in and carry-out), and 32-bit multiplication (sometimes
implemented using several 24-bit multiplication instructions).

Given the simplicity of PTX, to gain the most speedup from the raw com-
putational power, it is imperative that the kernels be very compact (especially
with respect to register utilization and shared memory allocation). Compact and
non-divergent kernels allow for the execution of more simultaneous threads, and
can thus increase the performance of the target hash function. Thus, when imple-
menting common hash function building blocks, a simple approach is also usually
the most optimal. For example, a rotation of a 32-bit word is implemented using
two shifts (shl and shr), and an or instruction. Furthermore, for many hash
functions we can store the full internal state, and sometimes even the input mes-
sage block, in registers. Although this limits the number of simultaneous threads
per SM, it also lowers the copies to and from (shared) memory and thereby
contributes to a faster implementation, overall. Additionally, when possible, we
manually unroll the compression functions since branching on the SMs can lead
to a degradation in performance when threads of a common thread block take
divergent paths and execution is serialized. Moreover, conditional statements
consisting of a small number of operations in each basic block are implemented
using predicate instructions, instead of branches—PTX allows for the predica-
tion of almost all instructions. Nevertheless, when branching is necessary (e.g.,
the compression function of Skein-512), the thread execution is synchronized (at
a barrier near the branch) and the branch instruction is executed uniformly by
all the threads.

For algorithms with small-to-medium sized chain values (e.g., 256- or 512-
bits), we buffer the chain values in registers. To avoid multiple kernel launches,
each thread processes multiple message blocks. This, in conjunction with the
caching of the chaining values, not only simplifies the multi-block hashing, but
also results in a faster implementation (than, for example, executing multiple
kernels and having to read/write chain values from/to global memory). For al-
gorithms with larger-sized chain values or internal states, we cache the chain
values in shared memory. In implementing algorithms that use shared memory,
we require that the thread block size always be a multiple of 16 threads (usually
at least 64 threads) and further (implicitly) assert that the n-th thread (counting
from 0) loads/stores any shared memory cached values from/to bank n mod 16,
as to avoid bank conflicts.

When considering algorithms using 64-bit operations, the number of registers
and instructions usually doubles. For example, a 64-bit addition is performed
using two additions with carry (add.cc). Similarly, rotations by x �≡ 0 mod 32 is
implemented using 4 shift and 2 or 32-bit instructions. For these algorithms,

2 We note that the PTX is an intermediate description and not the actual GPU ISA.
The latter is not publicly available.

286 J.W. Bos and D. Stefan

Table 1. The number of AES-like operations per b bytes for all AES-inspired candi-
dates and the performance estimation on the SPE and single GTX 295 GPU. (R): One
AES encryption round, SB: Substitution operation, MCX: Mix-Column operation over
X bytes (i.e., X=4 is identical to the one used in AES). Note that Shift-Row oper-
ations are ignored because it can be dispatched through the Mix-Column operation.
C/B: Cycles per byte, Gb/sec: 109 bits per seconds. The SPE estimates do not use the
T -table approach.

Hash function b (R) SB MC4 MC8 MC16
xor SPE GPU

(byte) C/B Gb/sec C/B Gb/sec

SHA-256 [10] - - - - - - - 8.2 3.1 - -
AES-128 [33] 16 10 - - - - 16 11.3 2.3 0.32 30.9
ECHO-256 192 256 - 512 - - 448 29.6 0.9 0.85 11.7
Fugue-256 4 - 32 - - 2 60 15.1 1.7 0.62 16.1
Grøstl-256 64 - 1280 - 160 - 1472 41.4 0.6 1.23 8.1
SHAvite-3-256 64 52 - - - - 1280 16.5 1.6 0.42 23.7

rather than using expensive registers to cache chain values or message blocks, we
resort to using shared memory for caching. We, again, stress that the restriction
on shared memory bank access applies to all our algorithms, and thus a 64-bit
cache value requires 2 (non-conflicting) memory accesses per 64-bit word.

4 AES-Inspired SHA-3 Candidates

A popular design choice of the SHA-3 hash function designers was to use AES-
like byte oriented operations (and, in some cases the AES round function itself)
as building blocks in the compression function of their hash function. The second-
round SHA-3 candidates following this paradigm include ECHO [4], Fugue [18],
Grøstl [16], and SHAvite-3 [9]. The motivation for using AES-like operations is
mainly because AES has successfully withstood much cryptanalytic effort and,
moreover, one can exploit the high capabilities of AES-like functions on a wide
variety of architectures. Moreover, many of the design teams have pointed out the
new Intel AES instruction set and claimed several performance figures outper-
forming the other candidates (for a more detailed analysis, cf. [5]). Considering
the possible widespread use of these processors in the future, these designs will
likely have a clear advantage.

Although several optimization methods for these hash functions are possible
on particular processors, such as using the Intel AES instruction set, we analyze
the performance of AES-inspired candidates in a more generic setting. More
precisely, we simply count the number of ‘AES-like’ operations required for the
compression function of each candidate, as this gives an intuition of how these
designs behave in architectures without native AES-instructions, such as the
PowerPC, SPARC, and most low-power microcontrollers. Table 1 provides these
rough estimates. Note that since the operations may differ per candidate, we
clearly differentiate all possibilities, particularly the variants of the ‘Mix-Column’
(MC) operation used in AES.

Performance Analysis of the SHA-3 Candidates 287

Table 2. Straight-forward estimates for the different mix-column operations without
(left) and with (right) the use of T -tables. Note that the xor and rotate instruction
counts for the T -table approach in MCX operate on (8 · X)-bit values.

XTIME xor size of table(s) xor rotate

(byte) in bytes

MC4 (AES) 4 16
1,024 3 3
4,096 3 0

MC8 (Grøstl) 16 104 2,048 7 7
16,384 7 0

MC16 (Fugue) 32 148
4,096 15 15

65,536 15 0

The estimates given in Table 1 provide a good indication on the performance
of the AES-inspired candidates, especially for hashing extremely long messages,
where we simply focus on the compression functions. It should, however, be noted
that the techniques used to implement the MC operations used by these candi-
dates account for the largest performance loss/gain. Typically, the MC operation
is implemented using a number of xor operations and the XTIME function. The
latter treats a byte-value as a polynomial in the finite field F28 and performs
modular multiplication by a fixed modulus and multiplier. In practice, XTIME
can be implemented using a shift and a conditional xor. An upper bound on
the required MC-operations, working on single byte-values, is given in Table 2.
First, the double and quadruple of the X elements are computed in MCX for
X ∈ {8, 16}; the octuple for MC16 is not needed since all the constants in Fugue
are below 8. We note that these require 2 · X XTIME operations, and that the
number of required xor operations depend on the constants. Counting the lat-
ter, for MC4 in AES and MC8 in Grøstl, there are at most 4 × 5 − 4 = 16 and
14 × 8 − 8 = 104 xor instructions, since the rows are simply rotations of each
other. Similarly, in Fugue there are 4×(10+8+14+9−4) = 148 xor instructions,
corresponding to its constants. We stress that these (naive) estimates should be
treated as an upper bound; as illustrated by the implementation of MC4 in [33],
the number of times XTIME and xor are required is lower: 3 and 15, respectively.

Following the “T -table” approach [14], the MC and substitution steps can
be performed by using lookup tables on 32-bit (and larger) processors. The use
of T -tables can greatly reduce the number of required operations; estimates of
the cost of the different MC steps using a varying number of T -tables (as the
different tables are simply rotations of each other) are also stated in Table 2. The
MCX T -table variants require X − 1 xor, and 0 or X − 1 rotate instructions
(depending on the number of tables used) operating on X-byte values. The use
of T -tables is, however, not always favorable where, for example, in memory
constraint environments, the tables might be too big. This is also the case for
certain SIMD environments, such as the SPE, where as indicated in [33], fetching
data for multiple streams in parallel is not trivial and may be more expensive
than actually computing the MC operation.

288 J.W. Bos and D. Stefan

Among the four AES-inspired second-round SHA-3 candidates, ECHO and
SHAvite-3 make use of the AES round itself and can highly benefit from Intel
AES instruction set. Therefore, it is relatively easy to infer the speed estimates
for these two hash functions once we have those for AES. We use the recent
work by Osvik et al. [33] on AES to obtain estimates for our target platforms.
Based on their results, the corresponding workload required to implement the
compression function of the AES-inspired candidates is given in Table 1. As an
example of how SHAvite-3 performs under this result (given the estimates of
Table 1), one requires 52 AES round function evaluations plus 1280 8-bit xors
to perform one compression function invocation of SHAvite-3, compressing a 64
byte message block. From [33] we learn that one AES round can be implemented
in 300 and 78600 cycles on the SPE and GPU when hashing 16 simultaneous
streams and 600 blocks of 256 streams, respectively. Hence, SHAvite-3 is esti-
mated to achieve performance of 52·300+1280

64·16 = 16.5 cycles/byte on a single SPE,
and 52·78600+1280

64·256·600 = 0.42 cycles/byte on a single GTX 295 GPU.
We note that the performance estimates given in Table 1 for Grøstl and Fugue

are conservative. This is because the naive estimates for MC8 and MC16 use the
estimate from Table 2, leaving room for significant optimizations. These numbers
can be further improved on platforms where a T -table approach is faster than
computing the Mix-Column operation. For example, on the GPU, placing the
smaller (2KB) table in shared memory, Grøstl would require two 32-bit lookups
in addition to the 7 xor and 7 rotate (64-bit) instructions.

5 Other SHA-3 Candidates

The non-AES based SHA-3 candidates use a variety of techniques and ideas in
their hash function designs. From a performance perspective, it is interesting to
have an indication of the number of required instructions per byte. An approx-
imation of this is given in Table 3. We note that operations ending with a ‘c’
indicate that one of the input parameters is complemented before use, eqv de-
notes bitwise equivalence (i.e., xorc) and csub denotes conditional subtraction.
These raw instruction counts are obtained from the optimized implementations
as submitted to NIST and only the number of instructions in the compression
function are considered. Since load and store operations are hard to predict
(due to possible cache misses), and may be incomparable between platforms,
only arithmetic instructions are taken into account (i.e., the required moves,
loads/stores, including all the possible table-lookups, are ignored).

We would like to stress that the performance figures presented in Table 3 are
estimates for a hypothetical 32-bit architecture, the instruction set of which in-
cludes all the operations shown in the columns of Table 3. Moreover, we assume
that such a machine can dispatch one instruction clock cycle. Estimating the
actual performance number on modern platforms is considerably more difficult
because they often have access to a separate SIMD unit, which is ignored by our
estimates. However, these estimates can be used as a starting point to create
more accurate platform-specific speed estimations, for instance for the Cell and

Performance Analysis of the SHA-3 Candidates 289

Table 3. Performance estimates for all non-AES inspired SHA-3 candidates based on
the number of 32- and 64-bit arithmetic instructions used in the various compression
functions (which process b bytes). The † indicates an alternative implementation ap-
proach (on-the-fly interleaving) for Keccak. We assume that all operations stated in
the columns are single instruction operations.

Hash function b add
sub

mul and
nand

eqv
or

rotate shift xor
Cycles

csub andc orc / byte
Hash functions operating on 32-bit words

BLAKE-32 64 480 - - - - - - 320 - 508 20.4
BMW-256 64 296 58 - - - - - 212 144 277 15.4
CubeHash-16/1 1 512 - - - - - - 512 - 512 1536.0
CubeHash-16/32 32 512 - - - - - - 512 - 512 48.0
Hamsi-256 4 - - - 24 12 - 24 72 24 287 110.8
JH-256 64 - - - 1792 1152 288 688 - 800 4024 136.6

Keccak-256 136 - - - 684 96 144
480
144

1248 204 3810 50.1

Keccak-256† 136 - - - 756 384 - 624 1248 360 4224 55.9
Luffa-256 32 - - - 144 - 96 96 392 - 756 46.4
Shabal-256 64 52 16 96 - 48 48 - 112 - 242 9.6

SIMD-256 64 817
901
256

419 852 - - 256 288 804 176 74.5

Hash functions operating on 64-bit words
Skein-512 64 497 - - 1 - - - 288 - 305 17.0

GPU architectures. Note that while the multiplications by the candidate SIMD
operate on 16-bit operands, the multiplications in Shabal are by one of the
constants {3, 5}. Each of the latter multiplications can be converted into a shift
and addition, if cheaper than native multiplication.
Cell Broadband Engine Architecture. Ignoring moves and assuming per-
fect circumstances, i.e., all even and odd pairs of instructions can be dispatched
simultaneously without stalls, an estimate for hashing four messages of equal
length in parallel on a single SPE may be obtained by dividing the performance
numbers in Table 3 by a factor of four. Note that these are pessimistic estimates,
as the balancing techniques from Section 3 are not (implicitly) considered. In
Table 4 we present actual implementation results of all non-AES based candi-
dates, with the fine-tuned estimates in parentheses. The performance results are
obtained by hashing thousands of long messages (25 KB) and measuring the
complete hash function (not only the compression function), in addition to the
benchmarking overhead.

The number of shifts and rotations which are replaced by their odd variants
is often close to the expected value required to balance the number of odd and
even instructions. It might happen that this introduces stalls due to instruction
dependencies, the optimal number of operations which are replaced is then de-
cided experimentally. This information is taken into account in the estimates
in Table 4. For some candidates, additional optimizations are possible. For in-
stance, the candidate SIMD uses the select operation (bitwise “if X then Y

290 J.W. Bos and D. Stefan

Table 4. Performance results and estimates (in parentheses) for the non-AES based
SHA-3 candidates for the SPE and the GPU architecture. The SPE implementations
process four or two (for Skein) messages of equal length. The GPU implementations
process 680 blocks of 64 threads on a single NVIDIA GTX 295 GPU. Measurements
of only the compression function are shown in [brackets].

Algorithm SPE GPU
Cycles Throughput Cycles Throughput

per byte (Gb/sec) per byte (Gb/sec)
SHA-256 [10] 8.2 3.1 - -

[2] BLAKE-32 5.0 (4.5) 5.1 (5.7) 0.27 [0.13] (0.13) 36.8 (76.4)
[17] BMW-256 4.2 (3.7) 6.2 (6.9) 0.27 [0.27] (0.10) 36.8 (99.4)
[6] CubeHash-16/1 326.7 (316.0) 0.1 (0.1) 11.1 [11.0] (10.9) 0.90 (0.91)
[6] CubeHash-16/32 11.6 (9.9) 2.2 (2.6) 0.36 [0.35] (0.34) 27.6 (29.2)
[23] Hamsi-256 32.2 (26.9) 0.8 (1.0) 5.19 [0.66] (0.64) 1.91 (15.5)
[40] JH-256 31.5 (29.8) 0.8 (0.9) 0.76 [0.75] (0.67) 13.1 (14.8)
[7] Keccak-256 13.0 (11.1) 2.0 (2.3) 0.56 [0.56] (0.31) 17.7 (32.1)
[12] Luffa-256 11.5 (10.1) 2.2 (2.5) 0.35 [0.34] (0.32) 28.4 (31.1)
[11] Shabal-256 3.5 (2.8) 7.2 (9.2) 0.69 [0.56] (0.07) 14.4 (141.9)
[24] SIMD-256 22.6 (19.0) 1.1 (1.4) 3.60 [3.60] (0.43) 2.76 (23.1)
[15] Skein-512 13.7 (12.1) 1.9 (2.1) 0.46 [0.29] (0.22) 22.1 (45.2)

else Z”), (X ∧ Y) ⊕ (X̄ ∧ Z), and the majority operation on three operands,
(X ∧ Y) ⊕ (X ∧ Z) ⊕ (Y ∧ Z), which can be implemented using one and two
select instructions, respectively. This optimization is counter-balanced by the
fact that the conditional subtraction requires three instructions (a comparison,
subtraction and a select) to avoid branching. Another example where instruc-
tions on the SPE can be saved is in JH: the swapping of (multiple) bytes requires
just a shuffle instruction, and the swapping of bits requires two shift and a
single select.

We observe that one of the main reasons the actual performance numbers are
slightly higher than the given estimates is that the four input streams of bytes
need to be converted to a 4-way SIMD representation. This introduces noticeable
overhead, similar to all candidates, which is not accounted for in the estimates.
In Hamsi, the overhead is even larger because the message-data is used as an
index for a table look-up which further gives rise to extra arithmetic instructions
needed to calculate the locations of the loads. Doing this in 4-way SIMD, even
when pre-fetching data for subsequent blocks, introduces ample overhead that is
not considered in our estimates since all load and store operations are ignored.

NVIDIA Graphics Processing Units. As discussed in Section 3, the PTX
ISA is considerably more limited than the Cell’s ISA, and therefore some of the
instructions in Table 3 will have to be implemented by multiple, simpler, instruc-
tions. For example, each rotate is implemented using two shift instruction and
an or; each andc is implemented using a not and an and, etc. Taking the implemen-
tation of these non-native instructions into account, in addition to the fact that
each GPU on the GTX 295 contains 30 SMs (for a total of 240 SPs) we divide the

Performance Analysis of the SHA-3 Candidates 291

(slightly higher) instruction count of Table 3 by a factor of 240. These estimates
are presented in Table 4, along with actual implementation results.

As in the Cell, the GPU estimated performance results of Table 4 do not
account for message memory-register copies or moves. Furthermore, they do not
account for kernel launch overhead, host-to/from-device copies, or possible table-
setup timings (e.g., copying a table to shared memory). For fair comparison,
we, however, do account for the chain value copies to/from registers and global
memory; this rough figure was measured for the different sizes using a kernel that
simply copied the state to registers and back to global memory. Nevertheless, our
GPU estimates are certainly optimistic and implementation results, measuring
the full hash function, are higher. Additionally, for algorithms with huge internal
states or expanded messages, e.g., SIMD, the use of local storage might not be
easily avoided and the implementation results are expected to be much worse
than the estimates.

Along with considering the techniques of Section 3 when implementing the
candidates, we further emphasize the details of Keccak and Hamsi. Since us-
ing large tables on the GPU is prohibited, we estimate and implement Keccak
with on-the-fly interleaving (Keccak-256† in Table 4) and divide the execution
of Hamsi into two kernels. The latter requires the use of a very large 32KB
table (which is larger than all the fast memories on the SMs) for the message
expansion, and, thus, necessitates a less direct implementation approach. The
proposed two-part approach requires: (i) a kernel in which 16 threads expand the
32-bit message to 256-bits (each using 2 1KB tables and an atomic xor), and
(ii) a kernel implementing the actual compression function. Because the message
expansion requires random access reads and uses atomic instructions (to global
memory), estimates without considering the effects of memory operations are
expected to diverge.

As expected, we observe that the actual performance numbers in Table 4 are
slightly higher than the corresponding estimated figures. In most cases, how-
ever, the performance overhead is a result of the memory copies (host-to-device
and global memory-to-registers). We confirmed this conjecture by measuring the
throughput of the compression functions working on a single message block, the
results of which are shown [in brackets] in Table 4. We note that the implemen-
tation result of SIMD does not, however, agree with our estimated figure—we
attribute the extremely low performance to using local memory for the mes-
sage expansion (4096 bits) and having a single thread do the full compression;
splitting the compression function across multiple threads would likely improve
SIMD’s performance. Additionally, we highlight the Shabal implementation, for
which we heavily used the optimized reference code, required the use of a non-
inline function in the permutations as to address a compiler optimization bug;
the fully-inlined, but buggy, implementation is twice as fast.

6 Conclusion

Efficiency of hash function algorithms is a very important design criterion, al-
most parallel with security. This work presents a generic framework for analyzing

292 J.W. Bos and D. Stefan

and evaluating the performance of such algorithms; specifically, we estimate the
performance of the second-round candidates in the ongoing competition to es-
tablish a new cryptographic hash standard, SHA-3. Using this framework as a
base, we then take advantage of platform-specific optimization techniques to pro-
vide more precise performance estimates for two exotic many-core architectures:
the Cell Broadband Engine and NVIDIA Graphics Processing Units. We further
support our analysis by presenting multi-stream implementation results of all
the non-AES based candidates. Finally, we believe that this work can assist in
the decision process of the SHA-3 competition.

Acknowledgements. We gratefully acknowledge useful suggestions by Dag
Arne Osvik, Onur Özen and the CHES reviewers.

References

1. American National Standards Institute. ANSI X9.44-2007: Key Establishment Us-
ing Integer Factorization Cryptography (2007)

2. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE
(2008)

3. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

4. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 Proposal: ECHO (2009)

5. Benadjila, R., Billet, O., Gueron, S., Robshaw, M.J.B.: The Intel AES instructions
set and the SHA-3 candidates. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 162–178. Springer, Heidelberg (2009)

6. Bernstein, D.J.: CubeHash specification (2.B.1) (2009)
7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak specifications (2009)
8. Bevand, M.: MD5 Chosen-Prefix Collisions on GPUs. Black Hat, Whitepaper

(2009)
9. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function (2009)

10. Bos, J.W., Casati, N., Osvik, D.A.: Multi-Stream Hashing on the PlayStation 3.
In: PARA 2008. LNCS. Springer, Heidelberg (to appear 2008),
http://documents.epfl.ch/users/b/bo/bos/public/PARA2008.pdf

11. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget,
A., Icart, T., Misarsky, J.-F., Naya-Plasencia, M., Paillier, P., Pornin, T.,
Reinhard, J.-R., Thuillet, C., Videau, M.: The Hash Function Shabal (2008)

12. Canniere, C.D., Sato, H., Watanabe, D.: Hash Function Luffa (2009)
13. Chen, T., Raghavan, R., Dale, J., Iwata, E.: Cell broadband engine architecture

and its first implementation: A performance view (November 2005),
http://www.ibm.com/developerworks/power/library/pa-cellperf/

14. Daemen, J., Rijmen, V.: The design of Rijndael. Springer, New York (2002)
15. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T.,

Callas, J., Walker, J.: The Skein Hash Function Family (2009)
16. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,

Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate (2008)
17. Gligoroski, D., Klima, V., Knapskog, S.J., El-Hadedy, M., Amundsen, J., Mjo lsnes,

S.F.: Cryptographic Hash Function BLUE MIDNIGHT WISH (2009)

http://documents.epfl.ch/users/b/bo/bos/public/PARA2008.pdf
http://www.ibm.com/developerworks/power/library/pa-cellperf/

Performance Analysis of the SHA-3 Candidates 293

18. Halevi, S., Hall, W.E., Jutla, C.S.: The Hash Function Fugue (2009)
19. Harrison, O., Waldron, J.: Practical Symmetric Key Cryptography on Modern

Graphics Hardware. In: USENIX Security Symposium, pp. 195–210 (2008)
20. Hofstee, H.P.: Power Efficient Processor Architecture and The Cell Processor. In:

HPCA 2005, pp. 258–262. IEEE Computer Society, Los Alamitos (2005)
21. IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptography.

IEEE, New York (2000)
22. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-

thentication. RFC 2104, IETF (1997)
23. Küçük, O.: The Hash Function Hamsi (2009)
24. Leurent, G., Bouillaguet, C., Fouque, P.-A.: SIMD Is a Message Digest (2009)
25. Manavski, S.A.: CUDA Compatible GPU as an Efficient Hardware Accelera-

tor for AES Cryptography. In: ICSPC 2007, November 2007, pp. 65–68. IEEE,
Los Alamitos (2007)

26. Marechal, S.: Advances in password cracking. Journal in Computer Virology 4(1),
73–81 (2008)

27. NIST. FIPS-197: Advanced Encryption Standard (AES) (2001),
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

28. NIST. Secure hash standard. FIPS 180-2 (August 2002),
http://www.itl.nist.gov/fipspubs/fip180-2.htm

29. NIST. Announcing request for candidate algorithm nominations for a new cryp-
tographic hash algorithm (SHA-3) family. Technical report, Department of Com-
merce (November 2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

30. NVIDIA. NVIDIA Compute. PTX: Parallel Thread Execution (March 2008)
31. NVIDIA. NVIDIA CUDA Programming Guide 2.3 (2009)
32. NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.

Whitepaper (September 2009)
33. Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast software AES encryption. In:

beyer, i. (ed.) FSE 2010. LNCS, vol. 6147, pp. 75–93. Springer, Heidelberg (2010)
34. Patterson, D., Hennessy, J.: Computer organization and design: the hard-

ware/software interface. Morgan Kaufmann, San Francisco (2008)
35. Regenscheid, A., Perlner, R., jen Chang, S., Kelsey, J., Nandi, M., Paul., S.:

Status report on the first round of the SHA-3 cryptographic hash algorithm
competition. Technical Report 7620, NIST (September 2009),
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/

sha3 NISTIR7620.pdf

36. RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard (2002)
37. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,

de Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 55–69.
Springer, Heidelberg (2009)

38. Szerwinski, R., Güneysu, T.: Exploiting the power of GPUs for asymmetric cryp-
tography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
79–99. Springer, Heidelberg (2008)

39. Takahashi, O., Cook, R., Cottier, S., Dhong, S.H., Flachs, B., Hirairi, K.,
Kawasumi, A., Murakami, H., Noro, H., Oh, H., Onish, S., Pille, J., Silberman,
J.: The circuit design of the synergistic processor element of a Cell processor. In:
ICCAD 2005, pp. 111–117. IEEE Computer Society, Los Alamitos (2005)

40. Wu, H.: The Hash Function JH (2009)

http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.itl.nist.gov/fipspubs/fip180-2.htm
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/sha3_NISTIR7620.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/sha3_NISTIR7620.pdf

XBX:
eXternal Benchmarking eXtension

for the SUPERCOP
Crypto Benchmarking Framework

Christian Wenzel-Benner1 and Jens Gräf2

1 ITK Engineering AG
Software Center 1, 35037 Marburg, Germany

Christian.Wenzel-Benner@itk-engineering.de

http://www.itk-engineering.de
2 LiNetCo GmbH

Hauptstrasse 17a, 35684 Dillenburg, Germany
jgraef@linetco.com

http://www.linetco.com

Abstract. SUPERCOP [1] is a benchmarking framework for crypto-
graphic algorithms like ciphers and hash functions. It automatically
benchmarks algorithms across several implementations, compilers, com-
piler options and input data lengths. Since it is freely available for
download the results are easily reproducible and benchmark results for
virtually every computer that is capable of running SUPERCOP are
available. However, since SUPERCOP is a collection of scripts for the
Bourne Again Shell and depends on some command line tools from the
POSIX standard in it’s current form it can not run on any hardware
that does not support POSIX. This is a significant limitation since small
devices like mobile phones, PDAs and Smart Cards are important tar-
get platforms for cryptographic algorithms. The work presented in this
paper extends the SUPERCOP concepts to facilitate benchmarking ex-
ternal targets. A combination of hard- and software allows for cross com-
pilation with SUPERCOP and execution/timing of the generated code
on virtually any kind of device large enough to hold the object code of
the algorithm benchmarked plus some space for communication routines
and a bootloader.

Keywords: SUPERCOP, XBX, benchmarking, microcontroller, small
device, 8-bit, hash function.

1 Introduction

The design of a cryptographic algorithm is always a trade-off between security
and performance. A ’good’ algorithm either achieves stronger security than a
’bad’ one at the same runtime and memory cost or the same level of security at
lesser cost. Yet telling a ’good’ algorithm from a ’bad’ one is not always trivial.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 294–305, 2010.
c© International Association for Cryptologic Research 2010

XBX for SUPERCOP 295

Aside from spotting obvious design flaws, both security and performance are not
easily quantified.

1.1 Judging Security

If a newly proposed algorithm were to be broken by applying a well-known mode
of attack this would be an obvious design flaw. But if it is not vulnerable to any
known attack that does not mean it is flawless. An algorithm that seems secure
for a long time may suddenly be affected by a new type of attack that was not
anticipated. If and when such a new attack is going to be discovered can not
be determined in advance. There is however one universal rule: attacks only get
better, they never get worse. The flip-side of this coin is that algorithms only
get weaker, never stronger.

1.2 Judging Performance

Judging the performance of an algorithm seems trivial by comparison. Yet it is
not uncommon to see different performance numbers claimed by different people
for a well known standard algorithm like SHA-256 in the course of a four day
conference[2]. Obviously, different implementations of the algorithm, different
compilers and different target platforms result in a huge diversity of performance
numbers. Which one is the ’true’ performance number? A sophisticated bench-
marking framework like SUPERCOP can answer this question for a given CPU,
a given implementation and a given compiler. Across all these parameters there
is a fastest combination of CPU, implementation and compiler that is arguably
’true’ because the SUPERCOP framework is freely available and all parameters
used to obtain the performance number are clearly stated in the result file. A
freely available benchmarking framework that explicitly states all parameters
used to obtain a performance number like SUPERCOP provides a universal rule
for performance evaluation, too: implementations, CPUs and compilers only get
better, they never get worse. Hence a given algorithm’s performance only gets
better over time.

1.3 Additional Criteria

On desktop computers and servers the size of program code and lookup tables
is usually not an issue. When the implementation of a cryptographic algorithm
uses table lookups on such machines it is a concern because of timing attacks[3],
not because of the amount of memory required. Small devices are different, they
impose severe size limitations. There are hard limits, such as a 64k address space
on an 8-bit machine, and somewhat softer restrictions, like the price of a smart
card that is to be manufactured several million times. In both cases, smaller
is better. Implementors compete for the smallest implementation, designers for
the smallest algorithm (at comparable security level). The fact that theoretical
work[4] concerning memory consumption of cryptographic algorithms is being
done indicates that this is an area a growing interest.

296 C. Wenzel-Benner and J. Gräf

1.4 Motivation for the eXternal Benchmarking eXtension

Without a sophisticated framework different performance numbers obtained un-
der different (sometimes not clearly stated) circumstances circulate and make it
very hard to judge how well designed a given algorithm really is. The eXternal
Benchmarking eXtension presented here brings the advantages of SUPERCOP
benchmarking to small devices like 8-bit microcontrollers. The results obtained
this way are useful to

– find the fastest algorithm for a given target platform

– find the smallest algorithm for a given target platform

– find the best (cross-)compiler for a given hardware design and algorithm (for
either speed or size)

– find the best compiler settings for a given hardware design and algorithm
(for either speed or size)

– select a microcontroller for a future hardware design

– compare different implementations, e.g. a proprietary and commercial as-
sembler implementation vs. public domain c code

– design new algorithms to run well on targeted hardware platforms

2 Design Goals

The aim of XBX (as the name suggests) is to extend SUPERCOP to a new
domain: benchmarking external devices as opposed to the CPU(s) inside the
computer that runs the SUPERCOP framework. To extend means ’to stretch
out’ and when stretching something it is usually advisable to take care not to
rip it in two. In order to keep what the authors of this work perceived as the
core of SUPERCOP intact the design goals for XBX were defined as follows:

Goal 1. Automatic testing of algorithms by a simple script invocation

Goal 2. Precise performance numbers for different message lengths that reflect
real world user experience

Goal 3. Free source code, for every user to inspect and re-use

Goal 4. Cheap, easily available hardware

Goal 5. Compatibility to standard SUPERCOP algorithm interface

Goal 6. Compatibility to standard SUPERCOP results interface

As in many engineering projects there are also restrictions that are of a more
practical nature but nonetheless must be taken into account if any result is to
be generated. In this case the main restrictions were limited manpower and no
funding at all. The goals derived from those limitations are:

XBX for SUPERCOP 297

Goal 7. Development using pre-owned or free development tools

Goal 8. Re-use of as many existing components as possible

Goal 9. Focus on SUPERCOP subset of current public interest: eBASH1

3 Hardware

3.1 Overview

XBX hardware consists of two main components: the eXternal Benchmarking
Harness XBH and the eXternal Benchmarking Device XBD. The three hardware
components PC, XBH and XBD are shown in Fig.1, together with their physical
connections. The XBH connects to the PC running the eXternal Benchmarking
Software (XBS), which is based on SUPERCOP, by means of Ethernet. This
provides easy interfacing with any kind of computer that can run the SUPER-
COP framework regardless of operating system. An RS232 port is available for
low level configuration and debug output during development. Communication
between the XBD and the harness is handled by means of a data connection
and discrete digital I/O lines. The data connection is implemented using ei-
ther I2C or UART, depending on the type of device used as XBD. However,
if UART is used for XBH-XBD communication the RS232 port of the XBH is
no longer available for debugging purposes. The digital I/O lines are used for
special purposes where the data connection would not perform adequately. The
first purpose is device reset of the XBD. The XBD’s reset pin is connected to a
digital output of the XBH (in open collector configuration) and a pull-up resistor
to the XBD’s supply voltage. This allows the XBH to issue a hardware reset on
the XBD, either because of a timeout or due to a command received from the
PC. In the event that the XBD crashes, e.g. due to stack overflow, this mecha-
nism provides a fast and reliable way to recover communication to the XBD in
a situation where the data connection would be utterly useless.

Timing measurement is the second purpose that uses a dedicated digital I/O
line. A digital output on the XBD is hooked up to an event capture pin on the
XBH. Edges on that pin are triggered when a piece of code to be benchmarked
is called and again when it returns. The event capture pin the XBH captures
and timestamps these events and provides a duration from which a clock cycle
count can be calculated.

3.2 Microcontroller Family

Due to goals 4, 7 and 8 the Atmel AVR 8-bit microcontroller family was selected
to be the project’s workhorse.

1 SUPERCOP can benchmark many types of cryptographic algorithms, eBASH is
the type for hash functions which are currently in focus due to the NIST SHA-3
competition.

298 C. Wenzel-Benner and J. Gräf

Fig. 1. High level overview of the XBX hardware setup. The PC on the left can be any
computer that runs XBS, the XBH is a fixed interface component that does not need
any adjustments while the XBD is the device under test and can be replaced at will.

This family has many beneficial features, starting with a low unit price and
good availability in a variety of stores that sell to end customers. The perfor-
mance delivered by the AVR family is high for an 8-bit design and many parts
come in dual-in-line packaging, which is one of the few IC packages easily sol-
dered by hand onto a perfboard2 or similar carrier. On the software side, a port
of the GNU Compiler Collection (GCC) exists for years now and is well tested.
The GCC is supplemented by a standard C library implementation specifically
tailored to the AVR and available for free. These features make the AVR family
very popular with hobbyists around the world, which results in the added benefit
of a huge user community providing ideas and code snippets for most questions
that arise during development of an AVR based application. Also, the fact that
one of the authors had a compatible JTAG adapter and some AVR chips in the
closet accelerated the decision.

3.3 eXternal Benchmarking Harness XBH

The XBH setup comprises an Atmel ATmega644 microcontroller running at 16
MHz, a Microchip ENC28J60 Ethernet controller and a MAX232 TTL/RS232
voltage level shifter. For simplicity it is based on a commercially available module
for home automation[7] which requires only minor modifications to act as XBH.
An in system programmer connector is available to update the firmware as well
as several signal connectors. The module runs on 9V AC power and can supply
XBDs with up to 100mA of operating current.

3.4 eXternal Benchmarking Device XBD

The XBD is the device on which the actual benchmarking takes place. The
XBD module consists of a microcontroller and whatever clock source and voltage
2 A perfboard is a prototyping board that component are soldered to, as opposed to

a (solderless) breadboard which works with little wires that are just plugged in to
form connections.

XBX for SUPERCOP 299

regulation is necessary for the controller. Due to the design of the XBX setup
the XBD can be easily replaced, requiring only the data connection and a digital
output pin for timing measurements. Connecting the reset pin is highly recom-
mended, although not strictly required. The timing measurement does not use
any timer resources on the XBD, so theoretically even a microcontroller without
any timers could be used. However, in order to be able to calibrate the timing
measurements before a benchmark run it is advisable to have at least one timer
unit available on the XBD.

The reference implementation uses an ATmega644 with an 8 MHz crystal
oscillator circuit that runs on the 5V supply of the XBH. The data connection to
the XBH is I2C in this implementation. Running the XBD at half the frequency
of the XBH gives the reference implementation the best possible timing accuracy.
A different XBD implementation uses a Luminary Micro LM3S811 evaluation
board. The LM3S811 is an ARM Cortex-M3 based 32-bit microcontroller and
much more powerful that the AVR. It runs on 3.3V and the data connection
uses a UART.

4 Software

The software is laid out as a chain of components with different tasks. Most
components take the form of either shell or Perl scripts. Keeping several small
components makes testing individual functions easier and reduces the likelihood
of bugs compared to one big monolithic tool. The components are:

– Object file creation
– Download of binary code and parameters
– Execution framework
– Timing and result collection
– Benchmark control
– Post-processing

4.1 XBS: Benchmark Control

In a top-down view of the software architecture, benchmark control is high-
est layer. It talks to the user, it controls all actions. The benchmark control
functionality is derived from SUPERCOP’s control scripts, and called eXternal
Benchmarking Software (XBS). SUPERCOP has a very simple user interface
script called ’do’. Since one computer running XBS can control many different
external targets the XBS scripts have some options that SUPERCOP’s ’do’ does
not require.

XBS needs to be told which target platform to use since every platform po-
tentially has it’s own compilers, linkers and compiler options. The platform is
selected by a line in a config file.

Once a build process for the selected platform is started the XBS copies the
application code that is to be benchmarked into a temporary directory, where
it is combined with supporting code called ’application framework’ (AF). The AF

300 C. Wenzel-Benner and J. Gräf

provides all the communication services that the XBD will provide, except for
bootloader functionality. The application code and AF combined for the binary
of the application that is later downloaded into the XBD.

The binary just created is subjected to static analysis concerning the size of
it’s sections. If it is determined that this binary will not even fit into the memory
of the XBD, download will not be tried.

If the binary passed the static analysis and looks as if it will fit into the
XBD benchmark control calls a helper script that will talk to the XBH, which
will talk to the bootloader on the XBD in order to download the newly created
and checked application binary into the XBD. After successful download, the
helper script is called again to trigger a short benchmark run executed and
the performance of the triple [Algorithm, Compiler, Options] is stored for later
reference, provided the binary produces the correct result for the known answer
test. At this time, stack consumption is measured if the XBD AF for the selected
platform supports this feature3. This process is repeated until all triples have
been built, statically checked and if applicable, downloaded and benchmarked.

From the stored performance numbers for the short benchmark run the fastest
tuple [Compiler, Options] per algorithm is selected and the corresponding binary
application is downloaded into the XBD and subjected to a detailed benchmark
at different message lengths.

The results of the short and detailed benchmark runs are written to a text
based output file, with XBS specific information like stack use embedded as com-
ments in SUPERCOPs results format. Thus the result files should be readable
by the same tools that process SUPERCOP results4 although without making
use of the additional information like stack usage.

4.2 Algorithms to Benchmark

The major part of the algorithms benchmarked using XBX are taken from the
SUPERCOP suite. The XBS scripts are closely modeled on SUPERCOP in that
regard, using the same directory structure to hold algorithms and their imple-
mentations. Some code that was not submitted to SUPERCOP was adapted by
the authors to fit the same interface and subsequently benchmarked. Most of this
code came from ’Das Labor’[5], a small device working group related to Ruhr
Uni Bochum who wrote a collection of cryptographic primitives implemented
specifically for the Atmel AVR family.

4.3 Hardware Abstraction

To separate the benchmarking logic from platform specific code such as commu-
nication, execution of binaries and debugging output a simple hardware abstrac-
tion layer (HAL) was employed. This HAL hides the device dependent aspects

3 This is currently available for Atmel AVR targets only.
4 A quick test by Dan Bernstein showed that they are indeed, although no written

documentation of that test exists.

XBX for SUPERCOP 301

of the XBD like special function registers required to use the UART, the exact
method used to erase and program flash pages in the bootloader and the fact
that some microcontroller families, e.g. the Atmel AVR, are based on Harvard
architecture and do not hide this fact from the programmer. The special treat-
ment of constant data in what per definitionem is program memory on such
devices is also hidden in the HAL. Without this functionality all constant data
would end up in the RAM, rendering most SUPERCOP submitted implementa-
tions useless due to the fact that not even the initial stack would fit into RAM
anymore.

One function in the HAL is especially important for goal 2: precise perfor-
mance numbers. Since the actual timing measurement takes place on the XBH
but the reported value is the amount of CPU cycles on the XBD it is important
that the relation between the time bases on XBH and XBD is known as exactly as
possible. To this end, a timing calibration service has been implemented. When
the XBS requests a timing calibration, the XBH triggers the timing calibration
routine on the XBD. This routine busy loops for a device dependent amount of
time, toggles the timing output digital I/O line as it does when benchmarking
algorithms and additionally counts the number of CPU cycles it spent between
the two digital I/O toggles using an internal timer. This number of cycles is
reported to the XBH, which reports it along with it’s own timing measurement
of the same event to the XBS. A correction factor for clock drift between XBH
and XBD and/or a sanity check on the reported values can then be performed on
the PC by the XBS. This timing calibration sequence looks as depicted in Fig.2
. Measuring stack usage is another challenge that can only be solved in a device
dependent manner, yet should be available to the application via a standard
interface. The HAL contains two functions that allow for stack measurement:
paintStack and countStack. PaintStack ’paints’ the free stack area with a known
pattern, called a canary bird. Then the function to be benchmarked is called
and after it returns, countStack counts the number of canary birds that did not
’survive’. This gives the maximum amount of stack used by the benchmarked
function. Combined with the static RAM requirement obtained from the ap-
plication binary and the known RAM requirement of the AF, the total RAM
consumption of a triple [Algorithm, Compiler, Options] can be measured.

4.4 Application Framework

The application framework provides hardware independent basic management
functions like processing requests, parameter handling and so on. It is combined
with the algorithm to benchmark and the hardware abstraction layer for the
device under test to form the XBX application binary.

4.5 Bootloader

The bootloader is used to download and execute application binaries. It is formed
by combining the generic boot loader logic code with the hardware abstraction

302 C. Wenzel-Benner and J. Gräf

Fig. 2. UML sequence diagram for the XBX timing calibration routine. If it holds that
a) reading and writing the timer requires the same time and b) switching the timing
indicator pin high takes as long as switching it low then all delays from measurement
and indication are symmetrical and cancel each other out. Thus if XBD and XBH have
perfectly identical clock sources tXBD = tXBH holds, otherwise tXBD

tXBH
can be used for

sanity checks and is also logged by the XBS so it can later manually be applied as a
correction ratio by the user.

layer. Before benchmarking a target device, the bootloader must once be manu-
ally uploaded, e.g. via JTAG. After that, application download and execution is
handled over a communication channel established between the bootloader and
the benchmarking harness.

4.6 Benchmarking Harness

The firmware for the XBH receives commands from the XBS on the PC by
means of UDP packets. The commands form a protocol that is simply called
the XBH protocol, which features ASCII based command words with ASCII-
encoded hex digits as parameters. Although the upper 4 bit of every byte are
wasted, this is no major concern. The bandwidth on the Ethernet is orders of
magnitude higher than on the following I2C or UART link to the XBD. The
ASCII encoding allowed for simple testing using the netcat command in the
early development phases and is easily processed by Perl scripts. Monitoring
XBH protocol in a serial terminal also benefits from this choice. The XBH soft-
ware generates requests to the XBD as necessary. The protocol for these requests
is called XBD protocol and uses ASCII commands but binary encoding for the
parameters. Answers from the XBD are processed and reported back to the XBS
over Ethernet using XBH protocol. Since the XBS never uses the XBD proto-
col, changes in the XBS do not affect existing XBDs and vice versa. Keeping in

XBX for SUPERCOP 303

line with goal 8: re-use, the XBH firmware consists of an embedded web server
software[6] by Ulrich Radig with the XBH functionality added as another UDP
service and some modifications to the timer handling code in order to facilitate
XBD timing measurements.

5 Benchmarking Results

This sections gives a few examples of benchmarking results obtained using the
XBX.

5.1 Different Implementations of Skein512 on Atmel ATmega1281

The ATmega1281 comes from the same family as the ATmega644 in the refer-
ence implementation of XBX, it has the same CPU core and performance per
MHz. The RAM however is at 8kiB twice as big which helps enormously in run-
ning implementations that are not size optimized. The performance numbers for
Skein512[8] listed in table 1 are certainly not the best the algorithm can do, they
just reflect the best implementations available to the authors at the time this
work was written. The C implementations were compiled with the AVR port of
GCC, the original SUPERCOP submission by the Skein team had to be mod-
ified to fit into the XBD’s flash memory. Even though the ATmega1281 comes
with 128kiB of flash memory, this implementation was so aggressively loop un-
rolled that the second author of this work has to re-roll the loops manually to
make it fit. This is a typical issue with speed optimized SUPERCOP submissions
intended to run on a PC and by no means specific to the Skein team’s work.
The huge advantage of the assembly implementation in both execution time and

Table 1. Skein512, different implementations on Atmel ATmega1281 in cycles per byte

Property Skein Team C Das Labor C Das Labor ASM

cpb @ 1536 bytes message length 7842.6 8602.1 1571.1
RAM usage(Stack+global/static) 2684 1580 1391

space is evident, yet in this case a size optimized C implementation also gives a
40% advantage in RAM usage at only a small performance loss.

5.2 SHA-3 Candidates on an ARM Cortex-M3 32-Bit CPU Using
Two Compilers

One of the most interesting features of SUPERCOP for many users is the ability
to benchmark the same implementations using different compilers and compiler
options. XBX preserves this property for the target platforms where several
compilers are available. One such platform is the ARM Cortex family. Using a
free trial license of the ARM C compiler (ARMCC) we obtained performance

304 C. Wenzel-Benner and J. Gräf

Table 2. ARMCC vs. GCC on ARM Cortex-M3 in cycles per byte for a 1536 byte
message, fastest algorithms on platform

Compiler BMW256[9] Shabal512[10] BMW512[9]

ARMCC 24.2 33.6 48.2
GCC 26.2 43.5 70.3

Table 3. ARMCC vs. GCC on ARM Cortex-M3 in cycles per byte for a 1536 byte
message, unexpected behavior

Compiler Blake32[11] Keccak1024c576[12] CubeHash1632[13]

ARMCC 96.2 125.1 835.8
GCC 72.1 109.7 323.2

Table 4. Cortex-M3 vs. Pentium 3 (683) in cycles per byte for a 1536 byte message

Compiler BMW256 Shabal512 BMW512

Cortex-M3 24.2 33.6 48.2
Pentium 3 13.82 14.24 30.04

numbers of SHA-3 candidate implementations using both GCC and ARMCC
on a Cortex-M3 based Luminary Micro LM3S811 microcontroller. ARMCC is
generally considered to be expensive but also the most sophisticated compiler
available for ARM CPUs. Expectation was that it would perform better than
GCC. The fastest SHA-3 candidates on this platform from the subset available
for XBX benchmarking at the time met this expectation, as can be seen in
table 2.

Surprisingly, some algorithms suite the optimization strategies of GCC better,
resulting in an overall better performance. See table 3 for details.

In general, the Cortex-M3 performs very well when compared to a roughly 50
[14] [15] [16] times larger Intel Pentium 3 desktop processor as benchmarked in
[17]. Table 4 shows a performance gap of barely factor 2 between the two CPUs
with respect to the three SHA-3 candidates.

6 Conclusion

In this paper we introduced an extension to the SUPERCOP benchmarking suite
and described the main design decisions and compromises we made in order to
get it running in time for the second round of the SHA-3 competition. We believe
that the overall design is sound and that using SUPERCOP-XBX meaningful
results both for speed and memory requirements of cryptographic hash functions
can be obtained.

XBX for SUPERCOP 305

Acknowledgments. First of all many thanks to Daniel J. Bernstein and Tanja
Lange for their support and encouragement. Their approval really means a lot
to us. The Cortex-M3 target was provided by ARM, Ltd. and we have Richard
York and Alex Nancekievill to thank for that. Since the XBX project has no
funding their support is most appreciated.

References

1. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems, http://bench.cr.yp.to (accessed November 5, 2009)

2. NIST: First SHA-3 Candidate Conference, http://csrc.nist.gov/groups/ST/

hash/sha-3/Round1/Feb2009/program.html (accessed February 27, 2010)
3. Bernstein, D.J.: Cache-timing attacks on AES, http://cr.yp.to/antiforgery/

cachetiming-20050414.pdf (accessed February 27, 2010)
4. Ideguchi, K., Owada, T., Yoshida, H.: A Study on RAM Requirements of Vari-

ous SHA-3 Candidates on Low-cost 8-bit CPUs, http://www.sdl.hitachi.co.jp/
crypto/lesamnta/A Study on RAM Requirements.pdf (accessed February 27,
2010)

5. Otte, D., et al.: AVR Crypto Lib., http://www.das-labor.org/wiki/

AVR-Crypto-Lib/en (accessed February 27, 2010)
6. Radig, U.: AVR Webserver Software, http://www.ulrichradig.de/ (accessed

February 27, 2010)
7. Pollin: AVR-Net-IO Board,

http://www.pollin.de/shop/downloads/D810058B.PDF (accessed February 28,
2010)

8. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family Submission to NIST, Round 2
(2009)

9. Gligoroski, D., Klima, V., Knapskog, S.J., El-Hadedy, M., Amundsen, J., Mjølsnes,
S.F.: Cryptographic Hash Function BLUE MIDNIGHT WISH Submission to NIST,
Round 2 (2009)

10. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget, A.,
Icart, T., Misarsky, J.-F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard,
J.-R., Thuillet, C., Videau, M.: - Shabal, a Submission to NIST’s Cryptographic
Hash Algorithm Competition Submission to NIST (2008)

11. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE
Submission to NIST (2008)

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications Sub-
mission to NIST, Round 2 (2009)

13. Bernstein, D.J.: CubeHash specification (2.B.1) Submission to NIST, Round 2
(2009)

14. ARM: Whitepaper about the Cortex-M3, http://www.arm.com/files/pdf/

IntroToCortex-M3.pdf (accessed February 28, 2010)
15. Intel: Presskit on Moore’s law, http://www.intel.com/pressroom/kits/events/

moores law 40th/ (accessed February 28, 2010)
16. Intel: Pentium 3 datasheet, http://developer.intel.com/design/pentiumiii/

datashts/245264.htm (accessed February 28, 2010)
17. Bernstein, D.J., Lange, T. (eds.): SUPERCOP benchmarking results. See results

for computer ’manneke’, http://bench.cr.yp.to/results-hash.html (accessed
February 27, 2010)

http://bench.cr.yp.to
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/Feb2009/program.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/Feb2009/program.html
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://www.sdl.hitachi.co.jp/crypto/lesamnta/A_Study_on_RAM_Requirements.pdf
http://www.sdl.hitachi.co.jp/crypto/lesamnta/A_Study_on_RAM_Requirements.pdf
http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
http://www.ulrichradig.de/
http://www.pollin.de/shop/downloads/D810058B.PDF
http://www.arm.com/files/pdf/IntroToCortex-M3.pdf
http://www.arm.com/files/pdf/IntroToCortex-M3.pdf
http://www.intel.com/pressroom/kits/events/moores_law_40th/
http://www.intel.com/pressroom/kits/events/moores_law_40th/
http://developer.intel.com/design/pentiumiii/datashts/245264.htm
http://developer.intel.com/design/pentiumiii/datashts/245264.htm
http://bench.cr.yp.to/results-hash.html

Public Key Perturbation of Randomized RSA
Implementations

Alexandre Berzati1,2, Cécile Canovas-Dumas1, and Louis Goubin2

1 CEA-LETI/MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
{alexandre.berzati,cecile.canovas}@cea.fr

2 Versailles Saint-Quentin-en-Yvelines University,
45 Avenue des Etats-Unis, 78035 Versailles Cedex, France

Louis.Goubin@prism.uvsq.fr

Abstract. Among all countermeasures that have been proposed to thw-
art side-channel attacks against RSA implementations, the exponent ran-
domization method – also known as exponent blinding – has been very
early suggested by P. Kocher in 1996, and formalized by J.-S. Coron at
CHES 1999. Although it has been used for a long time, some authors
pointed out the fact that it does not intrinsically remove all sources of
leakage. At CHES 2003, P.-A. Fouque and F. Valette devised the so-
called “Doubling Attack” that can recover the blinded secret exponent
from an SPA analysis. In this paper, we consider the case of fault injec-
tions. Although it was conjectured by A. Berzati et al. at CT-RSA 2009
that exponent randomization avoids fault attacks, we describe here how
to recover the RSA private key under a practical fault model. Our attack
belongs to the family of public key perturbations and is the first fault
attack against RSA implementations with the exponent randomization
countermeasure. In practice, for a 1024-bit RSA signature algorithms,
the attack succeeds from about 1000 faulty signatures.

Keywords: RSA, fault attacks, exponent randomization/blinding, pub-
lic modulus.

1 Introduction

The exponent randomization method – also referred as exponent blinding – has
been first suggested by P. Kocher [11]. This method inspired J.-S. Coron [7]
that later formalizes it to defeat side channel attacks, such as DPA, that gain
the information leaked during the exponentiation. This method is widely used
because it is easy to implement and the induced overhead is reasonable. However
any implementation may still be a potential source of leakage.

The first attack published against this countermeasure is due to P.-A. Fouque
and F. Valette [10]. The so-called “Doubling Attack“ allows an attacker to re-
cover a blinded secret exponent from an SPA analysis. This attack only works for
“Left-To-Right“ -based implementations of the modular exponentiation. More-
over, the attacker is assumed to be able to send many times the same known

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 306–319, 2010.
c© International Association for Cryptologic Research 2010

Public Key Perturbation of Randomized RSA Implementations 307

message and that no message randomization is performed before the modular
exponentiation. At CHES 2006 [8], P.-A. Fouque et al. show that if Coron’s coun-
termeasure is used with some windowing exponentiation algorithms and a small
public key, then a simple SPA combined with a tricky analysis makes it possible
to recover both secret key and factorize the public modulus. It is worthwhile to
notice that this attack exploits the non-uniformity of the exponent randomiza-
tion countermeasure (see Sect. 3.1). Instead of exploiting the physical leakage
due to the execution of a modular exponentiation, like in previous attacks, P.-A.
Fouque et al. proposed at CHES 2008 [9] to focus on the leakage induced by
the computation of the random exponent itself. Since the secret exponent and
the blinding part are cut into words, spying on the carries of the adder may
reveal information that is used to guess the most significant bits of each word of
the secret key. When the number of missing bits is small enough, the attacker
can use classical methods, such as Shanks’ Baby-Step Giant-Step algorithm, to
obtain the whole secret key.

The exponent randomization may also be used to protect implementations
against some fault attacks. Namely, this countermeasure is useful to defeat at-
tacks that require multiple faulty signatures to recover the private exponent
since each signature is computed with a different exponent. Although the device
embedding this countermeasure still remains vulnerable to perturbation, it does
not exist, as far as we know, any method for exploiting such faulty outputs.
This paper bridges the gap by providing a new fault attack that defeats the
exponent randomization. This attack belongs in the recent family of public key
perturbations.

Exploiting the perturbation of public elements has been first addressed by I.
Biehl et al. with several applications to elliptic curves [3]. But it took a half
decade before seeing a successful application to RSA [12]. The first exploitation
of the RSA public modulus perturbation leading to a full secret key recovery is
due to E. Brier et al. [5] (see also [6] for further optimizations). In the case of the
last attack, the use of the blinded exponent is an efficient countermeasure. A new
fault attack based on the public modulus corruption has been proposed lately by
A. Berzati et al. against both “Right-To-Left“ and “Left-To-Right“ implementa-
tions of the core RSA modular exponentiation [2,1]. Unlike previous works, the
attack takes advantage of a perturbation of the modulus that occurs while the
device is performing a signature. Such a fault injection splits the signature into
a correct and a faulty part and so, isolates a part of the secret exponent. Then,
from a correct/faulty signature pair, the attacker can guess-and-determine both
faulty modulus and the part of secret exponent. The whole exponent is obtained
by cascading the attack on signatures corrupted at different moments of the ex-
ecution. At CT-RSA’09, authors claimed that the exponent randomization may
be used to defeat their fault attack [1].

In this article, we show that even if this countermeasure is used, it is possi-
ble to recover the private exponent under a practical fault model. To the best
of our knowledge, this is the first fault attack that aims to threaten RSA im-
plementations with the exponent randomization countermeasure. The analysis

308 A. Berzati, C. Canovas-Dumas, and L. Goubin

takes advantage of the non-uniformity of the exponent randomization. As a con-
sequence, this work completes the state-of-the-art of the side channel analysis of
the exponent randomization.

The remainder of this paper is organized as follows: Section 2 describes clas-
sical implementations of RSA and the random exponent countermeasure. Our
fault analysis is detailed in Sect. 3 and summarized as an algorithm in Sect. 4.
Finally, we conclude in Sect. 5 about the vulnerability of random exponent coun-
termeasure implementations in the context of fault attacks.

2 Background

2.1 Notations

Let N , the public modulus, be the product of two large prime numbers p and
q. The length of N is denoted by n. Let e be the public exponent, coprime to
ϕ(N) = (p−1)·(q−1), where ϕ(·) denotes Euler’s totient function. The public key
exponent e is linked to the private exponent d by the equation e·d ≡ 1 mod ϕ(N).
The private exponent d is used to perform the operations below.

RSA Decryption: Decrypting a ciphertext C boils down to compute m̃ ≡
Cd mod N . If no error occurs during computation, transmission or decryp-
tion of C, then m̃ equals m.

RSA Signature: The signature of a message m is given by S ≡ ṁd mod N
where ṁ = μ(m) for some hash and/or deterministic padding function μ.
The signature S is validated by checking that Se ≡ ṁ mod N .

2.2 Modular Exponentiation Algorithms

Algorithm 1. “Right-To-Left“ modular
exponentiation

Algorithm 2. “Left-To-Right“ modular
exponentiation

INPUT: m,d, N INPUT: m,d, N

OUTPUT: A ≡ md mod N OUTPUT: A ≡ md mod N
1 : A:=1; 1 : A:=1;
2 : B:=m; 2 : for i from (n − 1) downto 0
3 : for i from 0 upto (n − 1) 3 : A := A2 mod N ;
4 : if (di == 1) 4 : if (di == 1)
5 : A := (A · B) mod N ; 5 : A := (A · m) mod N ;
6 : end if 6 : end if
7 : B := B2 mod N ; 7 : end for
8 : end for 8 : return A;
9 : return A;

Binary exponentiation algorithms are often used to compute the RSA modular
exponentiation ṁd mod N where the exponent d is expressed in a binary form as
d =

∑n−1
i=0 2i ·di, where di stands for the i-th bit of d. Their polynomial complex-

ity with respect to the input length make them very interesting to perform the

Public Key Perturbation of Randomized RSA Implementations 309

core RSA operation. Algorithm 1 describes a way to compute modular exponen-
tiations by scanning bits of d from least significant bits (LSB) to most significant
bits (MSB). That is why it is usually referred to as the “Right-To-Left“ modular
exponentiation algorithm.

The dual algorithm that implements the binary modular exponentiation is the
“Left-To-Right“ exponentiation described in Algorithm 2. This algorithm scans
bits of the exponent from MSB to LSB and is lighter than “Right-To-Left“ one
in terms of memory consumption.

It exists multiple implementations derived from these dual algorithms, such
as OpenSSL fixed/sliding window implementations or the Square-and-Multiply-
always variant [7]. For the sake of clarity, we will only focus our presentation
on the binary version of the “Right-To-Left“ method. But the principle of our
analysis can be easily adapted to attack its variants.

2.3 Exponent Randomization

The exponent randomization method has been proposed by P. Kocher [11] to
defeat side channel attacks, such as DPA, that gain information leaked during
the exponentiation. The principle of this countermeasure is based on Fermat’s
theorem. Indeed, for all m ∈ (Z/NZ)∗ and λ ∈ Z, mλ·ϕ(N) ≡ 1 mod N . The
exponent randomization algorithm derived from this result is detailed below.
The complexity of the modular exponentiation algorithm is polynomial with

Algorithm 3. RSA exponent randomization algorithm
INPUT: ṁ, N , ϕ(N), d and l

OUTPUT: S = ṁd mod N

1: //Randomize the private exponent
2: Pick a random λ ∈ [[0; 2l − 1]];
3: d̄ = d + λϕ(N);
4: //Perform the exponentiation
5: S = PowMod(ṁ, d̄, N);
6: return S;

respect to the exponent length. Thus, to guarantee a reasonable overhead, the
l value as to be small compared to the RSA length n. Typically, for a 1024-bit
RSA, l = 20 or l = 32.

3 Description of Our Attack

3.1 Bit Analysis of a Randomized Exponent

In this section, we aim to analyze the influence of the different variables that
are involved in the computation of a randomized exponent. By definition, the
blinded exponent d̄ is built by adding a random multiple of ϕ(N) to the secret

310 A. Berzati, C. Canovas-Dumas, and L. Goubin

exponent d. Using a different expression of ϕ(N), the expression of d̄ can also
be written as:

d̄ = d + λϕ(N) (1)
= d + λ (p− 1) (q − 1)
= d + λN − λ (p + q − 1)

From the previous expression, one can notice that the randomized exponent d̄
is built by adding 3 terms of different sizes. As a consequence, the bits of d are
not homogeneously masked by this method. Figure 1 illustrates this statement
for a n-bit RSA and a l-bit random value λ. This figure highlights that despite

λN

− λ (p + q − 1)

+ d

d̄ λN d + λN d + λϕ(N)

n + l − 1 n
n
2

+ l 0

Fig. 1. Bit analysis of a random exponent

being properly masked by a multiple of ϕ(N), the most significant bits of d are
masked by a random multiple of N . But the blinding method seems to be more
efficient for the least significant bits. In the next section, we will explain how
to use the heterogeneity of the exponent randomization method for exploiting
faults.

3.2 Fault Model

Description. The model we have chosen to perform the attack is derived from
the ones previously used by A. Berzati et al. to successfully attack both “Right-
To-Left“ [2] and “Left-To-Right“ [1] implementations of standard RSA. We sup-
pose that the attacker is able to inject a transient fault that modifies the public
modulus N during the execution of a signature with a randomized exponent d̄
for a known input message m (see Sect 2.3). The injected fault affects a byte of
the modulus by modifying it in a random way, namely:

N̂ = N ⊕ ε (2)

where ε = R8 · 28i, i ∈ [[0; n
8 − 1]] and R8 is a non-zero random byte value. In our

assumption, the value of the faulty modulus N̂ is not known, a priori, by the
attacker. In this article, we consider that the exponentiation is implemented with
the “Right-To-Left“ method or a variant. The fault is injected during a square,

Public Key Perturbation of Randomized RSA Implementations 311

at the t-th step of the exponentiation and such that the end of the execution is
performed with the faulty modulus N̂ . It is also assumed that the time location
of the injection is controlled by the attacker, and so, the parameter t may be set
(or known) by the attacker depending on the exponent part he aims to recover.

Discussion. This fault model has been chosen because of its practicability in the
smartcard context. Although the effect of a fault injection is highly dependent
of the component attacked, it seems that a random modification of the value of
a memory word can be easily produced by a laser. This model has been already
used in the literature leading to successful applications [13,4,1]. Furthermore,
the timing control of the fault injection is not a restrictive assumption since the
attacker can trigger the laser shots using a Simple Power Analysis.

3.3 Result of a Faulty Computation

Let d̄ =
∑n+l−1

i=0 2i · d̄i be the binary representation of a randomized exponent d̄.
According to the fault model described above, the fault occurs during a square at
the t-th step of the execution. Hence, if Bt−1 denotes the internal register value
that contains the result of the consecutive squares before the fault injection:

B̂t ≡ Bt−1
2 mod N̂

≡
(
ṁ2t−1

mod N
)2

mod N̂ (3)

The subsequent operations of the exponentiation are also performed with the
faulty modulus. If we denote by At ≡ ṁ

∑ t−1
i=0 2i·d̄i the internal state value before

the fault injection. The result of the faulty RSA signature Ŝt can be written as:

Ŝt ≡ At · B̂d̄t
t · . . . · B̂2(n+l−1)−t·d̄n+l−1

t mod N̂ (4)

≡ At · B̂t

d̄[t]
2t mod N̂ (5)

where d̄[t] =
∑n+l−1

i=t 2i · d̄i. The previous equation highlights that the fault has
isolated the most significant part of the blinded exponent d̄. In other words the
perturbation gives the opportunity for the attacker to focus on the recovery of a
part of the exponent. The next section reminds the general methodology used to
exploit faults on the public modulus during the execution of the exponentiation
(see also [2,1] for further details).

3.4 Analysis

In the following sections we will detail the effects of faults that have been injected
according to the model described above. Then we will propose different ways for
exploiting perturbations, depending on their timing location t.

312 A. Berzati, C. Canovas-Dumas, and L. Goubin

General Methodology. The general principle of the analysis consists in mak-
ing use of the isolation of a part of exponent by the fault injection. Indeed, if the
isolated part of exponent is small enough, it is possible to guess-and-determine it
from a faulty/correct signature pair (Ŝt, St). Therefore, since the faulty modulus
is also unknown by the attacker, he chooses a candidate value N̂ ′ and another
candidate value d̄′[t] for the most significant part of the randomized exponent he
has to determine. Then he computes from the correct signature:

A′
t ≡ St · ṁ−d̄′

[t] mod N (6)

This computation aims to retrieve the value of the internal register At when the
fault occurred. The next step consists in using the candidate values to simulate
a faulty end of exponentiation. To do so, the attacker computes:

S′
(d̄′

[t],N̂
′) ≡ A′

t ·
(
ṁ2t−1

mod N
)2·

d̄′
[t]
2t

mod N̂ ′ (7)

Finally, he checks if the following equation is satisfied:

S′
(d̄′

[t],N̂
′) ≡ Ŝt mod N̂ ′ (8)

In the case of satisfaction, it means that the chosen candidate pair is the correct
one with high probability. Otherwise, the attacker has to choose another candi-
date pair and perform this test again. One can notice that a similar analysis can
be performed when the first operation infected by the fault is a multiplication
The details of this variant are provided in [2].

Contrary to the attack presented in [2], the subsequent bits of exponent can
not be obtained by repeating the analysis on a signature faulted earlier. Indeed,
the exponent randomization countermeasure implies that a fresh exponent is
used for each execution of the signature. Hence, it is not possible to repeat the
attack by using the knowledge of already found bits of blinded exponent d̄[t] as
in [2]. As a consequence we have to adapt this general methodology to extract real
bits of the private exponent d from bits of d̄ recovered by the analysis detailed
above. We show in the following parts how to make use of the non-homogeneity
of the exponent randomization to do so.

Case of unexploitable faults. This case corresponds to fault that have been
injected at final steps of the exponentiation, namely for n ≤ t ≤ (n + l − 1). The
few amount of information about the secret key that belongs in this range of data
is due to the carry propagation of the addition of d and a random multiple of ϕ(N)
(see Fig. 1). So, the analysisof signatures faulted in this timing range is not relevant
for extracting information about the secret key d since. As a consequence, it is
worthwhile focusing on faults injected earlier in the computation.

Faults on MSB. This section aims to provide a method for analyzing RSA
signatures that have been faulted while the t-th bit of the blinded exponent is
treated, namely if

(
n
2 + l

) ≤ t < n. As we said in the previous section, our goal is

Public Key Perturbation of Randomized RSA Implementations 313

to extract some bits of the real exponent from the recovered part of randomized
exponent. In fact, performing the attack by this way seems to be difficult. First,
d̄ depends on d but also on a random multiple of ϕ(N) and all these values are
unknown by the attacker. This difficulty can be overcome thanks to the non-
homogeneity of the exponent randomization (see Fig. 1). Indeed, in the bound(

n
2 + l

) ≤ t < n, we have:
d̄ ≈ d + λN (9)

As a consequence, the most significant part of d̄ only depends on d and λ. Instead
of searching d̄[t] and extracting bits of d from it, we have decided to directly guess
both d and λ by building “good“ candidate values for d̄[t]:

d̄[t] =
n+l−1∑

i=t

2i · d̄i (10)

≈
n+l−1∑

i=t

2i · (d + λN)i (11)

≈
n−1∑
i=t

2i · di +
n+l−1∑

i=t

2i · (λN)i + carryt (d, λN) · 2t (12)

where carryt (a, b) denotes the carry bit resulting from the bit-wise addition of
the t first bits of a and b. Equation (12) shows that guessing d̄[t] boils down to
simultaneously guess the random value λ and the (n − t) most significant bits
of d. In the general case, this part of d splits into a known (already recovered)
part dMSB and w missing bits denoted by dw. The carry bit is considered as an
uncertainty on the parity of dw. As a consequence, if an attacker builds candidate
values for d̄[t] that satisfy (8), then he can directly deduce w − 1 new bits of d.
Thus, the known part dMSB grows up of w − 1 bits, and it can be used again
to analyze signatures faulted earlier in the execution and cascade the resolution
of almost half of the secret key. That way, even if the isolated part of random
exponent grows up, the part of exponent to be determined dw remains constant.
Hence, instead of guessing a pair of candidate values to satisfy (8) as described
in the general methodology, we guess the triplet of values (dw , λ, N̂) and thus
deduce a part of the secret key.

By carefully studying our improvement, one can wonder if using the sole
relation (8) is enough for determining with high probability a triplet of values.
This remark is all the more relevant since our implementation of the attack
showed us that multiple candidate triplets may satisfy (8). The authors of [2,1]
previously proved that the order false-acceptance probability is about 1

N . Thus,
it is highly negligible for common RSA length. But, we also noticed that for all
false-accepted triplets, the candidate values accepted for λ are always smaller
than the correct one. Hence, the triplet that contains the biggest candidate value
for λ is always the correct one. This heuristic was successfully adopted to improve
our attack algorithm by reducing the number of candidate triplets that satisfy
(8) to the correct one only. We also formalized this heuristic in the following
theorem. The proof of the theorem is given in Appendix A.

314 A. Berzati, C. Canovas-Dumas, and L. Goubin

Theorem 1. Let Ŝt be a faulty signature performed under an exponent ran-
domized by λ, and S the corresponding correct signature. For all candidate pairs
(d′w, λ′) ∈ [[0; 2w]]× [[0; 2l]], if λ′ > λ, then (8) can not be satisfied.

As a consequence, by combining the approximation of the randomization (see
Eq. (12)) for building candidate values for d̄[t], and the theorem above, an at-
tacker will be able to recover a part of the real private exponent d with high
probability from only one correct/faulty signature pair. Moreover, our method
enables the attacker to use the already found bits of d and cascade the analysis
for signatures faulted earlier in their execution. By this way, it is possible to
recover almost all the most significant bits of d.

Faults on LSB. We will focus here in the recovery of the least significant bits
of d. From Fig. 1, if 0 ≤ t <

(
n
2 + l

)
, then ϕ(N) is, this time, fully involved in the

randomization of the secret exponent d. Since this value is private, contrary to
the modulus N , the attacker can not run the analysis described for the recovery
of the most significant part of d. But, we will describe in this section how we
have used the previous analysis on multiple faulty signatures to overcome this
difficulty.

As we previously said, we can not approximate the least significant bits of the
blinded exponent d̄ as the sum of the real exponent d and a random multiple of
the public modulus (see Fig. 1). But, let us rewrite the expression of a part of
randomized exponent isolated by the fault injection:

d̄[t] =
n+l−1∑

i=t

2i · (d + λϕ(N))i (13)

=
n+l−1∑

i=t

2i · (d + λN − λ(p + q − 1))i (14)

≈
n−1∑
i=t

2i · δi +
n+l−1∑

i=t

2i · (λN)i (15)

where δi = (d− λ(p + q − 1))i. As for the MSB case, for any iteration of the
analysis, we assume that the attacker has already determined both most signifi-
cant parts of d and (p+q−1) respectively denoted by dMSB and (p+q−1)MSB.
Here the value δ =

∑n−1
i=t 2i · δi splits into w missing bits denoted by δw and

a part δMSB that depends on λ, dMSB and (p + q − 1)MSB . This last part is
also unknown, but it becomes computable whenever λ is guessed. Equation (15)
shows that the attacker can apply the same guess-and-determine method to re-
cover the part of randomized exponent d̄[t] that satisfies (8) by building it from
the triplet of candidate values for (δw, λ, N̂). Hence, such an analysis applied on
a correct/faulty signature pair only returns the searched triplet with high prob-
ability. But, one can notice that contrary to the MSB case, the analysis does not
directly returns a part of d, but a more intricate value δw. So, the attacker has

Public Key Perturbation of Randomized RSA Implementations 315

to perform a complementary analysis on the variable δw he has just recovered
to extract both expected parts of d and λ(p + q − 1). According to Fig. 1, it is
relevant to notice that δw depends on:

– w unknown bits of the exponent d,
– w unknown bits of the sum of RSA primes (p + q − 1),
– the random value λ that has been just recovered,
– some carry bits.

Thus, from this value, the attacker obtains one equation that involves two un-
known variables. In order to recover simultaneously w bits of the exponent and
w bits of the sum of RSA primes, it is necessary to get additional equations
(at least one more). This can be achieved by repeating this analysis on a signa-
ture faulted at the same step of its execution to recover another δw value for a
different λ.

For the sake of clarity, we have voluntary withdrawn the influence of the carry
bits in the system. In practice, as for the MSB case, these carry bits add some
uncertainty on the low order bits of dw. In other words, instead of recovering a
unique value for dw, in practice two or three solutions are returned in the worst
case. But, the wrong values obtained for dw will be discarded when subsequent
analysis will be performed. Thus, the number of false-accepted candidates does
not grow up exponentially in cascading the resolution, but stay bounded. When
the part of d recovered by repeating the described analysis is large enough, the
attacker may complete the attack by using classical methods such as Shank’s
Baby-Step Giant-Step or lattice techniques.

4 Attack Algorithm

4.1 Summary of Our Attack

In this section, we detail the implementation of our Differential Fault Analysis
described above. This part completes our previous theoretical approach by pro-
viding a more pragmatic description of our attack methodology. This algorithm
has been successfully implemented on a standard PC using the GMP Library 1

leading.

Gather faulty signatures. The attacker first chooses a window length w for
the recovery of the secret key d. Then he has to gather multiple signatures
faulted at different steps of the execution. If we denote by t the time location
of the fault injection, the attacker has to gather:
– One faulty signature and the corresponding correct one

if
(

n
2 + l

) ≤ t < n
– Two (or more) faulty signatures and the corresponding correct one

if 0 ≤ t <
(

n
2 + l

)
where t is decremented by w each time. The collected signatures are sorted
in descending fault locations.

1 The GNU Multiple Precision Library. Available at http://gmplib.org/

http://gmplib.org/

316 A. Berzati, C. Canovas-Dumas, and L. Goubin

Analysis of the MSB. For each correct/faulty signature pairs the attacker
guesses-and-determines the triplet of values (dw, λ, N̂). The part of exponent
dw is composed by the bits obtained from previous analysis and the w bits to
guess. Hence, with our method, the analysis of one correct/faulty signature
pair reveals each time w bits of d. So, this analysis has to be repeated on all
signature pairs (Ŝt, St) such that

(
n
2 + l

) ≤ t < n to recover almost all the
most significant bits of d.

Analysis of the LSB. For all the gathered signatures, the attacker has to per-
form an analysis split into two parts:
– First, he has to guess-and-determine two or more triplets of values

(δw, λ, N̂) from different pairs of faulty/correct signatures
– Then, he extracts both w bits of d and (p+q−1) by solving the obtained

system of equations.
As a result, the analysis of the signatures faulted at the same step t of their
respective execution allows an attacker to recover both a w-bit part of d and
(p + q − 1). As for the MSB case, this step has to be repeated (completed
by Baby-Step Giant-Step or lattice techniques if necessary) to recover the
missing bits of d.

4.2 Performance

Fault Number. Since our attack is based on fault injection, it seems relevant to
evaluate the number of faulty signatures an attacker has to collect to recover the
secret key. According to the description of our analysis (see Sect. 3.4), the number
of faults depends on the part of d the attacker aims to recover. In the case of
the MSB, the attacker will be able to recover w bits of d from one correct/faulty
signature pair. For the LSB, the attacker has to collect at least two signatures
faulted at the same step, since he has to solve a system of equations to extract
w bits of d. As a result, the number of faulty signatures to collect F is:

F = O
(n

w

)
(16)

In practice, for a 1024-bit RSA and a resolution window length w = 2, our attack
succeeded from about 1000 faulty signatures which is a little more than expected.
This extra cost is due to the LSB analysis that required an average of 3 faulty
signatures to correctly recover both parts of d and (p + q− 1). But this number of
fault is still reasonable and highlights the practicability of our fault attack.

Complexity. The general principle of our attack is based on extracting a w part
of d from each correct/faulty signature pair collected according to the model.
This can be achieved by guessing and determining simultaneously the w bits
of d isolated by the fault, the l-bit random value λ and the faulty modulus
N̂ . Therefore, according to the fault model and the described algorithm, the
computational complexity C of our attack is:

C = O
(

2(w+l) · n2

w

)
exponentiations (17)

Public Key Perturbation of Randomized RSA Implementations 317

The extra analysis required for the LSB case does not appear in this expression
since it is dominated by the search of a triplet that satisfy (8). Moreover one
can notice that the complexity exponentially depends on the random length l.
So lengthening λ exponentially hardens our analysis. But, some computational
optimizations can be done to bypass this problem.

Computational Optimizations. In this part, we propose to speed up the ex-
ecution of our fault attack by using some optimizations inspired from particular
feature of the attack. First, instead of computing candidate values the faulty
modulus “on the fly“, the attacker can precompute a dictionary of possible val-
ues for the faulty modulus according to the fault model chosen. Moreover, by
using the Theorem 1, the attacker may advantageously compute the guess-and-
determine step by decrementing the candidate values for λ and stopping when
a triplet satisfies (8). This optimization is all the more interesting if the expo-
nent is blinded with a λ close to 2l. The last optimization also concerns the
guess-and-determine step. Indeed, one can notice that for a given faulty signa-
ture, all candidate values can be tested independently. As a consequence, this
step can be easily computed in parallel. So, if an attacker can get a cluster of k
machines, then he can distribute the guess-and-determine step and reduce the

global complexity of the attack C to
C
k

.

5 Conclusion

This paper presents the first fault attack against implementations of an RSA
signature scheme that embedding the exponent randomization countermeasure.
Through their “Doubling Attack“, P.-A. Fouque and F. Valette first alerted the
community that using this countermeasure may introduce a physical leakage if it
is combined with a “Left-To-Right“ -based modular exponentiation. We complete
this work by showing in this paper that implementations of RSA based on the
dual exponentiation may be vulnerable to fault. Indeed, we demonstrate that the
exploitation of a reasonable number of faulty signatures may lead to a full secret
key recovery. Moreover the GMP implementation of our method as well as the use
of a practicable fault model provide evidences that the perturbation of public
elements represents a real threat for RSA implementation, even randomized.
Thus, it might be worthwhile to check the effective robustness of the exponent
blinding against other fault attacks.

References

1. Berzati, A., Canovas, C., Dumas, J.-G., Goubin, L.: Fault Attacks on RSA Public
Keys: Left-To-Right Implementations are also Vulnerable. In: Fischlin, M. (ed.)
CT-RSA 2009. LNCS, vol. 5473, pp. 414–428. Springer, Heidelberg (2009)

2. Berzati, A., Canovas, C., Goubin, L.: Perturbating RSA Public Keys: an Im-
proved Attack. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 380–395. Springer, Heidelberg (2008)

318 A. Berzati, C. Canovas-Dumas, and L. Goubin

3. Biehl, I., Meyer, B., Müller, V.: Differential Fault Attacks on Ellitic Curve Cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000)

4. Blömer, J., Otto, M.: Wagner’s Attack on a secure CRT-RSA Algorithm Reconsid-
ered. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006.
LNCS, vol. 4236, pp. 13–23. Springer, Heidelberg (2006)

5. Brier, E., Chevallier-Mames, B., Ciet, M., Clavier, C.: Why One Should Also Secure
RSA Public Key Elements. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 324–338. Springer, Heidelberg (2006)

6. Clavier, C.: De la sécurité physique des crypto-systèmes embarqués. PhD thesis,
Université de Versailles Saint-Quentin (2007)

7. Coron, J.-S.: Resistance Against Differential Power Analysis for Elliptic Curve
Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
292–302. Springer, Heidelberg (1999)

8. Fouque, P.-A., Kunz-Jacques, S., Martinet, G., Muller, F., Valette, F.: Power At-
tack on Small RSA Public Exponent. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 339–353. Springer, Heidelberg (2006)

9. Fouque, P.-A., Réal, D., Valette, F., Drissi, M.: The Carry Leakage on the Ran-
domized Exponent Countermeasure. In: Oswald, E., Rohatgi, P.P. (eds.) CHES
2008. LNCS, vol. 5154, pp. 198–213. Springer, Heidelberg (2008)

10. Fouque, P.-A., Valette, F.: The Doubling Attack – why Upwards Is Better than
Downwards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS,
vol. 2779, pp. 269–280. Springer, Heidelberg (2003)

11. Kocher, P.: Timing attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

12. Seifert, J.-P.: On Authenticated Computing and RSA-Based Authentication. In:
ACM Conference on Computer and Communications Security (CCS 2005), pp.
122–127. ACM Press, New York (2005)

13. Wagner, D.: Cryptanalysis of a provably secure CRT-RSA algorithm. In: Proceed-
ings of the 11th ACM Conference on Computer Security (CCS 2004), pp. 92–97.
ACM, New York (2004)

A Proof of the Theorem 1

Let us consider a candidate value λ′ for the random value λ used in a faulty
RSA signature Ŝt such that λ′ > λ. Then we can also write λ′ ≥ λ + 1. Now, let
us use this relationship to build a candidate value for d[t]:

λ′ ·N ≥ (λ + 1)N (18)
⇔ λ′ ·N ≥ λN + N (19)

But, since the secret key d is computed as the invert of e modulo ϕ(N), we also
know that:

N > ϕ(N) > d (20)

As a consequence, we can deduce from the previous relations that:

λ′N > λN + d (21)

⇒ �λ
′N

2t
� > �λN + d

2t
� (22)

Public Key Perturbation of Randomized RSA Implementations 319

Now let us rewrite the previous equation using the binary representation of the
operands:

n+l−1∑
i=t

2i−t · (λ′N)i >

n+l−1∑
i=t

2i−t · (λN + d)i (23)

⇔
n+l−1∑

i=t

2i · (λ′N)i >

n+l−1∑
i=t

2i · (λN + d)i (24)

⇔
n+l−1∑

i=t

2i · (λ′N)i > d̄[t] (25)

From this inequality, we can conclude that any candidate value computed with λ′

will be strictly greater than the searched d̄[t]. So, (8) can not be satisfied for such a
λ′. �

Fault Sensitivity Analysis

Yang Li1, Kazuo Sakiyama1, Shigeto Gomisawa1, Toshinori Fukunaga2,
Junko Takahashi1,2, and Kazuo Ohta1

1 Department of Informatics, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

{liyang,saki,g-shigeto-lfat,junko,ota}@ice.uec.ac.jp
2 NTT Information Sharing Platform Laboratories, NTT Corporation

3-9-1 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan
{fukunaga.toshinori,takahashi.junko}@lab.ntt.co.jp

Abstract. This paper proposes a new fault-based attack called the
Fault Sensitivity Analysis (FSA) attack, which unlike most existing fault-
based analyses including Differential Fault Analysis (DFA) does not use
values of faulty ciphertexts. Fault sensitivity means the critical condition
when a faulty output begins to exhibit some detectable characteristics,
e.g., the clock frequency when fault operation begins to occur. We ex-
plain that the fault sensitivity exhibits sensitive-data dependency and
can be used to retrieve the secret key. This paper presents two practical
FSA attacks against two AES hardware implementations on SASEBO-R,
PPRM1-AES and WDDL-AES. Different from previous work, we show
that WDDL-AES is not perfectly secure against setup-time violation at-
tacks. We also discuss a masking technique as a potential countermeasure
against the proposed fault-based attack.

Keywords: Side-channel attacks, Fault Sensitivity Analysis, AES, WDDL.

1 Introduction

Nowadays, the security of cryptographic devices such as smart cards is threat-
ened by side-channel attacks that retrieve secret information from side-channel
leakages such as power consumption and electromagnetic radiation. The most
studied fault-based attack is Differential Fault Analysis (DFA) proposed by Bi-
ham and Shamir in 1997 [1]. The DFA attacks have been actively studied in
[2, 4, 6–8, 10, 12–14] and [16].

Generally, DFA attacks retrieve the key based on information of the character-
istics of the injected fault and the values of the faulty ciphertexts. In this paper,
a faulty ciphertext represents the output after a transient fault is injected, i.e.,
the output of the original cryptographic algorithm using a faulty intermediate
value as an intermediate input. On the other hand, when an action of fault injec-
tion is performed, we generally call the output a faulty output. A faulty output
could be a faulty ciphertext, a fault-free ciphertext when the fault injection fails,
or a nonsense value for implementations with fault attack countermeasures.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 320–334, 2010.
c© International Association for Cryptologic Research 2010

Fault Sensitivity Analysis 321

This paper proposes a new fault-based attack called Fault Sensitivity Analysis
(FSA) attack. We notice that in the process of fault injection, there are other
types of information that are available to attackers, which we call fault sensitiv-
ity. The fault sensitivity is a condition where the faulty output begins to exhibit
some detectable characteristics. For example, when gradually increasing the in-
tensity of the fault injection, attackers can discern the critical condition where
a fault begins to occur or the fault becomes stable. Similar to most side-channel
attacks, if the relationship between the fault sensitivity and the processed sen-
sitive data is known, the FSA attacks can retrieve the secret information from
a cryptographic device.

This paper explains the general attack procedures and attack requirements
for the FSA attacks. To prove the validity of the FSA attacks, this paper first
presents a detailed FSA attack example against PPRM1-AES [9] (1 stage Pos-
itive Polarity Reed-Muller) implemented in ASIC mounted on the Side-channel
Attack Standard Evaluation Board (SASEBO-R) [5]. For the PPRM1 S-box,
based on its structure and a simulation, we explain that there is a correlation
between the faulty sensitivity and the Hamming weight of the input signals for
the S-box. In the FSA attack against PPRM1-AES herein, the 128-bit key can
be retrieved with less than 50 plaintexts.

We note that the FSA attack has the potential to threaten many DFA-
resistant implementations, since it does not require the value of the faulty ci-
phertext. For example, FSA can be applied to Wave Dynamic Differential Logic
(WDDL) [15], which was said to be naturally immune to the DFA attacks based
on setup-time violation[11]. This paper also describes an FSA attack against
WDDL-AES on SASESO-R. Based on experimentation, we find that the fault
sensitivity for a WDDL combinational logic tree can be correlated with the val-
ues of one bit of the output signal. By retrieving 3 out of 16 key bytes, we show
that a practical ASIC implementation of WDDL-AES is not perfectly secure
against the FSA attack based on setup-time violations.

Compared to DFA, FSA does not restrict the injected fault to a small subspace
by assuming that only a few bits or bytes are disturbed. On the other hand, the
masking technique, which is shown not to be effective against the DFA attacks
[3], is a potential countermeasure against FSA attacks.

This paper is organized as follows. In Section 2, we briefly review the previous
work on fault-based attacks. Section 3 describes the general principle and attack
procedures of FSA. We also describe a detailed FSA attack against PPRM1-
AES. Finally, we discuss the attack requirements and countermeasures against
FSA. In Section 4, we explain the FSA attack against WDDL-AES. Section 5
concludes this paper.

2 Preliminaries

This section reviews several common fault injection techniques and presents the
attack assumptions and requirements for DFA.

322 Y. Li et al.

2.1 Common Fault Injection Techniques

In [2], the common fault injection techniques are listed as spike attacks, glitch
attacks, optical attacks, and electromagnetic perturbations attacks. The spike
and glitch attacks are likely to be simpler to implement than others since they
disturb the external power supply or the external clock, respectively. An illegal
power supply or illegal clock will cause a setup-time violation since flip-flops are
triggered before the output signals are fixed to a correct value. Compared to
spike attacks, it is easier to control the exact time of a fault injection for the
glitch attack. Therefore, we use the glitch attack to perform fault injections in
this paper.

2.2 DFA and Attack Requirements

In 1997, Biham and Sharmir first proposed the concept of the DFA attack and
applied it to DES [1]. Since then, the DFA attack has been the most discussed
fault-based attack. DFA assumes that attackers are in physical possession of
the cryptographic device, and can use it to obtain two ciphertexts for the same
plaintext and secret key1. One of the ciphertexts is a fault-free ciphertext denoted
by C, and the other denoted by C′ is the result after some computational fault
is injected. DFA further assumes that the attackers know some characteristics
of the injected fault, e.g., only several bits or bytes are disturbed in a specific
round operation.

In the DFA attacks, the attackers first make a key guess, Kg. Then fault-
free intermediate value I and faulty intermediate value I ′ are calculated based
on (C, Kg) and (C′, Kg), respectively. Subsequently, the attackers check whether
I⊕I ′ satisfies the characteristics of the injected fault. Repeating these procedures
for multiple pairs of (C, C′), the attackers can finally identify the secret key.

Generally, there are two major requirements for the DFA attacks.

– First, the DFA attack requires the value of faulty ciphertext C′. A faulty
ciphertext is the output of the original cryptographic algorithm using the
faulty intermediate value as the intermediate input. In the case of WDDL
circuits under the fault injections caused by setup-time violations, this re-
quirement cannot be satisfied [11].

– Second, attackers need to know some characteristics of the injected fault;
however, the characteristics of the injected fault cannot be judged from the
values of C and C′. Only when the actual injected fault is the expected one,
can the DFA attackers identify the secret key.

3 FSA Proposal

In this section, we explain the general principle of the proposed FSA, and discuss
the attack scenarios, attack requirements, and countermeasures to it. In a general
discussion concerning the FSA attack, we present a detailed FSA procedure using
PPRM1-AES as a case study.
1 For simplicity, we consider only the encryption process.

Fault Sensitivity Analysis 323

3.1 General Principle of FSA

In the same way as in the DFA case, we assume that the attackers are in physical
possession of the device. Starting from a condition where a correct ciphertext
is obtained, the attacker gradually increases the intensity to which he disturbs
the power supply or external clock. While doing so, there must be a moment
where the success rate of the fault injection is non zero and a moment where the
success rate is 1.

We call these critical conditions where the faulty output exhibits some de-
tectable characteristics fault sensitivity. The fault sensitivity information can
be observed and recorded by attackers and can be utilized as new side-channel
information if it exhibits sensitive-data dependency. Consequently, we propose
a new side-channel analysis FSA that utilizes the leakage of the fault sensitivity
to retrieve secret information.

3.2 Data-Dependency of Fault Sensitivity

Since the transitions of signals in a device are data-dependent, it is natural to be-
lieve that the fault sensitivity is data-dependent. For faults caused by the setup-
time violation, we explain the data-dependency for the timing delays of signals.

General Mechanism. We use AND, OR and XOR gates as examples to explain
the general mechanism of the data-dependency of the signal timing delay. In the
following analysis, TX denotes the timing delay for a signal X .

A B

C = A B

(b) (c)

A B

C = A B

(c)

A B

C = A B

A B

C = A B

(a)

TA

TAND

TB

Fig. 1. Examples for data-dependency for fault sensitivity

For a two-input AND gate as shown in Fig. 1 (a), we assume TA < TB. If
signal A is logic 0, signal C is determined after signal A arrives at the AND gate.
As a result, TC = TA + TAND, where TAND is the timing delay caused by the
AND gate. On the other hand, if signal A is logic 1, signal C will be determined
after signal B arrives, so that TC = TB + TAND.

Similarly, for a two-input OR gate as shown in Fig. 1 (b), we still assume
TA < TB. If signal A is logic 1, TC = TA + TOR, otherwise TC = TB + TOR. In
a word, for a two-input AND/OR gate, the input signal with a shorter timing
delay is the selector for the timing delay of the output signal. However, for an
XOR gate as shown in Fig. 1 (c), the timing delay of the output signal is decided
by the maximum timing delay of its input signals without data-dependency.

324 Y. Li et al.

We call the maximum timing delay among all the output signals for a combi-
national logic tree the critical timing delay. The fault sensitivity for setup-time
violation is dependent on the critical timing delay. Since the timing delays of
intermediate signals are data-dependent, the critical timing delay is also data-
dependent. Once a circuit is physically decided, the data-dependency of the fault
sensitivity is also physically fixed. Attackers can analyze the data-dependency
based on the structure of the circuit, software simulation, or implementation of
the circuit.

Data-dependency of Critical Timing Delay for PPRM1 S-box. As a
case study, we analyze the data-dependency of the critical timing delay for the
PPRM1 S-box based on its structure and a simulation.

Fig. 2. Structure of PPRM1 S-box and data-dependency for the critical timing delay

PPRM1 (AND-XOR logic) was proposed by Morioka and Satoh at CHES
2002 for a low power AES design [9]. Although PPRM1 is not likely to be used
in a practical implementation, its straight-forward structure makes it a perfect
attack target for the case study. As shown in Fig. 2, for the S-box of PPRM1,
the input signals go through an AND gate array and an XOR gate array to
become the output signals. For the AND gate array, the timing delays of the
output signals are dependent on the values of the input signals. For the XOR
gate array, the timing delays of the output signals are not data-dependent. In
general, the structure of the PPRM1 S-box indicates the dependency between
the critical timing delays and the values of the input signals.

For the AND gate array, each logic 0 input signal has a probability for decreas-
ing the critical timing delay. Consequently, the more 0s in the input signals, the
bigger the possibility that the critical timing delay of the S-box becomes shorter.
In conclusion, statistically the critical timing delay of the PPRM1 S-box should
be correlated with the Hamming weight of the input signals. Specifically, the
input signals with a higher Hamming weight make the PPRM1 S-box more sen-
sitive to a fast clock.

To confirm this, we simulate the transitions and timing delays of signals using
the Verilog-HDL codes for the PPRM1 S-box [5] by Xilinx. For each possible
input of the S-box, we obtain the corresponding critical timing delay where the

Fault Sensitivity Analysis 325

0 1 2 3 4 5 6 7 8
6.5

7

7.5

8

8.5

9

9.5

10

Hamming weight of the input of S−box

C
rit

ic
al

 ti
m

in
g

de
la

y
[n

s]

Fig. 3. Relationship between the critical timing delay and Hamming height of the input
of PPRM1 S-box

initial values of all wires are reset to logic 0. As shown in Fig. 3, the correlation
coefficient between the critical timing delay and the Hamming weight of the
input signals is approximately 0.71. Later we show a similar correlation existing
in the ASIC implementation of PPRM1 that can lead us to a practical FSA
attack.

3.3 General FSA Attacks Scenarios

Without loss of generality, this paper only shows the case in which the rounds
near the output are attacked.

Algorithm 1. Collection of Fault Sensitivity Information
Inputs: The number of different plaintexts: N
Outputs: Ciphertexts: CT [i], Critical fault injection intensity: F C [i]
for i = 1 to N do

Generate a random plaintext PT [i]
Reset fault injection intensity F ← 0
CT [i] ← Enc(PT [i], F) (No fault injection)
repeat

Increase F by a little
until Enc(PT [i], F) �= CT [i]
F C [i] ← F

end for

Collection of Fault Sensitivity Information. In a practical FSA attack,
attackers first need to collect the fault sensitivity information. For simplicity,
we use an unspecific parameter called the fault injection intensity denoted by
F . When F = 0, no fault injection is performed. An increase in F represents
an increase in the intensity for the fault injection, e.g., a decrease in the power

326 Y. Li et al.

supply and a shortening of the clock period. Then we denote the output of the
encryption for plaintext PT with fault injection intensity F as Enc(PT, F). We
use the intensity where a fault begins to occur as critical fault injection intensity
FC , then the fault sensitivity information is collected according to the procedures
in Alg. 1. In Alg. 1, the critical fault injection intensity information is collected
by gradually increasing the intensity and checking whether the output is still the
same as the fault-free ciphertext.

The Key Retrieval Procedure. We assume that the attackers can use ci-
phertexts CT [i] and a key guess, Kg, to predict critical fault injection intensity
FC using a function denoted by fF C

g
. Algorithm 2 shows the basic procedures

for the key retrieval calculation where ρ(A, B) denotes the absolute value of the
Pearson correlation coefficient between A and B. The correlation peak among
all possible key guesses is expected to be the same as the correct one.

Algorithm 2. Key Retrieval Procedure
Inputs: Bit length of (sub-)key: t, Ciphertexts: CT [i], Critical fault injection inten-
sity: F C [i]
Outputs: Key
for Kg = 0 to 2t − 1 do

for i = 1 to N do
F C

g [i] ← fF C
g

(CT [i], Kg)
end for
Cor[Kg] ← ρ(F C , F C

g)
end for
Key ← Kg where Cor[Kg] is the maximum

3.4 FSA Attack Scenarios against PPRM1-AES

In this section, we propose an FSA attack scenario against 128-bit PPRM1-
AES. We denote the calculation results of the i-th round of AES by Hi and
i ∈ [1, 10]. In the last round of AES, the MixColumns operation is omitted.
Each byte of H9 is substituted by an S-box, and the 10th round key, K10, is
added to become the corresponding byte for ciphertext H10. Since the byte-
wise calculations in the last round of AES are independent from each other,
there are 16 independent combinational logic trees. As a result, each byte of
the ciphertext is an independent indicator of whether a fault is injected in its
combinational logic tree. Therefore, even through all the S-boxes are calculated
in parallel for the PPRM1-AES on SASEBO-R, the 16 bytes of K10 can be
attacked independently in the FSA attack.

Based on the analysis in Section 3.2, when we inject the fault during the last
round of PPRM1-AES by shortening the corresponding clock period, the fault
sensitivity is correlated with H9. Attackers can set the basic attack target as a
byte of K10, then the FSA attacks can be applied as shown in Algs. 1 and 2,
where fF C

g
is the Hamming Weight of InvSbox(CT [i]⊕Kg).

Fault Sensitivity Analysis 327

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

0 128 256

0

0.5

Fig. 4. Attack results for PPRM1-AES using 360 plaintexts. Each sub-figure corre-
sponds to a key byte. The key guess is represented on the horizontal axis. The correla-
tion coefficient between the critical fault injection intensities and Hamming weight of
the input is represented on the vertical axis. Each correct key byte is marked by an ×.

FSA Attack Results against PPRM1-AES. This section shows the FSA at-
tack results against PPRM1-AES implemented in ASIC mounted on the
SASEBO-R [5]. The detailed experimental setup and parameter settings are
shown in Appendix A.

In Fig. 4, we show 16 sub-figures for the correlation coefficients against key
guesses for 16 bytes of K10 when 360 plaintexts are used. We note that in the
practical attack, all 16 key bytes of K10 are attacked in parallel, i.e., for each
plaintext we collect fault sensitivity data for every combinational logic tree.
Figure 5 shows the number of correct key bytes against the number of used
plaintexts. We found that full key recovery for the FSA attack against PPRM1-
AES requires less than 50 plaintexts.

3.5 Attack Requirements and Countermeasures for FSA

There are two requirements for a practical FSA attack. First, attackers must
understand the data-dependency for the fault sensitivity. Even through the sen-
sitive data and the fault sensitivity may not have a clear correlation, as long as
attackers have a template for the data-dependency of the fault sensitivity, FSA
can retrieve the secret key. Second, the secret key must be able to be divided and
attacked independently so that Alg. 2 can be finished in a practical amount of
time. All the software implementations where S-boxes are sequentially calculated
satisfy the second requirement. Furthermore, most of the parallel implementa-
tions without countermeasures satisfy the second requirement as well.

328 Y. Li et al.

0 25 50 75 100
0

4

8

12

16

The number of used plaintexts

T
h
e

n
u
m
b
e
r

o
f

c
o
r
r
e
c
t

k
e
y

b
y
t
e
s

Fig. 5. Number of correct key bytes vs. number of used plaintexts

Compared to the DFA attacks, the FSA attacks do not require that the in-
jected fault be restricted to a small subspace by assuming that only a few bits or
bytes are disturbed. Even though the DFA attacks are likely to require fewer fault
injections to retrieve the secret key [8, 10, 12, 16], it requires that the attacker
have the ability to inject the expected fault in the first place. Since attackers have
the device, there is no limitation on how many times that the non-invasive fault
injections are performed; however, it requires much knowledge or investigation
to inject the expected faults.

Furthermore, the FSA attacks do not require the values for faulty cipher-
texts. So for the conventional fault-based attack countermeasures that provide a
nonsense output or halt the calculation when a computational fault is detected,
the FSA attack is still a potential threat. The fault sensitivity information is
still available to attackers since they can distinguish whether or not a fault is
injected. However, if the S-boxes are calculated in parallel, the fault detection
is no longer byte-wise independent. The collected information only corresponds
to the most sensitive part. Since the second requirement for the FSA attacks is
not satisfied, it is difficult to retrieve the full key using the FSA attacks.

On the other hand, we note that the masking technique, which is shown not to
be effective against the DFA attacks [3], is likely to be an effective countermeasure
against the FSA attacks. Once all of the sensitive values are masked by uniformly
distributed random numbers, the data-dependency between the intermediate val-
ues and the fault sensitivity can no longer be used in the key retrieval.

4 FSA Attacks against WDDL-AES

Since the faulty output for WDDL circuit has no information regarding the key,
it is concluded that the WDDL circuit is naturally protected from the setup-time

Fault Sensitivity Analysis 329

violation attacks in FDTC 09 [11]. We note that WDDL-AES satisfies the attack
requirements for FSA, so that theoretically it is potentially vulnerable to the FSA
attacks.

4.1 WDDL "Protected" against Setup-Time Violation Attacks

WDDL was proposed by Tiri and Verbauwhede at DATE 2004 as a hiding coun-
termeasure for power analysis. As a representative of the Dual-Rail Precharge
Logic, each WDDL gate comprises two complementary operations. Every signal
in WDDL has two complementary wires (true, false) as well, where the true
wire has the actual value of the signal and the false wire has the complementary
value. The logic values of two wires for a signal are either (1, 0) or (0, 1). Each
clock cycle is divided into two phases, precharge and evaluation. In the precharge
phase, all of the wires are set to be the precharge value, which is assumed to
be 0 in this paper. In the evaluation phase, each pair of wires is set back to the
logic values as either (1, 0) or (0, 1). As a result, exactly half of the wires will
transit from 0 to 1, and the other half remain at 0 during each evaluation phase.
Since the number of bit transitions is independent from the processed data, a
WDDL circuit is likely to consume a constant amount of power for each clock
cycle.

Under the fault injection caused by the setup-time violations, the two wires of
a faulty signal in WDDL can only be (0, 0). Furthermore, an input faulty signal,
(0, 0), is likely to spread to all of the output signals for a WDDL combinational
logic tree. In the case of the fault injection at the beginning of the 8th round used
in [10, 12, 16], attackers can only obtain a faulty output with all 0s. Since faulty
ciphertext C′ is not available for DFA attackers, it is concluded that WDDL is
naturally immune to the setup-time violation attacks. However in this work, we
show that in a practical implementation of WDDL-AES it is vulnerable to the
FSA attacks based on setup-time violation.

4.2 Data-Dependency of Fault Sensitivity for WDDL-AES

For the WDDL-AES on SASEBO-R, we try to use the implementation itself to
obtain the data-dependency of the fault sensitivity. With full knowledge of the
secret key, we performed fault injections that shorten the evaluation period for
the last round of AES. Then we found that the critical fault injection intensity
of each byte is correlated with the value of one single bit of the ciphertext
byte. Although the correlation between fault sensitivity information and the
ciphertexts cannot be used for key retrieval, we understand the fault sensitivity
for the WDDL circuits are dependent on its output.

4.3 Practical FSA Attack against WDDL-AES

As a practical attack, we performed another fault injection that shortens the
evaluation period for the 9th round of AES, since the data-dependency based

330 Y. Li et al.

on H9 can be used in the key retrieval. A modified key retrieval algorithm shown
in Alg. 3 is applied. In Alg. 3, fgetbit(A, b) represents a vector comprising the
b-th bit of each element of A. The attack results after using 1200 plaintexts are
shown in Fig. 6. The 6th key byte and the 11th key byte of K10 can be identified
clearly. Also the correlation coefficient peak for the 4th key byte corresponds to
the correct key as well.

Algorithm 3. Key Retrieval Procedure for WDDL-AES
Inputs: Bit length of (sub-)key: t, Ciphertexts: CT [i], Critical fault injection inten-
sity: F C [i]
Outputs: Key
for Kg = 0 to 2t − 1 do

for i = 1 to N do
F C

g [i] ← InvSbox(CT [i] ⊕ Kg)
end for
for bit = 0 to 7 do

BitCor[bit] ← ρ(fgetbit(F C
g , bit), F C)

end for
Cor[Kg] ← Max(BitCor[bit])

end for
Key ← Kg where Cor[Kg] is the maximum

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

0 128 256

0

0.2

0.4

Fig. 6. Attack results for WDDL-AES using 1200 plaintexts. Each sub-figure corre-
sponds to a key byte. The key guess is represented on the horizontal axis. The maximum
8-bit-based correlation coefficient is represented on the vertical axis. Each correct key
byte is marked by an ×.

We believe that there are two reasons for this correlation. First, since the S-
box of WDDL-AES is not based on S-boxes with clear gate arrays, even though

Fault Sensitivity Analysis 331

the fault sensitivity for WDDL-AES is dependent on the input signals there is
no clear correlation as in the case for PPRM1-AES. Second, assuming that the
two complementary wires for the critical path have different timing delays, then
the fault sensitivity will be correlated with this output signal since only 1 → 0
could occur for WDDL circuits under setup-time violations. For example, we
assume that the timing delay of the true wire is longer than that for the false
wire. As a result, the calculation with output signal (1,0) is more sensitive to a
fast clock than the one with output signal (0,1), which leads to the correlation
we observed in the experiments.

Compared to a single-rail circuit such as PPRM1, it is harder to apply the
FSA attack to WDDL. Each path in the WDDL combinational logic tree has
two wires that are supposed to have the same timing delay. However, practically
the timing delays for two complementary wires cannot be exactly the same,
so that the vulnerability to FSA attacks for practical WDDL implementations
still exists. The unexploited key bytes may become exploitable by using a more
precise experimental setup.

Another difficulty in attacking WDDL is that, since the fault injection is
performed in the 9th round, there is influence from the key schedule and the
MixColumns. In the proposed attack, we find that several bytes have the same
fault sensitivity when we inject the fault in the 9th round, which indicates that
the fault signal affects these bytes at the same time. This kind of fault is difficult
to use in the FSA attacks. As future work, we plan to investigate in more detail
the fault sensitivity of WDDL circuits.

5 Conclusions

This paper proposed a new fault-based attack called Fault Sensitivity Analysis,
which has lower attack requirements than those for Differential Fault Analysis.
The FSA attacks are based on the dependency between the sensitivity data and
the critical conditions where faulty outputs begin to exhibit detectable charac-
teristics. Two practical FSA attacks against ASIC implementations of AES were
shown in the paper. For PPRM1-AES, less than 50 plaintexts were needed to
retrieve the full key. For WDDL-AES, which was shown to be immune to DFA
attacks based on setup-time violation, the proposed FSA attack successfully re-
trieved 3 out of 16 key bytes with 1200 plaintexts.

Acknowledgement

The authors would like to thank the anonymous referees for their valuable com-
ments. This research was partially supported by the Strategic International
Cooperative Program (Joint Research Type), Japan Science and Technology
Agency.

332 Y. Li et al.

References

1. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

2. Blömer, J., Seifert, J.-P.: Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181.
Springer, Heidelberg (2003)

3. Boscher, A., Handschuh, H.: Masking Does Not Protect Against Differential Fault
Attacks. In: Breveglieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J.-P. (eds.)
FDTC, pp. 35–40. IEEE Computer Society, Los Alamitos (2008)

4. Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analysis on A.E.S., Cryp-
tology ePrint Archive, Report2003/010 (2003)

5. Research Center for Information Security (RCIS). Side-channel Attack Standard
Evaluation Board (SASEBO),
http://www.rcis.aist.go.jp/special/SASEBO/CryptoLSI-en.html

6. Giraud, C.: DFA on AES, Cryptology ePrint Archive, Report2003/008 (2003)
7. Li, Y., Gomisawa, S., Sakiyama, K., Ohta, K.: An Information Theoretic Perspec-

tive on the Differential Fault Analysis against AES, Cryptology ePrint Archive,
Report2010/032 (2010)

8. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A Generalized Method of Differ-
ential Fault Attack Against AES Cryptosystem. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)

9. Morioka, S., Satoh, A.: An Optimized S-Box Circuit Architecture for Low Power
AES Design. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 172–186. Springer, Heidelberg (2003)

10. Mukhopadhyay, D.: An Improved Fault Based Attack of the Advanced Encryp-
tion Standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580,
pp. 421–434. Springer, Heidelberg (2009)

11. Guilley, S., Graba, T., Selmane, N., Bhasin, S., Danger, J.-L.: WDDL is Protected
Against Setup Time Violation Attacks. In: FDTC, pp. 73–83. IEEE Computer
Society, Los Alamitos (2009)

12. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D.,
Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer,
Heidelberg (2003)

13. Saha, D., Mukhopadhyay, D., RoyChowdhury, D.: A Diagonal Fault Attack on
the Advanced Encryption Standard, Cryptology ePrint Archive, Report2009/581
(2009)

14. Sakiyama, K., Yagi, T., Ohta, K.: Fault Analysis Attack against an AES Pro-
totype Chip Using RSL. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473,
pp. 429–443. Springer, Heidelberg (2009)

15. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Re-
sistant ASIC or FPGA Implementation. In: DATE, pp. 246–251. IEEE Computer
Society, Los Alamitos (2004)

16. Tunstall, M., Mukhopadhyay, D.: Differential Fault Analysis of the Advanced
Encryption Standard using a Single Fault, Cryptology ePrint Archive, Re-
port2009/575 (2009)

http://www.rcis.aist.go.jp/special/SASEBO/CryptoLSI-en.html

Fault Sensitivity Analysis 333

A Experimental Setup for Fault Sensitivity Analysis
Using Clock Glitch

The experimental setup for FSA is shown in Fig. 7. The fault injection technique
used in the proposed attack is the clock glitch. We use two clock supplies in
the experiment system. The first clock supply, clk1, is generated by a 24 MHz
oscillator and provided to the control FPGA and the I/F of the LSI to ensure
that they work appropriately. The second clock supply, clk2, is generated from
a function generator that is controlled by a PC through GBIP. By multiplying
clk2, higher frequency clock clkhf is generated using the Digital Clock Manager
(DCM) inside the control FPGA. Then, based on clk2, clkhf , and the start signal
from the LSI core, we use the control FPGA to generate a special clock, clkcore,
which is provided to the LSI core. Most cycles of clkcore are the same as those for
clk2, except one cycle is the same as the clkhf , which triggers the computational
fault at the time we want. Figures 8 and 9 show the power traces of PPRM1-AES
and clocks clkcore without fault injection and with fault injection, respectively.

clk_core

clk1
SASEBO-R

LSI Ctrl FPGA

Core

I/F

DCM

PC

Function

Generator

Power Supply

Osc.

RS-232

GBIP

3.3V

clk2

Ctrl

Addr

Data

clk1

Start

PPRM1

WDDL

…

Fig. 7. Experimental setup for fault sensitivity analysis

PPRM1-AES

power

normal clock

Fig. 8. Power trace of PPRM1-AES without fault injection (above) and clock supply
without glitch (bottom)

334 Y. Li et al.

power

illegal clockglitch

PPRM1-AES

Fig. 9. Power trace of PPRM1-AES with fault injection (above) and clock supply with
a glitch (bottom)

In order to reduce the total number of fault injections for a successful FSA
attack, we first employ a binary search to determine a relatively high frequency
for clkhf that does not trigger any fault. Then we increase the frequency of clkhf

step-by-step and record the critical frequency for each byte of ciphertext. In the
experiments, the period of clkhf is decreased by approximately 35 picoseconds
in each step. Furthermore, every plaintext is repeatedly used, until all of the
bytes of ciphertext have been disturbed into a faulty value. In the worst case
in the proposed attacks, a plaintext must be repeatedly used 120 times. In the
experiment, we choose these parameters to make sure that 1) the recorded fault
sensitivity has informative variations and 2) the level of efficiency in collecting
the fault sensitivity information is tolerable. These parameters can be optimized
to lead a more efficient FSA attack.

An Alternative to Error Correction for
SRAM-Like PUFs

Maximilian Hofer and Christoph Boehm

Institute of Electronics, Graz University of Technology
maximilian.hofer@tugraz.at, christoph.boehm@tugraz.at

http://ife.tugraz.at

Abstract. We propose a new technique called stable-PUF-marking as
an alternative to error correction to get reproducible (i.e. stable) out-
puts from physical unclonable functions (PUF). The concept is based on
the influence of the mismatch on the stability of the PUF-cells’ output.
To use this fact, cells providing a high mismatch between their crucial
transistors are selected to substantially lower the error rate. To verify
the concept, a statistical view to this approach is given. Furthermore,
an SRAM-like PUF implementation is suggested that puts the approach
into practice.

Keywords: Physical Unclonable Functions, SRAM, Pre-Selection.

1 Introduction

Due to the widespread use of Smart Cards and radio frequency identification
(RFID) devices, the demand for secure identification/authentication and other
cryptographic applications is continuously increasing. For this purpose a “fin-
gerprint” of a chip can be useful. Physical unclonable functions (PUFs) provide
such an output. In 2001, Pappu et al. introduced the concept of PUFs [1]. In this
approach a unique output is produced by evaluating the interference pattern of
a transparent optical medium. Unfortunately, due to the way of pattern extrac-
tion, Pappu’s approach turns out to be quite expensive. In [2,3], Gassend et al.
introduce physical unclonable functions in silicon. The concept utilizes manu-
facturing process variation to distinguish between different implementations of
the same integrated circuit (IC). This is done by measuring the frequency of
self-oscillating loop circuits. These frequencies differ slightly between the real-
izations. However, the chip area is large and the current consumption is high.
Another approach is to use the initial values of SRAM cells. [4,5] shows that
there exist SRAM chips which deliver the same start-up value again and again
which is the crucial property of a PUF. The best of them deliver an error rate of
less than 3 %. So it seems that SRAM-like structures are feasible as dedicated
PUF-cells [6].

One way to deal with errors in the PUFs’ responses is to use error-correction
codes (ECC) [7]. Here, redundace is added by storing parity bits during an ini-
tialization phase. These bits can be used afterwards to reconstruct the reference

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 335–350, 2010.
c© International Association for Cryptologic Research 2010

336 M. Hofer and C. Boehm

value. Unfortunately, efficient decoding is difficult. If the error rate is high, the
runtime increases strongly [8,9]. Other methods use statistical data of the fuzzi-
ness [10] (i.e. the degree of instability) of the PUF responses. In [10], Maes et.
al. read out the response several times to collect data about the stability of the
different PUF-cells. An advantage of this Soft Decision Data Helper Algorithm
is that the number of PUF-cells can be reduced up to 58.4 %. A drawback is
that the initialization phase needs a higher number of runs (e.g. 64 in [10]).

In this work we propose an alternative method to deal with unstable PUF-
cells. The time needed for the read-out phase is reduced due to the fact that
further post-processing of the PUF response becomes less complex or even need-
less depending on the application.

The remainder of the paper is organized as follows. Section 2 describes the
idea behind the concept. In Section 3 a statistical analysis is given. Section 4
provides an approach to an implementation in silicon. Finally, section 5 concludes
the paper. In the appendix some additional calculations and tables are given.

2 Idea

Figure 1 shows a CMOS SRAM-cell that can be used as a PUF-cell. A whole
PUF consists of an application dependent number of such cells. We assume that
the design and the layout of that PUF-cell are optimized in such a way that the
PMOS transistors match and the NMOS transistors mismatch.1 In an SRAM
PUF, the output which is defined by the state of OUT after power-up, mainly
depends on the threshold voltage (Vth) mismatch. Assuming identical initial
potentials at OUT and OUT , the mismatch of the NMOS transistors lead to a
difference between i1 and i2 in the two branches of the SRAM cell. If i2 is higher
than i1, the potential at OUT will move towards VSS , the potential at OUT will
move towards VDD. If i2 is lower than i1, the cell behaves the other way round.
This behavior at OUT and OUT should be an intrinsic property of the cell and
should not change over time. If the mismatch is too small, the cell result will be
unstable due to noise, temperature shifts, and other shifts in the working point,
e.g. caused by changes in VDD.

The idea is to select only the stable cells (i.e. those cells providing a high
mismatch) to generate the PUF output. Before the PUF is used for the first
time, during an initialization phase the stable PUF-cells are detected. These
cells are marked. All the other PUF-cells are not used any longer. From now on,
only stable PUF-cells generate a stable response.

This gives rise to the question of how to select the stable bits. An intuitive
approach is to measure the results of a PUF-cell repeatedly and chose only
those cells which always provide the same output. For various reasons this is
not practicable. First of all, additional measurements must be done to get useful

1 The mismatch’s variance of the transistors can be controlled over the transistor
area: Smaller area leads to higher mismatch. This means that the analog designer
can influence the variance but not the individual value of the mismatch which defines
the PUF-cell output.

An Alternative to Error Correction for SRAM-Like PUFs 337

Fig. 1. Common SRAM-cell

statistical data and thus is not feasible for an initial production test flow where
measurement time has proportional impact on the product costs. Another prob-
lem is that there are cells which show temperature depending behavior. So the
initial measurements would have to be done over the whole temperature range.
Furthermore, the influence of aging changes the mismatch behavior [5] and could
cause additional errors after some time.

Another approach to find unstable PUF-cells is to use the fact that stable
cells decide faster [6]. To detect the fast flipping cells, the decision time has to be
measured. In figure 2 this concept is illustrated. After a certain time tuseful the

Fig. 2. Measurement of decision time (UF : useful, NUF : not useful)

cells above an upper threshold or under a lower threshold are marked as useful.
All other cells which lie between the two thresholds are marked as not useful.
Unfortunately, simulations show that the decision time strongly depends on the
temperature. Therefore during the initialization phase a constant temperature
is necessary to allow the use of an absolute time tuseful. Another solution to this
problem could be to measure the time spans needed to reach a threshold value.
The fastest cells are used. Since it may happen that the fastest cells of a chip
are still not fast enough to meet the above requirements a stable behavior can
not be expected in all cases.

338 M. Hofer and C. Boehm

Fig. 3. The mismatch is divided in three classes: The useful PUF-cells with positive
mismatch (UF+), the useful PUF-cells with negative mismatch(UF−) and the not
useful PUFs (NUF)

The approach we propose in this paper is based on the selection of cells
which provide a mismatch that exceeds a certain threshold. In the case of the
shown SRAM-PUF, the mismatch of the NMOS transistors must be above such a
threshold. In figure 3, the mismatch ΔVth of two transistors is depicted schemati-
cally. Here, this distribution is assumed to be Gaussian. A positive and a negative
threshold value (ΔVth+ and ΔVth−, with |ΔVth+| = |ΔVth−|) are defined, which
is necessary to divide the PUF-cells into three classes: the useful PUF-cells with
positive mismatch (UF+), the useful PUF-cells with negative mismatch (UF−)
and the not useful PUF-cells (NUF). In figure 3, the three sections are depicted.
In the middle section, the mismatch is too small to provide a stable behavior.
These bits are marked as NUF . The mismatch of the other bits is big enough to
provide a stable output. Thus, the threshold value must be chosen correctly to
reach an acceptable error rate. The larger the threshold value, the smaller the
number of PUF-cells that are marked as stable and the smaller the error rate.
Thus, to be able to provide the required number of useful cells, the number of
initial PUF-cells has to be adapted to the chosen threshold value. For this rea-
son, the threshold value is a trade-off between the ratio of the useful PUF-cells
and all PUF-cells and the error rate.

One method to measure ΔVth is to use a common analog to digital converter
(ADC). In figure 4 a block diagram is shown. The disadvantage of this approach
is the size of the ADC caused by the requirements on it. In order to get a balanced
output, the ADC must have a small offset. Furthermore the ADC has to be fast
and the result should not depend on the noise of the circuit.

The proposed concept to classify the cells into UF and NUF is to add a
systematical Vth offset to the circuit (see figure 7): Two measurements per PUF-
cell are needed. During the first measurement we add a negative offset. Thus the
threshold is set to Vth−. During the second measurement we move the threshold
to Vth+. This is illustrated in figure 3 denoted by the two arrows. The classi-
fication can be done as follows: If the mismatch of the transistors exceeds the

An Alternative to Error Correction for SRAM-Like PUFs 339

Fig. 4. Measurement of the mismatch using an ADC

threshold, the PUF-cell will provide the same output for both measurements and
thus the cell is marked as useful. If the mismatch is too small, the output OUT
of the cell will differ for the two measurements. The cell is marked as not useful.
Problems will occur if the threshold value is chosen too big. In such a case, only
a few or even no cells are marked as useful which can lead to severe problems.
On the other hand, if the threshold is chosen too small, disturbances like noise
will lead to output errors and make the whole pre-selection process useless.

3 Modeling and Statistical Aspects

To analyze the performance of this approach, Monte Carlo simulations are not
feasible since the error rate after the pre-selection process (i.e. after the useful-
PUF-marking) should be so small that the number of simulation runs to deter-
mine the error probability would exceed a tolerable number. So we prefer an
analytic method to estimate the performance of the pre-selection process:

For all further analyses we assume that the distribution of the Vth mismatch
as well as the distribution of the disturbances (noise, temperature-dependent
errors, etc.) is Gaussian [11,12,13,14]. To determine the effect of the pre-selection
process, we need the probability density function (PDF) f(x) and its integral,
the cumulative distribution function (CDF) F (x) of a Gaussian:

f(x) = φμ,σ(x) =
1

σ
√

2π
e

1
2 (x−μ

σ)2

(1)

F (x) = Φμ,σ(x) =
1

σ
√

2π

∫ x

−∞
e

1
2 (x−μ

σ)2

dx, (2)

where μ is the mean and σ the variance of the Gaussian.
If there is no disturbance at the PUF-cell, the cell output will be the same

whenever the PUF is read-out. In this case the output would be zero for all PUF-
cells having a negative ΔVth and one for all cells with positive ΔVth (see figure
5a). If there are disturbances due to noise, temperature, etc., it may happen that
if the mismatch is sufficiently small or the disturbance sufficiently large, the de-
cision is defined by this disturbance. That effect can be seen in figure 5b where
Φ2 shows the mean output depending on ΔVth taking the distribution of the

340 M. Hofer and C. Boehm

(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a) Ideal distributions Φ1−Φ4.(b) Real distributions Φ1−Φ4. (c) Useful positive
PUF-cells(UF+). (d) Useful negative PUF-cells(UF-). (e) PUF-cells which occur in
UF+ and UF−. (f) Useful PUF-cells(UF) and not-useful PUF-cells(NUF).

disturbance into account. At ΔVth = 0 the mean output equals 0.5. The same
curve but biased with the threshold ΔVth− and ΔVth+ depict Φ4 and Φ3. φ1 is
the distribution of the mismatch. After selecting the useful PUF-cells, the error
rate can be decreased significantly. Figures 5c and 5d show the product of Φ3
and φ1, and the product of (1−Φ4) and φ1 respectively. These curves depict the
distribution of being selected as useful including disturbances, the distribution
of the Vth mismatch and a certain Vth offset. Hence the figures represent the
number of selected PUF-cells. Figure 5e shows those cells that are selected twice,
i.e. that are declared to be useful for both offsets. To get correct results these
double-selections have to be compensated for in the analysis. Figure 5f shows
the distributions of selected and not selected cells.

Since σ2 = σ3 = σ4 = σ, μ1 = μ2 = 0, and μ3 = −μ4 can be assumed, we get
the following equation for the number of useful PUF cells α (see appendix):

An Alternative to Error Correction for SRAM-Like PUFs 341

α = 1− 1
σ12π

∫ −∞

∞
e
− 1

2

(
Vth
σ1

)2
[

1
σ

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ

σ

)2

dV ′
th+

− 1
σ

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ

σ

)2

dV ′
th +

2
σ2
√

2π

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ

σ

)2

dV ′
th ·

·
∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ

σ

)2

dV ′
th

]
dVth (3)

The error rate e at ΔVth can be derived using the following equation (see ap-
pendix):

e(ΔVth) = φ1Φ2−φ1Φ2Φ4−φ1Φ2Φ3Φ4+φ1Φ3−φ1Φ3+φ1Φ3Φ4−Φ2φ1Φ3Φ4, (4)

where all φi and Φi are evaluated at ΔVth.

Example. The standard deviation of ΔVth is 30 mV , the standard deviation
of φ2,3,4 equals 6.16 mV. This coresponds to an error-rate of 5%.2 In figure 6
the error rate and the ratio of useful PUF-cells α are shown in a diagram. It
can be seen that selecting for example the best 50 % can decrease the error rate
significantly. A table of different examples is shown in appendix B.

4 Implementation

Different circuits are possible to implement the approach described above. One
of them is presented. To understand the circuit we consider an ordinary SRAM-
cell depicted in figure 7. We assume that P1 and P2 match. Hence, the decision
depends on the mismatch of the threshold voltage of N1 and N2 denoted ΔVth.
To mark the cells as introduced in section 2, we have to add an additional voltage
source at the gate of one of the NMOS transistors to provide the bias we need
for the threshold (see figure 7a). Since the implementation of such a circuit is
difficult, the preferred way is to use its Norton equivalent - a current source - in
parallel to one of the NMOS transistors (see figure 7b).

From figure 8, the equivalence of the two circuits can be seen. The character-
istics of two different diode-loaded MOSFETS are shown. For the same VGS and
different threshold voltages, the amount of current through the transistors will
be different. Thus, additional current at one of the branches of the SRAM-cell
acts as a mismatch of Vth.

The circuit depicted in figure 9 is a practical implementation of the approach.
During the first phase N7 is switched-off. N3, N4 and P1, P2 are building a
SRAM similar circuit. N2 acts as a current limiter for this circuit. The circuit is
designed, that the mismatch between P1 and P2 is small and should not affect
the result. Due to the fact that the transistors N3 and N4 are diode loaded, the

2 We meassured an error-rate of 4% in a dedicated PUF-cell in the temperature range
from 0 − 80◦C. So this is a rather pessimistic value.

342 M. Hofer and C. Boehm

(a)

(b)

Fig. 6. a) Error rate e. (b) Ratio of useful PUF-cells α against μ3,4.

circuit does not flip as fast as the SRAM depicted in figure 1. During the second
phase, N7 is switched-on and the circuit flips completely to one direction. The
bias transistors which are used for the PUF-cell selection (P3 and P4) are used
during the first phase and switched-off during the second phase (P7 and P8 are
switched-on; P5 and P6 are switched-off).

If we want to add a fictive negative offset voltage at the transistor N4, P8 is
opened and P6 is closed. Thus, the transistor P4 is in parallel with transistor P2.
A higher current passes N4. The same can be done on the right branch (P7, P5,
P3 and N3). The truth table for the control of the transistors P5, P6, P7, and
P8 is shown in table 1.

A further improvement of this circuit can be achieved by separating the mis-
matching transistors N3 and N4 from the evaluation circuit consisting of the
transistors N5 to N7 and P1 to P8. Additionally, two transistors are required to
connect each cell to the evaluation circuit. So, one PUF-cell consists of only five

An Alternative to Error Correction for SRAM-Like PUFs 343

(a) (b)

Fig. 7. (a) SRAM-cell with additional voltage source at the gate of N1; (b) SRAM-cell
with additional current source at the drain of N1.

Fig. 8. Characteristics of two MOSFETS having different Vth

transistors as depicted in figure 10. The cells can be selected sequentially and
evaluated using the same evaluation circuit (i.e. sense amplifier). Thus, the area
of one PUF-cell is scaled-down to about the size of a common SRAM-cell. For
the particular topology that is about 100F2 (’minimum featured size’).

In such a circuit it could happen that the mismatch of the evaluation circuit
influences the decision. Due to this fact, cells using the same evaluation circuit
could tend to output the same value. To reduce the influence of an asymmetric
sense amplifier, the number of PUF-cells which use the same evaluation logic
should be chosen carefully.

The whole structure diagram of the system is depicted in figure 11. There
are two modes: One for the initialization phase and another one for the nominal
operation. The addresses of the useful cells are stored in a non-volatile memory
(NVM). During the initialization phase this memory is filled with data: The out-
puts of the single PUF-cells after adding both bias currents are compared. If the
output stays constant for both bias values, the address of the PUF-cell is written

344 M. Hofer and C. Boehm

Fig. 9. Implementation example of an SRAM-like PUF with pre-selection transistors
P3 and P4

Table 1. Control of the transistors P5, P6, P7, P8 for adding the current bias to the
circuit

function nth pth initp ninitp initn ninitn

no threshold 0 0 0 1 0 1
p threshold 0 1 1 0 0 1
n threshold 1 0 0 1 1 0

Fig. 10. PUF-cells with shared sense amplifier

into the NVM. The address of the NVM is incremented and the next PUF-cell
is tested. This is done until the necessary number of outputs is reached. If not
enough useful cells are provided an error occurs and the PUF must be considered
to be defect. This indicates that the mismatch between the transistors is too
small or that the ratio of required PUF-cells and available PUF-cells is too high.
Possible solutions to this problem are to increase the number of PUF-cells or
to reduce the upper and lower threshold values ΔVth− and ΔVth+. During the
nominal mode, the PUF-cells stored in the NVM are read-out.

An Alternative to Error Correction for SRAM-Like PUFs 345

Fig. 11. Structure diagram with initialization logic

5 Conclusion

In this paper we introduced a pre-selection process for SRAM-like PUFs which
can be implemented with little effort. We demonstrated that error-rates of 10E-6
are achievable. Due to the smaller error rate, using the marking procedure makes
post-processing less complex or even unnecessary depending on the application.
Hence, the area of the digital part of the circuit can be reduced. Furthermore,
the smaller error rate leads to less power consumption and faster read-out. The
additional effort caused by the initialization phase is small since the whole pro-
cess can be done at one temperature and only two read-out cycles are necessary
to separate the stable and the unstable PUF-cells.

References

1. Pappu, R., Recht, R., Taylor, J., Gershenfeld, N.: Physical one-way function. Sci-
ence 297(5589), 2026–2030 (2002)

2. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: CCS ’02: Proceedings of the 9th ACM conference on Computer and
communications. security, pp. 148–160 (2002)

3. Blaise, G., Daihyun, L., Dwaine, C., van Dijk, M., Srinivas, D.: Identification and
a2thentication of integrated circuits. Concurrency Computation: Pract. Exper. 16,
1077–1098 (2004)

4. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

5. Boehm, C., Hofer, M.: Using SRAMs as Physical Unclonable Functions. In: Pro-
ceedings of the 17th Austrian Workshop on Microelectronics - Austrochip, pp.
117–122 (2009)

6. Ying, S., Holleman, J., Otis, B.P.: A Digital 1.6 pJ/bit Chip Identification Circuit
Using Process Variations. IEEE Journal of Solid-State Circuits 43(1), 69–77 (2008)

7. Dodis, Y.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and
Other Noisy Data. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
523–540. Springer, Heidelberg (2007)

8. Hong, J., Vitterli, M.: Simple Algorithms for BCH Decoding. IEEE Transactions
of Communications 43, 2324–2333 (1995)

346 M. Hofer and C. Boehm

9. Boesch, C., Guajardo, J., Sadeghi, A.R., Shokrollahi, J., Tuyls, P.: Efficient Helper
Data Key Extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

10. Maes, R., Tuyls, P., Verbauwhede, I.: Low-Overhead Implementation of a Soft
Decision Helper Data Algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009)

11. Pelgrom, M., Duinmaijer, A., Welbers, A.: Matching Properties of MOS-
Transistors. IEEE Journal of Solid-State Circuits 24, 1433–1440 (1989)

12. Pelgrom, M.J.M., Tuinhout, H.P., Vertregt, M.: Transistor matching in analog
CMOS applications. In: International Electron Devices Meeting, IEDM ’98 Tech-
nical Digest., pp. 915–918 (1998)

13. Mizuno, T., Okumtura, J., Toriumi, A.: Experimental study of threshold voltage
fluctuation due to statistical variation of channel dopant number in MOSFET’s.
IEEE Transactions on Electron Devices 41, 2216–2221 (1994)

14. Tsividis, Y.: The MOS Transistor. Oxford University Pres, New York (1999)

A Calculations

Ratio of Useful PUF-Cells α: Partial probability of occurrence of selected PUF
cells depending on ΔVth (see figure 7(c) and 7(d)):3

UF+ = φ1Φ3 (5)

UF− = φ1(1− Φ4) (6)

Probability of occurrence PUF-cells being selected twice depending on ΔVth (see
figure 7(e)):

UF+ ∩ UF− = φ1Φ3(1− Φ4) (7)

Total probability of occurrence depending on ΔVth:

UF = UF+ + UF− − 2(UF+ ∩ UF−) =
= φ1[Φ3 + (1− Φ4)− 2Φ3(1 − Φ4)] =
= φ1[1− Φ4 − Φ3 + 2Φ3Φ4] (8)

From UF the ratio of useful PUF-cells α can be determined:

α =
∫ −∞

∞
UF dVth =

=
∫ −∞

∞

1
σ1
√

2π
e
− 1

2

(
Vth−μ1

σ1

)2
[
1− 1

σ4
√

2π

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ4

σ4

)2

dV ′
th+

− 1
σ3
√

2π

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ3

σ3

)2

dV ′
th +

2
σ3
√

2π

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ3

σ3

)2

dV ′
th ·

3 The results of this section depend on the threshold values Vth+ andVth−.

An Alternative to Error Correction for SRAM-Like PUFs 347

· 1
σ4
√

2π

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ4

σ4

)2

dV ′
th

]
dVth =

= 1− 1
σ12π

∫ −∞

∞
e
− 1

2

(
Vth−μ1

σ1

)2
[

1
σ4

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ4

σ4

)2

dV ′
th+

− 1
σ3

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ3

σ3

)2

dV ′
th +

2
σ3σ4

√
2π

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ3

σ3

)2

dV ′
th ·

·
∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ4

σ4

)2

dV ′
th

]
dVth (9)

In general we can assume that σ2 = σ3 = σ4 = σ, μ1 = μ2 = 0, and μ3 = −μ4.
Then α becomes:

α = 1− 1
σ12π

∫ −∞

∞
e
− 1

2

(
Vth
σ1

)2
[

1
σ

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ

σ

)2

dV ′
th +

− 1
σ

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ

σ

)2

dV ′
th +

2
σ2
√

2π

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ

σ

)2

dV ′
th ·

·
∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ

σ

)2

dV ′
th

]
dVth (10)

Ratio of Not-Useful PUF-Cells β: To verify the result of α, the ratio β of not
selected PUF-cells is determined as well:

β =
∫ −∞

∞
NUF dVth (11)

NUF = φ1[(1− Φ3)(1− (1 − Φ4) + Φ3(1− Φ4))]
= φ1[(1− Φ3)(Φ4) + Φ3(1− Φ4))]
= φ1[Φ4 − Φ4Φ3 + Φ3 − Φ4Φ3))]
= φ1[Φ4 + Φ3 − 2Φ4Φ3))] (12)

β =
∫ −∞

∞

1
σ1
√

2π
e
− 1

2

(
Vth−μ1

σ1

)2
[

1
σ3
√

2π

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ3

σ3

)2

dV ′
th+

+
1

σ4
√

2π

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ4

σ4

)2

dV ′
th −

2
σ3
√

2π

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ3

σ3

)2

dV ′
th ·

· 1
σ4
√

2π

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ4

σ4

)2

dV ′
th

]
dVth =

348 M. Hofer and C. Boehm

=
1

σ12π

∫ −∞

∞
e
− 1

2

(
Vth−μ1

σ1

)2
[

1
σ3

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ3

σ3

)2

dV ′
th+

+
1
σ4

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ4

σ4

)2

dV ′
th −

2
σ3σ4

√
2π

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ3

σ3

)2

dV ′
th ·

·
∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ4

σ4

)2

dV ′
th

]
dVth (13)

In general we can assume that σ2 = σ3 = σ4 = σ, μ1 = μ2 = 0, and μ3 = −μ4.
Thus, β becomes:

β =
1

σ1σ2π

∫ −∞

∞
e
− 1

2

(
Vth
σ1

)2
[∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ

σ

)2

dV ′
th+

+
∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ4

σ4

)2

dV ′
th −

2
σ

∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ

σ

)2

dV ′
th ·

·
∫ Vth

−∞
e
− 1

2

(
V ′

th
−μ

σ

)2

dV ′
th

]
dVth (14)

Check: 1 = α + β

Estimation of the Error Rate e: An error occurs, if one of the PUF-cells which
were marked useful provides the wrong output. Like the total ratio of selected
PUFs, the total error e(ΔVth) is the sum of the two partial errors e−(ΔVth) and
e+(ΔVth). The following errors are evaluated at a certain e(ΔVth):

e−(ΔVth) =
1
α

Φ2[UF− − (UF+ ∩ UF−)] =

=
1
α

Φ2[φ1(1− Φ4)− φ1Φ3(1− Φ4)] (15)

e+(ΔVth) =
1
α

(1− Φ2)[UF+ − (UF+ ∩ UF−)] =

=
1
α

(1− Φ2)[φ1Φ3 − φ1Φ3(1− Φ4)], (16)

where 1
α is a normalization factor.

e(ΔVth) = e+(ΔVth) + e−(ΔVth) =

=
1
α

(1− Φ2)[φ1Φ3 − φ1Φ3(1− Φ4)] +

+
1
α

Φ2[φ1(1− Φ4)− φ1Φ3(1− Φ4)] =

=
1
α
{[φ1Φ2 − φ1Φ2Φ4 − φ1Φ2Φ3 + φ1Φ2Φ3Φ4]+

An Alternative to Error Correction for SRAM-Like PUFs 349

+[φ1Φ3 − φ1Φ3(1− Φ4)]− Φ2φ1Φ3 + Φ2φ1Φ3(1− Φ4)} =

=
1
α
{φ1Φ2 − φ1Φ2Φ4 − φ1Φ2Φ3Φ4 + φ1Φ3 − φ1Φ3 + φ1Φ3Φ4−

−Φ2φ1Φ3 + Φ2φ1Φ3 − Φ2φ1Φ3Φ4} (17)

Table 2. Examples for the error rate e and the ratio of useful PUF-cells α. *The
number in the brackets shows the BER without any pre-selection.

num σ1 σ2, σ3, σ4 μ3 = μ4 α e

1 30 mV 1 mV (≈ 0.7%*) 5 mV 0.8677 2.19E-06
2 30 mV 1 mV (≈ 0.7%*) 10 mV 0.7390 ¡1e-12
3 30 mV 2 mV (≈ 1.5%*) 10 mV 0.7394 5.09E-6
4 30 mV 2 mV (≈ 1.5%*) 20 mV 0.5059 ¡1e-12
5 30 mV 5 mV (≈ 4%*) 10 mV 0.7422 0.0087
6 30 mV 5 mV (≈ 4%*) 20 mV 0.5108 2.39E-4
7 30 mV 5 mV (≈ 4%*) 40 mV 0.1884 1.03E-9

Table 3. Numeric examples of the error rate e and the ratio of useful PUF-cells α
in dependence of μ3,4(σ1 = 30mV, σ2,3,4 = 6, 16 mV). Without any pre-selection
(μ3,4 = 0mV) we get an error-rate of about 5%.

μ3,4(mV) e α μ3,4(mV) e α

0 4.9965E-2 0.909 26 2.1295E-4 0.396
1 4.9435E-2 0.907 27 1.4701E-4 0.378
2 4.7882E-2 0.9 28 1.0037E-4 0.361
3 4.5412E-2 0.889 29 6.7765E-5 0.344
4 4.2189E-2 0.874 30 4.5242E-5 0.327
5 3.8415E-2 0.856 31 2.9867E-5 0.311
6 3.4307E-2 0.836 32 1.9495E-5 0.296
7 3.0078E-2 0.814 33 1.2581E-5 0.281
8 2.5917E-2 0.791 34 8.027E-6 0.267
9 2.1971E-2 0.767 35 5.0631E-6 0.253
10 1.8347E-2 0.743 36 3.1571E-6 0.24
11 1.5109E-2 0.719 37 1.9460E-6 0.227
12 1.2282E-2 0.695 38 1.1858E-6 0.215
13 9.8629E-3 0.671 39 7.1416E-7 0.203
14 7.8298E-3 0.648 40 4.2516E-7 0.192
15 6.1474E-3 0.624 41 2.5017E-7 0.181
16 4.7749E-3 0.601 42 1.4549E-7 0.17
17 3.6698E-3 0.579 43 8.363E-8 0.16
18 2.7909E-3 0.557 44 4.7509E-8 0.151
19 2.1004E-3 0.535 45 2.6674E-8 0.142
20 1.5641E-3 0.514 46 1.4800E-8 0.133
21 1.1525E-3 0.493 47 8.1156E-9 0.125
22 8.4015E-4 0.473 48 4.3978E-9 0.117
23 6.0592E-4 0.453 49 2.3550E-9 0.11
24 4.3229E-4 0.433 50 1.2462E-9 0.103
25 3.0507E-4 0.414

350 M. Hofer and C. Boehm

To get the error e over all e(ΔVth), e(ΔVth) has to be integrated over all ΔVth:

e =
∫ −∞

∞
e(ΔVth) dΔVth (18)

B Numerical Examples

Table 2 shows some numeric examples for α and e. The number of useful PUF-
cells depends mainly on the ratio σ1

μ3,4
. The main factors for the error are σ2,3,4

and μ3,4. σ1influences the error rate only marginally. Table 3 shows e in depen-
dence of μ3,4.

New High Entropy Element for FPGA Based
True Random Number Generators

Michal Varchola and Milos Drutarovsky

Department of Electronics and Multimedia Communications,
Technical University of Kosice,

Park Komenskeho 13, 041 20 Kosice, Slovak Republic
michal@varchola.com, Milos.Drutarovsky@tuke.sk

Abstract. We demonstrate a new high-entropy digital element suitable
for True Random Number Generators (TRNGs) embedded in Field Pro-
grammable Gate Arrays (FPGAs). The original idea behind this prin-
ciple lies in the randomness extraction on oscillatory trajectory when
a bi-stable circuit is resolving a metastable event. Although such phe-
nomenon is well known in the field of synchronization flip-flops, this fea-
ture has not been applied for TRNG designs. We propose a new bi-stable
structure – Transition Effect Ring Oscillator (TERO) where oscillatory
phase can be forced on demand and be reliably synthesized in FPGA.
Randomness is represented as a variance of the TERO oscillations num-
ber counted after each excitation. Variance is highly dependent on the
internal noise of logic cells and can be used easily for reliable instant
inner testing of each generated bit. Our proposed mathematical model,
simulations and hardware experiments show that TERO is significantly
more sensitive to intrinsic noise in FPGA logic cells and less sensitive to
global perturbations than a ring oscillator composed from the same el-
ements. The experimental TERO-based TRNG passes NIST 800-22 tests.

Keywords: TRNG, oscillatory metastability, randomness extraction, in-
ner testability.

1 Introduction

Almost each cryptographic system contains a Random Number Generator (RNG)
that produces random values for underlying algorithms. Random numbers are
essential elements for secure transactions and therefore they should meet the
highest strict requirements – they should be unpredictable, uniformly distributed
on their range and independent [13].

RNGs can be divided into two main subgroups [9]: Pseudo RNG (PRNG)
and True RNG (TRNG). The output of a PRNG is mathematically defined and
all of its entropy is given by the random seed. On the other hand, entropy of a
TRNG is increased by each generated bit. The TRNG operation is usually based
on certain physical sources of entropy (e.g. thermal noise, timing jitter) that is
present in modern electronic devices.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 351–365, 2010.
c© International Association for Cryptologic Research 2010

352 M. Varchola and M. Drutarovsky

Field Programmable Gate Arrays (FPGAs) are a popular implementation
platform for modern crypto-systems thanks to their reconfigurability [24]. Weak
or obsolete cryptographic protocols or algorithms can be updated easily even in
devices deployed in a hostile environment. Thus users and FPGA devices can
better resist security treats. Moreover, an entire system should be implemented in
the same chip due to security reasons. Due to mentioned security considerations,
research on TRNGs for the FPGAs is still an area of active research [9].

Recent TRNGs for FPGAs employ two main randomness sources. First, tim-
ing jitter of Ring Oscillators (ROs) [20,7] or Phase Locked Loops (PLLs) [6] and,
second metastability of logic cells [5,21,22]. A comprehensive survey of various
TRNG principles was reported in [9]. However, serious disputes on reliability
of RO-based TRNG [20] led to a chain of papers [17,3,4,19,23,1] reporting var-
ious merits of it. Designers should also consider other issues such as frequency
injection attack [12] or TRNG evaluation methodology according [10].

Deep study on metastability was done in [8,15] where the main focus was syn-
chronization issues rather than TRNGs. Short-time metastability of a bistable
structure was forced by critical combination of input signals. It was noted that
even a small perturbation can cause escape from this state. The resulting logic
state and trajectory of approaching it was analyzed as well. The resulting state
and/or resulting trajectory can possess random properties such as a jitter of
temporarily oscillatory trajectory. Forcing metastability on demand is not triv-
ial and represents a great challenge for synthesis in FPGA fabric. However, most
published TRNG designs are targeted to ASIC technology and extract random-
ness from the “final logic state” after a metastable event.

The most recent design [22] uses a metastabe RO, where each inverter is
in short circuit to first reach a metastable state. After a while, inverters are
switched to the single chain in order to form a RO. Metastable issues provide
random starting conditions for the RO. Oscillation of RO and signal sampling
by a D-Flip-Flop (DFF) are used for a resolution of the foregoing metastable
event. The proof that authors of [22] reached a metastable state in the FPGA
is questionable. As evidence, they provide oscilloscope waveforms that in our
opinion cannot be acquired reliably from internal FPGA gates.

Each approach for a metastable TRNG [22,21,5] is based mainly on forcing a
system to a metastable state and then evaluating the state where the system con-
verges when the metastability phase is over. However, the phase of convergence
towards stable state by a temporally oscillatory trajectory was still neglected
as a randomness extraction mechanism. As it will be shown in this paper, such
phase is worthy to consider for random bit generation. We must point out that
the main focus of the paper is to introduce features of the new high entropy
element for FPGA-based TRNGs rather than present a complete TRNG design.

Paper is organized as follows: Section 2 brings design goals of the new entropy
element. Section 3 introduces the new entropy element and its mathematical
model accompanied by SPICE and VHDL macro-model simulations. A hardware
implementation is analyzed in the Sect. 4. Experimental results are presented in
the Sect. 5. Conclusion and future work is given in the Sect. 6.

New High Entropy Element for FPGA Based TRNG 353

2 New Entropy Element Design Goals

Each design of TRNG based on logic cells has pros and cons. Going by the recent
state of the art [9], there is still a gap for the TRNG based on better entropy
element, that is possible to synthesize in the FPGAs fabric. The design goals for
such an element are:

– sufficiently higher entropy rate than previous RO based designs,
– lower sensitivity on global interference and working conditions than previous

RO based designs,
– ability to extract reliably intrinsic noise generated by logic elements,
– clear description of the mathematical model acceptable to the wide scientific

community,
– inner testability feature in order to detect instantly when the entropy source

is out of order and/or has weak statistical properties [18],
– ability to restart the element before each random bit generation period in

order to utilize the stateless entropy concept [2],
– ability for several entropy elements operating independently and in parallel in

order to place them into the same FPGA for enhancing statistical parameters
and/or increasing the bit-rate,

– usage of least number of logic elements all implemented in the single block
of logic to minimize signal paths, minimize interference, minimize resources
utilization, and decrease the power consumption,

– element structure should have simple place and route strategies and clear
recommendations on how to synthesize the structure,

– ability to utilize combinations of multiple known principles of randomness
extraction, i.e. variation of time delay and the metastability phenomena.

3 Transition Effect Ring Oscillator

A novel structure capable of extracting noise from logic cells is depicted in Fig. 1.
Proposed structure was optimized for implementation on a single Spartan 3E
Complex Logic Block (CLB). An entire set of experiments has been carried out
using Xilinx Spartan 3E FPGA Starter Kit [25] for the purpose of this paper
research goals. Its physical behavior in FPGA, including the shape of control
waveforms, is shown in an oscilloscope screen-shot in Fig. 2. The xor1 – and1 –
xor2 – and2 loop begins to oscillate at each edge of the ctrl signal. This effect
is a “transition” of the loop and therefore this structure will be referred the
Transition Effect Ring Oscillator (TERO) in this paper. When TERO circuit
operates in the topology shown in Fig. 1 its operation will be referred as a
“TERO mode” or just TERO. When ctrl = ′1′ for xor1 and ctrl = ′0′ for xor2
constantly the structure will behave as an RO of one inverting and three non-
inverting elements. This operation will be denoted as an “RO mode” in text for
the purpose of comparing TERO mode and RO mode features.

TERO operates as follows: The xor gates act as inverters or buffers when the
ctrl = ′0′ or ctrl = ′1′ respectively. In other words, loop incorporates two buffers

354 M. Varchola and M. Drutarovsky

and two inverters (ctrl = ′0′) or just four buffers (ctrl = ′1′) when assuming
rst = ′0′. Loop does not satisfy an oscillatory condition because it consists of
even number of inverting elements in both cases. This is the reason why the loop
does not oscillate by itself and settles to a steady state. However, when the edge of
ctrl is applied to xors, they invert their actual output level. Such action disturbs
the steady state of the loop because the newly reached xors’ output levels begin
to circulate through the loop. The logic level that was previously stable in the
entire loop is switched to the opposite level in the half of loop. A pulse is raised
as a result of this process, and it begins to run along the loop. The pulse will
disappear after several runs (from tens to hundreds) of oscillations. The number
of oscillations generated by TERO varies during each ctrl period. T-Flip-Flop
(TFF) resolves if TERO made an odd or even number of oscillations during single
ctrl period, and that represents one random bit (tffout1 and tffout2 signal, or
just tffout in next text). The purpose of the ANDs is to force the same initial
conditions at the end of each ctrl period. The ANDs are controlled by the rst
signal and their outputs are held in constant ′0′ when rst = ′1′ regardless the
logic level on the other input. The tffout is sampled at the falling edge of rst.
After that tffout is cleared by the clr signal. One can argue that there is no
necessity of tffout clearing because it does not affect volume of randomness, but
despite this fact, it is cleared because of two reasons: first, it represents a Least
Significant Bit (LSB) of an asynchronous counter used for measurements and
the counter should start to increment from zero; and the second, more crucial
reason is that slight bias will not be transformed to the correlation that enables
the assumption of a stateless entropy concept[2].

TERO is a kind of bi-stable Flip-Flop (FF) with intentionally lengthened
feedback paths. However, more common is to employ nand gates or nor gates
instead of xors for practical FFs. Employing nands or nors in the proposed
topology results in RS FF. Metastable behavior of RS FFs underwent rigorous
analysis in [8] and [15]. Basically, when certain combination of signals appears at
the inputs, RS FF can fall into the metastable state. After pico-to-nano-second
time, this state is typically escaped by a trajectory, which may be temporarily
oscillatory. Although TERO is not the RS FF regarding its functionality, it also
escapes from the metastable state by the oscillatory trajectory due to lengthened
feedback paths. This behavior is known as oscillatory metastable operation [8].

Practical evaluation of TERO by oscilloscope found that variation of the num-
ber of oscillations during each ctrl period is extensive in comparison to RO mode.
Also observed is that TERO oscillates on the double frequency in comparison
to RO mode. TERO operation was confirmed by qualitative SPICE analysis of
TERO structure, as presented in the next subsection.

3.1 Transistor Level SPICE Simulation

The purpose of the SPICE simulation was to confirm qualitatively that behav-
ior of an approximately balanced TERO structure exhibits oscillatory transient
character as was reported for quite general semiconductor bistable structures
[8]. SPICE simulation was not performed to examine the precise behavior in

New High Entropy Element for FPGA Based TRNG 355

Isolated TERO loop

Internal

terout

Single CLB Implementation

clr

tffout1

tffout2

rst

ctrl INVAND

XOR AND22

1 1XOR1

INV2

INV3

INV4

INV5

TFF1

TFF2

Fig. 1. Practical circuit of TERO used for the FPGA implementation. Entire TERO
loop structure occupies just one CLB of Xilinx Spartan 3E. Usage of inv1 – inv5

enables such routing that signal directly connected to internal TERO loop will not be
routed by off-CLB path. Ands are used for forcing the same TERO initial conditions
for each ctrl period by rst signal as well as for an additional delay needed for reliable
oscillatory behavior of the circuit. TFFs are used for extraction of a random bits. TFFs
are cleared at the end of each ctrl period by clr signal.

ctrl

rst

terout

tffout

nrstT = 3200 ns

ctrlT = 4000 nsrnd. bit gener.
start

rnd. bit gener. finish

TERO
oscillation

random
bit

TFF is cleared
Variation

of s# oscillation

Fig. 2. The TERO operation oscilloscope screen-shot captured using infinite persis-
tence mode and 20 MHz low-pass filter on ctrl, rst,and tffout channels. The image
was acquired by the Tektronix MSO 4104 oscilloscope. Each edge of the ctrl signal
causes oscillation of TERO loop (terout signal). The number of oscillations observed
varies during each ctrl period. TFF resolves if TERO made odd or even number of os-
cillation periods during one ctrl period that represents one random bit (tffout signal).
TERO is initialized to the same operating conditions at the end of each ctrl period by
the rst signal. The tffout is sampled on the falling edge of rst. Then tffout is cleared.

1 sμ 3 μs

3.02 μs 3.10 μs
0 V

0 V

2.5 V

3.06 μs

2 μs

ST TT MT

2.5 V

Fig. 3. LT Spice simulation of the TERO. TERO starts to oscillate at the rising (1 μs)
or falling (3 μs) edge of the ctrl signal having a 4 μs period. Zoomed region shows that
excited pulse disappears due to its shortening each loop crossing. TT stands for the
mean value of the oscillation period, TS and TD denote time durations of logic ′1′ level
when oscillation behavior raises and disappears respectively.

356 M. Varchola and M. Drutarovsky

particular FPGA or CMOS manufacturing process but to get a qualitative re-
sults. Therefore the SPICE simulation was based on publicly available Linear
Technology LT Spice IV tool [11] and 250 nm, 2.5 V CMOS transistors models
[14] that were used also in [4]. Only the isolated TERO loop that consists of
xor1 – and1 – xor2 – and2 (Fig. 1) was simulated. Tested xors used standard
12 transistors layout and tested ands used standard 6 transistor layout. Wires
were implemented as buffers of certain time delay and time constant.

LT Spice simulation (Fig. 3) confirms oscillatory behavior of the TERO in
approximately balanced loop. Rising and falling edges of ctrl cause oscillations
excitation in the loop (at 1 μs and 3 μs time respectively) that is in a good
agreement with results of general bistable structures [8]. The zoomed region at
the bottom of Fig. 3 shows that the excited pulse disappears due to its shortening
in each loop passing. This phenomenon was also in a good agreement with [15].

Satisfactory results were obtained when the simulation was performed using
maximal time step of 0.5 ps, otherwise numerical computation errors caused non-
repeatability of that simulation. Simulation did confirm the double frequency of
TERO in comparison to RO. LTSpice transient simulation does not take into
account any contribution of transistor noises and therefore a simplified mathe-
matical model is defined in the following section. This model allows for easier
analysis of oscillation number variation due to noise. Features observed due to
LT Spice simulation were used for the TERO basic model parameters derivation.

3.2 TERO Mathematical Model Based on Effects of Intrinsic Noise

LT Spice simulation provides a starting point for definition of a TERO mathe-
matical model that takes intrinsic noise into account. Intrinsic noise, in which
the samples of amplitude are assumed to be iid (independent and identically
distributed) and follows a normal distribution N (

0, σ2
)
, affects timing insta-

bility of signal edges passing through logic cells. We show that this noise has
substantial impact on TERO performance. Graphical representation of the pro-
posed mathematical model is given in the Fig. 4. Model works as follows: when a
rising or falling edge of ctrl appears, TERO loop begins to oscillate (Fig. 2). The
mean value of TERO oscillation period is equal to total delay of TERO loop TT.
An excited pulse of starting logic ′1′ level time length TS is shortened in each
oscillation by TD time due to slight intrinsic non-symmetry of the loop. Excited
pulse will disappear when instant logic ′1′ level time length reaches minimal
possible value TM. Asymmetry TD is assumed to be affected by a period jitter
ΔTij , where i and j stands for i-th TT period and j-th Tctrl period respectively.
The final number of oscillations executed for j-th Tctrl is denoted as YTj . The
basic mathematical model of TERO mode is expressed as:

TS − TM =
YTj∑
i=1

(
TD + ΔTij

)
= TD YTj +

YTj∑
i=1

ΔTij . (1)

Both, TS and TM can be slightly affected by intrinsic noise and so considered
as a contribution to final randomness. Value of the former can be affected by

New High Entropy Element for FPGA Based TRNG 357

actual noise conditions when circuit is entering to oscillatory metastable state
and value of the latter can be affected by actual noise conditions when the
circuit does (or does not) allow to pass last pulse. However, according to our
oscilloscope measurements the jitter accumulation over oscillatory trajectory
exhibits the best entropy extraction and therefore this is the only focus in this
paper. Investigation on TS and TM instability contribution to final randomness
will be a subject of future research.

Similarly, it is possible to express the basic model of the same circuit in
RO mode. In Fig. 2, Tnrst denotes a time period when RO is not reset and
is oscillating at TR = 2 TT oscillation periods (Fig. 4). Each oscillation period
is assumed to be affected by period jitter ΔRij . Final number of oscillations
executed for j-th Tctrl is denoted as YRj . Thus, the basic mathematical model
of the RO mode circuit is expressed as:

Tnrst =
YRj∑
i=1

(
TR + ΔRij

)
= 2 TT YRj +

YRj∑
i=1

ΔRij . (2)

Both, TERO mode (1) and RO mode (2) models were implemented in Matlab
in order to evaluate them and to compare their sensitivity to intrinsic noise. The
ΔTij = ΔRij ≈ N

(
0, σ2

)
simplification is assumed. The TERO mode model (1)

was implemented using a pseudo-code Algorithm 1, where N stands for number
of ctrl periods. The RO mode model (2) was implemented similarly.

Accordingly, Fig. 5 shows that YTj is affected in a greater manner than YRj

when exposing the circuit in TERO mode and in RO mode to the same noise
conditions. The ratio between their standard deviations is derived in following
section.

3.3 Analytical Comparison of the TERO and RO Modes

Analytical derivation of a ratio between standard deviations of YTj and YRj

is the objective of this section. Denote the standard deviation and mean value
of YTj as σYT and YT respectively for the TERO mode. Similarly, denote the
standard deviation and mean value of YRj as σYR and YR respectively for the RO
mode. It is possible to show, that according (1) and (2) and under assumption
ΔTij = ΔRij ≈ N (

0, σ2
)
, good approximations of σYT , YT, σYR , and YR for

simplified comparison of TERO and RO sensitivities are:

YT ≈ TS − TM

TD
, σYT ≈

σ

TD

√
TS − TM

TD
=

σ

TD

√
YT , (3)

YR ≈ Tnrst

2 TT
, σYR ≈

σ

2 TT

√
Tnrst

2 TT
=

σ

2 TT

√
YR . (4)

The ratio σYT
σYR

is derived from combining (3) and (4):

σYT

σYR

≈ 2 TT

TD

√
2 TT (TS − TM)

TD Tnrst
. (5)

358 M. Varchola and M. Drutarovsky

Logic cell 1 Logic cell 2 Logic cell 3 Logic cell 4

T RT T=1/2

TT

Pulse passing through balanced loop

The first pulse passing through unbalanced loop
DT ST -ST DT

TΔ ij

Rising edge comes later accompanied by jitter
MT

Shape of pulse at the loop begin Shape of pulse at the loop end

The last pulse (not) passing through
unbalanced loop

Accumulated jitter

TΔ ijΣ

Fig. 4. Graphical representation of the mathematical model, where the instability of
the pulse shortening during circulation around TERO is a key issue. Therefore the
pulse will disappear after several oscillations.

140 160 180
0

5000

o
c
c
u
re

n
c
e

T
E

R
O

320 325 330
0

5

10
x 10

4

T
D

= 13ps

σ= 10ps

oscs.

o
c
c
u
re

n
c
e

R
O

20 22 24
0

5

10
x 10

4

320 325 330
0

5

10
x 10

4

T
D

= 100ps

σ= 10ps

oscs.

15 30 45
0

5000

320 325 330
0

5

10
x 10

4

T
D

= 100ps

σ= 150ps

oscs.

Fig. 5. Simulation of TERO (1) and RO (2) basic models performed in Matlab. Both
models share the same parameters in order to compare their randomness extraction
performance. Histograms show the occurrence of the recorded number of oscillations
under three sets of different operating conditions, which vary in σ and TD, where insta-
bility of TD follows N (

0, σ2
)
. Other parameters remain constant over all simulations:

TT = 5ns, Tnrst = 3200 ns, TS − TM = 0.4 TT, N = 105.

Algorithm 1. TERO mathematical model simulation
Require: TS, TM, TD, TT, σ, N
Ensure: YT1 , YT2 . . . YTj . . . YTN

for j = 1 to N do
YTj ⇐ 0
acc ⇐ 0
while acc < TS − TM do

acc ⇐ acc + TD + N (
0, σ2

)
YTj ⇐ YTj + 1

end while
end for

New High Entropy Element for FPGA Based TRNG 359

When applying practical values acquired from both hardware and LT Spice sim-
ulation: Tnrst = 3200 ns, TT = 5 ns, TD = 0.013 ns, TS−TM = 0.4 TT to (5), then
σYT
σYR

.= 533.
In other words, the proposed circuit is hundreds of times more sensitive in

TERO mode to the period jitter than the same circuit in RO mode. At this point
one can argue that this feature will increase vulnerability to external interfer-
ences or attacks. As it will be shown in more complex simulation that follows
in next subsection, TERO thanks to its differential structure can decrease influ-
ence to the global (outside of CLB) perturbations while still maintaining high
sensitivity to local (inside CLB) intrinsic noises.

3.4 TERO and RO Response under External Perturbations

The response of TERO to deterministic perturbations patterns was simulated
using Macro-Model (MM) that in contrary to two previous subsections takes
into account the same TERO loop structure as was implemented in real FPGA
hardware (Fig. 1). MM was written in VHDL and simulated using ModelSim.
The MM simulation setup including the simulated loop is shown in Fig. 6. The
logic function of each component is computed instantly with an addition of a
synthetic delay. The delay is implemented as a simple state machine which allows
independent control of the delay of both the rising edge and the falling edge.

The noise pattern samples for each edge of each component are stored in
separated file which was generated by Matlab. The simulated patterns are com-
posed of deterministic perturbation and intrinsic noise. Deterministic perturba-
tion represents global influence of power supply variations or electro-magnetic
interference that can affect time delays of logic elements. It is assumed that
deterministic perturbation affects same logic elements by the same manner. On
the other hand intrinsic noise is assumed to be independent for each logic and
follows the normal distribution N (

0, σ2
)
.

Simulation results for various compositions of deterministic perturbation and
intrinsic noise for both TERO and RO mode are shown in Fig. 7. Frequency of
noise was assumed to be higher than frequency of TERO oscillations. It is pos-
sible to get qualitatively similar results when the noise is band limited as well.
Results of the MM simulation confirm that TERO randomness extraction per-
formance is superior to RO performance. Accordingly, results show in Fig. 8 that
both the basic mathematical model simulation and the VHDL MM simulation
are in good agreement with the results acquired from the FPGA hardware.

4 Hardware Implementation

Xilinx Spartan 3E Starter Board was used as an evaluation platform [25]. TERO
shown in Fig. 1 was placed into one CLB of Xilinx Spartan 3E because of sim-
pler proper routing, using only local, not global paths. Even though there are
9 logic functions and only 8 LUTs in single CLB, the TERO fits inside due to

360 M. Varchola and M. Drutarovsky

wire CNT

results file

s
ti
m

u
li

noise file 1 noise file 2 noise file 3 noise file 4

clr

rst

ctrl

smp

wire wire wireXOR AND XOR AND2211

Fig. 6. The TERO macro-model implemented in VHDL. Constant delay of rising and
falling edge can be set independently for each element, including wires. Non-symmetry
was achieved by different rising edge delay and falling edge delay in the xor1 element.
Signals ctrl, rst and clr have the same purpose as was described in Sect. 3 above.
Signal smp controls noise sampling from the noise files 1–4. Noise files were generated
by Matlab and contains data for both rising edge delay and falling edge delay instability.
Final number of oscillations for each ctrl period is recorded in the results file.

0 50 100
143

148

153

T
E

R
O

#
o
s
c
s
.

σ= 1ps, b= 0ps

0 50 100

110

150

190

σ= 10ps, b= 50ps

0 50 100
146

152

158

σ= 0.5ps, b= 50ps

0 100

319
320
321

ctrl period

R
O

#
o
s
c
s
.

σ= 1ps, b= 0ps

0 100

310
320
330

ctrl period

σ= 10ps, b= 50ps

0 100

310
320
330

ctrl period

σ= 0.5ps, b= 50ps

Fig. 7. VHDL macro-model simulation using ModelSim shows number of oscillations in
100 consecutive Tctrl periods for both TERO (up) and RO (down) mode. Three different
compositions of noise patterns (each column different) were used; where intrinsic noise
follows N (

0, σ2
)

and b stands for amplitude of global deterministic perturbation of a
square shape. It is obvious, that TERO is able to extract intrinsic noise of σ = 0.5 ps
while RO is barely able to extract intrinsic noise of σ = 10 ps when both were exposed to
the same operating conditions. Moreover, TERO is less sensitive to global deterministic
perturbation than RO.

120 160 200
0

2000

4000

Matlab Sim. # oscs.

o
c
c
u

re
n

c
e T

D
=13ps

σ=10ps

120 160 200
0

30

60

VHDL MM Sim. # oscs.

T
D

=13ps

σ=10ps

120 160 200
0

2

4

x 10
4

Hardware Exp. # oscs.

T
D

≈13ps

σ≈7ps

Fig. 8. Comparison of simulations and hardware experiment results. Histograms shows
occurrences of TERO oscillations number for direct simulation of mathematical model
using Matlab (left), VHDL macro-model simulation using ModelSim (midle) and hard-
ware experiment (right). Intrinsic noise follows N (

0, σ2
)

in the simulations. Rest pa-
rameters were: TT = 5ns, TS − TM = 0.4 TT. N = 105, N = 2600, and N = 106 for the
Matlab simulation, MM simulation, and the experiment respectively. Parameters TD

and σ of the hardware experiment are estimated according to VHDL MM simulation.
The histogram of VHDL MM simulation is wider than the histogram of mathematical
model simulation due to presence of the noise source N (

0, σ2
)

in each logic element.

New High Entropy Element for FPGA Based TRNG 361

using hardwired xors in carry chain logic. There is indication, that this fast
xor causes more stable TERO performance. Consequently, a good constellation
of placement and routing is locked by the user constrain file. Locking the circuit
makes it portable through all CLBs with acceptable dispersion of the TERO
parameters. The example of proper place and route of two TEROs in neighboring
CLBs is shown in Fig. 9b.

The entire system used for evaluating the TERO performance is shown in
Fig. 9 a. There are two TEROs in order to investigate their cross-correlation.
The number of oscillations are counted by asynchronous counters which are faster
than synchronous counters. A typical frequency of TERO in four element loop
structure is 200 MHz approximately. Asynchronous counters are implemented
by the chain of TFFs. A control state machine ensures communication via USB
that is used for transferring counter values to the computer for further analysis.
The benefit of this structure is that expensive oscilloscopes are not necessary –
just investigating of counter values is fairly enough for detailed analysis.

5 Experimental Results

Mean values of asynchronous counters, bias of extracted LSBs and autocorela-
tions of generated bit streams were used for fast evaluation of of TERO (RO)
performance (dependency) in closely placed CLBs (“Next” configuration) as well
as far-away placed CLBs (“Diag.” configuration) in the target Xilinx FPGA.
Mixing of two CLB outputs was performed by XOR operation that performs
standard decimation by a factor of 2. Results shown in Fig. 10 and Table 1 were
evaluated for 1 Mbit sequences acquired from the evaluation platform. More com-
plex NIST [16] tests were performed for a 250 Mbit sequence in order to detetct
potentially more complex deviations from the ideal one.

Autocorrelation test evaluates correlations between the sequence of extracted
random bits and shifted (by number of ctrl periods) versions of it. Random bits
are extracted as LSBs of number of oscillations of TERO (RO) at each period of
ctrl. The statistic used in Fig. 10 for autocorrelations is normalized according to
(5.5) on p.182 in [13] which approximately follows N (0, 1) distribution for ideal
random source. According to the 3σ rule, any value outside of the < −3, 3 >
interval indicates a probable deviation from ideal source of randomness.

From presented experimental results we can state that TERO can produce
uncorrelated (or with high probability of independent) sequences which is not
the case of RO composed of the same elements as TERO. Moreover, the xor

combination of two channels of TERO greatly improves statistical properties of
generated sequences. This was confirmed by improving the mean value and es-
pecially passing of the NIST 800-22 or FIPS 140 statistical tests suites which in-
directly indicate bit sequence independence. When evaluating xor combination
of two channels of RO the situation is worse as a consequence of the dependence
of the examined bit sequences.

362 M. Varchola and M. Drutarovsky

TERO
ch. A

Asynch.
counter

ctrl rst clr, ,

TERO
ch. B

Asynch.
counter

1

1

Xilinx Spartan 3E FPGA

12

C
o
n
tr

o
l

s
ta

te
m

a
c
h
in

e

3

12

27
USB
chip

Com-
puter

USB2.0

TERO ch. A TERO ch. B

CLB

a) b)

Fig. 9. (a) – Evaluation platform setup. (b) – Example of proper place and route of
two TERO channels in two most closest CLBs; both TEROs are routed in the same
way.

0 50 100

220
270
330 TERO ch.A

0 50 100

115
130
145

T
E

R
O

#
o

s
c
s
.

TERO ch.B

0 100
315
330
345

ctrl periodR
O

#
o

s
c
s
.

RO both ch.

0 50 100
-4

0
4 LSB TERO ch.A

0 50 100
-4

0
4

T
E

R
O

n
o

rm
.

a
u

to
c
o

rr
.

LSB TERO ch.B

0 100
-4

0
4

ctrl period shift

LSB(ch.A XOR ch.B)

0 50 100
-800

0
800 LSB RO ch.A

0 50 100
-800

0
800

R
O

n
o

rm
.

a
u

to
c
o

rr
.

LSB RO ch.B

0 100
-800

0
800

ctrl period shift

LSB(ch.A XOR ch.B)

Fig. 10. TERO and RO mode comparison in hardware. Channels A and B are synthe-
sized in the closest CLBs. Left column shows number of oscillations for both channels
of TERO and RO in 100 consecutive ctrl periods. Normalized autocorrelation of TERO
channels A and B and their xor combination for 1–100 ctrl periods shift is given in
the middle column. The same results, but for RO mode is depicted in right column.

Table 1. Results of the TERO evaluation in Xilinx Spartan 3E FPGA. Position “Next”
means TERO (RO) A and B are placed in the closest CLBs, while “Diag.” means A
and B are placed in CLBs that are in opposite corners of the FPGA fabric.

TEST Source Next(TERO) Diag.(TERO) Next(RO) Diag.(RO)
Mean LSB A / LSB B 0.51/0.48 0.51/0.48 0.47/0.44 0.55/0.46
Value LSB(A xor B) 0.5002 0.4999 0.4539 0.7926

Normalized
cross-correlation LSB (A,B) 0.4160 -0.0917 -94.3378 599.3945

(for shift=0)
NIST / FIPS Only LSB A F / P F / F - / F - / F

Statistical Only LSB B F / F F / F - / F - / F
tests result LSB(A xor B) P / P P / P - / F - / F

New High Entropy Element for FPGA Based TRNG 363

6 Conclusion and Future Work

A new high entropy element for FPGA-based TRNGs was introduced. This
element was denoted as TERO and reasonably satisfies design goals formulated
in Section 2. Its greatest advantage is high sensitivity to random processes inside
FPGA logic cells, while rejecting global perturbation.

Moreover, TERO is straightforwardly inner testable. Instant evaluation of the
number of oscillations and consequent estimation of noise parameters from them
according to (3) allow instant detection of malfunctions when the random bit is
generated. The implemented testing system can decide whether the bit will be
used as a member of the resulting random sequence accordingly.

Furthermore, TERO has a clear basic mathematical model that was confirmed
by LT Spice simulation, VHDL MM simulation and hardware evaluation. The
TERO has hundreds times greater sensitivity to random processes inside logic
gates then RO build up from the same components according to our proposed
model. VHDL MM simulation shows that TERO can reject global perturba-
tion better than RO due to its differential structure. In particular TERO can
extract noise of σ = 0.5 ps standard deviation in the presence of 50 ps global
perturbation.

An experimental TRNG which uses an xor combination of two TEROs was
introduced. The source of randomness occupies just two CLBs and produce
random sequence at 250 kbps bit-rate of such quality that it can pass NIST 800-
22 statistical tests without any need for further complex post-processor. This
shows great potential of TERO for the FPGA based TRNGs designs.

Experiments showed that proper place and route strategies are essential for
TERO and therefore further research will be focused on reliable lock of place and
route synthesis constrains, analysis of TERO features in different FPGA internal
positions, and evaluation of TERO operation in FPGAs of other vendors.

Although our entire investigation was carried out using one Spartan 3E board
for the purpose of the paper, our latest experiments were processed using Ac-
tel Fusion FPGAs due to two reasons; first, to investigate TERO using different
FPGA technology, and second, the availability of a greater number (ten) of equal
Actel boards. Actel does not provide any tool for custom routing as Xilinx does
so the routing is black-box in Actel. Nevertheless, preliminary results show that
the variance of TERO oscillations in each tested Actel board at each tested posi-
tion was satisfactory and also under nonstandard operation conditions through
wide temperature and power supply range. The final random bit sequence com-
posed of 16 TERO channels xor combination passes the NIST 800-22 tests for
every described setup. However, the quantity of results acquired from the Actel
platform are excessive and will be a subject of an upcoming paper.

Future work will also include synthesis of a testing system that can estimate
the statistical parameters of noise from the variance of oscillation number for
the purpose of malfunction detection. This testing system will be incorporated
in the final, ready-to-use TRNG.

364 M. Varchola and M. Drutarovsky

Acknowledgement. This work has been done in the frame of the Slovak sci-
entific project VEGA 1/0045/10 2010-2011 of Slovak Ministry of Education.
Authors would like thank to Actel University Program for a donation of 10 Ac-
tel Fusion FPGA evaluation boards, which enabled us to confirm the TERO
principle using this large number of FPGA boards.

References

1. Bochard, N., Bernard, F., Fischer, V.: Observing the randomness in RO-based
TRNG. In: International Conference on Reconfigurable Computing and FPGAs,
Cancun, Quintana Roo, Mexico, December 9-11, pp. 237–242. IEEE Computer
Society, Los Alamitos (2009)

2. Bucci, M., Giancane, L., Luzzi, R., Varanonuovo, M., Trifilett, A.: A Novel Concept
for Stateless Random Bit Generators in Cryptographic Applications. In: 2006 IEEE
International Symposium of Circuits and Systems - ISCAS 2006, Island of Kos,
Greece, May 21-24, pp. 317–320. IEEE Computer Society, Los Alamitos (2006)

3. Dichtl, M., Golić, J.: High-Speed True Number Generation with Logic Gates Only.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 45–62.
Springer, Heidelberg (2007)

4. Dichtl, M., Meyer, B., Seuschek, H.: SPICE Simulation of a “Provably Secure” True
Random Number Generator (2008), http://eprint.iacr.org/2008/403.pdf

5. Epstein, M., Hars, L., Krasinski, R., Rosner, M., Zheng, H.: Design and Implemen-
tation of a True Random Number Generator Based on Digital Circuit Artifacts.
In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp.
152–165. Springer, Heidelberg (2003)

6. Fischer, V., Drutarovsky, M.: True Random Number Generator Embedded in Re-
configurable Hardware. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002.
LNCS, vol. 2523, pp. 415–430. Springer, Heidelberg (2003)

7. Golic, J.: New Methods for Digital Generation and Postprocessing of Random
Data. IEEE Transactions on Computers 55(10), 1217–1229 (2006)

8. Kacprzak, T.: Analysis of Oscillatory Metastable Operation of an R-S Flip-Flop.
IEEE Journal of Solid-State Circuits 23(1), 260–266 (1988)

9. Koç, Ç.K. (ed.): Cryptographic Engineering. Springer, Heidelberg (2009)
10. Killmann, W., Schindler, W.: Functionality classes and evaluation methodology

for true (physical) random number generators, Version 3.1 (September 2001),
http://www.bsi.bund.de/zertifiz/zert/interpr/trngk31e.pdf

11. Linear Technology: LT Spice IV, http://www.linear.com/designtools/software/
12. Markettos, A.T., Moore, S.W.: The Frequency Injection Attack on Ring-Oscillator-

Based True Random Number Generators. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 317–331. Springer, Heidelberg (2009)

13. Menezes, J., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC
Press, New York (1997), http://www.cacr.math.uwaterloo.ca/hac/

14. Rabaey, J.M., Chandrakasan, A., Nilolic, B.: Digital Integrated Circuits, 2nd edn.
Prentice-Hall, Englewood Cliffs (February 2010),
http://bwrc.eecs.berkeley.edu/IcBook

15. Reyneri, L., Corso, D., Sacco, B.: Oscillatory Metastability in Homogenous and
Inhomogeneous Flip-Flops. IEEE Journal of Solid-State Circuits 25(1), 254–264
(1990)

http://eprint.iacr.org/2008/403.pdf
http://www.bsi.bund.de/zertifiz/zert/interpr/trngk31e.pdf
http://www.linear.com/designtools/software/
http://www.cacr.math.uwaterloo.ca/hac/
http://bwrc.eecs.berkeley.edu/IcBook

New High Entropy Element for FPGA Based TRNG 365

16. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,
Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A Statistical Test Suite For
Random And Pseudorandom Number Generators For Cryptographic Applications,
NIST Special Publication 800-22 rev1a (April 2010),
http://csrc.nist.gov/groups/ST/toolkit/rng/

17. Schellekens, D., Preneel, B., Verbauwhede, I.: FPGA Vendor Agnostic True Ran-
dom Number Generator. In: Proceedings of the 16th International Conference on
Field Programmable Logic and Applications (FPL), Madrid, Spain, August 28-30,
pp. 1–6. IEEE Computer Society, Los Alamitos (2006)

18. Schindler, W., Killmann, W.: Evaluation Criteria for True (Physical) Random
Number Generators Used in Cryptographic Applications. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 431–449. Springer,
Heidelberg (2003)

19. Sunar, B.: Response to Dichtl’s Criticism (March 2008),
http://ece.wpi.edu/~sunar/preprints/comment.pdf

20. Sunar, B., Martin, W.J., Stinson, D.R.: A Provably Secure True Random Num-
ber Generator with Built-in Tolerance to Active Attacks. IEEE Transactions on
Computers 56(1), 109–119 (2007)

21. Tokunaga, C., Blaauw, D., Mudge, T.: True Random Number Generator With a
Metastability-Based Quality Control. IEEE Journal of Solid-State Circuits, 78–85
(January 2008)

22. Vasyltsov, I., Hambardzumyan, E., Kim, Y.S., Karpinskyy, B.: Fast Digital TRNG
Based on Metastable Ring Oscillator. In: Oswald, E., Rohatgi, P. (eds.) CHES
2008. LNCS, vol. 5154, pp. 164–180. Springer, Heidelberg (2008)

23. Wold, K., Tan, C.H.: Analysis and Enhancement of Random Number Generator in
FPGA Based on Oscillator Rings. International Journal of Reconfigurable Com-
puting 2009, 1–8 (June 2009),
http://www.hindawi.com/journals/ijrc/2009/501672.html

24. Wollinger, T., Guajardo, J., Paar, C.: Security on FPGAs: State-of-the-art im-
plementations and attacks. ACM Transactions on Embedded Computing Systems
(TECS), 534–574 (2004)

25. Xilinx: Spartan-3E Starter Kit,
http://www.xilinx.com/products/devkits/HW-SPAR3E-SK-US-G.htm

http://csrc.nist.gov/groups/ST/toolkit/rng/
http://ece.wpi.edu/~sunar/preprints/comment.pdf
http://www.hindawi.com/journals/ijrc/2009/501672.html
http://www.xilinx.com/products/devkits/HW-SPAR3E-SK-US-G.htm

The Glitch PUF: A New Delay-PUF
Architecture Exploiting Glitch Shapes

Daisuke Suzuki1,2 and Koichi Shimizu1

1 Information Technology R&D Center, Mitsubishi Electric Corporation
{Suzuki.Daisuke@bx,Shimizu.Koichi@ea}

.MitsubishiElectric.co.jp
2 Graduate School of Environmental and Information Sciences,

Yokohama National University

Abstract. In this paper we propose a new Delay-PUF architecture that
is expected to solve the current problem of Delay-PUF that it is easy to
predict the relation between delay information and generated informa-
tion. Our architecture exploits glitches that behave non-linearly from
delay variation between gates and the characteristic of pulse propaga-
tion of each gate. We call this architecture Glitch PUF. In this paper, we
present a concrete structure of Glitch PUF. We then show the evaluation
results on the randomness and statistical properties of Glitch PUF. In
addition, we present a simple scheme to evaluate Delay-PUFs by sim-
ulation at the design stage. We show the consistency of the evaluation
results for real chips and those by simulation for Glitch PUF.

1 Introduction

1.1 Background

High-level security needs such as in financial transactions and Digital Rights
Management (DRM) have widened the use of security chips as represented by
smart cards and Trusted Platform Modules (TPMs). Security chips provide not
only a variety of cryptographic functions but tampering countermeasures, which
are mechanisms to protect sensitive information stored within the chips from
physical attacks. Examples of tampering countermeasures include mounting sen-
sors or mesh shielding within a chip.

Physical Unclonable Function (PUF) [1] is a technique in relation to tamper-
ing countermeasures which has been attracting wider attention in recent years.
PUFs are designed to return responses to given challenges according to physical
characteristics that are innately possessed by each artificial object such as an
LSI. It is arguably difficult to clone an artificial object from the fact that its
characteristics originate from manufacturing variation.

With the help of Fuzzy Extractor [2], which is a technique to extract stable
secret information from noisy characteristics, it is even possible to generate de-
vice unique keys that are difficult to copy. The key information is resistant to
analysis that directly reads data inside a chip by breaking it open, because the
information does not need storing in nonvolatile memory to be reproducible.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 366–382, 2010.
c© International Association for Cryptologic Research 2010

The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch Shapes 367

PUFs are also advantageous in that they are feasible on general-purpose LSI
such as FPGA and ASIC. There are many active research works on methods of
PUF realization and generation of device unique keys [4–12].

SRAM-PUF is recognized as one of the most feasible and secure PUFs thus far
because there have already been implementations of error correcting codes and
universal hash functions optimized for it, which are needed for Fuzzy Extractor.
It is, however, difficult to evaluate the information entropy and error rate of
SRAM-PUF on ASIC chips before production because it, as well as Butterfly-
PUF [8], exploits the metastable state of memory cells on power activation,
where only a behavior model is available for the characteristics of the cells. The
error rate is particularly changeable according to the process. In fact, Ref. [13]
reports a much higher rate of error than that reported by the proposers [5], which
implies the possibility that the error rate of SRAM-PUF changes on different
target devices. On the other hand, the evaluation is possible on devices that are
available before production such as FPGA.

As for Delay-PUF, security issues have been reported. It is shown that a ma-
chine learning attack can predict challenge-response pairs after a decent number
of pairs are collected by self-evaluation [6]. Furthermore, although there have
been proposed countermeasures such as Feed-Forward Arbiter PUF, which in-
stalls non-linear operations, and XOR-PUF, which is comprised of multiple Ar-
biter PUFs, it is shown that machine learning attacks are still applicable to
those [14]. These issues originate from the simplicity of the circuit structure of
Delay-PUF.

At the same time, however, Delay-PUF is advantageous in that delay infor-
mation utilized by it has affinity with logic simulation, which is performed at the
design stage. That enables to evaluate the amount of information of the PUF at
an earlier stage of design process. At least, chip vendors must possess informa-
tion about the delay variation since they need to embed the delay information
in a cell library when they develop it.

On the other hand, Statistical Static Timing Analysis (SSTA), which is a
design method for variation, has been intensely studied [15] now that increas-
ing manufacturing variation prevents performance improvement as the process
miniaturizes. SSTA is adopted by standard Electronic Design Automation (EDA)
tools as PrimeTime. It is anticipated from these facts that logic circuit designers
will be able to access information about delay variation in a near future.

1.2 Our Contributions

We propose a new Delay-PUF architecture, which is expected to solve the
easiness of predicting the relation between delay information and generated
information. The proposed architecture exploits glitch waveforms that behave
non-linearly from delay variation between gates. We thus call this architecture
Glitch PUF.

In this paper, we show a concrete structure of Glitch PUF. We also present
the results of the evaluation on randomness and statistical properties of Glitch
PUF performed on FPGA.

368 D. Suzuki and K. Shimizu

As the second contribution, we present a simple scheme to evaluate the char-
acteristics of Glitch PUF with simulation at the design stage. We show the
consistency between the results using the scheme, and those for real devices.

2 Simulating Behavior of Delay-PUFs

In this section, we discuss a concrete methodology to evaluate randomness and
statistical properties of Delay-PUFs by simulation. The goal of this simulation
is to evaluate the randomness and error rate of a Delay-PUF at its design stage.
The reason that Delay-PUF circuits of the same design behave differently on
each individual chip is that transistors hold characteristic variation (variation
of threshold voltages Vth, to be concrete). The occurrence of errors even on the
same chip results from the change of operating environment (static/dynamic IR-
drop, change of temperature, etc.). By attributing these factors to the variation
of gate delays, we attempt to realize the evaluation of the randomness and error
rate.

The evaluation flow, shown in Fig. 1, is basically the same as an ordinary
circuit design and timing evaluation. It is different in that delay variation is
reflected before simulation.

Logic
design
(RTL)

Logic
synthesis

Place & route

Designed
data

(Netlists,
SDF files)

Regenerate
SDFs
by

Algorithm 1

Logic
simulation

Evaluate
and

SDF(i,j)

OK
Fixed design

NGLogic
modification

Tμ

2
sysσ 2

randσ 2
noiseσ

0τ

∞H
eP

T

(IOPATH I O (811:831:978))

Database of delay
characteristic

(IOPATH I O (852:925:1066))

(IOPATH I O (802:815:936))

…

Fig. 1. PUF evaluation flow by simulation

A Standard Delay Format (SDF) [16] in Fig. 1 is a file that defines represen-
tative delays for a target device, and used for delay analysis for a circuit. It is
thus possible to evaluate the operating delays of the device under corner condi-
tions using the delay values that corresponds to several operating conditions of
the circuit. However, it is not possible to evaluate PUFs with SDFs as they are
because the delay values are fixed while PUFs assume delay variation.

In order to reflect individual difference and environmental change, we perform
simulation with a large number of SDFs varied from the original SDF according
to the previously-extracted characteristics and distributions of process, supply
voltage and temperature (PVT) of a device.

The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch Shapes 369

Process variation is generally classified into systematic variation and random
variation [17]. Systematic variation is correlated with location in a wafer or a
chip. It is represented by the performance difference between chips such as the
speed grade of FPGA. Random variation is not related with spatial location of
transistors. It is known to result from the fluctuation of the concentration of
impurities. Environmental change is parameterized representatively by voltage
and temperature. These parameters are evaluated for TEG chips on a startup
of LSI fabrication.

On the contrary, the information about PVT variation on FPGA is not dis-
closed. We hence try to extract the parameters by observing the delays in a chain
of inverters under various layouts and environments as in [18] on 16 FPGAs. The
parameters are as follows.

· Systematic delay variation between chips: σ2
sys

· Random delay variation within chips: σ2
rand

· Environmental random delay variation such as from dynamic IR-drop: σ2
noise

· Average fraction of designed delays under 0 ◦C: τ0
· Delay temperature coefficient: μT

The following assumptions are made to calculate each parameter from measured
delays.

(1) Systematic delay variation within chips can be ignored.
(2) The distributions are normal (with variances σ2

sys, σ2
rand, and σ2

noise).
(3) σ2

rand, σ2
noise, and μT are constant for all chips.

Note here that all the parameters are represented as fractions of designed delay
values in a SDF. It is then possible to simulate individual difference and en-
vironmental change based on the delays that EDA tools output reflecting gate
depths, numbers of fanouts and layout difference.

Designed delay values d1, · · · , dMAXNodeNum for each node defined in a SDF
are changed by the following formula (Algorithm 1), where sampling r from a
distribution N(0, σ2) is denoted as r ← N(0, σ2).

3 Glitch PUFs

In this section, we explain the architecture of the proposed PUF, which exploits
glitch waveforms. It is thus called Glitch PUF.

3.1 Basic Idea

We consider to simulate the behavior of a device at early design stages according
to the characteristics of the device. The goal of this simulation is to estimate
the amount of information of a PUF, especially its lower limit, without need to
evaluate a large volume of real LSIs. As stated earlier, it is delay information
that is most compatible with simulation at earlier stages of all characteristics.

370 D. Suzuki and K. Shimizu

Algorithm 1. Regeneration of SDFs with Individual and Environmental Dif-
ference
Setting: · MAXNodeNum nodes are included in the original SDF file.

· MAXChipNum chips are simulated.
· The response data for each chip is regenerated MAXRepNum times to evaluate

the error rate.
· T ◦C is the operating temperature.

Input: T, (d1, · · · , dMAXNodeNum)
Output: SDF(i,j), 0 ≤ i ≤ MAXChipNum, 0 ≤ j ≤ MAXRepNum.
1: for i = 1 to MAXChipNum do
2: rsys ← N(0, σ2

sys)
3: for j = 1 to MAXRecNum do
4: for k = 1 to MAXNodeNum do
5: rrand ← N(0, σ2

rand)
6: rnoise ← N(0, σ2

noise)
7: d′

k := ((1+μT · T)(τ0 + rsys + rrand) + rnoise) · dk

8: end for
9: WriteSDF(i,j)(d′

1, · · · , d′
MAXNodeNum

)
10: end for
11: end for

Then it is probable to be able to evaluate the amount of information of a PUF
within the current scheme of logic circuit design, if the delay variation among
devices is closely connected to the change of reponse of the PUF.

We consider possible behavioral difference of the same logic circuits with dif-
ferent delays. Examples of such behaviors are shown in Fig. 2. Fig. 2-(a) shows
a basic one that there is a time difference between output changes from an in-
put change. The time from an input change to an output change is, however,
difficult to be exploited as a device unique key because it depends not only on
the variation of gate delays inherent from manufacturing but also largely on the
operating temperature and voltage. On reflection, Arbiter PUF by Lin et al.
exploits the time difference between two signals to ensure stability against such
environmental changes as shown in Fig. 2-(b). But it is known about Arbiter
PUF that it is possible to predict challenge-response pairs (CRPs) by machine
learning if a sufficient number of CRPs have been collected. Feed-Forward Ar-
biter PUF, which introduces non-linear operations as a countermeasure, is also
possible to be attacked by machine learning [14].

The examples thus far describes behaviors from a delay difference for very
simple logic circuits. From here, we discuss more general circuits such as Fig. 2-
(c) that perform AND and XOR to multiple inputs. In this kind of circuit there
occurs a transient state of an output signal called a glitch from the delay differ-
ence between input signals, unless a particular condition holds. In the example
in Fig. 2-(c), in case that input signals x1, x2, x3 all change from 0 to 1, there is a
convex glitch at the XOR output from the difference of transition time between
x1 and x2. The glitch propagates to the AND output only if the transition of

The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch Shapes 371

Delay
path 1

x y

x
y
y

comparator
0

(a)

x1
x2

x3

y

x3

x2

x1

x3

x2

x1

y y

(b) (c)

Delay
path 2

1

Fig. 2. Circuit behaviors for different de-
lay values

Delay circuit

Sampling
registers

s1 s2 s3 si sn

b1 b2 b3 bi bn

Glitch signal

Clock

ping signal

or

Fig. 3. Sampling circuit

the input signal x3 reaches the AND gate faster than the glitch. If not on the
contrary, the glitch does not propagate to the output, in which case the output
remains unchanged. Furthermore, even if x3 is faster, the PATHPULSE [16]
of the AND gate might prevent a narrow glitch from propagating. Notice here
that for sufficiently wide glitches, their shapes are determined by the relation
of delays, not by the absolute values of the delays. It is then anticipated that
shapes of glitches are kept unchanged if the operating environment changes, like
Arbiter PUF.

Now our attention is focused on glitches, which can take various shapes ac-
cording to the order relation of delays between the inputs of each gate that
consists in a logic circuit. We discuss a means of applying them to construct a
PUF from here.

3.2 Overall Sequence

First of all, we describe a whole sequence of Glitch PUF. Glitch PUF consists
largely of the three steps below.

STEP 1 Data input to a random logic
STEP 2 Acquisition of glitch waveforms at the output
STEP 3 Conversion of the waveforms into response bits

In the example of Fig. 2-(c), STEP 1 means causing changes to the inputs
x1, x2, x3. The accompanying glitch waveform at the output y is acquired as
an n-bit data. The data is then transformed into a one-bit data r according to
its shape. Changing the input in STEP 1 and iterating the steps, a bit sequence
R is acquired as a response data R.

Each subsection below describes the details of necessary techniques to realize
the operations from STEP 1 to STEP 3.

3.3 Acquisition of Glitch Waveforms

As described in Section 2.1, we attempt to construct a PUF using glitches, which
can take various shapes according to delay variation. The issue here is how to

372 D. Suzuki and K. Shimizu

Expected behavior

Clock
b1 = 0

bi = 1

b2 = 0

si

si+j+1

si+j

s1
s2

bi+j = 1

bi+j+1 = 1
bi+j+2 = 0si+j+2

bn = 0sn

{bn, … ,b1}
= {0, … ,0,1, … ,1,0, … ,0}

Sampling results

Actual behavior

Clock
b1 = 0

bi = 0

b2 = 0

si

s1
s2

Sampling results

{bn, … ,b1}
= {0, … ,0,1,0,1, … ,1,0,1,0, … ,0}

si-1si-1 bi-1 = 0 bi-1 = 1

si+j+1

si+j

si+j+2

bi+j = 1

bi+j+1 = 0
bi+j+2 = 1

bn = 0sn

Fig. 4. Error in glitch acquisition

120 130 140 150 160 170 180

120

130

140

150

160

170

180

Position of sampling register

T
im

e
or

de
r

FPGA 1
FPGA 2
FPGA 3
Designed value

Fig. 5. Time order of sampling registers

accurately acquire the shape of a pulse signal that happens only for a tiny period
of time. At the same time, the acquisition process must be realized as a digital
circuit for the goal of this paper.

The phase-shift method is one of the general solutions to the issue, where
multiple clocks with different phases are prepared to sample a tiny pulse. The
sampling accuracy is heightend as the number of different phased clocks is in-
creased. The method is, however, not practical since it needs too many clock
lines. Particularly in FPGA, there is a limited number of global clock lines with
little jitter, from several to several dozen. Although the number of clock lines
can be reduced by introducing time-division, the speed of acquisition decreases
then. We hence adopt a method where the target data is shifted by a tiny period
of time, and sampled by the same clock. Fig. 3 shows a sampling circuit of this
method. We call this operation glitch acquisition hereafter. Note here that since
the sampling period must be short for acquisition accuracy, it is required to re-
duce the delay deference between signals loaded into flip-flops (FFs) as much as
possible by decreasing the buffer depths between signals, or using other elements
with shorter delays in Fig. 3. As the delay difference decreases, though, clock
jitter between FFs and wire or gate delay cannot be ignored. In this case, the
orders of sampling positions of FFs, and their actual delays do not match as
in Fig. 4, thereby permuting the time order of the sampled data. It probably
becomes impossible to recover the glitch shape accurately. This problem also
occurs for the aforementioned phase-shifting of clock.

We thus introduce a preprocessing shown below before performing glitch ac-
quisition in order to determine the time order of the sampling result. A signal
wire is added to generate a simple rising edge, called a ping signal hereafter.
First, a ping signal is input to the sampling circuit in Fig. 3 and sampled. Then,
each FF latches 1 or 0 if the ping signal reaches it before or after the clock,
respectively. On the other hand, there is a variable delay circuit in the clock line,

The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch Shapes 373

0 50 100 150 200 250
−1

0

1

2

0 50 100 150 200 250
−1

0

1

2

L
at

ch
ed

 d
at

a

0 50 100 150 200 250
−1

0

1

2

Sampling point

FPGA 3

FPGA 2

FPGA1

Fig. 6. With jitter correction

0 50 100 150 200 250
−1

0

1

2

0 50 100 150 200 250
−1

0

1

2

L
at

ch
ed

 d
at

a

0 50 100 150 200 250
−1

0

1

2

Sampling point

FPGA 3

FPGA 2

FPGA 1

Fig. 7. Without jitter correction

with which the above process is performed multiple times with different clock
delays. The number of latching 1 is thereby counted for each FF. Lastly, the time
order of the samplings is determined according to the order of the numbers. An
example time order is shown in Fig. 5. The glitch shape is recovered after sorting
the sampled data according to this order.

From here, the above-mentioned preprocessing is called jitter correction and
the sorting according to the result of the jitter correction is called sorting. The
results of glitch acquisition with and without jitter correction are shown in Fig. 6
and Fig. 7 respectively.

3.4 Conversion to Response

One-bit value is converted from the glitch waveforms acquired as digital data by
the above sampling method. We describe a means to convert the parity of the
number of rising edges in a glitch waveform. The parity can be detected with
differential and addition processing implemented in hardware or software. This
detection is called shape judgment.

It is still difficult to acquire the time order of FFs completely even though
the aforementioned preprocessing is performed. When the sorted time order is
different from the actual order of the circuit, a glitch waveform like Fig. 4 is
acquired, where there are narrow pulses near the edges. This kind of phenomenon
is an unstable behavior occurring when the clock delays between FFs are close. As
a result, the shape judgment can be different for each trial of glitch acquisition.
In addition, an extremely narrow pulse can cause the same phenomenon due to
the PATHPULSE mentioned previously.

We decide to perform a processing as shown in Fig. 8 to ignore pulses with
widths less than a threshold w. This processing is called filtering hereafter.

3.5 Reliability Enhancement

In order to improve the error rate of the shape judgment, we utilize the feature
that the same processing can be performed multiple times. That is, the final

374 D. Suzuki and K. Shimizu

Pattern 1 r = 1

r = 0

r = 1

Ignore glitch pulse below the threshold w.

Acquired glitch waveforms

Pattern 2

Pattern 3

w

Fig. 8. Conversion from glitch waveform
to response with filtering

Data
registers

Glitch
generater

Control
registers

Delay circuit
(for ping)

Delay circuit
(for sampling)

Sampling
registersVariable

delay circuit

G2R Converter
(F/W or H/W)

M
U

X

Data
bus

X

h

sels

D
CLKv

hd

g

p

r

SELgc

s1 s2 sn

b1 b2 bn

s0

G2R: glitch waveforms to response bit

Fig. 9. Whole structure of Glitch PUF

output is determined by majority after multiple trials of shape judgment are
performed for the same input transition. In particular, when the initial key is
generated such as by Generate (Gen) in Fuzzy Extractor [2], only such inputs
as acquire the same outputs for M iterations are used. In this case, performing
shape judgment M times for each of N input changes generates an N -bit mask
as well as an N -bit response. Value 1 of a mask bit means that the bit position
is used for key generation, and vice versa. The mask is output as part of Helper
Data.

In methods such as suggested in Ref. [12], a probability distribution of errors
is output as Helper Data when performing Gen and soft-decision is performed
in the process of Reproduce (Rep) [2]. The amount of information is preserved
although the error distribution is made public. On the contrary, the amount of
information is reduced by the masking process. In Glitch PUF, bit positions with
high error rates are determined for each chip and the number of them is small.
We therefore choose to mask them and reduce the size of the necessary error
correcting circuit.

3.6 The Architecture

Fig. 9 illustrates the circuit architecture of Glitch PUF. Glitch PUF consists
mainly of control registers, data registers, a glitch generator, a sampling circuit,
and two kinds of delay circuit. The control registers in Fig. 9 store the control
parameters listed below.

· SELgc: Selection signal to glitch generator (log u bits)
· sels: Input selection signal to sampling circuit (1 bit)
· h: Ping signal (1 bit)
· D: Delay specifier signal to variable delay circuit (q + q′ bits)
· p: Trigger signal (1 bit)

The data registers store the data X (u-bit) input into the glitch generator. The
glitch generator is comprised of a combinational circuit and a v-1 selector, where
the circuit performs Y = f(X) defined for X in Fig. 10 and the selector selects

The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch Shapes 375

Random logic
(Combinational circuit)

M
U

X

Glitch generater

x1

x2

xu

y1

y2

yv

X

SELgc

g

Fig. 10. Glitch generater

2q bits
adder

1 1 1 11 1

q-2q

Decoder
(one hot)

q

2q

D

q’

Case:Dq=0
Output of the decoder {0,…0,1}

p

Case:Dq=2q-1
Output of the decoder {1,0,…,0}

CLKv

Dq

Dq’

MUX

Dq=0

Dq=2q-1
carry propagation path

Fig. 11. Variable delay circuit

one bit out of v bits of Y according to a selection signal SELgc. The delay
circuit for the ping signal consists of a buffer chain, thereby outputting hd, a
delayed signal of h. The depth of the chain is determined at the design stage
by simulation evaluating the occurrence timing of the glitch signals generated in
the glitch generator. We describe the details in the next section. The sampling
circuit, as discussed in Section 3.3, is constructed of a buffer chain and FFs
shown in Fig. 3. It is noteworthy that when implementing a Glitch PUF on
FPGA, the sampling resolution can be heightened by utilizing carry paths of
addition circuits as a buffer chain rather than implementing the chain in Look-
up tables (LUTs). The variable delay circuit is also implemented with carry
paths to minimize the step size of delay by which the delay can be varied. At the
same time, however, the range of the variable delay must be wider than that for
sampling. Hence, the circuit requires large area if it is all constructed of carry
paths. The issue can be avoided by combining delay circuits on carry paths and
LUTs as in Fig. 11, thereby keeping a wide variable range and high resolution
at the same time.

In this paper, the process until the sampling is implemented on hardware and
the rest is on firmware in order to observe the behavior of the generated glitches.

3.7 Adjustment of the Design Parameter

In order to realize efficient glitch acquisition, parameters need to be adjusted for
each circuit in Fig. 9 at the design stage. The parameters are as the following.

· n: The number of FFs in the sampling circuit
· delays: The delay value of the buffers inserted between the signals of the sam-

pling circuit
· ranges: The sampling range of the sampling circuit
· rangeg: The range of glitch occurrence in the glitch generator

376 D. Suzuki and K. Shimizu

rangeCLK

Dq=0 Dq=2q-1
Dq’=0

Dq’=1

Dq’=2q’-1

ranges

Clock

tg

th

Dq’=0

Dq=0 Dq=2q-1
Dq’=1

Dq=2q-1
Dq’=2q’-1

Dq=0

rangeg

Fig. 12. Timing conditions for the designing parameters

· rangeCLK: The variation range of the variable delay circuit
· tg: The time of the central value in the range of glitch occurrence
· th: The time of rising of the delayed ping signal hd

Fig. 12 illustrates the relationship between each parameter. n and delays are
related to the sampling range and resolution. ranges is about n · delays. To
acquire glitch shapes, it must hold that rangeg < ranges < rangeCLK. We discuss
a design procedure to realize the relation in what follows.

At first, the time range rangeg where glitches can occur at the input of the
sampling circuit, and the occurrence timing tg are estimated by logic simulation
with delay information. That is performed when the logic of the glitch generator
is fixed. Second, n and delays are determined such that the equation rangeg <
ranges holds. Here, the sampling resolution can be heightend by selecting a cell
from the target platform as a buffer such that delays is as small as possible. As a
result, it is n that actually needs determining. The implementation in this paper
sets ranges to be more than twice rangeg as a design margin. Also, the buffer
depth in the variable delay circuit is configured such that rangeCLK is around
twice ranges.

Next, the buffer depth in the delay circuit for the ping signal is configured
such that tg � th for the previously determined tg. The configuration is not only
used to calculate the time order of the sampling results. It is also to determine
the delay specifier signal Dg in the variable delay circuit, which is for acquiring
glitch shapes. The details are as follows. Sampling the ping signal is performed
with D being incremented from its minimum to maximum values. Dg is set to be
the D when a certain FF around the center of the sampling results latches 1 for
the first time. Glitch waveforms can thereby be sampled around the center of the
sampling range since the glitch occurrence range is configured to be in the same
range as the ping delay. However, ranges and rangeCLK must have margins,
like twice/half something as stated earlier, because it is generally difficult to
accurately configure the delay between signals.

The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch Shapes 377

Table 1. Specification of experimental environment

Implementation environment
Logic synthesis, P&R Xilinx Platform Studio 10.1.03i
Simulator NC-Verilog
Target FPGA Xilinx XC3S400A-4FTG256C (16 boards)
MAXChipNum 1000
MAXRepNum 1000
Number of bits of generated responses N 2048

Specification of Glitch PUF
Glitch generator AES SubByte (composite field)
Design parameter (n, u, v, q, q′) (256, 8, 8, 8, 2)
Filtering parameter w 2
Reliability Enhancement parameter M 10
SLICEs used 891/3584 (Whole SoC 3186/3584)
Operating frequency 50 MHz

Table 2. Delay characteristics

Systematic delay variation σ2
sys(%2) 2.5037

Random delay variation σ2
rand(%2) 5.3091

Environmental random delay variation σ2
noise(%

2) 0.0310
Average fraction of designed delays τ0 (%) 56.9727
Delay temperature coefficient μT (%/◦C) 0.1401

4 Experimental Results

This section presents the results of evaluating the randomness and statistical prop-
erties for an experimental implementation of Glitch PUF on FPGA. The experi-
ment is performed for Spartan-3A evaluation boards by AVNET that mount one
XC3S400A-4FT256, a Xilinx FPGA. 16 boards are used. We build a System-on-
a-Chip (SoC), mounting on an FPGA a soft-macro CPU (MicroBlaze), UARTs,
and memory controllers as well as a PUF circuit. Table 1 shows the specifica-
tion of the implementation environment. The process after the shape acquisition
mentioned above is performed by firmware on a MicroBlaze mounted on the
same FPGA as the circuits are implemented on. AES SubBytes is used as the
glitch generator since its logic is complex and circuit structure is well studied by
designers of cryptographic hardware. The sampling circuit is implemented with
256 FFs. The variable delay circuit consists of a 256-bit addition circuit, and an
LUT-based buffer chain whose depth of LUT can be 4, 8, 12, and 16 with a 4-1
selector.

We perform a basic experiment on delay characteristics described in Sec-
tion 2 in order to extract the parameters for the same FPGA boards needed
for the simulation of PUF. The parameters are shown in Table 2. The parame-
ters are calculated as fractions of corresponding worst-case delays defined in SDF

378 D. Suzuki and K. Shimizu

0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

2

4

6

8

10

12

14

16

18

Fractional Hamming Distance

B
et

w
ee

n−
cl

as
s

di
st

ri
bu

tio
n,

 c
ou

nt
 (

%
)

Fig. 13. Hamming distances of response
data between FPGAs (actual chips)

0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

2

4

6

8

10

12

14

16

18

Fractional Hamming Distance

B
et

w
ee

n−
cl

as
s

di
st

ri
bu

tio
n,

 c
ou

nt
 (

%
)

Fig. 14. Hamming distances of response
data between FPGAs (simulation)

Table 3. Change of information amount against change of variations

Simulation results (24◦C)
Variation H∞(R) H∞(R|Mask)

(σ2
sys, σ

2
rand) 1,043 702

((2 · σsys)2, σ2
rand) 1,068 721

((1
2
· σsys)2, σ2

rand) 1,046 703
(σ2

sys, (2 · σrand)2) 1,167 811
(σ2

sys, (1
2
· σrand)2) 828 546

FPGAs 1,156 649

generated by an EDA tool after the layout. Using Table 2, we regenerate a
number of SDFs according to Algorithm 1, and evaluate the randomness and
statistical properties by simulation. The results are also shown in this section.

4.1 Inter-chip Variation

Fig. 13 is a histogram of Hamming distances between PUF outputs of two dif-
ferent FPGAs out of 16 (i.e. 120 combinations). This evaluation is a general
way to show how different responses of chips are. The result shows that about
850 bits out of 2048 bits are different between chips. Fig. 14 shows the result of
the same evaluation by simulation. Comparing Figs. 13 and 14, it is seen that
the simulation is able to evaluate the randomness of responses generated by real
chips.

Table 3 shows the min-entropy of the probability distribution of the response
acquired through the experiment, and of the distribution of the masked response
described in Section 3.5. Masking reduces the min-entropy of the original dis-
tribution since it discards the response bits that are judged to be unstable at
Gen. However, the reduction rate is only around 30% for the experimental Glitch

The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch Shapes 379

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

30

35

Fractional Hamming Distance

W
ith

in
−

cl
as

s
di

st
ri

bu
tio

n,
 c

ou
nt

 (
%

)

Fig. 15. Hamming distances between re-
sponse data for the same FPGA (actual
chips)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

30

35

Fractional Hamming Distance

W
ith

in
−

cl
as

s
di

st
ri

bu
tio

n,
 c

ou
nt

 (
%

)

Fig. 16. Hamming distances between re-
sponse data for the same FPGA (simula-
tion)

PUF, indicating that the amount of information is still sufficient if the unstable
bits for each chip are discarded. Table 3 also proves that the min-entropy loss
from masking can be evaluated at the design stage by simulation.

It is also noteworthy in Table 3 that there is an interesting relationship be-
tween H∞(R), σ2

sys, and σ2
rand. H∞(R) changes sensitively to the change of σ2

rand
while it does not to the change of σ2

sys. In other words, Glitch PUF ensures the
amount of information of the response data from the random delay variation
within chips rather than from the systematic delay variation between chips. The
result implies that Glitch PUF can guarantee the randomness for chips on the
same wafer as well as for chips on different wafers, or from different lots. In addi-
tion, it is arguably possible that the randomness of Glitch PUF further improves
for latest devices because random delay variation tends to enlarge as the process
miniaturizes.

4.2 Intra-chip Variation

It is desirable for a PUF to stably generate the same response for the same
FPGA. Fig. 15 plots the Hamming distances between the initial response and 100
responses measured thereafter, all of which are masked. The measurements are
at normal temperature and voltage (24◦C,1.20V), and averaged for 16 FPGAs.
The mean error rate is around 1.3%. Next, as Fig. 17 shows, the maximum error
rate in the rated temperature range is about 6.6 % at 80◦C, which is less than the
half of 15% assumed in Ref. [11]. In addition it is shown by Figs. 16 and 17 that
the change of the error rate with respect to the temperature can be evaluated
by simulation with high accuracy.

Next, we discuss the effect of masking. Fig. 18 is a histogram of error rates
for each bit of the 2048-bit response data at normal temperature and voltage. It
is clear that there are many bits with error rates higher than 0.1 when masking
is not performed. At the same time, most of these bits are removed by masking,
which correctly treats the response data. Masking is effective for Glitch PUF

380 D. Suzuki and K. Shimizu

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

Temperature (◦C)

B
it

er
ro

r
ra

te
(%

)

FPGA without mask
Simulation without mask
FPGA with mask
Simulation with mask

Fig. 17. Change of error rate accompanying temperature change

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

80

Error probability

W
it

hi
n-

cl
as

s
di

st
ri

bu
ti

on
,
co

un
t

(%
)

FPGA wo/ mask
FPGA w/ mask

Fig. 18. Reduction of error rate by masking

since it greatly lowers the error rate, although the min-entropy decreases by
about 30 % as stated earlier.

4.3 Secrecy Rate

In Ref. [19], the secrecy rate is defined to be I(R, R′), the mutual information
of the response data at Gen R, and at Rep R′. The average secrecy rate of
Glitch PUF is calculated to be 0.26 per bit from the aforementioned experimen-
tal results. This is about 1/3 that of SRAM-PUF. At the moment, Glitch PUF
is thus inferior to SRAM-PUF in the efficiency to generate secret information.
However, delay-PUFs including Glitch PUF have the advantage of being able
to evaluate the secrecy rate by logic simulation, the same way as explained in the

The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch Shapes 381

previous sections. On the contrary SRAM-PUF requires analog simulation like
SPICE to evaluate the same thing.

5 Conclusions

In this paper, we propose Glitch PUF, which is a new Delay-PUF for the purpose
of remedying a problem about the previous Delay-PUFs, that is, the easiness to
predict the relationship between delay information and generated information.
Glitch waveforms occurring at the output of a random logic behave non-linearly
from delay variation between gates and the characteristic of pulse propagation
of each gate. We present a method to accurately acquire the waveforms and to
convert them into response bits. In addition, we prove the feasibility of Glitch
PUF by evaluation of the randomness and statistical properties for an FPGA.
Furthermore, we show a simple scheme to evaluate the characteristics of Glitch
PUF. Using the scheme, we confirm the consistency of the evaluation results for
real chips and those by simulation.

Lastly, we list open problems below.

· Construct a glitch generator that brings high amount of information and low
error rate .
· Model machine learning attacks to Glitch PUF.
· Construct an error correcting code and universal hash function suitable for

Glitch PUF.
· Model logic simulation for voltage change and aging degradation through ac-

celeration test, and evaluate them on real chips

References

1. Pappu, R.S.: Physical One-way Functions. Ph.D. Thesis, M.I.T. (2001),
http://pubs.media.mit.edu/pubs/papers/01.03.pappuphd.powf.pdf

2. Dodis, Y., Reyzin, M., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys
from Biometrics and Other Noisy Data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

3. Tuyls, P., Batina, L.: RFID-Tags for Anti-Counterfeiting. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)

4. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon Physical Random Func-
tions. In: Proc., of the 9th ACM Conference on Computer and Communications
Security (CCS 2002), pp. 148–160 (2002)

5. Guajardo, J., Kumar, S.S., S̃chrijen, G.J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

6. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A Technique
to Build a Secret Key in Integrated Circuits for Identification and Authentication
Applications. In: Proc. of the IEEE VLSI Circuits Symposium, pp. 176–179 (2004)

7. Suh, G.E., Devadas, S.: Physical Unclonable Functions for Device Authentication
and Secret Key Generation. In: Proc. of the 44th annual Design Automation Con-
ference (DAC 2007), pp. 9–14 (2007)

http://pubs.media.mit.edu/pubs/papers/01.03.pappuphd.powf.pdf

382 D. Suzuki and K. Shimizu

8. Kumar, S.S., Guajardo, J., Maes, R., S̃chrijen, G.J., Tuyls, P.: Extended Abstract:
The Butterfly PUF: Protecting IP on every FPGA. In: Proc. of the IEEE Inter-
national Workshop on Hardware-Oriented Security and Trust 2008 (HOST 2008),
pp. 67–70 (2008)

9. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight secure PUFs. In: Proc.
of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD
2008), pp. 670–673 (2008)

10. B̈osch, C., Guajardo, J., Sadeghi, A.R., Shokrollahi, J., Tuyls, P.: Efficient Helper
Data Key Extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

11. Maes, R., Tuyls, P., Verbauwhede, I.: Low-Overhead Implementation of a Soft
Decision Helper Data Algorithm for SRAM PUFs. In: Proc. of the 2009 IEEE In-
ternational Symposium on Information Theory (ISIT 2009), pp. 2101–2105 (2009)

12. Maes, R., Tuyls, P., Verbauwhede, I.: A Soft Decision Helper Data Algorithm for
SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp.
332–347. Springer, Heidelberg (2009)

13. Chopra, J., Colopy, R.L.: SRAM Characteristics as Physical Unclonable
Functions. Worcester Polytechnic Institute Electric Project Collection (2009),
http://www.wpi.edu/Pubs/E-project/Available/E-project-031709-141338/

14. Rührmair, U., Sölter, J., Sehnke, F.: On the Foundations of Physical Unclonable
Functions. Cryptology ePrint Archive, 2009/277 (2009)

15. Najm, F.N., Menezes, N.: Statistical Timing Analysis Based on a Timing Yield
Model. In: Proc. of the 41st annual Design Automation Conference (DAC 2004),
pp. 460–465 (2004)

16. Standard Delay Format Specification version 3.0 (1995),
http://www.eda.org/sdf/sdf_3.0.pdf

17. Hiramoto, T., Takeuchi, K., Nisida, A.: Variability of Characterisics in Scaled
MOSFETs. J. IEICE 92(6), 416–426 (2009)

18. Berkelaar, M.: Statistical Delay Calculation, a Linear Time Method. In: Proc. of
the International Workshop on Timing Analysis (TAU’97), pp. 15–24 (1997)

19. Ignatenko, T., Schrijen, G.J., Skoric, B., Tuyls, P., Willems, F.: Estimating the
Secrecy-Rate of Physical Unclonable Functions with the Context-Tree Weighting
Method. In: Proc. of the 2006 IEEE International Symposium on Information
Theory (ISIT 2006), pp. 499–503 (2006)

http://www.wpi.edu/Pubs/E-project/Available/E-project-031709-141338/
http://www.eda.org/sdf/sdf_3.0.pdf

Garbled Circuits for Leakage-Resilience:
Hardware Implementation and Evaluation of

One-Time Programs�

Kimmo Järvinen1, Vladimir Kolesnikov2,
Ahmad-Reza Sadeghi3, and Thomas Schneider3

1 Dep. of Information and Comp. Science, Aalto University, Finland
kimmo.jarvinen@tkk.fi��

2 Alcatel-Lucent Bell Laboratories, Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

3 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de���

Abstract. The power of side-channel leakage attacks on cryptographic
implementations is evident. Today’s practical defenses are typically
attack-specific countermeasures against certain classes of side-channel
attacks. The demand for a more general solution has given rise to the
recent theoretical research that aims to build provably leakage-resilient
cryptography. This direction is, however, very new and still largely lacks
practitioners’ evaluation with regard to both efficiency and practical se-
curity. A recent approach, One-Time Programs (OTPs), proposes using
Yao’s Garbled Circuit (GC) and very simple tamper-proof hardware to
securely implement oblivious transfer, to guarantee leakage resilience.

Our main contributions are (i) a generic architecture for using GC/
OTP modularly, and (ii) hardware implementation and efficiency anal-
ysis of GC/OTP evaluation. We implemented two FPGA-based proto-
types: a system-on-a-programmable-chip with access to hardware crypto
accelerator (suitable for smartcards and future smartphones), and a
stand-alone hardware implementation (suitable for ASIC design). We
chose AES as a representative complex function for implementation and
measurements. As a result of this work, we are able to understand, eval-
uate and improve the practicality of employing GC/OTP as a leakage-
resistance approach.

1 Introduction

Side-channels and protection. For over a decade, we saw the power and ele-
gance of side-channel attacks on a variety of cryptographic implementations and
devices. These attacks refute the assumption of “black-box” execution of cryp-
tographic algorithms, allow the adversary to obtain (unintended) internal state

� This is a short version of the paper. The full version is available [7].
�� Supported by EU FP7 project CACE.

��� Supported by EU FP7 projects CACE and UNIQUE, and ECRYPT II.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 383–397, 2010.
c© International Association for Cryptologic Research 2010

384 K. Järvinen et al.

information, such as secret keys, and consequently cause catastrophic failures of
the systems. Often the attacks are on the device in attacker’s possession, and
exploit physical side-channels such as power consumption or emitted radiation.
Hence, from the hardware perspective, security has been viewed as more than
the algorithmic soundness in the black-box execution model (see, e.g., [28]).

Today’s practical countermeasures typically address known vulnerabilities,
and thus target not all, but specific classes of side-channel attacks. The desire
for a complete solution motivated the recent burst of theoretical research in
leakage-resilient cryptography, the area that aims to define security models and
frameworks that capture leakage aspects of computation or/and memory. Infor-
mation leakage is typically modeled by allowing the adversary learn (partial)
memory or execution states. The exact information given to the adversary is
specified by the (adversarily chosen) leakage function. Then, the assumption on
the function (today, usually the bound on the output length) directly translates
into a physical assumption on the underlying device and the adversary. Proving
security against such an adversary implies security in the real-world with the
real device, subject to corresponding assumption (see [17] for a survey on this
strand of research). We note that many of the results of this new line of re-
search (i.e., leakage assumptions and leakage-resilient constructions), although
clearly stated, have not yet been evaluated by practitioners and side-channel
community.1

Secure Function Evaluation in hardware and leakage-resilience. Effi-
cient Secure Function Evaluation (SFE) in an untrusted environment is a long-
standing objective of modern cryptography. Informally, the goal of two-party
SFE is to let two mutually mistrusting (polynomially-bounded) parties compute
an arbitrary function on their private inputs without revealing any information
about the inputs, beyond the output of the function. SFE has a variety of ap-
plications, particularly in settings with strong security and privacy demands.
Deployment of SFE was very limited and believed expensive until recent im-
provements in algorithms, code generation, computing platforms and networks.

As advocated in numerous prior works [13,10,18,8], Garbled Circuit (GC) [29]
is often the most efficient (and thus viable) SFE technique in the two-party
setting. As we argue in the full version [7], the emerging fully homomorphic
encryption schemes [3] are unlikely to approach the efficiency of GC.

Because of the execution flow of the GC solution (one party can non-inter-
actively evaluate the function once the inputs have been fixed), the security
guarantees of SFE are well-suited to prevent all side-channel leakage. Indeed,
even GC evaluation in the open reveals no information other than the output.
Clearly, it is safe to let the adversary see (as it turns out, even to modify) the
entire GC evaluation process. The inputs-related stage of GC can also be made
non-interactive with appropriate hardware such as Trusted Platform Modules
(TPM) [6]. Goldwasser et al. [4] observed that very simple hardware is suffi-
cient, one that, hopefully, can be manufactured tamper-resistant at low cost.
1 Indeed, ongoing work of [21] investigates the practical applicability and usability of

theoretical leakage models and the constructions proven secure therein.

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 385

They propose to use One-Time Programs (OTP), a combination of GC and
above hardware, for leakage-resilient computation. Indeed, one of our goals is to
evaluate today’s performance of OTP in hardware.

Our objectives. Practical efficiency of SFE and leakage-resilient computing is
critical. Indeed, in most settings, the technology can only be adopted if its cost
impact is acceptably low. In this work, we pursue the following two objectives.

First, we aim to mark this (practical efficiency) boundary by considering
hardware-accelerated state-of-the-art GC evaluation, and optimizing it for em-
bedded systems. Implementing SFE (at least partially) in hardware promises
to significantly improve computation speed and reduce power consumption. We
evaluate costs, benefits and trade-offs of hardware support for GC evaluation.

Second, we use our GC hardware-accelerator to implement OTP and evaluate
the efficiency of this provably leakage-resilient protection. The envisioned appli-
cations for OTPs mentioned in [4] are complex functionalities such as one-time
proofs, E-cash, or extreme software protection. We make a first step towards
estimating the costs of such complex OTP applications by implementing OTP
evaluation of the AES function. We chose AES as it is relatively complex and
allows comparison with existing (heuristic) leakage protection.

1.1 Our Contributions and Outline

In line with our objectives stated above, we implement a variant of OTP with
state-of-the-art GC optimizations discussed in §2. As an algorithmic contribu-
tion, we propose an efficiency improvement for OTPs with multiple outputs
in §3.1. Further, we describe a generic architecture for using GC/OTP in a mod-
ular way to protect against arbitrary side-channel attacks in §3.2.

In our implementation, we present a hardware architecture (§4.1) and op-
timizations (§4.2) for efficient evaluation of GC/OTP on memory-constrained
embedded systems. We measure performance of GC/OTP evaluation of AES
on our two FPGA-based implementations in §4.3: a system-on-a-programmable-
chip with access to SHA-256 hardware accelerator (representative for smartcards
and future smartphones) and a stand-alone hardware implementation. With op-
timization, GC evaluation of AES on our implementations requires about 1.3 s
and 0.15 s, respectively. This shows that provable leakage-resilience via GC/OTP
comes at a relatively high cost (but its use might still be justified in high-security
applications): an unprotected implementation of AES in hardware runs in 0.15 μs,
and requires 2.6 times smaller area than OTP-based solution. We note that the
chip area for hardware-accelerated GC/OTP evaluation is independent of the
evaluated function. As AES is a representative complex function, we believe that
our results, in particular our performance measurements, will serve as reference
point for estimating GC/OTP runtimes of a variety of other functions.

1.2 Related Work

Efficient implementations of Garbled Circuits (GC). We believe that
our results are the first hardware implementation of garbled circuits (GC) and

386 K. Järvinen et al.

one-time programs (OTP) evaluation. While several implementations and mea-
surements of GC exist in software, e.g., [13,18], the hardware setting presents
different challenges. Our work allows to compare the approaches and estimate
the resulting performance gain (our hardware implementation is faster than the
software implementation of [18] by a factor of 10-17). Hardware implementation
of GC generation in a cost-effective tamper-proof token with constant memory
was shown in [8]. Our work is complementary, and our hardware accelerator for
GC evaluation can be combined with the token of [8], or software frameworks.

One-Time Programs (OTP). The combination of GC with non-interactive
oblivious transfer in the semi-honest setting was proposed in [6]. For malicious
evaluator, OTP were introduced in [4] using minimal hardware assumptions.
Subsequently, [5] showed how to build non-interactive secure computation uncon-
ditionally secure against malicious parties using tamper-proof hardware tokens.
We extend and implement OTPs in hardware. Our extension is in the compu-
tational model with Random Oracles (RO), secure against malicious evaluator,
and more efficient than the constructions of [4,5].

Protecting AES against side-channel attacks. We summarize current tech-
niques for leakage-protecting AES. We stress that our implementation is provably
leakage-free, but comes at a computational cost which we evaluate in this work.

A large amount of research has been done on countermeasures against side-
channel attacks, e.g., to protect against power analysis attacks [9], the power
consumption needs to be made independent of the underlying secrets by either
randomizing the power consumption or making it constant [14]. Randomizing is
done with masking, i.e., by adding random values. A variety of masking schemes
for both algorithmic and circuit level have been proposed for AES, e.g., [1].
For constant power consumption one can use gates whose power consumption
is independent of input values, e.g., with dynamic differential (dual-rail) logic
(see, e.g., [25]). Countermeasures against power analysis have significant area
overheads ranging from factor 1.5 to 5 [23]. Protecting implementations against
other side-channel attacks or even fault attacks needs additional overhead. For
instance, fault attack countermeasures require error detection techniques such
as proposed in [20]. None of these countermeasures provides complete security.
Indeed, countermeasures providing protection against simpler attacks have been
shown to be useless against more powerful attacks, such as, template attacks [2]
and higher-order differential power analysis [15].

2 Preliminaries

Garbled Circuits (GC). Yao’s GC approach [29] allows sender S with private
input y and receiverR with private input x, to securely evaluate a boolean circuit
C on (x, y) without revealing any information other than the result z = C(x, y)
of the evaluation. We summarize the idea of Yao’s GC protocol next.

The circuit constructor S creates a garbled circuit C̃ from the circuit C: for
each wire Wi of C, he randomly chooses two garblings w̃0

i , w̃1
i , where w̃j

i is the

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 387

garbled value of Wi’s value j. (Note: w̃j
i does not reveal j.) Further, for each

gate Gi, S creates a garbled table T̃i with the following property: given a set
of garbled values of Gi’s inputs, T̃i allows to recover the garbled value of the
corresponding Gi’s output, but nothing else. S sends these garbled tables, called
garbled circuit C̃, to evaluator (receiverR). Additionally, R (obliviously) obtains
the garbled inputs w̃i corresponding to the inputs of both parties: the garbled
inputs ỹ corresponding to the inputs y of S are sent directly: ỹi = ỹyi

i . For each
of R’s inputs xi, both parties run a 1-out-of-2 Oblivious Transfer (OT) protocol
(e.g., [16]), where S inputs x̃0

i , x̃
1
i andR inputs xi. The OT protocol ensures that

R receives only the garbled value corresponding to his input bit, i.e., x̃i = x̃xi

i ,
while S learns nothing about xi. Now, R evaluates the garbled circuit C̃ on the
garbled inputs to obtain the garbled output z̃ by evaluating C̃ gate by gate, using
the garbled tables T̃i. Finally, R determines the plain value z corresponding to
the obtained garbled output value using an output translation table sent by S.

Yao’s garbled circuit protocol is provably secure ([12]) when both parties are
semi-honest (i.e., follow the protocol but may try to infer information about the
other party’s inputs from the messages seen). We stress that each GC can be
evaluated only once, i.e., a new GC C̃ must be used for each invocation.

Improved Garbled Circuits. We use the improved GC construction of [18],
summarized next. Each garbled value w̃i = 〈ki, πi〉 consists of a t-bit key ki and
a permutation bit πi, where t denotes the symmetric security parameter. XOR
gates are evaluated “for free”, i.e., no garbled table and negligible computation,
by computing the bitwise XOR of their garbled values [10]. For each non-XOR
gate with d inputs the garbled table T̃i consists of 2d− 1 entries of size t+1 bits
each; the evaluation of a garbled non-XOR gate requires one invocation of SHA-
256 [18]. At the high level, the keys ki of the non-XOR gate’s garbled inputs are
used to obtain the corresponding garbled output value by decrypting the garbled
table entry which is indexed by the input permutation bits πi. We present the
detailed description of the construction in the full version [7].

Non-Interactive Garbled Circuits and One-Time Programs. The round
complexity of Yao’s GC protocol is exactly that of the underlying OT protocol.
In [6] the authors suggested to extend the Trusted Platform Module (TPM) [26]
for implementing non-interactive OT, resulting in a non-interactive version of
Yao’s protocol. Subsequently, One-Time Programs (OTP) were introduced in
[4]. This approach considers malicious receivers and can be viewed simply as
Yao’s Garbled Circuit (GC), where the oblivious transfer (OT) function calls
are implemented with One-Time Memory (OTM) tokens. An OTM token Ti

is a simple tamper-proof hardware, which allows a single query of one of the
two stored garbled values x̃0

i , x̃
1
i ([4] suggests using a tamper-proof one-time-

settable bit bi which is set as soon as the OTM is queried). Further, OTM-based
GC execution can be non-interactive, in the sense that the sender can send the
GC and corresponding OTMs to the receiver, who will be able to execute one

388 K. Järvinen et al.

instance of SFE on any input of his choice.2 Finally, GC (and hence also OTP)
is inherently a one-time execution object (generalizable to k-time execution by
repetition).

A subtle issue in this context, noted and addressed in [4], is the following.
Previous GC-based solutions were either in the semi-honest model, or used inter-
action during protocol execution, which precluded the receiver R from choosing
his input adaptively, based on given (and even partially evaluated) garbled cir-
cuit. This possibility of adaptively chosen inputs results in possible real attacks
by a malicious R in the non-interactive setting. The solution of [4] is to mask
(each) output bit zj of the function with a random bit mj , equal to XOR of
(additional) random bits mi,j contributed by each of the input OTMs Ti, i.e.,
mj = m1,j ⊕m2,j ⊕ . . . and z′j = zj ⊕ mj . The real-world adversary does not
learn the output of the function before he had queried all OTMs with his inputs.

3 Extending and Using One-Time Programs

In §3.1 we present an extension of the OTP construction of [4], which results in
improved performance for multiple outputs. Additionally we make several obser-
vations about uses, security guarantees and applicability of OTP, and present a
generic architecture for using OTPs for leakage-resilient computation in §3.2.

3.1 Extending One-Time Programs

As mentioned in the previous section, the solution in [4] seems to require each
OTM token to additionally store a string of the size of the output. We propose
a practical performance improvement to the technique proposed in [4], which is
beneficial for OTP evaluation of functions with many output bits. In our solution
each OTM token (additionally) stores a random string ri of length of the security
parameter t. Consequently, our construction results in smaller OTMs when the
function to be evaluated has more outputs than the size of the security parameter
t. As a trade off, our security proof utilizes Random Oracles (RO), as we do not
immediately see how to avoid their use and have OTM size independent of the
number of outputs. We discuss RO, its uses and security guarantees in the full
version [7].

Our main idea is to insert a “hold off” gate into each output wire Wj which
can only be evaluated once all input OTMs had been queried, thus preventing
maliciousR from choosing his input adaptively. It can be implemented by requir-
ing a call to a hash function H (modeled as a Random Oracle) with inputs which
include data from all OTMs. To implement this, we secret-share a random value
r ∈R {0, 1}t over all OTMs for the inputs. That is, OTM Ti additionally stores
a share ri (released to R with x̃i upon the query), where r =

⊕
i

ri. Receiver R
is able to recover r if and only if he queried all OTMs.

2 If needed, the function can be fully hidden by evaluating a universal circuit [27,11,19]
which simulates the function.

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 389

Fig. 1(b) depicts this contruction: Our version of OTM Ti, in addition to
the two OT secrets x̃0

i , x̃
1
i and the tamper-proof bit bi, contains a random share

ri ∈R {0, 1}t which is released together with x̃xi

i once Ti is queried with input bit
xi. The GC is constructed as usual (e.g., as described in §2), with the following
exception. On each output wire Wj with garbled outputs z̃0

j , z̃1
j , we append a one-

input, one-output OT-commit gate Gj , with no garbled table. We set the output
wire secrets of Gj to ẑ0

j = H(z̃0
j ||r), ẑ1

j = H(z̃1
j ||r). To enable R to compute the

wire output non-interactively, GC also specifies that ẑb
j corresponds to b.

We note that a full formal construction is readily obtained from the above
description. Also note that a malicious R is unable to complete the evaluation
of any wire of GC until all the OTMs have been queried, and his input has been
specified in full. Further, he is not able to lie about the result of the computa-
tion, since he can only compute one of the two values z̃0

j , z̃1
j . Demonstration of

knowledge of z̃i
j serves as a proof for the corresponding output value.

Theorem 1. The above protocol is secure against a semi-honest sender S, who
generates the OTM tokens and the garbled circuit, and malicious receiver R, in
the Random Oracle model.

Proof. The proof of Theorem 1 is given in the full version [7]. ��

3.2 Using One-Time Programs for Leakage Protection

Most of today’s countermeasures to side-channel attacks are specific to known
attacks. Protecting hardware implementations (e.g., of AES) usually proceeds as
follows (e.g., see [1]). First, the inputs are hidden, typically by applying a random
mask (this requires trusted operation, and often the corresponding assumption
is introduced). Afterwards, the computation is performed on the masked data.
To allow this, the functionality needs to be adapted (e.g., using amended AES
S-boxes). Finally, the mask is taken off to reveal the output of the computation.

We use a similar approach with similar assumptions (cf. Fig. 1(a)) to provably
protect arbitrary functionalities against all attacks, both known and unknown:

1. The private data x provided byR is masked in a trusted environment MASK.
The masked data x̃ does not reveal any information about the private data,
but still allows to compute on it.

2. The computation on the masked data is performed in an untrusted envi-
ronment where the adversary is able to arbitrarily interfere (passively and
actively) with the computation. To compute on the masked data, the eval-
uation algorithm EVAL needs a specially masked version of the program P̃ .
Additional masked inputs ỹ of S that are independent of R’s inputs can be
provided as well. The result of EVAL is the masked output z̃.

3. Finally, z̃ is unmasked into the plain output z. The procedure UNMASK
allows to verify that z̃ was computed correctly, i.e., no tampering happened
in the EVAL phase in which case UNMASK outputs the failure symbol ⊥.
For correctness of this verification, UNMASK is executed in a trusted envi-
ronment where the adversary can observe but not modify the computation.

390 K. Järvinen et al.

masked input x̃

masked output z̃

output z or fail ⊥
UNMASK

EVAL

input x

MASK

untrusted
environment

trusted
environment

trusted
environment

masked program P̃ ,
masked input ỹ of S

(a) Generic Architecture

xi

x̃i

OTM Ti

x̃0
i , x̃

1
i , bi, ri

ri

x̃

EVAL GC C̃, ỹ

z̃

MASK

EVAL

UNMASK

r =
⊕
i

ri

zj =

⎧⎪⎨
⎪⎩
0 if H(z̃j ||r) = ẑ0j
1 if H(z̃j ||r) = ẑ1j
⊥ else

(b) Using One-Time Memory

Fig. 1. Evaluating a Functionality Without Leakage

More specifically, the masked program P̃ is a garbled circuit C̃, masked values
x̃, ỹ, z̃ are garbled values and the algorithms MASK, EVAL and UNMASK can
be implemented as described next.

MASK: Masking the input data x of receiver R is performed by mapping each
bit xi to its corresponding garbled value x̃i, i.e., to one of two garblings x̃0

i , x̃
1
i .

This can be provided externally (e.g., by interaction with a party on the net-
work). We concentrate on on-board non-interactive masking which requires cer-
tain hardware assumptions (see below). The following can be directly used as a
(non-interactive) MASK procedure:

– OTMs [4]: For small functionalities, we favor the very cheap One-Time Mem-
ory (OTM), as this seems to carry the weakest assumptions (cf. §2). However,
as OTMs can be used only once, a fresh OTM must be provided for each
input bit of the evaluated functionality. For practical applications, OTMs
(together with their garbled circuits) could be implemented for example on
tamper-proof USB tokens for easy distribution.

– TPM [6]: Trusted Platform Modules (TPM) are low-cost tamper-proof cryp-
tographic chips embedded in many of today’s PCs [26]. TPM masking based
on the non-interactive Oblivious Transfer (OT) protocol of [6] requires the
(slightly extended) TPM to perform asymmetric cryptographic operations
in form of a count-limited private key whose number of usages is restricted
by the TPM chip. An interactive protocol allows re-initialization for future
non-interactive OTs instead of shipping new hardware.

– Smartcard: In our preferred solution for larger functionalities, masking could
be performed by a tamper-proof smartcard. The smartcard would keep a
secure monotonic counter to ensure a single query per input bit. Another
advantage of this approach is that the same smartcard can be used to gener-
ate GC as well, thus eliminating GC transfer over the network as done in [8].
Further, the smartcard can be naturally used for multiple OTP evaluations.

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 391

For non-interactive masking, the hardware that masks the inputs must be trusted
and the entire input must be specified before anything about the output z is
revealed to prevent adaptive input selection as discussed in §2 and §3.1.

EVAL: The main technical contribution of this paper, the implementation of
EVAL (of the masked program P̃ on masked inputs x̃ and ỹ) in embedded
systems is presented in detail in §4. Here we note that P̃ and ỹ (masked input of
S) can be generated offline by the semi-honest sender S and provided to EVAL
by convenient means (e.g., via a data network or a storage medium). This is the
scenario advocated in [4]; one of its advantages is that generation of P̃ does not
leak to EVAL. Alternatively, P̃ and ỹ could be generated “on-the-fly” using a
cheap simple constant-memory stateless and tamper-proof token as shown in [8].
We reiterate that the masked program P̃ can be evaluated exactly once.

UNMASK: Finally, the masked output z̃ is checked for correctness and non-
interactively decoded by R into the plain output z as follows (cf. §3.1 and
Fig. 1(b)). For each output wire, the masked program P̃ specifies the corre-
spondence ẑj → zj in form of the two valid hash values ẑ0

j and ẑ1
j . Even if EVAL

is executed in a completely untrusted environment (e.g., processed on untrusted
HW), its correct execution can be verified efficiently: when H(z̃j ||r) is neither ẑ0

j

nor ẑ1
j the garbled output z̃j is invalid and UNMASK outputs the failure symbol

⊥. The reason for this verifiability property of GC is that a valid garbled output
z̃j can only be obtained by correctly evaluating the GC but cannot be guessed.

4 Efficient Evaluation of Garbled Circuits in Hardware

In this section we describe how GCs (and hence also OTPs) can be efficiently
evaluated on embedded systems and memory-constrained devices. We first de-
scribe the HW architecture in §4.1. Then we present important compile-time
optimizations and show their effectiveness in §4.2. Finally, we discuss technical
details of our prototype implementation and timings in §4.3.

We stress that our designs and optimizations are generic. However, for con-
creteness and for meaningful comparison (e.g., with prior SW SFE of AES [18]),
we take SFE of the AES function as our example for timings and other mea-
surements. For AES evaluation, sender S provides AES key k as input y, and
receiver R provides a plaintext block m as input x. R obtains the ciphertext c
as output z, where c = AES(k, m). Recall, during GC evaluation (EVAL), both
key and message are masked (garbled) and hence cannot be leaked.

4.1 Architecture for Evaluating Garbled Circuits in Hardware

We describe our architecture for efficient evaluation of GC on memory-constrai-
ned devices, i.e., having a small amount of slow memory only.

To minimize overhead, we choose key length t = 127; with a permutation bit,
garbled values are thus 128 bits long (cf. §2). In the following we assume that

392 K. Järvinen et al.

Eval Gate

Garbled
Tables

OUTI/O

(1
o
r
2
)
o
f
3

XOR AC

EVAL A/B/C
EVAL AB/AC/BC

M
em

o
ry

(m
em

)

STORE C

LOAD A

LOAD B

STORE A

STORE B

XOR A

XOR B

XOR C Reg C

Reg B

Reg A

XOR AB

XOR BC

x̃, ỹ

z̃
SHA-256

Fig. 2. Architecture for GC Evaluation (EVAL) on Memory-Constrained Devices

memory cells and registers store 128 bit garbled values. This can be mapped to
standard hardware architectures by using multiple elements in parallel.

Fig. 2 shows a conceptual high-level overview of our architecture described
next. At the high-level, EVAL, the process of evaluating GC, on our architecture
consists of the following steps (cf. §3.2). First, the garbled input values x̃, ỹ are
stored in memory using the I/O interface. Then, GC gates are evaluated, using
registers A, B, and C to cache the garbled inputs and outputs of a single garbled
gate. Finally, garbled output value z̃ is output over the I/O interface.

As memory access is expensive (cf. §4.3) we optimize code to re-use values
already in registers. Our instructions are one-address, i.e., each instruction con-
sists of an operator and up to one memory address. Each of our instructions
has length 32 bits: 5 bits to encode one of 18 instructions (described next) and
27 bits to encode an address in memory.

LOAD/STORE: Registers can be loaded from memory using instructions
LOAD A and LOAD B. Register C cannot be loaded as it will hold the out-
put of evaluated non-XOR gates (see below). Values in registers can be stored
back into memory using STORE A, STORE B, and STORE C respectively.

XOR: We evaluate XOR gates [10] as follows. XOR A addr computes A ← A⊕
mem[addr]. Similarly, the other one-operand XOR operations (XOR1) XOR B
and XOR C xor the value from memory with the value in the respective register.
To compute XOR gates where both inputs are already in registers (XOR2),
the instruction XOR AB computes A ← A ⊕ B. Similarly, XOR AC computes
A← A⊕ C and XOR BC computes B ← B ⊕ C.

EVAL: Non-XOR gates [18] are evaluated with the Eval Gate block that con-
tains a hardware accelerator for SHA-256 (cf. §2 for details). The garbled inputs
are in one (EVAL1) or two registers (EVAL2), and the result is stored in register
C. The respective instructions for 1-input gates are EVAL A, EVAL B, EVAL C
and for 2-input gates EVAL AB, EVAL AC, EVAL BC. The required garbled
table entry is read from memory.

I/O: The garbled inputs are always stored at the first |x|+|y| memory addresses.
The garbled outputs are obtained from memory with OUT instructions.

The full version [7] shows the sequence of instructions for an example circuit.

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 393

4.2 Compile-Time Optimizations for Memory-Constrained Devices

In this section, we summarize compile-time optimizations to improve perfor-
mance of GC evaluation (EVAL) on our hardware architecture. We aim to reduce
the size of GC (by minimizing the number of non-XOR gates), the size of the
program (number of instructions), the number of memory accesses and memory
size for storing intermediate garbled values. For concreteness, we use AES as rep-
resentative functionality for the optimizations and performance measurements,
but our techniques are generic.

Baseline [18]) Our baseline is the AES circuit/code of [18], already optimized
for a small number of non-XOR gates. Their circuit consists of 11, 286 two-input
non-XOR gates; thus, its GC has size ≈ 529 kByte. Without considering any
caching strategies, this results in 113, 054 instructions, hence the program size is
113, 054 ·32 bit ≈ 442 kByte, and the total amount of memory needed for EVAL
is 34, 136 · 128 bit ≈ 533 kByte.

We summarize our best optimization next and refer for a detailed description
and intermediate optimization steps to the full version [7].

Optimized) First, we replace XNOR gates with an XOR gates and propa-
gate the inverted output into the successor gates. For AES, this optimization
results in the elimination of 4, 086 XNOR gates and reduces the size of AES GC
to ≈ 338 kByte (improvement of 36%). Additionally, we re-use values already
in registers to reduce the number of LOADs. Values in registers are saved to
memory only if needed later. Finally, we randomly consider several orders of
evaluation, and select the most efficient one for EVAL.

Result. Using our optimizations we were able to substantially decrease the
memory footprint of EVAL. As shown in Table 1, our optimized circuit strongly
improves over the circuit of [18] as follows. The size of the AES program P
is only 73, 583 · 32 bit ≈ 287 kByte (improvement of 34.9%). The amount of
intermediate memory is 17, 315 · 128 bit ≈ 271 kByte (improvement of 49.3%)
and the number of memory accesses (read and write) is reduced by ≈ 35%.

Table 1. Optimized AES Circuits (Sizes in kB)

Garbled Circuit C̃ Program P Memory for GC Evaluation
Circuit non-XOR 1-input XOR Size Instr. Size Read Write Entries Size
Baseline [18] 11,286 0 22,594 529 113,054 442 67,760 33,880 34,136 533
Optimized 7,200 40 26,680 338 73,583 287 42,853 22,650 17,315 271

4.3 Implementation

We have designed two prototype implementations of the architecture of §4.1 –
one for a System-on-a-Programmable-Chip with a hardware accelerator for SHA
(reflecting smartcard and future smartphone architectures) and another for a
stand-alone unit (reflecting a custom-made GC accelerator in hardware). Both
prototype implementations are evaluated on an Altera/Terasic DE1 FPGA board

394 K. Järvinen et al.

SDRAM

SRAM

NIOS II
Processor

FPGA

I/O

SHA-256

(a) System-on-a-Programmable-Chip

SDRAM Control SHA-256

FPGA

I/O

Regs

(b) Stand-Alone Unit

Fig. 3. Architectures for Hardware-Assisted GC Evaluation

comprising an Altera Cyclone II EP2C20F484C7 FPGA and 512kB SRAM and
8MB SDRAM running at 50 MHz (cf. full version [7] for details on our prototype
environment) and are functionally equivalent: they take the same inputs (pro-
gram P , garbled circuit C̃, and garbled inputs x̃, ỹ) and return the same garbled
outputs z̃; the only differences are the methods used in the implementation. The
interfaces (I/Os in Fig. 3) allow the host to write to and read from the SDRAM.
In the beginning, the host writes the inputs to the SDRAM and, in the end, the
outputs are written into specific addresses from which the host retrieves them.

System-on-a-Programmable-Chip (SOPC). Our first implementation is a
system-on-a-programmable-chip (SOPC) consisting of a processor with access to
a hardware accelerator for SHA-256, which speeds up the most computational
burden of the GC evaluation. This is a representative architecture for next gen-
eration smartphones or smartcards such as the STMicroelectronics ST33F1M
smartcard which includes a 32-bit RISC processor, cryptographic peripherals,
and memory comparable to our prototype system [22].

The architecture of our implementation is shown in Fig. 3(a). It consists of a
NIOS II/e 32-bit softcore RISC processor (the smallest variation of NIOS II), a
custom-made SHA-256 unit, the SRAM, and the SDRAM. The entire process is
run in the NIOS II processor which uses the SHA-256 unit for accelerating gate
evaluations. The SHA-256 unit is connected to the Avalon bus of the NIOS II
as a peripheral component and it computes the hash for a 512-bit message in
66 clock cycles (excluding interfacing delays). The NIOS II program is stored in
SRAM whereas OTP related data is stored in SDRAM.

Stand-Alone Unit. Our second implementation is a stand-alone unit consist-
ing of a custom-made control state machine, registers (A, B, C), a custom-made
SHA-256 unit, and SDRAM. This architecture could be used to design an Appli-
cation Specific IC (ASIC) as high-speed hardware accelerator for GC evaluation.
The architecture is depicted in Fig. 3(b).

When the host has written the inputs to the SDRAM, the stand-alone unit
executes the program. The state machine parses the program and reads/writes
data from/to SDRAM to/from the registers or evaluates the non-XOR gates
using the SHA-256 unit according to the instructions (see §4.1 for details).

Area. The area requirements of our implementations are shown in Table 2. Both
fit into the low-cost Cyclone II FPGA with 18,754 logic cells (LC), each con-
taining a 4-to-1-bit look-up table (LUT) and a flip-flop (FF), and 52 4096-bit

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 395

Table 2. Areas of the Prototypes for GC
Evaluation on an Altera Cyclone II FPGA

Design LC FF M4K
SOPC 7501 4364 22

NIOS II 1104 493 4
SHA-256 2918 2300 8

Stand-Alone Unit 6252 3274 8
SHA-256 3161 2300 8

AES (unprotected) 2418 431 0

Table 3. Timings for Instructions on
Prototypes (clock cycles, average)

Instruction SOPC Stand-Alone Unit

LOAD 291.43 87.63
XOR1 395.30 87.65
XOR2 252.00 1.00
STORE 242.00 27.15
EVAL1 1,282.30 109.95
EVAL2 1,491.68 135.05
OUT 581.48 135.09

embedded memory blocks (M4K). SHA-256 is the largest and most significant
block in both prototypes. Table 2 also shows the area for an iterative imple-
mentation of AES-128 with no countermeasures against side-channel attacks on
the same FPGA. Compared to an unprotected implementation, countermeasures
against power analysis have area overheads ranging from factor of 1.5 to 5 [23]
as discussed in §1.2; therefore, the area overheads of OTP evaluation are com-
parable with other side-channel countermeasures.

Timings. Instructions. The timings of instructions are summarized in Table 3.
They show the average number of clock cycles required to execute an instruction
excluding the latency of fetching the instruction. Gate evaluations are expensive
in the SOPC implementation, although the SHA-256 computations are fast,
because they involve a lot of data movement (to/from the SHA-256 unit and
from the SDRAM) which is expensive. The dominating role of memory reads
and writes is clear in the timings of the stand-alone implementation: the only
instructions that do not require memory operations (XOR2) require only a single
clock cycle and EVAL1 is faster than EVAL2 because it accesses the memory on
average every other time (no access if the permutation bit is zero) compared to
three times out of four (no access if both permutation bits are zeros).

AES. The timings to evaluate the optimized GCs for the AES functionality of
§4.2 on our prototype implementations are given in Table 4. These timings are
for GC evaluation only; i.e, they neglect the time for transferring data to/from
the system because interface timings are highly technology dependent. The SHA-
256 computations take an equal amount of time for both implementations as the
SHA-256 unit is the same. The (major) difference in timings is caused by data
movement, XORs, interface to the SHA-256 unit, etc. The runtimes for both
implementations are dominated by writing and reading the SDRAM; e.g., 84.3%
for the stand-alone unit and our optimized AES circuit. Hence, accelerating
memory access, e.g., with burst reads and writes, is the key for further speedups.

Performance Comparison. A software implementation that evaluates the GC/
OTP of the unoptimized AES functionality (Baseline [18]) required 2 seconds
on an Intel Core 2 Duo 3.0GHz with 4GB of RAM [18]. Our optimized circuit
evaluated on the stand-alone unit requires only 144ms for the same operation

396 K. Järvinen et al.

Table 4. Timings for the FPGA-based Prototypes for GC Evaluation

System-on-a-Programmable-Chip Stand-Alone Unit

Clock cycles Timings (ms) Clock cycles Timings (ms)
Circuit SHA Total SHA Total SHA Total SHA Total
Baseline [18] 744,876 94,675,402 14.898 1,893.508 744,876 11,235,118 14.898 224,702
Optimized 477,840 62,629,261 9.557 1,252.585 477,840 7,201,150 9.557 144.023

and, therefore, provides a speedup by a factor of 10.4–17.4 (taking the lack of
precision into account). On the other hand, the unprotected AES implementa-
tion listed in Table 2 encrypts a message block in 10 clock cycles and runs on a
maximum clock frequency of 66MHz resulting in a timing of 0.1515μs; hence,
the GC/OTP evaluation suffers from a timing overhead factor of ≈ 950, 000. For
comparison, the timing overhead of one specific implementation with counter-
measures against differential power analysis was factor of 3.88 [24].

Acknowledgements. We thank anonymous reviewers of CHES’10 for their
helpful comments and co-authors of [18] for the initial AES circuit.

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

2. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

3. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC’09, pp.
169–178. ACM, New York (2009)

4. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

5. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptogra-
phy on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

6. Gunupudi, V., Tate, S.: Generalized non-interactive oblivious transfer using count-
limited objects with applications to secure mobile agents. In: Tsudik, G. (ed.) FC
2008. LNCS, vol. 5143, pp. 98–112. Springer, Heidelberg (2008)

7. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Garbled circuits for
leakage-resilience: Hardware implementation and evaluation of one-time programs.
Cryptology ePrint Archive, Report 2010/276(2010), http://eprint.iacr.org

8. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Embedded SFE: Of-
floading server and network using hardware tokens. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, pp. 207–221. Springer, Heidelberg (2010)

9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

http://eprint.iacr.org

GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 397

11. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008)

12. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
Journal of Cryptology 22(2), 161–188 (2009)

13. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: USENIX Security’04. USENIX Association (2004)

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

15. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

16. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA’01, pp.
448–457. Society for Industrial and Applied Mathematics (2001)

17. Pietrzak, K.: Provable security for physical cryptography. In: WEWORC’09 (2009),
http://homepages.cwi.nl/~pietrzak/publications/Pie09b.pdf

18. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

19. Sadeghi, A.-R., Schneider, T.: Generalized universal circuits for secure evaluation
of private functions with application to data classification. In: ICISC 2008. LNCS,
vol. 5461, pp. 336–353. Springer, Heidelberg (2008)

20. Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-performance concurrent error
detection scheme for AES hardware. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 100–112. Springer, Heidelberg (2008)

21. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. Cryptology ePrint Archive, Report
2009/341 (2009), http://eprint.iacr.org/

22. STMicroelectronics. Smartcard MCU with 32-bit ARM SecurCore SC300 CPU
and 1.25 Mbytes high-density Flash memory. Data brief (October 2008),
http://www.st.com/stonline/products/literature/bd/15066/st33f1m.pdf

23. Tiri, K.: Side-channel attack pitfalls. In: DAC’07, pp. 15–20. ACM, New York
(2007)

24. Tiri, K., Hwang, D., Hodjat, A., Lai, B.-C., Yang, S., Schaumont, P., Verbauwhede,
I.: Prototype IC with WDDL and differential routing — DPA resistance assessment.
In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 354–365. Springer,
Heidelberg (2005)

25. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: DATE’04, vol. 1, pp. 246–251. IEEE,
Los Alamitos (2004)

26. Trusted Computing Group (TCG). TPM main specification. Technical report,
TCG (May 2009), http://www.trustedcomputinggroup.org

27. Valiant, L.G.: Universal circuits (preliminary report). In: STOC’76, pp. 196–203.
ACM, New York (1976)

28. Weingart, S.H.: Physical security devices for computer subsystems: A survey of
attacks and defences. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 302–317. Springer, Heidelberg (2000)

29. Yao, A.C.: How to generate and exchange secrets. In: FOCS’86, pp. 162–167. IEEE,
Los Alamitos (1986)

http://homepages.cwi.nl/~pietrzak/publications/Pie09b.pdf
http://eprint.iacr.org/
http://www.st.com/stonline/products/literature/bd/15066/st33f1m.pdf
http://www.trustedcomputinggroup.org

ARMADILLO: A Multi-purpose Cryptographic
Primitive Dedicated to Hardware

Stéphane Badel1, Nilay Dağtekin1, Jorge Nakahara Jr1,�, Khaled Ouafi1,��,
Nicolas Reffé2, Pouyan Sepehrdad1, Petr Sušil1, and Serge Vaudenay1

1 EPFL, Lausanne, Switzerland
2 Oridao, Montpellier, France

{stephane.badel,nilay.dagtekin,jorge.nakahara,pouyan.sepehrdad,petr.susil,
khaled.ouafi,serge.vaudenay}@epfl.ch, nicolas.reffe@oridao.com

Abstract. This paper describes and analyzes the security of a general-purpose
cryptographic function design, with application in RFID tags and sensor net-
works. Based on these analyzes, we suggest minimum parameter values for the
main components of this cryptographic function, called ARMADILLO. With
fully serial architecture we obtain that 2923 GE could perform one compres-
sion function computation within 176 clock cycles, consuming 44 µW at 1 MHz
clock frequency. This could either authenticate a peer or hash 48 bits, or encrypt
128 bits on RFID tags. A better tradeoff would use 4030 GE, 77 µW of power
and 44 cycles for the same, to hash (resp. encrypt) at a rate of 1.1 Mbps (resp.
2.9 Mbps). As other tradeoffs are proposed, we show that ARMADILLO offers
competitive performances for hashing relative to a fair Figure Of Merit (FOM).

1 Introduction

Cryptographic hash functions form a fundamental and pervasive cryptographic primi-
tive, for instance, providing data integrity in digital signature schemes, and for message
authentication in MACs. In particular, there are very few known hardware-dedicated
hash function designs, for instance, Cellhash [6] and Subhash [5]. On the other hand,
Bogdanov et al. [2] suggest block-cipher based hash functions for RFID tags using the
PRESENT block cipher. Concerning block and stream ciphers, the most prominent de-
velopments include PRESENT [1], TEA [22], HIGHT [13], Grain [12], Trivium [4] and
KATAN, KTANTAN family [3].

We propose a cryptographic function dedicated to hardware which can be used for
several cryptographic purposes.1 Such functions rely on data-dependent bit transposi-
tions [16]. Given a bitstring x = x2k‖· · ·‖x1, fixed permutations σ0 and σ1 over the set
{1,2, . . . ,2k}, a bit string s, a bit b ∈ {0,1} and a permutation σ, define xσs = x when

� This work was supported by the National Competence Center in Research on Mobile Infor-
mation and Communication Systems (NCCR-MICS), a center of the SNF under grant number
5005-67322.

�� Supported by a grant of the Swiss National Science Foundation, 200021-119847/1.
1 The content of this paper is subject to a pending patent by ORIDAO
http://www.oridao.com/

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 398–412, 2010.
c© International Association for Cryptologic Research 2010

http://www.oridao.com/

ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware 399

s has length zero, and, xσs‖b
= xσs◦σb , where xσ is the bit string x transposed by σ, that

is, xσ = xσ(2k)‖· · ·‖xσ(1). The function (s,x) �→ xσs is a data-dependent transposition of
x. The function s �→ σs can be seen as a particular case of the general semi-group ho-
momorphism from {0,1}∗ to a group G. It was already used in the Zemor-Tillich con-
struction [21] for G = SL2 and in braid group cryptography [10]. We observe that when
σ0 and σ1 induce an expander graph on the vertex set v = {1, . . . ,2k}, then (s,x) �→ xσs

has good cryptographic properties.
This paper is organized as follows: Sect. 2 describes a general-purpose cryptographic

function called ARMADILLO. In Sect. 3 we analyze ARMADILLO. Sect. 4 contains
design criteria for the bit permutation components of ARMADILLO. Sect. 5 suggests
parameter vectors. Sect. 6 presents an updated design, called ARMADILLO2. Sect. 7
provides implementation results. Sect. 8 compares hardware implementations of AR-
MADILLO with other well-known hash functions.

Notations. Throughout this document, ‖ denotes the concatenation of bitstrings, ⊕
denotes the bitwise XOR operation, x denotes the bitwise complement of a bitstring x;
we assume the little-endian numbering of bits, such as x = x2k‖· · ·‖x1.

Xinter Xinter · · · 3 2 1

C Ui

c m

(Xinter‖Xinter)σXinter ...

.

.

.
3
2
1

J

S

⊕

m

VtVc

Fig. 1. The ARMADILLO function

2 The ARMADILLO Function

ARMADILLO maps an initial value C and a message block Ui to two values

(Vc,Vt) = ARMADILLO(C,Ui)

By definition, C and Vc are of c bits, Vt as well as each block Ui are of m bits, a
register Xinter is of k = c + m bits. ARMADILLO is defined by integer parameters
c, m, J = c + m, and two fixed permutations σ0 and σ1 over the set {1,2, . . . ,2k}.
ARMADILLO(C,U) works as follows (see Fig. 1)

400 S. Badel et al.

1: set Xinter = C‖U ;
2: set a 2k-bit register x = Xinter‖Xinter;
3: x undergoes a sequence of bit permutations, σ0 and σ1, which we denote by P. P

maps a bitstring of k bits and a vector x of 2k bits into another vector of 2k bits.
Assuming J = k, the output of this sequence of J bit permutations is truncated to
the rightmost k bits, denoted S, by

S = P(Xinter,x) = tailk((Xinter‖Xinter)σXinter)

4: set Vc‖Vt to the value of S⊕Xinter.

The security is characterized by two parameters Soffline and Sonline. Concretely, the best
offline attack has complexity 2Soffline , while the best online one, with practical complex-
ity, has success probability 2−Sonline . Typically, we aim at Soffline ≥ 80 and Sonline ≥ 40.
However, we can only upper bound Soffline and Sonline.

Application I: FIL-MAC. For challenge-response protocols (e.g. for RFID tags [17]),
the objective is to have a fixed input-length MAC. Suppose that C is a secret and U is a
challenge. The value Vt is the response or the authentication tag. We write

Vt = AMACC(U)

Additionally, the Vc output could be used to renew the secret in a synchronized way
or to derive an encryption key for a secure messaging session as specified in [17]. The
security of challenge-response protocols requires that an adversary cannot extract from
the RFID tag enough information that allows it to impersonate the tag with high proba-
bility. In this FIL-MAC context, the C parameter can be recovered by exhaustive search
with complexity 2c, where c = |C|; so, Soffline ≤ c. In addition to this, the adversary can
try to guess Vt online with probability 2−m, so Sonline ≤ m.

Application II: Hashing and digital signatures. For variable-length input messages
hashing, we assume a strengthened Merkle-Damgård [7,15] construction (with padding
using length suffix) for ARMADILLO, with Vc as chaining variable, U as message
block and Vc as hash digest. The initial value (IV) can use the fractional part of the
square root of 3 truncated to c bits, similar to the values adopted in SHA-2 hash func-
tion family [20]. We write

Vc = AHASHIV(message‖padding).

Generic birthday attacks are expected to find collisions in ARMADILLO with complex-
ity 2

c
2 . So, Soffline ≤ c

2 when collisions are a concern. Preimages and second preimages
are expected with probability 2−c, so, Soffline ≤ c. Sometimes, free-start collisions or
free-start second preimage attacks matter. In this case, we refer to Application II’.

Application III: PRNG and PRF. For pseudorandom generation, we take the first t bits
of Vc‖Vt after at least r iterations. We define

APRFseed(x) = headt(AHASHseed(x‖cste))

ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware 401

with an input x with length multiple of m and cste a (r − 1)m-bit constant. A rele-
vant property for this application is indistinguishability. Assuming a secret seed, AR-
MADILLO could be used as a stream cipher. The keystream is composed of t-bit frames
where the ith frame is APRFseed(i). The index i can be synchronized, or sent in clear in
which case we have a self-synchronous stream cipher. In this setting, the output should
be indistinguishable from a truly random string when the key is random.

3 Dedicated Attacks

Key recovery. Suppose Vc‖Vt and U are known, and we look for C. Since U is known,
the tailm(Xinter) are known. Guessing the tailJ−m(C) gives access to the tailJ(S), since
U is known. This fact motivates a meet-in-the-middle attack to recover tailJ−m(C). Let
us split these J−m bits of Xinter into two pieces of sizes � J−m

2
 and � J−m
2 �. The heading

� J−m
2
 bits are used to compute backwards the P permutation from S, with m+� J−m

2
=
� J+m

2
 bits known. The tailing � J−m
2 � bits of C, together with the m bits of U form m+

� J−m
2 �= � J+m

2 � bits of Xinter. The meet-in-the-middle consists in checking consistency
of known bits in the middle of the P permutation. We expect to find a solution with
complexity O(2�

J+m
2
) and a single U . Thus, Soffline ≤ � J+m

2
 in Application I, II and III.

Free-start collision. We look for a triplet (C,U,U ′) that causes a collision, that is,
AHASHC(U) = AHASHC(U ′). For this, we look for (C,U,U ′) such that

P(U,C‖U‖C‖U)≈ P(U ′,C‖U ′‖C‖U ′)

with ≈ meaning that the Hamming weight of the difference is some low value w. Then,
we hope that the next P permutation will move all w different bits outside the window
of the c + m bits which are kept in S. Since the probability for a vector to have weight

w is
(

2c+2m
w

)
2−2c−2m, the number of solutions we get is

(
2c+2m

w

)
2−c on average. The

probability that a solution leads to a collision is the probability that w difference bits
are moved outside a window of c bits. Finally, the expected number of collisions we

can get is
(c+m

w

)
2−c. We can now fix w = wopt such that

(
c+m
wopt

)
≥ 2c so that we can

find one solution with complexity 2wopt . To implement the attack, for all U and U ′ we
enumerate all C’s such that P(U,C‖U‖C‖U) ≈ P(U ′,C‖U ′‖C‖U ′). The complexity is

22m +
(

2k
wopt

)
2−c which is dominated by 22m. So, Soffline ≤ 2m in Application II’.

A distinguisher. Assuming that the J iterations in the P permutation output a random

2k-bit vector of Hamming weight k, we have
(

2k
k

)
possible vectors. By extracting a

window of t bits we do not have a uniformly distributed string. Indeed, any possible

string of weight w has a probability of p(w) =
(

2k−t
k−w

)
/
(

2k
k

)
. There exists a distin-

guisher to tell whether a t-bit window comes from a random output from P or a truly
random string, with advantage

1
2

t

∑
w=0

(t
w

)∣∣∣∣∣∣
(

2k−t
k−w

)
(

2k
k

) − 1
2t

∣∣∣∣∣∣

402 S. Badel et al.

For t = k = 160, this is 0.1658. Here, the distinguisher recognizes P when the Hamming
weight w is in the interval [75, . . . ,85], and a random string otherwise.

The final XOR hides this bias a bit but we can wonder by how much exactly. Assume
that we hash a message of r blocks. The final output is the XOR of the initial value
together with r outputs from P. Assuming that the initial value is known and that the P
outputs are random and independent, we can compute the distribution of the final hash
by convolution. Indeed, the probability that it is a given string x is pr(x) such that

pr(x) = ∑
x1⊕···⊕xr=x

p(wt(x1)) · · · p(wt(xr))

Let us define the spectrum p̂r(µ) by p̂r(µ) = ∑x(−1)µ·x pr(x). We have p̂r(µ) = (p̂1(µ))r.
We can now compute

p̂1(µ) =
wt(µ)

∑
i=0

t−wt(µ)

∑
j=0

(
wt(µ)

i

)(
t −wt(µ)

j

)
(−1)i p(i+ j)

It only depends on wt(µ) so we write p̂1(wt(µ)). Since ∑µ p̂r(µ)2 = 2t ∑x pr(x)2 we
deduce that the Squared Euclidean Imbalance (SEI) of the difference of the hash of r
blocks with the initial value is

SEIr = 2t ∑
x

(
pr(x)−2−t)2 = ∑

µ �=0

(p̂r(µ))2 =
t

∑
w=1

(t
w

)
(p̂1(w))2r

We have Soffline ≤ − log2 SEIr, where r is the minimal number of blocks which are
processed in Application III. The SEI expresses as

SEIr =
t

∑
w=1

(t
w

)⎛⎝ w

∑
i=0

(w
i

) t−w

∑
j=0

(
t −w

j

)
(−1)i

(
2k−t

k−i− j

)
(

2k
k

)
⎞
⎠

2r

As an example, we computed SEIr for four selections of t = k.

t = k = 128 t = k = 160 t = k = 200 t = k = 275
r SEIr
1 2−2.70 2−2.70 2−2.70 2−2.70

2 2−18.99 2−19.63 2−20.28 2−21.20

3 2−34.98 2−36.27 2−37.56 2−39.40

4 2−50.96 2−52.90 2−54.81 2−57.60

5 2−66.95 2−69.54 2−72.12 2−75.81

6 2−82.94 2−86.17 2−89.40 2−94.01

7 2−98.93 2−102.81 2−106.68 2−112.21

Given k and c, we look for r and t such that SEIr < 2−c and r/t is minimal.

4 Permutation-Dependent Attacks

In this section we present security criteria for the σ0 and σ1 permutations.

ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware 403

Another distinguisher. Consider a set I of indices from V = {1, . . . ,2k}. Let swapI(σ) =
#{i ∈ I;σ(i) �∈ I} and wtI(x) = ∑i∈I xi. We assume that sb = swapI(σb) is low for b = 0
and b = 1 to see how much the low diffusion between inside and outside I would lead
to a distinguisher on P(s, ·) with a random s of J bits. In the worst case we can assume
that all indices in I are in the same half of x so that the distinguisher can choose the
input on P with a very biased wtI(x).

A permutation σb keeps #I − sb of the bits inside I and introduce sb bits from out-
side I. Assuming that all bits inside and outside I are randomly permuted, we have the
approximation

E(wtI(xσb)) ≈ (#I− sb)
E(wtI(x))

#I
+ sb

k−E(wtI(x))
2k−#I

.

Thus,

E(wtI(xσb))−
#I
2

≈
(

1− sb

#I
− sb

2k−#I

)(
E(wtI(x))− #I

2

)
.

On average over the control bits, we have

E(wtI(P(s,x)))− #I
2

E(wtI(x))− #I
2

≈
(

1− s0 + s1

2
× 2k

#I(2k−#I)

)J

.

The best strategy for the distinguisher consists of having either wtI(x) = 0 or wtI(x) =
#I. In both cases we have∣∣∣∣E(wtI(P(s,x)))− #I

2

∣∣∣∣≈ #I
2

(
1− s0 + s1

2
× 2k

#I(2k−#I)

)J

.

The number of samples to significantly observe this bias is

T =
(

1− s0 + s1

2
× 2k

#I(2k−#I)

)−2J

. (1)

So, Soffline ≤ log2 T . This expression relates to the theory of expander graphs. We pro-
vide below a sufficient condition which can be easily checked.

To compute the minimal value of s0+s1
2#I over all I we observe that if Pσb is the matrix

of permutation σb and if xI is the 0-1 vector whose coordinate of index in I are the ones
set to 1, then

s0 + s1

2#I
= 1−

xI ·
(

Pσ0+Pσ1
2 xI

)
xI · xI

. (2)

Let u be the vector with all coordinates set to 1. Clearly, the hyperplane u⊥ orthogonal to
u is stable by the matrix M0 = 1

2(Pσ0 +Pσ1). Let M = 1
2(M0 +Mt

0), where the superscript
indicates the transpose matrix. We can easily see that Mu = u. Furthermore, we notice
that Mx = λx with x �= 0 implies |λ| ≤ 1. Let λ be the second largest eigenvalue of M,
or equivalently the largest eigenvalue of operator M restricted to u⊥. Note that λ can
be λ = 1 if the eigenvalue 1 has multiplicity higher than one. We can easily prove that
|λ|= 1 and Mx = λx with x �= 0 implies that xi is constant for all i ∈ I, for all connected

404 S. Badel et al.

components I for the relation i ∼ j ⇐⇒ ∃s σs|s| ◦ · · · ◦ σs2 ◦ σs1(i) = j. Hence, the
only sets I which are stable by σ0 and σ1 at the same time are the empty one and the
complete set if and only if eigenvalue 1 has multiplicity one. So, having λ < 1 is already
a reasonable criterion but we can have a more precise one. We know that for any vector
x orthogonal to u we have x·(M0x)

x·x ≤ λ with equality when x is an eigenvector for λ.
Thus,

x · (M0x)
x · x ≤ (1−λ) (x·u)2

u·u + λ(x · x)
x · x

for any x �= 0. For x = xI we obtain

xI · (M0xI)
xI · xI

≤ (1−λ)
#I
2k

+ λ. (3)

From (2), s0+s1
2#I = 1− xI ·(M0·xI)

xI ·xI
≥ 1−(1−λ) #I

2k +λ = (1−λ)(1− #I
2k). Going back to the

complexity (1) of our distinguisher we have T ≥ λ−2J . Hence, by having λ ≤ 2−
Soffline

2J

for an offline complexity 2Soffline , we make sure that the distinguisher has complexity
T ≥ 2Soffline . To conclude, if λ is the second largest eigenvalue of M = 1

4(Pσ0 + Pt
σ0

+
Pσ1 + Pt

σ1
) then we have an attack of complexity λ−2J. So, Soffline ≤−2J log2 λ.

Yet another distinguisher. We define the vector x of dimension k such that the ith co-
ordinate of x is the probability that xi is set to 1. If x is fixed, we can consider that x
is equal to x by abuse of notation. If y = xσ, we have that y is obtained by multiplying
a permutation matrix Pσ by x. We have (Pσ) j,i = 1 if and only if j = σ(i). Clearly, for
y = xσb we can write

y = ((1−b)Pσ0 + bPσ1)× x

=
(

1
2
(Pσ0 + Pσ1)+

(−1)b

2
(Pσ0 −Pσ1)

)
× x

We let M0 = 1
2 Pσ0 + 1

2 Pσ1 and M1 = 1
2 Pσ0 − 1

2 Pσ1 . We have

J

∏
i=1

(M0 +(−1)siM1) =
1

∑
a1=0

· · ·
1

∑
ak=0

(−1)a1s1+···+aksk Ma = M̂s

where Ma = Ma1 × ·· · ×Mak . So, the vector of y = P(s,x) is y = M̂sx. The average
〈M̂s〉 of M̂s over all s1, . . . ,sk is Mk

0. We define a square matrix F in which all terms
are equal to 1

k . Clearly, if s is a uniformly distributed J-bit random string, the prob-
ability vector of P(s,x) is MJ

0 × x. Since M0 is a bi-stochastic matrix, we have M0 ×
F = F ×M0 = F . Similarly, we have M1 ×F = F ×M1 = 0. We easily deduce that
(M0 −F)J = MJ

0 −F . Let θ be the second largest eigenvalue of Mt
0M0, or equivalently,

the largest eigenvalue of Mt
0M0 −F . For any vector x such that ∑xi = w and 0 ≤ xi ≤ 1,

we have ‖MJ
0x−wu‖2

2 = ‖(M0−F)Jx‖2
2 ≤wθJ , where u = (1, . . . ,1). So, the cumulated

squared Euclidean imbalance of each component of MJ
0x is bounded by 2kθJ . Thus, the

ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware 405

complexity is 1
2kθJ , and Soffline ≤−J log2 θ− log2 2k. The average

〈
M̂s

(s̄
s

)〉
of the image

of Xinter = s is

∑
a

Ma

〈
(−1)a·s

(
s̄
s

)〉
.

For a = 0 the average is (1
2 · · · 1

2). For a of weight at least 2, the average is zero. For a
of weight 1, e.g. a = (1,0, . . . ,0) the average is (− 1

2 ,0, . . . ,0, 1
2 ,0, . . . ,0). We let ei be

the vector with coordinate 1 in its ith position and 0 elsewhere. We have

〈
M̂s

(
s̄
s

)〉
=

⎛
⎜⎝

1
2
...
1
2

⎞
⎟⎠+

1
2

k

∑
i=1

Mi−1
0 M1Mk−i

0 (−ei + ek+i).

Let

b =
1
2

k

∑
i=1

Mi−1
0 M1Mk−i

0 (−ei + ek+i). (4)

The complexity is 1
2‖b‖2

2
, so, we have Soffline ≤−2log2 ‖b‖2 −1.

The parity of P. Let εi be the parity of σi. The x �→ P(s,x) is a permutation whose

parity is ε|s|−wt(s)
0 εwt(s)

1 . If ε0 �= ε1, an adversary with black-box access to x �→ P(s,x)
and knowing |s| can thus easily deduce wt(s). We thus, recommend that ε0 = ε1.

5 Parameter Vectors

Here we suggest sets of parameters for four different applications, based on our ana-
lyzes. In all cases, we require J = c + m and also that σ0 and σ1 have the same parity.

I: in a challenge-response application: Soffline ≤ min(c, J+m
2) and Sonline ≤ m

II: in a collision-resistance context: Soffline ≤ c
2

II’: in a free-start collision context: Soffline ≤ min
(

c
2 ,2m

)
III: Soffline ≤ − log2 SEIr. If λ is the second largest eigenvalue of M = 1

4(Pσ0 + Pt
σ0

+
Pσ1 + Pt

σ1
) then Soffline ≤ −2J log2 λ. For σ0 and σ1, the second largest eigenvalue

of Mt
0M0, called θ, Soffline ≤ −J log2 θ− log2 k− 1. The bias b in (4) shall satisfy

Soffline ≤−2log2 ‖b‖2 −1. Moreover, Soffline ≤ J+m
2 .

To match the ideal security, we need these bounds to yield Soffline ≤ c and Sonline ≤ m
for Application I, Soffline ≤ c

2 for Application II and II’, and Soffline ≤ c for Applica-
tion III. So, we take J = c+m, m ≥ c

2 ; r and t such that SEIr ≤ 2−c; σ0 and σ1 such that

− log2 λ ≥ c
2(c+m) , − log2 θ ≥ c+log2k

c+m , − log2 ‖b‖2 ≥ c+1
2 , and ε0 = ε1. Our recommen-

dations for the parameter values of ARMADILLO are given in Table 1. Note that c is
the key length for Applications I and III and also the digest length for Application II.

406 S. Badel et al.

Table 1. Parameter vectors

Vector k J c m r t
A 128 128 80 48 6 128
B 192 192 128 64 9 192
C 240 240 160 80 10 240
D 288 288 192 96 12 288
E 384 384 256 128 15 384

6 ARMADILLO2

Ever since the first version of ARMADILLO, we have developed an updated design,
called ARMADILLO2, that is even more robust than the version presented in Fig. 1. In
fact, ARMADILLO2 brings in a new compression function, called Q, which is not only
more compact in hardware than P, but also addresses security concerns brought about
during the continuous analyzes of ARMADILLO. For these reasons, ARMADILLO2 is
our preferred design choice. Due to space limitations, further details about the security
analysis of ARMADILLO2 are omitted. ARMADILLO2 is defined by

(Vc,Vt) = ARMADILLO2(C,U) = Q(X ,C‖U)⊕X , where X = Q(U,C‖U).

We call the new permutation Q, instead of P as in Fig. 1, to avoid confusion. The main
novelties are:

– there is no complementation of the k-bit input Xinter = C‖U anymore; as a con-
sequence, the σi permutations (and therefore Q) now operate on k-bit data C‖U ,
instead of C‖U‖C‖U , leading to a more compact design;

– a new permutation Q which interleaves σi’s, i ∈ {0,1}, with an xor using the
k-bit constant bitstring γ = 1010 · · ·10; Q is defined recursively as Q(s‖b,X) =
Q(s,Xσb ⊕ γ) and Q(/0,X) = X , for b ∈ {0,1} and bitstrings s and X ;

– the outermost Q is controlled by a data-dependent value, X = Q(U,C‖U), in con-
trast to simply C‖U in Fig. 1;

In the new structure of Q, the output bias disappears and we can take r = 1 and t = k.

7 Hardware Implementation and Performance

There exist different demands on the implementation and the optimization meanings for
various application scenarios. In this context, the scalability of ARMADILLO allows
to deploy the implementation in a very wide realm of area and speed parameters, which
constitutes the most essential trade-off in electronics circuits. The implementation of the
P function, using the building block, is depicted in Fig. 2(b). It accepts an input vector
of 2k bits and a key of J bits. It consists of a variable number N of permutation stages, all
identical, and each stage essentially requires 2k multiplexers (Fig. 2(a)). One register of
2k bits is needed to hold the input and/or intermediate data, as well as one J-bit register
to hold the permutation key. At each cycle, these registers are either loaded with new
data/key or fed back the output data/key for a new permutation round, depending on the

ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware 407

b

din[0]

din[1]

din[2k-1]

dout[0]

dout[1]

dout[2k-1]

2k
J

J-
N

N stages

keyin

Xinter||Xinter

load

J-
N

2k

0

S-1

J

clk
en

keyout

out

0

2k

(a) (b)

Fig. 2. Hardware implementation of the ARMADILLO function. (a) one permutation stage. (b)
P function building block.

state of the load signal. The number N of permutations executed in each cycle can be
adjusted, the only restriction being that J be an integer multiple of N. The output data is
the 2k bits vector resulting from the permutation round, and the output key is the J −N
bits remaining to be processed. This building block can be flexibly assembled into a
T -stage pipeline, where each stage performs a number R = J/(N · T) of permutation
rounds (building blocks) before passing the results to the next stage and accepting new
input from the previous stage. In that case, the throughput is 1/R items per cycle and
the latency is J/N cycles, the parameters being linked by the equality R ·N · T = J.
The latency / throughput / cost trade-off can be adjusted, the two extreme cases being
R = 1 (fully pipelined, resulting in a throughput of 1 item per cycle) and T = 1 (fully
serial, resulting in a throughput of S/J items per cycle). Obviously, the more pipeline
stages, the more hardware replication and therefore the higher the cost in area and
power. To construct the complete hash function of Fig. 1, we essentially need to add
a state machine (which is little more than a counter) around the permutation function
block, and the final XOR operation.

Metrics for evaluating performance In order to compare different cryptographic func-
tions, several metrics can be taken into account. The security is of course the primary
concern. The silicon area, the throughput, the latency and the power dissipation are
other metrics of interest, and can be traded-off for one another. For example, the power
dissipation is nearly proportional to the clock frequency in any CMOS circuit, there-
fore, power can be reduced by decreasing the clock frequency and thus at the expense
of throughput. Conversely, throughput can be increased by running at a faster clock
frequency, up to a maximum clock frequency which is process- and implementation-
dependent. Another example is serialization, where an operation is broken into several
steps executed in series, allowing to reuse the same hardware, but again at the cost of a
longer execution time. Through serialization, throughput and latency can be traded-off
for area, down to a point where operations can not be broken into smaller operations
anymore and we have reached a minimum area. Given this large design space, compar-
ing the relative merit of different cryptographic functions is a challenging task.

408 S. Badel et al.

The approach taken in [2] (and numerous other publications) includes comparing
the area of synthesized circuits as reported in the literature or estimated by the authors
in gate-equivalent (GE). It is notable though that the GE unit of measure, while be-
ing convenient because it is process-independent, is very coarse. For example, does the
reported area after synthesis include the space needed for wiring? Typically, the uti-
lization of a routed circuit can be in the range of 50%–80%, and is especially critical
when using a limited number of metal layers for routing. A synthesis tool may report
an estimated routing area, but in all cases it may vary to a large extent after physical
implementation. Consider also that one design may have scan chains inserted while an-
other may not, which may increase the register area by as much as 20–30% and require
extra interconnections. Furthermore, different standard cells may be of varying area
efficiency; as an illustration of this fact, a comparison of gate-equivalent figures from
different standard-cell libraries can produce different results with a ratio up to 2

3 . For
instance, a simple 2-input multiplexer can lead to 2.67 GE or 1.67 GE from one library
to the other. Taking into account all these factors, it is clear that such a comparison can
have a large margin of error, unless the circuits being compared have been implemented
in the exact same conditions.

Besides comparing areas, the authors of [2] also use a metric called efficiency, which
is defined as the ratio of the throughput (measured at a fixed clock frequency) over the
area. It may seem at first sight that such a metric provides a more general measure of
quality, since it may be fair to give up some area for a higher throughput, however it is
flawed in that it does not consider the possibility of trading off throughput for power.
Indeed, according to this metric, two designs A and B would be deemed of equal value
if, for example, A’s throughput and area were twice B’s throughput and area, respec-
tively. However, if B’s power dissipation is half that of A at the same clock frequency,
then by doubling B’s operating frequency, its throughput can be made equal to that of
A while consuming the same power and still occupying a smaller area. Clearly then, B
should be recognized as superior to A, which can be captured by dividing the metric
by the power dissipation, thus making it independent of the power/throughput trade-off.
However, this does not come without its own problems, since the power dissipation is
an extremely volatile quantity. Being subject to the same error factors as the area as de-
scribed above, it also depends heavily on the process technology, the supply voltage, and
the parasitic capacitances due to the interconnections. Furthermore, it can vary largely
depending on the method used to measure it (i.e. gate-level statistical or vector-based
simulation, or SPICE simulation). As if this were not enough, different standard-cell
libraries also exhibit various power/area/speed trade-offs, for example, a circuit imple-
mented with a high-density library is likely to result in a lower power figure than the
same circuit implemented with a general-purpose library, for a similar gate count.

Nevertheless, a fairer figure of merit would need to include the influence of power
dissipation. In order to keep process-independent metrics, we can assume that the power
is proportional to the gate count.2 This is reasonable since the dynamic power in CMOS

2 In the same spirit as the GE unit of measure, a more interesting metric would be to divide
the power by Cunit ·V 2

DD, where Cunit is the input capacitance of an inverter. However, this is
not applicable to compare other published implementations since these quantities are usually
unknown.

ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware 409

Table 2. Synthesis results at 1MHz

N=1 N=4
Algorithm Area Power Throughput Latency Area Power Throughput Latency

(GE) (µW) (kbps) (cycles) (GE) (µW) (kbps) (cycles)
ARMADILLO-A 3972 69 375 128 5770 133 1500 32
ARMADILLO-B 6598 117 333 192 9709 237 1333 48
ARMADILLO-C 8231 146 333 240 12217 300 1333 60
ARMADILLO-D 8650 177 333 288 14641 368 1333 72
ARMADILLO-E 13344 228 333 384 19669 513 1333 96

ARMADILLO2-A 2923 44 272 176 4030 77 1090 44
ARMADILLO2-B 4353 65 250 256 6025 118 1000 64
ARMADILLO2-C 5406 83 250 320 7492 158 1000 80
ARMADILLO2-D 6554 102 250 384 8999 183 1000 96
ARMADILLO2-E 8653 137 250 512 11914 251 1000 128

circuits is proportional to the total switched capacitance, which correlates to the area.
We propose therefore to use a figure of merit defined as FOM = throughput/GE2. In
practice, this is a coarse approximation, since it does not take into account switching
activity or the influence of wire load; it is nevertheless fairer than not including power
dissipation at all, since it tends to favor designs with smaller area (at equal throughput)
which are very likely to dissipate less power.

Synthesis Results. Table 2 presents the results of synthesis for the hash function de-
scribed above in a 0.18µm CMOS process using a commercial standard-cell library, with
the parameters given in Sect. 5. Synthesis was performed with Synopsys Design Com-
piler in topographical mode, in order to obtain accurate wire loads. The power consump-
tion was evaluated with Synopsys Primetime-PX using gate-level vector-based analysis.

In RFID applications, the latency is constrained by the communication protocols
(though the constraint is relatively easily satisfiable) but a high throughput is not nec-
essary, designating a fully serial implementation as the ideal candidate. Therefore T is
set to T = 1. The number N of permutations per clock cycle in the permutation function
is set to N = 1, which is favorable to smaller area and power consumption for the tight
power budget associated with RFID applications. The clock frequency is set to 1MHz,
which is a representative value for the target application.

In hash mode we hash m bits per compression. In encryption mode we encrypt t/r
bits per compression. The throughput values given in Table 2 correspond to hash mode.

Our goal for selecting T = 1 and N = 1 was to minimize the hardware. The area in
the proposed implementation is roughly proportional to

(kreg ∗ (2k + J)+ klog∗ (2k(N + 1)+ J))T

for some constants kreg and klog.
To maximize the FOM with T given, we can show that we should in theory pick

N =
(

kreg

klog
+ 1

)(
1 +

J
2k

)

For kreg ≈ 2klog and J = k, this is N = 4.5. In practice, the best choice is to take T = 1 and
N = 4 for ARMADILLO2 in context A, for which we would get an area of 4030 GE,
77 µW, and a latency of 44 cycles (1.09 Mbps for hashing or 2.9 Mbps for encryption).

410 S. Badel et al.

Table 3. Implementation comparison for hash functions with throughput at 100 kHz

Algorithm Digest Block Area Time Throughput Logic FOM
(bits) (bits) (GE) (cycles/block) (kb/s) (µm) (nanobit/cycle.GE2)

ARMADILLO2-A 80 48 4030 44 109 0.18 67.17
ARMADILLO2-A 80 48 2923 176 27 0.18 31.92

H-PRESENT-128 [2] 128 128 4256 32 200 0.18 110.41
ARMADILLO2-B 128 64 6025 64 1000 0.18 27.55

MD4 [9] 128 512 7350 456 112.28 0.13 20.78
ARMADILLO2-B 128 64 4353 256 250 0.18 13.19

MD5 [9] 128 512 8400 612 83.66 0.13 11.86
ARMADILLO2-C 160 80 7492 80 100 0.18 17.81
ARMADILLO2-C 160 80 5406 320 250 0.18 8.55

SHA-1 [9] 160 512 8120 1274 40.18 0.35 6.10
ARMADILLO2-D 192 96 8999 96 100 0.18 12.35

C-PRESENT-192 [2] 192 192 8048 108 59.26 0.18 9.15
ARMADILLO2-D 192 96 6554 384 25 0.18 5.82

MAME [24] 256 256 8100 96 266.67 0.18 40.64
ARMADILLO2-E 256 128 11914 128 100 0.18 7.05

SHA-256 [9] 256 512 10868 1128 45.39 0.35 3.84
ARMADILLO2-E 256 128 8653 512 25 0.18 3.34

Table 4. Implementation comparison for encryption with throughput at 100 kHz

Algorithm Key Block Area Time Throughput Logic FOM
(bits) (bits) (GE) (cycles/block) (kb/s) (µm) (nanobit/cycle.GE2)

DES [18] 56 64 2309 144 44 0.18 83.36
PRESENT-80 [1] 80 64 1570 32 200 0.18 811.39

Grain [11] 80 1 1294 1 100 0.13 597.22
KTANTAN64 [3] 80 64 927 128 50 0.13 581.85

KATAN64 [3] 80 64 1269 85 75 0.13 467.56
ARMADILLO2-A 80 128 4030 44 291 0.18 179.12

Trivium [11] 80 1 2599 1 100 0.13 148.04
PRESENT-80 [19] 80 64 1075 563 11 0.18 98.37
ARMADILLO2-A 80 128 2923 176 73 0.18 85.12

mCrypton [14] 96 64 2681 13 500 0.13 684.96
PRESENT-128 [1] 128 64 1886 32 200 0.18 562.27

HIGHT [13] 128 64 3048 34 189 0.25 202.61
TEA [23] 128 64 2355 64 100 0.18 180.31

ARMADILLO2-B 128 192 6025 64 300 0.18 82.64
ARMADILLO2-B 128 192 4353 256 75 0.18 39.58

AES-128 [8] 128 128 3400 1032 12 0.35 10.73
ARMADILLO2-C 160 240 7492 80 300 0.18 53.45
ARMADILLO2-C 160 240 5406 320 75 0.18 25.66

DESXL [18] 184 64 2168 144 44 0.18 94.56
ARMADILLO2-D 192 288 8999 96 300 0.18 37.04
ARMADILLO2-D 192 288 6554 384 75 0.18 17.46
ARMADILLO2-E 256 384 11914 128 300 0.18 21.13
ARMADILLO2-E 256 384 8653 512 75 0.18 10.02

8 Comparison

Table 3 shows a comparison of hardware implementations of ARMADILLO in the hash
function setting, relative to other hash functions such as MD4, MD5, SHA-1, SHA-
256, and MAME according to [2]. We computed the throughput in kbps at a clock rate
of 100 kHz. We added the best FOM results for KATAN and KTANTAN with 64-bit
blocks from [3]. Algorithms are categorized in terms of security by taking into account
the digest size. In each category, we listed the algorithms by decreasing order of merit.
To estimate the FOM we assumed that the power was proportional to the area. So, it is

ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware 411

the speed divided by the square of the area. These figures show that different versions
of ARMADILLO2 provide clear advantage for hashing, either in terms of area, or of
throughput, or of overall merit.

9 Conclusions

This paper suggested a new hardware dedicated cryptographic function design called
ARMADILLO. Applications for ARMADILLO include MACs, hashing for challenge-
response protocols, PRNG and as a stream cipher.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B.,
Seurin, Y., Vikkelsoe, C.: Present: a Ultra-Lightweight Block Cipher. In: Paillier, P., Ver-
bauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

2. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash
Functions and RFID Tags: Mind the Gap. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

3. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN & KTANTAN: a Family of Small
and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

4. De Cannière, C., Preneel, B.: Trivium Specifications. eSTREAM technical report (2006),
http://www.ecrypt.eu.org/stream/ciphers/trivium/trivium.pdf

5. Daemen, J., Govaerts, R., Vandewalle, J.: A Hardware Design Model for Cryptographic Al-
gorithms. In: Deswarte, Y., Quisquater, J.-J., Eizenberg, G. (eds.) ESORICS 1992. LNCS,
vol. 648, pp. 419–434. Springer, Heidelberg (1992)

6. Daemen, J., Govaerts, R., Vandewalle, J.: A Framework for the Design of One-Way Hash
Functions Including Cryptanalysis of Damgård One-way Function based on a Cellular Au-
tomaton. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS, vol. 739,
pp. 82–96. Springer, Heidelberg (1993)

7. Damgård, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

8. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID Systems Us-
ing the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 357–370. Springer, Heidelberg (2004)

9. Feldhofer, M., Rechberger, C.: A Case Against Currently Used Hash Functions in RFID Pro-
tocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277,
pp. 372–381. Springer, Heidelberg (2006)

10. Garber, D.: Braid Group Cryptography. CoRR, vol. abs/0711.3941, pp. 1–75 (2007)
11. Good, T., Chelton, W., Benaissa, M.: Hardware Results for Selected Stream Cipher Can-

didates. Presented at the State of the Art of Stream Ciphers SASC’07, Bochum, Germany
(2007)

12. Hell, M., Johansson, T., Meier, W.: Grain: a Stream Cipher for Constrained Environments.
International Journal of Wireless and Mobile Computing 2, 86–93 (2007)

13. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.S., Lee, C., Chang, D., Lee, J., Jeong,
K., Kim, H., Kim, J., Chee, S.: HIGHT: a New Block Cipher suitable for Low-Resource
Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006)

http://www.ecrypt.eu.org/stream/ciphers/trivium/trivium.pdf

412 S. Badel et al.

14. Lim, C., Korkishko, T.: mCrypton: A Lightweight Block Cipher for Security of Lowcost
RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS,
vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

15. Merkle, R.C.: One way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

16. Moldovyan, A.A., Moldovyan, N.A.: A cipher based on data-dependent permutations. Jour-
nal of Cryptology 1(15), 61–72 (2002)

17. Ouafi, K., Vaudenay, S.: Pathchecker: An RFID Application for Tracing Products in Supply-
Chains. Presented at the International Conference on RFID Security 2009, Leuven, Belgium
(2009)

18. Poschmann, A., Leander, G., Schramm, K., Paar, C.: New Lightweight DES Variants Suited
for RFID Applications. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210.
Springer, Heidelberg (2007)

19. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implementations for
Smart Devices - Security for 1000 Gate Equivalents. In: Grimaud, G., Standaert, F.-X. (eds.)
CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Heidelberg (2008)

20. Secure Hash Standard. Federal Information Processing Standard publication #180-2. U.S.
Department of Commerce, National Institute of Standards and Technology (2002)

21. Tillich, J.P., Zémor, G.: Hashing with SL2. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS,
vol. 839, pp. 40–49. Springer, Heidelberg (1994)

22. Wheeler, D.J., Needham, R.M.: TEA: a Tiny Encryption Algorithm. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

23. Yu, Y., Yang, Y., Fan, Y., Min, H.: Security Scheme for RFID Tag. Technical report WP-
HARDWARE-022, Auto-ID Labs white paper (2006),
http://www.autoidlabs.org/single-view/dir/article/6/230/page.html

24. Yoshida, H., Watanabe, D., Okeya, K., Kitahara, J., Wu, J., Küçük, Ö., Preneel, B.: MAME: A
Compression Function With Reduced Hardware Requirements. In: Paillier, P., Verbauwhede,
I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 148–165. Springer, Heidelberg (2007)

http://www.autoidlabs.org/single-view/dir/article/6/230/page.html

Provably Secure Higher-Order Masking of AES

Matthieu Rivain1 and Emmanuel Prouff2

1 CryptoExperts
matthieu.rivain@cryptoexperts.com

2 Oberthur Technologies
e.prouff@oberthur.com

Abstract. Implementations of cryptographic algorithms are vulnerable
to Side Channel Analysis (SCA). To counteract it, masking schemes are
usually involved which randomize key-dependent data by the addition of
one or several random value(s) (the masks). When dth-order masking is
involved (i.e. when d masks are used per key-dependent variable), the
complexity of performing an SCA grows exponentially with the order
d. The design of generic dth-order masking schemes taking the order
d as security parameter is therefore of great interest for the physical
security of cryptographic implementations. This paper presents the first
generic dth-order masking scheme for AES with a provable security and
a reasonable software implementation overhead. Our scheme is based
on the hardware-oriented masking scheme published by Ishai et al. at
Crypto 2003. Compared to this scheme, our solution can be efficiently
implemented in software on any general-purpose processor. This result
is of importance considering the lack of solution for d � 3.

1 Introduction

Side Channel Analysis exploits information that leaks from physical implemen-
tations of cryptographic algorithms. This leakage (e.g. the power consumption
or the electro-magnetic emanations) may indeed reveal information on the data
manipulated by the implementation. Some of these data are sensitive in the sense
that they are related to the secret key, and the leaking information about them
enables efficient key-recovery attacks [7, 18].

Due to the very large variety of side channel attacks reported against cryp-
tosystems and devices, important efforts have been done to design countermea-
sures with provable security. They all start from the assumption that a crypto-
graphic device can keep at least some secrets and that only computation leaks
[24]. Based on these assumptions, two main approaches have been followed. The
first one consists in designing new cryptographic primitives inherently resistant
to side channel attacks. In [24], a very powerful side channel adversary is con-
sidered who has access to the whole internal state of the ongoing computation.
In such a model, the authors show that if a physical one-way permutation exists
which does not leak any information, then it can be used in the pseudo-random
number generator (PRNG) construction proposed in [4] to give a PRNG prov-
ably secure against the aforementioned side channel adversary. Unfortunately,

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 413–427, 2010.
c© International Association for Cryptologic Research 2010

414 M. Rivain and E. Prouff

no such leakage-resilient one-way permutation is known at this day. Besides, the
obtained construction is quite inefficient since each computation of the one-way
permutation produces one single random bit. To get more practical construc-
tions, further works focused on designing primitives secure against a limited side
channel adversary [13]. The definition of such a limited adversary is inspired by
the bounded retrieval model [10, 21] which assumes that the device leaks a limited
amount of information about its internal state for each elementary computation.
In such a setting, the block cipher based PRNG construction proposed in [29]
is provably secure assuming that the underlying cipher is ideal. Other construc-
tions were proposed in [13, 30] which do not require such a strong assumption
but are less efficient [39]. The main limitations of these constructions is that
they do not enable the choice of an initialization vector (otherwise the security
proofs do not hold anymore) which prevents their use for encryption with syn-
chronization constraints or for challenge-response protocols [39]. Moreover, as
they consist in new constructions, these solutions do not allow for the protection
of the implementation of standard algorithms such as DES or AES [14, 15].

The second approach to design countermeasures provably secure against side
channel attacks consists in applying secret sharing schemes [2, 38]. In such
schemes, the sensitive data is randomly split into several shares in such a way
that a chosen number (called the threshold) of these shares is required to retrieve
any information about the data. When the SCA threat appeared, secret sharing
was quickly identified as a pertinent protection strategy [6, 16] and numerous
schemes (often called masking schemes) were published that were based on this
principle (see for instance [1, 3, 17, 22, 25, 28, 33, 37]). Actually, this approach
is very close to the problem of defining Multi Party Communication (MPC)
schemes (see for instance [9, 12]) but the resources and constraints differ in the
two contexts (e.g. MPC schemes are often based on a trusted dealer who does
not exist in the SCA context). A first advantage of this approach is that it can
be used to secure standard algorithms such as DES and AES. A second advan-
tage is that dth-order masking schemes, for which sensitive data are split into
d + 1 shares (the threshold being d + 1), are sound countermeasures to SCA in
realistic leakage model. This fact has been formally demonstrated by Chari et al.
[6] who showed that the complexity of recovering information by SCA on a bit
shared into several pieces grows exponentially with the number of shares. As a
direct consequence of this work, the number of shares (or equivalently of masks)
in which sensitive data are split is a sound security parameter of the resistance
of a countermeasures against SCA.

The present paper deals with the problem of defining an efficient masking
scheme to protect the implementation of the AES block cipher [11]. Until now,
most of works published on this subject have focussed on first-order masking
schemes where sensitive variables are masked with a single random value (see
for instance [1, 3, 22, 25, 28]). However, this kind of masking have been shown
to be efficiently breakable in practice by second-order SCA [23, 26, 41]. To coun-
teract those attacks, higher-order masking schemes must be used but a very few
have been proposed. A first method has been introduced by Ishai et al. [17] which

Provably Secure Higher-Order Masking of AES 415

enables to protect an implementation at any chosen order. Unfortunately, it is
not suited for software implementations and it induces a prohibitive overhead
for hardware implementations. A scheme devoted to secure the software imple-
mentation of AES at any chosen order has been proposed by Schramm and Paar
[37] but it was subsequently shown to be secure only in the second-order case [8].
Alternative second-order masking schemes with provable security were further
proposed in [33], but no straightforward extension of them exist to get efficient
and secure masking scheme at any order. Actually, at this day, no method exists
in the literature that enables to mask an AES implementation at any chosen
order d � 3 with a practical overhead; the present paper fills this gap.

2 Preliminaries on Higher-Order Masking

2.1 Basic Principle

When higher-order masking is involved to secure the physical implementation
of a cryptographic algorithm, every sensitive variable x occurring during the
computation is randomly split into d + 1 shares x0, . . . , xd in such a way that
the following relation is satisfied for a group operation ⊥:

x0 ⊥ x1 ⊥ · · · ⊥ xd = x . (1)

In the rest of the paper, we shall consider that ⊥ is the exclusive-or (XOR)
operation denoted by ⊕. Usually, the d shares x1, . . . , xd (called the masks)
are randomly picked up and the last one x0 (called the masked variable) is pro-
cessed such that it satisfies (1). When d random masks are involved per sensitive
variable the masking is said to be of order d.

Assuming that the masks are uniformly distributed, masking renders every in-
termediate variable of the computation statistically independent of any sensitive
variable. As a result, classical side channel attacks exploiting the leakage related
to a single intermediate variable are not possible anymore. However, a dth-order
masking is always theoretically vulnerable to (d+1)th-order SCA which exploits
the leakages related to d+1 intermediate variables at the same time [23, 36, 37].
Indeed, the leakages resulting from the d+1 shares (i.e. the masked variable and
the d masks) are jointly dependent on the sensitive variable. Nevertheless, such
attacks become impractical as d increases, which makes higher-order masking a
sound countermeasure.

2.2 Soundness of Higher-Order Masking

The soundness of higher-order masking was formally demonstrated by Chari et
al. in [6]. They assume a simplified but still realistic leakage model where a
bit b is masked using d random bits x1, . . . , xd such that the masked bit is
defined as x0 = b ⊕ x1 ⊕ · · · ⊕ xd. The adversary is assumed to be provided
with observations of d + 1 leakage variables Li, each one corresponding to a
share xi. For every i, the leakage is modelled as Li = xi + Ni where the noises

416 M. Rivain and E. Prouff

Ni’s are assumed to have Gaussian distributions N (
μ, σ2

)
and to be mutually

independent. Under this leakage model, they show that the number of samples
q required by the adversary to distinguish the distribution (L0, . . . , Ld|b = 0)
from the distribution (L0, . . . , Ld|b = 1) with a probability at least α satisfies:

q � σd+δ (2)

where δ = 4 logα/ log σ. This result encompasses all the possible side-channel
distinguishers and hence formally states the resistance against every kind of side
channel attack. Although the model is simplified, it could probably be extended
to more common leakage models such as the Hamming weight/distance model.
The point is that if an attacker observes noisy side channel information about
d + 1 shares corresponding to a variable masked with d random masks, the
number of samples required to retrieve information about the unmasked variable
is lower bounded by an exponential function of the masking order whose base is
related to the noise standard deviation. This formally demonstrates that higher-
order masking is a sound countermeasure especially when combined with noise.
Many works also made this observation in practice for particular side channel
distinguishers (see for instance [36, 37, 40]).

2.3 Higher-Order Masking Schemes

When dth-order masking is involved in protecting a block cipher implementation,
a so-called dth-order masking scheme (or simply a masking scheme if there is no
ambiguity on d) must be designed to enable computation on masked data. In
order to be complete and secure, the scheme must satisfy the two following
properties:

– completeness: at the end of the computation, the sum of the d shares must
yield the expected ciphertext (and more generally each masked transforma-
tion must result in a set of shares whose sum equal the correct intermediate
result),

– dth-order SCA security: every tuple of d or less intermediate variables must
be independent of any sensitive variable.

If the dth-order security property is satisfied, then no attack of order lower than
d + 1 is possible and we benefit from the security bound (2).

Most block cipher structures (e.g. AES or DES) alternate several rounds com-
posed of a key addition, one or several linear transformation(s), and a non-linear
transformation. The main difficulty in designing masking schemes for such block
ciphers lies in masking the nonlinear transformations. Many solutions have been
proposed to deal with this issue but the design of a dth-order secure scheme
for d > 1 has quickly been recognized as a difficult problem by the commu-
nity. As mentioned above, only three methods exist in the literature that have
been respectively proposed by Ishai, Sahai and Wagner [17], by Schramm and
Paar [37] (secure only for d � 2) and by Rivain, Dottax and Prouff [33] (dedi-
cated to d = 2). Among them, only [17] can be applied to secure a non-linear
transformation at any order d. This scheme is recalled in the next section.

Provably Secure Higher-Order Masking of AES 417

2.4 The Ishai-Sahai-Wagner Scheme

In [17], Ishai et al. propose a higher-order masking scheme (referred to as ISW in
this paper) enabling to secure the hardware implementation of any circuit at any
chosen order d. They describe a way to transform the circuit to protect into a
new circuit (dealing with masked values) such that no subset of d of its wires re-
veals information about the unmasked values1. For such a purpose, they assume
without loss of generality that the circuit to protect is exclusively composed of
NOT and AND gates. Securing a NOT for any order d is straightforward since
x =

⊕
i xi implies NOT(x) = NOT(x0) ⊕ x1 · · · ⊕ xd. The main difficulty is

therefore to secure the AND gates. To answer this issue, Ishai et al. suggest the
following elegant solution.

Secure logical AND. Let a an b be two bits and let c denote AND(a, b) = ab.
Let us assume that a and b have been respectively split into d+1 shares (ai)0�i�d

and (bi)0�i�d such that
⊕

i ai = a and
⊕

i bi = b. To securely compute a (d+1)-
tuple (ci)0�i�d s.t.

⊕
i ci = c, Ishai et al. perform the following steps:

1. For every 0 � i < j � d, pick up a random bit ri,j .
2. For every 0 � i < j � d, compute rj,i = (ri,j ⊕ aibj) ⊕ ajbi.
3. For every 0 � i � d, compute ci = aibi ⊕

⊕
j �=i ri,j .

Remark 1. The use of brackets indicates the order in which the operations are
performed, which is mandatory for security of the scheme.

The completeness of the solution follows from:⊕
i

ci =
⊕

i

(
aibi ⊕

⊕
j �=i

ri,j

)
=

⊕
i

(
aibi ⊕

⊕
j>i

ri,j ⊕
⊕
j<i

(rj,i ⊕ aibj ⊕ ajbi)
)

=
⊕

i

(
aibi ⊕

⊕
j<i

(aibj ⊕ ajbi)
)

=
(⊕

i

ai

)(⊕
i

bi

)
.

In [17] it is shown that the AND computation above is secure against any attack
of order lower than or equal to d/2. As stated in Section 4 (and proven the full
version of the paper [35]) this scheme is actually dth-order secure.

Practical issues. Although the ISW scheme is an important theoretical re-
sult, its practical application suffers few issues. Firstly, it induces an important
overhead in silicon area for the masked circuit. Indeed, every single AND gate
is encoded using (d + 1)2 AND gates plus 2d(d + 1) XOR gates, and it requires
the generation of d(d+1)/2 random bits at every clock cycle. As an illustration,
masking the compact circuit for the AES S-box described in [5] would multiply
its size (in terms of number of gates) by 7 for d = 2, by 14 for d = 3 and by 22
for d = 4 (without taking the random bits generation into account). Secondly,

1 Considering wires as intermediate variables, this is equivalent to the security prop-
erty given in Section 2.3.

418 M. Rivain and E. Prouff

masking at the hardware level is sensitive to glitches, which induces first-order
flaws although in theory every internal wire carries values that are independent
of the sensitive variables [19, 20]. Preventing glitches in masked circuits imply
the addition of synchronizing elements (e.g. registers or latches) which still sig-
nificantly increases the circuit size (see for instance [31]).

Since software implementations of masking schemes do not suffer area over-
head and are not impacted by the presence of glitches at the hardware level,
a straightforward approach to deal with the practical issues discussed above
could be to implement the ISW scheme in software. Namely, we could repre-
sent each non-linear transformation S to protect by a tuple of Boolean functions
(fi)i usually called coordinate functions of S, and evaluate the fi’s with the ISW
scheme by processing the AND and XOR operations with CPU instructions.
However, this approach is not practical since the timing overhead would clearly
be prohibitive. The present paper follows a different approach: we generalize
the ISW scheme to secure any finite field multiplication rather than a simple
multiplication over F2 (i.e. a logical AND). We apply this idea to design a se-
cure higher-order masking scheme for the AES and we show that its software
implementation induces a reasonable overhead.

3 Higher-Order Masking of AES

The AES block cipher iterates a round transformation composed of a key addi-
tion, a linear layer and a nonlinear layer which applies the same substitution-box
(S-box) to every byte of the internal state. As previously explained, the main
difficulty while designing a masking scheme for such a cipher is the masking of
the nonlinear transformation, which in that case lies in the masking of the S-box.
Our method for masking the AES S-box is presented in the next section.

In what follows, we shall consider that a random generator is available which
on an invocation rand(n) returns n unbiased random bits.

3.1 Higher-Order Masking of the AES S-Box

The AES S-box S is defined as the right-composition of an affine transfor-
mation Af over F8

2 with the power function x �→ x254 over the field F28 ≡
F2[x]/(x8 +x4 +x3 +x+1). Since the affine transformation is straightforward to
mask, our scheme mainly consists in a method for masking the power function
at any order d. Our solution consists in a secure computation of the exponentia-
tion to the power 254 over F28 . Such an approach has already been described by
Blömer et al. for d = 1 [3]. The core idea is to apply an exponentiation algorithm
(e.g. the square-and-multiply algorithm) on the first-order masked input while
ensuring the mask correction step by step. Compared to Blömer et al. ’s solution,
our exponentiation algorithm is able to operate on dth-order masked inputs and
it achieves dth-order SCA security for any value of d. To perform such a secure

Provably Secure Higher-Order Masking of AES 419

exponentiation, we define hereafter some methods to securely compute a squaring
and a multiplication over F28 at the dth order.

Masking the field squaring. Since we operate on a field of characteristic
2, the squaring is a linear operation and we have x2

0 ⊕ x2
1 ⊕ · · · ⊕ x2

d = x2.
Securely computing a squaring can hence be carried out by squaring every share
separately. More generally, for every natural integer j, raising x to the power 2j

can be done securely by raising each xi to the 2j separately.

Masking the field multiplication. For the usual field multiplication we use
the ISW scheme recalled in Section 2.4. Even if it has been described to securely
compute a logical AND (that is a multiplication over F2), it can actually be
transposed to secure a multiplication over any field of characteristic 2: variables
over F2 are replaced by variables over F2n , binary multiplications (i.e. ANDs)
are replaced by multiplications over F2n and binary additions (i.e. XORs) are
replaced by addition over F2n (that are n-bit XORs). This keep unchanged the
completeness of the scheme recalled in Section 2.4. The whole secure multiplica-
tion over F2n is depicted in the following algorithm.

Algorithm 1. SecMult - dth-order secure multiplication over F2n

Input: shares ai satisfying
⊕

i ai = a, shares bi satisfying
⊕

i bi = b
Output: shares ci satisfying

⊕
i ci = ab

1. for i = 0 to d do

2. for j = i + 1 to d do

3. ri,j ← rand(n)
4. rj,i ← (ri,j ⊕ aibj) ⊕ ajbi

5. for i = 0 to d do

6. ci ← aibi

7. for j = 0 to d, j �= i do ci ← ci ⊕ ri,j

Masking the power function. Now we have a secure squaring and a secure
multiplication over F28 it remains to specify an exponentiation algorithm. It is
clear from Algorithm 1 that the running time of a secure multiplication is huge
compared to that of a secure squaring. A secure squaring indeed requires d + 1
squarings while a secure multiplication requires (d + 1)2 field multiplications,
2d(d + 1) XORs and the generation of d(d + 1)/2 random 8-bit values. Our goal
is therefore to design an exponentiation algorithm using the least possible mul-
tiplications which are not squares. It can be checked that an exponentiation to
the power 254 requires at least 4 such multiplications. The exponentiation algo-
rithm presented hereafter achieves this lower bound and requires few additional
squares. It involves three intermediate variables denoted y, z and w (note that
x and y may be associated to the same memory address).

420 M. Rivain and E. Prouff

Algorithm 2. Exponentiation to the 254
Input: x
Output: y = x254

1. z ← x2 [z = x2]
2. y ← zx [y = x2x = x3]
3. w ← y4 [w = (x3)4 = x12]
4. y ← yw [y = x3x12 = x15]
5. y ← y16 [y = (x15)16 = x240]
6. y ← yw [y = x240x12 = x252]
7. y ← yz [y = x252x2 = x254]

As argued in the full version of this paper [35], for the dth-order security
to hold, it is important that the masks (ai)i�1 and (bi)i�1 in input of the
SecMult algorithm are mutually independent. That is why we shall refresh the
masks at some points during the secure exponentiation by calling a procedure
RefreshMasks2. The whole exponentiation to the power 254 over F28 secure
against dth-order SCA is depicted in the following algorithm.

Algorithm 3. SecExp254 - dth-order secure exponentiation to the 254 over F28

Input: shares xi satisfying
⊕

i xi = x
Output: shares yi satisfying

⊕
i yi = x254

1. for i = 0 to d do zi ← x2
i [

⊕
i zi = x2]

2. RefreshMasks(z0, z1, . . . , zd)
3. (y0, y1, . . . , yd) ← SecMult

(
(z0, z1, . . . , zd), (x0, x1, . . . , xd)

)
[
⊕

i yi = x3]
4. for i = 0 to d do wi ← y4

i [
⊕

i wi = x12]
5. RefreshMasks(w0, w1, . . . , wd)
6. (y0, y1, . . . , yd) ← SecMult

(
(y0, y1, . . . , yd), (w0, w1, . . . , wd)

)
[
⊕

i yi = x15]
7. for i = 0 to d do yi ← y16

i [
⊕

i yi = x240]
8. (y0, y1, . . . , yd) ← SecMult

(
(y0, y1, . . . , yd), (w0, w1, . . . , wd)

)
[
⊕

i yi = x252]
9. (y0, y1, . . . , yd) ← SecMult

(
(y0, y1, . . . , yd), (z0, z1, . . . , zd)

)
[
⊕

i yi = x254]

For completeness, we describe the RefreshMasks algorithm hereafter.

Algorithm 4. RefreshMasks
Input: shares xi satisfying

⊕
i xi = x

Output: shares xi satisfying
⊕

i xi = x

1. for i = 1 to d do

2. tmp ← rand(8)
3. x0 ← x0 ⊕ tmp

4. xi ← xi ⊕ tmp

2 Note that the masks resulting from the SecMult algorithm are independent of the
input masks.

Provably Secure Higher-Order Masking of AES 421

Table 1. Complexity of SecExp254

order nb. XORs nb. mult. nb. ˆ2j nb. rand. bytes memory (bytes)
1 20 16 6 6 7
2 56 36 9 16 12
3 108 64 12 20 18
4 176 100 15 48 25
5 260 144 18 70 33
d 8d2 + 12d 4d2 + 8d + 4 3d + 3 2d2 + 4d 1

2
d2 + 7

2
d + 3

Algorithm 3 involves of 8d(d + 1) + 4d XORs, 4(d + 1)2 multiplications (over
F28), d+1 squares, d+1 raising to the 4 and d+1 raising to the 16. It uses 3(d+
1)+d(d+1)/2 bytes of memory3 and it requires the generation of 2d(d+1)+2d
random bytes (see illustrative values in Table 1). In comparison, the 2nd-order
countermeasures previously published [33, 37] require at least 512 look-ups and
512 XORs and have a memory consumption of at least 256 bytes (see [32, 34]
for a detailed comparison).

Masking the full S-box. The affine transformation is straightforward to mask.
After recalling that the additive part of Af equals 0x63, it can be checked that
we have:

Af(x0) ⊕ Af(x1) ⊕ · · · ⊕ Af(xd) =
{

Af(x) if d is even,
Af(x) ⊕ 0x63 if d is odd.

Masking the affine transformation hence simply consists in applying it to every
input share separately and, in case of an even d, in adding 0x63 to one of the
share afterward. The full S-box computation secure against dth-order SCA is
summarized in the following algorithm.

Algorithm 5. SecSbox
Input: shares xi satisfying

⊕
i xi = x

Output: shares yi satisfying
⊕

i yi = S(x)

1. (y0, . . . , yd) ← SecExp254(x0, . . . , xd)
2. for i = 0 to d do yi ← Af(yi)
3. if (d mod 2 = 1) then y0 ← y0 ⊕ 0x63

Implementation aspects. Multiplications over F28 are typically implemented
in software using log/alog tables (see for instance [11]). Note that for security
reasons, such an implementation must avoid conditional branches in order to
ensure a constant operation flow. The squaring and raisings to the 4 and 16
may be looked-up. Different time-memory tradeoffs are possible. If not much
ROM is available, the squaring can be implemented using logical shifts and
3 3(d+1) bytes for the shares yi’s, zi’s and wi’s (Algorithm 3), and d(d+1)/2 for the

intermediate variables ri,j ’s (Algorithm 1).

422 M. Rivain and E. Prouff

XORs (see for instance [11]), and the raising to the 2j, j ∈ {2, 4}, can then
be simply processed by j sequential squarings. Otherwise, depending on the
amount of ROM available, one can either use one, two or three look-up table(s)
to implement the raisings to 2j, j ∈ {1, 2, 4}.
Remark 2. For the implementations presented in Section 5, we chose to imple-
ment the squaring by a look-up table, getting the raising to the 4 (resp. 16) by
accessing this table sequentially 2 (resp. 4) times.

Our scheme may also be implemented in hardware. The sensitive part is the im-
plementation of the SecMult algorithm (see Algorithm 1) which may be subject
to glitches and which should incorporate synchronizing elements. In particular,
the evaluation of the ci shares should not start before the evaluation of all the
ri,j ’s has been fully completed. Another approach would be to enhance the soft-
ware implementation of the scheme with special purpose hardware instructions.
For instance, the multiplication, squaring and raisings to powers 4 and 16 over
F28 could be added to the instructions set of the processor.

3.2 Higher-Order Masking of the Whole Cipher

In the previous section, we have shown how the AES S-box can be masked at
any chosen order d. Since the S-box is actually the most difficult part of AES to
mask, and due to length constraints, we do not detail the masking of the whole
AES cipher here. This description is given in the full version of this paper [35].

4 Security Analysis

In this section, we give a sketch of the security proof of our scheme. We first
formally define the notion of dth-order SCA security and we introduce afterward
our main security result (Theorem 1). The complete security proof is given in
the full version of the paper [35].

We consider a randomized encryption algorithm E taking a plaintext p and a
(randomly shared) secret key k as inputs4 and performing a deterministic en-
cryption of p under the secret key k while randomizing its internal computations
by means of an external random number generator (RNG). The RNG outputs
are assumed to be perfectly random (uniformly distributed, mutually indepen-
dent and independent of the plaintext and of the secret key). Any variable that
can be expressed as a deterministic function of the plaintext and the secret key,
which is not constant with respect to the secret key, is called a sensitive variable
with the exception of the ciphertext Ek(p) or any deterministic function of it.
Note that every intermediate variable computed during an execution of E (except
the plaintext and the ciphertext) can be expressed as a deterministic function
of a sensitive variable and of the RNG outputs.

4 The secret key k is assumed to be split into d + 1 shares k0, k1, . . . , kd such that⊕
i ki = k and every d-tuple of ki’s is uniformly distributed and independent of k.

Provably Secure Higher-Order Masking of AES 423

We shall consider the plaintext, the secret key and the intermediate variables
of E as random variables. The distributions of the intermediate variables are
induced by the algorithm inputs (p and k) distributions and by the uniformity
of the RNG outputs. The joint distribution of all the intermediate variables
of E thus depends on (p, k). On the other hand, some subsets of intermediate
variables may be jointly independent of (p, k). This leads us to the following
formal definition of dth-order SCA security.

Definition 1. A randomized encryption algorithm is said to achieve dth-order
SCA security if every d-tuple of its intermediate variables is independent of any
sensitive variable.

Equivalently, an encryption algorithm achieves dth-order SCA security if any
d-tuple of its intermediate variables, except the plaintext and the ciphertext (or
any function of one of them), is independent of the algorithm inputs (p, k).

The most sensitive part of our scheme is the masked multiplication algorithm
based on the generalized ISW scheme (Algorithm 1). The theorem hereafter
states that it achieves dth-order SCA security.

Theorem 1. Let a and b be two sensitive variables. Let (ai)0�i�d and (bi)0�i�d

be two families of intermediate variables in input of Algorithm 1 satisfying a =⊕
0�i�d ai and b =

⊕
0�i�d bi with (ai)i�1 and (bi)i�1 being RNG outputs. Then,

the distribution of every tuple of d or less intermediate variables in Algorithm 1
is independent of (a, b).

Theorem 1 states that the generalized ISW scheme achieves dth-order SCA secu-
rity whereas in [17] it is only proven that the ISW scheme achieves (d/2)th-order
SCA security. This improvement is of practical interest since it enables to double
the security order for any chosen complexity (in terms of timing and/or silicon
area).

The proof of Theorem 1 as well as the security proof of our whole dth-order
masking scheme for AES are given in the full version of the paper [35].

5 Implementation Results

To compare the efficiency of our proposal with that of other methods proposed
in the literature, we applied them to protect an implementation of the AES-128
algorithm in encryption mode. We have implemented our new countermeasure
for d ∈ {1, 2, 3}, namely to counteract either first-order SCA (d = 1) or second-
order SCA (d = 2) or third-order SCA (d = 3). Among the numerous methods
proposed in the literature to thwart first-order SCA we chose to implement only
that having the best timing performance (the table re-computation method [22])
and that offering the best memory performance (the tower field method [27]). In
the second-order case, we implemented the only two existing methods: the one
proposed in [37]5 and the one proposed [33]. Eventually, since no countermeasure
5 Initially, the method of [37] was devoted to thwart dth-order SCA for any chosen

order d but it has been shown insecure for d � 3 [8].

424 M. Rivain and E. Prouff

Table 2. Comparison of secure AES implementations

Method Reference cycles RAM (bytes) ROM (bytes)
Unprotected Implementation

No Masking Na. 2 × 103 32 1150
First Order Masking

Re-computation [22] 10 × 103 256 + 35 1553
Tower Field in F4 [27, 28] 77 × 103 42 3195

Our scheme for d = 1 This paper 129 × 103 73 3153
Second Order Masking

Double Re-computations [37] 594 × 103 512 + 90 2336
Single Re-computation [33] 672 × 103 256 + 86 2215
Our scheme for d = 2 This paper 271 × 103 79 3845

Third Order Masking
Our scheme for d = 3 This paper 470 × 103 103 4648

against 3rd-order SCA was existing before that introduced in this paper, it is
the single one in its category.

We wrote the codes in assembly language for an 8051-based 8-bit architecture.
The implementations only differ in their approaches to protect the S-box com-
putations. In Table 2, we list the timing/memory performances of the different
implementations.

As expected, in the first-order case the countermeasures introduced in [22]
and [27, 28] are much more efficient than ours. This is a consequence of the
generic character of our method which is not optimized for one choice of d but
aims to work for any d.

In the second-order case, our proposal becomes much more efficient than the
existing solutions. It is 2.2 times faster than the countermeasure proposed in
[37] with a RAM memory requirement divided by around 10. It is also 2.5 times
faster than the countermeasure in [33] and requires 5.3 times less RAM. Memory
allocation differences are merely due to the fact that the methods [37] and [33]
generalize the table re-computation method and thus require the storage of one
(for [33]) or two (for [37]) randomized representation(s) of the AES S-box. The
differences in timing performances come from the fact that the methods in [37]
and [34] process one loop over all the 256 elements of the S-box look-up table
(each loop iteration processing itself a few elementary operations), which is more
costly than the 36 field multiplications and 56 bitwise additions involved in our
method (see Table 1).
Eventually, in the third-order case our method has acceptable timing/memory
performances. For comparison, it stays faster than the second-order countermea-
sures proposed in [37] and [33] and it still requires much less RAM memory. For
a chip running at 31MHz (which is today quite usual) an AES encryption of one
block requiring 470 × 103 cycles, takes 91ms. For some use cases where the size
of the message to encrypt/decrypt is not too long such a timing performance is
acceptable (e.g. challenge-response protocols, Message Authentication Codes for
one-block messages as in banking transactions).

Provably Secure Higher-Order Masking of AES 425

6 Conclusion

In this paper, we have presented the first masking scheme dedicated to AES
which is provably secure at any chosen order and which can be implemented in
software at the cost of a reasonable overhead. We provided implementation
results showing the practical interest of our scheme as well as its efficiency com-
pared to the existing second-order masking schemes. In the full version of this
paper [35], we further give a formal security proof of our scheme including an
improved security proof for the scheme published by Ishai et al. at Crypto 2003.

References

1. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Kocc, cC.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

2. Blakely, G.: Safeguarding cryptographic keys. In: National Comp. Conf., New York,
June 1979, vol. 48, pp. 313–317. AFIPS Press (1979)

3. Blömer, J., Merchan, J.G., Krummel, V.: Provably Secure Masking of AES. In:
Matsui, M., Zuccherato, R. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

4. Blum, M., Micali, S.: How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits. SIAM J. Comput. 13(4), 850–864 (1984)

5. Canright, D.: A Very Compact S-Box for AES. In: Rao, J., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

6. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards Sound Approaches to Counteract
Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
398–412. Springer, Heidelberg (1999)

7. Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B., Kocc, cC.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

8. Coron, J.-S., Prouff, E., Rivain, M.: Side Channel Cryptanalysis of a Higher Or-
der Masking Scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 28–44. Springer, Heidelberg (2007)

9. Cramer, R., Damg̊ard, I., Ishai, Y.: Share Conversion, Pseudorandom Secret-
Sharing and Applications to Secure Computation. In: Kilian, J. (ed.) TCC 2005.
LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

10. Crescenzo, G.D., Lipton, R.J., Walfish, S.: Perfectly Secure Password Protocols in
the Bounded Retrieval Model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

11. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)
12. Damg̊ard, I., Keller, M.: Secure Multiparty AES (full paper). Cryptology ePrint

Archive, Report 20079/614 (2009), http://eprint.iacr.org/
13. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS,

pp. 293–302. IEEE Computer Society, Los Alamitos (2008)
14. FIPS PUB 197. Advanced Encryption Standard. National Institute of Standards

and Technology (November 2001)
15. FIPS PUB 46-3. Data Encryption Standard (DES). National Institute of Standards

and Technology (October 1999)

http://eprint.iacr.org/

426 M. Rivain and E. Prouff

16. Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplica-
tion Method. In: Kocc, cC.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
158–172. Springer, Heidelberg (1999)

17. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against
Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003)

18. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

19. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

20. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

21. Maurer, U.: A provably-secure strongly-randomized cipher. In: Damg̊ard, I. (ed.)
EUROCRYPT 1990. LNCS, vol. 473, pp. 361–388. Springer, Heidelberg (1991)

22. Messerges, T.: Securing the AES Finalists against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

23. Messerges, T.: Using Second-order Power Analysis to Attack DPA Resistant Soft-
ware. In: Paar, C., Kocc, cC.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

24. Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract).
In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004)

25. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

26. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)

27. Oswald, E., Mangard, S., Pramstaller, N.: Secure and Efficient Masking of AES –
A Mission Impossible? Cryptology ePrint Archive, Report 2004/134 (2004)

28. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

29. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T., Yung, M.: A block cipher
based pseudo random number generator secure against side-channel key recovery.
In: Abe, M., Gligor, V.D. (eds.) Symposium on Information, Computer and Com-
munications Security – ASIACCS 2008, pp. 56–65. ACM, New York (2008)

30. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2010)

31. Popp, T., Kirschbaum, M., Zefferer, T., Mangard, S.: Evaluation of the Masked
Logic Style MDPL on a Prototype Chip. In: Paillier, P., Verbauwhede, I. (eds.)
CHES 2007. LNCS, vol. 4727, pp. 81–94. Springer, Heidelberg (2007)

32. Rivain, M.: On the Physical Security of Cryptographic Implementations. PhD the-
sis, University of Luxembourg (September 2009)

33. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. In: Baignères, T., Vaudenay, S. (eds.)
FSE 2008. LNCS, vol. 5086, pp. 127–143. Springer, Heidelberg (2008)

Provably Secure Higher-Order Masking of AES 427

34. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. Cryptology ePrint Archive, Report
2008/021 (2008), http://eprint.iacr.org/

35. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. Cryptology
ePrint Archive (2010), http://eprint.iacr.org/

36. Rivain, M., Prouff, E., Doget, J.: Higher-Order Masking and Shuffling for Software
Implementations of Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 171–188. Springer, Heidelberg (2009)

37. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

38. Shamir, A.: How to Share a Secret. ACM Commun. 22(11), 612–613 (1979)
39. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:

Leakage resilient cryptography in practice. Cryptology ePrint Archive, Report
2009/341 (2009), http://eprint.iacr.org/

40. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The World is Not Enough: Another Look on Second-
Order DPA. Cryptology ePrint Archive, Report 2010/180 (2010),
http://eprint.iacr.org/

41. Tillich, S., Herbst, C.: Attacking State-of-the-Art Software Countermeasures-A
Case Study for AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS,
vol. 5154, pp. 228–243. Springer, Heidelberg (2008)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Algebraic Side-Channel Analysis in the Presence
of Errors

Yossef Oren1, Mario Kirschbaum2, Thomas Popp2, and Avishai Wool1

1 Computer and Network Security Lab, School of Electrical Engineering
Tel-Aviv University, Ramat Aviv 69978, Israel

{yos,yash}@eng.tau.ac.il
2 Institute for Applied Information Processing and Communications

Graz University Of Technology, Inffeldgasse 16a, A-8010, Austria
{mario.kirschbaum,thomas.popp}@iaik.tugraz.at

Abstract. Measurement errors make power analysis attacks difficult to
mount when only a single power trace is available: the statistical methods
that make DPA attacks so successful are not applicable since they require
many (typically thousands) of traces. Recently it was suggested by [18]
to use algebraic methods for the single-trace scenario, converting the key
recovery problem into a Boolean satisfiability (SAT) problem, then us-
ing a SAT solver. However, this approach is extremely sensitive to noise
(allowing an error rate of well under 1% at most), and the question of
its practicality remained open. In this work we show how a single-trace
side-channel analysis problem can be transformed into a pseudo-Boolean
optimization (PBOPT) problem, which takes errors into consideration.
The PBOPT instance can then be solved using a suitable optimization
problem solver. The PBOPT syntax provides for a more expressive input
specification which allows a very natural representation of measurement
errors. Most importantly, we show that using our approach we are able
to mount successful and efficient single-trace attacks even in the presence
of realistic error rates of 10%–20%. We call our new attack methodology
Tolerant Algebraic Side-Channel Analysis (TASCA). We show practical
attacks on two real ciphers: Keeloq and AES.

Keywords: Algebraic attacks, power analysis, side-channel attacks,
pseudo-Boolean optimization.

1 Introduction

1.1 Background

Side-channel cryptanalysis has been an active field of research for the last 15
years. For the simplest devices, that are susceptible to Simple Power Analysis
attacks (SPA) [12], the secret key can be read directly from the shape of a side-
channel trace (power consumption, EM radiation, etc.). More commonly, the
cryptanalyst needs to use differential (DPA) analysis [12,14]. DPA techniques

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 428–442, 2010.
c© International Association for Cryptologic Research 2010

Algebraic Side-Channel Analysis in the Presence of Errors 429

typically require multiple traces, often hundreds or more, to overcome the mea-
surement noise via signal processing and statistical estimation techniques. Ob-
taining all these traces places a significant burden on the attacker, and it is quite
interesting to discover ways to extract the secret key data from a single trace
from devices that are not susceptible to SPA.

Recently it was suggested by [18] to separate the problem into two separate
phases: the first phase is the estimation phase, where information is extracted
from the power traces using signal processing techniques, while the second is
the key recovery phase, where this information is processed to return cryptan-
alytically significant results. In particular, [18] uses algebraic methods for the
key recovery phase, converting the problem into a Boolean satisfiability (SAT)
problem, then using a SAT solver. Algebraic cryptanalytic attacks using exter-
nal solvers were first explored by Massacci and Marraro in [16] in the context of
conventional cryptanalysis. However, these attacks are difficult to apply directly
to side-channel attacks, since the SAT representation of a cryptosystem and its
side-channel measurements is extremely sensitive to noise — indeed [18] were
only able to solve problems with an error rate well under 1%, which is much
lower than realistic noise on a single trace. Side-channel analysis using standard
solvers was also suggested by [17]. Our goal in this paper is to demonstrate
a more promising algebraic cryptanalysis approach, based on Pseudo-Boolean
optimization, which is able to withstand much higher error rates.

Other non-algebraic methods have also been suggested for dealing with single-
trace power analysis in the presence of noise. A side-channel attack using the
Viterbi iterative algorithm [20] for dealing with errors, first presented in the
context of elliptic-curve operations in [11], is one example.

1.2 Causes of Errors in Side-Channel Information

The side-channel information emitted by a cryptographic device is an analog
high-frequency signal that is measured with a suitable instrument. In case of
the power consumption side-channel, the logic cells in the digital circuit draw
power from the supply according to their state and activity. This instantaneous
power consumption signal is measured with an oscilloscope. The measurement
process includes an analog-to-digital conversion of the sampled values. On their
way from the logic cell to the oscilloscope’s digital output, the power values are
influenced by all kinds of physical effects and other signals. These influences are
commonly denoted as noise. This noise can cause decoding errors when trying
to estimate the original power consumption of the logic cell.

The overall noise that is present in measured power traces can be divided
into electronic noise, quantization noise, and switching noise. Electronic noise is
present in every measurement in practice. It includes the noise that occurs in con-
ductors (e.g. thermal noise) and semiconductors (e.g. generation-recombination
noise). Furthermore, sources of electronic noise are the conducted and radiated
emissions from all components that are part of the control and measurement
setup and from external components that operate in the vicinity of the measured
cryptographic device. These components include the supply unit that powers the

430 Y. Oren et al.

device and the oscilloscope. Another important source of electronic noise is the
clock generator that supplies the digital circuit in the cryptographic device with
the clock signal. Due to its typical rectangular shape, this signal contains high-
frequency components that also influence the measured power values.

The digital oscilloscope contains another source of noise. The analog-to-digital
conversion process that it performs introduces small errors in the measured val-
ues. The effect of these errors can be modeled as noise in the measured signal,
commonly called quantization noise. The higher the resolution of the oscillo-
scope, the lower is the amount of quantization noise.

The third main type of noise is switching noise. Besides the power consump-
tion of the logic cells we are interested in, typically also other cells contribute to
the total power consumption value at a specific point in time. The power signals
from these other cells are denoted as switching noise. The main parameters of
the control and measurement setup that influence the amount of switching noise
for a specific point in time are the bandwidth of the power measurement system
and the clock frequency. The lower the bandwidth of the measurement path the
more the distinct power consumption signals of individual logic cells get blurred
together and the amount of switching noise increases. A higher clock frequency
can also have such an effect[14].

1.3 Contributions

Our key observation is that a SAT representation does not offer a very conve-
nient or efficient method to deal with errors in side-channel information. Instead,
we suggest casting the problem in the more expressive language of non-linear
pseudo-Boolean optimization (PBOPT).

A PBOPT representation offers several properties that are suitable for single-
trace side-channel attacks in the presence of errors: (a) A side-channel mea-
surement is typically the Hamming weight w of some hardware feature: this
is naturally represented by equating a sum of state bits to the integer w –
in contrast, representing integers in a SAT instance is quite awkward; (b) It is
straight-forward to add variables representing error quantities to the side-channel
equations; (c) Unlike a SAT, that is basically a decision (“yes/no”) problem, a
PBOPT instance includes an objective function, and the solver finds a solution
that minimizes this objective.

Luckily, PBOPT offers more than a convenient representation formalism. Re-
search on non-linear pseudo-Boolean equation solvers is a field which displays re-
markable activity, and even has a highly-competitive yearly evaluation of solvers
[15]. Thus, a PBOPT instance representing a single-trace side-channel attack
with errors can actually be solved efficiently, leading to our new attack method-
ology: Tolerant Algebraic Side-Channel Analysis (TASCA).

To demonstrate the viability of our TASCA approach, we mounted success-
ful and efficient single-trace attacks, against real, fielded ciphers, even in the
presence of realistic error rates of 10%–20%. We show a practical attack on the
Keeloq system, and preliminary results on AES.

Algebraic Side-Channel Analysis in the Presence of Errors 431

Organization: The next section describes the basics of algebraic side-channel
attacks. Section 3 describes our new Tolerant Algebraic Side-Channel Analysis
(TASCA) approach. Section 4 shows the effectiveness of TASCA against a power-
simulated ASIC implementation of Keeloq, and Section 5 shows preliminary
results against a power-simulated 8-bit microcontroller implementation of AES-
128. Section 6 suggests some open problems. We conclude with Section 7.

2 Algebraic Side-Channel Attacks

2.1 General Structure of an Algebraic Attack

As stated in [18], the cryptanalytic problem needs to be transformed into a set
of equations before being submitted to the equation solver. This equation set
typically consists of a general description of the cryptographic algorithm, to-
gether with an assignment of any known inputs to the algorithm. If the equation
set represents an algebraic side-channel attack, it will contain additional equa-
tions which describe the side-channel emanations of the system in addition to
the standard known plaintexts and ciphertexts. Building on the results of [18],
we can assume that an errorless description of the side-channel data will lead to
successful key recovery. However, such an equation set is very sensitive to noise:
a single errored side-channel measurement will create an equation set that is
either unsatisfiable, or is satisfied by the wrong key.

The equations are presented to the solver using the solver’s problem descrip-
tion language. The authors of [18] used a SAT solver which accepts its input in
the form of conjugate normal form (CNF) SAT statements. As we shall see, we
use the richer and more powerful pseudo-Boolean optimization representation.

2.2 Naïve Methods of Dealing with Errors

Assume that the vector z represents some side-channel information extracted
from a certain cryptographic operation (for example Hamming weights or Ham-
ming distances) under a certain key kc, and that there exists some distance
function d (k, z) which indicates how likely a given vector z is to be the result
of the operation under a certain key k. As noted in the introduction, the raw
side-channel measurement (or trace) in itself does not typically have the form
of a vector of Hamming weights and must pass some preprocessing before being
used. We consider this process, called estimation, external to the attack itself.

A typical way of implementing the distance function d (k, z) is to perform a
power simulation of the cryptographic operation using a hardware model of the
cryptographic device assuming the key k, obtain from this simulation a vector
of simulated side-channel measurements zk and return the mean-squared error
(or L2 distance) of the two vectors:

d (k, z) =
∑

i

(
zki − zi

)2 (1)

432 Y. Oren et al.

We can assume that the measurement z was created from the “optimal” mea-
surement zc by the addition of some noise vector:

z = zc + e (2)

The magnitude of the vector e is defined by the noise model and the performance
of the estimator. In this paper we assume a moderately effective estimator and
limit our discussions to cases in which the maximum amplitude of e is ±1 bits in
each measurement. An estimator is a hard estimator if its outputs are discrete
symbols without any confidence information. Under our assumptions the hard
estimator will always have a measurement error of either -1, 0 or 1 bits. We
can now quantify the errors by considering only Perr , the probability that e is
nonzero in a given location.

We will now describe several well-known ways of attempting to identify and
eliminate noise in decoding problems.

Random Subset Decoding. If Perr is very low, we can try to sample a ran-
dom subset of measurement locations. If by chance none of the measurements
are errored, we can attempt to recover kc from the sample and verify its cor-
rectness using trial decryption. Assuming a vector with an i.i.d. probability of
hard error of Perr , the probability that a set of m indices will contain no errors
is (1− Perr)m. If we assume, for example, that Perr = 0.01 and that 128 indices
are required for an attack to succeed, the overall probability of success is only
27%. For higher error probabilities this method quickly becomes impractical.

Standard Algebraic Attack with Duplication. The algebraic attack pre-
sented in [18] requires that the measured side-channel information contains no
errors. In such a model, a variant of the random subset method can be used:
instead of selecting a subset of the data, we can enumerate over all possible
locations of errors in the measured data, then create many duplicate instances,
each “fixing” the anticipated measurement errors in a certain location and then
attempting to carry out an algebraic attack. All duplicate instances are then
combined, while we specify to the solver that a single one of the instances needs
to be satisfied. Let us assume for example that we have 128 side-channel measure-
ments and we assume that at most 2 locations out of the 128 contain single-bit
errors. In this case we can create

(128
2
)

duplicate instances, each assuming the
errors occurred at a certain pair of locations and “fixing” them. We then specify
to the solver that only one out of all of the duplicate instances needs to be sat-
isfied. While most of these duplicates will be unsatisfiable (or result in a wrong
recovered key), in one of them the measurement error will indeed be cancelled
out by our guess, leading to a successful key recovery. The duplication method
is obviously only suitable for a very small amount of errors, since the number of
additional instances grows exponentially with the amount of anticipated errors.

Iterative Methods. If the cipher uses the key bits sequentially (bit by bit)
in the encryption or decryption process, an iterative Viterbi-like algorithm [20],
which is described in detail in [11], can be used to recover errors. The Viterbi

Algebraic Side-Channel Analysis in the Presence of Errors 433

algorithm’s main parameter is its data structure size, which controls the number
of key candidates the algorithm maintains during its operation. Letting this size
approach 2keysize, we can treat the iterative algorithm’s output as an effective
ordering of all key candidates with increasing distance from the measured side-
channel information z. The index of the correct key candidate in this ordered
list can be an indication of the effectiveness of the iterative approach for solving
this specific problem.

The main disadvantage of the iterative method is that it operates in a greedy
manner, and cannot return to a key candidate once it has been disqualified.
Essentially, this limits the amount of usable side-channel data to a single use
of each key bit. In addition, diffusion elements (such as the AES MixColumns
operation) highly complicate the operation of iterative methods, since many state
bits change almost simultaneously and affect every side-channel measurement.

3 Handling Errors by Pseudo-Boolean Representation

3.1 Side-Channel Analysis as a Pseudo-Boolean Problem

Before we present our approach, let us return to the fundamental problem of
side-channel analysis, which can be described as follows:

Given the algorithmic description of a cryptographic algorithm, the phys-
ical power model of the device under attack and the side-channel
measurements, output a key assignment for which the expected side-
channel information is as close as possible to the measured side-
channel information.

When written in the above form, it is clear to see that side-channel analysis is
naturally represented as an optimization problem:

Find the minimal assignment to an error vector such that it is pos-
sible for the cryptographic algorithm, operating under a certain
unknown key and in a certain physical power model, to produce
the measured side-channel information affected by this error.

We call the class of attacks which performs cryptanalysis using an optimizer
instead of a solver Tolerant Algebraic Side-Channel Analysis (TASCA).

3.2 An Introduction to Pseudo-Boolean Optimizers

The field of pseudo-Boolean optimization (PBOPT) problems is a special case
of integer programming problems [5]. Stated informally, a PBOPT instance con-
sists of an objective (goal) function and a series of inequality constraints, both of
which are defined over some set of Boolean variables. A solution to the PBOPT
instance must satisfy all inequality constraints while minimizing the objective
function. Unlike standard Boolean satisfiability (SAT) problems, a PBOPT prob-
lem instance admits multiple solutions, choosing the one solution that minimizes
the objective function.

434 Y. Oren et al.

As stated formally in [4], a linear PB problem is an optimization problem over
n binary (Boolean) variables x1 · · ·xn having the following form:

min cTx (3)
Ax ≥ b (4)
x ∈ {0, 1}n (5)

where all the coefficients are signed integers:A ∈ Zm×n, b ∈ Zm, c ∈ Zn. The term
cTx is the objective function and the row inequalities in Ax ≥ b are the linear con-
straints. The solvers we are interested in can also accept non-linear constraints of
the form

∑t
i=1 di

∏k
j=1 �i,j ≥ ri, where �i,j ∈ {xi,j , x̄i,j}. Because all coefficients

are signed values, equality constraints (of the form
∑
di
∏
�i,j = ri) and less-than

constraints (of the form
∑
di
∏
�i,j ≤ ri) can also be reduced to the above form.

Because of their relation to both SAT, linear programming, and integer pro-
gramming, PB instances can be solved using a variety of approaches. Some
solvers attempt to compile the PB instance into a SAT instance and apply a
standard SAT solver, possibly multiple times; others map the problem into an
integer programming instance; some solvers use a hybrid approach, combining
the best features of the two.

The pseudo-Boolean description language is very expressive and allows rela-
tively complex constraints to be described quite efficiently. Notably, each errored
side-channel measurement can be efficiently written down as a single equation.

The solver we chose to use is SCIPspx version 1.2.0 [4,3,2]. SCIPspx won the
first prize for non-linear optimizer in the Pseudo-Boolean Evaluation Contest
of SAT 2009 [15]. SCIPspx solves the optimization problem by using integer
programming and constraint programming methods. It performs a branch-and-
bound algorithm to decompose the problem into sub-problems, solving a linear
relaxation on each sub-problem and finally combining the results. The linear
relaxation component of SCIPspx is the standalone LP solver SoPlex [21].

3.3 Elements of a TASCA Equation Set

To represent a side-channel attack as a PB optimization instance a TASCA
equation set is written, consisting of the following four sections:

1. A general description of the cryptographic algorithm as a set of
equations: The cryptosystem is described by writing down internal state
transformations leading from plaintext to ciphertext. The specification is
very hardware-minded, with each state bit/memory element (flip-flop) typi-
cally represented as a sequence of variables representing its evolution in time,
and each combinational element (gate) finding its way into an equation con-
necting the variables. For example, the AES state has 16 bytes, each of which
changes its value 4 times in each round (other than the first and the last).
This means that the state of each subround is represented by 16× 8 binary
(0-1) variables, for a total of 16× 8× 41 = 5248 variables for an entire AES

Algebraic Side-Channel Analysis in the Presence of Errors 435

encryption. There will also be variables for every key bit and every subkey
bit, and a set of equations representing the subkey expansion.

2. An assignment of any known inputs to the algorithm: These can
be known plaintext or ciphertext, or even more subtle hints such as the
relationship between two consecutive unknown plaintexts.

3. A specification of the measurement setup: The actual side-channel
measurement is mapped to the internal state according to the structure of
the physical hardware device. For example, an 8-bit microcontroller-based
implementation will typically leak the Hamming weight of individual state
bytes as they are accessed, while a parallelized ASIC will typically leak the
Hamming distance between the former and present values of all bits in the
device’s internal state. Note that both in the case of Hamming distance
and in the case of Hamming weight the measurement equation consists of
an equality between a sum of Boolean variables on one side and an integer
value on the other –

∑
j statei,j = mi, where statei,j is the value of state

variable j at time i and mi is the side-channel measurement at time i. This
form of equation is natural to write down using the PB syntax. It should be
noted that when attacking the same cipher running on different target archi-
tectures, the measurement setup is usually the only section of the equation
set which needs to be modified.

4. A set of potentially errored measurements: This section matches the
measurements described in the previous section to actual outputs of the
estimation phase. As stated previously, the main point of the TASCA ap-
proach is to allow errors in the estimation. This is done in practice by adding
additional error variables to the above-mentioned measurement equations.
These error variables are used to cancel out errors in the measurements. In
our implementation we included two error variables per measurement (one
with a plus sign and one with a minus), which allow the true side-channel
value to be within ±1 bits of the measured one. It should be noted that this
section is the only part of the equation set which tolerates errors (all other
sections are explicitly defined), and that this section only accounts for 1%
to 5% of the entire set of equations for the cryptosystems we tested.

In addition to the equation set, the solver is provided with a objective function
which it is required to minimize. In our case, our objective is to use as few error
variables as possible.

4 An Attack on Keeloq

Keeloq is a block cipher which is most commonly used in remote keyless en-
try (RKE) systems, e.g. for cars. We chose to attack this cipher first since it
has a very simple round structure which is relatively easy to represent as equa-
tions. Furthermore, a reduced version of Keeloq (using 140 rounds instead of
the full 528) was already broken using standard algebraic techniques in [7] with-
out requiring side-channel inputs. In [10] a physical ASIC implementation of the

436 Y. Oren et al.

Keeloq cipher was shown vulnerable to a standard DPA attack, an attack we
were also able to reproduce.

Because it only operates on a single bit of the key in each round, Keeloq is
very effectively attacked using the iterative approach described in 2.2.

4.1 The Keeloq Algorithm

The Keeloq algorithm [9] is a block cipher designed for efficient hardware im-
plementation. Keeloq has a block size of 32 bits and a key size of 64 bits. As
shown in Figure 1 (taken from [10]), its main components include an internal
state register (32 bits) and a non-linear feedback function (NLF). In each round
of the cipher, NLF operates on five bits from the cipher’s current state. The
output from NLF is mixed with some prior state bits and with one of the 64 key
bits and finally shifted back into the state register. To perform encryption, the
plaintext is loaded into the state register, the key is loaded into the key register,
and the entire system is clocked for 528 rounds. After these 528 rounds the state
register contains the ciphertext. To perform decryption the ciphertext is placed
in the state register and the system is clocked 528 times in the opposite direc-
tion. The progression of the state register is typically modeled as a vector of bits
S0 · · ·S559, with S0 · · ·S31 being the plaintext and S528 · · ·S559 the ciphertext.

Fig. 1. Structure of the Keeloq cipher (taken from [10])

4.2 An Equation Set for Keeloq

As stated in Section 3.3, a TASCA equation set consists of four elements -
the algorithm, the inputs, the measurement setup and finally the (potentially
errored) measurements.

The algorithmic description of a single Keeloq round is a simple set of 2 PB
equations:

NLFi = NLF (Si+31, Si+26, Si+20, Si+9, Si+1) (6)

Si+32 = NLFi ⊕ Si ⊕ Si+16 ⊕Ki mod 64 (7)

Algebraic Side-Channel Analysis in the Presence of Errors 437

The function NLF is a 5-to-1 non-linear function defined such that NLF (a, b,
c, d, e) is bit number abcdeb (binary) of the hexadecimal constant 3A5C742E,
where bit 0 is the least significant bit. It has no efficient linear or algebraic
representation, and is represented as a single disjunctive normal form (DNF)
equation based on the function’s truth table (see the extended version of this
paper for more details). The XOR function on 4 variables (effectively 5, since
we realize the function x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 = 0) is also represented by a
single equation. Each of these equations is repeated 528 times to lead from the
plaintext (S0 · · ·S31) to the ciphertext (S528 · · ·S559).

In its most common mode of operation, Keeloq uses rolling codes which man-
dates that the ciphertext is known to the attacker but not the plaintext. Accord-
ingly, the only known input to our solver was the ciphertext.

If we assume Keeloq is implemented on an ASIC, the power traces tend to be
correlated with the Hamming distance of the entire 32 bits of the state register
between the current round and the previous round (a similar attack can also
be mounted if the device leaks the Hamming weight). To put this into equation
form, we define the Hamming distance between each two consecutive bits of the
state progression and group them in sets of 32. Finally, we add two additional
Boolean variables to the measurement sums to allow for errors:

hdi = Si ⊕ Si−1 (8)

HDi =
i+32∑

j=i
hdj (9)

ĤDi = HDi + e+i − e−i
The number of rounds for which we produce side-channel measurement equa-
tions (msc) is a configuration parameter of the system: the following subsection
shows how to select a proper value for msc. A Keeloq key recovery instance with
side-channel measurements equations applied to the final msc = 90 rounds of
encryption contains a total of 428 equations and has a file size of about 140K. A
partial listing of a sample PB instance is provided for reference in the extended
version of this paper.

4.3 Attack Results

We performed a power simulation of 300 ASIC-based Keeloq decryptions, cor-
rupted the simulated power measurements with different probabilities of error
and submitted them to the SCIP PB-solver. For each decryption and tested error
probability, we selected Perr×528 rounds and corrupted the side-channel values
measured in those rounds (specifically, the device-total Hamming distance) by
±1. The attack used the 64-bit version of SCIPspx 1.2.0 on a quad-core Intel
Core i7 950 at 3.06GHz with 8MB cache, running Windows 7 64-bit Edition. In
each experiment the solver was asked to recover the 64-bit key from the errored
side-channel outputs produced by the final 90 rounds of encryption.

438 Y. Oren et al.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10

0

10
1

10
2

10
3

10
4

10
5

10
6

S
ol

vi
ng

 t
im

e
(s

ec
on

ds
)

Perr

Key recovery time for Keeloq - Viterbi vs. TASCA
Solid line: TASCA, Dashed line: Viterbi

Fig. 2. TASCA key recovery from the
final 90 rounds of Keeloq

90 100 110 120 130 140 150
0

1000

2000

3000

4000

5000

6000

7000

T
im

e
(s

ec
)

Rounds attacked (msc)

Time for key recovery - Keeloq with Perr=8.3%

Fig. 3. TASCA speed as a function of
msc

Figure 2 shows our results. For reference we also show the performance of an
iterative attack on the final 64 rounds of the encryption using comparable bit
error rates. We emphasize that the attack is on the full 528-round cipher, even
though it uses only a subset of the measured side-channel data.

It can be seen that the solver was able to find the key even with Perr = 18.8%
with an average running time of 3.8 hours per instance, and that the time grows
super-linearly with the error probability. The TASCA solver is 10 to 100 times
faster than the iterative solver on instances with Perr ≥ 11%.

We also noted it was important to properly choose the number of side-channel
measurements passed to the solver (msc). When too few rounds were passed,
the optimal solution found was not necessarily the correct key. When too many
rounds were passed, the computational burden involved slowed down the solver,
as shown in Figure 3. In the case of Keeloq a good tradeoff was msc = 90 rounds
which provided enough information to find the key in nearly all of the cases.
For lower mscvalues the solver returned incorrect results for at least 25% of the
instances.

As an aside note, the iterative decoder, which struggled with single-trace key
recovery, had much better performance when attacking multiple traces. The alge-
braic solver did not perform as well with additional inputs, since each additional
trace significantly increased the size of the equation set.

5 Preliminary Results on AES

5.1 The AES Algorithm

We chose to model our device under attack as naïve 8-bit microcontroller im-
plemention of AES-128[8], is a block cipher with a 128-bit key and 16-byte (or
128-bit) input blocks. To perform encryption, the plaintext is first fed into a
16-byte state register. This state register is then manipulated 41 times during
the sequence of the 10 rounds of AES-128 to produce the ciphertext. There are 4

Algebraic Side-Channel Analysis in the Presence of Errors 439

Table 1. Instance size and performance of straight encryption

Keeloq AES (LUT) AES (Canright)
Instance file size 553K 32873K 12569K
of equations 1153 27344 93090
of variables 13825 171208 229008

of constraints 13825 173640 231506
Encryption time (sec.) 2.59 61.07 245.45

types of manipulations: SubBytes, AddRoundKey, ShiftRows and MixColumns,
with SubBytes being the only non-linear operation in AES. AddRoundKey is
performed 11 times during encryption, first with the supplied secret key and
then 10 times with round keys derived from the secret key using a non-linear
process which uses the SubBytes process as well.

5.2 An Equation Set for AES

The AES hardware realization can be modified and optimized in a variety of
ways. Specifically when dealing with the S-box component of AES, which per-
forms the SubBytes operation, there are a variety of hardware implementations
offering various tradeoffs between better speed and more efficient hardware con-
sumption.

Our first TASCA representation of AES implementation was based on a port
of an OpenCores VHDL AES code [19]. This implementation models the S-box
as a lookup table (LUT), leaving the compiler with the task of optimizing it to
a minimal hardware footprint. A second TASCA representation was based on
the efficient composite field representation of the S-box designed by Canright
[6]. In this design, the S-box input is manipulated under a more efficient basis
representation.

Table 1 summarizes the performance of the two cipher implementations, with
the performance of the Keeloq encryption provided as reference. Since the en-
cryption was described as an equation set, performance was similar whether the
plaintext, the ciphertext or any intermediate state was supplied. Similarly, any
round key can be substituted for the secret key with no effect on performance.
Analyzing the results, it appears that the performance of the solver is dominated
by the number of equations under consideration and not by the complexity of
the equations themselves. This may be a property of the SCIP solver, and not
of PB optimizers in general, since SCIP essentially performs a search over the
tree of equations. Specifically, other PB solvers which compile their inputs into
SAT instances may show better performance using the Canright S-box, since its
reduced hardware complexity should make it easier to simulate.

Surprisingly, the solver had a very hard time inverting the SubBytes and
MixColumns operations given their algebraic description. We found out that
including equations for both SubBytes and for inverse SubBytes (that is, one
equation stating that Si+1 = SubBytes (Si) and another stating that Si =
SubBytes−1 (Si+1)) sped up the solver dramatically.

440 Y. Oren et al.

Table 2. A TASCA attack on the AES key expansion phase

Rounds AES (LUT) AES (Canright)
instance size # of equations time (sec) instance size # of equations time (sec)

1 765K 164 11 208K 1484 193
2 1529K 308 1341 414K 2948 10800
3 2293K 452 1690 620K 4412 345600

5.3 Initial Results

To date, the only attacks we have run on AES are reconstructions of the SPA
attack of Mangard on the key expansion algorithm, as described in [13], without
any errors. A secret key was recovered from 1, 2 and 3 rounds of expansion (16,
32 and 48 Hamming weights1). The key expansion was modeled using both S-box
representations. The results are summarized in Table 2.

The time performance of the solver was worse than we estimated. We were
also surprised to find that Canright representation yielded longer running times
than the LUT representation, despite having instances that are 3 times smaller.
Understanding these phenomena is a topic of future work.

6 Open Issues

6.1 Full Attack against AES and Other Ciphers

Our preliminary results thus far show that single-trace side-channel attacks
against AES can be represented as PBOPT problems, and that the represen-
tations vary dramatically in size and complexity depending on the hardware
implementation we start with. Furthermore, TASCA running time was not cor-
related with instance size - in fact the more compact Canright representation
produced run times an order of magnitude slower than those produced by the
LUT representation. We plan to try and better understand which instance types
lead to faster TASCA attacks.

6.2 Better PB Solvers

The authors do not claim to be experts in the design and usage of PB solvers.
In fact, the SCIP tool which we used has hundreds of configuration options
which were left at their default values. It appears that the performance of the
solvers can be increased by quite a large factor using careful design – the fact
that a simple AES encryption took 60 seconds on our unoptimized platform
is especially surprising. Since these solvers rely on heuristics to improve their
performance, a set of heuristics for cryptanalysis needs to be developed. With
a proper choice of heuristics we hope the performance of these attacks can be

1 The published results in [13] show that 40 recovered Hamming weights are enough
to uniquely determine the secret key.

Algebraic Side-Channel Analysis in the Presence of Errors 441

increased by several orders of magnitude, either by using SCIP or by evaluating
a different PB solver. To this end, we have shared our cryptanalytic instances
with the PB design community [15].

6.3 TASCA as Part of the Design Tool Chain

The specification language used to define PB optimization problems is rich
enough to allow description of arbitrary Boolean circuits. It seems possible to
write a compiler that receives a hardware description in a high-level language
such as VHDL [1] and outputs a PB-solver instance. Such a tool can be made
part of a secure hardware design workflow, allowing designers to evaluate the
susceptibility of their designs to side-channel attacks. By performing TASCA
attacks with different subsets of the side-channel information, designers can as-
sess the risk caused by exposure of various components of the internal state and
so decide which components need a higher level of protection.

7 Conclusion

We showed a new attack methodology called Tolerant Algebraic Side-Channel
Analysis (TASCA). Our methodology transforms a single-trace side-channel
analysis problem into a pseudo-Boolean optimization problem (PBOPT) form.
The PBOPT syntax allows a very natural representation of measurement errors.
We showed that using our approach we are able to mount successful single-trace
attacks against real ciphers, even in the presence of realistic error rates.

Acknowledgements. Parts of the research described in this paper have been
supported by the Austrian Science Fund (FWF) under grant number P22241-
N23 (“Investigation of Implementation Attacks”). The authors wish to thank
the anonymous reviewers for their encouraging and insightful comments.

References
1. IEEE standard VHDL language reference manual. IEEE Std 1076-2008 (Revision

of IEEE Std 1076-2002), pp. c1–626 (26, 2009)
2. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Univer-

sität Berlin (2007)
3. Berthold, T., Heinz, S., Pfetsch, M.E., Winkler, M.: SCIP – solving constraint

integer programs. In: SAT 2009 competitive events booklet (2009)
4. Berthold, T., Heinz, S., Pfetsch, M.E.: Nonlinear pseudo-boolean optimization:

Relaxation or propagation? In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584,
pp. 441–446. Springer, Heidelberg (2009)

5. Bertsimas, D., Weismantel, R.: Optimization Over Integers. Dynamic Ideas (2005)
6. Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES

2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)
7. Courtois, N., Bard, G.V., Wagner, D.: Algebraic and slide attacks on KeeLoq. In:

Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg
(2008)

442 Y. Oren et al.

8. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1998)
9. Dawson, S.: Code hopping decoder using a PIC16C56. Microchip confidential,

leaked online in 2002 (1998)
10. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Manzuri Shal-

mani, M.T.: On the power of power analysis in the real world: A complete break
of the Keeloq code hopping scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 203–220. Springer, Heidelberg (2008)

11. Karlof, C., Wagner, D.: Hidden Markov model cryptoanalysis. In: Walter, C.D.,
Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 17–34. Springer,
Heidelberg (2003)

12. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

13. Mangard, S.: A simple power-analysis (SPA) attack on implementations of the AES
key expansion. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
343–358. Springer, Heidelberg (2003)

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer, New York (2007)

15. Manquinho, V., Roussel, O.: Pseudo-boolean competition 2009 (July 2009)
16. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. J. Autom.

Reason. 24(1-2), 165–203 (2000)
17. Potlapally, N.R., Raghunathan, A., Ravi, S., Jha, N.K., Lee, R.B.: Aiding side-

channel attacks on cryptographic software with satisfiability-based analysis. IEEE
Trans. on VLSI Systems 15(4), 465–470 (2007)

18. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel at-
tacks on the AES: Why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)

19. Satyanarayana, H.: AES128 package (December 2004)
20. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory 13(2), 260–269
(1967)

21. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD the-
sis, Technische Universität Berlin (1996)

Coordinate Blinding over Large Prime Fields

Michael Tunstall1 and Marc Joye2

1 Department of Computer Science, University of Bristol
Merchant Venturers Building, Woodland Road

Bristol BS8 1UB, United Kingdom
tunstall@cs.bris.ac.uk

2 Technicolor, Security & Content Protection Labs
1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France

marc.joye@technicolor.com

Abstract. In this paper we propose a multiplicative blinding scheme
for protecting implementations of a scalar multiplication over elliptic
curves. Specifically, this blinding method applies to elliptic curves in the
short Weierstraß form over large prime fields. The described counter-
measure is shown to be a generalization of the use of random curve iso-
morphisms to prevent side-channel analysis, and our best configuration of
this countermeasure is shown to be equivalent to the use of random curve
isomorphisms. Furthermore, we describe how this countermeasure, and
therefore random curve isomorphisms, can be efficiently implemented us-
ing Montgomery multiplication.

Keywords: Elliptic curve cryptography, side-channel analysis, counter-
measures.

1 Introduction

Side-channel analysis can be used to try and derive unknown information used
in cryptographic algorithms, such as cryptographic keys. The first side-channel
described in the literature was based on the total time taken to compute a
cryptographic algorithm [18]. Preventing this attack is well understood, as one
just requires a regular algorithm to prevent any side-channel leakage.

Another side-channel that has been described in the literature is based on
the observation that the power consumption of a microprocessor is dependent
on the instruction being executed and on any data being manipulated [6,19].
An attacker can, therefore, observe where functions, and sequences of functions,
occur in a power consumption trace. This allows information on cryptographic
keys to be determined if the sequence of instructions is affected by the value of
the key. An attacker can also determine if a value being manipulated by a micro-
processor can be correctly predicted by computing the correlation between a set
of predictions and the instantaneous power consumption. This allows informa-
tion on cryptographic keys to be determined since one can verify a hypothetical
set of values that occur after being combined with a key.

S. Mangard and F.-X. Standaert (Eds.): CHES 2010, LNCS 6225, pp. 443–455, 2010.
c© International Association for Cryptologic Research 2010

444 M. Tunstall and M. Joye

It was later observed that the electromagnetic field around a microprocessor
also has this property [12,23]. Preventing an attacker from being able to use
this information is more complex, as all the intermediate states of an algorithm
need to be masked with some random value [11,19]. When implementing a block
cipher this can be implemented by modifying the algorithm such that it operates
in this manner by modifying each function [3].

When a public-key cryptographic algorithm, such as RSA [24], is implemented
countermeasures are typically based on the structure of the entire function. For
example, when generating a signature σ from a message m using RSA, one com-
putes σ = μ(m)d mod N , where d is the private key and μ is an appropriate
padding function. That is, a standard exponentiation algorithm in (Z/NZ)∗.
This can be changed such that the intermediate states of the calculation can-
not be predicted by computing σ = [(μ(m) + r1 N)r2 φ(N)+d mod r3 N] mod N ,
where φ is Euler’s totient function and ri, for i ∈ {1, 2, 3}, are (small) random
values. However, one would not want to directly apply this countermeasure to
implementations of elliptic curve cryptosystems using prime fields. Increasing
the size of the modulus used in RSA has a relatively small impact on the over-
all execution time. The impact on elliptic curves will be larger since the prime
values used in the field arithmetic are much smaller.

Many different countermeasures for preventing side-channel analysis of elliptic
curve cryptographic algorithms have been proposed in the literature. In this pa-
per we describe a multiplicative blinding method for elliptic curve cryptographic
algorithms over prime fields that is a generalization of previously proposed meth-
ods, and describe how it can be efficiently implemented.

The rest of this paper is organized as follows. In the next section, we introduce
some background on elliptic curves and review some countermeasures against
side-channel analysis. Section 3 is the core of our paper. We define a new addition
using blinded coordinates. Detailed formulæ are provided for homogeneous and
Jacobian representations. In Section 4 we describe how one could implement
the proposed countermeasure. In Section 5 we discuss some further security
considerations that one would need to take into account when implementing the
proposed countermeasure. Finally, we conclude in Section 6.

2 Preliminaries

2.1 Elliptic Curves

Let Fq be a finite field. An elliptic curve E over Fq consists of points (x, y), with
x, y in Fq, that satisfy the full Weierstraß equation

E : y2 + a1 x y + a3 y = x3 + a2 x2 + a4 x + a6

with ai ∈ Fq (1 ≤ i ≤ 6), and the point at infinity denoted OOO. The set E(Fq) is
defined as

E(Fq) = {(x, y) ∈ E |x, y ∈ Fq} ∪ {OOO} ,

Coordinate Blinding over Large Prime Fields 445

where E(Fq) forms an Abelian group under the chord-and-tangent rule and OOO is
the identity element.

The addition of two points PPP = (x1, y1) and QQQ = (x2, y2) with PPP �= −QQQ is
given by PPP + QQQ = (x3, y3) where

x3 = λ2 + a1 λ − a2 − x1 − x2, y3 = (x1 − x3)λ − y1 − a1 x3 − a3 (1)

with λ =

⎧⎪⎨
⎪⎩

y1 − y2

x1 − x2
if PPP �= QQQ [addition]

3x1
2 + 2a2 x1 + a4 − a1 y1

2y1 + a1 x1 + a3
if PPP = QQQ [doubling operation]

.

Provided that the characteristic of field Fq is different from 2, 3, we can take
a1 = a2 = a3 = 0. In the sequel we will also assume that q = p is prime. We
define the short Weierstraß form over prime field Fp by the equation

y2 = x3 + a x + b . (2)

Note that the slope λ in the doubling then becomes λ = (3x1
2 +a)/(2y1), which

can be rewritten as 3(x1 − 1)(x1 + 1)/(2y1) when a = −3.
The scalar multiplication of a given point is a fundamental operation in cryp-

tographic algorithms that use elliptic curve arithmetic, i.e. [k]PPP for some integer
k < |E|. This operation uses the above addition law in conjunction with algo-
rithms analogous to standard exponentiation algorithms in (Z/NZ)∗.

In this paper we concentrate on the short Weierstraß form since this is typi-
cally the form one will find in standards, and is, therefore, the most commonly
used. For example, one can find standardized elliptic curves in the short Weier-
straß form in FIPS 186-3 [22], WTLS [32] and ANSI X9.62 [33].

2.2 Side-Channel Resistant Scalar Multiplication

When implementing a scalar multiplication using elliptic curve arithmetic on a
device that could potentially be attacked using side-channel analysis, there are a
variety of considerations that need to be taken into account. The simplest type
of side-channel analysis consists of timing or simple power analysis [18,19], where
an attacker attempts to derive information from the time taken for an algorithm
to execute or to identify operations from a few traces. Given that an attacker
would expect to be able to distinguish an addition from a doubling operation,
this requires an implementation to include one of the following countermeasures.

Regular Multiplication Algorithms. A variety of algorithms have been pro-
posed that will always compute a regular sequence of additions and doubling
operations (these methods are surveyed in [16]).

Unified Addition Formulae. The addition and doubling operations can be
implemented such that the same operations are performed for both an ad-
dition and a doubling operation (e.g. [5,7]).

446 M. Tunstall and M. Joye

Dummy Operations. An alternative to unified addition formulae was pro-
posed in [11,8], where the two operations are rendered indistinguishable us-
ing dummy operations. However, this approach can introduce the possibility
of a safe-error fault attack [34], although a discussion of fault analysis is
beyond the scope of this paper.

Furthermore, implementations need to be able to prevent an attacker from using
the observation that the power consumption (and electromagnetic field) is related
to the Hamming weight of the data being manipulated by a microprocessor at
any given point in time [12,19,23], referred to as differential side-channel analysis.
This requires an implementation to include further countermeasures to blind the
computation. The scalar itself can be protected using:

Multiplier Blinding. The scalar k can be modified by adding a random mul-
tiple of the order of the group E to the scalar k. This modifies the bits of k
without changing the output of a scalar multiplication [11].

There are numerous options for blinding the points being operated on. A sum-
mary of existing countermeasures is given below.

Point Blinding. If, for a given point RRR, where SSS = [k]RRR is known, then QQQ =
[k]PPP can be computed by calculating QQQ = [k] (PPP + RRR) − SSS. Points RRR and SSS
can be stored in a device along with k and updated after each execution by
computing RRR ← [r]RRR and SSS ← [r]SSS for some small random value r [11,18].

Multiplier Splitting. A scalar can be divided into two values whose bitwise
representations are random. This allows a scalar multiplication to be con-
ducted with two values whose combined effect is equivalent to that of the
desired scalar [9]. There are three methods of multiplier splitting:
– Additive Splitting. If we define the scalar k = r + (k − r) for some

integer r that has a similar bit-length to k, then QQQ = [k]PPP can be
computed by calculating QQQ = [r]PPP + [k − r]PPP .

– Multiplicative Splitting. For some elliptic curve E over Fq we define
k′ = k r−1 mod |E| for some integer r. Then QQQ = [k]PPP can be computed
by calculating QQQ = [k′] ([r]PPP).

– Euclidean Splitting. If we define the scalar k′ = �k/r� for some integer
r, then QQQ = [k]PPP can be computed by calculating QQQ = [k′] ([r]PPP) +
[k mod r]PPP .

Randomized Projective Points. An affine point PPP = (x, y) can, for example,
be represented as a homogeneous projective point (θ x, θ y, θ) for all θ ∈
Fp\{0} (this is covered in more detail in Section 3). When computing a scalar
multiplication using projective coordinates a randomly generated θ ∈ Fp\{0}
can be determined at the beginning of the computation so that an attacker
cannot guess what values are being manipulated [11].

Random Curve Isomorphisms. A given PPP on elliptic curve E can be ran-
domized by computing PPP ∗ ← ψ(PPP) on E∗ ← ψ(E) for a random curve
isomorphism ψ. Then QQQ = [k]PPP can be computed by calculating QQQ =
ψ−1([k]PPP ∗) [17].

Coordinate Blinding over Large Prime Fields 447

Of these countermeasures, the first two are not practical as they highly impact
the execution time of a scalar multiplication or require dedicated operations not
always readily available. Using randomized projective coordinates is much more
efficient but does not allow θ to be set to one. It is for this reason that it is
observed in [25] that using random curve isomorphisms is the most efficient of
these countermeasures. However, when using random curve isomorphisms the
parameters of E∗ cannot be chosen and one cannot take advantage of algorithms
that require curve parameters to be set to specific values.

3 Implementing Elliptic Curve Arithmetic

For elliptic curve arithmetic over Fp the use of projective coordinates is preferred
as no inversion is required for an addition or a doubling operation [31]. A point on
an elliptic curve can be represented with projective coordinates (X, Y, Z) that
are not unique for a given affine point. For example, homogeneous projective
coordinates (θ x, θ y, θ) represent the affine point (x, y) for all θ ∈ Fp \ {0},
and the point at infinity OOO is represented by (0, γ, 0) for some γ ∈ Fp \ {0}.
The simplest countermeasure that can be applied to these coordinate systems is
to choose some random θ ∈ Fp \ {0} and use the point (θ x, θ y, θ) as a random
representation of the affine point (x, y) [11] (referred to as randomized projective
points in the previous section). However, when using this representation, the
Z-coordinate cannot be chosen to be one. In the following sections we define
addition rules for randomized projective coordinates where the Z-coordinate
can be chosen to be one.

3.1 Homogeneous Projective Coordinates

As described above, homogeneous projective coordinates (θ x, θ y, θ) represent
the affine point (x, y) for all θ ∈ Fp\{0}, and the point at infinity OOO is represented
by (0, γ, 0) for some γ ∈ Fp \ {0}. We define the map Φ as mapping a point
PPP = (X, Y, Z) ∈ E to the point P ′P ′P ′ where Φ(PPP) = (X ′, Y ′, Z) = (fμX, fνY, Z)
for an arbitrary f ∈ Fp \ {0} and some small integers μ and ν. Note that P ′P ′P ′

is not necessarily on E . The inverse of Φ can be computed without inverting f
since PPP = Φ−1(P ′P ′P ′) = (fνX ′, fμY ′, fμ+νZ).

Consider the addition of two homogeneous projective points RRR = PPP + QQQ. In
order to blind the computation, we redefine the addition algorithm such that
Φ(RRR) = R′R′R′ = P ′P ′P ′ + Q′Q′Q′ = Φ(PPP) + Φ(QQQ). We define the point R′R′R′ = (X ′

3, Y
′
3 , Z3),

P ′P ′P ′ = (X ′
1, Y

′
1 , Z1) and Q′Q′Q′ = (X ′

2, Y
′
2 , Z2). If PPP = QQQ, then R′R′R′ can be computed

from P ′P ′P ′ and Q′Q′Q′ by calculating

X ′
3 = λ10λ4

Y ′
3 = f2ν−3μλ3(λ9 − λ10) − 2λ8

Z3 = λ6

,

where λ1 = X ′
1
2, λ2 = Z1

2, λ3 = a f2μ λ2 + 3λ1, λ4 = 2Y ′
1Z1, λ5 = λ4

2, λ6 =
λ4λ5, λ7 = Y ′

1λ4, λ8 = λ7
2, λ9 = (X ′

1 + λ7)2 − λ1 − λ8 and λ10 = f2ν−3μλ3
2 −

2λ9 [5]. This requires an extra three multiplications with a power of f .

448 M. Tunstall and M. Joye

If a = −3 a faster doubling algorithm can be used and R′R′R′ can be computed
by calculating

X ′
3 = λ8λ2

Y ′
3 = f2ν−3μλ1(λ7 − λ8) − 2λ6

Z3 = λ4

,

where λ0 = fμZ1, λ1 = 3(X ′
1 −λ0)(X ′

1 + λ0), λ2 = 2Y ′
1Z1, λ3 = λ2

2, λ4 = λ2λ3,
λ5 = Y ′

1λ2, λ6 = λ5
2, λ7 = 2X ′

1λ5 and λ8 = f2ν−3μλ1
2 − 2λ7 [5]. This also

requires an extra three multiplications with a power of f .
If PPP �= QQQ, then R′R′R′ is computed by calculating

X ′
3 = λ6λ10

Y ′
3 = λ4(λ9 − λ10) − λ8λ1

Z3 = λ8λ3

,

where λ1 = Y ′
1Z2, λ2 = X ′

1Z2, λ3 = Z1Z2, λ4 = Y ′
2Z1 − λ1, λ5 = λ4

2, λ6 =
X ′

2Z1−λ2, λ7 = λ6
2, λ8 = λ6λ7, λ9 = λ7λ2 and λ10 = f3μ−2νλ5λ3−λ8−2λ9 [10].

This requires a single extra multiplications with a power of f .

3.2 Jacobian Projective Coordinates

Jacobian projective coordinates (θ2 x, θ3 y, θ) represent the affine point (x, y) for
any θ ∈ Fp \ {0}, and the point at infinity OOO is represented by (γ2, γ3, 0) for
some γ ∈ Fp \ {0}. We define the map Φ as mapping a point PPP = (X, Y, Z) ∈ E
to the point P ′P ′P ′ where Φ(PPP) = (X ′, Y ′, Z) = (fμX, fνY, Z) for an arbitrary
f ∈ Fp \ {0} and some small integers μ and ν. Note that P ′P ′P ′ is not necessarily in
E . The inverse of Φ can be computed without inverting f since PPP = Φ−1(P ′P ′P ′) =
(fμ+2νX ′, f3μ+2νY ′, fμ+νZ).

Consider the addition of two Jacobian projective points RRR = PPP +QQQ. In order
to blind the computation, we redefine the addition algorithm such that Φ(RRR) =
R′R′R′ = P ′P ′P ′ + Q′Q′Q′ = Φ(PPP) + Φ(QQQ). We define the point R′R′R′ = (X ′

3, Y
′
3 , Z3), P ′P ′P ′ =

(X ′
1, Y

′
1 , Z1) and Q′Q′Q′ = (X ′

2, Y
′
2 , Z2). If PPP = QQQ, then R′R′R′ can be computed from P ′P ′P ′

and Q′Q′Q′ by calculating

X ′
3 = λ7

Y ′
3 = f2ν−3μλ6(λ5 − λ7) − 8λ3

Z3 = (Y ′
1 + Z1)2 − λ2 − λ4

,

where λ1 = X ′
1
2, λ2 = Y ′

1
2, λ3 = λ2

2, λ4 = Z1
2, λ5 = 2((X ′

1 + λ2)2 − λ1 − λ3),
λ6 = 3λ1 + af2μ λ4

2, λ7 = f2ν−3μλ6
2 − 2λ5 [5]. This requires an extra three

multiplications with a power of f .
If a = −3 a faster doubling algorithm can be used and R′R′R′ can be computed

by calculating
X ′

3 = f2ν−3μλ5
2 − 8λ3

Y ′
3 = f2ν−3μλ5(4λ3 − X ′

3) − 8λ2
2

Z3 = (Y ′
1 + Z1)2 − λ2 − λ1

,

Coordinate Blinding over Large Prime Fields 449

where λ1 = Z1
2, λ2 = Y ′

1
2, λ3 = X ′

1λ2, λ4 = fμλ1, λ5 = 3(X ′
1−λ4)(X ′

1 +λ4) [4].
Again, this requires an extra three multiplications with a power of f .

If PPP �= QQQ, then R′R′R′ is computed by calculating

X ′
3 = f3μ−2νλ10

2 − λ9 − 2λ11

Y ′
3 = λ10(λ11 − X ′

3) − 2λ5λ9

Z3 = ((Z1 + Z2)2 − λ1 − λ2)λ7

,

where λ1 = Z1
2, λ2 = Z2

2, λ3 = X ′
1λ2, λ4 = X ′

2λ1, λ5 = Y ′
1Z2λ2, λ6 = Y ′

2Z1λ1,
λ7 = λ4 − λ3, λ8 = (2λ7)2, λ9 = λ7λ8, λ10 = 2(λ6 − λ5), λ11 = λ3λ8 [5]. This
requires a single extra multiplications with a power of f .

3.3 Choosing μ and ν

The above algorithms were defined to minimize the number of multiplications
with f , or some power of f . However, one would wish to avoid a situation where
the inverse of f is required. This means that, for the above algorithms, choices
for μ and ν need to satisfy 2 ν ≥ 3 μ and 3 μ ≥ 2 ν; that is, 2 ν = 3 μ.

For both homogeneous and Jacobian projective coordinates the choice of 2 ν =
3 μ would allow for any multiplication with a power of f to be removed from
the algorithm for computing the addition of two distinct points. That is, the
countermeasure would have no impact on the performance of a point addition.
Define a′ = a f2μ. In the case of a �= −3, if the cost of a multiplication by a′ is the
same to that of a multiplication by a, choosing 2 ν = 3 μ incurs no performance
loss for the doubling operation in both homogeneous and Jacobian coordinates.
If a = −3 the choice of 2 ν = 3 μ leads to only an extra multiplication by fμ (in
the evaluation of λ0 for homogeneous coordinates and in the evaluation of λ4 for
Jacobian coordinates, respectively).

Case of μ = 2 and ν = 3. As a reminder, the elliptic curves E : y2 = x3 + a x+ b
and E∗ : y2 = x3 + a∗x + b∗ over Fp are isomorphic if and only if there exists
some f ∈ Fp \ {0} such that a∗ = f4 a and b∗ = f6 b. The isomorphism is given
by ψ : E ∼→ E∗ : PPP = (x, y) �→ P ∗P ∗P ∗ = (f2 x, f3 y) and OOO �→ OOO. It appears that
the specific choice of μ = 2 and ν = 3 corresponds to the technique of using
randomized curve isomorphisms [17].

4 Implementation Considerations

4.1 Using Montgomery Multiplication

When implementing an elliptic curve cryptographic algorithm over Fp, it would
be natural to use Montgomery multiplication [21], since the modular reduction
is interleaved with the multiplication. As shown in Algorithm 1, the result of
a Montgomery multiplication is not the product of x and y modulo p. The
algorithm actually returns x y R−1 mod p, where R−1 mod p is introduced by

450 M. Tunstall and M. Joye

the algorithm (R = bn, where the modulus consists of n words of size b). In
order to use Montgomery multiplication x and y need to be converted to their
Montgomery representation, i.e. x̃ ← xR mod p and ỹ ← y R mod p. Then, when
x̃ and ỹ are multiplied together using Montgomery multiplication, the result is
x y R mod p.

Algorithm 1. Montgomery multiplication
Input: p = (pn−1, . . . , p1, p0)b, x = (xn−1, . . . , x1, x0)b, y = (yn−1, . . . , y1, y0)b

with 0 ≤ x, y < p, R = bn, gcd(p, b) = 1 and p′ = −p−1 mod b.
Output: A = x y R−1 mod p.

A ← 0 ;
for i = 0 to n − 1 do

ui = (a0 + xi y0)p′ mod b ;
A = (A + xi y + ui p)/b ;

end

if A ≥ p then A ← A − p ;

return A

When implementing Montgomery multiplication for use in a group exponen-
tiation one has to be aware that an attacker can use the final conditional sub-
traction to try and derive information on the exponent used. An attacker can
potentially use the difference in time caused by the total number of subtrac-
tions [30] or by identifying individual subtractions in a power consumption trace
(or other suitable side-channel) [28,29]. The final subtraction can be removed
by increasing the number of iterations of the main loop [14,27]. However, these
attacks and countermeasures are beyond the scope of this paper, since the ar-
guments concerning the efficiency of the countermeasure described in Section 3
will remain unchanged.

Where a multiplication with a small value is required, such as the multipli-
cation with the constant a in the short Weierstraß form, this value needs to
be converted into its Montgomery representation. This means that the cost of
such a multiplication will require the same number of single-precision multipli-
cations as any other multiplication or squaring operations over Fp, i.e. n(2 n+2)
single-precision multiplications.

4.2 Generating f

A random value is typically generated for blinding purposes in a given instance
of a side-channel resistant implementation of an algorithm. These values do are
typically chosen to be relatively small, since the bit-length of the random value
only needs to be large enough that an attacker cannot guess its value for mul-
tiple executions of the algorithm. That is, an attacker is required to guess this
value for each acquisition in order to conduct a differential side-channel anal-
ysis [20]. For example, we can define f to be in {1, . . . , b − 1} but multiplying
with f has the same problem as multiplying by a since f is not in its Montgomery

Coordinate Blinding over Large Prime Fields 451

representation. However, we can define the value that is used when multiplying
with the mask to be f ′ ≡ b f (mod p) with f ′ ∈ {1, . . . , b− 1} and f ∈ Fp \ {0}.
This means that Algorithm 2, which is one iteration of the main loop of the
Montgomery multiplication algorithm, can be used without having to correct
the factor of b−1 mod p that is introduced.

This allows a multiplication with the mask f using 2 n + 2 single-precision
multiplications, and can be repeated for powers of f as required, i.e. multiplying
with fμ requires μ(2 n+2) single-precision multiplications. In practice this means
a random value in {1, . . . , b − 1} can be generated and used in Algorithm 2.

We can note that a scalar multiplication using the algorithms described in
Section 3 can be implemented using an arbitrarily chosen f ′ without knowing
f . That is, all required multiplications with f can be conducted using f ′ and
Algorithm 2. This includes converting a blinded point to a valid projective point
by multiplying the coordinates by the required power of f . The further advantage
of only using f ′ is that it is not necessary to store the montgomery representation
of any powers of f in memory.

Algorithm 2. Montgomery multiplication with f

Input: p = (pn−1, . . . , p1, p0)b, f ∈ {0, . . . , b − 1}, y = (yn−1, . . . , y1, y0)b with
0 ≤ y < p, R = bn, gcd(p, b) = 1 and p′ = −p−1 mod b.

Output: A = f y b−1 mod p.

u = f y0 p′ mod b ;
A = (f y + u p)/b ;

if A ≥ p then A ← A − p ;

return A

4.3 Performance

If the above optimization is applied to the algorithms described in Sections 3.1
and 3.2 the number of single-precision multiplications required can be reduced.

It is observed in Section 3.3 that the smallest penalty for using the proposed
blinding method is incurred when μ = 2 and ν = 3, and no extra cost is observed
for many of the operations. Where a = −3, the cost of using the proposed
blinding method will incur an extra multiplication with fμ can be computed
with (4 n + 4) single-precision multiplications, rather than n(2 n + 2) for a full
Montgomery multiplication.

If we consider randomize curve isomorphisms, the case where a∗ = −3f4

(i.e. an isomorphic curve that would allow one to use the algorithm defined
for a = −3) the necessary extra multiplication can be computed in the same
way, and the same gain in performance would be observed. Using the above
observation would also, therefore, allow the time required to compute operations
on an isomorphic curve to be reduced.

452 M. Tunstall and M. Joye

5 Further Security Considerations

The algorithms defined in Section 3 can readily be used to implement a side-
channel resistant scalar multiplication. These building blocks are, themselves,
resistant to side-channel analysis (within certain bounds we will discuss in this
section) and merely require a suitable multiplication algorithm to be chosen. We
refer the reader to [16] for a discussion of this topic.

However, in [13] it is observed that elliptic curve arithmetic that uses multi-
plicative blinding will not necessarily prevent a scalar multiplication from being
derived. If a point corresponding to the affine points (0, y) or (x, 0) exists, for
some x, y ∈ Fp, then an attacker could attempt to have this point produced as
an intermediate state of a scalar multiplication, which could then be used to
verify hypotheses concerning the scalar. This would be possible as multiplicative
blinding will have no effect on a coordinate set to zero.

An extension to this attack was proposed in [1] that relied on the same obser-
vation, that the value zero cannot be blinded multiplicatively. They noted that
the same attack could be conducted if any of the intermediate states could be
equal to zero. That is, if there exists some combination of points where the point
arithmetic will generate a zero as an intermediate state.

The simplest countermeasure to this attack would be simply use curves that
do not have these points. However, it is noted in [13] that in many standard-
ized curves a point exists where the x-coordinate is zero, but not where the
y-coordinate is zero.

Countermeasures, therefore, need to be included when implementing a cryp-
tosystem that uses an elliptic curve that can be attacked in this manner. Two
such countermeasures are:

Linear Blinding. One countermeasure to this type of attack is described in [15],
where the authors propose that the coordinates of a projective coordinate
are modified by adding an extra coordinate. For example, to protect the
x-coordinate one could define a projective point, for example, where an affine
point PPP = (x, y) can be represented as a projective point (θ (x−β), θ y, θ, β)
for all θ, β ∈ Fp \ {0}. This involves redefining the algorithms for addition
and doubling operations and considerably increases the number of operations
required.

Isogenies. It is pointed out in [26] that an isogenous curve can be selected. That
is, an isogeny between elliptic curves E1 and E2 over the same field exists if a
surjective morphism κ can be defined that preserves the identity element (i.e.
the point at infinity OOO). When implementing a scalar multiplication using an
elliptic curve where zero-coordinates are possible, one can select an isogenous
curve that does not have any points with zero-coordinates. Then QQQ = [k]PPP
can be computed by calculating QQQ = κ−1([k] κ(PPP)). Further constraints on
what isogenies can be used were defined in [2] to avoid intermediate states
being attacked.

Of these two countermeasures, the use of isogenies is more efficient as the
same algorithms can be used for point arithmetic with the addition of two

Coordinate Blinding over Large Prime Fields 453

transformations. Moreover, these transformations can be defined when a cryp-
tosystem is implemented to minimize the impact on the time taken to compute
a scalar multiplication. The principle problem with using linear blinding is that
it has a large impact on the point addition algorithms.

6 Conclusion

In this paper we propose an multiplicative blinding method for protecting a
scalar multiplication that is a generalization of the use of randomized curve
isomorphisms. We also discuss how one could efficiently implement this counter-
measure using Montgomery multiplication, and show that this would allow for
a faster implementation than a näıve use of randomized curve isomorphisms.

The specific choice of μ = 2 and ν = 3 incurs only a small increase in the
execution time of a scalar multiplication. However, as noted above, this corre-
sponds to using an isomorphic curve, and that the optimizations presented in
Section 4 also apply. That is, if we apply the same criteria in choosing f , i.e.
such that f ′ ≡ f b mod p is ∈ {1, . . . , b − 1}, the performance will be identical.

We note that Algorithm 2 could also be used to efficiently implement ran-
domized projective coordinates [11]. The aim of this randomization is to make
the intermediate values unpredictable by an attacker and it is not necessary to
choose a random value with the same bit-length as the x and y-coordinates.

Acknowledgments

The work described in this paper has been supported in part by the European
Commission IST Programme under Contract IST-2002-507932 ECRYPT and
EPSRC grant EP/F039638/1 “Investigation of Power Analysis Attacks”.

References

1. Akishita, T., Takagi, T.: Zero-value point attacks on elliptic curve cryptosystems.
In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer,
Heidelberg (2003)

2. Akishita, T., Takagi, T.: On the optimal parameter choice for elliptic curve cryp-
tosystems using isogeny. In: Bao, F., Deng, R.H., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 346–359. Springer, Heidelberg (2004)

3. Akkar, M.-L., Giraud, C.: An implementation of DES and AES secure against some
attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 309–318. Springer, Heidelberg (2001)

4. Bernstein, D.J.: A software implementation of NIST P-224 (2001),
http://cr.yp.to/nistp224.html

5. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

http://cr.yp.to/nistp224.html

454 M. Tunstall and M. Joye

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

7. Brier, E., Joye, M.: Weierstraß elliptic curve and side-channel attacks. In: Naccache,
D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg
(2002)

8. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing sim-
ple side-channel analysis: Side-channel atomicity. IEEE Transactions on Comput-
ers 53(6), 760–768 (2004)

9. Clavier, C., Joye, M.: Universal exponentiation algorithm. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 300–308. Springer, Heidelberg
(2001)

10. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

11. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

12. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

13. Goubin, L.: A refined power analysis attack on elliptic curve cryptosystems. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–210. Springer, Heidelberg
(2002)

14. Hachez, G., Quisquater, J.-J.: Montgomery exponentiation with no final subtrac-
tions: Improved results. In: Koç, C.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 293–301. Springer, Heidelberg (2000)

15. Itoh, K., Izu, T., Takenaka, M.: Efficient countermeasures against power analysis
for elliptic curve cryptosystems. In: Quisquater, J.-J., et al. (eds.) Smart Card
Research and Advanced Applications VI, pp. 99–113. Kluwer Academic Publishers,
Dordrecht (2004)

16. Joye, M., Tunstall, M.: Exponent recoding and regular exponentiation algo-
rithms. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 334–349.
Springer, Heidelberg (2009)

17. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve
cryptography: An algebraic approach. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.)
CHES 2001. LNCS, vol. 2162, pp. 377–390. Springer, Heidelberg (2001)

18. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

19. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

20. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks — Revealing the Se-
crets of Smart Cards. Springer, Heidelberg (2007)

21. Montgomery, P.: Modular multiplication without trial division. Mathematics of
Computation 44, 519–521 (1985)

22. National Institute of Standards and Technology (NIST). Recommended elliptic
curves for federal government use. In: The appendix of FIPS 186-3 (June 2009),
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

Coordinate Blinding over Large Prime Fields 455

23. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, I., Jensen, T.P. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

24. Rivest, R., Shamir, A., Adleman, L.M.: Method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

25. Smart, N., Oswald, E., Page, D.: Randomised representations. IET Proceedings on
Information Security 2(2), 19–27 (2008)

26. Smart, N.P.: An analysis of Goubin’s refined power analysis attack. In: Walter,
C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 281–290.
Springer, Heidelberg (2003)

27. Walter, C.D.: Montgomery exponentiation needs no final subtractions. Electronic
Letters 35(21), 1831–1832 (1999)

28. Walter, C.D.: Longer keys may facilitate side channel attacks. In: Matsui, M.,
Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 42–57. Springer, Heidelberg
(2004)

29. Walter, C.D.: Simple power analysis of unified code for ECC double and add.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 191–204.
Springer, Heidelberg (2004)

30. Walter, C.D., Thompson, S.: Distinguishing exponent digits by observing modular
subtractions. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 192–207.
Springer, Heidelberg (2001)

31. De Win, E., Mister, S., Preneel, B., Wiener, M.: On the performance of signa-
ture schemes based on elliptic curves. In: Buhler, J.P. (ed.) ANTS 1998. LNCS,
vol. 1423, pp. 252–266. Springer, Heidelberg (1998)

32. Wireless Application Protocol (WAP) Forum. Wireless transport layer security
(WTLS) specification, http://www.wapforum.org

33. ANSI X9.62. Public key cryptography for the financial services industry, the elliptic
curve digital signature algorithm, ECDSA (1999)

34. Yen, S.-M., Joye, M.: Checking before output not be enough against fault based
cryptanalysis. IEEE Transactions on Computers 49(9), 967–970 (2000)

http://www.wapforum.org

Author Index

Acıiçmez, Onur 110
Aumasson, Jean-Philippe 1

Badel, Stéphane 398
Benôıt, Olivier 140
Bertoni, Guido 33
Berzati, Alexandre 306
Bhunia, Swarup 173
Boehm, Christoph 335
Bos, Joppe W. 279
Bouillaguet, Charles 203
Brumley, Billy Bob 110

Canovas-Dumas, Cécile 306
Chakraborty, Rajat Subhra 173
Cheng, Chen-Mou 203
Chen, Hsieh-Chung 203
Chou, Tung 203
Coron, Jean-Sébastien 95
Courrege, Jean-Christophe 188

Daemen, Joan 33
Dağtekin, Nilay 398
Di-Battista, Jerome 188
Drutarovsky, Milos 351
Du, Dongdong 173

Eisenbarth, Thomas 125

Fukunaga, Toshinori 320

Gaj, Kris 264
Gebotys, Catherine 80
Gendotti, Pietro 248
Gomisawa, Shigeto 320
Goubin, Louis 306
Goundar, Raveen R. 65
Grabher, Philipp 110
Gräf, Jens 294
Guillermin, Nicolas 48
Guillet, Patrice 248
Gürkaynak, Frank K. 248

Henzen, Luca 1, 248
Hofer, Maximilian 335

Homsirikamol, Ekawat 264
Hongo, Naoto 234

Järvinen, Kimmo 383
Joye, Marc 65, 443

Kirschbaum, Mario 428
Kizhvatov, Ilya 95
Knudsen, Lars 16
Kolesnikov, Vladimir 383

Leander, Gregor 16
Ling, San 219
Li, Yang 320
Longa, Patrick 80

Meier, Willi 1
Mischke, Oliver 125
Miyaji, Atsuko 65
Moradi, Amir 125
Morikawa, Yoshitaka 234

Nakahara Jr., Jorge 398
Narasimhan, Seetharam 173
Naya-Plasencia, Maŕıa 1
Nekado, Kenta 234
Niederhagen, Ruben 203
Nogami, Yasuyuki 234

Ohta, Kazuo 320
Oren, Yossef 428
Ouafi, Khaled 398

Pargaetzi, Enrico 248
Peeters, Michaël 33
Perdu, Philippe 188
Peyrin, Thomas 140
Popp, Thomas 428
Poschmann, Axel 16, 219
Prouff, Emmanuel 413

Reffé, Nicolas 398
Rivain, Matthieu 413
Robshaw, Matthew J.B. 16
Rogawski, Marcin 264
Rouzeyre, Bruno 188

458 Author Index

Sadeghi, Ahmad-Reza 383
Sakiyama, Kazuo 320
Schneider, Thomas 383
Sepehrdad, Pouyan 398
Shamir, Adi 203
Shimizu, Koichi 366
Skorobogatov, Sergei 158
Stefan, Deian 279
Sušil, Petr 398
Suzuki, Daisuke 366

Takahashi, Junko 320
Torres, Lionel 188

Toyota, Tetsumi 234
Tunstall, Michael 443

Van Assche, Gilles 33
Varchola, Michal 351
Vaudenay, Serge 398

Wang, Huaxiong 219
Wenzel-Benner, Christian 294
Wool, Avishai 428

Yang, Bo-Yin 203

Zoller, Martin 248

	Title Page
	Preface
	Organizations
	Table of Contents
	Low Cost Cryptography
	Quark: A Lightweight Hash
	Introduction
	Description of the Quark Hash Family
	Sponge Construction
	Permutation
	Proposed Instances

	Design Rationale
	Single Security Level
	Sponge Construction
	Permutation Algorithm

	Preliminary Security Analysis
	The Hermetic Sponge Strategy
	Generic Second Preimage Attack
	Resistance to Cube Attacks and Cube Testers
	Resistance to Differential Attacks
	Resistance to Slide Distinguishers

	Hardware Implementation
	Architectures
	Methodology
	Discussion and Comparison with Present-Based Designs

	References

	PRINTcipher: A Block Cipher for IC-Printing
	Introduction
	Design Approach to PRINTcipher
	PRINTcipher-48 and PRINTcipher-96
	Deriving the Permutations from the User Key
	Security Goals
	Some Features of the Design

	Security Analysis
	Differential and Linear Characteristics
	High Order Differentials and Algebraic Attacks
	Related-Key Attacks
	Statistical Saturation Attacks

	Implementation Results
	Conclusions
	References
	Appendix

	Sponge-Based Pseudo-Random Number Generators
	Introduction
	Advantages and Limitations of Our Construction
	Using a Hash Function for Pseudo-Random Number Generation

	Modeling a Reseedable Pseudo-Random Number Generator
	Constructing a PRNG Using a Sponge Function
	The Sponge Construction
	Reusing the State for Multiple Feed and Fetch Phases
	Constructing a Reseedable Pseudo-Random Number Generator

	Security
	Indifferentiability
	Resistance against State Recovery
	Forward Security

	A Concrete Example with Keccak
	Conclusions
	References

	Efficient Implementations I
	A High Speed Coprocessor for Elliptic CurveScalar Multiplications over F_p
	Introduction
	Mathematical Background
	RNS
	Elliptic Curves
	Base Choice

	Hardware Architecture
	Architecture Overview
	Pipeline Architecture
	Memory
	Radix-RNS Transformation
	Side Channel Attacks

	Result and Comparison
	Results
	Comparison

	Conclusion
	References

	Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves
	Introduction
	Preliminaries
	Jacobian Coordinates
	Co-Z Point Addition

	Binary Scalar Multiplication Algorithms
	New Implementations
	Left-to-Right Scalar Multiplication
	Right-to-Left Scalar Multiplication Algorithm
	Point Doubling and Tripling
	Combined Double-Add Operation

	Discussion
	Performance Analysis
	Security Considerations

	Conclusion
	References

	Efficient Techniques for High-Speed Elliptic Curve Cryptography
	Introduction
	Preliminaries
	The x86-64 Based Processor Family

	Optimizations at the Field Arithmetic Level
	Field Multiplication
	Other ``Cheaper'' Operations

	Optimizations at the Point Arithmetic Level
	Our Choice of Explicit Formulas
	Minimizing the Cost of Point Operations
	Minimizing the Effect of Data Dependencies

	Optimizations at the Scalar Arithmetic Level
	Implementation Using GLS
	Implementation Results
	References

	Side-Channel Attacks and Countermeasures I
	Analysis and Improvement of the Random Delay Countermeasure of CHES 2009
	Introduction
	The Floating Mean Method
	The Real Behavior of Floating Mean
	Explaining the Cogs
	Choosing Correct Parameters

	Improved Floating Mean
	Analysis
	Illustration
	Full Algorithm

	The Optimal Criterion of Efficiency
	Drawbacks of the Coefficient of Variation
	The New Criterion
	Comparing Efficiency

	Conclusion
	References
	Distribution of Delay's Length d
	Efficient Implementation of Improved Floating Mean

	New Results on Instruction Cache Attacks
	Introduction
	I-Cache Attack Concept
	Improved Attack Techniques
	Spying on the Instruction Cache
	Realizing the DSA
	The Attack

	Closing the Instruction Cache Side-Channel
	Performance Evaluation
	Conclusions
	References

	Correlation-Enhanced Power Analysis Collision Attack
	Introduction
	Hardware Implementation of the AES
	Our Implementation
	Details on the Masked AES S-Box

	Analysis of the AES Implementation
	Analysis of the Unprotected Architecture
	Analysis of the Masked Architecture

	Correlation-Enhanced Collision Attack
	Conclusion
	References

	Side-Channel Analysis of Six SHA-3 Candidates
	Introduction
	How to Perform Side-Channel Attacks on Hash Functions
	Message Authentication Codes with Hash Functions
	Side-Channel Attacks

	AES-Based SHA-3 Candidates
	ECHO
	Grøstl
	SHAvite-3

	Other SHA-3 Candidates
	BLAKE
	CubeHash
	HAMSI

	Conclusion and Discussions
	References

	Tamper Resistance and Hardware Trojans
	Flash Memory ‘Bumping’ Attacks
	Introduction
	Background
	Experimental Method
	Results
	Implications and Further Improvements
	Conclusion
	References

	Self-referencing: A Scalable Side-Channel Approach for Hardware Trojan Detection
	Introduction
	Motivation of Self-referencing Approach
	Methodology
	Results
	Simulation Results
	Experimental Results

	Conclusion
	References
	Appendix

	When Failure Analysis Meets Side-Channel Attacks
	Introduction
	Light Emission as a Side-Channel Signal
	Background
	Experimental Method
	Results

	Laser Stimulation to Improve Side-Channel Attacks
	Background
	Experimental Method
	Results

	Conclusion
	References

	Efficient Implementations II
	Fast Exhaustive Search for Polynomial Systems in F_2
	Introduction
	Generalities
	Known Techniques for Quadratic Polynomials
	A Faster Recursive Algorithm for Any Degree
	Common Zeroes of Several Multivariate Polynomials
	A Brief Description of the Hardware Platforms
	Vector Units on x86-64
	G2xx-Series Graphics Processing Units from NVIDIA

	Implementations
	CPU Enumeration Kernel
	GPU Enumeration Kernel
	Checking Candidates
	Partial Evaluation
	More Test Data and Discussion

	References

	256 Bit Standardized Crypto for 650 GE – GOST Revisited
	Introduction
	Previous Work
	Outline

	Description of the GOST Encryption Algorithm
	The Choice of a Set of S-Boxes
	Hardware Implementations
	Conclusions
	References
	Appendix

	Mixed Bases for Efficient Inversion in $F((2^2)^2)^2$ and Conversion Matrices of SubBytes of AES
	Introduction
	Preliminaries
	Extension Field F_2^8 and Its Tower Construction $F((2^2)^2)^2$
	Morioka's Construction Morioka
	Canright's Construction [2]
	Another Efficient Construction
	Conversion Matrices with the Viewpoint of Conjugates

	Main Proposal
	Mixed Bases for I_4 of Fig. 14
	Mixed Bases for the Inversion in $F((2^2)^2)^2$
	Evaluation

	Conclusion and Future Work
	Architectures of the Construction Shown in Sec. 2.43

	SHA-3
	Developing a Hardware Evaluation Method for SHA-3 Candidates
	Introduction
	Evaluation Methodology
	Performance Metrics
	SHA-3 Parameters
	Defining Specifications
	ASIC Realizations

	Implementation
	Design Flow
	Algorithms

	Results
	High Throughput Scenario
	Medium Throughput Scenario
	Sources of Error

	Conclusions
	Hardware Architectures

	Fair and Comprehensive Methodology for Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs
	Introduction and Motivation
	Choice of a Language, FPGA Devices, and Tools
	Performance Metrics for FPGAs
	Speed.
	Resource Utilization/Area.

	Uniform Interface
	Optimization Target and Design Methodology
	Results
	Conclusions and Future Work
	References

	Performance Analysis of the SHA-3 Candidates on Exotic Multi-core Architectures
	Introduction
	Target Platforms
	Porting the SHA-3 Candidates to the Cell and GPU
	AES-Inspired SHA-3 Candidates
	Other SHA-3 Candidates
	Conclusion
	References

	XBX: eXternal Benchmarking eXtension for the SUPERCOP Crypto Benchmarking Framework
	Introduction
	Judging Security
	Judging Performance
	Additional Criteria
	Motivation for the eXternal Benchmarking eXtension

	Design Goals
	Hardware
	Overview
	Microcontroller Family
	eXternal Benchmarking Harness XBH
	eXternal Benchmarking Device XBD

	Software
	XBS: Benchmark Control
	Algorithms to Benchmark
	Hardware Abstraction
	Application Framework
	Bootloader
	Benchmarking Harness

	Benchmarking Results
	Different Implementations of Skein512 on Atmel ATmega1281
	SHA-3 Candidates on an ARM Cortex-M3 32-Bit CPU Using Two Compilers

	Conclusion
	References

	Fault Attacks and Countermeasures
	Public Key Perturbation of Randomized RSA Implementations
	Introduction
	Background
	Notations
	Modular Exponentiation Algorithms
	Exponent Randomization

	Description of Our Attack
	Bit Analysis of a Randomized Exponent
	Fault Model
	Result of a Faulty Computation
	Analysis

	Attack Algorithm
	Summary of Our Attack
	Performance

	Conclusion
	Proof of the Theorem 1

	Fault Sensitivity Analysis
	Introduction
	Preliminaries
	Common Fault Injection Techniques
	DFA and Attack Requirements

	FSA Proposal
	General Principle of FSA
	Data-Dependency of Fault Sensitivity
	General FSA Attacks Scenarios
	FSA Attack Scenarios against PPRM1-AES
	Attack Requirements and Countermeasures for FSA

	FSA Attacks against WDDL-AES
	WDDL "Protected" against Setup-Time Violation Attacks
	Data-Dependency of Fault Sensitivity for WDDL-AES
	Practical FSA Attack against WDDL-AES

	Conclusions
	References

	PUFs and RNGs
	An Alternative to Error Correction for SRAM-Like PUFs
	Introduction
	Idea
	Modeling and Statistical Aspects
	Implementation
	Conclusion
	Calculations
	Numerical Examples

	New High Entropy Element for FPGA Based True Random Number Generators
	Introduction
	New Entropy Element Design Goals
	Transition Effect Ring Oscillator
	Transistor Level SPICE Simulation
	TERO Mathematical Model Based on Effects of Intrinsic Noise
	Analytical Comparison of the TERO and RO Modes
	TERO and RO Response under External Perturbations

	Hardware Implementation
	Experimental Results
	Conclusion and Future Work
	References

	The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch Shapes
	Introduction
	Background
	Our Contributions

	Simulating Behavior of Delay-PUFs
	Glitch PUFs
	Basic Idea
	Overall Sequence
	Acquisition of Glitch Waveforms
	Conversion to Response
	Reliability Enhancement
	The Architecture
	Adjustment of the Design Parameter

	Experimental Results
	Inter-chip Variation
	Intra-chip Variation
	Secrecy Rate

	Conclusions
	References

	New Designs
	Garbled Circuits for Leakage-Resilience: Hardware Implementation and Evaluation of One-Time Programs
	Introduction
	Our Contributions and Outline
	Related Work

	Preliminaries
	Extending and Using One-Time Programs
	Extending One-Time Programs
	Using One-Time Programs for Leakage Protection

	Efficient Evaluation of Garbled Circuits in Hardware
	Architecture for Evaluating Garbled Circuits in Hardware
	Compile-Time Optimizations for Memory-Constrained Devices
	Implementation

	References

	ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware
	Introduction
	The ARMADILLO Function
	Dedicated Attacks
	Permutation-Dependent Attacks
	Parameter Vectors
	ARMADILLO2
	Hardware Implementation and Performance
	Comparison
	Conclusions
	References

	Side-Channel Attacks and Countermeasures II
	Provably Secure Higher-Order Masking of AES
	Introduction
	Preliminaries on Higher-Order Masking
	Basic Principle
	Soundness of Higher-Order Masking
	Higher-Order Masking Schemes
	The Ishai-Sahai-Wagner Scheme

	Higher-Order Masking of AES
	Higher-Order Masking of the AES S-Box
	Higher-Order Masking of the Whole Cipher

	Security Analysis
	Implementation Results
	Conclusion
	References

	Algebraic Side-Channel Analysis in the Presence of Errors
	Introduction
	Background
	Causes of Errors in Side-Channel Information
	Contributions

	Algebraic Side-Channel Attacks
	General Structure of an Algebraic Attack
	Naïve Methods of Dealing with Errors

	Handling Errors by Pseudo-Boolean Representation
	Side-Channel Analysis as a Pseudo-Boolean Problem
	An Introduction to Pseudo-Boolean Optimizers
	Elements of a TASCA Equation Set

	An Attack on Keeloq
	The Keeloq Algorithm
	An Equation Set for Keeloq
	Attack Results

	Preliminary Results on AES
	The AES Algorithm
	An Equation Set for AES
	Initial Results

	Open Issues
	Full Attack against AES and Other Ciphers
	Better PB Solvers
	TASCA as Part of the Design Tool Chain

	Conclusion
	References

	Coordinate Blinding over Large Prime Fields
	Introduction
	Preliminaries
	Elliptic Curves
	Side-Channel Resistant Scalar Multiplication

	Implementing Elliptic Curve Arithmetic
	Homogeneous Projective Coordinates
	Jacobian Projective Coordinates
	Choosing μ and ν

	Implementation Considerations
	Using Montgomery Multiplication
	Generating f
	Performance

	Further Security Considerations
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

