
Lecture Notes in Computer Science 6300
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Andreas Blass Nachum Dershowitz
Wolfgang Reisig (Eds.)

Fields of Logic
and Computation
Essays Dedicated to Yuri Gurevich
on the Occasion of His 70th Birthday

13

Volume Editors

Andreas Blass
University of Michigan, Mathematics Department
Ann Arbor, MI 48109-1043, USA
E-mail: ablass@umich.edu

Nachum Dershowitz
Tel Aviv University, School of Computer Science
Ramat Aviv, Tel Aviv 69978, Israel
E-mail: nachumd@post.tau.ac.il

Wolfgang Reisig
Humboldt-Universität zu Berlin, Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany
E-mail: reisig@informatik.hu-berlin.de

About the Cover
The cover illustration is a “Boaz” Plate created by Maurice Ascalon’s Pal-Bell Com-
pany circa 1948. Image and artwork copyright Ascalon Studios, Inc. Used by permis-
sion. The Hebrew legend is from the Book of Psalms 126:5, “They that sow in tears
shall reap in joy.”

Credits
The frontispiece photograph was taken by Bertrand Meyer at the Eidgenössische
Technische Hochschule (ETH) in Zürich, Switzerland on May 16, 2004. Used with
permission.

Library of Congress Control Number: 2010931832

CR Subject Classification (1998): F.3, D.2, D.3, C.2, F.2, F.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-15024-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15024-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Dedicated to

Yuri Gurevich

in honor of his 70th birthday,
with deep admiration and affection.

They that sow in tears shall reap in joy.

(Psalms 126:5)

Wishing him many,
many happy returns.

Yuri Gurevich
(b. 1940)

Preface

Yuri Gurevich has played a major role in the discovery and development of ap-
plications of mathematical logic to theoretical and practical computer science.
His interests have spanned a broad spectrum of subjects, including decision pro-
cedures, the monadic theory of order, abstract state machines, formal methods,
foundations of computer science, security, and much more.

In May 2010, Yuri celebrated his 70th birthday. To mark that occasion, on
August 22, 2010, a symposium was held in Brno, the Czech Republic, as a satel-
lite event of the 35th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2010) and of the 19th EACSL Annual Conference
on Computer Science Logic (CSL 2010). The meeting received generous support
from Microsoft Research.

In preparation for this 70th birthday event, we asked Yuri’s colleagues
(whether or not they were able to attend the symposium) to contribute to a
volume in his honor. This book is the result of that effort. The collection of
articles herein begins with an academic biography, an annotated list of Yuri’s
publications and reports, and a personal tribute by Jan Van den Bussche. These
are followed by 28 technical contributions. These articles – though they cover
a broad range of topics – represent only a fraction of Yuri’s multiple areas of
interest.

Each contribution was reviewed by one or two readers. In this regard, the
editors wish to thank several anonymous individuals for their assistance.

We offer this volume to Yuri in honor of his birthday and in recognition of
his grand contributions to the fields of logic and computation.

June 20, 2010 Andreas Blass
Nachum Dershowitz

Wolfgang Reisig

Table of Contents

On Yuri Gurevich

Yuri, Logic, and Computer Science . 1
Andreas Blass, Nachum Dershowitz, and Wolfgang Reisig

Annotated List of Publications of Yuri Gurevich . 7

Database Theory, Yuri, and Me . 49
Jan Van den Bussche

Technical Papers

Tracking Evidence . 61
Sergei Artemov

Strict Canonical Constructive Systems . 75
Arnon Avron and Ori Lahav

Decidable Expansions of Labelled Linear Orderings 95
Alexis Bès and Alexander Rabinovich

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 108
Andreas Blass

Three Paths to Effectiveness . 135
Udi Boker and Nachum Dershowitz

The Quest for a Tight Translation of Büchi to co-Büchi Automata 147
Udi Boker and Orna Kupferman

Normalization of Some Extended Abstract State Machines 165
Patrick Cégielski and Irène Guessarian

Finding Reductions Automatically . 181
Michael Crouch, Neil Immerman, and J. Eliot B. Moss

On Complete Problems, Relativizations and Logics for Complexity
Classes . 201

Anuj Dawar

Effective Closed Subshifts in 1D Can Be Implemented in 2D 208
Bruno Durand, Andrei Romashchenko, and Alexander Shen

XII Table of Contents

The Model Checking Problem for Prefix Classes of Second-Order Logic:
A Survey . 227

Thomas Eiter, Georg Gottlob, and Thomas Schwentick

A Logic for PTIME and a Parameterized Halting Problem 251
Yijia Chen and Jörg Flum

Inferring Loop Invariants Using Postconditions . 277
Carlo Alberto Furia and Bertrand Meyer

ASMs and Operational Algorithmic Completeness of Lambda
Calculus . 301

Marie Ferbus-Zanda and Serge Grigorieff

Fixed-Point Definability and Polynomial Time on Chordal Graphs and
Line Graphs . 328

Martin Grohe

Ibn S̄ınā on Analysis: 1. Proof Search. Or: Abstract State Machines as
a Tool for History of Logic . 354

Wilfrid Hodges

Abstract State Machines and the Inquiry Process . 405
James K. Huggins and Charles Wallace

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with
Reversion . 414

Marcel Jackson and Mikhail Volkov

Definability of Combinatorial Functions and Their Linear Recurrence
Relations . 444

Tomer Kotek and Johann A. Makowsky

Halting and Equivalence of Program Schemes in Models of Arbitrary
Theories . 463

Dexter Kozen

Metrization Theorem for Space-Times: From Urysohn’s Problem
towards Physically Useful Constructive Mathematics 470

Vladik Kreinovich

Thirteen Definitions of a Stable Model . 488
Vladimir Lifschitz

DKAL and Z3: A Logic Embedding Experiment . 504
Sergio Mera and Nikolaj Bjørner

Decidability of the Class E by Maslov’s Inverse Method 529
Grigori Mints

Table of Contents XIII

Logics for Two Fragments beyond the Syllogistic Boundary 538
Lawrence S. Moss

Choiceless Computation and Symmetry . 565
Benjamin Rossman

Hereditary Zero-One Laws for Graphs . 581
Saharon Shelah and Mor Doron

On Monadic Theories of Monadic Predicates . 615
Wolfgang Thomas

Author Index . 627

Yuri, Logic, and Computer Science

Andreas Blass1, Nachum Dershowitz2, and Wolfgang Reisig3

1 Mathematics Department, University of Michigan,

Ann Arbor, MI 48109–1043, U.S.A.
2 School of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel

3 Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6,

10099 Berlin, Germany

Yuri Gurevich was born on May 7, 1940, in Nikolayev, Ukraine, which was a part
of Soviet Union at the time. A year later, World War II reached the Soviet Union,
and Yuri’s father was assigned to work in a tank body factory near Stalingrad. So
that’s where Yuri spent the second year of his life, until the battle of Stalingrad
forced the family, except for his father, to flee. Their home was destroyed by
bombing only hours after they left. But fleeing involved crossing the burning
Volga and then traveling in a vastly overcrowded train, in which many of the
refugees died; in fact, Yuri was told later that he was the only survivor among
children of his age. His mother decided that they had to leave the train, and the
family lived for two years in Uzbekistan. In May 1944, the family reunited in
Chelyabinsk, in the Ural Mountains, where the tank body factory had moved in
the meantime, and that is where Yuri attended elementary and high school.

An anecdote from his school days (recorded in [123]1) can serve as a premoni-
tion of the attention to resources that later flowered in Yuri’s work on complexity
theory. To prove some theorem about triangles, the teacher began with “Take
another triangle such that” Yuri asked, “Where does another triangle come
from? What if there are no more triangles?” (commenting later that shortages
were common in those days). For the sake of completeness, we also record the
teacher’s answer, “Shut up.”

After graduating from high school, Yuri spent three semesters at the Chelya-
binsk Polytechnik. Because of a dissatisfaction with the high ratio of memoriza-
tion to knowledge in the engineering program, Yuri left after a year and a half
and enrolled in Ural State University to study mathematics.

Yuri obtained four academic degrees associated with Ural State University: his
master’s degree in 1962, his candidate’s degree (equivalent to the Western Ph.D.)
in 1964, his doctorate (similar to habilitation, but essentially guaranteeing an
appointment as full professor) in 1968, and an honorary doctorate in 2005. At
Ural State University, Yuri ran a flourishing logic seminar, and he founded a
Mathematical Winter School that is still functioning today. It should also be
noted that the four-year interval between the candidate’s and doctor’s degrees
was unusually short.

1 Numerical references are to the annotated bibliography in this volume; they match

the numbering on Yuri’s web site.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 1–6, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A. Blass, N. Dershowitz, and W. Reisig

That four-year interval contained some very important non-academic events.
Yuri and Zoe were married in March 1965, and their twin daughters, Hava and
Naomi, were born in October 1966.

As mentioned above, once he had his doctorate (in the Russian sense), Yuri
would ordinarily get a professorship, but a glance at his curriculum vitae shows
that he overshot a bit, becoming not only a professor but chair of the Mathemat-
ics Department at the National Economy Institute in Sverdlovsk in 1969. This
does not indicate a great enthusiasm for administrative work; in fact, though
he’s very good at administration, Yuri is not very fond of it. Nor does it indicate
great interest in economics. What made this appointment extremely attractive
is that it provided an apartment – a very important benefit in the Soviet Union,
especially for a man with a young family.

Because of the political situation in the Soviet Union, Yuri and Zoe decided
to move to Israel. That rather dangerous journey took them to Krasnodar and
then to Tbilisi, the capital of beautiful and hospitable Georgia. Eventually they
emigrated to Israel in October 1973.

During the period from his master’s degree until his departure from the Soviet
Union, Yuri established himself as a first-rate algebraist and logician. Already in
his master’s thesis [1], he solved an open problem in group theory, but his most
important work from this period, at the interface of logic and algebra, concerned
ordered abelian groups. His 1964 thesis for the candidate’s degree [3] proved the
decidability of the first-order theory of these groups; later he obtained decidabil-
ity of the richer theory that includes quantification not only over elements but
also over convex subgroups. This richer theory includes essentially all the ques-
tions that had attracted the attention of researchers in ordered abelian groups.
It is fair to say that this work [19,25] of Yuri’s subsumed that entire field.

In addition to this work on ordered abelian groups, Yuri made fundamen-
tal contributions to the decision problem for first-order logic. In particular, he
completed [6,7,13] the analysis of decidability of classes of first-order formulas
of the form “specified quantifier prefix and specified vocabulary.” Yuri’s work
from that period contains other contributions, for example the undecidability of
the first-order theory of lattice-ordered abelian groups [9], but there is also an
important but non-technical contribution that must be mentioned here.

We quote part of a toast offered by Yuri’s first Ph.D. student, Alexander
Livchak, at a 2010 anniversary celebration of the Faculty of Mathematics of the
Ural State University:

Gurevich taught us to think freely. It was helpful that his specialty was
logic – the science of proofs. He tried unobtrusively to impress upon us
that the final judgment is ours and not that of the Central Committee
of the Communist Party or that of Marx–Engels.

It all started with a seminar on axiomatic set theory. The idea of a
winter school was born there. The schedule of the Winter Math School
included not only studies but also mandatory daily skiing and various
entertainment activities. For example, Gurevich liked debates à la me-
dieval scholastic disputes. He would volunteer to argue any ridiculous

Yuri, Logic, and Computer Science 3

and obviously false thesis of our choice in order to demonstrate the art
of arguing. Therein lay his secret “counter-revolutionary Zionist” (in the
terminology of the time) plot: to teach us to argue, doubt, prove, refute.
In general to teach us to think independently.

Yuri lived in Israel from 1973 to 1981, teaching at Ben-Gurion University of
the Negev in Beer-Sheva, except for leaves of absence spent at Simon Fraser Uni-
versity in Vancouver, the Hebrew University of Jerusalem, and Bowling Green
State University in Ohio. Very soon after his arrival in Israel, he impressed peo-
ple by solving several problems posed by Saharon Shelah. This work and other
results from his Israeli period concerned the monadic theory of linear orders,
either in general or in the context of specific linear orders like the real line. One
of these results is that, if the continuum hypothesis holds, the countability of
subsets of the real line can be defined in monadic second-order logic. That work
led to the first of numerous deep joint papers with Shelah. It also led to con-
nections with the theory of ordered (non-abelian) groups, especially groups of
automorphisms of linear orders.

Another major contribution from Yuri’s Israeli period (although the paper [40]
was prepared and published after Yuri was in the U.S.) is the Gurevich-Harrington
theorem. This theorem concerns the existence of winning strategies in certain infi-
nite games. In various contexts (mostly in topology), people had considered strate-
gies that look only at the opponent’s immediately previous move (rather than the
whole history of the play) or a fixed number of previous moves. Yuri and Leo Har-
rington showed that, for many games, the winning player has a strategy that re-
members, at any stage, only finitely much information from the past, though there
is no bound on how long ago that information might have appeared. They used
this result to greatly simplify the hardest part of Michael Rabin’s proof of the de-
cidability of the monadic theory of two successor functions.

Yuri spent the academic year 1981–82 as a visiting professor at Bowling Green
State University in Ohio, which was at that time a major center of research on
ordered groups; Andrew Glass and Charles Holland were on the faculty there. In
addition to research on ordered groups, Yuri resumed thinking about computer
science, which he had already been interested in even in the Soviet Union. He
sought a computer science position in Israel or the U.S.

In 1982, Yuri accepted an appointment as professor of computer science2

at the University of Michigan.3 Yuri took his conversion to computer science
seriously. He did not just write mathematics papers with a computer science fa-
cade. Although he finished various mathematical projects, he immediately began

2 Technically, he was professor of Computer and Communication Sciences, since that

was the name of the department. A subsequent reorganization put him and his

fellow computer scientists into the engineering college, in the Computer Science and

Engineering Division of the Department of Electrical Engineering and Computer

Science. He now holds the title of Professor Emeritus of Electrical Engineering and

Computer Science.
3 An observation by Andreas Blass: The angriest I’ve ever seen Andrew Glass is when

he talked about Bowling Green’s failure to make a serious effort to keep Yuri.

4 A. Blass, N. Dershowitz, and W. Reisig

thinking deeply about computational issues and making significant contributions
to his new field. Furthermore, with the enthusiasm of a new convert, he began
the difficult project of trying to convert Andreas Blass to computer science. The
project didn’t entirely succeed; Blass still claims to be a set-theorist, but he
certainly learned a great deal of computer science from Yuri.

Yuri’s contributions to computer science span a vast part of that field, and we
can mention only a few of them here. First, there are many results in complexity
theory, but to appreciate this part of Yuri’s work it is necessary to take into
account the great variety of topics that fall under this heading. There is tradi-
tional complexity theory, largely directed toward the P vs. NP question but also
covering many other aspects of polynomial-time computation. But there is also
a strong connection to probabilistic issues, both in connection with the use of
randomness in computation and in connection with average-case (as opposed to
worst-case) complexity of algorithms. Yuri made important contributions in all
these areas, including good explanations of Leonid Levin’s theory of average-case
complexity and natural complete problems for this theory. He also investigated
far stricter resource bounds, including linear time, and in a joint paper [82] with
Shelah showed that the notion of “linear times polylog time” is remarkably ro-
bust across different models of computation as long as one excludes ordinary
Turing machines.

A second broad area of Yuri’s research in computer science is connections
between computation and logic, and this, too, spans several sub-areas. A partic-
ularly important contribution is Yuri’s emphasis on the computational relevance
of finite structures. Classical logic is greatly changed by restricting attention
to finite structures, mainly because the compactness theorem, one of the chief
traditional tools, becomes false in this context. Although there had certainly
been earlier work on finite structures, Yuri’s papers [60] and [74] led to a major
increase of interest and activity in this field. Yuri also formulated in [74] the
main open problem about the connection between logic and complexity, namely
his conjecture that there is no logic that exactly captures polynomial time com-
putability on unordered structures. (Part of the contribution here is making the
conjecture precise by saying what should be meant by a “logic” in this context.)

Yuri’s contributions to the interface between logic and computer science also
include studies of Hoare logic and (motivated by better compatibility with Hoare
logic) existential fixed-point logic. Another of Yuri’s contributions is the intro-
duction, in joint work with Erich Grädel [109], of metafinite model theory, in
which models are primarily finite but are allowed to have a secondary, infinite
part so that such operations as counting can be accommodated in a natural way.

We should also mention here Yuri’s “Logic in Computer Science” column
in the Bulletin of the European Association for Theoretical Computer Science.
Here we find not only a great number of interesting columns written by Yuri
himself and exploring the most diverse areas that could fit under the “logic
and computer science” heading, often in the form of a Socratic dialogue with
his friend and disciple, “Quisani,” but also columns that he solicited from other
experts. The columns, later collected along with other BEATCS material in three

Yuri, Logic, and Computer Science 5

books titled Current Trends in Theoretical Computer Science,4 make fascinating
reading. They are not all just surveys either; Yuri sometimes used the column
to present his new results. An outstanding example is [131], in which he proves
that, if we could compute, in polynomial time, a complete isomorphism invariant
for graphs, then we could also compute in polynomial time, from any graph as
input, a standard representative (a canonical form) of its isomorphism class.

In terms of subsequent impact, Yuri’s biggest achievement during his Michigan
period was the invention of abstract state machines5 (ASMs) and the ASM
thesis. ASMs are an extraordinarily clean and general model of computation.
Here “clean” means that ASMs have a simple, unambiguous semantics; “general”
means that they can easily simulate a huge variety of computations, ranging from
high-level algorithms down to hardware. Yuri proposed the “ASM thesis” that
every algorithm can be faithfully represented, at its natural level of abstraction,
by an ASM. Initial support for the thesis came from numerous case studies, in
which Yuri, his students, and others gave ASM descriptions of a wide variety of
software and hardware systems as well as abstract algorithms. Later, support
came from rigorous proofs, but this is getting ahead of the story.

In 1998, Yuri joined Microsoft Research as a senior researcher, with the job
of bringing ASMs into the real world of large-scale software development. The
move from Michigan to Microsoft happened remarkably fast; the decision was
made in August and involved getting a leave of absence from Michigan for the
fall semester, which begins in early September. Fortunately, the relevant admin-
istrators at Michigan granted the leave, fully expecting that Yuri would soon
return, especially because his job at Microsoft involved building a new research
group from scratch. But Yuri handled his new administrative duties well, hiring
several first-rate researchers, and he really enjoyed (and continues to enjoy) the
knowledge that his work is having an impact on real computing. So, after two
years on leave from Michigan, he officially retired. He has now been a professor
emeritus for ten years.

Among Yuri’s many contributions while at Microsoft, we describe just a few, of
which several involve ASMs. Perhaps the most surprising is his discovery that, in
certain contexts, the ASM thesis can actually be proved. In [141], Yuri presented
some simple, natural postulates about sequential, non-interactive algorithms;
argued that they are satisfied by anything that one would intuitively consider to
be such an algorithm; and then proved that anything satisfying the postulates is
equivalent, in a very strong sense, to an ASM (of a particular sort). That result
has since been extended to parallel algorithms in [157-1,157-2], to interactive
sequential algorithms in [166,170,171,176,182], and to a notion of equivalence
that keeps track of exactly which part of the state is relevant at each step in [201].

A second, quite different, use of ASMs occurs in describing “choiceless poly-
nomial time” computation. Here, the input to a computation is an unordered
structure, and the computation is allowed to use parallelism and essentially

4 Edited by G. Rozenberg, A. Salomaa, and (for the last two) G. Paun; published by

World Scientific in 1993, 2001, and 2004.
5 Originally called “dynamic structures” and subsequently “evolving algebras.”

6 A. Blass, N. Dershowitz, and W. Reisig

arbitrary data structures, but it is not allowed to make arbitrary choices of
elements (or, equivalently, to linearly order the input structure). This concept,
originally introduced with quite a complicated definition by Shelah, turned out
to be equivalent to computation by a rather standard sort of ASM over a struc-
ture consisting of the original input plus all hereditarily finite sets over it. The
hereditarily finite sets capture the arbitrary data structures, and the ASMs take
care of the rest of the computational issues. By itself, choiceless polynomial time
is rather weak; it can’t even count [120]. But when extended by counting, it is
a surprisingly strong logic [150] and in fact is one of very few logics that might
possibly capture polynomial-time computation on unordered structures (though
that seems very unlikely).

Yet another use of ASMs is the proof of Church’s thesis [188] on the basis of
natural assumptions about computability.

Another aspect of Yuri’s contribution to computer science is that he accurately
assesses the quality of people’s work and acts on the basis of that assessment. We
omit the negative examples, to avoid unnecessary controversy, but describe one
positive example, as seen by Blass. Ben Rossman, while taking a year off after
finishing his undergraduate degree, solved an old problem of Yuri’s and sent
him the solution. Many people, getting a rather difficult-to-read manuscript,
out of the blue, from someone with no credentials, would be inclined to ignore
it, but Yuri read it carefully, decided it was correct, and told Blass about it
enthusiastically. Not long afterward, Yuri, Rossman, and Blass were all at a LICS
conference, and Rossman, who had met Blass a few months earlier at another
conference but had not yet met Yuri, mentioned to Blass that he was looking for
something interesting to do in the following summer. Blass immediately thought
of Microsoft Research, but not of Yuri’s group, which was at that time heavily
engaged in very applied work, far from Rossman’s theoretical interests. But there
might be a possibility of an internship with Microsoft’s Theory Group, so Blass
suggested that Rossman check with Yuri about that possibility. Yuri promptly
offered Rossman a visiting position in his group, and this unusual investment in
theory paid off in several significant contributions by Rossman to the group’s
work [169,176,182].

Among Yuri’s other recent technical contributions are work on efficient file
transfer [183,190], on software testing [154,160,163,173], on security assessment
[202], and on decentralized authorization [191,198,200].

There is a great deal more to be said about Yuri’s work, in both mathematics
and computer science, his generosity toward colleagues and students, and his
amazing energy level. But this is being written while the rest of this volume is
ready to go to the publisher, so we’ll stop here. Some more information can be
found in Jan Van den Bussche’s contribution to this volume, and an indication
of the community’s admiration for Yuri can be inferred from the size of this
volume.

Annotated List of Publications
of Yuri Gurevich

The following list of publications and annotations is derived from Yuri Gurevich’s
website,1

http://research.microsoft.com/en-us/um/people/gurevich/annotated.htm .

Abbreviations:

BEATCS = Bulletin of the European Association
for Theoretical Computer Science

JSL = Journal of Symbolic Logic
LNCS = Lecture Notes in Computer Science
MSR-TR-Y-N = Microsoft Research Technical Report number N of year Y
ACM TOCL = ACM Transactions of Computation Logic
Doklady = Doklady Akademii Nauk SSSR

(Proceedings of the USSR Academy of Sciences)

0. Egon Börger, Erich Grädel, Yuri Gurevich: The Classical Decision Problem.

Springer Verlag, Perspectives in Mathematical Logic, 1997. Second printing,

Springer Verlag, 2001. Review in Journal of Logic, Language and Information

8:4 (1999), 478–481. Review in ACM SIGACT News 35:1 (March 2004), 4–7

The classical decision problem is (in its modern meaning) the problem of

classifying fragments of first-order logic with respect to the decidability and com-

plexity of the satisfiability problem as well as the satisfiability problem over finite

domains. The results and methods employed are used in logic, computer science

and artificial intelligence.

The book gives the most complete and comprehensive treatment of the classical

decision problem to date, and includes an annotated bibliography of 549 items.

Much of the material is published for the first time in book form; this includes

the classifiability theory, the classification of the so-called standard fragments,

and the analysis of the reduction method. Many proofs have been simplified and

there are many new results and proofs.

1. Yuri Gurevich: Groups covered by proper characteristic subgroups. Trans. of Ural

University 4:1 (1963), 32–39 (Russian, Master’s thesis)

2. Yuri Gurevich, Ali I. Kokorin: Universal equivalence of ordered abelian groups.

Algebra and Logic 2:1 (1963), 37–39 (Russian)

We prove that no universal first-order property distinguishes between any two

ordered abelian groups.

1 The editors thank Zoe Gurevich for her help.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 7–48, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://research.microsoft.com/en-us/um/people/gurevich/annotated.htm

8 Annotated List of Publications of Yuri Gurevich

3. Yuri Gurevich: Elementary properties of ordered abelian groups. Algebra and

Logic 3:1 (1964), 5–39 (Russian, Ph.D. thesis)

We classify ordered abelian groups by first-order properties. Using that classifi-

cation, we prove that the first-order theory of ordered abelian groups is decidable;

this answers a question of Alfred Tarski.

3a. Yuri Gurevich: Elementary properties of ordered abelian groups. AMS Transla-

tions 46 (1965), 165–192

This is an English translation of [3].

4. Yuri Gurevich: Existential interpretation. Algebra and Logic 4:4 (1965), 71–85

(Russian)

We introduce a method of existential interpretation, and we use the method

to prove the undecidability of fragments of the form ∃r∀∗ of various popular

first-order theories.

5. Yuri Gurevich: On the decision problem for pure predicate logic. Doklady 166

(1966), 1032–1034 (Russian)

The ∀∃∀∃∗ fragment of pure predicate logic with one binary and some number

k of unary predicates is proven to be a conservative reduction class. Superseded

by [6].

5a. Yuri Gurevich: On the decision problem for pure predicate logic. Soviet Mathe-

matics 7 (1966), 217–219

This is an English translation of [5].

6. Yuri Gurevich: The decision problem for predicate logic. Doklady 168 (1966),

510–511 (Russian)

The ∀∃∀∃∗ fragment of pure predicate logic with one binary and no unary

predicates is a conservative reduction class and therefore undecidable for satis-

fiability and for finite satisfiability. This completes the solution of the classical

decision problem for pure predicate logic: the prefix-vocabulary classes of pure

predicate logic are fully classified into decidable and undecidable. See a more

complete exposition in [7].

6a. Yuri Gurevich: The decision problem for predicate logic. Soviet Mathematics 7

(1966), 669–670

This is an English translation of [6].

7. Yuri Gurevich: Recognizing satisfiability of predicate formulas. Algebra and Logic

5:2 (1966), 25–35 (Russian)

This is a detailed exposition of the results announced in [6].

8. Yuri Gurevich: The word problem for some classes of semigroups. Algebra and

Logic 5:2 (1966), 25–35 (Russian)

The word problem for finite semigroups is the following decision problem:

given some number n of word pairs (u1, v1), ..., (un, vn) and an additional word

pair (u0, v0), decide whether the n equations u1 = v1, ..., un = vn imply the

additional equation u0 = v0 in all finite semigroups. We prove that the word

problem for finite semigroups is undecidable. In fact, the undecidability result

holds for a particular premise E = (u1 = v1 and ... and un = vn). Furthermore,

this particular E can be chosen so that the following are recursively inseparable:
– {(u0, v0) : E implies u0 = v0 in every periodic semigroup},
– {(u0, v0) : E fails to imply u0 = v0 in some finite semigroup}.

The paper contains some additional undecidability results.

Annotated List of Publications of Yuri Gurevich 9

9. Yuri Gurevich: Hereditary undecidability of the theory of lattice-ordered abelian

groups. Algebra and Logic 6:1 (1967), 45–62 (Russian)

Delimiting the decidability result of [3] for linearly ordered abelian groups and

answering Malcev’s question, we prove the theorem in the title.

10. Yuri Gurevich: Lattice-ordered abelian groups and K-lineals. Doklady 175 (1967),

1213–1215 (Russian)

10a. Yuri Gurevich: Lattice-ordered abelian groups and K-lineals. Soviet Mathematics

8 (1967), 987–989

This is an English translation of [10].

11. Yuri Gurevich: A new decision procedure for the theory of ordered abelian groups.

Algebra and Logic 6:5 (1967), 5–6 (Russian)

12. Yuri Gurevich: The decision problem for some algebraic theories. Doctor of

Physico-Mathematical Sciences Thesis, Sverdlovsk, USSR, 1968 (Russian)

13. Yuri Gurevich: The decision problem for logic of predicates and operations. Alge-

bra and Logic 8 (1969), 284–308 (Russian)

The article consists of two chapters. In the first part of the first chapter, the

author rediscovers well-partial-orderings and well-quasi-orderings, which he calls

tight partial orders and tight quasi-orders, and develops a theory of such order-

ings. (In this connection, it may be appropriate to point out Joseph B. Kruskal’s

article “The theory of well-quasi-ordering: A frequently discovered concept” in

J. Comb. Theory A, vol. 13 (1972), 297–305.) To understand the idea behind the

term “tight”, think of a boot: you cannot move your foot far down or sidewise –

only up. This is similar to tight partial orders where infinite sequences have no

infinite descending subsequences, no infinite antichains, but always have infinite

ascending subsequences.

In the second part of the first chapter, the author applies the theory of tight

orders to prove a classifiability theorem for prefix-vocabulary classes of first-order

logic. The main part of the classifiability theorem is that the partial order of prefix-

vocabulary classes (ordered by inclusion) is tight. But there is an additional useful

part of the classifiability theorem, about the form of the minimal classes outside

a downward closed collection, e.g. the minimal classes that are undecidable in one

way or another.

In the second chapter, the author completes the decision problem for (the

prefix-vocabulary fragments of) pure logic of predicates and functions, though

the treatment of the most difficult decidable class is deferred to [18]. In par-

ticular, the classes [∀2,(0,1),(1)] and [∀2,(1),(0,1)] are proved to be conservative

reduction classes. (This abstract is written in January 2006.)

13a. Yuri Gurevich: The decision problem for logic of predicates and operations. Alge-

bra and Logic 8 (1969), 160–174 (English)

This is an English translation of [13].

14. Yuri Gurevich: The decision problem for decision problems. Algebra and Logic 8

(1969), 640–642 (Russian)

Consider the collection D of first-order formulas α such that the first-order

theory with axiom α is decidable. It is proven that D is neither r.e. nor co-r.e.

(The second part had been known earlier.)

14a. Yuri Gurevich: The decision problem for decision problems. Algebra and Logic 8

(1969), 362–363 (English)

This is an English translation of [14].

10 Annotated List of Publications of Yuri Gurevich

15. Yuri Gurevich: Minsky machines and the ∀∃∀&∃∗ case of the decision problem.

Trans. of Ural University 7:3 (1970), 77–83 (Russian)

An observation that Minsky machines may be more convenient than Turing

machines for reduction purposes is illustrated by simplifying the proof from [7]

that some [∀∃∀&∃∗,(k,1)] is a reduction class.

16. Yuri Gurevich, Igor O. Koriakov: A remark on Berger’s paper on the domino

problem. Siberian Mathematical Journal, 13 (1972), 459–463 (Russian)

Berger proved that the decision problem for the unrestricted tiling problem

(a.k.a. the unrestricted domino problem) is undecidable. We strengthen Berger’s

result. The following two collection of domino sets are recursively inseparable:

(1) those that can tile the plane periodically (equivalently, can tile a torus) and

(2) those that cannot tile the plane at all.

It follows that the collection of domino sets that can tile a torus is undecidable.

16a. Yuri Gurevich, Igor O. Koriakov: A remark on Berger’s paper on the domino

problem. Siberian Mathematical Journal 13 (1972), 319–321 (English)

This is an English translation of [16].

17. Yuri Gurevich, Tristan Turashvili: Strengthening a result of Suranyi. Bulletin of

the Georgian Academy of Sciences 70 (1973), 289–292 (Russian)

18. Yuri Gurevich: Formulas with one universal quantifier. In: Selected Questions of
Algebra and Logic, Volume dedicated to the memory of A.I. Malcev, Publishing

house Nauka – Siberian Branch, Novosibirsk, (1973), 97–110 (Russian)

The main result, announced in [9], is that the ∃∗∀∃∗ class of first-order logic

with functions but without equality has the finite model property (and therefore

is decidable for satisfiability and finite satisfiability). This result completes the

solution in [9] for the classical decision problem for first-order logic with functions

but without equality.

19. Yuri Gurevich: The decision problem for the expanded theory of ordered abelian

groups. Soviet Institute of Scientific and Technical Information (VINITI), 6708:73

(1974), 1–31 (Russian)

20. Yuri Gurevich: The decision problem for first-order logic. Manuscript (1971), 124

pages (Russian)

This was supposed to be a book (and eventually it became the core of the

book [0]), but the publication of the original Russian book was aborted when the

author left USSR. A German translation of the manuscript can be found in Uni-

versitätsbibliothek Dortmund (Ostsprachen-Übersetzungsdienst) and Technische

Informationsbibliothek und Universitätsbibliothek Hannover.

21. Yuri Gurevich: The decision problem for standard classes. JSL 41 (1976), 460–464

The classification of prefix-signature fragments of (first-order) predicate logic

with equality, completed in [7], is extended to first-order logic with equality and

functions. One case was solved (confirming a conjecture of this author) by Saharon

Shelah.

22. Yuri Gurevich: Semi-conservative reduction. Archiv für Math. Logik und Grund-

lagenforschung 18 (1976), 23–25

23. Ilya Gertsbakh, Yuri Gurevich: Constructing an optimal fleet for a transportation

schedule. Transportation Science 11 (1977), 20–36

A general method for constructing all optimal fleets is described.

Annotated List of Publications of Yuri Gurevich 11

24. Yuri Gurevich: Intuitionistic logic with strong negation. Studia Logica 36 (1977),

49–59

Classical logic is symmetric with respect to True and False but intuitionis-

tic logic is not. We introduce and study a conservative extension of first-order

intuitionistic logic that is symmetric with respect to True and False.

25. Yuri Gurevich: Expanded theory of ordered abelian groups. Annals of Mathemat-

ical Logic 12 (1977), 193–228

The first-order theory of ordered abelian groups was analyzed in [3]. How-

ever, algebraic results on ordered abelian groups in the literature usually cannot

be stated in first-order logic. Typically they involve so-called convex subgroups.

Here we introduce an expanded theory of ordered abelian groups that allows

quantification over convex subgroups and expresses almost all relevant algebra.

We classify ordered abelian groups by the properties expressible in the expanded

theory, and we prove that the expanded theory of ordered abelian groups is de-

cidable. Curiously, the decidability proof is simpler than that in [3]. Furthermore,

the decision algorithm is primitive recursive.

26. Yuri Gurevich: Monadic theory of order and topology, I. Israel Journal of Math-

ematics 27 (1977), 299–319

We disprove two of Shelah’s conjectures and prove some more results on the

monadic theory of linearly orderings and topological spaces. In particular, if the

Continuum Hypothesis holds then there exist monadic formulæ expressing the

predicates “X is countable” and “X is meager” over the real line and over Cantor’s

Discontinuum.

27. Yuri Gurevich: Monadic theory of order and topology, II. Israel Journal of Math-

ematics 34 (1979), 45–71

Assuming the Continuum Hypothesis, we interpret the theory of (the cardinal

of) the continuum with quantification over constructible (monadic, dyadic, etc.)

predicates in the monadic (second-order) theory of real line, in the monadic the-

ory of any other short non-modest chain, in the monadic topology of Cantor’s

Discontinuum and some other monadic theories. We exhibit monadic sentences

defining the real line up to isomorphism under some set-theoretic assumptions.

There are some other results.

28. Yuri Gurevich: Modest theory of short chains, I. JSL 44 (1979), 481–490

The composition (or decomposition) method of Feferman-Vaught is generalized

and made much more applicable.

29. Yuri Gurevich, Saharon Shelah: Modest theory of short chains, II. JSL 44 (1979),

491–502

We analyze the monadic theory of the rational line and the theory of the real

line with quantification over “small” subsets. The results are in some sense the

best possible.

30. Yuri Gurevich: Two notes on formalized topology. Fundamenta Mathematicae 57

(1980), 145–148

31. Yuri Gurevich, W. Charles Holland: Recognizing the real line. Transactions of

American Math. Society 265 (1981), 527–534

We exhibit a first-order statement about the automorphism group of the real

line that characterizes the real line among all homogeneous chains.

12 Annotated List of Publications of Yuri Gurevich

32. Andrew M. W. Glass, Yuri Gurevich, W. Charles Holland, Saharon Shelah: Rigid

homogeneous chains. Math. Proceedings of Cambridge Phil. Society 89 (1981),

7–17

33. Andrew M. W. Glass, Yuri Gurevich, W. Charles Holland, Michèle Jambu-

Giraudet: Elementary theory of automorphism groups of doubly homogeneous

chains. Springer Lecture Notes in Mathematics 859 (1981), 67–82

34. Yuri Gurevich: Crumbly spaces. Sixth International Congress for Logic, Method-

ology and Philosophy of Science (1979) North-Holland (1982), 179–191

Answering a question of Henson, Jockush, Rubel and Takeuti, we prove that

the rationals, the irrationals and the Cantor set are all elementarily equivalent as

topological spaces.

35. Stal O. Aanderaa, Egon Börger, Yuri Gurevich: Prefix classes of Krom formulas

with identity. Archiv für Math. Logik und Grundlagenforschung 22 (1982), 43–49

36. Yuri Gurevich: Existential interpretation, II. Archiv für Math. Logik und Grund-

lagenforschung 22 (1982), 103–120

37. Yuri Gurevich, Saharon Shelah: Monadic theory of order and topology in ZFC.

Annals of Mathematical Logic 23 (1982), 179–198

In the 1975 Annals of Mathematics, Shelah interpreted true first-order arith-

metic in the monadic theory of order under the assumption of the continuum

hypothesis. The assumption is removed here.

38. Ilya Gertsbakh, Yuri Gurevich: Homogeneous optimal fleet. Transportation Re-

search 16B (1982), 459–470

39. Yuri Gurevich: A review of two books on the decision problem. Bulletin of the

American Mathematical Society 7 (1982), 273–277

40. Yuri Gurevich, Leo Harrington: Automata, trees, and games. 14th Annual Sym-

posium on Theory of Computing, ACM (1982), 60–65

We prove a forgetful determinacy theorem saying that, for a wide class of

infinitary games, one of the players has a winning strategy that is virtually mem-

oryless: the player has to remember only boundedly many bits of information. We

use forgetful determinacy to give a transparent proof of Rabin’s celebrated result

that the monadic second-order theory of the infinite tree is decidable.

41. Yuri Gurevich, Harry R. Lewis: The inference problem for template dependencies.

Information and Control 55 (1982), 69–79

Answering a question of Jeffrey Ullman, we prove that the problem in the title

is undecidable.

42. Andreas Blass, Yuri Gurevich: On the unique satisfiability problem. Information

and Control 55 (1982), 80–88

Papadimitriou and Yannakakis were interested whether Unique Sat is hard

for {L − L′ : L, L′ ∈ NP} when NP differs from co-NP (otherwise the answer is

obvious). We show that this is true under one oracle and false under another.

43. Edmund M. Clarke, Nissim Francez, Yuri Gurevich, A. Prasad Sistla: Can message

buffers be characterized in linear temporal logic? Symposium on Principles of

Distributed Computing, ACM (1982), 148–156

In the case of unbounded buffers, the negative answer follows from a result

in [28].

Annotated List of Publications of Yuri Gurevich 13

44. Yuri Gurevich: Decision problem for separated distributive lattices. JSL 48 (1983),

193–196

It is well known that for all recursively enumerable sets X1, X2 there are

disjoint recursively enumerable sets Y1, Y2 such that Yi ⊆ Xi and (Y1 ∪ Y2) =

(X1 ∪ X2). Alistair Lachlan called distributive lattices satisfying this property

separated. He proved that the first-order theory of finite separated distributive

lattices is decidable. We prove here that the first-order theory of all separated

distributive lattices is undecidable.

45. Yuri Gurevich, Menachem Magidor, Saharon Shelah: The monadic theory of ω2.

JSL 48 (1983), 387–398

In a series of papers, Büchi proved the decidability of the monadic (second-

order) theory of ω0, of all countable ordinals, of ω1, and finally of all ordinals < ω2.

Here, assuming the consistency of a weakly compact cardinal, we prove that, in

different set-theoretic worlds, the monadic theory of ω2 may be arbitrarily difficult

(or easy).

46. Yuri Gurevich, Saharon Shelah: Interpreting second-order logic in the monadic

theory of order. JSL 48 (1983), 816–828

Under a weak set-theoretic assumption, we interpret full second-order logic in

the monadic theory of order.

47. Yuri Gurevich, Saharon Shelah: Rabin’s Uniformization Problem. JSL 48 (1983),

1105–1119

The negative solution is given.

48. Yuri Gurevich, Saharon Shelah: Random models and the Gödel case of the decision

problem. JSL 48 (1983), 1120–1124

We replace Gödel’s sophisticated combinatorial argument with a simple prob-

abilistic one.

49. Andrew M. W. Glass, Yuri Gurevich: The word problem for lattice-ordered groups.

Transactions of American Math. Society 280 (1983), 127–138

The problem is proven to be undecidable.

50. Yuri Gurevich: Critiquing a critique of Hoare’s programming logics. Communica-

tions of ACM (May 1983), 385 (Tech. communication)

51. Yuri Gurevich: Algebras of feasible functions. 24th Annual Symposium on Foun-

dations of Computer Science, IEEE Computer Society Press, 1983, 210–214

We prove that, under a natural interpretation over finite domains,

(i) a function is primitive recursive if and only if it is logspace computable, and

(ii) a function is general recursive if and only if it is polynomial time computable.

52. Yuri Gurevich, Peter H. Schmitt: The theory of ordered abelian groups does not

have the independence property. Trans. of American Math. Society 284 (1984),

171–182

53. Yuri Gurevich, Harry R. Lewis: The word problem for cancellation semigroups

with zero. JSL 49 (1984), 184–191

In 1947, Post showed the word problem for semigroups to be undecidable. In

1950, Turing strengthened this result to cancellation semigroups, i.e. semigroups

satisfying the cancellation property

14 Annotated List of Publications of Yuri Gurevich

(1) if xy = xz or yx = zx then y = z.
No semigroup with zero satisfies (1). The cancellation property for semigroups

with zero and identity is

(2) if xy = xz �= 0 or yx = zx �= 0 then y = z.
The cancellation property for semigroups with zero but without identity is the

conjunction of (2) and

(3) if xy = x or yx = x then x = 0.

Whether or not a semigroup with zero has an identity, we refer to it as a cancel-

lation semigroup with zero if it satisfies the appropriate cancellation property. It

is shown in [8] that the word problem for finite semigroups is undecidable. Here

we show that the word problem is undecidable for finite cancellation semigroups

with zero; this holds for semigroups with identity and also for semigroups without

identity. (In fact, we prove a stronger effective inseparability result.) This provides

the necessary mathematical foundation for [41]).

54. Yuri Gurevich, Larry J. Stockmeyer, Uzi Vishkin: Solving NP-hard problems on

graphs that are almost trees, and an application to facility location problems.

Journal of the ACM 31 (1984), 459–473

Imagine that you need to put service stations (or MacDonald’s restaurants)

on roads in such a way that every resident is within, say, 10 miles of the nearest

station. What is the minimal number of stations and how does one find an optimal

placement? In general, the problem is NP hard; however in important special cases

there are feasible solutions.

55. Andreas Blass, Yuri Gurevich: Equivalence relations, invariants, and normal

forms. SIAM Journal on Computing 13 (1984), 682–689

For an equivalence relation E on the words in some finite alphabet, we consider

the following four problems.

Recognition. Decide whether two words are equivalent.

Invariant. Calculate a function constant on precisely the equivalence classes.

Normal form. Calculate a particular member of an equivalence class, given

an arbitrary member.

First member. Calculate the first member of an equivalence class, given an

arbitrary member.

A solution for any of these problems yields solutions for all earlier ones in the list.

We show that, for polynomial time recognizable E, the first member problem is

always in the class ΔP
2 (solvable in polynomial time with an oracle for an NP set)

and can be complete for this class even when the normal form problem is solvable

in polynomial time. To distinguish between the other problems in the list, we

construct an E whose invariant problem is not solvable in polynomial time with

an oracle for E (although the first member problem is in NPE ∩ co-NPE), and

we construct an E whose normal form problem is not solvable in polynomial time

with an oracle for a certain solution of its invariant problem.

56. Andreas Blass, Yuri Gurevich: Equivalence relations, invariants, and normal

forms, II. Springer LNCS 171 (1984), 24–42

We consider the questions whether polynomial time solutions for the easier

problems of the list for [55] yield NP solutions for the harder ones, or vice versa.

We show that affirmative answers to several of these questions are equivalent to

natural principles like NP = co-NP, (NP ∩ co-NP) = P, and the shrinking principle

for NP sets. We supplement known oracles with enough new ones to show that

Annotated List of Publications of Yuri Gurevich 15

all questions considered have negative answers relative to some oracles. In other

words, these questions cannot be answered affirmatively by means of relativizable

polynomial-time Turing reductions. Finally, we show that the analogous questions

in the framework where Borel sets play the role of polynomial time decidable sets

have negative answers.

57. Yuri Gurevich, Saharon Shelah: The monadic theory and the ‘next world’. Israel

Journal of Mathematics 49 (1984), 55–68

Let r be a Cohen real over a model V of ZFC. Then the second-order V [r]-
theory of the integers (even the reals if V satisfies CH) is interpretable in the

monadic V -theory of the real line. Contrast this with the result of [79].

58. Warren D. Goldfarb, Yuri Gurevich, Saharon Shelah: A decidable subclass of the

minimal Gödel case with identity. JSL Logic 49 (1984), 1253–1261

59. Yuri Gurevich, Harry R. Lewis: A logic for constant depth circuits. Information

and Control 61 (1984), 65–74

We present an extension of first-order logic that captures precisely the compu-

tational complexity of (the uniform sequences of) constant-depth polynomial-time

circuits.

60. Yuri Gurevich: Toward logic tailored for computational complexity. In: M. Richter

et al. (eds.) Computation and Proof Theory, Springer Lecture Notes in Math. 1104

(1984), 175–216

The pathos of this paper is that classical logic, developed to confront the

infinite, is ill prepared to deal with finite structures, whereas finite structures,

e.g. databases, are of so great importance in computer science. We show that

famous theorems about first-order logic fail in the finite case, and discuss various

alternatives to classical logic. The message has been heard.

60.5. Yuri Gurevich: Reconsidering Turing’s thesis (toward more realistic semantics of

programs). Technical report CRL-TR-36-84 University of Michigan, September

1984

The earliest publication on the abstract state machine project.

61. John P. Burgess, Yuri Gurevich: The decision problem for linear temporal logic.

Notre Dame JSL 26 (1985), 115–128

The main result is the decidability of the temporal theory of the real order.

62. Yuri Gurevich, Saharon Shelah: To the decision problem for branching time logic.

In: P. Weingartner and G. Dold (eds.) Foundations of Logic and Linguistics:

Problems and their Solutions, Plenum (1985), 181–198

63. Yuri Gurevich, Saharon Shelah: The decision problem for branching time logic.

JSL 50 (1985), 668–681

Define a tree to be any partial order satisfying the following requirement:

the predecessors of any element x are linearly ordered, i.e. if (y < x and z <
x) then (y < z or y = z or y > z). The main result of the two papers [62,63]

is the decidability of the theory of trees with additional unary predicates and

quantification over nodes and branches. This gives the richest decidable temporal

logic.

64. Yuri Gurevich: Monadic second-order theories. In: J. Barwise and S. Feferman

(eds.) Model-Theoretical Logics, Springer-Verlag, Perspectives in Mathematical

Logic (1985), 479–506

16 Annotated List of Publications of Yuri Gurevich

In this chapter we make a case for the monadic second-order logic (that is

to say, for the extension of first-order logic allowing quantification over monadic

predicates) as a good source of theories that are both expressive and manageable.

We illustrate two powerful decidability techniques here. One makes use of au-

tomata and games. The other is an offshoot of a composition theory where one

composes models as well as their theories. Monadic second-order logic appears to

be the most natural match for the composition theory.

Undecidability proofs must be thought out anew in this area; for, whereas true

first-order arithmetic is reducible to the monadic theory of the real line R, it

is nevertheless not interpretable in the monadic theory of R. A quite unusual

undecidability method is another subject of this chapter.

In the last section we briefly review the history of the methods thus far devel-

oped and mention numerous results obtained using the methods.

64.5. Yuri Gurevich: A new thesis. Abstracts, American Mathematical Society 6:4 (Au-

gust 1985), p. 317, abstract 85T-68-203

The first announcement of the “new thesis”, later known as the Abstract State
Machine thesis.

65. Andreas Blass, Yuri Gurevich, Dexter Kozen: A zero-one law for logic with a

fixed-point operator. Information and Control 67 (1985), 70–90

The zero-one law, known to hold for first-order logic but not for monadic

or even existential monadic second-order logic, is generalized to the extension

of first-order logic by the least (or iterative) fixed-point operator. We also show

that the problem of deciding, for any π, whether it is almost-sure is complete

for exponential time, if we consider only π’s with a fixed finite vocabulary (or

vocabularies of bounded arity) and complete for double-exponential time if π is

unrestricted.

66. Andreas Blass, Yuri Gurevich: Henkin quantifiers and complete problems. Annals

of Pure and Applied Logic 32 (1986), 1–16

We show that almost any non-linear quantifier, applied to quantifier-free first-

order formulas, suffices to express an NP-complete predicate; the remaining non-

linear quantifiers express exactly co-NL predicates (NL is Nondeterministic Log-

space).

67. Larry Denenberg, Yuri Gurevich, Saharon Shelah: Definability by constant-depth

polynomial-size circuits. Information and Control 70 (1986), 216–240

We investigate the expressive power of constant-depth polynomial-size circuit

models. In particular, we construct a circuit model whose expressive power is

precisely that of first-order logic.

68. Amnon Barak, Zvi Drezner, Yuri Gurevich: On the number of active nodes in a

multicomputer system. Networks 16 (1986), 275– 282

Simple probabilistic algorithms enable each active node to find estimates of the

fraction of active nodes in the system of n nodes (with a direct communication

link between any two nodes) in time o(n).

69. Yuri Gurevich: What does O(n) mean? SIGACT NEWS 17:4 (1986), 61–63

70. Yuri Gurevich, Saharon Shelah: Fixed-point extensions of first-order logic. Annals

of Pure and Applied Logic 32 (1986), 265–280

We prove that the three extensions of first-order logic by means of positive,

monotone and inflationary inductions have the same expressive power in the case

Annotated List of Publications of Yuri Gurevich 17

of finite structures. An extended abstract of the above, in Proc. 26th Annual

Symposium on Foundation of Computer Science, IEEE Computer Society Press

(1985), 346–353, contains some additions.

71. Yuri Gurevich, Saharon Shelah: Expected computation time for Hamiltonian Path

Problem. SIAM J. on Computing 16:3 (1987), 486–502

Let G(n, p) be a random graph with n vertices and the edge probability p.
We give an algorithm for Hamiltonian Path Problem whose expected run-time on

G(n, p) is cn/p+ o(n) for any fixed p. This is the best possible result for the case

of fixed-edge probability. The expected run-time of a slightly modified version of

the algorithm remains polynomial if p = p(n) > n − c where c is positive and

small.

The paper is based on a 1984 technical report.

72. Miklós Ajtai, Yuri Gurevich: Monotone versus positive. Journal of the ACM 34

(1987), 1004–1015

A number of famous theorems about first-order logic were disproved in [60]

in the case of finite structures, but Lyndon’s theorem on monotone vs. posi-

tive resisted the attack. It is defeated here. The counterexample gives a uniform

sequence of constant-depth polynomial-size (functionally) monotone boolean cir-

cuits not equivalent to any (however nonuniform) sequence of constant-depth

polynomial-size positive boolean circuits.

73. Andreas Blass, Yuri Gurevich: Existential fixed-point logic. In: E. Börger (ed.)

Logic and complexity, Springer LNCS 270 (1987), 20–36

The purpose of this paper is to draw attention to existential fixed-point logic

(EFPL). Among other things, we show the following.

– If a structure A satisfies an EFPL formula ϕ then A has a finite subset F
such that every structure that coincides with A on F satisfies ϕ.

– Using EFPL instead of first-order logic removes the expressivity hypothesis

in Cook’s completeness theorem for Hoare logic.

– In the presence of a successor relation, EFPL captures polynomial time.

74. Yuri Gurevich: Logic and the challenge of computer science. In: E. Börger (ed.)

Current Trends in Theoretical Computer Science, Computer Science Press (1988),

1–57

The chapter consists of two quite different parts. The first part is a survey

(including some new results) on finite model theory. One particular point de-

serves a special attention. In computer science, the standard computation model

is the Turing machine whose inputs are strings; other algorithm inputs are sup-

posed to be encoded with strings. However, in combinatorics, database theory,

etc., one usually does not distinguish between isomorphic structures (graphs,

databases, etc.). For example, a database query should provide information about

the database rather than its implementation. In such cases, there is a problem

with string presentation of input objects: there is no known, easily computable

string encoding of isomorphism classes of structures. Is there a computation model

whose machines do not distinguish between isomorphic structures and compute

exactly PTIME properties? The question is intimately related to a question by

Chandra and Harel in “Structure and complexity of relational queries”, J. Com-

put. and System Sciences 25 (1982), 99–128. We formalize the question as the

question whether there exists a logic that captures polynomial time (without pre-

suming the presence of a linear order) and conjecture the negative answer. The

18 Annotated List of Publications of Yuri Gurevich

first part is based on lectures given at the 1984 Udine Summer School on Compu-

tation Theory and summarized in the technical report “Logic and the Challenge

of Computer Science”, CRL-TR-10-85, Sep. 1985, Computing Research Lab, Uni-

versity of Michigan, Ann Arbor, Michigan.

In the second part, we introduce a new computation model: evolving algebras

(later renamed abstract state machines). This new approach to semantics of com-

putations and, in particular, to semantics of programming languages emphasizes

dynamic and resource-bounded aspects of computation. It is illustrated on the

example of Pascal. The technical report mentioned above contained an earlier

version of part 2. The final version was written in 1986.

75. Yuri Gurevich: Algorithms in the world of bounded resources. In: R. Herken (ed.)

The universal Turing machine – a half-century story, Oxford University Press

(1988), 407–416

In the classical theory of algorithms, one addresses a computing agent with

unbounded resources. We argue in favor of a more realistic theory of multiple

addressees with limited resources.

76. Yuri Gurevich: Average case completeness. J. Computer and System Sciences 42:3

(June 1991), 346–398 (a special issue with selected papers of FOCS’87)

We explain and advance Levin’s theory of average case complexity. In particu-

lar, we exhibit the second natural average-case-complete problem and prove that

deterministic reductions are inadequate.

77. Yuri Gurevich, James M. Morris: Algebraic operational semantics and Modula-2.

CSL’87, 1st Workshop on Computer Science Logic, Springer LNCS 329 (1988),

81–101

Jim Morris was a PhD student of Yuri Gurevich at the Electrical Engineering

and Computer Science Department of the University of Michigan, the first PhD

student working on the abstract state machine project. This is an extended ab-

stract of Jim Morris’s 1988 PhD thesis (with the same title) and the first example

of the ASM semantics of a whole programming language.

78. Yuri Gurevich: On Kolmogorov machines and related issues. Originally in

BEATCS 35 (June 1988), 71–82. Reprinted in: Current Trends in Theoretical

Computer Science. World Scientific (1993), 225–234

One contribution of the article was to formulate the Kolmogorov-Uspensky

thesis. In “To the Definition of an Algorithm” [Uspekhi Mat. Nauk 13:4 (1958),

3–28 (Russian)], Kolmogorov and Uspensky wrote that they just wanted to com-

prehend the notions of computable functions and algorithms, and to convince

themselves that there is no way to extend the notion of computable function. In

fact, they did more than that. It seems that their thesis was this:

Every computation, performing only one restricted local action at a time,

can be viewed as (not only being simulated by, but actually being) the

computation of an appropriate KU machine (in the more general form).

Uspensky agreed [J. Symb. Logic 57 (1992), p. 396]. Another contribution of the

paper was a popularization of the following beautiful theorem of Leonid Levin.

Theorem. For every computable function F (w) = x from binary strings

to binary strings, there exists a KU algorithm A such that A conclusively

inverts F and (Time of A on x) = O(Time of B on x) for every KU

algorithm B that conclusively inverts F .

Annotated List of Publications of Yuri Gurevich 19

which had been virtually unknown, partially because it appeared (without a

proof) in his article “Universal Search Problems” [Problems of Information Trans-

mission 9:3 (1973), 265–266] which is hard to read.

79. Yuri Gurevich, Saharon Shelah: On the strength of the interpretation method.

JSL 54:2 (1989), 305–323

The interpretation method is the main tool in proving negative results related

to logical theories. We examine the strength of the interpretation method and find

a serious limitation. In one of our previous papers [57], we were able to reduce true

arithmetic to the monadic theory of real line. Here we show that true arithmetic

cannot be interpreted in the monadic theory of the real line. The reduction of [57]

is not an interpretation.

80. Yuri Gurevich, Saharon Shelah: Time polynomial in input or output. JSL 54:3

(1989), 1083–1088

There are simple algorithms with large outputs; it is misleading to measure the

time complexity of such algorithms in terms of inputs only. In this connection,

we introduce the class PIO of functions computable in time polynomial in the

maximum of the size of input and the size of output, and some other similar

classes. We observe that there is no notation system for any extension of the class

of total functions computable on Turing machines in time linear in output and

give a machine-independent definition of partial PIO functions.

81. Andreas Blass, Yuri Gurevich: On Matiyasevich’s non-traditional approach to

search problems. Information Processing Letters 32 (1989), 41–45

Yuri Matijasevich, famous for completing the solution of Hilbert’s tenth prob-

lem, suggested to use differential equations inspired by real phenomena in nature

to solve the satisfiability problem for boolean formulas. The initial conditions are

chosen at random and it is expected that, in the case of a satisfiable formula, the

process, described by differential equations, converges quickly to an equilibrium

which yields a satisfying assignment. A success of the program would establish

NP=R. Attracted by the approach, we discover serious complications with it.

82. Yuri Gurevich, Saharon Shelah: Nearly linear time. Symposium on Logical Foun-

dations of Computer Science in Pereslavl-Zalessky, USSR, Springer LNCS 363

(1989) 108–118

The notion of linear time is very sensitive to the machine model. In this con-

nection we introduce and study the class NLT of functions computable in nearly

linear time n · (log n)O(1) on random access computers or any other “reasonable”

machine model (with the standard multitape Turing machine model being “unrea-

sonable” for that low complexity class). This gives a very robust approximation to

the notion of linear time. In particular, we give a machine-independent definition

of NLT and a natural problem complete for NLT.

83. Miklós Ajtai, Yuri Gurevich: Datalog vs. first-order logic. J. of Computer and

System Sciences 49:3 (December 1994), 562–588 (Extended abstract in FOCS’89,

142–147)

First-order logic and Datalog are two very important paradigms for relational-

database query languages. How different are they from the point of view of ex-

pressive power? What can be expressed both in first-order logic and Datalog?

It is easy to see that every existential positive first-order formula is expressible

by a bounded Datalog query, and the other way round. Cosmadakis suggested

20 Annotated List of Publications of Yuri Gurevich

that there are no other properties expressible in first-order logic and in Datalog;

in other words, no unbounded Datalog query is expressible in first-order logic.

We prove the conjecture; that is our main theorem. It can be seen as a kind of

compactness theorem for finite structures. In addition, we give counterexamples

delimiting the main result.

84. Yuri Gurevich: Infinite games. Originally in BEATCS (June 1989), 93–100.

Reprinted in: Current Trends in Theoretical Computer Science. World Scientific

(1993), 235–244

Infinite games are widely used in mathematical logic. Recently infinite games

were used in connection to concurrent computational processes that do not nec-

essarily terminate. For example, operating system may be seen as playing a game

“against” the disruptive forces of users. The classical question of the existence

of winning strategies turns out to be of importance to practice. We explain a

relevant part of the infinite game theory.

85. Yuri Gurevich: The challenger-solver game: Variations on the theme of P=?NP.

BEATCS (October 1989), 112–121. Reprinted in: Current Trends in Theoretical

Computer Science. World Scientific (1993), 245–253

The question P
?
=NP is the focal point of much research in theoretical computer

science. But is it the right question? We find it biased toward the positive answer.

It is conceivable that the negative answer is established without providing much

evidence for the difficulty of NP problems in practical terms. We argue in favor

of an alternative to P
?
=NP based on the average-case complexity.

86. Yuri Gurevich: Games people play. In: S. Mac Lane and D. Siefkes (eds.) Collected

Works of J. Richard Büchi, Springer-Verlag (1990), 517–524

87. Yuri Gurevich, Saharon Shelah: Nondeterministic linear-time tasks may require

substantially nonlinear deterministic time in the case of sublinear work space.

Journal of the ACM 37:3 (1990), 674–687

We develop a technique to prove time-space trade-offs and exhibit natural

search problems (e.g. Log-size Clique Problem) that are solvable in linear time on

polylog-space (and sometimes even log-space) nondeterministic Turing machine,

but no deterministic machine (in a very general sense of this term) with sequential-

access read-only input tape and work space nσ solves the problem within time

n1+τ if σ + 2τ < 1
2
.

88. Yuri Gurevich: Matrix decomposition problem is complete for the average case.

FOCS’90, 31st Annual Symposium on Foundations of Computer Science, IEEE

Computer Society Press (1990), 802–811

The first algebraic average-case complete problem is presented. See [97] in this

connection.

89. Yuri Gurevich, Lawrence S. Moss: Algebraic operational semantics and Occam.

CSL’89, 3rd Workshop on Computer Science Logic, Springer LNCS 440 (1990),

176–192

We give evolving algebra semantics to the Occam programming language,

generalizing in the process evolving algebras to the case of distributed concurrent

computations.

Later note: this was the first example of a distributed abstract state machine.

90. Yuri Gurevich: On finite model theory. In: S. R. Buss et al. (eds.) Feasible Math-

ematics, (1990), 211–219

Annotated List of Publications of Yuri Gurevich 21

This is a little essay on finite model theory. Section 1 gives some counterexam-

ples to classical theorems in the finite case. Section 2 gives a finite version of the

classical compactness theorem. Section 3 announces two Gurevich-Shelah results.

One is a new preservation theorem that implies that a first-order formula p pre-

served by any homomorphism from a finite structure into another finite structure

is equivalent to a positive existential formula q. The other result is a lower bound

result according to which a shortest q may be non-elementary longer than p.
A later note: Unfortunately, the proof of preservation theorem fell through – a

unique such case in the history of the Gurevich-Shelah collaboration – and was

later proved by Benjamin Rossman; see Proceedings of LICS 2005. Rossman also

provided details for our lower bound proof.

91. Yuri Gurevich: On the classical decision problem. Originally in BEATCS (October

1990), 140–150. Reprinted in: Current Trends in Theoretical Computer Science.

World Scientific (1993), 254–265

92. Yuri Gurevich: Evolving algebras: An introductory tutorial. Originally in

BEATCS 43 (February 1991), 264–284. This slightly revised version appeared

in: Current Trends in Theoretical Computer Science. World Scientific (1993),

266–292

Computation models and specification methods seem to be worlds apart. The

evolving algebra project is as an attempt to bridge the gap by improving on

Turing’s thesis. We seek more versatile machines able to simulate arbitrary algo-

rithms, on their natural abstraction levels, in a direct and essentially coding-free

way. The evolving algebra thesis asserts that evolving algebras are such versatile

machines. Here sequential evolving algebras are defined and motivated. In addi-

tion, we sketch a speculative “proof” of the sequential evolving algebra thesis:

Every sequential algorithm can be lock-step simulated by an appropriate sequen-

tial evolving algebra on the natural abstraction level of the algorithm.

93. Andreas Blass, Yuri Gurevich: On the reduction theory for average-case complex-

ity. CSL’90, 4th Workshop on Computer Science Logic, Springer LNCS 533 (1991)

17–30

A function from instances of one problem to instances of another problem is

a reduction if together with any admissible algorithm for the second problem it

gives an admissible algorithm for the first problem. This is an example of a de-

scriptive definition of reductions. We slightly simplify Levin’s usable definition of

deterministic average-case reductions and thus make it equivalent to the appro-

priate descriptive definition. Then we generalize this to randomized average-case

reductions.

94. Yuri Gurevich: Average case complexity. ICALP’91, International Colloquium on

Automata, Languages and Programming, Madrid, Springer LNCS 510 (1991),

615–628

We motivate, justify and survey the average-case reduction theory.

95. Yuri Gurevich: Zero-one laws. Originally in BEATCS 51 (February 1991), 90–106.

Reprinted in: Current Trends in Theoretical Computer Science. World Scientific

(1993), 293–309

96. Andreas Blass, Yuri Gurevich: Randomizing reductions of search problems. SIAM

J. on Computing 22:5 (1993), 949–975

This is the journal version of an invited talk at FST&TCS’91, 11th Conference

on Foundations of Software Technology and Theoretical Computer Science, New

Delhi, India; see Springer LNCS 560 (1991), 10–24.

22 Annotated List of Publications of Yuri Gurevich

First, we clarify the notion of a (feasible) solution for a search problem and prove

its robustness. Second, we give a general and usable notion of many-one random-

izing reductions of search problems and prove that it has desirable properties.

All reductions of search problems to search problems in the literature on average

case complexity can be viewed as such many-one randomizing reductions. This

includes those reductions in the literature that use iterations and therefore do not

look many-one.

97. Andreas Blass, Yuri Gurevich: Matrix transformation is complete for the average

case. SIAM J. on Computing 24:1 (1995), 3–29

This is a full paper corresponding to the extended abstract [88] by the second

author. We present the first algebraic problem complete for the average case under

a natural probability distribution. The problem is this: Given a unimodular matrix

X of integers, a set S of linear transformations of such unimodular matrices and

a natural number n, decide if there is a product of at most n (not necessarily

different) members of S that takes X to the identity matrix.

98. Yuri Gurevich, James K. Huggins: The semantics of the C programming language.

In E. Börger et al. (eds.) CSL’92 (Computer Science Logics), Springer LNCS 702

(1993), 274–308

The method of successive refinement is used. The observation that C expres-

sions do not contain statements gives rise to the first evolving algebra (ealgebra)

which captures the command part of C; expressions are evaluated by an oracle.

The second ealgebra implements the oracle under the assumptions that all the

necessary declarations have been provided and user-defined functions are eval-

uated by another oracle. The third ealgebra handles declarations. Finally, the

fourth ealgebra revises the combination of the first three by incorporating the

stack discipline; it reflects all of C. (A later note: evolving algebras are now called

abstract state machines.)

99. Thomas Eiter, Georg Gottlob, Yuri Gurevich: Curb your theory! A circumscriptive

approach for inclusive interpretation of disjunctive information. In: R. Bajcsy,

M. Kaufman (eds.) Proc. 13th Intern. Joint Conf. on AI (IJCAI’93) (1993), 634–

639

We introduce, study and analyze the complexity of a new nonmonotonic tech-

nique of common sense reasoning called curbing. Like circumscription, curbing

is based on model minimality, but, unlike circumscription, it treats disjunction

inclusively.

100. Yuri Gurevich: Feasible functions. London Mathematical Society Newsletter 206

(June 1993), 6–7

Some computer scientists, notably Steve Cook, identify feasibility with

polynomial-time computability. We argue against that point of view. Polynomial-

time computations may be infeasible, and feasible computations may be not poly-

nomial time.

101. Yuri Gurevich: Logic in computer science. In: G. Rozenberg and A. Salomaa

(eds.) Current Trends in Theoretical Computer Science, World Scientific Series in

Computer Science 40 (1993), 223–394

102. Yuri Gurevich: The AMAST phenomenon. Originally in BEATCS 51 (October

1993), 295–299. Reprinted in: Current Trends in Theoretical Computer Science.

World Scientific (2001), 247–253

Annotated List of Publications of Yuri Gurevich 23

This humorous article incorporates a bit of serious criticism of algebraic and

logic approaches to software problems.

103. Yuri Gurevich: Evolving algebra 1993: Lipari guide. Specification and validation

methods, Oxford University Press (1995), 9–36

Computation models and specification methods seem to be worlds apart. The

project on abstract state machines (a.k.a. evolving algebras) started as an at-

tempt to bridge the gap by improving on Turing’s thesis [92]. We sought more

versatile machines which would be able to simulate arbitrary algorithms, on their

natural abstraction levels, in a direct and essentially coding-free way. The ASM

thesis asserts that ASMs are such versatile machines. The guide provided the

definition of sequential and – for the first time – parallel and distributed ASMs.

The denotational semantics of sequential and parallel ASMs is addressed in the

Michigan guide [129].

104. Erich Grädel, Yuri Gurevich: Tailoring recursion for complexity. JSL 60:3

(September 1995), 952–969

Complexity classes are easily generalized to the case when inputs of an algo-

rithm are finite ordered structures of a fixed vocabulary rather than strings. A

logic L is said to capture (or to be tailored to) a complexity class C if a class

of finite ordered structures of a fixed vocabulary belongs to C if and only if it is

definable in L. Traditionally, complexity tailored logics are logics of relations. In

his FOCS’83 paper, the second author showed that, on finite structures, the class

of Logspace computable functions is captured by the primitive recursive calculus,

and the class of PTIME computable functions is captured by the classical calculus

of partially recursive functions. Here we continue that line of investigation and

construct recursive calculi for various complexity classes of functions, in particular

for (more challenging) nondeterministic classes, NLogspace and NPTIME.

105. Yuri Gurevich: Logic activities in Europe. ACM SIGACT NEWS 25:2 (June 1994),

11–24

This is a critical analysis of European logic activities in computer science based

on a Fall 1992 European tour sponsored by the Office of Naval Research.

106. Yuri Gurevich, Raghu Mani: Group membership protocol: Specification and verifi-

cation. In: Specification and Validation Methods, Oxford University Press (1995),

295–328

An interesting and useful group membership protocol of Flavio Christian in-

volves timing constraints, and its correctness is not obvious. We construct a math-

ematical model of the protocol and verify the protocol (and notice that the as-

sumptions about the environment may be somewhat weakened).

107. Egon Börger, Dean Rosenzweig, Yuri Gurevich: The bakery algorithm: Yet an-

other specification and verification. In: Specification and Validation Methods,

Oxford University Press (1995), 231–243

The so-called bakery algorithm of Lamport is an ingenious and sophisticated

distributed mutual-exclusion algorithm. First we construct a mathematical model

A1 which reflects the algorithm very closely. Then we construct a more abstract

model A2 where the agents do not interact and the information is provided by

two oracles. We check that A2 is safe and fair provided that the oracles satisfy

certain conditions. Finally we check that the implementation A1 of A2 satisfies

the conditions and thus A1 is safe and fair.

24 Annotated List of Publications of Yuri Gurevich

108. Yuri Gurevich, Neil Immerman, Saharon Shelah: McColm’s conjecture. LICS

1994, Symp. on Logic in Computer Science, IEEE Computer Society Press (1994),

10–19

Gregory McColm conjectured that, over any class K of finite structures, all pos-

itive elementary inductions are bounded if every FOL + LFP formula is equivalent

to a first-order formula over K. Here FOL + LFP is the extension of first-order

logic with the least fixed point operator. Our main results are two model-theoretic

constructions – one deterministic and one probabilistic – each of which refutes

McColm’s conjecture.

109. Erich Grädel, Yuri Gurevich: Metafinite model theory. Information and Compu-

tation 140:1 (1998), 26–81. Preliminary version in D. Leivant (ed.) Logic and

Computational Complexity, Selected Papers, Springer LNCS 960 (1995), 313–366

Earlier, the second author criticized database theorists for admitting arbitrary

structures as databases: databases are finite structures [60]. However, a closer

investigation reveals that databases are not necessarily finite. For example, a

query may manipulate numbers that do not even appear in the database, which

shows that a numerical structure is somehow involved. It is true nevertheless that

database structures are special. The phenomenon is not restricted to databases;

for example, think about the natural structure to formalize the traveling salesman

problem. To this end, we define metafinite structures. Typically such a structure

consists of (i) a primary part, which is a finite structure, (ii) a secondary part,

which is a (usually infinite) structure, e.g. arithmetic or the real line, and (iii) a

set of “weight” functions from the first part into the second. Our logics do not

allow quantification over the secondary part. We study definability issues and

their relation to complexity. We discuss model-theoretic properties of metafinite

structures, present results on descriptive complexity, and sketch some potential

applications.

110. Andreas Blass, Yuri Gurevich: Evolving algebras and linear time hierarchy. In:

B. Pehrson and I. Simon (eds.) IFIP 1994 World Computer Congress, Volume I:

Technology and Foundations, North-Holland, Amsterdam, 383–390

A precursor of [118].

111. Yuri Gurevich, James K. Huggins: Evolving algebras and partial evaluation. In:

B. Pehrson and I. Simon (eds.) IFIP 1994 World Computing Congress, Volume

1: Technology and Foundations, Elsevier, Amsterdam, 587–592

The authors present an automated (and implemented) partial evaluator for

sequential evolving algebras.

112. Yuri Gurevich: Evolving algebras. In: B. Pehrson and I. Simon (eds.) IFIP 1994

World Computer Congress, Volume I: Technology and Foundations, Elsevier, Am-

sterdam, 423–427

The opening talk at the first workshop on evolving algebras. Sections: Intro-

duction, The EA Thesis, Remarks, Future Work.

113. Yuri Gurevich, Saharon Shelah: On rigid structures. JSL 61:2 (June 1996), 549–

562

This is related to the problem of defining linear order on finite structures. If

a linear order is definable on a finite structure A, then A is rigid (which means

that its only automorphism is the identity). There had been a suspicion that if

K is the collection of all finite structures of a finitely axiomatizable class and if

Annotated List of Publications of Yuri Gurevich 25

every K structure is rigid, then K permits a relatively simple uniform definition

of linear order. That happens not to be the case. The main result of the paper

is a probabilistic construction of finite rigid graphs. Using that construction, we

exhibit a finitely axiomatizable class of finite rigid structures (called multipedes)
such that no Lω

∞,ω sentence ϕ with counting quantifiers defines a linear order

in all the structures. Furthermore, ϕ does not distinguish between a sufficiently

large multipede M and a multipede M ′ obtained from M by moving a “shoe” to

another foot of the same segment.

114. Yuri Gurevich: The value, if any, of decidability. Originally in BEATCS 55 (Febru-

ary 1995), 129–135. Reprinted in: Current Trends in Theoretical Computer Sci-

ence, World Scientific (2001), 274–280

A decidable problem can be as hard as an undecidable one for all practical

purposes. So what is the value of a mere decidability result? That is the topic

discussed in the paper.

115. Thomas Eiter, Georg Gottlob, Yuri Gurevich: Normal forms for second-order logic

over finite structures and classification of NP optimization problems. Annals of

Pure and Applied Logic 78 (1996), 111–125

We prove a new normal form for second-order formulas on finite structures

and simplify the Kolaitis-Thakur hierarchy of NP optimization problems.

116. Yuri Gurevich, James K. Huggins: The railroad crossing problem: An experiment

with instantaneous actions and immediate reactions. In: H. Kleine-Büning (ed.)

Computer Science Logics, Selected papers from CSL’95, Springer LNCS 1092

(1996), 266–290

We give an evolving algebra (= abstract state machine) solution for the well-

known railroad crossing problem, and we use the occasion to experiment with

computations where agents perform instantaneous actions in continuous time and

some agents fire at the moment they are enabled.

117. Yuri Gurevich, James K. Huggins: Equivalence is in the eye of the beholder.

Theoretical Computer Science 179:1–2 (1997), 353–380

In a provocative paper “Processes are in the Eye of the Beholder” in the same

issue of TCS (pp. 333–351), Lamport points out “the insubstantiality of processes”

by proving the equivalence of two different decompositions of the same intuitive

algorithm. More exactly, each of the two distributed algorithms is described by

a formula in Lamport’s favorite temporal logic and then the two formulas are

proved equivalent. We point out that the equivalence of algorithms is itself in

the eye of the beholder. In this connection, we analyze in what sense the two

distributed algorithms are and are not equivalent. Our equivalence proof is direct

and does not require formalizing algorithms as logic formulas.

118. Andreas Blass, Yuri Gurevich: The linear time hierarchy theorems for RAMs and

abstract state machines. Springer J. of Universal Computer Science 3:4 (April

1997), 247–278

Contrary to polynomial time, linear time badly depends on the computation

model. In 1992, Neil Jones designed a couple of computation models where the

linear-speed-up theorem fails and linear-time computable functions form a proper

hierarchy. However, the linear time of Jones’s models is too restrictive. We prove

linear-time hierarchy theorems for random access machines and Gurevich’s ab-

stract state machines (formerly, evolving algebras). The latter generalization is

26 Annotated List of Publications of Yuri Gurevich

harder and more important because of the greater flexibility of the ASM model.

One long-term goal of this line of research is to prove linear lower bounds for

linear time problems.

119. Yuri Gurevich, Marc Spielmann: Recursive abstract state machines. Springer J.

of Universal Computer Science 3:4 (April 1997), 233–246

The abstract state machine (ASM) thesis, supported by numerous applications,

asserts that ASMs express algorithms on their natural abstraction levels directly

and essentially coding-free. The only objection raised to date has been that ASMs

are iterative in their nature, whereas many algorithms are naturally recursive.

There seems to be an inherent contradiction between (i) the ASM idea of explicit

and comprehensive states, and (ii) higher level recursion with its hiding of the

stack.

But consider recursion more closely. When an algorithm A calls an algorithm

B, a clone of B is created and this clone becomes a slave of A. This raises the

idea of treating recursion as an implicitly multi-agent computation. Slave agents

come and go, and the master/slave hierarchy serves as the stack.

Building upon this idea, we suggest a definition of recursive ASMs. The implicit

use of distributed computing has an important side benefit: it leads naturally to

concurrent recursion. In addition, we reduce recursive ASMs to distributed ASMs.

If desired, one can view recursive notation as mere abbreviation.

120. Andreas Blass, Yuri Gurevich, Saharon Shelah: Choiceless polynomial time. An-

nals of Pure and Applied Logic 100 (1999), 141–187

The question “Is there a computation model whose machines do not distinguish

between isomorphic structures and compute exactly polynomial time properties?”

became a central question of finite model theory. One of us conjectured a negative

answer [74]. A related question is what portion of PTIME can be naturally cap-

tured by a computation model. (Notice that we speak about computation whose

inputs are arbitrary finite structures, e.g. graphs. In a special case of ordered

structures, the desired computation model is that of PTIME-bounded Turing

machines.) Our idea is to capture the portion of PTIME where algorithms are

not allowed arbitrary choice but parallelism is allowed and, in some cases, im-

plements choice. Our computation model is a PTIME version of abstract state

machines. Our machines are able to PTIME simulate all other PTIME machines

in the literature, and they are more programmer-friendly. A more difficult theorem

shows that the computation model does not capture all PTIME.

121. Scott Dexter, Patrick Doyle, Yuri Gurevich: Gurevich abstract state machines and

Schoenhage storage modification machines. Springer J. of Universal Computer

Science 3:4 (April 1997), 279–303

We show that, in a strong sense, Schoenhage’s storage modification machines

are equivalent to unary basic abstract state machines without external functions.

The unary restriction can be removed if the storage modification machines are

equipped with a pairing function in an appropriate way.

122. Charles Wallace, Yuri Gurevich, Nandit Soparkar: A formal approach to recov-

ery in transaction-oriented database systems. Springer J. of Universal Computer

Science 3:4 (April 1997), 320–340

Failure resilience is an essential requirement for transaction-oriented database

systems, yet there has been little effort to specify and verify techniques for failure

recovery formally. The desire to improve performance has resulted in algorithms of

Annotated List of Publications of Yuri Gurevich 27

considerable sophistication, understood by few and prone to errors. In this paper,

we show how the formal methodology of Gurevich’s Abstract State Machines can

elucidate recovery and provide formal rigor to the design of a recovery algorithm.

In a series of refinements, we model recovery at several levels of abstraction, veri-

fying the correctness of each model. This initial work indicates that our approach

can be applied to more advanced recovery mechanisms.

123. Yuri Gurevich: Platonism, constructivism, and computer proofs vs. proofs by

hand. Originally in BEATCS 57 (October 1995), 145–166. A slightly revised ver-

sion in: Current Trends in Theoretical Computer Science, World Scientific (2001),

281–302

In one of Krylov’s fables, a small dog, Moska, barks at the elephant who pays

no attention whatsoever to Moska. This image comes to my mind when I think of

constructive mathematics versus “classical” (that is mainstream) mathematics. In

this article, we put a few words into the elephant’s mouth. The idea to write such

an article came to me in the summer of 1995 when I came across a fascinating

1917 bet between the constructivist Hermann Weyl and George Polya, a classical

mathematician. An English translation of the bet (from German) is found in the

article.

Our main objection to the historical constructivism is that it has not been suf-

ficiently constructive. The constructivists have been obsessed with computability

and have not paid sufficient attention to the feasibility of algorithms. However,

the constructivists’ criticism of classical mathematics has a point. Instead of dis-

missing constructivism offhandedly, it makes sense to come up with a positive

alternative, an antithesis to historical constructivism. We believe that we have

found such an alternative. In fact, it is well known and very popular in computer

science, namely, the principle of separating concerns.

[Added in July 2006] The additional part on computer proofs vs. proofs by

hand was a result of frustration that many computer scientists would not trust

informal mathematical proofs, while many mathematicians would not trust com-

puter proofs. I seemed obvious to me that, on the large scale, proving is not only

hard but also is imperfect and has an engineering character. We need informal

proofs and computer proofs and more, such as stratification, experimentation.

124. Natasha Alechina, Yuri Gurevich: Syntax vs. semantics on finite structures. In:

J. Mycielski et al. (eds.) Structures in Logic and Computer Science: A Selection

of Essays in Honor of Andrzej Ehrenfeucht, Springer LNCS 1261 (1997), 14–33

Logic preservation theorems often have the form of a syntax/semantics corre-

spondence. For example, the Tarski-�Loś theorem asserts that a first-order sentence

is preserved by extensions if and only if it is equivalent to an existential sentence.

Many of these correspondences break when one restricts attention to finite mod-

els. In such a case, one may attempt to find a new semantical characterization

of the old syntactical property or a new syntactical characterization of the old

semantical property. The goal of this paper is to provoke such a study. In partic-

ular, we give a simple semantical characterization of existential formulas on finite

structures.

125. Anatoli Degtyarev, Yuri Gurevich, Andrei Voronkov: Herbrand’s Theorem and

equational reasoning: Problems and solutions. Originally in BEATCS 60 (Oct

1996), 78–95. Reprinted in: Current Trends in Theoretical Computer Science,

World Scientific (2001), 303–326

28 Annotated List of Publications of Yuri Gurevich

The article (written in a popular form) explains that a number of different algo-

rithmic problems related to Herbrand’s theorem happen to be equivalent. Among

these problems are the intuitionistic provability problem for the existential fragment

of first-order logic with equality, the intuitionistic provability problem for the prenex

fragment of first-order with equality, and the simultaneous rigid E-unification prob-

lem (SREU). The article explains an undecidability proof of SREU and decidability

proofs for special cases. It contains an extensive bibliography on SREU.

126. Yuri Gurevich, Margus Veanes: Logic with equality: Partisan corroboration and

shifted pairing. Information and Computation 152:2 (August 1999), 205–235

Herbrand’s theorem plays a fundamental role in automated theorem proving

methods based on tableaux. The crucial step in procedures based on such meth-

ods can be described as the corroboration (or Herbrand skeleton) problem: given

a positive integer m and a quantifier-free formula, find a valid disjunction of m
instantiations of the formula. In the presence of equality (which is the case in

this paper), this problem was recently shown to be undecidable. The main con-

tributions of this paper are two theorems. The Partisan Corroboration Theorem

relates corroboration problems with different multiplicities. The Shifted Pairing

Theorem is a finite tree-automata formalization of a technique for proving unde-

cidability results through direct encodings of valid Turing machine computations.

The theorems are used to explain and sharpen several recent undecidability re-

sults related to the corroboration problem, the simultaneous rigid E-unification

problem and the prenex fragment of intuitionistic logic with equality.

127a. Anatoli Degtyarev, Yuri Gurevich, Paliath Narendran, Margus Veanes, Andrei

Voronkov: The decidability of simultaneous rigid E-unification with one variable.

RTA’98, 9th Conf. on Rewriting Techniques and Applications, Tsukuba, Japan,

March 30 – April 1, 1998

The title problem is proved decidable and in fact EXPTIME-complete. Fur-

thermore, the problem becomes PTIME-complete if the number of equations is

bounded by any (positive) constant. It follows that the ∀∗∃∀∗ fragment of intu-

itionistic logic with equality is decidable, which contrasts with the undecidability

of the EE fragment [126]. Notice that simultaneous rigid E-unification with two

variables and only three rigid equations is undecidable [126].

127b. Anatoli Degtyarev, Yuri Gurevich, Paliath Narendran, Margus Veanes, Andrei

Voronkov: Decidability and complexity of simultaneous rigid E-unification with

one variable and related results. Theoretical Computer Science 243:1–2 (August

2000), 167–184

The journal version of [127a] containing also a decidability proof for the case

of simultaneous rigid E-unification when each rigid equation either contains (at

most) one variable or else has a ground left-hand side and the right-hand side of

the form x = y where x and y are variables.

128a. Yuri Gurevich, Andrei Voronkov: Monadic simultaneous rigid E-unification and

related problems. ICALP’97, 24th Intern. Colloquium on Automata, Languages

and Programming, Springer LNCS 1256 (1997), 154–165

We study the monadic case of a decision problem known as simultaneous rigid

E-unification. We show its equivalence to an extension of word equations. We

prove decidability and complexity results for special cases of this problem.

128b. Yuri Gurevich, Andrei Voronkov: Monadic simultaneous rigid E-unification. The-

oretical Computer Science 222:1–2 (1999), 133–152

Annotated List of Publications of Yuri Gurevich 29

The journal version of [128a].

129. Yuri Gurevich: May 1997 draft of the ASM Guide. Tech Report CSE-TR-336-97,

EECS Dept, University of Michigan, 1997

The draft improves upon the ASM syntax (and appears here because it is used

by the ASM community and it is not going to be published).

130. Yuri Gurevich, Alexander Rabinovich: Definability and undefinability with real

order at the background. JSL 65:2 (2000), 946–958

Let R be the real order, that is the set of real numbers together with the

standard order of reals. Let I be the set of integer numbers, let Y range over

subsets of I , let P (I,X) be a monadic second-order formula about R, and let F
be the collection of all subsets X of I such that P (I,X) holds in R. Even though

F is a collection of subsets of I , its definition may involve quantification over

reals and over sets of reals. In that sense, F is defined with the background of real

order. Is that background essential or not? Maybe there is a monadic second-order

formula Q(X) about I that defines F (so that F is the collection of all subsets

X of I such that Q(X) holds in I). We prove that this is indeed the case, for

any monadic second-order formula P (I,X). The claim remains true if the set I
of integers is replaced above with any closed subset of R. The claim fails for some

open subsets.

131. Yuri Gurevich: From invariants to canonization. Originally in BEATCS 63 (Octo-

ber 1997). Reprinted in: Current Trends in Theoretical Computer Science, World

Scientific (2001), 327–331

We show that every polynomial-time full-invariant algorithm for graphs gives

rise to a polynomial-time canonization algorithm for graphs.

132. Andreas Blass, Yuri Gurevich, Vladik Kreinovich, Luc Longpré: A variation on

the Zero-One Law. Information Processing Letters 67 (1998), 29–30

Given a decision problem P and a probability distribution over binary strings,

do this: for each n, draw independently an instance x(n) of P of length n. What is

the probability that there is a polynomial time algorithm that solves all instances

x(n)? The answer is: zero or one.

133. Erich Grädel, Yuri Gurevich, Colin Hirsch: The complexity of query reliability.

PODS’98, 1998 ACM Symposium on Principles of Database Systems

We study the reliability of queries on databases with uncertain information.

It turns out that FP#P is the typical complexity class and that many results

generalize to metafinite databases which allow one to use common SQL aggregate

functions.

134. Thomas Eiter, Georg Gottlob, Yuri Gurevich: Existential second-order logic over

strings. Journal of the ACM 47:1 (January 2000), 77–131

We study existential second-order logic over finite strings. For every prefix

class C, we determine the complexity of the model checking problem restricted

to C. In particular, we prove that, in the case of the Ackermann class, for every

formula ϕ, there is a finite automaton A that solves the model checking problem

for ϕ.

135. Andreas Blass, Yuri Gurevich: The logic of choice. JSL 65:3 (September 2000),

1264–1310

We study extensions of first-order logic with the choice construct (choose x :

ϕ(x)). We prove some results about Hilbert’s epsilon operator, but in the main

part of the paper we consider the case when all choices are independent.

30 Annotated List of Publications of Yuri Gurevich

136. Yuri Gurevich: The sequential ASM thesis. Originally in BEATCS 67 (February

1999), 98–124. Reprinted in: Current Trends in Theoretical Computer Science,

World Scientific (2001), 363–392

The thesis is that every sequential algorithm, on any level of abstraction, can be

viewed as a sequential abstract state machine. (Abstract state machines, ASMs,

used to be called evolving algebras.) The sequential ASM thesis and its extensions

inspired diverse applications of ASMs. The early applications were driven, at

least partially, by the desire to test the thesis. Different programming languages

were the obvious challenges. (A programming language L can be viewed as an

algorithm that runs a given L program on given data.) From there, applications

of (not necessarily sequential) ASMs spread into many directions. So far, the

accumulated experimental evidence seems to support the sequential thesis. There

is also a speculative philosophical justification of the thesis. It was barely sketched

in the literature, but it was discussed at much greater length in numerous lectures

of mine. Here I attempt to write down some of those explanations. This article

does not presuppose any familiarity with ASMs.

A later note: [141] is a much revised and polished journal version.

137. Giuseppe Del Castillo, Yuri Gurevich, Karl Stroetmann: Typed abstract state

machines. Unfinished manuscript (1998)

This manuscript was never published. The work, done sporadically in 1996–

98, was driven by the enthusiasm of Karl Stroetmann of Siemens. Eventually he

was reassigned away from ASM applications, and the work stopped. The item

wasn’t removed from the list because some of its explorations may be useful. (An

additional minor reason was to avoid changing the numbers of the subsequent

items.)

138. Yuri Gurevich, Dean Rosenzweig: Partially ordered runs: A case study. In: Ab-

stract State Machines: Theory and Applications, Springer LNCS 1912 (2000),

131–150

We look at some sources of insecurity and difficulty in reasoning about partially

ordered runs of distributed abstract state machines, and propose some techniques

to facilitate such reasoning. As a case study, we prove in detail correctness and

deadlock–freedom for general partially ordered runs of distributed ASM models

of Lamport’s Bakery Algorithm.

139. Andreas Blass, Yuri Gurevich, Jan Van den Bussche: Abstract state machines

and computationally complete query languages. Information and Computation

174:1 (2002), 20–36. An earlier version in: Abstract State Machines: Theory and

Applications, Springer LNCS 1912 (2000), 22–33

Abstract state machines (ASMs) form a relatively new computation model

holding the promise that they can simulate any computational system in lock-

step. In particular, an instance of the ASM model has recently been introduced

for computing queries to relational databases [120]. This model, to which we refer

as the BGS model, provides a powerful query language in which all computable

queries can be expressed. In this paper, we show that when one is only interested

in polynomial-time computations, BGS is strictly more powerful than both QL

and WHILE NEW, two well-known computationally complete query languages.

We then show that when a language such as WHILE NEW is extended with a

duplicate elimination mechanism, polynomial-time simulations between the lan-

guage and BGS become possible.

Annotated List of Publications of Yuri Gurevich 31

140. Yuri Gurevich, Wolfram Schulte, Charles Wallace: Investigating Java concurrency

using abstract state machines. In: Abstract State Machines: Theory and Applica-

tions, Springer LNCS 1912 (2000), 151–176

We present a mathematically precise, platform-independent model of Java con-

currency using the Abstract State Machine method. We cover all aspects of Java

threads and synchronization, gradually adding details to the model in a series

of steps. We motivate and explain each concurrency feature, and point out sub-

tleties, inconsistencies and ambiguities in the official, informal Java specification.

141. Yuri Gurevich: Sequential abstract state machines capture sequential algorithms.

ACM TOCL 1:1 (July 2000), 77–111

What are sequential algorithms exactly? Our claim, known as the sequential

ASM thesis, has been that, as far as behavior is concerned, sequential algorithms

are exactly sequential abstract state machines: For every sequential algorithm

A, there is a sequential abstract state machine B that is behaviorally identical

to A. In particular, B simulates A step for step. In this paper we prove the

sequential ASM thesis, so that it becomes a theorem. But how can one possibly

prove a thesis? Here is what we do. We formulate three postulates satisfied by all

sequential algorithms (and, in particular, by sequential abstract state machines).

This leads to the following definition: a sequential algorithm is any object that

satisfies the three postulates. At this point the thesis becomes a precise statement.

And we prove the statement.

This is a non-dialog version of the dialog [136]. An intermediate version was

published in MSR-TR-99-65

141a. Yuri Gurevich: Sequential abstract state machines capture sequential algorithms.

Russian translation of [141], by P.G. Emelyanov. In: Marchuk A.G. (ed.) Formal

Methods and Models of Informatics, System Informatics 9 (2004), 7–50, Siberian

Branch of the Russian Academy of Sciences

142. Andreas Blass, Yuri Gurevich: The underlying logic of Hoare logic. Originally in

BEATCS 70 (February 2000), 82–110. Reprinted in: Current Trends in Theoretical

Computer Science, World Scientific (2001), 409–436

Formulas of Hoare logic are asserted programs ϕ P ψ where P is a program

and ϕ, ψ are assertions. The language of programs varies; in the 1980 survey by

Krzysztof Apt, one finds the language of while programs and various extensions

of it. But the assertions are traditionally expressed in first-order logic (or exten-

sions of it). In that sense, first-order logic is the underlying logic of Hoare logic.

We question the tradition and demonstrate, on the simple example of while pro-

grams, that alternative assertion logics have some advantages. For some natural

assertion logics, the expressivity hypothesis in Cook’s completeness theorem is

automatically satisfied.

143. Andreas Blass, Yuri Gurevich: Background, reserve, and Gandy machines. In: P.

Clote and H. Schwichtenberg (eds.) CSL’2000, Springer LNCS 1862 (2000), 1–17

Algorithms often need to increase their working space, and it may be conve-

nient to pretend that the additional space was really there all along but was not

previously used. In particular, abstract state machines have, by definition [103],

an infinite reserve. Although the reserve is a naked set, it is often desirable to have

some external structure over it. For example, in [120] every state was required to

include all finite sets of its atoms, all finite sets of these, etc. In this connection,

32 Annotated List of Publications of Yuri Gurevich

we define the notion of a background class of structures. Such a class specifies the

constructions (like finite sets or lists) available as “background” for algorithms.

The importation of reserve elements must be non-deterministic, since an algo-

rithm has no way to distinguish one reserve element from another. But this sort

of non-determinism is much more benign than general non-determinism. We cap-

ture this intuition with the notion of inessential non-determinism. Alternatively,

one could insist on specifying a particular one of the available reserve elements

to be imported. This is the approach used in [Robin Gandy, “Church’s thesis and

principles for mechanisms”. In: J. Barwise et al. (eds.) The Kleene Symposium,

North-Holland, 1980, 123–148]. The price of this insistence is that the specifica-

tion cannot be algorithmic. We show how to turn a Gandy-style deterministic,

non-algorithmic process into a non-deterministic algorithm of the sort described

above, and we prove that Gandy’s notion of “structural” for his processes corre-

sponds to our notion of “inessential non-determinism.”

144. Andreas Blass, Yuri Gurevich: Choiceless polynomial time computation and the

Zero-One Law. In: P. Clote and H. Schwichtenberg (eds.) CSL’2000, Springer

LNCS 1862 (2000), 18–40

This paper is a sequel to [120], a commentary on [Saharon Shelah (#634)

“Choiceless polynomial time logic: inability to express”, same proceedings], and

an abridged version of [149] that contains complete proofs of all the results pre-

sented here. The BGS model of computation was defined in [120] with the inten-

tion of modeling computation with arbitrary finite relational structures as inputs,

with essentially arbitrary data structures, with parallelism, but without arbitrary

choices. It was shown that choiceless polynomial time, the complexity class de-

fined by BGS programs subject to a polynomial time bound, does not contain

the parity problem. Subsequently, Shelah proved a zero-one law for choiceless-

polynomial-time properties. A crucial difference from the earlier results is this:

Almost all finite structures have no non-trivial automorphisms, so symmetry con-

siderations cannot be applied to them. Shelah’s proof therefore depends on a more

subtle concept of partial symmetry.

After struggling for a while with Shelah’s proof, we worked out a presentation

which we hope will be helpful for others interested in Shelah’s ideas. We also

added some related results, indicating the need for certain aspects of the proof

and clarifying some of the concepts involved in it. Unfortunately, this material

is not yet fully written up. The part already written, however, exceeds the space

available to us in the present volume. We therefore present here an abridged

version of that paper and promise to make the complete version available soon.

145. Mike Barnett, Egon Börger, Yuri Gurevich, Wolfram Schulte, Margus Veanes:

Using abstract state machines at Microsoft: A case study. In: P. Clote and H.

Schwichtenberg (eds.) CSL’2000, Springer LNCS 1862 (2000), 367–379

Our goal is to provide a rigorous method, clear notation and convenient tool

support for high-level system design and analysis. For this purpose we use abstract

state machines (ASMs). Here we describe a particular case study: modeling a

debugger of a stack based runtime environment. The study provides evidence for

ASMs being a suitable tool for building executable models of software systems

on various abstraction levels, with precise refinement relationships connecting the

models. High level ASM models of proposed or existing programs can be used

throughout the software development cycle. In particular, ASMs can be used

to model inter-component behavior on any desired level of detail. This allows

Annotated List of Publications of Yuri Gurevich 33

one to specify application programming interfaces more precisely than it is done

currently.

145.5. Colin Campbell, Yuri Gurevich: Table ASMs. In: Formal Methods and Tools

for Computer Science, Eurocast 2001, eds. R. Moreno-Diaz and A. Quesada-

Arencibia, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain

(February 2001), 286–290

Ideally, a good specification becomes the basis for implementing, testing and

documenting the system it defines. In practice, producing a good specification is

hard. Formal methods have been shown to be helpful in strengthening the meaning

of specifications, but despite their power, few development teams have successfully

incorporated them into their software processes. This experience indicates that

producing a usable formal method is also hard.

This paper is the story of how a particular theoretical result, namely the normal

forms of Abstract State Machines, motivated a genuinely usable form of specifi-

cation that we call ASM Tables. We offer it for two reasons. The first is that the

result is interesting in and of itself and – it is to be hoped – useful to the reader.

The second is that our result serves as a case study of a more general principle,

namely, that in bringing rigorous methods into everyday practice, one should not

follow the example of Procrustes: we find that it is indeed better to adapt the bed

to the person than the other way round. We also offer a demonstration that an

extremely restricted syntactical form can still contain sufficient expressive power

to describe all sequential machines.

146. Andreas Blass, Yuri Gurevich: Inadequacy of computable loop invariants. ACM

TOCL 2:1 (January 2001), 1–11

Hoare logic is a widely recommended verification tool. There is, however, a

problem of finding easily-checkable loop invariants; it is known that decidable

assertions do not suffice to verify WHILE programs, even when the pre- and post-

conditions are decidable. We show here a stronger result: decidable invariants do

not suffice to verify single-loop programs. We also show that this problem arises

even in extremely simple contexts. Let N be the structure consisting of the set

of natural numbers together with the functions S(x) = x + 1, D(x) = 2x and

function H(x) that is equal to x/2 rounded down. There is a single-loop program

P using only three variables x, y, z such that the asserted program

x = y = z = 0 {P} false

is partially correct on N but any loop invariant I(x, y, z) for this asserted program

is undecidable.

147. Yuri Gurevich, Alexander Rabinovich: Definability in rationals with real order in

the background. Journal of Logic and Computation 12:1 (2002), 1–11

The paper deals with logically definable families of sets of rational numbers. In

particular, we are interested whether the families definable over the real line with

a unary predicate for the rationals are definable over the rational order alone.

Let ϕ(X,Y) and ψ(Y) range over formulas in the first-order monadic language of

order. Let Q be the set of rationals and F be the family of subsets J of Q such that

ϕ(Q,J) holds over the real line. The question arises whether, for every formula

ϕ, the family F can be defined by means of a formula ψ(Y) interpreted over the

rational order. We answer the question negatively. The answer remains negative

if the first-order logic is strengthened to weak monadic second-order logic. The

34 Annotated List of Publications of Yuri Gurevich

answer is positive for the restricted version of monadic second-order logic where

set quantifiers range over open sets. The case of full monadic second-order logic

remains open.

148. Andreas Blass, Yuri Gurevich: A new zero-one law and strong extension axioms.

Originally in BEATCS 72 (October 2000), 103–122. Reprinted in: Current Trends

in Theoretical Computer Science, World Scientific (2004), 99–118

This article is a part of the continuing column on Logic in Computer Science.

One of the previous articles in the column was devoted to the zero-one laws for

a number of logics playing prominent role in finite model theory: first-order logic

FO, the extension FO+LFP of first-order logic with the least fixed-point operator,

and the infinitary logic where every formula uses finitely many variables [95].

Recently Shelah proved a new, powerful, and surprising zero-one law. His proof

uses so-called strong extension axioms. Here we formulate Shelah’s zero-one law

and prove a few facts about these axioms. In the process we give a simple proof

for a “large deviation” inequality à la Chernoff.

149. Andreas Blass, Yuri Gurevich: Strong extension axioms and Shelah’s zero-one law

for choiceless polynomial time. JSL 68:1 (2003), 65–131

This paper developed from Shelah’s proof of a zero-one law for the complexity

class “choiceless polynomial time,” defined by Shelah and the authors. We present

a detailed proof of Shelah’s result for graphs, and describe the extent of its gen-

eralizability to other sorts of structures. The extension axioms, which form the

basis for earlier zero-one laws (for first-order logic, fixed-point logic, and finite-

variable infinitary logic) are inadequate in the case of choiceless polynomial time;

they must be replaced by what we call the strong extension axioms. We present

an extensive discussion of these axioms and their role both in the zero-one law

and in general. ([144] is an abridged version of this paper, and [148] is a popular

version of this paper.)

150. Andreas Blass, Yuri Gurevich, Saharon Shelah: On polynomial time computation

over unordered structures. JSL 67:3 (2002), 1093–1125

This paper is motivated by the question whether there exists a logic captur-

ing polynomial time computation over unordered structures. We consider several

algorithmic problems near the border of the known, logically defined complexity

classes contained in polynomial time. We show that fixpoint logic plus count-

ing is stronger than might be expected, in that it can express the existence of

a complete matching in a bipartite graph. We revisit the known examples that

separate polynomial time from fixpoint plus counting. We show that the examples

in a paper of Cai, Fürer, and Immerman, when suitably padded, are in choice-

less polynomial time yet not in fixpoint plus counting. Without padding, they

remain in polynomial time but appear not to be in choiceless polynomial time

plus counting. Similar results hold for the multipede examples of Gurevich and

Shelah, except that their final version of multipedes is, in a sense, already suitably

padded. Finally, we describe another plausible candidate, involving determinants,

for the task of separating polynomial time from choiceless polynomial time plus

counting.

150a. Andreas Blass, Yuri Gurevich: A quick update on the open problems in Arti-

cle [150] (December 2005).

151. Yuri Gurevich: Logician in the Land of OS: Abstract state machines at Microsoft.

LICS 2001, IEEE Symp. on Logic in Computer Science, IEEE Computer Society

(2001), 129–136

Annotated List of Publications of Yuri Gurevich 35

Analysis of foundational problems like “What is computation?” leads to a

sketch of the paradigm of abstract state machines (ASMs). This is followed by a

brief discussion on ASMs applications. Then we present some theoretical problems

that bridge between the traditional LICS themes and abstract state machines.

152. Anuj Dawar, Yuri Gurevich: Fixed point logics. The Bulletin of Symbolic Logic

8:1 (2002), 65–88

Fixed-point logics are extensions of first-order predicate logic with fixed point

operators. A number of such logics arose in finite model theory but they are of

interest to much larger audience, e.g. AI, and there is no reason why they should

be restricted to finite models. We review results established in finite model theory,

and consider the expressive power of fixed-point logics on infinite structures.

153. Uwe Glässer, Yuri Gurevich, Margus Veanes: Universal plug and play machine

models. MSR-TR-2001-59

Recently, Microsoft took a lead in the development of a standard for peer-to-

peer network connectivity of various intelligent appliances, wireless devices and

PCs. It is called the Universal Plug and Play Device Architecture (UPnP). We

construct a high-level Abstract State Machine (ASM) model for UPnP. The model

is based on the ASM paradigm for distributed systems with real-time constraints

and is executable in principle. For practical execution, we use AsmL, the Abstract

state machine Language, developed at Microsoft Research and integrated with

Visual Studio and COM. This gives us an AsmL model, a refined version of the

ASM model. The third part of this project is a graphical user interface by means

of which the runs of the AsmL model are controlled and inspected at various

levels of detail as required for simulation and conformance testing, for example.

154. Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, Margus Veanes: Generat-

ing finite state machines from abstract state machines. ISSTA 2002, International

Symposium on Software Testing and Analysis, ACM Software Engineering Notes

27:4 (2002), 112–122

We give an algorithm that derives a finite state machine (FSM) from a given

abstract state machine (ASM) specification. This allows us to integrate ASM

specs with the existing tools for test-case generation from FSMs. ASM specs are

executable, but have typically too many, often infinitely many, states. We group

ASM states into finitely many hyperstates, which are the nodes of the FSM. The

links of the FSM are induced by the ASM state transitions.

155. Yuri Gurevich, Wolfram Schulte, Margus Veanes: Toward industrial strength ab-

stract state machines. MSR-TR-2001-98

A powerful practical ASM language, called AsmL, is being developed in Mi-

crosoft Research by the group on Foundations of Software Engineering. AsmL

extends the language of original ASMs in a number of directions. We describe

some of these extensions.

156. Yuri Gurevich, Nikolai Tillmann: Partial updates: Exploration. Springer J. of

Universal Computer Science 7:11 (2001), 918–952

The partial update problem for parallel abstract state machines has mani-

fested itself in the cases of counters, sets and maps. We propose a solution of

the problem that lends itself to an efficient implementation and covers the three

cases mentioned above. There are other cases of the problem that require a more

general framework.

36 Annotated List of Publications of Yuri Gurevich

157-1. Andreas Blass, Yuri Gurevich: Abstract state machines capture parallel algo-

rithms. ACM TOCL 4:4 (October 2003), 578–651

We give an axiomatic description of parallel, synchronous algorithms. Our main

result is that every such algorithm can be simulated, step for step, by an abstract

state machine with a background that provides for multisets. See also [157-2].

157-2. Andreas Blass, Yuri Gurevich: Abstract state machines capture parallel algo-

rithms: Correction and extension. ACM TOCL 9:3 (June 2008), Article 19

We consider parallel algorithms working in sequential global time, for example

circuits or parallel random access machines (PRAMs). Parallel abstract state

machines (parallel ASMs) are such parallel algorithms, and the parallel ASM

thesis asserts that every parallel algorithm is behaviorally equivalent to a parallel

ASM. In an earlier paper [157-1], we axiomatized parallel algorithms, proved the

ASM thesis and proved that every parallel ASM satisfies the axioms. It turned out

that we were too timid in formulating the axioms; they did not allow a parallel

algorithm to create components on the fly. This restriction did not hinder us from

proving that the usual parallel models, like circuits or PRAMs or even alternating

Turing machines, satisfy the postulates. But it resulted in an error in our attempt

to prove that parallel ASMs always satisfy the postulates. To correct the error,

we liberalize our axioms and allow on-the-fly creation of new parallel components.

We believe that the improved axioms accurately express what parallel algorithms

ought to be. We prove the parallel thesis for the new, corrected notion of parallel

algorithms, and we check that parallel ASMs satisfy the new axioms.

158. Andreas Blass, Yuri Gurevich: Algorithms vs. machines. Originally in BEATCS

77 (June 2002), 96–118. Reprinted in: Current Trends in Theoretical Computer

Science, World Scientific (2004), 215–236

In a recent paper, the logician Yiannis Moschovakis argues that no state ma-

chine describes mergesort on its natural level of abstraction. We do just that. Our

state machine is a recursive ASM.

159. Uwe Glässer, Yuri Gurevich, Margus Veanes: Abstract communication model for

distributed systems. IEEE Transactions on Software Engineering 30:7 (July 2004),

458–472

In some distributed and mobile communication models, a message disappears

in one place and miraculously appears in another. In reality, of course, there are no

miracles. A message goes from one network to another; it can be lost or corrupted

in the process. Here we present a realistic but high-level communication model

where abstract communicators represent various nets and subnets. The model was

originally developed in the process of specifying a particular network architecture,

namely the Universal Plug and Play architecture. But it is general. Our contention

is that every message-based distributed system, properly abstracted, gives rise

to a specialization of our abstract communication model. The purpose of the

abstract communication model is not to design a new kind of network; rather it

is to discover the common part of all message-based communication networks.

The generality of the model has been confirmed by its successful reuse for very

different distributed architectures. The model is based on distributed abstract

state machines. It is implemented in the specification language AsmL and is being

used for testing distributed systems.

160. Andreas Blass, Yuri Gurevich: Pairwise testing. Originally in BEATCS 78 (Oc-

tober 2002), 100–132. Reprinted in: Current Trends in Theoretical Computer

Science, World Scientific (2004), 237–266

Annotated List of Publications of Yuri Gurevich 37

We discuss the following problem, which arises in software testing. Given some

independent parameters (of a program to be tested), each having a certain finite

set of possible values, we intend to test the program by running it several times.

For each test, we give the parameters some (intelligently chosen) values. We want

to ensure that for each pair of distinct parameters, every pair of possible values

is used in at least one of the tests. And we want to do this with as few tests as

possible.

161. Yuri Gurevich, Nikolai Tillmann: Partial updates. Theoretical Computer Science

336:2–3 (26 May 2005), 311–342. (A preliminary version in: Abstract State Ma-

chines 2003, Springer LNCS 2589 (2003), 57–86)

A datastructure instance, e.g. a set or file or record, may be modified indepen-

dently by different parts of a computer system. The modifications may be nested.

Such hierarchies of modifications need to be efficiently checked for consistency

and integrated. This is the problem of partial updates in a nutshell. In our first

paper on the subject [156], we developed an algebraic framework which allowed

us to solve the partial update problem for some useful datastructures including

counters, sets and maps. These solutions are used for the efficient implementation

of concurrent data modifications in the specification language AsmL. The two

main contributions of this paper are (i) a more general algebraic framework for

partial updates and (ii) a solution of the partial update problem for sequences

and labeled ordered trees.

162. Yuri Gurevich, Saharon Shelah: Spectra of monadic second-order formulas with

one unary function. LICS 2003, 18th Annual IEEE Symp. on Logic in Computer

Science, IEEE Computer Society (2003), 291–300

We prove that the spectrum of any monadic second-order formula F with one

unary function symbol (and no other function symbols) is eventually periodic, so

that there exist natural numbers p > 0 (a period) and t (a p-threshold) such that

if F has a model of cardinality n > t then it has a model of cardinality n+ p.
(In the web version, some additional proof details are provided because some

readers asked for them.)

163. Mike Barnett, Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, Nikolai Till-

mann, Margus Veanes: Scenario-oriented modeling in AsmL and its instrumenta-

tion for testing. In: 2nd International Workshop on Scenarios and State Machines:

Models, Algorithms, and Tools, (2003) 8–14, held at ICSE 2003, International

Conference on Software Engineering 2003

We present an approach for modeling use cases and scenarios in the Abstract

state machine Language and discuss how to use such models for validation and

verification purposes.

164. Andreas Blass, Yuri Gurevich: Algorithms: A quest for absolute definitions. Orig-

inally in BEATCS 81 (October 2003), 195–225. Reprinted in: Current Trends in

Theoretical Computer Science, World Scientific (2004), 283–311. Reprinted in:

A. Olszewski et al. (eds.) Church’s Thesis After 70 Years, Ontos Verlag (2006),

24–57

What is an algorithm? The interest in this foundational problem is not only

theoretical; applications include specification, validation and verification of soft-

ware and hardware systems. We describe the quest to understand and define the

notion of algorithm. We start with the Church-Turing thesis and contrast Church’s

and Turing’s approaches, and we finish with some recent investigations.

38 Annotated List of Publications of Yuri Gurevich

165. Yuri Gurevich: Abstract state machines: An overview of the project. In: D. Seipel

and J. M. Turull-Torres (eds.) Foundations of Information and Knowledge Sys-

tems, Springer LNCS 2942 (2004), 6–13

We quickly survey the ASM project, from its foundational roots to industrial

applications.

166. Andreas Blass, Yuri Gurevich: Ordinary interactive small-step algorithms, I. ACM

TOCL 7:2 (April 2006), 363–419. A preliminary version was published as MSR-

TR-2004-16

This is the first in a series of papers extending the Abstract State Machine

Thesis – that arbitrary algorithms are behaviorally equivalent to abstract state

machines – to algorithms that can interact with their environments during a step,

rather than only between steps. In the present paper, we describe, by means

of suitable postulates, those interactive algorithms that (1) proceed in discrete,

global steps, (2) perform only a bounded amount of work in each step, (3) use only

such information from the environment as can be regarded as answers to queries,

and (4) never complete a step until all queries from that step have been answered.

We indicate how a great many sorts of interaction meet these requirements. We

also discuss in detail the structure of queries and replies and the appropriate

definition of equivalence of algorithms. Finally, motivated by our considerations

concerning queries, we discuss a generalization of first-order logic in which the

arguments of function and relation symbols are not merely tuples of elements but

orbits of such tuples under groups of permutations of the argument places.

167. Yuri Gurevich: Intra-step interaction. In: W. Zimmerman and B. Thalheim (eds.)

Abstract State Machines 2004, Springer LNCS 3052 (2004), 1–5

For a while it seemed possible to pretend that all interaction between an al-

gorithm and its environment occurs inter-step, but not anymore. Andreas Blass,

Benjamin Rossman and the speaker are extending the Small-Step Characteri-

zation Theorem (that asserts the validity of the sequential version of the ASM

thesis) and the Wide-Step Characterization Theorem (that asserts the validity of

the parallel version of the ASM thesis) to intra-step interacting algorithms.

A later comment: This was my first talk on intra-step interactive algorithms.

The intended audience was the ASM community. [174] is a later talk on this topic,

and it is addressed to a general computer science audience.

168. Yuri Gurevich, Rostislav Yavorskiy: Observations on the decidability of transi-

tions. In: W. Zimmerman and B. Thalheim (eds.) Abstract State Machines 2004,

Springer LNCS 3052 (2004), 161–168

Consider a multiple-agent transition system such that, for some basic types

T1, . . . , Tn, the state of any agent can be represented as an element of the Carte-

sian product T1 × · · · × Tn. The system evolves by means of global steps. During

such a step, new agents may be created and some existing agents may be up-

dated or removed, but the total number of created, updated and removed agents

is uniformly bounded. We show that, under appropriate conditions, there is an al-

gorithm for deciding assume-guarantee properties of one-step computations. The

result can be used for automatic invariant verification as well as for finite state

approximation of the system in the context of test-case generation from AsmL

specifications.

169. Yuri Gurevich, Benjamin Rossman, Wolfram Schulte: Semantic essence of AsmL.

Theoretical Computer Science 343:3 (17 October 2005), 370–412 Originally pub-

lished as MSR-TR-2004-27

Annotated List of Publications of Yuri Gurevich 39

The Abstract state machine Language, AsmL, is a novel executable specifica-

tion language based on the theory of Abstract State Machines. AsmL is object-

oriented, provides high-level mathematical data-structures, and is built around

the notion of synchronous updates and finite choice. AsmL is fully integrated into

the .NET framework and Microsoft development tools. In this paper, we explain

the design rationale of AsmL and provide static and dynamic semantics for a

kernel of the language.

169a. Yuri Gurevich, Benjamin Rossman, Wolfram Schulte: Semantic essence of AsmL:

Extended abstract. In: F. S. de Boer et al. (eds.) FMCO 2003, Formal Methods

of Components and Objects, Springer LNCS 3188 (2004), 240–259

This is an extended abstract of article [169].

170. Andreas Blass, Yuri Gurevich: Ordinary interactive small-step algorithms, II.

ACM TOCL 8:3 (July 2007), article 15. A preliminary version was published

as a part of MSR-TR-2004-88

This is the second in a series of three papers extending the proof of the Abstract

State Machine Thesis – that arbitrary algorithms are behaviorally equivalent to

abstract state machines – to algorithms that can interact with their environments

during a step rather than only between steps. The first paper is [166]. As in that

paper, we are concerned here with ordinary, small-step, interactive algorithms.

This means that the algorithms (1) proceed in discrete, global steps, (2) perform

only a bounded amount of work in each step, (3) use only such information from

the environment as can be regarded as answers to queries, and (4) never com-

plete a step until all queries from that step have been answered. After reviewing

the previous paper’s formal description of such algorithms and the definition of

behavioral equivalence, we define ordinary, interactive, small-step abstract state

machines (ASM’s). Except for very minor modifications, these are the machines

commonly used in the ASM literature. We define their semantics in the frame-

work of ordinary algorithms, and we show that they satisfy the postulates for

these algorithms. This material lays the groundwork for the final paper in the

series, in which we shall prove the Abstract State Machine Thesis for ordinary,

interactive, small-step algorithms: All such algorithms are equivalent to ASMs.

171. Andreas Blass, Yuri Gurevich: Ordinary interactive small-step algorithms, III.

ACM TOCL 8:3 (July 2007), article 16. A preliminary version was published as

a part of MSR-TR-2004-88

This is the third in a series of three papers extending the proof of the Abstract

State Machine Thesis – that arbitrary algorithms are behaviorally equivalent to

abstract state machines – to algorithms that can interact with their environments

during a step rather than only between steps. The first two papers are [166]

and [170]. As in those papers, we are concerned here with ordinary, small-step,

interactive algorithms. After reviewing the previous papers’ definitions of such

algorithms, of behavioral equivalence, and of abstract state machines (ASMs),

we prove the main result: Every ordinary, interactive, small-step algorithm is

behaviorally equivalent to an ASM. We also discuss some possible variations of

and additions to the ASM semantics.

172. Andreas Blass, Yuri Gurevich: Why sets? BEATCS 84 (October 2004). Revised

and published as MSR-TR-2006-138; then reprinted in: A. Avron et al. (eds.)

Pillars of Computer Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on

the Occasion of His 85th Birthday, Springer LNCS 4800 (2008), 179–198

40 Annotated List of Publications of Yuri Gurevich

Sets play a key role in foundations of mathematics. Why? To what extent is it

an accident of history? Imagine that you have a chance to talk to mathematicians

from a far away planet. Would their mathematics be set-based? What are the

alternatives to the set-theoretic foundation of mathematics? Besides, set theory

seems to play a significant role in computer science, in particular in database

theory and formal methods. Is there a good justification for that? We discuss

these and related issues.

173. Andreas Blass, Yuri Gurevich, Lev Nachmanson, Margus Veanes: Play to test.

MSR-TR-2005-04. FATES 2005, 5th International Workshop on Formal Ap-

proaches to Testing of Software, Edinburgh (July 2005)

Testing tasks can be viewed (and organized!) as games against nature. We

introduce and study reachability games. Such games are ubiquitous. A single

industrial test suite may involve many instances of a reachability game. Hence

the importance of optimal or near optimal strategies for reachability games. We

find out when exactly optimal strategies exist for a given reachability game, and

how to construct them.

174. Yuri Gurevich: Interactive algorithms 2005 with added appendix. In: D. Goldin et

al. (eds.) Interactive Computation: The New Paradigm, Springer-Verlag (2006),

165–182. Originally in: J. Jedrzejowicz and A. Szepietowski (eds.) Proceedings

of MFCS 2005 Math Foundations of Computer Science (2005), Gdansk, Poland,

Springer LNCS 3618 (2005), 26–38 (without the appendix)

A sequential algorithm just follows its instructions and thus cannot make a

nondeterministic choice all by itself, but it can be instructed to solicit outside

help to make a choice. Similarly, an object-oriented program cannot create a new

object all by itself; a create-a-new-object command solicits outside help. These are

but two examples of intra-step interaction of an algorithm with its environment.

Here we motivate and survey recent work on interactive algorithms within the

Behavioral Computation Theory project.

175. Yuri Gurevich, Paul Schupp: Membership problem for modular group. SIAM Jour-

nal on Computing 37:2 (2007), 425–459.

The modular group plays an important role in many branches of mathematics.

We show that the membership problem for the modular group is polynomial

time in the worst case. We also show that the membership problem for a free

group remains polynomial time when elements are written in a normal form with

exponents.

176. Andreas Blass, Yuri Gurevich, Dean Rosenzweig, Benjamin Rossman: Interactive

small-step algorithms I: Axiomatization. Logical Methods in Computer Science

3:4 (2007), paper 3. A preliminary version appeared as MSR-TR-2006-170

In earlier work, the Abstract State Machine Thesis – that arbitrary algorithms

are behaviorally equivalent to abstract state machines – was established for several

classes of algorithms, including ordinary, interactive, small-step algorithms. This

was accomplished on the basis of axiomatizations of these classes of algorithms.

Here we extend the axiomatization and, in a companion paper, the proof, to

cover interactive small-step algorithms that are not necessarily ordinary. This

means that the algorithms (1) can complete a step without necessarily waiting

for replies to all queries from that step and (2) can use not only the environment’s

replies but also the order in which the replies were received.

Annotated List of Publications of Yuri Gurevich 41

This is essentially part one of MSR-TR-2005-113. [182] is essentially the re-

mainder of the technical report.

177. Yuri Gurevich, Tanya Yavorskaya: On bounded exploration and bounded nonde-

terminism. MSR-TR-2006-07

This report consists of two separate parts, essentially two oversized footnotes

to [141]. In Chapter I, Yuri Gurevich and Tatiana Yavorskaya present and study

a more abstract version of the bounded exploration postulate. In Chapter II, Ta-

tiana Yavorskaya gives a complete form of the characterization, sketched in [141],

of bounded-choice sequential algorithms.

178. Andreas Blass, Yuri Gurevich: Program termination, and well partial orderings.

ACM TOCL 9:3 (July 2008)

The following known observation may be useful in establishing program termi-

nation: if a transitive relation R is covered by finitely many well-founded relations

U1, . . . , Un then R is well-founded. A question arises how to bound the ordinal

height |R| of the relation R in terms of the ordinals αi = |Ui|. We introduce the

notion of the stature ‖P‖ of a well partial ordering P and show that |R| less

than or equal to the stature of the direct product α1 × · · · × αn and that this

bound is tight. The notion of stature is of considerable independent interest. We

define ‖P‖ as the ordinal height of the forest of nonempty bad sequences of P ,

but it has many other natural and equivalent definitions. In particular, ‖P‖ is the

supremum, and in fact the maximum, of the lengths of linearizations of P . And

the stature of the direct product α1 × · · · × αn is equal to the natural product of

these ordinals.

179. Yuri Gurevich, Margus Veanes, Charles Wallace: Can abstract state machines

be useful in language theory? Theoretical Computer Science 376 (2007) 17–29.

Extended Abstract in DLT 2006, Developments in Language Theory, Springer

LNCS 4036 (2006), 14–19

The abstract state machine (ASM) is a modern computation model. ASMs

and ASM based tools are used in academia and industry, albeit in a modest scale.

They allow one to give high-level operational semantics to computer artifacts and

to write executable specifications of software and hardware at the desired abstrac-

tion level. In connection with the 2006 conference on Developments in Language

Theory, we point out several ways that we believe abstract state machines can be

useful to the DLT community.

180. Andreas Blass, Yuri Gurevich: A note on nested words. MSR-TR-2006-139

For every regular language of nested words, the underlying strings form a

context-free language, and every context-free language can be obtained in this

way. Nested words and nested-word automata are generalized to motley words

and motley-word automata. Every motley-word automation is equivalent to a de-

terministic one. For every regular language of motley words, the underlying strings

form a finite intersection of context-free languages, and every finite intersection

of context-free languages can be obtained in this way.

181. Yuri Gurevich: ASMs in the classroom: Personal experience. In: D. Bjørner and

M. C. Henson (eds.) Logics of Specification Languages, Springer (2008), 599–602

We share our experience of using abstract state machines for teaching compu-

tation theory at the University of Michigan.

42 Annotated List of Publications of Yuri Gurevich

182. Andreas Blass, Yuri Gurevich, Dean Rosenzweig, Benjamin Rossman: Interactive

small-step algorithms II: Abstract state machines and the Characterization The-

orem. Logical Methods in Computer Science 3:4 (2007), paper 4. A preliminary

version appeared as MSR-TR-2006-171

In earlier work, the Abstract State Machine Thesis – that arbitrary algorithms

are behaviorally equivalent to abstract state machines – was established for several

classes of algorithms, including ordinary, interactive, small-step algorithms. This

was accomplished on the basis of axiomatizations of these classes of algorithms.

In a companion paper [176] the axiomatization was extended to cover interac-

tive small-step algorithms that are not necessarily ordinary. This means that the

algorithms (1) can complete a step without necessarily waiting for replies to all

queries from that step and (2) can use not only the environment’s replies but

also the order in which the replies were received. In order to prove the thesis for

algorithms of this generality, we extend here the definition of abstract state ma-

chines to incorporate explicit attention to the relative timing of replies and to the

possible absence of replies. We prove the characterization theorem for extended

ASMs with respect to general algorithms as axiomatized in [176].

183. Dan Teodosiu, Nikolaj Bjørner, Yuri Gurevich, Mark Manasse, Joe Porkka: Opti-

mizing file replication over limited-bandwidth networks using remote differential

compression. MSR-TR-2006-157

Remote Differential Compression (RDC) protocols can efficiently update files

over a limited-bandwidth network when two sites have roughly similar files; no

site needs to know the content of another’s files a priori. We present a heuristic

approach to identify and transfer the file differences that is based on finding similar

files, subdividing the files into chunks, and comparing chunk signatures. Our work

significantly improves upon previous protocols such as LBFS and RSYNC in three

ways. Firstly, we present a novel algorithm to efficiently find the client files that

are the most similar to a given server file. Our algorithm requires 96 bits of meta-

data per file, independent of file size, and thus allows us to keep the metadata in

memory and eliminate the need for expensive disk seeks. Secondly, we show that

RDC can be applied recursively to signatures to reduce the transfer cost for large

files. Thirdly, we describe new ways to subdivide files into chunks that identify

file differences more accurately. We have implemented our approach in DFSR, a

state-based multimaster file replication service shipping as part of Windows Server

2003 R2. Our experimental results show that similarity detection produces results

comparable to LBFS while incurring a much smaller overhead for maintaining the

metadata. Recursive signature transfer further increases replication efficiency by

up to several orders of magnitude.

184. Martin Grohe, Yuri Gurevich, Dirk Leinders, Nicole Schweikardt, Jerzy

Tyszkiewicz, Jan Van den Bussche: Database query processing using finite cursor

machines. Theory of Computing Systems 44:4 (April 2009), 533–560. An earlier

version appeared in: ICDT 2007, International Conference on Database Theory,

Springer LNCS 4353 (2007), 284–298

We introduce a new abstract model of database query processing, finite cursor

machines, that incorporates certain data streaming aspects. The model describes

quite faithfully what happens in so-called “one-pass” and “two-pass query pro-

cessing”. Technically, the model is described in the framework of abstract state

machines. Our main results are upper and lower bounds for processing relational

Annotated List of Publications of Yuri Gurevich 43

algebra queries in this model, specifically, queries of the semijoin fragment of the

relational algebra.

185. Andreas Blass, Yuri Gurevich: Zero-one laws: Thesauri and parametric conditions.

BEATCS 91 (February 2007), 125–144. Reprinted in: A. Gupta et al. (eds.) Logic

at the Crossroads: An Interdisciplinary View, Allied Publishers Pvt. Ltd., New

Delhi (2007), 187–206

The zero-one law for first-order properties of finite structures and its proof via

extension axioms were first obtained in the context of arbitrary finite structures

for a fixed finite vocabulary. But it was soon observed that the result and the

proof continue to work for structures subject to certain restrictions. Examples

include undirected graphs, tournaments, and pure simplicial complexes. We dis-

cuss two ways of formalizing these extensions, Oberschelp’s parametric conditions

(Springer Lecture Notes in Mathematics 969, 1982) and our thesauri of [149]. We

show that, if we restrict thesauri by requiring their probability distributions to be

uniform, then they and parametric conditions are equivalent. Nevertheless, some

situations admit more natural descriptions in terms of thesauri, and the thesaurus

point of view suggests some possible extensions of the theory.

186. Andreas Blass, Yuri Gurevich: Background of computation. BEATCS, 92 (June

2007)

In a computational process, certain entities (for example, sets or arrays) and

operations on them may be automatically available, for example by being pro-

vided by the programming language. We define background classes to formalize

this idea, and we study some of their basic properties. The present notion of back-

ground class is more general than the one we introduced in an earlier paper [143],

and it thereby corrects one of the examples in that paper. The greater general-

ity requires a non-trivial notion of equivalence of background classes, which we

explain and use. Roughly speaking, a background class assigns to each set (of

atoms) a structure (for example, of sets or arrays or combinations of these and

similar entities), and it assigns to each embedding of one set of atoms into an-

other a standard embedding between the associated background structures. We

discuss several, frequently useful, properties that background classes may have,

for example that each element of a background structure depends (in some sense)

on only finitely many atoms, or that there are explicit operations by which all

elements of background structures can be produced from atoms.

187. Robert H. Gilman, Yuri Gurevich, Alexei Miasnikov: A geometric zero-one law.

JSL 74:3 (September 2009)

Each relational structure X has an associated Gaifman graph, which endows

X with the properties of a graph. If x is an element of X, let Bn(x) be the ball of

radius n around x. Suppose that X is infinite, connected and of bounded degree.

A first-order sentence s in the language of X is almost surely true (resp. a.s. false)

for finite substructures of X if for every x in X, the fraction of substructures of

Bn(x) satisfying s approaches 1 (resp. 0) as n approaches infinity. Suppose further

that, for every finite substructure, X has a disjoint isomorphic substructure. Then

every s is a.s. true or a.s. false for finite substructures of X. This is one form of the

geometric zero-one law. We formulate it also in a form that does not mention the

ambient infinite structure. In addition, we investigate various questions related to

the geometric zero-one law.

44 Annotated List of Publications of Yuri Gurevich

188. Nachum Dershowitz, Yuri Gurevich: A natural axiomatization of computability

and proof of Church’s Thesis. Bulletin of Symbolic Logic 14:3 (September 2008),

299–350. An earlier version was published as MSR-TR-2007-85

Church’s Thesis asserts that the only numeric functions that can be calcu-

lated by effective means are the recursive ones, which are the same, extensionally,

as the Turing-computable numeric functions. The Abstract State Machine Theo-

rem states that every classical algorithm is behaviorally equivalent to an abstract

state machine. This theorem presupposes three natural postulates about algo-

rithmic computation. Here, we show that augmenting those postulates with an

additional requirement regarding basic operations gives a natural axiomatization

of computability and a proof of Church’s Thesis, as Gödel and others suggested

may be possible. In a similar way, but with a different set of basic operations,

one can prove Turing’s Thesis, characterizing the effective string functions, and –

in particular – the effectively-computable functions on string representations of

numbers.

188a. Yuri Gurevich: Proving Church’s Thesis. CSR 2007, Computer Science – Theory

and Applications, 2nd International Symposium on Computer Science in Russia,

Springer LNCS 4649 (2007), 1–3

This is an extended abstract of the opening talk of CSR 2007. It is based

on [188].

189. Yuri Gurevich, Dirk Leinders, Jan Van den Bussche: A theory of stream queries.

DBPL 2007, 11th International Symposium on Database Programming Lan-

guages, Springer LNCS 4797 (2007), 153–168

Data streams are modeled as infinite or finite sequences of data elements com-

ing from an arbitrary but fixed universe. The universe can have various built-in

functions and predicates. Stream queries are modeled as functions from streams

to streams. Both timed and untimed settings are considered. Issues investigated

include abstract definitions of computability of stream queries; the connection

between abstract computability, continuity, monotonicity, and non-blocking oper-

ators; and bounded memory computability of stream queries using abstract state

machines (ASMs).

190. Nikolaj Bjørner, Andreas Blass, Yuri Gurevich: Content-dependent chunking for

differential compression, the local maximum approach. Journal of Computer and

System Sciences 76:3–4 (May–June 2010), 154–203. Originally published as MSR-

TR-2007-109

When a file is to be transmitted from a sender to a recipient and when the

latter already has a file somewhat similar to it, remote differential compression

seeks to determine the similarities interactively so as to transmit only the part

of the new file not already in the recipient’s old file. Content-dependent chunking

means that the sender and recipient chop their files into chunks, with the cutpoints

determined by some internal features of the files, so that when segments of the

two files agree (possibly in different locations within the files), the cutpoints in

such segments tend to be in corresponding locations, and so the chunks agree.

By exchanging hash values of the chunks, the sender and recipient can determine

which chunks of the new file are absent from the old one and thus need to be

transmitted.

We propose two new algorithms for content-dependent chunking, and we com-

pare their behavior, on random files, with each other and with previously used

Annotated List of Publications of Yuri Gurevich 45

algorithms. One of our algorithms, the local maximum chunking method, has

been implemented and found to work better in practice than previously used

algorithms.

Theoretical comparisons between the various algorithms can be based on several

criteria, most of which seek to formalize the idea that chunks should be neither

too small (so that hashing and sending hash values become inefficient) nor too

large (so that agreements of entire chunks become unlikely). We propose a new

criterion, called the slack of a chunking method, which seeks to measure how much

of an interval of agreement between two files is wasted because it lies in chunks

that don’t agree.

Finally, we show how to efficiently find the cutpoints for local maximum chunk-

ing.

191. Yuri Gurevich, Itay Neeman: DKAL: Distributed-Knowledge Authorization Lan-

guage. MSR-TR-2008-09. First appeared as MSR-TR-2007-116

DKAL is an expressive declarative authorization language based on existential

fixed-point logic. It is considerably more expressive than existing languages in

the literature, and yet feasible. Our query algorithm is within the same bounds

of computational complexity as, e.g., that of SecPAL. DKAL’s distinguishing

features include

– explicit handling of knowledge and information,

– targeted communication that is beneficial with respect to confidentiality, se-

curity, and liability protection,

– the flexible use and nesting of functions, which in particular allows principals

to quote (to other principals) whatever has been said to them,

– flexible built-in rules for expressing and delegating trust,

– information order that contributes to succinctness.

191a. Yuri Gurevich, Itay Neeman: DKAL: Distributed-Knowledge Authorization Lan-

guage. CSF 2008, 21st IEEE Computer Security Foundations Symposium, 149–

162

This is an extended abstract of [191]. DKAL is a new declarative authoriza-

tion language for distributed systems. It is based on existential fixed-point logic

and is considerably more expressive than existing authorization languages in the

literature. Yet its query algorithm is within the same bounds of computational

complexity as, e.g., that of SecPAL. DKAL’s communication is targeted, which

is beneficial for security and for liability protection. DKAL enables flexible use of

functions; in particular, principals can quote (to other principals) whatever has

been said to them. DKAL strengthens the trust delegation mechanism of Sec-

PAL. A novel information order contributes to succinctness. DKAL introduces a

semantic safety condition that guarantees the termination of the query algorithm.

192. Andreas Blass, Nachum Dershowitz, Yuri Gurevich: When are two algorithms the

same? Bulletin of Symbolic Logic 15:2 (2009), 145–168. An earlier version was

published as MSR-TR-2008-20

People usually regard algorithms as more abstract than the programs that

implement them. The natural way to formalize this idea is that algorithms are

equivalence classes of programs with respect to a suitable equivalence relation.

We argue that no such equivalence relation exists.

46 Annotated List of Publications of Yuri Gurevich

193. Andreas Blass, Yuri Gurevich: Two forms of one useful logic: Existential fixed

point logic and liberal Datalog, BEATCS 95 (June 2008), 164–182

A natural liberalization of Datalog is used in the Distributed Knowledge Au-

thorization Language (DKAL). We show that the expressive power of this liberal

Datalog is that of existential fixed-point logic. The exposition is self-contained.

194. Andreas Blass, Yuri Gurevich: One useful logic that defines its own truth. MFCS

2008, 33rd International Symposium on Mathematical Foundations of Computer

Science, Springer LNCS 5162 (2008), 1–15

Existential fixed point logic (EFPL) is a natural fit for some applications,

and the purpose of this talk is to attract attention to EFPL. The logic is also

interesting in its own right as it has attractive properties. One of those properties

is rather unusual: truth of formulas can be defined (given appropriate syntactic

apparatus) in the logic. We mentioned that property elsewhere, and we use this

opportunity to provide the proof.

195. Nikolaj Bjørner, Andreas Blass, Yuri Gurevich, Madan Musuvathi: Modular dif-

ference logic is hard. MSR-TR-2008-140

In connection with machine arithmetic, we are interested in systems of con-

straints of the form x + k ≤ y + l. Over integers, the satisfiability problem for

such systems is polynomial time. The problem becomes NP complete if we restrict

attention to the residues for a fixed modulus N .

196. Andreas Blass, Yuri Gurevich: Persistent queries in the behavioral theory of algo-

rithms. ACM TOCL, to appear. An earlier version appeared as MSR-TR-2008-150

We propose a syntax and semantics for interactive abstract state machines to

deal with the following situation. A query is issued during a certain step, but the

step ends before any reply is received. Later, a reply arrives, and later yet the

algorithm makes use of this reply. By a persistent query, we mean a query for which

a late reply might be used. Syntactically, our proposal involves issuing, along with

a persistent query, a location where a late reply is to be stored. Semantically, it

involves only a minor modification of the existing theory of interactive small-step

abstract state machines.

197. Yuri Gurevich, Arnab Roy: Operational semantics for DKAL: Application and

analysis. TrustBus 2009, 6th International Conference on Trust, Privacy and Se-

curity in Digital Business, Springer LNCS 5695 (2009), 149–158

DKAL is a new authorization language based on existential fixed-point logic

and more expressive than existing authorization languages in the literature. We

present some lessons learned during the first practical application of DKAL and

some improvements that we made to DKAL as a result. We develop operational

semantics for DKAL and present some complexity results related to the opera-

tional semantics.

198. Yuri Gurevich, Itay Neeman: Infon logic: The propositional case. ACM TOCL,

to appear. The TOCL version is a correction and slight extension of the version

called “The infon logic” published in BEATCS 98 (June 2009), 150–178

Infons are statements viewed as containers of information (rather then repre-

sentations of truth values). In the context of access control, the logic of infons is a

conservative extension of logic known as constructive or intuitionistic. Distributed

Knowledge Authorization Language uses additional unary connectives “p said”

and “p implied” where p ranges over principals. Here we investigate infon logic

Annotated List of Publications of Yuri Gurevich 47

and a narrow but useful primal fragment of it. In both cases, we develop the model

theory and analyze the derivability problem: Does the given query follow from the

given hypotheses? Our more involved technical results are on primal infon logic.

We construct an algorithm for the multiple derivability problem: Which of the

given queries follow from the given hypotheses? Given a bound on the quotation

depth of the hypotheses, the algorithm works in linear time. We quickly discuss

the significance of this result for access control.

199. Nikolaj Bjørner, Yuri Gurevich, Wolfram Schulte, Margus Veanes: Symbolic

bounded model checking of abstract state machines. International Journal of Soft-

ware and Informatics 3:2–3 (June/September 2009), 149–170

Abstract State Machines (ASMs) allow us to model system behaviors at any

desired level of abstraction, including levels with rich data types, such as sets or

sequences. The availability of high-level data types allows us to represent state

elements abstractly and faithfully at the same time. AsmL is a rich ASM-based

specification and programming language. In this paper we look at symbolic analy-

sis of model programs written in AsmL with a background T of linear arithmetic,

sets, tuples, and maps. We first provide a rigorous account of the update seman-

tics of AsmL in terms of background T, and we formulate the problem of bounded

path exploration of model programs, or the problem of Bounded Model Program

Checking (BMPC), as a satisfiability modulo T problem. Then we investigate the

boundaries of decidable and undecidable cases for BMPC. In a general setting,

BMPC is shown to be highly undecidable (Σ1
1-complete); restricted to finite sets,

the problem remains RE-hard (Σ0
1-hard). On the other hand, BMPC is shown

to be decidable for a class of basic model programs that are common in prac-

tice. We apply Satisfiability Modulo Theories (SMT) tools to BMPC. The recent

SMT advances allow us to directly analyze specifications using sets and maps with

specialized decision procedures for expressive fragments of these theories. Our ap-

proach is extensible; background theories need in fact only be partially solved by

the SMT solver; we use simulation of ASMs to support additional theories that

are beyond the scope of available decision procedures.

200. Yuri Gurevich, Itay Neeman: DKAL 2 – A simplified and improved authorization

language. MSR-TR-2009-11

Knowledge and information are central notions in DKAL, a logic based au-

thorization language for decentralized systems, the most expressive among such

languages in the literature. Pieces of information are called infons. Here we present

DKAL 2, a surprisingly simpler version of the language that expresses new im-

portant scenarios (in addition to the old ones) and that is built around a natural

logic of infons. Trust became definable, and its properties, postulated earlier as

DKAL house rules, are now proved. In fact, none of the house rules postulated

earlier is now needed. We identify also a most practical fragment of DKAL where

the query derivation problem is solved in linear time.

201. Andreas Blass, Nachum Dershowitz, Yuri Gurevich: Exact exploration and hang-

ing algorithms. CSL 2010, 19th EACSL Annual Conference on Computer Science

Logic (August 2010), to appear

Recent analysis of sequential algorithms resulted in their axiomatization and

in a representation theorem stating that, for any sequential algorithm, there is

an abstract state machine (ASM) with the same states, initial states and state

transitions. That analysis, however, abstracted from details of intra-step compu-

tation, and the ASM, produced in the proof of the representation theorem, may

48 Annotated List of Publications of Yuri Gurevich

and often does explore parts of the state unexplored by the algorithm. We refine

the analysis, the axiomatization and the representation theorem. Emulating a

step of the given algorithm, the ASM, produced in the proof of the new represen-

tation theorem, explores exactly the part of the state explored by the algorithm.

That frugality pays off when state exploration is costly. The algorithm may be

a high-level specification, and a simple function call on the abstraction level of

the algorithm may hide expensive interaction with the environment. Furthermore,

the original analysis presumed that state functions are total. Now we allow state

functions, including equality, to be partial so that a function call may cause the

algorithm as well as the ASM to hang. Since the emulating ASM does not make

any superfluous function calls, it hangs only if the algorithm does.

202. Andreas Blass, Yuri Gurevich, Efim Hudis: The Tower-of-Babel problem, and

security assessment sharing. MSR-TR-2010-57. BEATCS 101 (June 2010), to ap-

pear

The Tower-of-Babel problem is rather general: How to enable a collaboration

among experts speaking different languages? A computer security version of the

Tower-of-Babel problem is rather important. A recent Microsoft solution for that

security problem, called Security Assessment Sharing, is based on this idea: A tiny

common language goes a long way. We construct simple mathematical models

showing that the idea is sound.

Database Theory, Yuri, and Me

Jan Van den Bussche

Hasselt University and transnational University of Limburg, Diepenbeek, Belgium

Abstract. Yuri Gurevich made many varied and deep contributions to

logic for computer science. Logic provides also the theoretical founda-

tion of database systems. Hence, it is almost unavoidable that Gurevich

made some great contributions to database theory. We discuss some of

these contributions, and, along the way, present some personal anecdotes

connected to Yuri and the author. We also describe the honorary doc-

torate awarded to Gurevich by Hasselt University (then called Limburgs

Universitair Centrum) in 1998.

Dedicated to Yuri Gurevich, the “man with a plan”, on his 70th birthday.

1 Database Theory

The theory of database systems is a very broad field of theoretical computer sci-
ence, concerned with the theoretical design and analysis of all data management
aspects of computer science. One can get a good idea of the current research in
this field by looking at the proceedings of the two main conferences in the area:
the International Conference on Database Theory, and the ACM Symposium on
Principles of Database Systems. As data management research in general follows
the rapid changes in computing and software technology, database theory can
appear quite trendy to the outsider. Nevertheless there are also timeless top-
ics such as the theory of database queries, to which Yuri Gurevich has made a
number of fundamental contributions.

An in-depth treatment of database theory until the early 1990s can be found
in the book of Abiteboul, Hull and Vianu [1]; Yuri Gurevich appears nine times
in the bibliography.

A relational database schema is a finite relational vocabulary, i.e., a finite set
of relation names with associated arities. Instead of numbering the columns of
a relation with numbers, as usual in mathematical logic, in database theory it
is also customary to name the columns with attributes. In that case the arity
is replaced by a finite set of attributes (called a relation scheme). A database
instance over some schema is a finite relational structure over that schema, i.e.,
an assignment of a concrete, finite, relation content to each of the relation names.
So, if R is a relation name of arity k and D is a database, then D(R) is a finite
subset of Uk, where U is some universe of data elements. The idea is that the
contents of a database can be updated frequently, hence the term “instance”.
We will often drop this term, however, and simply talk about a “database”.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 49–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

50 J. Van den Bussche

For example, consider a relation name Hobby of arity 3; we associate to it the
relation scheme {name, hobby, location}. The intention is that an instance will
store tuples (n, h, l) where n is the name of a person who has a hobby h and he
performs this hobby in location l. Then a concrete instance will have a relation
Hobby containing tuples like (john, birdwatching, lake) and (mary, violin, town
hall).

2 Typed Template Dependencies

Usually we do not want to allow completely arbitrary relation contents in our
database instances; we will typically expect certain integrity constraints to be
satisfied, depending on the application. The early years of database theory
focused on integrity constraints expressible in first-order logic, called “depen-
dencies”, and studied the implication problem for classes of dependencies, i.e.,
fragments of first-order logic. Not surprisingly, this new field of theoretical com-
puter science attracted experts on logical decision problems, such as Gurevich.
Gurevich and Lewis [27,28] settled the undecidability of the implication problem
for the class of “typed template dependencies”.

For an example of a template dependency, consider, for example, the following
hypothetical (and admittedly rather weird) integrity constraint on the Hobby
relation: if two people each perform their own hobby in some common location,
they also perform there each other’s hobby; in short, common location implies
common hobby. We can write such a dependency in the following syntax:

Hobby(n2, h1, l)← Hobby(n1, h1, l), Hobby(n2, h2, l).

The semantics is that of implication, where all variables are assumed universally
quantified.

The implication problem for template dependencies then is: given a finite
set Σ of template dependencies and another template dependency σ, decide
whether each database instance satisfying all dependencies of Σ also satisfies σ.
The typed version, which is easier but still shown undecidable by Gurevich and
Lewis, restricts attention to relations with pairwise disjoint columns.

Interestingly, Gurevich and Lewis were working on this result concurrently
with Moshe Vardi [36,37]. To obtain his sharpest results, Vardi could apply
work by Gurevich and by Lewis on the word problem for semigroups [22,29].

3 Database Queries

One of the main purposes of a database is to query it. For many good reasons
into which we cannot go here, the answer of a query to a relational database
takes again the form of a relation. For example, on our Hobby relation, we could
pose the query “list all pairs (n, h) such that n performs hobby h in some location
where nobody else performs any hobby in that location”.

So, in the most general terms, one could define a query simply as a mapping
from database instances to relations. But to get a good theory, we need to

Database Theory, Yuri, and Me 51

impose some criteria on this mapping. First, it is convenient that all answer
relations of a same query have the same arity. Second, the basic theory restricts
attention to answer relations containing only values that already appear in the
input database. We call such queries “domain-preserving”. Third, a domain-
preserving query should be “logical” in the sense of Tarski [34], i.e., it should
commute with permutations of data elements.1 This captures the intuition that
the query need not distinguish between isomorphic databases; all the information
required to answer the query should already be present in the database [3]. Thus,
formally, a query of arity k over some database schema S is a domain-preserving
mapping from database instances over S to k-ary relations on U , such that for
every permutation ρ of U , and for every database instance D over S, we have
Q(ρ(D)) = ρ(Q(D)).

For example, if the database schema consists of a single unary relation name,
so that an instance is just a naked set, a function that picks an arbitrary element
out of each instance is not a query, because it is not logical. The intuition is that
the database does not provide any information that would substantiate favoring
one of the elements above the others.

4 The QPTIME Problem

The definition of query as recalled above was formulated by Chandra and Harel
[11,12]. This notion of query comes very naturally to a logician; indeed, Gurevich
independently introduced the very same notion under the name “global relation”
or “global predicate” in his two seminal papers on finite model theory [23,24].
These papers also widely publicized one of the most fundamental open problems
in database theory, the QPTIME problem [13,14,30,31,35]: is there a reasonable
programming language in which only, and all, queries can be expressed that are
computable in polynomial time? Gurevich’s conjecture is that the answer is neg-
ative. The QPTIME problem has been actively investigated since its inception,
as can be learned from two surveys, one by Kolaitis from 1995 [32] and one by
Grohe from 2008 [19]. We will get back to it in Section 8. The problem also
nicely illustrate how database theory lies at the basis of the areas of finite model
theory and descriptive complexity which grew afterwards.

5 Datalog vs. First-Order Logic

In the 1980s, much attention was devoted to the query language Datalog. One
of the toughest nuts in this research was cracked by Ajtai and Gurevich [4,5].

A Datalog program is a set of implications, called rules, that are much like the
template dependencies we have seen above. But an essential difference is that
the relation name in the head of a Datalog rule is not from the database schema;
it is a so-called “intensional” relation name. Thus a Datalog program defines
1 We mean here a permutation not just of the data elements that appear in some

input database, but of the entire global universe of possible data elements.

52 J. Van den Bussche

a number of new relations from the existing ones in the database instance; the
semantics is that we take the smallest expanded database instance that satisfies
the rules. For example, on our Hobby relation, consider the following program:

T (x, y)← Hobby(x, h, l1), Hobby(y, h, l2)
T (x, y)← T (x, z), T (z, y)

This program computes, in relation T , the transitive closure of the binary relation
that relates a person x to a person y if they have some common hobby.

Since the transitive closure is not first-order definable [3,17], the above Datalog
program is not equivalent to a first-order formula. Neither is it “bounded”: there
is no fixed constant so that, on any database instance, the rules have to be
fired only so many times until we reach a fixpoint. As a matter of fact, a non-
first-order Datalog program cannot be bounded, as bounded Datalog programs
are obviously first-order; an equivalent first-order formula can by obtained by
unfolding the recursive rules a constant number of times.

The converse is much less obvious, however: every first-order Datalog program
must in fact be bounded, and this is the above-mentioned celebrated result by
Ajtai and Gurevich.

6 Metafinite Structures

In database theory, a relational database is considered to be a finite relational
structure, and also in practice, relational database instances are finite. But still
there is a gap between theory and practice in this manner, as in practice, rela-
tional databases do contain interpreted elements from an infinite structure, such
as numbers, and queries expressed in the database language SQL can perform
computations on these numbers. In a very elegant paper, Grädel and Gurevich
[18] proposed the theory of metafinite structures as a way to close the gap. That
theory later also inspired the development of the theory of constraint databases
[33].

7 Honorary Doctorate

All the work described up to know happened before I had ever personally met
Yuri. That would happen in May 1996, on the occasion of an AMS Benelux
meeting at the University of Antwerp, Belgium, where I was working as a postdoc
at the time. I had noticed that the famous Yuri Gurevich was scheduled to give
an invited talk at the logic session, and since I had some ideas related to the
QPTIME problem, I approached him and asked if he would be interested in
having dinner in Antwerp together and talk mathematics. To my most pleasant
surprise he readily accepted. It was my first personal encounter with Yuri and
we spent an agreeable evening. He patiently listened to my ideas and made
suggestions. Being a native from Antwerp I could give him a flash tour of the
city and also knew a typical restaurant, things he could certainly appreciate.

Database Theory, Yuri, and Me 53

Shortly afterwards, I would join the faculty of what was then known as the
Limburgs Universitair Centrum in Diepenbeek, Belgium; nowadays it is called
Hasselt University. The university was just preparing for its 25th anniversary
in the year 1998, and there was an internal call for nominations for honorary
doctorates to be awarded during the Dies Natalis ceremony. Given his fame
in finite model theory and database theory, and given the pleasant experience I
had had with Yuri, I nominated him before the Faculty of Sciences. Obviously he
was such a strong candidate that my nomination was enthusiastically accepted.
Thus in May 1998, Yuri received the honorary doctorate and became a friend of
Hasselt University, and of me personally as well.

Appendix A contains a transcript, translated into English, of the nomina-
tion speech I gave (in Dutch) for the honorary degree. In the course of preparing
that speech, I collected information from many people around Yuri. These people
gave me so much information that much of it could not be used for the short and
formal speech. On the occasion of Yuri’s 60th birthday, however, Egon Börger
organised a special session at the CSL 2000 conference in Fischbachau, Ger-
many, and in a speech given there I could use that material, consisting mainly
of anecdotes. Appendix B contains a transcript of that speech.

8 Choiceless Polynomial Time

Upon getting to know him better, I started to collaborate with Yuri on a scientific
level. I remember a meeting on finite model theory in Oberwolfach in 1998, just
a few months before the honorary doctorate ceremony, where he gave a talk
on Choiceless Polynomial Time [8], a very expressive database query language
in which only polynomial-time queries can be expressed. The language is nice
because it borrows its high expressivity from set theory in a natural way, and
also because it is based on Gurevich’s Abstract State Machines (ASM [25]) . It
is nice to see how Yuri’s work on ASMs, originally disjoint from the QPTIME
problem, is applied to that problem.

Yuri wondered about the precise relationship between choiceless polynomial
time and the work that was going on in database theory, e.g., by Abiteboul and
Vianu on “generic machines” [2]. We collaborated on that question and that led
to our joint paper (with Andreas Blass) on ASMs and computationally complete
query languages [6,7]. In short, it turns out that choiceless polynomial time is
the same as the polynomial-time fragment of a natural complete query language
based on first-order logic, object creation [10], and iteration. We also showed that
the “non-flat” character of choiceless polynomial time, be it through arbitrarily
deeply nested sets, or through object creation, is essential to its high expressive
power.

We note that extensions of choiceless polynomial time are still being actively
researched in connection with the QPTIME problem [9,16,15].

A small personal recollection I have on this joint research is that, when working
on the proof, I visited Yuri in Paris, where he liked to spend his summers. We
worked at the stuffy apartment where Yuri rented a room, and in the evening,

54 J. Van den Bussche

Yuri felt like going to the movies and asked me to suggest a good movie. I
remembered my father telling me the week before that he had been impressed by
the then-running movie “Seven years in Tibet” (with Brad Pitt). So I suggested
we go to that movie, and indeed, the movie impressed Yuri and me greatly.

9 Finite Cursor Machines, Stream Queries

The most recent chapter in my interactions with Yuri was a great visit I made to
him at Microsoft Research, Redmond, for a week in October 2006, together with
my student Dirk Leinders. It was impressive to visit Microsoft Research and to
see Yuri thrive in these surroundings. It was also interesting to visit Zoe and
Yuri’s beautiful house. At the time I was working on querying streaming data
and had an idea for an ASM-based model for computing such queries. Yuri was
interested and we had fruitful brainstorm sessions on the model, which came
to be called “Finite Cursor Machines”. This research led to two nice papers
on stream queries [20,21,26]. I know that Yuri is still interested in modeling
computation on data streams.

10 Conclusion

My life has been enriched in many ways through my encounters with such a
great person as Yuri Gurevich. Yuri, I wish you much happiness on the occasion
of your 70th birthday!

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,

Reading (1995)

2. Abiteboul, S., Vianu, V.: Generic computation and its complexity. In: Proceedings

23rd ACM Symposium on the Theory of Computing, pp. 209–219 (1991)

3. Aho, A., Ullman, J.: Universality of data retrieval languages. In: Conference

Record, 6th ACM Symposium on Principles of Programming Languages, pp. 110–

120 (1979)

4. Ajtai, M., Gurevich, Y.: Datalog vs first-order logic. In: Proceedings 30th IEEE

Symposium on Foundations of Computer Science, pp. 142–147 (1989)

5. Ajtai, M., Gurevich, Y.: Datalog vs first-order logic. J. Comput. Syst. Sci. 49(3),

562–588 (1994)

6. Blass, A., Gurevich, Y., Van den Bussche, J.: Abstract state machines and com-

putationally complete query languages (extended abstract). In: Gurevich, Y.,

Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM 2000. LNCS, vol. 1912, pp.

22–33. Springer, Heidelberg (2000)

7. Blass, A., Gurevich, Y., Van den Bussche, J.: Abstract state machines and compu-

tationally complete query languages. Information and Computation 174(1), 20–36

(2002)

8. Blass, A., Gurevich, Y., Shelah, S.: Choiceless polynomial time. Annals of Pure

and Applied Logic 100, 141–187 (1999)

Database Theory, Yuri, and Me 55

9. Blass, A., Gurevich, Y., Shelah, S.: On polynomial time computation over un-

ordered structures. Journal of Symbolic Logic 67(3), 1093–1125 (2002)

10. Van den Bussche, J., Van Gucht, D., Andries, M., Gyssens, M.: On the complete-

ness of object-creating database transformation languages. J. ACM 44(2), 272–319

(1997)

11. Chandra, A., Harel, D.: Computable queries for relational data bases. In: Proceed-

ings 11th ACM Symposium in Theory of Computing, pp. 309–318 (1979)

12. Chandra, A., Harel, D.: Computable queries for relational data bases. J. Comput.

Syst. Sci. 21(2), 156–178 (1980)

13. Chandra, A., Harel, D.: Structure and complexity of relational queries. In: Pro-

ceedings 21st IEEE Symposium on Foundations of Computer Science, pp. 333–347

(1980)

14. Chandra, A., Harel, D.: Structure and complexity of relational queries. J. Comput.

Syst. Sci. 25, 99–128 (1982)

15. Dawar, A.: On the descriptive complexity of linear algebra. In: Hodges, W., de

Queiroz, R. (eds.) Logic, Language, Information and Computation. LNCS (LNAI),

vol. 5110, pp. 17–25. Springer, Heidelberg (2008)

16. Dawar, A., Richerby, D., Rossman, B.: Choiceless polynomial time, counting and

the Cai-Fürer-Immerman graphs. Annals of Pure and Applied Logic 152(1-3),

31–50 (2008)

17. Gaifman, H., Vardi, M.: A simple proof that connectivity is not first-order definable.

Bulletin of the EATCS 26, 43–45 (1985)

18. Grädel, E., Gurevich, Y.: Metafinite model theory. Information and Computa-

tion 140(1), 26–81 (1998)

19. Grohe, M.: The quest for a logic capturing PTIME. In: Proceedings 23rd Annual

IEEE Symposium on Logic in Computer Science, pp. 267–271 (2008)

20. Grohe, M., Gurevich, Y., Leinders, D., Schweikardt, N., Tyszkiewicz, J., Van den

Bussche, J.: Database query processing using finite cursor machines. In: Schwentick,

T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 284–298. Springer, Heidelberg

(2006)

21. Grohe, M., Gurevich, Y., Leinders, D., Schweikardt, N., Tyszkiewicz, J., Van den

Bussche, J.: Database query processing using finite cursor machines. Theory of

Computing Systems 44(4), 533–560 (2009)

22. Gurevich, Y.: The word problem for some classes of semigroups (russian). Algebra

and Logic 5(2), 25–35 (1966)

23. Gurevich, Y.: Toward logic tailored for computational complexity. In: Richter,

M., et al. (eds.) Computation and Proof Theory. Lecture Notes in Mathematics,

vol. 1104, pp. 175–216. Springer, Heidelberg (1998)

24. Gurevich, Y.: Logic and the challenge of computer science. In: Börger, E. (ed.)

Current Trends in Theoretical Computer Science, pp. 1–57. Computer Science

Press, Rockville (1988)

25. Gurevich, Y.: Evolving algebra 1993: Lipari guide. In: Börger, E. (ed.) Specification

and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

26. Gurevich, Y., Leinders, D., Van den Bussche, J.: A theory of stream queries. In:

Arenas, M., Schwartzbach, M.I. (eds.) DBPL 2007. LNCS, vol. 4797, pp. 153–168.

Springer, Heidelberg (2007)

27. Gurevich, Y., Lewis, H.: The inference problem for template dependencies. In:

Proceedings 1st ACM Symposium on Principles of Database Systems, pp. 221–229

(1982)

28. Gurevich, Y., Lewis, H.: The inference problem for template dependencies. Infor-

mation and Control 55(1-3), 69–79 (1982)

56 J. Van den Bussche

29. Gurevich, Y., Lewis, H.: The word problem for cancellation semigroups with zero.

Journal of Symbolic Logic 49(1), 184–191 (1984)

30. Immerman, N.: Relational queries computable in polynomial time. In: Proceedings

14th ACM Symposium on Theory of Computing, pp. 147–152 (1982)

31. Immerman, N.: Relational queries computable in polynomial time. Information and

Control 68, 86–104 (1986)

32. Kolaitis, P.: Languages for polynomial-time queries: An ongoing quest. In: Gottlob,

G., Vardi, M. (eds.) ICDT 1995. LNCS, vol. 893, pp. 38–39. Springer, Heidelberg

(1995)

33. Kuper, G., Libkin, L., Paredaens, J. (eds.): Constraint Databases. Springer,

Heidelberg (2000)

34. Tarski, A.: What are logical notions? In: Corcoran, J. (ed.) History and Philosophy

of Logic, vol. 7, pp. 143–154 (1986)

35. Vardi, M.: The complexity of relational query languages. In: Proceedings 14th ACM

Symposium on the Theory of Computing, pp. 137–146 (1982)

36. Vardi, M.: The implication and finite implication problems for typed template

dependencies. In: Proceedings 1st ACM Symposium on Principles of Database

Systems, pp. 230–238 (1982)

37. Vardi, M.: The implication and finite implication problems for typed template

dependencies. J. Comput. Syst. Sci. 28, 3–28 (1984)

A Honorary Doctorate Nomination Speech

This speech was given by me (originally in Dutch) at the Dies Natalis ceremony
of Hasselt University (then called Limburgs Universitair Centrum), on 28 May
1998, to nominate Yuri Gurevich for a honorary degree. Note the speech was
directed to a general audience.

Dear Guests:

Dear Professor Gurevich:

It is my honor and my pleasure to give a brief exposition of your life, your

work, and your achievements.

In these days, the field of information technology (IT) receives plenty of

attention. It is hard to imagine our present-day information society without

IT: in our daily lives we live and work thanks to products and services that

would have been either unaffordable, or simply impossible, were it not for IT.

Computer science, as an academic discipline, profits from this success, but

at the same time runs some risk because of it. Indeed, the danger is that

those less familiar with computer science, view IT as an obvious technology

that we just use when and were we need it. This purely technological view

of computer science is too limited. Computer science is just as well an exact

science, a relatively young one at that, and still in full growth, that investigates

the possibilities and limitations of one of the hardest tasks for us humans:

the design and programming of computer systems, in a correct and efficient

manner. Logical and abstract reasoning are essential skills in this endeavor.

Now if there is one who is a champion in logical reasoning, it is our honored

guest, professor Yuri Gurevich. Yuri was born in 1940 in Russia, and studied

mathematics at Ural university. Already at the age of 24 he earned his doctor-

ate, and four years later the Soviet state doctorate, which allowed him access

Database Theory, Yuri, and Me 57

to a professor position at the highest level. Thus he found himself at the age of

29 as head of the mathematics division of the national institute for economics

in Sverdlovsk. Russian colleagues have told me that such a steep career was al-

most unthinkable in the communist Russia of the 1960s, also because Gurevich

had refused to become a member of the party.

But it was indeed impossible to ignore the scientific results he had obtained

during his doctorate in mathematical logic. As a young graduate Yuri Gurevich

had been directed towards a subdiscipline of mathematics, called the theory

of ordered abelian groups. Fortunately I do not have to explain this theory

in order to show the depth of the results that Gurevich obtained. Normally

one expects of a mathematician that he or she finds some answers to specific

mathematical questions posed within the discipline in which he or she is active.

Gurevich, however, developed an automated procedure—think of a computer

program—by which every question about the theory of ordered abelian groups

could be answered! One might say that he replaced an entire community of

mathematicians by a single computer program. At that time, as well as in the

present time, it was highly unusual that an entire subdiscipline of mathematics

is solved in such manner.

In the early 1970s it becomes increasingly harder for Yuri Gurevich to

struggle against the discrimination against Jews in the anti-Semitic climate in

Russia in those years. When he hears that the KGB has a file against him, he

plans to emigrate. Unfortunately this happens under difficult circumstances,

so that his scientific activities are suspended for two years. Traveling via the

Republic of Georgia, from where it was easier to emigrate, he finally settles in

1974 in Israel, where he becomes a professor at the Ben-Gurion University. Yuri

amazed everyone by expressing himself in Hebrew at departmental meetings

already after a few months of arriving.

During his Israeli period, Yuri Gurevich develops into an absolute em-

inence, a world leader in research in logic. We cannot go further into the

deep investigations he made, nor into the long and productive collaboration

he developed with that other phenomenal logician, Saharon Shelah. The clear

computer science aspect of his earlier work is less present during this period,

although some of the fundamental results that he obtains here will find un-

expected applications later in the area of automated verification of computer

systems. The latter is not so accidental: having unexpected applications is one

of the hallmarks of pure fundamental research.

Along the way, however, the computer scientist in Yuri Gurevich resur-

faces. Computer science in the late 1970s was in full growth as a new, young

academic discipline, and Gurevich saw the importance of a solid logical foun-

dation for this new science. In a new orientation of his career, he accepts in

1982 an offer from the University of Michigan as professor of computer science.

Since then professor Gurevich, as a leadership figure, serves as an important

bridge between logic and computer science. Partly through his influence, these

two disciplines have become strongly interweaved. Of the many common top-

ics where the two disciplines interact, and where Gurevich played a decisive

role, we mention finite model theory, where a logical foundation is being de-

veloped for computerised databases, an important topic in our own theoretical

computer science group here at LUC; the complexity of computation, which

he gave logical foundations; and software engineering, for which he designed a

58 J. Van den Bussche

new logical formalism in which computer systems can be specified in a natural

and correct manner.

To conclude I want to say a few words about the man Yuri Gurevich. With

all his obvious talents he remains a modest—I would even say, somewhat shy—

person. A good friend of his said it as follows: “Yuri loves science more than

himself in it.” That is all the more a reason to put him in the spotlights today.

Dear professor Gurevich: for your great achievements in mathematical

logic, and for your continued contributions to the promotion and development

of logical methods for the benefit of computer science, the Faculty of Sciences

proposes you as a honorary doctor at our university.

B Fischbachau Speech

This speech was given by me after the dinner at the end of the symposium in
honour of Yuri Gurevich’s 60th birthday, held in the charming Bavarian village
of Fischbachau, on 24 August 2000, co-located with the CSL conference. I thank
the many people who contributed the material for this speech. Their names are
mentioned explicitly.

Dear computer science logicians, and, of course, dear Yuri:

My name is Jan Van den Bussche, and during the academic year 97–98, I

had the pleasure of promoting an honorary doctorate for Yuri at my university,

the University of Limburg in Belgium. Because at that time I did not know

Yuri personally very well yet—happily for me this has changed by now—I

solicited comments from various friends and colleagues of Yuri. Within two

days I received many warm responses. Unfortunately, because my laudation

speech had to be rather formal, I could not directly use many of the nice things

said about Yuri, and I have always found it a great pity that they remained

buried in my files. Therefore I am so glad with this occasion to bring a few

anecdotes about Yuri out into the open.

But first I would like to tell how Yuri and I met for the first time. In

April 95, then at the university of Antwerp in Belgium, I was thinking about

some issues related to one of the many nice papers Yuri wrote with Saharon

Shelah. I sent him an email with a technical question, and received a very

friendly reply within half an hour, giving me his intuition behind my question,

telling me that for the moment he was busy with other things, but that he

would be happy to discuss the matter more deeply in Antwerp, where he

happened to be going soon for an AMS meeting. So we planned to meet in his

hotel lobby some late afternoon, which was a bit exciting because, although

I knew his face, he had never even heard about me before that email. But

immediately we were both at ease, making a long walk in the old city center,

me showing him various sights. I remember that I was a bit afraid of overdoing

it: maybe we were walking too long and he was tired of it, but being too nice

to say it. Little did I know that Yuri himself is infamous for taking people on

walks they don’t know when and where they will end! Taking a walk is also

one of Yuri’s famous ways of dealing with difficult mathematical problems.

At dinner we were talking about mathematics, and he was really giving my

questions genuine thought. All in all, I was really struck by his friendliness, his

Database Theory, Yuri, and Me 59

generosity, his accessibility. These very qualities of Yuri have been mentioned

to me independently by many people.

One of these people is Joe Weisburd, who was a student of Yuri in the old

Russian days back in the sixties. Joe also told me the following:

Yuri always looked very undaunted, very powerful and very confident,

which was unusual at those times, unless you were a ranked Commu-

nist. And Yuri Shlomovich—wasn’t. You also didn’t dare to look pow-

erful and confident if you were Jewish. And Yuri Shlomovich—was,

even blatantly so in a city where public Jewish life was completely sup-

pressed. His patronymic, Shlomovich, was a challenge, indicating that

he wasn’t adjusting to sounding more Russian, as was pretty popular

then. The Biblical names of his newly born daughters was another

challenge. And Yuri was absolutely unprecedented in the Jewish folk

song, that he suggested to sing together at the banquet after an annual

mathematical Winter School of our Math department.

Yuri became a full professor at the age of 29, which again was unheard of,

let alone him being Jewish. Nevertheless, it became increasingly clear that he

had to emigrate. Cunningly, he discovered that for some peculiar reason, it

was easier to get permission to emigrate out of the Republic of Georgia, so he

requested and finally received permission to transfer there, and eventually was

able to emigrate. These were severe times; they even had to go on a hunger

strike. Vladik Kreinovich, who met Yuri at a seminar in St. Petersburg during

this period, told me the following:

Yuri seemed to be undisturbed by the complexity of the outside life. He

radiated strength and optimism, and described very interesting results

which he clearly managed to produce lately, during the extremely

severe period of his life. His demeanor looked absolutely fantastic.

Once free, Yuri devoted considerable energy to help other Soviet Jews with

their emigration. This happened in Israel, and also later in the United States.

Vladik, himself an emigrant, continues:

Together with a local rabbi, Yuri formed a committee which became

one of the grassroots activities that finally managed to convince the

American public opinion that the Soviet Jews needed help, in a period

when the political climate was on the left side. History books have

been written about that period, and Yuri is not described there as

one of the prominent and visible leaders of the American support

campaign. However, this is only because he preferred not to be in the

spotlights.

Arriving in Israel, Yuri’s talent for languages was very useful. Baruch

Cahlon, who shared an office with Yuri in Beer-Sheva, recounts:

Yuri hardly spoke any Hebrew, but he had to communicate with all

of us in this orient-modern language, which he seemed to love, but

was yet unable to utter. My wife, who is a Hebrew teacher, used to

tell me how Yuri would try to answer the phone when she would

call. Believe me, it was funny. It didn’t take long, however, and one

day, during a department meeting, Yuri stood up and spoke fluent,

almost flawless Hebrew. We were totally astonished. Just couldn’t

believe it. At the time, of course, we had not known about his love

for languages. His interest in these disciplines far surpasses that of an

average mathematician. But then, of course, Yuri isn’t that either!

60 J. Van den Bussche

In a similar vein, Jim Huggins, one of Yuri’s later students in Michigan, told

me that Yuri would ask him questions about English such as “what is the

difference in pronunciation of the words ‘morning’ and ‘mourning’?”, and they

would try to find English equivalents of Russian proverbs. During a number

of summers spent in Paris—Yuri likes the French way of life very much—he

learnt to speak more than a mouthful of French as well. And last April, when

we were together at a nice restaurant in Ascona, Yuri had fun translating the

Italian menu to us!

In Israel, Yuri also gave new meanings to religious symbols. Saharon Shelah

told me that Yuri once turned up at a logic seminar wearing a kipah, this is

the Jewish religious cap. When asked about it, he replied “why, it is very

convenient: it covers exactly my bald part!” Yuri, I am sorry, but I guess that

by now even an extra large won’t do anymore!

I finally must mention the constant source of support in Yuri’s life provided

by his wife, Zoe. Not for nothing, Yuri himself describes the period before he

met Zoe as his “protozoan” period! By the way, Zoe is also a mathematician

by education, and she is a hell of a computer programmer.

Dear Yuri, although you are now a professor emeritus, you are definitely

not yet retired, and thanks to you we will continue to see a lot of exciting

things coming out of Microsoft. I congratulate you with your sixtiest birthday,

and am looking forward to the next sixty years!

Tracking Evidence

Sergei Artemov�

CUNY Graduate Center, 365 Fifth Ave., New York, NY 10016, USA

SArtemov@gc.cuny.edu

For Yuri, on the occasion of his seventieth birthday.

Abstract. In this case study we describe an approach to a general log-

ical framework for tracking evidence within epistemic contexts. We con-

sider as basic an example which features two justifications for a true

statement, one which is correct and one which is not. We formalize

this example in a system of Justification Logic with two knowers: the

object agent and the observer, and we show that whereas the object

agent does not logically distinguish between factive and non-factive jus-

tifications, such distinctions can be attained at the observer level by

analyzing the structure of evidence terms. Basic logic properties of the

corresponding two-agent Justification Logic system have been estab-

lished, which include Kripke-Fitting completeness. We also argue that

a similar evidence-tracking approach can be applied to analyzing para-

consistent systems.

Keywords: justification, epistemic logic, evidence.

1 Introduction

In this paper, commencing from seminal works [14,21], the following analysis of
basic epistemic notions was adopted: for a given agent,

F is known ∼ F holds in all epistemically possible situations. (1)

The notion of justification, an essential component of epistemic studies, was in-
troduced into the mathematical models of knowledge within the framework of
Justification Logic in [1,2,3,5,6,8,13,16,18,19,22] and other papers; a comprehen-
sive account of this approach is given in [4]. At the foundational level, Justifica-
tion Logic furnishes a new, evidence-based semantics for the logic of knowledge,
according to which

F is known ∼ F has an adequate justification. (2)

Within Justification Logic, we can reason about justifications, simple and com-
pound, and track different pieces of evidence pertaining to the same fact.

In this paper we develop a sufficiently general mechanism of evidence tracking
which is crucial for distinguishing between factive and nonfactive justifications.
Some preliminary observations leading to this mechanism have been discussed
in [4].
� This work was supported by NSF grant 0830450.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 61–74, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 S. Artemov

1.1 Basics of Justification Logic

Evidence (justification) terms are built from justification variables x, y, z, . . .
and evidence constants a, b, c, . . . by means of the operations application ‘·,’ sum
‘+,’ and evidence verifier ‘!.’ The list of operations is flexible: more elaborate
justification logic systems also use additional operations on justifications such
as negative verifier ‘?.’ On the other hand, it makes sense to consider subsets
of operations such as {·, +} or even {·} (cf. [4]). However, these features do not
alter the main results of this paper and, for the sake of convenience, we choose
to work with the set of operations {·, +, !}.

Formulas of Justification Logic are built from logical atomic propositions by
means of the usual classical logical connectives ∧,∨,¬, . . . with an additional
formation rule: if t is an evidence term and F a formula, then t:F is a formula.
Using p to denote any sentence letter and t for an evidence term, we define the
formulas by the grammar

F = p | F ∧ F | F ∨ F | F→F | ¬F | t:F.

The basic introspective justification logic considered in this paper is called
J40. It contains the following postulates:

1. Classical propositional axioms and rule Modus Ponens,
2. Application Axiom s:(F→G)→(t:F →(s · t):G),
3. Monotonicity Axiom s:F→(s + t):F , s:F→(t + s):F .
4. Introspection Axiom t:F→ !t:(t:F).

Constants denote justifications of assumptions. To postulate that an axiom A is
justified, one has to assume

c : A

for some evidence constant c. Furthermore, if, in addition, we want to postulate
that this new principle c : A is also justified, we can use Introspection and
conclude !c : (c : A), etc.

A Constant Specification CS for a given logic L is a set of formulas of form
c : A where A’s are axioms of L and c’s are evidence constants. We distinguish
the following types of constant specifications:

– axiomatically appropriate: for each axiom A there is a constant c such that
c : A ∈ CS;

– total (called TCS): for any axiom A and constant c, c : A ∈ CS.

For a given Constant Specification CS,

J4CS = J40 + CS , J4 = J40 + TCS.

An alternative description of J4 is given by

J4 = J40 + R4

where R4 is the Axiom Internalization Rule:

Tracking Evidence 63

For any axiom A and constant c, infer c : A.

Finite CS’s constitute a representative class of constant specifications: any deri-
vation in J4 may be regarded as a derivation in J4CS for some finite constant
specification CS.

The Deduction Theorem holds in J4CS for each constant specification CS.
The following Internalization property is characteristic for Justification Logic
systems.

Theorem 1 (cf. [4]). For an axiomatically appropriate constant specification
CS, J4CS enjoys Internalization:

If � F , then � p:F for some justification term p.

1.2 Epistemic Semantics

A Kripke-Fitting model [13] M = (W, R, E ,�) is a Kripke model (W, R,�) with
transitive accessibility relation R (for J4-style systems), augmented by an ad-
missible evidence function E which for any evidence term t and formula F , spec-
ifies the set of possible worlds where t is considered admissible evidence for
F , E(t, F) ⊆ W . The admissible evidence function E must satisfy the closure
conditions with respect to operations ·, +, ! as follows:

– Application: E(s, F→G) ∩ E(t, F) ⊆ E(s·t, G),
– Sum: E(s, F) ∪ E(t, F) ⊆ E(s+t, F),
– Verifier: E(t, F) ⊆ E(!t, t:F).

In addition, E should be monotone with respect to R, i.e.,

u ∈ E(t, F) and uRv yield v ∈ E(t, F).

We say that E(t, F) holds at a given world u if u ∈ E(t, F).
Given M = (W, R, E ,�), the forcing relation � on all formulas is defined as

follows: for u ∈ W ,

1. � respects Boolean connectives at each world;
2. u� t:F iff v�F for every v ∈W with uRv (the usual Kripke condition)

and u ∈ E(t, F).

According to this definition, the admissible evidence function E may be regarded
as a Fagin-Halpern-style awareness function [12], but equipped with the structure
of justifications.

A modelM = (W, R, E ,�) respects a Constant Specification CS if E(c, A) = W
for all formulas c:A from CS.

Theorem 2 (cf. [4]). For any Constant Specification CS, J4CS is sound and
complete for the corresponding class of Kripke-Fitting models respecting CS.

64 S. Artemov

The information about Kripke structure in Kripke-Fitting models can be com-
pletely encoded by the admissible evidence function; this feature is captured by
Mkrtychev models, which are Kripke-Fitting models with a single world. Natu-
rally, the condition of monotonicity of the evidence function E with respect to
the accessibility relation R becomes void in Mkrtychev models.

Theorem 3. For any Constant Specification CS, J4CS is sound and complete
for the class of Mkrtychev models respecting CS.

Mkrtychev models play an important theoretical role in establishing decidability
and complexity bounds in Justification Logic [4,8,15,16,17,18,19]. Kripke-Fitting
models take into account both epistemic Kripke structure and evidence structure
and can be useful as natural models of epistemic scenarios.

Corollary 1 (cf. [4]). For any constant specification CS, J4CS is consistent
and has a model.

1.3 Correspondence between Modal and Justification Logics

The natural modal epistemic counterpart of the evidence assertion t:F is �F
read as

for some x, x:F .

This observation leads to the notion of forgetful projection which replaces each
occurrence of t:F by �F and hence converts a Justification Logic sentence S
to a corresponding Modal Logic sentence So. Obviously, different Justification
Logic sentences may have the same forgetful projection, hence So loses certain
information that was contained in S. However, it is easily observed that the for-
getful projection always maps valid formulas of Justification Logic (e.g., axioms
of J4) to valid formulas of a corresponding Epistemic Logic (which in our case
is K4). The converse also holds: any valid formula of Epistemic Logic is a for-
getful projection of some valid formula of Justification Logic. This follows from
Correspondence Theorem 4. We assume that forgetful projection is naturally
extended from sentences to logics.

Theorem 4 (Correspondence Theorem, cf. [4]). J4o = K4.

This correspondence holds for other pairs of Justification and Modal systems, cf.
[4]. Within the core of the Correspondence Theorem is the Realizaton Theorem.

Theorem 5 (Realization Theorem). There is an algorithm which, for each
modal formula F derivable in K4, assigns evidence terms to each occurrence of
modality in F in such a way that the resulting formula F r is derivable in J4.
Moreover, the realization assigns evidence variables to the negative occurrences
of modality in F , thus respecting the existential reading of epistemic modality.

The Correspondence Theorem shows that modal logic K4 has an exact Justifica-
tion Logic counterpart J4. Note that the Realization Theorem is not at all trivial.
Known realization algorithms which recover evidence terms in modal theorems
use cut-free derivations in the corresponding modal logics [1,2,7,8].

Tracking Evidence 65

2 Russell’s Example: Induced Factivity

In this paper we offer a Justification Logic technique of handling different justi-
fications for the same fact, e.g., when some of the justifications are factive and
some are not. We will formalize and analyze Russell’s well-known example from
[20].

If a man believes that the late Prime Minister’s last name began with a
‘B,’ he believes what is true, since the late Prime Minister was Sir Henry
Campbell Bannerman1. But if he believes that Mr. Balfour was the late
Prime Minister2, he will still believe that the late Prime Minister’s last
name began with a ‘B,’ yet this belief, though true, would not be thought
to constitute knowledge.

Here we have to deal with two justifications for a true statement, one which is
correct and one which is not. Let B be a sentence (propositional atom), w be
a designated evidence variable for the wrong reason for B and r a designated
evidence variable for the right (hence factive) reason for B. Then, Russell’s
example prompts the following set of assumptions3:

R = {w:B, r:B, r:B→B}.

Somewhat counter to our intuition, we can logically deduce factivity of w from
R:

1. r:B - an assumption;
2. r:B→B - an assumption;
3. B - from 1 and 2, by Modus Ponens;
4. B→(w:B→B) - a propositional axiom;
5. w:B→B - from 3 and 4, by Modus Ponens.

The question is, how can we distinguish the ‘real’ factivity of r :B from the
‘induced factivity’ of w:B when the agent can deduce both sentences r:B→B
and w:B→B? The intuitive answer lies in the fact that the derivation w:B→B
is based on the factivity of r for B. Some sort of evidence-tracking mechanism
is needed here to formalize this argument.
1 Which was true back in 1912. There is a linguistical problem with this example. The

correct spelling of this person’s last name is Campbell-Bannerman; strictly speaking,

this name begins with a ‘C.’
2 Which was false in 1912.
3 Here we ignore a possible objection that the justifications ‘the late Prime Minister

was Sir Henry Campbell Bannerman’ and ‘Mr. Balfour was the late Prime Minister’

are mutually exclusive since there could be only one Prime Minister at a time. If

the reader is not comfortable with this, we suggest a slight modification of Russell’s

example in which ‘Prime Minister’ is replaced by ‘member of the Cabinet.’ The

compatibility concern then disappears since justifications ‘X was the member of the

late Cabinet’ and ‘Y was the member of the late Cabinet’ with different X and Y

are not necessarily incompatible.

66 S. Artemov

3 Two-Agent Setting: Observer and Object Agent

Let us call ‘a man’ from Russell’s example the object agent. Tracking object
agent reasoning does not appear to be sufficient since the object agent can easily
derive the factivity of w for B from the bare assumption s:B for any s. Indeed,

1. s:B - an assumption;
2 B→(w:B→B) - a propositional axiom;
3. c:[B→(w:B→B)] - constant specification of 2;
4. s:B→(c·s):[w:B→B] - from 3, by application axiom and Modus Ponens;
5. (c·s):[w:B→B] from 1 and 4, by Modus Ponens.

It takes an outside observer to make such a distinction. More precisely, tracking
the reasoning of the object agent, an outside observer can detect the induced
character of the factivity of w:B. Note that we need Justification (vs. Modal)
Logic at both levels: the object agent, since he faces different justifications of
the same fact, and the observer, since we need to track the observer’s evidence.

So, we consider a setting with the object agent and the observer possessing a
justification system obeying J4 and hence not necessarily factive. The fact that
the latter is the observer is reflected by the condition that all assumptions of the
object agent and assumptions R are known to the observer.

Here is the formal definition of system J4(J4). The language contains two dis-
joint sets of evidence terms built from variables x, y, z, . . . and constants a, b, c, . . .
for the observer; variables u, v, w, . . . and constants k, l, m, . . . for the object
agent. We will not be using different symbols for similar operations ‘application’
and ‘sum’ for the observer and the object agent, and hope this will not lead to
ambiguity. However, for better readability, we will be using different notation
for evidence assertions:

[[s]]F ∼ s is a justification of F for the observer,

t:F ∼ t is a justification of F for the object agent.

Using p to denote any sentence letter, s for an evidence term of the observer,
and t for an evidence term of the object agent, we define the formulas of J4(J4)
by the grammar

F = p | F ∧ F | F ∨ F | F→F | ¬F | t:F | [[s]]F.

The list of postulates of J4(J4) contains the following principles:

1. Classical propositional axioms and rule Modus Ponens
2. Axioms of J4 (including Total Constant Specification) for the Object Agent:

– [A1] Application t1:(F→G)→(t2:F→(t! · t2):G),
– [A2] Monotonicity t1:F→(t1+ t2):F , t2:F→(t1+ t2):F ,
– [A3] Verification t:F→ !t:t:F ,
– [A4] Total Constant Specification for 1, A1–A3: TCSA which is

{k:F | k is an object agent evidence constant and F is from 1, A1–A3},

Tracking Evidence 67

3. Similar axioms of J4 (including Total Constant Specification) for the Ob-
server
– [O1] Application [[s1]](F→G)→([[s2]]F→ [[s1 · s2]]G),
– [O2] Monotonicity [[s1]]F→ [[s1+ s2]]F , [[s2]]F→ [[s1+ s2]]F ,
– [O3] Verification [[s]]F→ [[!s]][[s]]F ,
– [O4] Total Constant Specification for 1, O1–O3: TCSO which is

{[[a]]F | a is an observer evidence constant and F is from 1, O1–O3},
4. Total Constant Specification for the observer of the object agent postulates:

TCSOA which is

{[[b]]F | b is an observer evidence constant and F is from 1, A1–A4}.
System J4(J4) provides a general setup with the object agent and the observer,
both of reasoning type J4, but does not yet reflect the specific structure of
Russell’s Prime Minister example.

4 Some Model Theory

A Kripke-Fitting model for J4(J4) is

M = (W, RA, RO, EA, EO,�)

such that
(W, RA, EA,�) is a J4-model which respects TCSA;
(W, RO, EO,�) is a J4-model which respects TCSO and TCSOA.

Soundness of J4(J4) with respect to these models is straightforward and follows
from the soundness of J4.

Theorem 6. J4(J4) is complete with respect to the class of J4(J4)-models.

Proof. By the standard maximal consistent set construction. Let W be the set
of all maximal consistent sets of J4(J4)-formulas;

ΓRAΔ iff {F | t:F ∈ Γ for some t} ⊆ Δ;

ΓROΔ iff {F | [[s]]F ∈ Γ for some s} ⊆ Δ;

Γ ∈ EA(t, F) iff t:F ∈ Γ ;

Γ ∈ EO(s, F) iff [[s]]F ∈ Γ ;

Γ �p iff p ∈ Γ .

First, we notice that RA and RO transitive. Second, we check the closure condi-
tions as well as the monotonicity for EA and EO. These are all rather standard
checkups, performed in the same way as the completeness proof for J4 (cf. [4]).
Finally, we have to check that evidence functions EAand EO respect the corre-
sponding constant specifications of J4(J4). This is secured by the definition of
the evidence functions, since

TCSA ∪ TCSO ∪ TCSOA ⊆ Γ

for every maximal consistent set Γ .

68 S. Artemov

Lemma 1 (Truth Lemma). For each formula F and world Γ ∈ W ,

Γ �F iff F ∈ Γ .

Proof. The proof is also rather standard and proceeds by induction on F . The
base case holds by the definition of the forcing relation � ; Boolean connectives
are straightforward. Let F be t :G. If t :G ∈ Γ , then Γ ∈ EA(t, G); moreover,
by the definition of RA, G ∈ Δ for each Δ such that ΓRAΔ. By the Induction
Hypothesis, Δ�G, therefore, Γ � t:G. If t:G �∈ Γ , then Γ �∈ EA(t, G) and Γ �� t:G.

The Induction step in case F = [[s]]G is considered in a similar way. �

Corollary 2. TCSA, TCSO, and TCSOA hold at each node.

Indeed, TCSA ∪ TCSO ∪ TCSOA ⊆ Γ since Γ contains all postulates of J4(J4).
By the Truth Lemma, Γ �TCSA ∪ TCSO ∪ TCSOA.

To complete the proof of Theorem 6, consider F which is not derivable in
J4(J4). The set {¬F} is therefore consistent. By the standard Henkin construc-
tion, {¬F} can be extended to a maximal consistent set Γ . Since F �∈ Γ , by the
Truth Lemma, Γ ��F . �

5 Distinguishing Induced Factivity

Russell’s Prime Minister example can be formalized over J4(J4) by the set of
assumptions R and IR: the latter stands for ‘Internalized Russell’

IR = {[[x]]r:B, [[y]](r:B→B), [[z]]w:B}.

Here B, r, and w are as in R, and x, y, z are designated proof variables for the
observer.

First, we check that the observer knows the factivity of w for B, e.g., that

J4(J4) +R+ IR � [[s]](w:B→B)

for some proof term s. Here is the derivation, which is merely the internalization
of the corresponding derivation from Sect. 2:

1. [[x]]r:B - an assumption;
2. [[y]](r:B→B) - an assumption;
3. [[y ·x]]B - from 1 and 2, by application;
4. [[a]][B→(w:B→B)] - by TCSO for a propositional axiom;
5. [[a·(y ·x)]](w:B→B) - from 3 and 4, by application.

Finally, let us establish that the observer cannot conclude w :B → B other
than by using the factivity of r. In our formal setting, this amounts to proving
the following theorem.

Theorem 7. If
J4(J4) +R+ IR � [[s̃]](w:B→B) ,

then term s̃ contains both proof variables x and y.

Tracking Evidence 69

Proof. Following [15], we axiomatize the reflected fragment of J4(J4) +R+ IR
consisting of all formulas [[s]]F derivable in J4(J4) +R+ IR.

The principal tool here is the so-called ∗-calculus (cf. [15,19]).

Calculus
∗[J4(J4) +R+ IR]

has axioms TCSO ∪TCSOA ∪ IR and rules of inference
Application: given [[s1]](F→G) and [[s2]]F , derive [[s1 · s2]]G;
Sum: given [[s1]]F , derive [[s1+ s2]]F or [[s2+ s1]]F ;
Proof Checker: given [[s]]F , derive [[!s]][[s]]F .

The following Lemma connects J4(J4) + R + IR and its reflected fragment
∗[J4(J4) +R+ IR].

Lemma 2. For any formula [[s′]]F ,

J4(J4) +R+ IR � [[s′]]F iff ∗ [J4(J4) +R+ IR] � [[s′]]F.

Proof. It is obvious that if

∗[J4(J4) +R+ IR] � [[s′]]F ,

then
J4(J4) +R+ IR � [[s′]]F.

Indeed, all axioms of ∗[J4(J4) +R + IR] are provable in J4(J4) +R+ IR; the
rules of the former correspond to axioms of the latter.

In order to establish the converse, let us suppose that

∗[J4(J4) +R+ IR] �� [[s′]]F.

We build a singleton J4(J4)-model M = (W, RA, RO, EA, EO,�) in which R∪IR
holds but [[s′]]F does not: this will be sufficient to conclude that

J4(J4) +R+ IR �� [[s′]]F.

– W = {1};
– RA = ∅, RO = {(1, 1)};
– EA(t, G) = W for each t, G;
– EO(s, G) holds at 1 iff ∗[J4(J4) +R+ IR] � [[s]]G;
– 1�p for all propositional variables, including B.

Note that RA and RO are transitive. Let us check the closure properties of
the evidence functions. EA is universal and hence closed. EO is closed under
application, sum, and verifier since the calculus ∗[J4(J4) +R+ IR] is.

Monotonicity of EA and EO vacuously hold since W is a singleton.
Furthermore, TCSA,O,OA hold in M. To check this, we first note that since

RA = ∅, a formula t:G holds at 1 if and only if EA(t, G). Therefore, all formulas
t:G hold at 1, in particular, 1�TCSA. Hence all axioms A1–A4 of J4(J4) hold

70 S. Artemov

at 1. This yields that 1 � TCSOA. Indeed, for each [[c]]A ∈ TCSOA, 1 � A (just
established) and EO(c, A), since [[c]]A is an axiom of ∗[J4(J4) +R+ IR]. By the
same reasons, 1�R.

Since
∗[J4(J4) +R+ IR] � TCSO ,

EO(c, A) holds for all [[c]]A ∈ TCSO. In addition, each such A is an axiom O1–O3,
hence 1�A. Therefore, 1�TCSO. By similar reasons, 1�IR.

We have just established that M is a model for J4(J4) +R+ IR.
We claim that M �� [[s′]]F which follows immediately from the assumption

that
∗[J4(J4) +R+ IR] �� [[s′]]F

since then EO(s′, F) does not hold at 1. Therefore,

J4(J4) +R+ IR �� [[s′]]F.

This concludes the proof of Lemma 2. �

Lemma 3 (Subterm property of ∗-derivations). In a tree-form derivation
of a formula [[s]]F in ∗[J4(J4) +R+ IR], if [[s′]]G is derived at some node, then
s′ is a subterm of s.

Proof. Obvious, from the fact that all rules of ∗[J4(J4) +R + IR] have such a
subterm property. �

Lemma 4. If ∗[J4(J4) +R+ IR] � [[s̃]](w:B→B), then term s̃ contains x.

Proof. Suppose the opposite, i.e., that s̃ does not contain x. Then, by the sub-
term property, the proof of [[s̃]](w:B→B) in ∗[J4(J4) +R + IR] does not use
axiom [[x]]r:B. Moreover, since ∗[J4(J4) + R + IR] does not really depend on
R, [[s̃]](w:B→B) is derivable without R and [[x]]r:B. Since such a proof can be
replicated in J4(J4) + IR without [[x]]r:B, it should be the case that

J4(J4) + [[y]](r:B→B) + [[z]]w:B � [[s̃]](w:B→B).

To get a contradiction, it now suffices to build a J4(J4)-model

M = (W, RA, RO, EA, EO,�)

in which [[y]](r:B→B) and [[z]]w:B hold, but [[s̃]](w:B→B) does not. Here is the
model:

– W = {1};
– RA = ∅, RO = {(1, 1)};
– EA(r, B) = ∅ and EA(t, F) = W for all other pairs t, F ;
– EO(s, G) = W for all s, G;
– 1 ��p for all propositional variables, including B.

Tracking Evidence 71

First, we check that M is a J4(J4)-model. Closure and monotonicity conditions
on RA, RO, EA, EO are obviously met. We claim that TCSA,O,OA hold inM. Since
RA = ∅, a formula t:F holds at 1 if and only if EA(t, F) holds at 1. Therefore,
1 ��r:B and 1� t:F for all other pairs t, and F . In particular,

1�TCSA.

Since RO = {(1, 1)} and EO(s, G) = W , for any observer evidence term s,
1� [[s]]G if and only if 1�G. All observer axioms hold at 1 and hence

1�TCSO.

As we have shown, 1�TCSA and hence

1�TCSOA.

Furthermore, since 1�r:B→B,

1� [[y]](r:B→B) ,

and since 1�w:B,
1� [[z]]w:B.

Finally, since 1 ��w:B→B,
1 �� [[s̃]](w:B→B).

�

Lemma 5. If ∗[J4(J4) +R+ IR] � [[s̃]](w:B→B), then term s̃ contains y.

Proof. Suppose the opposite, i.e., that s̃ does not contain y. Then, by the subterm
property, the derivation of [[s̃]](w:B → B) in ∗[J4(J4) + R + IR] does not use
axiom [[y]](r:B→B). From this, we can find a derivation of [[s̃]](w:B→B) in

J4(J4) + [[x]]r:B + [[z]]w:B.

To obtain a contradiction, it suffices to present a J4(J4)-model

M = (W, RA, RO, EA, EO,�)

in which [[x]]r:B and [[z]]w:B hold, but [[s̃]](w:B→B) does not hold. Here is this
model:

– W = {1};
– RA = ∅, RO = {(1, 1)};
– EA(t, F) = W for all t, F ;
– EO(s, G) = W for all s, G;
– 1 ��p for all propositional variables, including B.

Conditions on RA, RO, EA, EO are obviously met. Let us check constant specifi-
cations of J4(J4). Since RA = ∅, and EA(t, F) holds at 1 for all t, F , t:F holds at
for all t, F . In particular,

72 S. Artemov

1�TCSA.

For the same reasons, 1�r:B and 1�w:B.
Furthermore, 1 � [[s]]F if and only if 1 � F , because EO(s, F) = {1} and

RO = {(1, 1)}. Therefore,
1�TCSOA.

Since all axioms O1–O3 are true at 1,

1�TCSO.

Finally, since 1�r:B and 1�w:B,

1� [[x]]r:B and 1� [[z]]w:B.

It remains to establish that 1 �� [[s̃]](w:B→B), for which it suffices to check that
1 ��w:B→B, which is the case since 1�w:B and 1 ��B. �

Theorem 7 now follows from Lemmas 2, 4, and 5. �

5.1 Observer’s Factivity

Another natural candidate for the observer logic is the Logic of Proofs LP (cf.
[2,4,13]) which is J4 augmented by the Factivity Axiom

[[s]]F→F ,

with the corresponding extension of constant specifications to include constants
corresponding to this axiom. Kripke-Fitting models for LP are J4-models with a
reflexive accessibility relation.

An assumption that the observer (the reader, for example) is LP-compliant
is quite reasonable since, according to [2], the Logic of Proofs LP is a univer-
sal logic of mathematical reasoning for a wide range of natural formal systems
(knowers)4. So we could therefore define a two-agent system LP(J4) and proceed
with the same evidence-tracking analysis. The main result: an analogue of The-
orem 7 and its proof hold for LP(J4). In particular, all models built in the proof
of Theorem 7 are intentionally made reflexive with respect to the observer’s
accessibility relation so they fit for LP as the observer’s logic.

6 Conclusions

The formalization of Russell’s example given in this paper can obviously be
extended to other situations with multiple justifications of the same facts. The
principal technique consisting of
4 As was shown in [9], the same LP serves as the logic of proofs for polynomially

bounded agents as well.

Tracking Evidence 73

– introducing the observer and a two-layer reasoning system;
– working in the reflected fragment of the observer’s reasoning;
– formalizing dependencies of assumptions via variable occurrences in proof

terms;
– reasoning in Fitting/Mkrtychev models for formally establishing

independence,

is of a general character and can be useful for evidence-tracking in a general
setting.

On the other hand, the whole power of J4(J4) is not needed for Russell’s
example, e.g., there is no use of ‘+’ operations here. However, we have intention-
ally considered J4(J4) in its entirety to introduce a basic introspective system of
evidence-tracking.

Verification principles for both the object agent and the observer have been
used only to simplify formulations of Constant Specifications. The same evidence
tracking can be done within the framework of the basic justification logic J for
both the object agent and the observer. Moreover, Theorem 7 and its proof
hold for a wide range of systems, e.g., J, J4, J45 for the object agent and,
independently, J, JT, J4, LP, J45, JT45, etc. (cf. [4] for the definitions) for the
observer.

It appears that a similar evidence-tracking approach can be applied to ana-
lyzing paraconsistent systems. For example, the set of formulas A5

A = {p1, p1→p2, p2→p3, . . . , pn−1→pn, ¬pn}

is obviously inconsistent. However, any derivation from A which does not use
all n+1 assumptions of A is contradiction-free. This argument can be naturally
formalized in Justification Logic.

We wish to think that this approach to evidence tracking could be also useful
in distributed knowledge systems (cf. [10,11,12]).

Acknowledgements

The author is very grateful to Mel Fitting, Vladimir Krupski, Roman Kuznets,
and Elena Nogina, whose advice helped with this paper. Many thanks to Karen
Kletter for editing this text.

References

1. Artemov, S.: Operational modal logic. Technical Report MSI 95-29, Cornell Uni-

versity (1995)

2. Artemov, S.: Explicit provability and constructive semantics. Bulletin of Symbolic

Logic 7(1), 1–36 (2001)

5 Here p1, p2, . . . , pn are propositional letters.

74 S. Artemov

3. Artemov, S.: Justified common knowledge. Theoretical Computer Science 357(1-3),

4–22 (2006)

4. Artemov, S.: The Logic of Justification. The Review of Symbolic Logic 1(4),

477–513 (2008)

5. Artemov, S., Kuznets, R.: Logical omniscience as a computational complexity prob-

lem. In: Heifetz, A. (ed.) Theoretical Aspects of Rationality and Knowledge. Pro-

ceedings of the Twelfth Conference (TARK 2009), Stanford University, California,

July 6–8, pp. 14–23. ACM, New York (2009)

6. Artemov, S., Nogina, E.: Introducing justification into epistemic logic. J. of Logic

and Computation 15(6), 1059–1073 (2005)

7. Brezhnev, V.: On explicit counterparts of modal logics. Technical Report CFIS

2000-05. Cornell University (2000)

8. Brezhnev, V., Kuznets, R.: Making knowledge explicit: How hard it is. Theoretical

Computer Science 357(1-3), 23–34 (2006)

9. Goris, E.: Logic of proofs for bounded arithmetic. In: Grigoriev, D., Harrison, J.,

Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 191–201. Springer, Heidelberg

(2006)

10. Gurevich, Y., Neeman, I.: DKAL: Distributed-Knowledge Authorization Language.

In: 21st IEEE Computer Security Foundations Symposium (CSF 2008), pp. 149–

162 (2008)

11. Gurevich, Y., Neeman, I.: The Infon Logic. Bulletin of European Association for

Theoretical Computer Science 98, 150–178 (2009)

12. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT

Press, Cambridge (1995)

13. Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied

Logic 132(1), 1–25 (2005)

14. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)

15. Krupski, N.V.: On the complexity of the reflected logic of proofs. Theoretical Com-

puter Science 357(1), 136–142 (2006)

16. Kuznets, R.: On the complexity of explicit modal logics. In: Clote, P.G.,

Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 371–383. Springer,

Heidelberg (2000)

17. Kuznets, R.: Complexity Issues in Justification Logic. Ph.D. thesis. CUNY Grad-

uate Center (2008)

18. Milnikel, R.: Derivability in certain subsystems of the Logic of Proofs is Πp
2 -

complete. Annals of Pure and Applied Logic 145(3), 223–239 (2007)

19. Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.)

LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997)

20. Russell, B.: The Problems of Philosophy. Williams and Norgate/Henry Holt and

Company, London/New York (1912)

21. von Wright, G.H.: An essay in modal logic. North-Holland, Amsterdam (1951)

22. Yavorskaya(Sidon), T.: Multi-agent Explicit Knowledge. In: Grigoriev, D.,

Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 369–380. Springer,

Heidelberg (2006)

Strict Canonical Constructive Systems�

Arnon Avron and Ori Lahav

School of Computer Science, Tel Aviv University, Israel

{aa,orilahav}@post.tau.ac.il

To Yuri, on his seventieth birthday.

Abstract. We define the notions of a canonical inference rule and a

canonical constructive system in the framework of strict single-conclusion

Gentzen-type systems (or, equivalently, natural deduction systems), and

develop a corresponding general non-deterministic Kripke-style seman-

tics. We show that every strict constructive canonical system induces a

class of non-deterministic Kripke-style frames, for which it is strongly

sound and complete. This non-deterministic semantics is used for prov-

ing a strong form of the cut-elimination theorem for such systems, and

for providing a decision procedure for them. These results identify a large

family of basic constructive connectives, including the standard intuition-

istic connectives, together with many other independent connectives.

Keywords: sequent calculus, cut-elimination, non-classical logics, non-

deterministic semantics, Kripke semantics.

1 Introduction

The standard intuitionistic connectives (⊃,∧,∨, and ⊥) are of great importance
in theoretical computer science, especially in type theory, where they correspond
to basic operations on types (via the formulas-as-types principle and Curry-
Howard isomorphism). Now a natural question is: what is so special about these
connectives? The standard answer is that they are all constructive connectives.
But then what exactly is a constructive connective, and can we define other basic
constructive connectives beyond the four intuitionistic ones? And what does the
last question mean anyway: how do we “define” new (or old) connectives?

Concerning the last question there is a long tradition starting from [12] (see e.g.
[16] for discussions and references) according to which the meaning of a connec-
tive is determined by the introduction and elimination rules which are associated
with it. Here one usually has in mind natural deduction systems of an ideal type,
where each connective has its own introduction and elimination rules, and these
rules should meet the following conditions: in a rule for some connective this con-
nective should be mentioned exactly once, and no other connective should be in-
volved. The rule should also be pure in the sense of [1] (i.e. there should be no side
conditions limiting its application), and its active formulas should be immediate
� This research was supported by The Israel Science Foundation (grant no. 809-06).

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 75–94, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

76 A. Avron and O. Lahav

subformulas of its principal formula. Now an n-ary connective � that can be de-
fined using such rules may be taken as constructive if in order to prove the logical
validity of a sentence of the form �(ϕ1, . . . , ϕn), it is necessary to prove first the
premises of one of its possible introduction rules (see [9]).

Unfortunately, already the handling of negation requires rules which are not
ideal in the sense described above. For intuitionistic logic this problem is usually
solved by not taking negation as a basic constructive connective, but defining it
instead in terms of more basic connectives that can be characterized by “ideal”
rules (¬ϕ is defined as ϕ →⊥). In contrast, for classical logic the problem was
solved by Gentzen himself by moving to what is now known as Gentzen-type
systems or sequential calculi. These calculi employ single-conclusion sequents
in their intuitionistic version, and multiple-conclusion sequents in their classical
version. Instead of introduction and elimination rules they use left introduction
rules and right introduction rules. The intuitive notions of an “ideal rule” can be
adapted to such systems in a straightforward way, and it is well known that the
usual classical connectives and the basic intuitionistic connectives can indeed be
fully characterized by “ideal” Gentzen-type rules. Moreover: although this can
be done in several ways, in all of them the cut-elimination theorem obtains. This
immediately implies that the connectives of intuitionistic logic are constructive
in the sense explained above, because without using cuts the only way to derive
⇒ �(ϕ1, . . . , ϕn) in single conclusion systems of this sort is to prove first the
premises of one of its introduction rules (and then apply that introduction rule).
Note that the only formulas that can occur in such premises are ϕ1, . . . , ϕn.

For the multiple-conclusion framework the above-mentioned facts about the
classical connectives were considerably generalized in [6,7] by defining “multiple-
conclusion canonical propositional Gentzen-type rules and systems” in precise
terms. A constructive necessary and sufficient coherence criterion for the non-
triviality of such systems was then provided, and it was shown that a system of
this kind admits cut-elimination iff it is coherent. It was further proved that the
semantics of such systems is provided by two-valued non-deterministic matrices
(two-valued Nmatrices) – a natural generalization of the classical truth-tables.
In fact, a characteristic two-valued Nmatrix was constructed for every coherent
canonical propositional system. That work shows that there is a large family of
what may be called semi-classical connectives (which includes all the classical
connectives), each of which has both a proof-theoretical characterization in terms
of a coherent set of canonical (= “ideal”) rules, and a semantic characterization
using two-valued Nmatrices.

In this paper we develop a similar theory for the constructive propositional
framework. We define the notions of a canonical rule and a canonical system in the
framework of strict single-conclusion Gentzen-type systems (or, equivalently, nat-
ural deduction systems). We prove that here too a canonical system is non-trivial
iff it is coherent (where coherence is a constructive condition, defined like in the
multiple-conclusion case). We develop a general non-deterministic Kripke-style se-
mantics for such systems, and show that every constructive canonical system (i.e.
coherent canonical single-conclusion system) induces a class of non-deterministic

Strict Canonical Constructive Systems 77

Kripke-style frames for which it is strongly sound and complete. We use this non-
deterministic semantics to show that all constructive canonical systems admit a
strong form of the cut-elimination theorem. We also use it for providing decision
procedures for all such systems. These results again identify a large family of basic
constructive connectives, each having both a proof-theoretical characterization in
terms of a coherent set of canonical rules, and a semantic characterization using
non-deterministic frames. The family includes the standard intuitionistic connec-
tives (⊃,∧,∨, and ⊥), as well as many other independent connectives, like the
semi-implication which has been introduced and used by Gurevich and Neeman
in [13].1

2 Strict Canonical Constructive Systems

In what follows L is a propositional language, F is its set of wffs, p, q, r denote
atomic formulas, ψ, ϕ, θ denote arbitrary formulas (of L), T, S denote subsets
of F , and Γ, Δ, Σ, Π denote finite subsets of F . We assume that the atomic
formulas of L are p1, p2, . . . (in particular: {p1, p2, . . . , pn} are the first n atomic
formulas of L).

Definition 1. A (Tarskian) consequence relation for L is a binary relation �
between sets of formulas of L and formulas of L that satisfies the following
conditions:

strong reflexivity: if ϕ ∈ T then T � ϕ.
monotonicity: if T � ϕ and T ⊆ T ′ then T ′ � ϕ.
transitivity (cut): if T � ψ and T, ψ � ϕ then T � ϕ.

Definition 2. A substitution in L is a function σ from the atomic formulas to
the set of formulas of L. A substitution σ is extended to formulas and sets of
formulas in the obvious way.

Definition 3. A consequence relation � for L is structural if for every substi-
tution σ and every T and ϕ, if T � ϕ then σ(T) � σ(ϕ). A consequence relation
� is finitary if the following condition holds for all T and ϕ: if T � ϕ then there
exists a finite Γ ⊆ T such that Γ � ϕ. A consequence relation � is consistent (or
non-trivial) if p1 �� p2.

It is easy to see (see [7]) that there are exactly two inconsistent structural con-
sequence relations in any given language.2 These consequence relations are ob-
viously trivial, so we exclude them from our definition of a logic:

Definition 4. A propositional logic is a pair 〈L,�〉, where L is a propositional
language, and � is a consequence relation for L which is structural, finitary, and
consistent.
1 The results of this paper were first stated in [5] without proofs.
2 In one T � ϕ for every T and ϕ; in the other T � ϕ for every nonempty T and ϕ.

78 A. Avron and O. Lahav

Since a finitary consequence relation � is determined by the set of pairs 〈Γ, ϕ〉
such that Γ � ϕ, it is natural to base proof systems for logics on the use of such
pairs. This is exactly what is done in natural deduction systems and in (strict)
single-conclusion Gentzen-type systems (both introduced in [12]). Formally, such
systems manipulate objects of the following type:

Definition 5. A sequent is an expression of the form Γ ⇒ Δ where Γ and Δ
are finite sets of formulas, and Δ is either a singleton or empty. A sequent of the
form Γ ⇒ {ϕ} is called definite, and we shall denote it by Γ ⇒ ϕ. A sequent
of the form Γ ⇒ {} is called negative, and we shall denote it by Γ ⇒. A Horn
clause is a sequent which consists of atomic formulas only.

Note 1. Natural deduction systems and the strict single-conclusion Gentzen-
type systems investigated in this paper manipulate only definite sequents in
their derivations. However, negative sequents may be used in the formulations
of their rules (in the form of negative Horn clauses).

The following definitions formulate in exact terms the idea of an “ideal rule”
which was described in the introduction. We first formulate these definitions
in terms of Gentzen-type systems. We consider natural deduction systems in a
separate subsection.

Definition 6.

1. A strict canonical introduction rule for a connective � of arity n is an expres-
sion constructed from a set of premises and a conclusion sequent, in which
� appears in the right side. Formally, it takes the form:

{Πi ⇒ Σi}1≤i≤m/ ⇒ �(p1, p2, . . . , pn)

where m can be 0, and for all 1 ≤ i ≤ m, Πi ⇒ Σi is a definite Horn clause
such that Πi ∪Σi ⊆ {p1, p2, . . . , pn}.

2. A strict canonical elimination3 rule for a connective � of arity n is an expres-
sion constructed from a set of premises and a conclusion sequent, in which
� appears in the left side. Formally, it takes the form:

{Πi ⇒ Σi}1≤i≤m/ � (p1, p2, . . . , pn)⇒
where m can be 0, and for all 1 ≤ i ≤ m, Πi ⇒ Σi is a Horn clause (either
definite or negative) such that Πi ∪Σi ⊆ {p1, p2, . . . , pn}.

3. An application of the rule {Πi ⇒ Σi}1≤i≤m/ ⇒ �(p1, p2, . . . , pn) is any
inference step of the form:

{Γ, σ(Πi)⇒ σ(Σi)}1≤i≤m

Γ ⇒ �(σ(p1), . . . , σ(pn))

where Γ is a finite set of formulas and σ is a substitution in L.
3 The introduction/elimination terminology comes from the natural deduction con-

text. For the Gentzen-type context the names “right introduction rule” and “left

introduction rule” might be more appropriate, but we prefer to use a uniform ter-

minology.

Strict Canonical Constructive Systems 79

4. An application of the rule {Πi ⇒ Σi}1≤i≤m/ � (p1, p2, . . . , pn) ⇒ is any
inference step of the form:

{Γ, σ(Πi) ⇒ σ(Σi), Ei}1≤i≤m

Γ, �(σ(p1), . . . , σ(pn)) ⇒ θ

where Γ is a finite set of formulas, σ is a substitution in L, θ is a formula, and
for all 1 ≤ i ≤ m: Ei = {θ} in case Σi is empty, and Ei is empty otherwise.

Here are some examples of well-known strict canonical rules:

Example 1 (Conjunction). The two usual rules for conjunction are:

{p1, p2 ⇒ } / p1 ∧ p2 ⇒ and { ⇒ p1 , ⇒ p2} / ⇒ p1 ∧ p2.

Applications of these rules have the form:

Γ, ψ, ϕ⇒ θ
Γ, ψ ∧ ϕ⇒ θ

Γ ⇒ ψ Γ ⇒ ϕ
Γ ⇒ ψ ∧ ϕ

The above elimination rule can easily be shown to be equivalent to the combi-
nation of the two, more usual, elimination rules for conjunction.

Example 2 (Disjunction). The two usual introduction rules for disjunction are:

{ ⇒ p1} / ⇒ p1 ∨ p2 and { ⇒ p2} / ⇒ p1 ∨ p2.

Applications of these rules have then the form:

Γ ⇒ ψ
Γ ⇒ ψ ∨ ϕ

Γ ⇒ ϕ
Γ ⇒ ψ ∨ ϕ

The usual elimination rule for disjunction is:

{p1 ⇒ , p2 ⇒} / p1 ∨ p2 ⇒ .

Its applications have the form:

Γ, ψ ⇒ θ Γ, ϕ⇒ θ
Γ, ψ ∨ ϕ ⇒ θ

Example 3 (Implication). The two usual rules for implication are:

{⇒ p1 , p2 ⇒} / p1 ⊃ p2 ⇒ and {p1 ⇒ p2} / ⇒ p1 ⊃ p2.

Applications of these rules have the form:

Γ ⇒ ψ Γ, ϕ ⇒ θ
Γ, ψ ⊃ ϕ⇒ θ

Γ, ψ ⇒ ϕ
Γ ⇒ ψ ⊃ ϕ

80 A. Avron and O. Lahav

Example 4 (Absurdity). In intuitionistic logic there is no introduction rule for the
absurdity constant ⊥, and there is exactly one elimination rule for it: {} / ⊥⇒ .
Applications of this rule provide new axioms: Γ,⊥⇒ ϕ.

Example 5 (Semi-implication). In [13] a “semi-implication” � was introduced
using the following two rules:

{⇒ p1 , p2 ⇒} / p1 � p2 ⇒ and {⇒ p2} / ⇒ p1 � p2.

Applications of these rules have the form:

Γ ⇒ ψ Γ, ϕ ⇒ θ
Γ, ψ � ϕ⇒ θ

Γ ⇒ ϕ
Γ ⇒ ψ � ϕ

Now we define the notion of a strict canonical Gentzen-type system.

Definition 7. A single-conclusion Gentzen-type system is called a strict canon-
ical Gentzen-type system if the following hold:

– Its axioms are all sequents of the form ϕ⇒ ϕ.
– Cut (from Γ ⇒ ϕ and Δ, ϕ ⇒ ψ infer Γ, Δ ⇒ ψ) and weakening (from

Γ ⇒ ψ infer Γ, Δ ⇒ ψ) are among its rules.
– Each of its other rules is either a strict canonical introduction rule or a strict

canonical elimination rule.

Definition 8. Let G be a strict canonical Gentzen-type system.

1. A derivation of a sequent s from a set of sequents S in G is a sequence of
sequents, such that each sequent in it is either an axiom, belongs to S, or
follows from previous sequents by a canonical rule of G. If such a derivation
exists, we denote S �seq

G s.
2. The consequence relation �G between formulas which is induced by G is

defined by: T �G ϕ iff there exists a finite Γ ⊆ T such that �seq
G Γ ⇒ ϕ.

Proposition 1. T �G ϕ iff {⇒ ψ | ψ ∈ T } �seq
G ⇒ ϕ.

Proposition 2. If G is strict canonical then �G is a structural and finitary
consequence relation.

The last proposition does not guarantee that every strict canonical system in-
duces a logic (see Definition 4). For this the system should satisfy one more
condition:

Definition 9. A set R of strict canonical rules for an n-ary connective � is
called coherent if S1 ∪S2 is classically inconsistent (and so the empty clause can
be derived from it using cuts) whenever R contains both S1/�(p1, p2, . . . , pn) ⇒
and S2/ ⇒ �(p1, p2, . . . , pn).

Strict Canonical Constructive Systems 81

Example 6. All the sets of rules for the connectives ∧,∨,⊃,⊥, and � which
were introduced in the examples above are coherent. For example, for the two
rules for conjunction we have S1 = {p1, p2 ⇒ }, S2 = { ⇒ p1 , ⇒ p2}, and
S1∪S2 is the classically inconsistent set {p1, p2 ⇒ , ⇒ p1 , ⇒ p2} (from which
the empty sequent can be derived using two cuts).

Example 7. In [15] Prior introduced a “connective” T (which he called “Tonk”)
with the following rules: {p1 ⇒ } / p1Tp2 ⇒ and { ⇒ p2} / ⇒ p1Tp2. Prior
then used “Tonk” to infer everything from everything (trying to show by this
that a set of rules might not define any connective). Now the union of the sets of
premises of these two rules is {p1 ⇒ , ⇒ p2}, and this is a classically consistent
set of clauses. It follows that Prior’s set of rules for Tonk is incoherent.

Definition 10. A strict canonical single-conclusion Gentzen-type system G is
called coherent if every primitive connective of the language of G has a coherent
set of rules in G.

Theorem 1. Let G be a strict canonical Gentzen-type system. 〈L,�G〉 is a logic
(i.e. �G is structural, finitary and consistent) iff G is coherent.

Proof. Proposition 2 ensures that �G is a structural and finitary consequence
relation.

That the coherence of G implies the consistency of the multiple conclusion
consequence relation which is naturally induced by G was shown in [6,7]. That
consequence relation extends �G, and therefore also the latter is consistent.

For the converse, assume that G is incoherent. This means that G includes
two rules S1/ �(p1, . . . , pn) ⇒ and S2/ ⇒ �(p1, . . . , pn), such that the set of
clauses S1 ∪ S2 is classically satisfiable. Let v be an assignment in {t, f} that
satisfies all the clauses in S1 ∪ S2. Define a substitution σ by:

σ(p) =
{

pn+1 v(p) = f
p v(p) = t

Let Π ⇒ q ∈ S1 ∪ S2. Then �seq
G p1, . . . , pn, σ(Π)⇒ σ(q). This is trivial in case

v(q) = t, since in this case σ(q) = q ∈ {p1, . . . , pn}. On the other hand, if v(q) = f
then v(p) = f for some p ∈ Π (since v satisfies the clause Π ⇒ q). Therefore in
this case σ(p) = σ(q) = pn+1, and so again p1, . . . , pn, σ(Π) ⇒ σ(q) is trivially
derived from an axiom. We can similarly prove that �seq

G p1, . . . , pn, σ(Π) ⇒ pn+1

in case Π ⇒ ∈ S1 ∪ S2. Now by applying the rules S1/ � (p1, . . . , pn)⇒ and
S2/ ⇒ �(p1, . . . , pn) to these provable sequents we get proofs in G of the sequent
p1, . . . , pn ⇒ �(σ(p1), . . . , σ(pn)) and of p1, . . . , pn, �(σ(p1), . . . , σ(pn)) ⇒ pn+1.
That �seq

G p1, . . . , pn ⇒ pn+1 then follows using a cut. This easily entails that
p1 �G p2, and hence �G is not consistent. �

The last theorem implies that coherence is a minimal demand from any accept-
able strict canonical Gentzen-type system G. It follows that not every set of such
rules is legitimate for defining constructive connectives – only coherent ones do
(and this is what is wrong with “Tonk”). Accordingly we define:

82 A. Avron and O. Lahav

Definition 11. A strict canonical constructive system is a coherent strict canon-
ical single-conclusion Gentzen-type system.

The following definition will be needed in the sequel:

Definition 12. Let S be a set of sequents.

1. A cut is called an S-cut if the cut formula occurs in S.
2. We say that there exists in a system G an S-(cut-free) proof of a sequent s

from a set of sequents S iff there exists a proof of s from S in G where all
cuts are S-cuts.

3. ([2]) A system G admits strong cut-elimination iff whenever S �seq
G s, there

exists an S-(cut-free) proof of s from S.4

2.1 Natural Deduction Version

We formulated the definitions above in terms of Gentzen-type systems. However,
we could have formulated them instead in terms of natural deduction systems.
The definition of canonical rules in this context is exactly as above. An applica-
tion of an introduction rule is also defined exactly as above, while an application
of an elimination rule of the form {Πi ⇒ Σi}1≤i≤m/ � (p1, p2, . . . , pn) ⇒ is, in
the context of natural deduction, any inference step of the form:

{Γ, σ(Πi)⇒ σ(Σi), Ei}1≤i≤m Γ ⇒ �(σ(p1), . . . , σ(pn))
Γ ⇒ θ

where Γ , σ, θ and Ei are as above: Γ is a finite set of formulas, σ is a substitution
in L, θ is a formula, and for all 1 ≤ i ≤ m: Ei = {θ} in case Σi is empty, and Ei

is empty otherwise. We present some examples of the natural deduction version
of well-known strict canonical rules. Translating our other notions and results
to natural deduction systems is easy.

Example 8 (Conjunction). Applications of the rule {p1, p2 ⇒ } / p1 ∧ p2 ⇒
have here the form:

Γ, ψ, ϕ ⇒ θ Γ ⇒ ψ ∧ ϕ
Γ ⇒ θ

Example 9 (Disjunction). Applications of the rule {p1 ⇒ , p2 ⇒} / p1 ∨ p2 ⇒
have here the form:

Γ, ψ ⇒ θ Γ, ϕ ⇒ θ Γ ⇒ ψ ∨ ϕ
Γ ⇒ θ

Example 10 (Implication). Applications of the rule {⇒ p1 , p2 ⇒} / p1 ⊃ p2 ⇒
have here the form:
4 By cut-elimination we mean here just the existence of proofs without (certain forms

of) cuts, rather than an algorithm to transform a given proof to a cut-free one (for

the assumption-free case the term “cut-admissibility” is sometimes used).

Strict Canonical Constructive Systems 83

Γ ⇒ ψ Γ, ϕ⇒ θ Γ ⇒ ψ ⊃ ϕ
Γ ⇒ θ

This form of the rule is obviously equivalent to the more usual one (from Γ ⇒ ψ
and Γ ⇒ ψ ⊃ ϕ infer Γ ⇒ ϕ).

Example 11 (Absurdity). In natural-deduction systems applications of the rule
{} / ⊥⇒ for the absurdity constant allow us to infer Γ ⇒ ϕ from Γ ⇒⊥.

3 Semantics for Strict Canonical Constructive Systems

The most useful semantics for propositional intuitionistic logic (the paradigmatic
constructive logic) is that of Kripke frames. In this section we generalize this
semantics to arbitrary strict canonical constructive systems. For this we should
introduce non-deterministic Kripke frames.5

Definition 13. A generalized L-frame is a triple W = 〈W,≤, v〉 such that:

1. 〈W,≤〉 is a nonempty partially ordered set.
2. v is a function from F to the set of persistent functions from W into {t, f}

A function h : W → {t, f} is persistent if h(a) = t implies that h(b) = t for
every b ∈W such that a ≤ b.

Notation: We shall usually write v(a, ϕ) instead of v(ϕ)(a).

Definition 14. A generalized L-frame 〈W,≤, v〉 is a model of a formula ϕ if
v(ϕ) = λa ∈ W.t (i.e. v(a, ϕ) = t for every a ∈ W). It is a model of a theory T
if it is a model of every ϕ ∈ T .

Definition 15. Let W = 〈W,≤, v〉 be a generalized L-frame, and let a ∈ W .

1. A sequent Γ ⇒ ϕ is locally true in a if either v(a, ψ) = f for some ψ ∈ Γ , or
v(a, ϕ) = t.

2. A sequent Γ ⇒ ϕ is true in a if it is locally true in every b ≥ a.
3. A sequent Γ ⇒ is (locally) true in a if v(a, ψ) = f for some ψ ∈ Γ .
4. The generalized L-frame W is a model of a sequent s (either of the form

Γ ⇒ ϕ or Γ ⇒) if s is true in every a ∈ W (iff s is locally true in every
a ∈W). It is a model of a set of sequents S if it is a model of every s ∈ S.

Note 2. The generalized L-frame W is a model of a formula ϕ iff it is a model
of the sequent ⇒ ϕ.

Definition 16. Let 〈W,≤, v〉 be a generalized L-frame. A substitution σ in L
satisfies a Horn clause Π ⇒ Σ in a ∈W if σ(Π) ⇒ σ(Σ) is true in a.

5 Another type of non-deterministic (intuitionistic) Kripke frames, based on 3-valued

and 4-valued non-deterministic matrices, was used in [3,4]. Non-deterministic modal

Kripke frames were recently used in [11].

84 A. Avron and O. Lahav

Note 3. Because of the persistence condition, a definite Horn clause of the form
⇒ q is satisfied in a by σ iff v(a, σ(q)) = t.

Definition 17. Let W = 〈W,≤, v〉 be a generalized L-frame, and let � be an
n-ary connective of L.

1. The frame W respects an introduction rule r for � if v(a, �(ψ1, . . . , ψn)) = t
whenever all the premises of r are satisfied in a by a substitution σ such
that σ(pi) = ψi for 1 ≤ i ≤ n (The values of σ(q) for q �∈ {p1, . . . , pn} are
immaterial here).

2. The frame W respects an elimination rule r for � if v(a, �(ψ1, . . . , ψn)) = f
whenever all the premises of r are satisfied in a by a substitution σ such that
σ(pi) = ψi (1 ≤ i ≤ n).

3. Let G be a strict canonical Gentzen-type system for L. The generalized
L-frame W is G-legal if it respects all the rules of G.

Example 12. By definition, a generalized L-frame W = 〈W,≤, v〉 respects the
rule (⊃⇒) iff for every a ∈ W , v(a, ϕ ⊃ ψ) = f whenever v(b, ϕ) = t for every
b ≥ a and v(a, ψ) = f . Because of the persistence condition, this is equivalent to
v(a, ϕ ⊃ ψ) = f whenever v(a, ϕ) = t and v(a, ψ) = f . Again by the persistence
condition, v(a, ϕ ⊃ ψ) = f iff v(b, ϕ ⊃ ψ) = f for some b ≥ a. Hence, we
get: v(a, ϕ ⊃ ψ) = f whenever there exists b ≥ a such that v(b, ϕ) = t and
v(b, ψ) = f . The frame W respects (⇒⊃) iff for every a ∈ W , v(a, ϕ ⊃ ψ) = t
whenever for every b ≥ a, either v(b, ϕ) = f or v(b, ψ) = t. Hence the two
rules together impose exactly the well-known Kripke semantics for intuitionistic
implication ([14]).

Example 13. A generalized L-frame W = 〈W,≤, v〉 respects the rule (�⇒) un-
der the same conditions under which it respects (⊃⇒). The frame W respects
(⇒�) iff for every a ∈ W , v(a, ϕ � ψ) = t whenever v(a, ψ) = t (recall that
this is equivalent to v(b, ψ) = t for every b ≥ a). Note that in this case the two
rules for � do not always determine the value assigned to ϕ � ψ: if v(a, ψ) = f ,
and there is no b ≥ a such that v(b, ϕ) = t and v(b, ψ) = f , then v(a, ϕ � ψ) is
free to be either t or f . So the semantics of this connective is non-deterministic.

Example 14. A generalized L-frame W = 〈W,≤, v〉 respects the rule (T ⇒)
(see Example 7) if v(a, ϕTψ) = f whenever v(a, ϕ) = f . It respects (⇒ T) if
v(a, ϕTψ) = t whenever v(a, ψ) = t. The two constraints contradict each other
in case both v(a, ϕ) = f and v(a, ψ) = t. This is a semantic explanation why
Prior’s “connective” T (“Tonk”) is meaningless.

Definition 18. Let G be a strict canonical constructive system.

1. We denote S |=seq
G s (where S is a set of sequents and s is a sequent) iff every

G-legal model of S is also a model of s.
2. The semantic consequence relation |=G between formulas which is induced by

G is defined by: T |=G ϕ if every G-legal model of T is also a model of ϕ.

Again we have:

Proposition 3. T |=G ϕ iff {⇒ ψ | ψ ∈ T } |=seq
G ⇒ ϕ.

Strict Canonical Constructive Systems 85

4 Soundness, Completeness, Cut-Elimination

In this section we show that the two logics induced by a strict canonical con-
structive system G (�G and |=G) are identical. Half of this identity is given in
the following theorem:

Theorem 2. Every strict canonical constructive system G is strongly sound
with respect to the semantics of G-legal generalized frames. In other words:

1. If T �G ϕ then T |=G ϕ.
2. If S �seq

G s then S |=seq
G s.

Proof. We prove the second part first. Assume that S �seq
G s, andW = 〈W,≤, v〉

is a G-legal model of S. We show that s is locally true in every a ∈W . Since
the axioms of G and the premises of S trivially have this property, and the cut
and weakening rules obviously preserve it, it suffices to show that the property
of being locally true is preserved also by applications of the logical rules of G.

– Suppose Γ ⇒ �(ψ1, . . . , ψn) is derived from {Γ, σ(Πi)⇒ σ(qi)}1≤i≤m us-
ing the introduction rule r = {Πi ⇒ Σi}1≤i≤m/ ⇒ �(p1, p2, . . . , pn) (σ is
a substitution such that σ(pj) = ψj for 1 ≤ j ≤ n). Assume that all the
premises of this application have the required property. We show that so
does its conclusion. Let a ∈W . If v(a, ψ) = f for some ψ ∈ Γ , then obviously
Γ ⇒ �(ψ1, . . . , ψn) is locally true in a. Assume otherwise. Then the persis-
tence condition implies that v(b, ψ) = t for every ψ ∈ Γ and b ≥ a. Hence our
assumption concerning {Γ, σ(Πi) ⇒ σ(qi)}1≤i≤m entails that for every b ≥ a
and 1 ≤ i ≤ m, either v(b, ψ) = f for some ψ ∈ σ(Πi), or v(b, σ(qi)) = t. It
follows that for 1 ≤ i ≤ m, Πi ⇒ qi is satisfied in a by σ. Since W respects
r, it follows that v(a, �(ψ1, . . . , ψn)) = t, as required.

– Now we deal with the elimination rules of G. Suppose Γ, �(ψ1, . . . , ψn)⇒ θ is
derived from {Γ, σ(Πi)⇒ σ(Σi)}1≤i≤m1 and {Γ, σ(Πi)⇒ θ}m1+1≤i≤m, us-
ing the elimination rule r = {Πi ⇒ Σi}1≤i≤m/ � (p1, p2, . . . , pn)⇒ (where
Σi is empty for m1 + 1 ≤ i ≤ m, and σ is a substitution such that σ(pj) = ψj

for 1 ≤ j ≤ n). Assume that all the premises of this application have the re-
quired property. Let a ∈W . If v(a, ψ) = f for some ψ ∈ Γ or v(a, θ) = t,
then we are done. Assume otherwise. Then v(a, θ) = f , and (by the persis-
tence condition) v(b, ψ) = t for every ψ ∈ Γ and b ≥ a. Hence our assump-
tion concerning {Γ, σ(Πi)⇒ σ(Σi)}1≤i≤m1 entails that for every b ≥ a and
1 ≤ i ≤ m1, either v(b, ψ) = f for some ψ ∈ σ(Πi), or v(b, σ(Σi)) = t. This
immediately implies that every definite premise of the rule is satisfied in a
by σ. Since v(a, θ) = f , our assumption concerning {Γ, σ(Πi)⇒ θ}m1+1≤i≤m

entails that for every m1 + 1 ≤ i ≤ m, v(a, ψ) = f for some ψ ∈ σ(Πi). Hence
the negative premises of the rule are also satisfied in a by σ. SinceW respects
r, it follows that v(a, �(ψ1, . . . , ψn)) = f , as required.

The first part follows from the second by Propositions 1 and 3. �

86 A. Avron and O. Lahav

For the converse, we first prove the following key result.

Theorem 3. Let G be a strict canonical constructive system in L, and let S ∪
{s} be a set of sequents in L. Then either there is an S-(cut-free) proof of s from
S, or there is a G-legal model of S which is not a model of s.

Proof. Assume that s = Γ0 ⇒ ϕ0 does not have an S-(cut-free) proof in G. Let
F ′ be the set of subformulas of S ∪ {s}. Given a formula ϕ ∈ F ′, call a theory
T ⊆ F ′ ϕ-maximal if there is no finite Γ ⊆ T such that Γ ⇒ ϕ has an S-(cut-
free) proof from S, but every proper extension T ′ ⊆ F ′ of T contains such a
finite subset Γ . Obviously, if Γ ⊆ F ′, ϕ ∈ F ′ and Γ ⇒ ϕ has no S-(cut-free)
proof from S, then Γ can be extended to a theory T ⊆ F ′ which is ϕ-maximal.
In particular: Γ0 can be extended to a ϕ0-maximal theory T0.

Now let W = 〈W,⊆, v〉, where:

– W is the set of all extensions of T0 in F ′ which are ϕ-maximal for some
ϕ ∈ F ′.

– v is defined inductively as follows. For atomic formulas:

v(T , p) =
{

t p ∈ T
f p �∈ T

Suppose v(T , ψi) has been defined for all T ∈ W and 1 ≤ i ≤ n. We let
v(T , �(ψ1, . . . , ψn)) = t iff at least one of the following holds:
1. There exists an introduction rule for � whose set of premises is satisfied

in T by a substitution σ such that σ(pi) = ψi (1 ≤ i ≤ n).
2. �(ψ1, . . . , ψn) ∈ T and there does not exist T ′ ∈W , T ⊆ T ′, and an elim-

ination rule for � whose set of premises is satisfied in T ′ by a substitution
σ such that σ(pi) = ψi (1 ≤ i ≤ n).6

First we prove that W is a generalized L-frame:

– W is not empty because T0 ∈W .
– We prove by structural induction that v is persistent:

For atomic formulas v is trivially persistent since the order is ⊆.
Assume that v is persistent for ψ1 , . . . , ψn. We prove its persistence for
�(ψ1, . . . , ψn). So assume that v(T , �(ψ1, . . . , ψn)) = t and T ⊆ T ∗. By v’s
definition there are two possibilities:
1. There exists an introduction rule for � whose set of premises is satisfied

in T by a substitution σ such that σ(pi) = ψi (1 ≤ i ≤ n). In such a case,
the premises are all definite Horn clauses. Hence by definition, σ satisfies
the same rule’s premises also in T ∗, and so v(T ∗, �(ψ1, . . . , ψn)) = t.

6 This inductive definition isn’t absolutely formal, since satisfaction by a substitution

is defined for a generalized L-frame, which we are in the middle of constructing, but

the intention should be clear.

Strict Canonical Constructive Systems 87

2. �(ψ1, . . . , ψn) ∈ T and there does not exist T ′ ∈ W , T ⊆ T ′, and an
elimination rule for � whose set of premises is satisfied in T ′ by a sub-
stitution σ such that σ(pi) = ψi (1 ≤ i ≤ n). Then �(ψ1, . . . , ψn) ∈ T ∗

(since T ⊆ T ∗), and there surely does not exist T ′ ∈ W , T ∗ ⊆ T ′, and
an elimination rule for � whose set of premises is satisfied in T ′ by a sub-
stitution σ such that σ(pi) = ψi (1 ≤ i ≤ n) (otherwise the same would
hold for T). It follows that v(T ∗, �(ψ1, . . . , ψn)) = t in this case too.

Next we prove that W is G-legal:

1. The introduction rules are directly respected by the first condition in v’s
definition.

2. Let r be an elimination rule for �, and suppose all its premises are satisfied
in some T ∈ W by a substitution σ such that σ(pi) = ψi. Then neither of
the conditions under which v(T , �(ψ1, . . . , ψn)) = t can hold:
(a) The second condition explicitly excludes the option that all the premises

are satisfied (in any T ′ ∈W , T ⊆ T ′, so also in T itself).
(b) The first condition cannot be met because of G’s coherence, which does

not allow the two sets of premises (of an introduction rule and an elimina-
tion rule) to be satisfied together. To see this, assume for contradiction
that S1 is the set of premises of an elimination rule for �, S2 is the
set of premises of an introduction rule for �, and there exists T ∈ W
in which both sets of premises are satisfied by a substitution σ such
that σ(pi) = ψi (1 ≤ i ≤ n). Let u be an assignment in {t, f} in which
u(pi) = v(T , ψi). Since σ satisfies in T both sets of premises, u classi-
cally satisfies S1 and S2. But, G is coherent, i.e. S1 ∪ S2 is classically
inconsistent. A contradiction.

It follows that v(T , �(ψ1, . . . , ψn)) = f , as required.

It remains to prove that W is a model of S but not of s. For this we first prove
that the following hold for every T ∈W and every formula ψ ∈ F ′:

(a) If ψ ∈ T then v(T , ψ) = t.
(b) If T is ψ-maximal then v(T , ψ) = f .

We prove (a) and (b) together by a simultaneous induction on the complexity
of ψ. For atomic formulas they easily follow from v’s definition, and the fact
that p ⇒ p is an axiom. For the induction step, assume that (a) and (b) hold
for ψ1, . . . , ψn ∈ F ′. We prove them for �(ψ1, . . . , ψn) ∈ F ′.

– Assume that �(ψ1, . . . , ψn) ∈ T , but v(T , �(ψ1, . . . , ψn)) = f . By v’s defi-
nition, since �(ψ1, . . . , ψn) ∈ T there should exist T ′ ∈ W , T ⊆ T ′, and an
elimination rule for �, r, whose set of premises is satisfied in T ′ by a substitu-
tion σ such that σ(pi) = ψi (1 ≤ i ≤ n). Let {Πi ⇒}1≤i≤m1 be the negative
premises of r, and {Πi ⇒ qi}m1+1≤i≤m – the definite ones. Since σ satisfies
in T ′ every sequent in {Πi ⇒}1≤i≤m1 , then for all 1 ≤ i ≤ m1 there exists
ψji ∈ σ(Πi) such that v(T ′, ψji) = f . By the induction hypothesis this im-
plies that for all 1 ≤ i ≤ m1, there exists ψji ∈ σ(Πi) such that ψji /∈ T ′.

88 A. Avron and O. Lahav

Let ϕ be the formula for which T ′ is maximal. Then for all 1 ≤ i ≤ m1

there is a finite Δi ⊆ T ′ such that Δi, ψji ⇒ ϕ has an S-(cut-free) proof
from S, and so Δi, σ(Πi)⇒ ϕ has such a proof. This in turn implies that
there must exist m1 + 1 ≤ i0 ≤ m such that Γ, σ(Πi0)⇒ σ(qi0) has no S-
(cut-free) proof from S for any finite Γ ⊆ T ′. Indeed, if such a proof exists
for every m1 + 1 ≤ i ≤ m, we would use the m1 proofs of Δi, σ(Πi)⇒ ϕ for
1 ≤ i ≤ m1, the m−m1 proofs for Γ ′

i , σ(Πi)⇒ σ(qi) for m1 + 1 ≤ i ≤ m,
some trivial weakenings, and the elimination rule r to get an S-(cut-free)
proof from S of the sequent ∪i=m1

i=1 Δi,∪i=m
i=m1+1Γi, �(ψ1, . . . , ψn)⇒ ϕ. Since

�(ψ1, . . . , ψn) ∈ T , this would contradict T ′’s ϕ-maximality. Using this i0,
we extend T ′ ∪ σ(Πi0) to a theory T ′′ which is σ(qi0)-maximal. By the in-
duction hypothesis v(T ′′, ψ) = t for all ψ ∈ σ(Πi0) and v(T ′′, σ(qi0)) = f .
Since T ′ ⊆ T ′′, this contradicts the fact that σ satisfies Πi0 ⇒ qi0 in T ′.

– Assume that T is �(ψ1, . . . , ψn)-maximal, but v(T , �(ψ1, . . . , ψn)) = t. Ob-
viously, �(ψ1, . . . , ψn) /∈ T (because �(ψ1, . . . , ψn)⇒ �(ψ1, . . . , ψn) is an ax-
iom). Hence by v’s definition there exists an introduction rule for �, r, whose
set of premises is satisfied in T by a substitution σ such that σ(pi) = ψi

(1 ≤ i ≤ n). Let {Πi ⇒ qi}1≤i≤m be the premises of r. As in the previous
case, there must exist 1 ≤ i0 ≤ m such that Γ, σ(Πi0)⇒ σ(qi0) has no S-
(cut-free) proof from S for any finite Γ ⊆ T (if such a proof exists for all
1 ≤ i ≤ m with finite Γi ⊆ T than we could have an S-(cut-free) proof from
S of ∪i=m

i=1 Γi ⇒ �(ψ1, . . . , ψn) using the m proofs of Γi, σ(Πi)⇒ σ(qi), some
weakenings, and r). Using this i0, we extend T ∪ σ(Πi0) to a theory T ′

which is σ(qi0)-maximal. By the induction hypothesis, v(T ′, ψ) = t for all
ψ ∈ σ(Πi0) and v(T ′, σ(qi0)) = f . Since T ⊆ T ′, this contradicts the fact
that σ satisfies Πi0 ⇒ qi0 in T .

Next we note that (b) can be strengthened as follows:

(c) If ψ ∈ F ′, T ∈W and there is no finite Γ ⊆ T such that Γ ⇒ ψ has an
S-(cut-free) proof from S, then v(T , ψ) = f .

Indeed, under these conditions T can be extended to a ψ-maximal theory T ′.
Now T ′ ∈W , T ⊆ T ′, and by (b), v(T ′, ψ) = f . Hence also v(T , ψ) = f .

Now (a) and (b) together imply that v(T0, ψ) = t for every ψ ∈ Γ0 ⊆ T0, and
v(T0, ϕ0) = f . Hence W is not a model of s. We end the proof by showing that
W is a model of S. So let ψ1, . . . , ψn ⇒ θ ∈ S and let T ∈ W , where T is ϕ-
maximal. Assume by way of contradiction that v(T , ψi) = t for 1 ≤ i ≤ n, while
v(T , θ) = f . By (c), for every 1 ≤ i ≤ n there is a finite Γi ⊆ T such that Γi ⇒ ψi

has an S-(cut-free) proof from S. On the other hand v(T , θ) = f implies (by (a))
that θ /∈ T . Since T is ϕ-maximal, it follows that there is a finite Σ ⊆ T such
that Σ, θ ⇒ ϕ has an S-(cut-free) proof from S. Now from Γi ⇒ ψi (1 ≤ i ≤ n),
Σ, θ ⇒ ϕ, and ψ1, . . . , ψn ⇒ θ one can infer Γ1, . . . , Γn, Σ ⇒ ϕ by n + 1 S-cuts
(on ψ1, . . . , ψn and θ). It follows that the last sequent has an S-(cut-free) proof
from S. Since Γ1, . . . , Γn, Σ ⊆ T , this contradicts the ϕ-maximality of T . �

Strict Canonical Constructive Systems 89

Theorem 4 (Soundness and Completeness). Every strict canonical con-
structive system G is strongly sound and complete with respect to the semantics
of G-legal generalized frames. In other words:

1. T �G ϕ iff T |=G ϕ.
2. S �seq

G s iff S |=seq
G s.

Proof. Immediate from Theorems 3 and 2, and Propositions 1, 3. �

Corollary 1. If G is a strict canonical constructive system in L then 〈L, |=G〉
is a logic.

Corollary 2 (Compactness). Let G be a strict canonical constructive system.

1. If S |=seq
G s then there exists a finite S′ ⊆ S such that S′ |=seq

G s.
2. |=G is finitary.

Theorem 5 (General Strong Cut Elimination Theorem).

1. Every strict canonical constructive system G admits strong cut-elimination
(see Definition 12).

2. in a strict canonical constructive system G iff it has a cut-free proof there.

Proof. The first part follows from Theorems 4 and 3. The second part is a special
case of the first, where the set S of premises is empty. �

Corollary 3. The four following conditions are equivalent for a strict canonical
single-conclusion Gentzen-type system G:

1. 〈L,�G〉 is a logic (by Proposition 2, this means that �G is consistent).
2. G is coherent.
3. G admits strong cut-elimination.
4. G admits cut-elimination.

Proof. Condition 1 implies condition 2 by Theorem 1. Condition 2 implies con-
dition 3 by Theorem 5. Condition 3 trivially implies condition 4. Finally, without
using cuts there is no way to derive p1 ⇒ p2 in a strict canonical Gentzen-type
system. Hence condition 4 implies condition 1. �

5 Analycity and Decidability

In general, in order for a denotational semantics of a propositional logic to be
useful and effective, it should be analytic. This means that to determine whether
a formula ϕ follows from a theory T , it suffices to consider partial valuations,
defined on the set of all subformulas of the formulas in T ∪ {ϕ}. Now we show
that the semantics of G-legal frames is analytic in this sense.

Definition 19. Let G be a strict canonical constructive system for L. A G-legal
semiframe is a triple W ′ = 〈W,≤, v′〉 such that:

90 A. Avron and O. Lahav

1. 〈W,≤〉 is a nonempty partially ordered set.
2. v′ is a partial function from the set of formulas of L into the set of persistent

functions from W into {t, f} such that:

– F ′, the domain of v′, is closed under subformulas.
– v′ respects the rules of G on F ′ (e.g. if r is an introduction rule for an

n-ary connective �, and �(ψ1, . . . , ψn) ∈ F ′, then v(a, �(ψ1, . . . , ψn)) = t
whenever all the premises of r are satisfied in a by a substitution σ such
that σ(pi) = ψi (1 ≤ i ≤ n)).

Theorem 6. Let G be a strict canonical constructive system for L. Then the
semantics of G-legal frames is analytic in the following sense:
If W ′ = 〈W,≤, v′〉 is a G-legal semiframe, then v′ can be extended to a function
v so that W = 〈W,≤, v〉 is a G-legal frame.

Proof. Let W ′ = 〈W,≤, v′〉 be a G-legal semiframe. We recursively extend v′

to a total function v. For atomic p we let v(p) = v′(p) if v′(p) is defined, and
v(p) = λa ∈ W.t (say) otherwise. For ϕ = �(ψ1, . . . , ψn) we let v(ϕ) = v′(ϕ)
whenever v′(ϕ) is defined, and otherwise we define v(ϕ, a) = f iff there exists an
elimination rule r with �(p1, . . . , pn) ⇒ as its conclusion, and an element b ≥ a
of W , such that all premises of r are satisfied in b (with respect to 〈W,≤, v〉) by
a substitution σ such that σ(pj) = ψj (1 ≤ j ≤ n). Note that the satisfaction of
the premises of r by σ in elements of W depends only on the values assigned by
v to ψ1, . . . , ψn, so the recursion works, and v is well defined. From the definition
of v and the assumption that W ′ is a G-legal semiframe, it immediately follows
that v is an extension of v′, that v(ϕ) is a persistent function for every ϕ (so
W = 〈W,≤, v〉 is a generalized L-frame), and thatW respects all the elimination
rules of G. Hence it only remains to prove that it respects also the introduction
rules of G. Let r = {Πi ⇒ qi}1≤i≤m/ ⇒ �(p1, p2, . . . , pn) be such a rule, and
assume that for every 1 ≤ i ≤ m, σ(Πi) ⇒ σ(qi) is true in a with respect to
〈W,≤, v〉. We should show that v(a, �(ψ1, . . . , ψn)) = t.

If v′(a, �(ψ1, . . . , ψn)) is defined, then since its domain is closed under sub-
formulas, for every 1 ≤ i ≤ n and every b ∈ W v′(b, ψi) is defined. In this case,
our construction ensures that for every 1 ≤ i ≤ n and every b ∈W we have
v′(b, ψi) = v(b, ψi). Therefore, since for every 1 ≤ i ≤ m, σ(Πi)⇒ σ(qi) is locally
true in every b ≥ a with respect to 〈W,≤, v〉, it is also locally true with respect to
〈W,≤, v′〉. Since v′ respects r, v′(a, �(ψ1, . . . , ψn)) = t, so v(a, �(ψ1, . . . , ψn)) = t
as well, as required.

Now, assume v′(a, �(ψ1, . . . , ψn)) is not defined, and assume by way of con-
tradiction that v(a, �(ψ1, . . . , ψn)) = f . So, there exists b ≥ a and an elimination
rule {Δj ⇒ Σj}1≤j≤k/ � (p1, p2, . . . , pn)⇒ such that σ(Δj)⇒ σ(Σj) is locally
true in b for 1 ≤ j ≤ k. Since b ≥ a, our assumption about a implies that
σ(Πi) ⇒ σ(qi) is locally true in b for 1 ≤ i ≤ m. It follows that by defining
u(p) = v(b, σ(p)) we get a valuation u in {t, f} which satisfies all the clauses
in the union of {Πi ⇒ qi | 1 ≤ i ≤ m} and {Δj ⇒ Σj | 1 ≤ j ≤ k}. This
contradicts the coherence of G. �

Strict Canonical Constructive Systems 91

The following two theorems are now easy consequences of Theorem 6 and the
soundness and completeness theorems of the previous section:7

Theorem 7. Let G be a strict canonical constructive system. Then G is strongly
decidable: Given a finite set S of sequents, and a sequent s, it is decidable whether
S �seq

G s or not. In particular: it is decidable whether Γ �G ϕ, where ϕ is formula
and Γ is a finite set of formulas.

Proof. Let F ′ be the set of subformulas of the formulas in S∪{s}. From Theorem
6 and the proof of Theorem 3 it easily follows that in order to decide whether
S �seq

G s it suffices to check all triples of the form 〈W,⊆, v′〉 where W ⊆ 2F
′
and

v′ : F ′ → (W → {t, f}), and see if any of them is a G-legal semiframe which is
a model of S but not a model of s. �

Theorem 8. Let G1 be a strict canonical constructive system in a language L1,
and let G2 be a strict canonical constructive system in a language L2. Assume
that L2 is an extension of L1 by some set of connectives, and that G2 is obtained
from G1 by adding to the latter strict canonical rules for connectives in L2−L1.
Then G2 is a conservative extension of G1 (i.e. if all formulas in T ∪ {ϕ} are
in L1 then T �G1 ϕ iff T �G2 ϕ).

Proof. Suppose that T ��G1 ϕ. Then there is G1-legal model W of T which
is not a model of ϕ. Since the set of formulas of L1 is a subset of the set of
formulas of L2 which is closed under subformulas, Theorem 6 implies that W
can be extended to a G2-legal model of T which is not a model of ϕ. Hence
T ��G2 ϕ. �

Note 4. Prior’s “connective” Tonk ([15]) has made it clear that not every com-
bination of “ideal” introduction and elimination rules can be used for defining
a connective. Some constraints should be imposed on the set of rules. Such a
constraint was indeed suggested by Belnap in his famous [8]: the rules for a con-
nective � should be conservative, in the sense that if T � ϕ is derivable using
them, and � does not occur in T ∪ ϕ, then T � ϕ can also be derived without
using the rules for �. This solution to the problem has two problematic aspects:

1. Belnap did not provide any effective necessary and sufficient criterion for
checking whether a given set of rules is conservative in the above sense.
Without such criterion every connective defined by inference rules (without
an independent denotational semantics) is suspected of being a Tonk-like
connective, and should not be used until a proof is given that it is “innocent”.

2. Belnap formulated the condition of conservativity only with respect to the
basic deduction framework, in which no connectives are assumed. But noth-
ing in what he wrote excludes the possibility of a system G having two
connectives, each of them “defined” by a set of rules which is conservative

7 The two theorems can also be proved directly from the cut-elimination theorem for

strict canonical constructive systems.

92 A. Avron and O. Lahav

over the basic system B, while G itself is not conservative over B. If this
happens then it will follow from Belnap’s thesis that each of the two connec-
tives is well-defined and meaningful, but they cannot exist together. Such a
situation is almost as paradoxical as that described by Prior.

Now the first of these two objections is met, of course, by our coherence criterion
for strict canonical systems, since coherence of a finite set of strict canonical
rules can effectively be checked. The second is met by Theorem 8. That theorem
shows that a very strong form of Belnap’s conservativity criterion is valid for
strict canonical constructive systems, and so what a set of strict canonical rules
defines in such systems is independent of the system in which it is included.

6 Related Works and Further Research

There have been several works in the past on conditions for cut-elimination.
Except for [7], the closest to the present one is [10]. The range of systems dealt
with there is in fact broader than ours, since it deals with various types of
structural rules, while in this paper we assume the standard structural rules of
minimal logic. On the other hand the results and characterization given in [10]
are less satisfactory than those given here. First, in the framework of [10] any
connective has essentially infinitely many introduction (and elimination) rules,
while our framework makes it possible to convert these infinite sets of rules into a
finite set. Second, our coherence criterion (for non-triviality and cut-elimination)
is simple and constructive. In contrast, its counterpart in [10] (called reductivity)
is not constructive. Third, our notion of strong cut-elimination simply limits the
set of possible cut formulas used in a derivation of a sequent from other sequents
to those that occur in the premises of that derivation. In contrast, reductive cut-
elimination, its counterpart in [10], imposes conditions on applications of the cut
rule in proofs which involve examining the whole proofs of the two premises of
that application. Finally, both works use non-deterministic semantic frameworks
(in [10] this is only implicit!). However, while we use the concrete framework of
intuitionistic-like Kripke frames, variants of the significantly more abstract and
complicated phase semantics are used in [10]. This leads to the following crucial
difference: our semantics leads to decision procedures for all the systems we
consider. This does not seem to be the case for the semantics used in [10].

It should be noted that unlike the present work, [10] treats non-strict systems
(as is done in most presentations of intuitionistic logic as well as in Gentzen’s
original one), i.e. single-conclusion sequential systems which allow the use of
negative sequents in derivations. In addition to being widely used, the non-strict
framework makes it possible to define negation as a basic connective. It is natural
to try to extend our methods and results to the non-strict framework. However,
as the next observations show, doing it is not a straightforward matter:

– Consider a non-strict canonical Gentzen-type system G containing only the
following rules for an unary connective, denoted by ◦:

{p1 ⇒} / ◦ p1 ⇒ and {p1 ⇒} / ⇒ ◦p1

Strict Canonical Constructive Systems 93

Applications of these rules have the following form (where E is either empty
or a singleton):

Γ, ϕ ⇒ E
Γ, ◦ϕ⇒ E

Γ, ϕ⇒
Γ ⇒ ◦ϕ

Obviously, G is not coherent. However, in G there is no way to derive a
negative sequent from no assumptions (this is proved by simple induction).
Hence, the introduction rule for ◦ can never be used in proofs without as-
sumptions. For this trivial reason, G is consistent. Hence, in this framework
coherence is no longer equivalent to consistency.

– For the same reason, G from the previous example admits cut-elimination
but does not admit strong cut-elimination. Hence, strong cut-elimination
and cut-elimination are also no longer equivalent.

– Consider the well-known rules for intuitionistic negation:

Γ ⇒ ϕ
Γ,¬ϕ ⇒

Γ, ϕ ⇒
Γ,⇒ ¬ϕ

If we naively extend our semantic definition to apply to this kind of rule,
we will obtain that in every legal frame v(a,¬ϕ) = t iff v(a, ϕ) = f (since
a negative sequent is true iff it is locally true). This is not the well-known
Kripke-style semantics for negation. Moreover, ϕ ∨ ¬ϕ, which is obviously
not provable in intuitionistic logic, is true in this semantics. Hence some
changes must be done in our semantic framework if we wish to directly handle
negation (and other negation-like connectives) in an adequate way.

References

1. Avron, A.: Simple Consequence Relations. Information and Computation 92,

105–139 (1991)

2. Avron, A.: Gentzen-Type Systems, Resolution and Tableaux. Journal of Auto-

mated Reasoning 10, 265–281 (1993)

3. Avron, A.: Nondeterministic View on Nonclassical Negations. Studia Logica 80,

159–194 (2005)

4. Avron, A.: Non-deterministic Semantics for Families of Paraconsistent Logics. In:

Beziau, J.-Y., Carnielli, W., Gabbay, D.M. (eds.) Handbook of Paraconsistency.

Studies in Logic, vol. 9, pp. 285–320. College Publications (2007)

5. Avron, A., Lahav, O.: Canonical constructive systems. In: Giese, M., Waaler, A.

(eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 62–76. Springer, Heidelberg (2009)

6. Avron, A., Lev, I.: Canonical Propositional Gentzen-Type Systems. In: Goré, R.P.,

Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 529–544.

Springer, Heidelberg (2001)

7. Avron, A., Lev, I.: Non-deterministic Multiple-valued Structures. Journal of Logic

and Computation 15, 24–261 (2005)

8. Belnap, N.D.: Tonk, Plonk and Plink. Analysis 22, 130–134 (1962)

9. Bowen, K.A.: An extension of the intuitionistic propositional calculus. Indagationes

Mathematicae 33, 287–294 (1971)

94 A. Avron and O. Lahav

10. Ciabattoni, A., Terui, K.: Towards a Semantic Characterization of Cut-

Elimination. Studia Logica 82, 95–119 (2006)

11. Fernandez, D.: Non-deterministic Semantics for Dynamic Topological Logic. An-

nals of Pure and Applied Logic 157, 110–121 (2009)

12. Gentzen, G.: Investigations into Logical Deduction. In: Szabo, M.E. (ed.) The Col-

lected Works of Gerhard Gentzen, pp. 68–131. North Holland, Amsterdam (1969)

13. Gurevich, Y., Neeman, I.: The Logic of Infons, Microsoft Research Tech. Report

MSR-TR-2009-10 (January 2009)

14. Kripke, S.: Semantical Analysis of Intuitionistic Logic I. In: Crossly, J., Dummett,

M. (eds.) Formal Systems and Recursive Functions, pp. 92–129. North-Holland,

Amsterdam (1965)

15. Prior, A.N.: The Runabout Inference Ticket. Analysis 21, 38–39 (1960)

16. Sundholm, G.: Proof theory and Meaning. In: Gabbay, D.M., Guenthner, F. (eds.)

Handbook of Philosophical Logic, vol. 9, pp. 165–198 (2002)

Decidable Expansions of Labelled Linear
Orderings

Alexis Bès1 and Alexander Rabinovich2

1 University of Paris-Est Créteil, LACL

bes@u-pec.fr
2 Tel-Aviv University, The Blavatnik School of Computer Science

rabinoa@post.tau.ac.il

Dedicated to Yuri Gurevich on the occasion of his seventieth birthday

Abstract. Let M = (A,<,P) where (A,<) is a linear ordering and P
denotes a finite sequence of monadic predicates on A. We show that if A
contains an interval of order type ω or −ω, and the monadic second-order

theory of M is decidable, then there exists a non-trivial expansion M ′ of

M by a monadic predicate such that the monadic second-order theory

of M ′ is still decidable.

Keywords: monadic second-order logic, decidability, definability, linear

orderings.

1 Introduction

In this paper we address definability and decidability issues for monadic second
order (shortly: MSO) theories of labelled linear orderings. Elgot and Rabin ask
in [9] whether there exist maximal decidable structures, i.e., structures M with
a decidable first-order (shortly: FO) theory and such that the FO theory of any
expansion of M by a non-definable predicate is undecidable. This question is
still open. Let us mention some partial results:

– Soprunov proved in [28] that every structure in which a regular ordering is
interpretable is not maximal. A partial ordering (B, <) is said to be regular
if for every a ∈ B there exist distinct elements b1, b2 ∈ B such that b1 < a,
b2 < a, and no element c ∈ B satisfies both c < b1 and c < b2. As a corollary
he also proved that there is no maximal decidable countable structure if we
replace FO by weak MSO logic.

– In [2], Bès and Cégielski consider a weakening of the Elgot-Rabin question,
namely the question of whether all structures M whose FO theory is de-
cidable can be expanded by some constant in such a way that the resulting
structure still has a decidable theory. They answer this question negatively
by proving that there exists a structure M with a decidable MSO theory and
such that any expansion of M by a constant has an undecidable FO theory.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 95–107, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

96 A. Bès and A. Rabinovich

– The paper [1] gives a sufficient condition in terms of the Gaifman graph of
M which ensures that M is not maximal. The condition is the following: for
every natural number r and every finite set X of elements of the base set
|M | of M there exists an element x ∈ |M | such that the Gaifman distance
between x and every element of X is greater than r.

We investigate the Elgot-Rabin problem for the class of labelled linear orderings,
i.e., infinite structures M = (A; <, P1, . . . , Pn) where < is a linear ordering over
A and the Pi’s denote unary predicates. This class is interesting with respect
to the above results, since on one hand no regular ordering seems to be FO
interpretable in such structures, and on the other hand their associated Gaifman
distance is trivial, thus they do not satisfy the criterion given in [1].

In this paper we focus on MSO logic rather than FO. The main result of the
paper is that for every labelled linear ordering M such that (A, <) contains an
interval of order type ω or −ω and the MSO theory of M is decidable, then there
exists an expansion M ′ of M by a monadic predicate which is not MSO-definable
in M , and such that the MSO theory of M ′ is still decidable. Hence, M is not
maximal. The result holds in particular when (A. <) is order-isomorphic to the
order of the naturals ω = (N, <), or to the order ζ = (Z, <) of the integers, or
to any infinite ordinal, or more generally any infinite scattered ordering (recall
that an ordering is scattered if it does not contain any dense sub-ordering).

The structure of the proof is the following: we first show that the result
holds for ω and ζ. For the general case, starting from M , we use some definable
equivalence relation on A to cut A into intervals whose order type is either finite,
or of the form −ω, ω, or ζ. We then define the new predicate on each interval
(using the constructions given for ω and ζ), from which we get the definition
of M ′. The reduction from MSO(M ′) to MSO(M) uses Shelah’s composition
theorem, which allows to reduce the MSO theory of an ordered sum of structures
to the MSO theories of the summands.

The main reason to consider MSO logic rather than FO is that it actually
simplifies the task. Nevertheless we discuss some partial results and perspectives
for FO logic in the conclusion of the paper.

Let us recall some important decidability results for MSO theories of linear
orderings (the case of labelled linear orderings will be discussed later for ω and
ζ). In his seminal paper [4], Büchi proved that languages of ω−words recogniz-
able by automata coincide with languages definable in the MSO theory of ω,
from which he deduced decidability of the theory. The result (and the automata
method) was then extended to the MSO theory of any countable ordinal [5], to
ω1, and to any ordinal less than ω2 [6]. Gurevich, Magidor and Shelah prove [13]
that decidability of MSO theory of ω2 is independent of ZFC. Let us mention
results for linear orderings beyond ordinals. Using automata, Rabin [19] proved
decidability of the MSO theory of the binary tree, from which he deduces decid-
ability of the MSO theory of Q, which in turn implies decidability of the MSO
theory of the class of countable linear orderings. Shelah [26] improved model-
theoretical techniques that allow him to reprove almost all known decidability
results about MSO theories, as well as new decidability results for the case of

Decidable Expansions of Labelled Linear Orderings 97

linear orderings, and in particular dense orderings. He proved in particular that
the MSO theory of R is undecidable. The frontier between decidable and unde-
cidable cases was specified in later papers by Gurevich and Shelah [11,14,15]; we
refer the reader to the survey [12].

Our result is also clearly related to the problem of building larger and larger
classes of structures with a decidable MSO theory. For an overview of recent
results in this area see [3,32].

2 Definitions, Notations and Useful Results

2.1 Labelled Linear Orderings

We first recall useful definitions and results about linear orderings. A good ref-
erence on the subject is Rosenstein’s book [23].

A linear ordering J is a total ordering. We denote by ω (respectively ζ) the
order type of N (respectively Z). Given a linear ordering J , we denote by −J
the backwards linear ordering obtained by reversing the ordering relation.

Given two elements j, k of a linear ordering J , we denote by [j; k] the interval
[min (j, k), max (j, k)]. An ordering is dense if it contains no pair of consecutive
elements. An ordering is scattered if it contains no dense sub-ordering.

In this paper we consider labelled linear orderings, i.e., linear orderings (A, <)
equipped with a function f : A → Σ where Σ is a finite nonempty set.

2.2 Logic

Let us briefly recall useful elements of monadic second-order logic, and settle
some notations. For more details about MSO logic see e.g. [12,31]. Monadic
second-order logic is an extension of first-order logic that allows to quantify over
elements as well as subsets of the domain of the structure. Given a signature
L, one can define the set of (MSO) formulas over L as well-formed formulas
that can use first-order variable symbols x, y, . . . interpreted as elements of the
domain of the structure, monadic second-order variable symbols X, Y, . . . inter-
preted as subsets of the domain, symbols from L, and a new binary predicate
x ∈ X interpreted as “x belongs to X”. A sentence is a formula without free
variable. As usual, we often confuse logical symbols with their interpretation.
Given a signature L and an L−structure M with domain D, we say that a re-
lation R ⊆ Dm × (2D)n is (MSO) definable in M if a nd only if there exists a
formula over L, say ϕ(x1, . . . , xm, X1, . . . , Xn), which is true in M if and only if
(x1, . . . , xm, X1, . . . , Xn) is interpreted by an (m+n)−tuple of R. Given a struc-
ture M we denote by MSO(M) (respectively FO(M)) the monadic second-order
(respectively first-order) theory of M . We say that M is maximal if MSO(M)
is decidable and MSO(M ′) is undecidable for every expansion M ′ of M by a
predicate which is not definable in M .

We can identify labelled linear orderings with structures of the form M =
(A, <, P1, . . . , Pn) where < is a binary relation interpreted as a linear ordering
over A, and the Pi’s denote unary predicates. We use the notation P as a shortcut

98 A. Bès and A. Rabinovich

for the n-tuple (P1, . . . Pn). The structure M can be seen as a word indexed by
A and over the alphabet Σn = {0, 1}n; this word will be denoted by w(M). For
every interval I of A we denote by MI the sub-structure of M with domain I.

2.3 Composition Theorems

In this paper we rely heavily on composition methods, which allow to com-
pute the theory of a sum of structures from the ones of its summands. For an
overview of the subject see [3,12,16,30]. In this section we recall useful defi-
nitions and results. For the whole section we consider signatures of the form
L = {<, P1, . . . , Pn} where the Pi’s denote unary predicate names, and deal
only with L−structures where < is interpreted as a linear ordering – that is,
with labelled linear orderings. Given a formula ϕ over L, the quantifier depth of
ϕ is denoted by qd(ϕ). The k−type of an L−structure M , which is denoted by
T k(M), is the set of sentences ϕ such that M |= ϕ and qd(ϕ) ≤ k. Given two
structures M and M ′, the relation T k(M) = T k(M ′) is an equivalence relation
with finitely many classes. Let us list some fundamental and well-known prop-
erties of k-types. The proofs of these facts can be found in several sources, see
e.g. [26,31].

Proposition 1. 1. For every k there are only finitely k-types over a finite sig-
nature L

2. For each k-type t there is a sentence ϕt (called ”characteristic sentence”)
which defines t, i.e., such that M |= ϕt iff T k(M) = t. For every k, a finite
list of characteristic sentences for all the possible k-types can be computed.
(We take the characteristic sentences as the canonical representations of k-
types. Thus, for example, transforming a type into another type means to
transform sentences.)

3. Each sentence ϕ is equivalent to a (finite) disjunction of characteristic sen-
tences; moreover, this disjunction can be computed from ϕ.

As a simple consequence, note that the MSO theory of a structure M is decidable
if and only if the function k �→ T k(M) is recursive.

The sum of structures corresponds to concatenation; let us recall a general
definition.

Definition 2. Consider an index structure Ind = (I, <I) where <I is a linear
ordering. Consider a signature L = {<, P1, . . . , Pn}, where Pi are unary predi-
cate names, and a family (Mi)i∈I of L-structures Mi = (Ai; <i, P1

i, . . . , P i
n) with

disjoint domains and such that the interpretation <i of < in each Mi is a linear
ordering. We define the ordered sum of the family (Mi)i∈I as the L-structure
M = (A; <M , P1

M , . . . , PM
n) where

– A equals the union of the Ai’s
– x <M y holds if and only if (x ∈ Ai and y ∈ Aj for some i <I j), or

(x, y ∈ Ai and x <i y)
– for every x ∈ A and every k ∈ {1, . . . , n}, PM

k (x) holds if and only if Mj |=
P j

k (x) where j is such that x ∈ Aj.

Decidable Expansions of Labelled Linear Orderings 99

If the domains of the Mi are not disjoint, replace them with isomorphic chains
that have disjoint domains, and proceed as before.

We shall use the notation M =
∑

i∈I Mi for the ordered sum of the family
(Mi)i∈I . If I = {1, 2} has two element, we denote

∑
i∈I Mi by M1 + M2.

We need the following composition theorem on ordered sums:

Theorem 3.
(a) The k-types of labelled linear orderings M0, M1 determine the k-type of the
ordered sum M0 + M1, which moreover can be computed from the k-types of M0

and M1.
(b) If the labelled linear orderings M0, M1, . . . all have the same k-type, then this
k-type determines the k-type of Σi∈NMi, which moreover can be computed from
the k-type of M0.

Part (a) of the theorem justifies the notation s + t for the k-type of a linear
ordering which is the sum of two linear orderings of k-types s and t, respectively.
Similarly, we write t × ω for the k-type of a sum Σi∈NMi where all Mi are of
k-type t.

3 The Case of N

In this section we prove that there is no maximal structure of the form (N, <, P)
with respect to MSO logic. The proof is based upon results from [20] . Let us first
briefly review results related to the decidability of the MSO theory of expansions
of (N, <). Büchi [4] proved decidability of MSO(N, <) using automata. On the
other hand it is known that MSO(N, +), and even MSO(N, <, x �→ 2x), are un-
decidable [22]. Elgot and Rabin study in [9] the MSO theory of structures of the
form (N, <, P), where P is some unary predicate. They give a sufficient condition
on P which ensures decidability of the MSO theory of (N, <, P). In particular
the condition holds when P denotes the set of factorials, or the set of powers of
any fixed integer. The frontier between decidability and undecidability of related
theories was explored in numerous later papers [7,10,25,24,21,20,27,29]. Let us
also mention that [25] proves the existence of unary predicates P and Q such that
both MSO(N, <, P) and MSO(N, <, Q) are decidable while MSO(N, <, P, Q)
is undecidable.

Most decidability proofs for MSO(N, <, P) are related somehow to the pos-
sibility of cutting N into segments whose k−type is ultimately constant, from
which one can compute the k−type of the whole structure (using Theorem 3).
This connection was specified in [20] (see also [21]) using the notion of homoge-
neous sets.

Definition 4 (k-homogeneous set). Let k ≥ 0. A set H = {h0 < h1 < . . .} ⊆
N is called k-homogeneous for M = (N, <, P), if all sub-structures M[hi,hj) for
i < j (and hence all sub-structures M[hi,hi+1) for i ≥ 0) have the same k-type.

This notion can be refined as follows.

100 A. Bès and A. Rabinovich

Definition 5 (uniformly homogeneous set). A set H = {h0 < h1 < . . .} ⊆
N is called uniformly homogeneous for M = (N, <, P) if for each k the set
Hk = {hk < hk+1 < . . .} is k-homogeneous.

The following result [20] settles a tight connection between MSO(N, <, P) and
uniformly homogeneous sets.

Theorem 6. For every M = (N, <, P), the MSO theory of M is decidable
if and only if (the sets P are recursive and there exists a recursive uniformly
homogeneous set for M).

One can use this theorem to show that no structure M = (N, <, P) is maximal.
Let us give the main ideas. Starting from M such that MSO(M) is decidable,
Theorem 6 implies the existence of a recursive uniformly homogeneous set H =
{h0 < h1 < . . .} for M .

Let M ′ be an expansion of M by a monadic predicate Pn+1 defined as Pn+1 =
{hn! | n ∈ N}.

By definition of H , the structures M[hk!,h(k+j)![have the same k−type for all
j, k ≥ 0. If we combine this with the fact that successive elements of Pn+1 are
far away from each other, we can prove that Pn+1 is not definable in M . For all
i, k ≥ 0 let us define the interval I(i, k) = [h(k+i)!, h(k+i+1)![. In order to prove
that MSO(M ′) is decidable, we exploit the fact that all structures MI(i,k) have
the same k−type for all i, k ≥ 0, and that only the first element of each interval
I(i, k) belongs to Pn+1. This allows to compute easily the k−type of structures
M ′

I(i,k) from the one of MI(i,k), and then the k−type of the whole structure M ′.
This provides a reduction from MSO(M ′) to MSO(M).

The above construction, which we described for a fixed structure M , can
actually be defined uniformly in M . This leads to the following result.

Proposition 7. There exists a function E and two recursive function g1, g2

such that E maps every structure M = (N, <, P) to an expansion M ′ of M by a
predicate Pn+1 such that

1. Pn+1 is not definable in M ;
2. g1 computes T k(M ′) from k and T g2(k)(M).

Hence MSO(M ′) is recursive in MSO(M). In particular, if MSO(M) is decid-
able, then MSO(M ′) is decidable.

Let us discuss item (2). In the proof of the general result (see Sect. 5), we start
from a labelled linear ordering M = (A, <, P) with a decidable MSO theory and
try to expand it while keeping decidability. In some case the (decidable) expan-
sion M ′ of M will be defined by applying the above construction to infinitely
many intervals of A of order type ω. In order to get a reduction from MSO(M ′)
to MSO(M), we need that the reduction algorithm for such intervals is uniform,
which is what item (2) expresses.

Decidable Expansions of Labelled Linear Orderings 101

4 The Case of Z

Decidability of the MSO theory of structures M = (Z, <, P) was studied in
particular by Compton [8], Semënov [25,24], and Perrin and Schupp [18] (see
also [17, chapter 9]). These works put in evidence the link between decidability
of MSO(M) and computability of occurrences and repetitions of finite factors
in the word w(M). Let us state some notations and definitions. A set X of finite
words over a finite alphabet Σ is said to be regular if it is recognizable by some
finite automaton. Given a Z−word w and a finite word u, both over the alphabet
Σ, we say that u occurs in w if w = w1uw2 for some words w1 and w2. We say
that w is recurrent if for every regular language X of finite words over Σ, either
no element of X occurs in w, or in every prefix and every suffix of w there is
an occurrence of some element of X . In particular in a recurrent word w, every
finite word u either has no occurrence in w, or occurs infinitely often on both
sides of w. We say that w is rich if every finite word occurs infinitely often on
both sides of w. Given M = (Z, <, P), we say that M is recurrent if w(M) is.

We have the following result.

Theorem 8. ([25,18]) Given M = (Z, <, P1, . . . , Pn),

1. If M is not recurrent, then every c ∈ Z is definable in M .
2. If M is recurrent, then no element is definable in M , and MSO(M) is

computable relative to an oracle which, given any regular language X of
finite words over Σn = {0, 1}n, tells whether some element of X occurs in
w(M).

Let c ∈ Z, and let M1 be defined as M = M]−∞,c[and M2 be defined as M[c,∞[.
Then M = M1 + M2.

Let M ′
1 be the expansion of M1 by the empty predicate Pn+1 and let M ′

2 be
obtained by apply the construction of Proposition 7 to M2. Let M ′ = M ′

1 + M ′
2.

Note that the above construction of M ′ from M depends on c. We denote by
Ec the function described above that maps every M = (Z, <, P1, . . . , Pn) to its
expansion M ′ by Pn+1.

It is easy to show that Pn+1 is not definable in M , hence M ′ is a non-trivial
expansion of M .

We claim that if M is not recurrent, then MSO(M ′) is recursive in MSO(M).
Indeed, in this case, by Theorem 8, c is definable in M . Hence, M1 and M2 can
be interpreted in M , which yields that MSO(M1) and MSO(M2) are recursive
in MSO(M). Therefore, MSO(M ′

1) and MSO(M ′
2) are recursive in MSO(M). Fi-

nally, applying Theorem 3(a) we obtain that MSO(M ′) is recursive in MSO(M).
Hence, we have the following.

Proposition 9 (Expansion of non-recurrent structures). There are two
recursive function g1, g2 such that if M = (Z, <, P1, . . . , Pn) is not recurrent,
and c ∈ Z is definable in M by a formula of quantifier depth m, then Ec maps
M to an expansion M ′ by a predicate Pn+1 such that

102 A. Bès and A. Rabinovich

1. Pn+1 is not definable in M ;
2. g1 computes T k(M ′) from k and T g2(k+m)(M).

Hence MSO(M ′) is recursive in MSO(M). In particular, if MSO(M) is decid-
able, then MSO(M ′) is decidable.

Remark 10. Let us discuss uniformity issues related to Proposition 7 and Propo-
sition 9. Proposition 7 implies that there is an algorithm which reduces MSO(M ′)
to MSO(M). This reduction algorithm is independent of M ; it only uses an or-
acle for MSO(M). Proposition 9 implies a weaker property. Namely, it implies
that for every non-recurrent M there is an algorithm which reduces MSO(M ′) to
MSO(M). However, this reduction algorithm depends on M .

Consider a recurrent structure M and let M ′ = Ec(M) for some c ∈ Z. We claim
that it is possible that MSO(M ′) is not recursive in MSO(M). Indeed, we can
prove that there exists a recurrent structure M over Z such that MSO(M) is
decidable, and MSO(M[c′,∞[) is undecidable for every c′ ∈ Z. Now let c′ be
the minimal element of Pn+1. Observe that c′ is definable in M ′ and therefore,
M[c′,∞[can be interpreted in M ′. Since, MSO(M[c′,∞[) is undecidable, we derive
that MSO(M ′) is undecidable. Hence, Ec does not preserves decidability of
recurrent structures, and we need a different construction for the recurrent case.

To describe our construction for the recurrent case let us introduce first some
notations.

For every word w over the alphabet Σn+1 = {0, 1}n+1 which is indexed by
some linear ordering (A, <) we denote by π(w) the word w′ indexed by A and
over the alphabet Σn = {0, 1}n, which is obtained from w by projection over the
n first components of each symbol in w. The definition and notation extend to
π(X) where X is any set of words over the alphabet Σn+1. Given M = (Z, <, P)
where P is an n−tuple of sets, and any expansion M ′ of M by a predicate Pn+1,
by definition w(M) and w(M ′) are words over Σn and Σn+1, respectively, and
we have π(w(M ′)) = w(M).

Lemma 11. If M = (Z, <, P) is recurrent, then there is an expansion M ′ of M
by a predicate Pn+1 which has the following property:

(*) for every u ∈ Σ∗
n, if u occurs infinitely often on both sides of w(M), then

the same holds in w(M ′) for every word u′ ∈ Σ∗
n+1 such that π(u′) = u.

The proof of Lemma 11 is similar to the proof of Proposition 2.8 in [1], which
roughly shows how to deal with the case when w(M) is rich.

Now w(M ′) has a finite factor in some regular language X ′ ⊆ Σ∗
n+1 iff w(M)

has a finite factor in π(X ′) ⊆ Σ∗
n. The set π(X ′) is regular, and a sentence which

defines π(X ′) is computable from a sentence that defines X ′, thus we obtain, by
Theorem 8(2), that if MSO(M) is decidable then MSO(M ′) is decidable.

One can show that if M ′ is any expansion of M which has property (*), then
Pn+1 is not definable in M . This implies that no recurrent structure is maximal.

From a more detailed analysis of the proof of Theorem 8(2) we can derive the
following proposition.

Decidable Expansions of Labelled Linear Orderings 103

Proposition 12 (Expansion of recurrent structures). There are two re-
cursive function g1, g2 such that if M = (Z, <, P) is recurrent and M ′ is an
expansion of M which has property (*), then

1. Pn+1 is not definable in M ;
2. g1 computes T k(M ′) from k and T g2(k)(M).

Hence MSO(M ′) is recursive in MSO(M). In particular, if MSO(M) is decid-
able, then MSO(M ′) is decidable.

Remark 13. Proposition 12 implies that there is an algorithm which reduces
MSO(M ′) to MSO(M). This reduction algorithm (like the algorithm from
Proposition 7) is independent of M ; it only uses an oracle for MSO(M).

Proposition 9, Lemma 11 and Proposition 12 imply the following corollary.

Corollary 14. Let M = (Z, <, P). There exists an expansion M ′ of M by some
unary predicate Pn+1 such that Pn+1 is not definable in M , and MSO(M ′) is
recursive in MSO(M). In particular, if MSO(M) is decidable, then MSO(M ′)
is decidable.

5 Main Result

The next theorem is our main result.

Theorem 15. Let M = (A, <, P1, . . . , Pn) where (A, <) contains an interval
of type ω or −ω. There exists an expansion M ′ of M by a relation Pn+1 such
that Pn+1 is not definable in M , and MSO(M ′) is recursive in MSO(M). In
particular, if MSO(M) is decidable, then MSO(M ′) is decidable.

As an immediate consequence we obtain the following corollary.

Corollary 16. Let M = (A, <, P1, . . . , Pn) where (A, <) is an infinite scattered
linear ordering. There exists an expansion M ′ of M by some unary predicate
Pn+1 not definable in M such that MSO(M ′) is recursive in MSO(M).

We present a sketch of proof for Theorem 15. Let M = (A, <, P) where (A, <)
contains an interval of type ω or −ω.

Consider the binary relation defined on A by x ≈ y iff [x, y] is finite. The rela-
tion ≈ is a condensation, i.e., an equivalence relation such that every equivalence
class is an interval of A. Moreover the relation ≈ is definable in M . If Ai and
A2 are ≈-equivalence classes, we say that A1 precedes A2 if all elements of A1

are less than all elements of A2. Let I be the linear order of the ≈-equivalence
classes for (A, <). Then M =

∑
i∈I MAi where the Ai’s correspond to equiva-

lence classes of ≈. Using the definition of ≈ and our assumption on A, it is easy
to check that the Ai’s are either finite, or of order type ω, or −ω, or ζ, and that
not all Ai’s are finite.

We define the interpretation of the new predicate Pn+1 in every interval Ai.
The definition proceeds as follows:

104 A. Bès and A. Rabinovich

1. if some Ai has order type ω or −ω, then we apply to each substructure MAi

of order type ω the construction given in Proposition 7, and add no element
of Pn+1 elsewhere. If there is no Ai of order type ω, we proceed in a similar
way with each substructure MAi of order type −ω, but using the dual of
Proposition 7 for −ω.

2. if no Ai has order type ω or −ω, then at least one ≈ −equivalence class Ai

has order type ζ. We consider two subcases:

(a) if all ≈ −equivalence classes Ai with order type ζ are such that w(MAi)
is recurrent, then we apply to each substructure MAi of order type ζ the
construction given in Proposition 12. For other ≈ −equivalence classes
Ai we set Pn+1 ∩Ai = ∅.

(b) otherwise there exist ≈ −equivalence classes Ai with order type ζ and
such that w(MAi) is not recurrent. Let ϕ(x) be a formula with minimal
quantifier depth such that ϕ(x) defines an element in some MAi where
Ai has order type ζ. For every MAi such that Ai has order type ζ and
ϕ(x) defines an element ci in MAi , we apply the construction Eci from
Proposition 9 to MAi . For other ≈ −equivalence classes Ai we set Pn+1∩
Ai = ∅.

The fact that the set Pn+1 is not definable in M follows rather easily from the
construction, which ensures that there exists some Ai such that the restriction
of Pn+1 to Ai is not definable in the substructure MAi .

Let M ′ be the expansion of M by the predicate Pn+1. In order to prove that
MSO(M ′) is recursive in MSO(M), we use Shelah’s composition method [26,
Theorem 2.4] (see also [12,30]) which allows to reduce the MSO theory of a sum
of structures to the MSO theories of the components and the MSO theory of the
index structure.

Theorem 17 (Composition Theorem [26]). There exists a recursive func-
tion f and an algorithm which, given k, l ∈ N, computes the k-type of any sum
M =

∑
i∈I Mi of labelled linear orderings over a signature {<, P1, . . . , Pl} from

the f(k, l)-type of the structure (I, <, Q1, . . . , Qp) where

Qj = {i ∈ I : T k(Mi) = τj} j = 1, . . . , p

and τ1, . . . , τp is the list of all formally possible k-types for the signature L.

Let us explain the reduction from MSO(M ′) to MSO(M). We can apply The-
orem 17 to M ′ =

∑
i∈I M ′

Ai
, which allows to show that for every k, the k−type

of M ′ can be computed from f(k, n + 1)−type of the structure N ′ = (I, <
, Q′

1, . . . , Q
′
p) where the Q′

i’s correspond to the k−types of structures M ′
Ai

over
the signature {<, P1, . . . , Pn+1}. Using the definition of Pn+1 and Propositions
7, 9 and 12, one can prove that the k−type of M ′

Ai
can be computed form the

g(k)−type of MAi for some recursive function g (note that g depends on M ,
namely whether we used case 1, 2(a) or 2(b) to construct M ′). This allows to
prove that N ′ is interpretable in the structure N = (I, <, Q1, . . . , Qq) where
the Qi’s correspond to the g(k)−types of structures MAi over the signature

Decidable Expansions of Labelled Linear Orderings 105

{<, P1, . . . , Pn}. It follows that MSO(N ′) is recursive in MSO(N). Now using
the fact that the equivalence relation ≈ is definable in M , we can prove that N
is interpretable in M , thus MSO(N) is recursive in MSO(M).

Remark 18. Let us discuss uniformity issues related to Theorem 15.
– The choice to expand “uniformly” all ≈ −equivalence classes is crucial for

the reduction from MSO(M ′) to MSO(M). For example, if some Ai has
order type ω and we choose to expand only Ai then MSO(M ′) might become
undecidable. This is the case for the structure M considered in [2] (Definition
2.4), which has decidable MSO theory, and is such that the MSO theory of
any expansion of M by a constant is undecidable. For this structure all Ai’s
have order type ω. If we consider the structure M ′ obtained from M by an
expansion of only one Ai, then Pn+1 has a least element, which is definable
in M ′, thus MSO(M ′) is undecidable.

– The definition of Pn+1 in case (2) depends on whether all components Ai

with order type ζ are such that w(MAi) is recurrent, which is not a MSO
definable property. Thus that the reduction algorithm from MSO(M ′) to
MSO(M) depends on M .

6 Further Results and Open Questions

Let us mention some possible extensions and related open questions.
First of all, most of our results can be easily extended to the case when the

signature contains infinitely many unary predicates.
Our results can be extended to the Weak MSO logic. In the case M is count-

able this follows from Soprunov result [28]. However, our construction works for
labelled orderings of arbitrary cardinality.

An interesting issue is to prove uniform versions of our results in the sense of
items (2) in Propositions 7 and 12. A first step would be to generalize Proposition
12 to all structures (Z, <, P).

One can also ask whether the results of the present paper hold for FO logic.
Let us emphasize some difficulties which arise when one tries to adapt the main
arguments. A FO version of Theorem 6 (about the recursive homogeneous set)
was already proven in [21]. Moreover, using ideas from [25] one can also give
a characterization of structures M = (Z, <, P) with a decidable FO theory,
in terms of occurrences and repetitions of finite words in w(M). This allows
to give a FO version of our non-maximality results for labelled orders over ω
or ζ. However for the general case of (A, <, P), two problems arise: (1) the
constructions for N and Z cannot be applied directly since they are not uniform,
and (2) the equivalence relation ≈ used in the proof of Theorem 15 to cut A into
small intervals is not FO definable. We currently investigate these issues.

Finally, we also study the case of labelled linear orderings (A, <, P) which
do not contain intervals of order types ω or −ω. In this case the construction
presented in Sect. 5 does not work since the restriction of Pn+1 to each Ai will be
empty, i.e., our new relation is actually empty. In a forthcoming paper we show
that it is possible to overcome this issue for the countable orders, and prove that
no infinite countable structure (A, <, P) is maximal.

106 A. Bès and A. Rabinovich

Acknowledgment. This research was facilitated by the ESF project
AutoMathA. The second author was partially supported by ESF project Games
and EPSRC grant.

References

1. Bès, A., Cégielski, P.: Weakly maximal decidable structures. RAIRO-Theor. Inf.

Appl. 42(1), 137–145 (2008)

2. Bès, A., Cégielski, P.: Nonmaximal decidable structures. Journal of Mathematical

Sciences 158, 615–622 (2009)

3. Blumensath, A., Colcombet, T., Löding, C.: Logical theories and compatible oper-

ations. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and automata: History and

Perspectives, pp. 72–106. Amsterdam University Press (2007)

4. Büchi, J.R.: On a decision method in the restricted second-order arithmetic. In:

Proc. Int. Congress Logic, Methodology and Philosophy of science, Berkeley 1960,

pp. 1–11. Stanford University Press, Stanford (1962)

5. Büchi, J.R.: Transfinite automata recursions and weak second order theory of or-

dinals. In: Proc. Int. Congress Logic, Methodology, and Philosophy of Science,

Jerusalem 1964, pp. 2–23. Holland (1965)

6. Büchi, J.R., Zaiontz, C.: Deterministic automata and the monadic theory of ordi-

nals ω2. Z. Math. Logik Grundlagen Math. 29, 313–336 (1983)

7. Carton, O., Thomas, W.: The monadic theory of morphic infinite words and gen-

eralizations. Inform. Comput. 176, 51–76 (2002)

8. Compton, K.J.: On rich words. In: Lothaire, M. (ed.) Combinatorics on words.

Progress and perspectives, Proc. Int. Meet., Waterloo/Can. 1982. Encyclopedia of

Mathematics, vol. 17, pp. 39–61. Addison, Reading (1983)

9. Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second

(first) order theory of (generalized) successor. J. Symb. Log. 31(2), 169–181 (1966)

10. Fratani, S.: The theory of successor extended with several predicates (2009)

(preprint)

11. Gurevich, Y.: Modest theory of short chains.i. J. Symb. Log. 44(4), 481–490 (1979)

12. Gurevich, Y.: Monadic second-order theories. In: Barwise, J., Feferman, S.

(eds.) Model-Theoretic Logics, Perspectives in Mathematical Logic, pp. 479–506.

Springer, Heidelberg (1985)

13. Gurevich, Y., Magidor, M., Shelah, S.: The monadic theory of ω2. J. Symb.

Log. 48(2), 387–398 (1983)

14. Gurevich, Y., Shelah, S.: Modest theory of short chains. ii. J. Symb. Log. 44(4),

491–502 (1979)

15. Gurevich, Y., Shelah, S.: Interpreting second-order logic in the monadic theory of

order. J. Symb. Log. 48(3), 816–828 (1983)

16. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure

and Applied Logic 126(1-3), 159–213 (2004)

17. Perrin, D., Pin, J.-E.: Infinite Words. Pure and Applied Mathematics, vol. 141.

Elsevier, Amsterdam (2004), ISBN 0-12-532111-2

18. Perrin, D., Schupp, P.E.: Automata on the integers, recurrence distinguishability,

and the equivalence and decidability of monadic theories. In: Symposium on Logic

in Computer Science (LICS 1986), Washington, D.C., USA, June 1986, pp. 301–

305. IEEE Computer Society Press, Los Alamitos (1986)

Decidable Expansions of Labelled Linear Orderings 107

19. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.

Transactions of the American Mathematical Society 141, 1–35 (1969)

20. Rabinovich, A.: On decidability of monadic logic of order over the naturals ex-

tended by monadic predicates. Inf. Comput. 205(6), 870–889 (2007)

21. Rabinovich, A., Thomas, W.: Decidable theories of the ordering of natural numbers

with unary predicates. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 562–574.

Springer, Heidelberg (2006)

22. Robinson, R.M.: Restricted set-theoretical definitions in arithmetic. Proc. Am.

Math. Soc. 9, 238–242 (1958)

23. Rosenstein, J.G.: Linear ordering. Academic Press, New York (1982)

24. Semenov, A.L.: Decidability of monadic theories. In: Chytil, M.P., Koubek, V.

(eds.) MFCS 1984. LNCS, vol. 176, pp. 162–175. Springer, Heidelberg (1984)

25. Semenov, A.L.: Logical theories of one-place functions on the set of natural num-

bers. Mathematics of the USSR - Izvestia 22, 587–618 (1984)

26. Shelah, S.: The monadic theory of order. Annals of Mathematics 102, 379–419

(1975)

27. Siefkes, D.: Decidable extensions of monadic second order successor arithmetic. In:

Automatentheorie und Formale Sprachen, Tagung, Math. Forschungsinst, Ober-

wolfach (1969); Bibliograph. Inst., Mannheim, pp. 441–472 (1970)

28. Soprunov, S.: Decidable expansions of structures. Vopr. Kibern. 134, 175–179

(1988) (in Russian)

29. Thomas, W.: A note on undecidable extensions of monadic second order successor

arithmetic. Arch. Math. Logik Grundlagenforsch. 17, 43–44 (1975)

30. Thomas, W.: Ehrenfeucht games, the composition method, and the monadic theory

of ordinal words. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures

in Logic and Computer Science, A Selection of Essays in Honor of A. Ehrenfeucht.

LNCS, vol. 1261, pp. 118–143. Springer, Heidelberg (1997)

31. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.

(eds.) Handbook of Formal Languages, vol. III, pp. 389–455. Springer, Heidelberg

(1997)

32. Thomas, W.: Model transformations in decidability proofs for monadic theories. In:

Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 23–31. Springer,

Heidelberg (2008)

Existential Fixed-Point Logic,
Universal Quantifiers, and Topoi

Andreas Blass�

Mathematics Department, University of Michigan, Ann Arbor, MI 48109, U.S.A.

For Yuri Gurevich on the occasion of his seventieth birthday

Abstract. When one views (multi-sorted) existential fixed-point logic

(EFPL) as a database query language, it is natural to extend it by allow-

ing universal quantification over certain sorts. These would be the sorts

for which one has the “closed-world” information that all entities of that

sort in the real world are represented in the database. We investigate

the circumstances under which this extension of EFPL retains various

pleasant properties. We pay particular attention to the pleasant prop-

erty of preservation by the inverse-image parts of geometric morphisms

of topoi, because, as we show, this preservation property implies many

of the other pleasant properties of EFPL.

Keywords: Fixed point logic, quantifier, topos, geometric morphism,

polynomial time, Hoare logic, finite model.

In a many-sorted version of existential fixed-point logic (EFPL), it may be intu-
itively reasonable to adjoin universal quantification over certain sorts, and this
adjunction may preserve some of the desirable features of EFPL. The goal of
this paper is to explain the main ingredients of the preceding sentence: What
is EFPL? What is the intuition behind it? How does that intuition suggest a
(limited) use of universal quantification? What are the desirable properties of
EFPL? And under what circumstances will (some of) these properties survive
when universal quantification over some sorts is admitted?

Some of these questions are already answered in a paper that I wrote with Yuri
Gurevich long ago [6], but for the sake of completeness I’ll include here a review
of some of this information. Other preliminary material, also reviewed here,
comes from [5] and [4]. The new material in this paper concerns the connection
between topos-theoretic properties of EFPL, its more traditional properties, and
universal quantification.

1 Introduction to EFPL

Existential fixed-point logic can be roughly described as the result of modifying
first-order logic by
� The author is partially supported by NSF grant DMS-0653696 and by a grant from

Microsoft Corporation.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 108–134, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 109

– removing the universal quantifier, and
– adding the least-fixed-point construction for definable, monotone operators.

Neither of these modifications should be taken literally, because of the following
two problems, both involving negation.

First, if one merely removes the universal quantifier from any of the usual
formulations of first-order logic, nothing has really changed, because ∀x can be
simulated as ¬∃x¬. To genuinely remove ∀, one must also restrict the combina-
tion of ∃ and ¬. A standard solution to this problem is to allow negation only of
atomic formulas. (I’m assuming here that the propositional connectives are ¬,
∧ and ∨; if implication were also allowed, then it would also need restrictions,
since the antecedent of an implication is, in effect, negated.)

Second, the least-fixed-point construction requires monotonicity of the opera-
tor that is iterated. So the syntax of EFPL should restrict the use of fixed-points
to the monotone case. But monotonicity is not a syntactic condition. The standard
solution to this problem is to enforcemonotonicityby imposing the syntactic condi-
tion of positivity; the predicate(s) representing the inductively defined relation(s)
should occur only positively in the definition of the operator being iterated.

Clearly, both problems – the need to prevent surreptitious reintroduction of ∀
and the need to ensure monotonicity of inductive definitions – would immediately
disappear if we simply banished negation from the logic. Unfortunately, negation is
sometimes needed. For example, the motivation for Yuri and me to study EFPL in
[6] was its use as a natural assertion language for Hoare logic, and this use definitely
involved negation of the guards of if . . .then . . .else commands. So, instead of
banning negation altogether, we should impose appropriate controls on its use.

It turned out, in the context of [6], that a clean way to impose the controls is
to separate, in each vocabulary, those predicate symbols that can be negated and
those that cannot. The former would include the guards of conditional statements;
the latter would include the inductively defined predicates in least-fixed-point con-
structions. We referred to the two kinds of predicates as negatable and positive, re-
spectively. Although this partition of each vocabularywas introduced for technical
reasons, it was the beginning of the train of thought that led to the idea of rehabil-
itating ∀ in a limited way, the main idea of the present paper.

But before following that train of thought, let us briefly review the definitions
of the syntax and semantics of EFPL, and let us take the opportunity to make
the easy generalization to a multi-sorted context.

Definition 1. A vocabulary consists of:

– a set of sort symbols;
– a set of predicate symbols, each with a given finite sequence of sort symbols

as its arity;
– a set of function symbols, each with a given finite sequence of sort symbols

as its input arity and an additional sort symbol as its output sort;
– a specification, for each predicate symbol and for each equality symbol,1

whether it is positive or negatable.
1 The logic includes an equality symbol for each sort, but it is convenient to write all

these equality symbols as = as long as no confusion arises.

110 A. Blass

The language also has variables (infinitely many of each sort), equality, negation,
conjunction, disjunction, existential quantification, and the least-fixed-point op-
erator which we write as “Let · · · ← · · · then · · · .” Terms and atomic formulas
are defined as usual in multi-sorted first-order logic, with equality for any sort
allowed between any two terms of that sort. The definition of formulas is given
by recursion, for all vocabularies simultaneously, as follows (under traditional
conventions for omitting parentheses).

Definition 2. – Atomic formulas of vocabulary Υ are Υ -formulas.
– If ϕ is an atomic Υ -formula and its predicate (or equality) symbol is negat-

able, then ¬ϕ is an Υ -formula.
– If ϕ and ψ are Υ -formulas, then so are ϕ ∧ ψ and ϕ ∨ ψ.
– If ϕ is an Υ -formula then so is ∃xϕ for any variable x.
– If δ1, . . . , δk and ϕ are Υ ∪{P1, . . . , Pk}-formulas, where the Pi’s are distinct

positive predicate symbols not in Υ , and if, for each i, xi is a sequence of
distinct variables whose sorts match the arity of Pi, then

Let P1(x1) ← δ1, . . . , Pk(xk)← δk then ϕ

is an Υ -formula.

Free and bound variables are defined as usual in first-order logic with the added
convention that, in Let P1(x1) ← δ1, . . . , Pk(xk) ← δk then ϕ, the occurrences
of the variables of xi in P (xi) and in δi are bound. Because the Pi’s, though
in the vocabulary of the δi’s and ϕ, are not in the vocabulary of Let P1(x1) ←
δ1, . . . , Pk(xk) ← δk then ϕ, it is reasonable to regard them as bound second-
order variables in the latter formula.

The semantics of EFPL is defined as in multi-sorted first-order logic (where
we write As for the base set of sort s in structure A) with the following additional
clause for Let P1(x1) ← δ1, . . . , Pk(xk) ← δk then ϕ. Suppose we are given an
Υ -structure A and values in its base sets for all the free variables of Let P1(x1) ←
δ1, . . . , Pk(xk) ← δk then ϕ, i.e., for all the variables that either occur free in ϕ
or occur free in some δi but are not in the corresponding xi. Then the formulas
δi collectively define an operator on k-tuples of relations of the arities of the Pi’s
as follows. Given such a k-tuple of relations, use them as the interpretations of
the Pi’s to expand A to an Υ ∪ {P1, . . . , Pk}-structure; interpret each δi in that
structure (with the given, fixed values of the variables other than xi) to obtain
new relations of the same arities; the tuple of these is the output of the operator.
Now form the least fixed point2 of that operator. Use the k components of that

2 The use of least fixed points here presupposes that the operator is monotone; that

can be proved by induction on formulas, simultaneously with the definition of seman-

tics. Alternatively, one can define the semantics using the inflationary fixed point

construction, and then afterward prove monotonicity and infer that the inflationary

fixed point is in fact the least fixed point. This alternative was used in [6]. Yet an-

other equivalent alternative is to use as a definition the second-order formulation in

the next paragraph.

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 111

fixed point as the interpretations of the Pi’s to produce another Υ∪{P1, . . . , Pk}-
structure, and interpret ϕ in it.

Once one verifies that truth values depend monotonically on the interpreta-
tions of positive predicates, it is easy to see that the semantics of Let P1(x1) ←
δ1, . . . , Pk(xk) ← δk then ϕ is the same as that of the second-order formula

(∀P1) · · · (∀Pk)

[(k∧
i=1

(∀xi) (δi =⇒ P (xi))
)

=⇒ ϕ

]
.

Remark 3. The requirement that the Pi’s be positive predicates means not only
that they occur positively in the δi’s, to ensure monotonicity of the inductive
operator, but also that they occur positively in ϕ. Is this additional requirement
a penalty for building positivity into vocabularies rather than treating it locally,
in each formula, as is traditional? No, the additional requirement is needed. If
it were waived, we could use the formula Let P (x) ← ∃y¬Q(x, y) then ¬P (x)
(with negatable Q) to express ∀y Q(x, y), an unwanted universal quantifier.

2 Good Behavior of EFPL

Existential fixed-point logic has many pleasant properties, including the follow-
ing, which we first list briefly and then comment on more extensively.

1. EFPL captures polynomial time (PTime) on structures with successor.
2. EFPL works well in Hoare logic of asserted programs.
3. When a formula is satisfied by some elements of a structure, only a finite

part of the structure is involved.
4. The iterations that produce the fixed-points for the Let · · · ← · · · then · · ·

construction terminate in at most ω steps.
5. Satisfaction of EFPL formulas is preserved along homomorphisms.
6. Denotations of EFPL formulas are preserved by the inverse-image parts of

geometric morphisms of topoi.

2.1 Capturing PTime

A famous theorem of Immerman [11] and Vardi [13] asserts that first-order logic
plus the least-fixed-point operator (FO+LFP) captures polynomial time on or-
dered structures. In more detail, consider structures whose base set has the
form {1, 2, . . . , n} and whose vocabulary includes a symbol < interpreted as the
standard ordering of natural numbers. Such structures can easily be coded as
strings over a finite (2-element, if desired) alphabet, so it makes sense to talk
about a collection C of such structures being computable in polynomial time;
there should be a PTime Turing machine accepting exactly (the strings that en-
code) the structures in C. The Immerman-Vardi theorem says that C is PTime
decidable if and only if it is the collection of models of some sentence in first-
order-plus-least-fixed-point logic.

112 A. Blass

It is shown in [6] that the same is true for EFPL provided the collection
of structures is modified in the following way. Instead of having a symbol for
the ordering, the structures should have a symbol for the immediate successor
function S. This modification would make no difference in the case considered
by Immerman and Vardi, because S is definable from < in first-order logic and
< is definable from S using the least-fixed-point operator. In EFPL, only the
second of these definitions is available. Since the notion of immediate successor
is needed in describing the operation of Turing machines, we must assume that
S is available.

It is not difficult to extend the Immerman-Vardi theorem and its EFPL analog
to the case of multi-sorted structures, provided one has appropriate successor
functions on all of the sorts.

We record for future use the trivial observation that these theorems imply that
PTime is also captured, on structures with successor, by any logic intermediate
between EFPL and FO+LFP and indeed by stronger logics as long as these
admit PTime model-checking.

2.2 Hoare Logic and Expressivity

We use [1] as our standard reference for Hoare logic. This logic deals with pro-
grams Π that operate in a first-order structure by modifying the values of some
variables; thus a state of the computation is given by a tuple, listing the values
of the variables of Π . Hoare logic also involves an assertion logic, traditionally
taken to be first-order logic, though Yuri and I have argued in [6,7] that EFPL
is a better choice. (Indeed, this was our original motivation for investigating
EFPL.) The central syntactic construct in Hoare logic is the asserted program,
ϕΠψ where ϕ and ψ are formulas in the assertion logic and Π is a program. The
semantic interpretation of ϕΠψ is that, if Π is started in a state satisfying ϕ and
if the computation terminates, then ψ holds in the final state. (Strictly speak-
ing, this is the partial correctness interpretation; there is also a total correctness
interpretation in which ϕΠψ means that, if Π is started in a state satisfying ϕ,
then it will terminate and ψ will be true in the final state.) In [6] and [7], the
programming language is taken to be the while-language with parameterless
procedure calls as in [1, Sect. 3].

Cook [10] proved a completeness theorem for Hoare logic (given all valid
implications between formulas of the assertion language) provided a certain ex-
pressivity hypothesis is satisfied. That expressivity hypothesis requires that the
assertion logic be able to express the strongest postcondition for any assertion ϕ
and any program Π ; that is, there should be a formula ψ that holds in exactly
those states that result from a terminating computation of Π whose initial state
satisfies ϕ, i.e., exactly where needed to make ϕΠψ true. (An alternative version
of expressivity requires weakest preconditions.) When the assertion logic is first-
order logic, the expressivity hypothesis may or may not be satisfied, depending
on the class of structures under consideration. But, as was proved in [6,7], when
one instead uses EFPL as the assertion logic (and takes as guards in conditional
statements and while-statements the quantifier-free formulas that involve no

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 113

positive predicate symbols), then the expressivity hypothesis needed for Cook’s
theorem is automatically satisfied. It is in this sense that EFPL works well – in
particular works better than first-order logic – with Hoare logic.

2.3 Finite Determination

Theorem 7 of [6] says that truth of EFPL formulas is finitely determined in
the following sense. Suppose an EFPL formula ϕ is satisfied in a structure A
by certain values for its free variables. Then there is a finite subset F of (the
union of the base sets of) A such that ϕ is also satisfied, by the same values
of its free variables, in any structure B that matches A on F , i.e., any B with
B � F = A �F .

In order for structures A to have finite restrictions A �F , it is in general nec-
essary to allow function symbols to be interpreted in A �F as partial functions,
rather than total ones. Alternatively, one can replace n-place function symbols
by (n+1)-place relation symbols. (These modifications of the notion of structure
or of the vocabulary will be useful in the topos-theoretic considerations below.)

In the finite determination result cited from [6], the requirement that B �F =
A �F can be weakened. As it stands, it says that each atomic formula (with
suitable interpretation of function symbols as above) true in either of B � F and
A �F is also true in the other. Although this requirement is certainly needed
for those atomic formulas whose predicate symbol is negatable, only half of it
is needed when the predicate symbol is positive. In the latter case, it suffices to
require that, if the atomic formula is true in A �F , then it is also true in B � F .
The reason is that EFPL truth is preserved when the interpretations of positive
predicate symbols are enlarged.

Another way to view finite determination is that, whenever an EFPL formula
is satisfied in A by certain values for its variables, then this fact is a consequence
of finitely many atomic and negated atomic formulas (with negation used only
when the predicate symbol is negatable) about those values and possibly finitely
many additional elements of A.

2.4 No Transfinite Iteration

An easy consequence of finite determination is that the potentially transfinite
iterations leading to the least fixed-points in the semantics of Let P1(x1) ←
δ1, . . . , Pk(xk) ← δk then ϕ are not really transfinite; they end at stage ω if not
sooner. The reason is that, if a tuple of elements were to enter the interpretation
of one of the Pi’s in the step from ω to ω + 1, then that fact would result, by
finite determination, from information in a finite part of the structure. On that
finite part, the ωth stage of the induction coincides with one of the earlier stages.
Then that tuple would already have entered Pi at the next stage, long before
stage ω.

On an intuitive level, both finite determination and the absence of transfinite
iterations support the idea that EFPL is closely related to computation. At
least, it has the sort of finiteness properties that one would expect from actual
computation.

114 A. Blass

2.5 Homomorphisms

A homomorphism from one Υ -structure A to another B consists of functions hs,
one for each sort symbol s,

– mapping the base sets of A to the corresponding ones of B, i.e.,

hs : As −→ Bs ,

– commuting with the interpretations of function symbols, i.e.,

hs(FA(a1, . . . , an)) = FB(hs1(a1), . . . , hsn(an))

where F has arity s1, . . . , sn −→ s,
– preserving the interpretations of positive predicate symbols in the forward

direction, i.e.,

PA(a1, . . . , an)) =⇒ PB(hs1(a1), . . . , hsn(an)) ,

and
– preserving the interpretations of negatable predicate symbols in both direc-

tions, i.e.,

PA(a1, . . . , an) ⇐⇒ PB(hs1(a1), . . . , hsn(an)) .

That is, a homomorphism must preserve truth of atomic formulas and their
negations insofar as the negations are permitted, i.e., insofar as the predicate
symbols involved are negatable.

Theorem 4 of [6] shows that homomorphisms preserve truth of EFPL formulas.
(The set-up there was one-sorted, but the same proof works in the many-sorted
case.)

2.6 Topoi and Geometric Morphisms

A topos is a category so similar to the category of sets that higher-order logic
can be naturally interpreted in it. (The simplest formal definition merely requires
that the category have finite products, equalizers, and power objects, but many
more constructions are obtainable as consequences of these, for example, all finite
limits and colimits as well as exponentiation [i.e., an object XY of functions from
Y to X]. See [12] for details, or see [3], where the treatment is more oriented
to logic rather than category theory.) Some caution is needed, however, because
the logical principles guaranteed to be valid in topos interpretations are those
of intuitionistic logic, not classical logic.

In more detail, one can define, for any vocabulary Υ , the notion of an Υ -
structure A in a topos E . This consists of

– for each sort symbol s, an object As (to play the role of the base set of
sort s),

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 115

– for each predicate symbol P of arity (s1, . . . , sn), a subobject PA of As1 ×
· · · ×Asn ,

– for each function symbol F of input arity (s1, . . . , sn) and output arity s, a
morphism FA : As1 × · · · ×Asn −→ As,

subject to the requirement that, for negatable predicate symbols P , the inter-
pretation PA must be a complemented subobject of As1 × · · · ×Asn .

Remark 4. In intuitionistic higher-order logic, any subobject X of any object A
has a negation, ¬X , the largest subobject of A disjoint from X (where “disjoint”
means that the pullback is the initial object). But the union of X and ¬X need
not be all of A in general. It is all of A if and only if X is complemented in A,
i.e., some subobject Y of A satisfies X ∩ Y = ∅ and X ∪ Y = A. In view of this
standard terminology in intuitionistic logic, the terminology “complemented”
might have been better than “negatable” in [6], but we do not propose to change
it now.

Among the constructions available in topoi are all those needed to produce
interpretations of terms and formulas of second-order logic over the vocabulary
Υ , once an Υ -structure A is given. Specifically, a term t of sort s with (first-order)
variables among x1, . . . , xn of sorts s1, . . . , sn is interpreted as a morphism

tA : As1 × · · · ×Asn −→ As ,

and a formula ϕ with free variables among x1, . . . , xn of sorts s1, . . . , sn is inter-
preted by a subobject

ϕA ⊆ As1 × · · · ×Asn .

(The interpretation can be extended to higher-order logic, including free vari-
ables of higher types, but we shall not need this extension.) Higher-order in-
tuitionistic logic3 is sound for such interpretations. That is, if a formula ϕ is
a consequence in this logic of some other formulas ψi (all with free variables
among x of sorts s), then ⋂

i

ψA
i ⊆ ϕA

(as subobjects of
∏

As).
Recall, from the end of Sect. 1, that the least-fixed-point constructor can be

expressed in second-order logic. All the other constructors (equality, connectives,
and ∃) of EFPL are among those of second-order (indeed of first-order) logic.
Therefore, EFPL Υ -formulas have interpretations, as above, in Υ -structures in
arbitrary topoi.

These interpretations behave better than those of general second-order formu-
las, in that they are preserved by the inverse-image parts of geometric morphisms
3 The phrase “higher-order intuitionistic logic” is a misnomer as the notion of power

set is probably not acceptable to intuitionists. The phrase is a convenient short-

hand for “type theory, with axioms of extensionality and comprehension, based on

intuitionistic logic.”

116 A. Blass

of topoi. To explain what that means, we first discuss the two sorts of morphisms
commonly used in connection with topoi.

Since topoi are defined as categories with a certain amount of structure (finite
limits and power objects), it is natural to define homomorphisms of topoi to be
functors that preserve this structure. Such homomorphisms are called logical
morphisms because they preserve the interpretations of all formulas of higher-
order logic. That is, if f : E −→ F is a logical morphism and if A is an Υ -
structure in E , then one obtains an Υ -structure f(A) in F by applying f to all
the ingredients of A (base sets As, interpretations PA of predicate symbols, and
interpretations FA of function symbols), and one has

f(ϕA) = ϕf(A)

for all formulas ϕ of higher-order logic.
A different notion of morphism, however, was natural in the earlier, more

geometric theory of topoi developed by Grothendieck (see [2]). Grothendieck
had observed that much of the algebraic topology of a topological space X can
be expressed in terms of the category of sheaves over X and he defined topoi
as generalized sheaf-categories. Further, he defined morphisms between topoi
so that, in particular, the morphisms from the topos of sheaves on X to the
topos of sheaves on Y correspond (as long as X and Y are somewhat reasonable
spaces) to continuous functions from X to Y . Nowadays, topoi in Grothendieck’s
sense are called Grothendieck topoi ; they are a proper subclass of the topoi de-
fined above, often called elementary topoi. Morphisms in Grothendieck’s sense
are called geometric morphisms because of their origin in topological consider-
ations. It turns out that geometric morphisms can be defined not only between
Grothendieck topoi but between arbitrary topoi.

Definition 5. A geometric morphism from a topos E to another topos F is a
pair of functors f∗ : E −→ F and f∗ : F −→ E such that f∗ is right adjoint
to f∗ and f∗ preserves finite limits (equivalently, preserves finite products and
equalizers). f∗ is called the direct-image part of the geometric morphism, and
f∗ is called the inverse-image part.

Unlike logical morphisms, the constituents f∗ and f∗ of geometric morphisms do
not in general preserve the interpretations of higher-order (or even first-order)
formulas. Nevertheless, the inverse image parts f∗ of geometric morphisms have
some good properties with respect to logic. They preserve the interpretation of
existential positive first-order formulas. (In Grothendieck topoi, the same re-
mains true if one allows infinite disjunctions; in general elementary topoi infinite
disjunctions cannot be interpreted because the category may lack the infinite
unions of subobjects that one needs.) Under our convention that negatable pred-
icate symbols must be interpreted by complemented subobjects, f∗ will preserve
the interpretations of all existential first-order formulas. (The point here is that
f∗ need not preserve negations of general subobjects, but in the case of com-
plemented subobjects f∗ will preserve the complement.) Better yet, this preser-
vation property remains correct when the least-fixed-point operator is added to
the logic.

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 117

Proposition 6 ([5]). If (f∗, f∗) : E −→ F is a geometric morphism of topoi, if
A is an Υ -structure in F , and if ϕ is an EFPL Υ -formula, then

f∗(ϕA) = ϕf∗(A) .

3 Implications between Good Behaviors

At the beginning of Sect. 2, we listed six pleasant properties of EFPL. The last
four of these are restrictions on what can be asserted by EFPL formulas. The
fact that they hold for EFPL trivially implies that they hold for all weaker logics,
i.e., all logics whose formulas are all semantically equivalent to EFPL formulas.
(The first two properties in our list, capturing PTime and working well with
Hoare logic, are different in this respect; weaker logics would not in general
share them. But of course the easier half of the first property, the availability
of a PTime model-checking algorithm for each formula, would persist when the
logic is weakened.)

The four listed restrictions on EFPL formulas are not independent of each
other. We already pointed out that finite determination (property (3)) easily
implies that the least-fixed-point recursions end in at most ω steps (property (4)).
In fact, it turns out that preservation by geometric morphisms (property (6))
implies all three of the others. The goal of the present section is to establish
these implications.

In view of the easy implication from (3) to (4), what must be shown is that (6)
implies both (3) and (5). That is, any logic that is preserved by the inverse-image
parts of geometric morphisms of topoi is automatically preserved forward along
homomorphisms and automatically enjoys the finite determination property. We
shall sketch some of the topos-theoretic background needed in these proofs, but
we refer the reader to [12] for a careful and detailed treatment.

A word is in order here about the phrase “any logic” in the preceding para-
graph. We shall use it to refer only to logics that are included in higher-order logic,
because only for such logics is there a standard interpretation in Υ -structures in
topoi. Our proofs, however, will be sufficiently abstract and general to show that,
if some more exotic logic were equipped with an interpretation in Υ -structures in
arbitrary topoi, then the implications we prove would hold for that logic as well.

3.1 Geometric Preservation Implies Homomorphism Preservation

Suppose ϕ is a formula (of higher-order logic) whose interpretation in Υ -structures
is preserved by the inverse-image parts of geometric morphisms of topoi. Suppose
further that ϕ holds of certain elements a (as values for the free variables x) in a
certain Υ -structure A. (Here, as in property (3) of Sect. 2, A is an ordinary, set-
based Υ -structure, not one in some arbitrary topos.) Finally, suppose h : A −→ B
is a homomorphism of Υ -structures. Our goal in this subsection is to prove that ϕ
holds of the elements h(a) in the Υ -structure B. In other words, we seek to prove
that h(ϕA) ⊆ ϕB, where we write simply h for the function on tuples that acts as
h on all components.

118 A. Blass

For this purpose, we consider the Sierpiński topos, the functor category S =
Sets2, where 2 is the category with two objects and one non-identity morphism.
This means that an object in S amounts to a diagram A

f−→ B consisting of a
single function between two sets. A morphism in S from one such object A

f−→ B

to another A′ f ′
−→ B′ is a commutative diagram

A
f−→ B

↓ ↓
A′ f ′
−→ B′ .

To deal with Υ -structures in S, one must understand the category-theoretic
notions of product, subobject, and complementation used in the definition. For-
tunately, these turn out to be quite easy. The product of several objects of the
form A

f−→ B consists of the product of the A’s, the product of the B’s, and
the function induced componentwise by the f ’s. A subobject of A

f−→ B is (up

to isomorphism) X
f � X−→ Y where X ⊆ A and f(X) ⊆ Y ⊆ B. This subobject is

complemented if and only if f(A−X) ∩ Y = ∅, in which case the complement

is A −X
f �(A−X)−→ B − Y . (From now on I’ll omit the restriction notation over

the arrows and just write f .) In general, even if X
f−→ Y is not complemented

in A
f−→ B, its negation is f−1(B − Y)

f−→ B − Y .
With these observations in place, it is easy to check that an Υ -structure in

S amounts to two Υ -structures (in the ordinary set-based sense) and a homo-
morphism between them. In particular, for a negated predicate symbol, the re-
quirement that its interpretation in a topos-based structure be complemented
corresponds exactly to the requirement that a homomorphism preserve the pred-
icate not only in the forward direction but also backward.

The Sierpiński topos has two geometric morphisms from the topos Set of sets.
Their inverse-image parts (which are the parts of interest for us) are the domain
functor D∗ and the codomain functor C∗, sending A −→ B to A and to B,
respectively. The actions on morphisms just extract the left and right vertical
arrows from the commutative square above. (The direct-image parts D∗ and C∗
send any set X to the unique map X −→ 1 and the identity map X −→ X ,
respectively, and act in the obvious way on morphisms.)

With these preliminaries, we are ready to return to the situation where a
formula ϕ is preserved by the inverse-image parts of geometric morphisms and
we want to prove that it is also preserved by homomorphisms h : A −→ B

between (ordinary, set-based) Υ -structures. The given A
h−→ B is an Υ -structure

in S; call it H for short. To further simplify notation, let s be the list of sorts of
the variables in ϕ for which a are the values, and write As for the product of the
interpretations of these sorts in A; similarly for Bs. Then the interpretation of ϕ

in H is a subobject ϕH = (X h−→ Y) of As
h−→ Bs. It remains only to combine

the following three facts:

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 119

– h(X) ⊆ Y , because X
h−→ Y is an object of S.

– X = D∗(ϕH) = ϕD∗(H) = ϕA because D∗ preserves the interpretation of ϕ.
– Y = C∗(ϕH) = ϕC∗(H) = ϕB because C∗ preserves the interpretation of ϕ.

Thus, we get that h(ϕA) ⊆ ϕB, as required.

Remark 7. With a little additional work, essentially the same argument shows
that the interpretation of ϕ is also preserved forward along homomorphisms
between Υ -structures in arbitrary topoi. The additional work arises because we
have used the fact that, in Sets, all subobjects are complemented. In general, if S
is the Sierpiński topos over some other topos E , a subobject X

f−→ Y of A
f−→ B

is complemented if and only if X is complemented in A, Y is complemented in
B, and f maps the complement of X into the complement of Y (and of course

maps X into Y , since X
f−→ Y is an object in S).

3.2 Geometric Preservation Implies Finite Determination

In this subsection, we shall show that the finite determination property of EFPL
(property (3) in Sect. 2) is a consequence of preservation by inverse-image parts
of geometric morphisms. This result was stated at the end of [4] but the proof
was not published.

The proof involves part of the theory of classifying topoi, and we begin by
sketching that part. For more details, see [12].

Recall that, in the discussion of finite determination in Sect. 2, as well as in [6],
it was convenient to either allow function symbols to be interpreted by partial
functions or replace function symbols by predicate symbols (of higher arity). The
purpose was to ensure the existence of finite substructures. Accordingly, we shall
also assume in the present subsection that Υ is a purely relational vocabulary,
i.e., that there are no function symbols (except possibly 0-ary ones, i.e., constant
symbols). At the end, we shall also comment on the alternative approach that
uses partial functions.

For simplicity, we also assume that the vocabulary Υ is finite – only finitely
many sorts, predicate symbols, and constant symbols.

We need the notion of classifying topos for Υ -structures. Were it not for the
distinction between positive and negatable predicate symbols, this notion would
be part of the standard theory developed in [12], and it could be summarized
as follows. Temporarily pretend that all the predicate symbols in Υ are positive
and can therefore be interpreted, in models in topoi, by arbitrary subobjects,
not necessarily complemented. Let M be the category of finite Υ -structures
(in the ordinary, set-based sense) and homomorphisms. To avoid irrelevant set-
theoretic issues, include in M only those structures whose base sets consist of
natural numbers; of course every finite Υ -structure is isomorphic to one of these.
Let C = SetsM be the category of functors from M to Sets. Like any functor
category of the form SetsA for any small category A, this is a topos.

Among its objects are the “base sets” functors, Gs :M−→ Sets, one for each
sort s in Υ ; Gs sends any Υ -structure A ∈ M to its base set As for sort s (and

120 A. Blass

acts in the obvious way on homomorphisms). These functors Gs constitute the
interpretations of the sorts in an Υ -structure G in the topos C. The interpretation
PG of a predicate symbol P is the functor sending each Υ -structure A ∈ M
to its interpretation PA of P . Thus, G can be described as a “tautological”
model in C; each of its constituents (interpretations of sorts or of predicates) is a
functor M−→ Sets whose value at any structure A ∈ M is the corresponding
constituent of A.

This G has the following universal property among Υ -structures. Any Υ -
structure A in any Grothendieck topos E is f∗(G) for a unique (up to natural
isomorphism) geometric morphism f : E −→ C. This property4 is expressed by
saying that C is the classifying topos for Υ -structures and G is the generic or
universal Υ -structure. See [12, Chapter 6] for details, with considerable simpli-
fications because our Υ has no function symbols and because we are classifying
(for now) arbitrary Υ -structures, not only the models of some geometric theory.

The preceding discussion of the classifying topos for Υ -structures was based
on our temporary assumption that all predicate symbols are positive. We now
consider the changes needed when some of the symbols are negatable and must
therefore be interpreted as complemented subobjects. Only in very special cases
will the G above satisfy this requirement.

The simplest way to view the situation with a negatable predicate symbol P
is that there is, in effect, another predicate symbol P ′, of the same arity, repre-
senting the negation of P . We then regard both P and P ′ as positive symbols,
but we impose the logical axioms

∀x
(
P (x) ∧ P ′(x) =⇒ false

)
and

∀x
(
true =⇒ P (x) ∨ P ′(x)

)
which require the interpretations of P and P ′ to be complementary.

Fortunately, there are standard methods for constructing classifying topoi and
generic models for systems of axioms of these forms – universally quantified im-
plications between existential positive formulas. The job is easier for the first
form, the axiom saying P and P ′ are disjoint, because this is a universal Horn
sentence. The classifying topos for models of such axioms is, as before, a functor
category C = SetsM where M is now the category of finite models (again in the
ordinary, set-based sense) of the universal Horn theory in question. So in our
situation, the structures in M would be Υ -structures equipped with interpreta-
tions of the additional symbols P ′ for all negatable P in Υ , and subject to the
requirement that the interpretations of P and P ′ be disjoint. The generic model
is, as before, the tautologous model whose constituent functors (interpreting the
sorts and predicates) take models inM to their constituents. For proofs of these
assertions, see [8, Sect. 1].
4 Strictly speaking, the property should be stated in a stronger form taking morphisms

into account: For any topos E , the category of geometric morphisms f : E −→ C and

natural transformations (of their inverse-image parts) is equivalent to the category

of Υ -structures in E , one direction of the equivalence being evaluation of f∗ at G.

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 121

The second form of axioms, saying that every tuple (of the appropriate sorts)
satisfies one of P and P ′, is not a Horn sentence, because of the disjunction in
the consequent of the implication. In this situation, the standard technique for
constructing classifying topoi would not produce a functor category as above
but rather a subcategory of sheaves. For this discussion, we must therefore pre-
suppose some information about sheaf topoi; at the end, it will turn out that we
can, after all, use a functor category, but justifying this assertion requires some
discussion of sheaves. The reader unfamiliar with sheaves could either consult
[12] for the necessary information or skip the following discussion of sheaves,
rejoining us at Proposition 8.

Each of the axioms

∀x
(
true =⇒ P (x) ∨ P ′(x)

)
under consideration (one for each negatable predicate symbol P in Υ) contributes
a sieve to a Grothendieck topology J on Mop, the dual category of M. To
describe the sieve associated to the axiom for P and P ′, let 〈x〉 be the Υ -structure
with one element ẋi for each variable5 xi in the list x, plus other elements
serving as the values of any constant symbols in Υ , and with all predicates
interpreted as empty. (Note that, although the interpretations of P and P ′ won’t
be complementary, they will satisfy the universal Horn sentence saying they’re
disjoint. So this structure is in M.) Let 〈x : P (x)〉 be defined similarly except
that P holds of exactly one tuple, namely ẋ. Define 〈x : P ′(x)〉 analogously. The
two obvious homomorphisms (given, as functions, by the identity map)

〈x〉 −→ 〈x : P (x)〉 and 〈x〉 −→ 〈x : P ′(x)〉

generate a sieve SP on 〈x〉 in Mop. Let J be the Grothendieck topology gen-
erated by these sieves SP for all negatable predicate symbols P of Υ . By the
general theory of classifying topoi (as in [12]), the category of J-sheaves serves
as the classifying topos for Υ -structures in the original sense, with negatable
predicates interpreted as complemented subobjects. The generic Υ -structure is
the associated sheaf of the G ∈ SetsM that served as the generic model for just
the universal Horn axioms.

It turns out that this description of the classifying topos for Υ -structures can
be simplified. For this purpose, let us first observe that, according to the defi-
nition of “Grothendieck topology,” J contains various additional sieves, beyond
the generating sieves SP .

In the first place, because Grothendieck topologies are closed under pullbacks
(and pullbacks in Mop are, of course, pushouts in M), we have the following
additional coverings. Suppose A is an object of M, so it interprets P and P ′ as
disjoint but perhaps not complementary subobjects of the appropriate As, and
suppose that there really is a tuple a ∈ As satisfying neither P nor P ′. Let A+

5 It would do no harm to omit the dots and take the variables themselves as elements

of the structure. We use the dot only to avoid any possible confusion between the

syntactic role of variables and the semantic role of elements of a structure.

122 A. Blass

be exactly like A except that this one tuple a now satisfies P ; similarly, let A− be
exactly like A except that a now satisfies P ′. Then the pair of homomorphisms
given by identity maps

A −→ A+ and A −→ A−

generates a sieve on A that is the pullback (in Mop) of SP along the homomor-
phism 〈x〉 −→ A that sends ẋ to a. So this pair covers A.

This argument can be iterated, i.e., it can be applied to other tuples that
satisfy neither P nor P ′ in A (and therefore also in A±) as well as to other
negatable predicate symbols. Because, in a Grothendieck topology, covers of
covers are covers (and because both Υ and A are finite), we find that A is covered
(in the topology J on Mop) by homomorphisms (in M) from A to objects of
M in which, for every negatable predicate symbol P and for every tuple a of
the appropriate arity, either P (a) or P ′(a) holds. In other words, every object
is covered by homomorphisms to genuine Υ -structures.

In this situation, Grothendieck’s “Lemme de comparaison” [2, III.4.1] applies
and tells us that the topos of J-sheaves over Mop is equivalent to the topos of
sheaves on the full subcategory M∗op of genuine finite Υ -structures, with the
topology induced by J . Furthermore, it is easy to see that this induced topology
is trivial; any object is covered only by the sieve of all morphisms to it. Thus,
the category of sheaves reduces to the category of presheaves on M∗op, i.e., the
functor category SetsM

∗
.

Notice also that, among objects in M∗, the homomorphisms as defined in M
are, in fact, homomorphisms of Υ -structures. That is, they preserve negatable
predicates P not only forward but also backward. This is simply because they
preserve P ′ forward.

We summarize the result of this sheaf discussion, adding some easily checked
information about the generic model.

Proposition 8. The classifying topos for Υ -structures is the functor category
SetsM

∗
where M∗ is the category of finite Υ -structures and homomorphisms.

The generic Υ -structure is the one whose constituents (interpretations of sorts
and predicates) are the functors that send each finite Υ -structure A to its corre-
sponding constituents in Sets.

With this description of the classifying topos for Υ -structures and the generic
structure, we are ready to prove the main result of this subsection.

Theorem 9. Let ϕ(x) be a formula of higher-order logic whose interpretations
in Υ -structures in Grothendieck topoi are preserved by the inverse-image parts
of geometric morphisms. Let Φ be the set of all those Υ -formulas α(x,y) such
that

– α(x,y) is a conjunction of atomic formulas and negations of atomic formulas
(where the list y of variables can be different for different α’s) and

– α(x,y) implies ϕ(x) in all ordinary, set-based Υ -structures.

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 123

Then the sentence

∀x

⎛⎝ϕ(x) ⇐⇒
∨

α(x,y)∈Φ

∃yα(x,y)

⎞⎠ (1)

is valid in all Υ -structures in all Grothendieck topoi. In particular, it is valid in
all ordinary, set-based Υ -structures.

The conclusion (1) of this theorem asserts that, whenever ϕ(x) is satisfied by
some elements of an Υ -structure, it is “because” those elements and finitely
many others satisfy some quantifier-free information α(x,y) that guarantees the
truth of ϕ(x). That is, we have finite determination as described in Sect. 2. And
the theorem says that this will happen for any ϕ(x) that is preserved by the
inverse-image parts of geometric morphisms.

In connection with the definition of Φ, note that α is required to be an Υ -
formula, so negation will be applied only to atomic formulas whose predicate
symbol is negatable.

Proof. The proof proceeds in three phases, each establishing the equivalence (1)
in certain circumstances.

In phase 1, we observe that (1) holds in all finite (ordinary, set-based) Υ -
structures. The right-to-left implication is immediate from the definition of Φ.
As for the left-to-right implication, consider any finite Υ -structure A and any
tuple a of elements in it such that A satisfies ϕ(a). Let b be a list (without
repetitions) of all the elements of the base sets of A. Note that this is a finite
list because, in phase 1, we are dealing with a finite structure A. Let α(x,y) be
the conjunction of all the atomic formulas and negated atomic Υ -formulas that
are satisfied in A by the tuple (a,b). There are only finitely many conjuncts
here, because Υ has no function symbols and only finitely many predicate and
constant symbols.

I claim that α(x,y) ∈ Φ. Once this claim is proved, we will know that the
elements a satisfy in A the disjunct ∃y α(x,y) on the right side of (1), so the
proof for phase 1 will be complete.

To verify the claim, suppose our α(x,y) is satisfied by some tuple (a′,b′) in
some Υ -structure B. It is easy to check that, by sending each element in the list
b (i.e., each element of any of the base sets of A) to the coresponding element
in b′, we define a homomorphism h : A −→ B that satisfies h(a) = a′. Indeed,
the fact that (a′,b′) satisfies the equations in α(x,y) ensures that h(a) = a′,
while satisfaction of the other conjuncts in α(x,y) is exactly what is needed to
ensure that h is a homomorphism. Having already shown, in Subsection 3.1, that
ϕ must be preserved by homomorphisms, we know that B satisfies ϕ(a′). This
completes the verification of the claim and thus phase 1 of the proof.

In phase 2, we establish that the equivalence (1) is valid in the generic Υ -
structure G in the classifying topos SetsM

∗
. Note that, because (1) has no

free variables, its interpretation is a subobject of the empty product 1 (i.e., the
interpretation is a truth value); we shall show that this interpretation is all of

124 A. Blass

1 (i.e., the truth-value true). For this purpose, we shall apply the assumption
that ϕ(x) is preserved by the inverse-image functors of geometric morphisms.

The relevant inverse-image functors for this phase of the proof are the evalu-
ation functors E∗

A, one for each object A of M∗. These functors from SetsM
∗

to Sets are defined by
E∗

A(X) = X(A)

for all objects X of SetsM
∗
, i.e., all functors X :M∗ −→ Sets. It is well known

[12] and easy to check that E∗
A is the inverse-image part of a geometric morphism;

its right adjoint is the functor EA∗ : Sets −→ SetsM
∗

defined by

EA∗(S)(B) =
= set of functions to S from the set of homomorphisms B −→ A .

Applying the definition of E∗
A with the (tautological) constituents of the generic

G in the role of X , we find that

E∗
A(G) = A

for all objects A of M∗, i.e., for all finite Υ -structures A. We know that, like the
inverse-image part of any geometric morphism, E∗

A preserves the interpretation
of ϕ(x). It also preserves the interpretation of all the α’s that occur in (1). In-
deed, interpretations of atomic formulas and their complements are preserved,
according to the definition of how inverse-image functors act on Υ -structures,
and conjunctions are preserved because inverse-image functors preserve finite
limits. Furthermore, the existential quantifiers and the (in general infinite) dis-
junction in (1) are preserved because inverse-image functors, having right ad-
joints, preserve all colimits, and so preserve images and joins (even infinite joins)
of subobjects.

Consider the interpretations in G (in the topos SetsM
∗
) of the two sides

of the biconditional in (1), ϕ(x) and the big disjunction. On the left we have
ϕ(x)G and on the right we have another subobject D of the relevant product
Gs. For any finite (ordinary, set-based) Υ -structure A, the functor E∗

A sends
these two subobjects to ϕA and the interpretation in A of the right side of the
biconditional in (1). We have shown in phase 1 that these two subobjects are the
same. Since this holds for every object A in M∗, we have that ϕ(x)G and D are
two subobjects of Gs in the functor category SetsM

∗
that have the same values

at every A in M∗. That makes them the same functor and thereby shows that
(1) holds (i.e., has interpretation 1) in G. This completes phase 2 of the proof.

Finally, in phase 3, we prove the full conclusion of the theorem. Let A be
an arbitrary Υ -structure in an arbitrary Grothendieck topos E . Because G is
the generic Υ -structure, there is a geometric morphism f : E −→ SetsM

∗
such

that A = f∗(G). As in phase 2, we have that f∗ preserves the interpretations
of both sides of the biconditional in (1). Since the two sides have, according to
phase 2, the same interpretation in G (in SetsM

∗
), it follows immediately that

they have the same interpretation in A (in E). That completes the proof of the
theorem. �

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 125

Remark 10. As indicated in Sect. 2, prohibiting function symbols (except con-
stants) is not the only way to ensure the existence of enough finite structures
as needed for finite determination. An alternative is to allow function symbols
but to modify the definition of Υ -structure so that function symbols can be
interpreted as partial functions.

To obtain a classifying topos for Υ -structures in this sense, it is convenient to
temporarily regard the (partial) function symbols as relation symbols subject to
logical axioms of the form

∀x∀y ∀z
(
(F (x, y) ∧ F (x, z)) =⇒ x = y

)
.

Since these axioms are universal Horn sentences, the classifying topos is, ac-
cording to a result from [8] already used above, the topos of functors from the
category M of models (in the new sense, with partial functions) to Sets.

With this classifying topos, we can proceed as above to incorporate the re-
quirement that negatable predicate symbols be interpreted by complemented
objects, and the rest of the results of this subsection work as before.

4 Negation and Universal Quantification – Closed Worlds

In this section we consider EFPL as a database query language and try to elu-
cidate its intuitive meaning.

For computational considerations, the most important properties of EFPL are
probably its capturing PTime (property (1) in Sect. 2) and its good behavior with
Hoare logic (property (2)). But we shall be concerned here with more general
properties of the queries expressible in EFPL, properties best seen by thinking
about preservation by homomorphisms (property (5) in Sect. 2).

Homomorphism preservation means that, if a database (= structure) produces
a positive answer to an EFPL query, then it will continue to do so if new elements
are added and also if the relations that interpret the positive predicate symbols
are increased, but not (in general) if the interpretations of negatable predicates
are modified.

One way to view this situation is to regard the database as a possibly incom-
plete description of some reality. The elements of the database are (or represent)
some elements of the real world, but the real world may well have additional
elements of which the database is entirely ignorant. If a predicate P holds of
some elements a in the database, this means that the corresponding relationship
obtains between these elements in the real world, but again it might happen that
P holds of some elements a in the real world without the database knowing that
fact – even if it is aware of the elements a themselves. So adding new elements
to the database or adding new tuples to the relations that interpret predicate
symbols can bring the database closer to reality. From this point of view, it is
reasonable that such improvements of the database should not invalidate any
positive answers that it has already given.

What is the role of negatable predicates in this picture? Formally, their in-
terpretations should not be increased by adding tuples when the components

126 A. Blass

of those tuples were already present; such a change risks invalidating earlier
positive answers to EFPL queries. Intuitively, this means that the database’s
information about these negatable predicates is complete, at least insofar as
the elements present in the database are concerned. In other words, we have a
closed-world assumption for these predicates: If the tuple a is available in the
database but doesn’t satisfy P there, then this means that a doesn’t satisfy P
in reality. (Contrast this with the situation for positive predicates, where P (a)
could fail in the database while it holds in reality, if the database simply lacked
this bit of information.)

Thus, our distinction between negatable and positive predicate symbols for-
malizes the distinction between predicates to which such a closed-world assump-
tion applies and others to which it does not apply.

Given this idea, it is natural to also consider another sort of closed-world
assumption, one which says that the database is aware of all the elements of
a certain sort; no additional elements can be added. (We formulated EFPL
in a multi-sorted framework in order to be able to impose this closed-world
assumption on only some sorts rather than on the entire database.) Such a
closed-world assumption is not formalized in EFPL; homomorphisms can lead
to new elements in any sorts. A closed-world assumption for a sort s should be
reflected formally in a requirement that homomorphisms be surjective on the
base sets of sort s. This restriction on the allowed homomorphisms would be
reflected in a liberalization of the language; with fewer homomorphisms, we can
expect them to preserve more formulas.

In fact, there is a very familiar way to extend the language so as to retain
preservation properties for surjective homomorphisms but not for others: Al-
low universal quantification. This leads to the following proposal for extending
EFPL.

A vocabulary should say which (if any) of its sorts are closed ; the others are
then called open. The syntax is extended by allowing universal quantification of
variables of closed sorts. The semantics is the obvious one, familiar from first-
order logic, in the case of set-based structures. The semantics in structures in
topoi is perhaps not obvious but it is well-known. As indicated earlier, higher-
order intuitionistic logic is interpreted in topoi [3,12], and that certainly includes
first-order universal quantification.

Of course, it is easy to propose a new logic, especially such a slight variation
of a known one. But does this extension preserve any of the nice properties of
EFPL? That is the topic of the next section.

5 Geometric Preservation

In this section, we consider the pleasant properties of EFPL listed in Sect. 2 and
analyze what happens to them when we introduce universal quantification over
some sorts, the closed ones.

Of course there is no problem when the pleasant property is one that says
the logic is rich enough for some purpose; we have only made it richer. Thus,

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 127

for example, we certainly retain the “richness” half of capturing PTime; every
Ptime computable property of structures with successor was expressible in EFPL
and therefore is expressible in the extension by ∀ on closed sorts. The other
half of capturing PTime, namely the availability of PTime model-checking for
each formula, could be lost by enlarging the logic, but it is not lost in the
present enlargement. The reason is that, even with ∀ adjoined, our logic is still
a fragment of first-order-plus-least-fixed-point logic, which captures PTime by
the Immerman-Vardi theorem.

The good behavior of EFPL in relation to Hoare logic is also quite safe under
the present extension. Inspection of the relevant arguments in [6,7] shows that
they depend only on the availability of the least-fixed-point construction, exis-
tential quantification, and some connectives, not on the unavailability of other
things like universal quantification.

The remaining four properties of EFPL listed in Sect. 2 can, however, be
lost when we introduce ∀ on closed sorts. In one case, preservation by homo-
morphisms, this loss is intentional. We introduced ∀ in order to match a more
restrictive notion of homomorphism, surjective on the closed sorts. With this
modified notion of homomorphism, this preservation property revives.

Finite determination is lost even for the simplest case, the formula ∀xP (x), if
the base set of the sort of x is infinite. The fact that all infinitely many elements
of this base set satisfy P is obviously not a consequence of information about any
finitely many of them. To revive finite determination, we would have to require
that closed sorts be interpreted by finite base sets.

If universal quantification is allowed over infinite sets then the iterations lead-
ing to least fixed points can continue for any ordinal number of steps. An example
was given at the end of [6] where, in an arbitrary wellordering, the elements are
added in order, one at a time in the iteration.

Finally, we consider preservation by inverse-image parts of geometric mor-
phisms of topoi. Here again, preservation can fail in general but will hold if the
interpretations of the closed sorts satisfy an appropriate restriction, related to
finiteness but considerably weaker.

Remark 11. How can it be weaker? We saw in Subsection 3.2 that geometric
preservation implies finite determination, and a moment ago we saw that fi-
nite determination trivially fails unless closed sorts are finite. Therefore mustn’t
geometric preservation also fail unless the closed sorts are finite?

The fallacy in this argument is that the proof in Subsection 3.2 used geometric
preservation for topoi like the classifying topos SetsM

∗
when proving finite

determination in other (arbitrary) topoi. It is entirely possible that a weaker
condition than finiteness, applied to the generic model in the classifying topos,
may imply finiteness elsewhere, for example in Sets.

In order to discuss the conditions under which universal quantification over a set
(the interpretation As of a sort s in an Υ -structure A) is preserved by the inverse-
image parts of geometric morphisms, we must first recall the topos-theoretic
interpretation of universal quantification. Consider a formula ϕ(x) of the form
∀y ψ(x, y). Let s be the sort of the universally quantified variable y, and let

128 A. Blass

r be a list of the sorts of the other variables x. So the interpretation, in an Υ -
structure A in a topos E , of ϕ(x) is a certain subobject X of Ar, and similarly the
interpretation of ψ(x, y) is a subobject Y of Ar ×As. The relationship between
these two subobjects is that X is the largest subobject of Ar whose inverse image
(i.e., pullback) p−1(X) along the projection p : Ar × As −→ Ar is included in
Y . The question we intend to answer here is under what circumstances will this
relationship between X and Y be preserved by the inverse-image part f∗ of an
arbitrary geometric morphism f : F −→ E .

In fact, we shall answer the question in a more general context, where univer-
sal quantification is not necessarily along a product projection p but along an
arbitrary morphism in E . Specifically, suppose that p : L −→ M is a morphism
in E , that Y is a subobject of L, and that X is the largest subobject of M
whose pullback p−1(X) is included in Y . Under what circumstances is this situ-
ation preserved by the inverse-image parts f∗ of arbitrary geometric morphisms
f : F −→ E? That is, when can we guarantee that f∗(X) is the largest subob-
ject of f∗(M) whose pullback along f∗(p) is included in the subobject f∗(Y) of
f∗(L)? (To see that the general question subsumes the question in the previous
paragraph, one implicitly uses that f∗ preserves finite products.)

A considerable part of the answer follows easily from the fact that f∗ preserves
finite limits and arbitrary colimits. This fact implies that f∗(X) and f∗(Y) are
subobjects of f∗(M) and f∗(L), respectively, that the pullback of f∗(X) along
f∗(p) is f∗ of the pullback of X along p, and that this is a subobject of f∗(Y).
The only real question is whether f∗(X) is the largest subobject of f∗(M) with
this pullback property. That is, given a subobject Z of f∗(M) in F , whose
pullback along f∗(p) is included in f∗(Y), can we conclude that Z is included
in f∗(X)?

The problem can be simplified by observing that the notion of “subobject of
M whose pullback along p is included in Y ” can be described by an internal
geometric theory (in propositional logic) in E and thus has a classifying topos H
over E . This means that there is a geometric morphism u : H −→ E and there is
a subobject G of u∗(M) in H such that

– the pullback of G along u∗(p) is a subobject of u∗(Y), i.e., u∗(p)−1(G) ⊆
u∗(Y), and

– whenever f : F −→ E is a geometric morphism and Z ⊆ f∗(M) in F satisfies
f∗(p)−1(Z) ⊆ f∗(Y), then there is a geometric morphism g : F −→ H
(unique up to natural isomorphism) such that u ◦ g = f and g∗(G) = Z.

It follows that our question, about arbitrary f : F −→ E , reduces to the same
question about the single geometric morphism u : H −→ E . Indeed, if we can
infer from the information we have about G that G ⊆ u∗(X), then we can also
infer, for any Z as above, that

Z = g∗(G) ⊆ g∗(u∗(X)) = (u ◦ g)∗(X) = f∗(X) .

Our problem is thus reduced to finding the conditions on L, M , and p that
ensure G ⊆ u∗(X). To solve this problem, we need to take a closer look at the

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 129

construction of the classifying topos H and the generic object G. We shall use a
standard construction of classifying topoi, as in [12], with E as the base topos.
That is, we shall work in the internal logic of E , just as one would ordinarily
work in the “real world” of Sets.

Working in E requires some caution, because the internal logic of a topos
is intuitionistic. In our situation, one manifestation of intuitionistic logic will
be that we must be careful with the concept of finiteness. There are various
equivalent ways to define “finite” in ordinary set theory, but the proofs of their
equivalence use classical logic (and in some cases even the axiom of choice).
So the definitions are inequivalent intuitionistically. It turns out that the right
definition for our purposes, i.e., the definition that makes the usual construction
of classifying topoi work, is what is usually called K-finiteness, but we shall call it
finiteness because we have no need for any other version of finiteness. According
to this definition, a subset F of a set S is finite if it belongs to every family X
of subsets of S such that

– ∅ ∈ X and
– X ∪ {s} ∈ X for all X ∈ X and all s ∈ S.

In more anthropomorphic terms, F is finite if it can be obtained by starting with
the empty set and repeatedly adjoining single elements of S.

Until further notice, the following discussion takes place in the internal logic
of E . Here L and M are sets, Y and X are subsets, and p is a function.

To begin the study of the classifying topos H, we first write, as a geometric
theory, what it should classify, namely subsets of M whose pre-image along p
is included in Y . Subsets of M amount to models of the theory consisting of
propositional variables m� for all m ∈M ; the truth value assigned by a model to
m� tells to what extent m is in the corresponding subset of M . The requirement
that the pre-image of this subset be included in Y amounts to a geometric theory
that the corresponding model must satisfy, namely the theory whose axioms are,
for each l ∈ L,

p(l)� =⇒
∨
{true : l ∈ Y } .

The (rather peculiar-looking) disjunction on the right is a disjunction of at most
one formula, namely the formula true; this formula is present if and only if l ∈ Y .
(If the logic were classical, there would be one disjunct, true, when l ∈ Y and
none, so that the disjunction is false, when l /∈ Y . Intuitionistically, though,
those two cases need not be exhaustive.) This disjunction has, regardless of the
truth values assigned to the propositional variables, the same truth value as the
statement l ∈ Y . We have written it as a disjunction to fit the general format
of geometric theories and thus to enable us to apply the standard method for
building classifying topoi of geometric theories.

That general method produces a topos of sheaves as follows. Begin with the
partially ordered set Fin(M) of finite subsets of M , ordered by reverse inclusion,
and make it into a category, still called Fin(M), in the usual way: Objects are the
elements of Fin(M) and there is a single morphism c −→ d if and only if c ⊇ d.
(This is the dual of the category of finitely presented models and homomorphisms

130 A. Blass

for the geometric theory consisting of all our propositional variables m� but
none of our axioms.) Each element l of L determines a sieve Sl on the object
{p(l)} as follows. The sieve contains every morphism into p(x) if and only if
l ∈ Y . (Classically, the sieve would be the trivial sieve of all morphisms into
{p(l)} or the empty sieve, according to whether l ∈ Y or l /∈ Y ; but again,
intuitionistically, we do not know that these alternatives are exhaustive.) Note
the following unusual property of the sieves Sl: if Sl contains some morphism
into {p(l)}, then it contains all morphisms into {p(l)}. (It is tempting to say
that Sl contains all or none of the morphisms into p(l), but this formulation
presupposes classical logic and is intuitionistically too strong.)

Let J be the smallest Grothendieck topology on Fin(M) that contains all these
sieves Sl. Then the classifying topos H is the topos of J-sheaves on Fin(M). We
shall need the following explicit description of the topology J , or at least of the
sieves that cover a singleton {m} ∈ Fin(M). Of course there are the sieves Sl

described above, for all l ∈ p−1{m}, and all sieves that are supersets of these. But
there are more, because of the closure conditions on Grothendieck topologies.
Closure under pullbacks doesn’t yield any new covers for singletons (though it
does yield covers for larger finite subsets of M). But new covers of {m} do arise
from closure under iteration, i.e., from the requirement that, if S covers {m} and
if T is a sieve on {m} whose pullback along every d −→ {m} in S covers d, then
T covers {m}. Starting with the sieves Sl and repeatedly using this iteration
closure, we find that J contains, for each m ∈ M , all the sieves described in the
following definition.

Definition 12. Let m ∈ M . By induction on natural numbers n, we define
sieves on {m} of rank ≤ n as follows. The only sieve of rank ≤ 0 is the sieve of
all morphisms into {m}, i.e., the sieve generated by the identity map of {m}. A
sieve S on {m} has rank ≤ n + 1 if there is a sieve T of rank ≤ n and there is
l ∈ p−1{m} such that if l ∈ Y then T ⊆ S.

It may be helpful to write out explicitly the first two steps of this induction. S
has rank ≤ 1 if and only if

∃l ∈ p−1{m}
(
l ∈ Y =⇒ 1{m} ∈ S

)
.

That is, S includes a sieve of the form Sl. S has rank ≤ 2 if and only if

∃l1 ∈ p−1{m}
(
l1 ∈ Y =⇒

(
∃l2 ∈ p−1{m} (l2 ∈ Y =⇒ 1{m} ∈ S)

))
.

Note that, if S has any rank n, then, just as in the case of the original Sl’s, if S
contains some morphism into {m}, then it contains all such morphisms.

It is routine to verify that the J-covering sieves of {m} are just those that
have some rank.

With this description of J , we can begin to characterize the circumstances
under which the generic subset-of-M -with-preimage-in-Y G in H is included in
u∗(X). The requirement is that, for each m ∈ M , the truth value of m ∈ G is
below the truth value of m ∈ u∗(X). These truth values are the J-closures of the

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 131

corresponding truth values in the presheaf topos SetsFin(M)op . Since J-closure is
an idempotent and monotone operation, this is the same as requiring the truth
value of m ∈ G in the presheaf topos to be below the J-closure of the truth
value, in the presheaf topos, of m ∈ u∗(X).

In the presheaf topos, the truth value of m ∈ G is the sieve (on the terminal
object ∅) generated by the object {m} (or, more precisely, generated by the
morphism {m} −→ ∅). The truth value of m ∈ u∗(X) is the sieve T (again on
∅) that contains each morphism to ∅ if and only if m ∈ X . So the requirement
that we want to analyze is that the morphism {m} −→ ∅ is in the J-closure
of T . That is equivalent to requiring 1{m} to be in the pullback to {m} of the
J-closure of T , and the latter is the J-closure of the pullback of T . The pullback
of T to {m} contains each morphism with codomain {m} if and only if m ∈ X .
Using this information and the description above of J-covering sieves, we can
express the requirement that we want to analyze as the disjunction of an infinite
sequence of statements ρn defined as follows.

For fixed m ∈ M let ρ0 be the statement m ∈ X and let ρn+1 be the statement

∃l ∈ p−1{m} (l ∈ Y =⇒ ρn) .

Again, it seems useful to explicitly exhibit ρ1

∃l1 ∈ p−1{m} (l1 ∈ Y =⇒ m ∈ X)

and ρ2

∃l1 ∈ p−1{m}
(
l1 ∈ Y =⇒ ∃l2 ∈ p−1{m} (l2 ∈ Y =⇒ m ∈ X)

)
.

Summarizing the preceding discussion, we have:

Theorem 13. For any Grothendieck topos E and any morphism p : L −→ M
in E, the following two statements are equivalent.

– The inverse-image parts of all geometric morphisms into E preserve universal
quantification along p.

– For each Y ⊆ L, one of the statements ρn above, with X interpreted as the
universal quantification of Y along p, is valid in E.

In particular, we have the following corollary for the case where p is a projection
from a product to one of its factors, for example the Ar×As −→ Ar that started
this discussion.

Corollary 14. For any Grothendieck topos E and any object A in it, the fol-
lowing are equivalent.

– Universal quantification along projections M ×A −→M is preserved by the
inverse image parts of all geometric morphisms F −→ E.

– For each subobject Y ⊆ A, the following statement is valid in E for some n:

∃l1 ∈ A
(
l1 ∈ Y =⇒ ∃l2 ∈ A

(
l2 ∈ Y =⇒ . . .

. . . =⇒ ∃ln ∈ A (ln ∈ Y =⇒ ∀x ∈ Ax ∈ Y)
))

. (2)

132 A. Blass

Several comments are in order about this result. First, the formula (2) for n = 1
is logically valid in classical logic. The proof is to instantiate l1 as an element
of A − Y if one exists, and as an arbitrary element of A if Y = A. (This uses
that, in classical logic, one takes domains of discourse, like A, to be nonempty.
In an empty A, it is not the n = 1 case of (2) but the n = 0 case that is
valid.) We conclude that, if E satisfies classical logic, i.e., if it is a Boolean topos,
then universal quantification is geometrically preserved. This is, of course, no
news, because in classical logic one can express universal quantification using
existential quantification and complementation, both of which are geometrically
preserved. (Negation is not in general geometrically preserved, but when a com-
plement exists, that will be preserved.)

It may be worth noting that validity of the n = 1 case of (2) (for inhabited A)
embodies the full strength of classical logic, i.e., it implies the law of the excluded
middle. To see this, let ϕ be an arbitrary statement, and consider the set A that
contains 0 (definitely) and contains 1 if and only if ϕ. So A is inhabited (by 0).
Let Y be the subset of A that contains 0 if and only if ϕ (and definitely does
not contain 1). Then ∀x ∈ Ax ∈ Y is false. (It implies 0 ∈ Y , hence ϕ, hence (as
now 1 ∈ A) 1 ∈ Y , and hence a contradiction.) So the n = 1 case of (2) implies
that ∃l ∈ A¬l ∈ Y . By definition of A, such an l must be 0 or 1. If it is 0 then
the definition of Y gives ¬ϕ. If it is 1, then the definition of A gives ϕ. So in
both cases, we have ϕ ∨ ¬ϕ.

It is tempting to rewrite the nested quantifications and implications in (2) as
a single quantification over all n of the li’s at once, i.e.,

∃l1, . . . , ln ∈ A
((n∧

i=1

li ∈ Y
)

=⇒ ∀x ∈ Ax ∈ Y
)

.

Unfortunately, this simplification works only in classical logic. The point is that,
in the correct, nested formulation (2), l2 need only exist (in A) to the extent that
l1 ∈ Y , whereas in the proposed simplification l2 must exist outright. Classically,
this doesn’t matter; if we have a good value for l2 when l1 ∈ Y , then we can
simply give l2 the same value as l1 when l1 /∈ Y . But intutionistically we don’t
know that l1 ∈ Y ∨ l1 /∈ Y , so this is not an adequate specification of a value for
l2. To see the problem in a concrete case, consider the same A = {0} ∪ {1 : ϕ}
and Y = {0 : ϕ} as above. Notice that the n = 2 case of (2) is satisfied. (Take
l1 = 0 and, if l1 ∈ Y , i.e., if ϕ, then take l2 = 1, which is legal because when
ϕ then 1 ∈ A.) But the proposed simplification can hold (for any n) only if the
logic is classical. (Proof: Each li has to be 0 or 1. If at least one of them is 1,
then 1 ∈ A and so ϕ holds. If all of them are 0, then the implications say that
the consequent (∀x ∈ A)x ∈ Y , which is false, follows from (n repetitions of)
0 ∈ Y , i.e., from ϕ. So we get ϕ ∨ ¬ϕ.)

Let us revisit Subsection 3.1, where we showed that geometric preservation
implies preservation along homomorphisms, and let us try to apply the same
argument in the new context where universal quantification is allowed over cer-
tain sorts, the closed sorts. The argument used geometric preservation in the
case of geometric morphisms to the Sierpiński topos S, so it applies in the new

Existential Fixed-Point Logic, Universal Quantifiers, and Topoi 133

context to exactly those homomorphisms h : A −→ B that satisfy the following
requirement: For each closed sort s, the s-component hs : As −→ Bs, considered
as an object A of S, satisfies the conditions in Corollary 14. So we analyze the
conditions (2) in that corollary. A subobject Y of hs : As −→ Bs in S is given
by subsets Y0 ⊆ As and Y1 ⊆ Bs such that hs(Y0) ⊆ Y1. Working in Sets, where
classical logic is available, we can analyze the situation by considering two cases.

Suppose first that hs : As −→ Bs is not surjective. Then let us take Y0 = As

and take Y1 = hs(As), a proper subset of Bs. Then ∀x ∈ Ax ∈ Y has, in S, the
truth value false. Indeed, this truth value would be a subobject X = (X0 −→
X1) of the terminal object 1 −→ 1 whose preimage in A = (As −→ Bs) is
included in Y = (Y0 −→ Y1). Since Y1 is not all of Bs, this forces X1 to be
0, and then the existence of a map X0 −→ X1 forces X0 to be 0 also. With
this information, we can proceed to calculate the truth values of the formulas
in (2); these are subobjects P −→ Q of 1 −→ 1, and we concentrate on the P
components; are they 0 or 1? If, for some n, the P -component were 1, then there
would be a witness l1 ∈ As. It is automatically in Y0 since Y0 = As. So there
would be a witness l2 ∈ As. Continuing in the same way, we would get l3, . . . , ln
and finally, since ln ∈ Y0, the conclusion that ∀x ∈ Ax ∈ Y , which we have
already seen is false. This shows that P = 0, and therefore none of the formulas
(2) are valid. Therefore, universal quantification is not geometrically preserved,
and the argument from Subsection 3.1 does not apply to such an h.

There remains the case that h : As −→ Bs is surjective. We shall show that, in
this case, one of the instances n = 0 and n = 1 of (2) is valid in A = (As −→ Bs).
If As is empty, then (by surjectivity) so is Bs and so are both components of
Y . Then ∀x ∈ Ax ∈ Y is vacuously true in S, so the n = 0 instance of (2) is
valid. Assume from now on that As and therefore also Bs are nonempty; we shall
verify the n = 1 instance of (2). So let an arbitrary subobject Y = (Y0 −→ Y1)
of A be given. There are three subcases to consider.

First, suppose Y0 is all of As. Then, as h is surjective, Y1 is all of Bs, and
so ∀x ∈ Ax ∈ Y is true in S. We have the n = 0 instance of (2), but we can
also get the n = 1 instance by instantiating l1 with an arbitrary element of As

(nonempty by assumption) and its h-image in Bs.
Second, suppose Y1 is not all of Bs. Let b ∈ Bs − Y1, and let a ∈ As be

such that h(a) = b (possible as h is surjective). Instantiate l1 by a in the first
component and b in the second to get l1 ∈ Y false (in both components), so that
the n = 1 instance is satisfied.

Finally, suppose Y0 is not all of As but Y1 is all of Bs. Let a ∈ As − Y0, and
instantiate l1 as a in the first component and h(a) in the second. Then l1 ∈ Y is
false in the first component but true in the second. Those are exactly the truth
values of ∀x ∈ Ax ∈ Y , so again the n = 1 instance is verified.

The conclusion of this discussion is that our criterion for geometric preserva-
tion in Corollary 14 and the argument in Subsection 3.1 combine to give preser-
vation under homomorphisms in exactly those cases where such preservation is
wanted, namely when the homomorphisms are surjective on all the closed sorts.

134 A. Blass

References

1. Apt, K.: Ten Years of Hoare’s Logic: A Survey – Part I. ACM Trans. Prog. Lang.

and Systems 3, 431–483 (1981)

2. Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des Topos et Cohomologie

Étale des Schémas. In: Séminaire de Géométrie Algébrique du Bois Marie 1963–

64 (SGA) 4, vol. 1, Lecture Notes in Mathematics, vol. 269. Springer, Heidelberg

(1972)

3. Bell, J.: Toposes and Local Set Theories. Oxford Logic Guides, vol. 14. Oxford

University Press, Oxford (1988)

4. Blass, A.: Topoi and Computation. Bull. European Assoc. Theoret. Comp. Sci. 36,

57–65 (1988)

5. Blass, A.: Geometric Invariance of Existential Fixed-Point Logic. In: Gray, J., Sce-

drov, A. (eds.) Categories in Computer Science and Logic. Contemp. Math., vol. 92,

pp. 9–22. Amer. Math. Soc., Providence (1989)

6. Blass, A., Gurevich, Y.: Existential Fixed-Point Logic. In: Börger, E. (ed.) Compu-

tation Theory and Logic. LNCS, vol. 270, pp. 20–36. Springer, Heidelberg (1987)

7. Blass, A., Gurevich, Y.: The Underlying Logic of Hoare Logic. Bull. European

Assoc. Theoret. Comp. Sci. 70, 82–110 (2000); Reprinted in Paun, G., Rozenberg,

G., Salomaa, A.: Current Trends in Theoretical Computer Science: Entering the

21st Century, pp. 409–436. World Scientific, Singapore (2001)

8. Blass, A., Ščedrov, A. (later simplified to Scedrov): Classifying Topoi and Finite

Forcing. J. Pure Appl. Algebra 28, 111–140 (1983)

9. Chandra, A., Harel, D.: Horn Clause Queries and Generalizations. J. Logic Pro-

gramming 2, 1–15 (1985)

10. Cook, S.: Soundness and Completeness of an Axiom System for Program Verifica-

tion. SIAM J. Computing 7, 70–90 (1978)

11. Immerman, N.: Relational Queries Computable in Polynomial Time. Information

and Control 68, 86–104 (1986); Preliminary version in 14th ACM Symp. on Theory

of Computation (STOC), pp. 147–152 (1982)

12. Johnstone, P.: Topos Theory. London Mathematical Society Monographs, vol. 10.

Academic Press, London (1977)

13. Vardi, M.: Complexity of Relational Query Languages. In: 14th ACM Symp. on

Theory of Computation (STOC), pp. 137–146 (1982)

Three Paths to Effectiveness

Udi Boker1,� and Nachum Dershowitz2,��

1 School of Engineering and Computer Science, Hebrew University,

Jerusalem 91904, Israel

udiboker@cs.huji.ac.il
2 School of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel

nachum.dershowitz@cs.tau.ac.il

For Yuri, profound thinker, esteemed expositor, and treasured friend.

Abstract. Over the past two decades, Gurevich and his colleagues

have developed axiomatic foundations for the notion of algorithm,

be it classical, interactive, or parallel, and formalized them in a new

framework of abstract state machines. Recently, this approach was

extended to suggest axiomatic foundations for the notion of effective
computation over arbitrary countable domains. This was accomplished

in three different ways, leading to three, seemingly disparate, notions of

effectiveness. We show that, though having taken different routes, they

all actually lead to precisely the same concept. With this concept of

effectiveness, we establish that there is – up to isomorphism – exactly

one maximal effective model across all countable domains.

Keywords: ASM, effectiveness, recursive functions, Turing machines,

computability, constructiveness.

1 Introduction

Church’s Thesis asserts that the recursive functions are the only numeric func-
tions that can be effectively computed. Similarly, Turing’s Thesis stakes the
claim that any function on strings that can be mechanically computed can be
computed, in particular, by a Turing machine. For models of computation that
operate over arbitrary data structures, however, these two standard notions of
what constitutes effectiveness may not be directly applicable; as Richard Mon-
tague asserts [9, pp. 430–431]:

Now Turing’s notion of computability applies directly only to functions
on and to the set of natural numbers. Even its extension to functions
defined on (and with values in) another denumerable set S cannot be ac-
complished in a completely unobjectionable way. One would be inclined
to choose a one-to-one correspondence between S and the set of natural
numbers, and to call a function f on S computable if the function of

� Supported in part by a Lady Davis postdoctoral fellowship.
�� Supported in part by the Israel Science Foundation (grant no. 250/05).

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 135–146, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

136 U. Boker and N. Dershowitz

natural numbers induced by f under this correspondence is computable
in Turing’s sense. But the notion so obtained depends on what corre-
spondence between S and the set of natural numbers is chosen; the sets
of computable functions on S correlated with two such correspondences
will in general differ. The natural procedure is to restrict consideration
to those correspondences which are in some sense ‘effective’, and hence
to characterize a computable function on S as a function f such that, for
some effective correspondence between S and the set of natural numbers,
the function induced by f under this correspondence is computable in
Turing’s sense. But the notion of effectiveness remains to be analyzed,
and would indeed seem to coincide with computability.

One may ask, for example: What are the computable functions over the alge-
braic numbers? Does one obtain different sets of computable functions depending
on which representation (“correspondence”) one chooses for them?

Before we can answer such questions, we need a most-general notion of al-
gorithm. Sequential algorithms – that is, deterministic algorithms without un-
bounded parallelism or (intra-step) interaction with the outside world – have
been analyzed and formalized by Gurevich in [6]. There it was proved that any
algorithm satisfying three natural formal postulates (given below) can be emu-
lated, step by step, by a program in a very general model of computation, called
“abstract state machines” (ASMs). This formalization was recently extended in
[1] to handle partial functions. But an algorithm, or abstract state machine pro-
gram, need not yield an effective function. Gaussian elimination, for example, is
a perfectly well-defined algorithm over the real numbers, even though the reals
cannot all be effectively represented and manipulated.

We adopt the necessary point of view that effectiveness is a notion applicable
to collections of functions, rather than to single functions (cf. [10]). A single
function over an arbitrary domain cannot be classified as effective or ineffective
[9,14], since its effectiveness depends on the context. A detailed discussion of
this issue can be found in [3].

To capture what it is that makes a sequential algorithm mechanically com-
putable, three different generic formalizations of effectiveness have recently been
suggested:

– In [3], the authors base their notion of effectivity on finite constructibility.
Initial data are inductively defined to be effective if they only contain a
Herbrand universe, in addition to finite data and functions that can be shown
constructible in the same way.

– In [5], Dershowitz and Gurevich require an injective mapping between the
arbitrary domain and the natural numbers. Initial data are effective if they
are tracked – under that representation – by recursive functions, as in the
traditional definition of “computable” algebras [15].

– In [12], Reisig bases effectiveness on the natural congruence relation between
vocabulary terms that arises in the theory of ASMs. Initial data are effective
if the induced congruence between terms is Turing-computable.

Three Paths to Effectiveness 137

Properly extending these approaches to handle partial functions, and to refer to
a set of algorithms, it turns out that these three notions are essentially one and
the same.

2 Algorithms

We work within the abstract-state-machine framework of [6], modified to make
terminal states explicit and to allow partial operation to “hang”, as in [1]. We
begin by recalling Gurevich’s Sequential Postulates, formalizing the following
intuitions: (I) we are dealing with discrete deterministic state-transition systems;
(II) the information in states suffices to determine future transitions and may be
captured by logical structures that respect isomorphisms; and (III) transitions
are governed by the values of a finite and input-independent set of (variable-free)
terms. See [5] for historical support for these postulates.

Postulate I (Sequential Time). An algorithm determines the following:

1. A nonempty set S of states and a nonempty subset S0 ⊆ S of initial states.
2. A partial next-state transition function τ : S ⇀ S.

A terminal state is one for which no transition is defined. Let O ⊆ S denote
the (possibly empty) set of terminal states. We write x �τ x′ when x′ = τ(x).
A computation is a finite or infinite chain x0 �τ x1 �τ · · · of states.

Since transitions are functions, the states of an algorithm must contain all the
information necessary to determine the future of a computation, a full “instan-
taneous description” of all relevant aspects of the computation’s current status.

(It may appear that a recursive function is not a state-transition system, but
in fact the definition of a recursive function comes together with a computation
rule for evaluating it. As Rogers [13, p. 7] writes, for instance, “We obtain the
computation uniquely by working from the inside out and from left to right”.)

Logical structures are ideal for capturing all the salient information stored in
a state. All structures in this paper are over first-order finite vocabularies, have
countably many elements in their domains (base sets), and interpret symbols
as partial operations. All relations are viewed as truth-valued functions, so we
refer to structures as (partial) algebras (with partial functions). We assume that
structures include Boolean truth values, standard Boolean operations, and that
vocabularies include symbols for these.

Postulate II (Abstract State). The states S of an algorithm are partial al-
gebras over a finite vocabulary F , such that the following hold:

1. If x ∈ S is a state of the algorithm, then any algebra y isomorphic to x
is also a state in S, and y is initial or terminal if x is initial or terminal,
respectively.

2. Transitions τ preserve the domain; that is, Dom τ(x) = Dom x for every
non-terminal state x ∈ S \ O.

138 U. Boker and N. Dershowitz

3. Transitions respect isomorphisms, so, if ζ : x ∼= y is an isomorphism of
non-terminal states x, y ∈ S \ O, then ζ : τ(x) ∼= τ(y).

Such states are “abstract”, because the isomorphism requirement means that
transitions do not depend in any essential way on the specific representation of
the domain embodied in a given state.

Since a state x is an algebra, it interprets function symbols in F , assigning
a value c ∈ Dom x to the “location” f(a1, . . . , ak) in x for every k-ary symbol
f ∈ F and values a1, . . . , ak in Dom x. For location � = f(a1, . . . , ak), we write
���x for the value fx(a1, . . . , ak) that x assigns to �. Similarly, for term t, �t�x

is its value under the interpretations given to all the symbols in t by x. If the
interpretation of any subterm is undefined, then so is the whole term. We use ⊥
to denote an undefined value for a location or term. All terms in this paper are
ground terms, that is, terms without variables.

We shall assume that all elements of the domain are accessible via terms in
initial states (or else the superfluous elements may be removed with no ill effect).
But note that a transition may cause accessible elements to become inaccessible,
as explained in [12].

It is convenient to view each state as a collection of the graphs of its operations,
given in the form of a set of location-value pairs, each written conventionally as
f(ā) �→ c, for ā ∈ Dom x, c ∈ Dom x. Define the update set Δ(x) of state x as
the changed location-value pairs, τ(x) \ x. When x is a terminal state and τ(x)
is undefined, we will indicate that by setting Δ(x) = ⊥.

The transition function of an algorithm must be describable in a finite fashion,
so its description can only refer to finitely many locations in the state by means
of finitely many terms over its vocabulary.

Postulate III (Effective Transition). An algorithm with states S over vo-
cabulary F determines a finite set T of critical terms over F , such that states
that agree on the values of the terms in T also share the same update sets. That
is,

if x =T y then Δ(x) = Δ(y) ,

for any two states x, y ∈ S.

Here, x =T y, for a set of terms T , means that �t�x = �t�y for all t ∈ T .
Whenever we refer to an “algorithm” below, we mean an object satisfying the

above three postulates, what we like to call a “classical algorithm”.

Definition 1. An algorithm A with states S computes a partial function f :
Dk ⇀ D if there is a subset I of its initial states, with locations for input
values, such that running the algorithm yields the correct output values of f .
Specificially:

1. The domain of each state in I is D.
2. There are k distinct locations �1, . . . , �k such that all possible input values

are covered. That is, {〈��1�x, . . . , ��k�x〉 : x ∈ I} = Dk.
3. All states in I agree on the values of all locations other than �1, . . . , �k.

Three Paths to Effectiveness 139

4. There is a term t (in the vocabulary of the algorithm) such that for all
a0, . . . , ak ∈ D, if f(a1, . . . , ak) = c, then there is some initial state x0 ∈ I,
with ��j�x0 = aj (j = 1, . . . , k), initiating a terminating computation
x0 �τ · · ·�τ xn, where xn ∈ O and such that �t�xn = c.

5. Whenever f(a1, . . . , ak) is ⊥, there is an initial state x0 ∈ I, with
��j�x0 = aj (j = 1, . . . , k), initiating an infinite computation x0 �τ x1

�τ · · ·.

A (finite or infinite) set of algorithms, all with the same domain, will be called
a model (of computation).

3 Effective Models

We turn now to examine the three different approaches to understanding effec-
tiveness. Informally, they each add a postulate along the following lines:

Postulate IV (Effective Initial State). The initial states S0 of an effective
algorithm are finitely representable.

3.1 Distinguishing Models

Every state x induces a congruence on all terms, under which terms are congruent
whenever the state assigns them the same value:

s !x t ⇔ �s�x = �t�x .

Isomorphic states clearly induce the same congruence.
We call a state “distinguishing” if its induced congruence is semi-decidable in

the standard sense. That is, a state is distinguishing if there is a Turing machine
(or a similar device, as a partial recursive function operating on strings) that
can act as “state manager”, receiving two terms as input and returning true
whenever both terms are defined and congruent, false when both are defined but
not congruent, and diverging otherwise. This is the effectiveness notion explored
in [12] (which, however, considers only a single state and total functions).

Definition 2 (Distinguishing Model).

– A state is distinguishing if its induced congruence is semi-decidable.
– An algorithm is distinguishing if all its initial states are.
– A model is distinguishing if every congruence induced by a finite set of initial

states (across different algorithms) is semi-decidable.

3.2 Computable Models

We say that an algebra A over (a possibly infinite) vocabulary F with domain
D simulates an algebra B over (a possibly infinite) vocabulary G with domain

140 U. Boker and N. Dershowitz

E if there exists an injective “encoding” ρ : E ⇀ D such that for every partial
function f : Ek ⇀ E of B there is a partial function f̂ : Dk ⇀ D of A, such
that f(x) is defined exactly when (f̂ ◦ ρ)(x) is defined, for every x ∈ E, and that
f(x) = (ρ−1 ◦ f̂ ◦ ρ)(x) whenever f(x) is defined. In that case, we say that f̂
tracks f under ρ.

Definition 3 (Computable Model).

– A state is computable if it is simulated by the partial recursive functions.
– An algorithm is computable if all its initial states are.
– A model is computable if all its algorithms are, via the same encoding.

This is a standard notion of “computable algebra” [8,11,7,15], adopted by [5]
(which, however, considers only a single algorithm and total functions).

The choice of the partial recursive functions as the starting point for defining
effective algorithms over arbitrary domains is natural, considering the Church-
Turing Thesis. The main question that one may raise is whether the allowance
of an injective representation between the arbitrary domain and the natural
numbers is sensible. We show, in the following lemma, that as long as all domain
elements are reachable by ground terms, the required injective representation
implies the existence of a bijection between the domain and the natural numbers.
Hence, the initial functions of a computable algorithm are isomorphic to some
partial-recursive functions, which makes their effectiveness hard to dispute.

Lemma 1. Let M be a computable model over domain D. Then there is a bijec-
tion π : D ↔ N such that, for each partial function f : Dk ⇀ D of each initial
state of each algorithm in M , there is a partial recursive function f̃ : Nk ⇀ N

that tracks f under π.

Proof. Let ρ be the injective representation from D to N, via which all initial
functions of M are partial recursive. For each initial function f , we denote its
partial recursive counterpart by f̂ . That is, f = ρ−1 ◦ f̂ ◦ ρ.

Consider one specific algorithm A of M with vocabulary F . By definition,
all elements of D are reachable in each initial state by terms of F . Therefore,
all elements of Im ρ ⊆ N are reachable by terms of F , as interpreted by the
partial-recursive tracking fiunctions.

Let {cj}j be a computable enumeration of all terms over F . One can construct
a computable enumeration of all the F -terms that are defined in the tracking
interpretations by interleaving the computations of the {cj}j terms in the stan-
dard (Cantor’s) zigzag fashion (a computation step for the first term, followed by
one for the second term and two for the first, then one for the third, two for the
second and three for the first, etc.). Accordingly, an enumeration {dj}j can be
set up, assigning a unique F -term for every number in Im ρ, by enumerating the
defined F -terms, as above, and ignoring those terms that evaluate to a number
already obtained.

In this fashion, we can define a recursive bijection η : Im ρ ↔ N, letting
η(n) be the unique j such that �dj� = n. Note that η−1 is also recursive, as
η−1(m) = �dm�.

Three Paths to Effectiveness 141

Let π : D ↔ N be the bijection π = η ◦ ρ, and, for each function f̂ ∈ F̂ ,
define the partial recursive function f̃ to be η ◦ f̂ ◦ η−1. Then, for each function
f : Dk ⇀ D of each initial state of each algorithm in M ,

f = ρ−1 ◦ f̂ ◦ ρ = ρ−1 ◦ η−1 ◦ η ◦ f̂ ◦ η−1 ◦ η ◦ ρ = π−1 ◦ η ◦ f̂ ◦ η−1 ◦π = π−1 ◦ f̃ ◦π .

�
3.3 Constructive Models

Let x be an algebra over vocabulary F , with domain D. A finite vocabulary
C ⊆ F constructs D if x assigns each value in D to exactly one term over C.

Definition 4 (Constructive Model).

– A state is constructive if it includes constructors for its domain, plus opera-
tions that are almost everywhere “blank”, meaning that all but finitely-many
locations have the same default value (say undef).

– An algorithm is constructive if its initial states are.
– A model is constructive if all its algorithms are, via the same constructors.

Moreover, constructive algorithms can be bootstrapped: Any state over vocabulary
F with domain D is constructive if F can be extended to C$G so that C constructs
D and every g ∈ G has a constructive algorithm over C that computes it.

This is the approach advocated in [3] (which, however, considers only total
functions).

As expected:

Theorem 1 ([3, Thm. 3]). The partial recursive functions form a constructive
model.

Conversely:

Theorem 2 (cf. [3, Thm. 4]). Every constructive model can be simulated by
the partial recursive functions via a bijective encoding.

Though this theorem in [3] does not speak of a bijective encoding, its proof
therein in point of fact uses a bijective encoding. That proof refers only to total
functions; however, partial functions can be handled similarly. Also, one needs
to show, inductively, that constructive initial functions used in bootstrapped
constructive algorithms are tracked by partial recursive functions.

4 Equivalence of Definitions of Effectiveness

The following equivalence is demonstrated in the remainder of this section.

Theorem 3. A model of computation is computable if and only if it is construc-
tive if and only if it is distinguishing.

Returning to the example of algebraic numbers, this means that one obtains
the same set of effectively-computable (partial) functions over the domain of
algebraic numbers, regardless of which definition of effectiveness one adopts.

142 U. Boker and N. Dershowitz

In particular, the effective partial functions over algebraic numbers – obtained
in any of these ways – are isomorphic to the partial recursive functions over the
natural numbers, and, by results in [2], no representation can yield additional
functions.

4.1 Computable and Distinguishing

Theorem 3a. Computable models are distinguishing.

Proof. Given a computable model M over domain D, there is, by definition,
an injective representation ρ : D ⇀ N such that, for every function f in an
initial state of one of the algorithms in M , there is a partial recursive function
f̂ over N that tracks f under ρ. Since every finite subset M ′ of algorithms in
M can have only finitely many initial functions, it follows that a single partial
recursive function can check for equality of the values of two terms in the initial
states of any such M ′ by using partial recursive implementations of the f̂ ’s
to compute the numerical counterparts of the terms and – if and when that
computation terminates – testing equality of the resultant numerals. Hence, M
is distinguishing. �
Theorem 3b. Distinguishing models are computable.

Proof. Let M be a distinguishing model over domain D and consider some spe-
cific algorithm A ∈M with vocabularyF . Let {ti}i be any recursive enumeration
of terms over F , and let ! be the partial recursive function that semi-decides
the congruence relation of terms in A. One can define a recursive enumeration
{cj}j of all F -terms that are defined in M by interleaving the computations of
ti ! ti for all terms ti, in the standard zigzag fashion. A term ti is added to the
enumeration once the corresponding congruence computation ends.

Define the injective representation ρ : D ⇀ N by

ρ(x) := min
j
{�cj� = x} .

For any initial function f of A, define the partial recursive function

f̂(n) := min
i

ci ! f(cn) ,

where f(cn) is the term obtained by enclosing the term cn with the symbol f .
These numerical f̂ track their original counterparts f over D, as follows:

f̂(ρ(x)) = f̂(min
j
{�cj� = x})

= min
i
{ci ! f(ck)} where k = min

j
{�cj� = x}

= min
i
{�ci� = �f(ck)�}

= min
i
{�ci� = f(�ck�)}

= min
i
{�ci� = f(x)}

= ρ(f(x)) .

Similarly for operators of other arities.

Three Paths to Effectiveness 143

It is left to show how the specific injective representation from D to N, which
was defined according to one algorithm of M , suits all other algorithms of M .
Consider any algorithm B ∈ M with vocabulary F ′ and let {c′j}j be some
recursive enumeration of all defined terms over F ′. By the definition of distin-
guishing, there is a partial recursive function semi-deciding the equivalence of
any two terms of the algorithms A and B. This allows one to translate between
the term enumerations of A and B and also have partial recursive functions that
track the initial functions of B. For any initial function g of B, define the partial
recursive function

ĝ(n) := min
i

{
ci ! g

(
c′min�{c′�	cn}

)}
.

These numerical ĝ track their original counterparts g in B, as follows:

ĝ(ρ(x)) = ĝ(min
j
{�cj� = x})

= min
i
{ci ! g(c′k)} where k = min�

{
c′� ! cminj{�cj�=x}

}
= min�

{
�c′�� = �cminj{�cj�=x}�

}
= min�{�c′�� = x}

= min
i
{�ci� = �g(c′k)�}

= min
i
{�ci� = g(�c′k�)}

= min
i
{�ci� = g(x)}

= ρ(g(x)) .

Similarly for operators of other arities.
It follows that M is computable under the auspices of ρ. �

4.2 Computable and Constructive

Computability is based on the recursiveness of the initial functions, under an
injective representation of the arbitrary domain D as natural numbers N. Fur-
thermore, the requirement that all domain elements are reachable by terms im-
plies that there is also a bijective mapping from D to N via which the initial
functions are partial recursive.

Theorem 3c. Constructive models are computable.

Proof. Let M be a constructive model over domain D and let M ′ consist of
algorithms for all the constructive functions and all the almost-everywhere-blank
functions in M ’s initial states. By Theorem 2, the set of functions computed by
M ′ is simulatable by the partial recursive functions via some representation
ρ : D ⇀ N. Hence, all initial functions of M are tracked by partial recursive
functions, making M computable. �

Theorem 3d. Computable models are constructive.

144 U. Boker and N. Dershowitz

Proof. For any computable model M over domain D, there is, by Lemma 1,
a bijection π : D ↔ N such that every function f in the initial states of
M ’s algorithms is tracked under π by some partial recursive function g. By
Theorem 1, there is a constructive model that computes all the partial recur-
sive functions P over N. Since algorithms (according to Postulate II) are closed
under isomorphism, so are constructive models. Hence, there is a constructive
model P over π−1(N), with some set of constructors, that computes all functions
π ◦ g ◦π−1 that are tracked by functions g ∈ P, and – in particular – computes
all initial functions of M . Since all M ’s initial functions are constructive, M is
constructive. �

Theorem 3 is the conjunction of Theorems 3a–3d.

5 Conclusions

Thanks to Theorem 3, it seems reasonable to just speak of “effectiveness”, with-
out distinguishing between the three equivalent notions discussed in the previous
sections. Having shown that three prima facie distinct definitions of effectiveness
over arbitrary domains comprise exactly the same functions strengthens the im-
pression that the essence of the underlying notion of computability has in fact
been captured.

Fixing the concept of an effective model of computation, the question natu-
rally arises as to whether there are “maximal” effective models, and if so, whether
they are really different or basically one and the same. Formally, we consider an
effective computational model M (consisting of a set of functions) over domain
D to be maximal if adding any function f �∈ M over D to M gives an ineffective
model M ∪{f}. It turns out that there is exactly one effective model (regardless
of which of the three definitions one prefers), up to isomorphism.

Theorem 4. The set of partial recursive functions is the unique maximal effec-
tive model, up to isomorphism, over any countable domain.

Proof. We first note that the partial recursive functions are a maximal effective
model. Their effectiveness was established in Theorem 1. As for their maximality,
the partial recursive functions are “interpretation-complete”, in the sense that
they cannot simulate a more inclusive model, as shown in [2,4]. By Theorem 2,
they can simulate every effective model, leading to the conclusion that there is
no effective model more inclusive than the partial recursive functions.

Next, we show that the partial recursive functions are the unique maximal
effective model, up to isomorphism. Consider some maximal effective model M
over domain D. By Theorem 2, the partial recursive functions can simulate
M via a bijection π. Since effectiveness is closed under isomorphism, it follows
that there is an effective model M ′ over D isomorphic to the partial recursive
functions via π−1. Hence, M ′ contains M , and by the maximality of M we get
that M ′ = M . Therefore, M is isomorphic to the partial recursive functions, as
claimed. �

Three Paths to Effectiveness 145

The Church-Turing Thesis, properly interpreted for arbitrary countable domains
(see [3]), asserts that the partial recursive functions (or Turing machines) consti-
tute the most inclusive effective model, up to isomorphism. However, this claim
only speaks about the extensional power of an effective computational model,
not about its internal mechanism. Turing, in his seminal work [16], justified the
thesis by arguing that every “purely mechanical” human computation can be
represented by a Turing machine whose steps more or less correspond to the
manual computation. Indeed, Turing’s argument convinced most people about
the validity of the thesis, which had not been the case with Church’s original
thesis regarding the effectiveness of the recursive functions (let alone Church’s
earlier thoughts regarding the lambda calculus). Notwithstanding its wide ac-
ceptance, neither the Church-Turing Thesis nor Turing’s arguments purport to
characterize the internal behavior of an effective computational model over an
arbitrary domain.

On the other hand, Gurevich’s abstract state machines are the most general
descriptive form for (sequential) algorithms known. As such, they can express
the precise step-by-step behavior of arbitrary algorithms operating over arbitrary
structures, whether for effective computations or for hypothetical ones. The work
in [3,5,12] specializes this model by considering effective computations. The ad-
ditional effectiveness axiom proposed in [3] and adopted in our Definition 4 of
constructive models does not rely on the definition of Turing machines or of the
partial recursive functions, thereby providing a complete, generic, stand-alone
axiomatization of effective computation over any countable domain.

References

1. Blass, A., Dershowitz, N., Gurevich, Y.: Exact exploration. Technical

Report MSR-TR-2009-99, Microsoft Research, Redmond, WA (2010),

http://research.microsoft.com/pubs/101597/Partial.pdf; A short ver-

sion to appear as Algorithms in a world without full equality. In: The Proceedings

of the 19th EACSL Annual Conference on Computer Science Logic, Brno, Czech

Republic. LNCS. Springer, Heidelberg (August 2010)

2. Boker, U., Dershowitz, N.: Comparing computational power. Logic Journal of the

IGPL 14, 633–648 (2006)

3. Boker, U., Dershowitz, N.: The Church-Turing thesis over arbitrary domains. In:

Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science.

LNCS, vol. 4800, pp. 199–229. Springer, Heidelberg (2008)

4. Boker, U., Dershowitz, N.: The influence of domain interpretations on computa-

tional models. Journal of Applied Mathematics and Computation 215, 1323–1339

(2009)

5. Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof

of Church’s Thesis. Bulletin of Symbolic Logic 14, 299–350 (2008)

6. Gurevich, Y.: Sequential abstract state machines capture sequential algorithms.

ACM Transactions on Computational Logic 1, 77–111 (2000)

7. Lambert Jr., W.M.: A notion of effectiveness in arbitrary structures. The Journal

of Symbolic Logic 33, 577–602 (1968)

8. Mal’tsev, A.: Constructive algebras I. Russian Mathematical Surveys 16, 77–129

(1961)

http://research.microsoft.com/pubs/101597/Partial.pdf

146 U. Boker and N. Dershowitz

9. Montague, R.: Towards a general theory of computability. Synthese 12, 429–438

(1960)

10. Myhill, J.: Some philosophical implications of mathematical logic. Three classes of

ideas. The Review of Metaphysics 6, 165–198 (1952)

11. Rabin, M.O.: Computable algebra, general theory and theory of computable fields.

Transactions of the American Mathematical Society 95, 341–360 (1960)

12. Reisig, W.: The computable kernel of abstract state machines. Theoretical Com-

puter Science 409, 126–136 (2008)

13. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability.

McGraw-Hill, New York (1966)

14. Shapiro, S.: Acceptable notation. Notre Dame Journal of Formal Logic 23, 14–20

(1982)

15. Stoltenberg-Hansen, V., Tucker, J.V.: 4. In: Effective Algebra. Handbook of Logic

in Computer Science, vol. 4, pp. 357–526. Oxford University Press, Oxford (1995)

16. Turing, A.M.: On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society 42, 230–265

(1936-1937); Corrections in vol. 43, pp. 544–546 (1937), Reprinted in Davis M.

(ed.): The Undecidable. Raven Press, Hewlett (1965),

http://www.abelard.org/turpap2/tp2-ie.asp

http://www.abelard.org/turpap2/tp2-ie.asp

The Quest for a Tight Translation
of Büchi to co-Büchi Automata

Udi Boker� and Orna Kupferman

School of Computer Science and Engineering, Hebrew University, Israel

Abstract. The Büchi acceptance condition specifies a set α of states,

and a run is accepting if it visits α infinitely often. The co-Büchi accep-

tance condition is dual, thus a run is accepting if it visits α only finitely

often. Nondeterministic Büchi automata over words (NBWs) are strictly

more expressive than nondeterministic co-Büchi automata over words

(NCWs). The problem of the blow-up involved in the translation (when

possible) of an NBW to an NCW has been open for several decades.

Until recently, the best known upper bound was 2O(n log n) and the best

lower bound was n. We describe the quest to the tight 2Θ(n) bound.

Keywords: Büchi automata, co-Büchi automata, nondeterminism,

automata translation.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were
the key to the solution of several fundamental decision problems in mathematics
and logic [5,15,20]. Today, automata on infinite objects are used for specification
verification, and synthesis of nonterminating systems. The automata-theoretic
approach to verification views questions about systems and their specifications
as questions about languages, and reduces them to automata-theoretic problems
like containment and emptiness [13,26]. Recent industrial-strength property-
specification languages such as Sugar, ForSpec, and the recent standard PSL 1.01
include regular expressions and/or automata, making specification and verifica-
tion tools that are based on automata even more essential and popular [1].

Early automata-based algorithms aimed at showing decidability. The appli-
cation of automata theory in practice has led to extensive research on the com-
plexity of problems and constructions involving automata [6,19,22,24,25,27]. For
many problems and constructions, our community was able to come up with
satisfactory solutions, in the sense that the upper bound (the complexity of the
best algorithm or the blow-up in the best known construction) coincides with the
lower bound (the complexity class in which the problem is hard, or the blow-
up that is known to be unavoidable). For some problems and constructions,
however, the gap between the upper bound and the lower bound is significant.
This situation is especially frustrating, as it implies that not only something is
� Supported in part by a Lady Davis postdoctoral fellowship.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 147–164, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

148 U. Boker and O. Kupferman

missing in our understanding of automata on infinite objects, but also that we
may be using algorithms that can be significantly improved.

One such fundamental and longstanding open problem is the translation, when
possible, of a nondeterministic Büchi word automaton (NBW) to an equivalent
nondeterministic co-Büchi word automaton (NCW).1 NCWs are less expressive
than NBWs. For example, the language {w : w has infinitely many a’s} over
the alphabet {a, b} cannot be recognized by an NCW. In fact, NCWs are not
more expressive than deterministic co-Büchi automata (DCWs).2 Hence, since
deterministic Büchi automata (DBWs) are dual to DCWs, a language can be
recognized by an NCW iff its complement can be recognized by a DBW.

The best translation of an NBW to an NCW (when possible) that was known
until recently goes as follows. Consider an NBW A that has an equivalent NCW.
First, co-determinize A and obtain a deterministic Rabin automaton (DRW) Ã
for the complement language. By [8], DRWs are Büchi type. That is, if a DRW
has an equivalent DBW, then the DRW has an equivalent DBW on the same
structure. Since A can be recognized by an NCW, its complement Ã has an
equivalent DBW, so there is a DBW B̃ that complements A and has the same
structure as Ã. By viewing B̃ as a DCW, one gets a deterministic co-Büchi
automaton (DCW) equivalent to A. The co-determinization step involves a su-
per exponential blow-up in the number of states [22]: starting with an NBW
with n states, we end up with a DCW with 2O(n log n) states. Beyond the super
exponential blow-up, the state space that results from Safra’s determinization
and co-determinization constructions is awfully complex and is not amenable
to optimizations and a symbolic implementation. Also, going through a deter-
ministic automaton requires the introduction of acceptance conditions that are
more complex than the Büchi and co-Büchi acceptance conditions. Piterman’s
construction [18] simplifies the situation only slightly; while the Rabin condi-
tion can be replaced by parity, the complication and the 2O(n log n) complexity
of Safra’s construction are still there. Note that eventhough the problem is of
translating an NBW to an NCW, and thus it does not require us to end up in
a deterministic automaton, the above procedure actually does result in a DCW.
Thus, it is not known how to take advantage of the allowed nondeterminism,
and how to keep the translation within the convenient scope of the Büchi and
the co-Büchi acceptance conditions.

The 2O(n log n) upper bound is particularly annoying, as no non-trivial lower
bound was known. In fact, there was even no counterexample to the conjecture
that NBWs are co-Büchi type. That is, to a conjecture that if an NBW has an
equivalent NCW, then the NBW has an equivalent NCW on the same structure.

1 In Büchi automata, some of the states are designated as accepting states, and a run

is accepting iff it visits states from the accepting set infinitely often [5]. Dually, in

co-Büchi automata, a run is accepting iff it visits the set of accepting states only

finitely often.
2 When applied to universal Büchi automata, the translation in [16], of alternating

Büchi automata into NBW, results in DBW. By dualizing it, one gets a translation

of NCW to DCW.

The Quest for a Tight Translation of Büchi to co-Büchi Automata 149

The main challenge in proving a non-trivial lower bound for the translation of
NBW to NCW is the expressiveness superiority of NBW with respect to NCW.
Indeed, a family of languages that is a candidate for proving a lower bound for
this translation has to strike a delicate balance: the languages have to somehow
take advantage of the Büchi acceptance condition, and still be recognizable by a
co-Büchi automaton.3 In particular, it is not clear how to use the main feature of
the Büchi condition, namely its ability to easily track infinitely many occurrences
of an event, as a co-Büchi automaton cannot recognize languages that are based
on such a tracking.

Beyond the theoretical challenge in tightening the gaps, and the fact they are
related to other gaps in our knowledge [9], the translation of NBW to NCW has
immediate important applications in formal methods. The premier example in
this class is of symbolic LTL model checking. Evaluating specifications in AFMC
can be done with linearly many symbolic steps. In contrast, direct LTL model
checking reduces to a search for bad-cycles, whose symbolic implementation in-
volves nested fixed-points, and is typically 4 quadratic [21]. It is shown in [12]
that given an LTL formula ψ, there is an alternation-free μ-calculus (AFMC)
formula equivalent to ∀ψ iff ψ can be recognized by a DBW. Alternatively, an
NCW for ¬ψ can be linearly translated to an AFMC formula equivalent to ∃¬ψ,
which can be negated to a formula equivalent to ∀ψ. Thus, an improvement of
the translation of NBW to NCW would immediately imply an improvement of
the translation of LTL to AFMC.

We describe the quest to a 2Θ(n) tight bound for the translation. In the upper-
bound front, we describe the construction in [3], which translates an NBW B
to an NCW C whose underlying structure is the product of B with its subset
construction. Thus, given an NBW B with n states, the translation yields an
equivalent NCW with n2n states, and it has a simple symbolic implementation
[17]. In the lower-bound front, we first describe the counterexample given in [11]
to the NCW-typeness of NBW. We then describe the “circumventing counting”
idea, according to which the ability of NBWs to easily track infinitely many
occurrences of an event makes them more succinct than NCWs. The idea is to
consider a family of languages L1, L2, L3, . . . in which an NCW for Lk has to
count to some bound that depends on k, whereas an NBW can count instead
to infinity. In the first application of the idea, the NBW for the language Lk

checks that an event P occurs infinitely often. The language Lk is still NCW-
recognizable as other components of Lk make it possible to check instead that
P has at least k occurrences. An NCW for Lk can then count occurrences of
P , but it needs O(k) more states for this [2]. In order to achieve a super-linear

3 A general technique for proving lower bounds on the size of automata on infinite

words is suggested in [28]. The technique is based on full automata, in which a word

accepted by the automaton induces a language. The fact NCWs are less expressive

than NBWs is a killer for the technique, as full automata cannot be translated to

NCWs.
4 Better algorithms have been suggested [7,21], but it turns out that algorithms based

on nested fixed-points perform better in practice.

150 U. Boker and O. Kupferman

succinctness, we enhance the idea as follows. The NBW for the language Lk

still checks that an event P occurs infinitely often. Now, however, in order for
Lk to be NCW-recognizable, other components of Lk make it possible to check
instead that P repeats at least once in every interval of some bounded length
f(k). Thus, while the NBW can detect infinitely many occurrences of P with
2 states, the NCW has to devote O(f(k)) states for the counting. We first use
ideas from number theory in order to make f(k) quadratic in k, and then use
binary encoding in order to make f(k) exponential in k [3].

2 Preliminaries

Given an alphabet Σ, a word over Σ is a (possibly infinite) sequence w =
w1 ·w2 · · · of letters in Σ. For two words, x and y, we use x % y to indicate that
x is a prefix of y and x ≺ y to indicate that x is a strict prefix of y. An automaton
is a tuple A = 〈Σ, Q, δ, Q0, α〉, where Σ is the input alphabet, Q is a finite set of
states, δ : Q×Σ → 2Q is a transition function, Q0 ⊆ Q is a set of initial states,
and α ⊆ Q is an acceptance condition. We define several acceptance conditions
below. Intuitively, δ(q, σ) is the set of states that A may move into when it is in
the state q and it reads the letter σ. The automaton A may have several initial
states and the transition function may specify many possible transitions for each
state and letter, and hence we say that A is nondeterministic. In the case where
|Q0| = 1 and for every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| ≤ 1, we say that
A is deterministic. The transition function extends to sets of states and to finite
words in the expected way, thus δ(S, x) is the set of states that A may move into
when it is in a state in S and it reads the finite word x. Formally, δ(S, ε) = S
and δ(S, w · σ) =

⋃
q∈δ(S,w) δ(q, σ). We abbreviate δ(Q0, x) by δ(x), thus δ(x) is

the set of states that A may visit after reading x. For an automaton A and a
state a of A, we denote by Aa the automaton that is identical to A, except for
having {a} as its set of initial states.

A run r = r0, r1, · · · of A on w = w1 · w2 · · · ∈ Σω is an infinite sequence of
states such that r0 ∈ Q0, and for every i ≥ 0, we have that ri+1 ∈ δ(ri, wi+1).
Note that while a deterministic automaton has at most a single run on an input
word, a nondeterministic automaton may have several runs on an input word.
We sometimes refer to r as a word in Qω or as a function from the set of prefixes
of w to the states of A. Accordingly, we use r(x) to denote the state that r visits
after reading the prefix x.

Acceptance is defined with respect to the set inf (r) of states that the run
r visits infinitely often. Formally, inf (r) = {q ∈ Q | for infinitely many i ∈
IN, we have ri = q}. As Q is finite, it is guaranteed that inf (r) �= ∅. The run r
is accepting iff the set inf (r) satisfies the acceptance condition α. We consider
here the Büchi and the co-Büchi acceptance conditions. A set S ⊆ Q satisfies a
Büchi acceptance condition α ⊆ Q iff S ∩ α �= ∅; whereas S satisfies a co-Büchi
acceptance condition α ⊆ Q iff S ⊆ α. Note that the definition of co-Büchi we
use is less standard than the S∩α = ∅ definition; clearly, S ⊆ α iff S∩(Q\α) = ∅,
thus the definition is equivalent. We chose to go with the S ⊆ α variant as it

The Quest for a Tight Translation of Büchi to co-Büchi Automata 151

better conveys the intuition that, as with the Büchi condition, a visit in α is
a “good event”. An automaton accepts a word iff it has an accepting run on
it. The language of an automaton A, denoted L(A), is the set of words that A
accepts. We also say that A recognizes the language L(A). For two automata A
and A′, we say that A and A′ are equivalent if L(A) = L(A′).

We denote the different classes of automata by three letter acronyms in
{D, N} × {B, C} × {W}. The first letter stands for the branching mode of the
automaton (deterministic or nondeterministic); the second letter stands for the
acceptance-condition type (Büchi, or co-Büchi); the third letter indicates that
the automaton runs on words. We say that a language L is in a class γ if L is
γ-recognizable, that is, L can be recognized by an automaton in the class γ.

Different classes of automata have different expressive power. In particular,
while NBWs recognize all ω-regular language [15], DBWs are strictly less ex-
pressive than NBWs, and so are DCWs [14]. In fact, a language L is in DBW
iff its complement is in DCW. Indeed, by viewing a DBW as a DCW, we get an
automaton for the complementing language, and vice versa. The expressiveness
superiority of the nondeterministic model over the deterministic one does not ap-
ply to the co-Büchi acceptance condition. There, every NCW has an equivalent
DCW [16].

3 Upper Bound

In this section we present the upper-bound proof from [3] for the translation of
NBW to NCW (when possible).5 The proof is constructive: given an NBW B
with k states whose language is NCW-recognizable, we construct an equivalent
NCW C with at most k2k states. The underlying structure of C is very simple: it
runs B in parallel to its subset construction. We refer to the construction as the
augmented subset construction, and we describe the rationale behind it below.

Consider an NBW B with set αB of accepting states. The subset construction
of B maintains, in each state, all the possible states that B can be at. Thus, the
subset construction gives us full information about B’s potential to visit αB in
the future. However, the subset construction loses information about the past.
In particular, we cannot know whether fulfilling B’s potential requires us to give
up past visits in αB. For that reason, the subset construction is adequate for
determinizing automata on finite words, but not good enough for determinizing
ω-automata. A naive try to determinize B could be to build its subset construc-
tion and define the acceptance set as all the states for which B has the potential
to be in αB. The problem is that a word might infinitely often gain this potential
via different runs. Were we only able to guarantee that the run of the subset
construction follows a single run of the original automaton, we would have en-
sured a correct construction. Well, this is exactly what the augmented subset
construction does!
5 For readers who skipped the preliminaries, let us mention that we work here with a

less standard definition of the co-Büchi condition, where a run r satisfies a co-Büchi

condition α iff inf(r) ⊆ α.

152 U. Boker and O. Kupferman

Once the above intuition is understood, there is still a question of how to
define the acceptance condition on top of the augmented subset construction.
Since we target for an NCW, we cannot check for infiniteness. However, the
premise that the NBW is in DCW guarantees that a word is accepted iff there
is a run of the augmented subset construction on it that remains in “potentially
good states” from some position. We explain and formalize this property below.

We start with a property relating states of a DCW (in fact, any deterministic
automaton) that are reachable via words that lead to the same state in the
subset construction of an equivalent NBW.

Lemma 1. Consider an NBW B with a transition function δB and a DCW D
with a transition function δD such that L(B) = L(D). Let d0 and d1 be states
of D such that there are two finite words x0 and x1 such that δD(x0) = d0,
δD(x1) = d1, and δB(x0) = δB(x1). Then, L(Dd0) = L(Dd1).

For automata on finite words, if two states of the automaton have the same
language, they can be merged without changing the language of the automaton.
While this is not the case for automata on infinite words, the lemma below
enables us to do take advantage of such states.

Lemma 2. Consider a DCW D = 〈Σ, D, δ, D0, α〉. Let d0 and d1 be states in
D such that L(Dd0) = L(Dd1). For all finite words u and v, if δ(d0, u) = d0 and
δ(d1, v) = d1 then for all words w ∈ (u + v)∗ and states d′ ∈ δ(d0, w) ∪ δ(d1, w),
we have L(Dd′

) = L(Dd0).

Our next observation is the key to the definition of the acceptance condition
in the augmented subset construction. Intuitively, it shows that if an NCW
language L is indifferent to a prefix in (u + v)∗, and L contains the language
(v∗ · u+)ω, then L must also contain the word vω.

Lemma 3. Consider a co-Büchi recognizable language L. For all finite words u
and v, if for every finite word x ∈ (u + v)∗ and infinite word w we have that
w ∈ L iff x · w ∈ L, and (v∗ · u+)ω ⊆ L, then vω ∈ L.

By considering the language of a specific state of the DCW, Lemma 3 implies
the following.

Corollary 1. Let D = 〈Σ, D, δ, D0, α〉 be a DCW. Consider a state d ∈ D.
For all nonempty finite words v and u, if for all words w ∈ (v + u)∗ and states
d′ ∈ δ(d, w), we have L(Dd′

) = L(Dd), and (v∗ ·u+)ω ⊆ L(Dd), then vω ∈ L(Dd).

We can now present the construction together with its acceptance condition.

Theorem 1 ([3]). For every NBW B with k states that is co-Büchi recognizable
there is an equivalent NCW C with at most k2k states.

Proof. Let B = 〈Σ, B, δB, B0, αB〉. We define the NCW C = 〈Σ, C, δC , C0, αC〉
on top of the product of B with its subset construction. Formally, we have the
following.

The Quest for a Tight Translation of Büchi to co-Büchi Automata 153

– C = B×2B. That is, the states of C are all the pairs 〈b, E〉 where b ∈ B and
E ⊆ B.

– For all 〈b, E〉 ∈ C and σ ∈ Σ, we have δC(〈b, E〉, σ) = δB(b, σ)× {δB(E, σ)}.
That is, C nondeterministically follows B on its B-components and deter-
ministically follows the subset construction of B on its 2B-component.

– C0 = B0 × {B0}.
– A state is a member of αC if it is reachable from itself along a path whose

projection on B visits αB. Formally, 〈b, E〉 ∈ αC if there is a state 〈b′, E′〉 ∈
αB × 2B and finite words y1 and y2 such that 〈b′, E′〉 ∈ δC(〈b, E〉, y1) and
〈b, E〉 ∈ δC(〈b′, E′〉, y2). We refer to y1 · y2 as the witness for 〈b, E〉. Note
that all the states in αB × 2B are members of αC with an empty witness.

We prove the equivalence of B and C. Note that the 2B-component of C proceeds
in a deterministic manner. Therefore, each run r of B induces a single run of C
(the run in which the B-component follows r). Likewise, each run r′ of C induces
a single run of B, obtained by projecting r′ on its B-component.

We first prove that L(B) ⊆ L(C). Consider a word w ∈ L(B). Let r be an
accepting run of B on w. We prove that the run r′ induced by r is accepting.
Consider a state 〈b, E〉 ∈ inf (r ′). We prove that 〈b, E〉 ∈ αC . Since 〈b, E〉 ∈
inf (r ′), then b ∈ inf (r). Thus, there are three prefixes x, x · y1, and x · y1 · y2 of
w such that r′(x) = r′(x · y1 · y2) = 〈b, E〉 and r′(x · y1) ∈ αB × 2B. Therefore,
y1 · y2 witnesses that 〈b, E〉 is in αC . Hence, inf (r) ⊆ αC , and we are done.

We now prove that L(C) ⊆ L(B). Consider a word w ∈ L(C). Let r′ be an
accepting run of C on w, let 〈b, E〉 be a state in inf (r ′), and let x be a prefix of
w such that r′(x) = 〈b, E〉. Since r′ is accepting, inf (r ′) ⊆ αC , so 〈b, E〉 ∈ αC .
Let z be a witness for the membership of 〈b, E〉 in αC . By the definition of a
witness, δB(E, z) = E and there is a run of Bb on z that visits αB and goes back
to b. If z = ε, then b ∈ αB , the run of B induced by r′ is accepting, and we are
done. Otherwise, x · zω ∈ L(B), and we proceed as follows.

Recall that the language of B is NCW-recognizable. Let D=〈Σ, D, δD, D0, αD〉
be a DCW equivalent to B. Since L(B) = L(D) and x ·zω ∈ L(B), it follows that
the run ρ of D on x · zω is accepting. Since D is finite, there are two indices i1
and i2 such that i1 < i2, ρ(x · zi1) = ρ(x · zi2), and for all prefixes y of x · zω

such that x · zi1 % y, we have ρ(y) ∈ αD. Let d1 = ρ(x · zi1).
Consider the run η of D on w. Since r′ visits 〈b, E〉 infinitely often and D is

finite, there must be a state d0 ∈ D and infinitely many prefixes p1, p2, . . . of w
such that for all i ≥ 1, we have r′(pi) = 〈b, E〉 and η(pi) = d0.

We claim that the states d0 and d1 satisfy the conditions of Lemma 1 with
x0 being p1 and x1 being x · zi1 . Indeed, δD(p1) = d0, δD(x · zi1) = d1, and
δB(p1) = δB(x · zi1) = E. For the latter equivalence, recall that δB(x) = E and
δB(E, z) = E. Hence, by Lemma 1, we have L(Dd0) = L(Dd1).

Recall the sequence of prefixes p1, p2, For all i ≥ 1, let pi+1 = pi·ti. We now
claim that for all i ≥ 1, the state d0 satisfies the conditions of Corollary 1 with u
being zi2−i1 and v being ti. The first condition is satisfied by Lemma 2. For the
second condition, consider a word w′ ∈ (v∗ · u+)ω . We prove that w′ ∈ L(Dd0).
Recall that there is a run of Bb on v that goes back to b and there is a run of Bb

154 U. Boker and O. Kupferman

on u that visits αB and goes back to b. Recall also that for the word p1, we have
that r′(p1) = 〈b, E〉 and η(p1) = d0. Hence, p1 · w′ ∈ L(B). Since L(B) = L(D),
we have that p1 · w′ ∈ L(B). Therefore, w′ ∈ L(Dd0).

Thus, by Corollary 1, for all i ≥ 1 we have that tωi ∈ L(Dd0). Since δD(d0, ti) =
d0, it follows that all the states that D visits when it reads ti from d0 are in αD.
Note that w = p1 · t1 · t2 · · · . Hence, since δD(p1) = d0, the run of D on w is
accepting, thus w ∈ L(D). Since L(D) = L(B), it follows that w ∈ L(B), and we
are done. �

4 Lower Bound

In this section we describe the “circumventing counting” idea and how it has
led to a matching lower bound. In the deterministic setting, DBWs are co-Büchi
type. Thus, if a DBW A is DCW-recognizable, then there is a DCW equivalent
to A that agrees with A on its structure (that is, one only has to modify the
acceptance condition). The conjecture that NBW are also co-Büchi type was
refuted only in [11]:

Theorem 2 ([11]). NBWs are not co-Büchi type.

Proof. Consider the NBW A described in Fig. 1. The NBW recognizes the lan-
guage a∗ · b · (a + b)∗ (at least one b). This language is in NCW, yet it is easy to
see that there is no NCW recognizing L on the same structure. �

q0 q1

q2

q3
b a

aba

b a

a

Fig. 1. NBWs for a∗ · b · (a+ b)∗

The result in [11] shows that there are NBWs that are NCW-recognizable and
yet an NCW for them requires a structure that is different from the one of the
given NBW. It does not show, however, that the NCW needs to have more states.
In particular, the language of the NBW in Fig. 1 can be recognized by an NCW
with two states.

The Quest for a Tight Translation of Büchi to co-Büchi Automata 155

4.1 A Linear Lower Bound

The first non-trivial lower bound for the NBW to NCW translation was described
in [2]. It is based on an idea to which we refer as the “circumventing counting”
idea. We describe the idea along with the family of languages used in [2].

Let Σ = {a, b}. For every k ≥ 1, we define a language Lk as follows:

Lk = {w ∈ Σω | both a and b appear at least k times in w}.

Since an automaton recognizing Lk must accept every word in which there are at
least k a’s and k b’s, regardless of how the letters are ordered, it may appear as
if the automaton must have two k-counters operating in parallel, which requires
O(k2) states. This would indeed be the case if a and b had not been the only
letters in Σ, of if the automaton had been deterministic or on finite words.
However, since we are interested in nondeterministic automata on infinite words,
and a and b are the only letters in Σ, we can do much better. Since Σ contains
only the letters a and b, one of these letters must appear infinitely often in every
word in Σω. Hence, w ∈ Lk iff w has at least k b’s and infinitely many a’s,
or at least k a’s and infinitely many b’s. An NBW can guess which of the two
cases above holds, and proceed to validate its guess (if w has infinitely many
a’s as well as b’s, both guesses would succeed). The validation of each of these
guesses requires only one k-counter, and a gadget with two states for verifying
that there are infinitely many occurrences of the guessed letter. Implementing
this idea results in the NBW with 2k + 1 states appearing in Fig. 2.

The reason we were able to come up with a small NBW for Lk is that NBWs
can abstract precise counting by “counting to infinity” with two states. The fact
that NCWs do not share this ability [14] is what ultimately allows us to prove
that NBW are more succinct than NCW. As it turns out, however, even an NCW
for Lk can do much better than maintaining two k-counters with O(k2) states.
To see how, note that a word w is in Lk iff w has at least k b’s after the first k a’s
(this characterizes words in Lk with infinitely many b’s), or a finite number of
b’s that is not smaller than k (this characterizes words in Lk with finitely many

a, b

a a a a

t0

t′2 t′kt′k−1t′k−2t′1

a

b

t2 tktk−1tk−2t1

b b b ba, b

a

b b b

a a a

b

a

b

a, b

· · ·

· · ·

Fig. 2. An NBW for Lk with 2k + 1 states

156 U. Boker and O. Kupferman

a a a

t0

t′2t′1
b

a

b

t1

b

a

b

a

t′kt′k−1t′k−2

b

aa

b

t2

b

· · · tk−1
a

b

tk

a

b
tk+1

a

b

· · ·

· · ·a, b

a

t2k−1
b

t2k

a, b

Fig. 3. An NCW for Lk with 3k + 1 states

b’s). Obviously the roles of a and b can also be reversed. Implementing this idea
results in the NCW with 3k + 1 states described in Fig. 3. As detailed in [2], up
to one state this is indeed the best one can do. Thus, the family of languages
L1, L2, . . . implies that translating an NBW with 2k + 1 states may result in
an NCW with at least 3k states, hence the non-trivial, but still linear, lower
bound.

4.2 A Quadratic Lower Bound

In this section we enhance the circumventing-counting idea, by letting the NCW
count distances between occurrences rather than number of occurrences. We
demonstrate how the enhancement can lead to a quadratic lower bound. We first
need some results from number theory. For k ∈ IN, let Sk ⊆ IN be the set of all
positive integers that can be written as ik+j(k+1), for i, j ∈ IN. Thus, Sk = {ik+
j(k + 1) : i, j ∈ IN, i + j > 0}. For example, S4 = {4, 5, 8, 9, 10, 12, 13, 14, 15, . . .}.
The following is a well-known property of Sk, which we prove below for the sake
of completeness. (The set Sk is sometimes defined in the literature without the
i + j > 0 requirement, adding the number 0 to the set.)

Theorem 3. For every k ∈ IN, the number k2 − k − 1 is the maximal number
not in Sk. That is, k2 − k − 1 �∈ Sk, while for every t ≥ k2 − k, we have that
t ∈ Sk.

Proof. By definition, Sk = {ik + j(k + 1) : i, j ∈ IN, i + j > 0}. Equivalently,
Sk = {(i + j)k + j : i, j ∈ IN, i + j > 0}. Thus, t ∈ Sk iff t > 0 and there are
i′, j′ ∈ IN such that i′ ≥ j′ and t = i′k + j′. We first claim that k2 − k− 1 �∈ Sk.
Let i′ and j′ be such that i′k + j′ = k2 − k − 1. We claim that i′ < j′, implying
that k2 − k− 1 �∈ Sk. To see this, note that (k− 2)k + (k− 1) = k2 − k− 1, and
that it is impossible to increase i′ = (k − 2) and decrease j′ = (k − 1), keeping
the same total number. On the other hand, (k− 1)k +0 = k2− k, thus for every
t ≥ k2− k, there are i′ ≥ k− 1 and j′ ≤ k− 1 such that t = i′k + j′. Such i′ and
j′ witness that t ∈ Sk. �

The Quest for a Tight Translation of Büchi to co-Büchi Automata 157

For k ∈ IN, we refer to k2 − k − 1 as the threshold of k and denote it by th(k).
That is, th(k) = k2 − k − 1.6

We can now define the family of languages L1, L2, . . . with which we are going
to prove the lower bound. Let Σ = {a, b}. For k ≥ 1, let L′

k = {(ε + Σ∗ · a) · bi ·
a ·Σω : i ∈ Sk}. Then, Lk = L′

k ∪ (b∗ · a)ω . Thus, w ∈ Lk iff w starts with bi · a
or has a subword of the form a · bi · a, for i ∈ Sk, or w has infinitely many a’s.

Our alert readers are probably bothered by the fact the (b∗ ·a)ω component of
Lk is not NCW-recognizable. To see why Lk is still NCW-recognizable, consider a
word w with infinitely many a’s. Thus, the word is of the form bi1 ·a·bi2 ·a·bi3 ·a · · · ,
for non-negative integers i1, i2, i3, If for some j ≥ 1, we have ij ∈ Sk, then
w is in L′

k. Otherwise, for all j ≥ 1, we have ij �∈ Sk. Hence, by Theorem 3,
for all j ≥ 1, we have ik ≤ th(k). Accordingly, Lk = L′

k ∪ (b≤th(k) · a)ω. Thus,
the “infinitely many a’s” disjunct can be replaced by one on which the distance
between two successive a’s is bounded. As we are going to prove formally, while
this implies that Lk can be recognized by an NCW, it forces the NCW to count
to th(k), and is the key to the quadratic lower bound.

Theorem 4. For every k ≥ 1, the language Lk can be recognized by an NBW
with k + 3 states.

Proof. We prove that the NBW Bk, appearing in Fig. 4, recognizes Lk.

a

sk+1

b

a

b b
s1s2

aa b

b
sk−2

a

b
sk−1sk

aa

sk+2

s0

bb

· · ·

a, b

Bk:

Fig. 4. The NBW Bk recognizing Lk

Assume first that w ∈ Lk. Then, w either have infinitely many a’s, or starts
with br · a or has a subword of the form a · br · a, for r ∈ Sk. In the first case, w
is accepted by Bk, since the automaton’s transition function is total and an a-
transition always goes to an accepting state. Now, assume that w has a subword
of the form a · br · a, starting at a position t, for r ∈ Sk. Then, as argued above,
6 In general, for a finite set of positive integers {n1, n2, . . . , nl}, we have that all

integers above max2{n1, n2, . . . , nl} can be written as linear combinations of the

ni’s iff the greater common divisor of the ni’s is 1. For our purpose, it is sufficient

to restrict attention to linear combinations of two subsequent integers.

158 U. Boker and O. Kupferman

a run of Bk on w will either visit s0 or sk+2 at position t + 1. If it visits sk+2 it
is obviously an accepting run. If it visits s0, then at position t+1+ r it can visit
sk+1 if there are natural numbers i and j such that i+j > 0 and r = ik+j(k+1),
which is the case by the assumption that r ∈ Sk. Thus, the run can visit sk+2

at position t + r + 2, making it an accepting run. Hence, w ∈ Lk. The case in
which w starts with br · a, for r ∈ Sk, is handled analogously.

As for theother direction,assume that there is anaccepting runofBk onw.Then,
the run either visits infinitely often s0 or sk+2. Since s0 has only a-in-transitions, it
follows that in the first case w has infinitely many a’s, thus belonging to Lk. For the
second case, note that a run visits the state sk+1, only if there are natural numbers
i and j such that i + j > 0 and Bk has read the subword bik+j(k+1) since its last
visit to the state s0. Since a run visits s0 only at initialization or after an a is read,
it follows that a word visits sk+2 only if it starts with bi · a or has a subword of the
form a · bi · a, for i ∈ Sk. Hence, w ∈ Lk. �

Next, we show that while Lk can be recognized by an NCW, every NCW recog-
nizing Lk cannot take advantage of its non-determinism. Formally, we present
a DCW (Fig. 5) for Lk that has k2 − k + 2 states, and prove that an NCW
recognizing Lk needs at least that many states. For simplicity, we show that the
NCW must count up to th(k), resulting with at least k2 − k states, and do not
consider the two additional states of the DCW.

Theorem 5. For every k ≥ 1, the language Lk can be recognized by a DCW
with k2 − k + 2 states, and cannot be recognized by an NCW with fewer than
k2 − k states.

Proof. Consider the DCW Dk, appearing in Fig. 5. In the figure, a state si has
an a-transition to the state sth(k)+2 if and only if i ∈ Sk. We leave to the reader
the easy task of verifying that that L(Dk) = Lk.

We now turn to prove the lower bound. Assume by way of contradiction that
there is an NCW Ck with at most k2 − k − 1 states that recognizes Lk. The
word w = (b(k2−k−1) · a)ω belongs to Lk since it has infinitely many a’s. Thus,
there is an accepting run r of Ck on w. Let t be a position such that rt′ ∈ α

Dk:

s1s2sth(k) si∈Sk
sth(k)+1

s0

sth(k)+2

· · ·· · · b

aa

b

a

a a

bb

b

a

a, b

b

Fig. 5. The DCW Dk recognizing Lk

The Quest for a Tight Translation of Büchi to co-Büchi Automata 159

for all t′ ≥ t. Let t′ ≥ t be the first position in which a occurs in w after t.
Then, between positions t′ + 1 and t′ + k2 − k, the run r is in α, making only
b-transitions. Since Ck has at most k2 − k − 1 states, it follows that there are
positions t1 and t2, with t′ < t1 < t2 ≤ t′ + k2 − k such that rt1 = rt2 . Consider
now the word w′ = w1 · w2 · · ·wt1 · bω. On the one hand, w′ is accepted by Ck

via the run r′ = r0, r1, . . . , rt1 , (rt1+1, rt1+2, . . . , rt2)
ω. On the other hand, w′ has

only finitely many a’s, and by Theorem 3, it has no i consequent b’s followed by
an a, such that i ∈ Sk. Indeed, all the subwords of the form a · bi · a in w′ have
i = k2 − k − 1. Hence, w′ �∈ Lk, which leads to a contradiction. �

4.3 An Exponential Lower Bound

We now push the circumventing-counting idea to its limit, and use it in order
to describe a family of languages L2, L3, . . . such that for all k ≥ 2, an NBW
for Lk has O(k) states whereas an NCW for Lk requires at least k2k states.
As in the quadratic lower bound, the NCW has to bound the distance between
occurrences of an event. Now, however, the distance is exponential in k.

Let Σ = {0, 1, $, #}. The language Lk is going to be the union of a language
L′

k with the language (Σ∗ ·#)ω. Before we define L′
k formally, we describe the

intuition behind it. Note that the (Σ∗ · #)ω component of Lk is not NCW-
recognizable. Thus, one task of L′

k is to neutralize the non NCW-recognizability
of this component. We do this by letting L′

k contain all the words in (Σ∗ ·#)ω

that have a subword (0+1+$)h, for h > th(k), for some threshold th(k). As with
the quadratic lower bound, this would make it possible to replace the (Σ∗ ·#)ω

component by (Σ≤th(k) ·#)ω , which is NCW-realizable. The second task of L′
k

would be to accomplish the first task with an exponential threshold.
The language L′

k is going to fulfill its second task as follows. Consider a
word in Σω and a subword u ∈ (0 + 1 + $)∗ of it. The subword u is of the form
v0$v1$v2$v3 · · · , for vi ∈ (0+1)∗. Thus, u can be viewed as an attempt to encode
a binary k-bit cyclic counter in which two adjacent values are separated by $. For
example, when k = 3, a successful attempt might be 100$101$110$111$000. Each
subword in (0+1+$)∗ of length (k+1)2k must reach the value 1k or contain an
error (in its attempt to encode a counter). There are two types of errors. One type
is a “syntax error”, namely a value vi of length different from k. The second type
is an “improper-increase error”, namely a subword vi ·$·vi+1 ∈ (0+1)k ·$·(0+1)k

such that vi+1 is not the successor of vi in a correct binary encoding of a cyclic
k-bit counter. The language L′

k consists of all words that contain the value 1k

or an error, eventually followed by #.
We now define L′

k formally. For v, v′ ∈ (0 + 1)∗, we use not succk(v, v′) to
indicate that v and v′ are in (0 + 1)k but v′ is not the successor of v in the
binary encoding of a k-bit counter. For example, not succ3(101, 111) holds, but
not succ3(101, 110) does not hold. We define the following languages over Σ.

– Sk = {$ · (0 + 1)m · $: m < k} ∪ {(0 + 1)m : m > k},
– Ik = {v · $ · v′ : not succk(v, v′)}, and
– L′

k = Σ∗ · (Sk ∪ Ik ∪ {1k}) ·Σ∗ ·# ·Σω.

160 U. Boker and O. Kupferman

Finally, we define Lk = L′
k ∪ (Σ∗ · #)ω. For example, taking k = 3, we have

that 010$011#110$111# · · · is in L3 since it is in L′
3 with a 111 subword, the

word 010$$011# · · · is in L3 since it is in L′
3 by a syntax error, the word

$010$010$# · · · is in L3 since it is in L′
3 by an improper-increase error, the

word (010$011#)ω is in L3 since it has infinitely many #’s, and the word
010$011#000$001$010#1ω is not in L3, as it has only finitely many #’s, it
does not contain an error, and while it does contain the subword 111, it does
not contain a subword 111 that is eventually followed by #.

Lemma 4. For every k ≥ 1, the language L′
k can be recognized by an NBW with

O(k) states and by an NCW with O(k) states.

Proof. We show that there is an NFW with O(k) states recognizing Sk∪Ik∪{1k}.
Completing the NFW to an NBW or an NCW for L′

k is straightforward. It is
easy to construct NFWs with O(k) states for Sk and for {1k}. An NFW with
O(k) states for Ik is fairly standard too (see, for example, [10]). The idea is that
if v′ is the successor of v in a binary k-bit cyclic counter, then v′ can be obtained
from v by flipping the bits of the 0 · 1∗ suffix of v, and leaving all other bits
unchanged (the only case in which v does not have a suffix in 0 · 1∗ is when
v ∈ 1∗, in which case all bits are flipped). For example, the successor of 1001 is
obtained by flipping the bits of the suffix 01, which results in 1010. Accordingly,
there is an improper-increase error in v · $ · v′ if there is at least one bit of v that
does not respect the above rule. An NFW can guess the location of this bit and
reveals the error by checking the bit located k + 1 bits after it, along with the
bits read in the suffix of v that starts in this bit. �

An immediate corollary of Lemma 4 is that Lk can be recognized by an NBW
with O(k) states. Next, we show that while Lk is NCW-recognizable, an NCW
for it must be exponentially larger.

Lemma 5. For every k ≥ 2, the language Lk is NCW-recognizable, and every
NCW recognizing Lk must have at least k2k states.

Proof. We first prove that Lk is NCW-recognizable. Let th(k) = (k + 1)2k.
Consider the language Bk = (Σ≤th(k) ·#)ω . It is easy to see that Bk is NCW-
recognizable. We prove that Lk = L′

k ∪ Bk. Since, by Lemma 4, the language
L′

k is NCW-recognizable, it would follow that Lk is NCW-recognizable. Clearly,
Bk ⊆ (Σ∗ ·#)ω. Thus, L′

k ∪Bk ⊆ Lk, and we have to prove that Lk ⊆ L′
k ∪Bk.

For that, we prove that (Σ∗ ·#)ω ⊆ L′
k ∪Bk. Consider a word w ∈ (Σ∗ ·#)ω . If

w ∈ Bk, then we are done. Otherwise, w contains a subword u ∈ (0+1+$)h, for
h > th(k). Thus, either u does not properly encode a k-bit cyclic counter (that
is, it contains a syntactic or an improper-increase error) or u has the subword
1k. Hence, u ∈ Σ∗ · (Sk ∪ Ik ∪ {1k}) ·Σ∗. Since w ∈ (Σ∗ ·#)ω, it has infinitely
many occurrences of #’s. In particular, there is an occurrence of # after the
subword u. Thus, w ∈ L′

k, and we are done.
We now turn to prove the lower bound. Assume by way of contradiction that

there is an NCW Ck with acceptance set α and at most k2k − 1 states that

The Quest for a Tight Translation of Büchi to co-Büchi Automata 161

recognizes Lk. Consider the word w = (00 · · · 0$00 · · ·01$ · · ·$11 · · ·10#)ω, in
which the distance between two consequent #’s is d = (k +1)(2k−1). Note that
for all k ≥ 2, we have that d > k2k. The word w has infinitely many #’s and it
therefore belongs to Lk. Thus, there is an accepting run r of Ck on w. Let t be
a position such that rt′ ∈ α for all t′ ≥ t. Let t0 ≥ t be the first position after t
such that wt0 = #. Since Ck has at most k2k − 1 states, there are two positions
t1 and t2, with t0 < t1 < t2 ≤ t0 + k2k, such that rt1 = rt2 .

Consider the word w′ = w1 ·w2 · · ·wt1 · (wt1+1 · · ·wt2)ω. The NCW Ck accepts
w′ with a run r′ that pumps r between the positions t1 and t2. Formally, r′ =
r0, r1, . . . , rt1 , (rt1+1, . . . , rt2)ω. Note that since rt′ ∈ α for all t′ ≥ t, the run r′

is indeed accepting. We would get to a contradiction by proving that w′ �∈ Lk.
Since t2 ≤ t0 +k2k and k2k < d, we have that wt1+1 · · ·wt2 has no occurrence

of #, thus w′ has no occurrences of # after position t0. Recall that Lk = L′
k ∪

(Σ∗ · #)ω. By the above, w′ �∈ (Σ∗ · #)ω. Furthermore, since L′
k = Σ∗ · (Sk ∪

Ik ∪ {1k}) · Σ∗ · # · Σω, the fact w′ has no occurrences of # after position t0
implies that the only chance of w′ to be in Lk is to have a prefix of w1 · · ·wt0 in
Σ∗ · (Sk ∪ Ik ∪ {1k}) ·Σ∗ ·#. Such a prefix, however, does not exist. Indeed, all
the subwords in (0 + 1 + $)∗ of w1 · · ·wt0 do not contain errors in their encoding
of a k-bit counter, nor they reach the value 1k. It follows that w �∈ Lk, and we
are done. �

Lemmas 4 and 5 imply the desired exponential lower bound:

Theorem 6 ([3]). There is a family of languages L2, L3, . . ., over an alphabet
of size 4, such that for every k ≥ 2, the language Lk is NCW-recognizable, it
can be recognized by an NBW with O(k) states, and every NCW that recognizes
it has at least k2k states.

Combining the above lower bound with the upper bound in Theorem 1, we can
conclude with the following.7

Theorem 7 ([3]). The asymptotically tight bound for the state blow up in the
translation, when possible, of an NBW to an equivalent NCW is 2Θ(n).

5 Discussion

It is well known that nondeterministic automata are exponentially more succinct
than deterministic ones. The succinctness is robust and it applies to all known
classes of automata on finite or infinite objects. Restricting attention to nonde-
terministic automata makes the issue of succinctness more challenging, as now
all classes of automata may guess the future, and the question is whether cer-
tain acceptance conditions can use this feature better than others. For example,
7 Note that the lower and upper bounds are only asymptotically tight, leaving a gap

in the constants. This is because the NBW that recognizes Lk requires O(k) states

and not strictly k states.

162 U. Boker and O. Kupferman

translating a nondeterministic Rabin word automaton with n states and index
k to an NBW, results in an automaton with O(nk) states, whereas translating
a nondeterministic Streett automaton with n states and index k, results in an
NBW with O(n2k) states. The difference between the blow-ups in the case of
Rabin and Streett can be explained by viewing the acceptance condition as im-
posing additional nondeterminism. Indeed, simulating a Rabin automaton, an
NBW has to guess not only the accepting run, but also the pair 〈G, B〉 that
is going to be satisfied and the position after which no states in B are visited
(hence the O(k) factor in the blow up), whereas in a Streett automaton, the
simulating NBW has to guess, for each pair, the way in which it is going to be
satisfied (hence the O(2k) factor). This intuition is supported by matching lower
bounds [23]. Starting with a Büchi automaton, no such additional nondetermin-
ism hides in the acceptance condition, so one would not expect Büchi automata
to be more succinct than other nondeterministic automata. The challenge grows
with an acceptance condition like co-Büchi, whose expressive power is strictly
weaker, and thus not all languages are candidates for proving succinctness. The
exponential lower-bound described in Sect. 4 shows that the Büchi condition is
still exponentially more succinct than its dual co-Büchi condition. The explana-
tion to this succinctness is the ability of the Büchi condition to easily specify the
fact that some event P should repeat infinitely often. Languages that involve
such a specification may still be NCW-recognizable, as other components of the
language force the distance between successive occurrences of P to be bounded
by some fixed threshold 2k. While an NBW for the language does not have to
count to the threshold and can be of size O(k), an NCW for the language has
to count, which requires it to have at least 2k states.

Co-Büchi automata can be determinized with a 2O(n) blow up [16]. A 2O(n log n)

translation of NBW to DCW was known, but a matching lower bound was known
only for the translation of NBW to deterministic Rabin or Streett automata. As
detailed in [3], the improved 2O(n) translation of NBW to NCW described in
Sect. 3, also suggests an improved 2O(n) translation of NBW to DCW. Indeed,
since the exponential component of the constructed NCW is deterministic, then
applying the break-point subset construction of [16] on it does not involve an ad-
ditional exponential blow-up. In particular, this implies a Safraless and symbolic
translation of LTL formulas to DBW, when possible. Furthermore, by [4], one
cannot expect to do better than the breakpoint construction, making the trans-
lation of NBW to DCW [3] optimal. In addition, as detailed in [3], the translation
described in Sect. 3 has a one-sided error. Thus, when applied to an NBW that
is not NCW-recognizable, the constructed NCW contains the language of the
NBW. Accordingly, translating LTL formulas that are not DBW-recognizable to
a DBW, one gets a DBW that under-approximates the specification. For many
applications, and in particular synthesis, one can work with such an under-
approximating automaton, and need not worry about the specification being
DBW-recognizable.

The Quest for a Tight Translation of Büchi to co-Büchi Automata 163

References

1. Accellera: Accellera organization inc. (2006), http://www.accellera.org

2. Aminof, B., Kupferman, O., Lev, O.: On the relative succinctness of nondetermin-

istic Büchi and co-Büchi word automata. In: Cervesato, I., Veith, H., Voronkov,

A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 183–197. Springer, Heidelberg

(2008)

3. Boker, U., Kupferman, O.: Co-ing Büchi made tight and useful. In: Proc. 24th

IEEE Symp. on Logic in Computer Science (2009)

4. Boker, U., Kupferman, O., Rosenberg, A.: Alternation removal in Büchi automata.

In: Proc. 37th Int. Colloq. on Automata, Languages, and Programming (2010)

5. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.

Int. Congress on Logic, Method, and Philosophy of Science, pp. 1–12. Stanford

University Press, Stanford (1962)

6. Emerson, E., Jutla, C.: The complexity of tree automata and logics of programs. In:

Proc. 29th IEEE Symp. on Foundations of Computer Science, pp. 328–337 (1988)

7. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components

in a linear number of symbolic steps. In: 14th ACM-SIAM Symp. on Discrete

Algorithms, pp. 573–582 (2003)

8. Krishnan, S., Puri, A., Brayton, R.: Deterministic ω-automata vis-a-vis determinis-

tic Büchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834,

pp. 378–386. Springer, Heidelberg (1994)

9. Kupferman, O.: Tightening the exchange rate beteen automata. In: Duparc, J.,

Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 7–22. Springer, Heidelberg

(2007)

10. Kupferman, O., Lustig, Y., Vardi, M.: On locally checkable properties. In:

Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 302–

316. Springer, Heidelberg (2006)

11. Kupferman, O., Morgenstern, G., Murano, A.: Typeness for ω-regular automata.

International Journal on the Foundations of Computer Science 17, 869–884 (2006)

12. Kupferman, O., Vardi, M.: From linear time to branching time. ACM Transactions

on Computational Logic 6, 273–294 (2005)

13. Kurshan, R.: Computer Aided Verification of Coordinating Processes. Princeton

Univ. Press, Princeton (1994)

14. Landweber, L.: Decision problems for ω–automata. Mathematical Systems The-

ory 3, 376–384 (1969)

15. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.

Information and Control 9, 521–530 (1966)

16. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Com-

puter Science 32, 321–330 (1984)

17. Morgenstern, A., Schneider, K.: From LTL to symbolically represented determinis-

tic automata. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,

vol. 4905, pp. 279–293. Springer, Heidelberg (2008)

18. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic

parity automata. In: Proc. 21st IEEE Symp. on Logic in Computer Science, pp.

255–264. IEEE press, Los Alamitos (2006)

19. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM

Symp. on Principles of Programming Languages, pp. 179–190 (1989)

20. Rabin, M.: Decidability of second order theories and automata on infinite trees.

Transaction of the AMS 141, 1–35 (1969)

http://www.accellera.org

164 U. Boker and O. Kupferman

21. Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms for

the computation of fair cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD

2000. LNCS, vol. 1954, pp. 143–160. Springer, Heidelberg (2000)

22. Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE Symp. on Foun-

dations of Computer Science, pp. 319–327 (1988)

23. Safra, S., Vardi, M.: On ω-automata and temporal logic. In: Proc. 21st ACM Symp.

on Theory of Computing, pp. 127–137 (1989)

24. Street, R., Emerson, E.: An elementary decision procedure for the μ-calculus. In:

Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 465–472. Springer, Heidelberg

(1984)

25. Vardi, M., Wolper, P.: Automata-theoretic techniques for modal logics of programs.

Journal of Computer and Systems Science 32, 182–221 (1986)

26. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and

Computation 115, 1–37 (1994)

27. Wolper, P., Vardi, M., Sistla, A.: Reasoning about infinite computation paths. In:

Proc. 24th IEEE Symp. on Foundations of Computer Science, pp. 185–194 (1983)

28. Yan, Q.: Lower bounds for complementation of ω-automata via the full automata

technique. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP

2006. LNCS, vol. 4052, pp. 589–600. Springer, Heidelberg (2006)

Normalization of Some Extended Abstract State
Machines

Patrick Cégielski1 and Irène Guessarian2,�

1 Université Paris Est–Créteil, IUT, LACL EA 4219, Route forestière Hurtault,

F-77300 Fontainebleau, France

cegielski@u-pec.fr
2 LIAFA, UMR 7089 and Université Paris 6, 2 Place Jussieu,

75254 Paris Cedex 5, France

ig@liafa.jussieu.fr

For the 70th birthday of Yuri Gurevich

Abstract. We compare the control structures of Abstract State Ma-

chines (in short ASM) defined by Yuri Gurevich and AsmL, a language

implementing it. AsmL is not an algorithmically complete language, as

opposed to ASM, but it is closer to usual programming languages al-

lowing until and while iterations and sequential composition. We here

give a formal definition of AsmL, its semantics, and we construct, for

each AsmL program Π , a normal form (which is an ASM program) Πn

computing the same function as Π . The number of comparisons and up-

dates during the execution of the normal form is at most three times the

number of comparisons and updates in the original program.

Keywords: Abstract State Machine, Algorithm, Semantics.

1 Introduction

Yuri Gurevich has given a schema of languages which is not only a Turing-
complete language (a language allowing to express at least an algorithm for each
computable function), but which also allows to express all algorithms for each
computable function (it is an algorithmically complete language); this schema of
languages was first called dynamic structures, then evolving algebras, and finally
ASM (for Abstract State Machines) [2]. He proposed the Gurevich’s thesis (the
notion of algorithm is entirely captured by the model) in [3]. Yuri had explained
us this thesis during his stay in Paris, and a fascinating russian style after-
talk discussion, between Yuri and Vladimir Uspensky, during a conference in
Fontainebleau, convinced all those attending the talk of the truth of Yuri’s thesis.

There exist several partial implementations of ASMs as a programming lan-
guage. These implementations are partial by nature for two reasons: (i) ASMs
allow to program functions computable by Turing machines with oracles, but

� Address correspondence to this author.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 165–180, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

166 P. Cégielski and I. Guessarian

obviously not the implementations; (ii) in ASMs any (computable) first order
structures may be defined, which is not true for the current implementations.

Yuri Gurevich has directed a group at Microsoft Laboratories (Redmond)
which has implemented such a programming language, called AsmL (for ASM
Language), written first in C++ then in C# as a language of the .NET framework
of Microsoft. To invite programmers to use its language, this group extended the
control structures used in ASMs. Pure ASM control structures are represented
by normal forms of AsmL programs.

The aim of this paper is to give a formal definition of AsmL (more precisely
of the part concerning control structures; we are not interested by constructions
of first-order structures here), a formal definition of normal forms in AsmL, to
show how to build a normal form from an AsmL program, and to compare the
cost of the normal form with the cost of the original program.

2 Definitions

2.1 Definition of ASMs

We first recall the definition of ASMs and then precise our point of view on
ASMs because different definitions exist.

2.2 Syntax

Definition 1. An ASM vocabulary, or signature, is a first-order signature L
with a finite number of function symbols, two boolean constant symbols (true
and false), a constant symbol (denoted by null or undef), logical connectives
(not, and, and or), and the equality predicate denoted by =.

Signature L has three sorts: Data, Boolean and Null. Terms are defined by:

– if c is a nullary function symbol (a constant), then c is a term,
– if t1, . . . , tn are terms and f is an n-ary function symbol then f(t1, . . . , tn)

is a term.

The above defined terms are usually called closed or ground terms; general terms
with variables are disallowed. An n-ary function symbol of sort Boolean will be
called an n-ary predicate.

Definition 2. Boolean terms (or formulæ) are defined inductively by:

– if p is an n-ary predicate and t1, . . . , tn are terms then p(t1, . . . , tn) is a
formula;

– if t and t′ are terms, then t = t′ is a formula;
– if F, F ′ are formulæ, then ¬F , F ∧ F ′, F ∨ F ′ are formulæ.

Definition 3. Let L be an ASM signature. ASM rules are defined inductively
as follows:

Normalization of Some Extended Abstract State Machines 167

– An update rule is an expression of the form:

f(t1, . . . , tn) := t0

where f is a n-ary functional symbol and t0, t1, . . . , tn are terms of L (Recall
that constants are allowed but variables are disallowed).

– If R1, . . . , Rk are rules of signature L, where k ≥ 1, then the following
expression is also a rule of L, called a block:
par

R1

...
Rk

endpar
– Let ϕ be a boolean term, and let R1 and R2 be rules of signature L. The

expression:
if ϕ then R1

else R2

endif
is also a rule of vocabulary L, called an alternative rule.

– The test rule is defined by: if ϕ then R1.

In early ASMs, par meant parallel, nowadays it stands for parenthesis.

Definition 4. Let L be an ASM signature. A program on signature L, or L-
program, is a synonym for a rule of that signature.

2.3 Semantics

Definition 5. If L is an ASM signature, an ASM abstract state, or more pre-
cisely an L-state, is a synonym for a first-order structure A of signature L (an
L-structure).

The universe of A consists of the disjoint union of three sets: the basis set A,
the Boolean set B = {true, false}, and a singleton set {⊥}. The values of the
Boolean constant symbols true and false and of null (or undef) in A will be
denoted by true, false, and null (or ⊥).

Definition 6. Let L be an ASM signature and A a non empty set. A set of
modifications (more precisely an (L, A)-modification set) is any finite set of
triples:

(f, a, a),

where f is a function symbol of L, a = (a1, . . . , an) is an n-tuple of A (where n
is the arity of f), and a is an element of A.

Definition 7. Let L be an ASM signature, let A be an L-state and let Π be an
L-program. Let ΔΠ(A) denote the set defined by structural induction on Π as
follows:

168 P. Cégielski and I. Guessarian

1. If Π is an update rule:
f(t1, . . . , tn) := t0

then, denoting t1
A by a1 , . . . , tn

A by an, and t0
A by a, the set ΔΠ(A) is

the singleton:
{(f, (a1, . . . , an), a)}.

2. If Π is a block:
par R1 . . . Rn endpar

then the set ΔΠ(A) is the union:

ΔR1(A) ∪ . . . ∪ΔRn(A).

3. If Π is a test:
if ϕ then R

we first have to evaluate the expression ϕA. If it is false then the set ΔΠ(A)
is empty, otherwise it is equal to:

ΔR(A).

The semantics of the alternative rule is similar.

We may check that ΔΠ(A) is an (L,A)-set of modifications.

Definition 8. A set of modifications is incoherent if it contains two elements
(f, a, a) and (f, a, b) with a �= b. It is coherent otherwise.

Definition 9. Let L be an ASM signature, Π an L-program, and A an L-state.
If ΔΠ(A) is coherent, the transform τΠ(A) of A by Π is the L-structure B

defined by:

– the base set of B is the base set A of A;
– for any element f of L and any element a = (a1, . . . , an) of An (where n is

the arity of f):
• if (f, a, a) ∈ ΔΠ(A) for an a ∈ A, then :

f
B
(a) = a ;

• otherwise:
f
B
(a) = f

A
(a).

If ΔΠ(A) is incoherent then τΠ(A) = A (hence the state is a fixed point).

Definition 10. Let L be an ASM signature, Π an L-program, and A an L-state.
The computation is the sequence of L-states

(An)
n∈N

defined by:

– A0 = A (called the initial algebra of the computation);
– An+1 = τΠ(An) for n ∈ N.

Normalization of Some Extended Abstract State Machines 169

A computation terminates if there exists a fixed point An+1 = An. This fixed
point An is the computation result.

Definition 11. The semantics is the partial function which transforms {Π,A},
where Π is an ASM program and A a state, in the fixed point An obtained by
iterating τΠ starting from τΠ(A) until a fixed point is reached (it will be denoted
[[(Π,A)]] = τ∗

Π(A)) if such a fixed point exists, otherwise it is undefined.

3 Definition of Extended ASMs

The analog of ASM with additional rules to take into account the supplementary
control structures of AsmL is called an extended ASM . No paper defines formally
AsmL but [1] gives a precise informal description.

3.1 Syntax

Roughly speaking, AsmL considers more control structures than ASMs. We first
define AsmL rules, then explain them.

Definition 12. Let L be an ASM signature.

– An ASM rule is also an extended rule of L.
– If R1, . . . , Rk are extended rules of signature L, where k ≥ 1, then the

following expression is also an extended rule of L, called a step rule:
par

step R1

...
step Rk

endpar
– If R is an extended rule of signature L, then the following expressions are

also extended rules of L, called an iteration rules:
• step until ϕ R
• step while ϕ R

with ϕ a boolean term.
– If ϕ is a boolean term, and R1 and R2 are extended rules, then:

if ϕ then R1

else R2

endif
is an extended rule, called an alternative rule.

3.2 Semantics

We now explain the above rules. Following the semantics given above for ASMs,
the meaning of the par rule:
par

R1

...
Rk

endpar

170 P. Cégielski and I. Guessarian

is that rules R1, ..., Rk are running simultaneously, i.e. each rule is running
(with a point of view sequential or parallel for the observer, it is immaterial)
independently of the other rules; incoherences might occur for some updates;
if there is at least one incoherence, the program stops, otherwise updates are
applied.

The paradigm of simultaneity is unusual for programmers who are used to se-
quentiality. Hence sequentiality was introduced using step in AsmL. The mean-
ing of the extended rule

par
step R1

...
step Rk

endpar

is as follows: rule R1 is running first; then rule R2 is running (with values of
closed terms depending of the result of running rule R1); and so on.

Finally classical iterations appear in AsmL via the iteration rules.

4 Normalization

In the present section, all L-state A have an infinite base set which can be
assumed to contain N.

Definition 13. Let L be an ASM vocabulary. If R is an extended rule of vocab-
ulary L, then the expression step until fixpoint R is also an extended rule
of L, called a running rule.

Running rules are implicit in ASMs and are made explicit in AsmL. If R is an
ASM rule (not extended), then step until fixpoint R will have the same
semantics as the ASM program Π consisting of rule R.

Definition 14. Let L be an ASM vocabulary. If R1, . . ., Rk are ASM rules of
vocabulary L (not extended rules), then the extended rule:

step until fixpoint
par

if (mode = 0) then R1

...
if (mode = k) then Rk

endpar

is a normal form of L, where mode is a special nullary function (constant of
an ASM language with signature Lm = L∪ {mode}), whose value for the initial
algebra is 0.

The ASM rule under step until fixpoint is called the core of the normal
form.

Normalization of Some Extended Abstract State Machines 171

In the sequel par and endpar will be omitted: when rules have the same inden-
tation, they will be assumed to be in a par . . . endpar block.

To give a normal form for a given program is a classical issue of theoretical
computer science. For ASMs, we have an extra constraint, which is very impor-
tant: when running, the normal form and the original program should execute
approximatively the same number of updates and comparisons.

Example 1. Consider the following programming problem: to compute the aver-
age of an array of grades and to determine the number of grades whose value is
greater than this average. A natural program in extended ASMs is given below.
Note that in this program, avg, i, n, and nb are not variables, but constants: the
value of i will be changed in the next L-state of the computation.

step
avg := 0
i := 0

step until (i = n)
avg := avg + grade[i]
i := i+1

step
avg := avg/n
i := 0
nb := 0

step until (i = n)
if (grade[i] > avg) then nb := nb + 1
i := i + 1

using the conventions of AsmL (a same indentation indicates a block).
The core of the normal form is:

if (mode = 0) then
avg := 0
i := 0
mode := 1

if (mode = 1) then
avg := avg + grade[i]
i := i + 1
if (i = n) then mode := 2

if (mode = 2) then
avg := avg/n
i := 0
nb := 0
mode := 3

if (mode = 3) then
if (grade[i] > avg) then nb := nb + 1
i := i + 1
if (i = n) then mode := 4

172 P. Cégielski and I. Guessarian

Theorem 1. For every extended ASM program Π, there exists a normal form
ASM program Πn such that for every L-state A whose base set is infinite there
exists an Lm-state Am in which Πn computes the same function as Π, where
Lm is the signature L ∪ {mode}, with mode a new constant symbol, and Am is
the expansion of A to Lm.

Proof. We define the core of the normal form Πn of Π by structural induction
on the form of program Π . The proof that Πn and Π compute the same function
will be given in the appendix.

We will need to label some blocks. To allow this, we supposed that the base set
is infinite, we used a special nullary function symbol, mode, which was added
to the ASM signature, i.e. Lm = L ∪ {mode}. Without loss of generality, we
supposed the set N of natural integers is included in the base set.

– The core of the normal form Rn of an ASM rule R is:

if (mode = 0) then
R
mode := 1

– If R′
1, . . ., R′

k are the respective cores of the extended rules R1, . . ., Rk, we
have to define the core of the extended rule Π :

par
step R1

...
step Rk

endpar

In the (abnormal) case k = 1, the core is simply R′
1. To explain the case

k ≥ 2, it is sufficient to suppose k = 2. In this case the core of Πn is:

R′′
1

R+fin1
2

with

1. R′′
1 = R′

1.
2. R+fin1

2 is defined as follows: Let fin1 be the greatest value used for
mode in R′

1. Rule R+fin1
2 is R′

2 where fin1 is added to each constant
occurring on the right hand side of the “=” sign of an expression rule
beginning by mode (a boolean expression mode = constant or an update
rule mode := constant).

– If Π is an iteration rule (step until ϕ R) and R′ is the core of the normal
form of R then the core Π ′ of the normal form Πn of Π is

Normalization of Some Extended Abstract State Machines 173

if (mode = 0) then
if ¬ϕ then mode := 1
if ϕ then mode := fin + 1

R+1

where R+1 is R′ in which each constant occurring on the right hand side
of the “=” or “≥” sign of an expression beginning by mode (a boolean
expression mode = constant, mode ≥ constant or an update rule mode :=
constant) is incremented by 1 but for the greatest such value fin, which is
replaced by 0.

– If Π is an iteration rule (step while ϕ R), it is treated similarly:

if (mode = 0) then
if ϕ then mode := 1
if ¬ϕ then mode := fin + 1

R+1

– If Π is an alternative rule,
if ϕ then R1

else R2

endif

and R′
1, R′

2 are the respective cores of the normal forms of R1, R2, then the
core of the normal form Πn of Π is:

if (mode = 0) then
if ϕ then mode := 1 else mode := fin + 1

R+1
1

Rfin+1
2

where R+k
i is R′

i in which k is added to each constant occurring on the right
hand side of the “=” (or “≥”) sign of an expression rule beginning by mode.

Acknowledgments. We thank the referee for his very helpful comments.

References

1. Grieskamp, W., Tillmann, N.: AsmL Standard Library, Foundations of Software

Engineering – Microsoft Research (2002),

http://www.codeplex.com/AsmL//AsmLReference.doc ,

http://research.microsoft.com/en-us/downloads/

3444a9cb-47ce-4624-9e14-c2c3a2309a44/default.aspx
2. Gurevich, Y.: Reconsidering Turing’s Thesis: Toward More Realistic Semantics of

Programs, University of Michigan, Technical Report CRL–TR–38–84, EECS De-

partment (1984)

3. Gurevich, Y.: A New Thesis, Abstracts, p. 317. American Mathematical Society,

Providence (August 1985)

http://www.codeplex.com/AsmL//AsmLReference.doc
http://research.microsoft.com/en-us/downloads/3444a9cb-47ce-4624-9e14-c2c3a2309a44/default.aspx
http://research.microsoft.com/en-us/downloads/3444a9cb-47ce-4624-9e14-c2c3a2309a44/default.aspx

174 P. Cégielski and I. Guessarian

A Appendix

We prove here that an AsmL program Π and its normal form Πn have the same
semantics. To this end we first define formally the semantics of AsmL programs,
in the general case when step until fixpoint iterations are also allowed in
AsmL.

A.1 Semantics of AsmL

As for ASM programs, semantics is defined by structural induction. We will
denote by [[(Π,A)]]e and τe

Π(A) the semantics and transform associated with
an extended program (the e stands for “extended”) while [[(Π,A)]] and τΠ(A)
without the superscript e represent the semantics and transform of an ASM
program. Let L be an ASM signature, Π an L extended rule, and A an L-state.

– If Π is a non extended L rule, then [[(Π,A)]]e = τe
Π(A) = τΠ(A).

Notice that it is not the same as the ASM semantics of Π : in AsmL, program
Π is executed once, while in ASM program Π is executed until a fixed point
is reached, see Definition 11.

– If Π is a step rule, it is enough to only consider the case when there are two
extended rules R1, R2 of signature L; in that case the semantics of Π :
par

step R1

step R2

endpar

is given by:
[[(Π,A)]]e = [[(R2, [[(R1,A)]]e)]]e .

We need not define the transform τe
Π(A) in this case.

– If Π is an iteration rule, step until ϕ R, then:

τe
Π(A) = if ¬ϕA then τe

R(A) else A .

Let us define inductively A1 = τΠ(A), A2 = τΠ(A1), . . . , Al = τΠ(Al−1),
or in short, Al = τ l

Π(A) for l ∈ N. We have [[(Π,A)]]e = Al for the least l

such that ϕAl

is true and [[(Π,A)]]e = ⊥ is undefined if there is no l such
that ϕAl

is true.
– If Π is an iteration rule, step while ϕ R, then:

τe
Π(A) = if ϕA then τe

R(A) else A .

[[(Π,A)]]e is defined as in the previous case.

– If Π is an iteration rule step until fixpoint R, its semantics is defined
as in the ASM case.

Normalization of Some Extended Abstract State Machines 175

– If Π is an alternative rule,
if ϕ then R1

else R2

endif
its semantics is defined by:

[[(Π,A)]]e = if ϕA then [[(R1,A)]]e else [[(R2,A)]]e .

A.2 Proof of Theorem 1

Proof. We now prove the general case of Theorem 1, allowing for step until
fixpoint iterations in AsmL.

Notice first that the cores of normal forms are all of the form:

step until fixpoint
par

if (mode = 0) then R1

. . .
if (mode = j) then Rj

. . .
if (c = 0) ∧ (mode = i) then Ri

if (c = 1) ∧ (Mi ≥ mode ≥ i) then
mode := i
c := 0

. . .
if (mode = k) then Rk

endpar

Moreover, by construction, if i < j all mode values occurring in Ri are less than
mode values occurring in Rj , and c can take only the values 0 or 1.

We now prove that Π and its normal form Πn have the same semantics. With
each L–state A we associate a Lm–state Am, which is identical to A, except for
mode = 0 (and c = 0 when c is needed). We prove that, for each AsmL program
Π , whose normal form is Πn,

[[(Π,A)]]e = [[(Πn,Am)]]|L . (1)

B|L denotes the restriction of Lm–state B to L (i.e. we forget the constants mode
and c).

We again proceed by structural induction to prove that Π and its normal
form Πn have the same semantics, i.e. that (1) holds.

– If Π = R is an ASM rule then τΠn(Am) coincides with τe
Π(A) on L and is

such that the value of mode is 1; in the ASM semantics of Πn, the rule R can
be executed only once, because it can be executed only if the value of mode
is 0, and after being executed once, mode is set to 1; so [[(Πn,Am)]]|L =
τΠn(Am)|L = τΠ(A) = [[(Π,A)]] and (1) holds.

176 P. Cégielski and I. Guessarian

– If Π is a step rule:

par
step R1

step R2

endpar

the core of Πn is:

R′′
1

R+fin1
2

where R′′
1 is the core R′

1 of R1, and R+fin1
2 is defined as follows: Let fin1

be the greatest value used for mode in R′
1. Rule R+fin1

2 is the core R′
2

of R2 where fin1 is added to each constant occurring on the right hand
side of the “=” (or “≥”) sign of an expression rule beginning by mode (a
boolean expression mode = constant, mode ≥ constant or an update rule
mode := constant).
In order to prove that (1) holds, note that

• Assuming by the induction hypothesis that (1) holds for R1 and R2, we
have that

[[(R′
1,Am)]]|L =

(
[[(R1,A)]]e

)
(2)

[[(R′
2,Bm)]]|L =

(
[[(R2,B)]]e

)
. (3)

• By construction, in every “guard” of the form if mode = constant then
. . . which occurs in R′′

1 the value of constant is ≤ fin1, and in every
“guard” of the form if mode = constant then . . . which occurs in
R+fin1

2 we have fin1 ≤ constant ≤ fin1 + fin2.

• For B an L–state, and k ∈ N, let Bk
m denote the Lm–state, where all

function symbols are interpreted as in B, and where mode has value
k. Then, if Πn is an arbitrary in normal form, and Π+k

n denotes the
program where all right hand side constants in expressions involving
mode are incremented by k, we have, for any k, l ∈ N

τ l
Π+k

n
(Bk

m)|L = τ l
Πn

(Bm)|L (4)

[[(Π+k
n ,Bk

m)]]|L = [[(Πn,Bm)]]|L . (5)

• Rules in R′
1 are executed only when the value of mode is < fin1, and

when execution of R′
1 is finished the value of mode is fin1, hence

[[(R′
1,Am)]] =

(
[[(R1,A)]]e

)fin1

m
. (6)

Normalization of Some Extended Abstract State Machines 177

• Rules in R+fin1
2 are executed only when the value of mode verifies fin1 ≤

mode < (fin1+fin2), hence rules of R′
1 can no longer be executed; when

execution of R+fin1
2 is finished then the value of mode is fin1 + fin2,

and no rule of Πn can be executed, hence the fixed point of τΠn(Am) is
reached. We can deduce by equation (5) that

[[(R′
2,Bm)]]|L = [[(R+fin1

2 ,B+fin1
m)]]|L . (7)

Finally, we have:

[[(Πn,Am)]] = τ∗
R

+fin1
2

(
τ∗
R′

1
(Am)

)
= τ∗

R
+fin1
2

(
[[(R′

1,Am)]]
)

by definition

= τ∗
R

+fin1
2

((
[[(R1,A)]]e

)fin1

m

)
by equation (6)

= [[(R+fin1
2 ,

(
[[(R1,A)]]e

)fin1

m
)]] by definition .

Restricting the last equation to L, we have

[[(Πn,Am)]]|L = [[(R+fin1
2 ,

(
[[(R1,A)]]e

)fin1

m
)]]|L

= [[(R′
2, [[(R1,A)]]em)]]|L by equation (7)

= [[(R2, [[(R1,A)]]em)]]e by equation (3) .

Hence (1) holds for Π .
– If Π is an iteration rule (step until ϕ R) and R′ is the core of the normal

form of R then the core Π ′ of the normal form Πn of Π is:

if (mode = 0) then
if ¬ϕ then mode := 1
if ϕ then mode := fin + 1

R+1

It can be seen that there is no rule with guard “ if mode = fin + 1 then...”,
and that always ϕAm = ϕA. We prove (1).

• either eventually ϕB is true, for some B = τk
Πn

(Am), with k ∈ N. In
this case ϕB|L is also true and we have B|L = τk′

Π (A), for some k′ ∈ N,
k′ ≤ k; then [[(Πn,Am)]] = τk

Πn
(Am) is τk′

Π (A) together with value of
mode equals to fin + 1, and (1) holds.

• or ϕB is always false, then [[(Πn,Am)]] is undefined (because mode takes
infinitely often the values 0 and 1), and so is [[(Π,A)]] whence (1).

– the case of step while iterations is treated similarly.
– If Π is an iteration rule (step until fixpoint R), let R′ be the core of

the normal form of R and M the largest value of mode occurring in R′, then
the core Π ′ of the normal form Πn of Π is:

178 P. Cégielski and I. Guessarian

if (c=1) ∧ (M ≥ mode ≥ 0) then
mode :=0
c := 0

if (c=0) ∧ (mode = 0) then Rc

where Rc is R′ in which each update (other than updates on c and mode) of
the form fi(t1, . . . , tn) := ti0 has been replaced by

if fi(t1, . . . , tn) �= ti0 then
fi(t1, . . . , tn) := ti0
c := 1

Let now Lm = L ∪ {mode, c}; for B an L or Lm algebra, let us denote by
B00 the Lm algebra where mode = c = 0. In particular, if A is an L algebra,
B00 = Am denotes the associated initial Lm algebra.
By the induction hypothesis,

[[(R′,Am)]]|L = [[(R′,A00
m)]]|L = [[(R,A)]]e , which implies(

[[(R′,A00
m)]]

)00 =
(
[[(R,A)]]e

)00
. (8)

Let A0 = A, and for i ≥ 0, Ai+1 = [[(R,Ai)]]e. Let also A′
0 = A00, and for

i ≥ 0, A′
i+1 = [[(R′,A′

i)]]
00. It can be seen that equation (8) implies, for all i

A′
i = (Ai)00 . (9)

Now, on the one hand, [[(R,A)]]e is equal to the first Ai such that Ai = Ai+1;
by equation (9), we also have that A′

i = A′
i+1. On the other hand, let us

compute [[(Πn,Am)]].
If all updates other than updates on c and mode are trivial, we let

θΠn(B) = [[(R′,B)]] .

Otherwise, (there are non trivial updates and the fixed point is not reached),
we let

θΠn(B) = [[(R′,B)]]00 .

Then

1. for all B there is a k such that θΠn(B) = τk
Πn

(B);
2. the computation defined by the sequence θi

Πn
(B) terminates if and only

if the computation defined by the sequence τ j
Πn

(B) terminates, and if it
is the case, the limits are equal.

But θi+1
Πn

(Am) = A′
i+1 if non trivial updates (i.e. other than updates on c

and mode) are performed in the course of the computation of R′ on A′
i,

otherwise θi+1
Πn

(Am) = [[(R′,A′
i)]].

Normalization of Some Extended Abstract State Machines 179

• In the latter case, c = 0 and mode > 0 in [[(R′,A′
i)]], so no rule of Πn

can be executed, the fixed point [[(Πn,Am)]] is reached and is equal to
[[(R′,A′

i)]], i.e.

[[(Πn,Am)]] = [[(R′,A′
i)]] (10)

moreover, A′
i+1 = A′

i (only trivial updates are performed in the course
of the computation of R′), and by equation (9) this implies that also
Ai+1 = Ai, hence the fixed point of Π is reached and

[[(R,Ai)]]e = [[(R,Ai+1)]]e = [[(Π,A)]]e . (11)

Putting together equations (9), (10), and (11) and restricting to L, we
have: [[(Π,A)]]e = [[(Πn,Am)]]|L , i.e. equation (1) holds.

• In the former case, if for any i ∈ N non trivial updates are applied in
the course of the computation of R′ on A′

i, then for any i, A′
i+1 �= A′

i

implies that also Ai+1 �= Ai (the non trivial updates concern functions
other than c and mode) and neither Π nor Πn computation terminates.

– If Π is an alternative rule,
if ϕ then R1

else R2

endif

and R′
1, R′

2 are the respective cores of the normal forms of R1, R2, then the
core of the normal form Πn of Π is:

if (mode = 0) then
if ϕ then mode := 1 else mode := fin + 1

R+1
1

Rfin+1
2

where R+k
i is R′

i where k is added to each constant occurring on the right
hand side of the “=” (or “≥”) sign of an expression rule beginning by mode.
For A an L–state, and k ∈ N, recall that Ak

m denote the Lm–state, where
all function symbols are interpreted as in A, and where mode has value k.
The semantics of Πn is:

[[(Πn,A0
m)]] = if ϕA then [[(R+1

1 ,A1
m)]] else [[(Rfin+1

2 ,Afin+1
m)]] .

Because:
[[(R+1

1 ,A1
m)]]|L = [[(R1,A)]]e and [[(Rfin+1

2 ,Afin+1
m)]]|L = [[(R2,A)]]e ,

it can be deduced that: [[(Πn,A0
m)]]|L = [[(Π,A)]]e . �

Proposition 1. The number of comparisons and updates during the execution
of the normal form is at most three times the number of of comparisons and
updates during the execution of the original program, assuming no step until
fixpoint occurs in the original program.

180 P. Cégielski and I. Guessarian

Proof. By structural induction on the structure of the original program.

– If Π = R is an ASM rule, then cost(Πn) = 2 + cost(Π), but cost(Π) ≥ 1,
hence cost(Πn) ≤ 3× cost(Π).

– If Π is a step rule,

par
step R1

step R2

endpar

then cost(Πn) = cost(R1n) + cost(R2n) and cost(Π) = cost(R1)+ cost(R2),
hence the result.

– If Π = step until ϕ R then, on the one hand, we have (letting cost(R[i])
be the cost of the execution of the body of the loop step until ϕ R during
the i-th execution of that loop body):

cost(Π) = 1 + Σi (1 + cost(R[i])) ,

because we have at least a comparison and a comparison every time we enter
in the body of the loop. On the other hand, we have :

cost(Πn) = 2 + Σi (2 + cost(Rn[i]))
≤ 2 + Σi (2 + 3× cost(R[i]))by the induction hypothesis
≤ 3× [1 + Σi (1 + cost(R[i]))]
≤ 3× cost(Π) .

– If Π is an alternative rule,
if ϕ then R1

else R2

endif

then

cost(Π) = max{cost(R1), cost(R2)}+ 1

cost(Πn) = max{cost(R+1
1 n), cost(Rfin+1

2 n)}+ 1
≤ 3×max{cost(R1), cost(R2)}+ 1 ≤ 3× cost(Π) . �

The step until fixpoint has been excluded, even though we chose a way
to emulate it in normal form, because the cost of checking that the fixpoint is
reached is non null in AsmL, but a precise semantics of that cost in AsmL should
first be chosen before any attempt to compare costs.

Finding Reductions Automatically

Michael Crouch�, Neil Immerman�, and J. Eliot B. Moss�

Computer Science Dept., University of Massachusetts, Amherst

{mcc,immerman,moss}@cs.umass.edu

Abstract. We describe our progress building the program Reduction-

Finder, which uses off-the-shelf SAT solvers together with the Cmodels

system to automatically search for reductions between decision problems

described in logic.

Keywords: descriptive complexity, first-order reduction, quantifier-free

reduction, SAT solver.

1 Introduction

Perhaps the most useful item in the complexity theorist’s toolkit is the reduc-
tion. Confronted with decision problems A, B, C, . . ., she will typically compare
them with well-known problems, e.g., REACH, CVP, SAT, QSAT, which are
complete for the complexity classes NL, P, NP, PSPACE, respectively. If she
finds, for example, that A is reducible to CVP (A ≤ CVP), and that SAT ≤ B,
C ≤ REACH, and REACH ≤ C, then she can conclude that A is in P, B is
NP hard, and C is NL complete.

When Cook proved that SAT is NP complete, he used polynomial-time Turing
reductions [4]. Shortly later, when Karp showed that many important combina-
torial problems were also NP complete, he used the simpler polynomial-time
many-one reductions [14].

Since that time, many researchers have observed that natural problems remain
complete for natural complexity classes under surprisingly weak reductions in-
cluding logspace reductions [13], one-way logspace reductions [9], projections
[22], first-order projections, and even the astoundingly weak quantifier-free pro-
jections [11].

It is known that artificial non-complete problems can be constructed [15].
However, it is a matter of common experience that most natural problems are
complete for natural complexity classes. This phenomenon is receiving a great
deal of attention recently via the dichotomy conjecture of Feder and Vardi that
all constraint satisfaction problems are either NP complete, or in P [7,20,1].

� The authors were partially supported by the National Science Foundation under

grants CCF-0830174 and CCF-0541018 (first two authors) and CCF-0953761 and

CCF-0540862 (third author). Any opinions, findings, conclusions, or recommenda-

tions expressed in this material are those of the authors and do not necessarily reflect

the views of the NSF.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 181–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

182 M. Crouch, N. Immerman, and J.E.B. Moss

Since natural problems tend to be complete for important complexity classes
via very simple reductions, we ask, “Might we be able to automatically find re-
ductions between given problems?”

Of course this problem is undecidable in general. However, we have made
progress building a program called ReductionFinder that automatically does
just that. Given two decision problems A and B, ReductionFinder attempts to
find the simplest possible reduction from A to B. Using off-the-shelf SAT solvers
together with the Cmodels system[8], ReductionFinder finds many simple re-
ductions between a wide class of problems, including several “clever” reductions
that the authors had not realized existed.

The reader might wonder why we would want to find reductions automati-
cally. In fact, we feel that an excellent automatic reduction finder would be an
invaluable tool, addressing the following long-term problems:

1. There are many questions about the relations between complexity classes
that we cannot answer. For example, we don’t know whether P = NP, nor
even whether NL = NP, whether P = PSPACE, etc. These questions are
equivalent to the existence of quantifier-free projections between complete
problems for the relevant classes [11]. For example, P = NP iff SAT ≤qfp

CVP. Similarly, NL = NP iff SAT ≤qfp REACH and P = PSPACE iff
QSAT ≤qfp CVP. Having an automatic tool to find such reductions or
determine that no small reductions exist may improve our understanding
about these fundamental issues.

2. Another ambitious goal, well formulated by Jack Schwartz in the early 1980s,
is to precisely describe a computational task in a high-level language such
as SETL [21] and build a smart compiler that can automatically synthesize
efficient code that correctly performs the task. A major part of this goal
is to automatically recognize the complexity of problems. Given a problem,
A, if we can automatically generate a reduction from A to CVP, then we
can also synthesize code for A. On the other hand if we can automatically
generate a reduction from SAT to A, then we know that A is NP hard, so it
presumably has no perfect, efficient implementation and we should instead
search for appropriate approximation algorithms.

3. Being able to automatically generate reductions will provide a valuable tool
for understanding the relative complexity of problems. If we restrict our
attention to linear reductions, then these give us true lower and upper bounds
on the complexity of the problem in question compared to a known problem,
K: if we find a linear reduction from A to K, then we can automatically
generate code for A that runs in the same time as that for K, up to a
constant multiple. Similarly if we find a linear reduction from K to A, then
we know that there is no algorithm for A that runs significantly faster than
the best algorithm for K.

It is an honor for us to have our paper appear in this Festschrift for Yuri Gurvich.
Yuri has made many outstanding contributions to logic and computer science.
We hope he is amused by what we feel is a surprising use of SAT solvers for
automatically deriving complexity-theoretic relations between problems.

Finding Reductions Automatically 183

This paper is organized as follows: We start in Section §2 with background
in descriptive complexity sufficient for the reader to understand all she needs
to know about reductions and the logical descriptions of decision problems. In
section §3 we explain our strategy for finding reductions using SAT solvers.
In section §4 we sketch the implementation details. In section §5 we provide
the main results of our experiments: the reductions found and the timing. We
conclude in section §6 with directions for moving this research forward.

2 Reductions in Descriptive Complexity

In this section we present background and notation from descriptive complexity
theory concerning the representation of decision problems and reductions be-
tween them. The reader interested in more detail is encouraged to consult the
following texts: [10,5,16], where complete references and proofs of all the facts
mentioned in this section may be found.

2.1 Vocabularies and Structures

In descriptive complexity, part of finite model theory, the main objects of interest
are finite logical structures. A vocabulary

τ = 〈Ra1
1 , . . . , Rar

r ; c1, . . . , cs; f r1
1 , . . . , frt

t 〉

is a tuple of relation symbols, constant symbols, and function symbols. Ri is a
relation symbol of arity ai and fj is a function symbol of arity rj > 0. A constant
symbol is just a function symbol of arity 0. For any vocabulary τ we let L(τ)
be the set of all grammatical first-order formulas built up from the symbols of
τ using boolean connectives, ¬,∨,∧,→ and quantifiers, ∀, ∃.

A structure of vocabulary τ is a tuple,

A = 〈|A|; RA
1 , . . . , RA

r ; cA1 , . . . , cAs ; fA
1 , . . . , fA

t 〉

whose universe is the nonempty set |A|. For each relation symbol Ri of arity ai

in τ , A has a relation RA
i of arity ai defined on |A|, i.e. RA

i ⊆ |A|ai . For each
function symbol fi ∈ τ , fA

i is a total function from |A|ri to |A|.
Let STRUC[τ] be the set of finite structures of vocabulary τ . For example,

τg = 〈E2; ; 〉 is the vocabulary of (directed) graphs and thus STRUC[τg] is the
set of finite graphs.

2.2 Ordering

It is often convenient to assume that structures are ordered. An ordered struc-
ture A has universe |A| = {0, 1, . . . , n − 1} and numeric relation and constant
symbols: ≤, Suc, min, max referring to the standard ordering, successor relation,
minimum, and maximum elements, respectively (we take Suc(max) = min). Re-
ductionFinder may be asked to find a reduction on ordered or unordered struc-
tures. In the former case it may use the above numeric symbols. Unless otherwise
noted, we from now on assume that all structures are ordered.

184 M. Crouch, N. Immerman, and J.E.B. Moss

2.3 Complexity Classes and Their Descriptive Characterizations

We hope that the reader is familiar with the definitions of most of the following
complexity classes:

AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ P ⊆ NP (1)

where L = DSPACE[log n], NL = NSPACE[log n], P is polynomial time, and
NP is nondeterministic polynomial time. AC0 is the set of problems accepted by
uniform families of polynomial-size, constant-depth circuits whose gates include
unary “not” gates, together with unbounded-fan-in “and” and “or” gates. NC1

is the set of problems accepted by uniform families of polynomial-size, O(log n)-
depth circuits whose gates include unary “not” gates, together with binary “and”
and “or” gates.

Each complexity class from Equation 1 has a natural descriptive characteri-
zation. Complexity classes are sets of decision problems. Each formula in a logic
expresses a certain decision problem. As is standard, we write C = L to mean
that the complexity class C is equal to the set of decision problems expressed by
the logical language L. The following descriptive characterizations of complexity
classes are well known:

Fact 1. FO = AC0; NC1 = FO(Regular); L = FO(DTC); NL = FO(TC);
P = FO(IND); and NP = SO∃.

We now explain some of the details of Fact 1. For more information about this
fact the reader should consult one of the texts [10,5,16].

2.4 Transitive Closure Operators

Given a binary relation on k-tuples, ϕ(x1, . . . , xk, y1, . . . , yk), we let TCx,y(ϕ)
express its transitive closure. If the free variables are understood then we may
abbreviate this as TC(ϕ). Similarly, we let RTC(ϕ), STC(ϕ), and RSTC(ϕ) de-
note the reflexive transitive closure, symmetric transitive closure, and symmetric
and reflexive transitive closure of ϕ, respectively.

We next define a deterministic version of transitive closure DTC. Given a first
order relation, ϕ(x, y), define its deterministic reduct,

ϕd(x, y) def= ϕ(x, y) ∧ (∀z)(¬ϕ(x, z) ∨ (y = z))

That is, ϕd(x, y) is true just if y is the unique child of x. Now define DTC(ϕ) def=
TC(ϕd) and RDTC(ϕ) def= RTC(ϕd).

Let τgst = 〈E2; s, t; 〉 be the vocabulary of graphs with two specified points.
The problem REACH =

{
G ∈ STRUC[τgst]

∣∣ G |= RTC(E)(s, t)
}

consists of
all finite graphs that have a path from s to t. Similarly, REACHd =

{
G ∈

STRUC[τgst]
∣∣ G |= RDTC(E)(s, t)

}
is the subset of REACH such that there

is a unique path from s to t and all vertices along this path have out-degree
one. REACHu =

{
G ∈ STRUC[τgst]

∣∣ G |= STC(E)(s, t)
}

is the set of graphs
having an undirected path from s to t.

Finding Reductions Automatically 185

It is well known that REACH is complete for NL, and REACHd and REACHu

are complete for L [10,19]. A simpler way to express deterministic transitive clo-
sure is to syntactically require that the out-degree of our graph is at most one by
using a function symbol: denote the child of v as f(v), with f(v) = v if v has
no outgoing edges. In this notation, a problem equivalent to REACHd, and thus
complete for L, is REACHf =

{
G ∈ STRUC[τfst]

∣∣ G |= RTC(f)(s, t)
}
.

If O is an operator such as TC, let FO(O) be the closure of first-order logic
using O. Then L = FO(DTC) = FO(RDTC) = FO(STC) = FO(RSTC) and
NL = FO(TC) = FO(RTC).

2.5 Inductive Definitions

It is useful to define new relations by induction. For example, we can express the
transitive closure of the relation E inductively, and thus the property REACH,
via the following Datalog program:

E∗(x, x) ←
E∗(x, y) ← E(x, y)
E∗(x, y) ← E∗(x, z), E∗(z, y)
REACH← E∗(s, t)

(2)

Define FO(IND) to be the closure of first-order logic using such positive induc-
tive definitions. The Immerman-Vardi Theorem states that P = FO(IND). In
this paper we will use stratified Datalog programs such as Equation 2 to ex-
press problems and then use ReductionFinder to automatically find reductions
between them. Thus ReductionFinder can handle any problem in P or below.
In the future we hope to handle problems in NP, but this will require us to go
beyond SAT solvers to QBF solvers.

2.6 Reductions

Given a pair of problems S ⊆ STRUC[σ] and T ⊆ STRUC[τ], a many-one re-
duction from S to T is an easy-to-compute function f : STRUC[σ] → STRUC[τ]
such that for all A ∈ STRUC[σ],

A ∈ S ⇔ f(A) ∈ T .

In descriptive complexity we use first-order reductions which are many-one re-
ductions in which the function f is defined by a sequence of first-order formulas
from L(σ), one for each symbol of τ . For example, the following is a reduction
from REACHf to REACHu that ReductionFinder automatically found. Here
σ = 〈; s, t; f1〉 and τ = 〈E2; s, t; 〉. The reduction, Rfu, is as follows:

E′(x, y) ≡ y �= t ∧ f(y) = x
s′ ≡ s
t′ ≡ t

(3)

186 M. Crouch, N. Immerman, and J.E.B. Moss

Note that the three formulas in Rfu’s definition (Equation 3) have no quantifiers,
so Rfu is not only a first-order reduction, it is a quantifier-free reduction and we
write REACHf ≤qf REACHu.

More explicitly, for each structure A ∈ STRUC[σ], B = Rfu(A) =
〈|A|, EB, sB, tB〉 is a structure in STRUC[τ] with universe the same as A, and
symbols given as follows:

EB =
{
〈a, b〉

∣∣ (A, a/x, b/y) |= y �= t ∧ f(y) = x
}

sB = sA

tB = tA

In this paper we restrict ourselves to quantifier-free reductions. In general, a first-
order reduction R has an arity which measures the blow-up of the size of the
reduction. In [10] a first-order reduction of arity k maps a structure with universe
|A| to a structure of universe

{
〈a1, . . . ak〉

∣∣ (A, a1/x1, . . . , ak/xk) |= ϕ0

}
, i.e., a

first-order definable subset of |A|k. However, increasing the arity of a reduction
beyond two is rather excessive – arity two already squares the size of the instance.
In this paper, in order to keep our reductions as small and simple as possible, we
use a triple of natural numbers, 〈k, k1, k2〉, to describe the universe of the image
structure, namely

|R(A)| = |A|k × {1, . . . , k1} ∪ {1, . . . k2} . (4)

That is in addition to raising the universe to the power k, we also multiply it by
the constant k1 and then we may add k2 explicit constants to the universe. In this
notation the above reduction Rfu has arity 〈1, 1, 0〉. It will become apparent in
our many examples in the sequel how these extra parameters keep the reductions
simple and small.

3 Strategy

We are given a pair of problems S ⊆ STRUC[σ] and T ⊆ STRUC[τ], both
expressed in Datalog. We want to know if there is a quantifier-free reduction
from S to T .

It is not hard to see that this problem is undecidable, and in fact complete for
the second level of the arithmetic hierarchy. It asks whether there exists some
reduction that is correct for all inputs from STRUC[σ], with no bounds on the
size of the reduction nor the input.

We first make the problem more tractable by bounding the complexity of the
reduction: We choose a triple a = 〈k, k1, k2〉 describing the arity of the reduction
and a tuple of parameters p bounding the size and complexity of the quantifier-
free formulas expressing the reduction (e.g. how many clauses, the maximum
size of each clause, etc.). This reduces the complexity of the problem to co-r.e.
complete: it is still undecidable.

To make the problem decidable, we choose a bound, n, and ask whether there
exists a reduction of arity a and parameters p that is correct for all structures

Finding Reductions Automatically 187

A ∈ STRUC≤n[τ], i.e, whose universes have cardinality at most n. Given such a
reduction we can hope to prove by machine or hand that it works on structures
of all sizes. On the other hand, being told that no such small reduction exists,
we learn that in a precise sense there is no “simple” reduction from S to T .

Now our problem is complete for Σp
2 – the second level of the polynomial-time

hierarchy. Let Ra,p be the set of quantifier-free reductions of arity at most a and
with parameter values at most p. The following formula asks whether there exists
a quantifier-free reduction of arity a and parameters p that correctly reduces S
to T on all structures of size at most n:

(∃R ∈ Ra,p)(∀A ∈ STRUC≤n[σ])(A ∈ S ↔ R(A) ∈ T) (5)

3.1 Solving a Σp
2 Problem via Repeated Calls to a SAT Solver

We solve the problem expressed in Equation 5 by starting with a random struc-
ture G0 ∈ STRUC≤n[σ] and asking a SAT solver to find a reduction R ∈ Ra,p

that works correctly on G0, i.e., G0 ∈ S ↔ R(G0) ∈ T . If there is no solution,
then our original problem is unsolvable.

Otherwise, we ask a new question to the SAT solver: is there some other
structure, G1 ∈ STRUC≤n[σ] on which R fails, i.e, G1 ∈ S ↔ R(G1) /∈ T .
If not, then we know that R is a candidate reduction that is correct for all
structures of size at most n.

However, if the SAT solver produces an example G1 where R fails, we go back
to the beginning, but now searching for a reduction that is correct on our full
set of candidate structures, G = {G0, G1}.

In summary, our algorithm proceeds as follows, with G initialized to {G0}:

1. Using a SAT solver, search for a reduction correct on G:

find R ∈ Ra,p s.t.
∧

G∈G
G ∈ S ↔ R(G) ∈ T (6)

If no such R exists: return(“no such reduction”)

2. Using a SAT solver, search for some structure G on which R fails:

find G ∈ STRUC≤n[σ] s.t. G ∈ S ↔ R(G) /∈ T (7)

If no such G exists: return(R)
Else: G = G ∪ {G}; go to 1

Figure 1 shows a schematic view of this algorithm.
This procedure is correct because each new structure G eliminates at least one

potential reduction. In our experience, the procedure works within a tractable
number of structures; “smaller” searches have often completed after 5-15 sample
structures, while the largest spaces searched by the program have required 30-50
iterations.

188 M. Crouch, N. Immerman, and J.E.B. Moss

Fig. 1. A schematic view of the above algorithm

We begin searching for reductions at a very small size (n = 3); for search
spaces without a correct reduction, even this small size is often enough to detect
irreducibility. When a reduction is found at a particular size n, we examine larger
structures for counterexamples; currently we look at structures of size at most
n + 2. If a counterexample is found, we add it to G, increment n and return to
step 1.

Search time increases very rapidly as n increases. Of the 10,422 successful
reductions found, 9,291 of them were found at size 3, 1076 at size 4, 38 at size 5,
and 17 at sizes 6-8. See Section §5 for details of results. See Section §6 for more
about the current limits of size and running time and our ideas concerning how
to improve these.

4 Implementation

Figure 1 shows a schematic view of ReductionFinder’s algorithm. The program
is written in Scala, an object-oriented functional programming language imple-
mented in the Java Virtual Machine1. ReductionFinder maintains a database of
problems via a directed graph, G, whose vertices are problems. An edge (a, b)
indicates that a reduction has been found from problem a to problem b, and is
labelled by the parameters of a minimal such reduction that has been found so
far.

When a new problem, c, is entered, ReductionFinder systematically searches
for reductions to resolve the relationships between c and the problems already
categorized in G.

Given a pair of problems, c, d, specified in stratified Datalog, and a search
space Ra,p specifying the arity a and parameters p, ReductionFinder calls the
Cmodels 3.79 answer-set system2 to answer individual queries of the form of
1 http://www.scala-lang.org
2 http://www.cs.utexas.edu/users/tag/cmodels.html

http://www.scala-lang.org
http://www.cs.utexas.edu/users/tag/cmodels.html

Finding Reductions Automatically 189

Equations (6), (7). Cmodels in turn makes calls to SAT solvers. The SAT solvers
we currently use are MiniSAT and zChaff [6,18].

4.1 Problem Input

Queries in ReductionFinder are input as small stratified-Datalog programs; a
query on vocabulary τ has the symbols of τ available as extrinsic relations.
The query is responsible for defining a single-bit intrinsic relation satisfied,
representing the truth of the query. Input queries may use lparse rules without
choice rules or disjunctive rules. When the input vocabulary contains function or
constant symbols, these are translated by ReductionFinder into purely relational
statements.

Equation (8) gives the ReductionFinder input for the directed-graph reach-
ability query REACH ⊆ STRUCT[

〈
E2; s, t

〉
], corresponding to the inductive

definition (2). We define an intrinsic relation reaches to compute the transitive
closure of the edge relation E.

reaches(X, X).
reaches(X, Y) :- E(X, Y).
reaches(X, Y) :- reaches(X, Z), reaches(Z, Y).
satisfied :- reaches(s, t).

(8)

4.2 Search Spaces

ReductionFinder restricts itself to searching for quantifier-free reductions, i.e.
reductions defined by a set of quantifier-free formulas. The complexity of these
quantifier-free formulas is restricted by several search parameters. The three
arity numbers 〈k, k1, k2〉 of Section 2.6 each limit the search. The set of numeric
predicates available (Section 2.2) is also a configurable parameter. The number
of levels of nested function application available is a parameter.

Finally, the length of each quantifier-free formula is a parameter. Relations are
defined by formulas represented in DNF; the number of disjuncts is a parameter,
as is the number of conjuncts in each clause. Functions are defined as an if/else-
if/else expression; the conditional of each statement is a conjunction of atomic
formulas, and the resultant is a closed term. Again, the number of clauses is a
parameter, as is the number of conjuncts in each clause.

The expressivity of the search space increases monotonically with most of
our search parameters, inducing a natural partial ordering on search spaces.
The search server respects this partial ordering, and avoids performing a search
when any more-expressive space has previously been searched. The server is not
restricted to increasing parameters one-at-a-time; since there are many search
parameters, performing a single “large” search may be more efficient than per-
forming many small searches. When a successful reduction is found, the server
can automatically search smaller spaces to determine the smallest space contain-
ing a reduction.

190 M. Crouch, N. Immerman, and J.E.B. Moss

4.3 The Searching Process

Once a search space and a pair of problems are fixed, ReductionFinder performs
the iterative sequence of search stages described in section 3.1. Within each stage,
ReductionFinder outputs a single lparse/cmodels program expressing Equations
(6) or (7), and calls the Cmodels tool. The find statements in these equations
are quantified explicitly using lparse’s choice rules. The majority of the program
is devoted to evaluation rules defining the structure R(G) in terms of the sets of
boolean variables R and G.

Figure 2 gives lparse code for a single counterexample-finding step (equation
(7)). This code attempts to find a counterexample to a previously-generated re-
duction candidate. The specific code listed is examining reductions from REACH
(Section 2.4) to its negation. The reduction candidate was E′(x, y) ≡ (E(y, x)∧
x = s) ∨E(x, x), s′ ≡ t, t′ ≡ Suc(min) (lines 7-9).

The counterexample is found using lparse’s choice rules as existential quanti-
fiers, directly guessing the relation in E and the two constant symbols in s and
in t (lines 12-13). Since lparse does not contain function symbols, these constants
are implemented as degree-1 relations which are true at exactly one point. We
specify the constraint that we cannot have in satisfied == out satisfied
(line 16); these boolean variables will be defined later in the program, and this
constraint will ensure that our graph is a counterexample to the reduction candi-
date.

Defining in satisfied and out satisfied in terms of the input and out-
put predicates (respectively) is easy. We have already required the user to input
lparse code for the input and output queries. We do some minimal processing
on this code, disambiguating names and turning function symbols into relations.
The user’s input for directed-graph reachability, listed in Equation (8), is trans-
lated into the input query block of lines 19-22. Similarly, the output query is
translated into lines 25-28.

The remainder of the lparse code exists to define the output predicates (in this
case out E, out s, out t) in terms of the input predicates and the reduction. In
building the output reduction out E(X, Y), we first build up a truth table for
each of the atomic formulas used; for example, line 31 states that term e y x is
true at point (X, Y) exactly if E(Y, X) in the input structure. Each position in
the DNF definition is true at (X, Y) exactly if the atomic formula chosen for that
position is true (lines 36-37). The output relation out E(X, Y) is then defined
via the terms in the DNF (lines 38-39). The code in lines 30-39 thus defines the
output relation out E(X, Y) in terms of the input relations in E, in s, in t and
the reduction candidate reduct E.

Lines 41-47 similarly define the output constants out s and out t. Since lparse
does not provide function symbols, we define these constants as unary relations
out s(X), making sure that these relations are true at exactly one point. We
are thus able to define the output constants in terms of the input symbols in s,
in t and the the reduction candidate’s definitions of s′, t′ (reduct s, reduct t).

The code for finding a reduction candidate (equation (6)) is very similar to the
counterexample-finding code in Figure 2. We import the list G of counterexample

Finding Reductions Automatically 191

1node(n1; n2; n3; n4).

2atomic(e_x_x; e_x_y; ...; x_eq_t; y_eq_t).

3closedterm(fn_s; fn_t; fn_min; fn_succ_min; fn_max).

4position(pos_0_0; pos_0_1; pos_1_0).

5

6%%% Import reduction candidate from previous stage.

7reduct_E(pos_0_0, e_y_x). reduct_E(pos_0_1, x_eq_s).

8reduct_E(pos_1_0, e_x_x).

9reduct_s(fn_t). reduct_t(fn_succ_min).

10

11%%% Guess input relations E, s, t.

12{ in_E(X, Y) }.

131 { in_s(X) } 1. 1 { in_t(X) } 1. % Choose exactly one s, t.

14

15%%% A constraint on the entire program:

16:- out_satisfied == in_satisfied.

17

18%%% Translated version of input query.

19in_Reaches(X, X).

20in_Reaches(X, Y) :- in_E(X, Y).

21in_Reaches(X, Y) :- in_Reaches(X, Z), in_Reaches(Z, Y).

22in_satisfied :- in_Reaches(X, Y), in_s(X), in_t(Y).

23

24%%% Translated version of output query.

25out_Reaches(X, X).

26out_Reaches(X, Y) :- out_E(X, Y).

27out_Reaches(X, Y) :- out_Reaches(X, Z), out_Reaches(Z, Y).

28out_satisfied :- not out_Reaches(X, Y), out_s(X), out_t(Y).

29

30%%% Define a truth table for each atomic relation in the reduction.

31true(e_y_x, X, Y) :- in_E(Y, X).

32true(x_eq_s, X, Y) :- in_s(X).

33true(e_x_x, X, X) :- in_E(X, X).

34

35%%% Use these truth tables to evaluate output relations.

36true(P, X, Y) :- reduct_E(P, A), true(A, X, Y),

37position(P), atomic(A).

38out_E(X, Y) :- true(pos_0_0, X, Y), true(pos_0_1, X, Y).

39out_E(X, Y) :- true(pos_1_0, X, Y).

40

41%%% Similarly, define the evaluation of each closed term.

42eval_term(fn_s, X) :- in_s(X).

43eval_term(fn_succ_min, n2).

44

45%%% Define the output relations.

46out_s(X) :- reduct_s(F), eval_term(F, X), closedterm(F).

47out_t(X) :- reduct_t(F), eval_term(F, X), closedterm(F).

Fig. 2. Lparse code for a single search stage. This code implements equation (7), search-

ing for a 4-node counterexample for a candidate reduction from REACH (Section 2.4)

to its negation. Variables X, Y, Z range over nodes.

192 M. Crouch, N. Immerman, and J.E.B. Moss

graphs, and must guess a reduction. The input query, output vocabulary, and
output query are evaluated for each graph. Truth tables must be built for each
relation which might appear in the reduction, and for each graph.

4.4 Timing

ReductionFinder uses the Cmodels logic programming system to solve its search
problems. The Cmodels system solves answer-set programs, such as those in the
lparse language, by reducing them to repeated SAT solver calls. Direct transla-
tions from answer-set programming (ASP) to SAT exist[2,12], but introduce new
variables; Lifschitz and Razborov have shown that, assuming the widely-believed
conjecture P �⊆ NC1/poly, any translation from ASP must either introduce new
variables or produce a program of worst-case exponential length [17].

The Cmodels system first translates the lparse program to its Clark comple-
tion [3], interpreting each rule a : – b as merely logical equivalence (a ⇔ b).
Models of this completion may fail to be answer sets if they contain loops, sets
of variables which are true only because they assume each other. If the model
found contains a loop, Cmodels adds a loop clause preventing this loop and
continues searching, keeping the SAT solver’s learned-clause database intact. A
model which contains no loops is an answer set, and all answer sets can be found
in this way.

The primary difficulty in finding large reductions with ReductionFinder has
been computation time. The time spent finding reductions dominates over the

Fig. 3. Timing data for a run reducing ¬RTC[f](s, t) ≤ RTC[f](s, t) at arity 2,

size 4. The solid line shows time to find each reduction candidate in seconds, on a

logarithmic scale. The dotted line shows the number of loop formulas generated by

Cmodels, and thus the number of SAT solver calls for each reduction candidate. This

run was successful in finding a reduction.

Finding Reductions Automatically 193

time spent finding counterexamples; reductions must be true on each of the
example graphs, and the number of lparse clauses and variables thus scales lin-
early with the number of example graphs. The amount of time required by
Cmodels seems highly correlated with the number of loop formulas which must
be generated; Figure 3 shows the time for each reduction-finding stage during a
several-hour arity 2 search, versus the number of loop formulas generated in the
stage. The final reduction-finding step generated an lparse program with 399,900
clauses, using 337,605 atoms.

5 Results

5.1 Size and Timing Data

We have run ReductionFinder for approximately 5 months on an 8-core 2.3 GHz
Intel Xeon server with 16 GB of RAM. As of this writing, ReductionFinder has
performed 331,036 searches on a database of 87 problems. Of the 7482 pairs
of distinct problems, we explicitly found reductions between 2698; an additional
803 reductions could be concluded transitively. 23 pairs were manually marked as
irreducible, comprising provable theorems about first-order logic plus statements
that L � (co-)NL � P. From these 23, an additional 3043 pairs were transitively
concluded to be irreducible. 915 pairs remained unfinished.

For many of the pairs which we reduced successfully, we found multiple suc-
cessful reductions. Sometimes this occurred when we first found the reduction in
a large search space, then tried smaller spaces to determine the minimal spaces
containing a reduction. More interestingly, some pairs contained multiple suc-
cessful reductions in distinct minimal search spaces, demonstrating trade-offs
between different measures of the reduction’s complexity. Some of these trade-
offs were uninteresting: a reduction which simply needs “some distinguished
constant” could use min, max, or c1. Others, however, began to show non-trivial
trade-offs between the formula length required and the numerics or arity avail-
able. See Equations (9), (10) for an example. Of the 12,149 correct reductions
found between the 2698 explicitly-reduced pairs of problems, 5091 were in some
minimal search space.

5.2 A Map of Complexity Theory

Figure 4 shows classes of queries within the ReductionFinder database. Each class
contains one or more query which ReductionFinder has shown equivalent via
quantifier-free reductions. An edge from class I to class J indicates that Reduc-
tionFinder has reduced I ≤qfp J . Numbers on the graph indicate the number of
queries the class contains; the contents of these classes are listed in Figure 5.

ReductionFinder has placed all of the computationally-simple problems into
their correct complexity classes. The trivially-true query and trivially-false query
were reduced to all other queries. The class R(s) contains twelve queries which
lack the power of even one first-order quantifier. The classes ∃x.R(x) and ∀x.R(x)
contain many variations of first-order quantifiers; for example, ∃x.R(x)

194 M. Crouch, N. Immerman, and J.E.B. Moss

Fig. 4. A map of reductions in the query database. Nodes without numbers represent

a single query. A node with number n represents n queries of the same complexity.

Some queries are elided for clarity.

Finding Reductions Automatically 195

FALSE R(s) ∧ ¬R(s)

TRUE R(s) ∨ ¬R(s) ∃x.TC[f](x, x)

R(s) ¬R(s) R(f(s))
E(s, t) E(s, s) E(s, t) ∨ E(t, s)
s = t s �= t f(s)= t f(s) �= t
f(s)= s f(s)= g(s) f(s)= t ∧ f(t)= s f(s)= t ∨ f(t)= s

∃x.R(x) ∃x.R(x)∧ sS(x) ∃x.R(x)∨ S(x)
∃xy.E(x, y) ∃xy.¬E(x, y) ∃xy.E(x, y)∧ E(y, x) ∃x.E(x, s)
∃x.f(x) = x ∃x.f(x) = s

∀x.R(x) ∀x.¬R(x) ∀x.R(x) ∧ S(x) ∀x.R(x) ∨ S(x)
∀xy.E(x, y) ∀xy.¬E(x, y) ∀x.E(x, s)
∀x.f(x) = s ∀x.f(x) = x ∀x �=y. f(x) �=f(y)

TC[f](s, t) RTC[f](s, t) TC[f](s, s)
¬TC[f](s, t) ¬RTC[f](s, t) ¬TC[f](s, s)
(∃y.T (y)) RTC[f](s, y)

TC[E](s, t) RTC[E](s, t) TC[E](s, s)
TC[f, g](s, t) RTC[f, g](s, t) RTC[f, g](s, s)
(∃y.T (y)) RTC[E](s, y) (∃xy. S(x)∧T (y)) RTC[E](x, y)

¬TC[E](s, t) ¬RTC[E](s, t) ¬TC[E](s, s) ¬RTC[f, g](s, t)

∀xy.TC[E](x, y) ∀x.TC[E](x, t) ∀x.TC[E](x, x)

4 variations of ATC

Fig. 5. A list of problems in the complexity classes of Figure 4. ReductionFinder has

found a reduction between each pair of problems in each box. Each problem is expressed

as a logical formula.

includes ∃xy.E(x, y), ∃x.f(x) = s, ∃x.E(s, x). Below this, the structure of FO
under quantifier-free reductions is correctly represented up to two quantifier
alternations.

Beyond FO, ReductionFinder has made significant progress in describing the
complexity hierarchy. A class of 7 L-complete problems is visible at TC[f](s, t)
(deterministic reachability), including its complement (¬TC[f](s, t)) and de-
terministic reachability with a relational target (∃y.T (y) ∧ TC[f](s, y)). Un-
fortunately, the L-complete problems of cycle-finding (∃x.TC[E](x, x)) and its
negation have not been placed in this class; nor has deterministic reachability
with relations as both source and target (∃xy.S(x) ∧ T (y) ∧TC[E](x, y)).

Below this level, ReductionFinder had limited success. We succeeded in re-
ducing several problems to reachability (see Figure 5), including degree-2 reach-
ability (reduction described in section 5.3. Not surprisingly, we did not discover a
proof of the Immerman-Szelepcsényi theorem (showing co-NL ≤ NL by providing
a reduction ¬TC[E](s, t) ≤ TC[E](s, t)). We similarly did not prove Reingold’s
theorem [19], showing SL ≤ L by reducing STC[E](s, t) ≤ TC[f](s, t). These
two results were historically elusive, and may require reductions above arity 2,
or longer formulas than we were able to examine. Considering P-complete prob-
lems, we proved the equivalence of several variations of alternating transitive

196 M. Crouch, N. Immerman, and J.E.B. Moss

closure (ATC); however, we did not show the problem equivalent to its nega-
tion, or to the monotone circuit value problem (MCVAL).

5.3 Sample Reductions

We now list a few of the reductions that ReductionFinder has produced.

Example 1. ReductionFinder found two arity-1 reductions showing
RTC[E](s, t) ≤ ∀x.TC[E](x, x). The first of these problems is simply REACH;
the second states that every node of a directed graph is on some (nontrivial)
cycle. The two reductions are good examples of the arity-1 reductions we have
found, and also show a clear tradeoff between the formula length required to
define E′ and the arity parameters:

|R(A)| = {a1, a2, . . . , an, c1}

E′(x, y) ≡ x = t
∨ y = s
∨ E(x, y)

(9)

The output structure R(A) has all of the elements of the input structure A, plus
one new point c1. The new edge relation is true wherever the old edge relation
was true; in addition, all possible edges into the source and out of the target are
added.

Since the new point c1 was not part of the original edge relation, it has only
one outgoing edge (to s), and only one incoming edge (to t). Therefore c1 is on
a cycle iff there is a path in the original graph from s to t. Similarly, if such a
path does exist, every node in R(A) is on a similar cycle. Thus the input graph
satisfies RTC[E](s, t) iff the output satisfies ∀x.TC[E](x, x).

In addition to this reduction, ReductionFinder found a second arity-1 reduc-
tion. The second reduction does not use a distinguished constant element, but
requires a longer formula:

|R(A)| = {a1, a2, . . . , an}

E′(x, y) ≡ y �= s ∧ E(x, y)
∨ x �= s ∧ x = y
∨ x = t

(10)

This reduction can be viewed as manipulating the graph as follows: we first
remove all edges into s. We then add a self-loop on every edge except s. Finally,
we add all possible edges out of t. Since the edge (t, s) is the only edge into node
s, we then have that the node s is on a cycle iff there is a path from s to t.
(Every other node is on a trivial cycle by construction.)

Finding Reductions Automatically 197

ReductionFinder has verified that neither reduction can be shortened; there
is a tradeoff between the availability of the extra element c1 and the required
formula length. ReductionFinder can detect such tradeoffs, because in the partial
ordering induced by our various search parameters, each of these reductions is
in a minimal reduction-containing space.

Example 2. ReductionFinder successfully reduced the first-order problem
∀x∃y.E(x, y) to deterministic reachability (TC[f](s, t)). This is a simple ex-
ample of an arity-2 reduction where the successor relation is used to iteratively
check all elements.

|R(A)| = {〈a1, a1〉, 〈a1, a2〉, . . . , 〈an, an〉}

f ′(〈x, y〉) ≡

⎧⎨⎩
if E(x, y) then 〈Suc(x), Suc(x)〉
else if (Suc(y) �= x) then 〈x, Suc(y)〉
else 〈x, y〉

s′ ≡ 〈min, min〉
t′ ≡ 〈min, min〉

(11)

Recall that each element in the output structure is a pair of elements in the
input structure.

Deterministic non-reachability to deterministic reachability. Like all
deterministic classes, L is closed under complement. The canonical L-complete
problem is deterministic reachability. ReductionFinder was able to find a version
of the canonical reduction from deterministic non-reachability to deterministic
reachability, showing co-L ≤ L.

|R(A)| = {〈a1, a1〉, 〈a1, a2〉, . . . , 〈an, an〉, c1, c2}

f ′(〈x, y〉) ≡

⎧⎨⎩
if (x = t) then c2

else if (y = max) then c1

else 〈f(x), Suc(y)〉
f ′(ci) ≡ ci

s′ ≡ 〈s, min〉
t′ ≡ c1

(12)

An input graph G = 〈f ; s, t〉 contains no path from s to t iff the output graph
I(G) = 〈f ′; s′, t′〉 contains a path from s to t. This arity-2 reduction walks
through the original graph in the sequence 〈s, 0〉, 〈f(s), 1〉, . . . , 〈fn(s), n〉. If t is
ever found, we move to the point c2, representing a reject state; if t is not found
after n steps, we move to the target node c1.

Reachability to Degree-2 Reachability. Directed-graph reachability is the
canonical NL-complete problem, and it is well-known that restricting ourselves to
graphs with outdegree ≤ 2 suffices for NL-completeness. We chose to represent
outdegree-2 reachability with two unary function symbols; we define TC[f, g](s, t)

198 M. Crouch, N. Immerman, and J.E.B. Moss

on the vocabulary
〈
; f1, g1; s, t

〉
, with the semantics that nodes can be reached

through any combination of f -edges and g-edges. ReductionFinder succeeded in
reducing TC[E](s, t) ≤ TC[f, g](s, t) via an arity-2 reduction:3

|R(A)| = {〈a1, a1〉, 〈a1, a2〉, . . . , 〈an, an〉}

f ′(〈x, y〉) ≡
{

if E(x, y) then 〈y, y〉
else 〈x, y〉

g′(〈x, y〉) ≡ 〈x, Suc(y)〉
s′ ≡ 〈s, t〉
t′ ≡ 〈t, t〉

(13)

This reduction uses the traditional technique of using successor to iterate through
possible neighbors. Each node 〈x, y〉 of the output structure can be read as “we
are at node x, considering y as a possible next step”. If there is an edge E(x, y),
we nondeterministically either follow this edge (moving along f to 〈y, y〉) or
move along g to the next possibility 〈x, Suc(y)〉. If there is no edge E(x, y), our
only nontrivial movement is along g, to 〈x, Suc(y)〉.

6 Conclusions and Future Directions

The ReductionFinder program successfully finds quantifier-free reductions be-
tween computational problems. The program maintains a database of known
reductions between problems. Strongly connected components in this database
correspond to complexity classes. When presented with a new problem, we can
perform searches to automatically place the problem within the existing reduc-
tion graph.

This project has demonstrated that it is possible to find reductions between
problems by using a SAT solver to search for them. Right now, ReductionFinder
takes a long time to find small reductions and cannot find medium-sized reduc-
tions. We suggest some directions for future work aimed at taking automatic
reduction finding to the next stage.

1. ReductionFinder searches for a small, simple reduction, R, by repeatedly
calling a SAT solver as outlined in §3.1. The tasks involved are:

3 The reduction above has undergone some syntactic simplification. ReductionFinder

originally reported the reduction:

f ′(〈x, y〉) ≡
{

if E(x, y) then 〈y, y〉
else 〈x,Suc(x)〉

g′(〈x, y〉) ≡
{

if Suc(y) = x then 〈x,Suc(x)〉
else 〈x,Suc(y)〉

s′ ≡ 〈s, t〉
t′ ≡ 〈t, t〉

Finding Reductions Automatically 199

– Find an R that is a correct reduction on the current example graphs,
G0, . . . , Gk (Equation 6).

– Find a Gk+1 on which the current R fails (Equation 7).

While, we would expect that such a search is exponential in the size of R, in
our experience the difficulty is that the number of variables in the boolean
formulas grow linearly with the number of counter-example graphs, k, and
unfortunately the running time seems to increase exponentially in k. (The
search for counter-example graphs in the second case does not have this
problem.) Since the problem we are trying to solve is Σp

2 – there exists a
small reduction, for all small graphs – we hope to speed up our search by
using strategies similar to those employed by QBF solvers. Related to this
is the question of what makes a good set of counter-example graphs.

2. To show that there is a reduction from problem A to problem B, it may be
that we can find a problem in the middle, M , so that reductions from A to M
and M to B are simpler. We believe that finding such intermediate problems
will be invaluable in searching for reductions. However, we have only found
limited evidence of this so far in our work with ReductionFinder. It will be
valuable to develop heuristics to find or generate appropriate intermediate
problems.

3. Sufficient progress on the above two points may enable us to automatically
generate linear reductions. This would have great benefits for automatic
programming of optimal algorithms as discussed in Item 3 near the end of
Section 1.

References

1. Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The Com-

plexity of Satisfiability Problems: Refining Schaefer’s Theorem. J. Comput. Sys.

Sci. 75, 245–254 (2009)

2. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic pro-

grams. Annals of Mathematics and Artificial Intelligence 12, 53–87 (1996)

3. Clark, K.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data

Bases, pp. 293–322. Plenum Press, New York

4. Cook, S.: The Complexity of Theorem Proving Procedures. In: Proc. Third Annual

ACM STOC Symp., pp. 151–158 (1971)

5. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg

(1999)

6. Eén, N., Sörensson, N.: An Extensible SAT-solver [extended version 1.2]. In:

Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518.

Springer, Heidelberg (2004)

7. Feder, T., Vardi, M.: The Computational Structure of Monotone Monadic SNP

and Constraint Satisfaction: A Study Through Datalog and Group Theory. SAIM

J. Comput. 28, 57–104 (1999)

8. Giunchiglia, E., Lierler, Y., Maratea, M.: SAT-Based Answer Set Programming.

In: Proc. AAAI, pp. 61–66 (2004)

9. Hartmanis, J., Immerman, N., Mahaney, S.: One-Way Log Tape Reductions. In:

IEEE Found. of Comp. Sci. Symp., pp. 65–72 (1978)

200 M. Crouch, N. Immerman, and J.E.B. Moss

10. Immerman, N.: Descriptive Complexity. Springer Graduate Texts in Computer

Science, New York (1999)

11. Immerman, N.: Languages That Capture Complexity Classes. SIAM J. Com-

put. 16(4), 760–778 (1987)

12. Janhunen, T.: A counter-based approach to translating normal logic programs into

sets of clauses. In: Proc. ASP 2003 Workshop, pp. 166–180 (2003)

13. Jones, N.: Reducibility Among Combinatorial Problems in Log n Space. In: Proc.

Seventh Annual Princeton Conf. Info. Sci. and Systems, pp. 547–551 (1973)

14. Karp, R.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher,

J.W. (eds.) Complexity of Computations, pp. 85–104. Plenum Press, New York

(1972)

15. Ladner, R.: On the Structure of Polynomial Time Reducibility. J. Assoc. Comput.

Mach. 2(1), 155–171 (1975)

16. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

17. Lifschitz, V., Razborov, A.A.: Why are there so many loop formulas? ACM Trans.

Comput. Log. 7(2), 261–268 (2006)

18. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malike, S.: Chaff: Engi-

neering an Efficient SAT Solver. In: Design Automation Conference 2001 (2001)

19. Reingold, O.: Undirected ST-connectivity in Log-Space. In: ACM Symp. Theory

of Comput., pp. 376–385 (2005)

20. Schaefer, T.: The Complexity of Satisfiability Problems. In: ACM Symp. Theory

of Comput., pp. 216–226 (1978)

21. Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E.: Programming with

Sets: an Introduction to SETL. Springer, New York (1986)

22. Valiant, L.: Reducibility By Algebraic Projections. L’Enseignement mathématique,

T. XXVIII 3-4, 253–268 (1982)

On Complete Problems, Relativizations and Logics
for Complexity Classes

Anuj Dawar�

University of Cambridge Computer Laboratory, Cambridge CB3 0FD, U.K.
anuj.dawar@cl.cam.ac.uk

For Yuri, on the occasion of your seventieth birthday. Thank you for always
asking the most stimulating questions.

Abstract. In a paper published in 1988, Yuri Gurevich gave a precise mathe-
matical formulation of the central question in descriptive complexity - is there a
logic capturing P - and conjectured that the answer is no. In the same paper, he
also conjectured that there was no logic capturing either of the complexity classes
NP ∩ co-NP and RP, and presented evidence for these conjectures based on the
construction of oracles with respect to which these classes do not have complete
problems. The connection between the existence of complete problems and the
existence of a logic capturing P was further established in (Dawar 1995). Does
this imply that the question of whether there is a logic capturing P is subject to a
relativization barrier? Here, we examine this question and see how the question
for P differs from those for the other classes by taking a short tour through rela-
tivizations, complete problems and recursive enumerations of complexity classes.

Keywords: descriptive complexity, relativization, oracle complexity classes.

1 Introduction

One of the main drivers of research in the area of finite model theory and descriptive
complexity over the last three decades has been the question of whether there is a logic
that expresses exactly the polynomial-time computable properties of finite structures.
In short form, we ask whether there is a logic capturing P. This question was first for-
mulated by Chandra and Harel [4] but given the precise form in which it is usually cited
by Yuri Gurevich [7]. In this form, the question is as follows. A logic L is a function
SEN associating a recursive set of sentences to each finite vocabulary σ together with
a function SAT that associates to each σ a recursive satisfaction relation relating finite
σ-structures to sentences that is also isomorphism-invariant. That is, if A and B are iso-
morphic σ-structures and ϕ is any sentence of SEN(σ) then (A, ϕ) ∈ SAT(σ) if, and
only if, (B, ϕ) ∈ SAT(σ). Now, a logic L captures P if there is a computable function
that takes each sentence of L to a polynomially-clocked Turing machine that recog-
nises the models of the sentence, and for every polynomial-time recognizable class K
of structures, there is a sentence of L whose models are exactly K .

� The author carried out this work while supported by a Leverhulme Trust Study Abroad
Fellowship.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 201–207, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

202 A. Dawar

Gurevich conjectured that there is no logic capturing P in this sense. He also proved
in the same paper that there is such a logic if, and only if, there is a logic that captures
P on graphs. Thus, the conjecture can be reformulated as the following statement.

Conjecture 1 (Gurevich). There is no recursively enumerable set S of pairs (M, p)
where M is a deterministic Turing machine and p a polynomial such that:

1. for each (M, p) ∈ S, if G1 and G2 are isomorphic n-vertex graphs, then M accepts
input G1 in p(n) steps if, and only if, it accepts G2 in p(n) steps; and

2. for any polynomial-time decidable class K of graphs, there is a pair (M, p) ∈ S
such that an n-vertex graph G is accepted by M in p(n) steps if, and only if, G ∈ K .

The key difference between this and the question formulated by Chandra and Harel
is that in their formulation we would require S to be a set of machines which run in
polynomial-time but the polynomials need not be given explicitly. For a discussion of
the relationship between the two questions see [11].

While Conjecture 1 has become well-known as Gurevich’s conjecture and generated
a large amount of follow-up research, in [7], Gurevich stated similar conjectures for the
complexity classes NP ∩ co-NP and RP which have received somewhat less attention.
To be precise, the conjecture that there is no logic for NP ∩ co-NP can be stated in the
following equivalent form.

Conjecture 2 (Gurevich). There is no recursively enumerable set S of triples (M, N, p)
where M and N are nondeterministic Turing machines and p a polynomial such that:

1. for each (M, N, p) ∈ S, if G1 and G2 are isomorphic n-vertex graphs, then M
accepts input G1 in p(n) steps if, and only if, it accepts G2 in p(n) steps and the
same holds for N ;

2. for each (M, N, p) ∈ S and each n-vertex graph G, M accepts G in p(n) steps if,
and only if, N does not accept G in p(n) steps; and

3. for any class K of graphs that is in both NP and co-NP, there is a triple (M, N, p) ∈
S such that an n-vertex graph G is accepted by M in p(n) steps if, and only if,
G ∈ K .

Indeed, Gurevich provided evidence in support of Conjecture 2 in the following form.
He showed that if Conjecture 2 is false then there is a complete problem in NP∩co-NP
under polynomial-time reductions. However, it is known by a result of Sipser [14] that
there are oracles A such that the complexity class NPA ∩ co-NPA does not have com-
plete problems with respect to polynomial-time reductions. This implies, in particular,
that any refutation of Conjecture 2 would have to be non-relativizing.

On the other hand, it is not difficult to show that there is also an oracle A for which
there is a logic capturing NPA ∩ co-NPA (an argument is given in Sect. 3). This means
that any proof of Conjecture 2 would also have to be non-relativizing. In short, Conjec-
ture 2 runs up against the famous relativization barrier in complexity theory (see [6,1]).

What about Conjecture 1? Is it also subject to the same barrier? Since a proof of
the conjecture would imply that P �= NP, it is subject to all the barriers that face that
question. Is a refutation of the conjecture also up against a relativization barrier? This
is a question we address in this paper, which takes us through a tour of the relation-
ship between logics capturing complexity classes, recursive enumerations and complete
problems.

On Complete Problems, Relativizations and Logics for Complexity Classes 203

2 Recursive Enumerations and Complete Problems

The argument constructed by Gurevich to show that the existence of a logic capturing
NP∩co-NP would imply that the class contained complete problems under polynomial-
time reductions is an instance of a well-known phenomenon linking recursive
enumerations of complexity classes to the existence of complete problems (see, for
example, [8,9,10]). Complexity classes (in the usual sense, where they are collections
of sets of strings, rather than unordered finite structures) are defined by conditions that
are either syntactic or semantic. Examples of the former are the classes P and NP which
can be enumerated as pairs (M, p) where M is a deterministic (or nondeterministic) ma-
chine and p is a polynomial. This enumeration then includes witnesses for all languages
in P and NP respectively where we say that (M, p) is a witness for the language con-
sisting of those strings x accepted by M in a number of steps bounded by p(|x|). On the
other hand, a natural set of witnesses for languages in the complexity class NP∩co-NP
(as we saw in formulating Conjecture 2) might be the set of triples (M, N, p) where M
and N are nondeterministic machines such that the languages they accept in p steps
are complements of each other. This adds to the syntactic condition (that M and N are
nondeterministic Turing machines and that p is a polynomial) the semantic requirement
that the two machines accept complementary languages. This requirement is undecid-
able and the natural set of witnesses for NP ∩ co-NP is not recursively enumerable.
Thus, finding a recursively enumerable set of witnesses would require a fundamentally
new characterization of the class and would be a major breakthrough in complexity
theory.

The situation with the class RP is analogous. This is defined as those languages L for
which there exists a nondeterministic machine M and a polynomial p such that, given
an input x of length n, if x is not in L, in time p(n) no computation path of M will reach
an accepting state while if x ∈ L, then at least half of the computation paths of M will
terminate in an accepting state. It is clear that there are machines which do not accept
any language in this sense because for some inputs x they will have some accepting
computations but fewer than half the computations will be accepting. So, the class can
be witnessed by the set of pairs (M, p) where M is a nondeterministic machine that
satisfies the additional semantic (and undecidable) condition that on all inputs x, either
none or at least half of all computations of M of length p(|x|) will accept.

Thus, syntactic classes are those that admit recursive enumerations and from such
enumerations one can construct complete problems. On the other hand, the addition
of semantic conditions to the definition of a class (and generally semantic conditions,
by Rice’s theorem, are undecidable) makes the natural set of witnesses not recursively
enumerable. Moreover, one can often exploit this to construct an oracle A with respect
to which the complexity class does not have complete problems. Exactly such a con-
struction is carried out by Sipser [14].

What then, are we to make of whether there is a logic for P? This is a syntactic class
but, in considering it as a collection of sets of graphs, we have added the additional
semantic condition of isomorphism-invariance. That is, we wish to restrict to those ma-
chines which, when we interpret their input as representing a graph, do not distinguish
between isomorphic graphs. This condition is, again, undecidable and the natural set of
witnesses is not recursively enumerable. Conjecture 1 then asserts that there is no r.e.

204 A. Dawar

set of witnesses whatsoever. Could we then construct an oracle A with respect to which
there is no logic capturing P?

Just as Gurevich showed that from the assumption that there is a logic for NP ∩
co-NP it follows that there is a complete problem in this class under polynomial-
time reductions, a prospect considered unlikely, so we could also conclude from the
assumption that there is a logic for P that this class contains complete problems. How-
ever, the latter prospect is not so unlikely. P certainly contains complete problems
under polynomial-time reductions and indeed under much weaker reductions such as
logarithmic-space or AC0 reductions. I was able to show in [5] that the existence of a
logic for P implies (and, indeed, is equivalent to) the existence in P of complete prob-
lems under reductions that are themselves syntactically isomorphism-invariant.

To make this precise, let us consider logical interpretations. Suppose we are given
two relational signatures σ and τ and a logic L. An m-ary L-interpretation of τ in σ is
a sequence of formulas of L in the signature σ consisting of:

– a formula υ(x);
– a formula η(x,y);
– for each relation symbol R in τ of arity a, a formula ρR(x1, . . . ,xa); and
– for each constant symbol c in τ , a formula γc(x),

where each x,y or xi is an m-tuple of free variables. We call m the width of the inter-
pretation. We say that an interpretation Φ associates a τ -structure B to a σ-structure A,
if there is a surjective map h from the m-tuples {a ∈ Am | A |= υ[a]} to B such that:

– h(a1) = h(a2) if, and only if, A |= η[a1, a2];
– RB(h(a1), . . . , h(aa)) if, and only if, A |= ρR[a1, . . . ,aa];
– h(a) = cB if, and only if, A |= γc[a].

Note that an interpretation Φ associates a τ -structure with A only if η defines an equiv-
alence relation on Am that is a congruence with respect to the relations defined by the
formulas ρR and each γc defines a single equivalence class of this relation. In such
cases however, B is uniquely determined up to isomorphism and we write B = Φ(A).
We are only interested in interpretations that associate a τ -structure to every A.

We say that a class of σ-structures K1 is L-reducible to a class of τ -structures K2

if there is an L-interpretation Φ of τ in σ such that for all σ-structures A, A ∈ K1 if,
and only if, Φ(A) ∈ K2. Finally, for a complexity class C, a class K is C-hard under
L-reductions if every class in C is L-reducible to K and, as usual, it is C-complete under
L-reductions if it is C-hard and it is in C.

Writing FO for first-order logic, we can state the main result of [5] as:

Theorem 3. There is a logic capturing P if, and only if, P contains a complete problem
under FO-reductions.

The construction used to prove this theorem is quite general. On the one hand, we can
replace P by many other complexity classes. Indeed, in [5], the result is stated for any
complexity class satisfying a boundedness condition and examples of such complexity
classes include, besides P, L, NP and PSpace. The last two are known to have log-
ics capturing them and so the theorem tells us that they have complete problems under

On Complete Problems, Relativizations and Logics for Complexity Classes 205

FO-reductions while for L, like for P, the existence of a logic capturing it remains an
open question. On the other hand, there is also nothing special about the choice of FO
in Theorem 3. The important fact is that FO-reductions are themselves syntactically de-
fined, and so can be enumerated, and they are isomorphism-invariant. We could replace
FO in the theorem by virtually any logic that has an effective syntax, is isomorphism-
invariant (i.e. it is a logic in the sense defined in the introduction) and is contained in
P. The important fact is that the semantic condition of isomorphism-invariance that is
implied in the recursive enumeration of P is captured in the reductions themselves and
we obtain the usual construction of a complete problem from the syntactic presentation
of a class.

The complexity class NP ∩ co-NP does not meet the definition of a bounded class
as given in [5], but with a recursive presentation in the sense of Conjecture 2, it is
possible to carry through a construction analogous to the proof of Theorem 3 to obtain
the following.

Theorem 4. There is a logic capturing NP∩co-NP if, and only if, NP∩co-NP contains
a complete problem under FO-reductions.

This strengthens Theorem 1.17 of [7] by replacing polynomial-time reductions by FO-
reductions and, at the same time, providing a converse.

3 Relativization Barriers

Baker, Gill and Solovay [2] proved that there is an oracle A such that the complexity
classes PA and NPA are different and there is another oracle B so that the classes PB

and NPB are equal. This result forms what is called the relativization barrier to the
resolution of the question of whether or not P = NP. That is to say, it demonstrates
that any resolution of the question must use methods that do not relativize to machines
with oracles. In particular, methods based on diagonalization will not suffice. Since this
seminal result, methods have been found that circumvent this barrier in some cases (for
instance the celebrated result that IP = PSpace [13]) and other barriers have been
observed to the resolution of the relationship between P and NP (see [1]). The question
we address here is whether Conjectures 1 and 2 face similar barriers.

As noted in Sect. 1, Gurevich proved that if there is a logic for NP ∩ co-NP
then this class contains a complete problem with respect to polynomial-time reduc-
tions. Moreover Sipser [14] (see also [8]) showed that there are oracles with respect to
which this is not the case. On the other hand, it is easy to show that there is an ora-
cle A for which there is a logic capturing NP ∩ co-NP. To be precise, take A to be a
PSpace-complete problem such as satisfiability of quantified Boolean formulas. Then
NPA = co-NPA = PSpace. Moreover, it is known that there is a logic capturing
PSpace (see, for example [12]) and the result follows. This implies that the question
of whether there is a logic capturing NP∩ co-NP is subject to the relativization barrier.
A resolution either way would require non-relativizing methods.

How about the question of whether there is a logic for P?. Once again, it is easy to
construct an oracle with respect to which there is such a logic. Indeed, taking A once
again to be a PSpace-complete problem, we see that PA = PSpace and therefore

206 A. Dawar

there is a logic for PA. Can we also construct an oracle A so that there is no logic
capturing PA? Or, equivalently, an oracle A so that PA does not contain any complete
problems with respect to FO-reductions. We show next that to construct such an oracle,
we would have to separate P from NP.

Theorem 5. If P = NP then for every oracle A, there is a logic capturing PA.

Proof. A graph canonization function is a function c on strings that encode graphs with
the property that for any graph G, c(G) is the encoding of a graph isomorphic to G
and if G and G′ are isomorphic graphs then c(G) = c(G′). It is known that there are
graph canonization functions (such as the function that given a graph G yields the lex-
icographically minimal string representing a graph isomorphic to G) in the polynomial
hierarchy (see [3]). It follows that if P = NP then there is a graph canonization function
c that is computable in polynomial time. For any oracle machine M and polynomial p,
define CM,p to be the machine that takes an input x, computes c(x) and then simulates
M for p(n) steps on input c(x), where n is the length of c(x).

It is easy to see that the language accepted by CM,p is invariant under isomorphisms.
Moreover, if M with oracle A and running within bounds p accepts a class of graphs
K invariant under isomorphisms, then the language accepted by CM,p with oracle A
is exactly the strings encoding graphs in K . Thus, the collection of all machines CM,p

with oracle A is a recursive enumeration of PA . �

Thus, it would seem that relativization is not itself a barrier to refuting Conjecture 1.
Proving the conjecture, on the other hand, would separate P from NP and this is subject
to all the barriers that complexity theory is familiar with.

4 Concluding Remarks

We noted that the conditions defining complexity classes come in two flavours: syn-
tactic and semantic. Syntactic conditions are restrictions on the accepting machines
(or on their resource bounding functions) that can be recognized from the form of the
machines or the presentations of the functions themselves. Semantic conditions on the
other hand are typically undecidable properties of the machines. Complexity classes
that are defined by purely syntactic criteria such as L, P, NP and PSpace (on strings)
admit recursive enumerations and from these one can construct complete problems un-
der quite weak reductions. On the other hand, complexity classes that are defined by
semantic restrictions on the witnessing machines, such as NP ∩ co-NP and RP, do not
admit obvious recursive presentations or complete problems and to prove that they do
would require fundamental new characterizations of these classes. Indeed establishing
whether or not they have complete problems is subject to the relativization barrier in
complexity theory.

The study of complexity classes on (unordered) graphs imposes a new semantic con-
dition on machines, namely that of isomorphism invariance. However, some complex-
ity classes (such as NP and PSpace) still admit recursive presentations even under
this semantic restriction. This is because the semantic restriction can be enforced by an
externally imposed pre-processing step (such as a canonization function) that does not

On Complete Problems, Relativizations and Logics for Complexity Classes 207

take us out of the class. But, it remains an open question whether classes such as P or
L admit recursive presentations under this restriction.

Considering NP ∩ co-NP or RP on graphs, one sees that we are dealing with two
distinct semantic restrictions: one that is inherent to the definition of the class and the
second arising from isomorphism invariance. This, as it were, makes it doubly unlikely
that we could find logics that capture these complexity classes. Moreover, it is the first
of these semantic restrictions that means that the problem of the existence of such logics
runs up against the relativization barrier.

References

1. Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity theory. In: Proc.
40th ACM Symp. on Theory of Computing, pp. 731–740 (2008)

2. Baker, T., Gill, J., Solovay, R.: Relativizations of the P =?NP question. SIAM Journal on
Computing 4(4), 431–442 (1975)

3. Blass, A., Gurevich, Y.: Equivalence relations, invariants, and normal forms. SIAM Journal
on Computing 13(4), 682–689 (1984)

4. Chandra, A., Harel, D.: Structure and complexity of relational queries. Journal of Computer
and System Sciences 25, 99–128 (1982)

5. Dawar, A.: Generalized quantifiers and logical reducibilities. Journal of Logic and Compu-
tation 5(2), 213–226 (1995)

6. Fortnow, L.: The role of relativization in complexity theory. Bulletin of the EATCS 52, 229–
243 (1994)

7. Gurevich, Y.: Logic and the challenge of computer science. In: Börger, E. (ed.) Current
Trends in Theoretical Computer Science, pp. 1–57. Computer Science Press, Rockville
(1988)

8. Hartmanis, J., Li, M., Yesha, Y.: Containment, separation, complete sets, and immunity of
complexity classes. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 136–145. Springer,
Heidelberg (1986)

9. Kowalczyk, W.: Some connections between representability of complexity classes and the
power of formal systems of reasoning. In: Proc. 11th Intl. Symp. Mathematical Foundations
of Computer Science, pp. 364–369 (1984)

10. Landweber, L.H., Lipton, R.J., Robertson, E.L.: On the structure of sets in NP and other
complexity classes. Theor. Comput. Sci. 15, 181–200 (1981)

11. Nash, A., Remmel, J.B., Vianu, V.: PTIME queries revisited. In: Eiter, T., Libkin, L. (eds.)
ICDT 2005. LNCS, vol. 3363, pp. 274–288. Springer, Heidelberg (2004)

12. Richerby, D.: Logical characterizations of PSPACE. In: Computer Science Logic: Proc. 13th
Conf. of the EACSL, pp. 370–384 (2004)

13. Shamir, A.: IP = PSpace. Journal of the ACM 39(4), 869–877 (1992)
14. Sipser, M.: On relativization and the existence of complete sets. In: Nielsen, M., Schmidt,

E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 523–531. Springer, Heidelberg (1982)

Effective Closed Subshifts in 1D Can Be
Implemented in 2D�

Bruno Durand, Andrei Romashchenko��, and Alexander Shen��

LIF Marseille, CNRS and University Aix–Marseille

{bruno.durand,alexander.shen}@lif.univ-mrs.fr,
andrei.romashchenko@gmail.com

C’est avec grand plaisir que nous avons rédigé cet article pour notre ami et
collègue Yuri Gurevich. En effet, l’intérêt qu’il a porté à nos travaux depuis

bien longtemps nous a soutenu, ses remarques nous ont éclairés, et ses
questions nous ont laissé entrevoir de nouvelles perspectives.

Abstract. In this paper we use fixed point tilings to answer a ques-

tion posed by Michael Hochman and show that every one-dimensional

effectively closed subshift can be implemented by a local rule in two di-

mensions. The proof uses the fixed-point construction of an aperiodic tile

set and its extensions.

Keywords: aperiodic tilings, subshifts, fixed point.

1 Introduction

Let A be a finite set (alphabet); its elements are called letters. By A-configuration
we mean a mapping C : Z2 → A. In geometric terms: a cell with coordinates (i, j)
contains letter C(i, j).

A local rule is defined by a positive integer M and a list of prohibited (M×M)-
patterns (M ×M squares filled by letters). A configuration C satisfies a local
rule R if none of the patterns listed in R appears in C.

Let A and B be two alphabets and let π : A → B be any mapping. Then
every A-configuration can be transformed into a B-configuration (its homomor-
phic image) by applying π to each letter. Assume that the local rule R for
A-configurations and mapping π are chosen in such a way that local rule R pro-
hibits patterns where letters a and a′ with π(a) �= π(a′) are vertical neighbors.
This guarantees that every A-configuration that satisfies R has an image where
vertically aligned B-letters are the same. Then for each B-configuration in the
image every vertical line carries one single letter of B. So we can say that π maps
� Partially supported by NAFIT ANR-09-EMER-008-01 and RFBR 09-01-00709a

grants.
�� On leave from IITP RAS, Moscow.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 208–226, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Effective Closed Subshifts in 1D Can Be Implemented in 2D 209

a 2-dimensional A-configuration satisfying the local rule R to a 1-dimensional
B-configuration.

Thus, for every A, B, local rule R and π (with described properties) we get
a subset L(A, B, R, π) of BZ (i.e., L(A, B, R, π) is the set of π-images of all A-
configurations that satisfy the local rule R). The following result (Theorem 1)
characterizes the subsets that can be obtained in this way.

Consider a product topology in BZ. Base open sets of this topology are in-
tervals. Each interval is obtained by fixing letters in finitely many places (other
places may contain arbitrary letters). Each interval is therefore a finite object
and we can define effectively open subsets of BZ as unions of (computably) enu-
merable families of intervals. An effectively closed set is a complement of an
effectively open one. A subshift is a subset of BZ that is closed and invariant
under left and right shifts. We are mostly interested in subshifts that are not
only closed but effectively closed sets.

Theorem 1. The subset L(A, B, R, π) is an effectively closed subshift. For every
effectively closed subshift S ⊂ BZ one can find A, R, and π such that S =
L(A, B, R, π).

The first part of the statement is easy. The set L(A, B, R, π) is evidently shift
invariant; it remains to show that it is effectively closed. The set of all A-
configurations that satisfy R is a closed subset of a compact space and therefore
is a compact space itself. The mapping of A-configurations into B-configurations
is continuous. Therefore the set L(A, B, R, π) is compact (as a continuous image
of a compact set). This argument can be effectivized in a standard way. A B-
string is declared bad if it cannot appear in the π-image of any A-configuration
that satisfies R. The set of all bad strings is enumerable and L(A, B, R, π) is the
set of all bi-infinite sequences that have no bad factors.

The reverse implication is more difficult and is the main subject of this paper.
It cannot be proven easily since it implies the classical result of Berger [2]: the
existence of a local rule that makes all configurations aperiodic. Indeed, it is
easy to construct an effectively closed subshift S that has no periodic points; if
it is represented as L(A, B, R, π), then local rule R has no periodic configura-
tions (configurations that have two independent period vectors); indeed, those
configurations have a horizontal period vector.

So it is natural to expect a proof of Theorem 1 to be obtained by modifying
one of the existing constructions of an aperiodic local rule. It is indeed the
case: we use the fixed-point construction described in [7]. We do not repeat this
construction (assuming that the reader is familiar with that paper or has it at
hand) and explain only the modifications that are needed in our case. This is
done in sections 2–6; in the rest of this section we survey some other steps in
the same direction.

M. Hochman [13] proved a similar result for 3D implementations of 1D sub-
shifts (and, in general, (k + 2)-dimensional implementation of k-dimensional
subshifts) and asked whether a stronger statement is true where 3D is replaced
by 2D.

210 B. Durand, A. Romashchenko, and A. Shen

As we have mentioned, it is indeed true and can be achieved by the technique
of fixed point self-similar tilings. The detailed exposition of this technique and
its applications, including an answer to Hochman’s question, is given in our
paper [8]. Since this paper contains many other results (most boring are related
to error-prone tile sets), we think that a self-contained (modulo [7]) exposition
could be useful for readers that are primarily interested in this result, and provide
such an exposition in the current paper.

In fact, the fixed point construction of algorithms and machines is an old
and well known tool (used, e.g., for Kleene’s fixed point theorem and von Neu-
mann’s self-reproducing automata) that goes back to self-referential paradoxes
and Gödel’s incompleteness theorem. One may only wonder why it was not used
in 1960s to construct an aperiodic tile set. In a context of hierarchical construc-
tions in the plane this technique was used by P. Gács in a much more complicated
situation (see [9]); however, Gács did not bother to mention explicitly that this
technique can be applied to construct aperiodic tile sets.

Fixed point tilings are not the only tool that can be used to implement sub-
shifts. In [4] a more classical (Berger–Robinson style) construction of an aperiodic
tile set is modified in several ways to implement one specific shift: the family
of bi-infinite bit sequences ω such that all sufficiently long substrings x of ω
have complexity greater than α|x| or at least ω can be cut into two pieces (left-
and right-infinite) that have this property. (Here α is some constant less than 1,
and |x| stands for the length of x.) In fact, the construction used there is fairly
general and can be applied to any enumerable set F of forbidden substrings:
one may implement a shift that consists of bi-infinite sequences that have no
substrings in F or at least can be cut into two parts with this property. Recently
N. Aubrun and M. Sablik found a more ingenious construction that is free of
this problem (splitting into two parts) and therefore provides another proof of
Theorem 1 (see [1]).

The authors thank their LIF colleagues, especially E. Jeandel who pointed
out that their result answers a question posed in [13].

2 The Idea of the Construction

We do not refer explicitly to our paper [7] (reproduced in the Appendix) but use
the notions and constructions from that paper freely. In that paper we used local
rules of special type (each letter was called a tile and has four colors at its sides;
the local rule says that colors of the neighbor tile should match). In fact, any
local rule can be reduced to this type by extending the alphabet; however, we
do not need to worry about this since we construct a local rule and may restrict
ourselves to tilings.

We superimpose two layers in our tiling. One of the layers contains B-letters;
the local rule guarantees that each vertical line carries one B-letter. (Vertical
neighbors should be identical.) For simplicity we assume that B = {0, 1}, so
B-letters are just bits, but this is not really important for the argument.

The second layer contains an aperiodic tile set constructed in a way similar
to [7]. Then some rules are used to organize the interaction between the layers;

Effective Closed Subshifts in 1D Can Be Implemented in 2D 211

computations in the second layer are fed with the data from the first layer and
check that the first layer does not contain any forbidden string.

Indeed, the macro-tiles (at every level) in our construction contain some com-
putation used to guarantee their behavior as building blocks for the next level.
Could we run this computation in parallel with some other one that enumerates
bad patterns and terminates the computation (creating a violation of the rules)
if a bad pattern appears?

This idea immediately faces evident problems:

– The computation performed in macro-tiles (in [7]) was limited in time and
space (and we need unlimited computations since we have infinitely many
forbidden substrings and no limit on the computational resources used to
enumerate them).

– Computations on high levels do not have access to bit sequence they need
to check: the bits that go through these macro-tiles are “deep in the sub-
conscious”, since macro-tiles operate on the level of their sons (cells of the
computation that are macro-tiles of the previous level), not individual bits.

– Even if every macro-tile checks all the bits that go through it (in some
mysterious way), a “degenerate case” could happen where an infinite vertical
line is not crossed by any macro-tile. Imagine a tile that is a left-most son
of a father macro-tile who in its turn is the left-most son of its father and so
on (see Fig. 2). They fill the right half-plane; the left half-plane is filled in
a symmetric way, and the vertical dividing line between then is not crossed
by any tile. Then, if each macro-tile takes care of forbidden substrings inside
its zone (bits that cross this macro-tile), some substrings (that cross the
dividing line) remain unchecked.

These problems are discussed in the following sections one after another; we
apologize if the description of them seemed to be quite informal and vague and
hope that they would become more clear when their solution is discussed.

3 Variable Zoom Factor

In our previous construction the macro-tiles of all levels were of the same size:
each of them contained N×N macro-tiles of the previous level for some constant
zoom factor N . Now it is not enough any more, since we need to host arbitrarily
long computations in high-level macro-tiles. So we need an increasing sequence
of zoom factors N0, N1, N2, . . .; macro-tiles of the first level are blocks of N0×N0

tiles; macro-tiles of the second level are blocks of N1 × N1 macro-tiles of level
1 (and have size of N0N1 × N0N1 if measured in individual tiles). In general,
macro-tiles of level k are made of Nk−1 × Nk−1 macro-tiles of level k − 1 and
have side N0N1 . . .Nk−1 measured in individual tiles.

However, all the macro-tiles (of different levels) carry the same program in
their computation zone. The difference between their behavior is caused by the
data: each macro-tiles “knows” its level (consciously, as a sequence of bits on its

212 B. Durand, A. Romashchenko, and A. Shen

tape). Then this level k may be used to compute Nk which is then used as a
modulus for coordinates in the father macro-tile. (Such a coordinate is a number
between 0 and Nk − 1, and the addition is performed modulo Nk.)

Of course, we need to ensure that this information is correct. Two properties
are required: (1) all macro-tiles of the same level have the same idea about their
level, and (2) these ideas are consistent between levels (each father is one level
higher than its sons). The first is easy to achieve: the level should be a part
of the side macro-color and should match in neighbor tiles. (In fact an explicit
check that brothers have the same idea about their levels is not really needed,
since the first property follows from the second one: since all tiles on the level
zero “know” their level correctly, by induction we conclude that macro-tiles of
all levels have correct information about their levels.)

To achieve the second property (consistency between level information con-
sciously known to a father and its sons) is also easy, though we need some
construction. It goes as follows: each macro-tile knows its place in the father,
so it knows whether the father should keep some bits of his level information
in that macro-tile. If yes, the macro-tile checks that this information is correct.
Each macro-tile checks only one bit of the level information, but with brothers’
help they check all the bits.1

There is one more thing we need to take care of: the level information should
fit into the tiles (and the computation needed to compute Nk knowing k should
also fit into level k tile). This means that log k, log Nk and the time needed to
compute Nk from k should be much less than Nk−1 (since the computation zone
is some fraction of Nk−1). So Nk should not grow too slow (say, Nk = log k is
too slow), should not grow too fast (say, Nk = 2Nk−1 is too fast) and should not
be too difficult to compute. However, these restriction still leave a lot of room
for us: e.g., Nk can be proportional to

√
k, to k, to 2k, or 22k

, or 222k

(any fixed
height is OK). Recall that computation deals with binary encodings of k and Nk

and normally is polynomial in their lengths.
In this way we are now able to embed computations of increasing sizes into

the macro-tiles. Now we have to explain which data these computations would
get and how the communication between levels is organized.

4 Conscious and Subconscious Bits

The problem of communication between levels can be explained using the fol-
lowing metaphor. Imagine you are a macro-tile; then you have some program,
and process the data according to the program; you “blow up” (i.e., your interior
cannot be correctly tiled) if some inconsistency in the data is found. This pro-
gram makes you perform as one cell in the next-level brain (in the computation
zone of the father macro-tile), but you do not worry about it: you just perform
1 People sitting on the stadium during the football match and holding color sheets

to create a slogan for their team can check the correctness of the slogan by looking

at the scheme and knowing their row and seat coordinates; each person checks one

pixel, but in cooperation they check the entire slogan.

Effective Closed Subshifts in 1D Can Be Implemented in 2D 213

the program. At the same time each cell of yourself in fact is a son macro-tile,
and elementary operations of this cell (the relation between signals on its sides)
are in fact performed by a lower-level computation. But this computation is your
“sub-conscious”, you do not have direct access to its data, though the correct
functioning of the cells of your brain is guaranteed by the programs running in
your sons.

Please do not took this metaphor too seriously and keep in mind that the time
axis of the computations is just a vertical axis on the plane; configurations are
static and do not change with time. However, it could be useful while thinking
about problems of inter-level communication.

Let us decide that for each macro-tile all the bits (of the bit sequence that
needs to be checked) that cross this macro-tile form its responsibility zone. More-
over, one of the bits of this zone may be delegated to the macro-tile, and in this
case the macro-tile consciously knows this bit (is responsible for this bit). The
choice of this bit depends on the vertical position of the macro-tile in its father.

More technically, recall that a macro-tile of level k is a square whose side is
Lk = N0 ·N1 · . . . ·Nk−1, so there are Lk bits of the sequence that intersect this
macro-tile. We delegate each of these bits to one of the macro-tiles it intersects.
Note that every macro-tile of the next level is made of Nk × Nk macro-tiles of
level k. We assume that Nk is much bigger than Lk (more about choice of Nk

later); this guarantees that there are enough macro-tiles of level k (in the next
level macro-tile) to serve all bits that intersect them. Let us decide that ith
macro-tile of level k (from bottom to top) in a (k + 1)-level macro-tile knows
ith bit (from the left) in its zone. Since Nk is greater than Lk, we leave some
unused space in each macro-tile of level k + 1: many macro-tiles of level k are
not responsible for any bit, but this does not create any problems.

This is our plan; however, we need a mechanism that ensures that the dele-
gated bits are indeed represented correctly (are equal to the corresponding bits
“on the ground”, in the sequence that forms the first level of our construction).
This is done in the hierarchical way: since every bit is delegated to macro-tiles

· · ·

· · ·

· · ·

· · ·

N
k

til
es

of
si

ze
L

k
×

L
k

Fig. 1. Bit delegation: bits assigned to vertical lines are distributed between k-level

macro-tile (according to their positions in the father macro-tile of level k + 1)

214 B. Durand, A. Romashchenko, and A. Shen

of all levels, it is enough to ensure that the ideas about bit values are consistent
between father and son.

For this hierarchical check let us agree that every macro-tile not only knows
its own delegated bit (or the fact that there is no delegated bit), but also knows
the bit delegated to its father (if it exists) as well as father’s coordinates (in the
grandfather macro-tile). This is still an acceptable amount of information (for
keeping father’s coordinates we need to ensure that log Nk+1, the size of father’s
coordinate, is much smaller that Nk−1). To make this information consistent, we
ensure that

– the data about the father’s coordinates and bits are the same among
brothers;

– if a macro-tile has the same delegated bit as its father (this fact can be
checked since a macro-tile knows its coordinates in the father and father’s
coordinates in the grandfather), these two bits coincide;

– if a macro-tile is in the place where its father keeps its delegated bit, the
actual father’s information is consistent with the information about what
the father should have.

So the information transfer between levels is organized as follows: the macro-tile
that has the same delegated bit as its father, non-deterministically guesses this
fact and distributes the information about father’s coordinates and bit among
the brothers. Those of the brothers who are in the correct place, check that
father indeed has correct information.

On the lowest level we have direct access to the bits of the sequence, so the
tile that is above the correct bit can keep its value and transmit it together with
(guessed) coordinates of its father macro-tile (in the grandfather’s macro-tile)
to all brothers, and some brothers are in the right place and may check these
values against the bits in the computation zone of the father macro-tile.

This construction makes all bits present at all levels, but this is not enough for
checking: we need to check not individual bits, but bit groups (against the list
of forbidden substrings). To this end we need a special arrangement described
in the next section.

5 Checking Bit Groups

Here the main idea is: each macro-tile checks some substring (bit group) that is
very small compared to the size of this macro-tile. However, since the size of the
computation zone grows infinitely as the level increases, this does not prevent
complicated checks (that may involve a long substring that appears very late in
the enumeration of the forbidden patterns) from happening.

The check is performed as follows: we do some number of steps in the enu-
meration of forbidden patterns, and then check whether one of these patterns
appears in the bit group under consideration (assigned to this macro-tile). The
number of enumeration steps can be also rather small compared to the macro-tile
size.

Effective Closed Subshifts in 1D Can Be Implemented in 2D 215

We reserve also some time and space to check that all the patterns appeared
during the enumeration are not substrings of the bit group under consideration.
This is not a serious time/space overhead since substring search in the given bit
group can be performed rather fast, and the size of the bit group and the number
of enumeration steps are chosen small enough (having in mind this overhead).

Then in the limit any violation inside some macro-tile will be discovered (and
only degenerate case problem remains: substrings that are not covered entirely
by any tile). The degenerate case problem is considered in the next section; it
this section it remains to explain how the groups of (neighbor) bits are made
available to the computation and how they are assigned to macro-tiles.

Let us consider an infinite vertical stripe of macro-tiles of level k that share
the same Lk = N0 · . . . ·Nk−1 columns. Together, these macro-tiles keep in their
memory all Lk bits of their common zone of responsibility. Each of them perform
a check for a small bit group (of length lk, which increases extremely slowly with
k and in particular is much less than Nk−1). We need to distribute somehow
these groups among macro-tiles of this infinite stripe.

It can be done in many different ways. For example, let us agree that the
starting point of the bit group checked by a macro-tile is the vertical coordinate of
this macro-tile in its father (if it is not too big; recall that Nk * N0N1 . . . Nk−1).
It remains to explain how groups of (neighbor) bits are made available to the
computational zones of the corresponding macro-tiles.

We do it in the same way as for delegated bits; the difference (and simplifica-
tion) is that now we may use only two levels of hierarchy since all the bits are
available in the previous level (and not only in the “deep unconscious”, at the
ground level). We require that this group and the coordinate that determines
its position are again known to all the sons of the macro-tile where the group
is checked. Then the sons should ensure that (1) this information is consistent
between brothers; (2) it is consistent with delegated bits where delegated bits
are in the group, and (3) it is consistent with the information in the macro-tile
(father of these brothers) itself. Since lk is small, this is a small amount of in-
formation so there is no problem of its distribution between macro-tiles of the
preceding level.

If a forbidden pattern belongs to a zone of responsibility of macro-tiles of
arbitrarily high level, then this violation is be discovered inside a macro-tile
of some level, so the tiling of the plain cannot not exist. Only the degenerate
case problem remains: so far we cannot catch forbidden substrings that are not
covered entirely by any macro-tile. We deal with the degenerate case problem in
the next section.

6 Dealing with the Degenerate Case

The problem we need to deal with: it can happen that one vertical line is not
crossed by any macro-tile of any level (see Fig. 2). In this case some substrings
are not covered entirely by any macro-tile, and we do not check them. After the
problem is realized, the solution is not difficult. We let every macro-tile check

216 B. Durand, A. Romashchenko, and A. Shen

· · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · ·· · ·

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

· · ·· · ·

Fig. 2. Degenerate case

bit groups in its extended responsibility zone that is three times wider and covers
not only the macro-tile itself but also its left and right neighbors.

Now a macro-tile of level k is given a small bit group which is a substring of
its extended responsibility zone (the width of the extended responsibility zone is
3Lk; it is composed of the zones of responsibility of the macro-tile itself and two
its neighbors). Respectively, a macro-tile of level (k − 1) keeps the information
about three groups of bits instead of one: for its father, left uncle, and right
uncle. This information should be consistent between brothers (since they have
the same father and uncles). Moreover, it should be checked across the boundary
between macro-tiles: if two macro-tiles A and B are neighbors but have different
fathers (B’s father is A’s right uncle and A’s father is B’s left uncle), then they
should compare the information they have (about bit groups checked by fathers
of A and B) and ensure it is consistent. For this we need to increase the amount
of information kept in a macro-tile by a constant factor (a macro-tile keeps three
bit groups instead of one, etc.), but this is still acceptable.

It is easy to see that now even in the degenerate case every substring is entirely
in the extended responsibility zone of arbitrary large tiles, so all the forbidden
patterns are checked everywhere.

7 Final Adjustments

We finished our argument, but we was quite vague about the exact values of pa-
rameters saying only that some quantities should be much less than others. Now

Effective Closed Subshifts in 1D Can Be Implemented in 2D 217

we need to check again the entire construction and see that the relations between
parameters that were needed at different steps could be fulfilled together.

Let us remind the parameters used at several steps of the construction: macro-
tiles of level k+1 consist of Nk×Nk macro-tile of level k; thus, a k-level macro-tile
consists of Lk × Lk tiles (of level 0), where Lk = N0 · . . . ·Nk−1. Macro-tiles of
level k are responsible for checking bit blocks of length lk from their extended
responsibility zone (of width 3Lk). We have several constraints on the values of
these parameters:

– log Nk+1 + Nk and even log Nk+2 + Nk since every macro-tile must be able
to do simple arithmetic manipulations with its own coordinates in the father
and with coordinates of the father in the grandfather;

– Nk * Lk since we need enough sons of a macro-tile of level k +1 to keep all
bits from its zone of responsibility (we use one macro-tile of level k for each
bit);

– lk and even lk+1 should be much less than Nk−1 since a macro-tile of level
k must contain in its computational zone the bit block of length lk assigned
to itself and three bit blocks of length lk+1 assigned to its father and two
uncles (the left and right neighbors of the father);

– a k-level macro-tile should enumerate in its computational zone several for-
bidden patterns and check whether any of them is a substring of the given
(assigned to this macro-tile) lk-bits block; the number of steps in this enu-
meration must be small compared to the size of the macro-tile; for example,
let us agree that a macro-tile of level k runs this enumeration for exactly lk
steps;

– the values Nk and lk should be simple functions of k: we want to compute
lk in time polynomial in k, and compute Nk in time polynomial in log Nk

(note that typically Nk is much greater than k, so we cannot compute or
even write down its binary representation in time polynomial in k).

With all these constraints we are still quite free in the choice of parameters. For
example, we may let Nk = 2C2k

(for some large enough constant C) and lk = k.

8 Final Remarks

One may also use essentially the same construction to implement k-dimensional
effectively closed subshifts using (k + 1)-dimensional subshifts of finite type.

How far can we go further? Can we implement evert k-dimensional effectively
closed subshifts by a tiling of the same dimension k? Another question (posed
in [13]): let us replace a finite alphabet by a Cantor space (with the standard
topology); can we represent every k-dimensional effectively closed subshifts over
a Cantor space as a continuous image of the set of tilings of dimension k +1 (for
some finite tile set)? E. Jeandel noticed that the answers to the both questions
are negative (this fact is also a corollary of results from [4] and [16]).

218 B. Durand, A. Romashchenko, and A. Shen

References

1. Aubrun, N., Sablik, M.: personal communication (February 2010) (submitted for

publication)

2. Berger, R.: The Undecidability of the Domino Problem. Mem. Amer. Math. Soc. 66

(1966)

3. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer,

Heidelberg (1987)

4. Durand, B., Levin, L., Shen, A.: Complex Tilings. J. Symbolic Logic 73(2), 593–613

(2008)

5. Durand, B., Levin, L., Shen, A.: Local Rules and Global Order, or Aperiodic

Tilings. Mathematical Intelligencer 27(1), 64–68 (2005)

6. Durand, B., Romashchenko, A., Shen, A.: Fixed Point and Aperiodic Tilings. In:

Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 276–288. Springer,

Heidelberg (2008)

7. Durand, B., Romashchenko, A., Shen, A.: Fixed point theorem and aperiodic

tilings (The Logic in Computer Science Column by Yuri Gurevich). Bulletin of

the EATCS 97, 126–136 (2009)

8. Durand, B., Romashchenko, A., Shen, A.: Fixed-point tile sets and their applica-

tions. CoRR abs/0910.2415 (2009), http://arxiv.org/abs/0910.2415

9. Gács, P.: Reliable Computation with Cellular Automata. J. Comput. Syst.

Sci. 32(1), 15–78 (1986)

10. Gács, P.: Reliable Cellular Automata with Self-Organization. J. Stat.

Phys. 103(1/2), 45–267 (2001)

11. Grunbaum, B., Shephard, G.C.: Tilings and Patterns. W.H. Freeman & Co., New

York (1986)

12. Gurevich, Y., Koryakov, I.: A remark on Berger’s paper on the domino problem.

Siberian Mathematical Journal 13, 319–321 (1972)

13. Hochman, M.: On the dynamic and recursive properties of multidimensional sym-

bolic systems. Inventiones mathematicae 176, 131–167 (2009)

14. Mozes, S.: Tilings, Substitution Systems and Dynamical Systems Generated by

Them. J. Analyse Math. 53, 139–186 (1989)

15. von Neumann, J.: Theory of Self-reproducing Automata. In: Burks, A. (ed.). Uni-

versity of Illinois Press, Urbana (1966)

16. Rumyantsev, A., Ushakov, M.: Forbidden Substrings, Kolmogorov Complexity and

Almost Periodic Sequences. In: Durand, B., Thomas, W. (eds.) STACS 2006.

LNCS, vol. 3884, pp. 396–407. Springer, Heidelberg (2006)

17. Wang, H.: Proving theorems by pattern recognition II. Bell System Technical Jour-

nal 40, 1–42 (1961)

A Fixed Point Theorem and Aperiodic Tilings4

People often say about some discovery that it appeared “ahead of time”, meaning
that it could be fully understood only in the context of ideas developed later.
For the topic of this note, the construction of an aperiodic tile set based on the
fixed-point (self-referential) approach, the situation is exactly the opposite. It
should have been found in 1960s when the question about aperiodic tile sets
4 Reproduced from [7] with permission.

http://arxiv.org/abs/0910.2415

Effective Closed Subshifts in 1D Can Be Implemented in 2D 219

was first asked: all the tools were quite standard and widely used at that time.
However, the history had chosen a different path and many nice geometric ad hoc
constructions were developed instead (by Berger, Robinson, Penrose, Ammann
and many others, see [11]; a popular exposition of Robinson-style construction is
given in [5]). In this note we try to correct this error and present a construction
that should have been discovered first but seemed to be unnoticed for more that
forty years.

A.1 The Statement: Aperiodic Tile Sets

A tile is a square with colored sides. Given a set of tiles, we want to find a
tiling, i.e., to cover the plane by (translated copies of) these tiles in such a way
that colors match (a common side of two neighbor tiles has the same color in
both).Tiles appeared first in the context of domino problem posed by Hao Wang.
Here is the original formulation from [17]: “Assume we are given a finite set of
square plates of the same size with edges colored, each in a different manner.
Suppose further there are infinitely many copies of each plate (plate type). We
are not permitted to rotate or reflect a plate. The question is to find an effective
procedure by which we can decide, for each given finite set of plates, whether
we can cover up the whole plane (or, equivalently, an infinite quadrant thereof)
with copies of the plates subject to the restriction that adjoining edges must
have the same color.” This question (domino problem) is closely related to the
existence of aperiodic tile sets: (1) if they did not exist, domino problem would
be decidable for some simple reasons (one may look in parallel for a periodic
tiling or a finite region that cannot be tiled) and (2) the aperiodic tile sets are
used in the proof of the undecidability of domino problem. However, in this note
we concentrate on aperiodic tile sets only.

For example, if tile set consists of two tiles (one has black lower and left side
and white right and top sides, the other has the opposite colors), it is easy to
see that only periodic (checkerboard) tiling is possible. However, if we add some
other tiles the resulting tile set may admit also non-periodic tilings (e.g., if we
add all 16 possible tiles, any combination of edge colors becomes possible). It
turns out that there are other tile set that have only aperiodic tilings.

Formally: let C be a finite set of colors and let τ ⊂ C4 be a set of tiles ; the
components of the quadruple are interpreted as upper/right/lower/left colors of
a tile. Our example tile set with two tiles is represented then as

1 2
1 2 1 2 1

2 1 2 1 2

1 2 1 2 1

2 1 2 1 2

1 2 1 2 1

Fig. 3. Tile set that has only periodic tilings

220 B. Durand, A. Romashchenko, and A. Shen

{〈white, white, black, black〉, 〈black, black, white, white〉}.
A τ-tiling is a mapping Z2 → τ that satisfies matching conditions. Tiling U is
called periodic if it has a period, i.e., if there exists a non-zero vector T ∈ Z2

such that U(x + T) = U(x) for all x.
Now we can formulate the result (first proven by Berger [2]):

Proposition. There exists a finite tile set τ such that τ-tilings exist but all of
them are aperiodic.

There is a useful reformulation of this result. Instead of tilings we can consider
two-dimensional infinite words in some finite alphabet A (i.e., mappings of type
Z2 → A) and put some local constraints on them. This means that we choose
some positive integer N and look at the word through a window of size N ×N .
Local constraint then says which patterns of size N ×N are allowed to appear
in a window. Now we can reformulate our Proposition as follows: there exists
a local constraint that is consistent (some infinite words satisfy it) but implies
aperiodicity (all satisfying words are aperiodic).

It is easy to see that these two formulations are equivalent. Indeed, the color
matching condition is 2 × 2 checkable. On the other hand, any local constraint
can be expressed in terms of tiles and colors if we use N × N -patterns as tiles
and (N − 1) × N -patterns as colors; e.g., the right color of (N × N)-tile is the
tile except for its left column; if it matches the left color of the right neighbor,
these two tiles overlap correctly.

A.2 Why Theory of Computation?

At first glance this proposition has nothing to do with theory of computation.
However, the question appeared in the context of the undecidability of some
logical decision problems, and, as we shall see, can be solved using theory of
computations. (A rare chance to convince “normal” mathematicians that theory
of computations is useful!)

The reason why theory of computation comes into play is that rules that de-
termine the behavior of a computation device — say, a Turing machine with one-
dimensional tape — can be transformed into local constraints for the space-time
diagram that represents computation process. So we can try to prove the proposi-
tion as follows: consider a Turing machine with a very complicated (and therefore
aperiodic) behavior and translate its rules into local constraints; then any tiling
represents a time-space diagram of a computation and therefore is aperiodic.

However, this näıve approach does not work since local constraints are sat-
isfied also at the places where no computation happens (in the regions that do
not contain the head of a Turing machine) and therefore allow periodic config-
urations. So a more sophisticated approach is needed.

A.3 Self-similarity

The main idea of this more sophisticated approach is to construct a “self-similar”
set of tiles. Informally speaking, this means that any tiling can be uniquely split

Effective Closed Subshifts in 1D Can Be Implemented in 2D 221

by vertical and horizontal lines into M ×M blocks that behave exactly like the
individual tiles. Then, if we see a tiling and zoom out with scale 1 : M , we get
a tiling with the same tile set.

Let us give a formal definition. Assume that a non-empty set of tiles τ and
positive integer M > 1 are fixed. A macro-tile is a square of size M ×M filled
with matching tiles from τ . Let ρ be a non-empty set of macro-tiles.

Definition. We say that τ implements ρ if any τ -tiling can be uniquely split by
horizontal and vertical lines into macro-tiles from ρ.

Now we give two examples that illustrate this definition: one negative and one
positive.

Negative example: Consider a set τ that consists of one tile with all white
sides. Then there is only one macro-tile (of given size M ×M). Let ρ be a one-
element set that consists of this macro-tile. Any τ -tiling (i.e., the only possible
τ -tiling) can be split into ρ-macro-tiles. However, the splitting lines are not
unique, so τ does not implements ρ.

Positive example: Let τ is a set of M2 tiles that are indexed by pairs of integers
modulo M : The colors are pairs of integers modulo M arranged as shown (Fig. 4).
Then there exists only one τ -tiling (up to translations), and this tiling can be
uniquely split into M ×M squares whose borders have colors (0, j) and (i, 0).
Therefore, τ implements a set ρ that consists of one macro-tile (Fig. 5).

Definition. A set of tiles τ is self-similar if it implements some set of macro-tiles
ρ that is isomorphic to τ .

(i+1, j)(i, j)

(i, j)

(i, j +1)

Fig. 4. Elements of τ (here i, j are integers modulo M)

0

0

0 0

M

Fig. 5. The only element of ρ: border colors are pairs that contain 0

222 B. Durand, A. Romashchenko, and A. Shen

This means that there exist a 1-1-correspondence between τ and ρ such that
matching pairs of τ -tiles correspond exactly to matching pairs of ρ-macro-tiles.

The following statement follows directly from the definition:

Proposition. A self-similar tile set τ has only aperiodic tilings.

Proof. Let T be a period of some τ -tiling U . By definition U can be uniquely
split into ρ-macro-tiles. Shift by T should respect this splitting (otherwise we get
a different splitting), so T is a multiple of M . Zooming the tiling and replacing
each ρ-macro-tile by a corresponding τ -tile, we get a T/M -shift of a τ -tiling. For
the same reason T/M should be a multiple of M , then we zoom out again etc.
We conclude therefore that T is a multiple of Mk for any k, i.e., T is a zero
vector. �
Note also that any self-similar set τ has at least one tiling. Indeed, by definition
we can tile a M ×M square (since macro-tiles exist). Replacing each τ -tile by
a corresponding macro-tile, we get a τ -tiling of M2 ×M2 square, etc. In this
way we can tile an arbitrarily large finite region, and then standard compactness
argument (König’s lemma) shows that we can tile the entire plane.

So it remains to construct a self-similar set of tiles (a set of tiles that imple-
ments itself, up to an isomorphism).

A.4 Fixed Points and Self-referential Constructions

The construction of a self-similar tile set is done in two steps. First (in
Section A.5) we explain how to construct (for a given tile set σ) another tile
set τ that implements σ (i.e., implements a set of macro-tiles isomorphic to σ).
In this construction the tile set σ is given as a program pσ that checks whether
four bit strings (representing four side colors) appear in one σ-tile. The tile set τ
then guarantees that each macro-tile encodes a computation where pσ is applied
to these four strings (“macro-colors”) and accepts them.

This gives us a mapping: for every σ we have τ = τ(σ) that implements
σ and depends on σ. Now we need a fixed point of this mapping where τ(σ)
is isomorphic to σ. It is done (Section A.6) by a classical self-referential trick
that appeared as liar’s paradox, Cantor’s diagonal argument, Russell’s paradox,
Gödel’s (first) incompleteness theorem, Tarski’s theorem, undecidability of the
Halting problem, Kleene’s fixed point (recursion) theorem and von Neumann’s
construction of self-reproducing automata — in all these cases the core argument
is essentially the same.

The same trick is used also in a classical programming challenge: to write
a program that prints its own text. Of course, for every string s it is trivial
to write a program t(s) that prints s, but how do we get t(s) = s? It seems
at first that t(s) should incorporate the string s itself plus some overhead, so
how t(s) can be equal to s? However, this first impression is false. Imagine that
our computational device is a universal Turing machine U where the program
is written in a special read-only layer of the tape. (This means that the tape
alphabet is a Cartesian product of two components, and one of the components

Effective Closed Subshifts in 1D Can Be Implemented in 2D 223

is used for the program and is never changed by U .) Then the program can get
access to its own text at any moment, and, in particular, can copy it to the
output tape.2 Now we explain in more details how to get a self-similar tile set
according to this scheme.

A.5 Implementing a Given Tile Set

In this section we show how one can implement a given tile set σ, or, better to
say, how to construct a tile set τ that implements some set of macro-tiles that
is isomorphic to σ.

There are easy ways to do this. Though we cannot let τ = σ (recall that
zoom factor M should be greater than 1), we can do essentially the same for
every M > 1. Let us extend our “positive” example (with one macro-tile and
M2 tiles) by superimposing additional colors. Superimposing two sets of colors
means the we consider the Cartesian product of color sets (so each edge carries
a pair of colors). One set of colors remains the same (M2 colors for M2 pairs of
integers modulo M). Let us describe additional (superimposed) colors. Internal
edges of each macro-tile should have the same color and this color should be
different for all macro-tiles, so we allocate #σ colors for that. This gives #σ
macro-tiles that can be put into 1-1-correspondence with σ-tiles. It remains to
provide correct border colors, and this is easy to do since each tile “knows”
which σ-tile it simulates (due to the internal color). In this way we get M2#σ
tiles that implement the tile set σ with zoom factor M .

However, this (trivial) simulation is not really useful. Recall that our goal is
to get isomorphic σ and τ , and in this implementation τ -tiles have more colors
that σ-tiles (and we have more tiles, too). So we need a more creative encoding
of σ-colors that makes use of the space available: a side of a macro-tile has a
“macro-color” that is a sequence of M tile colors, and we can have a lot of
macro-colors in this way.

So let us assume that colors in σ are k-bit strings for some k. Then the tile
set is a subset S ⊂ Bk × Bk × Bk × Bk, i.e., a 4-ary predicate on the set Bk of
k-bit strings. Assume that S is presented by a program that computes Boolean
value S(x, y, z, w) given four k-bit strings x, y, z, w. Then we can construct a tile
set τ as follows.

We start again with a set of M2 tiles from our example and superimpose
additional colors but use them in a more economical way. Assuming that k +M ,
we allocate k places in the middle of each side of a macro-tile and allow each
of them to carry an additional color bit; then a macro-color represents a k-bit

2 Of course, this looks like cheating: we use some very special universal machine as an

interpreter of our programs, and this makes our task easy. Teachers of programming

that are seasoned enough may recall the BASIC program

10 LIST

that indeed prints its own text. However, this trick can be generalized enough to

show that a self-printing program exists in every language.

224 B. Durand, A. Romashchenko, and A. Shen

string. Then we need to arrange the internal colors in such a way that macro-
colors (k-bit strings) x, y, z and w can appear on the four sides of a macro-tile
if and only if S(x, y, z, w) is true.

To achieve this goal, let us agree that the middle part (of size, say, M/2×M/2)
in every M ×M -macro-tile is a “computation zone”. Tiling rules (for superim-
posed colors) in this zone guarantee that it represents a time-space diagram of
a computation of some (fixed) universal Turing machine. (We assume that time
goes up in a vertical direction and the tape is horizontal.) It is convenient to
assume that program of this machine is written on a special read-only layer of
the tape (see the discussion in Section A.4).

Outside the computation zone the tiling rules guarantee that bits are trans-
mitted from the sides to the initial configuration of a computation.

We also require that this machine should accept its input before running out
of time (i.e., less than in M/2 steps), otherwise the tiling is impossible.

Note that in this description different parts of a macro-tile behave differently;
this is OK since we start from our example where each tile “knows” its position
in a macro-tile (keeps two integers modulo M). So the tiles in the “wire” zone
know that they should transmit a bit, the tiles inside the computation zone know
they should obey the local rules for time-space diagram of the computation, etc.

This construction uses only bounded number of additional colors since we
have fixed the universal Turing machine (including its alphabet and number of
states); we do not need to increase the number of colors when we increase M
and k (though k should be small compared to M to leave enough space for the
wires; we do not give an exact position of the wires but it is easy to see that if

Universal

Turing

machine

program

Fig. 6. k-macro-colors are transmitted to the computation zone where they are checked

Effective Closed Subshifts in 1D Can Be Implemented in 2D 225

k/M is small enough, there is enough space for them). So the construction uses
O(M2) colors (and tiles).

A.6 A Tile Set That Implements Itself

Now we come to the crucial point in our argument: can we arrange things in
such a way that the predicate S (i.e., the tile set it generates) is isomorphic to
the set of tiles τ used to implement it?

Assume that k = 2 logM + O(1); then macro-colors have enough space to
encode the coordinates modulo M plus superimposed colors (which require O(1)
bits for encoding).

Note that many of the rules that define τ do not depend on σ (i.e., on the
predicate S). So the program for the universal Turing machine may start by
checking these rules. It should check that

– bits that represent coordinates (integers modulo M) on the four sides of a
macro-tile are related in the proper way (left and lower sides have identical
coordinates, on the right/upper side one of the coordinates increases modulo
M);

– if the macro-tile is outside computation zone and the wires, it does not carry
additional colors;

– if the macro-tile is a part of a wire, then it transmits a bit in a required
direction (of course, for this we should fix the position of the wires by some
formulas that are then checked by a program);

– if the macro-tile is a part of the computation zone, it should obey the local
rules for the computation zone (bits of the read-only layer should propagate
vertically, bits that encode the content of the tape and the head of our
universal Turing machine should change as time increases according to the
behavior of this machine, etc.)

This guarantees that on the next layer macro-tiles are grouped into macro-
macro-tiles where bits are transmitted correctly to the computation zone of
a macro-macro-tile and some computation of the universal Turing machine is
performed in this zone. But we need more: this computation should be the same
computation that is performed on the macro-tile level (fixed point!). This is also
easy to achieve since in our model the text of a running program is available
to it (recall the we assume that the program is written in a read-only layer):
the program should check also that if a macro-tile is in the computation zone,
then the program bit it carries is correct (program knows the x-coordinate of a
macro-tile, so it can go at the corresponding place of its own tape to find out
which program bit resides in this place).

This sound like some magic, but we hope that our previous example (a pro-
gram for the UTM that prints its own text) makes this trick less magical (indeed,
reliable and reusable magic is called technology).

226 B. Durand, A. Romashchenko, and A. Shen

A.7 So What?

We believe that our proof is rather natural. If von Neumann lived few years more
and were asked about aperiodic tile sets, he would probably immediately give
this argument as a solution. (He was especially well prepared to it since he used
very similar self-referential tricks to construct a self-reproducing automata, see
[15].) In fact this proof somehow appeared, though not very explicitly, in P. Gács’
papers on cellular automata [10]; the attempts to understand these papers were
our starting points.

This proof is rather flexible and can be adapted to get many results usually
associated with aperiodic tilings: undecidability of domino problem (Berger [2]),
recursive inseparability of periodic tile sets and inconsistent tile sets (Gurevich
– Koryakov [12]), enforcing substitution rules (Mozes [14]) and others (see [3,6]).
But does it give something new?

We believe that indeed there are some applications that hardly could be
achieved by previous arguments. Let us conclude by mentioning two of them.
First is the construction of robust aperiodic tile sets. We can consider tilings with
holes (where no tiles are placed and therefore no matching rules are checked). A
robust aperiodic tile set should have the following property: if the set of holes is
“sparse enough”, then tiling still should be far from any periodic pattern (say, in
the sense of Besicovitch distance, i.e., the limsup of the fraction of mismatched
positions in a centered square as the size of the square goes to infinity). The no-
tion of “sparsity” should not be too restrictive here; we guarantee, for example,
that a Bernoulli random set with small enough probability p (each cell belongs
to a hole independently with probability p) is sparse.

While the first example (robust aperiodic tile sets) is rather technical (see [6]
for details), the second is more basic. Let us split all tiles in some tile set into
two classes, say, A- and B-tiles. Then we consider a fraction of A-tiles in a tiling.
If a tile set is not restrictive (allows many tilings), this fraction could vary from
one tiling to another. For classical aperiodic tilings this fraction is usually fixed:
in a big tiled region the fraction of A-tiles is close to some limit value, usually an
eigenvalue of an integer matrix (and therefore an algebraic number). The fixed-
point construction allows us to get any computable number. Here is the formal
statement: for any computable real α ∈ [0, 1] there exists a tile set τ divided into
A- and B-tiles such that for any ε > 0 there exists N such that for all n > N
the fraction of A-tiles in any τ-tiling of n×n-square is between α− ε and α + ε.

The Model Checking Problem for Prefix Classes of
Second-Order Logic: A Survey�

Thomas Eiter1, Georg Gottlob2, and Thomas Schwentick3

1 Institute of Information Systems, Vienna University of Technology, Austria
eiter@kr.tuwien.ac.at

2 Computing Laboratory, Oxford University, United Kingdom
georg.gottlob@comlab.ox.ac.uk

3 Fakultät für Informatik, Technische Universität Dortmund, Germany
thomas.schwentick@udo.edu

Abstract. In this paper, we survey results related to the model checking problem
for second-order logic over classes of finite structures, including word structures
(strings), graphs, and trees, with a focus on prefix classes, that is, where all quan-
tifiers (both first- and second-order ones) are at the beginning of formulas. A
complete picture of the prefix classes defining regular and non-regular languages
over strings is known, which nearly completely coincides with the tractability
frontier; some complexity issues remain to be settled, though. Over graphs and
arbitrary relational structures, the tractability frontier is completely delineated for
the existential second-order fragment, while it is less explored for trees. Besides
surveying some of the results, we mention some open issues for research.

Keywords: Finite Model Theory, Gurevich’s Classifiability Theorem, Model
Checking, Monadic Second-Order Logic, Regular Languages, Second-Order
Logic.

For Yuri, on the occasion of his seventieth birthday.

1 Introduction

Logicians and computer scientists have been studying for a long time the relationship
between fragments of predicate logic and the solvability and complexity of decision
problems that can be expressed within such fragments. Among the studied fragments,
quantifier prefix classes play a predominant role. This can be explained by the syntacti-
cal simplicity of such prefix classes and by the fact that they form a natural hierarchy of
increasingly complex fragments of logic that appears to be deeply related to core issues
of decidability and complexity. In fact, one of the most fruitful research programs that
kept logicians and computer scientists busy for decades was the exhaustive solution of
Hilbert’s classical Entscheidungsproblem, that is, of the problem of determining those
prefix classes of first-order logic for which formula-satisfiability (resp. finite satisfiabil-
ity of formulas) is decidable. A landmark reference (also sometimes called the “bible”)

� Most of the material contained in this paper stems, modulo editorial adaptations, from the
much longer papers [15,16,26]. This paper significantly extends the earlier report [20].

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 227–250, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

228 T. Eiter, G. Gottlob, and T. Schwentick

on this subject is the book by Börger, Gurevich, and Grädel [6] which gives an in depth
treatment of the subject.

Quantifier prefixes emerged not only in the context of decidability theory (a com-
mon branch of recursion theory and theoretical computer science), but also in core
areas of computer science such as formal language and automata theory, and later in
complexity theory. In automata theory, Büchi [9,8], Elgot [18] and Trakhtenbrot [51]
independently proved that a language is regular iff it can be described by a sentence of
monadic second-order logic, in particular, by a sentence of monadic existential second-
order logic. In complexity theory, Fagin [19] showed that a problem on finite structures
is in NP iff it can be described by a sentence of existential second-order logic (ESO).
These fundamental results have engendered a large number of further investigations and
results on characterizing language and complexity classes by fragments of logic (see,
for instance the monographs [45,42,13,32]).

While the classical research programme of determining the prefix characterizations
of decidable fragments of first-order logic was successfully completed around 1984
(cf. [6]), until recently little was known on analogous problems on finite structures, in
particular, on the tractability/intractability frontier of the model checking problem for
prefix classes of second-order logic (SO), and in particular, of existential second-order
logic (ESO) over finite structures. In the late nineties, a number of scientists, including
Yuri Gurevich, Phokion Kolaitis, and the authors started to attack this new research
programme in a systematic manner.

By complexity of a prefix class C we mean the complexity of the following model-
checking problem: Given a fixed sentence Φ in C, decide for variable finite structures
A whether A is a model of Φ, which we denote by A |= Φ. Determining the complex-
ity of all prefix classes is an ambitious research programme, in particular the analysis
of various types of finite structures such as strings, that is, finite word structures with
successor, trees, graphs, or arbitrary finite relational structures (corresponding to rela-
tional databases). Over strings and trees, one of the main goals of this classification is
to determine the regular prefix classes, that is, those whose formulas express regular
languages only; note that by the Büchi-Elgot-Trakhtenbrot Theorem, regular fragments
over strings are (semantically) included in monadic second-order logic.

In the context of this research programme, three systematic studies were carried
out recently, that shed light on the prefix classes of the existential fragment ESO (also
denoted by Σ1

1) of second-order logic:

– In [15], the ESO prefix-classes over strings are exhaustively classified. In particular,
the precise frontier between regular and nonregular classes is traced out, and it
is shown that every class that expresses some nonregular language also expresses
some NP-complete language. There is thus a huge complexity gap in ESO: some
prefix classes can express only regular languages (which are well-known to have
extremely low complexity), while all others are intractable.

– In [16] this line of research was continued by systematically investigating the syn-
tactically more complex prefix classes Σ1

k(Q) of second-order logic for each inte-
ger k > 1 and for each first-order quantifier prefix Q. An exhaustive classification
of the regular and nonregular prefix classes of this form is given, and complexity
results for the corresponding model-checking problems are derived.

The Model Checking Problem for Prefix Classes of Second-Order Logic 229

– In [26], the complexity of all ESO prefix-classes over graphs and arbitrary rela-
tional structures is analyzed, and the tractability/intractability frontier is completely
delineated. Unsurprisingly, several classes that are regular over strings become NP-
hard over graphs. Interestingly, the analysis shows that one of the NP-hard classes
becomes polynomial for the restriction to undirected graphs without self-loops.

– The precise tractability frontier of ESO and SO prefix classes over trees has not yet
been determined. There are some partial results, however. There are also important
complexity results for MSO over trees, as well as a number of expressiveness results
that show that MSO over trees is captured by regular automata and equivalent in
expressive power to simpler formalisms.

In this paper, we review these results. After relevant definitions and recalling some
classical results in the next section, we start with a brief survey of the results on ESO
prefix-classes over strings in [15] (Sect. 3), followed by full second-order logic over
strings (Sect. 4), where we also consider finer grained complexity than regularity vs.
non-regularity. After that, we turn to ESO over graphs [25] (Sec. 5) and then discuss
SO and MSO over trees (Sect. 6). The final Sect. 7 addresses further issues and open
problems.

2 Preliminaries and Classical Results

We consider second-order logic with equality (unless explicitly stated otherwise) and
without function symbols of positive arity. Predicates are denoted by capitals and indi-
vidual variables by lower case letters; a bold face version of a letter denotes a tuple of
corresponding symbols.

A prefix is any string over the alphabet {∃, ∀}, and a prefix set is any languageQ ⊆
{∃, ∀}∗ of prefixes. A prefix set Q is trivial, if Q = ∅ or Q = {λ}, that is, it consists
of the empty prefix. In the rest of this paper, we focus on nontrivial prefix sets. We
often view a prefix Q as the prefix class {Q}. A generalized prefix is any string over
the extended prefix alphabet {∃, ∀, ∃∗, ∀∗}. A prefix set Q is standard, if either Q =
{∃, ∀}∗ or Q can be given by some generalized prefix.

For any prefix Q, the class Σ1
0(Q) is the set of all prenex first-order formulas (which

may contain free variables and constants) with prefix Q, and for every k ≥ 0, Σ1
k+1(Q)

(resp., Π1
k+1) is the set of all formulas ∃RΦ (resp., ∀RΦ) where Φ is from Π1

k (resp.,
Σ1

k). For any prefix set Q, the class Σ1
k(Q) is the union Σ1

k(Q) =
⋃

Q∈Q Σ1
k(Q).

We write also ESO for Σ1
1 . For example, ESO(∃∗∀∃∗) is the class of all formulas

∃R∃y∀x∃zϕ, where ϕ is quantifier-free; this is the class of ESO-prefix formulas,
whose first-order part is in the well-known Ackermann class with equality.

Let A = {a1, . . . , am} be a finite alphabet. A string over A is a finite first-order
structure W = 〈U, CW

a1
, . . . , CW

am
,SuccW ,minW ,maxW 〉, for the vocabulary σA =

{Ca1 , . . . , Cam , Succ, min, max}, where

– U is a nonempty finite initial segment {1, 2, . . . , n} of the positive integers;
– each CW

ai
is a unary relation over U (that is, a subset of U) for the unary predicate

Cai , for i = 1, . . . , m, such that the CW
ai

are pairwise disjoint and
⋃

i CW
ai

= U .

230 T. Eiter, G. Gottlob, and T. Schwentick

– SuccW is the usual successor relation on U and minW and maxW are the first and
the last element in U , respectively.

Observe that this representation of a string is a successor structure as discussed for in-
stance in [14]. An alternative representation uses a standard linear order < on U instead
of the successor Succ. In full ESO or monadic second-order logic, < is tantamount to
Succ since either predicate can be defined in terms of the other.

The strings W for A correspond to the nonempty finite words over A in the obvious
way; in abuse of notation, we often use W in place of the corresponding word from A∗

and vice versa.
A SO sentence Φ over the vocabulary σA is a second-order formula whose only free

variables are the predicate variables of the signature σA, and in which no constant sym-
bols except min and max occur. Such a sentence defines a language over A, denoted
L(Φ), given by L(Φ) = {W ∈ A∗ | W |= Φ}. We say that a language L ⊆ A∗ is ex-
pressed by Φ, if L(Φ) = L∩A+ (thus, for technical reasons, without loss of generality
we disregard the empty string); L is expressed by a set S of sentences, if L is expressed
by some Φ ∈ S. We say that S captures a class C of languages, if S expresses all and
only the languages in C.

Example 2.1. Let us consider some languages over the alphabet A = {a, b}, and how
they can be expressed using logical sentences.

– L1 = {a, b}∗b{a, b}∗: this language is expressed by the simple sentence

∃x.Cb(x).

– L2 = a∗b: this language is expressed by the sentence

Cb(max) ∧ ∀x.x �= max → Ca(x).

– L3 = (ab)∗: using the successor predicate, we can express this language by

Ca(min) ∧ Cb(max) ∧ ∀x, y.Succ(x, y)→ (Ca(x) ↔ ¬Ca(y)).

– L4 = {w ∈ {a, b}∗ | |w| = 2n, n ≥ 1}: we express this language by the sentence

∃E ∀x, y.¬E(min) ∧ E(max) ∧ Succ(x, y) → (E(x) ↔ ¬E(y)).

Note that this a monadic ESO sentence. It postulates the existence of a monadic
predicate E, that is, a “coloring” of the string such that neighbored positions have
different color, and the first and last position are uncolored and colored,
respectively.

– L5 = {anbn | n ≥ 1}: Expressing this language is more involved:

∃R ∀x, x+, y, y−.R(min ,max) ∧ [R(x, y)→ (Ca(x) ∧ Cb(y))]∧
[(Succ(x, x+) ∧ Succ(y−, y) ∧ R(x, y)) → R(x+, y−)].

Observe that this sentence is not monadic. Informally, it postulates the existence of
an arc from the first to the last position of the string W , which must be an a and a
b, respectively, and recursively arcs from the i-th to the (|W | − i + 1)-th position.

The Model Checking Problem for Prefix Classes of Second-Order Logic 231

Let A be a finite alphabet. A sentence Φ over σA is called regular, if L(Φ) is a regular
language. A set of sentences S (in particular, any ESO-prefix class) is regular, if for
every finite alphabet A, all sentences Φ ∈ S over σA are regular.

Büchi [9] has shown the following fundamental theorem, which was independently
found by Elgot [18] and Trakhtenbrot [51]. Denote by MSO the fragment of second-
order logic in which all predicate variables have arity at most one,1 and let REG denote
the class of regular languages.

Proposition 2.1 (Büchi-Elgot-Trakhtenbrot Theorem). MSO captures REG.

That MSO can express all regular languages is easy to see, since it is straightforward to
describe runs of a finite state automaton by an existential MSO sentence. In fact, this is
easily possible in monadic ESO(∀∃) as well as in monadic ESO(∀∀). Thus, we have
the following lower expressiveness bound on ESO-prefix classes over strings.

Proposition 2.2. Let Q be any prefix set. If Q ∩ {∃, ∀}∗∀{∃, ∀}+ �= ∅, then ESO(Q)
expresses all languages in REG.

On the other hand, with non-monadic predicates allowed ESO has much higher expres-
sivity. In particular, by Fagin’s result [19], we have the following.

Proposition 2.3 (Fagin’s Theorem). ESO captures NP.

This theorem can be sharpened to various fragments of ESO. In particular, by Leivant’s
results [36,14], in the presence of a successor and constants min and max , the fragment
ESO(∀∗) captures NP; thus, ESO(∀∗) expresses all languages in NP.

Before proceeding with the characterization of the regular languages by nonmonadic
fragments of ESO, we would like to note that many papers cover either extensions or
restrictions of MSO or REG, and cite some relevant results.

Lynch [37], has studied the logic over strings obtained from existential MSO by
adding addition. He proved that model checking for this logic lies in NTIME(n), that
is, in nondeterministic linear time. Grandjean and Olive [29,40] obtained interesting
results related to those of Lynch. They gave logical representations of the class NLIN,
that is, linear time on random access machines, in terms of second-order logic with
unary functions instead of relations (in their setting, also the input string is represented
by a function).

Lautemann, Schwentick and Thérien [35] proved that the class CFL of context-free
languages is characterized by ESO formulas of the form ∃Bϕ where ϕ is first-order, B
is a binary predicate symbol, and the range of the second-order quantifier is restricted
to the class of matchings, that is, pairing relations without crossover. Note that this is
not a purely prefix-syntactic characterization of CFL. From our results and the fact that
some languages which are not context-free can be expressed in the minimal nonregular
ESO-prefix classes, it follows that a syntactic characterization of CFL by means of
ESO-prefix classes is impossible.

Several restricted versions of REG where studied and logically characterized by re-
stricted versions of ESO. McNaughton and Papert [38] showed that first-order logic

1 Observe that we assume MSO allows one to use nullary predicate variables (that is,
propositional variables) along with unary predicate variables. Obviously, the Büchi-Elgot-
Trakhtenbrot Theorem survives.

232 T. Eiter, G. Gottlob, and T. Schwentick

with a linear ordering precisely characterizes the star-free regular languages. This the-
orem was extended by Thomas [49] to ω-languages, that is, languages with infinite
words. Later several hierarchies of the star-free languages were studied and logically
characterized (see, for instance [49,41,42,43]). Straubing, Thérien and Thomas [46]
showed that first-order logic with modular counting quantifiers characterize the regu-
lar languages whose syntactic monoids contain only solvable groups. These and many
other related results can be found in the books and surveys [45,49,41,42,43].

3 Results on ESO over Strings

Combining and extending the results of Büchi et al. and Fagin, it is natural to ask: What
about (nonmonadic) prefix classes ESO(Q) over finite strings? We know by Fagin’s
Theorem that all these classes describe languages in NP. But there is a large spectrum
of languages contained in NP ranging from regular languages (at the bottom) to NP-
hard languages at the top. What can be said about the languages expressed by a given
prefix class ESO(Q)? Can the expressive power of these fragments be characterized?
In order to clarify these issues, the following particular problems where investigated
in [15]:

• Which classes ESO(Q) express only regular languages? In other terms, for which
fragments ESO(Q) is it true that for any sentence Φ ∈ ESO(Q) the set Mod(Φ) =
{W ∈ A∗ | W |= Φ} of all finite strings (over a given finite alphabet A) satisfying
Φ constitutes a regular language? By the Büchi-Elgot-Trakthenbrot Theorem, this
question is identical to the following: Which prefix classes of ESO are (semanti-
cally) included in MSO?

Note that by Gurevich’s fundamental Classifiability Theorem (cf. [6]) and by
elementary closure properties of regular languages, it follows that there is a finite
number of maximal regular prefix classes ESO(Q), and similarly, of minimal non-
regular prefix classes; the latter are, moreover, standard prefix classes (cf. Sect. 2).
It was the aim of [15] to determine the maximal regular prefix classes and the min-
imal nonregular prefix classes.

• What is the complexity of model checking (over strings) for the nonregular classes
ESO(Q), that is, deciding whether W |= Φ for a given W (where Φ is fixed)?

Model checking for regular classes ESO(Q) is easy: it is feasible by a fi-
nite state automaton. We also know (for instance by Fagin’s Theorem) that some
classes ESO(Q) allow us to express NP-complete languages. It is therefore impor-
tant to know (i) which classes ESO(Q) can express NP-complete languages, and
(ii) whether there are prefix classes ESO(Q) of intermediate complexity between
regular and NP-complete classes.

• Which classes ESO(Q) capture the class REG? By the Büchi-Elgot-Trakhtenbrot
Theorem, this question is equivalent to the question of which classes ESO(Q) have
exactly the expressive power of MSO over strings.

• For which classes ESO(Q) is finite satisfiability decidable, that is, given a formula
Φ ∈ ESO(Q), decide whether Φ is true on some finite string ?

Reference [15] answers all the above questions exhaustively. Some of the results are
rather unexpected. In particular, a surprising dichotomy theorem is proven, which sharply

The Model Checking Problem for Prefix Classes of Second-Order Logic 233

classifies all ESO(Q) classes as either regular or intractable. Among the main results
of [15] are the following findings.

(1) The class ESO(∃∗∀∃∗) is regular. This theorem is the technically most involved
result of [15]. Since this class is nonmonadic, it was not possible to exploit any of the
ideas underlying Büchi’s proof for proving it regular. The main difficulty consists in
the fact that relations of higher arity may connect elements of a string that are very
distant from one another; it was not a priori clear how a finite state automaton could
guess such connections and check their global consistency. To solve this problem, new
combinatorial methods (related to hypergraph transversals) were developed.

Interestingly, model checking for the fragment ESO(∃∗∀∃∗) is NP-complete over
graphs. For example, the well-known set-splitting problem can be expressed in it. Thus
the fact that our input structures are monadic strings is essential (just as for MSO).
(2) The class ESO(∃∗∀∀) is regular. The regularity proof for this fragment is easier but
also required the development of new techniques (more of logical than of combinatorial
nature). Note that model checking for this class, too, is NP-complete over graphs.
(3) Any class ESO(Q) not contained in ESO(∃∗∀∃∗) ∪ ESO(∃∗∀∀) is not regular.

ThusESO(∃∗∀∃∗) and ESO(∃∗∀∀) are the maximal regular standard prefix classes.
The unique maximal (general) regular ESO-prefix class is the union of the two classes,
that is, ESO(∃∗∀∃∗) ∪ ESO(∃∗∀∀) = ESO(∃∗∀(∀ ∪ ∃∗)).

As shown in [15], it turns out that there are three minimal nonregular ESO-prefix
classes, namely the standard prefix classes ESO(∀∀∀), ESO(∀∀∃), and ESO(∀∃∀).
All these classes express nonregular languages by sentences whose list of second-order
variables consists of a single binary predicate variable.

Thus, 1.-3. give a complete characterization of the regular ESO(Q) classes.
(4) The following dichotomy theorem is derived: Let ESO(Q) be any prefix class.
Then, either ESO(Q) is regular, or ESO(Q) expresses some NP-complete language.
This means that model checking for ESO(Q) is either possible by a deterministic finite
automaton (and thus in constant space and linear time) or it is already NP-complete.
Moreover, for all NP-complete classes ESO(Q), NP-hardness holds already for sen-
tences whose list of second-order variables consists of a single binary predicate vari-
able. There are no fragments of intermediate difficulty between REG and NP.
(5) The above dichotomy theorem is paralleled by the solvability of the finite satisfia-
bility problem for ESO (and thus FO) over strings. As shown in [15], over finite strings
satisfiability of a given ESO(Q) sentence is decidable iff ESO(Q) is regular.
(6) In [15], a precise characterization is given of those prefix classes of ESO which
are equivalent to MSO over strings, that is of those prefix fragments that capture the
class REG of regular languages. This provides new logical characterizations of REG.
Moreover, in [15] it is established that any regular ESO-prefix class is over strings either
equivalent to full MSO, or is contained in first-order logic, in fact, in FO(∃∗∀).

It is further shown that ESO(∀∗) is the unique minimal ESO prefix class which
captures NP. The proof uses results in [36,14] and well-known hierarchy theorems.

The main results of [15] are summarized in Fig. 1. In this figure, the ESO-prefix classes
are divided into four regions. The upper two contain all classes that express nonregular
languages, and thus also NP-complete languages. The uppermost region contains those
classes which capture NP; these classes are called NP-tailored. The region next below,

234 T. Eiter, G. Gottlob, and T. Schwentick

ESO(∀∃∀)

FO expressible (FO(∃∗∀))

ESO(∃∗∀∃∗) ESO(∃∗∀∀) ESO(∀∀∃)

regular-tailored

ESO(∀∀∀)

NP-tailored

ESO(∃∗∀)

ESO(∀∗)

ESO(∀∃) ESO(∀∀)

regular NP-hard

Fig. 1. Complete picture of the ESO-prefix classes on finite strings

separated by a dashed line, contains those classes which can express some NP-hard
languages, but not all languages in NP. Its bottom is constituted by the minimal non-
regular classes, ESO(∀∀∀), ESO(∀∃∀), and ESO(∀∀∃). The lower two regions contain
all regular classes. The maximal regular standard prefix classes are ESO(∃∗∀∃∗) and
ESO(∃∗∀∀). The dashed line separates the classes which capture REG(called regular-
tailored), from those which do not; the expressive capability of the latter classes is
restricted to first-order logic (in fact, to FO(∃∗∀)) [15]. The minimal classes which
capture REG are ESO(∀∃) and ESO(∀∀).

Potential Applications. Monadic second-order logic over strings is currently used in the
verification of hardware, software, and distributed systems. An example of a specific
tool for checking specifications based on MSO is the MONA tool developed at the
BRICS research lab in Denmark [3,31].

Observe that certain interesting desired properties of systems are most naturally for-
mulated in nonmonadic second-order logic. Consider, as an unpretentious example2,
the following property of a ring P of processors of different types, where two types
may either be compatible or incompatible with each other. We call P tolerant, if for
each processor p in P there exist two other distinct processors backup1(p) ∈ P and
backup2(p) ∈ P , both compatible to p, such that the following conditions are satisfied:

1. for each p ∈ P and for each i ∈ {1, 2}, backupi(p) is not a neighbor of p;
2. for each i, j ∈ {1, 2}, backupi(backupj(p)) �∈ {p, backup1(p), backup2(p)}.

Intuitively, we may imagine that in case p breaks down, the workload of p can be reas-
signed to backup1(p) or to backup2(p). Condition 1 reflects the intuition that if some
processor is damaged, there is some likelihood that also its neighbors are (for instance

2 Our goal here is merely to give the reader some intuition about a possible type of application.

The Model Checking Problem for Prefix Classes of Second-Order Logic 235

in case of physical affection such as radiation), thus neighbors should not be used as
backup processors. Condition 2 states that the backup processor assignment is antisym-
metric and anti-triangular; this ensures, in particular, that the system remains functional,
even if two processors of the same type are broken (further processors of incompatible
type might be broken, provided that broken processors can be simply bypassed for com-
munication).

Let T be a fixed set of processor types. We represent a ring of n processors numbered
from 1 to n where processor i is adjacent to processor i+1 (modn) as a string of length
n from T ∗ whose i-th position is τ if the type of the i-th processor is τ ; logically, Cτ (i)
is then true. The property of P being tolerant is expressed by the following second-order
sentence Φ:

∃R1, R2, ∀x∃y1, y2. compat(x, y1) ∧ compat(x, y2)∧
R1(x, y1) ∧ R2(x, y2)∧∧

i=1,2

∧
j=1,2

(
¬Ri(yj , x) ∧ ¬R1(yj , yi) ∧ ¬R2(yj , yi)

)
∧

x �= y1 ∧ x �= y2 ∧ y1 �= y2 ∧
¬Succ(x, y1) ∧ ¬Succ(y1, x) ∧ ¬Succ(x, y2) ∧ ¬Succ(y2, x)∧(
(x = max) → (y1 �= min ∧ y2 �= min)

)
∧(

(x = min) → (y1 �= max ∧ y2 �= max)
)
,

where compat(x, y) is the abbreviation for the formal statement that processor x is
compatible to processor y (which can be encoded as a simple boolean formula over Cτ

atoms).
Φ is the natural second-order formulation of the tolerance property of a ring of pro-

cessors. This formula is in the fragment ESO(∃∗∀∃∗); hence, by our results, we can im-
mediately classify tolerance as a regular property, that is, a property that can be checked
by a finite automaton.

In a similar way, one can exhibit examples of ESO(∃∗∀∀) formulas that naturally
express interesting properties whose regularity is not completely obvious a priori. We
thus hope that our results may find applications in the field of computer-aided
verification.

4 Results on Full SO over Strings

In this section, we turn to an extension of the results in Sect. 3 from ESO to full second-
order logic over strings, considered in [16], with a focus on the SO prefix classes which
are regular and non-regular, respectively; in particular, how adding second-order vari-
ables affects regular fragments. We then also discuss the finer grained complexity of
model checking, with a focus on the intractability frontier.

4.1 Regular vs. Non-regular Prefix Classes

The maximal standard Σ1
k prefix classes which are regular and the minimal standard

Σ1
k prefix classes which are non-regular are summarized in Fig. 2.
Thus, no Σ1

k(Q) fragment, where k ≥ 3 and Q contains at least two variables, is
regular, and for k = 2, only two such fragments (Q = ∃∀ or Q = ∀∃) are regular.

236 T. Eiter, G. Gottlob, and T. Schwentick

Non-regular classes

Regular classes

Σ1
3(∀∀) Σ1

2(∃∃) Σ1
1(∀∀∀) Σ1

1(∀∀∃) Σ1
1(∀∃∀) Σ1

2(∃∀) Σ1
3(∀∃)

Σ1
k(∀) Σ1

2(∀∀) Σ1
1(∃∗∀∃∗) Σ1

1(∃∗∀∀) Σ1
2(∀∃) Σ1

k(∃)

Fig. 2. Maximal regular and minimal non-regular SO prefix classes on strings

Σ1
2(∀∀) = Σ1

2(∀∃)

Σ1
2(∃∃)Σ1

2(∃∀)
⊆⊇

Fig. 3. Semantic inclusion relations between Σ1
2(Q) classes over strings, |Q| = 2

Note that Grädel and Rosen have shown [28] that Σ1
1(FO2), that is, existential second-

order logic with two first-order variables, is over strings regular. By the results in [16],
Σ1

k(FO2), for k ≥ 2, is non-regular (in fact, intractable).
Figure 3 shows inclusion relationships between the classes Σ1

2(Q) where Q contains
two quantifiers. Similar relationships hold for Σ1

k(Q) classes. Furthermore, as shown
in [16], we have that Σ1

2(∀∃) = Σ1
1(
∧
∀∃) and Σ1

3(∃∀) = Σ1
2(
∨
∃∀), where Σ1

k(
∨
Q)

(resp., Σ1
k(
∧
Q)) denotes the class of Σ1

k sentences where the first-order part is a finite
disjunction (resp., conjunction) of prefix formulas with quantifier in Q.

We now look in more detail into these results.

Regular Fragments. Let us first consider possible generalizations of regular ESO
prefix classes. It is easy to see that every ESO sentence in which only a single first-order
variable occurs is equivalent to a monadic second-order sentence. This can be shown by
eliminating predicate variables of arity > 1 through introducing new monadic predicate
variables. The result generalizes to sentences in full SO with the same first-order part,
which can be shown using the same technique. Thus, the class Σ1

k({∃, ∀}) is regular for
every k ≥ 0.

Similarly, it can be shown that every ESO sentence in which only two first-order
variables occur is equivalent to a MSO sentence [28]. However, as follows from the
results below, this does not generalize beyond ESO. Nonetheless, there are still higher-
rank Σ1

k fragments with two first-order variables, in particular Σ1
2 prefix classes, which

are regular. Here, similar elimination techniques as in the case of a single first-order
variable are applicable.

The following proposition, which generalizes the result for k = 1 from [33], says
that we can eliminate second-order quantifiers easily in some cases.

The Model Checking Problem for Prefix Classes of Second-Order Logic 237

Proposition 4.1 ([16]). Every formula in Σ1
k(∃j), where k ≥ 1 is odd, is equivalent

to some formula in Σ1
k−1(∃j), and every formula in Σ1

k(∀j), where k ≥ 2 is even, is
equivalent to some formula in Σ1

k−1(∀j).

Based on this and a generalization of the proof of Theorem 9.1 in [15], one obtains:

Theorem 4.1 ([16]). Over strings, Σ1
2(∀∀) = MSO.

For the extension of the FO prefix ∃j (resp., ∀j) in Proposition 4.1 with a single univer-
sal (resp., existential) quantifier, a similar yet slightly weaker result holds. Let Σ1

k(
∨
Q)

(resp., Σ1
k(
∧
Q)) denote the class of Σ1

k sentences where the first-order part is a finite
disjunction (resp., conjunction) of prefix formulas with quantifier in Q.

Proposition 4.2 ([16]). Every formula in Σ1
k(∃j∀), where k ≥ 1 is odd and j ≥ 0,

is equivalent to some formula in Σ1
k−1(

∨
∃j∀), and every formula in Σ1

k(∀j∃), where
k ≥ 2 is even and j ≥ 1, is equivalent to some formula in Σ1

k−1(
∧
∀j∃).

From this and the regularity of ESO(∀∃) over strings, one can easily derive that Σ1
2(∀∃)

over strings is regular.

Theorem 4.2 ([16]). Over strings, Σ1
2(∀∃) = MSO.

Non-regular Fragments. We consider first Σ1
2 and then Σ1

k with k > 2.

Σ1
2(Q) where |Q| ≤ 2. While for the FO prefixes Q = ∀∃ and Q = ∀∀, regularity of

ESO(Q) generalizes to Σ1
2 , this is not the case for Q = ∃∀ and Q = ∃∃.

Theorem 4.3 ([16]). Σ1
2(∃∀) is nonregular.

Indeed, [16] gave an example of a non-regular language defined by a Σ1
2(∃∀) sentence.

Let A = {a, b} and consider the following sentence:

Φ = ∃R∀X∃x∀y.[Ca(y) ∨ (Ca(x) ∧ (X(y)↔ R(x, y))].

Informally, this sentence is true for a string W , just if the number of b’s in W (denoted
#b(W)) is at most logarithmic in the number of a’s in W (denoted #a(W)). More
formally, L(Φ) = {w ∈ {a, b}∗ | #b(W) ≤ log #a(W)}; by well-known properties
of regular languages, this language is not regular.

For the class Σ1
2(∃∃), the proof of non-regularity in [16] is more involved. It uses the

following lemma, which shows how to emulate universal FO quantifiers using universal
SO quantifiers and existential FO quantifiers over strings.

Lemma 4.1 ([16]). Over strings, every universal first-order formula ∀xϕ(x) which
contains no predicates of arity > 2 is equivalent to some Π1

1 (∃∃) formula.

Proof. As we use techniques from the proof of this lemma later, we recall the sketch
from [16].

The idea is to emulate the universal quantifier ∀xi for every xi from x = x1, . . . , xk

using a universally quantified variable Si ranging over singletons, and express “xi” by
“∃xi.Si(Xi).” Then, ∀xϕ(x) is equivalent to ∀S∃x

∧k
i=1 Si(xk) ∧ ϕ(x).

238 T. Eiter, G. Gottlob, and T. Schwentick

We can eliminate all existential variables x but two in this formula as follows.
Rewrite the quantifier-free part into a CNF

∧�
i=1 δi(x), where each δi(x) is a disjunc-

tion of literals. Denote by δj,j′
i (xj , xj′) the clause obtained from δi(x) by removing

every literal which contains some variable from x different from xj and xj′ . Since no
predicate in ϕ has arity > 2, formula ∀xϕ(x) is equivalent to the formula

∀S∃x
�∧

i=1

⎛⎝∨
j
=j′

∃x∃yδj,j′
i (x, y)

⎞⎠ .

The conjunction
∧�

i=1 can be simulated by using universally quantified Boolean vari-
ables Z1, . . . , Z� and a control formula β which states that exactly one out of Z1, . . . ,
Zn is true. By pulling existential quantifiers, we thus obtain

∀S∃x∃yγ,

where

γ = β →
�∧

i=1

⎛⎝Zi →
∨

j
=j′
δj,j′
i (x, y)

⎞⎠ .

Thus, it remains to express the variables Si ranging over singletons. For this, we use a
technique to express Si as the difference Xi,1 \ Xi,2 of two monadic predicates Xi,1

and Xi,2 which describe initial segments of the string. Fortunately, the fact that Xi,1 and
Xi,2 are not initial segments or their difference is not a singleton can be expressed by
a first-order formula ∃x∃yψi(x, y), where ψi is quantifier-free, by using the successor
predicate. Thus, we obtain

∀X1X2

(
k∨

i=1

∃x∃yψi(x, y)

)
∨ ∃x∃yγ∗,

where γ∗ results from γ by replacing each Si with Xi,1 and Xi,2. By pulling existential
quantifiers, we obtain a Π1

1 (∃∃) formula, as desired. �

Given that Σ1
1(∀∀∀) contains NP-complete languages (Fig. 1), it thus follows:

Theorem 4.4 ([16]). Σ1
2(∃∃) is nonregular.

Therefore, the inclusions in Fig. 3 are both strict.

Σ1
2(Q) where |Q| > 2. By the results of the previous subsection and Sect. 3, we can

derive that no Σ1
2(Q) prefix class where Q contains more than two variables is regular.

Indeed, Theorem 4.3 implies this for every prefix Q which contains ∃ followed by ∀,
and Theorem 4.4 implies this for every prefix Q which contains at least two existential
quantifiers. For the remaining minimal prefixes Q ∈ {∀∀∀, ∀∀∃}, non-regularity of
Σ1

2(Q) follows from the results summarized in Fig. 1. Thus,

Theorem 4.5 ([16]). Σ1
2(Q) is nonregular for every prefix Q such that |Q| > 2.

The Model Checking Problem for Prefix Classes of Second-Order Logic 239

Table 1. Complexity of model checking for Σ1
k(Q) prefix classes, k ≤ 3 (η = {∀,∃})

in REG (⊆ P) NP-complete Σp
2 -complete Σp

3 -complete
Q ∈
Σ1

1(Q) ∃∗∀(∃∗ ∪ ∀) η∗∀ η∗(∀ η ∪ ∃ η∗∀)η∗ — —

Σ1
2(Q) ∀ η ∀∀∀∗∃ η∗∃ η∗∃ η∗ —

Σ1
3(Q) η — ∃∃(∃∗ ∪ ∀) η∗∀η∗∀η∗

Σ1
k(Q) where k > 2. Let us now consider the higher fragments of SO over strings. The

question is whether any of the regular two-variable prefixes Q ∈ {∀∀, ∀∃} for Σ1
2(Q)

survives. However, as we shall see this is not the case.
Since Π1

2 (∀∀) is contained in Σ1
3(∀∀), it follows from Theorem 4.4 that Σ1

3(∀∀)
is nonregular. For the remaining class Σ1

3(∀∃), one can use a result that an existential
FO quantifier, followed by another existential FO quantifier, can be emulated using an
existential SO and a FO universal quantifier. This leads to the following result.

Theorem 4.6 ([16]). Over strings, Σ1
k(∃∃) ⊆ Σ1

k(∀∃) for every odd k, and Σ1
k(∀∀) ⊆

Σ1
k(∃∀) for every even k ≥ 2.

Thus, combined with Theorem 4.4, this shows that Σ1
3(∀∃) is nonregular.

In fact, the emulation of an existential FO quantifier as above via an existential SO
and an universal FO quantifier is feasible under fairly general conditions; this leads to
the following result.

Theorem 4.7 ([16]). Let P1 ∈ {∀}∗ and P2 ∈ {∃, ∀}∗∀{∃, ∀}∗ be first-order prefixes.
Then,

– for any odd k ≥ 1, Σ1
k(P1∀P2) ⊆ Σ1

k+1(P1∃P2) and Π1
k(P1∀P2) ⊆ Π1

k(P1∃P2),

– for any even k ≥ 2, Σ1
k(P1∀P2) ⊆ Σ1

k(P1∃P2), Π1
k(P1∀P2) ⊆ Π1

k+1(P1∃P2).

Thus, for example we obtain Σ1
2(∀∀∀) ⊆ Σ1

2(∃∀∀), and by repeated application
Σ1

2(∀∀∀) ⊆ Σ1
2(∃∃∀).

4.2 Complexity

Generalizing Fagin’s Theorem, Stockmeyer [44] showed that full SO captures the poly-
nomial hierarchy (PH). Second-order variables turn out to be quite powerful. In fact,
already two first-order variables, a single binary predicate variable, and further monadic
predicate variables are sufficient to express languages that are complete for the levels
of PH.

The results in [15] and [16] imply that deciding whether W |= Φ for a fixed formula
Φ and a given string W is intractable for all prefix classes Σ1

k(Q) which are (syntacti-
cally) not included in the maximal regular prefix classes shown in Fig. 2. Table 1 shows
prefix classes up to k = 3 that are C-complete for prominent complexity classes; the
precise complexity of some classes (e.g., Σ1

2(∀∗∃∀∗) and its analogue in Σ1
3) is open.

240 T. Eiter, G. Gottlob, and T. Schwentick

Indeed, by Fig. 1, Σ1
2(∀∀∀) is intractable; hence by Theorem 4.7 also Σ1

2(∃∀∀) is
intractability, Furthermore, the proof of Theorem 4.4 via Lemma 4.1 and Fig. 1 not only
establishes that Σ1

2(∃∃) is non-regular, but in fact NP-hard.3 As Π1
2 (∀∀) is contained

in Π1
3 (∀∀) resp. Σ1

3(∀∃) (cf. Theorem 4.7), also the latter prefix classes are intractable.
The complexity of SO over strings increases with the number of SO quantifier alter-

nations. Let us consider Σ1
2(∃∃) more closely.

Theorem 4.8. Model checking for over strings is Σp
2 -complete for each Σ1

2(Q) where
Q ∈ η∗∃η∗∃η∗ and η = {∀, ∃}.

Proof. (Sketch) Clearly the problem is in Σp
2 . The Σp

2 -hardness for Q = ∃∃ can be
shown by encoding quantified Boolean formulas (QBFs) of the form

∃p1 · · · ∃pn∀q1 · · · ∀qm¬ϕ, (1)

where ϕ is a propositional CNF over the atom p1, . . . , pn, q1, . . . , qm, to model check-
ing for Σ1

2(∃∃).
This is achieved by generalizing the SAT encoding in [15], which we first recall.

Instances F = C1 ∧ · · · ∧ Cm of SAT, where the Ci are clauses on propositional
variables p1, . . . , pn, to strings enc(F) over the alphabet A = {0,1,+,-,[,],(,)}
as follows. The variables pi, 1 ≤ i ≤ n are encoded by binary strings of length ,log n-.
Each string encoding pi is enclosed by parentheses ’(’,’)’. The polarity of a literal
pi/¬pi is represented by the letter ’+’ or ’-’, respectively, which immediately follows
the closing parenthesis ’)’ of the encoding of pi. A clause is encoded as a sequence of
literals which is enclosed in square brackets ’[’,’]’. Without loss of generality, F is not
void and each Ci contains at least one literal.

For example, F = (p ∨ q ∨ ¬r) ∧ (¬p ∨ ¬q ∨ r) is encoded by the following string:

enc(C) = [(00)+(01)+(10)-][(00)-(01)-(10)+] .

Here, p, q, r are encoded by the binary strings 00, 01, 10, respectively. Clearly, enc(F)
is obtainable from any standard representation of F in logspace.

The formulas

eqcol(x, y) =
∨
�∈A

(C�(x) ∧ C�(y)), (2)

varenc(x) = C((x) ∨ C0(x) ∨C1(x) ∨ C)(x) (3)

state that the string has at positions x and y the same letter from A and that x is a letter
of a variable encoding, respectively.

Then, let Φ be the following Σ1
1(∀∀∀) sentence:

Φ = ∃V ∃G∃R∃R′∀x∀y∀z. ϕ(x, y, z),

3 With a similar argument as in the proof of Lemma 4.1, one can show that over strings, every
universal first-order formula ∀xϕ(x) without predicates of arity >2 is equivalent to some
Π1

1 (
∨ ∃∀) formula. Hence, the SAT encoding in [15] is expressible in Σ1

2(
∨ ∃∀).

The Model Checking Problem for Prefix Classes of Second-Order Logic 241

where G and V are unary, R′ and R are binary, and ϕ(x, y, z) is the conjunction of the
following quantifier-free formulas ϕG, ϕV , ϕR, and ϕR′ :

ϕG = ϕG,1 ∧ ϕG,2 ∧ ϕG,3,

where

ϕG,1 =
(
C[(x) → ¬G(x)

)
∧
(
C](x) → G(x)

)
,

ϕG,2 =
(
Succ(x, y) ∧ ¬C[(y) ∧ ¬C)(y)

)
→
(
G(y) ↔ G(x)

)
,

ϕG,3 =
(
C)(y)∧Succ(x, y) ∧ Succ(y, z)

)
→(

G(y) ↔
[
G(x) ∨ (V (y) ∧C+(z)) ∨ (¬V (y) ∧ C-(z))

])
;

next,

ϕV =
(
C)(x) ∧C)(y) ∧R(x, y)

)
→
(
V (x) ↔ V (y)

)
,

ϕR =
[
R(x, y) → (eqcol(x, y) ∧ varenc(x))

]
∧[

(C((x) ∧ C((y))→ R(x, y)
]
∧[(

¬C((x) ∧ Succ(z, x)
)
→
(
R(x, y) ↔ (R′(z, y) ∧ eqcol(x, y))

)]
, (4)

and

ϕR′ = Succ(z, y)→
[
R′(x, y) ↔

(
R(x, z) ∧ ¬C)(z)

)]
.

As shown in [15], enc(F) |= Φ iff F is satisfiable. Back now to our QBF (1), we can
choose an encoding where we simply encode the clauses in ϕ as described and mark in
the string the occurrences of the variables qi with an additional predicate. Furthermore,
we represent truth assignments to the qi’s by a monadic variable V ′. The sentence Φ for
F is rewritten to

Ψ = ∃R∃R′∃V ∀V ′[α1 ∧ (α2 ∨ α3)],

where α1 is a universal first-order formula which defines proper R, R′ and V using ϕR,
ϕR′ , and ϕV ; α2 is a ∃∃-prenex first-order formula which states that V ′ assigns two
different occurrences of some universally quantified atom qi different truth values; and
α3 states that the assignment to p1, . . . , pn, q1, . . . , qm given by V and V ′ violates ϕ.
The latter can be easily checked by a finite state automaton, and thus is expressible as
a monadic Π1

1 (∃∃) sentence. As Ψ contains no predicate of arity > 2, by applying the
techniques of Lemma 4.1 we can rewrite Ψ to an equivalent Σ1

2(∃∃) sentence. �
Other fragments of Σ1

2 have lower complexity. For instance,

Theorem 4.9. Model checking for Σ1
2(∀∗∃) over strings is NP-complete, and NP-hard

for each Σ1
2(Q) where Q ∈ ∀∀∀∗∃.

Proof. NP-hardness is inherited from the NP-completeness of Σ1
1(∀∀∃). Membership

in NP follows from Proposition 4.2: any Σ1
2(∀∗∃) sentence Φ is equivalent to some

Σ1
1(
∧
∀∗∃) sentence Φ′, for which model checking is in NP. �

242 T. Eiter, G. Gottlob, and T. Schwentick

On the other hand, by generalizing the QBF encoding, we can easily encode evaluating
Σp

k-complete QBFs into Σ1
k(∃∃) for even k > 2 and Πp

k -complete QBFs into Π1
k(∃∃)

for odd k > 1 (by adding further leading quantifiers).

5 Results on ESO over Graphs

In this section, we briefly describe the main results of [26], where the computational
complexity of ESO-prefix classes of is investigated and completely characterized in
three contexts: over (1) directed graphs, (2) undirected graphs with self-loops, and (3)
undirected graphs without self-loops.

A main theorem of [26] is that a dichotomy holds in these contexts, that is to say,
each prefix class of ESO either contains sentences that can express NP-complete prob-
lems or each of its sentences expresses a polynomial-time solvable problem. Although
the boundary of the dichotomy coincides for 1. and 2. (which we refer to as general
graphs from now on), it changes if one moves to 3. The key difference is that a certain
prefix class, based on the well-known Ackermann class, contains sentences that can
express NP-complete problems over general graphs, but becomes tractable over undi-
rected graphs without self-loops. Moreover, establishing the dichotomy in case 3. turned
out to be technically challenging, and required the use of sophisticated machinery from
graph theory and combinatorics, including results about graphs of bounded tree-width
and Ramsey’s Theorem.

In [26], a special notation for ESO-prefix classes was used in order to describe the
results with the tightest possible precision involving both the number of SO quantifiers
and their arities.4 Expressions in this notation are built according to the following rules:

• E (resp., Ei) denotes the existential quantification over a single predicate of arbi-
trary arity (arity ≤ i).

• a (resp., e) denotes the universal (existential) quantification of a single first-order
variable.

• If η is a quantification pattern, then η∗ denotes all patterns obtained by repeating η
zero or more times.

An expression E in the special notation consists of a string of ESO quantification pat-
terns (E-patterns) followed by a string of first-order quantification patterns (a or e
patterns); such an expression represents the class of all prenex ESO-formulas whose
quantifier prefix corresponds to a (not-necessarily contiguous) substring of E .

For example, E∗
1eaa denotes the class of formulas ∃P1 · · · ∃Pr ∃x∀y∀zϕ, where

each Pi is monadic, x, y, and z are first-order variables, and ϕ is quantifier-free.
A prefix class C is NP-hard on a class K of relational structures, if some sentence

in C expresses an NP-hard property on K, and C is polynomial-time (PTIME) on K,
if for each sentence Φ ∈ C, model checking is polynomial. Furthermore, C is called
first-order (FO), if every Φ ∈ C is equivalent to a first-order formula.

The first result of [26] completely characterizes the computational complexity of
ESO-prefix classes on general graphs. In fact, the same characterization holds on the

4 For ESO over strings [15], the same level of precision was reached with simpler notation.

The Model Checking Problem for Prefix Classes of Second-Order Logic 243

NP-complete classes

PTIME classes

E2eaa E1ae E1aaa E1E1aa

E∗e∗a E1e
∗aa Eaa

Fig. 4. ESO on arbitrary structures, directed graphs and undirected graphs with self-loops

collection of all finite structures over any relational vocabulary that contains a relation
symbol of arity ≥ 2. This characterization is obtained by showing (assuming P �= NP)
that there are four minimal NP-hard and three maximal PTIME prefix classes, and that
these seven classes combine to give complete information about all other prefix classes.
This means that every other prefix either contains one of the minimal NP-hard prefix
classes as a substring (and, hence, is NP-hard) or is a substring of a maximal PTIME
prefix class (and, hence, is in PTIME). Figure 4 depicts the characterization of the NP-
hard and PTIME prefix classes of ESO on general graphs.

As seen in Fig. 4, the four minimal NP-hard classes are E2eaa, E1ae, E1aaa, and
E1E1aa, while the three maximal PTIME classes are E∗e∗a, E1e

∗aa, and Eaa. The
NP-hardness results are established by showing that each of the four minimal prefix
classes contains ESO-sentences expressing NP-complete problems. For example, a SAT
encoding on general graphs can be expressed by an E1ae sentence. Note that the first-
order prefix class ae played a key role in the study of the classical decision problem for
fragments of first-order logic (see [6]). As regards the maximal PTIME classes, E∗e∗a
is actually FO, while the model checking problem for fixed sentences in E1e

∗aa and
Eaa is reducible to 2SAT and, thus, is in PTIME (in fact, in NL).

The second result of [26] completely characterizes the computational complexity of
prefix classes of ESO on undirected graphs without self-loops. As mentioned earlier, it
was shown that a dichotomy still holds, but its boundary changes. The key difference
is that E∗ae turns out to be PTIME on undirected graphs without self-loops, while its
subclass E1ae is NP-hard on general graphs. It can be seen that interesting properties of
graphs are expressible by E∗ae-sentences. Specifically, for each integer m > 0, there
is a E∗ae-sentence expressing that a connected graph contains a cycle whose length
is divisible by m. This was shown to be decidable in polynomial time by Thomassen
[50]. The class E∗ae constitutes a maximal PTIME class, because all four extensions
of E1ae by any single first-order quantifier are NP-hard on undirected graphs without
self-loops [26]. The other minimal NP-hard prefixes on general graphs remain NP-hard
also on undirected graphs without self-loops. Consequently, over such graphs, there
are seven minimal NP-hard and four maximal PTIME prefix classes that determine the
computational complexity of all other ESO-prefix classes (see Fig. 5).

Technically, the most difficult result of [26] is the proof that E∗ae is PTIME on
undirected graphs without self-loops. First, using syntactic methods, it is shown that
each E∗ae-sentence is equivalent to some E∗

1ae-sentence. After this, it is shown that

244 T. Eiter, G. Gottlob, and T. Schwentick

NP-complete classes

PTIME classes

E2eaa E1aaeE1aea E1aeeE1eae E1aaa E1E1aa

E∗e∗a E∗ae E1e
∗aa Eaa

Fig. 5. ESO on undirected graphs without self-loops. The dotted boxes in Figs. 4 and 5 indicate
the difference between the two cases.

for each E∗
1ae-sentence the model-checking problem over undirected graphs without

self-loops is is equivalent to a natural coloring problem called the saturation problem.
This problem asks whether there is a particular mapping from a given undirected graph
without self-loops to a fixed, directed pattern graph P which is extracted from the
E∗

1ae-formula under consideration. Depending on the labelings of cycles in P , two
cases of the saturation problem are distinguished, namely pure pattern graphs and
mixed pattern graphs. For each case, a polynomial-time algorithm is designed. In sim-
plified terms and focussed on the case of connected graphs, the one for pure pattern
graphs has three main ingredients. First, adapting results by Thomassen [50] and us-
ing a new graph coloring method, it is shown that if a E∗

1ae-sentence Φ gives rise to a
pure pattern graph, then a fixed integer k can be found such that every undirected graph
without self-loops that have tree-width bigger than k satisfies Φ. Second, Courcelle’s
Theorem [11] (see also Sect. 4) is used by which model-checking for MSO sentences
is polynomial on graphs of bounded tree-width. Third, Bodlaender’s result [5] is used
that, for each fixed k, there is a polynomial-time algorithm to check whether a given
graph has tree-width at most k.

The polynomial-time algorithm for mixed pattern graphs has a similar architecture,
but requires the development of substantial additional technical machinery, including a
generalization of the concept of graphs of bounded tree-width. The results of [26] can
be summarized in the following theorem.

Theorem 5.1. Figures 4 and 5 provide a complete classification of the complexity of
all ESO prefix classes on graphs.

6 SO over Trees

Trees are fundamental data structures widely used in computer science and mathemat-
ical linguistics. The importance of studying logical languages over trees has increased
dramatically with the advent of the World Wide Web. In fact, the Web can be consid-
ered as the world’s largest data and information repository, and most information on the
Web is semi-structured, that is, presented in tree-shaped form, for example formatted
in HTML or in XML [1]. Web pages and Web documents can thus be considered as fi-
nite labeled trees. Special query languages such as XPath [52] have been developed for
querying XML documents. The core fragments of these languages contain constructs

The Model Checking Problem for Prefix Classes of Second-Order Logic 245

that are not first-order expressible, but can be defined in second-order logic. Similarly,
most relevant data extraction tasks for selecting relevant data from a HTML Web site
and for annotating the data and transforming it into a highly structured format can be
expressed in MSO [21,22,23]. It is thus not astonishing that there has been a renewed
interest in understanding complexity and expressiveness issues related to SO over finite
trees.

There are various possible formal definitions of trees. Usually a finite tree is defined
over a universe of nodes referred to as dom. We use the monadic predicates root(.) and
leaf(.) to say that a node is the root or a leaf, respectively.

One mostly considers labeled trees, that is, trees whose nodes are labeled by letters
from a finite alphabet Σ. Each label e can be represented by a monadic “color” predicate
labele, such that for each node a ∈ dom , label i(a) is true iff i is labeled with the letter
i. (Note that these label predicates have the same role as the Ci predicates we used for
strings.)

An important distinction is the one between ranked and unranked trees. A ranked tree
is one in which each node has a number of successors, also called children bounded by
K . In this case, the successors can be represented via binary functions childk, k ≤ K ,
where childi(a, b) means that node b is the i-th child of node a.

More formally, a finite ranked tree is thus defined as a finite relational structure

trk = 〈dom , root , leaf , (childk)k≤K , (labela)a∈Σ〉.

where, as explained, “dom” is the set of nodes in the tree, “root”, “leaf ”, and the
“labela” relations are unary, and the “childk” relations are binary.

In an unranked tree, the number of successors of a node may be unbounded. This
means that we cannot directly encode successors by a fixed number of child predicates.
Rather, we use the predicate first child and next sibling such that first child (a, b)
is true whenever node b is the first (leftmost) child of a, and next sibling(a, b) if b
is the nearest sibling to the right of a. In addition, last sibling(a) is used to indicate
that a is the last of the siblings of a node. Note that the predicates root , leaf , and
last sibling can be logically defined from first child and next sibling . However, these
definitions would require extra quantifiers and negation, so we prefer to keep these
simple predicates in the signature. The signature τur for unranked trees thus looks as
follows:

tur = 〈dom , root , leaf , (labela)a∈Σ , first child , next sibling , last sibling〉.

Unfortunately, to date, no complete complexity characterization for SO prefix classes
over trees is known. Even for ESO prefix classes over trees we do not have a precise
characterization. For ESO over (ranked or unranked) trees we know the following.

– All NP-hard classes for the string case remain NP-hard in the tree case. In particular,
model checking for the classes ESO(∀∀∀), ESO(∀∀∃), and ESO(∀∃∀) remain NP-
complete.

– Model checking for ESO(∃∗∀∀) was shown in [15] to be feasible in polynomial
time over arbitrary structures and thus, in particular over trees. However the status
of the (in)famous class ESO(∃∗∀∃∗) over trees is actually obscure. The combina-
torial proof arguments used in [15] to prove tractability of model checking in the

246 T. Eiter, G. Gottlob, and T. Schwentick

string case do not directly carry over to trees. It is currently unclear whether they
can be adapted to cover the tree case.

– For (non-monadic) full SO prefix classes, there is even less clarity. Of course, all SO
prefix classes known to be NP-hard (with respect to model checking) over strings
mentioned in Sect. 4 are trivially also NP-hard over trees, and all tractable ESO
prefix classes over graphs mentioned in Sect. 5 are also tractable over trees.

In the rest of this section, let us concentrate on monadic second-order logic (MSO).
The Büchi-Elgot-Trakhtenbrot Theorem that MSO over strings captures the regular

languages (see Sect. 2) carries over to ranked and unranked tree structures. The regular
tree languages (for ranked as well as for unranked alphabets) are precisely those tree
languages recognizable by a number of natural forms of finite automata [7]. For space
reasons, we cannot discuss details of tree automata here, but refer the interested reader
to standard compendia such as [10,49], as well as to [39].

The following is a classical result for ranked trees [47,12], which has been shown in
[39] to hold for unranked trees as well.

Proposition 6.1. A tree language is regular iff it is definable in MSO.

Given that tree automata can be run in polynomial time over trees, the above result
immediately yields the following well-known corollary:

Corollary 6.1. Model checking for MSO formulas over (ranked or unranked) trees is
feasible in linear time.

This result was generalized by Courcelle to tree-like structures, more specifically, struc-
tures of bounded treewidth, a concept originally defined in [11]:

Theorem 6.1 ([11]). Model checking for MSO formulas over structures of bounded
treewidth is feasible in polynomial time (in fact, in linear time).

MSO has been used as a language for computer-aided verification (CAV); model check-
ers for CAV such as MONA [17] are mainly based on MSO.

Other applications are, as we already mentioned, XML querying and Web data ex-
traction [21,24,22]. However, for various reasons discussed in [22], MSO is not well-
suited as a query language and query evaluation does not properly scale in the size of the
query. Consequently, in [22] a different language was considered, viz. monadic Data-
log, which restricts the well-known Datalog language to programs where all intensional
predicates are either Boolean or monadic. For monadic Datalog, the following could be
shown:

Theorem 6.2 ([22]). Over (ranked or unranked) trees, Monadic Datalog is exactly as
expressive as MSO.

Moreover, for the complexity of evaluating monadic Datalog programs over ranked or
unranked trees is as follows:

Theorem 6.3 ([22]). Evaluating a monadic Datalog program P over a tree T is feasi-
ble in time O(‖P‖×‖T‖).

The Model Checking Problem for Prefix Classes of Second-Order Logic 247

The above result shows that, over trees, model checking for monadic datalog, unlike
for MSO, scales linearly in the size of the datalog program P , and not only in the
size of the structure T . Note that this does by no means conflict with the fact that,
over trees, monadic Datalog is exactly as expressive as MSO. In fact, translating an
MSO formula into an equivalent monadic Datalog program may come with a huge
(exponential) blow-up in size. However, as noted in [22], it appears that most practical
queries and data extraction tasks can be easily formulated by small monadic datalog
programs, and hence, the worst-case blow-up is not really relevant in practice. The
commercial Web data extraction system Lixto [4,23], which is successfully used for
many industrial applications in various domains, is mainly based on monadic Datalog.

Theorem 6.3 was recently generalized to the setting of structures of bounded tree-
width:

Theorem 6.4 ([27]). Evaluating a monadic Datalog program P over a structures T of
bounded treewidth is feasible in time O(‖P‖×‖T‖).

7 Further Work and Conclusion

The main aim of this paper was to summarize results on determining the complexity
of prefix classes over finite structures, and in particular on the prefix classes Σ1

k(Q)
which over strings express regular languages only. Many of the prefix classes analyzed
so far represented mathematical challenges and required novel solution methods. Some
of them could be solved with automata-theoretic techniques, others with techniques of
purely combinatorial nature, and yet others required graph-theoretic arguments.

While the exact “regularity frontier” for the Σ1
k(Q) classes has been charted (see

Fig. 2), their tractability frontier with respect to model checking misses a single class,
viz. the nonregular class Σ1

2(∃∀). If model checking is NP-hard for it, then the tractabil-
ity frontier coincides with the regularity frontier (just as for ESO, cf. [15]). If, on the
other hand, model checking for Σ1

2(∃∀) is tractable, then the picture is slightly different.
Moreover, it would be interesting to refine our analysis of the Σ1

k fragments over
strings by studying the second-order quantification patterns taking the number of the
second-order variables and their arities into account, as done for ESO over graphs
in [25] (cf. Sect. 5) and for the classical decision problem in the book by Börger, Gure-
vich, and Grädel [6].

We conclude this paper pointing out some interesting (and in our opinion important)
open issues.

• While the work on word structures concentrated so far on strings with a successor
relation Succ, one should also consider the cases where an additional predefined
linear order < is available on the word structures or the successor relation Succ is
replaced by such a linear order. While for full ESO or MSO, Succ and < are freely
interchangeable, this is not the case for many of the limited ESO-prefix classes.
Preliminary results suggest that most of the results in this paper carry over to the
< case. Other variants would be structures with function symbols [2], additional
relations like set comparison operators [30], or position arithmetic (for instance
M(i, j) ≡ 0 ≤ i ≤ j < n ∧ i+j = n−1 in [34]).

248 T. Eiter, G. Gottlob, and T. Schwentick

• Delineate the tractability/intractability frontier for all SO prefix classes over graphs,
and settle the complexity characterization. Over strings, settle the complexity of the
open fragments (including Σ1

2(∃∀), Σ1
2(∃∗∀∃∗), etc).

• Study SO prefix classes over further interesting classes of structures (for instance
planar graphs).

• The scope of [15,16] are finite strings. However, infinite strings or ω-words are
another important area of research. In particular, Büchi has shown that an analogue
of his theorem (Proposition 2.1) also holds for ω-words [8]. For an overview of
this and many other important results on ω-words, we refer the reader to excellent
survey of Thomas [48]. In this context, it would be interesting to see which of
the results established so far survive for ω-words. For some results, for instance
regularity of ESO(∃∗∀∀), this is obviously the case as no finiteness assumption on
the input word structures was made in the proof. For determining the regularity or
nonregularity of some classes such as ESO(∃∗∀∃∗), further research is needed.

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufmann, San Francisco (1999)

2. Barbanchon, R., Grandjean, E.: The minimal logically-defined NP-complete problem. In:
Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 338–349. Springer,
Heidelberg (2004)

3. Basin, D., Klarlund, N.: Hardware verification using monadic second-order logic. In: Wolper,
P. (ed.) CAV 1995. LNCS, vol. 939, pp. 31–41. Springer, Heidelberg (1995)

4. Baumgartner, R., Flesca, S., Gottlob, G.: Visual web information extraction with Lixto. In:
VLDB, pp. 119–128 (2001)

5. Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small
Treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

6. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg
(1997)

7. Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge languages
over non-ranked alphabets: Version 1, April 3, 2001. Technical Report HKUST-TCSC-2001-
05, Hong Kong University of Science and Technology, Hong Kong SAR, China (2001)

8. Büchi, J.R.: On a Decision Method in Restriced Second-Order Arithmetic. In: Nagel, E., et
al. (eds.) Proc. International Congress on Logic, Methodology and Philosophy of Science,
pp. 1–11. Stanford University Press, Stanford (1960)

9. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für mathematische
Logik und Grundlagen der Mathematik 6, 66–92 (1960)

10. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (Web book) (2008),
http://tata.gforge.inria.fr/ (viewed September 25, 2009)

11. Courcelle, B.: The Monadic Second-Order Logic of Graphs I: Recognizable Sets of Finite
Graphs. Information and Computation 85, 12–75 (1990)

12. Doner, J.: Tree acceptors and some of their applications. Journal of Computer and System
Sciences 4, 406–451 (1970)

13. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. In: Perspectives in Mathematical Logic.
Springer, Heidelberg (1995)

http://tata.gforge.inria.fr/

The Model Checking Problem for Prefix Classes of Second-Order Logic 249

14. Eiter, T., Gottlob, G., Gurevich, Y.: Normal Forms for Second-Order Logic over Finite Struc-
tures, and Classification of NP Optimization Problems. Annals of Pure and Applied Logic 78,
111–125 (1996)

15. Eiter, T., Gottlob, G., Gurevich, Y.: Existential Second-Order Logic over Strings. Journal of
the ACM 47, 77–131 (2000)

16. Eiter, T., Gottlob, G., Schwentick, T.: Second-Order Logic over Strings: Regular and Non-
Regular Fragments. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS,
vol. 2295, pp. 37–56. Springer, Heidelberg (2002)

17. Elgaard, J., Klarlund, N., Møller, A.: MONA 1.x: New techniques for WS1S and WS2S. In:
Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 516–520. Springer, Heidelberg (1998)

18. Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Transac-
tions of the American Mathematical Society 98, 21–51 (1961)

19. Fagin, R.: Generalized First-Order Spectra and Polynomial-Time Recognizable Sets. In:
Karp, R.M. (ed.) Complexity of Computation, pp. 43–74. AMS (1974)

20. Gottlob, G.: Second-order logic over finite structures - report on a research programme. In:
Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 229–243.
Springer, Heidelberg (2004)

21. Gottlob, G., Koch, C.: Monadic queries over tree-structured data. In: LICS, pp. 189–202
(2002)

22. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for web in-
formation extraction. Journal of the ACM 51, 74–113 (2004)

23. Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto data extraction
project - back and forth between theory and practice. In: PODS, pp. 1–12 (2004)

24. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath queries. ACM
Trans. Database Syst. 30, 444–491 (2005)

25. Gottlob, G., Kolaitis, P., Schwentick, T.: Existential second-order logic over graphs: Chart-
ing the tractability frontier. In: 41st Annual Symposium on Foundations of Computer Sci-
ence (FOCS 2000), Redondo Beach, California, USA, November 12-14, pp. 664–674. IEEE
Computer Society Press, Los Alamitos (2000)

26. Gottlob, G., Kolaitis, P., Schwentick, T.: Existential second-order logic over graphs: Charting
the tractability frontier. Journal of the ACM 51, 312–362 (2004)

27. Gottlob, G., Pichler, R., Wei, F.: Monadic datalog over finite structures with bounded
treewidth. In: PODS, pp. 165–174 (2007)

28. Grädel, E., Rosen, E.: Two-Variable Descriptions of Regularity. In: Proceedings 14th Annual
Symposium on Logic in Computer Science (LICS 1999), Trento, Italy, July 2-5, pp. 14–23.
IEEE Computer Science Press, Los Alamitos (1999)

29. Grandjean, E.: Universal quantifiers and time complexity of random access machines. Math-
ematical Systems Theory 13, 171–187 (1985)

30. Hachaı̈chi, Y.: Fragments of monadic second-order logics over word structures. Electr. Notes
Theor. Comput. Sci. 123, 111–123 (2005)

31. Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sandholm,
A.: Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleave-
land, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–110.
Springer, Heidelberg (1995)

32. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)
33. Kolaitis, P., Papadimitriou, C.: Some Computational Aspects of Circumscription. Journal of

the ACM 37, 1–15 (1990)
34. Langholm, T., Bezem, M.: A descriptive characterisation of even linear languages. Gram-

mars 6, 169–181 (2003)
35. Lautemann, C., Schwentick, T., Thérien, D.: Logics for context-free languages. In: Proc.

1994 Annual Conference of the EACSL, pp. 205–216 (1995)

250 T. Eiter, G. Gottlob, and T. Schwentick

36. Leivant, D.: Descriptive Characterizations of Computational Complexity. Journal of Com-
puter and System Sciences 39, 51–83 (1989)

37. Lynch, J.F.: The quantifier structure of sentences that characterize nondeterministic time
complexity. Computational Complexity 2, 40–66 (1992)

38. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge (1971)
39. Neven, F., Schwentick, T.: Query automata on finite trees. Theoretical Computer Sci-

ence 275, 633–674 (2002)
40. Olive, F.: A Conjunctive Logical Characterization of Nondeterministic Linear Time. In:

Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414. Springer, Heidelberg (1997) (to appear)
41. Pin, J.E.: Varieties of Formal Languages. North Oxford/Plenum, London/New York (1986)
42. Pin, J.E.: Logic On Words. Bulletin of the EATCS 54, 145–165 (1994)
43. Pin, J.E.: Semigroups and Automata on Words. Annals of Mathematics and Artificial Intelli-

gence 16, 343–384 (1996)
44. Stockmeyer, L.J.: The Polynomial-Time Hierarchy. Theoretical Computer Science 3, 1–22

(1977)
45. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Basel

(1994)
46. Straubing, H., Thérien, D., Thomas, W.: Regular Languages Defined with Generalized Quan-

tifiers. Information and Computation 118, 289–301 (1995)
47. Thatcher, J., Wright, J.: Generalized finite automata theory with an application to a decision

problem of second-order logic. Mathematical Systems Theory 2, 57–81 (1968)
48. Thomas, W.: Automata on Infinite Objects. In: van Leeuwen, J. (ed.) Handbook of Theoreti-

cal Computer Science, vol. B. Elsevier Science Publishers B.V, North-Holland (1990)
49. Thomas, W.: Languages, Automata, and Logic. In: Rozenberg, G., Salomaa, A. (eds.) Hand-

book of Formal Language Theory, vol. III, pp. 389–455. Springer, Heidelberg (1996)
50. Thomassen, C.: On the Presence of Disjoint Subgraphs of a Specified Type. Journal of Graph

Theory 12, 101–111 (1988)
51. Trakhtenbrot, B.: Finite Automata and the Logic of Monadic Predicates. Dokl. Akad. Nauk

SSSR 140, 326–329 (1961)
52. World Wide Web Consortium: XPath recomendation (1999),

http://www.w3c.org/TR/xpath/ (viewed September 25, 2009)

http://www.w3c.org/TR/xpath/

A Logic for PTIME and a Parameterized
Halting Problem

Yijia Chen1 and Jörg Flum2

1 Shanghai Jiaotong University, China
yijia.chen@cs.sjtu.edu.cn

2 Albert-Ludwigs-Universität Freiburg, Germany
joerg.flum@math.uni-freiburg.de

For Yuri, on the occasion of his seventieth birthday.

Abstract. In [9] Yuri Gurevich addresses the question whether there

is a logic that captures polynomial time. He conjectures that there is

no such logic. He considers a logic, we denote it by L≤, that allows to

express precisely the polynomial time properties of structures; however,

apparently, there is no algorithm “that given an L≤-sentence ϕ produces

a polynomial time Turing machine that recognizes the class of models of

ϕ.” In [12] Nash, Remmel, and Vianu have raised the question whether

one can prove that there is no such algorithm. They give a reformulation

of this question in terms of a parameterized halting problem p-Acc≤
for nondeterministic Turing machines. We analyze the precise relation-

ship between L≤ and p-Acc≤. Moreover, we show that p-Acc≤ is not

fixed-parameter tractable if “P �= NP holds for all time constructible and

increasing functions.” A slightly stronger complexity theoretic hypothe-

sis implies that L≤ does not capture polynomial time. Furthermore, we

analyze the complexity of various variants of p-Acc≤ and address the

construction problem associated with p-Acc≤.

Keywords: logics for PTIME, halting problems, parameterized

complexity.

1 Introduction

The existence of a logic capturing polynomial time remains the central problem
in descriptive complexity. A proof that such a logic does not exist would yield
that P �= NP. The problem was addressed by Yuri Gurevich in various papers
(e.g. [8,9]; recent articles on this question are [7,12]). The question originated
in database theory: In a fundamental paper [2] on the complexity and expres-
siveness of query languages, Chandra and Harel considered a related question,
namely they asked for a recursive enumeration of the class of all queries com-
putable in polynomial time.

By a result due to Immerman [10] and Vardi [13] least fixed-point logic LFP
captures polynomial time on ordered structures. However the property of an ar-
bitrary structure of having a universe of even cardinality is not expressible in

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 251–276, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

252 Y. Chen and J. Flum

LFP. There are artificial logics capturing polynomial time on arbitrary struc-
tures, but they do not fulfill a natural requirement on logics in this context:

There is an algorithm that decides whether A is a model of ϕ
for all structures A and sentences ϕ of the logic and that does
this for fixed ϕ in time polynomial in the size ‖A‖ of A.

(1)

In [9] Gurevich conjectures that there is no logic that captures polynomial time.
The conjecture is false if one waives the effectivity condition (1) in the definition
of a logic capturing polynomial time. This is shown in [9, Sect. 7, Claim 2]
by considering a logic related to LFP and defined by Andreas Blass and Yuri
Gurevich. We denote this logic by L≤ (cf. Sect. 3 for the definition of L≤). As
L≤ satisfies all the other requirements on a logic capturing polynomial time,
Gurevich implicitly conjectures that L≤ does not satisfy the condition (1).

In [12] Nash, Remmel, and Vianu have raised the question whether one can
prove that there is no algorithm as required by (1) for the logic L≤. Moreover,
they show that (1) can be equivalently formulated as a statement concerning
the complexity of a halting problem for nondeterministic Turing machines. This
reformulation is best expressed in the terminology of parameterized complexity.
We consider the parameterized acceptance problem p-Acc≤ for nondeterministic
Turing machines :

p-Acc≤
Instance: A nondeterministic Turing machine M and

n ∈ N in unary.
Parameter: ‖M‖, the size of M.
Question: Does M accept the empty input tape in at

most n steps?

Then
L≤ satisfies (1) if and only if p-Acc≤ ∈ XP.1 (2)

In this paper we mainly deal with two questions:

(a) What does “p-Acc≤ is fixed-parameter tractable” mean for the logic L≤?
(b) What is the complexity of p-Acc≤?

While we can answer question (a), we are only able to relate the statements
“p-Acc≤ ∈ XP” and “p-Acc≤ ∈ FPT” with other open problems of complexity
theory.

More precisely, the content of the different sections is the following. It is known
that the time bound for the model-checking problem for LFP, that is, for the
evaluation of a sentence ϕ of LFP in a structureA, contains a factor ‖A‖O(|ϕ|); an
analysis of the corresponding algorithm shows that (at least for LFP-sentences

1 Depending on the exact formulation of (1), we need the class XP of uniform or the

class XP of nonuniform parameterized complexity; see Sect. 2 for the definitions and

Theorem 1 (3), (4) for the precise statement.

A Logic for PTIME and a Parameterized Halting Problem 253

in normal form) a factor of the form ‖A‖O(width(ϕ)) suffices, where width(ϕ), the
width of ϕ, essentially is the maximum number of free variables in a subformula
of ϕ. The main result of Sect. 4 shows that the existence of a bound of this type
for the model-checking problem of the logic L≤ is equivalent to p-Acc≤ ∈ FPT.

Let P[tc] �= NP[tc] mean that for all time constructible and increasing func-
tions h the class of problems decidable in deterministic polynomial time in h
and the class of problems decidable in nondeterministic polynomial time in
h are distinct, that is, DTIME(hO(1)) �= NTIME(hO(1)). In Sect. 6 we show
that P[tc] �= NP[tc] implies that p-Acc≤ /∈ FPT. Furthermore a stronger hy-
pothesis where DTIME(hO(1)) �= NTIME(hO(1)) is replaced by NTIME(hO(1)) �⊆
DTIME(hO(log h)) implies that p-Acc≤ /∈ XP (and thus by (2), it implies that L≤
does not capture polynomial time). In [4] we related these hypotheses to other
statements of complexity theory; in particular, we saw that P[tc] �= NP[tc]
holds if there is a P-bi-immune problem in NP.

We also study some variants of p-Acc≤. First we deal with p-Acc=, the
problem obtained from p-Acc≤ by asking for an accepting run of exactly n
steps. We show that p-Acc= is related to a logic L= as p-Acc≤ is to the logic
L≤. In Sect. 5 we improve a result of [1] by showing that p-Acc= ∈ FPT if
and only if E = NE (that is, DTIME(2O(n)) = NTIME(2O(n))). Furthermore, in
Sect. 7 we introduce a halting problem for deterministic Turing machines, the
“deterministic version” of p-Acc≤, and show that it is an example of a problem
nonuniformly fixed-parameter tractable but provably not contained in uniform
XP, to the best of our knowledge, the first natural such example.

Finally, in Sect. 8, we consider the construction problem associated with
p-Acc≤ and show that it is not fpt Turing reducible to p-Acc≤ in case p-Acc≤ /∈
XP.

A conference version of this paper appeared as [3].

2 Preliminaries

In this section we review some of the basic concepts of parameterized complexity
and of logics and their complexity. We refer to [5] for notions not defined here.

2.1 Parameterized Complexity

We identify problems with subsets Q of {0, 1}∗. Clearly, as done mostly, we
present concrete problems in a verbal, hence uncodified form. We denote by P
the class of problems Q such that x ∈ Q is solvable in polynomial time. All
Turing machines have {0, 1} as their alphabet.

We view parameterized problems as pairs (Q, κ) consisting of a problem Q ⊆
{0, 1}∗ and a parameterization κ : {0, 1}∗ → N, which is required to be polyno-
mial time computable. We will present parameterized problems in the form as
we did for p-Acc≤ in the Introduction.

Recall that a parameterized problem (Q, κ) is fixed-parameter tractable (and
in the class FPT) if x ∈ Q is solvable by an fpt-algorithm, that is, by an al-
gorithm running in time f (κ(x)) · |x|O(1) for some computable f : N → N. The

254 Y. Chen and J. Flum

parameterized problem (Q, κ) is in the class XP if x ∈ Q is solvable in time
O(|x|f (κ(x))) for some computable f : N → N.

Besides these classes of the usual (strongly uniform) parameterized complexity
theory we need their uniform versions FPTuni and XPuni and their nonuniform
versions FPTnu and XPnu. For example, (Q, κ) ∈ FPTuni if there is an algorithm
solving x ∈ Q in time f (κ(x)) · |x|O(1) for some arbitrary f : N → N; and
(Q, κ) ∈ FPTnu if there is a constant c ∈ N, an arbitrary function f : N → N,
and for every k ∈ N an algorithm solving the (classical) problem

(Q, κ)k := {x ∈ Q | κ(x) = k}

in time f (k) · |x|c. The problem (Q, κ)k is called the kth slice of (Q, κ).
We write (Q, κ) ≤fpt (Q′, κ′) if there is an fpt reduction from (Q, κ) to (Q′, κ′)

(this concept refers to the strongly uniform parameterized complexity theory).

2.2 Logic

A vocabulary τ is a finite set of relation symbols. Each relation symbol has
an arity. A structure A of vocabulary τ , or τ-structure (or, simply structure),
consists of a nonempty set A called the universe, and an interpretation RA ⊆ Ar

of each r-ary relation symbol R ∈ τ . We say that A is finite, if A is a finite set.
All structures in this paper are assumed to be finite.

For a structure A we denote by ‖A‖ the size of A, that is, the length of a
reasonable encoding of A as string in {0, 1}∗ (e.g., cf. [5] for details). If necessary,
we can assume that the universe of a finite structure is [m] := {1, . . . ,m} for
some natural number m ≥ 1, as all the properties of structures we consider are
invariant under isomorphisms; in particular, it suffices that from the encoding of
A we can recover A up to isomorphism. The reader will easily convince himself
that we can assume that there is a computable function lgth such that for every
vocabulary τ and m ≥ 1 (we just collect the properties of lgth we use in Sect. 4):

(a) ‖A‖ = lgth(τ,m) for every τ -structure A with universe of cardinality m (that
is, for fixed τ and m, the encoding of each τ -structure with universe of m
elements has length equal to lgth(τ,m));

(b) lgth(τ,m) ≥ max{2,m};
(c) for fixed τ , the function m 	→ lgth(τ,m) is time constructible and lgth(τ,m)

is polynomial in m;
(d) lgth(τ,m) < lgth(τ ′,m′) for all τ , τ ′ with τ ⊆ τ ′ and m,m′ with m < m′;
(e) lgth(τ,m) = O(log |τ | · |τ | · m) for every τ containing only unary relation

symbols;
(f) lgth(τ ∪{R},m) = O(lgth(τ,m) +m2) for every binary relation symbol R not

in τ .

Sometimes, for a structure A we denote by <A the ordering on A given by the
encoding of A.

We assume familiarity with first-order logic FO and its extension least fixed-
point logic LFP. We denote by FO[τ] and LFP[τ] the set of sentences of vocabu-
lary τ of FO and of LFP, respectively. It is known that LFP captures polynomial
time on the class of ordered structures.

A Logic for PTIME and a Parameterized Halting Problem 255

As we will introduce further semantics for the formulas of least fixed-point
logic, we write A |=LFP ϕ if the structure A is a model of the LFP-sentence ϕ.
An algorithm based on the inductive definition of the satisfaction relation for
LFP shows (see [14]):

Proposition 1. The model-checking problem A |=LFP ϕ for structures A and
LFP-sentences ϕ can be solved in time

|ϕ| · ‖A‖O(|ϕ|).

It is known that every LFP-sentence is equivalent to an LFP-sentence in normal
form, where an LFP-sentence ϕ is in normal form if it has the form

ϕ = ∃y[LFPx1...x�,Xψ(x1 . . . x�, X)] yy . . . y, (3)

where ψ is a first-order formula, X is an �-ary relation variable, and x1, . . . , x�

are the (first-order) variables free in ψ. If in addition every subformula of ϕ
has at most � free first-order variables, then the problem A |=LFP ϕ can be
solved in time O(|ϕ| · ‖A‖2� · �). To state the corresponding result for arbitrary
LFP-sentences we introduce the width and the depth of LFP-formulas.

Let ϕ(x1, . . . , xr, Y1, . . . , Ys) be an LFP-formula and let the pairwise distinct
x1, . . . , xr be the first-order variables free in ϕ and the pairwise distinct Y1, . . . , Ys

be the second-order variables free in ϕ. The variable-weight of ϕ is

r +
∑
i∈[s]

ar(Yi),

where ar(Yi) is the arity of Yi. The width of ϕ, denoted by width(ϕ), is the
maximum of the variable-weights of the subformulas of ϕ. By depth(ϕ), the
depth of ϕ, we denote the maximum nesting depth of LFP-operators in ϕ.

Proposition 2. The model-checking problem A |=LFP ϕ for structures A and
LFP-sentences ϕ can be solved in time

|ϕ| · ‖A‖O
(

(1+depth(ϕ))·width(ϕ)
)
.

Proof. For the reader’s convenience we present a proof. Let ϕ(x̄, Ȳ) with x̄ =
x1, . . . , xr and Ȳ = Y1, . . . , Ys be an LFP-formula and let A be a structure. For
interpretations R̄ of Ȳ , we set

ϕ(A, R̄) := {b̄ ∈ Ar | A |=LFP ϕ(b̄, R̄)}.

By induction on ϕ we show how the set ϕ(A, R̄) can be evaluated in the time
bound of the claim of our proposition.

If ϕ does not start with an LFP-operator, we can write ϕ as a “first-order com-
bination” of formulas ϕ1, . . . , ϕs, which are atomic formulas or formulas starting
with an LFP-operator. Let x̄i be the sequence of first-order variables free in ϕi.
By induction hypothesis we know that we can compute the sets ϕi(A, R̄) ⊆ A|x̄i|

256 Y. Chen and J. Flum

in the desired time. Along the first-order combination leading from ϕ1, . . . , ϕs to
ϕ, we compute ψ(A, R̄) for all intermediate subformulas ψ. This can be done in
the desired time (e.g., see [5, Theorem 4.24]). If ϕ starts with an LFP-operator,
say

ϕ(x̄, Ȳ) = [LFPū,Xψ(ū, ȳ, Ȳ , X)] z̄

(thus, {x̄} = {ȳ, z̄}), then for every fixed interpretation b̄ of ȳ, we compute the
sets

ψ(A, b̄, R̄, ∅), ψ(A, b̄, R̄, Fψ(∅)), ψ(A, b̄, R̄, Fψ(Fψ(∅))), . . . ; (4)

here for S ⊆ A|ū|

Fψ(S) := ψ(A, b̄, R̄, S) = {ā ∈ A|ū| | A |=LFP ψ(ā, b̄, R̄, S)}.

As the sequence in (4) is monotone, it reaches a fixed-point in at most |A||ū| steps;
hence we have to apply at most |A||ū| · |A||ū| times the evaluation procedure to ψ.
As depth(ψ) = depth(ϕ)− 1, this factor |A|2|ū| is taken care by our definition of
width(ϕ); note that when applying the procedure to ψ we have an interpretation
of all variables of ψ not in ū; of course, for ϕ we have an additional factor |A||ȳ|.

�

2.3 Logics Capturing Polynomial Time

For our purposes a logic L consists of

– a set L[τ] of strings, the set of L-sentences of vocabulary τ , for every vocab-
ulary τ ;

– an algorithm that for every vocabulary τ and every string ξ decides whether
ξ ∈ L[τ] (in particular, L[τ] is decidable for every τ);

– a satisfaction relation |=L; if (A, ϕ) ∈ |=L, then, for some τ , we have that A
is a τ -structure and ϕ ∈ L[τ]; furthermore for each ϕ ∈ L[τ] the class of
structures A with A |=L ϕ is closed under isomorphisms.

We say that A is a model of ϕ if A |=L ϕ (that is, if (A, ϕ) ∈ |=L). We set

ModL(ϕ) := {A | A |=L ϕ}

and say that ϕ axiomatizes the class ModL(ϕ).
We partly take over the following terminology from [12].

Definition 1. Let L be a logic.

(a) L is a logic for P if for all vocabularies τ and all classes C (of encodings) of
τ-structures closed under isomorphisms we have

C ∈ P ⇐⇒ C = ModL(ϕ) for some ϕ ∈ L[τ].

(b) L is a P-bounded logic for P if (a) holds and if there is an algorithm A

deciding |=L (that is, for every structure A and L-sentence ϕ the algorithm
A decides whether A |=L ϕ) and if moreover, for every fixed ϕ the algorithm
A runs in time polynomial in ‖A‖.

A Logic for PTIME and a Parameterized Halting Problem 257

Hence, if L is a P-bounded logic for P, then for every L-sentence ϕ the algorithm
A witnesses that ModL(ϕ) ∈ P. However, we do not necessarily know ahead of
time the bounding polynomial.

(c) L is an effectively P-bounded logic for P if L is a P-bounded logic for P and
if in addition to the algorithm A as in (b) there is a computable function that
assigns to every L-sentence ϕ a polynomial q ∈ N[X] such that A decides
whether A |=L ϕ in ≤ q(‖A‖) steps.

3 Order-Invariant Variants of LFP

In this section we introduce the variants of least fixed-point logic relevant to our
paper.

For a vocabulary τ let τ< := τ ∪{<}, where < is a binary relation symbol not
in τ . For every class of τ -structures C in P closed under isomorphisms the class
of τ<-structures

C< := {(A, <A) | A ∈ C and <A an ordering of A} (5)

is in P, too; hence, as the logic LFP captures polynomial time on the class of
ordered structures, there is an LFP[τ<]-sentence axiomatizing C<. However, we
are interested in a sentence axiomatizing the class C.

In order to obtain a logic that captures polynomial time on all structures one
has considered variants of LFP obtained by restricting to order-invariant sen-
tences or by modifying the semantics such that all sentences are order-invariant.
In this section we recall the corresponding logics. We start by introducing the
respective notions of invariance.

Definition 2. (a) A pair (ϕ,A) is in the relation Inv if
– for some vocabulary τ we have that A is a τ-structure and ϕ ∈ LFP[τ<];
– (ϕ is order-invariant in A) for all orderings <1 and <2 on A we have

(A, <1) |=LFP ϕ ⇐⇒ (A, <2) |=LFP ϕ.

(b) An LFP[τ<]-sentence ϕ is order-invariant if (ϕ,A) ∈ Inv for all τ-struc-
tures A.

(c) For an LFP[τ<]-sentence ϕ and m ∈ N we write

(ϕ,m) ∈ Inv

if (ϕ,A) ∈ Inv for all τ-structures A with |A| = m.
(d) For an LFP[τ<]-sentence ϕ and m ∈ N we write

(ϕ, ≤ m) ∈ Inv

if (ϕ,A) ∈ Inv for all τ-structures A with |A| ≤ m.

258 Y. Chen and J. Flum

Note that every LFP[τ<]-sentence axiomatizing a class of the form C< (see (5))
is order-invariant.

The different degrees of invariance lead to the following different logics. For
all logics L we let

L[τ] := LFP[τ<].

Hence, these logics only differ in their semantics. The logic Linv is the first naive
attempt to get an (effectively) P-bounded logic for P. Its semantics is fixed by

A |=Linv ϕ ⇐⇒
(
ϕ is order-invariant and (A, <A) |=LFP ϕ

)
(recall that <A denotes the ordering on A given by the encoding of A).

Clearly (and this remark will also apply to the logics Lstr, L=, and L≤ to be
defined yet)

all properties in P are expressible in Linv.

In fact, for a class C ∈ P of τ -structures closed under isomorphisms, every
LFP[τ<]-sentence axiomatizing the class C< is an Linv[τ]-sentence axiomatiz-
ing C.

The logic Linv is a logic for P, as

ModLinv(ϕ) = {A | (A, <A) ∈ModLFP(ϕ)}

if ϕ ∈ LFP[τ<] is invariant, and ModLinv(ϕ) = ∅ otherwise. However, as already
remarked by Yuri Gurevich in [9], a simple application of a theorem of Tracht-
enbrot shows that the set of invariant LFP[τ<]-sentences is not decidable and
thus |=Linv is not decidable; hence Linv is not a P-bounded logic for P.

For the logic Lstr we require invariance in the corresponding structure:

A |=Lstr ϕ ⇐⇒
(

(ϕ,A) ∈ Inv and (A, <A) |=LFP ϕ
)
.

For a binary relation symbol E, consider an FO
[
{E}<

]
-sentence ϕ expressing

that E is not a graph or that in the ordering< there are two consecutive elements
which are not related by an edge. The class ModLstr (ϕ) is the complement of the
class of graphs having a Hamiltonian path and hence it is coNP-complete (a dif-
ferent coNP-complete class was axiomatized by Gurevich in [9, Theorem 1.16]).

As an easy consequence we get:

Proposition 3. The following statements are equivalent:

– Lstr is a logic for P.
– P = NP
– Lstr is an effectively P-bounded logic for P.

Proof. Assume that P = NP. To show that Lstr is an effectively P-bounded logic
for P we consider the problem

Instance: An Lstr-sentence ϕ, a structure A and the number
‖A‖|ϕ| in unary.

Problem: Is (A, ϕ) ∈ Inv?

A Logic for PTIME and a Parameterized Halting Problem 259

By Proposition 1, it is in coNP and hence it is solvable in polynomial time. This
yields the algorithm A as required by part (b) and (c) of Definition 1. �

As coNP-complete problems can be axiomatized in Lstr, we define the logic L=

using a stronger invariance property:

A |=L= ϕ ⇐⇒
(

(ϕ, |A|) ∈ Inv and (A, <A) |=LFP ϕ
)

;

in particular, A |=L= ϕ can only hold if ϕ is invariant in all structures with
universe of the same cardinality as A.

Note that for an L=-sentence ϕ it is not clear whether the class of models
of ϕ is in P. In fact, in Sect. 7 we show (recall that E := DTIME(2O(n)) and
NE := NTIME(2O(n))):

Proposition 4. The following statements are equivalent:

– L= is a logic for P.
– E = NE
– L= is an effectively P-bounded logic for P.

Finally we introduce the logic L≤, where invariance in all structures of the same
or smaller cardinality is required:

A |=L≤ ϕ ⇐⇒
(

(ϕ,≤ |A|) ∈ Inv and (A, <A) |=LFP ϕ
)
.

If an LFP[τ<]-sentence ϕ is not order-invariant, then the class ModL≤(ϕ) only
contains (up to isomorphism) finitely many structures and hence it is in P.
Therefore L≤ (like Linv) is a logic for P.

In particular, Linv and L≤ have less expressive power than Lstr (if P �= NP)
and less than L= (if E �= NE). Clearly if P = NP (and hence E = NE), then all,
Linv, Lstr, L= and L≤, have the same expressive power. Otherwise we have:

Proposition 5. 1. If P �= NP, then there is a class axiomatizable in Lstr but
not in L=.

2. If E �= NE, then there is a class axiomatizable in L= but not in Lstr.

Proof. To get (1) we observe that the complement of the class of graphs hav-
ing a Hamiltonian path, a class axiomatizable in Lstr as we have seen, is not
axiomatizable in L= if P �= NP; this is shown by the following claim.

Claim 1: Let C be a class of τ -structures. Assume that C /∈ P. Furthermore
assume that for every m ∈ N with m ≥ 2 there is a structure Am ∈ C such that
|Am| = m. Then C is not axiomatizable in L=.

Proof of Claim 1: Assume that C = ModL=(ϕ). For m ≥ 2 we have (ϕ,m) ∈
Inv, as Am |=L= ϕ. Clearly, (ϕ, 1) ∈ Inv. Hence ϕ is order-invariant and thus
ModLFP(ϕ) = C<. So C< and hence C are in P, a contradiction. �

A proof of part (2), based on the following claim, will be presented in Sect. 4.1.

260 Y. Chen and J. Flum

Claim 2: Let X be a set of natural numbers in unary with X /∈ P. Assume that
the class C of τ -structures has the property: For all τ -structures A

A ∈ C ⇐⇒ |A| ∈ X.

Then C is not axiomatizable in Lstr.

Proof of Claim 2: Assume that C = ModLstr(ϕ) with ϕ ∈ Lstr[τ]. Clearly (ϕ,A) ∈
Inv for every τ -structure A of the form A = (A, (∅)P∈τ) (all relation symbols
P ∈ τ are interpreted in A by the empty relation of the corresponding arity).
Then for every m ≥ 1 and for the natural ordering < on [m]:(

[m], (∅)P∈τ , <
)
|=LFP ϕ ⇐⇒

(
[m], (∅)P∈τ

)
|=Lstr ϕ

⇐⇒ m ∈ X

As
(
[m], (∅)P∈τ , <

)
|=LFP ϕ can be checked in time polynomial in∥∥∥([m], (∅)P∈τ , <

)∥∥∥
and hence, polynomial in m, we see that X ∈ P, a contradiction. �

This paper mainly addresses the question whether L≤ is an effectively P-bounded
logic for P, a question raised in [12]. Even though not everyone is convinced that
there is no effectively P-bounded logic for P, it is conjectured that L≤ is not
such a logic. In [12] this question (or conjecture) is reformulated as an effectivity
property for a halting problem for nondeterministic Turing machines. We analyze
the relationship between the logic and the halting problem in the next section.

For later purposes we remark that as

(ϕ, ≤ m) ∈ Inv ⇐⇒ (¬ϕ, ≤ m) ∈ Inv,

we get
(ϕ, ≤ |A|) ∈ Inv ⇐⇒ (A |=L≤ ϕ or A |=L≤ ¬ϕ). (6)

4 A Halting Problem and Its Relationship to L≤

From the Introduction we recall the parameterized acceptance problem p-Acc≤
for nondeterministic Turing machines:

p-Acc≤
Instance: A nondeterministic Turing machine M and

n ∈ N in unary.
Parameter: ‖M‖.
Question: Does M accept the empty input tape in at

most n steps?

A Logic for PTIME and a Parameterized Halting Problem 261

We shall see in this section how the complexity of this problem is related to
properties of the logic L≤. We start with the following simple observation on the
complexity of p-Acc≤.

Proposition 6. The problem p-Acc≤ is in the class FPTnu.

Proof. Fix k ∈ N; then there are only finitely many nondeterministic Turing
machines M with ‖M‖ = k, say, M1, . . . ,Ms. For each i ∈ [s] let �i be the
smallest natural number � such that there exists an accepting run of Mi, started
with empty input tape, of length �. We set �i = ∞ if Mi does not accept the
empty input tape. Hence the algorithm Ak that on any instance (M, n) of p-Acc≤
with ‖M‖ = k determines the i with M = Mi, and then accepts if and only if
�i ≤ n, decides the kth slice of p-Acc≤. It has running time O(‖M‖ +n); thus it
witnesses that p-Acc≤ ∈ FPTnu. �

This observation can easily be generalized. We call a parameterized problem
(Q, κ) slicewise monotone if its instances have the form (x, n), where x ∈ {0, 1}∗
and n ∈ N is given in unary, if κ(x, n) = |x|, and finally if for all x ∈ {0, 1}∗ and
n, n′ ∈ N we have

(x, n) ∈ Q and n < n′ imply (x, n′) ∈ Q.

In particular, p-Acc≤ is slicewise monotone and the preceding argument shows:

Lemma 1. (Q, κ) ∈ FPTnu for slicewise monotone (Q, κ).

Is p-Acc≤ ∈ FPTuni or, at least, p-Acc≤ ∈ XPuni? By [12] the conjecture “L≤
is not a P-bounded logic for P” mentioned in the previous section is equivalent
to the statement p-Acc≤ /∈ XPuni (and similarly, the statement “L≤ is not an
effectively P-bounded logic for P” is equivalent to p-Acc≤ /∈ XP).

However it is not even clear whether p-Acc≤ /∈ FPT. Do the statements
p-Acc≤ ∈ FPT and p-Acc≤ ∈ FPTuni also correspond to natural properties of
the logic L≤? We address this problem in this section.

Proposition 2 motivates the introduction of the following notion. We say that
L≤ is an (effectively) depth-width P-bounded logic for P if there is an algorithm
A deciding |=L≤ in such a way that there is a (computable) function h such that
A |=L≤ ϕ can be solved in time

h(|ϕ|) · ‖A‖O
(

(1+depth(ϕ))·width(ϕ)
)
.

By Proposition 2, the logic LFP “is an effectively depth-width P-bounded logic
for P on ordered structures.” Parts (1) and (2) of the following theorem are the
main result of this section, (3) and (4) are already mentioned in [12].

Theorem 1. 1. L≤ is an effectively depth-width P-bounded logic for P if and
only if p-Acc≤ ∈ FPT.

2. L≤ is a depth-width P-bounded logic for P if and only if p-Acc≤ ∈ FPTuni.
3. L≤ is an effectively P-bounded logic for P if and only if p-Acc≤ ∈ XP.
4. L≤ is a P-bounded logic for P if and only if p-Acc≤ ∈ XPuni.

262 Y. Chen and J. Flum

4.1 Proof of Theorem 1 and Some Consequences

The following observations will lead to a proof of the direction “from right to
left” in the statements of Theorem 1.

For an L≤-sentence ϕ let τϕ be the set of relation symbols distinct from <
that do occur in ϕ. For a suitable time constructible function t : N → N we
will need a nondeterministic Turing machine Mϕ(t) that, started with empty
tape, operates as follows: In a first phase it writes a word of the form 1m for
some m ≥ 1 on some tape. The second phase (the main phase) consists of at
most t(m) + 1 steps (this can be ensured as t is time constructible). If Mϕ(t)
does not stop during the first t(m) steps of the main phase, then it stops in the
next step and rejects. During these t(m) steps, Mϕ(t) guesses (the encoding of)
a τϕ-structure A with universe [m] and two orderings <1 and <2 on [m] and
checks whether

(
(A, <1) |=LFP ϕ ⇐⇒ (A, <2) |=LFP ϕ

)
. If this is not the case,

then Mϕ(t) accepts; otherwise it rejects.
The first phase takes m steps. To guess a τϕ-structure A with universe [m]

and two orderings <1 and <2 requires O(lgth(τϕ,m) + 2m2) bits (see Sect. 2.2);
thus for some d1 ∈ N the machine Mϕ(t) needs

t1ϕ(m) := d1 · (lgth(τϕ,m) + 2m2)

steps. Finally, by Proposition 2, to check the equivalence
(
(A, <1) |=LFP ϕ iff

(A, <2) |=LFP ϕ
)

takes at most

t2ϕ(m) := |ϕ| · lgth((τϕ)<,m)d2·(1+depth(ϕ))·width(ϕ)

steps for some d2 ∈ N. By the time constructibility of the function m 	→
lgth((τϕ)<,m) we can arrange the machine in such a way that it needs exactly
the number of steps given by the upper bounds t1ϕ(m) and t2ϕ(m) (if it is not
stopped by the time bound t(m)). Thus, if in the first phase of a run Mϕ(t) has
written the word 1m, then Mϕ(t) performs exactly

tϕ(m) := t1ϕ(m) + t2ϕ(m) (7)

additional steps before it stops (assuming tϕ(m) ≤ t(m)). Note that tϕ is in-
creasing. Therefore we have

(ϕ,≤ m) ∈ Inv ⇐⇒ Mϕ(tϕ) does not accept the empty string
in ≤ m + tϕ(m) steps

⇐⇒ (Mϕ(tϕ),m + tϕ(m)) /∈ p-Acc≤.

(8)

We collect some facts we are going to use:

(i) There is an algorithm assigning to every L≤-sentence ϕ the machine Mϕ(tϕ).

A Logic for PTIME and a Parameterized Halting Problem 263

(ii) For every L≤-sentence ϕ and all τϕ-structures A:

A |=L≤ ϕ ⇐⇒
(

(ϕ, ≤ |A|) ∈ Inv and (A, <A) |=LFP ϕ
)

(by definition of |=L≤)

⇐⇒
(

(Mϕ(tϕ),m + tϕ(|A|)) /∈ p-Acc≤ and (A, <A) |=LFP ϕ
)

(by (8)).

(iii) There is a computable function g such that for every L≤-sentence ϕ and all
τϕ-structures A we have

tϕ(|A|) ≤ g(|ϕ|) · ‖A‖O
(

(1+depth(ϕ))·width(ϕ)
)

(by the definition (7) of the function tϕ and the properties of the lgth-
function mentioned in Sect. 2.2).

Now we can show the direction “from right to left” in the statements of Theo-
rem 1. We give the proof for the claims (1) and (2); obvious modifications yield
(3) and (4).

Assume p-Acc≤ ∈ FPTuni (p-Acc≤ ∈ FPT), that is, assume that (M, n) ∈
p-Acc≤ can be solved in time

f (‖M‖) · ne

for some e ∈ N and some (computable) function f : N → N. We consider the
problem A |=L≤ ϕ, where A is a structure and ϕ an L≤-sentence. We may assume
that A is a τϕ-structure (if A contains more relations, we omit them; this can be
done in O(|ϕ| + ‖A‖) steps). Using (i), (iii), and Proposition 2 we see that there
are an algorithm and a (computable) function h such that the condition

(Mϕ(tϕ), |A| + tϕ(|A|)) /∈ p-Acc≤ and (A, <A) |=LFP ϕ

and hence, by (ii), the problem

A |=L≤ ϕ

can be solved in time h(|ϕ|) · ‖A‖O
(

(1+depth(ϕ))·width(ϕ)
)
. �

Before we proceed with the proof of Theorem 1, it is worthwhile to extract from
the previous argument information relevant for the logic L=. We introduce the
corresponding halting problem:

p-Acc=

Instance: A nondeterministic Turing machine M and
n ∈ N in unary.

Parameter: ‖M‖.
Question: Does M accept the empty input tape in exactly

n steps?

264 Y. Chen and J. Flum

Then:

Lemma 2. If p-Acc= ∈ FPT, then L= is an effectively depth-width P-bounded
logic for P.2

Proof. Note that the following variant of (8) holds:

(ϕ,m) ∈ Inv ⇐⇒ Mϕ(tϕ) does not accept the empty string
in exactly m + tϕ(m) steps

⇐⇒ (Mϕ(tϕ),m + tϕ(m)) /∈ p-Acc=,

and thus,

A |=L= ϕ ⇐⇒
(

(Mϕ(tϕ), |A| + tϕ(|A|)) /∈ p-Acc= and (A, <A) |=LFP ϕ
)
.

Thus our claim can be derived in exactly the same way as the corresponding
statement for L≤. �

We turn to a proof of the directions “from left to right” in Theorem 1. Let M be
a nondeterministic Turing machine and let m0 := m0(M) be the maximum of the
number of states and the number of tapes. We can assume that [k] is the set of
states of M (for some k ≤ m0) and that 1 is its initial state. Furthermore, we may
assume that every two distinct successor configurations of a given configuration
of M have distinct states. We let P0, P1, . . . , Pk be unary relation symbols. We
shall see that for τ := {P0, . . . , Pk} there is a LFP[τ<]-sentence ϕM in normal
form with the following properties: For every τ -structure A

(a) If |A| < m0, then (A, <A) |=LFP ϕM for all orderings <A on A.
(b) If |A| ≥ m0 and the subsets PA

0 , . . . , P
A
k do not form a partition of A, then

(A, <A) |=LFP ϕM for all orderings <A on A.
(c) Let |A| ≥ m0 and assume that PA

0 , . . . , P
A
k form a partition of A and <A is

an ordering on A. Let a1, . . . , a|A| be the enumeration of the elements of A
according to the ordering <A and choose is such that as ∈ PA

is
for s ∈ [|A|].

(i) If there is a j ∈ [|A| − 1] such that 1, i1, . . . , ij is the sequence of states
of a complete run of M, started with empty input tape (in particular,
is �= 0 for all s ∈ [j]), then (A, <A) |=LFP ϕM if and only if this run of M

is a rejecting one.
(ii) If for all j ∈ [|A| − 1] the sequence 1, i1, . . . , ij does not correspond to a

complete run of M with empty input tape, then (A, <A) |=LFP ϕM.

We show that for every m ≥ m0(M)

(M,m) ∈ p-Acc≤ ⇐⇒ (ϕM, ≤ m) /∈ Inv. (9)

2 Along the lines of the proof the reader will easily verify the analogues for p-Acc= and

L= of the directions “from right to left” of all statements of Theorem 1. However, all

the others will follow from Corollary 2.

A Logic for PTIME and a Parameterized Halting Problem 265

First assume that (M,m) ∈ p-Acc≤. Then there are j ∈ [m− 1] and i1, . . . , ij ∈
[k] such that 1, i1, . . . , ij is the sequence of states of an accepting run of M. By
(c)(i) there is a structure A on [m] such that (A, <A) �|=LFP ϕM for the natural
ordering <A on [m] and PA

0 = {m}. We choose an ordering <′ on [m] such that
m is the first element of <′ and hence, i1 = 0 under <′. By (c)(ii) we see that
(A, <′) |=LFP ϕM. Hence, (ϕM, ≤ m) /∈ Inv.

Conversely, if (M,m) /∈ p-Acc≤, it is easy to see, using (a)–(c), thatA |=L≤ ϕM

for every structure A with |A| ≤ m; hence, (ϕM,≤ m) ∈ Inv.
The sentence ϕM (in normal form and hence of depth 1) is obtained by stan-

dard techniques. We sketch its construction. Recall that {0, 1} is the alphabet
of M. The sentence ϕM will make use of the binary relation variable State and
the ternary relation variables Head, Zero, One with the intended meaning

State t s iff at time t the state is s
Head t i j iff at time t the head on tape i scans the jth cell
Zero t i j iff at time t there is a 0 on the jth cell of tape i
One t i j iff at time t there is a 1 on the jth cell of tape i.

To be able to apply the least fixed-point operator to a formula positive in the
corresponding variable(s), we need also relation variables CState, CHead, CZero
and COne for the complements of the relations just introduced. Then we can
express the intended meaning of ϕM using a single simultaneous least fixed-point
over all the relation variables we have introduced in the form

∃x∃y[S-LFP t s State, t i j Head, t i j Zero, t i j One, t sCState,

t i j CHead, t i j CZero, t i j COneψM] xy

(even though M is nondeterministic, in the formula ψM we always get the state
to be chosen in the next step using the relations P1, . . . , Pk). By standard means
this sentence can be converted in an LFP-sentence ϕM in normal form (and hence
of depth 1). Of course, the sentence ϕM depends on the machine M, however, as
in ϕM we have to take care of a run of at most as many steps as the cardinality
of the universe, it can be defined in such a way that its width is independent of
M; here we use the fact that we can address the ith element in the ordering <
by a formula of width 3.

Now we are able to finish the proof of the directions “from left to right” in
Theorem 1. Again we present the argument for claims (1) and (2) of this theorem,
as claims (3) and (4) are obtained by the obvious modifications. Assume that
L≤ is an (effectively) depth-width P-bounded logic for P and choose c ∈ N

and a (computable) function h : N → N such that the model-checking problem
A |=L≤ ϕ for structures A and L≤-sentences ϕ can be solved in time

h(|ϕ|) · ‖A‖c·(1+depth(ϕ))·width(ϕ). (10)

We show that p-Acc≤ ∈ FPTuni (p-Acc≤ ∈ FPT). Let (M,m) be an arbitrary
instance of p-Acc≤. Ifm < m0(M) (≤ ‖M‖), we check whether (M,m) ∈ p-Acc≤

266 Y. Chen and J. Flum

by brute force. Otherwise, we construct from M the sentence ϕM. Moreover we
choose the τ -structure Am with Am = [m] and empty relations. Then, by the
property (d) of the lgth-function (see Sect. 2.2), we have

‖Am‖ = O(log |τ | · |τ | · |Am|) = O(|ϕM|2 ·m). (11)

As by (6)

(ϕM, ≤ m) ∈ Inv ⇐⇒ (Am |=L≤ ϕM or Am |=L≤ ¬ϕM),

we obtain by (9)

(M,m) /∈ p-Acc≤ ⇐⇒ (Am |=L≤ ϕM or Am |=L≤ ¬ϕM). (12)

Therefore, by (11) and (10), we see that there is a (computable) function f and
a constant e ∈ N (recall that for all nondeterministic Turing machines M the
depth of ϕM is one and that there is a constant bounding the width of ϕM) such
that (M,m) ∈ p-Acc≤ can be solved in time f (‖M‖) ·me. This finishes the proof
of Theorem 1. �
Again we extract from the proof the information on p-Acc= and L= that we
shall need in Sect. 5.

Lemma 3. If L= is a logic for P, then p-Acc= ∈ XPnu.

Proof. A minor change in the definition of ϕM in the previous proof yields an
LFP-sentence χM with

(M,m) ∈ p-Acc= ⇐⇒ (χM,m) /∈ Inv

instead of (9), and hence

(M,m) /∈ p-Acc= ⇐⇒ (Am |=L= χM or Am |=L= ¬χM) (13)

instead of (12). Assume L= is a logic for P. Fix k ∈ N and let M1, . . . ,Ms be the
finitely many NTMs M with ‖M‖ = k. As L= is a logic for P, for all i ∈ [s] there
is an algorithm solving A |=L= χMi in time polynomial in ‖A‖. Now (13) yields
the claim p-Acc= ∈ XPnu. �

By refining the proof of the second part of Theorem 1 we obtain the following
result (related to Gurevich’s result [9, Theorem 1.16]):

Corollary 1. For sufficiently large w ∈ N the problem

Instance: A structureA and an L≤[1]-sentence ϕ of width ≤ w.
Problem: Is A |=L≤ ϕ?

is coNP-complete.

A Logic for PTIME and a Parameterized Halting Problem 267

Proof. Clearly the problem is in coNP. Now let Q be any problem in coNP. We
give a polynomial reduction of Q to the problem in the statement. Let M be a
polynomial time nondeterministic Turing machine such that for all x ∈ {0, 1}∗
we have

x ∈ Q ⇐⇒ no run of M accepts x.

Choose c, d ∈ N such that the running time of M on input x is bounded by c·|x|d.
We fix x ∈ {0, 1}∗. Again we assume that [k] is the set of states of M and that
1 is its starting state and set τ := {P0, . . . , Pk} with unary relation variables
P0, . . . , Pk. Along the lines of the proof of the second part of Theorem 1, in
time polynomial in |x| one can obtain an LFP[τ<]-sentence ϕM,x in normal form
with the properties (a)–(c) (on page 264), where now in (c)(i),(ii) we consider
complete runs started with the word x in the input tape. Again we can achieve
that the width of ϕM,x does not depend on x (once more, we use the fact that
for i ∈ [|x|] we can address the ith element in the ordering < by a formula of
width 3). Let Ax be any τ -structure with |Ax| ≥ max{m0(M), c · |x|d}. Then

x ∈ Q ⇐⇒ Ax |=L≤ ϕM,x,

and hence x 	→ (Ax, ϕM,x) is the desired reduction. �

We close this section by a proof of Proposition 5 (2).

Proof of Proposition 5 (2): Let X be a set of natural numbers in binary in
NE \ E. Then X(un) ∈ NP \ P, where X(un) is the set of natural numbers of X
in unary. Hence there is a nondeterministic Turing machine M that given m ∈ N

in unary decides whether m ∈ X(un) in polynomial time, say, in time c · md.
We may assume that every run of M on input m has length c ·md. Similarly to
the sentence ϕM in the proof of Theorem 7, we construct an LFP-sentence ρM

expressing that

if for some m ∈ N the universe has cardinality c ·md and the relations
P0, . . . , Pk code a run of M with input 1m, then it is not accepting.

Then for every {P0, . . . , Ps}-structure A we have

A |=L= ρM ⇐⇒ |A| /∈ {c ·md | m ∈ X(un)}. (14)

As the set {c · md | m ∈ X(un)} of natural numbers in unary is not in P, we
get that ModL=(ρM) is not axiomatizable in Lstr by Claim 2 in the proof of
Proposition 5. �

5 The Parameterized Complexity of p-Acc=

Let M be a nondeterministic Turing machine. By suitably adding to M a state,
which can be accessed and left nondeterministically, one obtains a machine M∗

such that for all n ∈ N we have:

M accepts the empty input tape in ≤ n steps
⇐⇒ M∗ accepts the empty input tape in exactly n steps.

268 Y. Chen and J. Flum

Hence p-Acc≤ ≤fpt p-Acc=. Recall that p-Acc≤ ∈ FPTnu. On the other hand,
p-Acc= /∈ FPTnu if E �= NE, as shown by the main result of this section:

Theorem 2. The following statements are equivalent:

– p-Acc= /∈ FPT.
– p-Acc= /∈ XPnu.
– E �= NE.

In [1] it is shown that p-Acc= ∈ XP implies E = NE. By Lemma 2 and
Lemma 3 we get as a consequence of this theorem the following improvement of
Proposition 4.

Corollary 2. The following statements are equivalent:

– L= is a logic for P.
– E = NE.
– L= is an effectively depth-width P-bounded logic for P.

We prove Theorem 2 by the following two lemmas.

Lemma 4. If E = NE, then p-Acc= ∈ FPT.

Proof. Consider the classical problem:

Instance: A nondeterministic Turing machine M and n ∈ N in binary.
Problem: Does M accept the empty input tape in exactly n steps?

Clearly, it is NE. By the assumption E = NE we can solve it in time

2O(‖M‖+log n).

It follows that p-Acc= is decidable in time

O(n) + 2O(‖M‖+log n) = 2O(‖M‖) · nO(1),

and hence p-Acc= ∈ FPT. �

Lemma 5. If p-Acc= ∈ XPnu, then E = NE.

Proof. Assume that p-Acc= ∈ XPnu. Let Q ⊆ {0, 1}∗ be in NE. We have to show
Q ∈ E. Without loss of generality we may assume that every x ∈ Q starts with
a “1.” Let n(x) be the natural number with binary representation x; then

n(x) �= n(y) for x, y ∈ Q with x �= y. (15)

As Q ∈ NE there is a nondeterministic Turing machine M and a c ∈ N such that
M decides whether x ∈ Q in time

2c·|x|

and every run of M on input x has length at most 2c·|x|. Note that for x starting
with a “1”, we have 2c·|x| = n(x)c.

We define a nondeterministic Turing machine M∗ that started with empty
input tape runs as follows:

A Logic for PTIME and a Parameterized Halting Problem 269

1. Guess a string y ∈ {0, 1}∗
2. if y does not start with a “1”, then reject
3. simulate M on input y for n(y)c many steps
4. if M rejects, then reject
5. make some additional dummy steps such that so far the total

running time of M∗ is 2 · n(y)c − 1
6. accept.

By (15) we have for every x ∈ {0, 1}∗ starting with a “1”:

x ∈ Q ⇐⇒ M∗ accepts the empty input tape
in exactly 2 · n(x)c many steps. (16)

As p-Acc= ∈ XPnu, for some d ∈ N we can decide whether M∗ accepts the empty
string in exactly 2 · n(x)c many steps in time

(2 · n(x)c)d.

Hence, x ∈ Q can be decided in time 2O(|x|). �

Proof of Theorem 2: Immediate by Lemmas 4 and 5. �

6 The Parameterized Complexity of p-Acc≤.

We already know that the parameterized problem p-Acc≤ is in FPTnu; however,
is it fixed-parameter tractable or at least in XP? We address these questions in
this section.

Let
P[tc] �= NP[tc]

mean that DTIME(hO(1)) �= NTIME(hO(1)) for all time constructible and increas-
ing functions h.

The assumption P[tc] �= NP[tc] implies P �= NP, even E �= NE, as seen by
taking as h the identity function and the function 2n, respectively. At the end
of this section we are going to relate P[tc] �= NP[tc] to further statements of
complexity theory. The main result of this section is:

Theorem 3. If P[tc] �= NP[tc], then p-Acc≤ /∈ FPT.

The following idea underlies the proof of this result. Assume that p-Acc≤ ∈
FPT. Then, in particular we have a deterministic algorithm deciding p-Acc≤,
the (parameterized) acceptance problem for nondeterministic Turing machines.
This yields a way (different from brute force) to translate nondeterministic algo-
rithms into deterministic ones; a careful analysis of this translation shows that
NTIME(hO(1)) ⊆ DTIME(hO(1)) for a suitable time constructible and increasing
function h.

270 Y. Chen and J. Flum

For our detailed proof we need the following simple lemma:

Lemma 6. For every computable and increasing function f : N → N and every
e ∈ N there is a time constructible and increasing function h : N → N such that
for all x, y ∈ N

f (e · (x + y2)) ≤ h(x) + h(y).

Proof. We define h0 : N → N by

h0(n) := f (2e · n2)

and let h : N → N be a time constructible and increasing function with h0(n) ≤
h(n) for all n ∈ N. �

Proof of Theorem 3: For any nondeterministic Turing machine M and every
x ∈ {0, 1}∗ we let Mx be the nondeterministic Turing machine that, started with
empty input tape, first writes x on some tape and then simulates M started with
x. Clearly we can define Mx such that ‖Mx‖ = O(‖M‖ + |x| · log |x|). We choose
e ∈ N such that

‖Mx‖ ≤ e · (‖M‖ + |x|2). (17)

Now by contradiction assume that p-Acc≤ ∈ FPT. Then there is an algorithm
A that for every nondeterministic Turing machine M and every natural number
n decides whether M accepts the empty input tape in ≤ n steps in time

f (‖M‖) · nO(1)

for a computable and increasing function f : N → N. For this f and the e
of (17) we choose h according to Lemma 6 and show that NTIME(hO(1)) ⊆
DTIME(hO(1)).

Let Q ⊆ {0, 1}∗ be in NTIME(hO(1)). We choose a nondeterministic Turing
machine M and constants c, d ∈ N such that the machine M decides whether
x ∈ Q in time c ·h(|x|)d and every run of M on input x is c ·h(|x|)d time-bounded
(recall that h is time constructible).

For x ∈ {0, 1}∗ we have (recall the definition of Mx)

x ∈ Q ⇐⇒ Mx accepts the empty string in at most |x| + c · h(|x|)d steps
⇐⇒ Mx accepts the empty string in at most 2c · h(|x|)d steps
⇐⇒ A accepts (Mx, 2c · h(|x|)d).

By (17) the running time of A on input (Mx, 2c · h(|x|)d) is bounded by

f (e · (‖M‖ + |x|2)) · (2c · h(x))O(1) ≤
(
h(‖M‖)) + h(|x|)

)
· h(x)O(1).

As ‖M‖ is a constant, this shows Q ∈ DTIME(h(x)O(1)). �

We can refine the previous argument to get p-Acc≤ /∈ XP; however we need a
complexity-theoretic assumption (apparently) stronger than P[tc] �= NP[tc].

A Logic for PTIME and a Parameterized Halting Problem 271

Theorem 4. Assume that

NTIME(hO(1)) �⊆ DTIME(hO(log h))

for every time constructible and increasing function h. Then p-Acc≤ /∈ XP.

Proof. Assume that p-Acc≤ ∈ XP. Then there is an algorithm A that for every
nondeterministic Turing machine M and every natural number n decides whether
M accepts the empty input tape in ≤ n steps in time

O(nf (‖M‖))

for a computable and increasing function f : N → N. For this function f and
e as in (17) we choose h according to Lemma 6. We define g : N → N by
g(n) := 2h(n); clearly g is time constructible and increasing, too. We show that
NTIME(gO(1)) ⊆ DTIME(gO(log g)).

Let Q ⊆ {0, 1}∗ be an arbitrary problem in NTIME(gO(1)). Let M, c,d, and
Mx for x ∈ {0, 1}∗ be defined as in the previous proof, but now g takes over the
role of h. As there we get

x ∈ Q ⇐⇒ A accepts (Mx, 2c · g(|x|)d).

The running time of A on input (Mx, 2c · g(|x|)d) is bounded by

O
(
g(|x|)d·f (e·(‖M‖+|x|2))

)
≤ O

(
g(|x|)d·

(
h(‖M‖)+h(|x|)

))
≤ O

(
g(|x|)d·

(
h(‖M‖)+log g(|x|)

))
.

As ‖M‖ is a constant, this shows Q ∈ DTIME(gO(log g)). �

By Theorem 1 we obtain from the previous result:

Corollary 3. Assume that

NTIME(hO(1)) �⊆ DTIME(hO(log h))

for every time constructible and increasing function h. Then L≤ is not an effec-
tively P-bounded logic for P.

6.1 Relating P[TC] �= NP[TC] to Other Statements

We partly report on results from [4] relating P[tc] �= NP[tc] and the hypothesis
in Theorem 4 to further statements of complexity theory.

Let C be a classical complexity class. Recall that a problem Q ⊆ {0, 1}∗ is
C-bi-immune if both Q and the complement of Q do not have an infinite subset
that belongs to C. It has been conjectured (cf. [11]) that

NP contains a P-bi-immune problem.

In particular, there existP-bi-immune sets inside NP in some relativized worlds [6].
We showed in [4]:

272 Y. Chen and J. Flum

Proposition 7. The following statement (a) implies (b).

(a) NP contains a P-bi-immune problem.
(b) P[tc] �= NP[tc].

It seems that the statement (a) is much stronger than (b). In fact as shown in [4]
“not (b)” implies

there is an infinite I ∈ P such that for all Q ∈ NP at least one of the
sets Q ∩ I and

(
{0, 1}∗ \Q

)
∩ I is an infinite set in P,

while “not (a)” can be reformulated as

for all Q ∈ NP there is an infinite I ∈ P such that at least one of the
sets Q ∩ I or

(
{0, 1}∗ \Q

)
∩ I is an infinite set in P.

Furthermore it is shown in [4]:

Proposition 8. The following statement (a) implies (b).

(a) NP contains an E-bi-immune problem.
(b) For every time constructible and increasing function h

NTIME(hO(1)) �⊆ DTIME(hO(log h)).

7 A Deterministic Variant of p-Acc≤

If in the problem p-Acc≤ we replace the nondeterministic Turing machine M

by a deterministic Turing machine simulating all computation paths of length n
of M with empty input tape we “arrive at” p-Dtm-Exp-Acc≤:

p-Dtm-Exp-Acc≤
Instance: A deterministic Turing machine M and n ∈ N

in unary.
Parameter: ‖M‖.
Question: Does M accept the empty input tape in at

most 2n steps?

Thus, p-Acc≤ ≤fpt p-Dtm-Exp-Acc≤. As p-Dtm-Exp-Acc≤ is a slicewise
monotone parameterized problem, we know that it is in FPTnu by Lemma 1.
Clearly, FPTnu ⊆ XPnu and XP ⊆ XPuni ⊆ XPnu. The problem p-Dtm-Exp-
-Acc≤ lies in FPTnu \XPuni, as we show:

Theorem 5. p-Dtm-Exp-Acc≤ /∈ XPuni.

Proof. One easily verifies that p-Dtm-Exp-Acc≤ is fpt equivalent to

A Logic for PTIME and a Parameterized Halting Problem 273

p-Dtm-Inp-Exp-Acc≤
Instance: A deterministic Turing machine M, x ∈ {0, 1}∗,

and n ∈ N in unary.
Parameter: ‖M‖ + |x|.
Question: Does M accept x in ≤ 2n steps?

Thus, it suffices to show that p-Dtm-Inp-Exp-Acc≤ /∈ XPuni. By contradiction,
assume there exists an algorithm A that for every instance (M, x, n) decides
whether (M, x, n) ∈ p-Dtm-Inp-Exp-Acc≤ in time

c · nf (‖M‖+|x|)

for some (not necessarily computable) function f : N → N and c ∈ N.
We denote by enc(M) the encoding of a Turing machine M by a string in

{0, 1}∗. We consider the following deterministic Turing machine M0:

M0(x)

// x ∈ {0, 1}∗

1. if x is not the encoding of a deterministic Turing machine, then
reject

2. determine the deterministic Turing machine M with x = enc(M)
3. m← the number of steps performed by M0 so far
4. simulate at most 2m steps of the computation of A on input

(M, x,m + 3)
5. if the simulation does not halt, then m← m + 1 and goto 4
6. if A accepts (M, x,m + 3) in at most 2m steps then reject else

accept.

We finish the proof by a diagonal argument: We set x0 := enc(M0) and start M0

with input x0. For sufficiently large m ∈ N we have

c · (m + 3)f (‖M0‖+|x0|) ≤ 2m.

Therefore eventually M0 with input x0 reaches an m, we call it m0, such that
the simulation in Line 4 halts, more precisely,

A halts on (M0, x0,m0 + 3) in at most 2m0 steps. (18)

At that point the number of steps (of the run of M0 on input x0) is bounded by
2m0+2. Hence

M0 on x0 halts in ≤ 2 + 2m0+2 ≤ 2m0+3 steps. (19)
Thus

M0 accepts x0 ⇐⇒ M0 accepts x0 in ≤ 2m0+3 steps (by (19))
⇐⇒ A accepts (M0, x0,m0 + 3) (by definition of A)
⇐⇒ A accepts (M0, x0,m0 + 3) in at most 2m0 steps (by (18))
⇐⇒ M0 rejects x0 (by Line 6 in the definition of M0),

the desired contradiction. �

274 Y. Chen and J. Flum

8 The Construction Problem Associated with p-Acc≤

We consider the construction problem associated with p-Acc≤:

p-Constr-Acc≤
Instance: A nondeterministic Turing machine M and

n ∈ N in unary.
Parameter: ‖M‖.

Problem: Construct an accepting run of ≤ n steps of M

started with empty input tape if there is one
(otherwise report that there is no such run).

Similarly as we showed that p-Acc≤ ∈ FPTnu (cf. Proposition 6), one gets that
p-Constr-Acc≤ is nonuniformly fixed-parameter tractable (it should be clear
what this means).

Definition 3. An fptuni Turing reduction (fpt Turing reduction) from a param-
eterized construction problem (Q, κ) to a parameterized decision problem (Q′, κ′)
is a deterministic algorithm T with an oracle to (Q′, κ′) solving the construc-
tion problem (Q, κ) and with the property that there are (computable) functions
f, g : N → N, and c ∈ N such that for every instance x of Q

– the run of T with input x has length ≤ f (κ(x)) · |x|c;
– for every oracle query “x′ ∈ Q′?” of the run of A with input x we have
κ(x′) ≤ g(κ(x)).

Often the construction problem has the same complexity as the corresponding
decision problem, that is, the construction problem is fpt Turing reducible to
the decision problem; for p-Constr-Acc≤ we can show:

Theorem 6. 1. There is an fptuni Turing reduction from p-Constr-Acc≤ to
p-Acc≤.

2. If p-Acc≤ /∈XP, then there is no fpt Turing reduction from p-Constr-Acc≤
to p-Acc≤.

Proof. (1) On an instance (M, n) of p-Constr-Acc≤ the desired reduction T

first asks the oracle query “(M, n) ∈ p-Acc≤?”. If the answer is no, then T

answers accordingly. Otherwise T, by brute force, constructs an accepting run
of at most n steps of M. We analyze the running time of T. For m ∈ N let
M1, . . . ,M� be the finitely many nondeterministic Turing machines with ‖Mi‖ ≤
m and with an accepting run started with empty input tape. Let ρi be such a
run of Mi of minimum length. We set

f (m) := max{|ρ1|, . . . , |ρ�|}.

It is not hard to see that the running time of T on the instance (M, n) can be
bounded by ‖M‖O(f (‖M‖)) · n.

A Logic for PTIME and a Parameterized Halting Problem 275

(2) By contradiction, assume there is an fpt Turing reduction T from p-Constr-
-Acc≤ to p-Acc≤. We show how T can be turned into an algorithm witnessing
p-Acc≤ ∈ XP.

According to the definition of fpt Turing reduction there are computable func-
tions f, g and c ∈ N such that for every instance (M, n) of p-Constr-Acc≤, the
algorithm T will only make queries “(M′, n′) ∈ p-Acc≤?” with

‖M′‖ ≤ g(‖M‖) and n′ ≤ f (‖M‖) · nc.

There are at most 2g(‖M‖)+1 machines M′ with ‖M′‖ ≤ g(‖M‖). For each such
machine M′ the answer to queries of the form “(M′, n′) ∈ p-Acc≤?” with n′ ≤
f (‖M‖) · nc is determined by every one of the following f (‖M‖) · nc + 1 many
statements: “the length of an accepting run of M′ of minimum length is 1”,. . . ,
“the length of an accepting run of M′ of minimum length is f (‖M‖) · nc”, and
“there is no accepting run of M′ of length ≤ f (‖M‖) · nc.” Therefore the table
of theoretically possible answers contains at most(

f (‖M‖) · nc + 1
)2g(‖M‖)+1

entries, that is O(nh(‖M‖)) many for some computable h. For each such possibility
we simulate T by replacing the oracle queries accordingly. For those possibilities
where T yields a purported accepting run of M, we check whether it is really an
accepting run of M. �

An analysis of the previous proof shows that we can even rule out the existence
of a Turing reduction with running time O(|x|f (κ(x))) instead of f (κ(x)) · |x|c. We
call such reductions xp Turing reductions.

Furthermore, Theorem 6 is a special case of a result for slicewise monotone
problems: Let (Q, κ) be a slicewise monotone parameterized problem (this con-
cept was defined just before Lemma 1) and assume that Q has a representation
of the form

(x, n) ∈ Q
⇐⇒ there is y ∈ {0, 1}∗:

(
|y| ≤ f (|x|) · nc and (x, n, y) ∈ QW

)
,

(20)

where f : N → N is computable, c ∈ N and QW is decidable in polynomial time.
A string y with the properties on the right hand side is a witness for (x, n).

The construction problem p-Constr-(Q, κ) for every instance (x, n) of Q
(with parameter |x|) asks for a witness for (x, n) if there is one (otherwise the
nonexistence should be reported). Along the lines of the previous proofs one can
show:

Proposition 9. Let (Q, κ) be a slicewise monotone parameterized problem with
a representation as in (20).

1. p-Constr-(Q, κ) is nonuniformly fixed-parameter tractable.
2. There is an fptuni Turing reduction from p-Constr-(Q, κ) to (Q, κ).
3. If (Q, κ) /∈ XP, then there is no fpt Turing reduction (even no xp Turing

reduction) from p-Constr-(Q, κ) to (Q, κ).

276 Y. Chen and J. Flum

9 Conclusions

We have studied the relationship between the complexity of the model-checking
problems of the logics L= and L≤ and the complexity of the parameterized prob-
lems p-Acc= and p-Acc≤. We have introduced the assumption P[tc] �= NP[tc]
and seen that it implies that p-Acc≤ /∈ FPT. A slightly stronger hypothesis
shows that p-Acc≤ /∈ XP and hence that the logic L≤ is not an effectively P-
bounded logic for P. What are reasonable complexity theoretic assumptions that
imply p-Acc≤ /∈ XPuni and hence that the logic L≤ is not a P-bounded logic
for P?

We believe that a study of the strength of the assumption P[tc] �= NP[tc]
and of its consequences deserves further attention.

References

1. Aumann, Y., Dombb, Y.: Fixed structure complexity. In: Grohe, M., Niedermeier,

R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 30–42. Springer, Heidelberg (2008)

2. Chandra, A.K., Harel, D.: Structure and complexity of relational queries. Journal

of Computer and System Science 25, 99–128 (1982)

3. Chen, Y., Flum, J.: A logic for PTIME and a parameterized halting problem. In:

Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science

(LICS 2009), pp. 397–406. IEEE Computer Society, Los Alamitos (2009)

4. Chen, Y., Flum, J.: On the complexity of Gödel’s proof predicate. The Journal of

Symbolic Logic 75, 239–254 (2010)

5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg

(2005)

6. Gasarch, W.I., Homer, S.: Relativizations comparing NP and exponential time.

Information and Control 58, 88–100 (1983)

7. Grohe, M.: The quest for a logic capturing PTIME. In: Proceedings of the Twenty-

Third Annual IEEE Symposium on Logic in Computer Science (LICS 2008), pp.

267–271. IEEE Computer Society, Los Alamitos (2008)

8. Gurevich, Y.: Toward logic tailored for computational complexity. In: Computation

and Proof Theory, pp. 175–216. Springer, Heidelberg (1984)

9. Gurevich, Y.: Logic and the challenge of computer science. In: Current Trends in

Theoretical Computer Science, pp. 1–57. Computer Science Press, Rockville (1988)

10. Immerman, N.: Relational queries computable in polynomial time. Information and

Control 68, 86–104 (1986)

11. Mayordomo, E.: Almost every set in exponential time is p-bi-immune. Theoretical

Computer Science 136, 487–506 (1994)

12. Nash, A., Remmel, J.B., Vianu, V.: PTIME queries revisited. In: Eiter, T., Libkin,

L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 274–288. Springer, Heidelberg (2004)

13. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:

Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing

(STOC 1982), pp. 137–146. ACM, New York (1982)

14. Vardi, M.Y.: On the complexity of bounded-variable queries. In: Proceedings of

the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems (PODS 1995), pp. 266–276. ACM Press, New York (1995)

Inferring Loop Invariants Using Postconditions

Carlo Alberto Furia and Bertrand Meyer

Chair of Software Engineering, ETH Zurich, Switzerland

{caf,bertrand.meyer}@inf.ethz.ch

To Yuri Gurevich in joyful celebration of his 70th birthday, and with
thanks for his many contributions to computer science, including his
original leadership of the group on whose tools the present work cru-
cially relies.

Abstract. One of the obstacles in automatic program proving is to ob-

tain suitable loop invariants. The invariant of a loop is a weakened form

of its postcondition (the loop’s goal, also known as its contract); the

present work takes advantage of this observation by using the postcondi-

tion as the basis for invariant inference, using various heuristics such as

“uncoupling” which prove useful in many important algorithms. Thanks

to these heuristics, the technique is able to infer invariants for a large

variety of loop examples. We present the theory behind the technique,

its implementation (freely available for download and currently relying

on Microsoft Research’s Boogie tool), and the results obtained.

Keywords: Correctness proofs, formal specifications, loop invariants,

assertion inference.

1 Overview

Many of the important contributions to the advancement of program proving
have been, rather than grand new concepts, specific developments and simplifi-
cations; they have removed one obstacle after another preventing the large-scale
application of proof techniques to realistic programs built by ordinary program-
mers in ordinary projects. The work described here seeks to achieve such a
practical advance by automatically generating an essential ingredient of proof
techniques: loop invariants. The key idea is that invariant generation should use
not just the text of a loop but its postcondition. Using this insight, the gin-pink
tool can infer loop invariants for non-trivial algorithms including array parti-
tioning (for Quicksort), sequential search, coincidence count, and many others.
The tool is available for free download.1

1.1 Taking Advantage of Postconditions

In the standard Floyd-Hoare approach to program proving, loop invariants are
arguably the biggest practical obstacle to full automation of the proof process.
1 http://se.inf.ethz.ch/people/furia/

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 277–300, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://se.inf.ethz.ch/people/furia/

278 C.A. Furia and B. Meyer

Given a routine’s specification (contract), in particular its postcondition, the
proof process consists of deriving intermediate properties, or verification con-
ditions, at every point in the program text. Straightforward techniques yield
verification conditions for basic instructions, such as assignment, and basic con-
trol structures, such as sequence and conditional. The main difficulty is the loop
control structure, where the needed verification condition is a loop invariant,
which unlike the other cases cannot be computed through simple rules; finding
the appropriate loop invariant usually requires human invention.

Experience shows, however, that many programmers find it hard to come up
with invariants. This raises the question of devising automatic techniques to infer
invariants from the loop’s text, in effect extending to loops the mechanisms that
successfully compute verification conditions for other constructs. Loops, however,
are intrinsically more difficult constructs than (for example) assignments and
conditionals, so that in the current state of the art we can only hope for heuristics
applicable to specific cases, rather than general algorithms guaranteed to yield
a correct result in all cases.

While there has been considerable research on loop invariant generation and
many interesting results (reviewed in the literature survey of Section 6), most
existing approaches are constrained by a fundamental limitation: to obtain the
invariant they only consider the implementation of a loop. In addition to raising
epistemological problems explained next, such techniques can only try to dis-
cover relationships between successive loop iterations; this prevents them from
discovering many important classes of invariants.

The distinctive feature of the present work is that it uses postconditions of a
routine for inferring the invariants of its loops. The postcondition is a higher-level
view of the routine, describing its goal, and hence allows inferring the correct
invariants in many more cases. As will be explained in Section 4.1, this result
follows from the observation that a loop invariant is always a weakened form of
the loop’s postcondition. Invariant inference as achieved in the present work then
relies on implementing a number of heuristics for mutating postconditions into
candidate invariants ; Section 2 presents four such heuristics, such as uncoupling
and constant relaxation, which turn out to cover many practical cases.

1.2 Inferring Assertions: The Assertion Inference Paradox

Any program-proving technique that attempts to infer specification elements
(such as loop invariants) from program texts faces a serious epistemological
objection, which we may call the Assertion Inference Paradox.

The Assertion Inference Paradox is a risk of vicious circle. The goal of program
proving is to establish program correctness. A program is correct if its implemen-
tation satisfies its specification; for example a square root routine implements
a certain algorithm, intended to reach a final state satisfying the specification
that the square of the result is, within numerical tolerance, equal to the input.
To talk about correctness requires having both elements, the implementation
and the specification, and assessing one against the other. But if we infer the
specification from the implementation, does the exercise not become vacuous?

Inferring Loop Invariants Using Postconditions 279

Surely, the proof will succeed, but it will not teach us anything since it loses the
fundamental property of independence between the mathematical property to
be achieved and the software artifact that attempts to achieve it – the problem
and the solution.

To mitigate the Assertion Inference Paradox objection, one may invoke the
following arguments:

– The Paradox only arises if the goal is to prove correctness. Specification infer-
ence can have other applications, such as reverse-engineering legacy software.

– Another possible goal of inferring a specification may be to present it to a
programmer, who will examine it for consistency with an intuitive under-
standing of its intended behavior.

– Specification inference may produce an inconsistent specification, revealing
a flaw in the implementation.

For applications to program proving, however, the contradiction remains; an
inferred specification not exhibiting any inconsistencies cannot provide a sound
basis for a proof process.

For that reason, the present work refrains from attempting specification infer-
ence for the principal units of a software system: routines (functions, methods)
and those at an even higher level of granularity (such as classes). It assumes that
these routine specifications are available. Most likely they will have been written
explicitly by humans, although their origin does not matter for the rest of the
discussion.

What does matter is that once we have routine specifications it is desirable
to infer the specifications of all lower-level constructs (elementary instructions
and control structures such as conditionals and loops) automatically. At those
lower levels, the methodological objection expressed by the Assertion Inference
Paradox vanishes: the specifications are only useful to express the semantics of
implementation constructs, not to guess the software’s intent. The task then
becomes: given a routine specification – typically, a precondition and postcon-
dition – derive the proof automatically by inferring verification conditions for
the constructs used in the routine and proving that the constructs satisfy these
conditions. No vicious circle is created.

For basic constructs such as assignments and conditional instructions, the
machinery of Floyd-Hoare logic makes this task straightforward. The principal
remaining difficulty is for loops, since the approach requires exhibiting a loop
invariant, also known as an inductive assertion, and proving that the loop’s ini-
tialization establishes the invariant and that every execution of the body (when
the exit condition is not satisfied) preserves it.

A loop invariant captures the essence of the loop. Methodologically, it is de-
sirable that programmers devise the invariant while or before devising the loop.
As noted, however, many programmers have difficulty coming up with loop in-
variants. This makes invariants an attractive target for automatic inference.

In the present work, then, postconditions are known and loop invariants in-
ferred. The approach has two complementary benefits:

280 C.A. Furia and B. Meyer

– It does not raise the risk of circular reasoning since the specification of every
program unit is explicitly provided, not inferred.

– Having this specification of a loop’s context available gives a considerable
boost to loop invariant inference techniques. While there is a considerable
literature on invariant inference, it is surprising that none of the references
with which we are familiar use postconditions. Taking advantage of post-
conditions makes it possible – as described in the rest of this paper – to
derive the invariants of many important and sometimes sophisticated loop
algorithms that had so far eluded other techniques.

2 Illustrative Examples

This section presents the fundamental ideas behind the loop-invariant generation
technique detailed in Section 5 and demonstrates them on a few examples. It
uses an Eiffel-like [30] pseudocode, which facilitates the presentation thanks to
the native syntax for contracts and loop invariants.

As already previewed, the core idea is to generate candidate invariants by
mutating postconditions according to a few commonly recurring patterns. The
patterns capture some basic ways in which loop iterations modify the program
state towards achieving the postcondition. Drawing both from classic literature
[19,29] and our own more recent investigations we consider the following funda-
mental patterns.

Constant relaxation [29,19]: replace one or more constants by variables.
Uncoupling [29]: replace two occurrences of the same variable each by a dif-

ferent variable.
Term dropping [19]: remove a term, usually a conjunct.
Variable aging: replace a variable by an expression that represents the value

the variable had at previous iterations of the loop.

These patterns are then usually used in combination, yielding a number of mu-
tated postconditions. Each of these candidate invariants is then tested for initi-
ation and consecution (see Section 4.1) over any loop, and all verified invariants
are retained.

The following examples show each of these patterns in action. The tool de-
scribed in Sections 3 and 5 can correctly infer invariants of these (and more
complex) examples.

2.1 Constant Relaxation

Consider the following routine to compute the maximum value in an array.

1 max (A: ARRAY [T]; n: INTEGER): T
2 require A.length = n ≥ 1
3 local i : INTEGER
4 do
5 from i := 0; Result := A[1];

Inferring Loop Invariants Using Postconditions 281

6 until i ≥n
7 loop
8 i := i + 1
9 if Result≤A[i] then Result := A[i] end

10 end
11 ensure ∀j • 1 ≤ j ∧ j ≤ n =⇒ A[j] ≤ Result

Lines 5–10 may modify variables i and Result but they do not affect the input
argument n, which is therefore a constant with respect to the loop body. The
constant relaxation technique replaces every occurrence of the constant n by a
variable i. The modified postcondition ∀ j • 1 ≤ j ∧ j ≤ i =⇒A[j] ≤ Result
is indeed an invariant of the loop: after every iteration, the value of Result is
the maximum value of array A over range [1..i].

2.2 Variable Aging

Sometimes replacing a constant by a variable in the postcondition does not yield
any loop invariant because of how the loop body updates the variable. It may
happen that the loop body does not need the latest value of the substituted
variable until the next iteration. Consider another implementation of computing
the maximum of an array, which increments the variable i after using it, so that
only the range [1..i− 1] of array A has been inspected after every iteration:

1 max v2 (A: ARRAY [T], n: INTEGER): T
2 require A.length = n ≥ 1
3 local i : INTEGER
4 do
5 from i := 1; Result := A[1];
6 until i >n
7 loop
8 if Result≤A[i] then Result := A[i] end
9 i := i + 1

10 end
11 ensure ∀ j • 1 ≤ j ∧ j ≤ n =⇒ A[j] ≤ Result

The variable aging heuristics handles these cases by introducing an expression
that represents the value of the variable at the previous iteration in terms of
its current value. In the case of routine max v2 it is straightforward that such
an expression for variable i is i−1. The postcondition can be modified by first
replacing variable n by variable i and then “aging” variable i into i−1. The
resulting formula ∀ j • 1 ≤ j ∧ j ≤ i−1 =⇒A[j] ≤ Result correctly captures
the semantics of the loop.

Computing the symbolic value of a variable at the “previous” iteration can
be quite complex in the general case. In practice, however, a simple (e.g., flow-
insensitive) approximation is often enough to get significant results. The exper-
iments of Section 3 provide a partial evidence to support this conjecture.

282 C.A. Furia and B. Meyer

2.3 Uncoupling

Consider the task (used as part of the Quicksort algorithm) of partitioning an
array A of length n into two parts such that every element of the first part is
less than or equal to a given pivot value and every element of the second part
is greater than or equal to it. The following contracted routine specifies and
implements this task, working on an integer variable position .

1 partition (A: ARRAY [T]; n: INTEGER; pivot: T)
2 require A.length = n ≥ 1
3 local low index, high index : INTEGER
4 do
5 from low index := 1; high index := n
6 until low index = high index
7 loop
8 from −− no loop initialization
9 until low index = high index ∨A[low index] > pivot

10 loop low index := low index + 1 end
11 from −− no loop initialization
12 until low index = high index ∨ pivot> A[high index]
13 loop high index := high index − 1 end
14 A.swap (A, low index, high index)
15 end
16 if pivot ≤ A[low index] then
17 low index := low index − 1
18 high index := low index
19 end
20 position := low index
21 ensure (∀ k • 1≤ k ∧ k < position + 1 =⇒A[k] ≤ pivot)
22 ∧ (∀ k • position <k ∧ k ≤ n =⇒A[k] ≥ pivot)

The postcondition consists of the conjunction of two formulas (lines 21 and
22). If we try to mutate it by replacing constant position by variable low index
or by variable high index we obtain no valid loop invariant. This is because

the two clauses of the postcondition should refer, respectively, to portion [1..
low index−1] and [high index+1..n] of the array. We achieve this by first uncou-
pling position , which means replacing its first occurrence (in line 21) by variable
low index and its second occurrence (in line 22) by variable high index. After
“aging” variable low index we get the formula:

(∀ k • 1 ≤ k ∧ k < low index =⇒A[k] ≤ pivot)
∧ (∀ k • high index <k ∧ k ≤ n =⇒A[k] ≥ pivot) .

The reader can check that this indeed a loop invariant of all loops in routine
partition and that it allows a straightforward partial correctness proof of the
implementation.

Inferring Loop Invariants Using Postconditions 283

2.4 Term Dropping

The last mutation pattern that we consider consists simply of removing a part
of the postcondition. The formula to be modified is usually assumed to be in
conjunctive normal form, that is, expressed as the conjunction of a few clauses:
then term dropping amounts to removing one or more conjuncts. Going back to
the example of partition, let us drop the first conjunct in the postcondition. The
resulting formula

∀ k • Result <k ∧ k ≤ n =⇒ A[k] ≥ pivot

can be further transformed through constant relaxation, so that we end up with
a conjunct of the invariant previously obtained by uncoupling: ∀ k • high index
<k ∧ k ≤ n =⇒A[k]≥ pivot . This conjunct is also by itself an invariant. In this

example term dropping achieved by different means the same result as uncou-
pling.

3 Implementation and Experiments

Before presenting the technical details of the loop-invariant generation technique,
this section describes experiments with a tool implementing the technique. The
results, discussed in more detail in Section 6, demonstrate the feasibility and
practical value of the overall approach.

gin-pink (Generation of INvariants by PostcondItioN weaKening) is a com-
mand-line tool implementing the loop-invariant inference technique described in
Section 5. While we plan to integrate gin-pink into EVE (the Eiffel Verification
Environment2) where it will analyze the code resulting from the translation of
Eiffel into Boogie [40], its availability as a stand-alone tool makes it applicable
to languages other than Eiffel provided a Boogie translator is available.

gin-pink applies the algorithm described in Section 5 to a selected procedure in
a Boogie file provided by the user. After generating all mutated postconditions
it invokes the Boogie tool to determine which of them is indeed an invariant: for
every candidate invariant I, a new copy of the original Boogie file is generated
with I declared as invariant of all loops in the procedure under analysis. It then
repeats the following until either Boogie has verified all current declarations of
I in the file or no more instances of I exist in the procedure:

1. Use Boogie to check whether the current instances of I are verified invariants,
that is they satisfy initiation and consecution.

2. If any candidate fails this check, comment it out of the file.

In the end, the file contains all invariants that survive the check, as well as a
number of commented out candidate invariants that could not be checked. If no
invariant survives or the verified invariants are unsatisfactory, the user can still
manually inspect the generated files to see if verification failed due to the limited
reasoning capabilities of Boogie.
2 http://eve.origo.ethz.ch

http://eve.origo.ethz.ch

284 C.A. Furia and B. Meyer

Table 1. Experiments with gin-pink

Procedure LOC # lp. m.v. cnd. inv. rel. T. Src.

Array Partitioning (v1) 58(22) 1 (1) 2+ 1 38 9 3 (33%) 93

Array Partitioning (v2) 68(40) 3 (2) 2+ 1 45 2 2(100%) 205 [29]

Array Stack Reversal 147(34) 2 (1) 1+ 2 134 4 2 (50%) 529

Array Stack Reversal (ann.) 147(34) 2 (1) 1+ 2 134 6 4 (67%) 516

Bubblesort 69(29) 2 (2) 2+ 1 14 2 2(100%) 65 [33]

Coincidence Count 59(29) 1 (1) 3+ 0 1351 1 1(100%) 4304 [27]

Dutch National Flag 77(43) 1 (1) 3+ 1 42 10 2 (20%) 117 [16]

Dutch National Flag (ann.) 77(43) 1 (1) 3+ 1 42 12 4 (33%) 122 [16]

Longest Common Sub. (ann.) 73(59) 4 (2) 2+ 2 508 22 2 (9%) 4842

Majority Count 48(37) 1 (1) 3+ 0 23 5 2 (40%) 62 [4,32]

Max of Array (v1) 27(17) 1 (1) 2+ 0 13 1 1(100%) 30

Max of Array (v2) 27(17) 1 (1) 2+ 0 7 1 1(100%) 16

Plateau 53(29) 1 (1) 3+ 0 31 6 3 (50%) 666 [19]

Sequential Search (v1) 34(26) 1 (1) 3+ 0 45 9 5 (56%) 120

Sequential Search (v2) 29(21) 1 (1) 3+ 0 24 6 6(100%) 58

Shortest Path (ann.) 57(44) 1 (1) 1+ 4 23 2 2(100%) 53 [3]

Stack Search 196(49) 2 (1) 1+ 3 102 3 3(100%) 300

Sum of Array 26(15) 1 (1) 2+ 0 13 1 1(100%) 44

Topological Sort (ann.) 65(48) 1 (1) 2+ 4 21 3 2 (67%) 101 [31]

Welfare Crook 53(21) 1 (1) 3+ 0 20 2 2(100%) 586 [19]

When generating candidate invariants, gin-pink does not apply all heuristics
at once but it tries them incrementally, according to user-supplied options. Typ-
ically, the user starts out with just constant relaxation and checks if some non-
trivial invariant is found. If not, the analysis is refined by gradually introducing
the other heuristics – and thus increasing the number of candidate invariants as
well. In the examples below we briefly discuss how often and to what extent this
is necessary in practice.

Examples. Table 1 summarizes the results of a number of applications of gin-pink
to Boogie procedures obtained from Eiffel code. We carried out the experi-
mental evaluation as follows. First, we collected examples from various sources
[29,19,33,27,3] and we manually completed the annotations of every algorithm
with full pre and postconditions as well as with any loop invariant or interme-
diate assertion needed in the correctness proof. Then, we coded and tried to
verify the annotated programs in Boogie, supplying some background theory to
support the reasoning whenever necessary. The latest Boogie technology cannot
verify certain classes of properties without a sophisticated ad hoc background
theory or without abstracting away certain aspects of the implementation un-
der verification. For example, in our implementation of Bubblesort, Boogie had
difficulties proving that the output is a permutation of the input. Correspond-
ingly, we omitted the parts of the specification that Boogie could not prove even
with a detailedly annotated program. Indeed, “completeness” (full functional
correctness) should not be a primary concern, because its significance depends

Inferring Loop Invariants Using Postconditions 285

on properties of the prover (here Boogie), orthogonal to the task of inferring in-
variants. Finally, we ran gin-pink on each of the examples after commenting out
all annotations except for pre and postconditions (but leaving the simple back-
ground theories in); in a few difficult cases (discussed next) we ran additional
experiments with some of the annotations left in. After running the tests, we
measured the relevance of every automatically inferred invariant: we call an in-
ferred invariant relevant if the correctness proof needs it. Notice that our choice
of omitting postcondition clauses that Boogie cannot prove does not influence
relevance, which only measures the fraction of inferred invariants that are useful
for proving correctness.

For each example, Table 1 reports: the name of the procedure under analysis;
the length in lines of codes (the whole file including annotations and auxiliary
procedures and, in parentheses, just the main procedure); the total number of
loops (and the maximum number of nested loops, in parentheses); the total num-
ber of variables modified by the loops (scalar variables/array or map variables);
the number of mutated postconditions (i.e., candidate invariants) generated by
the tool; how many invariants it finds; the number and percentage of verified
invariants that are relevant; the total run-time of gin-pink in seconds; the source
(if any) of the implementation and the annotations. The experiments where per-
formed on a PC equipped with an Intel Quad-Core 2.40 GHz CPU and 4 Gb of
RAM, running Windows XP as guest operating system on a VirtualBox virtual
machine hosted by Ubuntu GNU/Linux 9.04 with kernel 2.6.28.

Most of the experiments succeeded with the application of the most basic
heuristics. Procedures Coincidence Count and Longest Common Subsequence are
the only two cases that required a more sophisticated uncoupling strategy where
two occurrences of the same constant within the same formula were modified
to two different aged variables. This resulted in an explosion of the number
of candidate invariants and consequently in an experiment running for over an
hour.

A few programs raised another difficulty, due to Boogie’s need for user-
supplied loop invariants to help automated deduction. Boogie cannot verify any
invariant in Shortest Path, Topological Sort, or Longest Common Subsequence
without additional invariants obtained by means other than the application of
the algorithm itself. On the other hand, the performance with programs Array
Stack Reversal and Dutch National Flag improves considerably if user-supplied
loop invariants are included, but fair results can be obtained even without any
such annotation. Table 1 reports both experiments, with and without user-
supplied annotations.

More generally, Boogie’s reasoning abilities are limited by the amount of in-
formation provided in the input file in the form of axioms and functions that
postulate sound inference rules for the program at hand. We tried to limit this
amount as much as possible by developing the necessary theories before tackling
invariant generation. In other words, the axiomatizations provided are enough
for Boogie to prove functional correctness with a properly annotated program,
but we did not strengthen them only to ameliorate the inference of invariants.

286 C.A. Furia and B. Meyer

A richer axiomatization may have removed the need for user-supplied invariants
in the programs considered.

4 Foundations

Having seen typical examples we now look at the technical choices that support
the invariant inference tools. To decouple the loop-invariant generation technique
from the specifics of the programming language, we adopt Boogie from Microsoft
Research [26] as our concrete programming language; Section 4.2 is then devoted
to a concise introduction to the features of Boogie that are essential for the
remainder. Sections 4.1 and 4.3 introduce definitions of basic concepts and some
notational conventions that will be used. We assume the reader is familiar with
standard formal definitions of the axiomatic semantics of imperative programs.

4.1 Invariants

Proving a procedure correct amounts to verifying that:

1. Every computation terminates.
2. Every call to another procedure is issued only when the preconditions of the

callee hold.
3. The postconditions hold upon termination.

It is impossible to establish these facts automatically for all programs but the
most trivial ones without programmer-provided annotations. The crucial aspect
is the characterization of loops, where the expressive power of universal com-
putation lies. A standard technique to abstract the semantics of any number of
iterations of a loop is by means of loop invariants.

Definition 1 (Inductive loop invariant). Formula φ is an inductive invari-
ant of loop

from Init until Exit loop Body end

iff:

– Initiation: φ holds after the execution of Init
– Consecution: the truth of φ is preserved by every execution of Body where

Exit does not hold

In the rest of the discussion, inductive invariants will be called just invariants
for short. Note, however, that an invariant in the weaker sense of a property
that stays true throughout the loop’s execution is not necessarily an inductive
invariant: in

from x := 1 until False loop x := − x end

the formula x ≥ −1 will remain true throughout, but is not considered an
inductive invariant because {x ≥ −1} x := −x {x ≥ −1} is not a correct

Inferring Loop Invariants Using Postconditions 287

Hoare triple. In the remainder we will deal solely with inductive loop invariants,
as is customary in the program proving literature.

From a design methodology perspective, the invariant expresses a weakened
form of the loop’s postcondition. More precisely [31,19], the invariant is a form
of the loop’s postcondition that applies to a subset of the data, and satisfies the
following three properties:

1. It is strong enough to yield the postcondition when combined with the exit
condition (which states that the loop has covered the entire data).

2. It is weak enough to make it easy to write an algorithm (the loop initialization
Init) that will satisfy the invariant on a subset (usually empty or trivial) of
the data.

3. It is weak enough to make it easy to write an algorithm (the loop body Body)
that, given that the invariant holds on a subset of the data that is not the
entire data, extends it to cover a slightly larger subset.

“Easy”, in the last two conditions, means “much easier than solving the entire
original problem”. The loop consists of an approximation strategy that starts
with the initialization, establishing the invariant, then retains the invariant while
extending the scope by successive approximations to an ever larger set of the
input through repeated executions of the loop body, until it hits the exit condi-
tion, signaling that it now covers the entire data and hence satisfies the loop’s
postcondition. This explains that the various strategies of Section 2, such as
constant relaxation and uncoupling, are heuristics for mutating the loop’s post-
condition into a weaker form. The present work applies the same heuristics to
mutate postconditions of the routine that encapsulates the loop. The connec-
tion between the routine’s and the loop’s postcondition justifies the rationale
behind using weakening heuristics as mutation heuristics to generate invariant
candidates.

4.2 Boogie

Boogie, now in its second version, is both an intermediate verification language
and a verification tool.

The Boogie language combines a typed logical specification language with
an in-the-small imperative programming language with variables, procedures,
contracts, and annotations. The type system comprises a few basic primitive
types as well as type constructors such as one- and two-dimensional arrays.
It supports a relatively straightforward encoding of object-oriented language
constructs. Boogie is part of the Spec# programming environment; mappings
have been defined for other programming languages, including Eiffel [40] and C
[39]. This suggests that the results described here can be generalized to many
other contexts.

The Boogie tool verifies conformance of a procedure to its specification by gen-
erating verification conditions (VC) and feeding them to an automated theorem
prover (the standard one being Z3). The outcome of a verification attempt can
be successful or unsuccessful. In the latter case the tool provides some feedback

288 C.A. Furia and B. Meyer

on what might be wrong in the procedure, in particular by pointing out what
contracts or annotations it could not verify. Verification with Boogie is sound
but incomplete: a verified procedure is always guaranteed to be correct, while
an unsuccessful verification attempt might simply be due to limitations of the
technology.

The Boogie Specification Language. The Boogie specification language is
essentially a typed predicate calculus with equality and arithmetic. Correspond-
ingly, formulas – that is, logic expressions – are built by combining atomic con-
stants, logic variables, and program variables with relational and arithmetic
operators, as well as with Boolean connectives and quantifiers. For example, the
following formula (from Section 2.1) states that no element in array X within
positions 1 and n is larger than v: in other words, the array has upper bound v.

∀ j : int • 1 ≤ j ∧ j ≤ n =⇒ X[j] ≤ v .

The syntactic classes Id, Number and Map represent constant and variable
identifiers, numbers and mappings.

Complex formulas and expressions can be postulated in axioms and parame-
terized by means of logic functions. Functions are a means of introducing encap-
sulation and genericity for formulas and complex expressions. For example, the
previous formula can be parameterized into function is upper with the following
signature and definition:

function is upper (m: int, A: array int, low: int, high : int)
returns (bool)
{ ∀ j : int • low≤ j ∧ j ≤ high =⇒ A[j] ≤ m } .

Axioms constrain global constants, variables, and functions; they are useful to
supply Boogie with domain knowledge to facilitate inference and guide the au-
tomated reasoning over non-trivial programs. In certain situations it might for
example be helpful to introduce the property that if an array has the upper
bound m over the range [low..high] and the element in position high + 1 is
smaller than m then m is also the upper bound over the range [low..high+ 1].
The following Boogie axiom expresses this property.

axiom (∀m: int, A: array int, low: int, high : int •
is upper (m, A, low, high) ∧ A[high + 1] <m

=⇒ is upper (m, A, low, high+1)) .

The Boogie Programming Language. A Boogie program is a collection of
procedures. Each procedure consists of a signature, a specification and (option-
ally) an implementation or body. The signature gives the procedure a name
and declares its formal input and output arguments. The specification is a col-
lection of contract clauses of three types: frame conditions, preconditions, and
postconditions.

A frame condition, introduced by the keyword modifies, consists of a list of
global variables that can be modified by the procedure; it is useful in evaluating

Inferring Loop Invariants Using Postconditions 289

Statement ::= Assertion | Modification
| ConditionalBranch | Loop

Annotation ::= assert Formula | assume Formula
Modification ::= havoc VariableId | VariableId := Expression

| call [VariableId+ :=] ProcedureId (Expression*)
ConditionalBranch ::= if (Formula) Statement* [else Statement*]

Loop ::= while (Formula) Invariant* Statement*
Invariant ::= invariant Formula

Fig. 1. Simplified abstract syntax of Boogie statements

the side-effects of procedure call within any context. A precondition, introduced
by the keyword requires, is a formula that is required to hold upon procedure
invocation. A postcondition, introduced by the keyword ensures, is a formula
that is guaranteed to hold upon successful termination of the procedure. For
example, procedure max v2, computing the maximum value in an array A given
its size n, has the following specification.

procedure max v2 (A: array int, n: int) returns (m: int)
requires n ≥ 1;
ensures is max (m, A, 1, n);

The implementation of a procedure consists of a declaration of local variables,
followed by a sequence of (possibly labeled) program statements. Figure 1 shows
a simplified syntax for Boogie statements. Statements of class Annotation intro-
duce checks at any program point: an assertion is a formula that must hold of
every execution that reaches it for the program to be correct and an assumption
is a formula whose validity at the program point is postulated. Statements of
class Modification affect the value of program variables, by nondeterministically
drawing a value for them (havoc), assigning them the value of an expression
(:=), or calling a procedure with actual arguments (call). The usual conditional
if statement controls the execution flow. Finally, the while statement supports
loop iteration, where any loop can be optionally annotated with a number of
Invariants (see Section 4.1). Boogie can check whether Definition 1 holds for
any user-provided loop invariant.

The implementation of procedure max v2 is:

var i : int;
i := 1; m := A[1];
while (i≤ n)
{

if (m≤A[i]) { m := A[i]; }
i := i + 1;

}
While the full Boogie language includes more types of statement, any Boogie

statement can be desugared into one of those in Figure 1. In particular, the
only looping construct we consider is the structured while; this choice simplifies
the presentation of our loop invariant inference technique and makes it closer
as if it was defined directly on a mainstream high-level programming language.

290 C.A. Furia and B. Meyer

Also, there is a direct correspondence between Boogie’s while loop and Eiffel’s
from ... until loop, used in the examples of Section 2 and the definitions in
Section 4.1.

4.3 Notational Conventions

subExp(φ, SubType) denotes the set of sub-expressions of formula φ that are of
syntactic type SubType. For example, subExp(is upper(v,X,1,n),Map) denotes
all mapping sub-expressions in is upper(v,X,1,n), that is only X[j] .

replace(φ, old, new, ∗) denotes the formula obtained from φ by replacing ev-
ery occurrence of sub-expression old by expression new. Similarly, replace(φ, old,
new, n) denotes the formula obtained from φ by replacing only the n-th oc-
currence of sub-expression old by expression new, where the total ordering of
sub-expressions is given by a pre-order traversal of the expression parse tree. For
example, replace(is upper(v,X,1,n), j, h, ∗) is

∀ h : int • low≤ h ∧ h≤ high =⇒ A[h] ≤ m ,

while replace(is upper(v,X,1,n), j, h, 4) is:

∀ j : int • low≤ j ∧ j ≤ high =⇒ A[h] ≤ m .

Given a while loop �: while (...) { Body }, targets(�) denotes the set of its
targets : variables (including mappings) that can be modified by its Body; this
includes global variables that appear in the modifies clause of called procedures.

Given a procedure foo, variables(foo) denotes the set of all variables that are
visible within foo, that is its locals and any global variable.

A loop �′ is nested within another loop �, and we write �′ ≺ �, iff �′ belongs
to the Body of �. Notice that if �′ ≺ � then targets(�′) ⊆ targets(�). Given a
procedure foo, its outer while loops are those in its body that are not nested
within any other loop.

5 Generating Loop Invariants from Postconditions

This section presents the loop invariant generation algorithm.

5.1 Main Algorithm

The pseudocode in Figure 2 describes the main algorithm. The algorithm op-
erates on a given procedure and returns a set of formulas that are invariant of
some loop in the procedure. Every postcondition post among all postconditions
postconditions(a procedure) of the procedure is considered separately (line 5).
This is a coarse-grained yet effective way of implementing the term-dropping
strategy outlined in Section 2.4: the syntax of the specification language sup-
ports splitting postconditions into a number of conjuncts, each introduced by
the ensures keyword, hence each of these conjuncts is modified in isolation. It is
reasonable to assume that the splitting into ensures clauses performed by the

Inferring Loop Invariants Using Postconditions 291

1 invariants (a procedure: PROCEDURE)

2 : SET OF [FORMULA]

3 do
4 Result := ∅
5 for each post in postconditions(a procedure) do
6 for each loop in outer loops(a procedure) do
7 −− compute all mutations of post

8 −− according to chosen strategies

9 mutations := mutations(post, loop)

10 for each formula in mutations do
11 for each any loop in loops(a procedure) do
12 if is invariant(formula, any loop) then
13 Result := Result ∪ {formula}

Fig. 2. Procedure invariants

user separates logically distinct portions of the postcondition, hence it makes
sense to analyze each of them separately. This assumption might fail, of course,
and in such cases the algorithm can be enhanced to consider more complex com-
binations of portions of the postcondition. However, one should only move to
this more complex analysis if the basic strategy – which is often effective – fails.
This enhancement belongs to future work.

The algorithm of Figure 2 then considers every outer while loop (line 6). For
each, it computes a set of mutations of the postcondition post (line 9) according
to the heuristics of Section 2. It then examines each mutation to determine if
it is invariant to any loop in the procedure under analysis (lines 10–13), and
finally returns the set Result of mutated postconditions that are invariants to
some loop. For is invariant(formula, loop), the check consists of verifying whether
initiation and consecution hold for formula with respect to loop, according to
Definition 1. This check is non-trivial, because loop invariants of different loops
within the same procedure may interact in a circular way: the validity of one of
them can be established only if the validity of the others is known already and
vice versa.

This was the case of partition presented in Section 2.3. Establishing consecu-
tion for the modified postcondition in the outer loop requires knowing that the
same modified postcondition is invariant to each of the two internal while loops
(lines 8–13) because they belong to the body of the outer while loop. At the
same time, establishing initiation for the first internal loop requires that conse-
cution holds for the outer while loop, as every new iteration of the external loop
initializes the first internal loop. Section 3 discussed a solution to this problem.

5.2 Building Mutated Postconditions

Algorithm mutations(post, loop), described in Figure 3, computes a set of modi-
fied versions of postcondition formula post with respect to outer while loop loop.
It first includes the unchanged postcondition among the mutations (line 4). Then,

292 C.A. Furia and B. Meyer

1 mutations (post: FORMULA; loop: LOOP)

2 : SET OF [FORMULA]

3 do
4 Result := {post}
5 all subexpressions := subExp(post, Id) ∪
6 subExp(post,Number) ∪
7 subExp(post,Map)
8 for each constant in all subexpressions \targets(loop) do
9 for each variable in targets(loop) do

10 Result := Result ∪
11 coupled mutations(post, constant, variable) ∪
12 uncoupled mutations(post, constant, variable)

Fig. 3. Procedure mutations

it computes (lines 5–7) a list of sub-expressions of post made of atomic variable
identifiers (syntactic class Id), numeric constants (syntactic class Number) and
references to elements in arrays (syntactic class Map). Each such sub-expres-
sion that loop does not modify (i.e., it is not one of its targets) is a constant
with respect to the loop. The algorithm then applies the constant relaxation
heuristics of Section 2.1 by relaxing constant into any variable among the loop’s
targets (lines 8–9). More precisely, it computes two sets of mutations for each
pair 〈constant, variable〉: in one uncoupling, described in Section 2.3, is also
applied (lines 12 and 11, respectively).

The justification for considering outer loops only is that any target of the
loop is a candidate for substitution. If a loop �′ is nested within another loop �
then targets(�′) ⊆ targets(�), so considering outer while loops is a conservative
approximation that does not overlook any possible substitution.

1 coupled mutations
2 (post : FORMULA; constant, variable: EXPRESSION)

3 : SET OF [FORMULA]

4 do
5 Result := replace(post, constant, variable, ∗)
6 aged variable := aging(variable, loop)

7 Result := Result ∪
8 replace(post, constant, aged variable, ∗)

Fig. 4. Procedure coupled mutations

5.3 Coupled Mutations

The algorithm in Figure 4 applies the constant relaxation heuristics to postcon-
dition post without uncoupling. Hence, relaxing constant into variable simply
amounts to replacing every occurrence of constant by variable in post (line
5); i.e., replace(post, constant, variable, ∗) using the notation introduced in Sec-
tion 4.3. Afterward, the algorithm applies the aging heuristics (introduced in

Inferring Loop Invariants Using Postconditions 293

Section 2.2): it computes the “previous” value of variable in an execution of
loop (line 6) and it substitutes the resulting expression for constant in post
(lines 7–8).

While the implementation of function aging could be very complex we adopt
the following unsophisticated approach. For every possible acyclic execution path
in loop, we compute the symbolic value of variable with initial value v0 as a
symbolic expression ε(v0). Then we obtain aging(variable, loop) by solving the
equation ε(v0) = variable for v0, for every execution path.3 For example, if
the loop simply increments variable by one, then ε(v0) = v0 + 1 and therefore
aging(variable, loop) = variable−1. Again, while the example is unsophisticated
it is quite effective in practice; indeed, most of the times it is enough to con-
sider simple increments or decrements of variable to get a “good enough” aged
expression.

5.4 Uncoupled Mutations

The algorithm of Figure 5 is a variation of the algorithm of Figure 4 applying the
uncoupling heuristics outlined in Section 2.3. It achieves this by considering every
occurrence of constant in post separately when performing the substitution of
constant into variable (line 6). Everything else is as in the non-uncoupled case;
in particular, aging is applied to every candidate for substitution.

This implementation of uncoupling relaxes one occurrence of a constant at a
time. In some cases it might be useful to substitute different occurrences of the
same constant by different variables. This was the case of partition discussed in
Section 2.3, where relaxing two occurrences of the same constant position into
two different variables was needed in order to get a valid invariant. Section 2.4
showed, however, that the term-dropping heuristics would have made this double
relaxation unnecessary for the procedure.

6 Discussion and Related Work

6.1 Discussion

The experiments in Section 3 provide a partial, yet significant, assessment of
the practicality and effectiveness of our technique for loop invariant inference.
Two important factors to evaluate any inference technique deserve comment:
relevance of the inferred invariants and scalability to larger programs.

A large portion of the invariants retrieved by gin-pink are relevant – i.e., re-
quired for a functional correctness proof – and complex – i.e., involving first-order
quantification over several program elements. To some extent, this is unsurpris-
ing because deriving invariants from postconditions ensures by construction that
they play a central role in the correctness proof and that they are at least as
complex as the postcondition.
3 Note that aging(variable, loop) is in general a set of expressions, so the notation at

lines 6–8 in Figure 4 is a shorthand.

294 C.A. Furia and B. Meyer

1 uncoupled mutations
2 (post : FORMULA; constant, variable: EXPRESSION)

3 : SET OF [FORMULA]

4 do
5 Result := ∅; index := 1

6 for each occurrence of constant in post do
7 Result := Result ∪
8 {replace(post, constant, variable, index)}
9 aged variable := aging(variable, loop)

10 Result := Result ∪
11 {replace(post, constant, aged variable, index)}
12 index := index + 1

Fig. 5. Procedure uncoupled mutations

As for scalability to larger programs, the main problem is the combinatorial
explosion of the candidate invariants to be checked as the number of variables
that are modified by the loop increases. In properly engineered code, each rou-
tine should not be too large or call too many other routines. The empirical
observations mentioned in [24, Sec. 9] seem to support this assumption, which
ensures that the candidate invariants do not proliferate and hence the inference
technique can scale within reasonable limits. The examples of Section 3 are not
trivial in terms of length and complexity of loops and procedures, if the yardstick
is well-modularized code. On the other hand, there is plenty of room for finess-
ing the application order of the various heuristics in order to analyze the most
“promising” candidates first; the Houdini approach [17] might also be useful in
this context. The investigation of these aspects belongs to future work.

6.2 Limitations

Relevant invariants obtained by postcondition mutation are most of the times
significant, practically useful, and complementary to a large extent to the cate-
gories that are better tackled by other methods (see next sub-section). Still, the
postcondition mutation technique cannot obtain every relevant invariant. Fail-
ures have two main different origins: conceptual limitations and shortcomings of
the currently used technology.

The first category covers invariants that are not expressible as mutations of
the postcondition. This is the case, in particular, whenever an invariant refers to
a local variable whose final state is not mentioned in the postcondition. For ex-
ample, the postcondition of procedure max in Section 2.1 does not mention vari-
able i because its final value n is not relevant for the correctness. Correspondingly,
invariant i ≤ n – which is involved in the partial correctness proof – cannot be ob-
tained from by mutating the postcondition. A potential solution to these concep-
tual limitations is two-fold: on the one hand, many of these invariants that escape
postcondition mutations can be obtained reliably with other inference
techniques that do not require postconditions – this is the case of invariant i ≤ n in

Inferring Loop Invariants Using Postconditions 295

procedure max which is retrieved automatically by Boogie. On the other hand,
if we can augment postconditions with complete information about local vari-
ables, the mutation approach can have a chance to work. In the case of max, a
dynamic technique could suggest the supplementary postcondition i ≤ n ∧ i ≥n
which would give the sought invariant by dropping the second conjunct.

Shortcomings of the second category follow from limitations of state-of-the-art
automated theorem provers, which prevent reasoning about certain interesting
classes of algorithms. For the sake of illustration, consider the following idealized4

implementation of Newton’s algorithm for the square root of a real number, more
precisely the variant known as the Babylonian algorithm [29]:

square root (a: REAL): REAL
require a ≥ 0
local y: REAL
do

from Result := 1; y := a
until Result = y
loop

Result := (Result + y)/2
y := a / Result

end
ensure Result ≥ 0 ∧ Result ∗ Result = a

Postcondition mutation would correctly find invariant Result ∗ y = a (by term
dropping and uncoupling), but Boogie cannot verify that it is an invariant be-
cause the embedded theorem prover Z3 does not handle reasoning about prop-
erties of products of numeric variables [27]. If we can verify by other means that
a candidate is indeed an invariant, the postcondition mutation technique of this
paper would be effective over additional classes of programs.

6.3 Related Work

The amount of research work on the automated inference of invariants is formi-
dable and spread over more than three decades; this reflects the cardinal role
that invariants play in the formal analysis and verification of programs. This
section outlines a few fundamental approaches and provides some evidence that
this paper’s technique is complementary, in terms of kinds of invariants inferred,
to previously published approaches. For more references, in particular regarding
software engineering applications, see the “related work” section of [15].

Static methods. Historically, the earliest methods for invariant inference where
static as in the pioneering work of Karr [23]. Abstract interpretation and the
constraint-based approach are the two most widespread frameworks for static
invariant inference (see also [6, Chap. 12]).

Abstract interpretation is, roughly, a symbolic execution of programs over
abstract domains that over-approximates the semantics of loop iteration. Since
4 The routine assumes infinite-precision reals and does not terminate.

296 C.A. Furia and B. Meyer

the seminal work by Cousot and Cousot [11], the technique has been updated
and extended to deal with features of modern programming languages such as
object-orientation and heap memory-management (e.g., [28,9]).

Constraint-based techniques rely on sophisticated decision procedures overnon-
trivial mathematical domains (such as polynomials or convex polyhedra) to repre-
sent concisely the semantics of loops with respect to certain template properties.

Static methods are sound – as is the technique introduced in this paper – and
often complete with respect to the class of invariants that they can infer. Sound-
ness and completeness are achieved by leveraging the decidability of the underly-
ing mathematical domains they represent; this implies that the extension of these
techniques to new classes of properties is often limited by undecidability. In fact,
state-of-the-art static techniques can mostly infer invariants in the form of “well-
behaving” mathematical domains such as linear inequalities [12,10], polynomials
[38,37], restricted properties of arrays [7,5,20], and linear arithmetic with unin-
terpreted functions [1]. Loop invariants in these forms are extremely useful but
rarely sufficient to prove full functional correctness of programs. In fact, one of
the main successes of abstract interpretation has been the development of sound
but incomplete tools [2] that can verify the absence of simple and common pro-
gramming errors such as division by zero or void dereferencing. Static techniques
for invariant inference are now routinely part of modern static checkers such as
ESC/Java [18], Boogie/Spec# [26], and Why/Krakatoa/Caduceus [22].

The technique of the present paper is complementary to most static tech-
niques in terms of the kinds of invariant that it can infer, because it derives
invariants directly from postconditions. In this respect “classic” static inference
and our inference by means of postcondition mutation can fruitfully work to-
gether to facilitate functional verification; to some extent this happens already
when complementing Boogie’s built-in facilities for invariant inference with our
own technique.

[34,21,8,25,24] are the approaches that, for different reasons, share more sim-
ilarities with ours. To our knowledge, [34,21,8,25] are the only other works ap-
plying a static approach to derive loop invariants from annotations. [21] relies
on user-provided assertions nested within loop bodies and essentially tries to
check whether they hold as invariants of the loop. This does not release the
burden of writing annotations nested within the code, which is quite complex
as opposed to providing only contracts in the form of pre and postconditions.
In practice, the method of [21] works only when the user-provided annotations
are very close to the actual invariant; in fact the few examples where the tech-
nique works are quite simple and the resulting invariants are usually obtainable
by other techniques that do not need annotations. [8] briefly discusses deriv-
ing the invariant of a for loop from its postcondition, within a framework for
reasoning about programs written in a specialized programming language. [25]
also leverages specifications to derive intermediate assertions, but focusing on
lower-level and type-like properties of pointers. On the other hand, [34] derives
candidate invariants from postconditions in a very different setting than ours,
with symbolic execution and model-checking techniques.

Inferring Loop Invariants Using Postconditions 297

Finally, [24] derives complex loop invariants by first encoding the loop seman-
tics as recurring relations and then instructing a rewrite-based theorem prover
to try to remove the dependency on the iterator variable(s) in the relations. It
shares with our work a practical attitude that favors powerful heuristics over
completeness and leverages state-of-the-art verification tools to boost the infer-
ence of additional annotations.

Dynamic methods. More recently, dynamic techniques have been applied to in-
variant inference. The Daikon approach of Ernst et al. [15] showed that dynamic
inference is practical and sprung much derivative work (e.g., [35,13,36] and many
others). In a nutshell, the Daikon approach consists in testing a large number of
candidate properties against several program runs; the properties that are not
violated in any of the runs are retained as “likely” invariants. This implies that
the inference is not sound but only an “educated guess”: dynamic invariant in-
ference is to static inference what testing is to program proofs. Nonetheless, just
like testing is quite effective and useful in practice, dynamic invariant inference
is efficacious and many of the guessed invariants are indeed sound.

Our approach shares with the Daikon approach the idea of guessing a candi-
date invariant and testing it a posteriori. There is an obvious difference between
our approach, which retains only invariants that can be soundly verified, and
dynamic inference techniques, which rely on a finite set of tests. A deeper dif-
ference is that Daikon guesses candidate invariants almost blindly, by trying
out a pre-defined set of user-provided templates (including comparisons between
variables, simple inequalities, and simple list comprehensions). On the contrary,
our technique assumes the availability of contracts (and postconditions in par-
ticular) and leverages it to restrict quickly the state-space of search and get to
good-quality loop invariants in a short time. As it is the case for static tech-
niques, dynamic invariant inference methods can also be usefully combined with
our technique, in such a way that invariants discovered by dynamic methods
boost the application of the postcondition-mutation approach.

Program construction. Classical formal methods for program construction
[14,19,29,32] have first described the idea of deriving loop invariants from post-
conditions. Several of the heuristics that we discussed in Section 2 are indeed
a rigorous and detailed rendition of some ideas informally presented in [29,19].
In addition, the focus of the seminal work on program construction is to derive
systematically an implementation from a complete functional specification. In
this paper the goal is instead to enrich the assertions of an already implemented
program and to exploit its contracts to annotate the code with useful invariants
that facilitate a functional correctness proof.

7 Conclusion and Future Work

We have shown that taking advantage of postconditions yields loop invariants
through effective techniques – not as predictable as the algorithms that yield

298 C.A. Furia and B. Meyer

verification conditions for basic constructs such as assignments and conditionals,
but sufficiently straightforward to be applied by tools, and yielding satisfactory
results in many practical cases.

The method appears general enough, covering most cases in which a program-
mer with a strong background in Hoare logic would be able at some effort to
derive the invariant, but a less experienced one would be befuddled. So it does
appear to fill what may be the biggest practical obstacle to automatic program
proving.

The method requires that the programmer (or a different person, the “proof
engineer”, complementing the programmer’s work, as testers traditionally do)
provide the postcondition for every routine. As has been discussed in Section 1,
we feel that this is a reasonable expectation for serious development, reflected in
the Design by Contract methodology. For some people, however, the very idea of
asking programmers or other members of a development team to come up with
contracts of any kind is unacceptable. With such an a priori assumption, the
results of this paper will be of little practical value; the only hope is to rely on
invariant inference techniques that require the program only (complemented, in
approaches such as Daikon, by test results and a repertoire of invariant patterns).

Some of the results that the present approach yields (sometimes trivially)
when it is applied manually, are not yet available through the tools used in the
current implementation of gin-pink. Although undecidability results indicate that
program proving will never succeed in all possible cases, it is fair to expect that
many of these limitations – such as those following from Z3’s current inability
to handle properties of products of variables – will go away as proof technology
continues to progress.

We believe that the results reported here can play a significant role in the effort
to make program proving painless and even matter-of-course. So in addition to
the obvious extensions – making sure the method covers all effective patterns
of postcondition mutation, and taking advantage of progress in theorem prover
technology – our most important task for the near future is to integrate the
results of this article, as unobtrusively as possible for the practicing programmer,
in the background of a verification environment for contracted object-oriented
software components.

Acknowledgements. A preliminary version of this work has been presented at the
IFIP TC2 WG 2.3 meeting in Lachen, Switzerland, March 2010. The authors
thank the attendees for their useful comments and criticism.

References

1. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis for

combined theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349,

pp. 378–394. Springer, Heidelberg (2007)

2. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,

D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings

of the 2003 ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI 2003), pp. 196–207. ACM, New York (2003)

Inferring Loop Invariants Using Postconditions 299

3. Böhme, S., Leino, K.R.M., Wolff, B.: HOL-Boogie — an interactive prover for the

Boogie program-verifier. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs

2008. LNCS, vol. 5170, pp. 150–166. Springer, Heidelberg (2008)

4. Boyer, R.S., Moore, J.S.: MJRTY: A fast majority vote algorithm. In: Automated

Reasoning: Essays in Honor of Woody Bledsoe, pp. 105–118 (1991)

5. Bozga, M., Habermehl, P., Iosif, R., Konečný, F., Vojnar, T.: Automatic verifi-

cation of integer array programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.

LNCS, vol. 5643, pp. 157–172. Springer, Heidelberg (2009)

6. Bradley, A.R., Manna, Z.: The Calculus of Computation. Springer, Heidelberg

(2007)

7. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-

son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.

Springer, Heidelberg (2005)

8. de Caso, G., Garbervetsky, D., Goŕın, D.: Reducing the number of annotations in a

verification-oriented imperative language. In: Proceedings of Automatic Program

Verification (2009)

9. Chang, B.Y.E., Leino, K.R.M.: Abstract interpretation with alien expressions and

heap structures. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 147–163.

Springer, Heidelberg (2005)

10. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using

non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.

LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

11. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Proceedings

of the 4th Annual ACM Symposium on Principles of Programming Languages

(POPL 1977), pp. 238–252 (1977)

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables

of a program. In: Proceedings of the 5th Annual ACM Symposium on Principles

of Programming Languages (POPL 1978), pp. 84–96 (1978)

13. Csallner, C., Tillman, N., Smaragdakis, Y.: DySy: dynamic symbolic execution for

invariant inference. In: Schäfer, W., Dwyer, M.B., Gruhn, V. (eds.) Proceedings

of the 30th International Conference on Software Engineering (ICSE 2008), pp.

281–290. ACM, New York (2008)

14. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs

(1976)

15. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering

likely program invariants to support program evolution. IEEE Transactions of Soft-

ware Engineering 27(2), 99–123 (2001)

16. Filliâtre, J.C.: The WHY verification tool (2009), version 2.18,

http://proval.lri.fr
17. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:

Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,

Heidelberg (2001)

18. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:

Extended static checking for Java. In: Proceedings of the 2002 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI’02).

SIGPLAN Notices, vol. 37(5), pp. 234–245. ACM, New York (2002)

19. Gries, D.: The science of programming. Springer, Heidelberg (1981)

20. Henzinger, T.A., Hottelier, T., Kovács, L., Voronkov, A.: Invariant and type infer-

ence for matrices. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS,

vol. 5944, pp. 163–179. Springer, Heidelberg (2010)

http://proval.lri.fr

300 C.A. Furia and B. Meyer

21. Janota, M.: Assertion-based loop invariant generation. In: Proceedings of the 1st

International Workshop on Invariant Generation, WING 2007 (2007)
22. Jean-Christophe Filliâtre, C.M.: The Why/Krakatoa/Caduceus platform for de-

ductive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007.

LNCS, vol. 4590, pp. 173–177. Springer, Heidelberg (2007)
23. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6,

133–151 (1976)

24. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a

theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,

pp. 470–485. Springer, Heidelberg (2009)

25. Lahiri, S.K., Qadeer, S., Galeotti, J.P., Voung, J.W., Wies, T.: Intra-module infer-

ence. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 493–508.

Springer, Heidelberg (2009)

26. Leino, K.R.M.: This is Boogie 2 (June 2008), (Manuscript KRML 178),

http://research.microsoft.com/en-us/projects/boogie/
27. Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order SMT

solvers. In: Shin, S.Y., Ossowski, S. (eds.) Proceedings of the 2009 ACM Symposium

on Applied Computing (SAC 2009), pp. 615–622. ACM Press, New York (2009)
28. Logozzo, F.: Automatic inference of class invariants. In: Steffen, B., Levi, G. (eds.)

VMCAI 2004. LNCS, vol. 2937, pp. 211–222. Springer, Heidelberg (2004)
29. Meyer, B.: A basis for the constructive approach to programming. In: Lavington,

S.H. (ed.) Proceedings of IFIP Congress 1980, pp. 293–298 (1980)

30. Meyer, B.: Object-oriented software construction, 2nd edn. Prentice-Hall, Engle-

wood Cliffs (1997)
31. Meyer, B.: Touch of Class: learning to program well with objects and contracts.

Springer, Heidelberg (2009)
32. Morgan, C.: Programming from Specifications, 2nd edn. Prentice-Hall, Englewood

Cliffs (1994)

33. Parberry, I., Gasarch, W.: Problems on Algorithms (2002),

http://www.eng.ent.edu/ian/books/free/
34. Păsăreanu, C.S., Visser, W.: Verification of Java programs using symbolic execu-

tion and invariant generation. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS,

vol. 2989, pp. 164–181. Springer, Heidelberg (2004)
35. Perkings, J.H., Ernst, M.D.: Efficient incremental algorithms for dynamic detection

of likely invariants. In: Taylor, R.N., Dwyer, M.B. (eds.) Proceedings of the 12th

ACM SIGSOFT International Symposium on Foundations of Software Engineering

(SIGSOFT 2004/FSE-12), pp. 23–32. ACM, New York (2004)

36. Polikarpova, N., Ciupa, I., Meyer, B.: A comparative study of programmer-written

and automatically inferred contracts. In: Proceedings of the ACM/SIGSOFT Inter-

national Symposium on Software Testing and Analysis (ISSTA 2009), pp. 93–104

(2009)
37. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple

loops. Journal of Symbolic Computation 42(4), 443–476 (2007)

38. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation

using Gröbner bases. In: Jones, N.D., Leroy, X. (eds.) Proceedings of the 31st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL

2004), pp. 318–329. ACM, New York (2004)

39. Schulte, W., Xia, S., Smans, J., Piessens, F.: A glimpse of a verifying C compiler

(extended abstract). In: C/C++ Verification Workshop (2007)
40. Tschannen, J.: Automatic verification of Eiffel programs. Master’s thesis, Chair of

Software Engineering, ETH Zürich (2009)

http://research.microsoft.com/en-us/projects/boogie/
http://www.eng.ent.edu/ian/books/free/

ASMs and Operational Algorithmic
Completeness of Lambda Calculus

Marie Ferbus-Zanda and Serge Grigorieff

LIAFA, CNRS & Université Paris Diderot,

Case 7014 75205 Paris Cedex 13

{ferbus,seg}@liafa.jussieu.fr
http://www.liafa.jussieu.fr/~seg/

Discussions with Yuri, during his many visits in Paris or Lyon, have
been a source of great inspiraton for the authors. We thank him for so
generously sharing his intuitions around the many faces of the notion of
algorithm.

Abstract. We show that lambda calculus is a computation model which

can step by step simulate any sequential deterministic algorithm for any

computable function over integers or words or any datatype. More for-

mally, given an algorithm above a family of computable functions (taken

as primitive tools, i.e., kind of oracle functions for the algorithm), for ev-

ery constant K big enough, each computation step of the algorithm can

be simulated by exactly K successive reductions in a natural extension

of lambda calculus with constants for functions in the above considered

family.

The proof is based on a fixed point technique in lambda calculus

and on Gurevich sequential Thesis which allows to identify sequential

deterministic algorithms with Abstract State Machines.

This extends to algorithms for partial computable functions in such

a way that finite computations ending with exceptions are associated to

finite reductions leading to terms with a particular very simple feature.

Keywords: ASM, lambda calculus, theory of algorithms, operational

semantics.

1 Introduction

1.1 Operational versus Denotational Completeness

Since the pioneering work of Church and Kleene, going back to 1935, many
computation models have been shown to compute the same class of functions,
namely, using Turing Thesis, the class of all computable functions. Such classes
are said to be Turing complete or denotationally algorithmically complete.

This is a result about crude input/output behaviour. What about the ways
to go from the input to the output, i.e., the executions of algorithms in each of

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 301–327, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.liafa.jussieu.fr/~seg/

302 M. Ferbus-Zanda and S. Grigorieff

these computation models? Do they constitute the same class? Is there a Thesis
for algorithms analog to Turing Thesis for computable functions?

As can be expected, denotational completeness does not imply operational
completeness. Clearly, the operational power of machines using massive paral-
lelism cannot be matched by sequential machines. For instance, on networks
of cellular automata, integer multiplication can be done in real time (cf. Atru-
bin, 1962 [1], see also Knuth, [21] p.394-399), whereas on Turing machines, an
Ω(n/ logn) time lower bound is known. Keeping within sequential computation
models, multitape Turing machines have greater operational power than one-
tape Turing machines. Again, this is shown using a complexity argument: palin-
dromes recognition can be done in linear time on two-tapes Turing machines,
whereas it requires computation time O(n2) on one-tape Turing machines (Hen-
nie, 1965 [18], see also [5,24]).

Though resource complexity theory may disprove operational algorithmic
completeness, there was no formalization of a notion of operational completeness
since the notion of algorithm itself had no formal mathematical modelization.
Tackled by Kolmogorov in the 50’s [20], the question for sequential algorithms
has been answered by Gurevich in the 80’s [11,12,13] (see [6] for a compre-
hensive survey of the question), with their formalization as “evolving algebras”
(now called “abstract state machines” or ASMs) which has lead to Gurevich’s
sequential Thesis.

Essentially, an ASM can be viewed as a first order multi-sorted structure and
a program which modifies some of its predicates and functions (called dynamic
items). Such dynamic items capture the moving environment of a procedural
program. The run of an ASM is the sequence of structures – also called states –
obtained by iterated application of the program. The program itself includes
two usual ingredients of procedural languages, namely affectation and the con-
ditional “if. . . then. . . else. . . ”, plus a notion of parallel block of instructions. This
last notion is a key idea which is somehow a programming counterpart to the
mathematical notion of system of equations.

Gurevich’s sequential Thesis [12,16,17] asserts that ASMs capture the notion
of sequential algorithm. Admitting this Thesis, the question of operational com-
pleteness for a sequential procedural computation model is now the comparison
of its operational power with that of ASMs.

1.2 Lambda Calculus and Operational Completeness

In this paper we consider lambda calculus, a subject created by Church and
Kleene in the 30’s, which enjoys a very rich mathematical theory. It may seem
a priori strange to look for operational completeness with such a computation
model so close to an assembly language (cf. Krivine’s papers since 1994, e.g.,
[22]). It turns out that, looking at reductions by groups (with an appropriate
but constant length), and allowing one step reduction of primitive operations,
lambda calculus simulates ASMs in a very tight way. Formally, our translation of
ASMs in lambda calculus is as follows. Given an ASM, we prove that, for every
integer K big enough (the least such K depending on the ASM), there exists a

ASMs and Operational Algorithmic Completeness of Lambda Calculus 303

lambda term θ with the following property. Let at
1, . . . , a

t
p be the values (coded

as lambda terms) of all dynamic items of the ASM at step t, if the run does not
stop at step t then

θat
1 . . . a

t
p

K reductions︷ ︸︸ ︷
→ · · · → θat+1

1 . . . at+1
p .

If the run stops at step t then the left term reduces to a term in normal form
which gives the list of outputs if they are defined. Thus, representing the state
of the ASM at time t by the term θat

1 . . . a
t
p, a group of K successive reductions

gives the state at time t+1. In other words, K reductions faithfully simulate one
step of the ASM run. Moreover, this group of reductions is that obtained by the
leftmost redex reduction strategy, hence it is a deterministic process. Thus, lambda
calculus is operationally complete for deterministic sequential computation.

Let us just mention that adding to lambda calculus one step reduction of
primitive operations is not an unfair trick. Every algorithm has to be “above”
some basic operations which are kind of oracles: the algorithm decomposes the
computation in elementary steps which are considered as atomic steps though
they obviously themselves require some work. In fact, such basic operations can
be quite complex: when dealing with integer matrix product (as in Strassen’s
algorithm in time O(nlog 7)), one considers integer addition and multiplication
as basic... Building algorithms on such basic operations is indeed what ASMs do
with the so-called static items, cf. §2.3, Point 2.

The proof of our results uses Curry’s fixed point technique in lambda calculus
plus some padding arguments.

1.3 Road Map

This paper deals with two subjects which have so far not been much related:
ASMs and lambda calculus. To make the paper readable to both ASM and
lambda calculus communities, Sect. 2, 3 recall all needed prerequisites in these
two domains (so that most readers may skip one of these two sections).

What is needed about ASMs is essentially their definition, but it cannot be
given without a lot of preliminary notions and intuitions. Our presentation of
ASMs in §2 differs in inessential ways from Gurevich’s one (cf. [13,15,17,10]).
Crucial in the subject (and for this paper) is Gurevich’s sequential Thesis that
we state in §2.2. We rely on the literature for the many arguments supporting
this Thesis.
§3 recalls the basics of lambda calculus, including the representation of lists

and integers and Curry fixed point combinator.
The first main theorem in §5.3 deals with the simulation in lambda calculus

of sequential algorithms associated to ASMs in which all dynamic symbols are
constant ones (we call them type 0 ASMs). The second main theorem in §5.4
deals with the general case.

304 M. Ferbus-Zanda and S. Grigorieff

2 ASMs

2.1 The Why and How of ASMs on a Simple Example

Euclid’s Algorithm Consider Euclid’s algorithm to compute the greatest common
divisor (gcd) of two natural numbers. It turns out that such a simple algorithm
already allows to pinpoint an operational incompleteness in usual programming
languages. Denoting by rem(u, v) the remainder of u modulo v, this algorithm
can be described as follows1

Given data: two natural numbers a, b
While b �= 0 replace the pair (a, b) by (b, rem(a, b))
When b = 0 halt: a is the wanted gcd

Observe that the the pair replacement in the above while loop involves some
elementary parallelism which is the algorithmic counterpart to co-arity, i.e., the
consideration of functions with range in multidimensional spaces such as the
N2 → N2 function (x, y) 	→ (y, rem(x, y)).

Euclid’s Algorithm in Pascal In usual programming languages, the above si-
multaneous replacement is impossible: affectations are not done in parallel but
sequentially. For instance, no Pascal program implements it as it is, one can
only get a distorted version with an extra algorithmic contents involving a new
variable z, cf. Figure 1.

Euclid’s algorithm in Pascal

while b > 0 do begin

z := a;
a := b;
b := rem (z, b);
end;

gcd := a.

Euclid’s algorithm in ASM

if 0 < b then

∣∣∣∣a := b
b := rem (a, b)

(In both programs, a, b are inputs and a is the output)

Fig. 1. Pascal and ASM programs for Euclid’s algorithm

An ASM for Euclid’s Algorithm Euclid’s algorithm has a faithful formalization
using an ASM. The vertical bar on the left in the ASM program (cf. Figure 1) tells
that the two updates are done simultaneously and independently. Initialization
gives symbols a, b the integer values of which we want to compute the gcd.
The semantical part of the ASM involves the set N of integers to interpret all
symbols. Symbols 0, <,=, rem have fixed interpretations in integers which are
the expected ones. Symbols a, b have varying interpretations in the integers. The
sequence of values taken by a, b constitutes the run of the ASM.

When the instruction gets void (i.e., when b is null) the run stops and the
value of the symbol a is considered to be the output.
1 Sometimes, one starts with a conditional swap: if a < b then a, b are exchanged. But

this is done in the first round of the while loop.

ASMs and Operational Algorithmic Completeness of Lambda Calculus 305

2.2 Gurevich Sequential Thesis

Yuri Gurevich has gathered as three Sequential Postulates (cf. [17,10]) some key
features of deterministic sequential algorithms for partial computable functions
(or type 1 functionals).

I (Sequential time). An algorithm is a deterministic state-transition system.
Its transitions are partial functions.
Non deterministic transitions and even nonprocedural input/output specifi-
cations are thereby excluded from consideration.

II (Abstract states). States are multitructures2, sharing the same fixed, finite
vocabulary. States and initial states are closed under isomorphism. Transi-
tions preserve the domain, and transitions and isomorphisms commute.

III (Bounded exploration). Transitions are determined by a fixed finite “glos-
sary” of “critical” terms. That is, there exists some finite set of (variable-
free) terms over the vocabulary of the states such that states that agree on
the values of these glossary terms also agree on all next-step state changes.

Gurevich, 2000 [17], stated an operational counterpart to Church’s Thesis:

Thesis. [Gurevich’s sequential Thesis] Every sequential algorithm satisfies the
Sequential Postulates I-III.

2.3 The ASM Modelization Approach

Gurevich’s postulates lead to the following modelization approach (we depart in
non essential ways from [10], see Remark 2.1).

1. The base sets. Find out the underlying families of objects involved in the
given algorithm, i.e., objects which can be values for inputs, outputs or
environmental parameters used during the execution of the algorithm. These
families constitute the base sets of the ASM. In Euclid’s algorithm, a natural
base set is the set N of natural integers.

2. Static items. Find out which particular fixed objects in the base sets are con-
sidered and which functions and predicates over/between the base sets are
viewed as atomic in the algorithm, i.e., are not given any modus operandi.
Such objects, functions and predicates are called the primitive or static items
of the ASM. They do not change value through transitions. In Euclid’s algo-
rithm, static items are the integer 0, the rem function and the < predicate.

3. Dynamic items. Find out the diverse objects, functions and predicates over
the base sets of the ASM which vary through transitions. Such objects,
functions and predicates are called the dynamic items of the ASM. In Euclid’s
algorithm, these are a, b.

4. States: from a multi-sorted partial structure to a multi-sorted partial algebra.
Collecting all the above objects, functions and predicates leads to a first-
order multi-sorted structure of some logical typed language: any function

2 In ASM theory, an ASM is, in fact, a multialgebra (cf. point 1 of Remark §2.1).

306 M. Ferbus-Zanda and S. Grigorieff

goes from some product of sorts into some sort, any predicate is a relation
over some sorts. However, there is a difference with the usual logical notion
of multi-sorted structure: predicates and functions may be partial. A feature
which is quite natural for any theory of computability, a fortiori for any
theory of algorithms.

To such a multi-sorted structure one can associate a multi-sorted algebra
as follows. First, if not already there, add a sort for Booleans. Then replace
predicates by their characteristic functions In this way, we get a multi-sorted
structure with partial functions only, i.e. a multialgebra.

5. Programs. Finally, the execution of the algorithm can be viewed as a se-
quence of states. Going from one state to the next one amounts to applying to
the state a particular program – called the ASM program – which modifies
the interpretations of the sole dynamic symbols (but the universe itself and
the interpretations of the static items remain unchanged). Thus, the execu-
tion of the algorithm appears as an iterated application of the ASM program.
It is called the run of the ASM.

Using the three above postulates, Gurevich [16,17] proves that quite ele-
mentary instructions – namely blocks of parallel conditional updates – suffice
to get ASM programs able to simulate step by step any deterministic proce-
dural algorithm.

6. Inputs, initialization map and initial state. Inputs correspond to the values
of some distinguished static symbols in the initial state, i.e., we consider
that all inputs are given when the algorithm starts (though questionable
in general, this assumption is reasonable when dealing with algorithms to
compute a function). All input symbols have arity zero for algorithms com-
puting functions. Input symbols with non zero arity are used when dealing
with algorithms for type 1 functionals.

The initialization map associates to each dynamic symbol a term built
up with static symbols. In an initial state, the value of a dynamic symbol is
required to be that of the associated term given by the initialization map.

7. Final states and outputs. There may be several outputs, for instance if the
algorithm computes a function Nk → N� with � ≥ 2.
A state is final when, applying the ASM program to that state,
(a) either the Halt instruction is executed (Explicit halting),
(b) or no update is made (i.e. all conditions in conditional blocks of updates

get value False) (Implicit halting) .
In that case, the run stops and the outputs correspond to the values of
some distinguished dynamic symbols. For algorithms computing functions,
all output symbols are constants (i.e. function symbols with arity zero).

8. Exceptions. There may be a finite run of the ASM ending in a non final state.
This corresponds to exceptions in programming (for instance a division by
0) and there is no output in such cases. This happens when
(a) either the Fail instruction is executed (Explicit failing),
(b) or there is a clash between two updates which are to be done simultane-

ously (Implicit failing).

ASMs and Operational Algorithmic Completeness of Lambda Calculus 307

Remark 2.1. Let us describe how our presentation of ASMs (slightly) departs
from [10].

1. We stick to what Gurevich says in §.2.1 of [14] (Lipari Guide, 1993): “Actually,
we are interested in multi-sorted structures with partial operations”. Thus, we
do not regroup sorts into a single universe and do not extend functions with the
undef element.
2. We add the notion of initialization map which brings a syntactical counterpart
to the semantical notion of initial state. It also rules out any question about the
status of initial values of dynamic items which would not be inputs.
3. We add explicit acceptance and rejection as specific instructions in ASM
programs. Of course, they can be simulated using the other ASM instructions
(so, they are syntactic sugar) but it may be convenient to be able to explicitly
tell there is a failure when something like a division by zero is to be done. This
is what is done in many programming languages with the so-called exceptions.
Observe that Fail has some common flavor with undef. However, Fail is relative
to executions of programs whereas undef is relative to the universe on which the
program is executed.
4. As mentioned in §2.1, considering several outputs goes along with the idea of
parallel updates.

2.4 Vocabulary and States of an ASM

ASM vocabularies and ASM states correspond to algebraic signatures and al-
gebras. The sole difference is that an ASM vocabulary comes with an extra
classification of its symbols as static, dynamic, input and output carrying the
intuitions described in points 2, 3, 6, 7 of §2.3.

Definition 2.2. 1. An ASM vocabulary is a finite family of sorts s1, . . . , sm

and a finite family L of function symbols with specified types of the form si or
si1 × · · · × sik

→ si (function symbols with type si are also called constants of
type si). Four subfamilies of symbols are distinguished:

Lsta (static symbols) , I (input symbols)
Ldyn (dynamic symbols) , O (output symbols)

such that Lsta,Ldyn is a partition of L and I ⊆ Lsta and O ⊆ Ldyn. We also
require that there is a sort to represent Booleans and that Lsta contains symbols
to represent the Boolean items (namely symbols True, False, ¬, ∧, ∨) and, for
each sort s, a symbol =s to represent equality on sort s.

2. Let L be an ASM vocabulary with n sorts. An L-state is any n-sort multialge-
bra S for the vocabulary L. The multi-domain of S is denoted by (U1, . . . ,Um).
We require that

i. one of the Ui’s is Bool with the expected interpretations of symbols True,
False,s ¬, ∧, ∨,

ii. the interpretation of the symbol =i is usual equality in the interpretation Ui

of sort si.

308 M. Ferbus-Zanda and S. Grigorieff

In the usual way, using variables typed by the n sorts of L, one constructs typed
L-terms and their types. The type of a term t is of the form si or si1×· · ·×sik

→
si where si1 , . . . , sik

are the types of the different variables occurring in t. Ground
terms are those which contain no variable. The semantics of typed terms is the
usual one.

Definition 2.3. Let L be an ASM vocabulary and S an ASM L-state. Let t be
a typed term with type si1 × · · · × si1 → si. We denote by tS its interpretation
in S, which is a function Ui1 × · · · × Ui�

→ Ui. In case � = 0, i.e., no variable
occurs, then tS is an element of Ui.

It will be convenient to lift the interpretation of a term with � variables to be a
function with any arity k greater than �.

Definition 2.4. Let L be an ASM vocabulary and S an ASM L-state with uni-
verse U . Suppose σ : {1, . . . , �} → {1, . . . , p} is any map and τ : {1, . . . , p} →
{1, . . . ,m} is a distribution of (indexes of) sorts. Suppose t is a typed term of type
sτ(σ(1))×· · ·× sτ(σ(�)) → si. We let tτ,σ

S be the function Usτ(1) ×· · ·×Usτ(p) → Ui

such that, for all (a1, · · · , ap) ∈ Usτ(1) × · · · × Usτ(p) ,

tτ,σ
S (a1, · · · , ak) = tS(aσ(1), · · · , aσ(�)) .

2.5 Initialization Maps

L-terms with no variable are used to name particular elements in the universe U
of an ASM whereas L-terms with variables are used to name particular functions
over U .

Using the lifting process described in Definition 2.4, one can use terms con-
taining less than k variables to name functions with arity k.

Definition 2.5. 1, Let L be an ASM vocabulary. An L-initialization map ξ has
domain family L(dyn) of dynamic symbols and satisfies the following condition:

if α is a dynamic function symbol with type sτ(1) × · · · × sτ(�) → si then
ξ(α) is a pair (σ, t) such that σ : {1, . . . , �} → {1, . . . , p} and t is a typed
L-term with type sτ(σ(1))× · · ·× sτ(σ(�)) → si which is built with the sole
static symbols (with τ : {1, . . . , p} → {1, . . . ,m}).

2. Let ξ be an L-initialization map. An L-state S is ξ-initial if, for any dynamic
function symbol α, if ξ(α) = (σ, t) then the interpretation of α in S is tτ,σ

S .

3. An L-state is initial if it is ξ-initial for some ξ.

Remark 2.6. Of course, the values of static symbols are basic ones, they are
not to be defined from anything else: either they are inputs or they are the
elementary pieces upon which the ASM algorithm is built.

ASMs and Operational Algorithmic Completeness of Lambda Calculus 309

2.6 ASM Programs

Definition 2.7. 1. The vocabulary of ASM programs is the family of symbols

{Skip , Halt , Fail , := ,

∣∣∣∣ , if . . . then . . . else . . .}

2. (L-updates). Given an ASM vocabulary L, a sequence of k+1 ground typed L-
terms t1, . . . , tk, u (i.e. typed terms with no variable), a dynamic function symbol
α, if α(t1, . . . , tk) is a typed L-term with the same type as u then the syntactic
object α(t1, . . . , tk) := u is called an L-update.

3. (L-programs). Given an ASM vocabulary L, the L programs are obtained via
the following clauses.

i. (Atoms). Skip, Halt, Fail and all L-updates are L-programs.
ii. (Conditional constructor). Given a ground typed term C with Boolean type

and two L-programs P,Q, the syntactic object

if C then P else Q

is an L-program.
iii. (Parallel block constructor). Given n ≥ 1 and L-programs P1, . . . , Pn, the

syntactic object (with a vertical bar on the left)∣∣∣∣∣∣∣
P1

...
Pn

is an L-program.

The intuition of programs is as follows.

– Skip is the program which does nothing. Halt halts the execution in a suc-
cessful mode and the outputs are the current values of the output symbols.
Fail also halts the execution but tells that there is a failure, so that there
is no meaningful output.

– Updates modify the interpretations of dynamic symbols, they are the basic
instructions. The left member has to be of the form α(· · ·) with α a dynamic
symbol because the interpretations of static symbols do not vary.

– The conditional constructor has the usual meaning whereas the parallel con-
structor is a new control structure to get simultaneous and independent ex-
ecutions of programs P1, . . . , Pn.

2.7 Action of an L-Program on an L-State

Active Updates and Clashes. In a program the sole instructions which have
some impact are updates. They are able to modify the interpretations of dynamic
symbols on the sole tuples of values which can be named by tuples of ground
terms. Due to conditionals, not every update occurring in a program will really
be active. it does depend on the state to which the program is applied. Which
symbols on which tuples are really active and what is their action? This is the
object of the next definition.

310 M. Ferbus-Zanda and S. Grigorieff

Definition 2.8 (Active updates). Let L be an ASM vocabulary, P an L-
program and S an L-state. Let Update(P) be the family of all updates occurring
in P . The subfamily Active (S, P) ⊆ Update(P) of so-called (S, P)-active up-
dates is defined via the following induction on P :

Active (S, Skip) = ∅
Active (S, α(t1, . . . , tk) := u) = {α(t1, . . . , tk) := u}

Active (S, if C then Q else R) =

⎧⎨⎩
Active (S, Q) if CS = True
Active (S, R) if CS = False
∅ if CS /∈ Bool

Active (S,

∣∣∣∣∣∣∣
P1

...
Pn

) = Active (S, P1) ∪ . . . ∪ Active (S, Pn)

The action of a program P on a state S is to be seen as the conjunction of updates
in Active (S, P) provided these updates are compatible. Else, P clashes on S.

Definition 2.9. An L-program P clashes on an L-state S if there exists two
active updates α(s1, . . . , sk) := u and α(t1, . . . , tk) := v in Active (S, P) rela-
tive to the same dynamic symbol α such that s1S = t1S , . . . , skS = tkS but uS
and vS are not equal (as elements of the universe).

Remark 2.10. A priori, another case could also be considered as a clash. We
illustrate it for a parallel block of two programs P,Q and the update of a dy-
namic constant symbol c. Suppose cS �= uS and c := u is an active update in
Active (S, P). Then P wants to modify the value of cS . Suppose also that there

is no active update with left member c in Active (S, Q). Then Q does not want
to touch the value of cS . Thus, P and Q have incompatible actions: P modifies
the interpretation of c whereas Q does nothing about c. One could consider this

as a clash for the parallel program
∣∣∣∣PQ . Nevertheless, this case is not considered

to be a clash. A moment reflection shows that this is a reasonable choice. Other-
wise, a parallel block would always clash except in case all programs P1, . . . , Pn

do exactly the same actions... Which would make parallel blocks useless.

Halt and Fail

Definition 2.11. Let L be an ASM vocabulary, S be an L-state and P an L-
program. By induction, we define the two notions: P halts (resp. fails) on S.

– If P is Skip or an update then P neither halts nor fails on S.
– If P is Halt (resp. Fail) then P halts and does not fail (resp. fails and does

not halt) on S.
– if C then Q else R halts on S if and only if{

either CS = True and Q halts on S
or CS = False and R halts on S

ASMs and Operational Algorithmic Completeness of Lambda Calculus 311

– if C then Q else R fails on S if and only if{
either CS = True and Q fails on S
or CS = False and R fails on S .

– The parallel block of programs P1, . . . , Pn halts on S if and only if some Pi

halts on S and no Pj fails on U .
– The parallel block of programs P1, . . . , Pn. fails on S if and only if some Pi

fails on S.

Successor State

Definition 2.12. Let L be an ASM vocabulary and S be an L-state.
The successor state T = Succ(S, P) of state S relative to an L-program P is

defined if only if P does not clash nor fail nor halt on S.
In that case, the successor is inductively defined via the following clauses.

1. T = Succ(S, P) and S have the same base sets U1, . . . ,Un.
2. αT = αS for any static symbol α.

3a. Succ(S, Skip) = S (recall that Skip does nothing. . . .)
3b. Suppose P is an update program α(t1, . . . , tk) := u where α is a dynamic

symbol with type si1 × · · · × sik
→ si and a = (t1S , . . . , tkS). Then all

dynamic symbols different from α have the same interpretation in S and T
and, for every b ∈ Ui1 × · · · × Uik

, we have αT (b) =
{
αS(b) if b �= a
uS if b = a

.

3c. Suppose P is the conditional program if C then Q else R. Then{
Succ(S, P) = Succ(S, Q) if CS = True
Succ(S, P) = Succ(S, R) if CS = False

(since P does not fail on S, we know that CS is a Boolean).

3d Suppose P is the parallel block program

∣∣∣∣∣∣∣
P1

...
Pn

and P does not clash on S.

Then T = Succ(S, P) is such that, for every dynamic symbol α with type
si1 × · · · × sik

→ si and every tuple a = (a1, . . . , ak) in Ui1 × · · · × Uik
,

– if there exists an update α(t1, . . . , tk) := u in Active (S, P) such that
a = (t1S , . . . , tkS) then α(a)T is the common value of all vS for which
there exists some update α(s1, . . . , sk) := v in Active (S, P) such that
a = (s1S , . . . , skS).

– Else α(a)T = α(a)S .

Remark 2.13. In particular, αT (a) and αS(a) have the same value in case a =
(a1, . . . , ak) is not the value in S of any k-tuple of ground terms (t1, . . . , tk) such
that Active (S, P) contains an update of the form α(t1, . . . , tk) := u for some
ground term u.

312 M. Ferbus-Zanda and S. Grigorieff

2.8 Definition of ASMs and ASM Runs

At last, we can give the definition of ASMs and ASM runs.

Definition 2.14. 1. An ASM is a triple (L, P, (ξ,J)) (with two morphological
components and one semantico-morphological component) such that:

– L is an ASM vocabulary as in Definition 2.2,
– P is an L-program as in Definition 2.7,
– ξ is an L-initialization map and J is a ξ-initial L-state as in Definition 2.5.

An ASM has type 0 if all its dynamic symbols have arity 0 (i.e., they are con-
stants).

2. The run of an ASM (L, P, (ξ,J)) is the sequence of states (Si)i∈I indexed by a
finite or infinite initial segment I of N which is uniquely defined by the following
conditions:

– S0 is J .
– i + 1 ∈ I if and only if P does not clash nor fail nor halt on Si and

Active (Si, P) �= ∅ (i.e. there is an active update3).
– If i+ 1 ∈ I then Si+1 = Succ(Si, P).

3. Suppose I is finite and i is the maximum element of I.
The run is successful if Active (Si, P) is empty or P halts on Si. In that

case the outputs are the interpretations on Si of the output symbols.
The run fails if P clashes or fails on Si. In that case the run has no output.

Remark 2.15. In case Active (Si, P) �= ∅ and P does not clash nor fail nor halt
on Si and Si = Si+1 (i.e., if the active updates do not modify Si) then the run
is infinite: Sj = Si for every j > i.

2.9 Operational Completeness: The ASM Theorem

Let us now state the fundamental theorem of ASMs.

Theorem 2.16 (ASM Theorem, 1999 [16,17], cf. [10]). Every process sat-
isfying the Sequential Postulates (cf. §2.2) can be emulated by an ASM with the
same vocabulary, sets of states and initial states.

In other words, using Gurevich Sequential Thesis 2.2, every sequential algorithm
can be step by step emulated by an ASM with the same values of all environ-
ment parameters. I.e., ASMs are operationally complete as concerns sequential
algorithms.

The proof of the ASM Theorem also shows that ASM programs of a remark-
ably simple form are sufficient.

3 Nevertheless, it is possible that Si and Succ(Si, P) coincide, cf. Remark 2.15.

ASMs and Operational Algorithmic Completeness of Lambda Calculus 313

Definition 2.17. Let L be an ASM vocabulary. Two ASM L-programs P,Q are
equivalent if, for every L-initialization map ξ and every ξ-initial state J , the
two ASMs (L, P, (ξ,J)) and (L, Q, (ξ,J)) have exactly the same runs.

Theorem 2.18 (Gurevich, 1999 [16]). Every ASM program is equivalent to
a program which is a parallel block of conditional blocks of updates, halt or fail
instructions, namely a program of the form:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if C1 then

∣∣∣∣∣∣∣
I1,1

...
I1,p1

...

if Cn then

∣∣∣∣∣∣∣
In,1

...
In,pn

where the Ii,j ’s are updates or Halt or Fail and the interpretations of C1,. . . ,
Cn in any state are Booleans such that at most one of them is True.

Proof. For Skip, Halt, Fail consider an empty parallel block. For an update or
Halt or Fail consider a block of one conditional with a tautological condition.
Simple Boolean conjunctions allow to transform a conditional of two programs
of the wanted form into the wanted form. The same for parallel blocks of such
programs. �

3 Lambda Calculus

As much as possible, our notations are taken from Barendregt’s book [3] (which
is a standard reference on Λ-calculus).

3.1 Lambda Terms

Recall that the family Λ of λ-terms of the Λ-calculus is constructed from an
infinite family of variables via the following rules:

1. Any variable is a λ-term.
2. (Abstraction) If x is a variable and M is a λ-term then λx . M is a λ-term.
3. (Application) If M,N are λ-terms then (M N) is a λ-term.

Free and bound occurrences of a variable in a λ-term are defined as in logical
formulas, considering that abstraction λx . M bounds x in M .

One considers λ-terms up to a renaming (called α-conversion) of their bound
variables. In particular, one can always suppose that, within a λ-term, no variable
has both free occurrences and bound occurrences and that any two abstractions
involve distinct variables.

To simplify notations, it is usual to remove parentheses in terms, according
to the following conventions:

314 M. Ferbus-Zanda and S. Grigorieff

– applications associate leftwards: in place of (· · · ((N1 N2) N3) · · · Nk) we
write N1N2N3 · · ·Nk,

– abstractions associate rightwards: λx1 . (λx2 . (· · · . (λxk.M) · · ·)) is written
λx1 · · ·xk . M .

3.2 β-Reduction

Note 3.1. Symbols := are used for updates in ASMs and are also commonly used
in Λ-calculus to denote by M [x := N] the substitution of all occurrences of a
variable x in a term M by a term N . To avoid any confusion, we shall rather
denote such a substitution by M [N/x].

Decorated rules of reduction in Λ-calculus

(Id) M →0 M (λx.M) N →1 M [N/x] (β)

(App)
M →i M

′

MN →i M
′N

N →i N
′

MN →i MN ′
M →i M

′

(λx.M) →i λx.M
′ (Abs)

Fig. 2. Reductions with decorations

The family of λ-terms is endowed with a reducibility relation, called β-reduction
and denoted by →.

Definition 3.2. 1. Let P be a λ-term. A subterm of P the form (λx.M)N is
called a β-redex (or simply redex) of P . Going from P to the λ-term Q obtained
by substituting in P this redex by M [N/x] (i.e., substituting N to every free
occurrence of x in M) is called a β-reduction and we write P → Q .

2. The iterations →i of → and the reflexive and transitive closure � are defined
as follows:

→0 = {(M,M) |M}
→i+1 = →i ◦ → (so that → = →1)

= {(M0,Mi) | ∃M1, . . . ,Mi |M0 →M1 → · · · →Mi →Mi+1}
� =

⋃
i∈N

→i

These reduction relations are conveniently expressed via axioms and rules (cf.
Figure 1): the schema of axioms (β) gives the core transformation whereas rules
(App) and (Abs) insure that this can be done for subterms.

Relations →i are of particular interest to analyse the complexity of the simula-
tion of one ASM step in Λ-calculus. Observe that axioms and rules for→ extend
to �.

3.3 Normal Forms

Definition 3.3. 1. A λ-term M is in normal form if it contains no redex.

ASMs and Operational Algorithmic Completeness of Lambda Calculus 315

2. A λ-term M has a normal form if there exists some term N in normal form
such that M � N .

Remark 3.4. There are terms with no normal form. The classical example is
Ω = ΔΔ where Δ = λx . xx. Indeed, Ω is a redex and reduces to itself.

In a λ-term, there can be several subterms which are redexes, so that iterating→
reductions is a highly non deterministic process. Nevertheless, going to normal
form is a functional process.

Theorem 3.5 (Church-Rosser [7], 1936). The relation � is confluent: if
M � N ′ and M � N ′′ then there exists P such that N ′ � P and N ′′ � P . In
particular, there exists at most one term N in normal form such that M � N .

Remark 3.6. Theorem 3.5 deals with � exclusively: relation→i is not confluent
for any i ≥ 1.

A second fundamental property is that going to normal form can be made a
deterministic process.

Definition 3.7. Let R′, R′′ be two occurrences of redexes in a term P . We say
that R′ is left to R′′ if the first lambda in R′ is left to the first lambda in R′′ (all
this viewed in P). If terms are seen as labelled ordered trees, this means that the
top lambda in R′ is smaller than that in R′′ relative to the prefix ordering on
nodes of the tree P .

Theorem 3.8 (Curry & Feys [9], 1958). Reducing the leftmost redex of
terms not in normal form is a deterministic strategy which leads to the nor-
mal form if there is some.

In other words, if M has a normal form N then the sequence M = M0 →
M1 →M2 → · · · where each reduction Mi →Mi+1 reduces the leftmost redex in
Mi (if Mi is not in normal form) is necessarily finite and ends with N .

3.4 Lists in Λ-Calculus

We recall the usual representation of lists in Λ-calculus with special attention to
decoration (i.e., the number of β-reductions in sequences of reductions).

Proposition 3.9. Let 〈u1, . . . , uk〉 = λz . zu1 . . . uk and, for i = 1, . . . , k, let
πk

i = λx1 . . . xk . xi. Then 〈u1, . . . , uk〉 πk
i →1+k ui.

Moreover, if all ui’s are in normal form then so is 〈u1, . . . , uk〉 and these
reductions are deterministic: there exists a unique sequence of reductions from
〈u1, . . . , uk〉 to ui.

3.5 Booleans in Λ-Calculus

We recall the usual representation of Booleans in Λ-calculus.

316 M. Ferbus-Zanda and S. Grigorieff

Proposition 3.10. Boolean elements True, False and usual Boolean functions
can be represented by the following λ-terms, all in normal form:

�True� = λxy.x
�False� = λxy.y

neg = λx . x�False� �True�
and = λxy . xy�False�
or = λxy . x �True� y

implies = λxy . xy�True�
iff = λxy . xy(�¬�y)

For a, b ∈ {True, False}, we have neg �a�→ �¬a�, and �a� �b� � �afb�,. . . .
Proposition 3.11 (If Then Else). For all terms M,N ,

(λz . zMN) �True�→2 M , (λz . zMN) �False� →2 N .

We shall use the following version of iterated conditional.

Proposition 3.12. For every n ≥ 1 there exists a term Casen such that, for all
normal terms M1, . . . ,Mn and all t1, . . . , tn ∈ {�True�, �False�},

Casen M1 . . .Mn t1 . . . tn →3n Mi

relative to leftmost reduction in case ti = �True� and ∀j < i tj = �False�.
Proof. Let ui = yi(λxi+1 . I) . . . (λxn . I), set

Casen = λy1 . . . ynz1 . . . zn . z1u1(z2u2(. . . (zn−1un−1(znunI)) . . .))

and observe that, for leftmost reduction, letting M ′
i = ui[Mi/yi],

Casen M1 . . .Mn t1 . . . tn →2n t1M
′
1(t2M

′
2(. . . (tn−1M

′
n−1(tnM

′
nI)) . . .))

→i M ′
i

→n−i Mi. ��

3.6 Integers in Λ-Calculus

There are several common representations of integers in Λ-calculus. We shall
consider a slight variant of the standard one (we choose another term for �0�),
again with special attention to decoration.

Proposition 3.13. Let

�0� = λz . z�True��False�
�n+ 1� = 〈�False�, �n�〉 = λz . z�False��n�

Zero = λx . x�True�
Succ = λz . 〈�False�, z〉
Pred = λz . x�False�

The above terms are all in normal form and

Zero�0�→3 �True�
Zero�n+ 1� →3 �False� ,

Succ�n�→3 �n+ 1�
Pred�n+ 1� →3 �n�

Pred�0�→3 �False�
.

Moreover, all these reductions are deterministic.

ASMs and Operational Algorithmic Completeness of Lambda Calculus 317

Remark 3.14. The standard definition sets �0� = λx . x. Observe that
Zero(λx . x) →2 �True�. The chosen variant of �0� is to get the same deco-
ration (namely 3) to go from Zero�0� to �True� and to go from Zero�n+ 1� to
�False�.

Let us recall Kleene’s fundamental result.

Theorem 3.15 (Kleene, 1936). For every partial computable function f :
Nk → N there exists a λ-term M such that, for every tuple (n1, · · · , nk),

– M�n1� · · · �nk� admits a normal form (i.e., is � reducible to a term in
normal form) if and only if (n1, · · · , nk) is in the domain of f ,

– in that case, M�n1� · · · �nk� � �f(n1, · · · , nk)� (and, by Theorem 3.5, this
normal form is unique).

3.7 Datatypes in Λ-Calculus

We just recalled some representations of Booleans and integers in Λ-calculus. In
fact, any inductive datatype can also be represented. Using computable quoti-
enting, this allows to also represent any datatype used in algorithms.

Though we will not extend on this topic, let us recall Scott encoding of in-
ductive datatypes in the Λ-calculus (cf. Mogensen [23]).

1. If the inductive datatype has constructors ψ1, . . . , ψp having arities
k1, . . . , kp, constructor ψi is represented by the term

λx1 . . . xkiα1 . . . αp . αix1 . . . xki .

In particular, if ψi is a generator (i.e., an arity 0 constructor) then it is
represented by the projection term λα1 . . . αp . αi.
2. An element of the inductive datatype is a composition of the con-
structors and is represented by the similar composition of the associated
λ-terms.

Extending the notations used for Booleans and integers, we shall also denote by
�a� the λ-term representing an element a of a datatype.

Scott’s representation of inductive datatypes extends to finite families of
datatypes defined via mutual inductive definitions. It suffices to endow construc-
tors with types and to restrict compositions in point 2 above to those respecting
constructor types.

3.8 Lambda Calculus with Benign Constants

We consider an extension of the lambda calculus with constants to represent
particular computable functions and predicates. Contrary to many λδ-calculi
(Church λδ-calculus, 1941 [8], Statman, 2000 [26], Ronchi Della Rocca, 2004
[25], Barendregt & Statman, 2005 [4]), this adds no real additional power: it
essentially allows for shortcuts in sequences of reductions. The reason is that
axioms in Definition 3.16 do not apply to all terms but only to codes of elements
in datatypes.

318 M. Ferbus-Zanda and S. Grigorieff

Definition 3.16. Let F be a family of functions with any arities over some
datatypes A1, . . . , An. The ΛF-calculus is defined as follows:

– The family of λF-terms is constructed as in §3.1 from the family of variables
augmented with constant symbols: one constant cf for each f ∈ F.

– The axioms and rules of the top table of Figure 2 are augmented with the
following axioms: if f : Ai1×· · ·×Aik

→ Ai is in F then, for all (a1, · · · , ak) ∈
Ai1 × · · · ×Aik

,

(Axf) cf �a1� · · · �ak� → �f(a1, · · · , ak)� .

Definition 3.17. 1. We denote by →β the classical β-reduction (with the con-
textual rules (Abs), (App)) extended to terms of ΛF.
2. We denote by →F the reduction given by the sole (Axf)-axioms and the con-
textual rules (Abs), (App).
3. We use double decorations: M →i,j N means that there is a sequence con-
sisting of i β-reductions and j F-reductions which goes from t to u.

The Church-Rosser property still holds.

Proposition 3.18. The ΛF-calculus is confluent (cf. Theorem 3.5).

Proof. Theorem 3.5 insures that �β is confluent. It is immediate to see that any
two applications of the F axioms can be permuted: this is because two distinct
F-redexes in a term are always disjoint subterms. Hence→F is confluent. Observe
that � is obtained by iterating finitely many times the relation �β ∪ →F. Using
Hindley-Rosen Lemma (cf. Barendregt’s book [3], Proposition 3.3.5, or Hankin’s
book [19], Lemma 3.27), to prove that � is confluent, it suffices to prove that
�β and →F commute. One easily reduces to prove that →β and →F commute,
i.e.,

∃P (M →β P →F N) ⇐⇒ ∃Q (M →F Q →β N) .

Any length two such sequence of reductions involves two redexes in the term M :
a β-redex R = (λx . A)B and a F-redex C = c �a1� · · · �ak�. There are three
cases: either R and C are disjoint subterms of M or C is a subterm of A or C is
a subterm of B. Each of these cases is straightforward. �

We adapt the notion of leftmost reduction in the ΛF-calculus as follows.

Definition 3.19. The leftmost reduction in ΛF reduces the leftmost F-redex if
there is some else it reduces the leftmost β-redex.

3.9 Good F-Terms

To functions which can be obtained by composition from functions in F we
associate canonical terms in ΛF and datatypes. These canonical terms are called
good F-terms, they contain no abstraction, only constant symbols cf , with f ∈ F,
and variables.

ASMs and Operational Algorithmic Completeness of Lambda Calculus 319

Problem 3.20. We face a small problem. Functions in F are to represent static
functions of an ASM. Such functions are typed whereas ΛF is an untyped lambda
calculus. In order to respect types when dealing with composition of functions
in F, the definition of good F-terms is done in two steps: the first step involves
typed variables and the second one replaces them by untyped variables.

Definition 3.21. 1. Let A1, . . . , An be the datatypes involved in functions of the
family F. Consider typed variables xAi

j where j ∈ N and i = 1, . . . , n. The family
of pattern F-terms, their types and semantics are defined as follows: Let f ∈ F

be such that f : Ai1 × · · · ×Aik
→ Aq.

– If xAi1
j1

, . . . , x
Aik

jk
are typed variables then the term cf x

Ai1
j1

. . . x
Aik

jk
is a pattern

F-term with type Ai1 × · · · ×Aik
→ Aq and semantics [[cf x

Ai1
j1

. . . x
Aik

jk
]] = f .

– For j = 1, . . . , k, let tj be a pattern F-term with datatype Aj or a typed
variable x

Aj

i . Suppose the term t = cf t1 · · · tk contains exactly the typed
variables xAi

j for (i, j) ∈ I and, for � = 1, . . . , k, the term t� contains exactly
the typed variables xAi

j for (i, j) ∈ Ij ⊆ I.
Then the term cf t1 · · · tk is a pattern F-term with type

∏
i∈I Ai → Aq and

a semantics [[cf t1 · · · tk]] such that, for every tuple (ai)i∈I ∈
∏

i∈I Ai,

[[t]]((ai)i∈I) = f([[t1]]((ai)i∈I1)), . . . , [[tk]]((ak)i∈Ik
))) .

2. Good F-terms are obtained by substituting in a pattern F-term untyped vari-
ables to the typed variables so that two distinct typed variables are substituted by
two distinct untyped variables.

The semantics of good F-terms is best illustrated by the following example: the
function h associated to the term cg(chy)x(cgzzx) is the one given by equality
f(x, y, z) = g(h(y), x, g(z, z, x)) which corresponds to Figure 3.9.

g

g

xzz

xh

y

Fig. 3. Composition tree

The reason for the above definition is the following simple result about reduc-
tions of good terms obtained via substitutions. It is proved via a straightforward
induction on good F-terms and will be used in §4.3, 4.4

320 M. Ferbus-Zanda and S. Grigorieff

Proposition 3.22. Let t be a good F-term with k variables y1, . . . , yk such that
[[t]] = f : Ai1×· · ·×Aik

→ Aq. Let N be the number of nodes of the tree associated
to the composition of functions in F giving f (cf. Figure 3.9).

There exists Lt = O(N) such that, for every (a1, . . . , ak) ∈ Ai1 × · · · ×Aik
,

t[�a1�/y1, . . . , �ak�/yk] �F �f(a1, . . . , ak)�
and, using the leftmost reduction strategy, this sequence of reductions consists of
exactly Lt F-reductions.

4 Variations on Curry’s Fixed Point
4.1 Curry’s Fixed Point

Let us recall Curry’s fixed point.

Definition 4.1. The Curry operator ϕ 	→ θϕ on λ-terms is defined as follows

θF = (λx . F (xx))(λx . F (xx)) .

Theorem 4.2 (Curry’s fixed point). For every λ-term F , θF → FθF .

Proof. One β-reduction suffices: θF is of the form XX and is itself a redex (since
X is an abstraction) which β-reduces to F (XX), i.e., to FθF . �

4.2 Padding Reductions

We show how to pad leftmost reduction sequences so as to get prescribed num-
bers of β and F-reductions.

Lemma 4.3 (Padding lemma). Suppose that F contains some function ω :
B1 × · · · ×B� → Bi (with 1 ≤ i ≤ �) and some constants ν1 ∈ B1, . . . , ν� ∈ B�.
1. For every K ≥ 2 and L ≥ 0, there exists a λ-term padK,L in ΛF with length
O(K + L) such that, for any finite sequence of λ-terms θ, t1, . . . , tk in ΛF which
contain no F-redex,

i. padK,L θ t1 · · · tk � θ t1 · · · tk.
ii. The leftmost derivation consists of exactly L F-reductions followed by K β-

reductions.

2. Moreover, if K ≥ 3, one can also suppose that padK,L contains no F-redex.

Proof. 1. For the sake of simplicity, we suppose that ω has arity 1, the general
case being a straightforward extension. Let I = λx . x and I� = I · · · I (� times
I). Observe that I� s0 · · · sp � s0 · · · sp and the leftmost derivation consists of
exactly � β-reductions. So it suffices to set padK,0 = IK and, for L ≥ 1,

padK,L = IK−2 (λxy . y) (

L times︷ ︸︸ ︷
�ω�(. . . (�ω� �ν1�) . . .)) .

2. To suppress the F-redex �ω��ν1�, modify padK,L as follows:

padK,L = IK−3 (λxy . xy) ((λz . (

L times︷ ︸︸ ︷
�ω�(. . . (�ω� z) . . .))) �ν1�) . �

ASMs and Operational Algorithmic Completeness of Lambda Calculus 321

4.3 Constant Cost Updates

We use Curry’s fixed point Theorem and the above padding technique to insure
constant length reductions for any given update function for tuples.

Lemma 4.4. Let A1, . . . , An be the datatypes involved in functions of the family
F. Suppose that F contains some function ω : B1×· · ·×B� → Bi (with 1 ≤ i ≤ �)
and some constants ν1 ∈ B1, . . . , ν� ∈ B�. Let τ : {1, . . . , k} → {1, . . . , n} be a
distribution of indexes of sorts. For j = 1, . . . , k, let ϕj be a good F-term with
variables xi for i ∈ Ij ⊆ {1, . . . , k} such that [[ϕj]] = fj :

∏
i∈Ij

Aτ(i) → Aτ(j).
There exists constants Kmin and Lmin such that, for all K ≥ Kmin and L ≥

Lmin, there exists a λ-term θ such that,

1. Using the leftmost reduction strategy, for all (a1, . . . , ak) ∈ Aτ(i)×· · ·×Aτ(k),
denoting by aI the tuple (aj)j∈I ,

θ �a1� · · · �ak� � θ �f1(aI1)� · · · �fk(aIk
)� . (1)

2. This sequence of reductions consists of K β-reductions and L F-reductions.

Proof. Let K ′, L′ be integers to be fixed later on. Set

F = padK′,L′ λαx1 . . . xk . αϕ1 . . . ϕk θ = (λz . F (zz)) (λz . F (zz)) .

Since θ and the ϕi’s have no F-redex, we have the following leftmost reduction:

θ �a1� · · · �ak� →1,0 F θ �a1� · · · �ak� (cf. Theorem 4.2)
= padK′,L′ (λαx1 . . . xk . αϕ1 . . . ϕk) θ �a1� · · · �ak�
→K′,L′ (λαx1 . . . xk . αϕ1 . . . ϕk) θ �a1� · · · �ak�

(apply Lemma 4.3)
→k+1,0 θ ϕ1[�a1�/x1, . . . , �ak�/xk]

· · ·ϕk[�a1�/x1, . . . , �ak�/xk]
→0,S θ �f1(aI1)� · · · �fk(aIk

)�
(apply Proposition 3.22)

where S =
∑

j=1,...,k Lϕj . The total cost is K ′ + k + 2 β-reductions plus L′ + S
F-reductions. We conclude by setting K ′ = K − (k + 2) and L′ = L− S. �

4.4 Constant Cost Conditional Updates

We refine Lemma 4.4 to conditional updates.

Lemma 4.5. Let A1, . . . , An be the datatypes involved in functions of the family
F. Suppose that F contains some function ω : B1×· · ·×B� → Bi (with 1 ≤ i ≤ �)
and some constants ν1 ∈ B1, . . . , ν� ∈ B�. Let τ : {1, . . . , k} → {1, . . . , n},
ι1, . . . , ιq ∈ {1, . . . , n} be distributions of indexes of sorts. Let (ρs)s=1,...,p+q,

322 M. Ferbus-Zanda and S. Grigorieff

(ϕi,j)i=1,...,p,j=1,...,k, (γ�)i=1,...,q be sequences of good F-terms with variables xi

with i varying in the respective sets Is, Ii,j , J� ⊆ {1, . . . , k}. Suppose that

[[ρs]] = rs :
∏

i∈Is
Aτ(i) → Bool ,

[[ϕi,j]] = fi,j :
∏

i∈Ii,j
Aτ(i) → Aτ(j) ,

[[γ�]] = g� :
∏

i∈J�
Aτ(i) → Aι(�)

(in particular, f1,j , . . . , fp,j all take values in Aτ(j)). There exists constants
Kmin and Lmin such that, for all K ≥ Kmin and L ≥ Lmin, there exists a
λ-term θ such that,

1. Using the leftmost reduction strategy, for all (a1, . . . , ak) ∈ Aτ(1)× · · ·×Aτ(k)

and s ∈ {1, . . . , p, p+ 1, . . . , p+ q},
If rs(aIs) = True ∧ ∀t < s rt(aIt) = False (†)s

then θ �a1� · · · �ak� �
{
θ �fs,1(aIs,1)� · · · �fs,k(aIs,k

)� if s ≤ p
�g�(aJ�

)� if s = p+ �
.

2. In all cases, this sequence of reductions consists of exactly K β-reductions and
L F-reductions.

Proof. Let K ′, L′ be integers to be fixed at the end of the proof. For i = 1, . . . , p
and � = 1, . . . , q, let

Mi = αϕi,1 · · ·ϕi,k Mp+� = γ� .

Using the Casen term from Proposition 3.12, set

H = Casep+qM1 . . .MpMp+1 . . .Mp+q

G = λαx1 . . . xk . (H ρ1(x1 . . . xk) . . . ρp+q(x1 . . . xk))
F = padK′,L′ G

θ = (λz . F (zz)) (λz . F (zz))

The following sequence of reductions is leftmost because, as long as padK′,L′ is
not completely reduced, there is no F-redex on its right.

(R1)
θ �a1� · · · �ak� →1,0 F θ �a1� · · · �ak� (cf. Theorem 4.2)

= padK′,L′ G θ �a1� · · · �ak�
→K′,L′ G θ �a1� · · · �ak�

Let us denote by Aσ the term Aσ
i = A[θ/α, �a1�/x,1 , . . . , �ak�/xk]. The leftmost

reduction sequence goes on with β-reductions as follows:

(R2)
G θ �a1� · · · �ak� = (λαx1 . . . xk . (H ρ1 . . . ρp+q)) θ �a1� · · · �ak�

→k+1,0 H
σ ρσ

1 . . . ρ
σ
p+q

Now, using Proposition 3.22, the following leftmost reductions are F-reductions:

ϕσ
i,j →0,Lϕi,j

�fi,j(aIi,j)�
Mσ

i →0,
∑ j=k

j=1 Lϕi,j
θ �fi,1(aIi,1)� . . . �fi,k(aIi,k)�

Mσ
p+� = γσ

p+� →0,Lγ�
�g�(aJ�

)�
ρσ

s →0,Lρs
�rs(aIs)�

ASMs and Operational Algorithmic Completeness of Lambda Calculus 323

Going with our main leftmost reduction sequence, letting

N = (
i=p∑
i=1

j=k∑
j=1

Lϕi,j) +
�=q∑
�=1

Lγ�
+

s=p+q∑
s=1

Lρs

and s be as in condition (†)s in the statement of the Lemma, we get

(R3)

Hσ ρσ
1 . . . ρ

σ
p+q = Casep+qM

σ
1 . . .M

σ
p M

σ
p+1 . . .M

σ
p+q ρ

σ
1 . . . ρ

σ
p+q

→0,N Casep+q

(θ �f1,1(aI1,1)� . . . �f1,k(aI1,k)�)
. . .
(θ �fp,1(aIp,1)� . . . �fp,k(aIp,k)�)
(�g1(aJ1)�) . . . (�gq(aJq)�)
ρσ
1 . . . ρσ

p+q

→3(p+q),0

{
θ �fs,1(aIs,1)� . . . �fs,k(aIs,k)� if s ≤ p
�g�(aJ�

)�) if s = p+ �

Summing up reductions (R1), (R2), (R3), we see that

θ �a1� · · · �ak�→η,ζ

{
θ �fs,1(aIs,1)� . . . �fs,k(aIs,k)� if s ≤ p
�g�(aJ�

)�) if s = p+ �

where η = 1 +K ′ + (k + 1) + 3(p+ q) and ζ = L′ +N .
To conclude, set Kmin = k + 5 + 3(p + q) and Lmin = N . If K ≥ Kmin and
L ≥ Lmin it suffices to set K ′ = K − (Kmin − 3) and L′ = L − Lmin and to
observe that K ′ ≥ 3 as needed in Lemma 4.3. �

5 ASMs and Lambda Calculus

All along this section, S = (L, P, (ξ,J)) is some fixed ASM (cf. Definition 2.14).

5.1 Datatypes and ASM Base Sets

The definition of ASMs does not put any constraint on the base sets of the
multialgebra. However, only elements which can be named are of any use, i.e.
elements which are in the range of compositions of (static or dynamic) functions
on the ASM at the successive steps of the run.

The following straightforward result formalizes this observation.
Proposition 5.1. Let (L, P, (ξ,J)) be an ASM. Let U1, . . . ,Un be the base sets
interpreting the different sorts of this ASM. For t ∈ N, let A(t)

1 ⊆ U1,. . . , A
(t)
n ⊆

Un be the sets of values of all ground good F-terms (i.e. with no variable) in the
t-th successor state St of the initial state J of the ASM.

1. For any t ∈ N, A(t)
1 ⊇ A

(t+1)
1 , . . . , A(t)

n ⊇ A
(t+1)
n .

2. (A(t)
1 , . . . , A

(t)
n) is a submultialgebra of St, i.e. it is closed under all static and

dynamic functions of the state St.

Thus, the program really works only on the elements of the sets (A(0)
1 , . . . , A

(0)
n)

of the initial state which are datatypes defined via mutual inductive definitions
using ξ and J .

324 M. Ferbus-Zanda and S. Grigorieff

5.2 Tailoring Lambda Calculus for an ASM

Let F be the family of interpretations of all static symbols in the initial state.
The adequate Lambda calculus to encode the ASM is ΛF.

Let us argue that this is not an unfair trick. An algorithm does decompose a
task in elementary ones. But “elementary” does not mean “trivial” nor “atomic”,
it just means that we do not detail how they are performed: they are like oracles.
There is no absolute notion of elementary task. It depends on what big task is
under investigation. For an algorithm about matrix product, multiplication of
integers can be seen as elementary. Thus, algorithms go with oracles.

Exactly the same assumption is done with ASMs: static and input functions
are used for free.

5.3 Main Theorem for Type 0 ASMs

We first consider the case of type 0 ASMs.

Theorem 5.2. Let (L, P, (ξ,J)) be an ASM with base sets U1, . . . ,Un. Let
A1,. . . , An be the datatypes A(0)

1 ,. . . , A(0)
n (cf. Proposition 5.1). Let F be the fam-

ily of interpretations of all static symbols of the ASM restricted to the datatypes
A1,. . . , An. Suppose all dynamic symbols have arity 0, i.e. all are constants sym-
bols. Suppose these dynamic symbols are η1, . . . , ηk. and η1, . . . , η� are the output
symbols.

Let us denote by et
i the value of the constant ηi in the t-th successor state St

of the initial state J .
There exists K0 such that, for every K ≥ K0, there exists a λ-term θ in ΛF

such that, for all initial values e01, . . . , e
0
k of the dynamic constants and for all

t ≥ 1,

θ �e01� . . . �e0k� →Kt θ�et
1� . . . �et

k�
{

if the run does not haltnor fail nor clash
for steps ≤ t

θ �e01� . . . �e0k� →Ks 〈�1�, �es
1� . . . �es

��〉 if the run halts at step s ≤ t
θ �e01� . . . �e0k� →Ks �2� if the run fails at step s ≤ t
θ �e01� . . . �e0k� →Ks �3� if the run clashes at step s ≤ t

Thus, groups of K successive reductions simulate in a simple way the successive
states of the ASM, and give the output in due time when it is defined.

Proof. Use Theorem 2.18 to normalize the program P . We stick to the notations
of that Theorem. Since there is no dynamic function, only dynamic constants,
the ASM terms Ci and Ii,j name the result of applying to the dynamic constants
a composition of the static functions (including static constants). Thus, one can
associate good F-terms ρi, ϕi,j to these compositions.

Observe that one can decide if the program halts or fails or clashes via some
composition of functions in F (use the static equality function which has been
assumed, cf. Definition 2.14). So enter negative answers to these decisions in the
existing conditions C1, . . . , Cn. Also, add three more conditions to deal with the
positive answers to these decisions. These three last conditions are associated to
terms γ1, γ2, γ3. Finally, apply Lemma 4.5 (with p = n and q = 3). �

ASMs and Operational Algorithmic Completeness of Lambda Calculus 325

Remark 5.3. A simple count in the proof of Lemma 4.5 allows to bound K0 as
follows: K0 = O((size of P)2).

5.4 Main Theorem for All ASMs

Let ψ be a dynamic symbol. Its initial interpretation ψS0 is given by a com-
position of the static objects (cf. Definition 2.5) hence it is available in each
successor state of the initial state. In subsequent states St, its interpretation ψSt

is different but remains almost equal to ψS0 : the two differ only on finitely many
tuples. This is so because, at each step, any dynamic symbol is modified on at
most N tuples where N depends on the program. Let Δψ be a list of all tuples
on which ψS0 has been modified. What can be done with ψ can also be done
with ψS0 and Δψ. Since ψS0 is available in each successor state of the initial
state, we are going to encode ΔψSt rather than ψSt . Now, ΔψSt is a list and
we need to access in constant time any element of the list. And we also need to
manage the growth of the list.

This is not possible in constant time with the usual encodings of datatypes
in Lambda calculus. So the solution is to make ΛF bigger: put new constant
symbols to represent lists and allow new F-reduction axioms to get in one step
the needed information on lists.

Now, is this fair? We think it is as regards simulation of ASMs. In ASM theory,
one application of the program is done in one unit of time though it involves
a lot of things to do. In particular, one can get in one unit of time all needed
information about the values of static or dynamic functions on the tuples named
by the ASM program. What we propose to do with the increase of ΛF is just to
get more power, as ASMs do on their side.

Definition 5.4. Let A1, . . . , An be the datatypes involved in functions of F. If
ε = (i1, . . . , im, i) is an (m+ 1)-tuple of elements in {1, . . . , n}, we let Lε be the
datatype of finite sequences of (m+ 1)-tuples in Ai1 × · · · ×Aim ×Ai.

Let E be a family of tuples of elements of {1, . . . , n}. The Lambda calculus
ΛE

F
is obtained by adding to ΛF families of symbols

(Fε, Bε, Vε,Addε,Delε)ε∈E

and the axioms associated to the following intuitions. For ε = (i1, . . . , im, i),

i. Symbol Fε is to represent the function Lε → Bool such that, for σ ∈ Lε,
Fε(σ) is True if and only if σ is functional in its first m components. In
other words, Fε checks if any two distinct sequences in σ always differ on
their first m components.

ii. Symbol Bε is to represent the function Lε × (Ai1 × · · · ×Aim) → Bool such
that, for σ ∈ Lε and a ∈ Ai1 × · · · × Aim , Bε(σ,a) is True if and only if a
is a prefix of some (m+ 1)-tuple in the finite sequence σ.

iii. Symbol Vε is to represent the function Lε×(Ai1×· · ·×Aim)→ Ai such that,
for σ ∈ Lε and a ∈ Ai1 × · · · ×Aim ,
- Vε(σ,a) is defined if and only if Fε(σ) = True and Bε(σ,a) = True,

326 M. Ferbus-Zanda and S. Grigorieff

- when defined, Vε(σ,a) is the last component of the unique (m+ 1)-tuple in
the finite sequence σ which extends the m-tuple a.

iv. Symbol Addε is to represent the function Lε × (Ai1 × · · · ×Aim × Ai)→ Lε

such that, for σ ∈ Lε and a ∈ Ai1 × · · · × Aim × Ai, Addε(σ,a) is obtained
by adding the tuple a as last element in the finite sequence σ.

v. Symbol Delε is to represent the function Lε × (Ai1 × · · · × Aim × Ai) → Lε

such that, for σ ∈ Lε and a ∈ Ai1 × · · · × Aim × Ai, Delε(σ,a) is obtained
by deleting all occurrences of the tuple a in the finite sequence σ.

Now, we can extend Theorem 5.2.

Theorem 5.5. Let (L, P, (ξ,J)) be an ASM with base sets U1, . . . ,Un. Let
A1,. . . , An be the datatypes A(0)

1 ,. . . , A(0)
n (cf. Proposition 5.1). Let F be the fam-

ily of interpretations of all static symbols of the ASM restricted to the datatypes
A1,. . . , An. Let η1, . . . , ηk be the dynamic symbols of the ASM. Suppose ηi has
type Uτ(i,1) × · · · × Uτ(i,pi) → Uqi for i = 1, . . . , k.
Set E = {(τ(i, 1), . . . , τ(i, pi), qi) | i = 1, . . . , k}.
The conclusion of Theorem 5.2 is still valid in the Lambda calculus ΛE

F
with the

following modification:

et
i is the list of pi + 1-tuples describing the differences between the inter-

pretations of (ηi)S0
and (ηi)St

.

References

1. Atrubin, A.J.: A One-Dimensional Real-Time Iterative Multiplier. Trans. on Elec-

tronic Computers EC 14(3), 394–399 (1965)

2. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System

Design and Analysis. Springer, Heidelberg (2003)

3. Barendregt, H.P.: The Lambda calculus. Its syntax and semantics. North-Holland,

Amsterdam (1984)

4. Barendregt, H., Statman, R.: Böhm’s Theorem, Church’s Delta, Numeral Systems,

and Ershov Morphisms. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F.,

de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity.

LNCS, vol. 3838, pp. 40–54. Springer, Heidelberg (2005)

5. Biedl, T., Buss, J.F., Demaine, E.D., Demaine, M.L., Hajiaghayi, M., Vinăi, T.:

Palindrome recognition using a multidimensional tape. Theoretical Computer Sci-

ence 302(1-3), 475–480 (2003)

6. Börger, E.: The Origins and the Development of the ASM Method for High Level

System Design and Analysis. Journal of Universal Computer Science 8(1), 2–74

(2002)

7. Church, A., Rosser, J.B.: Some properties of conversion. Trans. Amer. Math.

Soc. 39, 472–482 (1937)

8. Church, A.: The Calculi of Lambda Conversion. Princeton University Press, Prince-

ton (1941)

9. Curry, H., Feys, R.: Combinatory logic, vol. I. North-Holland, Amsterdam (1958)

10. Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof

of Church’s Thesis. Bulletin. of Symbolic Logic 14(3), 299–350 (2008)

ASMs and Operational Algorithmic Completeness of Lambda Calculus 327

11. Gurevich, Y.: Reconsidering Turing’s Thesis: towards more realistic semantics

of programs. Technical Report CRL-TR-38-84, EEC Department. University of

Michigan (1984)

12. Gurevich, Y.: A new Thesis. Abstracts, American Math. Soc., Providence (1985)

13. Gurevich, Y.: Evolving Algebras: An Introductory Tutorial. Bulletin of the Euro-

pean Association for Theoretical Computer Science 43, 264–284 (1991); Reprinted

in Current Trends in Theoretical Computer Science, pp. 266–269. World Scientific,

Singapore (1993)

14. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Specification and Validation

Methods, pp. 9–36. Oxford University Press, Oxford (1995)

15. Gurevich, Y.: May 1997 Draft of the ASM Guide. Tech. Report CSE-TR-336-97,

EECS Dept., University of Michigan (1997)

16. Gurevich, Y.: The Sequential ASM Thesis. Bulletin of the European Association

for Theoretical Computer Science 67, 93–124 (1999); Reprinted in Current Trends

in Theoretical Computer Science, pp. 363–392. World Scientific, Singapore (2001)

17. Gurevich, Y.: Sequential Abstract State Machines capture Sequential Algorithms.

ACM Transactions on Computational Logic 1(1), 77–111 (2000)

18. Hennie, F.C.: One-tape off-line Turing machine complexity. Information and Com-

putation 8, 553–578 (1965)

19. Hankin, C.: Lambda calculi. In: A guide for computer scientists. Graduate Texts

in Computer. Oxford University Press, Oxford (1994)

20. Kolmogorov, A.N.: On the definition of algorithm. Uspekhi Mat. Nauk. 13(4), 3–28

(1958); Translations Amer. Math. Soc. 29, 217–245 (1963)

21. Knuth, D.: The Art of Computer Programming, 3rd edn., vol. 2. Addison-Wesley,

Reading (1998)

22. Krivine, J.L.: A call-by-name lambda-calculus machine. Higher Order and Symbolic

Computation 20, 199–207 (2007)

23. Mogensen, T.: Efficient Self-Interpretation in Lambda Calculus. J. of Functional

Programming 2(3), 345–363 (1992)

24. Paul, W.: Kolmogorov complexity and lower bounds. In: Budach, L. (ed.) Second

Int. Conf. on Fundamentals of Computation Theory, pp. 325–334. Akademie, Berlin

(1979)

25. Ronchi Della Rocca, S., Paolini, L.: The Parametric Lambda-calculus. In: A Meta-

model for Computation. Springer, Heidelberg (2004)

26. Statman, R.: Church’s Lambda Delta Calculus. In: Parigot, M., Voronkov, A. (eds.)

LPAR 2000. LNCS (LNAI), vol. 1955, pp. 293–307. Springer, Heidelberg (2000)

Fixed-Point Definability and Polynomial Time
on Chordal Graphs and Line Graphs

Martin Grohe

Humboldt Universität zu Berlin

grohe@informatik.hu-berlin.de

For Yuri, in recognition of his inspiring work in finite model theory and
elsewhere.

Abstract. The question of whether there is a logic that captures poly-

nomial time was formulated by Yuri Gurevich in 1988. It is still wide

open and regarded as one of the main open problems in finite model

theory and database theory. Partial results have been obtained for spe-

cific classes of structures. In particular, it is known that fixed-point logic

with counting captures polynomial time on all classes of graphs with ex-

cluded minors. The introductory part of this paper is a short survey of

the state-of-the-art in the quest for a logic capturing polynomial time.

The main part of the paper is concerned with classes of graphs de-

fined by excluding induced subgraphs. Two of the most fundamental

such classes are the class of chordal graphs and the class of line graphs.

We prove that capturing polynomial time on either of these classes is as

hard as capturing it on the class of all graphs. In particular, this implies

that fixed-point logic with counting does not capture polynomial time

on these classes. Then we prove that fixed-point logic with counting does

capture polynomial time on the class of all graphs that are both chordal

and line graphs.

Keywords: Descriptive complexity theory, fixed-point logic.

1 The Quest for a Logic Capturing PTIME

Descriptive complexity theory started with Fagin’s Theorem [25] from 1974, stat-
ing that existential second-order logic captures the complexity class NP. This
means that a property of finite structures is decidable in nondeterministic poly-
nomial time if and only if it is definable in existential second order logic. Similar
logical characterisations where later found for most other complexity classes. For
example, in 1982 Immerman [44] and independently Vardi [60] characterised the
class PTIME (polynomial time) in terms of least fixed-point logic, and in 1983 Im-
merman [46] characterised the classes NLOGSPACE (nondeterministic logarithmic
space) and LOGSPACE (logarithmic space) in terms of transitive closure logic and
its deterministic variant. However, these logical characterisations of the classes
PTIME, NLOGSPACE, and LOGSPACE, and all other known logical characterisa-
tions of complexity classes contained in PTIME, have a serious drawback: They

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 328–353, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fixed-Point Definability and Polynomial Time on Chordal Graphs 329

only apply to properties of ordered structures, that is, relational structures with
one distinguished relation that is a linear order of the elements of the structure.
It is still an open question whether there are logics that characterise these com-
plexity classes on arbitrary, not necessarily ordered structures. We focus on the
class PTIME from now on. In this section, which is an updated version of [32],
we give a short survey of the quest for a logic capturing PTIME.

1.1 Logics Capturing PTIME

The question of whether there is a logic that characterises, or captures, PTIME is
subtle. If phrased naively, it has a trivial, but completely uninteresting positive
answer. Yuri Gurevich [37] was the first to give a precise formulation of the
question. Instead of arbitrary finite structures, we restrict our attention to graphs
in this paper. This is no serious restriction, because the question of whether
there is a logic that captures PTIME on arbitrary structures is equivalent to the
restriction of the question to graphs. We first need to define what constitutes a
logic. Following Gurevich, we take a very liberal, semantically oriented approach.
We identify properties of graphs with classes of graphs closed under isomorphism.
A logic L (on graphs) consists of a computable set of sentences together with
a semantics that associates a property Pϕ of graphs with each sentence ϕ. We
say that a graph G satisfies a sentence ϕ, and write G |= ϕ, if G ∈ Pϕ. We say
that a property P of graphs is definable in L if there is a sentence ϕ such that
Pϕ = P . A logic L captures PTIME if the following two conditions are satisfied:

(G.1) Every property of graphs that is decidable in PTIME is definable in L.

(G.2) There is a computable function that associates with every L-sentence ϕ
a polynomial p(X) and an algorithm A such that A decides the property
Pϕ in time p(n), where n is the number of vertices of the input graph.

While condition (G.1) is obviously necessary, condition (G.2) may seem un-
necessarily complicated. The natural condition we expect to see instead is the
following condition (G.2’): Every property of graphs that is definable in L is
decidable in PTIME. Note that (G.2) implies (G.2’), but that the converse does
not hold. However, (G.2’) is too weak, as the following example illustrates:

Example 1. Let P1,P2, . . . be an arbitrary enumeration of all polynomial time
decidable properties of graphs. Such an enumeration exists because there are
only countably many Turing machines and hence only countably many decid-
able properties of graphs. Let L′ be the “logic” whose sentences are the natural
numbers and whose semantics is defined by letting sentence i define property
Pi. Then L′ is a logic according to our definition, and it does satisfy (G.1) and
(G.2’). But clearly, L′ is not a “logic capturing PTIME” in any interesting sense.

Let me remark that most natural logics that are candidates for capturing PTIME

trivially satisfy (G.2). The difficulty is to prove that they also satisfy (G.1), that
is, define all PTIME-properties.

There is a different route that leads to the same question of whether there
is a logic capturing PTIME from a database-theory perspective: After Aho and

330 M. Grohe

Ullman [2] had realised that SQL, the standard query language for relational
databases, cannot express all database queries computable in polynomial time,
Chandra and Harel [10] asked for a recursive enumeration of the class of all
relational database queries computable in polynomial time. It turned out that
Chandra and Harel’s question is equivalent to Gurevich’s question for a logic
capturing PTIME, up to a minor technical detail.1

The question of whether there is a logic that captures PTIME is still wide open,
and it is considered one of the main open problems in finite model theory and
database theory. Gurevich conjectured that there is no logic capturing PTIME.
This would not only imply that PTIME �= NP — remember that by Fagin’s
Theorem there is a logic capturing NP — but it would actually have interesting
consequences for the structure of the complexity class PTIME. Dawar [15] proved
a dichotomy theorem stating that, depending on the answer to the question, there
are two fundamentally different possibilities: If there is a logic for PTIME, then
the structure of PTIME is very simple; all PTIME-properties are variants or special
cases of just one problem. If there is no logic for PTIME, then the structure of
PTIME is so complicated that it eludes all attempts for a classification. The formal
statement of the first possibility is that there is a complete problem for PTIME

under first-order reductions. The formal statement of the second possibility is
that the class of PTIME-properties is not recursively enumerable.2

1.2 Fixed-Point Logics

Fixed-point logics play an important role in finite-model theory, and in particular
in the quest for a logic capturing PTIME. Very briefly, the fixed-point logics
considered in this context are extensions of first-order logic by operators that
formalise inductive definitions. We have already mentioned that least fixed-point
logic LFP captures polynomial time on ordered structures; this result is known as
the Immerman-Vardi Theorem. For us, it will be more convenient to work with
inflationary fixed-point logic IFP, which was shown to have the same expressive
power as LFP on finite structures by Gurevich and Shelah [39] and on infinite
structures by Kreutzer [50].

IFP does not capture polynomial time on all finite structures. The most im-
mediate reason is the inability of the logic to count. For example, there is no
IFP-sentence stating that the vertex set of a graph has even cardinality; obviously,
the graph property of having an even number of vertices is decidable in polyno-
mial time. This led Immerman [45] to extending fixed-point logic by “counting

1 In Chandra and Harel’s version of the question, condition (G.2) needs to be replaced

by the following condition (CH.2): There is a computable function that associates

with every L-sentence ϕ an algorithm A such that A decides the property Pϕ in

polynomial time. The difference between (G.2) and (CH.2) is that in (CH.2) the

polynomial bounding the running time of the algorithm A is not required to be

computable from ϕ.
2 The version of recursive enumerability used here is not exactly the same as the one

considered by Chandra and Harel [10]; the difference is essentially the same as the

difference between conditions (G.2) and (CH.2) discussed earlier.

Fixed-Point Definability and Polynomial Time on Chordal Graphs 331

operators”. The formal definition of fixed-point logic with counting operators
that we use today, inflationary fixed-point logic with counting IFP+C, is due to
Grädel and Otto [29]. IFP+C comes surprisingly close to capturing PTIME. Even
though Cai, Fürer, and Immerman [9] gave an example of a property of graphs
that is decidable in PTIME, but not definable in IFP+C, it turns out that the
logic does capture PTIME on many interesting classes of structures.

1.3 Capturing PTIME on Classes of Graphs

Let C be a class of graphs, which we assume to be closed under isomorphism. We
say that a logic L captures PTIME on C if it satisfies the following two conditions:

(G.1)C For every property P of graphs that is decidable in PTIME there is an
L-sentence ϕ such that for all graphs G ∈ C it holds that G |= ϕ if and only
if G ∈ P .

(G.2)C There is a computable function that associates with every L-sentence
ϕ a polynomial p(X) and an algorithm A such that given a graph G ∈ C,
the algorithm A decides if G |= ϕ in time p(n), where n is the number of
vertices of G.

Note that these conditions coincide with conditions (G.1) and (G.2) if C is the
class of all graphs.

The first positive result in this direction is due to Immerman and Lander [48],
who proved that IFP+C captures PTIME on the class of all trees. In 1998, I proved
that IFP+C captures PTIME on the class of all planar graphs [30] and around the
same time, Julian Mariño and I proved that IFP+C captures PTIME on all classes
of structures of bounded tree width [34]. In [31], I proved the same result for the
class of all graphs that have no complete graph on five vertices, K5, as a minor.
A minor of graph G is a graph H that can be obtained from a subgraph of G
by contracting edges. We say that a class C of graphs excludes a minor if there
is a graph H that is not a minor of any graph in C. Very recently, I proved that
IFP+C captures PTIME on all classes of graphs that exclude a minor [33].

In the last few years, maybe as a consequence of Chudnowsky, Robertson,
Seymour, and Thomas’s [11] proof of the strong perfect graph theorem, the focus
of many graph theorists has shifted from graph classes with excluded minors to
graph classes defined by excluding induced subgraphs. One of the most basic
and important example of such a class is the class of chordal graphs. A cycle C
of a graph G is chordless if it is an induced subgraph. A graph is chordal (or
triangulated) if it has no chordless cycle of length at least four. Fig. 1(a) shows an
example of a chordal graph. All chordal graphs are perfect, which means that the
graphs themselves and all their induced subgraphs have the chromatic number
equal to the clique number. Chordal graphs have a nice and simple structure;
they can be decomposed into a tree of cliques. A second important example is
the class of line graphs. The line graph of a graph G is the graph L(G) whose
vertices are the edges of G, with two edges being adjacent in L(G) if they have
a common endvertex in G. Fig. 1(b) shows an example of a line graph. The
class of all line graphs is closed under taking induced subgraphs. Beineke [5]

332 M. Grohe

gave a characterisation of the class of line graphs (more precisely, the class of all
graphs isomorphic to a line graph) by a family of nine excluded subgraphs. An
extension of the class of line graphs, which has also received a lot of attention
in the literature, is the class of claw-free graphs. A graph is claw-free if it does
not have a vertex with three pairwise nonadjacent neighbours, that is, if it does
not have a claw (displayed in Fig. 2) as an induced subgraph. It is easy to see
that all line graphs are claw-free. Recently, Chudnowsky and Seymour (see [12])
developed a structure theory for claw-free graphs.

It would be tempting to use this structure theory for claw free graphs, or at
least the simple treelike structure of chordal graphs, to prove that IFP+C captures
PTIME on these classes in a similar way as the structure theory for classes of graphs
with excluded minors is used to prove that IFP+C captures PTIME on classes with
excluded minors. Unfortunately, this is only possible on the very restricted class
of graphs that are both chordal and line graphs (an example of such a graph is
shown in Fig. 3 on p.343). We prove the following theorem:

Theorem 2

1. IFP+C does not capture PTIME on the class of chordal graphs or on the class
of line graphs.

2. IFP+C captures PTIME on the class of chordal line graphs.

Our construction to prove (1) is so simple that it will apply to any reasonable
logic, which means that if a “reasonable” logic captures PTIME on the class of
chordal graphs or on the class of line graphs, then it captures PTIME on the class
of all graphs.

(a) (b)

Fig. 1. (a) a chordal graph, which is not a line graph, and (b) the line graph of K4,

which is not chordal

Fig. 2. A claw

Fixed-Point Definability and Polynomial Time on Chordal Graphs 333

Further interesting graph classes closed under taking induced subgraphs are
various classes of intersection graphs. Very recently, Laubner [51] proved that
IFP+C captures PTIME on the class of all interval graphs. To conclude our dis-
cussion of classes of graphs on which IFP+C captures PTIME, let me mention a
result due to Hella, Kolaitis, and Luosto [41] stating that IFP+C captures PTIME

on almost all graphs (in a precise technical sense). Thus it seems that the results
for specific classes of graphs are not very surprising, but it should be mentioned
that almost no graphs fall in one of the natural graphs classes discussed before.

Instead of capturing all PTIME on a specific class of structures, Otto [55,56,57]
studied the question of capturing all PTIME properties satisfying certain invari-
ance conditions. Most notably, he proved that bisimulation-invariant properties
are decidable in polynomial time if and only if they are definable in the higher-
dimensional μ-calculus.

1.4 Isomorphism Testing and Canonisation

As an abstract question, the question of whether there is a logic capturing poly-
nomial time is linked to the graph isomorphism and canonisation problems.
Otto [55] was the first to systematically study the connection between canonisa-
tion and descriptive complexity theory. Specifically, if there is a polynomial time
canonisation algorithm for a class C of graphs, then there is a logic that captures
polynomial time on this class C. This follows from the Immerman-Vardi Theo-
rem. To explain it, let us assume that we represent graphs by their adjacency
matrices. A canonisation mapping gets as argument some adjacency matrix rep-
resenting a graph and returns a canonical adjacency matrix for this graph, that
is, it maps isomorphic adjacency matrices to equal adjacency matrices. As an
adjacency matrix for a graph is completely fixed once we specify the ordering of
the rows and columns of the matrix, we may view a canonisation as a mapping
associating with each graph a canonical ordered copy of the graph. Now we can
apply the Immerman-Vardi Theorem to this ordered copy.

Clearly, if there is a polynomial time canonisation mapping for a class of
graphs (or other structures) then there is a polynomial time isomorphism test
for this class. It is open whether the converse also holds. It is also open whether
the existence of a logic for polynomial time implies the existence of a polynomial
time isomorphism test or canonisation mapping.

Polynomial time canonisation mappings are known for many natural classes
of graphs, for example planar graphs [43,42], graphs of bounded genus [26,54],
graphs of bounded eigenvalue multiplicity [3], graphs of bounded degree [4,53],
and graphs of bounded tree width [8]. Hence for all theses classes there are log-
ics capturing PTIME. However, the logics obtained through canonisation hardly
qualify as natural logics. If a logic is to contribute to our understanding of
the complexity class PTIME— and from my perspective this is the main reason
for being interested in such a logic — we have to look for natural logics that
derive their expressiveness from clearly visible basic principles like inductive de-
finability, counting or other combinatorial operations, and maybe fundamental
algebraic operations like computing the rank or the determinant of a matrix. If

334 M. Grohe

such a logic captures polynomial time on a class of structures, then this shows
that all polynomial time properties of structures in this class are based on the
principles underlying the logic. Thus even for classes for which we know that
there is a logic capturing PTIME through a polynomial-time canonisation algo-
rithm, I think it is important to find “natural” logics capturing PTIME on these
classes. In particular, I view it as an important open problem to find a natural
logic that captures PTIME on classes of graphs of bounded degree. It is known
that IFP+C does not capture PTIME on the class of all graphs of maximum degree
at most three.

Most known capturing results are proved by showing that there is a canonisa-
tion mapping that is definable in some logic. In particular, all capturing results
for IFP+C mentioned above are proved this way. It was observed by Cai, Fürer,
and Immerman [9] that for classes C of structures which admit a canonisation
mapping definable in IFP+C, a simple combinatorial algorithm known as the
Weisfeiler-Lehman (WL) algorithm [23,24] can be used as a polynomial time iso-
morphism test on C. Thus the the WL-algorithm correctly decides isomorphism
on the class of chordal line graphs and on all classes of graphs with excluded
minors. A refined version of the same approach was used by Verbitsky and others
[35,49,61] to obtain parallel isomorphism tests running in polylogarithmic time
for planar graphs and graphs of bounded tree width.

1.5 Stronger Logics

Early on, a number of results regarding the possibility of capturing polynomial
time by adding Lindström quantifiers to first-order logic or fixed-point logic
were obtained. Hella [40] proved that adding finitely many Lindström quantifiers
(or infinitely many of bounded arity) to fixed-point logic does not suffice to
capture polynomial time (also see [17]). Dawar [14] proved that if there is a logic
capturing polynomial time, then there is such a logic obtained from fixed-point
logic by adding one vectorised family of Lindström quantifiers. Another family of
logics that have been studied in this context consists of extensions of fixed-point
logic with nondeterministic choice operators [1,18,27].

Currently, the two main candidates for logics capturing PTIME are choiceless
polynomial time with counting CP+C and inflationary fixed-point logic with a
rank operator IFP+R. The logic CP+C was introduced by Blass, Gurevich and
Shelah [6] (also see [7,19]). The formal definition of the logic is carried out in
the framework of abstract state machines (see, for example, [38]). Intuitively
CP+C may be viewed as a version of IFP+C where quantification and fixed-point
operators not only range over elements of a structure, but instead over all objects
that can be described by O(log n) bits, where n is the size of the structure. This
intuition can be formalised in an expansion of a structure by all hereditarily finite
sets which use the elements of the structure as atoms. The logic IFP+R [16] is an
extension of IFP by an operator that determines the rank of definable matrices
in a structure. This may be viewed as a higher dimensional version of a counting
operator. (Counting appears as a special case of diagonal {0, 1}-matrices.)

Fixed-Point Definability and Polynomial Time on Chordal Graphs 335

Both CP+C and IFP+R are known to be strictly more expressive than IFP+C.
Indeed, both logics can express the property used by Cai, Fürer, and Immerman
to separate IFP+C from PTIME. For both logics it is open whether they capture
polynomial time, and it is also open whether one of them semantically contains
the other.

2 Preliminaries

N0 and N denote the sets of nonnegative integers and positive integers, respec-
tively. For m,n ∈ N0, we let [m,n] := {� ∈ N0 | m ≤ � ≤ n} and [n] := [1, n].
We denote the power set of a set S by 2S and the set of all k-element subsets of
S by

(
S
k

)
.

We often denote tuples (v1, . . . , vk) by �v. If �v denotes the tuple (v1, . . . , vk),
then by ṽ we denote the set {v1, . . . , vk}. If �v = (v1, . . . , vk) and �w = (w1, . . . , w�),
then by �v �w we denote the tuple (v1, . . . , vk, w1, . . . , w�). By |�v| we denote the
length of a tuple �v, that is, |(v1, . . . , vk)| = k.

2.1 Graphs

Graphs in this paper are always finite, nonempty, and simple, where simple
means that there are no loops or parallel edges. Unless explicitly called “di-
rected”, graphs are undirected. The vertex set of a graph G is denoted by V (G)
and the edge set by E(G). We view graphs as relational structures with E(G)
being a binary relation on V (G). However, we often find it convenient to view
edges (of undirected graphs) as 2-element subsets of V (G) and use notations
like e = {u, v} and v ∈ e. Subgraphs, induced subgraphs, union, and inter-
section of graphs are defined in the usual way. We write G[W] to denote the
induced subgraph of G with vertex set W ⊆ V (G), and we write G \ W to
denote G[V (G) \W]. The set {w ∈ V (G) | {v, w} ∈ E(G)} of neighbours of a
node v is denoted by NG(v), or just N(v) if G is clear from the context, and the
degree of v is the cardinality of N(v). The order of a graph, denoted by |G|, is
the number of vertices of G. The class of all graphs is denoted by G. A homo-
morphism from a graph G to a graph H is a mapping h : V (G) → V (H) that
preserves adjacency, and an isomorphism is a bijective homomorphism whose
inverse is also a homomorphism.

For every finite nonempty set V , we let K[V] be the complete graph with
vertex set V , and we let Kn := K

[
[n]
]
. A clique in a graph G is a set W ⊆ V (G)

such that G[W] is a complete graph. Paths and cycles in graphs are defined
in the usual way. The length of a path or cycle is the number of its edges.
Connectedness and connected components are defined in the usual way. A set
W ⊆ V (G) is connected in a graph G if W �= ∅ and G[W] is connected. For sets
W1,W2 ⊆ V (G), a set S ⊂ V (G) separates W1 from W2 if there is no path from
a vertex in W1 \ S to vertex in W2 \ S in the graph G \ S.

A forest is an undirected acyclic graph, and a tree is a connected forest. It
will be a useful convention to call the vertices of trees and forests nodes. A

336 M. Grohe

rooted tree is a triple T = (V (T), E(T), r(T)), where (V (T), E(T)) is a tree and
r(T) ∈ V (T) is a distinguished node called the root.

We occasionally have to deal with directed graphs. We allow directed graphs
to have loops. We use standard graph theoretic terminology for directed graphs,
without going through it in detail. Homomorphisms and isomorphisms of di-
rected graphs preserve the direction of the edges. Paths and cycles in a directed
graph are always meant to be directed; otherwise we will call them “paths or
cycles of the underlying undirected graph”. Note that cycles in directed graphs
may have length 1 or 2. For a directed graph D and a vertex v ∈ V (D), we let
ND(v) :=

{
w ∈ V (D)

∣∣ (v, w) ∈ E(D)
}
. Directed acyclic graphs will be of par-

ticular importance in this paper, and we introduce some additional terminology
for them: Let D be a directed acyclic graph. A node w is a child of a node v,
and v is a parent of w, if (v, w) ∈ E(D). We let �D be the reflexive transitive
closure of the edge relation E(D) and �D its irreflexive version. Then �D is a
partial order on V (D).

A directed tree is a directed acyclic graph T in which every node has at
most one parent, and for which there is a vertex r called the root such that
for all t ∈ V (t) there is a path from r to t. There is an obvious one-to-one
correspondence between rooted trees and directed trees: For a rooted tree T with
root r := r(T) we define the corresponding directed tree T ′ by V (T ′) := V (T)
and E(T ′) :=

{
(t, u)

∣∣ {t, u} ∈ E(T) and t occurs on the path rTu
}
. We freely

jump back and forth between rooted trees and directed trees, depending on
which will be more convenient. In particular, we use the terminology introduced
for directed acyclic graphs (parents, children, the partial order �, et cetera) for
rooted trees.

2.2 Relational Structures

A relational structure A consists of a finite set V (A) called the universe or vertex
set of A and finitely many relations on A. The only types of structures we will use
in this paper are graphs, viewed as structures G =

(
V (G), E(G)

)
with one binary

relation E(G), and ordered graphs, viewed as structures G =
(
V (G), E(G),�

(G)
)

with two binary relations E(G) and � (G), where
(
V (G), E(G)

)
is a graph

and � (G) is a linear order of the vertex set V (G).

2.3 Logics

We assume that the reader has a basic knowledge in logic. In this section, we
will informally introduce the two main logics IFP and IFP+C used in this paper.
For background and a precise definition, I refer the reader to one of the text-
books [21,28,47,52]. It will be convenient to start by briefly reviewing first-order
logic FO. Formulae of first-order logic in the language of graphs are built from
atomic formulae E(x, y) and x = y, expressing adjacency and equality of ver-
tices, by the usual Boolean connectives and existential and universal quantifiers
ranging over the vertices of a graph. First-order formulae in the language of
ordered graphs may also contain atomic formulae of the form x � y with the

Fixed-Point Definability and Polynomial Time on Chordal Graphs 337

obvious meaning, and formulae in other languages may contain atomic formulae
defined for these languages. We write ϕ(x1, . . . , xk) to denote that the free vari-
ables of a formula ϕ are among x1, . . . , xk. For a graph G and vertices v1, . . . , vk,
we write G |= ϕ[v1, . . . , vk] to denote that G satisfies ϕ if xi is interpreted by vi,
for all i ∈ [k].

Inflationary fixed-point logic IFP is the extension of FO by a fixed-point oper-
ator with an inflationary semantics. To introduce this operator, let ϕ(X,�x) be
a formula that, besides a k-tuple �x = (x1, . . . , xk) of free individual variables
ranging over the vertices of a graph, has a free k-ary relation variable ranging
over k-ary relations on the vertex set. For every graph G we define a sequence
Ri = Ri(G,ϕ,X, �x), for i ∈ N0, of k-ary relations on V (G) as follows:

R0 := ∅
Ri+1 := Ri ∪

{
�v
∣∣ G |= ϕ[Ri, �v]

}
for all i ∈ N0.

Since we have R0 ⊆ R1 ⊆ R2 ⊆ · · · ⊆ V (G)k and V (G) is finite, the sequence
reaches a fixed-point Rn = Rn+1 = Ri for all i ≥ n, which we denote by
R∞ = R∞(G,ϕ,X, �x). The ifp-operator applied to ϕ,X, �x defines this fixed-
point. We use the following syntax:

ifp
(
X ← �x

∣∣ ϕ)�x′︸ ︷︷ ︸
=:ψ(�x′)

. (1)

Here �x′ is another k-tuple of individual variables, which may coincide with �x. The
variables in the tuple �x′ are the free variables of the formula ψ(�x′), and for every
graph G and every tuple �v ∈ V (G)k of vertices we let G |= ψ[�v] ⇐⇒ �v ∈ R∞.
These definitions can easily be extended to a situation where the formula ϕ
contains other free variables than X and and the variables in x̃; these variables
remain free variables of ψ. Now formulae of inflationary fixed-point logic IFP

in the language of graphs are built from atomic formulae E(x, y), x = y, and
X�x for relation variables X and tuples of individual variables �x whose length
matches the arity of X , by the usual Boolean connectives and existential and
universal quantifiers ranging over the vertices of a graph, and the ifp-operator.

Example 3. The IFP-sentence

conn := ∀x1∀x2 ifp
(
X ← (x1, x2)

∣∣∣∣ x1 = x2 ∨ E(x1, x2)∨
∃x3

(
X(x1, x3) ∧X(x3, x2)

)) (x1, x2)

states that a graph is connected.

Inflationary fixed-point logic with counting, IFP+C, is the extension of IFP by
counting operators that allow it to speak about cardinalities of definable sets and
relations. To define IFP+C, we interpret the logic IFP over two sorted extensions
of graphs (or other relational structures) by a numerical sort. For a graph G,
we let N(G) be the initial segment

[
0, |G|

]
of the nonnegative integers. We let

G+ be the two-sorted structure G ∪ (N(G),≤), where ≤ is the natural linear

338 M. Grohe

order on N(G). To avoid confusion, we always assume that V (G) and N(G) are
disjoint. We call the elements of the first sort V (G) vertices and the elements of
the second sort N(G) numbers. Individual variables of our logic range either over
the set V (G) of vertices of G or over the set N(G) of numbers of G. Relation
variables may range over mixed relations, having certain places for vertices and
certain places for numbers. Let us call the resulting logic, inflationary fixed-point
logic over the two-sorted extensions of graphs, IFP+. We may still view IFP+ as
a logic over plain graphs, because the extension G+ is uniquely determined by
G. More precisely, we say that a sentence ϕ of IFP+ is satisfied by a graph G if
it G+ |= ϕ. Inflationary fixed-point logic with counting IFP+C is the extension
of IFP+ by counting terms formed as follows: For every formula ϕ and every
vertex variable x we add a term #x ϕ; the value of this term is the number of
assignments to x such that ϕ is satisfied.

With each IFP+C-sentence ϕ in the language of graphs we associate the graph
property Pϕ := {G | G |= ϕ}. As the set of all IFP+C-sentences is computable,
we may thus view IFP+C as an abstract logic according to the definition given in
Section 1.1. It is easy to see that IFP+C satisfies condition (G.2) and therefore
condition (G.2)C for every class C of graphs. Thus to prove that IFP+C captures
PTIME on a class C it suffices to verify (G.1)C .

In the following examples, we use the notational convention that x and vari-
ants such as x1, x

′ denote vertex variables and that y and variants denote number
variables.

Example 4. The IFP+C-term 0 := #x ¬x = x defines the number 0 ∈ N(G).
The formula

succ(y1, y2) := y1 ≤ y2 ∧ ¬y1 = y2 ∧ ∀y(y ≤ y1 ∨ y2 ≤ y)

defines the successor relation associated with the linear order ≤. The following
IFP+C-formula defines the set of even numbers in N(G):

even(y) := ifp
(
Y ← y

∣∣∣ y = 0 ∨ ∃y′∃y′′
(
Y (y′) ∧ succ(y′, y′′) ∧ succ(y′′, y)

))
y .

Example 5. An Eulerian cycle in a graph is a closed walk on which every edge
occurs exactly once. A graph is Eulerian if it has a Eulerian cycle. It is a well-
known fact that a graph is Eulerian if and only if it is connected and every vertex
has even degree. Then the following IFP+C-sentence defines the class of Eulerian
graphs:

eulerian := conn ∧ ∀x1 even
(
#x2 E(x1, x2)

)
,

where conn is the sentence from Example 3 and even(y) is the formula from
Example 4. By standard techniques from finite model theory, it can be proved
that the class of Eulerian graphs is neither definable in IFP nor in the counting
extension FO+C of first-order logic.

Fixed-Point Definability and Polynomial Time on Chordal Graphs 339

2.4 Syntactical Interpretations

In the following, L is one of the logics IFP+C, IFP, or FO, and λ, μ are relational
languages such as the language {E} of graphs or the language {E,�} of ordered
graphs. An L[λ]-formula is an L-formula in the language λ, and similarly for μ.
We need some additional notation:

– Let ≈ be an equivalence relation on a set U . For every u ∈ U , by u/≈ we
denote the ≈-equivalence class of u, and we let U/≈ := {u/≈ | u ∈ U} be
the set of all equivalence classes. For a tuple �u = (u1, . . . , uk) ∈ Uk we let
�u/≈ := (u1/≈, . . . , uk/≈), and for a relation R ⊆ Uk we let R/≈ := {�u/≈ |
�u ∈ R}.

– Two tuples x̄ = (x1, . . . , xk), (y1, . . . , y�) of individual variables have the
same type if k = � and for all i ∈ [k] either both xi and yi range over vertices
or both xi and yi range over numbers. For every structure G, we let G�x be
the set of all tuples �a ∈ (V (G) ∪ N(G))k such that for all i ∈ [k] we have
ai ∈ V (G) if xi is a vertex variable and ai ∈ N(G) if xi is a number variable.

Definition 6. 1. An L-interpretation of μ in λ is a tuple

Γ (�x) =
(
γapp(�x), γV (�x, �y), γ≈(�x, �y1, �y2),

(
γR(�x, �yR)

)
R∈μ

)
,

of L[λ]-formulae, where �x, �y, �y1, �y2, and �yR for R ∈ μ are tuples of individual
variables such that �y, �y1, �y2 all have the same type, and for every k-ary R ∈ μ
the tuple �yR can be written as �yR1 . . . �yR,k, where the �yR,i have the same type
as �y.

In the following, let Γ (�x) be an L-interpretation of μ in λ. Let G be a λ-structure
and �a ∈ G�x:

3. Γ (�x) is applicable to (G,�a) if G |= γapp[�a].
4. If Γ (�x) is applicable to (G,�a), we let Γ [G;�a] be the μ-structure with vertex

set
V
(
Γ [G;�a]

)
:=
{
�b ∈ G�y

∣∣ G |= γV [�a,�b]
}/

≈ ,

where ≈ is the reflexive, symmetric, transitive closure of the binary relation{
(�b1,�b2) ∈ (G�y)2

∣∣ G |= γ≈[�a,�b1,�b2]
}
. Furthermore, for k-ary R ∈ μ, we let

R
(
Γ [G;�a]

)
:=
{
(�b1, . . . ,�bk) ∈ V

(
Γ [G;�a]

) ∣∣∣ G |= γR[�a,�b1, . . . ,�bk]
}/

≈
.

Syntactical interpretations map λ-structures to μ-structures. The crucial ob-
servation is that they also induce a reverse translation from L[μ]-formulae to
L[λ]-formulae.

Fact 7 (Lemma on Syntactical Interpretations). Let Γ (�x) be an L-in-
terpretation of μ in λ. Then for every L[μ]-sentence ϕ there is an L[λ]-formula
ϕ−Γ (�x) such that the following holds for all λ-structures G and all tuples �a ∈ G�x:
If Γ (�x) is applicable to (G,�a), then

G |= ϕ−Γ [�a] ⇐⇒ Γ [G;�a] |= ϕ .

A proof of this fact for first-order logic can be found in [22]. The proof for the
other logics considered here is an easy adaptation of the one for first-order logic.

340 M. Grohe

2.5 Definable Canonisation

A canonisation mapping for a class of C graphs associates with every graphG ∈ C
an ordered copy of G, that is, an ordered graph (H,≤) such that H ∼= G. We
are interested in canonisation mappings definable in the logic IFP+C by syntac-
tical interpretations of {E,�} in {E}. The easiest way to define a canonisation
mapping is by defining a linear order ≤ on the universe of a structure G and
then take (G,≤) as the canonical copy. However, defining an ordered copy of
a structure is not the same as defining a linear order on the universe, as the
following example illustrates:

Example 8. Let K be the class of all complete graphs. It is easy to see that
there is no IFP+C-formula ϕ(x1, x2) such that for all K ∈ K the binary relation
ϕ[K;x1, x2] is a linear order of V (K).

However, there is an FO+C-definable canonisation mapping for the class K:
Let

Γ =
(
γapp, γV (�y), γ≈(y1, y2), γE(y1, y2), γ�(y1, y2)

)
be the numerical FO+C-interpretation of {E,�} in {E} defined by:

– γapp := ∀x x = x;
– γV (y) := 1 ≤ y ∧ y ≤ ord, where ord := #x x = x;
– γ≈(y1, y2) := y1 = y2;
– γE(y1, y2) := ¬y1 = y2;
– γ�(y1, y2) := y1 ≤ y2.

It is easy to see that the mapping K 	→ Γ [K] is a canonisation mapping for the
class K.

Our notion of definable canonisation slightly relaxes the requirement of defining
a canonisation mapping; instead of just one ordered copy, we associate with each
structure a parametrised family of polynomially many ordered copies.

Definition 9. 1. Let Γ (�x) be an L-interpretation of {E,�} in {E}. Then Γ (�x)
canonises a graph G if there is at least one tuple �a ∈ G�x such that Γ (�x) is
applicable to (G,�a), and for all tuples �a ∈ G�x such that Γ (�x) is applicable to
(G,�a) it holds that Γ [G;�a] is an ordered copy of G.

2. A class C of graphs admits L-definable canonisation if there is an L-inter-
pretation Γ (�x) of {E,�} in {E} that canonises all G ∈ C.

The following well-known fact is a consequence of the Immerman-Vardi Theorem.
It is used, at least implicitly, in [30,31,34,48,55]:

Fact 10. Let C be a class of graphs that admits IFP+C-definable canonisation.
Then IFP+C captures PTIME on C.

Fixed-Point Definability and Polynomial Time on Chordal Graphs 341

3 Negative Results

In this section, we prove that IFP+C does not capture PTIME on the classes of
chordal graphs and line graphs. Actually, our proof yields a more general result:
Any logic that captures PTIME on any of these two classes and that is “closed
under first-order reductions” captures PTIME on the class of all graphs. It will be
obvious what we mean by “closed under first-order reductions” from the proofs,
and it is also clear that most “natural” logics will satisfy this closure condition.
It follows from our constructions that if there is a logic capturing PTIME on one
of the two classes, then there is a logic capturing PTIME on all graphs.

Our negative results for IFP+C are based on the following theorem:

Fact 11 (Cai, Fürer, and Immerman [9]). There is a PTIME-decidable prop-
erty PCFI of graphs that is not definable in IFP+C.

Without loss of generality we assume that all G ∈ PCFI are connected and of
order at least 4.

3.1 Chordal Graphs

Let us denote the class of chordal graphs by CD.
For every graph G, we define a graph Ĝ as follows:

– V (Ĝ) := V (G) ∪ {ve | e ∈ E(G)}, where for each e ∈ E(G) we let ve be a
new vertex;

– E(Ĝ) :=
(
V (G)

2

)
∪
{
{v, ve}

∣∣ v ∈ V (G), e ∈ E(G), v ∈ e
}
.

The following lemmas collect the properties of the transformation G 	→ Ĝ that
we need here. We leave the straightforward proofs to the reader.

Lemma 12. For every graph G the graph Ĝ is chordal.

Note that for the graphsK2 and I3 :=
(
[3], ∅

)
it holds that K̂2

∼= Î3 ∼= K3. It turns
out that K2 and I3 are the only two nonisomorphic graphs that have isomorphic
images under the mapping G 	→ Ĝ. It is easy to verify this by observing that for
G with |G| ≥ 4 and v ∈ V (Ĝ), it holds that v ∈ V (G) if and only if deg(v) ≥ 3.
Let Ĝ be the class of all graphs H such that H ∼= Ĝ for some graph G.

Lemma 13. The class Ĝ is polynomial time decidable. Furthermore, there is a
polynomial time algorithm that, given a graph H ∈ Ĝ, computes the unique (up
to isomorphism) graph G ∈ G \ {K | K ∼= K2} with Ĝ ∼= H.

Lemma 14. There is an FO-interpretation Γ̂ of {E} in {E} such that for all
graphs G it holds that Γ̂ [G] ∼= Ĝ.

Theorem 15. IFP+C does not capture PTIME on the class CD of chordal graphs.

Proof. Let PCFI be the graph property of Fact 11 that separates PTIME from
IFP+C. Note that K2 �∈ PCFI by our assumption that all graphs in PCFI have

342 M. Grohe

order at least 4. By Lemma 13, the class P̂ := {H | H ∼= Ĝ for some G ∈ PCFI}
is a polynomial time decidable subclass of CD.

Suppose for contradiction that IFP+C captures polynomial time on CD. Then
by (G.1)CD there is an IFP+C-sentence ϕ such that for all chordal graphs G
it holds that G |= ϕ ⇐⇒ G ∈ P̂ . We apply the Lemma on Syntactical
Interpretations to ϕ and the interpretation Γ̂ of Lemma 14 and obtain an IFP+C-
sentence ϕ−Γ̂ such that for all graphs G it holds that

G |= ϕ−Γ̂ ⇐⇒ Ĝ ∼= Γ̂ [G] |= ϕ .

Thus ϕ−Γ̂ defines PCFI, which is a contradiction. �

3.2 Line Graphs

Let L denote the class of all line graphs, or more precisely, the class of all graphs
L such that there is a graph G with L ∼= L(G). Observe that a triangle and
a claw have the same line graph, a triangle. Whitney [62] proved that for all
nonisomorphic connected graphs G,H except the claw and triangle, the line
graphs of G and H are nonisomorphic. The following fact, corresponding to
Lemma 13, is essentially an algorithmic version of Whitney’s result:

Fact 16 (Roussopoulos [59]). The class L is polynomial time decidable. Fur-
thermore, there is a polynomial time algorithm that, given a connected graph
H ∈ L, computes the unique (up to isomorphism) graph G ∈ G \ {K | K ∼= K3}
with L(G) ∼= H.

Lemma 17. There is an FO-interpretation Λ of {E} in {E} such that for all
graphs G it holds that Λ[G] ∼= L(G).

Proof. We define Λ :=
(
λapp, λV (y1, y2), λ≈(y1, y2, y′1, y′2), λE(y1, y2, y′1, y′2)

)
by:

– λapp := ∀x x = x;
– λV (y1, y2) := E(y1, y2);
– λ≈(y1, y2, y′1, y

′
2) := (y1 = y′1 ∧ y2 = y′2) ∨ (y1 = y′2 ∧ y2 = y′1);

– λE(y1, y2, y′1, y′2) := (y1 = y′1 ∧ ¬y2 = y′2) ∨ (y2 = y′2 ∧ ¬y1 = y′1) ∨ (y1 =
y′2 ∧ ¬y2 = y′1) ∨ (y2 = y′1 ∧ ¬y2 = y′1). �

Theorem 18. IFP+C does not capture PTIME on the class L of line graphs.

Proof. The proof is completely analogous to the proof of Theorem 15, using
Fact 16 and Lemma 17 instead of Lemmas 13 and 14. �

4 Capturing Polynomial Time on Chordal Line Graphs

In this section, we shall prove that IFP+C captures PTIME on the class CD∩L of
graphs that are both chordal and line graphs. As we will see, such graphs have a
simple treelike structure. We can exploit this structure and canonise the graphs
in CD ∩ L in a similar way as trees or graphs of bounded tree width.

Example 19. Fig. 3 shows an example of a chordal line graph.

Fixed-Point Definability and Polynomial Time on Chordal Graphs 343

G

L(G)

Fig. 3. A graph G and its line graph L(G), which is chordal

4.1 On the Structure of Chordal Line Graphs

It is a well-known fact that chordal graphs can be decomposed into cliques
arranged in a tree-like manner. To state this formally, we review tree decompo-
sitions of graphs. A tree decomposition of a graph G is a pair (T, β), where T is a
tree and β : V (T)→ 2V (G) is a mapping such that the following two conditions
are satisfied:

(T.1) For every v ∈ V (G) the set {t ∈ V (T) | v ∈ β(t)} is connected in T .

(T.2) For every e ∈ E(G) there is a t ∈ V (T) such that e ⊆ β(t).

The sets β(t), for t ∈ V (T), are called the bags of the decomposition. It will
be convenient for us to always assume the tree T in a tree decomposition to be
rooted. This gives us the partial tree order �T . We introduce some additional
notation. Let (T, β) be a tree decomposition of a graph G. For every t ∈ V (T)
we let:

γ(t) :=
⋃

u∈V (T) with t�T u

β(u) ,

344 M. Grohe

The set γ(t) is called the cone of (T, β) at t. It easy to see that for every
t ∈ V (T)\{r(T)} with parent s the set β(t)∩β(s) separates γ(t) from V (G)\γ(t).
Furthermore, for every clique X of G there is a t ∈ V (T) such that X ⊆ β(t).
(See Diestel’s textbook [20] for proofs of these facts and background on tree
decompositions.) Another useful fact is that every tree decomposition (T, β) of a
graph G can be transformed into a tree decomposition (T ′, β′) such that for all
t′ ∈ V (T ′) there exists a t ∈ V (T) such that β′(t′) = β(t), and for all t, u ∈ V (T ′)
with t �= u it holds that β′(t) �⊆ β′(u).

Fact 20. A nonempty graph G is chordal if and only if G has a tree decomposi-
tion into cliques, that is, a tree decomposition (T, β) such that for all t ∈ V (T)
the bag β(t) is a clique of G.

For a graph G, we let MCL(G) be the set of all maximal cliques in G with
respect to set inclusion. If we combine Fact 20 with the observations about tree
decomposition stated before the fact, we obtain the following lemma:

Lemma 21. Let G be a nonempty chordal graph. Then G has a tree decompo-
sition (T, β) with the following properties:

(i) For every t ∈ V (T) it holds that β(t) ∈ MCL(G).

(ii) For every X ∈ MCL(G) there is exactly one t ∈ V (T) such that β(t) = X.

We call a tree decomposition satisfying conditions (i) and (ii) a good tree de-
composition of G.

Let us now turn to line graphs. Let L := L(G) be the line graph of a graph G.
For every v ∈ V (G), let X(v) := {e ∈ E(G) | v ∈ e} ⊆ V (L). Unless v is an
isolated vertex, X(v) is a clique in L. Furthermore, we have

L =
⋃

v∈V (G)

L[X(v)] .

Observe that for all v, w ∈ V (G), if e := {v, w} ∈ E(G) then X(v)∩X(w) = {e},
and if {v, w} �∈ E(G) then X(v) ∩X(w) = ∅. The following proposition, which
is probably well-known, characterises the line graphs that are chordal:

Proposition 22. Let L = L(G) ∈ L. Then

L ∈ CD ⇐⇒ all cycles in G are triangles.

Note that on the right hand side, we do not only consider chordless cycles.

Proof. For the forward direction, suppose that L ∈ CD, and let C ⊆ G be a
cycle. Then L[E(C)] is a chordless cycle in L. Hence |C| ≤ 3, that is, C is a
triangle.

For the backward direction, suppose that all cycles in G are triangles, and
let C ⊆ L be a chordless cycle of length k. Let e1, . . . , ek be the vertices of C
in cyclic order. To simplify the notation, let e0 := ek. Then for all i ∈ [k] it

Fixed-Point Definability and Polynomial Time on Chordal Graphs 345

holds that {ei−1, ei} ∈ E(L) and thus ei−1 ∩ ei �= ∅. Let v0, v1 ∈ V (G) such that
e1 = {v0, v1}, and for i ∈ [2, k], let vi ∈ ei \ ei−1. Then vi �= vj for all j ∈ [i− 2],
and if i < k even for j ∈ [0, i − 2], because the cycle C is chordless and thus
ei ∩ ej = ∅. Furthermore, vk = v0. Thus {v1, . . . , vk} is the vertex set of a cycle
in G, and we have k = 3. �

Lemma 23. Let L = L(G) ∈ CD∩L, and let X ∈ MCL(L) and e = {v, w} ∈ X.
Then X = X(v) or X = X(w) or there is an x ∈ V (G) such that {x, v}, {x,w} ∈
E(G) and X =

{
e, {x, v}, {x,w}

}
.

Proof. For all f ∈ X , either v ∈ f or w ∈ f , because f is adjacent to e. Hence
X ⊆ X(v) ∪ X(w). If X ⊆ X(v), then X = X(v) by the maximality of X .
Similarly, if X ⊆ X(w) then X = X(w). Suppose that X \ X(v) �= ∅ and
X \ X(w) �= ∅. Let f ∈ X \ X(v) and g ∈ X \ X(w). As X is a clique, we
have {f, g} ∈ E(L) and thus f ∩ g �= ∅. Hence there is an x ∈ V (G) such that
f = {x,w} and g = {x, v}. Furthermore, X = {e, f, g}. To see this, let h ∈ X .
Then {h, e} ∈ E(L) and thus v ∈ h or w ∈ h. Say, v ∈ h. If w ∈ h, then h = e.
Otherwise, we have x ∈ h, because h is adjacent to g. Thus h = g. �

Lemma 24. Let L ∈ CD ∩ L, and let X1, X2 ∈ MCL(L) be distinct. Then
|X1 ∩X2| ≤ 2.

Proof. Let L = L(G) for some graph G. Suppose for contradiction that |X1 ∩
X2| ≥ 3. Then |X1|, |X2| ≥ 4, because X1 and X2 are distinct maximal cliques.
By Lemma 23, it follows that there are vertices v1, v2 ∈ V (G) such that X1 =
X(v1) and X2 = X(v2), which implies |X1∩X2| ≤ 1. This is a contradiction. �

Lemma 25. Let L ∈ CD∩L, and let X1, X2, X3 ∈ MCL(L) be pairwise distinct
such that X1 ∩ X2 ∩X3 �= ∅. Then there are i, j, k such that {i, j, k} = [3] and
Xi ⊆ Xj ∪Xk and |Xi| = 3.

Proof. Let L = L(G) for some graph G. Let e ∈ X1∩X2∩X3. Suppose that e =
{v, w} ∈ E(G). As the cliques X1, X2, X3 are distinct, it follows from Lemma 23
that there is an i ∈ [3] and an x ∈ V (G) such that Xi =

{
e, {x, v}, {x,w}

}
.

Choose such i and x.

Claim 1. For all j ∈ [3] \ {i}, either Xj = X(v) or Xj = X(w).

Proof. Suppose for contradiction that Xj �= X(v) and Xj �= X(w). Then by
Lemma 23, there exists a y ∈ V (G) such that {y, v}, {y, w} ∈ E(G) and Xj ={
e, {y, v}, {y, w}

}
. But then

L
[
{y, v}, {v, x}, {x,w}, {w, y}

]
is a chordless cycle in L, which contradicts L being chordal. 	

Thus there are j, k such that {i, j, k} = [3] and Xj = X(v) and Xk = X(w).
Then Xi ⊆ Xj ∪Xk. �

346 M. Grohe

Lemma 26. Let L ∈ CD ∩ L. Then every good tree decomposition (T, β) of
L satisfies the following conditions (in addition to conditions (i) and (ii) of
Lemma 21):

(iii) For all t ∈ V (T),
– either |β(t)| = 3 and t has at most three neighbours in T (the neigh-

bours of a node are its children and the parent),

– or for all distinct neighbours u, u′ of t in T it holds that β(u)∩β(u′) =
∅.

(iv) For all t, u ∈ V (T) with t �= u it holds that |β(t) ∩ β(u)| ≤ 2.

Proof. Let (T, β) be a good tree decomposition of L. Such a decomposition exists
because L is chordal. As all bags of the decomposition are maximal cliques of L,
condition (iii) follows from Lemma 25 and condition (iv) follows from Lemma 24.

�

4.2 Canonisation

Theorem 27. The class CD∩L of all chordal line graphs admits IFP+C-definable
canonisation.

Corollary 28. IFP+C captures PTIME on the class of all chordal line graphs.

Proof (Proof of Theorem 27). The proof resembles the proof that classes of
graphs of bounded tree width admit IFP+C-definable canonisation [34] and also
the proof of Theorem 7.2 (the “Second Lifting Theorem”) in [31]. Both of these
proofs are generalisations of the simple proof that the class of trees admits
IFP+C-definable canonisation (see, for example, [36]). We shall describe an in-
ductive construction that associates with each chordal line graph G a canonical
copy G′ whose universe is an initial segment of the natural numbers. For read-
ers with some experience in finite model theory, it will be straightforward to
formalise the construction in IFP+C. We only describe the canonisation of con-
nected chordal line graphs that are not complete graphs. It is easy to extend
it to arbitrary chordal line graphs. For complete graphs, which are chordal line
graphs, cf. Example 8.

To describe the construction, we fix a connected graph G ∈ CD ∩ L that is
not a complete graph. Note that this implies |G| ≥ 3. Let (T, βT) be a good tree
decomposition of G. As G is not a complete graph, we have |T | ≥ 2. Without
loss of generality we may assume that the root r(T) has exactly one child in T ,
because every tree has at least one node of degree at most 1 and properties (i),
(ii) of a good decomposition do not depend on the choice of the root. It will be
convenient to view the rooted tree T as a directed graph, where the edges are
directed from parents to children.

Let U be the set of all triples (u1, u2, u3) ∈ V (G)3 such that u3 �= u1, u2

(possibly, u1 = u2), and there is a unique X ∈ MCL(G) such that u1, u2, u3 ∈ X .
For all �u = (u1, u2, u3) ∈ U , let A(�u) be the connected component of G \
{u1, u2} that contains u3 (possibly, A(�u) = G \ {u1, u2}). We define mappings

Fixed-Point Definability and Polynomial Time on Chordal Graphs 347

σU , αU , γU , βU : U → 2V (G) as follows: For all �u = (u1, u2, u3) ∈ U , we let
σU (�u) := {u1, u2} and αU (�u) := V (A(�u)). We let γU (�u) := σU (�u) ∪ αU (�u), and
we let βU (�u) the unique X ∈ MCL(G) with u1, u2, u3 ∈ X . We define a partial
order � on U by letting �u � �v if and only if �u = �v or α(�u) ⊃ α(�v). We let
F be the successor relation of �, that is, (�u,�v) ∈ F if �u � �v and there is no
�w ∈ U \ {�u,�v} such that �u � �w � �v. Finally, we let D := (U,F). Then D is a
directed acyclic graph. It is easy to verify that for all �u ∈ U we have

βU (�u) = γU (�u) \
⋃

�v∈ND(�u)

αU (�v) , (2)

where ND(�u) =
{
�v ∈ U

∣∣ (�u,�v) ∈ F}.
Recall that we also have mappings βT , γT : V (T) → 2V (G) derived from the

tree decomposition. We define a mapping σT : V (T)→ 2V (G) as follows:

– For a node t ∈ V (T) \ {r(T)} with parent s, we let σT (t) := βT (t) ∩ βT (s).
– For the root r := r(T), we first define a set S ⊆ V (G) by letting S :=
βT (r) \ βT (t), where t is the unique child of r. (Remember our assumption
that r has exactly one child.) Then if |S| ≥ 2, we choose distinct v, v′ ∈ S
and let σT (r) := {v, v′}, and if |S| = 1 we let σT (r) := S.

Note that βT (t) \ σT (t) �= ∅ and 1 ≤ |σT (t)| ≤ 2 for all t ∈ V (T). For the
root, this follows immediately from the definition of σT (t), and for nodes t ∈
V (T) \ {r(T)} it follows from Lemma 26. We define a mapping αT : V (T) →
2V (G) by letting αT (t) := γT (t) \ σT (t) for all t ∈ V (T). We define a mapping
g : V (T) → U by choosing, for every node t ∈ V (T), vertices u1, u2 such that
σT (t) = {u1, u2} (possibly u1 = u2) and a vertex u3 ∈ β(t) \ σ(t) and letting
g(t) := (u1, u2, u3). Note that (u1, u2, u3) ∈ U , because βT (t) is the unique
maximal clique in MCL(G) that contains u1, u2, u3.

Claim 1. The mapping g is a directed graph embedding of T into D. Fur-
thermore, for all t ∈ V (T) it holds that αT (t) = αU (g(t)), βT (t) = βU (g(t)),
γT (t) = γU (g(t)), and σT (t) = σU (g(t)).

Proof. We leave the straightforward inductive proof to the reader. 	
Let �u0 := g(r(T)), and let U0 be the subset of U consisting of all �u ∈ U such
that �u0 � �u. Let F0 be the restriction of F to U0 and D0 := (U0, F0). Note that
U0 is upward closed with respect to � and that g(T) ⊆ D0.

Claim 2. There is a mapping h : U0 → V (T) such that h is a directed graph
homomorphism from D0 to T and h ◦ g is the identity mapping on V (T). Fur-
thermore, for all �u ∈ U0 it holds that αU (�u) = αT (h(�u)), βU (�u) = βT (h(�u)),
γU (�u) = γT (h(�u)), and σU (�u) = σT (h(�u)).

Proof. We define h by induction on the partial order �. The unique �-minimal
element of U0 is �u0. We let h(�u0) := r(T). Now let �v = (v1, v2, v3) ∈ U0, and
suppose that h(�u) is defined for all �u ∈ U0 with �u � �v. Let �u ∈ U0 such that
(�u,�v) ∈ F0, and let s := h(�u). By the induction hypothesis, we have αU (�u) =

348 M. Grohe

αT (s), βU (�u) = βT (s), γU (�u) = γT (s), and σU (�v) = σT (s). The set αU (�v) is the
vertex set of a connected component of G\σU (�v) which is contained in αU (�u) ⊆
γU (�u) = γT (s), and by (2) it holds that αU (�v) ∩ βU (�u) = ∅. Hence there is a
child t of s such that αU (�v) ⊆ αT (t). Let �v′ := g(t). If αU (�v) ⊂ αT (t) = αU (�v′),
then �u � �v′ � �v, which contradicts (�u,�v) ∈ F . Hence αU (�v) = αT (t) and thus
σU (�v) = σT (t). This also implies γU (�v) = γT (t) and βU (�v) = βT (t). We let
h(�v) := t.

To prove that h is really a homomorphism, it remains to prove that for all
�u′ ∈ U0 with (�u′, �v) ∈ F0 we also have h(�u′) = s. So let �u′ ∈ U0 with (�u′, �v) ∈ F0,
and let s′ = h(�u′). Suppose for contradiction that s �= s′. If s′ �T s then αU (�u′) ⊃
αU (�u) and thus �u′��u, which contradicts (�u′, �v) ∈ F0. Thus s′ ��T s, and similarly
s ��T s′. But then both σT (s) and σT (s′) separate γT (s) from γT (s′) in G. This
contradicts αU (�v) ⊆ αT (s) ∩ αT (s′) ⊆

(
γT (s) ∩ γT (s′)

)
\
(
σT (s) ∪ σT (s′)

)
. 	

Thus essentially, the “treelike” decomposition (D0, β
U) is the same as the tree

decomposition (T, βT). However, the decomposition (D0, β
U) is IFP-definable

with three parameters fixing the tuple �u0 = g(r(T)).
Let us now turn to the canonisation. For every �u ∈ U0, we let G(�u) := G[γ(�u)].

Then G = G(�u0). We inductively define for every �u = (u1, u2, u3) ∈ U0 a graph
H(�u) with the following properties:

(i) V
(
H(�u)

)
= [n�u], where n�u := |γ(�u)| =

∣∣V (G�u)
)∣∣.

(ii) There is an isomorphism f�u from G(�u) to H(�u) such that if u1 �= u2

it holds that f�u(u1) = 1 and f�u(u2) = 2, and if u1 = u2 it holds that
f�u(u1) = 1.

For the induction basis, let �u ∈ U0 with ND0(�u) = ∅. Then γU (�u) = βU (�u), and
G(�u) = K[βU (�u)]. We let n := n�u = |βU (�u)| and H(�u) := Kn. Then (i) and (ii)
are obviously satisfied.

For the induction step, let �u ∈ U0 and ND0(�u) = {�v1, . . . , �vn} �= ∅. It follows
from Claim 2 that for all i, j ∈ [n], either γ(�vi) = γ(�vj) or γ(�vi) ∩ γ(�vj) =
σ(�vi) ∩ σ(�vj) ⊆ β(�u). We may assume without loss of generality that there are
i1, . . . , im ∈ [n] such that i1 < i2 < . . . < im and for all j, j′ ∈ [m] with j �= j′ we
have γ(�vij) �= γ(�vij′) and for all j ∈ [m], i ∈ [ij , ij+1−1] we have γ(�vi) = γ(�vij).
Here and in the following we let im+1 := n+ 1.

The class of all graphs whose vertex set is a subset of N may be ordered
lexicographically; we let H ≤s-lex H

′ if either V (H) is lexicographically smaller
than V (H ′), that is, the first element of the symmetric difference V (H)"V (H ′)
belongs to V (H ′), or V (H) = V (H ′) and E(H) is lexicographically smaller than
E(H ′) with respect to the lexicographical ordering of unordered pairs of natural
numbers, or H = H ′. Without loss of generality we may assume that for each
j ∈ [m] it holds that

H(�vij) ≤s-lex H(�vij+1) ≤s-lex H(�vij+2) ≤s-lex . . . ≤s-lex H(�vij+1−1)

and, furthermore,

H(�vi1) ≤s-lex H(�vi2) ≤s-lex . . . ≤s-lex H(�vim) . (3)

Fixed-Point Definability and Polynomial Time on Chordal Graphs 349

Note that, even though the graphs G(�vi1), G(�vi2), . . . , G(�vim) are vertex disjoint
subgraphs of G(�u), they may be isomorphic, and hence not all of the inequalities
in (3) need to be strict. For all j ∈ [m], let �vj := �vij and Gj := G(�vj) an
Hj := H(�vj). Then H1 ≤s-lex H2 ≤s-lex . . . ≤s-lex Hm. Let j1, . . . , j� ∈ [m] such
that j1 < j2 < . . . < j� and Hj = Hji for all i ∈ [�], j ∈ [ji, ji+1 − 1], where
j�+1 = m + 1, and Hji �= Hji+1 for all i ∈ [� − 1]. For all i ∈ [�], let Ji := Hji .
Furthermore, let ni := |Ji| and ki := ji+1 − ji and qi := |σU (�vij)| and

q :=

∣∣∣∣∣∣βU (�u) \
m⋃

j=1

βU (�vj)

∣∣∣∣∣∣ .

Case 1: For all neighbours t, t′ of h(�u) in the undirected tree underlying T it
holds that βT (t) ∩ βT (t′) = ∅.
We define H(�u) by first taking a complete graph Kq, then k1 copies of J1,
then k2 copies of J2, et cetera, and finally k� copies of J�. The universes of
all these copies are disjoint, consecutive intervals of natural numbers. Let
K be the union of [q] with the first qi vertices of each of the ki copies of Ji

for all i ∈ [�]. Then K is the set of vertices of H(�u) that corresponds to the
clique β(�u). We add edges among the vertices in K to turn it into a clique.
It is not hard to verify that the resulting structure satisfies (i) and (ii).

Case 2: There are neighbours t, t′ of h(�u) in the undirected tree underlying T
such that βT (t) ∩ βT (t′) �= ∅.
Then by Lemma 26(iii) we have |βU (�u)| = 3, and h(�u) has at most two
children. Hence m ≤ 2, and essentially this means we only have two possi-
bilities of how to combine the parts H1, H2 to the graph H(�u); either H1

comes first or H2. We choose the lexicographically smaller possibility. We
omit the details.

This completes our description of the construction of the graphs H(�u).
It remains to prove that H(�u) is IFP+C-definable. We first define IFP-formulae

θU (�x), θF (�x, �y), θα(�x, y), θβ(�x, y), θγ(�x, y), θσ(�x, y) such that

U =
{
�u ∈ V (G)3

∣∣ G |= θU [�u]
}
,

F =
{
(�u,�v) ∈ U2

∣∣ G |= θF [�u,�v]
}
,

αU (�u) =
{
v ∈ V (G)

∣∣ G |= θα[�u, v]
}

for all �u ∈ U,

and similarly for β, γ, σ. Then we define formulae θ0U (�x0, �x), θ0F (�x0, �x) that define
D0. We have no canonical way of checking that a tuple �u0 really is the image
g(r(T)) of the root of a good tree decomposition, but all we need is that the graph
D0(�u0) with vertex set

{
�u ∈ V (G)3

∣∣ G |= θ0U [�u0, �u]
}

and edge set
{
(�u,�v) ∈

U2
∣∣ G |= θF [�u0, �u,�v]

}
has the properties we derive from T being a good tree

decomposition. In particular, if a node �u has a child �v with σU (�u) ∩ σU (�v) �= ∅
or children �v1 �= �v2 with σU (�v1) ∩ σU (�v1) �= ∅, then |βU (�u)| ≤ 3. Once we have
defined D0, it is straightforward to formalise the definition of the graphs H(�u)

350 M. Grohe

in IFP+C and define an IFP+C-interpretation Γ (�x0) that canonises G. We leave
the (tedious) details to the reader. �

Remark 29. Implicitly, the previous proof heavily depends on the concepts in-
troduced in [31]. In particular, the definable directed graph D together with the
definable mappings σ and α constitute a definable tree decomposition. However,
our theorem does not follow directly from Theorem 7.2 of [31].

The class CD ∩ L of chordal line graphs is fairly restricted, and there may be
an easier way to prove the canonisation theorem by using Proposition 22. The
proof given here has the advantage that it generalises to the class of all chordal
graphs that have a good tree decomposition where the bags of the neighbours
of a node intersect in a “bounded way”. We omit the details.

5 Further Research

I mentioned several important open problems related to the quest for a logic
capturing PTIME in the survey in Section 1. Further open problems can be found
in [32]. Here, I will briefly discuss a few open problems related to classes closed
under taking induced subgraphs, or equivalently, classes defined by excluding
(finitely or infinitely many) induced subgraphs.

A fairly obvious, but not particularly interesting generalisation of our positive
capturing result is pointed out in Remark 29. I conjecture that our theorem for
chordal line graphs can be generalised to the class of chordal claw-free graphs,
that is, I conjecture that the class of chordal claw-free graphs admits IFP+C-
definable canonisation. Further natural classes of graphs closed under taking
induced subgraphs are the classes of disk intersection graphs and unit disk in-
tersection graphs. It is open whether IFP+C or any other logic captures PTIME

on these classes. A very interesting and rich family of classes of graphs closed
under taking induced subgraphs is the family of classes of graphs of bounded
rank width [58], or equivalently, bounded clique width [13]. It is conceivable
that IFP+C captures polynomial time on all classes of bounded rank width. To
the best of my knowledge, currently it is not even known whether isomorphism
testing for graphs of bounded rank width is in polynomial time.

Acknowledgements

I would like to thank Yijia Chen and Bastian Laubner for valuable comments
on an earlier version of this paper.

References

1. Abiteboul, S., Vianu, V.: Non-deterministic languages to express deterministic

transformations. In: Proceedings of the 9th ACM Symposium on Principles of

Database Systems, pp. 218–229 (1990)

Fixed-Point Definability and Polynomial Time on Chordal Graphs 351

2. Aho, A., Ullman, J.: The universality of data retrieval languages. In: Proceedings

of the Sixth Annual ACM Symposium on Principles of Programming Languages,

pp. 110–120 (1979)

3. Babai, L., Grigoryev, D., Mount, D.: Isomorphism of graphs with bounded eigen-

value multiplicity. In: Proceedings of the 14th ACM Symposium on Theory of

Computing, pp. 310–324 (1982)

4. Babai, L., Luks, E.: Canonical labeling of graphs. In: Proceedings of the 15th ACM

Symposium on Theory of Computing, pp. 171–183 (1983)

5. Beineke, L.: Characterizations of derived graphs. Journal of Combinatorial The-

ory 9, 129–135 (1970)

6. Blass, A., Gurevich, Y., Shelah, S.: Choiceless polynomial time. Annals of Pure

and Applied Logic 100, 141–187 (1999)

7. Blass, A., Gurevich, Y., Shelah, S.: On polynomial time computation over un-

ordered structures. Journal of Symbolic Logic 67, 1093–1125 (2002)

8. Bodlaender, H.: Polynomial algorithms for graph isomorphism and chromatic index

on partial k-trees. Journal of Algorithms 11, 631–643 (1990)

9. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of

variables for graph identification. Combinatorica 12, 389–410 (1992)

10. Chandra, A., Harel, D.: Structure and complexity of relational queries. Journal of

Computer and System Sciences 25, 99–128 (1982)

11. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect

graph theorem. Annals of Mathematics 164, 51–229 (2006)

12. Chudnovsky, M., Seymour, P.: The structure of claw-free graphs. In: Webb, B.

(ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series,

vol. 327, pp. 153–171. Cambridge University Press, Cambridge (2005)

13. Courcelle, B., Olariu, S.: Upper bounds to the clique-width of graphs. Discrete

Applied Mathematics 101, 77–114 (2000)

14. Dawar, A.: Generalized quantifiers and logical reducibilities. Journal of Logic and

Computation 5, 213–226 (1995)

15. Dawar, A.: A restricted second order logic for finite structures. In: Leivant, D. (ed.)

LCC 1994. LNCS, vol. 960, Springer, Heidelberg (1995)

16. Dawar, A., Grohe, M., Holm, B., Laubner, B.: Logics with rank operators. In:

Proceedings of the 24th IEEE Symposium on Logic in Computer Science, pp. 113–

122 (2009)

17. Dawar, A., Hella, L.: The expressive power of finitely many generalized quantifiers.

In: Proceedings of the 9th IEEE Symposium on Logic in Computer Science (1994)

18. Dawar, A., Richerby, D.: A fixed-point logic with symmetric choice. In: Baaz,

M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 169–182. Springer,

Heidelberg (2003)

19. Dawar, A., Richerby, D., Rossman, B.: Choiceless polynomial time, counting and

the Cai-Fürer-Immerman graphs: (Extended abstract). Electronic Notes on Theo-

retical Compututer Science 143, 13–26 (2006)

20. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)

21. Ebbinghaus, H.D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg

(1999)

22. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic, 2nd edn. Springer,

Heidelberg (1994)

23. Evdokimov, S., Karpinski, M., Ponomarenko, I.: On a new high dimensional

Weisfeiler-Lehman algorithm. Journal of Algebraic Combinatorics 10, 29–45 (1999)

24. Evdokimov, S., Ponomarenko, I.: On highly closed cellular algebras and highly

closed isomorphism. Electronic Journal of Combinatorics 6, #R18 (1999)

352 M. Grohe

25. Fagin, R.: Generalized first–order spectra and polynomial–time recognizable sets.

In: Karp, R.M. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7,

pp. 43–73 (1974)

26. Filotti, I.S., Mayer, J.N.: A polynomial-time algorithm for determining the isomor-

phism of graphs of fixed genus. In: Proceedings of the 12th ACM Symposium on

Theory of Computing, pp. 236–243 (1980)

27. Gire, F., Hoang, H.: An extension of fixpoint logic with a symmetry-based choice

construct. Information and Computation 144, 40–65 (1998)

28. Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J., Vardi, M., Venema,

Y., Weinstein, S.: Finite Model Theory and Its Applications. Springer, Heidelberg

(2007)

29. Grädel, E., Otto, M.: On Logics with Two Variables. Theoretical Computer Sci-

ence 224, 73–113 (1999)

30. Grohe, M.: Fixed-point logics on planar graphs. In: Proceedings of the 13th IEEE

Symposium on Logic in Computer Science, pp. 6–15 (1998)

31. Grohe, M.: Definable tree decompositions. In: Proceedings of the 23rd IEEE Sym-

posium on Logic in Computer Science, pp. 406–417 (2008)

32. Grohe, M.: The quest for a logic capturing PTIME. In: Proceedings of the 23rd

IEEE Symposium on Logic in Computer Science, pp. 267–271 (2008)

33. Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded

minors. In: Proceedings of the 25th IEEE Symposium on Logic in Computer Science

(2010) (to appear)

34. Grohe, M., Mariño, J.: Definability and descriptive complexity on databases

of bounded tree-width. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,

vol. 1540, pp. 70–82. Springer, Heidelberg (1998)

35. Grohe, M., Verbitsky, O.: Testing graph isomorphism in parallel by playing a game.

In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part I.

LNCS, vol. 4051, pp. 3–14. Springer, Heidelberg (2006)

36. Grädel, E.: Finite model theory and descriptive complexity. In: Grädel, E., Kolaitis,

P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema, Y., Weinstein, S.

(eds.) Finite Model Theory and Its Applications, pp. 125–230. Springer, Heidelberg

(2007)

37. Gurevich, Y.: Logic and the challenge of computer science. In: Börger, E. (ed.)

Current trends in theoretical computer science, pp. 1–57. Computer Science Press,

Rockville (1988)

38. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.

ACM Transaction on Computational Logic 1, 77–111 (2000)

39. Gurevich, Y., Shelah, S.: Fixed point extensions of first–order logic. Annals of Pure

and Applied Logic 32, 265–280 (1986)

40. Hella, L.: Definability hierarchies of generalized quantifiers. Annals of Pure and

Applied Logic 43, 235–271 (1989)

41. Hella, L., Kolaitis, P., Luosto, K.: Almost everywhere equivalence of logics in finite

model theory. Bulletin of Symbolic Logic 2, 422–443 (1996)

42. Hopcroft, J. E., Wong, J.: Linear time algorithm for isomorphism of planar graphs.

In: Proceedings of the 6th ACM Symposium on Theory of Computing, pp. 172–184

(1974)

43. Hopcroft, J.E., Tarjan, R.: Isomorphism of planar graphs (working paper). In:

Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations.

Plenum Press, New York (1972)

44. Immerman, N.: Relational queries computable in polynomial time. Information and

Control 68, 86–104 (1986)

Fixed-Point Definability and Polynomial Time on Chordal Graphs 353

45. Immerman, N.: Expressibility as a complexity measure: results and directions. In:

Proceedings of the 2nd IEEE Symposium on Structure in Complexity Theory, pp.

194–202 (1987)

46. Immerman, N.: Languages that capture complexity classes. SIAM Journal on Com-

puting 16, 760–778 (1987)

47. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)

48. Immerman, N., Lander, E.: Describing graphs: A first-order approach to graph

canonization. In: Selman, A. (ed.) Complexity theory retrospective, pp. 59–81.

Springer, Heidelberg (1990)

49. Köbler, J., Verbitsky, O.: From invariants to canonization in parallel. In: Hirsch,

E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science – Theory

and Applications. LNCS, vol. 5010, pp. 216–227. Springer, Heidelberg (2008)

50. Kreutzer, S.: Expressive equivalence of least and inflationary fixed-point logic. An-

nals of Pure and Applied Logic 130, 61–78 (2004)

51. Laubner, B.: Capturing polynomial time on interval graphs. In: Proceedings of the

25th IEEE Symposium on Logic in Computer Science (2010) (to appear)

52. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

53. Luks, E.: Isomorphism of graphs of bounded valance can be tested in polynomial

time. Journal of Computer and System Sciences 25, 42–65 (1982)

54. Miller, G.L.: Isomorphism testing for graphs of bounded genus. In: Proceedings of

the 12th ACM Symposium on Theory of Computing, pp. 225–235 (1980)

55. Otto, M.: Bounded variable logics and counting – A study in finite models. Lecture

Notes in Logic, vol. 9. Springer, Heidelberg (1997)

56. Otto, M.: Canonization for two variables and puzzles on the square. Annals of Pure

and Applied Logic 85, 243–282 (1997)

57. Otto, M.: Bisimulation-invariant PTIME and higher-dimensional μ-calculus. The-

oretical Computer Science 224, 237–265 (1999)

58. Oum, S.I., Seymour, P.: Approximating clique-width and branch-width. Journal of

Combinatorial Theory, Series B 96, 514–528 (2006)

59. Roussopoulos, N.: A max{m,n} algorithm for determining the graph H from its

line graph G. Information Processing Letters 2, 108–112 (1973)

60. Vardi, M.: The complexity of relational query languages. In: Proceedings of the

14th ACM Symposium on Theory of Computing, pp. 137–146 (1982)

61. Verbitsky, O.: Planar graphs: Logical complexity and parallel isomorphism tests. In:

Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 682–693. Springer,

Heidelberg (2007)

62. Whitney, H.: Congruent graphs and the connectivity of graphs. American Journal

of Mathematics 54, 150–168 (1932)

Ibn S̄ınā on Analysis: 1. Proof Search. Or:
Abstract State Machines as a Tool

for History of Logic

Wilfrid Hodges

Herons Brook, Sticklepath, Okehampton EX20 2PY, England

wilfrid.hodges@btinternet.com

For Yuri Gurevich on the occasion of his seventieth birthday.

Abstract. The 11th century Arabic-Persian logician Ibn S̄ınā (Avi-

cenna) in Sect. 9.6 of his book Qiyās gives what appears to be a proof

search algorithm for syllogisms. We confirm that it is indeed a proof

search algorithm, by extracting all the essential ingredients of an Ab-

stract State Machine from Ibn S̄ınā’s text. The paper also contains a

translation of the passage from Ibn S̄ınā’s Arabic, and some notes on the

text and translation.

Keywords: abstract state machine, proof search, Ibn S̄ınā, Avicenna,

syllogism.

1 Introduction

This paper contains a translation and commentary on Sect. 9.6 of Ibn S̄ınā’s
major work on logic, the volume ‘Syllogism’ (Qiyās) from his encyclopedic Šifā’,
a work written in Arabic in the 1020s. (Sect. 9.6 is the first of four sections,
9.6–9.9, on what Ibn S̄ınā calls ‘analysis’; hence ‘Analysis: 1’ in the title of this
paper.) The section is itself a loose commentary on some lines in Aristotle’s
Prior Analytics i.32. It falls into two parts. In the first part Ibn S̄ınā describes
what he sees as the task of logical ‘analysis’ (tah. l̄ıl). One ingredient of that task
is to complete formal proofs which have a piece missing, and Ibn S̄ınā gives his
account of this in the second part. A special case of this problem (though not
one mentioned by Ibn S̄ınā himself) is to find a formal proof where everything is
missing except the conclusion, and this is precisely the task of proof search. To
the best of my knowledge, Ibn S̄ınā’s account is the first work to come anywhere
near describing a proof search algorithm in formal logic.

Abstract State Machines (ASMs [6]) were introduced by Yuri Gurevich [10],
in whose honour this essay is written. They give a framework for describing
algorithms with complete precision at whatever level of refinement we choose.
The main business of this paper is to describe Ibn S̄ınā’s intended algorithm. The
fact that Ibn S̄ınā himself is less than explicit about some details is no excuse for
us to lapse into vagueness. If we want to record with decent precision what Ibn

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 354–404, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Ibn S̄ınā on Analysis: 1. Proof Search 355

S̄ınā used or understood, and what he didn’t, we need the best descriptive tools;
and so I turned to ASMs. Fortunately the work is already partly done, because
a famous early application of ASMs was Börger and Rosenzweig’s specification
of the proof search algorithm of Prolog to meet the ISO 1995 standard [5].

As far as I know, the use of ASMs below is the first application of ASMs to
the history of logic, and one of the first applications of ASMs in the humani-
ties. (A recent paper [11] calls for applications in linguistics, but these go in a
rather different direction.) In practice the task of constructing an ASM was an
invaluable research tool; it kept raising questions to be addressed to Ibn S̄ınā’s
text. Remarkably often Ibn S̄ınā does answer these questions in his text, though
I often had to refer to other sections of the Qiyās for clarifications. I doubt that
any other logician between Aristotle and Leibniz would have come through this
test as successfully as Ibn S̄ınā does.

The paper has an unusually wide spread of prerequisites. First there is the
Arabic text of Ibn S̄ınā and its historical background. Second there are the math-
ematical facts about syllogisms. Third there is the methodology of Abstract State
Machines. Unfortunately papers are linear strings of text, so some prerequisites
will have to wait their turn. The structure of the paper is as follows:

Sect. 1. Introduction.
Sect. 2. Historical background (on logic from Aristotle to Ibn S̄ınā).
Sect. 3. tah. s. ı̄l (roughly the counterpart in Ibn S̄ınā of Tarski’s notion of
setting up a deductive theory).
Sect. 4. Mathematical prerequisites on syllogisms.
Sect. 5. Extracting the algorithm.
Sect. 6. Review.
Appendix A. Translation of Qiyās 9.6.
Appendix B. Notes on the text translated.
Appendix C. The ASM.

The passage translated in Appendix A (Qiyās 9.6) needs to be matched up with
Qiyās Sects. 2.4 on categorical syllogisms, 9.3 on compound syllogisms, 9.4 on
supplying missing premises of simple syllogisms and 9.7–9 on other aspects of
analysis. I will do my best to get translations of these sections onto my website
at http://wilfridhodges.co.uk. Meanwhile Tony Street [30] gives a useful
summary of Ibn S̄ınā’s theory of predicative syllogisms.

I thank Egon Börger, Jamal Ouhalla, Roshdi Rashed, Gabriel Sabbagh and
the referee for some valuable remarks and suggestions, and Amirouche Moktefi
for advice on the Arabic translation. But I take full responsibility for errors;
there are bound to be some, though I believe the use of ASMs has eliminated
many of the more serious ones.

2 Historical Background

In the middle of the 4th century BC, Aristotle noticed that many arguments in
mathematics, metaphysics and elsewhere have one of a small number of forms,

356 W. Hodges

and that any argument of any of these forms is guaranteed to be convincing. He
referred to arguments of these forms as ‘syllogisms’, and he classified them into
three ‘figures’. He listed and discussed the argument forms in lectures or writings
which have reached us as a book called Prior Analytics [3]. That book was part
of the edition of Aristotle’s writings which was put together by Andronicus in
the first century BC. Apart from the text itself, we have virtually no evidence of
what Andronicus did with his raw materials. He may have put things together
in ways that Aristotle never intended.

Andronicus’ edition of Aristotle came to form a collection of textbooks for
the offspring of cultured parents in the Roman Empire. By the late second cen-
tury AD it had become clear that some explanatory commentaries on Aristotle’s
text were needed, and Alexander of Aphrodisias wrote a set. His commentaries
were followed by many others, mostly now lost. The two surviving Roman Em-
pire commentaries on the parts of the Prior Analytics that will concern us are
those of Alexander and the 6th century Alexandrian scholar John Philoponus.
(See Ebbesen [8] Chapter III for an account of the intellectual climate in which
commentaries on Aristotle’s logic arose.)

By the middle of the 8th century the new Arab empire had started to absorb
western scholarship, including Aristotle’s logic. Ibn S̄ınā reports that in the 990s
he visited the large library of the Sultan of Bukhara (in present-day Uzbekistan),
and found that it contained a catalogued collection of books of ‘the ancients’,
which included a number of rare items, presumably in Arabic or Persian trans-
lation (Gutas [12] p. 28f). Most of this material has now gone missing, together
with the Greek originals. In the 10th century Al-Fārāb̄ı wrote a lengthy Ara-
bic commentary on the Prior Analytics. Ibn S̄ınā probably knew this work, but
today very little of it survives, and nothing that will help us in this paper.

The longest and fullest of Ibn S̄ınā’s writings in logic is the Logic section of
his encyclopedic Šifā’, written in the 1020s. It takes the form of a commentary
on Aristotle’s logic, some of it very close to Aristotle and some of it apparently
quite new. In Šifā’ the book Qiyās (‘Syllogism’ [15]) is his commentary on the
Prior Analytics. In Qiyās, Sect. 9.6 is his commentary on just twenty-three lines
of the Prior Analytics, namely 46b40–47a22. These are the opening lines of Sect.
i.32 of Prior Analytics.

Aristotle begins these twenty-three lines by announcing that his next task is
to ‘explain how we can lead deductions back into the figures stated previously’
([3] p. 50). He adds that this is a matter of analysing (analúoimen) arguments
that ‘have already been produced’ ([3] p. 50) into the three syllogistic figures.
The arguments could have been already produced ‘in writing or in speech’ ([3] p.
51). He makes it clear that analysis includes both identifying the underlying form
of an argument, and also repairing the argument, for example adding missing
premises or removing redundancies.

Alexander of Aphrodisias and Philoponus both report Aristotle’s views faith-
fully. Alexander adds that since the whole book is called Analytics, this section
on ‘analysis’ of arguments must be the heart of it. The modern commentator
David Ross agrees that the use of ‘analyse’ in this passage is the source of the

Ibn S̄ınā on Analysis: 1. Proof Search 357

name Analytics, both for this book and for Aristotle’s work Posterior Analytics
on the theory of knowledge ([28] p. 400). He also calls attention to the mathemat-
ical use of analúein to mean working backwards from conclusions to premises.
This usage agrees with the part of Aristotle’s ‘analysis’ that consists of finding
a missing premise.

Ibn S̄ınā’s Sect. 9.6 falls into two parts. The first part, from paragraph [9.6.1]
to [9.6.5], more or less matches Aristotle’s text. The second part, consisting of
paragraphs [9.6.6] to [9.6.12], is completely new. It picks up Aristotle’s brief
remark that the syllogism being analysed may have a premise missing, and it
discusses how to fill the hole. Ibn S̄ınā’s presentation in this part is very unusual:
instead of explaining his method, he illustrates it with sixty-four examples and
some comments. For example here are two of his examples for completing a
syllogism whose conclusion (the ‘goal’) is the sentence ‘Some C is an A’:

If the h. ās. il [premises] are ‘Every D is a C’ and ‘Every B is an A’, and
‘Every (or some) D is a B’ is attached, then this makes the syllogism
h. ās. il.

If the h. ās. il [premises] are ‘Every D is a C’ and ‘Some B is an A’, it
can’t be used. (From Problems 9, 10 in Appendix A below.)

(1)

Clearly this text needs some interpretation. We begin with the word ‘h. ās. il ’,
which expresses a central notion in Ibn S̄ınā’s methodology.

3 tah. s. ı̄l

There are two notions to be brought together here. One is tah. l̄ıl, which is the
Arabic word that Ibn S̄ınā uses to translate Aristotle’s análusis. Ibn S̄ınā re-
garded Prior Analytics i.32–46 as a manual of analysis, and he commented on
these sections in Sects. 9.6 to 9.9 of his Qiyās. The material in Sects. 9.7–9 is
not directly related to that in 9.6, but it is needed for a full picture of Ibn S̄ınā’s
understanding of analysis.

The second notion is tah. s. ı̄l, which means ‘making h. ās. il ’. There are no easy
English translations of tah. s. ı̄l and h. ās. il, and even if there were, we would still
need to explain how the notions fit into Ibn S̄ınā’s view of philosophical activity.

At the most literal level, h. ās. il means ‘available for use’, so that tah. s. ı̄l means
‘making available for use’. The word h. ās. il occurs nine times in Qiyās 9.6, and
its grammatical relatives many times more. A thing is muh. as.s.al if it has been
made available for use. Here is a remarkable example of the literal usage:

. . . some people demonstrate without any rule, like Archimedes who
demonstrated mathematically, since in his time logic wasn’t yet available
(lam yakun muh. as.s.al). (Qiyās [15] 15.10f.)

(2)

Ibn S̄ınā has his history confused – Archimedes was born a hundred years later
than Aristotle. The idea that Archimedes demonstrated ‘without any rule’ is
puzzling. Roshdi Rashed (personal communication) suggests that the point is
that geometrical reasoning, of the kind that Archimedes used, is not algorithmic.

358 W. Hodges

For Ibn S̄ınā, one of the main tasks of a philosopher was to apply tah. s. ı̄l to
the ideas of earlier philosophers. He refers several times to commentators on
Aristotle as muh. as.s. ilūn, people who make h. ās. il. A typical example is in Išārāt :

Nothing but this has been stated by earlier scholars (muh. as.s. ilūn), but
in a manner overlooked by recent ones. ([20] I.9.2, p. 150 of Inati.) (3)

Likewise at Najāt [18] i p. 35.4 he refers to ‘Alexander and a number of later
muh. as.s. ilūn’.

For readabilty, henceforth I follow a suggestion of the referee and use an
English word to stand for h. ās. il where Ibn S̄ınā uses it as a technical term. For
the rest of this paper, including the translation in Appendix A, ‘determinate’
means h. ās. il. It is not an exact translation; there is no exact English translation
of h. ās. il.

What were the commentators doing that counted as ‘making determinate
(h. ās. il)’? The answer has to depend on exactly what they were making deter-
minate. We find places where Ibn S̄ınā describes the following things as being
made determinate: (a) concepts, (b) propositions, (c) syllogisms, (d) knowledge.
Usages (b) and (c) are frequent in Qiyās 9.6.

Usage (d) is illustrated by the following passage near the beginning of Burhān:

Knowledge – whether it is obtained through reflective reasoning (fikr)
or is determinate (h. ās. il) without being obtained through reflective rea-
soning – is of two kinds. One of them is assent (tas. d̄ıq) and the other
is conceptualisation (tas.awwur). Knowledge in the form of assent, when
it is obtained through reflective reasoning, becomes determinate to us
through a syllogism. Knowledge in the form of conceptualisation, when
it is obtained through reflective reasoning, becomes determinate to us
through a definition. ([16] 3.10–12.)

(4)

Here Ibn S̄ınā sets out two independent classifications of kinds of knowledge. The
first classification is into those forms of knowledge which depend on reflective
thinking and those which come to us without our having to think reflectively.
The second classification, which is fundamental throughout Ibn S̄ınā’s logic and
epistemology, is between two processes that lead to knowledge. The first of these
processes is conceptualisation (tas.awwur); it leads us to having a concept, and
Ibn S̄ınā counts this as a kind of knowledge. The second process is assent (tas. d̄ıq),
i.e. coming to recognise that a proposition is true; it leads to knowledge of the
fact stated by the proposition. Although Ibn S̄ınā in his first sentence uses ‘de-
terminate’ only for knowledge not dependent on reflective thinking, the rest of
his text shows that this is just an accident of style, and both kinds of knowl-
edge can be determinate. In fact the passage suggests that for knowledge, being
determinate and being ‘obtained’ amount to the same thing.

The passage gives us strong clues about usages (a) and (b), because tas.awwur
leads to knowledge of concepts and tas. d̄ıq leads to knowledge of propositions.

Take concepts first. Here Ibn S̄ınā’s usage slots in with a philosophical usage
that had been around already for many decades. The 9th century translator of

Ibn S̄ınā on Analysis: 1. Proof Search 359

Aristotle, Ish. āq bin H. unain, rendered Aristotle’s ‘indefinite’ (aóristos) as gair
muh. as.s.al, i.e. ‘not muh. as.s.al ’ (Peri Hermenéıas 16b14, translated at [21] p. 111).
The implication is that a concept is muh. as.s.al if it is well-defined. Kutsch [23]
assembles a large number of references where muh. as.s.al means this.

In (4) above, Ibn S̄ınā is saying that a concept is made determinate or well-
defined by being given a definition. He certainly regarded this as one of the main
tasks of the Aristotelian commentators. At cIbāra [14] 2.9f he refers to ‘those
commentators who are experts on definition’ (al-muh. as.s. ilūn min ’ahl s. ināca t-
tah. d̄ıd). Incidentally there is a close analogy here with Ernst Zermelo’s notion of
a ‘definit’ criterion for class membership in mathematics [33]. Just as Ibn S̄ınā
expected a commentator to define in genus-differentia form, so Skolem proposed
that Zermelo’s ‘definit’ should be read in set theory as ‘first-order definable’.

We turn to propositions. Ibn S̄ınā says in several places that we can’t assent to
a proposition until we have conceptualised its meaning, i.e. until we understand
it. Thus in Easterners:

So when the conceptualisation is made determinate (h. ās. il) for us, assent
to [the proposition] is made determinate for us [too]. But the conceptual-
isation comes first; so if we don’t conceptualise a meaning then we don’t
get assent to [the proposition]. Sometimes we get the conceptualisation
without assent attached to it. ([19] 9.12–14.)

(5)

So there is a sense in which making a proposition determinate is like making
a concept determinate; we clarify the construction of the proposition and the
meanings of the words in it. But in both (4) and (5), Ibn S̄ınā mentions another
sense in which a proposition can become determinate, namely that we come to
recognise that it is true. In (4) he says that this happens when we deduce the
proposition through a syllogism. We note that for this to work, the premises of
the syllogism must already be determinate in this sense.

Ibn S̄ınā regarded this second kind of making propositions determinate as
central to the activity of philosophical commentators. The activity consists of
taking a claim made by Aristotle (for example), or on his behalf, and looking to
see how much of an argument is offered to support the claim. Then one works
on the argument to fill in gaps, remove irrelevances etc. etc.

Sometimes a person is addressed with a well-crafted and definitive syl-
logism, or he finds such a syllogism written in a book. But then . . .
sometimes the pieces are jumbled out of their natural order, or a part
of the syllogism is hidden, or something superfluous is added. . . . If we
don’t have rules to guide us, on how to seek with due deliberation the
syllogism that proves a given goal, [and to confirm] the soundness of
the connection between a given syllogism [and its goal], so that we can
analyse the syllogism into a group of premises, put them in the natural
order, strip off defects and add any part that is missing, reducing the
syllogism to the syllogistic figure that produces it – [if we don’t have
rules for all this,] then the new information that the syllogism provides
will escape us. (From paragraph [9.6.1] in Appendix A.)

(6)

360 W. Hodges

In fact one performs exactly the ‘analysis’ that we saw Aristotle himself describ-
ing in Prior Analytics i.32ff. But while for Aristotle and Alexander this kind of
analysis was one of the general tools of logic, Ibn S̄ınā thought he could point
to a large body of published work specifically devoted to it, namely the philo-
sophical commentaries. (There is a hint of this view already in Philoponus [24]
p. 315 l. 20, where he says that the syllogism to be analysed may come from ‘the
ancients’.)

To fill in the history a little, the idea of commenting on a philosopher by
reducing that philosopher’s arguments to syllogistic form seems to have surfaced
first among the Middle Platonist commentators on Plato’s dialogues in the first
century AD. It may have been encouraged by a desire to show that Plato was just
as good a logician as Aristotle (a view that Ibn S̄ınā explicitly rejects with con-
tempt [17] pp. 114f). For example Alcinous [1] 158.42–159.3 finds the following
second-figure syllogism in Plato’s Parmenides 137d8–138a1:

A thing that has no parts is neither straight nor circular. A thing that
has a shape is either straight or circular. Therefore a thing that has no
parts has no shape.

(7)

(The second premise is obviously false. In any case Plato as I read him gives
‘straight’ and ‘circular’ as typical examples of shapes, not as an exhaustive list.
But Alcinous wasn’t the world’s greatest logician.)

Most of the surviving Roman Empire or Arabic commentaries on Aristotle,
including those of Ibn S̄ınā, do contain explicit reductions of particular argu-
ments to syllogistic form. These reductions form a very small proportion of the
text of the commentaries. But probably Ibn S̄ınā regarded it as a criterion of
the quality of a commentary that it should be straightforward to analyse the
commentator’s arguments into syllogistic form. The analogy with modern set
theory applies here too. We don’t expect set theorists to set out their arguments
as first-order deductions from the Zermelo-Fraenkel axioms, but we do take it as
a criterion of a sound set-theoretic argument that it should be routine to reduce
the argument to this form.

By implication we have already said what it should mean to describe a syl-
logism as determinate. We make a syllogism determinate by analysing it into
a form so that it makes its conclusion determinate. This involves putting it
into one of the standard syllogistic moods, and ensuring that its premises are
determinate.

There are a couple of nuts-and-bolts points about tah. s. ı̄l that can be made
here as well as anywhere. First, the notion of ‘determinate’ is relational: a thing
can be determinate for me but not for you. This is explicit in both (4) and (5). As
far as I’m aware, there is no notion in Ibn S̄ınā of a thing being ‘determinate in
itself but not for us’, such as we might expect in 13th or 14th century Scholastics.

And second, the set of propositions that are determinate for you is dynamic:
you can add new items to the set by deducing them from things already in the
set. This causes some problems of terminology. In proof search we assume we
have a database T of sentences, and we search for proofs of given sentences from
assumptions that are in T . In Ibn S̄ınā’s case the set T is the set of propositions

Ibn S̄ınā on Analysis: 1. Proof Search 361

that are already determinate. But it’s natural for him to say that a successful
proof search makes another proposition φ determinate, and it could look as if
he is saying that φ is added to the database. Granted, Prolog has a function
assert which does exactly that. But adding φ to T is completely different from
deducing φ from things already in T , and it’s the latter that is important for
the proof search algorithm. The remedy is to distinguish strictly between those
propositions that were already determinate and those that become determinate
through application of the algorithm. Ibn S̄ınā’s choice of words doesn’t always
help us to make this distinction; see Problem 32 in Appendix A and the note on
it in Appendix B.

4 Mathematical Prerequisites on Syllogisms

4.1 Syllogistic Sentences

In the part of Qiyās [15] Sect. 9.6 that relates to proof search, Ibn S̄ınā discusses
four kinds of sentence, namely those in (8) below. (Sometimes he varies the
wording of these sentence types; see for example the note on Problem 14.) In
Ibn S̄ınā’s logical theory the logical properties of sentences of these types are
determined by their truth conditions. These truth conditions were explained in
cIbāra [14] Sect. 2.2, which comes before Qiyās in the Šifā’.

The four sentence types are as follows, together with their names and their
truth conditions:

– Universally quantified affirmative, ‘Every A is a B’. This counts as
true if there are As, but there are no As that are not Bs, and false
otherwise.

– Universally quantified negative, ‘No A is a B’. This counts as true
if there are no As that are Bs, and false otherwise.

– Existentially quantified affirmative, ‘Some A is a B’. This counts as
true if there is some A that is a B, and false otherwise.

– Existentially quantified negative, ‘Some A is not a B’. This counts
as true in two cases: (a) there is an A that is not a B, and (b) there
are no As. Otherwise it counts as false.

(8)

The letters ‘A’ and ‘B’ are place-holders for two distinct ‘terms’ (h. add). Warning:
terms in traditional logic are not at all the same thing as terms in modern logic.
For present purposes we can think of terms in Ibn S̄ınā as being the meanings
of actual or possible common nouns. (There is no requirement that the nouns
describe nonempty classes.)

Ibn S̄ınā believed that when reasoning we manipulate terms in our minds
through linguistic expressions that mean them. This allowed him to do the same
in his logical theory, for example using common nouns as surrogates for their
meanings. A syllogistic sentence of the form ‘Every A is a B’ is got by putting
common nouns in place of ‘A’ and ‘B’, with the sole restriction that the two
common nouns must have different meanings. By ‘syllogistic sentence’ we will
mean a sentence of one of the four forms in (8).

362 W. Hodges

A syllogistic sentence can be identified by four features. The first is the ‘sub-
ject’ (mawd. ūc), which is the term put for ‘A’. The second is the ‘predicate’
(mah.mūl), which is the term put for ‘B’. The third is the ‘quantity’ (kam),
which is either ‘existentially quantified’ (juz’̄ı) or ‘universally quantified’ (kull̄ı).
The fourth is the ‘quality’ (kaifa), which is either ‘affirmative’ (mūjib) or ‘nega-
tive’ (maslūb). For purposes of the ASM I treat a syllogistic sentence as a 4-tuple

[subject,predicate,quantity,quality] (9)

using 0 for existentially quantified and affirmative, and 1 for universally quanti-
fied and negative. (See (Def1) in Appendix C.)

The conditions for ‘Every A is a B’ to be true are satisfied exactly when those
for ‘Some A is not a B’ are not satisfied. So each of these syllogistic sentences
means the same as the negation of the other. We say they are ‘contradictories’
of each other, and we write φ̄ for the contradictory of φ. Likewise ‘No A is a B’
and ‘Some A is a B’ are contradictories.

By ‘formal sentences’ I mean the expressions that we get if we put uninter-
preted 1-ary relation symbols (we call them ‘term symbols’) in place of ‘A’, ‘B’
in (8) above. The truth conditions translate at once into conditions for a formal
sentence to be true in a structure. So we have a model-theoretic notion of entail-
ment: a set T of formal sentences entails a formal sentence ψ if and only if there
is no structure in which all the formal sentences in T are true but ψ is not true.
Though this notion was unknown to Ibn S̄ınā, it gives us some mathematics that
will be helpful for understanding various things that Ibn S̄ınā does.

For example it allows us to demonstrate all the cases where one formal sen-
tence entails another. They are as follows (where we write ⇒ for ‘entails’):

Every A is a B. Every B is an A.

⇓ ⇓

Some A is a B. ⇔ Some B is an A.

Some A is not a B. Some B is not an A.

⇑ ⇑

No A is a B. ⇔ No B is an A.

(10)

The top and bottom halves of this diagram are not independent. Each sentence
in the bottom half is the contradictory of its counterpart in the top half. Hence
the arrows in the bottom half go the opposite way to those in the top half. Ibn
S̄ınā recognised all the instances of these entailments as examples of ‘following
from’.

4.2 Inconsistent Sets

A set T of formal sentences is ‘consistent’ if there is a structure in which all the
formal sentences in T are true, and ‘inconsistent’ if there is no such structure.

Ibn S̄ınā on Analysis: 1. Proof Search 363

It is ‘minimal inconsistent’ if it is inconsistent but every proper subset of it is
consistent.

We can characterise the minimal inconsistent sets of formal sentences as fol-
lows. First, by a ‘minimal circle’ we mean a set of formal sentences arranged in
a circle

[φ1, . . . , φn] (n
 2) (11)

where φ1 is immediately after φn in the circle, in such a way that every term
symbol appearing in the sentences occurs exactly twice, and the two occurrences
are in adjacent sentences in the circle.

Theorem 1. Every minimal inconsistent set of formal sentences can be ar-
ranged into a minimal circle.

We say that a term symbol t in a formal sentence φ is either ‘distributed’ or
‘undistributed’ in φ as follows. If t is subject of φ then t is distributed in φ if φ
is universally quantified, and undistributed otherwise. If t is predicate of φ then
t is distributed in φ if φ is negative, and undistributed otherwise.

Theorem 2. A minimal circle C is inconsistent if and only if it meets the fol-
lowing two conditions:

1. Each term occurring in sentences of C has at least one distributed occurrence.
2. Exactly one of the sentences in C is negative.

These two theorems are equivalent to results in §46 of Thom [31], which Thom
proves proof-theoretically. But they can be proved directly from the truth condi-
tions in (8). Ibn S̄ınā himself probably knew Theorem 1 from experience, though
it’s hard to see how he could have proved it. On the other hand he almost cer-
tainly didn’t know Theorem 2. Any form of this result involves partitioning
occurrences of terms in syllogistic sentences into the two classes that we called
distributed and undistributed, and no such partition has been found in Ibn S̄ınā’s
logical writings.

Now given an inconsistent circle as in (11), we can take out any one sentence,
say φi. Then the remaining sentences entail φi; moreover all entailments between
formal sentences, where there are no redundant sentences in the entailing set,
are formed in this way. List the entailing sentences in their order in the circle:

[φi+1, . . . , φn, φ1, . . . , φi−1] (12)

Then the sequence (12) has the property that every term symbol occurs twice,
in two adjacent sentences of the sequence, except for one term symbol that
occurs only in the first sentence and another one that occurs only in the last
sentence. We describe a sequence (12) with this property as a ‘linkage’ (qar̄ına,
though strictly Ibn S̄ınā uses the term only for such sequences of length 2). The
sequence (12) and the sentence φi together form a ‘formal separated syllogism’
whose ‘premises’ (muqaddamāt) are the sentences in (12) and whose ‘conclusion’
(nat̄ıja) is the sentence φi. The expression ‘separated syllogism’ (qiyās mafs. ūl)

364 W. Hodges

is from Ibn S̄ınā (Qiyās [15] p. 436.1), though strictly he uses it only when there
are more than two premises.

So we can speak of a ‘separated syllogism’, meaning an entailment between
syllogistic sentences, got by taking a formal separated syllogism and replacing
the distinct term symbols by distinct terms. The separated syllogisms that Ibn
S̄ınā recognises all have the property that their premises entail their conclusion
(model-theoretically); in his terminology the conclusion ‘follows from’ (yalzam)
the premises. But later in this section it will take us some time to unpick the
relationship between Ibn S̄ınā’s notion of following from and our notion of en-
tailment.

But first we turn to the notion that the proof search algorithm is meant to
deal with: separated syllogisms with a premise missing. Suppose for example that
we have a separated syllogism with premises [φ1, . . . , φm] and conclusion χ, and
we remove one or more adjacent premises, say φj and φj+1. In the inconsistent
circle the contradictory of χ belongs at the beginning or the end; we will put it
at the end:

[φ1, . . . , φj−1, φj+2, . . . , φm, χ̄]. (13)

Now we can describe the gap as follows. It comes immediately after the (j − 1)-
th sentence in the sequence (13); we call the number j − 1 the ‘gap site’. If φ1

and φ2 had been removed, the gap would be immediately after χ̄, which is the
(m−1)-th sentence in [φ3, . . . , φm, χ̄], so the gap site would be m−1. Also when
the linkage (13) contains at least two sentences, there is a unique term shared by
the lefthand missing sentence and the one to the left of it; we call this term the
‘left edge’ of the gap. Likewise there is a unique term shared by the righthand
missing sentence and the one to the right of it in (13); we call this term the
‘right edge’ of the gap.

Thus in Problem 20 Ibn S̄ınā gives the following example:

Conclusion (understood from Problem 12) ‘Some C is not an A’.
Premises ‘Some D is a C’ and ‘No A is a B’.

(14)

Putting the contradictory of the conclusion at the end gives the sequence

[Some D is a C’, ‘No A is a B’, ‘Every C is an A’]. (15)

The gap site is 1, the left edge is D and the right edge is B. The definitions just
given are more formal than Ibn S̄ınā himself uses. But he provides several types
of example with different gap sites. At Problem 7 he uses the left and right edges
of the gap. In this problem he does also include an irrelevant term, and clearly
he knows that it’s irrelevant; perhaps he wants to encourage the student to work
out that only the left and right gaps are needed at that stage in the algorithm.
(See the notes on Problem 7.)

Ibn S̄ınā doesn’t consider the case where all the premises are missing – which
is actually the case that corresponds to the proof search problem for Prolog. In
this case the gap comes immediately after the contradictory of the conclusion, so
the gap site is 1. But with only one sentence present, there is no way of telling
which of its terms is the left edge and which is the right. We need a definite

Ibn S̄ınā on Analysis: 1. Proof Search 365

choice; I stipulate that in this case the left edge is the subject of the conclusion
and the right edge is its predicate. (This is not quite arbitrary; it reconciles two
messages that Ibn S̄ınā sends about which end of the gap to start with when we
fill it. Namely in Qiyās [15] Sect. 9.3 he works from the left side to the right, and
when finding middles in Sect. 9.4 he starts with the subject of the conclusion.)

Identifying the gap site and the left and right edges is necessary for the algo-
rithm, so I made it a module of the ASM. See (ASM3) in Appendix C for the
module Describe. I haven’t bothered to spell out the formal definition in cases
like this where there is a purely book-keeping manipulation that can be specified
unambiguously in English.

4.3 Simple Syllogisms

A ‘simple syllogism’ (qiyās bas̄ıt.) is a separated syllogism with two premises. Ibn
S̄ınā often abbreviates this to ‘syllogism’.

The term which occurs in both premises of a simple syllogism is called the
‘middle’ (wast.). The term which is subject of the conclusion is called ‘lesser’
(asḡar), and the premise containing it is the ‘minor’ (s.uḡrā). The term which is
predicate of the conclusion is called ‘greater’ (akbar), and the premise containing
it is the ‘major’ (kubrā).

Buried in the definition of ‘simple syllogism’ there is the condition that the
conclusion follows from the premises. But we remarked earlier that Ibn S̄ınā’s
notion of ‘follows from’ is some way distant from the model-theoretic definition
of entailment. In the case of two-premise arguments he doesn’t recognise as
syllogisms any that are not model-theoretically valid. But he puts two further
requirements, as follows.

Sometimes Ibn S̄ınā speaks as if a syllogism consists of just the premises.
For this terminology to work, there has to be a unique way of reading off the
conclusion from the premises. By Theorem 3 below, if two syllogistic premises
do entail a syllogistic conclusion, then there is a strongest conclusion that they
entail. But there are two cases where this strongest conclusion is not uniquely
determined, namely ‘Some A is a B’ (which is logically equivalent to ‘Some B
is an A’) and ‘No A is a B’ (which is logically equivalent to ‘No B is an A’. In
these two cases Ibn S̄ınā resolves the question by the following condition:

Premise order condition The minor premise is listed before the major
premise.

In other words, the subject of the conclusion is the term that occurs in the first
premise. In fact Ibn S̄ınā follows this rule uniformly for all simple syllogisms,
even where there is no ambiguity to be resolved.

Thus for example at Qiyās [15] 114.6 he gives the mood Cesare in the form

Every C is a B and no A is a B, so no C is an A. (16)

while at 115.17 he cites Camestres :

No C is a B and every A is a B, so no C is an A. (17)

366 W. Hodges

One of the very few counterexamples to this convention is in Problem 3 below,
where he infers ‘No C is a D’ from ‘Every D is a B’ and ‘No C is a D’ in
that order. This is probably an accident of his exposition; see the note on that
problem.

Ibn S̄ınā also imposes a further condition, which rules out what are sometimes
known as ‘fourth figure syllogisms’:

Fourth figure condition. The middle term is not both predicate of the first
premise and subject of the second premise.

At Qiyās 107.12 he describes arguments that violate the fourth figure condition
as ‘unnatural, unacceptable and unsuitable for the practice of serious study’.

With the help of Theorem 2 one can show that a model-theoretically valid
simple syllogism which fails the fourth figure condition either has a premise of
one of the forms ‘Some A is a B’, ‘Every A is a B’ where the syllogism would
still be model-theoretically valid if we replaced this premise by ‘Some B is an
A’; or it has a premise of the form ‘No A is a B’, which can be replaced by ‘No B
is an A’ without loss of validity. So it’s always possible to bring such a syllogism
into a form that Ibn S̄ınā accepts, by using the implications in (10). This will
involve a ‘conversion’ (caks), which swaps the order of the two terms in one
premise. Ibn S̄ınā notes at Problem 59 that a positive solution for the problem
is impossible unless one makes a conversion in the premise. At Problems 29 and
44 he comments that conversion makes no difference to the outcome. Note also
his remark about conversion at 466.3f.

Ibn S̄ınā classifies the possible shapes of simple syllogisms into three figures;
the first and second figures have four shapes each, called ‘moods’, and the third
figure has six ‘moods’. Ibn S̄ınā expects his students to know this catalogue by
heart. In fact at 466.4ff he says that a student who hasn’t memorised the cata-
logue is not going to be able to follow the algorithm. At first sight this is puzzling,
because his account of the algorithm doesn’t ever seem to use the figures and
moods. Closer inspection reveals one hidden reference to ‘first [figure]’ in Prob-
lem 3, and this reference shows what is going on. Ibn S̄ınā expects his students
to be able to recognise, given two syllogistic sentences φ1 and φ2, whether there
is a syllogism with these as its premises; and where there is such a syllogism,
to state its conclusion. In the style of education that he favours, the students
memorise this information, and he expects them to do it in terms of figures and
moods. (But don’t assume that he would have used Theorem 2 if he had known
it. We come back to this in Subsect. 6.2 below.)

To carry out the proof search algorithm, the student needs to be able to
find, for any pair of sentences [φ1, φ2] that are the premises of a syllogism, the
strongest consequence of these premises. In our ASM the function consequence
will perform this operation; we leave it to the implementer to decide how to
compute the values of the function. See (Def3) in Appendix C. A sequence of
sentences that are not the premises of any separated syllogism is said to be
‘sterile’ (caq̄ım – again we generalise Ibn S̄ınā’s usage from two premises to any
number). When [φ1, φ2] is sterile, we give consequence(φ1, φ2) the formal value
sterile.

Ibn S̄ınā on Analysis: 1. Proof Search 367

We mentioned a theorem about strongest consequences. It says the following:

Theorem 3. Let T be a consistent set of formal sentences and C the set of all
formal sentences ψ such that T entails ψ and there is no proper subset of T that
entails ψ. Then if C is not empty, C contains a sentence ψ which entails all the
other sentences in C.

Theorem 3 can be proved from Theorem 2. The sentence ψ in the conclusion of
Theorem 3 is what we have been calling the ‘strongest consequence’ of T ; it’s
unique up to the equivalences in (10).

For simple syllogisms, i.e. the case where T has size 2, Theorem 3 seems to
have been common knowledge in Ibn S̄ınā’s time, and it would have been easy
to prove by enumerating the possible cases. Probably the better logicians had a
shrewd idea that it was true for any size of T , but I don’t recall seeing it stated
in the middle ages, and I doubt they could have proved it.

By cutting the inconsistent circle at a different place, Theorem 3 yields a
corollary:

Corollary 1. Let T be a consistent set of formal sentences and ψ a formal
sentence. Let K be the set of all sentences χ such that T ∪ {χ} entails ψ but
there is no proper subset T ′ of T such that T ′ ∪ {χ} entails ψ. Then if K is not
empty, it contains a sentence χ which is entailed by each of the other sentences
in K.

We call the sentence χ in the conclusion of Corollary 1 the ‘weakest fill’; it’s
unique up to the equivalences in (10).

4.4 Connected Syllogisms

Ibn S̄ınā never attempts to apply any definition of ‘follows from’ directly to
separated syllogisms with more than two premises. For simple syllogisms he
understands ‘follows from’ in terms of how our minds manipulate ideas, and it
would hardly be plausible to assume that we could hold in our minds a set of a
thousand premises. Instead he maintains that a separated syllogism is shorthand
for a more complex kind of syllogism, namely a tree of simple syllogisms. At
Qiyās [15] p. 436.1 he describes such a tree as a ‘connected syllogism’ (qiyās
maws. ūl). He explains at Qiyās [15] p. 442.8 that separated syllogisms are so-
called because in them the intermediate conclusions (the conclusions of all the
simple syllogisms except the one at the root of the tree) are separated from the
premises (presumably he means the premises at the leaves of the tree), so that
the premises are mentioned explicitly but the intermediate conclusions are left
out. At Burhān [16] 141.15ff he comments that a connected syllogism with a
thousand intermediate steps is no big deal provided we are ‘mentally prepared
for the drudgery’.

So part of the job of analysis is to find these intermediate conclusions. Ibn
S̄ınā discusses an example in detail at Qiyās Sect. 9.3, p. 442.8–443.13. The

368 W. Hodges

text is corrupt, but on one reconstruction Ibn S̄ınā is discussing the separated
syllogism with premises

‘Every J is a D’, ‘Every D is an H ’, ‘Every H is a Z’, ‘Every Z is an I’ (18)

and conclusion ‘Every J is an I’. The intermediate conclusions are ‘potential’,
he says. To find them, we start with two explicitly stated premises and draw a
conclusion φ from them, and then we form a syllogism with φ as first premise
and another of the explicit premises as second premise, and so on. An example
would be to prove ‘Every J is an H ’ first, and then ‘Every J is a Z’. He warns
us against starting with the second and third premises to deduce ‘Every D is
Z’ – this is not ‘the arrangement that we chose’. (He adds that we could have
chosen a different arrangement.)

Exactly this procedure, starting from the lefthand end, appears in Problem
3. (In Arabic of course it is the righthand end. I won’t say this again.) Ibn
S̄ınā takes a supposed separated syllogism of length 3 with the middle premise
missing. He suggests a way of filling it, so that the three premises are

‘No C is a B’, ‘Every D is a B’ and ‘Every A is a D’. (19)

He first infers ‘No C is a D’ from the first two premises, and then he infers the
required conclusion ‘No C is an A’ from this and the third premise. Since this
is one of the first problems, it’s presumably meant as a strong clue about the
procedure to be followed.

So the procedure appears in the ASM of Appendix C as module (ASM4),
called Synthesise. Ibn S̄ınā’s word for ‘synthesis’ is tark̄ıb, which means forming
a compound; he also uses it for the compound formed. At Qiyās [15] p. 434.11 he
explains that ‘synthesising a syllogism’ means forming a connected compound
syllogism, which is the main thing that this module does.

Now it’s clear that if φ1, . . . , φ5 are formal sentences such that φ1 and φ2

entail φ4, and φ3 and φ4 entail φ5, then φ1, φ2, φ3 together entail φ5. But Ibn
S̄ınā needs more than this. His procedure is also meant to tell us when the raw
materials can’t be filled out into a syllogism. Suppose we infer φ4 from φ1, φ2 and
then find that φ5 doesn’t follow from φ3, φ4; what does this show? How do we
know we couldn’t have proved φ5 from φ1, φ2, φ3 by choosing φ4 differently, or
by starting at the righthand end? If Ibn S̄ınā had tried to prove the correctness
of his algorithm, he would have had to face this question.

In fact there is a positive answer, at least in terms of model-theoretic entail-
ment. The heart of the matter is the following result.

Theorem 4. Suppose [φ1, . . . , φn] and [ψ1, . . . , ψm] are linkages of formal sen-
tences. Then the following are equivalent:

(a) [φ1, . . . , φn, ψ1, . . . , ψm] forms an inconsistent minimal circle.
(b) The set ψ1, . . . , ψm has a strongest consequence θ, and [φ1, . . . , φn, θ] is an

inconsistent minimal circle.

The theorem tells us that (so long as there are no irredundancies in the premises)
we can take any segment of the premises of a separated syllogism, and shrink it

Ibn S̄ınā on Analysis: 1. Proof Search 369

down to its strongest consequence. The result will still be a separated syllogism
entailing the same conclusion. At least this is true for model-theoretic entailment.

But consider for example the syllogism

Every B is a C. Every D is a B. Some D is an A. Therefore some C is
an A.

(20)

Model-theoretically the three premises do entail the conclusion. But if we try
to build a connected syllogism, starting from the lefthand end as in Ibn S̄ınā’s
examples, we immediately hit a problem. The first two premises violate the
fourth figure condition.

A possible way around this is to start by drawing a conclusion from the second
and third premises. By the premise order condition this conclusion must be ‘Some
B is an A’, by the third-figure mood Disamis. So we have the intermediate
syllogism

Every B is a C. Some B is an A. Therefore some C is an A. (21)

This again is a valid instance of Disamis.
Hence Ibn S̄ınā’s procedure for constructing a connected syllogism from a

separated one, in the form in which it appears in the problems of his Sect. 9.6, is
inadequate. In fact he hits exactly this inadequacy at Problem 33. His solution
is to switch the order of the first two premises in (20). The fact that he does
this, rather than plough ahead with a different justification of the syllogism, is
confirmation that he expects the student to start by drawing a conclusion from
the two leftmost premises. This could be because he works from left to right, or
because he shrinks the sequence of premises before filling the gap. Either way,
this will fit our reading of the algorithm.

Until this glitch is sorted out, some doubt remains about exactly what sep-
arated syllogisms Ibn S̄ınā would accept. Perhaps closer examination of Qiyās
[15] Sect. 9.3 will settle the point.

Theorem 4 merits a couple of further comments.
First, when we are trying to fill a gap in a sequence of premises, Theorem 4

tells us that if we can fill it at all without making any of the premises redundant,
then we can fill it with a single sentence. Then Corollary 1 adds that there is a
weakest single-sentence fill χ. When looking for linkages to fill the gap, we can
confine ourselves to linkages that entail χ. It’s not clear how far Ibn S̄ınā was
aware of this. For example at Problem 9 he notes that both ‘Every D is a B’
and ‘Some D is a B’ will fill the gap, but he fails to note that we have a better
chance of finding a proof of ‘Some D is a B’ (the weakest fill) than of ‘Every D
is a B’. (But as always, maybe he is encouraging his better students to see this
point for themselves.)

The second comment is a technical warning. Suppose m = 2, ψ1 has terms
A, B and ψ2 has terms B, C. Because of Ibn S̄ınā’s assumptions (8) about
truth when a term is empty, θ in the theorem need not be logically equivalent
to ∃B(ψ1 ∧ ψ2). (Syllogisms don’t have quantifier elimination.) So passing to θ
might throw away information about A and C. But we can show that the lost
information is recoverable from the rest of the circle.

370 W. Hodges

4.5 Other Kinds of Syllogism

In [9.6.4] and [9.6.5] of Qiyās 9.6, Ibn S̄ınā refers briefly to some other kinds of
syllogism.

Earlier in the Qiyās ([15] p. 106) Ibn S̄ınā has distinguished between two kinds
of syllogism which he calls respectively ‘recombinant’ (iqtirān̄ı) and ‘duplicative’
(istit

¯
nā’̄ı). A recombinant syllogism has two premises, each of them built out

of two parts; one of these parts is the same in both premises. The conclusion is
formed by recombining the two remaining parts. Simple syllogisms as in Subsect.
4.3 above fit this description. But so do some propositional (šart.ı̄) syllogisms,
for example

If p then q. If q then r. Therefore if p then r. (22)

Ibn S̄ınā’s view is that recombinant syllogisms are a generalisation of simple
syllogisms, and that generally speaking the rules for simple syllogisms transfer
to recombinant syllogisms too. (This is presumably what he has in mind at
468.7.)

Duplicative syllogisms are propositional. They have two premises. One of the
two premises has two parts. The other premise consists of one of these two parts
(or its contradictory), and the conclusion consists of the other part (or its con-
tradictory). The shorter premise and the conclusion are said to be ‘duplications’
(i.e. of parts of the longer premise). Besides modus ponens:

If p then q. p. Therefore q. (23)

this description covers inferences like:

Not both p and q. p. Therefore not q. (24)

Ibn S̄ınā regards duplicative syllogisms as incomplete in themselves; they only
make sense as part of a longer argument. There seems to be no natural way of
generalising his proof search procedure to them.

Ibn S̄ınā classifies binary sentence connectives and the compounds that are
formed using them as ‘meet-like’ (muttas. il) or ‘difference-like’ (munfas.il). This
is a soft classification based on some supposed resemblance to meet (‘and’) or
difference (exclusive ‘or’). But he doesn’t use the classification consistently, and
my present impression is that he never settled on a satisfactory principle for
classifying binary sentence connectives. The ‘If . . . then’ in (23) counts as meet-
like, while ‘Not both’ in (24) counts as difference-like; so these two syllogisms
are respectively meet-like duplicative and difference-like duplicative.

There is more on Ibn S̄ınā’s propositional syllogisms in Shehaby [29], together
with a translation of the propositional part of Qiyās. Shehaby translates the
technical terms differently: he has ‘conjunctive’ for ‘recombinant’, ‘exceptive’
for ‘duplicative’, ‘conditional’ for ‘propositional’, ‘connective’ for ‘meet-like’ and
‘separative’ for ‘difference-like’.

Ibn S̄ınā on Analysis: 1. Proof Search 371

5 Extracting the Algorithm

Can we be sure that Ibn S̄ınā really meant to describe an algorithm for proof
search?

Ibn S̄ınā himself doesn’t say anything to indicate that he regards the procedure
that he is teaching as comparable with the kinds of algorithm known to medieval
Arabic mathematicians (see Subsect. 6.2 below). He does say in [9.6.1] that we
need ‘rules’ (qawān̄ın, plural of qānūn) to guide us in analysis. But in [9.6.2] he
explains this as ‘rules in the form of dos and don’ts’, which doesn’t sound like
an algorithm. At Qiyās [15] p. 537.3 he uses the same phrase ‘dos and don’ts’
for advice about how to conduct a debate.

In fact the passage that I interpret as describing an algorithm (paragraphs
[9.6.6] to [9.6.11]) consists of 64 problems, with answers given and some remarks
about how the answers are found. The problems are divided into four groups
according to their patterns; Ibn S̄ınā explains the patterns and tells the reader
‘Do the remaining cases of this pattern for yourself’ (463.12, 464.12, 466.2, 467.7).
The problems are introduced without any explanation of what they are for, apart
from the fact that they appear in a discussion of analysis. At the end of them
Ibn S̄ınā comments (468.4f):

When you put the steps in this order, as I have shown you, you will
reach the terms, figures and moods. (25)

Strangely the 64 problems make no mention at all of syllogistic moods, and only
one mention of figures. But figures and moods are a classification that makes
sense only for simple syllogisms, so Ibn S̄ınā is implying here that by ‘putting
the steps’ in the right order we will be able to reduce the raw material in the
problems to simple syllogisms. Since no new kinds of ‘step’ are described here, it
seems to follow that Ibn S̄ınā means we can use steps already discussed earlier in
Qiyās to reduce the raw material to simple syllogisms. This exactly matches the
use of the module Synthesise in our ASM, which rests on procedures described
in Qiyās Sect. 9.3. So it confirms that we are on the right track.

In any event, paragraphs [9.6.6] to [9.6.11] are clearly intended to teach the
reader a procedure for taking data of a certain kind and coming up with answers
to certain questions about the data. The decision whether to call this procedure
an algorithm is for us, not for Ibn S̄ınā. Our choice should rest on three issues:
(1) Is the class of data to which the procedure applies well-defined? (2) Is it
clear what question or questions the procedure is meant to answer? (3) Is the
procedure mechanical?

I take these issues in turn. Of course the procedure defined by the ASM in
Appendix C is an algorithm, but we need to ask how much of that algorithm is
already in Ibn S̄ınā’s text.

5.1 The Class of Input Data

The 64 problems all share a common format. They involve syllogistic sentences
with letters for terms; but we are not told what the letters stand for. So there is

372 W. Hodges

no loss in thinking of the sentences as formal sentences, provided that we don’t
impose our definition of entailment on Ibn S̄ınā.

Each problem begins with a syllogistic sentence called the ‘goal’ (mat.lūb),
except where we have to understand that the goal is the same as in the previous
problem. Then follows a sequence of one or more formal sentences. Ibn S̄ınā’s
commonest description for this sequence is that ‘you have’ (kāna cindak) the
sentences in it; he uses this or closely similar phrases in 38 problems. The only
name that he offers for the sequence is ‘thing found’ (mawjūd, in 8 problems).
This word has a variety of meanings in Ibn S̄ınā’s logic, and another variety
in his metaphysics. But since he also says in 6 problems that ‘you have found’
(wajadta) the sequence, I assume it just means ‘what has been found’. For the
sake of English style I shorten this to ‘datum’; I follow Ibn S̄ınā’s lead in using
the singular even when there is more than one sentence in the sequence.

So each problem has a goal and a datum. In every case but one, the sequence
consisting of the datum followed by the goal is a linkage in the sense of Subsect.
4.2 above. The one exception is Problem 33, where the linkage order would run
foul of the fourth figure condition (see the note on the problem). This exception
shows that Ibn S̄ınā does expect the student to be able to handle a larger class of
inputs than the ASM in Appendix C is designed for. But I think we can regard
Problem 33 as a freak case.

Ibn S̄ınā indicates at 464.12f, 465.5, 466.6, 467.7 and 467.10 that we should
think of the datum as having two parts, one that has a sentence containing the
subject of the goal and one with a sentence containing the predicate of the goal;
except that one of these two parts may be empty. What he describes here is exactly
the gap site that we calculated in Subsect. 4.2; the part of the datum linked to the
subject is precisely the part before the gap indicated by the gap site.

It’s curious that Ibn S̄ınā explains this structure of the datum only after
the 26th problem. Perhaps some text has gone missing, but I doubt it. He has
a tendency to explain himself only after he has given you a chance to work
out for yourself what he must have meant. My impression is that the Arabic
mathematicians of his time would have regarded this as poor style.

All four kinds of formal sentence appear in Ibn S̄ınā’s problems, in a wide
variety of combinations. So it seems that the class of properly ordered possible
goal-datum pairs is well defined, except perhaps for the questions of length and
of the number of gaps. To begin with length, in all Ibn S̄ınā’s examples the
datum has length 1 or 2. Did he intend his procedure to apply only in these
cases?

I believe not, for two reasons. The first is that in Problems 1 and 2 he points
out that if we can’t find a suitable single sentence to fill the gap, we may need
to look for a pair. He doesn’t say what happens next, but one reasonable way
forward would be to guess (say) the first sentence of the pair and put it into
the datum. Finding the second sentence would then be the original problem but
with a longer datum. (And so on recursively, though he never says this.)

Strictly this is not the only way forward. As we will see, the question of looking
for a pair of sentences only arises after we have discovered a weakest fill φ for

Ibn S̄ınā on Analysis: 1. Proof Search 373

the gap in the original datum. Then by Theorem 4 above, it suffices to continue
with φ as new goal and an empty datum. But even this would add 0 to the
possible lengths of data. I haven’t followed this route, because it would imply
some mechanism for feeding back the result of the calculation with φ as goal
into the original problem.

But the case of length 0 is interesting anyway, not least because it corresponds
to the Prolog proof search problem. For that reason I set up the ASM to handle
data of length 0. Ibn S̄ınā himself may have reckoned that he had said enough
about the case of data of length 0 already in Qiyās [15] Sect. 9.4 ‘On obtaining
premises, and on tah. s. ı̄l of syllogisms with a given goal’.

The second reason for doubting that Ibn S̄ınā intends a restriction to lengths
1 and 2 is his statement at 465.2 that he will deal with the case of ‘more than
two premises’ in the appendices. We don’t have the promised appendix; see the
note on this passage. Of course he might have said in the appendix that these
longer data can be handled, but only by a different procedure. I think this is
unlikely, for the first reason just given.

Nevertheless there is a good reason for Ibn S̄ınā to concentrate on the case
of length � 2. If the datum has length greater than 2, it always contains two
adjacent sentences that share a term. So we can reduce the length of the datum
immediately, by replacing these two sentences by their strongest consequence –
unless they are sterile, in which case the problem has no positive solution. We
can’t be sure that Ibn S̄ınā intended this way of working, but it makes good
sense and I have built it into the ASM.

The other possibility is that Ibn S̄ınā intends his procedure to apply where
the datum contains more than one gap, or perhaps even when it contains no
gap at all. He does in fact discuss the case of more than one gap in paragraph
[9.6.7]. His view is that it can be handled but at the cost of a more complicated
procedure, which again he will describe in the appendices. The main thing we
would need to do in order to extend our ASM to more than one gap would be to
incorporate some further machinery to control the search; see Subsect. 6.2 below
for a discussion of what would be required. Presumably Ibn S̄ınā’s appendix
would have said something about this too. The case of no gaps is covered by
the procedures of Qiyās Sect. 9.3, which we have incorporated into the module
Synthesise; so this case is at least implicitly in Ibn S̄ınā’s algorithm already.

In his initial remarks on analysis in [9.6.1], Ibn S̄ınā says that the text to be
analysed may contain ‘something superfluous’, and our rule will need to tell us
how to ‘strip off defects’. This suggests that the procedure should also eliminate
redundant parts of the datum. None of the 64 problems suggests any way of
doing this. Indeed it’s not clear what the aim would be if Ibn S̄ınā did allow
this. One could always start by removing the entire datum and working from
the goal alone; would this count? If not, would the aim be to throw away as little
as possible of the datum? This could lead to serious complexities. So I think we
can sensibly assume that the procedure is not meant to eliminate redundant
parts of the datum.

374 W. Hodges

5.2 What Question Is Answered?

Alongside each one of his 64 problems, Ibn S̄ınā provides an answer. With trivial
variations, all the answers take one of two forms. The affirmative form is: If the
sentence χ is attached (ittasal, 27 problems) then ‘it has been made determinate’
(qad h. us.s. il, 17 problems). Usually Ibn S̄ınā doesn’t tell us what has been made
determinate. But at Problems 8 and 9 he does: it’s the syllogism. (See also
Problem 1: ‘your syllogism is in good order’.) The translation in Appendix A
reflects this.

By ‘attached’ he clearly means ‘put into the gap in the datum’. So the proce-
dure involves an operation that does this. I was tempted to call this operation
‘attach’, but unfortunately this is a reserved word in the vocabulary of ASMs.
Since the operation is a syntactic triviality, I made it not a module but a basic
function: (Def5) in Appendix C.

The negative form of answer is: ‘It can’t be used’ (lam yuntafac bih, 23 prob-
lems). This time we can hardly expand to ‘The syllogism can’t be used’, because
in these problems there is no syllogism. A more accurate expansion would be
‘The goal and datum can’t be used to generate a determinate syllogism’; but for
brevity I stick with ‘it’ in the translation.

The problems with a negative answer are exactly those in which there is no
sentence that can be put in the gap of the datum so as to yield a separated
syllogism with the goal as conclusion. Also in the problems with an affirmative
answer Ibn S̄ınā nearly always names a sentence that can be put in the gap
so as to yield the required syllogism. So this is at least one of the aims of the
procedure:

Determine whether or not there is a sentence χ that can be put into the
gap of the datum so that the datum becomes the premise sequence of a
separated syllogism whose conclusion is the goal. When the answer is
Yes, supply a sentence χ with this property.

(26)

I call this the ‘logical task’. Note that it makes no reference at all to sentences
that are already determinate.

Note also that the logical task, as stated, doesn’t include classifying the re-
sulting syllogism by means of figures and moods. We saw earlier that in fact Ibn
S̄ınā’s procedure, if we have reconstructed it correctly, does yield enough infor-
mation to convert the separated syllogism into a connected one, and then the
figures and moods can be read off. So we could add a further module to the ASM
which delivers the connected syllogism with its simple syllogisms labelled by fig-
ure and mood. But this would mean introducing a new datatype for connected
syllogisms, and it would be just a unit bolted onto what is already in the ASM.
So I take a lead from Ibn S̄ınā, who mentions in [9.6.12] that the procedure will
yield this information but gives no further details. I add only that one possible
implementation of the ASM is in terms of diagrams written on paper, very likely
as Ibn S̄ınā’s students would have drawn them. These diagrams would almost
certainly have included the connected syllogisms.

But Ibn S̄ınā also says a number of other things that only make sense if he is
expecting the procedure to deliver a syllogism that is determinate in the sense we

Ibn S̄ınā on Analysis: 1. Proof Search 375

studied in Sect. 3 above. First and foremost, there is the wording that we quoted
in the affirmative case: ‘[the syllogism] has been made determinate’. Add to this
that in 10 problems he says that the premises in the datum are determinate;
this is irrelevant for the logical task. In 6 of the problems with an affirmative
answer, he requires that the attached sentence is ‘true’ or ‘true for you’ or ‘clear’
(bayyin – this must mean ‘clearly true’). Finally there are two problems (1 and
2) where Ibn S̄ınā finds a sentence χ that solves the logical task, and then adds
that if the sentence is not ‘clear’ or true, then it doesn’t solve the problem and
one ‘needs a middle’ (i.e. has to look for a two-sentence filling for the gap).

So there is clear evidence that Ibn S̄ınā also has in mind another task:

Given that the datum consists of sentences that are already determinate,
discover whether or not there is a sequence of sentences [χ1, . . . , χm] that
are already determinate, which can be put into the gap of the datum so
that the datum becomes the premise sequence of a determinate separated
syllogism whose conclusion is the goal. When the answer is Yes, supply
a sequence [χ1, . . . , χm] with this property.

(27)

I call this the ‘tah. s. ı̄l task’. The two tasks are connected by the fact that a
negative answer to the logical task implies a negative answer to the tah. s. ı̄l task,
but otherwise the tasks are independent.

I think it’s inconceivable that Ibn S̄ınā was in any way confused about the
difference between the logical task and the tah. s. ı̄l task. But I wouldn’t put it
past him to be deliberately ambiguous in hopes of catching both tasks under
the same general description. There is some evidence of deliberate ambiguity. In
Subsect. 5.1 we interpreted the word ‘found’ (mawjūd) as meaning datum, i.e.
‘the thing you found in front of you when you were given the problem’; but it
would be entirely in keeping with Ibn S̄ınā’s logical vocabulary if we read it as
‘found to be true’, i.e. determinate. Likewise the phrase ‘you have’ (kāna cindak)
could also mean ‘according to you’, in other words, ‘it’s determinate for you that
. . . ’.

It would also be in character for Ibn S̄ınā to leave the ambiguity as a deliberate
trap for idle or unintelligent students.

In sum, we have identified two tasks that the procedure is meant to perform.
The logical task is well-defined apart from the uncertainty about what separated
syllogisms Ibn S̄ınā accepts. But at least we can rigorously check the correctness
of Ibn S̄ınā’s own solutions of his 64 problems. The tah. s. ı̄l task is well-defined
apart from the same uncertainty about separated syllogisms, though it does re-
quire us to know what sentences are ‘already determinate’. The set of things that
are already determinate is the counterpart of the set of clauses of the Prolog pro-
gram in the Prolog case. Börger and Rosenzweig [5] build this set of clauses into
their ASM through a predicate PROGRAM and a basic operation clause list.
I prefer not to do that here, because it would pre-empt a question we have to
discuss in a moment, namely whether Ibn S̄ınā considers that the set of sentences
that are already determinate can be read off mechanically.

376 W. Hodges

5.3 Is the Procedure Mechanical?

Ibn S̄ınā doesn’t ringfence his procedure; we have some discretion to decide what
counts as part of it and what involves an appeal to the environment. The real
question here is whether the procedure has a purely mechanical core, and if so,
what that core contains.

Most of the procedure is quite obviously mechanical. Although Ibn S̄ınā refers
at [9.6.12] to ‘putting the steps in this order’, he is a little vague about what that
order is. But as far as I can see, the indeterminacies are all of the kind where
it doesn’t matter what order we choose, and it’s routine to find a mechanical
arrangement of the steps that does the required job.

There are three places where Ibn S̄ınā relies on the reader to have a certain
skill. The first is the computation of the strongest consequence of a non-sterile
pair of premises. This is the job of the basic function consequence at (Def3) in
Appendix C. If the worst comes to the worst, the function can be implemented
by simply listing the possible cases, as in an appeal to the student’s memory.

The second place is where, in the tah. s. ı̄l task, Ibn S̄ınā asks the student whether
a certain named sentence is already determinate. I see no problem about taking
this as a basic function hasil of the ASM, as in (Def6) in Appendix C. It doesn’t
necessarily follow that the sentences that are already determinate can be listed
by listing all sentences and then filtering through the function hasil, because
the set SENTENCE could be dynamic. More precisely there could be infinitely
many sentences, or more than are listed in the set SENTENCE in the ASM at the
outset of the computation, and the ASM may be able to add further sentences
SENTENCE as the computation proceeds. (Since SENTENCE is defined in
terms of TERM, this would involve adding new terms to TERM too.) This
possibility doesn’t arise when a single given sentence is being evaluated for being
determinate.

The third place where the reader needs a skill is where Ibn S̄ınā says (in
Problems 1 and 2) ‘it needs a middle’. The situation is that a sentence χ has
been identified as the weakest fill for a certain datum, and the function hasil has
been used to reveal that χ is not already determinate. I have to mention another
glitch hidden here. It could happen that χ is not itself already determinate, but
it is a consequence of a one-premise inference (as in (10)) from a premise θ that
is already determinate. The algorithm should identify θ and put it in place of χ.
This needs an extra piece of machinery which I haven’t included in the ASM.
One excuse I can offer is that putting θ in place of χ could possibly lead to a
violation of the fourth figure condition, and we don’t know what Ibn S̄ınā thinks
about this possibility.

In any case, the statement ‘it needs a middle’ is shorthand for:
We need to look for a term C and sentences φ1, φ2 using the terms of
χ and the term C, so that φ1, φ2 are already determinate and are the
premises of a syllogism with conclusion χ and C as middle.

Ibn S̄ınā discusses this situation in a number of places.
For example Qiyās [15] Sect. 9.4 is about this question. Ibn S̄ınā advises that

we start by looking at the form of χ. Thus suppose it has the form ‘Every A is

Ibn S̄ınā on Analysis: 1. Proof Search 377

a B’. Then we should unpack the definition of the term A, and extract from it
sentences of the form ‘Every A is a C’. For each of these, we should see whether
we can also prove ‘Every C is a B’. If we have no success with the definition
of A, Ibn S̄ınā advises looking next at the properties that we can prove for A,
using the principles of the relevant science.

In the cases where χ has the form ‘No A is a B’ or ‘Some A is a B’, the
situation is symmetrical and we can start with either A or B. In the case of
‘Some A is not a B’, Ibn S̄ınā’s wording suggests – I can’t put it stronger than
that – that we start with properties that some A is known to have. So a general
rule that covers all cases would be that we start by looking for determinate
sentences that involve the subject term of χ. (Note that the subject term could
be either the left edge or the right edge of the gap.)

Ibn S̄ınā comes back to the matter at Burhān [16] pp. 138.22ff and 139.10ff.
He claims that in mathematics most sentences have the form ‘Every A is a B’
(here he is agreeing with Aristotle Posterior Analytics A14). He suggests that
when χ has this form in mathematics, if there is a middle as required, then
one can be found by unpacking the definition of the subject term of χ. (This
seems to me a gross oversimplification outside elementary linear algebra.) In this
case it would be reasonable to say that the list of possible terms can be found
mechanically from the definition of the subject term, so we would only need to
include in the ASM a basic function for finding the definitions of terms. But Ibn
S̄ınā goes on to say that outside mathematics things are not so straightforward.
We would need to consider the inherent accidents of the subject term of χ, and
in the worst case even its non-inherent accidents.

He comes back again to the same question in his autobiography. He tells us
that sometimes he was ‘at a loss about a problem, concerning which I was unable
to find the middle term in a syllogism’, and so he resorted to prayer, then to
alcohol and then to sleep; ‘many problems became clear to me while asleep’ ([12]
p. 27f). Prayer, alcohol and sleep are not mechanical procedures.

All in all, I think it would be very unwise to assume that Ibn S̄ınā thinks we
can list in advance all the determinate sentences that involve the subject term
of χ. This is a pity, because the backtracking algorithm of [5] (which Börger and
Stärk display as an ASM module on page 114 of [6]) assumes that we can make
this list.

At this point I am going to cheat and call on a relatively advanced kind of
Abstract State Machine called an asynchronous multi-agent ASM ([6] Chapter
6). This multi-agent ASM has a family of ‘agents’ who each perform according
to their own ASMs, at their own speeds and for the most part independently.
But there can be super-global procedures that pass messages to and from the
agents. The set of agents can be ‘potentially dynamic’, in other words there can
be super-global procedures that add new agents. In ASMs one can treat the set
of threads in a Java program as a dynamic set of agents; I thank Egon Börger
for this example. (The term ‘super-global’ is to distinguish from those features
of the agent ASMs that are global within these ASMs.)

378 W. Hodges

In this setting, suppose an agent reaches a point where ‘it needs a middle’.
The agent then sends a message to the super-global agent who operates the
super-global procedures; prayer, alcohol and sleep might be ways of sending this
message. The super-global agent responds by listing all the possible options; but
instead of sending the list to the agent, it splits the agent into a family of agents,
each of whom has one of the options to work on. I see Ibn S̄ınā identifying the
global agent as the Active Intellect, and the agents who carry out the algorithm
as possible intellects, so that

when a connection occurs between our souls and [the Active Intellect],
there are imprinted from it in them the intellected forms which are
specific for this specific preparation for specific judgements. (Išārāt [20]
II.3 ǐs. 13.)

(28)

But that’s an aside – the super-global agent has a precise job to do, which is
encoded in the ASM as a super-global basic function.

All the agents do the same calculation for the logical task. When the logical
task has delivered an affirmative answer, they switch to the tah. s. ı̄l task and may
have to split. So for the tah. s. ı̄l task we need to clarify the notion of correctness
of the ASM, as follows. The ASM is correct for the tah. s.̄ ıl task if: (1) when the
task has a negative answer, all (lower level) agents return a negative answer; (2)
when the task has an affirmative answer, at least one agent returns an affirma-
tive answer; and (3) every agent returning an affirmative answer also returns a
sequence of sentences which is a correct fill for the gap in the datum.

A fragment of the backtracking procedure is still needed, but for a more
limited purpose, namely to find the weakest fill in a datum. Ibn S̄ınā shows at
Problems 3 and 7 that he expects the student to find it by listing possibilities
and trying each in turn. The edges of the gap are known, and they provide the
two terms of the weakest fill. So there are eight possible sentences to consider.
Given this approach, it makes sense to list the possibilities in an order where
ψ comes before χ whenever χ entails ψ; so when we first find a possible fill we
know it is a weakest one. The function listsentences at (Def2) in Appendix C
provides such a list.

Ibn S̄ınā allows the student to use background knowledge to cut down from
eight to a shorter list of possible fills; see the notes on Problems 3 and 7. I count
this move as a shortcut, not as a part of the algorithm.

Are we sure that no further backtracking is needed? For example, perhaps we
find a weakest fill, but then further down the line we discover that the resulting
connected syllogism runs into trouble with the fourth figure condition, so that
we need to backtrack and try the converse of the weakest fill instead. I believe
that this problem doesn’t arise, because the premise order condition fixes the
order of the terms in all the intermediate sentences in the connected syllogism,
independent of the order of the terms in the premises of the separated syllogism.
To be sure of this we need a correctness proof; but I think this would be wasted
effort until we have an answer to the question about which connected syllogisms
to accept.

Ibn S̄ınā on Analysis: 1. Proof Search 379

6 Review

We must do two things here. The first is to give an informal summary of the
algorithm, and the second is to place it in the history of logic and mathematics.
A more formal description of the algorithm is given in Appendix C, in the form
of an asynchronous multi-agent ASM, where each agent follows its own agent
ASM within the multi-agent ASM.

6.1 Summary of the Algorithm

Select
�report �

�
�

�
��

Synthesise
� report

ActiveIntellect

�
�

�
��

Ramify

�
�

�
��

Describe
�

Synthesise
� report

�
�

�
�	

goal-datum pair

�
�

�	

We describe what happens to a goal-datum pair as it proceeds through the
diagram above.

Entering the module Describe, the goal-datum pair is measured up to dis-
cover where its gap site is and what the left and right edges of the gap are. This
information is attached to it for future use.

Then it proceeds to the module Synthesise, which shrinks it down. If there is
a pair of adjacent sentences in the datum that have a term in common, Synthe-

sise works out the strongest consequence of these two sentences, and replaces
the sentences by this strongest consequence. It does this starting with the left-
most such pair of sentences, and continues until either there are no such pairs
left, or it reaches a pair that is sterile. In the latter case it reports failure and
the algorithm halts.

If the shrunken goal-datum pair survives through Synthesise, it passes to
the module Ramify. This module finds the eight sentences φ1, . . . , φ8 whose
terms are the two edges of the gap. The sentences are listed so that if φi entails

380 W. Hodges

φj but not vice versa, then j < i. Then the module splits the goal-datum into
eight clones, and it fills the gap in the i-th clone with the sentence φi. So now
there are eight goal-datum pairs, none of which has a gap.

There is a subtlety if the goal-datum pair that passes to Ramify has an empty
datum. In this case there is always a sentence that fills the gap and entails the
goal, namely the goal itself. So in this case Ramify makes just one new page,
in which the datum is changed to the goal sentence.

After Ramify has done its work, the first of the resulting gap-free goal-datum
pairs passes to Synthesise, which shrinks down any adjacent pair of sentences
in the datum with a term in common, until either the datum consists of a single
sentence, or a sterile pair of sentences has come to light. If a sterile pair of
sentences comes to light, the goal-datum pair is discarded and the next of the
eight clones passes into Synthesise for similar treatment; and so on. If none of
the eight clones are left, the module reports failure.

If a goal-datum pair with a single-sentence datum survives, it passes to the
module Select. This module checks which of three cases hold: (1) the datum
equals the goal, and it is already determinate; (2) the datum equals the goal,
but it is not already determinate; (3) the datum doesn’t equal the goal. In case
(1) the module reports success in the tah. s. ı̄l task and the algorithm halts. In
case (2) the module reports success in the logical task (if it hasn’t already been
reported), restores the gappy goal-datum pair that Ramify had filled, and sends
this pair to the Active Intellect with a request for a determinate sentence that
attaches at one side of the restored gap. The Active Intellect compiles a list of
all the determinate sentences that could be used, and it makes one clone of the
goal-datum pair for each such sentence ψ. The clone that goes with ψ has ψ
inserted into its gap; but the gap is not completely filled, so we once again have
a goal-datum pair with a gap. All these new goal-datum pairs are sent back into
Describe in parallel, and so on around the cycle. In case (3) the same happens
as the failure case in the previous paragraph: the goal-datum pair is discarded
and the next of the eight is called for, unless none of the eight are left, in which
case the module reports failure.

There are several places where a module reports success or failure. If no success
has been reported yet, then the first report of success or failure is a report on the
logical task, except in case (1) for Select. If logical failure has been reported,
the algorithm halts. If logical success has been reported, a later report of failure
is a report on the tah. s. ı̄l task, and again the algorithm halts. If logical success
has been reported, the only further report of success that makes any difference
is a report of tah. s. ı̄l success in case (1) for Select.

This is the algorithm in broad outline. We need to clarify what are the separate
steps, and how the algorithm decides which step happens when – what Ibn S̄ınā
refers to as the ‘order’. The description below is very much based on Gurevich’s
notion of an ASM and the use made of it by Börger and Rosenzweig in [5].

The idea of goal-datum pairs swimming around between modules is only a
metaphor. A different metaphor is more realistic: the calculator (or ‘agent’)
does each piece of calculation by writing out one or more pages that state the

Ibn S̄ınā on Analysis: 1. Proof Search 381

results of the calculation. (The pages are the ‘nodes’ of [5].) A step of the cal-
culation could involve writing several pages, but only where the pages can be
written simultaneously. For example when Ramify makes eight clones and fills
them, in principle this can be done on eight pages simultaneously (though eight
hands would be useful), so it counts as a single step. But when Synthesise

shrinks down the datum, the result of shrinking down the first pair of sentences
is generally an input to the operation of shrinking the next pair. So shrinking
down a single pair of sentences to their strongest consequence is a whole step. In
general Synthesise will process a goal-datum pair for several steps until there
is no fat left on the datum; this will involve producing a succession of new pages
with shorter datum sequences.

In principle the agent could go to work on any existing page at any time,
using any one of the four modules Describe, Synthesise, Ramify or Select.
What decides which page and which module the agent will take next?

Written in a separate place, not on the pages, there are three further pieces
of information stored in ‘global variables’. The first is the label of the ‘current
page’, i.e. the page now being processed. The agent reads the current page and
acts according to instructions in the algorithm; these instructions refer to the
contents of the current page, and to the values of the global variables. The
instructions tell the agent what new pages to produce, and what changes to
make to the global variables. So for example if the agent is looking at page 5,
the instructions may tell the agent to change the current page variable to 6; the
effect is that when page 5 has been dealt with, the agent turns next to page 6.
And so on.

There are two other global variables besides ‘current page’. One of them
records the goal (which is fixed at the start and never changes). The other
global variable stores reports of success or failure (and starts with the value
‘ignorance’).

The rest of the information needed for controlling the calculations consists of
six records on each page, as follows. (In Appendix C these six records are called
‘properties’ of the page.) The first is a record of the datum on that page. (The
starting page carries the datum given by the problem to be solved.) The second
records the gap site for the current goal-datum pair; the record may also show
that there is no gap, or that the gap site needs calculating. The third is a record
of the left and right edges of the gap. The fourth is a record of the fill, i.e. the
sentence that was put in the gap when Ramify was last used.

The fifth and sixth records on the page store information about the movement
between the pages. One of them records ‘previous page’; what this means is that
when a page p is being read and a new page q is constructed according to the
information in p, then p is recorded as ‘previous page’ on q. (After the algorithm
has reported success, one will need to work backwards from the final page to
its previous page, its previous page’s previous page and so on in order to recon-
struct the required connected syllogism.) The other record is called ‘next’. The
main function of ‘next’ is that when a group of pages p1, . . . , pn are constructed
simultaneously, ‘next’ on page pi (where i < n) indicates pi+1. When the agent

382 W. Hodges

is reading pi and has to discard it, the value of ‘next’ on pi tells the agent which
page to try next. The agent makes this happen by changing the value of the
global variable ‘current page’ to pi+1.

If we have the algorithm set up correctly, then at any stage the records on
the current page p will determine uniquely which module takes care of this stage
of the calculation – unless the algorithm has halted with a report of success or
failure. For example if the record of the gap site on p says that there is no gap,
the module that applies will be one of the two at the bottom of the diagram.
If and only if the record says that the gap needs calculating, the module that
applies will be Describe. If the record says that there is a gap, the module that
applies will be one of Synthesise, Ramify and ActiveIntellect.

The module ActiveIntellect, which is operated by a higher force, comes
into play when and only when the record ‘next’ on the current page indicates
prayer, alcohol or sleep – or more prosaically when it has the value ‘needs a
middle’.

Assuming that neither Describe nor ActiveIntellect has been called,
what settles the choice between Synthesise, Ramify and Select? The answer
is that Synthesise applies if and only if the datum on the current page has
two adjacent sentences with a term in common. (The module appears twice in
the flow diagram above, but it has the same job to perform in both cases.) If
Synthesise doesn’t apply, then Ramify applies if there is a gap in the goal-
datum pair, and Select applies if there isn’t.

It may be helpful to note that when Ramify or Select applies to a page,
then the datum on the page has been slimmed down as much as possible by
Synthesise. So if the goal-datum pair has a gap (as at Ramify), the datum
consists of at most two sentences; if the pair has no gap (as at Select), the
datum is a single sentence. I suggested earlier that this explains why Ibn S̄ınā
confines his 64 problems to cases where the datum has at most two sentences.

For further details refer to Appendix C.

6.2 The Place of the Algorithm in History

My remarks here will be very incomplete – this is already a long paper. I am very
much indebted to Roshdi Rashed for his comments and information, though he
should not be held responsible for any particular claims I make.

A ‘search algorithm’ is a mechanical procedure which allows its user to find
a solution of a problem, or establish that there is no solution, by running sys-
tematically through a set of possible partial or total solutions. (The set is called
the ‘search space’.) Ibn S̄ınā’s algorithm, insofar as it really is an algorithm, is
a search algorithm for finding solutions to the logical and tah. s. ı̄l problems. It
searches through partial or total compound syllogisms that extend the datum.
I know of no other examples of search algorithms in the medieval Arabic litera-
ture. In modern times search algorithms go back at least to Tarry’s maze-solving
algorithm of 1895 ([4] p. 18ff), though the best known examples are from the
second half of the 20th century.

Ibn S̄ınā on Analysis: 1. Proof Search 383

Closely related to search algorithms are two other kinds of algorithm. A
‘counting algorithm’ allows its user to calculate the number of elements of a given
set. A ‘listing algorithm’ allows its user to list without repetition all and only
the elements of a given set. Search algorithms sometimes use listing algorithms
to list the elements of the search space; but unless the listing is appropriate for
the problem, the resulting search algorithm can be very inefficient. Sometimes
a counting algorithm can be proved correct by examining a listing algorithm.
For example one can show that the number of elements of the cartesian product
X×Y is the product of the number of elements of X and the number of elements
of Y by examining the lexicographic product of X and Y (as done for example
by Ibn Mun’im in the 13th century, Katz [22]).

The earliest reported algorithms in Arabic mathematics are listing and count-
ing algorithms in connection with strings of letters. They appear first in the Kitāb
al-cAyn, an 8th century linguistic text normally attributed to the polymath al-
K
¯
al̄ıl ibn Ah.mad (though the situation must be more complicated, because the

book includes third-party reports of al-K
¯
al̄ıl’s views, cf. Versteegh [32] Chapter

2). The basic problem that al-K
¯
al̄ıl addresses is how to list the words of Ara-

bic in a dictionary. His preferred ordering is not lexicographic; rather he lists
unordered sets of consonants, and for each set he makes a sublist of its permu-
tations. He introduces this ordering with some combinatorial calculations that
count numbers of permutations. In the 9th century Ibn Duraid developed these
calculations, describing them as a sort of calculus (h. isāb). Cf. Rashed [27] p. 18ff
for this aspect of the Kitāb al-cAyn and its later influence.

In the 9th century Muh.ammad ibn Mūsā al-K
¯
wārizmı̄ introduced the classical

algorithm for solving quadratic equations. More than this, he demonstrated the
‘cause’ (cilla) of the algorithm; in other words, he gave a mathematical demon-
stration that the algorithm always yields a correct answer when the coefficients
of the equations are real numbers (or less anachronistically, when they can be
represented as lengths). For this he converted from numbers to lengths, and then
invoked geometrical arguments in the style of Euclid. Details are in [27]. In the
rich tradition inspired by al-K

¯
wārizmı̄’s work, the word for ‘algebraic algorithm’

is bāb, translated into Latin as regula.
None of the algorithms of al-K

¯
al̄ıl or al-K

¯
wārizmı̄ are search algorithms, and

Ibn S̄ınā gives no indication that he sees himself as doing anything similar to
what they did. He never describes his procedure as a h. isāb or a bāb. There
is some overlap with al-K

¯
al̄ıl’s calculations, namely that Ibn S̄ınā uses lists of

possibilities. But unlike al-K
¯
al̄ıl, Ibn S̄ınā spends no time discussing systematic

ways of listing the possibilities. Ibn S̄ınā would have had to consider some kind
of backtracking algorithm if he had taken more seriously the implications of the
tah. s. ı̄l problem; but this would have moved him into territory unknown to any
medieval mathematician (as far as we know).

To adapt his algorithm to problems with more than one gap, Ibn S̄ınā would
have had to search systematically through the cartesian product of the sets of
possible fills at the separate gaps. If he proposed to do this by listing the possibil-
ities lexicographically – and it’s hard to think of any other reasonable procedure

384 W. Hodges

– then this would have brought him close to al-K
¯
al̄ıl’s listing procedures, and

he would very likely have given us the earliest description of a search through
lexicographic listing. This makes it all the more painful that we don’t have the
appendix which he said would discuss problems with more than one gap. (See
the note on 465.2.)

There is a major difference between Ibn S̄ınā’s discussion and that of al-
K
¯
wārizmı̄. Namely, Ibn S̄ınā never makes any attempt to show that his algo-

rithm is correct. (If he had done, he would certainly have given a much better
algorithm.) There are several aspects to this difference. First, al-K

¯
wārizmı̄ is fol-

lowing every mathematician’s dream: to solve a problem by reducing it to some
apparently quite different problem that is easy to solve or has already been
solved. The reduction of a problem in algebra to one in geometry is a beautiful
example; and incidentally it runs clean counter to the aristotelian tendency to
keep the various sciences in a rigid hierarchy. I doubt that Ibn S̄ınā ever had this
mathematical dream. In the same way as Aristotle, he writes mathematics like
an intelligent outsider, not like a true addict.

The second aspect concerns how Ibn S̄ınā sees the nature of logic. For Ibn
S̄ınā logic is not about when this follows from that; it’s about how we can see
from first principles that this follows from that. For example if we are given a
linkage and a sentence, Theorem 2 gives a fast way of testing whether the linkage
entails the sentence without needing to construct any simple syllogisms at all. In
Ibn S̄ınā’s time this theorem wasn’t yet known. But even if it had been, it would
have established a logical fact by going outside the basic processes of deduction,
and so Ibn S̄ınā very probably wouldn’t have used it. The fact that Ibn S̄ınā
uses only direct and bottom-level methods was a great help for extracting the
algorithm from Ibn S̄ınā’s text. One knew in advance that there were no hidden
tricks or changes of viewpoint or appeals to intuition. The student was expected
to solve the problems by direct application of basic facts of logic, and all that
Ibn S̄ınā was teaching him was how to apply the steps in the right order (as he
himself says at [9.6.12]).

For balance one should add that in general Ibn S̄ınā was certainly prepared to
use metatheorems of logic as well as theorems. In fact he despised logicians who
couldn’t do this. But the metatheorems that he used were ones that summed up
elementary facts about syllogisms, not ones that introduced new ideas.

In one other respect Ibn S̄ınā’s algorithm matches the mathematics of his time.
He achieves the effect of induction by reducing more complex cases to simpler
ones, until he reaches ground level. We might compare Proposition 8 of T

¯
ābit

ibn Qurra in Rashed [26] p. 337ff, and Rashed’s analysis on page 159. T
¯
ābit

computes an n-term sum by writing the terms to be summed, then below them
n−1 terms to be summed, and so on down to a single term. This produces a two-
dimensional array, and T

¯
ābit computes the sum of the top line from properties

of the whole array. For his exposition he takes n = 4 as a typical case. We saw
that Ibn S̄ınā takes cases of length 2 or 3, but here the parallel may break down,
because we found that these cases play a special role in the calculation.

Ibn S̄ınā on Analysis: 1. Proof Search 385

Appendices

A Translation of Qiyās 9.6

IX.6 The analysis of syllogisms, with a mention of dos and don’ts
that can be relied on and used in that [analysis].

[9.6.1] Sometimes a person is addressed with a well-crafted and
definitive syllogism, or he finds such a syllogism written in a book.
But then [sometimes] the syllogism is not simple but compound; or 460.5
it appears not as a connected whole but as scattered pieces. And
sometimes moreover the pieces are jumbled out of their natural
order, or a part of the syllogism is hidden, or something superfluous
is added. [Even] when it is simple, sometimes it is jumbled out of its
natural order, or missing a piece, or with a piece added. You already
know how this happens. If we don’t have rules to guide us, on how
to seek with due deliberation the syllogism that proves a given
goal, [and to confirm] the soundness of the connection between a 460.10
given syllogism [and its goal], so that we can analyse the syllogism
into a group of premises, put them in the natural order, strip off
defects and add any part that is missing, reducing the syllogism to
the syllogistic figure that produces it – [if we don’t have rules for
all this,] then the new information that the syllogism provides will
escape us. If the syllogism is sound then [so is] what it entails. If
it’s faulty, one should locate the fault either in its premises or in
its construction.
[9.6.2] So we need to have rules in the form of dos and don’ts, to be 460.15
used in the analysis of a syllogism. The rules should apply, not on
the basis that the syllogism is demonstrative or dialectical or some
other kind, but on the basis that it is an absolute syllogism. Then
when you are given [the syllogism], you reach what the analysis
leads you to, and it agrees with your starting point when you fol- 461.1
lowed the route of synthesis. Thus you find the truth agreeing with
itself, however you come to it, and standing as witness to its essence.
For the truth, insofar as it is what is the case, stands witness to its
essence insofar as [its essence] is how the truth is conceptualised.
Likewise insofar as [the essence of truth] is the starting point of [the
truth], [the truth] witnesses to its essence insofar as [the truth] is
where [the essence] leads us to; and insofar as [the essence of truth]
is where [the truth] leads us to, [the truth] stands as witness to its
essence insofar as [the truth] is the starting point of [its essence].

386 W. Hodges

[9.6.3] So when you have found a syllogism, you start by looking for461.4,5
its two premises. You do this before looking for the terms, because
gathering up fewer things is easier [than gathering up many]. Also
when you start with the terms, it can be that there are more than
two ways of combining them into two premises, so that the cases you
would need to consider would ramify. The reason for that is that by
locating the terms you don’t thereby locate the premises as things
composed [from the terms]. You would have to examine the case of
each term, and then examine four possible ways of combining [pairs
of terms]. So you would have to consider five items: first you would461.10
consider the terms [themselves], and then you would consider the
four cases which arise from the ways of composing the premises
from two terms. But if you locate the two premises, it’s enough
for you to consider one more thing, namely to list the terms. Thus
when you have found two premises, locating the syllogism and how
it behaves will be easy for you.
[9.6.4] Then the first step is to investigate whether each of the461.12
premises shares one of its terms with the goal but is distinguished
from the goal by another [term]. Suppose [it does, and] one of the
two premises shares both its terms with one part of the second
premise, while another part of the second premise – not the whole
of it – shares both the terms of the goal. Then the syllogism is
duplicative, and the premise which has one part overlapping the
goal and another part overlapping the other premise is a proposi-
tional compound, while the other premise is a duplication. So look462.1
carefully at [the sentence] which has a part overlapping the goal in
two terms: is it meet-like or difference-like? If it is meet-like then
find out whether its overlap [with the goal] is its first or second
clause, and find out whether that other [sentence] is the same [as
this part of the premise], or is its contradictory. If the premise is
difference-like, then find out whether the overlapping [clauses] are
the same or contradictories. Do the same with the other [premise],
which is the duplicating one. In this way your syllogism is analysed
into the propositional moods.462.5
[9.6.5] If this is not the case, and for every [sentence] of the syllogism462.5
the goal (which is proved through [the syllogism]) overlaps it in just
one term, then you know that the syllogism is recombinant. If you
have found that each of the premises overlaps the conclusion, then
look for the middle term, so that you find the figure. Then connect
the terms to the conclusion, so as to find the major and minor
[premises] and the other things that you should be looking for. If
you can’t find a middle term, then the syllogism is not simple;
instead you have a compound syllogism with at least four terms.462.10
[9.6.6] [First case: two given premises, each sharing one term with
the goal]

Ibn S̄ınā on Analysis: 1. Proof Search 387

[Problem 1.] Suppose the goal is universally quantified affirmative, 462.10
namely ‘Every C is an A’, and suppose that the found premises
are ‘Every C is a B’ and ‘Every D is an A’. Then if it’s clear that
‘Every B is a D’, your syllogism is in good order; otherwise it needs
a middle.
[Problem 2.] Suppose the goal is universally quantified negative, 462.12
[namely ‘No C is an A’], and suppose the found [premises] are
‘Every C is a B’ and ‘No D is an A’. Then consider whether ‘Every
B is a D’. If so, then a syllogism can be composed. If not, then it
needs a middle.
[Problem 3.] Suppose the found premises are ‘No C is a B’ and 462.15
‘Every A is a D’. Then it will be no help to you in this case to find
‘Every B is a D’, so that the negative [premise] becomes the minor
[premise of a syllogism] in the first [figure] and the remaining two
premises are affirmative. So consider whether it’s true for you that
‘Every D is a B’. If it is, then you say ‘Every D is a B’ and ‘No C
is a B’, which entails ‘No C is a D’. Then you add to it that ‘Every 463.1
A is a D’, so that it entails ‘No C is an A’.
[Problem 4.] Suppose the found [premises] are ‘No C is a B’ and 463.2
‘Every D is an A’. Then it can’t be used.
[Problem 5.] Suppose the goal is ‘Some C is an A’, and you have 463.2
found [the premises] ‘Some C is a D‘ and ‘Every B is an A’. Then
if ‘Every D is a B’ is attached, you have found [the syllogism].
[Problem 6.] If the found [premises] are ‘Every D is a C’ and ‘Every 463.4
B is an A’, then if ‘Every D is a B’ is attached, you have found
[the syllogism].
[Problem 7.] If the determinate [premises] are ‘Every C is a D’ and 463.5
‘Some B is an A’, then if ‘Every D is a B’ or ‘Some D is a B’ is
attached, it can’t be used. If ‘Every C is a B’ or ‘Some C is a B’ is
attached, it can’t be used. Likewise if ‘Some B is a C’, or ‘Some B
is a D’ is attached, it can’t be used. And likewise if ‘Every B is a
D’ is attached, it can’t be used. And if ‘Every B is a C’ is attached,
it doesn’t entail to [‘Some] C is an A’.
[Problem 8.] If the found determinate [premises] are ‘Some D is a 463.9
C’ and ‘Every B is an A’, and ‘Every D is a B’ is attached, then
this makes the syllogism determinate.
[Problem 9.] If the determinate [premises] are ‘Every D is a C’ and 463.10
‘Every B is an A’, and ‘Every (or some) D is a B’ is attached, then
this makes the syllogism determinate.
[Problem 10.] If the determinate [premises] are ‘Every D is a C’ 463.11
and ‘Some B is an A’, it can’t be used.
[Problem 11.] If the determinate [premises] are ‘Some D is a C’ and 463.12
‘Every A is a B’, it can’t be used.

388 W. Hodges

So consider the remaining cases [with existentially quantified affirmative goal]
in the same way.

[Problem 12.] Suppose that the goal is existentially quantified neg-463.13
ative: ‘Not every C is an A’, and that you have found [the premises]
‘Some C is a B’ and ‘NoD is anA’. Then if [an appropriate sentence
with terms] B, D is attached, then you can use it – for example
‘Every B is a D’.
[Problem 13.] If you have [the premises] ‘No C is a B’ and ‘Some463.15
D is an A’, it can’t be used.
[Problem 14.] Likewise if you have [the premises] ‘Every C is a B’463.16
and ‘Not some D is an A’, [the syllogism can’t be used].
[Problem 15.] If you have [the premises] ‘Not every C is a B’ and464.1
‘Every D is an A’, then it can’t be used.
[Problem 16.] If you have [the premises] ‘Some B is a C’ and ‘No464.1
D is an A’, and ‘Every B is a D’ is attached, you can use it.
[Problem 17.] If [the premises] are ‘No B is a C’ and ‘Some D is an464.3
A’, it can’t be used.
[Problem 18.] If [the premises] are ‘Every B is a C’ and ‘Every D464.3
is an A’, it can’t be used.
[Problem 19.] If you have [the premises] ‘Not every B is a C’ and464.4
‘Every D is an A’, it can’t be used.
[Problem 20.] If you have [the premises] ‘Some D is a C’ and ‘No464.5
A is a B’, and ‘Every D is a B’ is attached, then you can use it.
[Problem 21.] If you have [the premises] ‘No C is a B’, and ‘Some464.6
A is a D’, it can’t be used.
[Problem 22.] If the determinate [premises] are ‘Every C is a B’,464.7
and ‘Not some A is a D’, it can’t be used.
[Problem 23.] If the determinate [premises] are ‘Not every B is a464.8
C’, and ‘Every A is a D’, it can’t be used.
[Problem 24.] If you have: ‘Some C is a B’ and ‘No A is a D’, and464.8
‘Every B is a D’ is attached, you can use it.
[Problem 25.] If you have [the premises] ‘No B is a C’ and ‘Some464.10
A is a D’, then it can’t be used.
[Problem 26.] If you have [the premises] ‘Every B is a C’ and ‘Not464.10
every A is a D’, it can’t be used.

[9.6.7] Likewise in the other remaining cases. This is when the two464.12
premises each share a term with the goal. If the two [premises] share
[a term] with each other, and they don’t share with the goal at all,
then don’t bother to analyse it, because in this case the shortfall
is too great. And likewise when only one of the two shares [a term]
with the goal, and the other doesn’t share with the goal or with its464.15
companion, then [the argument] is not straightforward to analyse.
In order to explain how to analyse it we would need to apply a
lengthy principle that is not expressible in a rule that one can take465.1
on board briefly. Analysis of [such an argument] is possible, but the
appropriate place for this is the appendices, which will also [extend]
analysis to more than two premises.

Ibn S̄ınā on Analysis: 1. Proof Search 389

[9.6.8] [Second case.] If you have found two premises that share [a
term] with each other, and one of them shares [a term] with the
goal, then this shared [term] is either the subject or the predicate
of the goal. Suppose it is the subject. 465.5

[Problem 27.] First suppose the conclusion is universally quanti- 465.5
fied and affirmative, thus: ‘Every C is an A.’ Suppose the found
[premises] are ‘Every C is a B’ and ‘Every B is a D’. Then if you
have found [a premise] linking D to A, this makes [the syllogism]
determinate.
[Problem 28.] Suppose the conclusion is universally quantified neg- 465.7
ative [thus: ‘No C is an A’], and the found [premises] are: ‘Every C
is a B’ and ‘Every B is a D’. Then if you have found [the premise]
‘No D is an A’, this makes [the syllogism] determinate.
[Problem 29.] If you have found [the premises] ‘Every C is a B’ 465.8
and ‘No B is a D’, and then you found [the attachment] ‘Every A
is a D’, this makes [the syllogism] determinate without needing a
conversion.
[Problem 30.] If you have found [the premises] ‘No C is a B’ and 465.10
‘Every B is a D’, it can’t be used.
[Problem 31.] If you have found [the premises] ‘No C is a B’ and 465.10
‘Every D is a B’, and then you found the premise ‘Every A is a D’,
this makes [the syllogism] determinate.
[Problem 32.] Suppose the conclusion is existentially quantified af- 465.12
firmative [thus: ‘Some C is an A’]. Suppose [the premises] ‘Some C
is a B’ and ‘Every B is a D’ are already determinate, and ‘Every D
is an A’ is attached, then this makes [the syllogism] determinate.
[Problem 33.] Suppose [we have] ‘Every D is a B’ and ‘Every B is 465.13
a C’. Then if ‘Every D is an A’ or ‘Some D is an A’ is attached,
this makes [the syllogism] determinate.
[Problem 34.] Suppose [the premises] are ‘Every C is a B’ and ‘Some 465.14
B is a D’; then this [syllogism] can’t be used.
[Problem 35.] If the existentially quantified [goal] is negative [thus: 465.15
‘Some C is not an A’], and you have found [the premises] ‘Some C
is a D’ and ‘Every D is a B’, and ‘No B is an A’ is attached, this
makes [the syllogism] determinate.
[Problem 36.] If you have found [the premises] ‘Some C is a B’ and 466.1
‘No B is a D’, and ‘Every A is a D’ is attached, this makes [the
syllogism] determinate.

Work through the remaining cases of this kind for yourself, taking the com-
pound [syllogisms] in turn.

390 W. Hodges

[9.6.9] You should know that when we said: ‘This makes [the syllo-466.3
gism] determinate’, this meant determinate without having to alter
[the syllogism] by making a conversion in the found [premises]. Also
you should know that we are not putting ourselves to the trouble of
telling you now what figure the determinate [syllogism] is [proved]
in. If you don’t understand that, and didn’t memorise what was466.5
said [about it earlier], you won’t have been able to make any use of
this [lesson].
[9.6.10] [Third case: Two premises which share one term with each
other, and one of them shares a term with the predicate of the goal.]

[Problem 37.] If the shared [term] is in the predicate of the goal,466.6
and the goal is universally quantified affirmative [thus: ‘Every C is
an A’]; and you have [the premises] ‘Every D is a B’ and ‘Every B
is an A’, and ‘Every C is aD’ is attached, this makes [the syllogism]
determinate.
[Problem 38.] If the goal is universally quantified negative [thus:466.7
‘No C is an A’], and the found [premises] are ‘Every D is a B’ and
‘No B is an A’, and ‘Every C is a D’ is attached, this makes [the
syllogism] determinate.
[Problem 39.] If the found [premises] that you have are ‘No D is466.9
a B’ and ‘Every A is a B’, and ‘Every C is a D’ is attached, this
makes [the syllogism] determinate.
[Problem 40.] If you have [the premises] ‘Every D is a B’ and ‘No A466.10
is a B’, and ‘Every C is a D’ is attached, this makes [the syllogism]
determinate.
[Problem 41.] If the goal is existentially quantified affirmative [thus:466.11
‘Some C is an A’], and you have [the premises] ‘Some B is a D’
and ‘Every D is an A’, and ‘Every B is a C’ is attached, you can
use it.
[Problem 42.] If you have: ‘Some B is a D’, and ‘Every A is a D’,466.13
it can’t be used.
[Problem 43.] If you have ‘Some D is a B’ and ‘Every B is an A’,466.13
and [the attached premise] is ‘Every D is a C’, you can use it.
[Problem 44.] If you have ‘Some D is a B’ and ‘Some A is a D’,466.14
it can’t be used, even with the order [of the terms in a premise]
converted.
[Problem 45.] If your goal is existentially quantified negative [thus:466.15
‘Some C is not an A’], and you have [the premises] ‘Some B is a
D’ and ‘No D is an A’, and ‘Every B is a C’ is attached, you can
use it.
[Problem 46.] Or you have ‘Every B is a D’ and ‘Some D is not an467.1
A’ – then you can’t use it.
[Problem 47.] If you have [the premises] ‘Not every B is a D’ and467.2
‘Every D is an A’, you can’t use it.
[Problem 48.] If you have ‘No B is a D’ and ‘Some D is an A’, you467.2
can’t use it.

Ibn S̄ınā on Analysis: 1. Proof Search 391

[Problem 49.] If you have ‘Some D is a B’ and ‘No A is a B’, and 467.3
‘Every D is a C’ is attached, you can use it.
[Problem 50.] If you have ‘No D is a B’ and ‘Every A is a B’, and 467.4
‘Some C is a D’ is attached, you can use it.
[Problem 51.] If you have ‘Not every D is a B’, and ‘Some A is a 467.5
B’, it can’t be used.
Try out for yourself the compound [syllogisms] where the overlap 467.7
is with the predicate of the goal, in the same relation as above.
These, and similar [examples] that we handle by comparison with
them, are instances of analysis where you have two premises. 467.9

[9.6.11] [Fourth case: One premise, which shares a term with the
goal.]
[Problem 52.] In the case where you have a single premise, which 467.9
overlaps the predicate of the conclusion, and the goal is universally
quantified affirmative, namely ‘Every C is an A’, and you have [the
premise] ‘Every D is an A’, then if ‘Every C is a D’ is attached,
this makes [the syllogism] determinate.
[Problem 53.] If you have ‘Every A is a D’, it can’t be used. 467.12
[Problem 54.] If the goal is universally quantified negative [thus: 467.12
‘No C is an A’], and you have [the premise] ‘No D is an A’ or
‘No A is a D’, and ‘Every C is a D’ is attached, this makes [the
syllogism] determinate.
[Problem 55.] If you have [the premise] ‘Every D is an A’, then [the 467.14
syllogism] can’t be made determinate.
[Problem 56.] Rather, if you have ‘Every A is a D’, and it’s true 467.14
that ‘No C is a D’, this makes [the syllogism] determinate.
[Problem 57.] If the goal is existentially quantified affirmative [thus: 467.15
‘Some C is an A’], and you have [the premise] ‘Some D is an A’,
and ‘Every D is a C’ is attached, you can use it.
[Problem 58.] If you have [the premise] ‘Every D is an A’, and 467.16
‘Some C is a D’ is attached, you can use it.
[Problem 59.] If you have ‘Some A is a D’, you can’t use it at all, 467.17
unless you convert [the premise].
[Problem 60.] If the goal is existentially quantified negative [thus: 467.18
‘Some C is not an A’], and you have [the premise] ‘Every D is an
A’, you can’t use it at all.
[Problem 61.] Rather, if [the premise] is ‘No D is an A’, and ‘Some 467.19
C is a D’ is attached, you can use it. 468.1
[Problem 62.] Likewise if you have ‘Some D is an A’, it can’t be 468.1
used.
[Problem 63.] If you have [the premise] ‘Not every D is an A’, and 468.2
‘Every D is a C’ is attached, you can use it.
[Problem 64.] If [the premise] is ‘Not every A is a D’, it can’t be 468.3
used.

392 W. Hodges

[9.6.12] When you put the steps in this order, as I have shown you,468.4
you will reach the [required] terms, figures and moods. And the
terms that you encounter will be ones within the formats mentioned
above as ones that can be used.
Apply exactly the same considerations to propositional compounds.468.7

B Notes on the Text Translated

The text above is translated from the Arabic text in [15], which is a volume from
the Cairo edition of the Šifā’, published under the overall editorship of Ibrahim
Madkour.

Title
Ibn S̄ınā writes ‘intafac X bi-Y’ to express ‘X can use Y’. The passive form,
which occurs in the title, is ‘untufic bi-Y’, meaning ‘Y can be used’. I haven’t
found this meaning in the dictionaries, including Goichon [9]. But it’s fairly
common in Ibn S̄ınā’s logical writing. For example in Burhān [16] 13.14 one
can’t use (lam yantafic bi-) what a teacher says unless one thinks for oneself;
63.8 there are students who can use (intafac bi-) a compass but are still
stupid; 141.13 in debate one can’t use (lā yantafic bi-) a proof that requires
very many middle terms; cIbāra [14] 2.12f sciences are developed so that
later generations can use (yantafic bi-) them. Dozy [7] comes nearest with
the meaning ‘trouver son compte à’, which Gabriel Sabbagh kindly tells me
can be translated as ‘finds advantageous or useful’.

[9.6.1]

460.5f ‘not connected but separated’ (gair maws. ūl bal mafs. ūl): See Subsects.
4.2 and 4.4 above for these notions.

[9.6.2]

460.17 ‘absolute syllogism’ (qiyās mut.laq): ‘absolute’ (mut.laq) means without
any restriction or condition being imposed. The kind of restriction he
has in mind here is to syllogisms that are appropriate for a particular
purpose. For example demonstrative syllogisms are for demonstrating
that something is true by deducing it from things that are self-evident
or already demonstrated, so their premises must be necessary truths.
Dialectical syllogisms must have premises that are true for the most
part and generally accepted. (Qiyās [15] p. 4, Išārāt [20] Method 9.)

461.2 ‘standing as witness to its essence’ (šāh. id li-d
¯
ātih): This rhetorical flour-

ish apparently comes from the translator into Arabic, Tad
¯
âr̂ı; it is not in

the Greek original. Ibn S̄ınā seems to have replied with a similar blossom
of rhetoric. But was Tad

¯
âr̂ı quoting something?

[9.6.3]

Ibn S̄ınā on Analysis: 1. Proof Search 393

461.8 ‘as thing composed’ : i.e. rather than as segments of text.
At Prior Analytics i.32 47a11 Aristotle claims that it’s easier to divide a
thing into large parts than into small, but offers no argument in support
of this. Ibn S̄ınā may be right about which order is easier, but his reason
doesn’t convince. If you first locate the premises as segments of the text,
you don’t thereby locate them ‘as composed from the terms’. There may
be many different ways of carving a subject-predicate form out of one and
the same sentence. For example if the sentence in front of you is ‘This line
and that line meet’, should you parse it as ‘(This line) (meets that line)’
or as ‘(These two lines) (meet)’? Or to take Ramsey’s more philosophical
example, should you parse ‘Socrates is wise’ as ‘(Socrates) (is wise)’ or as
‘(Wisdom) (is a characteristic of Socrates)’ ([25] p. 21)? The nub of the
matter is that Ibn S̄ınā in this section ignores the possibilities of local
formalising; cf. [13].

[9.6.4]

461.13 ‘its terms’: Ibn S̄ınā is discussing propositional syllogisms here, so for
example the ‘terms’ of the proposition ‘if p then q’ are p and q, both of
which are sentences and not terms in the usual sense. See Subsect. 4.5
above.

[9.6.6]

Problem 3. The two terms that occur once only in the given goal and premises
are B and D, so we are looking for a sentence φ with terms B
and D. The goal is universally quantified, so all the premises are
universally quantified, and in particular φ is universally quantified.
The goal is negative, so there is exactly one negative premise; hence
the remaining two premises including φ must be affirmative. Thus
φ must be either ‘Every B is a D’ or ‘Every D is a B’. We try
both in turn. If we combine ‘Every B is a D’ with ‘No C is a B’
as the premises of a simple syllogism, then since B is subject in
one and predicate in the other, the syllogism is in first figure, and
its minor premise is ‘No C is a B’ since this is the one with the
middle term D as its predicate. But the only mood in first figure
with two universally quantified premises and one of them negative
is the second mood (Celarent in the Latin nomenclature), whose
minor premise is affirmative. So ‘Every B is a D’ can’t be used, and
we have to try ‘Every D is a B’ instead. The result is the following
connected compound syllogism, which meets the requirements:

No C is a B. Every D is a B.

No C is a D. Every A is a D.

No C is an A.

(29)

394 W. Hodges

In his discussion Ibn S̄ınā seems to derive ‘No C is a D’ from the
premises ‘Every D is a B’ and ‘No C is a B’ in that order, breaking
the premise order condition. Probably the reason is in the immedi-
ately preceding text: ‘Consider whether . . . ‘Every D is a B’. If it
is, then’ (etc.) The premise ‘Every D is a B’ follows on naturally
from this, and Ibn S̄ınā need not be claiming that it serves as first
premise. (The case is quite different from Problem 33, where the
order is unexpected until we remember Ibn S̄ınā’s conventions.)

Problem 5. ‘found’: What is found? In Problems 8, 9 it’s explicitly the syllogism,
and there are no examples where it’s explicitly the goal. So I infer
the syllogism is meant here.

Problem 6. The problem is the same as Problem 9 below. The solutions are
different; at Problem 9 Ibn S̄ınā gives the weakest fill and one other,
but here he gives only an unnecessarily strong fill. (See the end of
Subsect. 4.4.) One might be tempted to change the text so as to
remove the doublet. But there is another doublet: Problem 43 is
Problem 41 with the letters B and D transposed. So I left the text
alone.

Problem 7. Assuming the text is sound, here is a sequence of thoughts that it
could represent.

First, the goal is affirmative, so there is no need to consider an
added premise θ that is negative. Second, we saw in Problem 3 that
θ should be taken with the first premise to yield an intermediate
conclusion. The first premise is ‘Every C is a D’, so either C or D
is a term in θ. The other term can’t be A, since A already occurs
twice; so it must be B. (This is clumsy: the same reasoning would
eliminate C too, since it also occurs twice. Maybe Ibn S̄ınā wanted
his student to say ‘That’s clumsy’ and formulate the reason.) So
first we try affirmative sentences with B as predicate. There are two
with D as subject, and combining with ‘Every C is a D’ they yield
respectively ‘Every C is a B’ and nothing at all. ‘Every C is a B’
can’t combine with ‘Some B is an A’, because it would give a first
figure syllogism with existentially quantified major premise, which
is impossible. There are two with C as subject, and they both give
‘Some B is a D’ (or conversely). This can’t combine with ‘Some B is
an A’ because both are existentially quantified. Next we try the pos-
sibilities with B as subject. There are two existentially quantified,
but again these will yield an existentially quantified intermediate
sentence that won’t combine with ‘Some B is a D’. There remain
‘Every B is a D’ and ‘Every B is a C’. The first yields nothing
with ‘Every C is a D’. The second yields ‘Every B is a D’, which
combines with ‘Some B is an A’ to yield ‘Some D is an A’, not the
conclusion we want.

The last case, namely ‘Every B is a C’, is important because it
does in fact combine with the given premises to yield the required
goal; but the resulting syllogism uses only the second premise. Since

Ibn S̄ınā on Analysis: 1. Proof Search 395

Ibn S̄ınā doesn’t count this as a solution of the problem, we have
confirmation that the algorithm is not intended to eliminate unnec-
essary premises.

But there is also a problem about how to read the text at
the end of the example. The Cairo edition has lam yuntij ’ilā j,
which is meaningless. The sense has to be either that the inference
using ‘Some B is an A’ doesn’t use the premise ‘Every C is a D’,
or that when used with all the other premises, it doesn’t yield
the required conclusion. The normal usage is that one entails min
or can the premises and calā the conclusion; the preposition ’ilā
‘to’ could hardly be a variant of the first two, but it could be a
variant of calā ‘onto’, though I’ve found no other examples. Hence
we can guess that j should be j a, a shorthand for the goal (since
our C corresponds to Arabic j). Therefore I propose to emend to
lam yuntij ’ilā j a, and I have translated accordingly. See Problem
32 for the opposite error; there is very little difference between a
handwritten Arabic a and a short scratch on the paper.

Problem 8. ‘makes the syllogism determinate’ (qad h. us.s. ila l-qiyās): For this
translation see the notes on Problem 32.

Problem 9. See on Problem 6.
Problem 14. If we add the premise ‘Every B is a D’, then from ‘Every C is a

B’ we get ‘Every C is a D’. To deduce ‘Not every C is an A’ we
need ‘No D is an A’; ‘Some D is not an A’ wouldn’t be enough.
So it looks as if Ibn S̄ınā here understands ‘Not some D is an A’
(laisa bacd. u d a) as ‘Some D is not an A’. At first sight this is at
odds with his treatment of laisa kullu, which he always interprets
as ‘Not every’. There is a similar discrepancy at cIbāra [14] 67.10,
where Ibn S̄ınā says that lā kull and lā bacd. are equivalent. The
interactions of quantifiers and negation in Arabic are complicated;
Jamal Ouhalla alerts me to the fact that focus can affect scope.
But as far as I can see, the relevant phrases in this Problem and at
the cIbāra reference are in topic position, though there are grounds
for thinking that logic blinded Ibn S̄ınā to questions of topic.

Problem 22. Here ‘Not some A is a D’ should be interpreted as ‘Some A is not
a D’. If it was read as ‘No A is a D’ and we attached ‘Every B is
a D’, the first two premises would yield ‘Every C is a D’, which
combines with ‘No A is a D’ to yield ‘No C is an A’ by Cesare,
and hence ‘Not every C is an A’ by (10). Compare Problem 14.

Problem 23. The Cairo text has ‘Every A is a D’ (kullu a d) rather than ‘Every
D is an A’ (kullu d a). But with that reading Ibn S̄ınā should say
that attaching ‘Every D is a B’ yields the required syllogism. I’ve
adopted the easiest correction that doesn’t introduce a doublet.

[9.6.8]

465.2 ‘in the appendices’ (bil-lawāh. iq): In several places in the Šifā’ Ibn
S̄ınā refers to things that will appear in the appendices. But no

396 W. Hodges

work of this name or with exactly the required contents has been
found. It has been suggested that Ibn S̄ınā’s two other works
Tac l̄ıqāt and Mubāh. at¯

āt contain material that was intended for
the appendices. (Gutas [12] pp. 141–144.) But the published ver-
sions of these two works contain only philosophical material, and
nothing about proof search. More’s the pity, because Ibn S̄ınā’s
treatment of incomplete syllogisms with two or more gaps would
have shown us more about how he handled problems of search. See
Subsect. 6.2 for more on the historical context.

Problem 27. Ibn S̄ınā doesn’t say what premise linking D to A will work. There
may be a subtle reason. This is the first example with two premises
φ1, φ2 to the left of the gap, so the student has a choice between
first combining φ1 with φ2 before combining the result with the
test sentence; or first combining φ2 with the test sentence and
then bringing in φ1. The first route is clearly more sensible, be-
cause the result of combining φ1 with φ2 will be the same for each
test sentence. Ibn S̄ınā forces the student to see this, by putting
pressure on the student to try several test sentences. But the effect
is slightly spoiled by the fact that in this particular case the answer
‘Every D is an A’ is obvious without any calculation.

Problem 29. Paragraph [9.6.9] below suggests that Ibn S̄ınā is talking about con-
verting a premise. But why should anybody think of converting a
premise in this example? A possible explanation lies in the fact that
this is the first example in this block where a premise has its terms
out of the obvious order. We might expect (C,B)(B,D), (D,A),
but instead the last premise gives (A,D). Perhaps Ibn S̄ınā had
students who (apparently like Smith [3] Note to 42b5–26) assumed
that switches like this don’t occur. Ibn S̄ınā had made the same
point already at Qiyās 444.5, where it seems to have confused the
copyists.

Problem 32. The Arabic contains two occurrences of qad h. us.s. il, but they must
mean different things. In general qad with the past tense is a per-
fective marker: it indicates that the present state is the outcome
of a previous action described by the verb. But previous to what?
At the first occurrence here the phrase must mean previous to
the problem having been posed, hence ‘already determinate’. But
the second occurrence describes the outcome of the algorithm, so it
can’t mean that; it must mean that the application of the algorithm
created the present situation, hence ‘this makes it determinate’.
Also the ’a at the end of the sentence in line 465.13 should be
deleted (as in one ms); cf. Problem 7.

Problem 33. This is the one problem where Ibn S̄ınā gives the premises in an
order that doesn’t form a linkage where the goal subject points
leftwards and the goal predicate points rightwards. The reason for
this is explained in Subsect. 4.4 above.

Ibn S̄ınā on Analysis: 1. Proof Search 397

The solution ‘Every D is an A’ is redundant since it implies ‘Some
D is an A’, which is already a solution (it’s the weakest fill). Ibn
S̄ınā’s procedure of trying all options is likely to throw up redun-
dancies of this kind. But maybe he expects his brighter students
to note the redundancy and formulate a policy.

Problem 34. Delete the second occurrence of wa-bacd. b d.
466.1 ‘taking the compound [syllogisms] in turn’ (bi-h. asabi l-tarāk̄ıb):

h. asb means calculation (as in the modern h. āsib ‘computer’). But
there is probably no reference to computing or algorithms here.
‘Calculations’ in Ibn S̄ınā’s time were normally assumed to be nu-
merical. So bi-h. asab here probably has its usual meaning of ‘ac-
cording to’.

[9.6.10]

Problem 37. Delete mād
¯
ā at the beginning of line 466.6. Also the ’i in the Cairo

edition is a misprint for ’in.
Problem 44. The student might worry that these two premises violate the fourth

figure condition. Strictly this is not relevant, because the connected
syllogism wouldn’t combine these two premises in a simple syllo-
gism; but it may explain why Ibn S̄ınā remarks that no conversion
is needed.

Problem 48. In the Cairo text the first premise is ‘No B is a C’, violating the
case assumption for [9.6.10]. Read ‘No B is a D’, following two
manuscripts.

Problem 51. The Cairo text has ‘Every A is a B’ for the second found premise.
There must be a slip, because in that case we get a syllogism by
attaching ‘Every D is a C’. But on the Cairo reading this is also
the only example in this block where the second found premise is
the same as in the previous example. So I have replaced ‘Every A’
by ‘Some A’.

[9.6.11]

Problem 59. The only sentence that will complete the syllogism logically is ‘Ev-
ery D is a C’. The middle term is D, which is subject in ‘Every D
is a C’ and predicate in ‘Some A is a D’, so the syllogism violates
the fourth figure condition. Converting the premise ‘Some A is a
D’ to ‘Some D is an A’ yields a third-figure syllogism in Disamis.

Problem 61. We have to correct ‘Some C is an A’ to ‘Some C is a D’.
Problem 62. The Cairo text reads ‘Likewise if [the premise] is ‘No A is a D’, and

you have (cindak) ‘Some D is an A’ or ‘Some A is a C’, it can’t be
used.’ There are several problems with this. First, with the datum
‘No A is a D’ we get the goal by appending ‘Some C is a D’; so
the datum is presumably wrong. Second, this is the one problem
where Ibn S̄ınā seems to introduce the appended sentence with

398 W. Hodges

cindak ; in 28 other problems cindak introduces the datum. Third,
the sentence ‘Some A is a C’ is silly here, because it has the same
terms as the goal. We can get a reasonable problem by deleting
the first and third syllogistic sentences and the text around them,
as I have done in the translation. Then Ibn S̄ınā is saying correctly
that the goal can’t be reached from the datum ‘Some D is an A’.

[9.6.12]

468.7 ‘propositional connectives’: An example of a simple recombinant propo-
sitional syllogism, using the propositional connective ‘If . . . then’, is

If p then q. If q then r. Therefore: If p then r. (30)

where p, q and r are declarative sentences. Ibn S̄ınā brings this to a form
analogous to a predicative syllogism by the device of ‘replacing “if” by
“whenever” ’ (e.g. Qiyās 471.5), so that the sense becomes

Every occasion on which p is an occasion on which q. Every
occasion on which q is an occasion on which r. Therefore:
Every occasion on which p is an occasion on which r.

(31)

This reduction, together with similar ones for some other propositional
connectives, allows the proof search algorithm to be carried over rou-
tinely from predicative syllogisms to propositional ones.

C The ASM

Briefly, an ASM consists of a set of rules operated by modules; for example the
module ProofSearch below has four modules, namely Describe, Synthe-

sise, Ramify and Select. At each step in a computation, all the rules are
applied once and simultaneously; if they clash, the machine stops. Rules nor-
mally begin with a condition, so they do nothing unless the condition is met.
They can activate other rules by resetting parameters so that the conditions
for the other rules are met. For example when the conditions for Synthesise

are met, the rules of Synthesise have the effect of shortening the datum by 1
every time they operate. They continue to operate until there are no consecutive
formulas in the datum with a term in common; at this point the condition for
Synthesise fails, but that for Ramify may be met, so that the rules of Ramify

take over.
The notation X := Y means that the value of the parameter X becomes Y .

The notation X� means the set of nonempty finite sequences of elements of X .
I hope the rest is reasonably self-explanatory.

The logical part of this ASM was implemented in Perl 5 and run on all of
Ibn S̄ınā’s 64 problems. There were discrepancies from Ibn S̄ınā’s solution (as
reported in the Cairo text) at Problems 23, 33, 51, 61 and 62. These are all

Ibn S̄ınā on Analysis: 1. Proof Search 399

discussed in the notes to the relevant problems in Sect. B above. Problem 33 is
the only one of the 64 problems that lies outside the domain of the algorithm.
The other four discrepancies are well within the range of transcription errors
that one might expect from the state of the manuscript tradition. Some could
possibly be misprints in the Cairo edition – I haven’t consulted any manuscripts
to check this.

Multi-agent ASM

Universe: INTELLECT (dynamic set of agents)

(ASM1) ActiveIntellect=
forall ι ∈ INTELLECT if next(currpage).ι = needsmiddle then

let k = |hasils(fill(currpage).ι)|
if k > 0 then

let ιk := ι
if k > 1 then

let ι1, . . . , ιk−1 = new(INTELLECT)
forall 1 � i � k

let p = new(PAGE).ιi
datum(p).ιi := insert(datum(currpage).ιi,

i-th(hasils(fill(currpage).ιi)), gapsite(currpage).ιi)
gapsite(p).ιi := needscalculating
previous(p).ιi := currpage.ιi
next(p).ιi := 0
X(p).ιi := X(currpage).ιi

where X = edges, fill
currpage.ιi := p

where hasils(φ).ι is the set of all sentences that are determinate for the intellect
ι and have exactly one term in common with φ; we assume this set is finite. In
general the i-th sentence in the set will contain a term t that is not already in
TERM .ιi, so the Active Intellect will need to add t to TERM .ιi; the term t is
the imprinted form that we met in (28).

Signature of the agent ASMs

Universes: TERM, PAGE

Globals:

goal ∈ SENTENCE
(input from the problem)

currpage ∈ N

(initially 0)
report ∈ {ignorance, logicalfailure, logicalsuccess, tahsilsuccess}

(initially = ignorance)

400 W. Hodges

Page properties:

datum : PAGE → SENTENCE�

(initially input from the problem)
gapsite : PAGE → N ∪ {needscalculating}

(initially = needscalculating)
edges : PAGE → TERM 2

fill : PAGE → SENTENCE
previous : PAGE → PAGE
next : PAGE → PAGE ∪{needsmiddle}

(initially 0)

Agent modules

(ASM2) ProofSearch = {Describe, Synthesise, Ramify, Select}

(ASM3) Describe =
if gapsite(currpage) = needscalculating then

let p = new(PAGE)
take datum(currpage), goal and identify the gap site, the left
edge and the right edge. (If no gap then the gap site is 0.)
gapsite(p) := calculated gap site
edges(p) := (left edge,right edge)
previous(p) := currpage
X(p) := X(currpage)

where X = datum, fill, next
currpage := p

(ASM4) Synthesise =
if gapsite(currpage)
 0 and next(currpage)
 0 and
(length(datum(currpage)) > 2 or
(length(datum(currpage)) = 2 and gapsite(currpage) �= 1)) then

let k =
{

1 if gapsite(currpage) �= 1,
2 otherwise

let � = length(datum(currpage))
let φ = consequence(k-th(datum(currpage)),

(k+1)-th(datum(currpage)))
if φ �= sterile then

let α = replacepair(datum(currpage), φ, k)
let p = new(PAGE)
datum(p) := α
previous(p) := currpage
if gapsite(currpage) > 1 then

gapsite(p) := gapsite(currpage)− 1
else

Ibn S̄ınā on Analysis: 1. Proof Search 401

gapsite(p) := gapsite(currpage)
X(p) := X(currpage)

where X = edges, fill, next
currpage := p

else
if next(currpage) > 0 then

currpage := next(currpage)
else

if report = ignorance then
report := logicalfailure

(ASM5) Ramify=
if gapsite(currpage) > 0 and next(currpage)
 0 and
(length(datum(currpage)) � 1 or
(length(datum(currpage)) = 2 and gapsite(currpage) = 1)) then

if length(datum(currpage))
 1 then
let p1, . . . , p8 = new(PAGE)
forall 1 � i � 8

let φ = listsentences(1-th(edges(currpage)),
2-th(edges(currpage)), i)

datum(pi) := insert(datum(currpage),φ, gapsite(currpage))
fill(pi) := φ
gapsite(pi) := 0
edges(pi) := edges(currpage)
previous(pi) := currpage

forall 1 � j � 7
next(pi) := pi+1

next(p8) := 0
currpage := p1

else
let p = new(PAGE)
datum(p) := insert(datum(currpage), goal, 1)
gapsite(p) := 0
edges(p) := edges(currpage)
fill(p) := goal
previous(p) := currpage
next(p) := 0

(ASM6) Select=
if gapsite(currpage) = 0 and length(datum(currpage)) = 1 then

if 1-th(datum(currpage) = goal then
if hasil(fill) = true then

report := tahsilsuccess
else

let k = least k
 1 such that

402 W. Hodges

gapsite(previousk(currpage)) > 0
let p := new(PAGE)
X(p) := X(previousk(currpage))

where X = datum, gapsite, edges
fill(p) := fill(currpage)
next(p) := needsmiddle
previous(p) := currpage
report := logicalsuccess
currpage := p

else
if next(currpage) > 0 then

currpage := next(currpage)
else

if report = ignorance then
report := logicalfailure

Basic functions

(Def1) SENTENCE ⊆ TERM 2 × {0, 1}2
SENTENCE (s, t, i, j) ⇔ s �= t

(Def2) listsentences : TERM 2 × {1, . . . , 8} → SENTENCE
listsentences(s, t, 1) = (s, t, 0, 0)
listsentences(s, t, 2) = (s, t, 0, 0)
listsentences(s, t, 3) = (s, t, 0, 1)
listsentences(s, t, 4) = (s, t, 0, 1)
listsentences(s, t, 5) = (s, t, 1, 0)
listsentences(s, t, 6) = (s, t, 1, 1)
listsentences(s, t, 7) = (s, t, 1, 1)
listsentences(s, t, 8) = (s, t, 1, 1)

(Def3) consequence : SENTENCE2 → SENTENCE∪{sterile}
consequence(φ, ψ) ={

strongest consequence of [φ, ψ] if [φ, ψ] is not sterile,
sterile otherwise.

(Def4) replacepair : SENTENCE�× SENTENCE ×N →
SENTENCE

replacepair([φ1, . . . , φn], ψ, i) = [φ1, . . . , φi−1, ψ, φi+2, . . . , φn].

(Def5) insert : SENTENCE�× SENTENCE ×N→
SENTENCE

insert([φ1, . . . , φn], ψ, i) = [φ1, . . . , φi, ψ, φi+1, . . . , φn].

(Def6) hasil : SENTENCE → {true, false}
a user-defined basic function

Ibn S̄ınā on Analysis: 1. Proof Search 403

References

1. Whittaker, J. (ed.): Alcinoos: Enseignement des Doctrines de Platon. Budé, Paris

(1990)

2. Mueller, I. (Trans.): Alexander of Aphrodisias: On Aristotle Prior Analytics, 1.32–

46. Duckworth, London (2006)

3. Smith, R. (Trans.& ed.): Aristotle: Prior Analytics. Hackett, Indianapolis Indiana

(1989)

4. Biggs, N.L., Lloyd, E.K., Wilson, R.J.: Graph Theory 1736–1936. Clarendon Press,

Oxford (1976)

5. Börger, E., Rosenzweig, D.: A mathematical definition of full Prolog. Science of

Computer Programming 24, 249–286 (1995)

6. Börger, E., Stärk, R.: Abstract State Machines. Springer, Berlin (2003)

7. Dozy, R.P.A.: Supplément aux Dictionnaires Arabes. Librairie du Liban, Beirut

(1968)

8. Ebbesen, S.: Commentators and Commentaries on Aristotle’s Sophistici Elenchi,

vol. 1, The Greek Tradition. Brill, Leiden (1981)

9. Goichon, A.-M.: Lexique de la Langue Philosophique d’Ibn S̄ınā. Desclée de

Brouwer, Paris (1938)

10. Gurevich, Y.: Evolving algebras. A tutorial introduction. Bulletin of European

Association for Theoretical Computer Science 43, 264–284 (1991)

11. Gurevich, Y., Veanes, M., Wallace, C.: Can abstract state machines be useful in

language theory? Theoretical Computer Science 376, 17–29 (2007)

12. Gutas, D.: Avicenna and the Aristotelian Tradition: Introduction to Reading Avi-

cenna’s Philosophical Works. Brill, Leiden (1988)

13. Hodges, W.: Traditional logic, modern logic and natural language. Journal of Philo-

sophical Logic 38, 589–606 (2009)

14. Madkour, I., et al. (eds.): Ibn S̄inā: Al-cIbāra. Dār al-Kātib al-cArab̄ı lil-T. abāc

wal-Našr, Cairo (1970)

15. Madkour, I., et al. (eds.): Ibn S̄inā: Al-Qiyās. Našr Wizāra al-T
¯
aqāfa wal-’Iršād

al-Qūmı̄ (1964) (referred to above as the Cairo edition)

16. Badaw̄ı, A. (ed.): Ibn S̄inā: Al-Burhān. Dār al-Nahd.a al-cArab̄ıyya, Cairo (1966)

17. Madkour, I., et al. (eds.): Ibn S̄inā: Al-Sufista. Našr Wizāra al-T
¯
aqāfa wal-Tac l̄ım,

Cairo (1956)

18. Ibn S̄inā: Al-Najāt. Jamı̄c al-H. uqūq, Beirut (1992)

19. Ibn S̄inā: Mant.iq al-Mašriqiyȳın. Al-Maktaba al-Salafiyya, Cairo (1910)

20. Zare’i, M. (ed.): Ibn S̄inā: Al-Išārāt wal-Tanbiyyāt, Qum. Būstān-e Ketab-e Qom,

Iran (2000); (The logical part is translated: Inati, S. C.: Ibn S̄ınā, Remarks and

Admonitions, Part One: Logic. Toronto: Pontifical Institute of Mediaeval Studies)

(1984)

21. Jabre, F.: Al-Nas.s. al-Kāmil li-Mant.iq Arist.ū, vol. 1. Dār al-Fikr al-Libnān̄ı, Beirut

(1999)

22. Katz, V.J.: Combinatorics and induction in medieval Hebrew and Islamic mathe-

matics. In: Calinger, R. (ed.) Vita Mathematica: Historical Research and Integra-

tion with Teaching, pp. 99–106. Mathematical Association of America (1996)

23. Kutsch, W.: Muh.as.s.al – Ḡayr Muh.as.s.al. Mélanges de l’Université Saint

Joseph 27(8), 169–176 (1947-1948)

24. John Philoponus: Aristotelis Analytica Priora Commentaria. In: Wallies, M. (ed.).

Reimer, Berlin (1905)

404 W. Hodges

25. Ramsey, F.P.: Foundations: Essays in Philosophy, Logic, Mathematics and Eco-

nomics. In: Mellor, D.H. (ed.). Routledge & Kegan Paul, London (1978)

26. Rashed, R.: Les Mathématiques Infinitésimales du IXe au XIe Siècle, vol. 1, Fon-

dateurs et Commentateurs. Al-Furqān, London (1996)

27. Rashed, R.: Al-Khwārizmı̄, Le Commencement de l’Algèbre. Blanchard, Paris

(2007)

28. Ross, W.D.: Aristotle’s Prior and Posterior Analytics. Clarendon Press, Oxford

(1949)

29. Shehaby, N.: The Propositional Logic of Avicenna. Reidel, Dordrecht (1973)

30. Street, T.: An outline of Avicenna’s syllogistic. Archiv für Geschichte der Philoso-

phie 84(2), 129–160 (2002)

31. Thom, P.: The Syllogism. Philosophia Verlag, Munich (1981)

32. Versteegh, K.: Landmarks in Linguistic Thought III: The Arabic Linguistic Tradi-

tion. Routledge, London (1997)

33. Zermelo, E.: Untersuchungen über die Grundlagen der Mengenlehre I. Mathema-

tische Annalen 65, 261–281 (1908)

Abstract State Machines and the Inquiry
Process

James K. Huggins1 and Charles Wallace2

1 Kettering University, Flint, MI

jhuggins@kettering.edu
2 Michigan Technological University, Houghton, MI

wallace@mtu.edu

Abstract. Abstract State Machines have long played a valuable role as

a catalyst for inquiry into software problems. In the ASM literature, how-

ever, there is a tendency to omit reflection on the process of ASM-based

design and analysis, focusing instead on final, complete ASM products.
As educators, we believe it is important to expose our students to a full,

explicit process of inquiry, using ASMs as a vehicle to motivate active

questioning. We report on our experiences in bringing ASM-based in-

quiry to the classroom. A course plan that combines ASMs and Problem

Frames has proved effective in eliciting critical inquiry among students.

Keywords: formal methods, software requirements, education,

refinement, inquiry.

1 Introduction

The idea of a mathematically rigorous semantic basis for software has long held
an allure for software engineers, for a variety of reasons. Software problems and
products can be captured in a precise language; sophisticated analysis tech-
niques, including automated verification, can be brought to bear; complex sys-
tems can be synthesized from multiple partial specifications. The advent of tools
for “lightweight” analysis [21] has made formal methods an option for a broad
range of applications.

Another, less heralded benefit is the role formal methods can play as a catalyst
for inquiry, provoking the constructive questioning that uncovers tacit assump-
tions and unforeseen consequences. This holds special interest for us as software
engineering educators. From the narrow perspective of professional training, we
must prepare our students to engage in the challenging workplace tasks of re-
quirements elicitation and analysis – tasks that are complicated by the invisibility
of software and the wide range of application domains [10]. From a wider ped-
agogical perspective, our primary mission is to expose our students to complex
problems and to promote active, inquiry-based problem solving.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 405–413, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

406 J.K. Huggins and C. Wallace

Our principal aim in this paper is to highlight the importance of ASMs as
a vehicle for inquiry into software problems. We review the history of ASMs in
uncovering hidden implications and unresolved ambiguities in real-world software
products. We argue that in the ASM literature, the process of ASM-based inquiry
has remained largely tacit, and that students need a more explicit exposition of
the process. We report on our efforts to encourage a practice of inquiry among
undergraduate software engineering students, using ASMs along with Problem
Frames [22]. Finally, we provide some advice on what to emphasize in an ASM-
based approach to inquiry.

2 The Practice of Problem Solving

At the heart of software engineering and computer science lies problem solving, a
practice that is fundamentally heuristic due to epistemic, cognitive and temporal
constraints on the human problem solver [25,24]. An expert problem solver typ-
ically employs heuristics tacitly, in a way that is invisible to any observer [23].
This presents a problem for the educator: how can we convey our internalized
“know-how” to our students? Clearly, presenting the “final product” is not suffi-
cient; students must be explicitly encouraged to evaluate and refine the work at
hand, rather than accepting it at face value. This requires constant, systematic
questioning – both internal (analyzing given information) and external (eliciting
further information from other stakeholders).

In the field of technical communication, overreliance on the “final copy” has
generally been acknowledged as a mistake in past educational practice. In cur-
rent practice, revision is viewed as a valuable practice in itself, not simply as
a disposable step toward an end product [14]. Inspired by this example, some
software engineering educators are emphasizing a process of inquiry mediated
by writing and revision. For example, students in Wright’s software engineering
course [27] use a template structure to document the design decisions made dur-
ing a project. The author notes that “the processes students use to think about
and organize what they know and do not know about the design problems is more
important to the students’ learning than the artifacts they generate.” Also, case
studies developed at Penn State [12] and Michigan Tech [10] contain documents
produced through the lifespan of various software projects. The documents are
hyperlinked to show the evolution of the project over time.

3 The Unknown as Known

In his classic treatise How to Solve It [25], Pólya paraphrases Pappus’ explanation
of Heuristic (analyomenos), the “art of problem solving” expounded by Euclid
and others. Included in this paraphrase is the following:

[I]n analysis we assume what is required to be done as already done
(what is sought as already found, what we have to prove as true). (142)

Abstract State Machines and the Inquiry Process 407

Pólya remarks that the original text sounds as strange and counterintuitive as
the English paraphrase: “is it not mere self-deception to assume that the prob-
lem we have to solve is solved?” (146). Upon reflection, however, the meaning
is clear: “[i]n order to examine the condition, we have to conceive, to repre-
sent to ourselves, or to visualize geometrically the relations which the condition
prescribes between [the unknown] and [the data]; how could we do so without
conceiving, representing, or visualizing [the unknown] as existent?” (146). To
derive the consequences of the problem condition, thereby uncovering hidden
contradictions or ambiguities, we must take a provisional step of representing
the unknown as known. Doing so allows us to inhabit and explore the problem
space.

How best to represent the unknown depends on the nature of the problem.
In geometrical problems, for instance, sketching figures is a natural and effective
approach. In the context of invisible, arbitrarily complex software, the choice
of representation is not as simple. Accuracy is important, yet excessive effort
in building an accurate representation draws time and attention away from the
main problem-solving task. Furthermore, in a problem solving session involv-
ing multiple stakeholders, complex notation may marginalize those without the
necessary expertise.

Börger makes the case for ASMs as the right choice for software (and hard-
ware, for that matter) [4]. Most relevant to us is his discussion of constructing an
appropriate ground model – an expression of the software problem as stated by
the stakeholders, and the basis for subsequent refinements. Subsequent analysis
and synthesis “will remain an intellectual exercise if we do not ‘know’ that [the
ground model] is ’correct’ ” (261). Börger enumerates the qualities of a good
ground model, some of which are shared by formal methods in general. The pos-
itive characteristics that seem particularly applicable to ASMs are abstraction,
simplicity and conciseness, to ensure acceptance and understanding by all stake-
holders. Thus ASM models can be sketched in a quick, flexible way – “on the
back of an envelope”, to use a popular metaphor – yet with sufficient accuracy
(abstraction and falsifiability) to elicit critical questions.

4 ASMs and Inquiry

Critical inquiry has been at the heart of much ASM-related work. The tone
was set with Gurevich’s early tutorial [15], which takes the form of a Socratic
dialogue with the author’s student, Quisani. The intensive and incisive question-
ing, familiar to anyone acquainted with the tutorial’s author, reveals important
theoretical and practical decisions in the design of the ASM language. The en-
tire ASM enterprise stems from Gurevich’s desire to illuminate the dark corners
of the Pascal programming language [13]. Through their attempts to formulate
ASM models of programming languages, researchers uncovered problems in the
original descriptions of Prolog [5] and Java [7,18]. Börger et al. [6] acknowledge
the importance of ASM ground models in supporting the productive process of
asking “ignorant questions” [2], by “providing a precise ground against which
questions can be formulated” (18).

408 J.K. Huggins and C. Wallace

In the early days of ASMs, much work focused on applying ASMs to complex
real-world software problems, investigating the thesis (later proved by Gurevich
[16]) that ASMs are powerful enough to capture (sequential) algorithms at any
level of detail. A pattern emerges throughout this investigatory genre: while
the process of constructing the ASM models invariably digs up ambiguities or
contradictions buried in the original natural language, the authors typically do
not reflect on the role that ASMs played in uncovering them. Usually, the ASM
models are generally presented as faits accomplis: fully specified, with little or no
discussion of alternatives. The process of envisioning, selecting and discarding
alternatives, and the rationale for selecting a particular design [11], are left to
the reader’s imagination. Given the audience of this work – primarily academics
and professionals – and the space limitations enforced on scholarly work, it is
perhaps not surprising that reflection on analysis and design is omitted; such
readers have an implicit understanding of these activities and are more interested
in the details of the final product.

One can find occasional hints of the design process buried in the exposition
of ASM papers. For instance, in an overview of their ASM models of the ARM
processor [19], the authors state, “[o]ne can always tailor an ASM to a higher or
a lower level of abstraction, depending on one’s interests [. . .] Our models were
chosen in order to effectively demonstrate the difference between pipelined and
non-pipelined versions of the same microprocessor.” (576) But this describes only
the design motivation, not the process. In other papers, there are intimations of
a design process in cases where peculiarities of the problem domain necessitate
unusual design choices. For example, in the ASM paper on the C programming
language [17], the authors justify the use of a dynamic external function to
resolve operator evaluation order, which is officially underspecified (and therefore
potentially dynamically determined). In the ASM describing the compilation of
Prolog code to the Warren Abstract Machine [5], the authors discuss the dilemma
presented by occur checks during unification: either follow the mathematical
definition, or follow the example of numerous implementations and ignore the
issue. In the ASM for the Kerberos authentication protocol [1], the authors must
first formalize the limits of an adversary before the security of the system can
be proven; several alternative adversaries are discussed before one is chosen and
formalized as an ASM.

By and large, these hints at a design process are the exception rather than
the rule. For newcomers to ASMs, the models given in the research literature
can be difficult to use as a model for their own applications. Generally, students
have little trouble understanding the ASM models as presented in the papers –
activity corresponding to the “comprehension” level of Bloom’s taxonomy [3].
However, the paucity of information on how to create their own ASMs presents
an obstacle to the higher levels of “application”, “analysis” and “synthesis”.
While reading ASMs may certainly grant insight into the particular problems
being studied, and may convince readers of the general utility of ASMs, there
are few clues as to how to develop a new ASM for oneself.

Abstract State Machines and the Inquiry Process 409

5 Encouraging Inquiry through ASMs and Problem
Frames

The second author has used ASMs as a basis for inquiry into problems for sev-
eral years, in a senior-level undergraduate course on software quality assurance.
ASMs are used in conjunction with Problem Frames [26]. Both Problem Frames
and ASMs are used in the portion of the course on requirements elicitation and
analysis.

In Problem Frames, software problems are viewed as complex interactions
between the target system (the machine) and its environment. Attention is di-
rected to carefully locating and bounding the problem, identifying the roles of
the machine and of environmental factors. This encourages precise description
of the problem, in an appropriately abstract way that supposes no machine-
specific knowledge. Each Problem Frame is a generic class of simple, commonly
occuring problem, similar to a design pattern. Associated with a frame is a set
of characteristic concerns: complicating issues that must be addressed in docu-
mentation and communicated to stakeholders. Problem Frames therefore provide
not only a basis for inquiry into problems but also heuristics for problem solv-
ing: each frame provides rules of thumb for effective requirements elicitation and
documentation.

Problem Frames and ASMs have some synergistic properties. Both allow for a
clean separation of the “machine” or “ground model” from the “environment”.
Both gently encourage precision, but also allow things to remain abstract. With
Problem Frames, students get a detailed picture of the environment, then move
to details of the machine gradually with ASMs. Problem Frame “interfaces” be-
tween machine and environment translate naturally into “monitored” functions
in ASMs.

The authors developed the ASM Primer [20] to be used as a means for teach-
ing students not merely about ASMs, but how to develop an ASM. Inspired
by Gurevich’s conversations with his student Quisani, the authors engage in a
dialogue with an undergraduate student, Questor. Over the course of the di-
alogue, the authors and the student discuss the development of several ASMs
dealing with three classic “textbook” problems: greatest common divisor, string
matching, and minimum spanning trees.

The primer attempts to show the inquiry process by explicitly discussing al-
ternative design choices. For example, after giving a high-level ASM for string
matching, the dialogue goes on to develop revisions of that high-level algorithm
which yield the brute-force, Knuth-Morris-Pratt, and Boyer-Moore algorithms.
The character of Questor embodies our ideal of critical thinking about the de-
sign process. Questor often asks questions about particular design choices; the
response of the authors allows the reader to hear about how certain choices might
be made. It is hoped that this dialogue inspires its readers to think about why
they make certain choices as they develop their own ASMs.

Given the interactions in the primer as a model, students then engage in activ-
ities that exercise their own powers of critical inquiry. In one in-class exercise, for
example, students are given an assortment of small electronic devices (e.g. digital

410 J.K. Huggins and C. Wallace

watches, handheld video games, pocket electronic dictionaries), all obtained at low
cost from various secondhand stores. Many of these “black boxes” exhibit unusual
behavior,anddocumentation isnonexistent. In the first phase of the exercise, each
team of 3–4 students “plays” with a device, exploring its behavior in reaction to
human input. The team then maps the machine-environment relationships to a
set of Problem Frames. Finally, the students represent the behavior they have
observed in terms of an ASM. In the second phase, students present what they
have discovered to the entire class, and audience members join in with their own
lines of questioning. In the exercise, the Problem Frame and ASM documents
serve as focus points from which team members explore possible behaviors. Fur-
thermore, the value of these formalisms as a communication medium is made
evident during the class presentations; the documents are not created purely to
satisfy the instructor, but to convey information to classmates.

6 Results

Our experience shows that ASMs can be a valuable classroom tool – if introduced
with care. Evaluations of the second author’s software quality assurance course
showed that students significantly broadened their range of inquiry techniques
[9]. However, students can easily develop a cynical attitude toward ASMs as just
another form of “useless” documentation. The pragmatic value of ASM-mediated
inquiry must be made clear early and often.

One of the major risks is also one of the major advantages touted by ASM
supporters: the “natural” character of ASM code and its similarity in form to
pseudocode. This similarity may lead students to treat ASMs as a freeform
“style” rather than a well-defined language. This in turn can lead to a skeptical
or cynical attitude that anything is a valid ASM. The use of automated tools can
mitigate this risk. The error checking functionality of these tools can help to avoid
fundamental misunderstandings, and simulation and automated test generation
allows for deeper investigation than possible by hand. On the other hand, with
the introduction of a programming environment, we lose the spontaneous “back
of the envelope” feel that is useful in an active inquiry session.

A related risk stems from the (well-placed) ASM emphasis on abstraction. To
a student who has spent many hours writing long programs in earlier projects, a
high-level ASM of only a few lines may seem like a worthless or even fraudulent
artifact. In one humorous episode, a clever student presented his ASM program,
consisting of a single update CurrentState := NextState, and praised its “high
level of abstraction”. Holding to the dogma that “abstraction is good”, without
illustrating why it is good, can actually have the effect of immunizing students
against the concept.

Above all, formalization for the sake of formalization must be avoided. As
Jackson and Wing contend [21], “[t]here can be no point embarking on the con-
struction of a specification until it is known exactly what the specification is for;
which risks it is intended to mitigate; and in which respects it will inevitably
prove inadequate. [21]” While students who only encounter complete, fully de-
veloped ASMs may attain a passive, “read-only” attitude to ASMs, those who

Abstract State Machines and the Inquiry Process 411

write their own without using them in a meaningful way may pick up an equally
unproductive “write-only” attitude. Students must be presented with the techni-
cal details of ASMs within a teleological context that gives purpose to the whole
enterprise.

7 Conclusion

In the introduction to the ASM Primer [20], we claimed a need “to provide a
gentler introduction [to ASMs], focusing more on the use of the technique than
on formal definitions.” (1) In retrospect, it seems that our focus on “use” can
be more precisely described as a contextualization of ASMs within a culture of
inquiry. The formal documents that comprise the ASM literature reflect such a
culture. One admires the mathematical beauty of the resulting work, and the skill
of those who produce it. Yet such documents yield few clues regarding how those
works were produced, or how someone could produce a similar result on their
own. Problem Frames, which combine a simple problem representation technique
with heuristics for problem analysis, may provide an instructive example. Along
similar lines, a set of design patterns could be developed for ASMs, gently guiding
design and analysis.

ASMs are a powerful tool, capable of representing a wide variety of types of
algorithms at multiple levels of abstraction. But their value depends crucially
upon the training given to the practitioner. One does not train a craftsman by
simply showing completed works; one usually works alongside a senior craftsman,
who shows the potential of the tools in the proper hands. Much of the growth of
the ASM community has happened precisely because of this type of mentoring,
as each generation of researchers mentors the next into maturity. But if ASMs
are to become a widely-used tool, we will need to find different ways to teach
about ASMs. The spirit of inquiry common to the ASM community will need to
find expression in forms in addition to our collective oral history.

Acknowledgments. We wish to acknowledge our mentor, Yuri Gurevich, in
whose honor this volume has been prepared. His work epitomizes the spirit of
inquiry that we champion here. A highly adept Quisani himself, he has shown
us by splendid example how to play the role.

We also thank Robert R. Johnson for his guidance regarding the problem
solving process in technical communication.

References

1. Bella, G., Riccobene, E.: Formal Analysis of the Kerberos Authentication System.

Journal of Universal Computer Science 3(12), 1337–1381 (1997)

2. Berry, D.M.: The Importance of Ignorance in Requirements Engineering. Journal

of Systems and Software 28(2), 179–184 (1995)

3. Bloom, B.S.: Taxonomy of Educational Objectives. In: Handbook I: The Cognitive

Domain. Longman, White Plains, New York (1956)

412 J.K. Huggins and C. Wallace

4. Börger, E.: Why Use Evolving Algebras for Hardware and Software Engineer-

ing? In: Bartosek, M., Staudek, J., Wiedermann, J. (eds.) SOFSEM 1995. LNCS,

vol. 1012, pp. 236–271. Springer, Heidelberg (1995)

5. Börger, E., Rosenzweig, D.: The WAM – Definition and Compiler Correctness.

In: Beierle, L.C., Pluemer, L. (eds.) Logic Programming: Formal Methods and

Practical Applications. North-Holland Series in Computer Science and Artificial

Intelligence (1994)

6. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System

Design and Analysis. Springer, Heidelberg (2003)

7. Börger, E., Stärk, R., Schmid, J.: Java and the Java Virtual Machine: Definition,

Verification, Validation. Springer, Heidelberg (2001)

8. Börger, E., Schulte, W.: Initialization Problems for Java. Software: Principles and

Tools 19(4), 175–178 (2000)

9. Brady, A., Seigel, M., Vosecky, T., Wallace, C.: Addressing Communication Is-

sues in Software Development through Case Studies. In: Conference on Software

Engineering Education & Training (2007)

10. Brady, A., Seigel, M., Vosecky, T., Wallace, C.: Speaking of Software: Case Studies

in Software Communication. In: Ellis, H.J.C., Demurjian, S.A., Naveda, J.F. (eds.)

Software Engineering: Effective Teaching and Learning Approaches and Practices

(2008)

11. Burge, J.E., Carroll, J.M., McCall, R., Mistŕık, I.: Rationale-Based Software En-

gineering. Springer, Heidelberg (2008)

12. Carroll, J.M., Rosson, M.B.: A Case Library for Teaching Usability Engineering:

Design Rationale, Development, and Classroom Experience. Journal of Educational

Resources in Computing 5(1), 3 (2005)

13. DeSanto, F.: Gurevich Abstract State Machines. Communicator: EECS Depart-

ment Newsletter, University of Michigan (December 1997)

14. Flower, L.: Problem Solving Strategies for Writing in College and Community.

Wadsworth Publishing, Belmont (1997)

15. Gurevich, Y.: Evolving Algebras: An Attempt to Discover Semantics. In: Rozen-

berg, G., Salom̊a A. (ed.) Current Trends in Theoretical Computer Science, pp.

266–292. World Scientific, Singapore (1993)

16. Gurevich, Y.: Sequential Abstract State Machines Capture Sequential Algorithms.

ACM Transactions on Computational Logic 1(1), 77–111 (2000)

17. Gurevich, Y., Huggins, J.K.: The Semantics of the C Programming Language.

In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.)

CSL 1992. LNCS, vol. 702, pp. 274–308. Springer, Heidelberg (1993)

18. Gurevich, Y., Schulte, W., Wallace, C.: Investigating Java Concurrency using Ab-

stract State Machines. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L.

(eds.) ASM 2000. LNCS, vol. 1912. Springer, Heidelberg (2000)

19. Huggins, J.K., van Campenhout, D.: Specification and Verification of Pipelining

in the ARM2 RISC Microprocessor. ACM Transactions on Design Automation of

Electronic Systems 3(4), 563–580 (1998)

20. Huggins, J.K., Wallace, C.: An Abstract State Machine Primer. Technical Report

02-04, Computer Science Department, Michigan Technological University (2002)

21. Jackson, D., Wing, J.: Lightweight Formal Methods. IEEE Computer 29(4), 21–22

(1996)

22. Jackson, M.: Problem Frames. Addison-Wesley, Reading (2000)

23. Johnson, R.R.: User Centered Technology: A Rhetorical Theory for Computers

and Other Mundane Artifacts. SUNY Press (1998)

Abstract State Machines and the Inquiry Process 413

24. Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs

(1972)

25. Pólya, G.: How to Solve It. Princeton University Press, Princeton (1948)

26. Wallace, C., Wang, X., Bluth, V.: A Course in Problem Analysis and Structuring

through Problem Frames. In: Conference on Software Engineering Education and

Training (2006)

27. Wright, D.R.: The Decision Pattern: Capturing and Communicating Design Intent.

In: ACM International Conference on Design of Communication, pp. 69–74 (2007)

The Algebra of Adjacency Patterns:
Rees Matrix Semigroups with Reversion

Marcel Jackson1,� and Mikhail Volkov2,��

1 La Trobe University, Victoria 3086, Australia

M.G.Jackson@latrobe.edu.au
2 Ural State University, Ekaterinburg 620083, Russia

Mikhail.Volkov@usu.ru

For Yuri Gurevich, who built many bridges between logic and algebra,
on the occasion of his seventieth birthday.

Abstract. We establish a surprisingly close relationship between uni-

versal Horn classes of directed graphs and varieties generated by so-called

adjacency semigroups which are Rees matrix semigroups over the trivial

group with the unary operation of reversion. In particular, the lattice of

subvarieties of the variety generated by adjacency semigroups that are

regular unary semigroups is essentially the same as the lattice of uni-

versal Horn classes of reflexive directed graphs. A number of examples

follow, including a limit variety of regular unary semigroups and finite

unary semigroups with NP-hard variety membership problems.

Keywords: Rees matrix semigroup, unary semigroup identity, unary

semigroup variety, graph, universal Horn sentence, universal Horn class,

variety membership problem, finite basis problem.

1 Introduction and Overview

The aim of this paper is to establish and to explore a new link between graph
theory and algebra. Since graphs form a universal language of discrete mathe-
matics, the idea to relate graphs and algebras appears to be natural, and several
useful links of this kind can be found in the literature. We mean, for instance,
the graph algebras of McNulty and Shallon [20], the closely related flat graph
algebras [25], and “almost trivial” algebras investigated in [15,16] amongst other
places. While each of the approaches just mentioned has proved to be useful and
has yielded interesting applications, none of them seem to share two important
features of the present contribution. The two features can be called naturalness
and surjectivity.
� The first author was supported by ARC Discovery Project Grant DP0342459. The

authors were partially supported also by ARC Discovery Project Grant DP1094578.
�� The second author was supported by the Program 2.1.1/3537 of the Russian Educa-

tion Agency and by the Russian Foundation for Basic Research, grants 09-01-12142

and 10-01-00524.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 414–443, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 415

Speaking about naturalness, we want to stress that the algebraic objects (ad-
jacency semigroups) that we use here to interpret graphs have not been invented
for this specific purpose. Indeed, adjacency semigroups belong to a well estab-
lished class of unary semigroups1 that have been considered by many authors.
We shall demonstrate how graph theory both sheds a new light on some pre-
viously known algebraic results and provides their extensions and generaliza-
tions. By surjectivity we mean that, on the level of appropriate classes of graphs
and unary semigroups, the interpretation map introduced in this paper becomes
“nearly” onto; moreover, the map induces a lattice isomorphism between the
lattices of such classes provided one excludes just one element on the semigroup
side. This implies that our approach allows one to interpret both graphs within
unary semigroups and unary semigroups within graphs.

The paper is structured as follows. In Sect. 2 we recall some notions related
to graphs and their classes and present a few results and examples from graph
theory that are used in the sequel. Section 3 contains our construction and the
formulations of our main results: Theorems A and B. These theorems are proved
in Sect. 4 and 5 respectively while Sect. 6 collects some of their applications.

We assume the reader’s acquaintance with basic concepts of universal algebra
and first-order logic such as ultraproducts or the HSP-theorem, see, e.g., [4]. As
far as graphs and semigroups are concerned, we have tried to keep the presen-
tation to a reasonable extent self-contained. We do occasionally mention some
non-trivial facts of semigroup theory but only in order to place our considera-
tions in a proper perspective. Thus, most of the material should be accessible to
readers with very basic semigroup-theoretic background (such as some knowl-
edge of Green’s relations and of the Rees matrix construction over the trivial
group, cf. [12]).

2 Graphs and Their Classes

In this paper, a graph is a structure G := 〈V ;∼〉, where V is a set and ∼ ⊆ V ×V
is a binary relation. In other words, we consider all graphs to be directed,
and do not allow multiple edges (but do allow loops). Of course, V is often
referred to as the set of vertices of the graph and ∼ as the set of edges. As is
usual, we write a ∼ b in place of (a, b) ∈ ∼. Conventional undirected graphs
are essentially the same as graphs whose edge relation is symmetric (satisfying
x ∼ y → y ∼ x), while a simple graph is a symmetric graph without loops. It
is convenient for us to allow the empty graph 0 := 〈∅; ∅〉. On the other hand,
when speaking about classes of graphs we always mean nonempty classes.

All classes of graphs that come to consideration in this paper are universal
Horn classes. We recall their definition and some basic properties. Of course,
the majority of the statements below are true for arbitrary structures, but our
interest is only in the graph case. See Gorbunov [9] for more details.

1 Here and below the somewhat oxymoronic term “unary semigroup” abbreviates the

precise but longer expression “semigroup endowed with an extra unary operation”.

416 M. Jackson and M. Volkov

Universal Horn classes can be defined both syntactically (via specifying an
appropriate sort of first order formulas) and semantically (via certain class oper-
ators). We first introduce the operator definition for which we recall notation for
a few standard class operators. The operator for taking isomorphic copies is I.
We use S to denote the operator taking a class K to the class of all substructures
of structures in K; in the case when K is a class of graphs, substructures are
just induced subgraphs of graphs in K. Observe that the empty graph 0 is an
induced subgraph of any graph and thus belongs to any S-closed class of graphs.
We denote by P the operator of taking direct products. For graphs, we allow the
notion of an empty direct product, which we identify (as is the standard con-
vention) with the 1-vertex looped graph 1 := 〈{0}; {(0, 0)}〉. If we exclude the
empty product, we obtain the operator P+ of taking nonempty direct products.
By Pu we denote the operator of taking ultraproducts. Note that ultrafilters can-
not be formed on the empty set, so unlike direct products, ultraproducts cannot
be formed over an empty family.

A class K of graphs is an universal Horn class if K is closed under each of
the operators I, S, P+, and Pu. In the sequel, we write “uH class” in place of
“universal Horn class”. It is well known that the least uH class containing a class
L of graphs is the class ISP+Pu(L) of all isomorphic copies of induced subgraphs
of nonempty direct products of ultraproducts of L; this uH class is referred to
as the uH class generated by L.

If the operator P+ in the above definition is extended to P, then one obtains
the definition of a quasivariety of graphs. The quasivariety generated by a given
class L is known to be equal to ISPPu(L). It is not hard to see that ISPPu(L) =
I(ISP+Pu(L)∪{1}), showing that there is little or no difference between the uH
class and the quasivariety generated by L. However, as examples described later
demonstrate, there are many well studied classes of graphs that are uH classes
but not quasivarieties.

As mentioned, uH classes also admit a well known syntactic characterization.
An atomic formula in the language of graphs is an expression of the form x ∼ y
or x ≈ y (where x and y are possibly identical variables). A universal Horn
sentence (abbreviated to “uH sentence”) in the language of graphs is a sentence
of one of the following two forms (for some n ∈ ω := {0, 1, 2, . . .}):

(∀x1∀x2 . . .)
((

&
1≤i≤n

Φi

)
→ Φ0

)
or (∀x1∀x2 . . .)

⎛⎝ ∨
0≤i≤n

¬Φi

⎞⎠
where the Φi are atomic, and x1, x2, . . . is a list of all variables appearing. In
the case when n = 0, a uH sentence of the first kind is simply the universally
quantified atomic expression Φ0. Sentences of the first kind are usually called
quasi-identities. As is standard, we omit the universal quantifiers when describing
uH sentences; also the expressions x �≈ y and x � y abbreviate ¬x ≈ y and
¬x ∼ y respectively. Satisfaction of uH sentences by graphs is defined in the
obvious way. We write G |= Φ (K |= Φ) to denote that the graph G (respectively,
each graph in the class K) satisfies the uH sentence Φ.

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 417

The Birkhoff theorem identifying varieties of algebras with equationally de-
fined classes has a natural analogue for uH classes, which is usually attributed
to Mal’cev. Here we state it in the graph setting.

Lemma 2.1. A class K of graphs is a uH class if and only if it is the class of
all models of some set of uH sentences.

In particular, the uH class ISP+Pu(L) generated by a class L is equal to the
class of models of the uH sentences holding in L.

Recall that we allow the empty graph 0 := 〈∅; ∅〉. Because there are no
possible variable assignments into the empty set, 0 can fail no uH sentence and
hence lies in every uH class. Thus, allowing 0 brings the advantage that the
collection of all uH classes forms a lattice whose meet is intersection: A ∧ B :=
A∩B and whose join is the uH class generated by union: A∨B := ISP+Pu(A∪B).
Furthermore, the inclusion of 0 allows every set of uH sentences to have a model
(for example, the contradiction x �≈ x axiomatizes the class {0}). In the world
of varieties of algebras, it is the one element algebra that plays these roles.

When IPu(L) = I(L) (such as when L consists of finitely many finite graphs),
we have ISP+Pu(L) = ISP+(L), and there is a handy structural characterization
of the uH class generated by L.

Lemma 2.2. Let L be an ultraproduct closed class of graphs and let G be a graph.
We have G ∈ ISP+Pu(L) if and only if there is at least one homomorphism from
G into a member of L and the following two separation conditions hold :

1. for each pair of distinct vertices a, b of G, there is H ∈ L and a homomor-
phism φ : G→ H with φ(a) �= φ(b);

2. for each pair of vertices a, b of G with a � b in G, there is H ∈ L and a
homomorphism φ : G→ H with φ(a) � φ(b) in H.

The 1-vertex looped graph 1 always satisfies the two separation conditions, yet
it fails every uH sentence of the second kind; this is why the lemma asks addi-
tionally that there be at least one homomorphism from G into some member of
L. If G = 1 and no such homomorphism exists, then evidently, no member of L
contains a loop, and so L |= x � x, a law failing on 1. Hence 1 /∈ ISP+Pu(L) by
Lemma 2.1. Conversely, if there is such a homomorphism, then 1 is isomorphic
to an induced subgraph of some member of L and hence 1 ∈ ISP+Pu(L). If
the condition that there is at least one homomorphism from G into some mem-
ber of L is dropped, then Lemma 2.2 instead characterizes membership in the
quasivariety generated by L.

We now list some familiar uH sentences.

– reflexivity: x ∼ x,
– anti-reflexivity: x �∼ x,
– symmetry: x ∼ y → y ∼ x,
– anti-symmetry: x ∼ y & y ∼ x→ x ≈ y,
– transitivity: x ∼ y & y ∼ z → x ∼ y.

418 M. Jackson and M. Volkov

All except anti-reflexivity are quasi-identities.
These laws appear in many commonly investigated classes of graphs. We list

a number of examples that are of interest later in the paper (mainly in its
application part, see Sect. 6 below).

Example 2.1. Preorders.

This class is defined by reflexivity and transitivity and is a quasivariety. Some
well known subclasses are:

– equivalence relations (obtained by adjoining the symmetry law);
– partial orders (obtained by adjoining the anti-symmetry law);
– anti-chains (the intersection of partial orders and equivalence relations);
– complete looped graphs, or equivalently, single block equivalence relations

(axiomatized by x ∼ y).

In fact it is easy to see that, along with the 1-vertex partial orders and the trivial
class {0}, this exhausts the list of all uH classes of preorders, see Fig. 1 (the easy
proof is sketched before Corollary 6.4 of [7], for example).

Example 2.2. Simple (that is, anti-reflexive and symmetric) graphs.

Sub-uH classes of simple graphs have been heavily investigated, and include some
very interesting families. In order to describe some of these families, we need a
series of graphs introduced by Nešetřil and Pultr [21]. For each integer k ≥ 2,
let Ck denote the graph on the vertices 0, . . . , k + 1 obtained from the complete
loopless graph on these vertices by deleting the edges (in both directions) con-
necting 0 and k + 1, 0 and k, and 1 and k + 1. Fig. 2 shows the graphs C2 and
C3; here and below we adopt the convention that an undirected edge between
two vertices, say a and b, represents two directed edges a ∼ b and b ∼ a.

Recall that a simple graph G is said to be n-colorable is there exists a homo-
morphism from G into the complete loopless graph on n vertices.

{0}

I({1,0})

Single block

equivalence relations

Antichains

Equivalence relations Orders

Preorders

Fig. 1. The lattice of uH classes of preorders

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 419

0 2

1 3

0 2 4

1 3

Fig. 2. Graphs C2 and C3

Example 2.3. The 2-colorable graphs (equivalently, bipartite graphs).

This is the uH class ISP+(C2) generated by the graph C2 (Nešetřil and Pultr
[21]) and has no finite axiomatization. Caicedo [5] showed that the lattice of
sub-uH classes of ISP+(C2) is a 6-element chain: besides ISP+(C2), it contains
the class of disjoint unions of complete bipartite graphs, which is axiomatized
within simple graphs by the law

x0 ∼ x1 & x1 ∼ x2 & x2 ∼ x3 → x0 ∼ x3 ;

the class of disjoint unions of paths of length at most 1 (axiomatized within
simple graphs by x � y ∨ y � z); the edgeless graphs (axiomatized by x �

y), the class consisting of the 1-vertex edgeless graphs and the empty graph 0
(axiomatized by x ≈ y); and the trivial class {0}.

Every finite simple graph either lies in a sub-uH class of ISP+(C2) or generates
a uH class that: 1) is not finitely axiomatizable, 2) contains ISP+(C2), and 3)
has uncountably many sub-uH classes [10, Theorem 4.7], see also [17].

Example 2.4. The k-colorable graphs.

More generally, Nesetril and Pultr [21] showed that for any k ≥ 2, the class of all
k-colorable graphs is the uH class generated by Ck. These classes have no finite
basis for their uH sentences and for k > 2 have NP-complete finite membership
problem, see [8].

Example 2.5. A generator for the class G of all graphs.

0 1

2

3

G1:

Fig. 3. Generator for the uH class of all graphs

420 M. Jackson and M. Volkov

The class of all graphs is generated as a uH class by a single finite graph. Indeed,
it is trivial to see that for any graph G, there is a family of 3-vertex graphs such
that the separation conditions of Lemma 2.2 hold. Since there are only finitely
many non-isomorphic 3-vertex graphs, any graph containing these as induced
subgraphs generates the uH class of all graphs. Alternatively, the reader can
easily verify using Lemma 2.2 that the graph G1 in Fig. 3 generates the uH class
of all graphs.

Example 2.6. A generator for the class Gsymm of all symmetric graphs.

Using Lemma 2.2, it is easy to prove that the class of symmetric graphs is
generated as a uH class by the graph S1 shown in Fig. 4.

0 1 2 3S1:

Fig. 4. Generator for the uH class of all symmetric graphs

Example 2.7. The class of simple graphs has no finite generator.

The class of all simple graphs is not generated by any finite graph, since a finite
graph on n vertices is n-colorable, while for every positive integer n there is a sim-
ple graph that is not n-colorable (the complete simple graph on n+ 1 vertices, for
example). However the uH class generated by the following 2-vertex graph S2 con-
tains all simple graphs (this is well known and follows easily using Lemma 2.2).

0 1S2:

Fig. 5. 2-vertex graph whose uH class contains all simple graphs

Example 2.8. A generator for the class Gref of all reflexive graphs.

The class of reflexive graphs is generated by the following graph R1, while the
class of reflexive and symmetric graphs is generated by the graph RS1.

0

1

2

R1: 0 1 2RS1:

Fig. 6. Generators for reflexive and reflexive-symmetric graphs

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 421

3 The Adjacency Semigroup of a Graph

Given a graph G = 〈V ;∼〉, its adjacency semigroup A(G) is defined on the set
(V × V) ∪ {0} and the multiplication rule is

(x, y)(z, t) =

{
(x, t) if y ∼ z ,

0 if y � z ;

a0 = 0a = 0 for all a ∈ A(G) .

In terms of semigroup theory, A(G) is the Rees matrix semigroup over the trivial
group using the adjacency matrix of the graph G as a sandwich matrix. We
describe here the Rees matrix construction in a specific form that is used in the
present paper.

Let I, J be nonempty sets and 0 /∈ I ∪ J . Let P = (Pi,j) be a
J × I matrix (the sandwich matrix) over the set {0, 1}. The Rees matrix semi-
group over the trivial group M0[P] is the semigroup on the set (I×J)∪{0} with
multiplication

a · 0 = 0 · a = 0 for all a ∈ (I × J) ∪ {0}, and

(i1, j1) · (i2, j2) =

{
0 if Pj1,i2 = 0 ,
(i1, j2) if Pj1,i2 = 1 .

The Rees–Sushkevich Theorem (see [12, Theorem 3.3.1]) states that, up to iso-
morphism, the completely 0-simple semigroups with trivial subgroups are pre-
cisely the Rees matrix semigroups over the trivial group and for which each row
and each column of the sandwich matrix contains a nonzero element. If the ma-
trix P has no 0 entries, then the set M [P] = M0[P] \ {0} is a subsemigroup.
Semigroups of the form M [P] are called rectangular bands, and they are precisely
the completely simple semigroups with trivial subgroups.

Back to adjacency semigroups, we always think of A(G) as endowed with an
additional unary operation a 	→ a′ which we call reversion and define as follows:

(x, y)′ = (y, x), 0′ = 0 .

Notice that by this definition (a′)′ = a for all a ∈ A(G).
The main contribution in this paper is the fact that uH classes of graphs are

in extremely close correspondence with unary semigroup varieties generated by
adjacency semigroups, and our proof of this will involve a translation of uH sen-
tences of graphs into unary semigroup identities. However, before we proceed
with precise formulations and proofs of general results, the reader may find it
useful to check that several of the basic uH sentences used in Sect. 2 correspond
via the adjacency semigroup construction to rather natural semigroup-theoretic
properties. Indeed, all the following are quite easy to verify:

– reflexivity of G is equivalent to A(G) |= xx′x ≈ x;
– anti-reflexivity of G is equivalent to A(G) |= xx′z ≈ zxx′ ≈ xx′ (these laws

can be abbreviated to xx′ ≈ 0);

422 M. Jackson and M. Volkov

– symmetry of G is equivalent to A(G) |= (xy)′ ≈ y′x′;
– G is empty (satisfies x �≈ x) if and only if A(G) |= x ≈ y;
– G has one vertex (satisfies x ≈ y) if and only if A(G) |= x ≈ x′; also, G is

the one vertex looped graph (satisfies x ∼ y) if and only if A(G) additionally
satisfies xx ≈ x.

Observe that the unary semigroup identities that appear in the above examples
are in fact used to define the most widely studied types of semigroups endowed
with an extra unary operation modelling various notions of an inverse in groups.
For instance, a semigroup satisfying the identities

x′′ ≈ x (1)

(which always holds true in adjacency semigroups) and

(xy)′ ≈ y′x′ (2)

(which is a semigroup counterpart of symmetry) is called involution semigroup
or ∗-semigroup. If such a semigroup satisfies also

xx′x ≈ x (3)

(which corresponds to reflexivity), it is called a regular ∗-semigroup. Semigroups
satisfying (1) and (3) are called I-semigroups in Howie [12]; note that an I-
semigroup satisfies x′xx′ ≈ x′x′′x′ ≈ x′, so that x′ is an inverse of x. Semigroups
satisfying (3) are often called regular unary semigroups. There exists vast liter-
ature on all these types of unary semigroups; clearly, the present paper is not a
proper place to survey this literature but we just want to stress once more that
the range of the adjacency semigroup construction is no less natural than its
domain.

When K is a class of graphs, we use the notation A(K) to denote the class
of all adjacency semigroups of members of K. As usual, the operator of taking
homomorphic images is denoted by H. We let A denote the variety HSP(A(G))
generated by all adjacency semigroups of graphs, and let Aref and Asymm de-
note the varieties HSP(A(Gref)) and HSP(A(Gsymm)) generated by all adjacency
semigroups of reflexive graphs and of symmetric graphs respectively.

Our first main result is:

Theorem A. Let K be any nonempty class of graphs and let G be a graph.
The graph G belongs to the uH-class generated by K if and only if the adjacency
semigroup A(G) belongs to the variety generated by the adjacency semigroups
A(H) with H ∈ K.

This immediately implies that the assignment G 	→ A(G) induces an injective
join-preserving map from the lattice of all uH-classes of graphs to the subvariety
lattice of the variety A. The latter fact can be essentially refined for the case of
reflexive graphs. In order to describe this refinement, we need an extra definition.

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 423

Let I be a nonempty set. We endow the set B = I×I with a unary semigroup
structure whose multiplication is defined by

(i, j)(k, �) = (i, �)

and whose unary operation is defined by

(i, j)′ = (j, i) .

Observe that while B is not an adjacency semigroup, it is very close to such
one. Indeed, B is obtained by removing 0 from the adjacency semigroup of the
universal relation on the set I.

It is easy to check thatB is a regular ∗-semigroup. We call regular ∗-semigroups
constructed this way square bands. Clearly, square bands satisfy

x2 ≈ x and xyz ≈ xz , (4)

and in fact it can be shown that the class SB of all square bands constitutes a
variety of unary semigroups defined within the variety of all regular ∗-semigroups
by the identities (4).

Let L(Gref) denote the lattice of sub-uH classes of Gref and let L(Aref) denote
the lattice of subvarieties of Aref . Let L+ denote the result of adjoining a new
element S to L(Gref) between the class of single block equivalence relations and
the class containing the empty graph. (The reader may wish to look at Fig. 1 to
see the relative location of these two uH classes.) Meets and joins are extended
to L+ in the weakest way. So L+ is a lattice in which L(Gref) is a sublattice
containing all but one element.

We are now in a position to formulate our second main result.

Theorem B. Let ι be the map from L+ to L(Aref) defined by S 	→ SB and K 	→
HSP(A(K)) for K ∈ L(Gref). Then ι is a lattice isomorphism. Furthermore, a
variety in L(Aref) is finitely axiomatized (finitely generated as a variety) if and
only if it is the image under ι of either S or a finitely axiomatized (finitely
generated, respectively) uH class of reflexive graphs.

We prove Theorems A and B in the next two sections.

4 Proof of Theorem A

4.1 Equations Satisfied by Adjacency Semigroups

The variety of semigroups generated by the class of Rees matrix semigroups
over trivial groups is reasonably well understood: it is generated by a 5-element
semigroup usually denoted by A2 (see [19] for example). (In context of this paper
A2 can be thought as the semigroup reduct of the adjacency semigroup A(S2)
where S2 is the 2-vertex graph from Example 2.7.) This semigroup was shown
to have a finite identity basis by Trahtman [23], who gave the following elegant
description of the identities: an identity u ≈ v (where u and v are semigroup

424 M. Jackson and M. Volkov

words) holds in A2 if and only if u and v start with the same letter, end with the
same letter and share the same set of two letter subwords. Thus the equational
theory of this variety corresponds to pairs of words having the same “adjacency
patterns”, in the sense that a two letter subword xy records the fact that x
occurs next to (and before) y. This adjacency pattern can also be visualized as
a graph on the set of letters, with an edge from x to y if xy is a subword, and
two distinct markers indicating the first and last letters respectively.

In this subsection we show that the equational theory of A has the same
kind of property with respect to a natural unary semigroup notion of adjacency.
The interpretation is that each letter has two sides – left and right – and that
the operation ′ reverses these. A subword xy corresponds to the right side of x
matching the left side of y, while x′y or any subword (x . . .)′y corresponds to the
left side of x matching the left side of y. To make this more precise, we give an
inductive definition. Under this definition, each letter x in a word will have two
associated vertices corresponding to the left and right side. The graph will have
an initial vertex, a final vertex as well as a set of (directed) edges corresponding
to adjacencies.

Let u be a unary semigroup word, and X be the alphabet of letters appearing
in u. We construct a graph G[u] on the set

{�x | x ∈ X} ∪ {rx | x ∈ X}

with two marked vertices. If u is a single letter (say x), then the edge set (or
adjacency set) of G[u] is empty. The initial vertex of a single letter x is �x and
the final (or terminal) vertex is rx.

If u is not a single letter, then it is of the form v′ or vw for some unary
semigroup words v, w. We deal with the two cases separately. If u is of the form
v′, where v has set of adjacencies S, initial vertex pa and final vertex qb (where
{p, q} ⊆ {�, r} and a, b are letters appearing in v), then the set of adjacencies of
u is also S, but the initial vertex of u is equal to the final vertex qb of v and the
final vertex of u is equal to the initial vertex pa of v.

Now say that u is of the form vw for some unary semigroup words v, w,
with adjacency set Sv and Sw respectively and with initial vertices pav , paw

respectively and final vertices qbv and qbw respectively. Then the adjacency set
of G[u] is Sv ∪ Sw ∪ {(qbv , paw)}, the initial vertex is pav and the final vertex is
qbw . Note that the word u may be broken up into a product of two unary words
in a number of different ways, however it is reasonably clear that this gives rise to
the same adjacency set and initial and final vertices (this basically corresponds
to the associativity of multiplication).

For example the word a′(baa′)′ decomposes as a′·(baa′)′, and so has initial ver-
tex equal to the initial vertex of a′, which in turn is equal to the terminal vertex
of a, which is ra. Likewise, its terminal vertex should be the terminal vertex of
(baa′)′, which is the initial vertex of baa′, which is �b. Continuing, we see that the
edge set of the corresponding graph has edges {(�a, �a), (ra, ra), (rb, �a)}. This
graph is the first graph depicted in Fig. 7 (the initial and final vertices are indi-
cated by a sourceless and targetless arrow respectively). The second is the graph

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 425

G[a′(baa′)′]

�

�a �

ra

�

�b �

rb

�

�

�
�

�
���

G[a(bc)′] = G[(b(ac′)′)′]

�

�a
�

ra

�

�b
�

rb

�

�c
�

rc

� �

�
�

�
���

�

Fig. 7. Two examples of graphs of unary words

of either of the words a(bc)′ or (b(ac′)′)′. The fact that G[a(bc)′] = G[(b(ac′)′)′]
will be of particular importance in constructing a basis for the identities of A.

We can also construct a second kind of graph from a word w, in which all loops
are added to the graph of G[w] (that is, it is the reflexive closure of the edge set),
we call this Gref [w]. For example, it is easy to see thatGref [a′(baa′)′] = Gref [(ba)′]
(most of the work was done in the previous example). Lastly, we define the graph
Gsymm[w] corresponding to the symmetric closure of the edge set of G[w].

Notation 1. Let u be a unary semigroup word and let θ be an assignment
of the letters of u into nonzero elements of an adjacency semigroup A(H); say
θ(x) = (ix, jx) for each letter x. Note that θ(x′) = (jx, ix), so we use the notation
ix′ := jx and jx′ = ix.

Lemma 4.1. Let u and θ be as in Notation 1. If λa is the initial vertex of G[u]
and ρb is the terminal vertex (so λ, ρ ∈ {�, r} and a and b are letters in u) and
θ(u) �= 0, then θ(u) = (iā, jb̄), where

ā =

{
a if λ = � ,

a′ if λ = r
and b̄ =

{
b if ρ = r ,

b′ if ρ = � .

Proof. This follows by an induction following the inductive definition of the
graph of u. �

Lemma 4.2. Let u and θ be as in Notation 1. Then θ(u) �= 0 if and only if the
map defined by �x 	→ ix and rx 	→ jx is a graph homomorphism from G[u] to H.

Proof. Throughout the proof we use the notation of Lemma 4.1.
(Necessity.) Say θ(u) �= 0, and let (ρb, λa) be an edge in G[u], where ρ, λ ∈

{�, r} and a and b are letters in u). We use Lemma 4.1 to show that (jb̄, iā) is
an edge of H. Note that in the case where no applications of ′ are used (so we
are dealing in the nonunary case), the edge (ρb, λa) will necessarily be (rb, �a);
and we would want (jb, ia) to be an edge of H.

Now, since (ρb, λa) is an edge in G[u], some subwords of u – say u1 and u2

– have u1u2 a subword of u, and ρb the terminal vertex of G[u1], and λa the
initial vertex of G[u2]. Applying Lemma 4.1 to both G[u1] and G[u2], we find

426 M. Jackson and M. Volkov

that θ(u1) has right coordinate jb̄, and θ(u2) has left coordinate iā. But u1u2 is
a subword, so θ(u1)θ(u2) �= 0, whence (jb̄, iā) is an edge of H, as required.

(Sufficiency.) This is easy. �

Lemma 4.2 is easily adapted to the graph Gref(u) or Gsymm(u), where the graph
H is assumed to be reflexive or symmetric, respectively.

Proposition 4.1. An identity u ≈ v holds in A if and only if G[u] = G[v]. An
identity holds in Aref if and only if Gref [u] = Gref [v]. An identity holds in Asymm

if and only if Gsymm[u] = Gsymm[v].

Proof. We prove only the first case; the other two cases are similar.
First we show sufficiency. Let us assume that G[u] = G[v], and consider an

assignment θ into an adjacency semigroup A(H). Now the vertex sets are the
same, so u and v have the same alphabet. So we may assume that θ maps the
alphabet to nonzero elements of A(H). By Lemma 4.2, we have θ(u) �= 0 if and
only if θ(v) �= 0. By Lemma 4.1, we have θ(u) = θ(v) whenever both sides are
nonzero. Hence θ(u) = θ(v) always.

Necessity. Say that G[u] �= G[v]. If the vertex sets are distinct, then u ≈ v fails
on A(1), which is isomorphic to the unary semigroup formed by the integers 0
and 1 with the usual multiplication and the identity map as the unary operation.
Now say that G[u] and G[v] have the same vertices. Without loss of generality,
we may assume that either G[v] contains an edge not in G[u], or that the two
graphs are identical but have different initial vertices. Let Au := A(G[u]) and
consider the assignment into Au that sends each variable x to (�x, rx). Observe
that the value of u is equal to (λa, ρb) where λa is the initial vertex of G[u] and
ρb is the final vertex, while the value of v is either 0 (if there is an adjacency not
in G[v]: we fail to get a graph homomorphism) or has different first coordinate
(if G[v] has a different initial vertex). So u ≈ v fails in A. �

4.2 A Normal Form

Proposition 4.1 gives a reasonable solution to the word problem in the A-free
algebras. In this subsection we go a bit further and show that every unary semi-
group word is equivalent in A to a unary semigroup word of a certain form.
Because different forms may have the same adjacency graph, this by itself does
not constitute a different solution to the word problem in A-free algebras, how-
ever it is useful in analyzing identities of A.

Most of the work in this section revolves around the variety of algebras of
type 〈2, 1〉 defined by the three laws:

Ψ = {x′′ ≈ x, x(yz)′ ≈ (y(xz′)′)′, (xy)′z ≈ ((x′z)′y)′}

as interpreted within the variety of unary semigroups. By examining the adja-
cency graphs, it is easy to see that these identities are all satisfied by A (see Fig. 7
for one of these). In fact Ψ defines a strictly larger variety than A (it contains all
groups for example), but they are close enough for us to obtain useful information.

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 427

For later reference we refer to the second and third laws in Ψ as the first associa-
tivity across reversion law (FAAR) and second associativity across reversion law
(SAAR), respectively. We let B denote the unary semigroup variety defined by Ψ .

Surprisingly, the laws in Ψ are sufficient to reduce every unary semigroup
word to one in which the nesting height of the unary ′ is at most 2. The proof
of this is the main result of this subsection.

Lemma 4.3. Ψ implies (a(bcd)′e)′ ≈ (b′e)′c(ad′)′, where c is possibly empty.

Proof. We prove the case where c is non-empty only. We have

(a(bcd)′e)′
FAAR≈ ([bc(ad′)′]′e)′

SAAR≈ ((b′e)′c(ad′)′)′′ ≈ (b′e)′c(ad′)′ . �

Let X := {x1, x2, . . .}. Let F(X) denote the free unary semigroup freely gener-
ated by X and FΨ (X) denote the B-free algebra freely generated by X . We let
ψ denote the fully invariant congruence on F(X) giving FΨ (X) = F(X)/ψ. We
find a subset N ⊆ F(X) with X ⊆ N and show that multiplying two words from
N in F(X), or applying ′ to a word in N produces a word that is ψ-equivalent
to a word in N . It shows that every word in F(X) is ψ-equivalent to a word
in N . In this way the members of N are a kind of weak normal form for terms
modulo Ψ (we do not claim that distinct words in N are not ψ-equivalent; for
example, Proposition 4.1 shows that A |= x(x′y)′ ≈ x(x′y′)′, but the two words
are distinct elements of N).

We let N consist of all (nonempty) words of the form

u1(v1)′u2(v2)′ . . . un(vn)′un+1

for some some n ∈ ω, where for i ≤ n,

– the vi are semigroup words in the alphabet

X ∪X ′ = {x1, x
′
1, x2, x

′
2, . . .},

and all have length at least 2 as semigroup words;
– the ui are possibly empty semigroup words in the alphabet X ∪ X ′ and if
n = 0, then u1 is non-empty.

Notice that X ⊆ N since the case n = 0 corresponds to semigroup words over
X ∪X ′. For a member s of N , we refer to the number n in this definition as the
breadth of s.

The following lemma is trivial.

Lemma 4.4. If s and t are two words in N , then s · t is ψ-equivalent to a word
in N .

Lemma 4.5. If s is a word in N , then s′ is ψ-equivalent to a word in N .

Proof. We prove the lemma by induction on the breadth of s. If the breadth of
s is 0 then s′ = (u1)′ either is in N , or is of the form x′′ for some variable x,

428 M. Jackson and M. Volkov

in which case it reduces to x ∈ N modulo Ψ . Now say that the result holds for
breadth k members of N , and say that the breadth of s is k + 1. So s can be
written in the form p(y1 · · · ym)′u where p is either empty or is a word from N of
breadth k, u = uk+2 is a possibly empty semigroup word in the alphabet X ∪X ′

and y1, . . . , ym is a possibly repeating sequence of variables from X ∪ X ′ with
vk+1 ≡ y1 · · · ym (so m > 1). Note that p can be empty only if k = 0.

Let us write w for y2 · · · ym−1 (if m = 2, then w is empty). If both p and u are
empty, then s′ ∈ N already. If neither p nor u are empty, then by Lemma 4.3 Ψ
implies s′ ≈ (py′m)′w(y′1u)

′. The breadth of py′m is k, so the induction hypothesis
and Lemma 4.4 complete the proof.

Now say that p is empty and u is not. We have ((y1wym)′u)′
SAAR≈ (y′1u)

′wym,
and the latter word is contained in N (modulo x′′ ≈ x).

Lastly, if u is empty and p is not, then we have s′ ≡ (p(wym)′)′
FAAR≈ w(py′m)′,

and the induction hypothesis applies to (py′m)′ since py′m is of breadth k. By
Lemma 4.4, s′ is ψ-equivalent to a member of N . �
As explained above, Lemmas 4.4 and 4.5 give us the following result.

Proposition 4.2. Every unary semigroup word reduces modulo Ψ to a word
in N .

An algorithm for making such a reduction is to iterate the method of proof of
Lemmas 4.4 and 4.5; however we will not need this here.

4.3 Subvarieties of A and Sub-uH Classes of G

In this subsection we complete the proof of Theorem A. Recall that the theorem
claims that, for any nonempty class K of graphs, any graph G belongs to the
uH-class generated by K if and only if the adjacency semigroup A(G) belongs
to the variety generated by the adjacency semigroups A(H) with H ∈ K. For the
“only if” statement we use a direct argument. For the “if” statement, we use a
syntactic argument, translating uH sentences of K into identities of A(K).

Lemma 4.6. If G ∈ ISP+Pu(K), then A(G) ∈ HSP(A(K)).

Proof. First consider a nonempty family L = {Hi | i ∈ I} of graphs from K and
an ultraproduct H :=

∏
U L (for some ultrafilter U in 2I). It is easy to see that

the ultraproduct of the family {A(Hi) | i ∈ I} over the same ultrafilter U is iso-
morphic to A(H) (we leave this elementary proof to the reader). Hence, we have
I(APu(K)) = IPu(A(K)). Now we have G ∈ ISP+(Pu(K)). So it will suffice to
prove that A(G) ∈ HSP(A(Pu(K))), since HSP(A(Pu(K))) = HSPPu(A(K)) =
HSP(A(K)). We let P denote Pu(K).

Now G is isomorphic to an induced subgraph of the direct product
∏

i∈I Hi with
Hi ∈ P . It does no harm to assume that this embedding is the inclusion map. Let
πi : G→ Hi denote the projection. Evidently the following properties hold:

(i) if u and v are distinct vertices of G then there is i ∈ I such that πi(u) �= πi(v);
(ii) if (u, v) is not an edge of G then there is i ∈ I with (πi(u), πi(v)) not an edge

of Hi.

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 429

We aim to show that A(G) is a quotient of a subalgebra of
∏

i∈I A(Hi). We define
a map α : A(G) →

∏
i∈I A(Hi) by letting α(0) be the constant 0 and α(u, v) be

the map i 	→ (πi(u), πi(v)). The map α is unlikely to be a homomorphism. Let
B be the subalgebra of

∏
i∈I A(Hi) generated by the image of A(G), and let J

be the ideal of B consisting of all elements with a 0 coordinate.

Claim 1. Say (u1, v1) and (u2, v2) are (nonzero) elements of A(G). If v1 ∼ u2

then α(u1, v1)α(u2, v2) = α((u1, v1)(u2, v2)).

Proof. Now

α((u1, v1)(u2, v2))[i] = α(u1, v2)[i] = (πi(u1), πi(v2)),

because v1 ∼ u2 in G. Also, for every i ∈ I we have πi(v1) ∼ πi(u2), so that

α(u1, v1)[i]α(u2, v2)[i] = (πi(u1), πi(v1))(πi(u2), πi(v2)) = (πi(u1), πi(v2))

as required. �
Claim 2. Say (u1, v1) and (u2, v2) are nonzero elements of A(G). If v1 �∼ u2 then
α(u1, v1)α(u2, v2) ∈ J .

Proof. By the definition of v1 �∼ u2 there is i ∈ I with πi : G → Hi with
πi(v1) �∼ πi(u2). Then (u1, v1)[i](u2, v2)[i] = 0. �
Claims 1 and 2 show that α is a semigroup homomorphism from A(G) onto B/J
(at least, if we adjust the co-domain of α to be B/J and identify the constant 0
with J). Now we show that this map is injective. Say (u1, v1) �= (u2, v2) in A(G).
Without loss of generality, we may assume that u1 �= u2. So there is a coordinate
i with πi(u1) �= πi(u2). Then α(u1, v1) differs from α(u2, v2) on the i-coordinate.
So we have a semigroup isomorphism from A(G) to B/J . Lastly, we observe that
α trivially preserves the unary operation, so we have an isomorphism of unary
semigroups as well. This completes the proof of Lemma 4.6. �

To prove the other half of Theorem A we take a syntactic approach by translating
uH sentences into unary semigroup identities. To apply our technique, we first
need to reduce arbitrary uH sentences to logically equivalent ones of a special
form.

Our goal is to show that if G /∈ ISP+Pu(K) then A(G) /∈ HSP(A(K)). We first
consider some degenerate cases.

If K = {0}, then A(K) is the class consisting of the one element unary
semigroup and HSP(A(K)) |= x ≈ y. The statement G /∈ ISP+Pu(K) simply
means that |G| ≥ 1 and so A(G) �|= x ≈ y. So A(G) /∈ HSP(A(K)).

Now we say that K contains a nonempty graph. We can then further assume
that the empty graph is not in K. If G is the 1-vertex looped graph 1, then
the statement G /∈ ISP+Pu(K) simply means that K consists of antireflexive
graphs. In this case, A(K) |= xx′ ≈ 0, while A(G) �|= xx′ ≈ 0. So again, A(G) /∈
HSP(A(K)).

So now it remains to consider the case where G is not the 1-vertex looped
graph and K does not contain the empty graph. Lemma 2.1 shows that there

430 M. Jackson and M. Volkov

is some uH sentence Γ holding in each member of K, but failing on G. We now
show that Γ can be chosen to be a quasi-identity.

If Γ is a uH sentence of the second kind, say
∨

1≤i≤n ¬Φi, then choose some
atomic formula Ξ in variables not appearing in any of the Φi and that fails on
G under some assignment: for example, if |G| ≥ 2, then a formula of the form
x ≈ y suffices, while if |G| = 1, then G is the one element edgeless graph and
x ∼ y suffices. Now replace Γ with the quasi-identity &1≤i≤n Φi → Ξ. We need
to show that this new quasi-identity holds in K and fails in G. It certainly holds
in K, since it is logically equivalent to

∨
¬Φi∨Ξ, while

∨
¬Φi is constantly true.

On the other hand, since
∨

1≤i≤n ¬Φi does not hold on G, there is an assignment
θ making &1≤i≤n Φi true, and this assignment can be extended to the variables
of Ξ in such a way that Ξ is false under θ. In other words, we have a failing
assignment for the new quasi-identity on G.

Next we need to show that the quasi-identity Γ can be chosen to have a
particular form. Let us call a quasi-identity reduced if the equality symbol ≈ does
not appear in the premise. One may associate any quasi-identity with a reduced
quasi-identity in the obvious way: if x ≈ y appears in the premise of the original,
then we may replace all occurrences of y in the quasi-identity with x (including
in the conclusion) and remove x ≈ y from the premise. If a quasi-identity fails
on a graph H under some assignment θ, then the corresponding reduced quasi-
identity also fails under θ. Conversely, if the reduced quasi-identity fails on H
under some assignment θ, then we may extend θ to a failing assignment of the
original quasi-identity. This means that we may choose Γ to be reduced.

Let Φ := &1≤i≤nui ∼ vi be a conjunction of adjacencies, where the

u1, . . . , un, v1, . . . , vn ∈ {a1, . . . , am}

are not necessarily distinct variables. For each adjacency ui ∼ vi in Φ, let wi de-
note the word (uivi)′si(uiv

′
i)

′si(u′ivi)′si(u′iv
′
i)

′, where si is a new variable. Now let
σ : {1, . . . ,m} → {1, . . . , n} be some finite sequence of numbers from {1, . . . , n}
with the property that for each pair i, j ∈ {1, . . . , n} there is k < m with σk = i
and σk+1 = j and such that σ(1) = σ(m) = 1. Define a word DΦ (depending on
σ) as follows: ⎛⎝ ∏

1≤i<m

wσ(i)tσ(i),σ(i+1)

⎞⎠wσ(m),

where the ti,j are new variables. As an example, consider the conjunction Φ :=
x ∼ y & y ∼ z, where n = 2, u1 = x, v1 = u2 = y and v2 = z. Using the
sequence σ = 1, 2, 2, 1, 1 we get DΦ equal to the following expression:

(xy)′s1(xy′)′s1(x′y)′s1(x′y′)′t1,2(yz)′s2(yz′)′s2(y′z)′s2(y′z′)′t2,2(yz)′s2(yz′)′

s2(y′z)′s2(y′z′)′t2,1(xy)′s1(xy′)′s1(x′y)′s1(xy)′t1,1(xy)′s1(xy′)′s1(x′y)′s1(x′y′)′.

Lemma 4.7. Let H be a graph, Φ be a conjunction of adjacencies in variables
a1, . . . , am and θ be an assignment of the variables of DΦ into A(H), with θ(ai) =

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 431

(�i, ri) say. Let γ be any member of {L,R}m. If θ(DΦ) �= 0 then the map φγ from
a1, . . . , am into the vertices VH of H defined by

φγ(ai) =

{
�i if γ(i) = L;
ri if γ(i) = R

satisfies Φ.

Proof. Let ai ∼ aj be one of the adjacencies in Φ. So all of aiaj , a′iaj, aia
′
j and

a′ia
′
j appear in DΦ and hence are given nonzero values by θ. We have �i ∼ �j ,

�i ∼ rj , ri ∼ �j , ri ∼ rj in H. So regardless of the choice of γ we have φγ(ai) ∼
φγ(aj) in H. �

Lemma 4.8. Let Φ = &1≤i≤n ui ∼ vi be a nonempty conjunction in the vari-
ables a1, . . . , am and let θ be an assignment of these variables into a graph H
such that H |= θ(Φ). Define an assignment θ+ of the variables of DΦ into A(H)
by ai 	→ (θ(ai), θ(ai)), θ+(ti,j) := (θ(vi), θ(uj)) and θ+(si) = θ+(ti,i). We have
θ+(DΦ) = (θ(v1), θ(u1)).

Proof. This is a routine calculation. For each adjacency ui ∼ vi in Φ (here
{ui, vi} ⊆ {a1, . . . , am}) we have

θ+((uivi)′), θ+((uiv
′
i)

′), θ+((u′ivi)′), θ+((u′iv
′
i)

′)

all taking the same nonzero value (θ(vi), θ(ui)). Then we also have
θ+(wi) = (θ(vi), θ(ui)) which shows that

θ+(DΦ) = [θ(u1), θ(v1)] . . . [θ(vi), θ(ui)] θ+(ti,j) [θ(vj), θ(uj)] . . . [θ(u1), θ(v1)]
= [θ(u1), θ(v1)] . . . [θ(vi), θ(ui)][θ(vi), θ(uj)][θ(vj), θ(uj)] . . . [θ(u1), θ(v1)]

= [θ(u1), θ(v1)]

(where the square brackets are used for clarity only). �

Lemma 4.9. Let H be a nonempty graph and Φ → u ≈ v be a reduced quasi-
identity where Φ is nonempty and one of u or v does not appear in Φ (say it is
u). We have A(H) |= uDΦ ≈ u′DΦ if and only if H |= Φ→ u ≈ v.

Proof. First assume that H |= Φ → u ≈ v, where u does not appear in Φ.
Both sides of the identity contain the subword DΦ and so we may consider an
assignment θ sendingDΦ to a nonzero value (if there are none, then we are done).
By Lemma 4.7, we have an interpretation of Φ in H. But then, we can choose
any value for θ(u) and find that it is the same value as θ(v). In other words,
H has only one vertex. Also, since DΦ takes a nonzero value on A(H), we find
that the semigroup reduct of A(H) is not a null semigroup (that is, a semigroup
in which all products are equal to 0). Hence A(H) is isomorphic to the unary
semigroup formed by the integers 0 and 1 with the usual multiplication and the
identity map as the unary operation. In this case we have u ≈ u′ satisfied and
the identity holds.

432 M. Jackson and M. Volkov

Now say that H �|= Φ → u ≈ v, and let θ be a failing assignment. As θ(u) �=
θ(v) we can find a vertex a of H such that a �= θ(u1). Extend the assignment θ+ of
Lemma 4.8 by u 	→ (a, θ(u1)). Evidently, θ+(uDΦ) = (a, θ(u1))(θ(v1), (θ(u1)) =
(a, θ(u1)), but θ+(u′DΦ) either is equal to 0, or is nonzero but has left coordinate
different from θ+(uDΦ). �

Lemma 4.10. Let H be a nonempty graph and &1≤i≤n ui ∼ vi → u ≈ v be
a reduced quasi-identity where Φ is nonempty and both u and v appear in Φ.
If u = ui for some i then we have A(H) |= uiti,1DΦ ≈ vti,1DΦ if and only if
H |= Φ→ u ≈ v. If u = vi for some i then we have A(H) |= DΦt1,iui ≈ DΦt1,iv
if and only if H |= Φ→ u ≈ v

Proof. First assume that H |= Φ→ u ≈ v. We consider only the case that u = ui;
the other case follows by symmetry. As before, we can consider the case where
there is an assignment θ into H satisfying Φ. So we have θ(ui) = θ(v) and hence
θ+(ui) = θ+(v), in which case both sides of the identity take the same value.

Now say that H �|= Φ→ u ≈ v and let θ be a failing assignment. Now, the left
side of the identity contains the same adjacencies as DΦ and so takes a nonzero
value in A(H) under the assignment θ+; moreover the left coordinate is θ(ui).
However the right hand side either takes the value 0 (if θ(v) �∼ θ(vi)) or has left
coordinate equal to θ(v) �= θ(ui). In either case, the identity fails. �

Now we come to reduced quasi-identities in which the conclusion is an adjacency
u ∼ v. We consider 9 cases according to whether or not u and v appear in Φ,
and if so, whether they appear as the “source” or “target” of an adjacency. The
nine identities τ1, . . . , τ9 are defined in the following table. In this table, the first
row corresponds to the situation where neither u nor v appear, while the second
corresponds to the situation where u does not appear, but v does appear as some
uj (in other words, as a “source”), and so on. If one of u or v appears as both
a source and a target, then there will be choices as to which identity we can
choose. The variables z and w are new variables not appearing in DΦ.

k u ∼ v τk

1. z ∼ w wDΦz ≈ (wDΦz)2

2. z ∼ uj ujtj,1DΦz ≈ (ujtj,1DΦz)2

3. z ∼ vj (ujvj)′tj,1DΦz ≈ ((ujvj)′tj,1DΦz)2

4. ui ∼ w wDΦt1,i(uivi)′ ≈ (wDΦt1,i(uivi)′)2

5. vi ∼ w wDΦt1,ivi ≈ (wDΦt1,ivi)2

6. ui ∼ uj ujtj,1DΦt1,i(uivi)′ ≈ (ujtj,1DΦt1,i(uivi)′)2

7. ui ∼ vj (ujvj)′tj,1DΦt1,i(uivi)′ ≈ ((ujvj)′tj,1DΦt1,i(uivi)′)2

8. vi ∼ uj ujtj,1DΦt1,ivi ≈ (ujtj,1DΦt1,ivi)2

9. vi ∼ vj (ujvj)′tj,1DΦt1,ivi ≈ ((ujvj)′tj,1DΦt1,ivi)2

Lemma 4.11. Let H be a graph and Φ → u ∼ v be a quasi-identity where Φ is
nonempty. Consider the corresponding identity τk. We have A(H) |= τk if and
only if H |= Φ→ u ≈ v.

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 433

Proof. We prove the case of τ4 and leave the remaining (very similar) cases to
the reader. First assume that H |= Φ → ui ∼ v. Consider some assignment θ
into A(H) that gives DΦ a nonzero value. As w appears on both sides, we may
further assume that θ(w) is nonzero. Observe that the graph of the right hand
side of the identity is identical to that of the left side except for the addition of a
single edge from �ui to �w. Also, the initial and final vertices are the same. So to
show that the two sides are equal, it suffices to show that θ(u′i)θ(w) is nonzero.

Choose any map γ from the variables of τ4 to {L,R} with γ(ui) = R. By
Lemma 4.7 we have H |= φγ(Φ). Using Φ→ ui ∼ v it follows that for any vertex
w we have φγ(ui) ∼ w. In other words, θ(u′i)θ(w) is nonzero as required.

Now say that Φ→ ui ∼ v fails on H under some assignment θ. Extend θ+ to
w by w 	→ (θ(v), θ(u1)). Under this assignment the left hand side of τ4 takes the
value (θ(v), θ(ui)), while the right hand side equals 0. �

Lastly we need to consider the case where Γ has empty premise, that is, where
Γ is a universally quantified atomic formula τ . In the language of graphs, there
are essentially four different possibilities for τ (up to a permutation of letter
names): x ∼ y, x ∼ x, x ≈ y and x ≈ x. The last of these is a tautology.
The first three are nontautological and correspond to the uH-classes of complete
looped graphs, reflexive graphs, and the one element graphs. For Φ one of the
three atomic formulas, we let τΦ denote the identities xx ≈ x, xx′x ≈ x, and
x′ ≈ x, respectively.

Lemma 4.12. Let H be a graph and Φ be one of the three nontautological atomic
formulas in the language of graphs. We have H |= Φ if and only if A(H) |= τΦ.

Proof. If Φ is x ∼ y, then it is easy to see that H |= Φ if and only if the underlying
semigroup of A(H) satisfies xx ≈ x. The case of Φ = x ∼ x has been discussed
already in Sect. 3. The case of x ≈ y corresponds to the 1-vertex graphs, which
is clearly equivalent to the property that A(H) |= x′ ≈ x. �

Now we can complete the proof of Theorem A. We have a reduced quasi-identity
Γ satisfied by K and failing on G. By the appropriate choice out of Lemmas
4.9, 4.10, 4.11 or 4.12 we can construct an identity τ such that A(K) |= τ and
A(G) �|= τ . Hence A(G) /∈ HSP(A(K)). �

5 Proof of Theorem B

In contrast to the proof of Theorem A, this section requires some basic notions
and facts from semigroup theory such as Green’s relations J , L , R, H and
their manifestation on Rees matrix semigroups. For details, refer to the early
chapters of any general semigroup theory text; Howie [12] for example.

The first step to proving Theorem B is the following.

Lemma 5.1. Let V be a variety of unary semigroups satisfying

xx′x ≈ x, x′′ ≈ x, (x′x)′ ≈ x′x, (xy)′ ≈ y′(x′xyy′)′x′ . (5)

434 M. Jackson and M. Volkov

If A ∈ V as a semigroup is a completely 0-simple semigroup with trivial sub-
groups, then A is of the form A(H) for some reflexive graph H.

Proof. Since A is a completely 0-simple semigroup with trivial subgroups, the
Green relation H is trivial. Now every a �= 0 in A is L -related to a′a (since
a(a′a) = a) and R-related to aa′. Also, these elements are fixed by ′ by identity
(x′x)′ ≈ x′x (and x′′ ≈ x). Next we observe that a L b if and only if a′ R b′.
For this we can use identity (xy)′ ≈ y′(x′xyy′)′x′: if aL b then xa = b for some
x, so b′ = (xa)′ = a′z, for z = (x′xaa′)x′. So b′ R a′. The other case follows by
symmetry (or using (x′)′ ≈ x).

This implies that each L -class and each R-class contain precisely one fixed
point of ′ (if a′ = a, b′ = b and aL b, then a = a′R b′ = b, so aH b). Represent A
as a Rees matrix semigroup (with matrix P) in which fixed points of ′ correspond
to diagonal elements (as xx′ is an idempotent, P will have 1 down the diagonal).
It is easily seen that this is A(H) for the graph H with P as adjacency matrix.
This graph is reflexive since the identity xx′x ≈ x holds. �

In the case where H is a universal relation, the set A(H)\{0} is a subuniverse,
and the corresponding subalgebra of A(H) is a square band.

Lemma 5.2. Let V be a variety of unary semigroups satisfying the identities
(5). If A ∈ V as a semigroup is a completely simple semigroup with trivial sub-
groups, then A is a square band.

Proof. The proof is basically the same as for Lemma 5.1. �

In order to get a small basis for the identities of Aref the following lemma is
useful.

Lemma 5.3. Let Ψ1 stand for the system of 5 identities :

x ≈ xx′x, (x′x)′ ≈ x′x, x′′ ≈ x, x(yz)′ ≈ (y(xz′)′)′, (xy)′z ≈ ((x′z)′y)′ .

The following laws are consequences of Ψ1 :

– (xy)′ ≈ y′(xyy′)′ ≈ (x′xy)′x′ ≈ y′(x′xyy′)′x′;
– (xyz)′ ≈ (yz)′y(xy)′.

Proof. For the first item we have Ψ1 implies (xy)′ ≈ ((xx′)′xy)′
SAAR≈ (x′xy)′x′.

The other two cases of this item are very similar.
For the second item, first note that using item 1 and Ψ1, we have (xyy′)′ ≈

y(xyy′y)′ ≈ y(xy)′. Using this we obtain

(xyz)′≈(xy(y′y)′z)′
FAAR≈ ((y′(xyy′)′)′z)′

SAAR≈ (yz)′(xyy′)′≈(yz)′y(xy)′ . �

The second item of Lemma 5.3 enables a refinement of Proposition 4.2.

Corollary 5.1. The identities Ψ1 reduce every unary semigroup word to a mem-
ber of N in which each subword of the form (v)′ has the property that v is a
semigroup word of length 1 or 2 (over the alphabet X ∪X ′).

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 435

We now let Σref denote the following set of unary semigroup identities:

x′′ ≈ x, x(yz)′ ≈ (y(xz′)′)′, (xy)′z ≈ ((x′z)′y)′ , (Ψ)
xx′x ≈ x , (6)
(xx′)′ ≈ xx′ , (7)

x3 ≈ x2 , (8)
xyxzx ≈ xzxyxzx ≈ xzxyx , (9)
x′yxzx ≈ (xzx)′yxzx , (10)
xyxzx′ ≈ xyxz(xyx)′ . (11)

Proposition 4.1 easily shows that all but identity (6) hold in A, while (6) obvi-
ously holds in the subvariety Aref . Hence, to prove that Σref is a basis for Aref ,
we need to show that every model of Σref lies in Aref . Before we can do this, we
need some further consequences of Σref .

In the identities that occur in the next lemma we use u, where u is either x
or xyx, to denote either u or u′. We assume that the meaning of the operation

is fixed within each identity: either it changes nothing or it adds ′ to all its
arguments.

Lemma 5.4. The following identities all follow from Σref :

– (xu1)′u2xyx ≈ (xyxu1)′u2xyx;
– xyxu2(u1x)′ ≈ xyxu2(u1xyx)′;
– (u1x)′u2xyx ≈ (u1xyx)′u2xyx;
– xyxu2(xu1)′ ≈ xyxu2(xyxu1)′,

where u1 and u2 are possibly empty unary semigroup words.

Proof. In each of the eight cases, if u1 is empty, then the identity is equivalent
modulo x′′ ≈ x to one in Σref up to a change of letter names. So we assume that
u1 is non-empty. We can ensure that u2 is non-empty by rewriting u2xyx and
xyxu2 as (u2xx

′)xyx and xyx(x′xu2) respectively (a process we reverse at the

end of each deduction). For the first identity we have Ψ implies (xu1)′u2xyx
SAAR≈

((x′u2xyx)′u1)′, and then we use (9) or (10) to replace x by xyx. Reversing the
application of SAAR, we obtain the corresponding right hand side.

The second identity is just a dual to the first so follows by symmetry. Similarly,
the fourth will follow from the third by symmetry.

For the third identity, Lemma 5.3 can be applied to the left hand side to
get x′x(u1x)′u2xyx. Now, the subword x′x is either x′x or xx′. We will write
it as t(x, x′) (where t(x, y) is one of the words xy or yx). Using (9), we have
t(x, x′)(u1x̄)′u2xyx ≈ t(xyx, x′)(u1x̄)′u2xyx. But the subword t(xyx, x′)(u1x̄)′

is of the form required to apply the second identity in the lemma we are prov-
ing. Since this second identity has been established, we can use it to deduce
t(xyx, x′)(u1xyx)′u2xyx and then reverse the procedure to get

t(xyx, x′)(u1xyx)′u2xyx ≈ x′x(u1xyx)′u2xyx ≈ (u1xyx)′u2xyx

(the last equality requires a few extra easy steps in the u = u′ case). �

436 M. Jackson and M. Volkov

Recall that a unary polynomial p(x) on an algebra S is a function
S → S defined for each a ∈ S by

p(a) = t(a, a1, . . . , an)

where t(x, x1, . . . , xn) is a term, and a1, . . . , an are elements of S. We let Px

denote the set of all unary polynomials on S. The syntactic congruence Syn(θ)
of an equivalence θ on S is defined to be

Syn(θ) := {(a, b) | p(a) θ p(b) for all p(x) ∈ Px} .

Syn(θ) is known to be the largest congruence of S contained in θ (see [1] or [6]).
It is very well known that for standard semigroups, one only needs to consider
polynomials p(x) built from the semigroup words x, x1x, xx1, x1xx2 (see [12]
for example). In fact there is a similar – though more complicated – reduction
for the variety defined by Σref (and more generally still Ψ). This can be gleaned
fairly easily from Proposition 4.2 (see [6] for a general approach for establishing
this), however we do not need an explicit formulation of it here, and so omit any
proof.

We may now prove the key lemma, a variation of [11, Lemma 3.2].

Lemma 5.5. Every model of Σref (within the variety of unary semigroups) is
a subdirect product of members of A(Gref) ∪ SB.

Proof. Let S |= Σref . If S is the one element semigroup we are done. Now assume
that |S| > 1. We need to show that for every pair of distinct elements a, b ∈ S
there is a homomorphism from S onto a square band or an adjacency semigroup
A(G) for some G ∈ Gref .

For each element z ∈ S, we let Iz := {u ∈ S | z /∈ S1uS1}, in other words, Iz
is the ideal consisting of all elements that do not divide z. Note that Iz is closed
under the reversion operation (since u′ divides u). Define equivalence relations
ρz and λz on S:

ρz :={(x, y) ∈ S × S | (∀t ∈ SzS) xt ≡ yt mod Iz} ;
λz :={(x, y) ∈ S × S | (∀t ∈ SzS) tx ≡ ty mod Iz} .

So far the proof is identical to that of [11, Lemma 3.2]. In the semigroup setting,
both ρz and λz are congruences, however this is no longer true in the unary
semigroup setting. Instead, we replace ρz and λz by their syntactic congruences
Syn(ρz) and Syn(λz).

Let a and b be distinct elements of S. Our goal is to show that one of the
congruences Syn(ρa), Syn(ρb), Syn(λa) and Syn(λb) separates a and b, and that
S/ Syn(ρz) and S/ Syn(λz) are isomorphic to a square band or an adjacency
semigroup of a reflexive graph. The first part is essentially identical to a corre-
sponding part of the proof of [11, Lemma 3.2]. We include it for completeness
only.

First suppose that a /∈ SbS. So b ∈ Ia. Choose t = a′a ∈ SaS so that
a = at �≡ bt mod Ia. Hence (a, b) /∈ ρ̂a. Now suppose that SaS = SbS, so that a

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 437

and b lie in the same J -class SaS\Ia of S. One of the following two equalities
must fail: ab′b = b or aa′b = a for otherwise a = aa′b = aa′ab′b = ab′b = b.
Hence as neither a nor b is in Ia = Ib, we have either (a, b) /∈ ρa ⊇ ρ̂a or
(a, b) /∈ λa ⊇ λ̂a.

Now it remains to prove that S/ Syn(ρz) and S/ Syn(λz) are adjacency semi-
groups or square bands. Lemmas 5.1, 5.2 and 5.3 show that it suffices to prove
that the underlying semigroup of S/ Syn(ρz) is completely 0-simple or completely
simple. We look at the Syn(ρz) case only (the Syn(λz) case follows by symme-
try). Now it does no harm to assume that Iz is empty or {0}, since v, w ∈ Iz
obviously implies that (v, w) ∈ Syn(ρz). Hence Kz := SzS/(Iz ∩ SzS) is a 0-
simple semigroup or a simple semigroup. Since S is periodic (by identity (8) of
Σref), we have that Kz is completely 0-simple or completely simple. We need to
prove that every element of S\Iz is Syn(ρz)-related to a member of SzS\Iz.

Let c ∈ S. If c ∈ SzS or c ∈ Iz we are done, so let us assume that c /∈ SzS∪Iz.
So z = pcq for some p, q ∈ S1. So z = pcqz′pcq. Put w = qz′p. Note that w ∈ SzS
and cwc �= 0. Our goal is to show that c Syn(ρz) cwc. Let s(x,y) be any unary
semigroup word in some variables x, y1, . . . and let t ∈ SaS. We need to prove
that for any d in S1 we have s(c,d)t ≡ s(cwc,d)t modulo Iz . Write t as ucwcv,
which is possible since both t and cwc are J -related. (Note that modulo the
identity xx′x ≈ x we may assume both u and v are nonempty.) We want to
obtain

s(c,d)ucwcv = s(cwc,d)ucwcv . (12)

Now using Corollary 5.1, we may rewrite s(c,d) as a word in which each appli-
cation of ′ covers either a single variable or a word of the form gh where g, h are
either letters or ′ applied to a letter. There may be many occurrences of c in this
word. We show how to replace an arbitrary one of these by cwc and by repeat-
ing this to each of these occurrences we will achieve the desired equality (12).
Let us fix some occurrence of c. So we may consider the expression s(c,d)ucwc
as being of one of the following forms: w1cw2cwc; w1c

′w2cwc; w1(cz)′w2cwc;
w1(c′z)′w2cwc; w1(zc′)′w2cwc; w1(zc)′w2cwc. In each case, we can make the re-
quired replacement using a single application of Lemma 5.4. This gives equality
(12), which completes the proof. �

As an immediate corollary we obtain the following result.

Corollary 5.2. The identities Σref are an identity basis for Aref.

Let SL denote the variety generated by the adjacency semigroup over the
1-vertex looped graph and let U denote the variety generated by adjacency
semigroups over single block equivalence relations (equivalently, U is the variety
generated by the adjacency semigroup over the universal relation on a 2-element
set). Recall that SB denotes the variety of square bands.

Lemma 5.6. SL ∨ SB = U.

Proof. The direct product of the semigroup A(1) with an I × I square band
has a unique maximal ideal and the corresponding Rees quotient is (isomorphic

438 M. Jackson and M. Volkov

to) the adjacency semigroup over the universal relation on I. So SL ∨ SB ⊇ U.
However if |I| ≥ 2, and UI denotes the universal relation on I, then the adjacency
semigroup A(UI) ∈ U contains as subalgebras both A(1) (a generator for SL)
and the I × I square band (a generator for SB). So SL ∨ SB ⊆ U. �

Lemma 5.7. Let V be a subvariety of Aref containing the variety SB. Either
V = SB or V ⊇ U and V = HSP(A(K)) for some class of (necessarily reflexive)
graphs K.

Proof. Let A be a nonfinitely generated V-free algebra. If A |= xyx ≈ x then V

is equal to SB. Now say that xyx ≈ x fails on A. Lemma 5.5 shows that A is a
subdirect product of some family J of adjacency semigroups and square bands.
Note that we have V = HSP(J). Our goal is to replace all square bands in J by
adjacency semigroups over universal relations.

Since xyx ≈ x fails on A, at least one of the subdirect factors of A is an
adjacency semigroup that is not the one element algebra. Hence V contains the
semigroup A(1). By Lemma 5.6, V contains U. Now replace all square bands in J
by the adjacency semigroup of a universal relation of some set of size at least 2,
and denote the corresponding class by J̄ ; let GJ̄ denote the corresponding class
of graphs. Then V = HSP(J) = HSP(J̄) = HSP(A(GJ̄)). �

Now we may complete the proof of Theorem B.

Proof. Theorem A shows that the map ι described in Theorem A is an order
preserving injection from L(Gref) to L(Aref). Now we show that it is a surjection.
That is, every subvariety of Aref other than SB is the image under ι of some uH
class of reflexive graphs. Lemma 5.7 shows this is true if SB ⊆ V. However, if the
square bands in V are all trivial, then Lemma 5.5 shows that either V is the trivial
variety (and equal to ι({0})) or the ω-generated V-free algebra is a subdirect
product of members of A(Gref). Let F be a set consisting of the subdirect factors
and GF the corresponding graphs. Then V = HSP(F) = ι(ISP+Pu(GF)). To show
that ι is a lattice isomorphism, it will suffice to show that ι preserves joins, since
meets follow from the fact that ι is an order preserving bijection.

Let
∨

i∈I Ri be some join in L+. First assume that S is not amongst the Ri.
Then

HSP(A(
∨
i∈I

Ri)) = HSP(A(ISP+Pu(
⋃
i∈I

Ri)))

= HSP(HSP(
⋃
i∈I

A(Ri))) =
∨
i∈I

HSP(A(Ri)).

If S is amongst the Ri then either the join is a join of S with the trivial uH
class {0} (and the join is obviously preserved by ι), or using Lemma 5.6, we
can replace S by the uH class of universal relations, and proceed as above. This
completes the characterization of L(Aref).

Next we must show that a class K of graphs generates a finitely axiomatizable
uH class if and only if HSP(A(K)) is finitely axiomatizable. The “only if” case is

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 439

Corollary 6.3. Now say that K has a finite basis for its uH sentences. Following
the methods of Subsect. 4.3, we may construct a finite set Ξ of identities such
that an adjacency semigroup A lies in HSP(A(K)) if and only if A |= Ξ. We
claim that Σref ∪ Ξ is an identity basis for HSP(A(K)). Indeed, if S is a unary
semigroup satisfying Σref ∪ Ξ, then by Lemma 5.5, S is a subdirect product of
adjacency semigroups (or possibly square bands) satisfying Ξ. So these adjacency
semigroups lie in HSP(A(K)), whence so does S.

The proof that ι preserves the property of being finitely generated (and the
property of being nonfinitely generated) is very similar and left to the reader. �

6 Applications

The universal Horn theory of graphs is reasonably well developed, and the link to
unary Rees matrix semigroups that we have just established provides numerous
corollaries. We restrict ourselves to just a few ones which all are based on the
examples of uH classes presented in Sect. 2.

We start with presenting finite generators for unary semigroup varieties that
we have considered.

Proposition 6.1. The varieties A, Asymm, and Aref are generated by A(G1),
A(S1) and A(R1) respectively.

Proof. This follows from Theorem A and Examples 2.5, 2.6, and 2.8. �

Observe that the generators are of fairly modest size, with 17, 17 and 10 elements
respectively.

Recall that C3 is a 5-vertex graph generating the uH class of all 3-colorable
graphs (Example 2.4, see also Fig. 2).

Proposition 6.2. The finite membership problem for the variety generated by
the 26-element unary semigroup A(C3) is NP-hard.

Proof. Let G be a simple graph. By Theorem A the adjacency semigroup A(G)
belongs to HSP(A(C3)) if and only if G is 3-colorable. Thus, we have a reduction
to the finite membership problem for HSP(A(C3)) from 3-colorability of simple
graphs, a known NP-complete problem, see [8]. Of course, the construction of
A(G) can be made in polynomial time, so this is a polynomial reduction. �

A similar (but more complicated) example in the plain semigroup setting has
been found in [14]. Observe that we do not claim that the finite membership
problem for HSP(A(C3)) is NP-complete since it is not clear whether or not the
problem is in NP.

One can also show that the equational theory of A(C3) is co-NP-complete. (It
means that the problem whose instance is a unary semigroup identity u ≈ v and
whose question is whether or not u ≈ v holds in A(C3) is co-NP-complete.) This
follows from the construction of identities modelling uH sentences in Subsect. 4.3.
The argument is an exact parallel to that associated with [14, Corollary 3.8] and
we omit the details.

440 M. Jackson and M. Volkov

Proposition 6.3. If K is a class of graphs without a finite basis of uH sen-
tences, then A(K) is without a finite basis of identities. If K is a class of graphs
whose uH class has (infinitely many) uncountably many sub-uH classes, then the
variety generated by A(K) has (infinitely many) uncountably many subvarieties.

Proof. This is an immediate consequence of Theorem A. �
In particular, recall the 2-vertex graph S2 of Example 2.7, and let K2 denote the
2-vertex complete simple graph.

Corollary 6.1. There are uncountably many varieties between the variety gen-
erated by A(S2) and that generated by A(K2). The statement is also true if S2 is
replaced by any simple graph that is not 2-colorable.

Proof. The first statement follows from Theorem A and Example 2.7. The second
statement follows similarly from statements in Example 2.2. �
Note that the underlying semigroup of A(S2) is simply the familiar semigroupA2,
see Subsection 4.1. The subvariety lattice of the semigroup variety generated by
A2 is reasonably well understood (see Lee and Volkov [19]). This variety contains
all semigroup varieties generated by completely 0-simple semigroups with trivial
subgroups but has only countably many subvarieties, all of which are finitely
axiomatized (see Lee [18]).

Theorem B reduces the study of the subvarieties of Aref to the study of uH
classes of reflexive graphs. This class of graphs does not seem to have been as
heavily investigated as the antireflexive graphs, but contains some interesting
examples.

Recently Trotta [24] has disproved a claim made in [22] by showing that there
are uncountably many uH classes of reflexive antisymmetric graphs. From this
and Theorem B we immediately deduce:

Proposition 6.4. The unary semigroup variety Aref has uncountably many sub-
varieties.

In contrast, it is easy to check that there are only 6 uH classes of reflexive
symmetric graphs, see [3] for example. The lattice they form is shown in Fig. 8 on
the left. Theorem B then implies that the subvariety lattice of the corresponding
variety of unary semigroups contains 7 elements (it is one of the cases when the
“extra” variety SB of square bands comes into play); the lattice is shown in Fig. 8
on the right. The variety is generated by the adjacency semigroup of the graph
RS1 of Example 2.8 and is nothing but the variety CSR of so-called combinatorial
strict regular *-semigroups which have been one of the central objects of study
in [2]. The other join-indecomposable varieties in Fig. 8 are the trivial variety T,
the variety SL of semilattices with identity map as the unary operation, and the
variety BR of combinatorial strict inverse semigroups.

The main results of [2] consisted in providing a finite identity basis for CSR and
determining its subvariety lattice. We see that the latter result is an immediate
consequence of Theorem B. A finite identity basis for CSR can be obtained by
adding the involution identity (2) to the identity basisΣref of the variety Aref , see
Corollary 5.2. (The basis constructed this way is different from that given in [2].)

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 441

{0}

I({1,0})

Single block

equivalence relations

Antichains

Equivalence relations

All reflexive and

symmetric graphs

T

SL

BR
SL ∨ SB

BR ∨ SB

SB

CSR

Fig. 8. The lattice of uH classes of reflexive symmetric graphs vs the lattice of varieties

of strict regular semigroups

Example 6.1. The adjacency semigroup A(2) of the two element chain 2 (as a
partial order) generates a variety with a lattice of subvarieties isomorphic to the
four element chain. The variety is a cover of the variety BR of combinatorial
strict inverse semigroups.

Proof. This follows from Example 2.1, Theorem B and the fact that the uH class
of universal relations is not a sub-uH class of the partial orders (so SB is not a
subvariety of HSP(A(2)). �

The underlying semigroup of A(2) is again the semigroup A2. Thus, Example 6.1
makes an interesting contrast to Corollary 6.1.

For our final application, consider the 3-vertex graph P shown in Fig. 9.
It is known (see [3]) and easy to verify that the uH-class ISP+Pu(P) is not

finitely axiomatizable and the class of partial orders is the unique maximal sub-
uH class of ISP+Pu(P). Recall that a variety V is said to be a limit variety if V has
no finite identity basis while each of its proper subvarieties is finitely based. The
existence of limit varieties is an easy consequence of Zorn’s lemma but concrete
examples of such varieties are quite rare. We can use the just registered properties
of the graph P in order to produce a new example of a finitely generated limit
variety of I-semigroups.

1 2 3P:

Fig. 9. Generator for a limit uH class

442 M. Jackson and M. Volkov

Proposition 6.5. The variety HSP(A(P)) is a limit variety whose subvariety
lattice is a 5-element chain.

Proof. This follows from Theorem B and Example 2.1. �

7 Conclusion

We have found a transparent translation of facets of universal Horn logic into the
apparently much more restricted world of equational logic. A general translation
of this sort has been established for uH classes of arbitrary structures (even
partial structures) by the first author [13]. We think however that the special
case considered in this paper is of interest because it deals with very natural
objects on both universal Horn logic and equational logic sides.

We have shown that the unary semigroup variety Aref whose equational logic
captures the universal Horn logic of the reflexive graphs is finitely axiomatizable.
The question of whether or not the same is true for the variety A corresponding
to all graphs still remains open. A natural candidate for a finite identity basis
of A is the system consisting of the identities (Ψ) and (7)–(11), see Sect. 5.

References

1. Almeida, J.: Finite Semigroups and Universal Algebra. World Scientific, Singapore

(1994)

2. Auinger, K.: Strict regular ∗-semigroups. In: Howie, J.M., Munn, W.D., Weinert,

H.-J. (eds.) Proceedings of the Conference on Semigroups and Applications, pp.

190–204. World Scientific, Singapore (1992)

3. Benenson, I.E.: On the lattice of quasivarieties of models. Izv. vuzuv. Matem-

atika (12), 14–20 (1979) (Russian); English translation in Soviet Math. (Iz. VUZ)

23(12), 13–21 (1979)

4. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer,

Heidelberg (1981)

5. Caicedo, X.: Finitely axiomatizable quasivarieties of graphs. Algebra Universalis 34,

314–321 (1995)

6. Clark, D.M., Davey, B.A., Freese, R., Jackson, M.: Standard topological algebras:

syntactic and principal congruences and profiniteness. Algebra Universalis 52, 343–

376 (2004)

7. Clark, D.M., Davey, B.A., Jackson, M., Pitkethly, J.: The axiomatisability of topo-

logical prevarieties. Adv. Math. 218, 1604–1653 (2008)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman and Company, New York (1979)

9. Gorbunov, V.: Algebraic Theory of Quasivarieties. Consultants Bureau, New York

(1998)

10. Gorbunov, V., Kravchenko, A.: Antivarieties and colour-families of graphs. Algebra

Universalis 46, 43–67 (2001)

11. Hall, T.E., Kublanovsky, S.I., Margolis, S., Sapir, M.V., Trotter, P.G.: Algorithmic

problems for finite groups and finite 0-simple semigroups. J. Pure Appl. Alge-

bra 119, 75–96 (1997)

The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion 443

12. Howie, J.M.: Fundamentals of Semigroup Theory. London Mathematical Society

Monographs, vol. 12. Clarendon Press, Oxford (1995)

13. Jackson, M.: Flat algebras and the translation of universal Horn logic to equational

logic. J. Symbolic Logic 73, 90–128 (2008)

14. Jackson, M., McKenzie, R.: Interpreting graph colourability in finite semigroups.

Internat. J. Algebra Comput. 16, 119–140 (2006)

15. Ježek, J., Marković, P., Maróti, M., McKenzie, R.: The variety generated by tour-

naments. Acta Univ. Carolin. Math. Phys. 40, 21–41 (1999)

16. Ježek, J., McKenzie, R.: The variety generated by equivalence algebras. Algebra

Universalis 45, 211–219 (2001)

17. Kravchenko, A.V.: Q-universal quasivarieties of graphs. Algebra Logika 41, 311–325

(2002) (in Russian); English translation in Algebra Logic 41, 173–181 (2002)

18. Lee, E.W.H.: Combinatorial Rees–Sushkevich varieties are finitely based. Internat.

J. Algebra Comput. 18, 957–978 (2008)

19. Lee, E.W.H., Volkov, M.V.: On the structure of the lattice of combinatorial Rees–

Sushkevich varieties. In: André, J.M., Branco, M.J.J., Fernandes, V.H., Fountain,

J., Gomes, G.M.S., Meakin, J.C. (eds.) Proceedings of the International Conference

“Semigroups and Formal Languages” in honour of the 65th birthday of Donald B.

MCALister, pp. 164–187. World Scientific, Singapore (2007)

20. McNulty, G.F., Shallon, C.R.: Inherently nonfinitely based finite algebras. In:

Freese, R., Garcia, O. (eds.) Universal Algebra and Lattice Theory. Lecture Notes

in Mathematics, vol. 1004, pp. 206–231. Springer, Heidelberg (1983)

21. Nešetřil, J., Pultr, A.: On classes of relations and graphs determined by subobjects

and factorobjects. Discrete Math. 22, 287–300 (1978)

22. Sizy̆i, S.V.: Quasivarieties of graphs. Sib. Matem. Zh. 35, 879–892 (1994) (in

Russian); English translation in Sib. Math. J. 35, 783–794 (1994)

23. Trahtman, A.N.: Graphs of identities of a completely 0-simple 5-element semigroup.

Preprint, Ural State Technical Institute. Deposited at VINITI on 07.12.81, no.5558-

81, 6 pp. (1981) (Russian); Engl. translation (entitled Identities of a five-element

0-simple semigroup) Semigroup Forum 48, 385–387 (1994)

24. Trotta, B.: Residual properties of reflexive antisymmetric graphs. Houston J. Math.

(to appear)

25. Willard, R.: On McKenzie’s method. Per. Math. Hungar. 32, 149–165 (1996)

Definability of Combinatorial Functions and
Their Linear Recurrence Relations

Tomer Kotek� and Johann A. Makowsky��

Department of Computer Science,

Technion–Israel Institute of Technology, Haifa, Israel

{tkotek,janos}@cs.technion.ac.il

For Yuri, on the occasion of his seventieth birthday.

Abstract. We consider functions of natural numbers which allow a com-

binatorial interpretation as counting functions (speed) of classes of re-

lational structures, such as Fibonacci numbers, Bell numbers, Catalan

numbers and the like. Many of these functions satisfy a linear recurrence

relation over Z or Zm and allow an interpretation as counting the number

of relations satisfying a property expressible in Monadic Second Order

Logic (MSOL).

C. Blatter and E. Specker (1981) showed that if such a function f
counts the number of binary relations satisfying a property expressible

in MSOL then f satisfies for every m ∈ N a linear recurrence relation

over Zm.

In this paper we give a complete characterization in terms of defin-

ability in MSOL of the combinatorial functions which satisfy a linear

recurrence relation over Z, and discuss various extensions and limita-

tions of the Specker-Blatter theorem.

Keywords: Combinatorics, counting functions, monadic second order

logic.

1 Introduction

1.1 The Speed of a Class of Finite Relational Structures

Let P be a graph property, and Pn be the set of graphs with vertex set [n] =
{1, . . . , n} which have property P . We denote by spP(n) = |Pn| the number of
labeled graphs in Pn. The function spP(n) is called the speed of P , or in earlier
literature the counting function of P1. Instead of graph properties we also study
� Partially supported by a grant of the Graduate School of the Technion–Israel Insti-

tute of Technology.
�� Partially supported by a grant of the Fund for Promotion of Research of the

Technion–Israel Institute of Technology and grant ISF 1392/07 of the Israel Sci-

ence Foundation (2007-2010).
1 In the recent monograph by P. Flajolet and R. Sedgewick [19] the counting function

is called “counting sequence of P”. Speed is used mostly in case the counting function

is monotone increasing.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 444–462, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Definability of Combinatorial Functions 445

classes of finite relational structures K with relations Ri : i = 1, . . . , s of arity
ρi. For the case of s = 1 and ρ1 = 1 such classes can be identified with binary
words over the positions 1, . . . , n.

The study of the function spK(n) has a rich literature concentrating on two
types of behaviours of the sequence spK(n):

– Recurrence relations
– Growth rate

Clearly, the existence of recurrence relations limits the growth rate.

(i) In formal language theory it was studied in N. Chomsky and M.P. Schuet-
zenberger [12] who proved that for K = L, a regular language, the sequence
spL(n) satisfies a linear recurrence relation over Z. This implies that the
formal power series

∑
n spL(n)Xn is rational. The paper [12] initiated the

field Formal Languages and Formal Power Series.
Furthermore, it is known that L is regular iff L is definable in Monadic
Second Order Logic MSOL, [11].

(ii) In C. Blatter and E. Specker [8] the case of K was studied, where ρi ≤ 2
for all i ≤ s and K definable in MSOL. They showed that in this case
for every m ∈ N, the sequence spK(n) is ultimately periodic modulo m, or
equivalently, that the sequence spK(n) satisfies a linear recurrence relation
over Zm.

(iii) In E.R. Scheinerman and J. Zito [27] the function spP(n) was studied for
hereditary graph properties P , i.e., graph properties closed under induced
subgraphs. They were interested in the growth properties of spP(n). The
topic was further developed by J. Balogh, B. Bollobas and D. Weinreich in a
sequence of papers, [10,1,2], which showed that only six classes of growth of
spP(n) are possible, roughly speaking, constant, polynomial, or exponential
growth, or growth in one of three factorial ranges. They also obtained
similar results for monotone graph properties, i.e., graph properties closed
under subgraphs, [3]. There are early precursors of the study of spP(n):
for monotone graph properties is [16], and for hereditary graph properties,
[25].
We note that hereditary (monotone) graph properties P are characterized
by a countable set IForb(P) (SForb(P)) of forbidden induced subgraphs
(subgraphs). In the case that IForb(P) is finite, P is definable in First
Order Logic, FOL, and in the case that IForb(P) is MSOL-definable, also
P is MSOL-definable. The same holds also for monotone properties.

(iv) The classification of the growth rate of spP(n) was extended to minor-
closed classes in [6]. We note that minor-closed classes P are always MSOL-
definable. This is due to the Robertson-Seymour Theorem, which states
that they are characterized by a finite set MForb(P) of forbidden minors.

One common theme of all the above cited papers is the connection between the
definability properties of K and the arithmetic properties of the sequence spK(n).
In this paper we concentrate on the relationship between definability of a class
K of relational structures and the various linear recurrence relations spK(n) can
satisfy.

446 T. Kotek and J.A. Makowsky

1.2 Combinatorial Functions and Specker Functions

We would like to say that a function f : N → N is a combinatorial function if it
has a combinatorial interpretation. One way of making this more precise is the
following.

Let R̄ be a finite set of relation symbols and K be a class of finite R̄-structures.
We say that K is definable in L if there is a L-sentence φ such that for every
R̄-structure A, A ∈ K iff A |= φ. Then a function f : N → N is a combinatorial
function if f(n) = spK(n) for some class of finite structures K definable in a
suitable logical formalism L. Here L could be FOL, MSOL or any interesting
fragment of Second Order Logic, SOL. We assume the reader is familiar with
these logics, cf. [14].

Definition 1 (Specker2 function).
A function f : N → N is called a Lk-Specker function if there is a finite set R̄
of relation symbols of arity at most k and a class K of R̄-structures definable in
L such that f(n) = spK(n).

A typical non-trivial example is given by A. Cayley’s Theorem from 1889, which
says that T (n) = nn−2 is the number of labeled trees on n vertices. Another ex-
ample is the sequence of Bell numbers Bn which count the number of equivalence
relations on n elements.

In this paper we study under what conditions the Specker function given by
the sequence spK(n) satisfies a linear recurrence relation.

Example 1

(i) The number of binary relations on [n] is 2n2
, and the number of linear

orders on [n] is n!. Both are FOL
2-Specker functions. n! satisfies the linear

recurrence relation n! = n·(n−1)!. We note the coefficient in the recurrence
relation is not constant.

(ii) The Stirling numbers of the first kind denoted [nk] are defined as the number
of ways to arrange n objects into k cycles. It is well known that for n > 0
we have [n1] = (n − 1)!. Specker functions are functions in one variable.
For fixed k, [nk] is a FOL

2-Specker function. Using our main results, we
shall discuss Stirling numbers in more detail in Sect. 4, Proposition 6 and
Corollary 2.

(iii) For the functions 2n2
, nn−2 and n! no linear recurrence relation with con-

stant coefficients exists, because functions defined by linear recurrence re-
lations with constant coefficients grow not faster than 2O(n). However, for
every m ∈ N we have that 2n2

satisfies a linear recurrence relation over Zm,
where the coefficients depend on m.

(iv) The Catalan numbers Cn count the number of valid arrangements of n pairs
of parentheses. Cn is even iff n is not of the form n = 2k−1 for some k ∈ N

([21]). Therefore, the sequence Cn cannot be ultimately periodic modulo 2.
We discuss the Catalan numbers in Sect. 4.

2 E. Specker studied such functions in the late 1970ties in his lectures on topology at

ETH-Zurich.

Definability of Combinatorial Functions 447

For R unary we can interpret 〈[n], R〉 as a binary word where position i is occu-
pied by letter 1 if i ∈ R and by letter 0 otherwise. Similarly, For R̄ = (R1, . . . , Rs)
which consists of unary relations only we can interpret 〈[n], R1, . . . , Rs〉 as a
word over an alphabet of size 2s. With this way of viewing languages we have
the celebrated theorem of R. Büchi (and later but independently of C. Elgot and
B. Trakhtenbrot), cf. [22,13] states:

Theorem 1. Let K be a language and K′ be the corresponding set of ordered
structures with unary predicates for the occurrence of letters. Then K is regular
iff K′ is definable in MSOL using the natural order <nat on [n].

From Theorem 1 and [12] we get immediately:

Proposition 1. If f(n) = spK(n) is definable in MSOL
1, MSOL with unary

relation symbols only, given the natural order <nat on [n], then it satisfies a
linear recurrence relation over Z

spK(n) =
d∑

j=1

aj · spK(n− j)

with constant coefficients,

We say a function f : N → N is ultimately periodic over R = Z or over R = Zm

if there exist i, n0 ∈ N such that for every n ≥ n0, f(n + i) = f(n) over R.
It is well-known that f is ultimately periodic over Zm iff it satisfies a linear
recurrence relation with constant coefficients over Zm. We note that if f satisfies
a linear recurrence over Z then it also satisfies a linear recurrence over Zm for
every m. C. Blatter and E. Specker proved the following remarkable but little
known theorem in [8],[9],[30].

Theorem 2 (Specker-Blatter Theorem). If f(n) = spK(n) is definable in
MSOL

2, MSOL with unary and binary relation symbols only, then for every
m ∈ N, f(n) satisfies a linear recurrence relation with constant coefficients

spK(n) ≡
dm∑
j=1

a
(m)
j spK(n− j) (modm) ,

and hence is ultimately periodic over Zm.

In [18] it was shown that in Proposition 1 and in Theorem 2 the logic MSOL

can be augmented by modular counting quantifiers.
Furthermore, E. Fischer showed in [17]

Theorem 3. For every prime p ∈ N there is an FOL
4-definable function spKp(n),

whereKp consists of finite (E,R)-structureswithE binary andR quaternary, which
is not ultimately periodic modulo p.

The definability status of various combinatorial functions from the literature will
be discussed in Sect. 4.

448 T. Kotek and J.A. Makowsky

1.3 Formal Power Series

Our main result can be viewed as related to the theory of generating functions
for formal languages, cf. [26,7] Let A be a commutative semi-ring with unity and
denote by A 〈〈x〉〉 the semi-ring of formal power series F in one variable over A

F =
∞∑

n=0

f(n)xn

where f is a function from N to A. A power series F in one variable is an A-
rational series if it is in the closure of the polynomials overA by the sum, product
and star operations, where the star operation F ∗ is defined as F ∗ =

∑∞
i=0 F

i.
We say a function f : N → A is A-rational if {f(n)}∞n=0 is the sequence

of coefficients of an A-rational series F . We will be interested in the cases of
A = N and A = Z. It is trivial that every N-rational function is a Z-rational
function. It is well-known that Z-rational functions are exactly those functions
f : N → Z which satisfy linear recurrence relations over Z. Furthermore, Z-
rational functions can also be characterized as those functions f which are the
coefficents of the power series of P (x)/Q(X), where P,Q ∈ Z[x] are polynomials
and Q(0) = 1.

We aim to study Specker functions, which are by definition functions over
N. Clearly, every N-rational function is over N, while the Z-rational functions
may take negative values. Those non-negative Z-rational functions which are
N-rational were characterized by M. Soittola, cf. [29]. However, there are non-
negative Z-rational series which are not N-rational, cf. [15,4].

There are strong ties between regular languages and rational series. From
Theorem 1 and [26, Thm II.5.1] it follows that:

Proposition 2. Let K be a language. If K is definable in MSOL given the
natural order <nat on [n], then spK is N-rational.

1.4 Extending MSOL and Order Invariance

In this paper we investigate the existence of linear and modular linear recurrence
relations of Specker functions for the case where K is definable in logics L which
are sublogics of SOL and extend MSOL.
Ca,bMSOL is the extension of MSOL with modular counting quantifiers ”the

number of elements x satisfying φ(x) equals a modulo b”. Ca,bMSOL is a frag-
ment of SOL since the modular counting quantifiers are definable in SOL using
a linear order of the universe which is existentially quantifed.

Example 2. The Specker function which counts the number of Eulerian graphs
with n vertices is not MSOL-definable. It is definable in Ca,bMSOL and indeed
b = 2 suffices.

We now look at the case where [n] is equipped with a linear order. We want to
count the number of relation without counting different orders.

Definability of Combinatorial Functions 449

Definition 2 (Order invariance)

(i) A class D of ordered R̄-structures is a class of R̄ ∪ {<1}-structures, where
for every A ∈ D the interpretation of the relation symbol <1 is always a
linear order of the universe of A.

(ii) An L formula φ(R̄, <1) for ordered R̄-structures is truth-value order invari-
ant (t.v.o.i.) if for any two structures Ai = 〈[n], <i, R̄〉 (i = 1, 2) we have
that A1 |= φ iff A2 |= φ. Note A1 and A2 differ only in the linear orders
<1 and <2 of [n]. We denote by TVL the set of L-formulas for ordered
R̄-structures which are t.v.o.i. We consider TVL formulas as formulas for
R̄-structures.

(iii) For a class of ordered structures D, let

ospD(n,<1) =∣∣∣{(R1, . . . , Rs) ⊆ [n]ρ(1) × . . .× [n]ρ(s) : 〈[n], <1, R1, . . . , Rs〉 ∈ D}
∣∣∣ .

A function f : N → N is called an Lk-ordered Specker function if there is a
class of ordered R̄-structures D of arity at most k definable in L such that
f(n) = ospD.

(iv) A function f : N → N is called a counting order invariant (c.o.i.) Lk-Specker
function if there is a finite set of relation symbols R̄ of arity at most k and
a class of ordered R̄-structures D definable in L such that for all linear
orders <1 and <2 of [n] we have f(n) = ospD(n,<1) = ospD(n,<2).

Example 3

(i) Every formula φ(R̄, <1) ∈ TVSOL
k is equivalent to the formula ψ(R̄) =

∃ <1 φ(R̄, <1)∧φlinOrd(<1) ∈ SOL
k, where φlinOrd(<1) says <1 is a linear

ordering of the universe.
(ii) Every TVMSOL

k-Specker function is also a counting order invariant
MSOL

k-Specker function.
(iii) We shall see in Sect. 3 that there are counting order invariant MSOL

2-
definable Specker functions which are not TVMSOL

2-definable.

The following proposition is folklore:

Proposition 3. Every formula in Ca,bMSOL
k is equivalent to a formula in

TVMSOL
k.

Proof. We give a sketch of the proof for the Ca,bMSOL formula φeven = C0,2(x =
x), which says the size of the universe is even. The general proof is similar. φeven

can be written as φ(R̄, <1) = ∃Uφmin(U) ∧ ∀x∀y(φsucc(x, y) → (x ∈ U ↔ y /∈
U)) ∧ ∀x(x ∈ U → ∃y x <1 y) where φmin(U) = ∀x ((¬∃y y <1 x) → x ∈ U)
says the minimal element x in the order <1 belongs to U , and φsucc(x, y) =
(x <1 y) ∧ ¬∃z(x <1 z ∧ z <1 y) says y is the successor of x in <1. �

450 T. Kotek and J.A. Makowsky

1.5 Main Results

Our first result is a characterization of functions over the natural numbers which
satisfy a linear recurrence relation over Z.

Theorem 4. Let f be a function over N. Then the following are equivalent:

(i) f(n) satisfies a linear recurrence relation over Z;
(ii) f(n) = f1(n) − f2(n) is the difference of two counting order invariant

MSOL
1-Specker functions;

(iii) f(n) = dL1(n)− dL2(n) is the difference of two counting functions dLi(n),
i = 1, 2, of some regular languages L1 and L2.

(iv) f(n) = dL3(n)− cn for some constant c ∈ N and some regular language L3.

We shall only prove that (i) implies (ii), the other cases are either known or
easily derived.

In the terminology of rational functions we get the following corollary:

Corollary 1. Let f be a function N → N. Then f is Z-rational iff f is the
difference of two N-rational functions.

Corollary 1, as stated, is known, cf. [26, Corollary 8.2. in Chapter II]. However,
to prove Theorem 4 from Corollary 1, one would need that for every N-rational
function α(x) =

∑∞
i=0 a(n)xn the function a(n) is the counting function of some

regular language (*). To the best of our knowledge, this is not known to be
true. The characterization of regular languages via generating functions uses the
multivariate version, see [26].

In the proof of Theorem 4 we introduce the notion of Specker polynomials,
which can be thought of as a special case of graph polynomials where graphs are
replaced by linear orders.

Next we show that the Specker-Blatter Theorem cannot be extended to count-
ing order invariant Specker functions which are definable in MSOL

2. More pre-
cisely:

Proposition 4. Let E2,=(n) be the number of equivalence relations with two
equal-sized equivalence classes. Then E2,=(2n) = 1

2

(
2n
n

)
, and E2,=(2n+ 1) = 0.

E2,= is a counting order invariant MSOL
2-definable. However, it does not satisfy

a linear recurrence relation over Z2, since it is not ultimately periodic modulo 2.
To see this note that E2,=(2n) = 0 (mod 2) iff n is an even power of 2.

In Sect. 4 we shall show in Corollary 3 the same also for the Catalan number.
However, if we require that the defining formula φ of a Specker function is

itself order invariant, i.e. φ ∈ TVMSOL
2, then the Specker-Blatter Theorem

still holds.

Theorem 5. Let f be a TVMSOL
2-Specker function. Then, for all m ∈ N the

function f satisfies a modular linear recurrence relation modulo m.

Definability of Combinatorial Functions 451

Table 1. Linear recurrences and definability of Lk-Specker functions

k MSOL
k Ca,bMSOL

k
TVMSOL

k c.o.i.MSOL
k

4 No MLR No MLR No MLR No MLR

3 ? ? ? No MLR

MLR MLR MLR
2

No LR No LR No LR No MLR

1 All functions with LR

Table 1 summarizes the relationship between definablity of a Lk-Specker func-
tion f(n) and existence of linear recurrence. We denote by MLR that f(n) has
a modular linear recurrence (for every m ∈ N) and by LR that f(n) satisfies
a linear recurrence over Z. We write NO LR (respectively NO MLR) to indi-
cate that there is some Lk-Specker function without a linear recurrence over Z

(respectively Zm, for some m ∈ N). The entries in bold face are new.

2 Linear Recurrence Relations for Lk-Specker Functions

To prove Theorem 4 we first introduce Specker polynomials and prove a gen-
eralized version of one direction of the theorem in Subsect. 2.1. We finish this
direction of the proof of Theorem 4 in Subsect. 2.2. The other direction of The-
orem 4 is easy and is also given in Subsect. 2.2.

2.1 Lk-Specker Polynomials

Definition 3

(i) A Lk-Specker polynomial A(n, x̄) in indeterminate set x̄ has the form

∑
R1:Φ1(R1)

· · ·
∑

Rt:Φt(R1,...,Rt)

⎛⎝ ∏
v1,...,vk:Ψ1(R̄,v̄)

xm1 · · ·
∏

v1,...,vk:Ψl(R̄,v̄)

xml

⎞⎠
where v̄ stands for (v1, . . . , vk), R̄ stands for (R1, . . . , Rt) and the Ri’s are
relation variables of arity ρi at most k. The Ri’s range over relations of
arity ρi over [n] and the vi range over elements of [n] satisfying the iteration
formulas Φi, Ψi ∈ L.

452 T. Kotek and J.A. Makowsky

(ii) Simple ordered Lk-Specker polynomials and order invariance thereof are de-
fined analogously to Specker functions.

Every Specker function can be viewed as a Specker polynomial in zero indetermi-
nates. Conversely, if we evaluate a Specker polynomial at x = 1 we get a Specker
function.

In this subsection we prove a stronger version of Theorem 4.

Lemma 1. Let A(n, z̄) be a c.o.i. MSOL
1-Specker polynomial with in-

determinates z̄ = (z1, . . . , zs) and let h1(w̄), . . . , hs(w̄) ∈ Z [w̄]. Let
A (n, (h1(w̄), . . . , hs(w̄))) denote the variable subtitution in A(n, z̄) where for
i ∈ [s], zi is substituted to hi(w̄). Then A

(
n, h̄

)
is an integer evaluation of

a c.o.i. MSOL
1-Specker polynomial.

Proof. We look at A(n, z̄) with z1 substituted to the polynomial

h1(w̄) =
d∑

j=1

cjw
αj1
1 · · ·wαjt

t

where d, α11, . . . , αdt ∈ N and c1, . . . , cd ∈ Z. The c.o.i. MSOL
1−Specker poly-

nomial A(n, z̄) is given by

∑
R1:Φ1(R1)

· · ·
∑

Rm:Φm(R1,...,Rm−1)

⎛⎝ ∏
v1:Ψ1(R̄,v1)

z1 · · ·
∏

v1:Ψs(R̄,v1)

zs

⎞⎠ ,

so substituting z1 to h1(w̄) we get A(n, (h1(w), z2, . . . , zs)) =

∑
R1:Φ1(R1)

· · ·
∑

Rm:Φm(R1,...,Rm−1)

⎛⎝ ∏
v1:Ψ1(R̄,v1)

h1(w̄) · · ·
∏

v1:Ψs(R̄,v1)

zs

⎞⎠ .

We note that for every α(v) ∈ MSOL we can define an MSOL formula
with d unary relation variables φPart(α)(U1 . . . , Ud) which holds iff U1, . . . , Ud

are a partition of the set of elements of [n] which satisfy α(v). Then
A (n, (h1(w̄), z2, . . . , zs)) =

∑
R1:Φ1(R1)

· · ·
∑

Rm:Φm(R1,...,Rm−1)

∑
U1,...,Ud:φPart(Ψ1)(Ū)

⎛⎝ ∏
v1:Ψ2(R̄,v1)

z2 · · ·

∏
v1:Ψs(R̄,v1)

zs

∏
v1:v1∈U1

c1w
α11
1 · · ·wα1t

t · · ·
∏

v1:v1∈Ud

cdw
αd1
1 · · ·wαdt

t

⎞⎠
Next, we note for any formula θ,

∏
v1:θ

cjw
αj1
1 · · ·wαjt

t =
∏
v1:θ

cj

αj1 times︷ ︸︸ ︷∏
v1:θ

w1 · · ·
∏
v1:θ

w1 · · ·

αjt times︷ ︸︸ ︷∏
v1:θ

wt · · ·
∏
v1:θ

wt .

Definability of Combinatorial Functions 453

We now replace all cj with new indeterminates w′
j and thus obtain that

A (n, (h1(w̄), z2, . . . , zs)) is an evaluation of an c.o.i. MSOL
1-Specker polyno-

mial.
Doing the same for the other zi, we get that A (n, (h1(w̄), . . . , hs(w̄))) is an

evaluations of an o.i. MSOL
1-definable Specker polynomial, as required. �

Theorem 6. Let An(x̄) be a sequence of polynomials with a finite indeterminate
set x̄ = (x1, . . . , xs) which satisfies a linear recurrences over Z. Then there exists
a c.o.i. MSOL

1-Specker polynomial A′(n, x̄, ȳ) such that An(x̄) = A′(n, x̄, ā)
where ā = (a1, . . . , al) and ai ∈ Z for i = 1, . . . , l.

Proof. Let An(x̄) be given by a linear recurrence

An(x̄) =
r∑

i=1

fi(x̄) ·An−i(x̄) ,

where fi(x̄) ∈ Z [x̄] and initial conditions A1(x̄), . . . , Ar(x̄) ∈ Z [x̄]. To write
An(x̄) as a c.o.i. MSOL

1-Specker polynomials, we sum over the paths of the
recurrence tree. A path in the recurrence tree corresponds to the successive
application of the recurrence

An(x̄)→ An−i1(x̄)→ An−i1−i2(x̄)→ · · · → An−i1−...−il
(x̄)

where i1, . . . , il ∈ [r] and An−i1−...−il
(x̄) is an initial condition.

In the following, the Ui for i ∈ [r] stand for the vertices in the path, Ii for
i ∈ [r] stand for initial conditions Ai(x̄), and S stands for all those elements of
[n] skipped by the recurrence. We may write An(x̄) as

An(x̄) =
∑

Ū,Ī,S:φrec(Ū,Ī,S)

∏
v:v∈U1

f1(x̄) · · ·
∏

v:v∈Ur

fr(x̄)
∏

v:v∈I1

A(1, x̄) · · ·
∏

v:v∈Ir

A(r, x̄) ,

where φrec(Ū , Ī, S) says

– φPart(Ū , Ī, S) holds, i.e. Ū , Ī, S is a partition of [n],
– n ∈

⋃
Ui, i.e. the path in the recurrence tree starts from n,

– |
⋃r

i=1 Ii| = 1, i.e. the path reaches exactly one initial condition
– if v ∈ [n] − [r], then v /∈

⋃r
i=1 Ii, i.e. the path may not reach an initial

condition until v ∈ [r],
– if v ∈ [r], then v /∈

⋃r
i=1 Ui, i.e. the path ends when reaching the initial

conditions, and
– for every v ∈ Ui, {v − 1, . . . , v − (i− 1)} ⊆ S and v − i ∈

⋃r
i=1 (Ui ∪ Ii), i.e.

the next element in the path is v − i.

The formula φrec is MSOL definable using the given order. Let B(n, x̄) be

B(n, z̄) =
∑

Ū ,Ī,S:φrec(Ū ,Ī,S)

∏
v:v∈U1

z1 · · ·
∏

v:v∈Ur

zr

∏
v:v∈I1

zr+1 · · ·
∏

v:v∈Ir

z2r .

454 T. Kotek and J.A. Makowsky

Then B(n, z̄) is a c.o.i. MSOL
1-Specker polynomial. By Lemma 1, substituting

zi to fi(x̄) for i ∈ [r] and to Ai−r(x̄) for i ∈ [2r]\[r], we have that

B (n, (f1(x̄), . . . , fr(x̄), A(1, x̄), . . . , A(r, x̄))) = An(x̄)

is an evaluation in Z of a c.o.i. MSOL
1-Specker polynomial. �

2.2 Proof of Theorem 4

Let f = f1−f2 and f1 and f2 be c.o.i. MSOL
1-Specker functions. By Proposition

1 together with Theorem 1 we have that f1 and f2 satisfy linear recurrence
relations over Z. It is well known that finite sums, differences and products of
functions satisfying a linear recurrence relation again satisfy a linear recurrence
relation, cf. [23, Chapter 8] or [28, Chapter 6]. Thus, f = f1−f2 satisfies a linear
recurrence relation over Z.

Conversely, if f satisfies a linear recurrence relation over Z, then by Theorem
6, f is given by an evaluation ā = (a1, . . . , al) where ai ∈ Z for i = 1, . . . , l of
a c.o.i. MSOL

1 Specker polynomial A(n, ȳ) in variables yi. We have to show
that f is a difference of two c.o.i. MSOL

1-Specker functions. For the sake of
simplicity we will show this only for the case of a MSOL

1-Specker polynomial
in one indeterminate,

A(n, y) =
∑

R:Φ(R)

∏
v1:Ψ(R,v1)

y .

The general case is similar. We may write A(n, y) as

A(n, y) =
∑

R,Y :Φ(R)∧Ψ ′(R,Y)

∏
v:v∈Y

y ,

where Ψ ′(Y) = ∀v (v ∈ Y ↔ Ψ(R, v)). For a > 0 we can write
∏

v:v∈Y a as∏
v:v∈Y

a = a|Y | = |{Z1, . . . Za | Z1, . . . , Za form a partition of Y }| .

So,
A(n, a) =

∑
R,Y,Z̄:βa(R,Y,Z̄)

1 =
∣∣{R, Y, Z̄ | βa(R, Y, Z̄)

}∣∣ ,
where βa(R, Y, Z̄) = Φ(R)∧Ψ ′(R, Y)∧φpart(Y, Z̄) and φpart(Y, Z1, . . . , Za) says
Z1, . . . , Za form a partition of Y . We note that φpart is definable in MSOL. For
a = 0,

A(n, a) =
∑

R:γ(R)

1 = |{R | γ(R)}| ,

where γ(R) = Φ(R) ∧ ∀v1¬Ψ(R, v1). Thus, since the constant function 0 is de-
finable in MSOL, we get that if a ≥ 0 then A(n, a) is the difference of two c.o.i.
MSOL

1-Specker functions.

Definability of Combinatorial Functions 455

For a < 0 we have

A(n, a) =
∑

R,Y :Φ(R)∧Ψ ′(R,Y)

∏
v:v∈Y

|a|
∏

v:v∈Y

(−1) .

As above, we may write A(n, a) as

A(n, a) =
∑

R,Y,Z̄:β|a|(R,Y,Z̄)

∏
v:v∈Y

(−1) ,

and we have

A(n, a) =
∑

R,Y,Z̄:αEven(Y)∧β|a|(R,Y,Z̄)

1−
∑

R,Y,Z̄:¬αEven(Y)∧β|a|(R,Y,Z̄)

1 ,

where αEven(Y) says |Y | is even. Thus, A(n, a) is given by A(n, a) =∣∣{R, Y, Z̄ | αEven(Y) ∧ β|a|(R, Y, Z̄)
}∣∣− ∣∣{R, Y, Z̄ |¬αEven(Y)∧β|a|(R, Y, Z̄)

}∣∣ .
Since αEven is definable in MSOL given an order, as discussed in example 3, we
get that A(n, a) is a difference of two c.o.i. MSOL

1-Specker functions for a < 0.

3 Modular Linear Recurrence Relations

In this section we prove Theorem 5, the extension of the Specker-Blatter Theorem
to TVMSOL

2-Specker functions. We also prove Proposition 4, which shows
Theorem 5 cannot be extended to c.o.i. MSOL

2-Specker functions.

3.1 Specker Index

We say a structure A =
〈
[n], R̄, a

〉
is a pointed R̄-structure if is consists of

a universe [n], relations R1, . . . , Rk, and an element a ∈ [n] of the universe.
We now define a binary operation on pointed structures. Given two pointed
structures A1 =

〈
[n1], R̄1, a1

〉
and A2 =

〈
[n2], R̄2, a2

〉
, let Subst (A1,A2) be a

new pointed structure Subst(A1,A2) = B where B =
〈
[n1] � [n2]− {a1} , R̄, a2

〉
,

such that the relations in R̄ are defined as follows. For every Ri ∈ R̄ of arity r,
Ri =

(
R1

i ∩ ([n1]− {a1})r)∪R2
i ∪I, where I contains all possibilities of replacing

occurrences of a1 in R1
i with members of [n2].

Similarly, we define Subst(A1,A2) for a pointed structure A1 and a struc-
ture A2 =

〈
[n], R̄

〉
(which is not pointed). Let C be a class of possibly pointed

R̄−structures. We define an equivalence relation between R̄−structures:

– We say A1 and A2 are equivalent, denoted A1 ∼Su(C) A2 if for every pointed
structure D we have that Subst(D,A1) ∈ C if and only if Subst (D,A2) ∈ C.

– The Specker index of C is the number of equivalence classes of ∼Su(C).

We use in the next subsection the following lemmas by E. Specker [30]:

456 T. Kotek and J.A. Makowsky

Lemma 2. Let C be a class of R̄−structures of finite Specker index with all rela-
tion symbols in R̄ at most binary. Then fC(n) satisfies modular linear recurrence
relations for every m ∈ N.

Lemma 3. If C is a class of R̄-structures which is MSOL
2−definable, then C

has finite Specker index.

3.2 Proof of Theorem 5

We prove the following lemma:

Lemma 4. If C is a class of R̄-structures which is TVMSOL
2-definable, then

C has finite Specker index.

Proof. Let C be a set of R̄-structures defined by the TVMSOL(R̄) formula φ.
Let C′ be the class of all R̄ ∪R<-structures 〈A, R<〉 such that A ∈ C and R< is
a linear ordering of the universe of A. Let φ′ be the MSOL(R̄ ∪ {R<}) formula
obtained from φ by the following changes:

(i) the order used in φ, a <1 b, is replaced with the new relation symbol R<

(ii) it is required that R< is a linear ordering of [n].

We note that φ′ defines C′, since φ is truth-value order invariant and that φ′ is
an MSOL

2-formula.
We will now prove that C has finite Specker index, by showing that if it does

not, then C′ also has infinite Specker index, in contradiction to Lemma 3. Assume
C has infinite Specker index. Then there is an infinite setW of R̄−structures, such
that for every distinct A1,A2 ∈ W , A1 �∼Su(C) A2. So, for every A1,A2 ∈ W
there is 〈G, s〉 such that

Subst(〈G, s〉 ,A1) ∈ C iff Subst(〈G, s〉 ,A2) /∈ C .

Now look at W ′ = {〈A, R<〉 | A ∈ W,R< linear order of [n]}, where [n] is the
universe of A. We note Subst(〈G, R<G , s〉 ,

〈
A1, R<A1

〉
) =

〈
Subst(G,A1), R<′

〉
,

where R<′ a linear ordering of the universe of Subst(G,A1) which extends RA1

and RG , and similarly for A2. Therefore,

Subst(〈G, R<G , s〉 ,
〈
A1, R<A1

〉
) ∈ C′ iff Subst(〈G, R<G , s〉 ,

〈
A2, R<A2

〉
) /∈ C′ .

So the Specker index of C′ is infinite, in contradiction. �

Theorem 5 now follows from lemma 2.

3.3 Counting Order Invariant MSOL2

Here we show the Specker-Blatter Theorem does not hold for c.o.i. MSOL
2-

definable Specker functions. We have two such examples, the function E2,=, as
defined in Proposition 4, and the Catalan numbers, which we discuss in Sect. 4.

Definability of Combinatorial Functions 457

More precisely, here we show:

Proposition 5. E2,=, as defined in Proposition 4 is a c.o.i. MSOL
2-Specker

function.

Proof. Let C be defined as follows:

C = {〈U,R, F 〉 | 〈[n], <1, U,R, F 〉 |= Φ} ,

where U and R are unary and F is binary, <1 is a linear order of [n], and Φ is
says

(i) F is a function,
(ii) U is the domain of F ,
(iii) R is the range of F ,
(iv) U and R form a partition of [n],
(v) the first element of [n], is in U ,
(vi) F : U → R is a bijection, and
(vii) F is monotone with respect to <1.

We note C is MSOL
2 definable. We note also that ospC(n,<1) is counting order

invariant. ospC(n,<1) counts the number of partitions of [n] into two equal parts,
because there is exactly one monotone bijection between any two subsets of [n]
of equal size. The condition that 1 ∈ U assures that we do not count the same
partition twice. So ospC(n,<1) = E2,=(n). �

We know that E2,= is not ultimately periodic modulo 2, and hence the Specker-
Blatter theorem cannot be extended to c.o.i. MSOL

2-Specker functions.

4 Examples

4.1 Examples of MSOLk-Specker Functions

Fibonacci and Lucas Numbers. The Fibonacci numbers Fn satisfy the linear
recurrence Fn = Fn−1 +Fn−2 for n > 1, F0 = 0 and F1 = 1. The Lucas numbers
Ln, a variation of the Fibonacci numbers, satisfy the same recurrence for n > 1,
Ln = Ln−1 + Ln−2, but have different initial conditions, L1 = 1 and L0 = 2.

It follows from the proof of Theorem 4 that a function which satisfies a lin-
ear recurrence relation over N is a c.o.i. MSOL

1-Specker function. Thus. The
Fibonacci and Lucas numbers are natural examples of c.o.i.-MSOL

1-Specker
functions.

Stirling Numbers. The Stirling numbers of the first kind, denoted [nr] are
defined as the number of ways to arrange n objects into r cycles. For fixed r,
this is an MSOL

2-Specker function, since for E ⊆ [n]2 and U ⊆ E, the property
that U is a cycle in E and the property that E is a disjoint union of cycles
are both MSOL

2-definable. Using again the growth argument from Example
1(iii), we can see that the Stirling numbers of the first kind do not satisfy a

458 T. Kotek and J.A. Makowsky

linear recurrence relation, because [n1] grows like the factorial (n− 1)!. However,
from the Specker-Blatter Theorem it follows that they satisfy a modular linear
recurrence relation for every m.

The Stirling numbers of the second kind, denoted {n
r}, count the number

of partitions of a set [n] into r many non-empty subsets. For fixed r, this is
MSOL

2-definable: We count the number of equivalence relations with r non-
empty equivalence classes. From the Specker-Blatter Theorem it follows that
they satisfy a modular linear recurrence relation for every m. We did not find in
the literature a linear recurrence relation for the Stirling numbers of the second
kind which fits our context. But we show below that such a recurrence relation
exists.

Proposition 6. For fixed r, the Stirling numbers of the second kind are c.o.i.
MSOL

1-Specker functions.

Proof. We use r unary relations U1, . . . , Ur and say that they partition the set
[n] into non-empty sets. However, when we permute the indices of the Ui’s we
count two such partitions twice. To avoid this we use a linear ordering on [n] and
require that, with respect to this ordering, the minimal element in Ui is smaller
than all the minimal elements in Uj for j > i. �

Corollary 2. For every r there exists a linear recurrence relation with constant
coefficients for the Stirling numbers of the second kind {n

r}. Further more there
are constants cr such that {n

r} ≤ 2cr·n.

Our proof is not constructive, and we did not bother here to calculate the explicit
linear recurrence relations or the constants cr for each r.

Catalan Numbers. Catalan numbers were defined in Sect. 1 Example 1. We
already noted that they do not satisfy any modular linear recurrence relation.
However, like the example E2,=, the functions fc(n) = Cn is a c.o.i. MSOL

2-
Specker function. To see this we use the following interpretation of Catalan
numbers given in [20].
Cn counts the number of tuples ā = (a0, . . . , a2n−1) ∈ [n]2n such that

(i) a0 = 1
(ii) ai−1 − ai ∈ {1,−1} for i = 1, . . . , 2n− 2
(iii) a2n−1 = 0

We can express this in MSOL
2 using a linear order and two unary functions.

The two functions F1 and F2 are used to describe a0, . . . , an−1 and an, . . . , a2n−1

respectively. Let ΦCatalan be the formula that says:

(i) F1, F2 : [n]→ [n]
(ii) Fi(x+ 1) = Fi(x)± 1 for i = 1, 2 and there exists y = x+ 1 ∈ [n]
(iii) F1(n− 1) = F2(0)± 1.
(iv) F1(0) = 1
(v) F2(n− 1) = 0

Definability of Combinatorial Functions 459

The resulting formula is not t.vo.i., but Cn = spC(n) where

C = |{(F1, F2) | 〈[n], <1, F1, F2〉 |= ΦCatalan}|

is a c.o.i. MSOL
2-Specker function.

Corollary 3. The function f(n) = Cn is a c.o.i. MSOL
2-Specker function and

does not satisfy a modular linear recurrence relation modulo 2.

Bell Numbers. The Bell numbers Bn count the number of equivalence relations
on n elements. We note f(n) = Bn is a MSOL

2-Specker function. However, Bn

is not c.o.i. MSOL
1-definable due to a growth argument.

4.2 Examples of MSOLk-Specker Polynomials

Our main interest are Lk-Specker functions, and the Lk-Specker polynomials
were introduced as an auxiliary tool. However, there are natural examples in the
literature of Lk-Specker polynomials.

Fibonacci, Lucas and Chebyshev Polynomials. The recurrence Fn(x) =
x · Fn−1(x) + Fn−2(x), F1(x) = 1 and F2(x) = x defines the Fibonacci poly-
nomials. The Fibonacci numbers Fn can be obtained as an evaluation of the
Fibonacci polynomial for x = 1, Fn(1) = Fn. The Lucas polynomials are defined
analogously.

The Chebyshev polynomials of the first kind (see [24]) are defined similarly by
the recurrence relation Tn+1(x) = 2xTn(x) − Tn−1(x), T0(x) = 1, and T1(x) =
x. The Fibonacci, Lucas and Chebyshev polynomials are natural examples of
Specker polynomials. As they are defined by linear recurrence relations, they are
c.o.i. MSOL

1-definable.

Touchard Polynomials. The Touchard polynomials are defined

Tn(x) =
n∑

k=1

{n
k}xk

where {n
k} is the Stirling number of the second kind. Tn(x) is c.o.i. MSOL

2-
definable; To see this we note that it is defined by

Tn(x) =
∑

E:Φcliques(E)

∏
u:Φfirst−in−cc(E,u)

x ,

where Φcliques(E) says E is a disjoint union of cliques and where

Φfirst−in−cc(E, u) = ∀v ((v <1 u ∧ v �= u)→ (v, u) /∈ E) ,

i.e. it says u is the first vertex in its connected component, with respect to the
order (less or equal) of [n]. Clearly, Φcliques(E) and Φfirst−in−cc(E, u) are in
MSOL

2. We note that Φfirst−in−cc(E, u) is not invariant under the order <1.
The Bell numbers Bn are given as an evaluation of Tn(x), Bn = Tn(1), which
implies Tn(x) is not co.i MSOL

1-definable due to a growth argument.

460 T. Kotek and J.A. Makowsky

Mittag-Leffler Polynomials. The Mittag-Leffler polynomial (see [5]) is given
by

Mn(x) =
n∑

k=0

(n
k) (n− 1)n−k2kxk .

It holds that

Mn(x) =
∑

U⊆[n]

(n− 1) · · ·k · 2k · x · · · (x − (k − 1)) =
∑

U,F,T,S:ΦM

1 ,

where ΦM (U,F, T, S) says U ⊆ [n], F is an injective function from [n]− {n} to
[n], T is an injective function from U to [x], and S is a function from U to {1, n}.
So, every evaluation of Mn(x) where x = m, m ∈ N, is a c.o.i. MSOL

2-Specker
function.

Note that

Mn+1(x) =
1
2
x [Mn(x+ 1) + 2Mn(x) +Mn(x− 1)] .

This looks almost like a linear recurrence relation combined with an interpolation
formula, and is not of the kind we are discussing here.

5 Conclusions and Open Problems

We have introduced the notion of one variable Lk-Specker functions f : N → N as
the speed of a Lk-definable class of relational structures K, i.e., f(n) = spK(n).
We have investigated for which fragments L of SOL the Lk-Specker functions
satisfy linear recurrence relations over Z or Zm.

We have used order invariance, definability criteria and limitation on the vo-
cabulary to continue the line of study, initiated by C. Blatter and E. Specker
[8],[9],[30], as to the kind of linear recurrence relations one can expect from
Specker functions. We have completely characterized (Theorem 4) the combi-
natorial functions which satisfy linear recurrence relations with constant coeffi-
cients, and we have discussed (Table 1 in Sect. 1) how far one can extend the
Specker-Blatter Theorem in terms of order invariance and MSOL-definability.
As a consequence, we obtained (Corollary 1) a new characterization of the Z-
rational functions f : N → N as the difference of N-rational functions.

We have not studied many variables Lk-Specker functions arising from many-
sorted structures, although this is a natural generalizations: For a class of graphs
K, spK(n,m) counts the number of graphs with n vertices and m edges which
are in K. Even for functions in one variable the following remain open:

(i) Can one prove similar theorems for linear recurrence relations where the
coefficients depend on n?

(ii) Can one characterize the Lk-Specker functions which satisfy modular re-
currence relations with constant coefficients for each modulus m, i.e., is
there some kind of a converse to Theorem 5?

(iii) Does Theorem 5 hold for TVMSOL
3?

Finally, for many-sorted Lk-Specker functions studying both growth rate and
recurrence relations seems a promising topic of further research.

Definability of Combinatorial Functions 461

Acknowledgements

We are grateful to the anonymous referee for his very careful reading of the
manuscript, his stylistic suggestions and pointing out of misprints, and to Daniel
Marx for his useful comments.

References

1. Balogh, J., Bollobás, B., Weinreich, D.: The speed of hereditary properties of

graphs. J. Comb. Theory, Ser. B 79, 131–156 (2000)

2. Balogh, J., Bollobás, B., Weinreich, D.: The penultimate rate of growth for graph

properties. EUROCOMB: European Journal of Combinatorics 22 (2001)

3. Balogh, J., Bollobás, B., Weinreich, D.: Measures on monotone properties of graphs.

Discrete Applied Mathematics 116, 17–36 (2002)

4. Barcucci, E., Lungo, A.D., Frosini, A., Rinaldi, S.: A technology for reverse-

engineering a combinatorial problem from a rational generating function. Advances

in Applied Mathematics 26, 129–153 (2001)

5. Bateman, H.: The polynomial of Mittag-Leffler. Proceedings of the National

Academy of Sciences 26, 491–496 (1940)

6. Bernardi, O., Noy, M., Welsh, D.: On the growth rate of minor-closed classes of

graphs (2007)

7. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. In: EATCS

Monographs on Theoretical Computer Science, vol. 12. Springer, Heidelberg (1988)

8. Blatter, C., Specker, E.: Le nombre de structures finies d’une th’eorie à charactère

fin. Sciences Mathématiques, Fonds Nationale de la rechercheScientifique, Brux-

elles, pp. 41–44 (1981)

9. Blatter, C., Specker, E.: Recurrence relations for the number of labeled structures

on a finite set. In: Börger, E., Hasenjaeger, G., Rödding, D. (eds.) Logic and Ma-

chines: Decision Problems and Complexity. LNCS, vol. 171, pp. 43–61. Springer,

Heidelberg (1984)

10. Bollobas, B., Thomason, A.: projections of bodies and hereditary properties of

hypergraphs. J. London Math. Soc. 27 (1995)

11. Büchi, J.: Weak second–order arithmetic and finite automata. Zeitschrift für math-

ematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)

12. Chomsky, N., Schützenberger, M.: The algebraic theory of context free languages.

In: Brafford, P., Hirschberg, D. (eds.) Computer Programming and Formal Sys-

tems, pp. 118–161. North-Holland, Amsterdam (1963)

13. Ebbinghaus, H., Flum, J.: Finite Model Theory. In: Perspectives in Mathematical

Logic. Springer, Heidelberg (1995)

14. Ebbinghaus, H., Flum, J., Thomas, W.: Mathematical Logic. Undergraduate Texts

in Mathematics, 2nd edn. Springer, Heidelberg (1994)

15. Eilenberg, S.: Automata, Languages, and Machines, Vol. A. Academic Press, Lon-

don (1974)

16. Erdös, P., Frankl, P., Rödl, V.: The asymptotic enumeration of graphs not contain-

ing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs

Combin. 2, 113–121 (1986)

17. Fischer, E.: The Specker-Blatter theorem does not hold for quaternary relations.

Journal of Combinatorial Theory, Series A 103, 121–136 (2003)

462 T. Kotek and J.A. Makowsky

18. Fischer, E., Makowsky, J.: The Specker-Blatter theorem revisited. In: Warnow,

T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 90–101. Springer, Hei-

delberg (2003)

19. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,

Cambridge (2009)

20. Graham, L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for

Computer Science. Addison-Wesley Longman Publishing Co., Inc., Boston (1994)

21. Knuth, D.E.: The Art of Computer Programming. Fascicle 4: Generating All Trees–

History of Combinatorial Generation (Art of Computer Programming), vol. 4.

Addison-Wesley Professional, Reading (2006)

22. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

23. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Ap-

plications, vol. 20. Cambridge University Press, Cambridge (1983)

24. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall/CRC,

Boca Raton (2003)

25. Prömel, H., Steger, A.: Excluding induced subgraphs: Quadrilaterals. Random

Structures & Algorithms 3, 19–31 (1992)

26. Salomaa, A., Soittola, M.: Automata theoretic aspects of formal power series.

Springer, Heidelberg (1978)

27. Scheinerman, E., Zito, J.: On the size of hereditary classes of graphs. J. Comb.

Theory, Ser. B 61, 16–39 (1994)

28. Sidi, A.: Practical Extrapolation Methods, Theory and Applications. Cambridge

Monographs on Applied and Computational Mathematics, vol. 10. Cambridge Uni-

versity Press, Cambridge (2003)

29. Soittola, M.: Positive rational sequences. Theoretical Computer Science 2, 317–322

(1976)

30. Specker, E.: Application of logic and combinatorics to enumeration problems. In:

Börger, E. (ed.): Trends in Theoretical Computer Science. 141–169. Computer

Science Press; Reprinted in: Ernst Specker, Selecta, Birkhäuser, pp. 324-350 (1988)

Halting and Equivalence of Program Schemes in
Models of Arbitrary Theories

Dexter Kozen

Cornell University, Ithaca, New York 14853-7501, USA

kozen@cs.cornell.edu

http://www.cs.cornell.edu/~kozen

In Honor of Yuri Gurevich
on the Occasion of his Seventieth Birthday

Abstract. In this note we consider the following decision problems. Let

Σ be a fixed first-order signature.

(i) Given a first-order theory or ground theory T overΣ of Turing degree

α, a program scheme p over Σ, and input values specified by ground

terms t1, . . . , tn, does p halt on input t1, . . . , tn in all models of T ?

(ii) Given a first-order theory or ground theory T overΣ of Turing degree

α and two program schemes p and q over Σ, are p and q equivalent

in all models of T ?

When T is empty, these two problems are the classical halting and equiva-

lence problems for program schemes, respectively. We show that problem

(i) is Σα
1 -complete and problem (ii) is Πα

2 -complete. Both problems re-

main hard for their respective complexity classes even if Σ is restricted

to contain only a single constant, a single unary function symbol, and

a single monadic predicate. It follows from (ii) that there can exist no

relatively complete deductive system for scheme equivalence over models

of theories of any Turing degree.

Keywords: dynamic model theory, program scheme, scheme equiva-

lence. Mathematics Subject Classification Codes: 03B70, 3D10, 03D15,

03D28, 03D75, 68Q17.

Let Σ be an arbitrary but fixed first-order signature. A ground formula over Σ
is a Boolean combination of atomic formulas P (t1, . . . , tn) of Σ, where the ti are
ground terms (no occurrences of variables). A ground literal is a ground atomic
formula P (t1, . . . , tn) or its negation. A ground theory over Σ is a consistent set
of ground formulas closed under entailment. A (first-order) theory over Σ is a
consistent set of first-order formulas closed under entailment. A ground theory
E is a complete ground extension of T if E contains T and every ground formula
or its negation appears in E. A first-order theory E is a complete extension of
T if E contains T and every first-order sentence or its negation appears in E.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 463–469, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

464 D. Kozen

Theorem 1. Let α be an arbitrary Turing degree. The following problems are
Σα

1 -complete and Πα
2 -complete, respectively:

(i) Given a ground theory T over Σ of Turing degree α, a program scheme p
over Σ, and input values specified by ground terms t̄ = t1, . . . , tn, does p halt
on input t̄ in all models of T?

(ii) Given a ground theory T over Σ of Turing degree α and two schemes p and
q over Σ, are p and q equivalent in all models of T?

Both problems remain hard for their respective complexity classes even if Σ is
restricted to contain only a single constant, a single unary function symbol, and
a single monadic predicate. Both problems remain complete for their respective
complexity classes if “ground theory” in the statement of the problem is replaced
by “first-order theory”.

Note that for both problems, the theory T is part of the input in the form of an
oracle.

If T is the empty ground theory, these are the classical halting and equivalence
problems for program schemes, respectively. Classical lower bound proofs (see
[7]) establish the r.e. hardness of the two problems for this case. TheΠ0

2 -hardness
of (ii) for this case can also be shown to follow without much difficulty from a
result of [4].

Proof. Let T be a first-order theory or ground theory of Turing degree α. For
the upper bounds, we do not actually need T to be closed under entailment, but
only that ground entailment relative to T is decidable; that is, if φ is a ground
formula, then T � φ is decidable with an oracle for T .

We first consider problem (i). For the upper bound, we wish to show that the
problem is in Σα

1 . Given p and t̄, we simulate the computation of p on input t̄
on all complete extensions of T simultaneously, using the oracle for T to resolve
tests. Each branch of the simulation maintains a finite set E of ground literals
consistent with T , initially empty. Whenever a test P (s1, . . . , sk) is encountered,
we substitute the current values of the program variables, which are ground
terms, for the variables to obtain a ground atomic formula P (u1, . . . , uk), then
consult T and E to determine which branch to take. If the truth value of the
test P (s1, . . . , sk) is determined by T and E, that is, if T � E → P (u1, . . . , uk)
or T � E → ¬P (u1, . . . , uk), then we just take the appropriate branch. Other-
wise, if both P (u1, . . . , uk) and ¬P (u1, . . . , uk) are consistent with T ∪ E, then
the simulation branches, extending E with P (u1, . . . , uk) on one branch and
¬P (u1, . . . , uk) on the other. In each simulation step, all current branches are
simulated for one step in a round-robin fashion. We thus simulate the computa-
tion of p on all possible complete extensions of T simultaneously. If p halts on all
such extensions, then by König’s lemma there is a uniform bound on the halting
time of all branches of the computation. The simulation halts successfully when
that bound is discovered.

We now show that problem (i) is Σα
1 -hard in the restricted case Σ = {a, f, P},

where a is a constant, f is a unary function symbol, and P is a unary relation

Halting and Equivalence of Program Schemes 465

symbol. For now we will assume that we have two unary relation symbols Q,R;
we can later encode these in a single P by taking P (f2n(a)) = Q(fn(a)) and
P (f2n+1(a)) = R(fn(a)).

Let A ⊆ N be any set. We will show how to encode the halting problem for
deterministic oracle Turing machines M with oracle A. This problem is ΣA

1 -
complete. Given an input x over M ’s input alphabet, we will construct a ground
theory T0 Turing-equivalent to A and a scheme p with no input or output such
that p halts on all models of T0 iff M halts on input x. Later, we will extend
T0 to a first-order theory T of the same complexity. The encoding technique
used here is fairly standard, but we include the argument for completeness and
because we need the resulting scheme p in a certain special form for the proof
of (ii).

Consider the Herbrand domain consisting of all terms over a and f . This
domain is isomorphic to the natural numbers with 0 and successor under the
correspondence n 	→ fn(a). An Herbrand model H over this domain is repre-
sented by a pair of semi-infinite binary strings representing the truth values of
Q(fn(a)) and R(fn(a)) for n ≥ 0. The correspondence is one-to-one. We will
use the string corresponding to Q to encode a computation history of M and
the string corresponding to R to encode the oracle A.

Each string x over M ’s input alphabet determines a unique finite or infinite
computation history #αx

0#αx
1#αx

2# · · · , where αx
i is a string over a finite al-

phabet Δ encoding the instantaneous configuration of M on input x at time i
consisting of the tape contents, head position, and current state. We also as-
sume that configurations encode all oracle queries and the answers returned by
the oracle A (we will be more explicit about the precise format of the encoding
below). The configurations αx

i are separated by a symbol # �∈ Δ. The computa-
tion history in turn can be encoded in binary, and this infinite binary string can
be encoded by the truth values of Q(fn(a)), n ≥ 0.

The ground theory T0 describes the oracle A using R and the starting con-
figuration #αx

0# of M on input x using Q. The description of the starting
configuration consists of a finite set Sx of ground literals of the form Q(fn(a))
or ¬Q(fn(a)). The oracle is described by the set

{R(fn(a)) | n ∈ A} ∪ {¬R(fn(a)) | n �∈ A}. (1)

In any complete extension of T0, the infinite string corresponding to Q describes
either the unique valid computation history of M on input x or a garbage string.
The scheme p can read the n-th bit of this string in the corresponding Herbrand
model by testing the value of Q(fn(a)). It starts by scanning the initial part of
the string to check that it is of the form #αy

0# for some y. (This step is not
strictly necessary for this proof, since we are restricting our attention to models
of T0, in which this step will always succeed; but it will be needed later in the
proof of (ii).) Next, p scans the string from left to right to determine whether
each successive αx

i+1 follows from αx
i in one step according to the transition rules

of M . It does this by comparing corresponding bits in αx
i and αx

i+1 using two
variables to simulate pointers into the string. If the current value of the variable

466 D. Kozen

x is fn(a), then testing Q(x) reads the n-th bit of the string. The pointer is
advanced by the assignment x := f(x).

The scheme p must also verify that oracle responses are correct. Without loss
of generality, we can assume that M uses the following mechanism to query the
oracle. We assume that M has an integer counter initially set to 0. In each step,
M may add one to the counter or not, depending on its current state and the
tape symbol it is scanning, according to its transition function. It queries the
oracle by entering a distinguished oracle query state. If the current value of the
counter is n, then M transits to a distinguished “yes” state if n ∈ A and to a
distinguished “no” state if n �∈ A. The counter is reset to 0.

For p to verify the correctness of the oracle responses, we assume that the
format of the encoding of configurations is β$0n, where β is the description of
the current state, tape contents, and head position of M and n is the current
value of the counter. If p discovers that M is in the oracle query state while
scanning β, then after encountering the $, it sets a variable z := a and executes
z := f(z) for each occurrence of 0 after the $, so that z will have the value
fn(a) when the next # is seen. Then it tests R(z) to determine whether n ∈ A.
It then checks that in the subsequent configuration, M is in the “yes” or “no”
state according as R(z) is true or false, respectively, and that the counter has
been reset.

If p discovers an error, so that the string does not represent a computation
history ofM on some input, it halts immediately. It also halts if it ever encounters
a halting state ofM anywhere in the string. Thus the only Herbrand model of T0

that would cause p not to halt is the one describing the infinite valid computation
history of M on x in the case that M does not halt on x. Thus p halts on all
Herbrand models of T0, thus on all models of T0, iff M halts on x.

We can further restrict the set Sx describing the start configuration of M
to be empty by observing that Sx is finite, so it can be hard-wired into the
scheme p itself. Thus the initial format check that p performs can be modified to
check whether Sx holds and halt immediately if not. This gives a ground theory
T0 consisting of (1) only, independent of the input x, at the expense of coding
information about x in the scheme p. However, for purposes of the proof of (ii)
below, it will be important that p not depend on the input x but only on the
machine M .

Finally, we must produce a first-order theory T extending T0 such that T is
of no higher Turing degree than T0 (that is, T is still Turing-equivalent to A)
and every Herbrand model of T0 extends to a model of T . Since the halting of
p depends only on the Herbrand substructure, p will halt on all models of T
iff it halts on all Herbrand models of T0. The main issue here is that we must
be careful to construct a T whose Turing complexity is no greater than that of
the ground theory T0, otherwise the lower bound will not hold. Note that the
first-order theory generated by T0 may not be suitable, because the best we can
guarantee is that it is Σ1 in A.

Halting and Equivalence of Program Schemes 467

To construct T , we augment T0 with all existential formulas of the form

∃x
∧

n∈C

P (fn(x)) ∧
∧

m∈D

¬P (fm(x)), (2)

where C and D are disjoint finite subsets of N. We take T to be the set of logical
consequences of T0 and the formulas (2). Every Herbrand model of T0 extends to
a model of T , because new elements outside the Herbrand domain can be freely
added as needed to satisfy the existential formulas (2).

To show that T is Turing-equivalent to A, we observe that since the theory is
monadic, every first-order sentence reduces effectively via the laws of first-order
logic to a Boolean combination of ground formulas P (fn(a)) and existential
formulas (2). The latter are all true in T , so every sentence is equivalent modulo
T to a Boolean combination of ground formulas P (fn(a)). Any such formula is
consistent with T iff it is consistent with T0, since as previously observed, every
Herbrand model of T0 extends to a model of T . Thus T Turing-reduces to T0.

This argument shows that the halting problem for program schemes over
models of T0 or T is hard for ΣA

1 . Since A was arbitrary and both T0 and T are
Turing-equivalent to A, we are finished with the proof of (i).

Now we turn to problem (ii). For the upper bound, first we show that equiva-
lence of schemes over models of T is ΠT

2 . Equivalently, inequivalence of schemes
over models of T is ΣT

2 . It suffices to show that inequivalence of schemes over
models of T can be determined by an IND program over N with oracle T with an
∃ ∀ alternation structure [5] (see also [6]). As above, we need only that ground
entailment relative to T is decidable.

Let p and q be two schemes with input variables x̄ = x1, . . . , xn. The schemes
p and q are not equivalent over models of T iff there exists a complete extension
of T with extra constants c̄ = c1, . . . , cn in which either

1. both p and q halt on input c̄ and produce different output values;
2. p halts on c̄ and q does not; or
3. q halts on c̄ and p does not.

We start by selecting existentially the alternative 1, 2 or 3 to check.
If alternative 1 was selected, we simulate p and q on input c̄, maintaining a

finite set E of ground literals and using T and E as in the proof of (i) to resolve
tests. Whenever a test is encountered that is not determined by T and E, we
guess the truth value and extend E accordingly. Thus we nondeterministically
guess a complete extension of T using existential branching in the IND program.
We continue the simulation until both p and q halt, then compare output values,
accepting if they differ.

If alternative 2 was selected, we simulate p on c̄ until it halts, maintaining
the guessed truth values of undetermined tests in the set E as above. When p
has halted, we have a consistent extension T ∪ E of T , where E consists of the
finitely many tests that were guessed during the computation of p. So far we
have only used existential branching. We must now verify that there exists a
complete extension of T ∪ E in which q does not halt on input c̄. By (i), this

468 D. Kozen

problem is ΠT∪E
1 , so we can solve it with a purely universally-branching IND

computation.
The argument for alternative 3 is symmetric.
For the lower bound, we reduce the totality problem for oracle Turing ma-

chines with oracle A, a well-known ΠA
2 -complete problem, to the equivalence

problem (ii). The totality problem is to determine whether a given machine
halts on all inputs. As above, it will suffice to consider Σ = {a, f,Q,R}.

Given a deterministic oracle Turing machine M with oracle A, let T0 be the
ground theory consisting of the formulas (1). Then T0 is Turing-equivalent to A.
We construct two schemes p and q with no input or output that are equivalent
in all complete ground extensions of T0 iff M halts on all inputs. The scheme
p is the one constructed in the proof of (i). As in that proof, each input string
x over M ’s input alphabet determines a unique computation history, and the
scheme p checks that the Herbrand model in which it is running encodes a valid
computation history of M on some input. As in the proof of (i), the oracle A
is encoded by the formulas (1). This allows p to verify responses to the oracle
queries in the computation history.

Now unlike the proof of (i), there is an extra source of non-halting. Recall
that there is an initial format check in which p checks that the string has a
prefix of the form #αy

0# for some y. This check was not really necessary in the
proof of (i), since a description of the start configuration on input x could be
coded in T0, but it is necessary here. But if there is no second occurrence of #
in the string, then p will loop infinitely looking for it. If it does detect a second
occurrence of #, then as before, the only source of non-halting is if M does not
halt on x. We therefore build q to simply check for a prefix of the form #αx

0# for
some x exactly as p does and halt immediately when it encounters the second
occurrence of #. Now p does not halt in the Herbrand model H iff the string
represented by the truth values of Q(fn(a)) either

(a) does not have a prefix of the form #αx
0#, or

(b) does have a prefix of the form #αx
0# and represents a non-halting compu-

tation history of M on x;

and q does not halt in H in case (a) only. Therefore p and q are equivalent iff
case (b) never occurs for p; that is, iff M halts on all inputs.

We construct the first-order theory T from T0 as in the proof of (i) above.
Thus the equivalence problem for schemes over models of T0 or T is ΠA

2 -hard.
Since A was arbitrary and both T0 and T are Turing-equivalent to A, we are
done. �
In [1], axioms were proposed for reasoning equationally about input-output re-
lations of first-order program schemes over Σ. These axioms have been shown to
be adequate for some fairly intricate equivalence arguments arising in program
optimization [1,2]. However, unlike the propositional case, it follows from The-
orem 1(ii) that there can exist no finite relatively complete axiomatization for
first-order scheme equivalence over models of a theory T of any Turing degree.
If such an axiomatization did exist, then the scheme equivalence problem over
models of T would be r.e. in T .

Halting and Equivalence of Program Schemes 469

In the case α = 0, it is decidable whether a given first-order sentence φ is
a consequence of a given finite set E of ground formulas over the signature
Σ = {a, f, P}, since E � φ iff E → φ is a valid sentence of the first-order theory
of a one-to-one unary function with monadic predicate, a well-known decidable
theory [3] (note that every Σ-structure is elementarily equivalent to one in which
the interpretation of f is one-to-one). By Theorem 1(ii), the scheme equivalence
problem is Π0

2 -hard relative to E, therefore also relative to the decidable first-
order theory generated by E.

Acknowledgments

Thanks to Andreas Blass for insightful comments, which inspired a strengthening
of the results. This work was supported in part by NSF grant CCF-0635028.

References

1. Angus, A., Kozen, D.: Kleene algebra with tests and program schematology. Tech.

Rep. TR2001-1844, Computer Science Department, Cornell University (July 2001)

2. Barth, A., Kozen, D.: Equational verification of cache blocking in LU decomposi-

tion using Kleene algebra with tests. Tech. Rep. TR2002-1865, Computer Science

Department, Cornell University (June 2002)

3. Ferrante, J., Rackoff, C.: The computational complexity of logical theories. Lecture

Notes in Mathematics, vol. 718. Springer, Heidelberg (1979)

4. Harel, D., Meyer, A.R., Pratt, V.R.: Computability and completeness in logics of

programs. In: Proc. 9th Symp. Theory of Comput., pp. 261–268. ACM, New York

(1977)

5. Harel, D., Kozen, D.: A programming language for the inductive sets, and applica-

tions. Information and Control 63(1-2), 118–139 (1984)

6. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

7. Manna, Z.: Mathematical Theory of Computation. McGraw-Hill, New York (1974)

Metrization Theorem for Space-Times: From
Urysohn’s Problem towards Physically Useful

Constructive Mathematics

Vladik Kreinovich

Department of Computer Science, University of Texas, El Paso

vladik@utep.edu

To Yuri Gurevich, in honor of his enthusiastic longtime quest for
efficiency and constructivity.

Abstract. In the early 1920s, Pavel Urysohn proved his famous lemma

(sometimes referred to as “first non-trivial result of point set topology”).

Among other applications, this lemma was instrumental in proving that

under reasonable conditions, every topological space can be metrized.

A few years before that, in 1919, a complex mathematical theory

was experimentally proven to be extremely useful in the description of

real world phenomena: namely, during a solar eclipse, General Relativ-

ity theory – that uses pseudo-Riemann spaces to describe space-time

– was (spectacularly) experimentally confirmed. Motivated by this suc-

cess, Urysohn started working on an extension of his lemma and of the

metrization theorem to (causality-)ordered topological spaces and cor-

responding pseudo-metrics. After Urysohn’s early death in 1924, this

activity was continued in Russia by his student Vadim Efremovich, Efre-

movich’s student Revolt Pimenov, and by Pimenov’s students (and also

by H. Busemann in the US and by E. Kronheimer and R. Penrose in the

UK). By the 1970s, reasonably general space-time versions of Urysohn’s

lemma and metrization theorem have been proven.

However, these 1970s results are not constructive. Since one of the

main objectives of this activity is to come up with useful applications

to physics, we definitely need constructive versions of these theorems –

versions in which we not only claim the theoretical existence of a pseudo-

metric, but we also provide an algorithm enabling the physicist to gen-

erate such a metric based on empirical data about the causality relation.

An additional difficulty here is that for this algorithm to be useful, we

need a physically relevant constructive description of a causality-type

ordering relation.

In this paper, we propose such a description and show that, for this

description, a combination of the existing constructive ideas with the

known (non-constructive) proof leads to successful constructive space-

time versions of the Urysohn’s lemma and of the metrization theorem.

Keywords: Urysohn’s lemma, metrization theorem, space-times, con-

structive mathematics.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 470–487, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Metrization Theorem for Space-Times 471

1 Introduction

Urysohn’s lemma. In the early 1920s, Pavel Urysohn proved his famous lemma
(sometimes referred to as “first non-trivial result of point set topology”). This
lemma deals with normal topological spaces, i.e., spaces in which every two
disjoint closed sets have disjoint open neighborhoods; see, e.g., [12]. As the very
term “normal” indicates, most usual topological spaces are normal, including
the n-dimensional Euclidean space.

Urysohn’s lemma states the following:

Lemma 1. If X is a normal topological space, and A and B are disjoint closed
sets in X, then there exists a continuous function f : X → [0, 1] for which
f(a) = 0 for all a ∈ A and f(b) = 1 for all b ∈ B.

Resulting metrization theorem. Urysohn’s lemma has many interesting applica-
tions. Among other applications, this lemma was instrumental in proving that
under reasonable conditions, every topological space X can be metrized, i.e.,
there exist a metric – a function ρ : X × X → IR+

0 to the set IR+
0 of all non-

negative real numbers for which the following three conditions are satisfied

ρ(a, b) = 0⇔ a = b; ρ(a, b) = ρ(b, a); ρ(a, c) ≤ ρ(a, b) + ρ(b, c);

and for which the original topology on X coincides with the topology generated
by the open balls Br(x) = {y : ρ(x, y) < r}.

Specifically, from Urysohn’s lemma, we can easily conclude that:

Theorem 1. Every normal space X with countable base is metrizable.

Comment. It is worth mentioning that the normality condition is too strong for
the theorem: actually, it is sufficient to require that the space is:

– regular, i.e., for every closed set A and every point b /∈ A can be separated
by disjoint open neighborhoods, and

– Hausdorff, i.e., every two different points have disjoint open neighborhoods.

Space-time geometry and how it inspired Urysohn. A few years before Urysohn’s
lemma, in 1919, a complex mathematical theory was experimentally proven to
be extremely useful in the description of real world phenomena. Specifically,
during a solar eclipse, General Relativity theory – that uses pseudo-Riemann
spaces to describe space-time – was (spectacularly) experimentally confirmed;
see, e.g., [20].

From the mathematical viewpoint, the basic structure behind space-time geom-
etry is not simply a topological space, but a topological space with an order a (b
whose physical meaning is that the event a can causally influence the event b.

For example, in the simplest case of the Special Relativity theory (see Fig. 1),
the event a = (a0, a1, a2, a3) can influence the event b = (b0, b1, b2, b3) if we can
get from the spatial point (a1, a2, a3) at the moment a0 to the point (b1, b2, b3)

472 V. Kreinovich

�

�

	
	

	
	

	
	

	
	

	
	

	
	

t

x

x = c · tx = −c · t

Fig. 1. Causality relation of the Special Relativity theory

at the moment b0 > a0 while traveling with a speed which is smaller than or
equal to the speed of light c:√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2 ≤ c · (b0 − a0).

Motivated by this practical usefulness of ordered topological spaces, Urysohn
started working on an extension of his lemma and of the metrization theorem to
(causality-)ordered topological spaces and corresponding pseudo-metrics.

Space-time metrization after Urysohn. P. S. Urysohn did not have time to work
on the space-time extension of his results, since he died in 1924 at an early age
of 26.

After Urysohn’s early death, this activity was continued in Russia by his
student Vadim Efremovich, by Efremovich’s student Revolt Pimenov, and by
Pimenov’s students – and also by H. Busemann in the US and by E. Kronheimer
and R. Penrose in the UK [10,13,22] (see also [16]).

This research actively used the general theory of ordered topological spaces;
see, e.g., [21].

By the 1970s, reasonably general space-time versions of Urysohn’s lemma and
metrization theorem have been proven; see, e.g., [14,15].

Space-time metrization results: main challenge. One of the main objectives of
the space-time metrization activity is to come up with useful applications to
physics.

From this viewpoint, we definitely need constructive versions of these the-
orems – versions in which we not only claim the theoretical existence of a

Metrization Theorem for Space-Times 473

(pseudo)metric, but we also provide an algorithm enabling a physicist to gener-
ate such a metric based on empirical data about the causality relation.

The original 1970s space-time metrization results are not constructive. It is
therefore necessary to make them constructive.

An additional difficulty here is that for this algorithm to be useful, we need a
physically relevant constructive description of a causality-type ordering relation.

What we do in this paper. In this paper,

– we propose a physically relevant constructive description of a causality-type
ordering relation, and

– we show that for this description, a combination of the existing construc-
tive ideas with the known (non-constructive) proof leads to successful con-
structive space-time versions of the Urysohn’s lemma and of the metrization
theorem.

2 Known Space-Time Metrization Results: Reminder

Causality relation: the original description. The current formalization of space-
time geometry starts with a transitive relation a (b on a topological space X .

The physical meaning of this relation is causality – that an event a can in-
fluence the event b. This meaning explains transitivity requirement: if a can
influence b and b can influence c, this means that a can therefore (indirectly)
influence the event c.

Need for a more practice-oriented definition. On the theoretical level, the causal-
ity relation (is all we need to know about the geometry of space-time.

However, from the practical viewpoint, we face an additional problem – that
measurements are never 100% accurate and, therefore, we cannot locate events
exactly. When we are trying to locate an event a in space and time, then, due to
measurement uncertainty, the resulting location ã is only approximately equal
to the actual one: ã ≈ a.

From this viewpoint, when we observe that an event a influences the event b,
we record it as a relation between the corresponding approximations – i.e., we
conclude that ã (b̃; see Fig. 2. However, this may be a wrong conclusion: for
example, if an event b is at the border of the future cone Fa

def= {b : a (b} of
the event a, then

– we have a (b, but
– the approximate location b̃ may be outside the cone,

so the conclusion a (b̃ is wrong.

Kinematic causality: a practice-oriented causality relation. To take into account
measurement uncertainty, researchers use a different causality relation a ≺ b,
meaning that every event in some small neighborhood of b causally follows a.

474 V. Kreinovich

a
*

* * b̃
b

�

�

	
	

	
	

	
	

	
	

	
	

	
	

t

x

x = c · tx = −c · t

Fig. 2. Need for a more practice-oriented definition of causality

Comment. Since a can only be measured with uncertainty, it is also reasonable
to consider a more complex relation: every event in some small neighborhood of b
causally follows every element from some small neighborhood of a. Under certain
reasonable conditions, however, this more complex definition is equivalent to the
above simpler one. Thus, in the following text, we will consider the above simpler
definition.

In precise terms, the above definition a ≺ b means that b belongs to the interior
Int(Fa) of the future cone Fa.

In the simplest space-time of special relativity, this means that we are exclud-
ing the border of the future cones (that corresponds to influencing by photons
and other particles traveling at a speed of light c) and only allow causality by
particle whose speed is smaller than c. The motion of such particles is known as
kinematics, hence this new practice-oriented causality relation is called kinematic
causality.

This definition implies, e.g., that the kinematic casuality relation is transi-
tive, as well as several other reasonable properties. These properties lead to the
following formal definition of the kinematic causality relation.

Definition 1. A relation ≺ is called a kinematic causality if it is transitive and
satisfies the following properties:

a �≺ a; ∀a ∃a, a (a ≺ a ≺ a); a ≺ b⇒ ∃c (a ≺ c ≺ b);

a ≺ b, c⇒ ∃d (a ≺ d ≺ b, c); b, c ≺ a⇒ ∃d (b, c ≺ d ≺ a).

Metrization Theorem for Space-Times 475

Topology and causality can be defined in terms of kinematic causality relation.
We started our description with a pre-ordered topological space X with a causal-
ity relation (. Based on topology and on the causality relation, we defined the
kinematic causality ≺.

It turns out that in many reasonable cases, it is sufficient to know the kine-
matic causality relation ≺. Based on this relation, we can uniquely reconstruct
both the topology and and the original causality relation (.

Indeed, as a topology, we can take a so-called Alexandrov topology in which
intervals

(a, b) def= {c : a ≺ c ≺ b}

form the base.
Once the topology is defined, we can now describe causality as

a (b
def≡ b ∈ a+,

where a+ def= {b : a ≺ b} and S denotes the closure of the set S.

Comment. In principle, we can use a dual definition a (b
def≡ a ∈ b−, where

b−
def= {c : c ≺ b}. To make sure that these two definitions lead to the same

result, the following additional property is usually required:

b ∈ a+ ⇔ a ∈ b−.

Towards a space-time analog of a metric. Traditional metric is defined as a
function ρ : X × X → IR+

0 to the set to the set IR+
0 of all non-negative real

numbers for which the following properties are satisfied:

ρ(a, b) = 0⇔ a = b; ρ(a, b) = ρ(b, a); ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

The usual physical meaning of this definition is that ρ(a, b) is the length of the
shortest path between a and b. This meaning leads to a natural explanation for
the triangle inequality ρ(a, c) ≤ ρ(a, b) + ρ(b, c). Indeed, the shortest path from
a to b (of length ρ(a, b)) can be combined with the shortest path from b to c (of
length ρ(b, c)) into a single combined path from a to c of length ρ(a, b) + ρ(b, c).
Thus, the length ρ(a, c) of the shortest possible path between a and c must be
smaller than or equal to this combined length: ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

In space-time, we do not directly measure distances and lengths. The only
thing we directly measure is (proper) time along a path. So, in space-time ge-
ometry, we talk about times and not lengths.

It is well known that if we travel with a speed close to the speed of light,
then the proper travel time (i.e., the time measured by a clock that travels with
us) goes to 0. Thus, in space-time, the smallest time does not make sense: it is
always 0. What makes sense is the largest time. In view of this, we can define a
“kinematic metric” τ(a, b) as the longest (= proper) time along any path from
event a to event b.

476 V. Kreinovich

Of course, such a path is only possible if a kinematically precedes b, i.e.,
if a ≺ b.

If a ≺ b and b ≺ c, then the longest path from a to b (of length τ(a, b)) can
be combined with the longest path from b to c (of length τ(b, c)) into a single
combined path from a to c of length τ(a, b) + τ(b, c). Thus, the length τ(a, c) of
the longest possible path between a and c must be larger than or equal to this
combined length: τ(a, c) ≥ τ(a, b) + τ(b, c). This inequality is sometimes called
the anti-triangle inequality.

These two properties constitute a formal definition of a kinematic metric.

Definition 2. By a kinematic metric on a set X with a kinematic causality
relation ≺, we mean a function τ : X × X → IR+

0 to the set IR+
0 of all non-

negative real numbers that satisfies the following two properties:

τ(a, b) > 0 ⇔ a ≺ b; a ≺ b ≺ c⇒ τ(a, c) ≥ τ(a, b) + τ(b, c).

Space-time analog of Urysohn’s lemma. The main condition under which the
space-time analog of Urysohn’s lemma is proven is that the space X is separable,
i.e., there exists a countable dense set {x1, x2, . . . , xn, . . .}.

Lemma 2. If ≺ is a kinematic causality relation on a separable space X, and
a ≺ b, then there exists a continuous (-monotonic function f(a,b) : X → [0, 1]
for which:

– f(a,b)(x) = 0 for all x for which a �≺ x, and
– f(a,b)(x) = 1 for all x for which b (x.

This lemma is similar to the original Urysohn’s lemma, because it proves the
existence of a function f(a,b) that separates two disjoint closed sets:

– the complement −a+ to the set a+ and
– the set b+.

The new statement is different from the original Urysohn’s lemma, because:

– first, it only considers special closed sets, and
– second, in contrast to the original Urysohn’s lemma, the new lemma also

requires that the separating function f be monotonic.

Space-time analog of the metrization theorem. Based on the space-time analog
of the Urysohn lemma, one can prove the following results:

Theorem 2. If X is a separable topological space with a kinematic causality
relation ≺, then there exists a continuous kinematic metric τ which generates
the corresponding kinematic causality relation ≺ — in the sense that a ≺ b ⇔
τ(a, b) > 0.

Metrization Theorem for Space-Times 477

Comment. Since, as we have mentioned, the kinematic causality relation ≺ also
generates the topology, we can conclude that the kinematic metric τ also deter-
mines the corresponding topology.

Proof. First, we prove that for every x, there exists a (-monotonic function
fx : X → [0, 1] for which fx(b) > 0⇔ x ≺ b.

The proof of this statement is reasonably straightforward.
The only technically cumbersome part of this proof is to show that if a space

with a kinematic causality is separable, i.e., if there exists an everywhere dense
sequences {x1, . . . , xn, . . .}, then there exists a decreasing sequence yi that con-
verges to x. Moreover, we can select this sequence in such a way that for every
i, if x ≺ xi then yi ≺ xi.

Indeed, since the relation ≺ is a kinematic causality, there exists a point x for
which x ≺ x. We then take y0

def= x. By our choice of y0, we thus have x ≺ y0.
Let us assume that we have already selected points y0, . . . , yk for which x ≺

yk ≺ yk−1 ≺ . . . ≺ y0. Let us construct a point yk+1 for which, first, x ≺ yk+1 ≺
yk and, second, if x ≺ xk+1, then yk+1 ≺ xk+1.

If x �≺ xk+1, then, due to the properties of the kinematic causality, there exists
a point c for which x ≺ c ≺ yk. We will then take yk+1 = c.

If x ≺ xk+1, then, due to the properties of the kinematic causality, from
x ≺ xk+1 and x ≺ yk, we can conclude that there exists a point d for which
x ≺ d ≺ xk+1, yk. We can then take yk+1 = d.

Let us now prove that yn → x, i.e., that for every open neighborhood U of
the point x, there exists an index n0 for which yn ∈ U for all n ≥ n0. Indeed,
let U be such a neighborhood. Since open intervals form a base, there exists an
open interval (a, b) ⊆ U that contains the point x. By definition of the interval,
x ∈ (a, b) means that a ≺ x and x ≺ b. By definition of the kinematic causality,
there exists a point c for which x ≺ c ≺ b. Thus, the open interval (x, b) is
non-empty. Since the sequence {xn} is everywhere dense, it has a point xn0 in
this interval, for which x ≺ xn0 ≺ b. By the properties of the sequence yi, this
implies that x ≺ yn0 ≺ xn0 ≺ b. Since the sequence {yn} is decreasing, we thus
conclude that x ≺ yn ≺ b for all n ≥ n0. From a ≺ x ≺ yn, we then deduce that
a ≺ yn. Hence, yn ∈ (a, b) ⊆ U and so, yn ∈ U for all n ≥ n0. The statement is
proven.

Once a decreasing sequence yi that converges to x is constructed, we can take

fx(b) =
∞∑

i=1

2−i · f(x,yi)(b).

Next, we prove that for every x, there exists a (-decreasing function

gx : X → [0, 1]

for which gx(a) > 0 ⇔ a ≺ x. The proof of this second statement is similar to
the proof of the first statement.

Once these two auxiliary statements are proven, we can use the countable ev-
erywhere dense sequence {x1, x2, . . . , xn, . . .} to construct the desired kinematic
metric as

478 V. Kreinovich

τ(a, b) =
∞∑

i=1

2−i ·min(gxi(a), fxi(b)).

It is reasonably easy to prove that thus defined function is indeed a kinematic
metric. �

3 Towards a Physically Reasonable Constructive
Definition of Causality

Need for a constructive definition of causality. As we have mentioned, in or-
der to provide a physically meaningful constructive version of the space-time
metrization theorem, we must come up with a physically meaningful construc-
tive definition of causality.

Towards a constructive definition of casuality: analysis of the physical situation.
To come up with a physically meaningful constructive definition of causality, let
us recall how causality can be physically detected.

In the ideal world, detecting whether an event a is causally related to the
event b (i.e., whether a (b) is straightforward. We send a signal at event a in
all directions and at all possible speeds, and we check whether this signal was
detected at b:

– if this signal is detected at b, we conclude that a (b;
– if this signal is not detected at b, we conclude that a �(b.

In practice, we can only locate an event with a certain accuracy. As a result,
when we try to detect whether a (b, then, instead of two, we now have three
possible options:

– if the signal is detected in the entire vicinity of b, then we conclude that
a ≺ b;

– if no signal is detected in the entire vicinity of b, then we conclude that a �(b;
– in all other cases, we cannot make any conclusion.

As we increase the location accuracy, we can get more and more information
about the casuality. In general, if a ≺ b, this means that the event a affects all
the events in some vicinity of b. Thus, when the location inaccuracy is sufficiently
small, we will able to detect that a ≺ b. In other words, a ≺ b if and only we can
detect this causality for an appropriate (sufficiently high) level of accuracy.

We can describe this situation by saying that we have a sequence of decidable
relations ≺n corresponding to increasing location accuracy, and

a ≺ b⇔ ∃n (a ≺n b).

To detect whether a ≺ b, we repeat the above experiments with increasing
accuracy. If in all these experiments, we do not detect the effect of a on b,
this means that a is not in kinematic causality relation with b: a �≺ b. It seems
reasonable to argue that if this negative phenomenon does not occur, this means
that for some accuracy level n, we will be able to detect the causality. In other

Metrization Theorem for Space-Times 479

words, we require that ¬(a �≺ b) ⇒ a ≺ b, i.e., that the “Markov principle”
¬¬(a ≺ b)⇒ a ≺ b holds for the constructive kinematic causality relation.

As a result, we arrive at the following constructiveversion of kinematic causality.

Definition 3. A relation ≺ on a set X is called a constructive kinematic casu-
ality if it satisfies the following properties:

– ≺ is transitive: (a ≺ b& b ≺ c) ⇒ a ≺ c.
– ≺ satisfies the formula ¬¬(a ≺ b)⇒ a ≺ b.
– ≺ satisfies the following properties:

a �≺ a; ∀a ∃a, a (a ≺ a ≺ a); a ≺ b⇒ ∃c (a ≺ c ≺ b);

a ≺ b, c⇒ ∃d (a ≺ d ≺ b, c); b, c ≺ a⇒ ∃d (b, c ≺ d ≺ a).

– If a ≺ b, then ∀c (a ≺ c ∨ b �(c).
– There exists a sequence {xi} for which a ≺ b⇒ ∃i (a ≺ xi ≺ b).
– There exists a decidable ternary relation xi ≺n xj for which

xi ≺ xj ⇔ ∃n (xi ≺n xj).

A set X with a constructive causality relation is called a constructive space-time.

Constructive meaning: reminder. The main difference between this new defi-
nition and the original definition of the kinematic causality is that the exis-
tential quantifier ∃ (and the disjunction ∨) are understood constructively: as
the existence of an algorithm that provides the corresponding objects; see, e.g.,
[1,2,3,4,9,18,19]. In these terms:

– The formula ∀a ∃a, a (a ≺ a ≺ a) means that there exists an algorithm that,
given an event a, returns events a and a for which a ≺ a ≺ a.

– The formula a ≺ b ⇒ ∃c (a ≺ c ≺ b) means that there exists an algorithm
that, given two events a and b for which a ≺ b, returns an event c for which
a ≺ c ≺ b.

– The formula a ≺ b, c ⇒ ∃d (a ≺ d ≺ b, c) means that there exists an algo-
rithm that, given events a, b, and c for which a ≺ b, c, returns an event d for
which a ≺ d ≺ b, c.

– The formula b, c ≺ a ⇒ ∃d (b, c ≺ d ≺ a) means that there exists an algo-
rithm that, given events a, b, and c for which b, c ≺ a, returns an event d for
which b, c ≺ d ≺ a.

– The formula a ≺ b⇒ ∀c (a ≺ c∨b �(c) means that there exists an algorithm
that, given events a, b, and c for which a ≺ b, returns either a true statement
a ≺ c or a true statement b �(c.

– The formula a ≺ b ⇒ ∃i (a ≺ xi ≺ b) means that there exists an algorithm
that, given events a and b for which a ≺ b, returns a natural number i for
which a ≺ xi ≺ b.

– The formula xi ≺ xj ⇔ ∃n (xi ≺n xj) means that there exists an algorithm
that, given natural numbers i and j for which xi ≺ xj , returns a natural
number n for which xi ≺n xj .

480 V. Kreinovich

– Finally, the fact that the ternary relation xi ≺n xj is decidable can be
described as

∀i ∀j ∀n (xi ≺n xj ∨ xi �≺n xj).

Comment. In strictly constructive terms, we can say that points xi are simply
natural numbers, xi ≺n xj is a ternary relation between natural numbers, and
an arbitrary constructive event a can be described by two constructive sequences
mi and Mi for which xmi ≺ a ≺ xMi , xmi → x, and xMi → x.

In these terms, if an event a is described by sequences mi and Mi and an
event b is described by sequences ni and Ni, then a ≺ b means that there exist
i and j for which xMi ≺ xnj .

4 Constructive Space-Time Version of Urysohn’s Lemma

Lemma 3. For every constructive kinematic casuality relation, for every a ≺ b,
there exists a constructive (-monotonic function f(a,b) : X → [0, 1] for which
f(a,b)(−a+) = 0 and f(a,b)(b+) = 1.

Comment. This formulation is interpreted constructively.
A real number x is given constructively if we have an algorithm that, given

accuracy k, returns a rational number rk with |rk−x| ≤ 2−k. A function f(x) is
given constructively if, given an input x – i.e., a black box that, given k, returns
a 2−k-approximation rk to the number x – we can compute the value f(x) with
a given accuracy.

In this sense, the above formulation means the existence of an algorithm, that,
given a, b, x, and a given accuracy k, computes the rational number which is
2−k-close to f(a,b)(x).

Proof.

Part 1. Let us define ≺-monotonic values γ(p/2q) for all natural numbers p and
q for which p ≤ 2q. We will define them inductively, first for q = 0, then for
q = 1, etc.

For q = 0: We take γ(0) = a and γ(1) = b.

From q to q + 1: Since (2p)/2q+1 = p/2q, the values γ((2p)/2q+1) are already
defined. We just need to define the values γ((2p + 1)/2q+1) corresponding to a
midpoint

(2p+ 1)/2q+1 =
p/2q + (p+ 1)/2q

2
between p/2q = (2p)/2q+1 and (p + 1)/2q = (2p + 2)/2q+1. For each p, since
γ(p/2q) ≺ γ((p+1)/2q), we can run the algorithm that, given a ≺ b, returns i for
which a ≺ xi ≺ b; this algorithm is a part of the description of the constructive
kinematic causality relation.

By applying this algorithm to γ(p/2q) and γ((p+ 1)/2q), we get an integer i
for which γ(p/2q) ≺ xi ≺ γ((p+ 1)/2q). We then take γ((2p+ 1)/2q+1) = xi.

Metrization Theorem for Space-Times 481

Comment. In this paper, we operate within an algorithmic approach to con-
structive mathematics, where existence means the existence of an algorithm.
For readers who are more familiar with more general axiomatic approach to
constructive mathematics, it is worth mentioning that this construction requires
dependent choice.

Part 2. For every x, we now define f(a,b)(x)
def= sup{r : γ(r) ≺ x}. Let us explain

how this function can be computed.
Due to the properties of the constructive kinematic causality relation, for each

x and for each p and q, we have γ(p/2q) ≺ x ∨ γ((p+ 1)/2q) �(x, and hence

f(a,b)(x) > p/2q ∨ f(a,b)(x) ≤ (p+ 1)/2q.

In other words, there exist an algorithm that, given x, p, and q, tells us whether
f(a,b)(x) > p/2q or f(a,b)(x) ≤ (p+ 1)/2q. For each q, by applying this algorithm
for different p ≤ 2q, we can compute the value f(a,b)(x) with accuracy 2−q.

So, the function f(a,b)(x) is indeed computable. �

5 Constructive Space-Time Metrization Theorem

Theorem 3. For every constructive space-time X with a constructive kinematic
causality relation ≺, there exists a constructive kinematic metric τ(a, b) which
generates the corresponding kinematic causality relation ≺ — in the sense that
a ≺ b⇔ τ(a, b) > 0.

Comment. This formulation is meant as a constructive one: that there exists an
algorithm that computes the values of τ(a, b).

Proof. In this proof, we use the above lemma, that for all a ≺ b, there exists a
(-monotonic function f(a,b) : X → [0, 1] for which

f(a,b)(−a+) = 0 and f(a,b)(b+) = 1.

Let us define, for every i, the following auxiliary function fxi : X → [0, 1]:

fxi(b)
def=

∑
j,n: xi≺nxj

2−j · 2−n · f(xi,xj)(b).

Since the relation xi ≺n xj is decidable, this function is computable: to compute
it with accuracy 2−p, it is sufficient to consider finitely many terms (j, n).

From the (-monotonicity of the functions f(xi,xj)(x), one can conclude that
their linear combination fxi(b) is also (-monotonic.

It is also possible to prove that fxi(b) > 0 ⇔ xi ≺ b. Indeed:

– If fxi(b) > 0, this means that f(xi,xj)(b) > 0 for some j. Since f(xi,xj)(−x+
i) =

0, this means that b cannot belong to the complement −x+
i , i.e., that

¬¬(xi ≺ b).

Thus, we have xi ≺ b.

482 V. Kreinovich

– Vice versa, if xi ≺ b, then there exists a j for which xi ≺ xj ≺ b and thus,
f(xi,xj)(b) = 1. Since xi ≺ xj , there exists an n for which xi ≺n xj and thus,
fxi(b) ≥ 2−j · 2−n > 0.

Similarly, we define functions gxi(a) which are (-decreasing and for which
gxi(a) > 0⇔ a ≺ xi.

Now, we can define the kinematic metric in the same way as in the non-
constructive proof:

τ(a, b) =
∞∑

i=1

2−i ·min(gxi(a), fxi(b)).

Since 0 ≤ gxi(a) ≤ 1 and 0 ≤ fxi(b) ≤ 1, we have 0 ≤ min(gxi(a), fxi(b)) ≤ 1.
One can easily check that this formula defines a computable function: to compute
it with accuracy 2−p, it is sufficient to compute the sum of the terms i = 1, . . . , p,
the remaining terms are bounded from above by the sum

2−(p+1) + 2−(p+2) + . . . = 2−p.

So, to complete the proof, we need to prove:

– that the function τ(a, b) is in correct relation with the kinematic causality
relation, and

– that this function satisfies the anti-triangle inequality.

Let us first prove that a ≺ b⇔ τ(a, b) > 0:

– If a ≺ b, then there exists i for which a ≺ xi ≺ b. Thus, by the properties
of the functions fxi and gxi, we have gxi(a) > 0 and fxi(b) > 0 and thus,
min(gxi(a), fxi(b)) > 0. Hence, we have τ(a, b) > 0.

– Vice versa, if τ(a, b) > 0, this means that there exists an i for which
min(gxi(a), fxi(b)) > 0, i.e., for which gxi(a) > 0 and fxi(b) > 0. By the
properties of the functions fxi and gxi , this means that a ≺ xi and xi ≺ b.
By transitivity, we can now conclude that a ≺ b.

To prove the anti-triangle inequality, let us prove that a similar anti-triangle
inequality holds for each of the expressions min(gxi(a), fxi(b)), i.e., that

a ≺ b ≺ c

implies that

min(gxi(a), fxi(b)) + min(gxi(b), fxi(c)) ≤ min(gxi(a), fxi(c)).

Once we prove this, the desired anti-triangle inequality can be obtained by simply
multiplying each of these inequalities by 2−i and adding them.

To prove the above inequality, let us take into account that for every real
number x, it not possible not to have x > 0 ∨ x ≤ 0: ¬¬(x > 0 ∨ x ≤ 0). Thus,
we can consider separately

– situations when min(gxi(a), fxi(b)) > 0 and
– situations when min(gxi(a), fxi(b)) = 0,

Metrization Theorem for Space-Times 483

and conclude that the double negation of the desired inequality holds. Since for
constructive real numbers, ¬¬(p ≤ q) is constructively equivalent to p ≤ q, we
get the desired inequality.

If min(gxi(a), fxi(b)) > 0, this means that xi ∈ (a, b). Since a ≺ b ≺ c, this
implies that we cannot have xi ∈ (b, c), and hence, that min(gxi(b), fxi(c)) = 0.
Since the function fxi(b) is (-monotonic and b ≺ c, we have fxi(b) ≤ fxi(c) and
thus, min(gxi(a), fxi(b)) ≤ min(gxi(a), fxi(c)). Due to min(gxi(b), fxi(c)) = 0,
we have min(gxi(a), fxi(b)) + min(gxi(b), fxi(c)) = min(gxi(a), fxi(b)) and thus,
we get the desired inequality

min(gxi(a), fxi(b)) + min(gxi(b), fxi(c)) ≤ min(gxi(a), fxi(c)).

If min(gxi(b), fxi(c)) > 0, this means that xi ∈ (b, c). Since a ≺ b ≺ c, this
implies that we cannot have xi ∈ (a, b), and hence, that min(gxi(a), fxi(b)) = 0.
Since the function gxi(b) is (-decreasing and a ≺ b, we have gxi(b) ≤ gxi(a) and
thus, min(gxi(b), fxi(c)) ≤ min(gxi(a), fxi(c)). Due to min(gxi(a), fxi(b)) = 0,
we have min(gxi(a), fxi(b)) + min(gxi(b), fxi(c)) = min(gxi(b), fxi(c)) and thus,
we get the desired inequality

min(gxi(a), fxi(b)) + min(gxi(b), fxi(c)) ≤ min(gxi(a), fxi(c)).

Finally, if min(gxi(a), fxi(b)) = 0 and min(gxi(b), fxi(c)) = 0, then

min(gxi(a), fxi(b)) + min(gxi(b), fxi(c)) = 0

and hence, since min(gxi(a), fxi(c)) ≥ 0, we also have the desired anti-triangle
inequality. �

6 Additional Results

Similar techniques enable us to prove constructive versions of other results about
space-time models.

Definition 4. By a time coordinate t on a space X with a kinematic causality
relation ≺, we mean a function t : X → IR for which:

• a ≺ b⇒ t(a) < t(b); and
• a (b⇒ t(a) ≤ t(b).

Proposition 1. On every constructive space-time X with a constructive kine-
matic causality relation ≺, there exists a constructive time coordinate.

Proof. The desired constructive version of a time coordinate can be designed as
follows:

t(b) def=
∞∑

i=1

2−i · fxi(b).

Since fxi(b) ∈ [0, 1], this is constructively defined (computable): to compute
t(b) with accuracy 2−p, it is sufficient to add first p terms in the sum.

484 V. Kreinovich

Let us prove that this function is indeed the time coordinate. Indeed, since
each of the functions fxi(b) is (-monotonic, their convex combination t(b) is also
(-monotonic.

To prove that the function t(b) is ≺-monotonic, we can use the fact that a ≺ b
implies the existence of a natural number i for which a ≺ xi ≺ b. For this i, we
have fxi(a) = 0 and fxi(b) > 0, hence fxi(a) < fxi(b). For all other j �= i, due
to a ≺ b⇒ a (b and (-monotonicity of fxj , we have fxj (a) ≤ fxj (b). Thus, by
adding these inequalities, we get t(a) < t(b). �

Comment. This result is similar to the constructive existence of a utility function
u(x), i.e., a function for which a ≺ b implies u(a) < u(b), where ≺ is a preference
relation; see, e.g., [5,6,7,8].

All possible time coordinates determine the causality relation: non-constructive
case. In Newtonian physics, time t(a) is absolute, and

a (b⇔ t(a) ≤ t(b).

One of the main discoveries that led Einstein to his Special Relativity theory is
the discovery that time is relative: a time coordinate corresponding to a moving
body is different from the time coordinate corresponding to the stationary one.
In general, there are many possible time coordinates t, each of which has the
same property:

a (b⇒ ∀t (t(a) ≤ t(b)).

For each of these time coordinates t, the mere fact that t(a) ≤ t(b) does not
necessarily mean that a causally precedes b: it may happen that in some other
time coordinate, we have t(a) > t(b). What is true is that if a is not causally
preceding b, then there exist a time coordinate for which t(a) > t(b):

a �(b⇒ ∃t (t(a) > t(b)).

In non-constructive space-time geometry, the above two statements simply
mean that

a (b⇔ ∀t (t(a) ≤ t(b)),

i.e., that the causality relation is uniquely determined by the class of all possible
time coordinates.

All possible time coordinates determine the causality relation: constructive case.
Let us show that in the constructive case, under reasonable conditions, we also
have the implication

a �(b⇒ ∃t (t(a) > t(b)).

For that, we will need to impose an additional physically reasonable requirement.
For every event b, the past cone Pb

def= {c : c (b} is a closed set; thus,
classically, its complement −Pb = {c : c (b} is an open set. The point a belongs
to this set; thus, a whole open neighborhood of a belongs to this set as well. Since

Metrization Theorem for Space-Times 485

the topology is the Alexandrov topology, with intervals as a base, this means
that there exist values a and a which which a ≺ a ≺ a and the whole interval
(a, a) belongs to the complement −Pb.

Since the sequence {xi} is everywhere dense in X , there is a point xi in the
interval (a, a), i.e., a point xi for which xi ≺ a and xi �(b. By measuring the
event locations with higher and higher accuracy, we will be able to detect this
relation. Thus, it is reasonable to require that the following additional condition
constructively holds:

a �(b⇒ ∃i (xi ≺ a& xi �(b).

Let us show that under this condition, the above implication holds.

Proposition 2. Let X be a constructive space-time with a constructive causality
relation ≺ for which

a �(b⇒ ∃i (xi ≺ a& xi �(b).

Then, for every a �(b, there exists a constructive time coordinate t for which
t(a) > t(b).

Proof. Indeed, let i0 be an index for which xi0 ≺ a and xi0 �(b. For this i0, we
thus have fxi0

(a) > 0 and fxi0
(b) = 0. Let us now construct the following time

coordinate:

t(x) =
2

fxi0
(a)

· fxi0
(x) +

∞∑
i
=i0

2−i · fxi(x).

Similar to the above formula, we can check that the function thus defined is
indeed a time coordinate. It is therefore sufficient to show that t(a) > t(b).
Indeed:

– For x = a, the first term in the sum is equal to
2

fxi0
(a)

· fxi0
(x) = 2, so

t(a) ≥ 2.
– For x = b, the first term is equal to 0. Since fxi(x) ≤ 1 for all i, we thus

conclude that

t(b) =
∞∑

i
=i0

2−i · fxi(x) ≤
∞∑

i=1

2−i = 1.

Here, t(a) ≥ 2 and t(b) ≤ 1, and hence indeed t(a) > t(b). �

Comment. Without this additional requirement, we can only prove that

a �(b⇒ ¬¬∃t (t(a) > t(b)).

The existence of a standard metric. Another constructive result is the existence
of a standard metric on each space-time model.

Proposition 3. On every constructive space X with a constructive kinematic
causality relation ≺, there exists a constructive metric ρ(a, b).

486 V. Kreinovich

Proof. The desired constructive metric can be defined as follows:

ρ(a, b) def=
∞∑

i=1

2−i · |fxi(a)− fxi(b)|.

One can easily check that this function is computable, and that it is indeed a
metric – i.e., that it is symmetric and satisfies the triangle inequality. �

7 Remaining Challenges

Need to take symmetries into account. In this paper, given space-time X with
the kinematic causality relation ≺, we designed a kinematic metric τ that is
consistent with this relation.

In physics, however, causality is not everything. One of the most important
notions of physics is symmetry. If space-time has symmetries – i.e., is invari-
ant with respect to some transformations – it is therefore desirable to find a
kinematic metric τ which is invariant with respect to these symmetries.

In the simplest case of a finite symmetry group G, we can explicitly define
such a invariant constructive kinematic metric as

τinv(a, b)
def=
∑
g∈G

τ(g(a), g(b)).

An important case is when X is both an ordered group and a space with a
kinematic causality relation ≺, and the closures of all intervals are compact sets.
It known that in the non-constructive case, there exists a left-invariant metric
τ(a, b): namely, τ(a, b) = μH({c : a (c (b}) where μH is the (left-invariant)
Haar measure; see, e.g., [14]. It is desirable to constructivize this and similar
results.

Need for feasible algorithms. In this paper, we have analyzed the existence of
algorithms for computing the kinematic metric. From the practical viewpoint,
it is important to make sure not only that such algorithms exist, but that they
are feasible (i.e., can be computed in polynomial time); see, e.g., [11].

Partial analysis of feasibility of different computational problems related to
space-time models is given in [17]. It is desirable to extend this analysis to the
problem of computing kinematic metric.

Acknowledgements. This work was supported in part by the National Sci-
ence Foundation grant HRD-0734825, by Grant 1 T36 GM078000-01 from the
National Institutes of Health, by the Max Planck Institut für Mathematik, and
by Grant MSM 6198898701 from MŠMT of Czech Republic.

The author is thankful to all the participants of Conference on Abelian Groups
and on Constructive Mathematics (Boca Raton, Florida, May 9–11, 2008), es-
pecially to Douglas S. Bridges, for valuable suggestions, and to the anonymous
referees for their help.

Metrization Theorem for Space-Times 487

References

1. Aberth, O.: Introduction to Precise Numerical Methods. Academic Press, San

Diego (2007)

2. Beeson, M.: Foundations of Constructive Mathematics: Metamathematical Studies.

Springer, Heidelberg (1985)

3. Beeson, M.: Some relations between classical and constructive mathematics. Jour-

nal of Symbolic Logic 43, 228–246 (1987)

4. Bishop, E., Bridges, D.S.: Constructive Analysis. Springer, Heidelberg (1985)

5. Bridges, D.S.: The construction of a continuous demand function for uniformly

rotund preferences. J. Math. Economics 21, 217–227 (1992)

6. Bridges, D.S.: The constructive theory of preference orderings on a locally compact

space II. Math. Social Sciences 27, 1–9 (1994)

7. Bridges, D.S.: Constructive methods in mathematical economics. Mathematical

Utility Theory, J. Econ. (Zeitschrift für Nationalökonomie) (suppl. 8), 1–21 (1999)

8. Bridges, D.S., Mehta, G.B.: Representations of Preference Orderings. Lecture Notes

in Economics and Mathematical Systems, vol. 422. Springer, Heidelberg (1996)

9. Bridges, D.S., Vı̂ta, L.: Techniques of Constructive Mathematics. Springer,

New York (2006)

10. Busemann, H.: Timelike Spaces. Warszawa, PWN (1967)

11. Gurevich, Y.: Platonism, constructivism, and computer proofs vs. proofs by hand.

Bulletin of EATCS (European Association for Theoretical Computer Science) 57,

145–166 (1995)

12. Kelley, J.L.: General Topology. Springer, New York (1975)

13. Kronheimer, E.H., Penrose, R.: On the structure of causal spaces. Proc. Cambr.

Phil. Soc. 63, 481–501 (1967)

14. Kreinovich, V.: On the metrization problem for spaces of kinematic type. Soviet

Mathematics Doklady 15, 1486–1490 (1974)

15. Kreinovich, V.: Categories of Space-Time Models. Ph.D. dissertation, Soviet

Academy of Sciences, Siberian Branch, Institute of Mathematics, Novosibirsk

(1979) (in Russian)

16. Kreinovich, V.: Symmetry characterization of Pimenov’s spacetime: a reformula-

tion of causality axioms. International J. Theoretical Physics 35, 341–346 (1996)

17. Kreinovich, V., Kosheleva, O.: Computational complexity of determining which

statements about causality hold in different space-time models. Theoretical Com-

puter Science 405, 50–63 (2008)

18. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and

Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht

(1998)

19. Kushner, B.A.: Lectures on Constructive Mathematical Analysis. American Math-

ematical Society, Providence (1985)

20. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, New York

(1973)

21. Nachbin, L.: Topology and Order. Van Nostrand, Princeton (1965); reprinted by

R. E. Kreiger: Huntington (1976)

22. Pimenov, R.I.: Kinematic spaces: Mathematical Theory of Space-Time. Consul-

tants Bureau, N.Y (1970)

Thirteen Definitions of a Stable Model

Vladimir Lifschitz

Department of Computer Sciences, University of Texas at Austin, USA

vl@cs.utexas.edu

Abstract. Stable models of logic programs have been studied by many

researchers, mainly because of their role in the foundations of answer set

programming. This is a review of some of the definitions of the concept

of a stable model that have been proposed in the literature. These defi-

nitions are equivalent to each other, at least when applied to traditional

Prolog-style programs, but there are reasons why each of them is valuable

and interesting. A new characterization of stable models can suggest an

alternative picture of the intuitive meaning of logic programs; or it can

lead to new algorithms for generating stable models; or it can work bet-

ter than others when we turn to generalizations of the traditional syntax

that are important from the perspective of answer set programming; or

it can be more convenient for use in proofs; or it can be interesting sim-

ply because it demonstrates a relationship between seemingly unrelated

ideas.

Keywords: answer set programming, nonmonotonic reasoning, stable

models.

1 Introduction

Stable models of logic programs have been studied by many researchers, mainly
because of their role in the foundations of answer set programming (ASP) [30,37].
This programming paradigm provides a declarative approach to solving combi-
natorial search problems, and it has found applications in several areas of science
and technology [21]. In ASP, a search problem is reduced to computing stable
models, and programs for generating stable models (“answer set solvers”) are
used to perform search.

This paper is a review of some of the definitions, or characterizations, of
the concept of a stable model that have been proposed in the literature. These
definitions are equivalent to each other when applied to “traditional rules” –
with an atom in the head and a list of atoms, some possibly preceded with the
negation as failure symbol, in the body:

A0 ← A1, . . . , Am, not Am+1, not An. (1)

But there are reasons why each of them is valuable and interesting. A new char-
acterization of stable models can suggest an alternative picture of the intuitive
meaning of logic programs; or it can lead to new algorithms for generating stable

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 488–503, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Thirteen Definitions of a Stable Model 489

models; or it can work better when we turn to generalizations of the traditional
syntax that are important from the perspective of answer set programming; or
it can be more convenient for use in proofs, such as proofs of correctness of ASP
programs; or, quite simply, it can intellectually excite us by demonstrating a
relationship between seemingly unrelated ideas.

We concentrate here primarily on programs consisting of finitely many rules
of type (1), although generalizations of this syntactic form are mentioned several
times in the second half of the paper. Some work on the stable model semantics,
for instance [15,23,39,2], is not discussed here because it is about extending,
rather than modifying, the definitions proposed earlier; this kind of work does
not tell us much new about stable models of traditional programs.

The paper begins with comments on the relevant work that had preceded the
invention of stable models – on the semantics of logic programming (Sect. 2)
and on formal nomonotonic reasoning (Sect. 3). Early contributions that can be
seen as characterizations of the class of stable models in terms of nonmonotonic
logic are discussed in Sect. 4. Then we review the “standard” definition of stable
models – in terms of reducts (Sect. 5) – and turn to its characterizations in terms
of unfounded sets and loop formulas (Sect. 6). After that, we talk about the
definitions of stable models in terms of circumscription (Sect. 7) and in terms of
support relative to a well-ordering (Sect. 8), discuss two characterizations based
on tightening (Sect. 9), and talk about the relationship between stable models
and equilibrium logic (Sect. 10).

In recent years, two interesting modifications of the definition of the reduct
were introduced (Sect. 11). We have learned also that a simple change in the def-
inition of circumscription can give a characterization of stable models (Sect. 12).

This is an extended version of the conference paper [20].

2 Minimal Models, Completion, and Stratified Programs

2.1 Minimal Models vs. Completion

According to [47], a logic program without negation represents the least (and
so, the only minimal) Herbrand model of the corresponding set of Horn clauses.
On the other hand, according to [4], a logic program represents a certain set of
first-order formulas, called the program’s completion.

These two ideas are closely related to each other, but not equivalent. Take,
for instance, the program

p(a, b).
p(X,Y)← p(Y,X). (2)

The minimal Herbrand model

{p(a, b), p(b, a)} (3)

of this program satisfies the program’s completion

∀XY (p(X,Y)↔ ((X = a ∧ Y = b) ∨ p(Y,X))) ∧ a �= b.

490 V. Lifschitz

But there also other Herbrand interpretations satisfying the program’s comp-
letion – for instance,

{p(a, b), p(b, a), p(b, b)}. (4)

Another example of this kind, important in applications, is given by the re-
cursive definition of transitive closure:

q(X,Y)← p(X,Y).
q(X,Z)← q(X,Y), q(Y, Z). (5)

The completion of the union of this program with a definition of p has, in many
cases, unintended models, in which q is weaker than the transitive closure of p
that we want to define.

Should we say then that Herbrand minimal models provide a better seman-
tics for logic programming than program completion? Yes and no. The concept
of completion has a fundamental advantage: it is applicable to programs with
negation. Such a program, viewed as a set of clauses, usually has several minimal
Herbrand models, and some of them may not satisfy the program’s completion.
Such “bad” models reflect neither the intended meaning of the program nor the
behavior of Prolog. For instance, the program

p(a). p(b). q(a).
r(X)← p(X), not q(X). (6)

has two minimal Herbrand models:

{p(a), p(b), q(a), r(b)} (7)

(“good”) and
{p(a), p(b), q(a), q(b)} (8)

(“bad”). The completion of (6)

∀X(p(X)↔ (X = a ∨X = b)) ∧ ∀X(q(X)↔ X = a)
∧∀X(r(X) ↔ (p(X) ∧ ¬q(X))) ∧ a �= b

characterizes the good model.

2.2 The Challenge

In the 1980s, the main challenge in the study of the semantics of logic program-
ming was to invent a semantics that

– in application to a program without negation, such as (2), describes the
minimal Herbrand model,

– in the presence of negation, as in example (6), selects a “good” minimal
model satisfying the program’s completion.

Thirteen Definitions of a Stable Model 491

Such a semantics was proposed in two papers presented at the 1986 Work-
shop on Foundations of Deductive Databases and Logic Programming [1,48].
That approach was not without defects, however. First, it is limited to programs
in which recursion and negation “don’t mix.” Such programs are called strati-
fied. Unfortunately, some useful Prolog programs do not satisfy this condition.
For instance, we can say that a position in a two-person game is winning if
there exists a move from it to a non-winning position (cf. [46]). This rule is not
stratified: it recursively defines winning in terms of non-winning. A really good
semantics should be applicable to rules like this.

Second, the definition of the semantics of stratified programs is somewhat
complicated. It is based on the concept of the iterated least fixpoint of a program,
and to prove the soundness of this definition one needs to show that this fixpoint
doesn’t depend on the choice of a stratification. A really good semantics should
be a little easier to define.

The stable model semantics, as well as the well-founded semantics proposed
in [49,50], can be seen as an attempt to generalize and simplify the iterated
fixpoint semantics of stratified programs.

3 Nonmonotonic Reasoning

Many events in the history of research on stable models can be only under-
stood if we think of it as part of a broader research effort – the investigation
of nonmonotonic reasoning. Early work in this area was motivated primarily by
the desire to understand and automate the use of defaults by humans. When
commonsense reasoning exploits a default, there is a possibility that taking into
account new information may force us to retract the conclusions that we have
made. The same kind of nonmonotonicity is observed in the behavior of Prolog
programs with negation. For instance, rules (6) warrant the conclusion r(b), but
if the fact q(b) is added to the program then this conclusion will be retracted.

As to the stable model semantics, three nonmonotonic formalisms are partic-
ularly relevant.

3.1 Circumscription

Circumscription [31,32] is a syntactic transformation that turns a first-order
sentence F into the conjunction of F with another formula, which expresses
a minimality condition (the exact form of that condition depends on the “cir-
cumscription policy”). This additional conjunctive term involves second-order
quantifiers.

Circumscription generalizes the concept of a minimal model from [47]. The
iterated fixpoint semantics of stratified programs can be characterized in terms
of circumscription also [19]. On the other hand, circumscription is similar to
program completion in the sense that both are syntactic transformations that
make a formula stronger. The relationship between circumscription and program
completion was investigated in [43].

492 V. Lifschitz

3.2 Default Logic

A default theory in the sense of [42] is characterized by a set W of “axioms” –
first-order sentences, and a set D of “defaults” – expressions of the form

F : MG1, . . . ,MGn

H
, (9)

where F,G1, . . . , Gn, H are first-order formulas. The letter M, according to Reiter,
is to be read as “it is consistent to assume.” Intuitively, default (9) is similar to the
inference rule allowing us to derive the conclusion H from the premise F , except
that the applicability of this rule is limited by the justificationsG1, . . . , Gn; deriv-
ing H is allowed only if each of the justifications can be “consistently assumed.”

This informal description of the meaning of a default is circular: to decide
which formulas can be derived using one of the defaults from D we need to
know whether the justifications of that default are consistent with the formulas
that can be derived from W using the inference rules of classical logic and the
defaults from D – including the default that we are trying to understand! But
Reiter was able to turn his intuition about M into a precise semantics. His theory
of defaults tells us under what conditions a set E of sentences is an “extension”
for the default theory with axioms W and defaults D.

In Sect. 4 we will see that one of the earliest incarnations of the stable model
semantics was based on treating rules as defaults in the sense of Reiter.

3.3 Autoepistemic Logic

According to [36], autoepistemic logic “is intended to model the beliefs of an
agent reflecting upon his own beliefs.” Moore’s definition of propositional au-
toepistemic logic builds on the ideas of [35] and [34].

Formulas of this logic are constructed from atoms using propositional connec-
tives and the modal operator L (“is believed”). Its semantics specifies, for any
set A of formulas (“axioms”), which sets of formulas are considered “stable ex-
pansions” of A. Intuitively, Moore explains, the stable expansions of A are “the
possible sets of beliefs that a rational agent might hold, given A as his premises.”

In Sect. 4 we will see that one of the earliest incarnations of the stable model
semantics was based on treating rules as autoepistemic axioms in the sense of
Moore. The term “stable model” is historically related to “stable expansions” of
autoepistemic logic.

3.4 Relations between Nonmonotonic Formalisms

The intuitions underlying circumscription, default logic, and autoepistemic logic
are different from each other, but related. For instance, circumscribing (that is,
minimizing the extent of) a predicate p is somewhat similar to adopting the
default

true : M¬p(X)
¬p(X)

Thirteen Definitions of a Stable Model 493

(if it is consistent to assume that X does not have the property p, conclude that
it doesn’t). On the other hand, Moore observes that “a formula is consistent if
its negation is not believed”; accordingly, Reiter’s M is somewhat similar to the
combination ¬L¬ in autoepistemic logic, and default (9), in propositional case,
is somewhat similar to the autoepistemic formula

F ∧ ¬L¬G1 ∧ · · · ∧ ¬L¬Gn → H.

However, the task of finding precise and general relationships between these
three formalisms turned out to be difficult. Discussing technical work on that
topic is beyond the scope of this paper.

4 Definitions A and B, in Terms of Translations into
Nonmonotonic Logic

The idea of [13] is to think of the expression not A in a logic program as syn-
onymous with the autoepistemic formula ¬LA (“A is not believed”). Since au-
toepistemic logic is propositional, the program needs to be grounded before
this transformation is applied. After grounding, each rule (1) is rewritten as a
formula:

A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An → A0, (10)

and then L inserted after each negation. For instance, to explain the meaning of
program (6), we take the result of its grounding

p(a). p(b). q(a).
r(a) ← p(a), not q(a).
r(b) ← p(b), not q(b).

(11)

and turn it into a collection of formulas:

p(a), p(b), q(a),
p(a) ∧ ¬L q(a)→ r(a),
p(b) ∧ ¬L q(b) → r(b).

The autoepistemic theory with these axioms has a unique stable expansion,
and the atoms from that stable expansion form the intended model (7) of the
program.

This epistemic interpretation of logic programs – what we will call Defini-
tion A – is more general than the iterated fixpoint semantics, and it is much
simpler. One other feature of Definition A that makes it attractive is the sim-
plicity of the underlying intuition: negation as failure expresses the absence of
belief.

The “default logic semantics” proposed in [3] is translational as well; it inter-
prets logic programs as default theories. The head A0 of a rule (1) turns into the
conclusion of the default, the conjunction A1 ∧· · · ∧Am of the positive members
of the body becomes the premise, and each negative member not Ai turns into

494 V. Lifschitz

the justification M¬Ai (“it is consistent to assume ¬Ai”). For instance, the last
rule of program (6) corresponds to the default

p(X) : M¬q(X)
r(X)

. (12)

There is no need for grounding, because defaults are allowed to contain variables.
This difference between the two translations is not essential though, because
Reiter’s semantics of defaults treats a default with variables as the set of its
ground instances. Grounding is simply “hidden” in the semantics of default
logic.

This Definition B of the stable model semantics stresses an analogy between
rules in logic programming and inference rules in logic. Like Definition A, it
has an epistemic flavor, because of the relationship between the “consistency
operator” M in defaults and the autoepistemic “belief operator” L (Sect. 3.4).

The equivalence between these two approaches to semantics of traditional
programs follows from the fact that each of them is equivalent to Definition C
of a stable model reviewed in the next section. This was established in [14] for
the autoepistemic semantics and in [29] for the default logic approach.

5 Definition C, in Terms of the Reduct

Definitions A and B are easy to understand – assuming that one is familiar with
formal nonmonotonic reasoning. Can we make these definitions direct and avoid
explicit references to autoepistemic logic and default logic?

This question has led to the most widely used definition of the stable model
semantics, Definition C [14]. The reduct of a program Π relative to a set M of
ground atoms is obtained from Π by grounding followed by

(i) dropping each rule (1) containing a term not Ai with Ai ∈M , and
(ii) dropping the negative parts not Am+1, . . . , not An from the bodies of the

remaining rules.

We say that M is a stable model of Π if the minimal model of (the set of clauses
corresponding to the rules of) the reduct of Π with respect to M equals M . For
instance, the reduct of program (6) relative to (7) is

p(a). p(b). q(a).
r(b) ← p(b). (13)

The minimal model of this program is the set (7) that we started with; conse-
quently, that set is a stable model of (6).

Definition C was independently invented in [12].

6 Definitions D and E, in Terms of Unfounded Sets and
Loop Formulas

From [45] we learned that stable models can be characterized in terms of the
concept of an unfounded set, which was introduced in [49] as part of the definition

Thirteen Definitions of a Stable Model 495

of the well-founded semantics. Namely, a set M of atoms is a stable model of a
(grounded) program Π iff

(i) M satisfies Π ,1 and
(ii) no non-empty subset of M is unfounded for Π with respect to M .2

This Definition D can be refined using the concept of a loop, introduced
many years later in [27]. A loop of a grounded program Π is a non-empty set L
of ground atoms such that any elements A, A′ of L can be connected by a chain

A = A1, A2, . . . , Ak−1, Ak = A′ (k > 1)

of elements of L satisfying the following condition: for any i = 1, . . . , k − 1, the
program contains a rule R that such that Ai is the head of R and Ai+1 is a
member of the body of R. For instance, the result of grounding program (2)

p(a, b).
p(a, a)← p(a, a).
p(a, b)← p(b, a).
p(b, a)← p(a, b).
p(b, b)← p(b, b).

(14)

has 3 loops:
{p(a, a)}, {p(b, b)}, {p(a, b), p(b, a)}. (15)

Program (11) has no loops.
According to [17], if we require in condition (i) above that M satisfy the

completion of the program, rather than the program itself, then it will be pos-
sible to relax condition (ii) and require only that no loop contained in M be
unfounded; there will be no need then to refer to arbitrary non-empty subsets
in that condition.

In [27] loops are used in a different way. That paper associates with every
loop L of Π a certain propositional formula, called the loop formula for L.
According to Definition E,M is a stable model ofΠ iffM satisfies the completion
of Π conjoined with the loop formulas for all loops of Π . For instance, the loop
formulas for the loops (15) of program (14) are

p(a, a)→ false,
p(b, b)→ false,
(p(a, b) ∨ p(b, a))→ true.

The first two loop formulas eliminate all nonminimal models of the completion
of (14).

1 That is, M satisfies the propositional formulas (10) corresponding to the rules of Π .
2 To be precise, unfoundedness is defined with respect to a partial interpretation, not

a set of atoms. But we are only interested here in the special case when the partial

interpretation is complete, and assume that complete interpretations are represented

by sets of atoms in the usual way.

496 V. Lifschitz

The invention of loop formulas has led to the creation of systems for gen-
erating stable models that use SAT solvers for search (“SAT-based answer set
programming”). Several systems of this kind performed well in a recent
competition [5].

7 Definition F, in Terms of Circumscription

We saw in Sect. 4 that a logic program can be viewed as shorthand for an au-
toepistemic theory or a default theory. The characterization of stable models
described in [24, Sect. 3.4.1] relates logic programs to the third nonmonotonic
formalism reviewed above, circumscription. Like Definitions A and B, it is based
on a translation, but the output of that translation is not simply a circumscrip-
tion formula; it involves also some additional conjunctive terms.

The first step of that translation consists in replacing the occurrences of each
predicate symbol p in the negative parts ¬Am+1∧· · ·∧¬An of the formulas (10)
corresponding to the rules of the program with a new symbol p′ and forming
the conjunction of the universal closures of the resulting formulas. The sentence
obtained in this way is denoted by C(Π). For instance, if Π is (6) then C(Π) is

p(a) ∧ p(b) ∧ q(a) ∧ ∀X(p(X) ∧ ¬q′(X)→ r(X)).

The translation of Π is a conjunction of two sentences: the circumscription of
the old (non-primed) predicates in C(Π) and the formulas asserting, for each of
the new predicates, that it is equivalent to the corresponding old predicate. For
instance, the translation of (6) is

CIRC[C(Π)] ∧ ∀X(q′(X)↔ q(X)); (16)

the circumscription operator CIRC is understood here as the minimization of
the extents of p, q, r.

The stable models of Π can be characterized as the Herbrand interpretations
satisfying the translation of Π , with the new (primed) predicates removed from
them (“forgotten”).

An interesting feature of this Definition F is that, unlike Definitions A–E,
it does not involve grounding. We can ask what non-Herbrand models of the
translation of a logic program look like. Can it be convenient in some cases to
represent possible states of affairs by such “non-Herbrand stable models” of a
logic program? A non-Herbrand model may include an object that is different
from the values of all ground terms, or there may be several ground terms having
the same value in it; can this be sometimes useful?

We will return to the relationship between stable models and circumscription
in Sect. 12.

8 Definition G, in Terms of Support

As observed in [1], an Herbrand model M of a grounded program satisfies the
program’s completion iff every element A of M is supported, in the sense that
the program contains a rule (1) such that

Thirteen Definitions of a Stable Model 497

A0 = A, A1, . . . , Am ∈M, Am+1, . . . , An �∈M. (17)

A stronger form of this condition, given in [6], characterizes the class of stable
models. According to his Definition G, an Herbrand model M of a grounded
program is stable if there exists a well-ordering≤ ofM such that every element A
of M is supported relative to this well-ordering, in the sense that the program
contains a rule (1) satisfying conditions (17) and

A1, . . . , Am < A0.

For instance, the stable model (3) of program (14) is supported relative to the
order p(a, b) < p(b, a). On the other hand, model (4) is supported, but it is easy
to see that it is not supported relative to any ordering of its elements.3

When M is finite, well-orderings of M can be described in terms of functions
from atoms to integers, and supportedness relative to an order relation can be
described by a formula of difference logic – the extension of propositional logic
that includes variables for integers and atomic formulas of the form x − y ≥ c.
This observation suggests the posibility of using solvers for difference logic to
generate stable models [38].

9 Definitions H and I, in Terms of Tightening and the
Situation Calculus

We will talk now about two characterizations of stable models that are based,
like Definition F, on translations into classical logic that use auxiliary predicates.

Programs that have no loops, such as (11), are called tight. The stable mod-
els of a tight program are identical to the Herbrand models of its completion
[8]. Definition H [51] is based on a process of “tightening” that makes an ar-
bitrary traditional program tight. This process uses two auxiliary symbols: the
object constant 0 and the unary function constant s (“successor”). The tightened
program uses also auxiliary predicates with an additional numeric argument. In-
tuitively, p(X,N) expresses that there exists a sequence of N “applications” of
rules of the program that “establishes” p(X). The stable models of a program
are described then as Herbrand models of the completion of the result of its
tightening, with the auxiliary symbols “forgotten.”

We will not reproduce here the definition of tightening, but here is an example:
the result of tightening program (6) is

p(a, s(N)). p(b, s(N)). q(a, s(N)).
r(X, s(N)) ← p(X,N), not q(X).
p(X)← p(X,N).
q(X)← q(X,N).
r(X)← r(X,N).

3 To be precise, the characterization of stable models in [6] is limited to finite models,

and it uses different terminology.

498 V. Lifschitz

Rules in line 1 tell us that p(a) can be established in any number of steps that
is greater than 0; similarly for p(b) and q(a). According to line 2, r(X) can
be established in N + 1 steps if p(X) can be established in N steps and q(X)
cannot be established at all (note that an occurrence of a predicate does not get
an additional numeric argument if it is negated). Finally, an atom holds if it can
be established by some number N of rule applications.

Definition I [25] treats a rule in a logic program as an abbreviated description
of the effect of an action – the action of “applying” that rule – in the situation
calculus.4 For instance, if the action corresponding to the last rule of (6) is de-
noted by lastrule(X) then that rule can be viewed as shorthand for the situation
calculus formula

p(X,S) ∧ ¬∃S(q(X,S))→ r(X, do(lastrule(X), S))

(if p(X) holds in situation S and q(X) does not hold in any situation then r(X)
holds after executing action lastrule(X) in situation S).

In this approach to stable models, the situation calculus function do plays the
same role as adding 1 to N in Wallace’s theory. Instead of program completion,
Lin and Reiter use the process of turning effect axioms into successor state
axioms, which is standard in applications of the situation calculus.

10 Definition J, in Terms of Equilibrium Logic

The logic of here-and-there, going back to the early days of modern logic [16], is a
modification of classical propositional logic in which propositional interpretations
in the usual sense – assignments, or sets of atoms – are replaced by pairs (X,Y)
of sets of atoms such that X ⊆ Y . (We think of X as the set of the atoms
that are true “here”, and Y as the set of the atoms that are true “there.”) The
semantics of this logic defines when (X,Y) satisfies a formula F .

In [40], the logic of here-and-there was used as a starting point for defining
a nonmonotonic logic closely related to stable models. According to Pearce, a
pair (Y, Y) is an equilibrium model of a propositional formula F if F is satisfied
in the logic of here-and-there by (Y, Y) but is not satisfied by (X,Y) for any
proper subset X of Y . Pearce showed that a set M of atoms is a stable model
of a program Π iff (M,M) is an equilibrium model of the set of propositional
formulas (10) corresponding to the grounded rules of Π .

This Definition J is important for two reasons. First, it suggests a way to ex-
tend the concept of a stable model from traditional rules – formulas of form (1)
– to arbitrary propositional formulas: we can say that M is a stable model of a
propositional formula F if (M,M) is an equilibrium model of F . This is valuable
from the perspective of answer set programming, because many “nonstandard”
constructs commonly used in ASP programs, such as choice rules and weight
constraints, can be viewed as abbreviations for propositional formulas [11]. Sec-
ond, Definition J is a key to the theorem about the relationship between the
concept of strong equivalence and the logic of here-and-there [22].
4 See [44] for a detailed description of the situation calculus [33] as developed by the

Toronto school.

Thirteen Definitions of a Stable Model 499

11 Definitions K and L, in Terms of Modified Reducts

In [7] the definition of the reduct reproduced in Sect. 5 is modified by including
the positive members of the body, along with negative members, in the descrip-
tion of step (i), and by removing step (ii) altogeher. In other words, in the
modified process of constructing the reduct relative to M we delete from the
program all rules (1) containing in their bodies a term Ai such that Ai �∈ M
or a term not Ai such that Ai ∈ M ; the other rules of the program remain
unchanged. For instance, the modified reduct of program (6) relative to (7) is

p(a). p(b). q(a).
r(b) ← p(b), not q(b).

Unlike the reduct (13), this modified reduct contains negation as failure in the
last rule. Generally, unlike the reduct in the sense of Sect. 5, the modified reduct
of a program has several minimal models.

According to Definition K, M is a stable model of Π if M is a minimal model
of the modified reduct of Π relative to M .

In [9] the definition of the reduct is modified in a different way. The reduct
of a program Π in the sense of Ferraris is obtained from the formulas (10) cor-
responding to the grounding rules of Π by replacing every maximal subformula
of F that is not satisfied by M with “false”. For instance, the formulas corre-
sponding to the grounded rules (11) of (6) are the formulas

p(a), p(b), q(a),
false → false,
p(b) ∧ ¬ false → r(b).

Definition L: M is a stable model of Π if M is a minimal model of the reduct
of Π in the sense of Ferraris relative to M .

Definitions K and L are valuable because, like definition J, they can be ex-
tended to some nontraditional programs. Definition K was introduced, in fact,
in connection with the problem of extending the stable model semantics to pro-
grams with aggregates. Definition L provides a satisfactory solution to the prob-
lem of aggregates as well. Furthermore, it can be applied in a straightforward way
to arbitrary propositional formulas, and this generalization of the stable model
semantics turned out to be equivalent to the generalization based on equilibrium
logic that was mentioned at the end of Sect. 10.

12 Definition M, in Terms of Modified Circumscription

The authors of [10] defined a modification of circumscription called the stable
model operator, SM. According to their Definition M, an Herbrand interpretation
is a stable model of Π iff it satisfies SM[F] for the conjunction F of the universal
closures of the formulas (10) corresponding to the rules of Π .

Syntactically, the difference between SM and circumscription is really minor.
If F contains neither implications nor negations then SM[F] does not differ from

500 V. Lifschitz

CIRC[F] at all. If F has “one level of implications” and no negations (as, for
instance, when F corresponds to a set of traditional rules without negation, such
as (2) and (5)), SM[F] is equivalent to CIRC[F]. But SM becomes essentially
different from CIRC as soon as we allow negation in the bodies of rules.

The difference between SM[F] and the formulas used in Definition F is that
the former does not involve auxiliary predicates and consequently does not re-
quire additional conjunctive terms relating auxiliary predicates to the predicates
occurring in the program.

Definition M combines the main attractive feature of Definitions F, H, and I –
no need for grounding – with the main attractive feature of Definitions J and L –
applicability to formulas of an arbitrarily complex logical form. This fact makes
it possible to give a semantics for an ASP language with choice rules and the
count aggregate without any references to grounding [18].

Among the other definitions of a stable model discussed in this paper, Defini-
tion J, based on equilibrium logic, is the closest relative of Definition M. Indeed,
in [41] the semantics of equilibrium logic is expressed by quantified Boolean for-
mulas, and we can say that Definition M eliminated the need to ground the
program using the fact that the approach of that paper can be easily extended
from propositional formulas to first-order formulas.

A characterization of stable models that involves grounding but is otherwise
similar to Definition M is given in [28]. It has emerged from research on the
nonmonotonic logic of knowledge and justified assumptions [26].

13 Conclusion

Research on stable models has brought us many pleasant surprises.
At the time when the theory of iterated fixpoints of stratified programs was

the best available approach to semantics of logic programming, it was difficult
to expect that an alternative as general and as simple as Definition C would
be found. And prior to the invention of Definition L, who would think that
Definition C can be extended to choice rules, aggregates and more without paying
any price in terms of the simplicity of the process of constructing the reduct?

A close relationship between stable models and the logic of here-and-there – a
nonclassical logic that had been invented decades before the emergence of logic
programming – was a big surprise. The possibility of defining stable models by
twisting the definition of circumscription just a little was a surprise too.

There was a time when the completion semantics, the well-founded semantics,
and the stable model semantics – and a few others – were seen as rivals; every
person interested in the semantics of negation in logic programming would tell
you then which one was his favorite. Surprisingly, these bitter rivals turned out
to be so closely related to each other on a technical level that they eventually
became good friends. One cannot study the algorithms used today for generating
stable models without learning first about completion and unfounded sets.

And maybe the biggest surprise of all was that an attempt to clarify some
semantic issues related to negation in Prolog was destined to be enriched by

Thirteen Definitions of a Stable Model 501

computational ideas coming from research on the design of SAT solvers and to
give rise to a new knowledge representation paradigm, answer set programming.

Acknowledgements

I am grateful to the editors for the invitation to contribute this paper to a volume
in honor of my old friend and esteemed colleague Yuri Gurevich.

Many thanks to Michael Gelfond, Tomi Janhunen, Joohyung Lee, Nicola
Leone, Yuliya Lierler, Fangzhen Lin, Victor Marek, and Mirek Truszczyński for
their comments. This work was partially supported by the National Science
Foundation under Grant IIS-0712113.

References

1. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In:

Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp.

89–148. Morgan Kaufmann, San Mateo (1988)

2. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules.5

In: Working Notes of the AAAI Spring Symposium on Logical Formalizations of

Commonsense Reasoning (2003)

3. Bidoit, N., Froidevaux, C.: Minimalism subsumes default logic and circumscription

in stratified logic programming. In: Proceedings LICS 1987, pp. 89–97 (1987)

4. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data

Bases, pp. 293–322. Plenum Press, New York (1978)

5. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The second

answer set programming system competition.6 In: Erdem, E., Lin, F., Schaub, T.

(eds.) LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

6. Elkan, C.: A rational reconstruction of nonmonotonic truth maintenance systems.

Artificial Intelligence 43, 219–234 (1990)

7. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-

grams: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.

LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

8. Fages, F.: A fixpoint semantics for general logic programs compared with the well–

supported and stable model semantics. New Generation Computing 9, 425–443

(1991)

9. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,

N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.

Springer, Heidelberg (2005)

10. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Pro-

ceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp.

372–379 (2007)

11. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and

Practice of Logic Programming 5, 45–74 (2005)

12. Fine, K.: The justification of negation as failure. In: Proceedings of the Eighth

International Congress of Logic, Methodology and Philosophy of Science, pp. 263–

301. North Holland, Amsterdam (1989)

5 http://www.krlab.cs.ttu.edu/papers/download/bg03.pdf
6 http://www.cs.kuleuven.be/∼dtai/events/asp-competition/paper.pdf

502 V. Lifschitz

13. Gelfond, M.: On stratified autoepistemic theories. In: Proceedings of National Con-

ference on Artificial Intelligence (AAAI), pp. 207–211 (1987)

14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:

Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming

Conference and Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

15. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D.,

Szeredi, P. (eds.) Proceedings of International Conference on Logic Programming

(ICLP), pp. 579–597 (1990)

16. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der

Preussischen Akademie von Wissenschaften. Physikalisch-mathematische Klasse,

pp. 42–56 (1930)

17. Lee, J.: A model-theoretic counterpart of loop formulas. In: Proceedings of Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), pp. 503–508, Professional

Book Center (2005)

18. Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in

answer set programming. In: Proceedings of the AAAI Conference on Artificial

Intelligence (AAAI), pp. 472–479 (2008)

19. Lifschitz, V.: On the declarative semantics of logic programs with negation. In:

Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp.

177–192. Morgan Kaufmann, San Mateo (1988)

20. Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M.,

Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg

(2008)

21. Lifschitz, V.: What is answer set programming? In: Proceedings of the AAAI Con-

ference on Artificial Intelligence, pp. 1594–1597. MIT Press, Cambridge (2008)

22. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM

Transactions on Computational Logic 2, 526–541 (2001)

23. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals

of Mathematics and Artificial Intelligence 25, 369–389 (1999)

24. Lin, F.: A Study of Nonmonotonic Reasoning. PhD thesis, Stanford University

(1991)

25. Lin, F., Reiter, R.: Rules as actions: A situation calculus semantics for logic pro-

grams. Journal of Logic Programming 31, 299–330 (1997)

26. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT

solvers. In: Proceedings of National Conference on Artificial Intelligence (AAAI),

pp. 112–117. MIT Press, Cambridge (2002)

27. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT

solvers. Artificial Intelligence 157, 115–137 (2004)

28. Lin, F., Zhou, Y.: From answer set logic programming to circumscription via logic

of GK. In: Proceedings of International Joint Conference on Artificial Intelligence

(IJCAI) (2007)

29. Marek, V., Truszczyński, M.: Stable semantics for logic programs and default the-

ories. In: Proceedings North American Conf. on Logic Programming, pp. 243–256

(1989)

30. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming

paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–

398. Springer, Heidelberg (1999)

31. McCarthy, J.: Circumscription–a form of non-monotonic reasoning. Artificial In-

telligence 13, 27–39, 171–172 (1980)

32. McCarthy, J.: Applications of circumscription to formalizing common sense knowl-

edge. Artificial Intelligence 26(3), 89–116 (1986)

Thirteen Definitions of a Stable Model 503

33. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of ar-

tificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4,

pp. 463–502. Edinburgh University Press, Edinburgh (1969)

34. McDermott, D.: Nonmonotonic logic II: Nonmonotonic modal theories. Journal of

ACM 29(1), 33–57 (1982)

35. McDermott, D., Doyle, J.: Nonmonotonic logic I. Artificial Intelligence 13, 41–72

(1980)

36. Moore, R.: Semantical considerations on nonmonotonic logic. Artificial Intelli-

gence 25(1), 75–94 (1985)

37. Niemelä, I.: Logic programs with stable model semantics as a constraint program-

ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273

(1999)

38. Niemelä, I.: Stable models and difference logic. Annals of Mathematics and Artifi-

cial Intelligence 53, 313–329 (2008)

39. Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight

constraints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 491–521.

Kluwer, Dordrecht (2000)

40. Pearce, D.: A new logical characterization of stable models and answer sets. In:

Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS (LNAI),

vol. 1216, pp. 57–70. Springer, Heidelberg (1997)

41. Pearce, D., Tompits, H., Woltran, S.: Encodings for equilibrium logic and logic

programs with nested expressions. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001.

LNCS (LNAI), vol. 2258, pp. 306–320. Springer, Heidelberg (2001)

42. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)

43. Reiter, R.: Circumscription implies predicate completion (sometimes). In: Pro-

ceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp.

418–420 (1982)

44. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-

menting Dynamical Systems. MIT Press, Cambridge (2001)

45. Saccá, D., Zaniolo, C.: Stable models and non-determinism in logic programs with

negation. In: Proceedings of ACM Symposium on Principles of Database Systems

(PODS), pp. 205–217 (1990)

46. van Emden, M., Clark, K.: The logic of two-person games. In: Micro-PROLOG:

Programming in Logic, pp. 320–340. Prentice-Hall, Englewood Cliffs (1984)

47. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming

language. Journal of ACM 23(4), 733–742 (1976)

48. Van Gelder, A.: Negation as failure using tight derivations for general logic pro-

grams. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Pro-

gramming, pp. 149–176. Morgan Kaufmann, San Mateo (1988)

49. Van Gelder, A., Ross, K., Schlipf, J.: Unfounded sets and well-founded semantics for

general logic programs. In: Proceedings of the Seventh ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, Austin, Texas, March

21-23, pp. 221–230. ACM Press, New York (1988)

50. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic

programs. Journal of ACM 38(3), 620–650 (1991)

51. Wallace, M.: Tight, consistent and computable completions for unrestricted logic

programs. Journal of Logic Programming 15, 243–273 (1993)

DKAL and Z3: A Logic Embedding Experiment

Sergio Mera and Nikolaj Bjørner

Computer Science Department, University of Buenos Aires,

Ciudad Universitaria, Pabellón 1 (C1428EGA), Buenos Aires, Argentina

smera@dc.uba.ar

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA

nbjorner@microsoft.com

For Yuri, on the occasion of his seventieth birthday. The following
paper is centered around DKAL, which provides a crisp foundation
for pragmatically motivated problems from security. It exemplifies
a recurring inspiration of working with Yuri: his ability to crisply
and clearly capture the essence of problems and foundations.

Abstract. Yuri Gurevich and Itay Neeman proposed the Distributed

Knowledge Authorization Language, DKAL, as an expressive, yet very

succinct logic for distributed authorization. DKAL uses a combination

of modal and intuitionistic propositional logic. Modalities are used for

qualifying assertions made by different principals and intuitionistic logic

captures very elegantly assertions about basic information. Furthermore,

a non-trivial and useful fragment known as the primal infon logic is

amenable to efficient linear-time saturation.

In this paper we experiment with an embedding of the full DKAL

logic into the state-of-the-art Satisfiability Modulo Theories solver Z3

co-developed by the second author. Z3 supports classical first-order se-

mantics of formulas, so it is not possible to directly embed DKAL into

Z3. We therefore use an indirect encoding. The one experimented with

in this paper uses the instantiation-based support for quantifiers in Z3.

Z3 offers the feature to return a potential ground counter-model

when the saturation procedure ends up with a satisfiable set of ground

assertions. We develop an algorithm that extracts a DKAL model

from the propositional model, in order to provide root causes for

non-derivability.

Keywords: DKAL, Z3, Embedding, Model Extraction.

1 Introduction

DKAL, the Distributed Knowledge Authorization Language, has been developed
as a foundation for logic-based authorization mechanisms. The formulation of
DKAL used in this paper was developed through a sequence of adaptations of logic
for authorization, but also a noticeable realization that a combination of modal
and intuitionistic propositional logic provide an exceptional match for integrating
knowledge information in a distributed system.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 504–528, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

DKAL and Z3: A Logic Embedding Experiment 505

We will start out by providing a high-level motivation for DKAL in
Section 2 and follow it up by recollecting the logic and main results behind
DKAL. These formalities are complemented by a more elaborated case study
that illustrates the main DKAL constructs in Section 3. Given that DKAL is
based on a core combining propositional modal and intuitionistic logic a simple
question arises. Is there a suitable deductive tool to support DKAL? We will
here take the approach of embedding the core into the classical first-order theo-
rem prover Z3 (Section 4). We will use a particular approach for the embedding,
namely an encoding of DKAL inference rules using first-order axioms (Section 5).
The embedding allowed us to develop a prototype for DKAL that we used on
the presented case study. The experiment is not intended as a representative ap-
proach for implementing DKAL. In fact we here disregard the primal fragment
that is amenable to efficient linear-time saturation algorithms. Rather, we see
the objective as to study DKAL as a candidate non-classical logic and investigate
how such a logic can be encoded using existing features in the context of Z3.
Finally, in Section 6, we establish a theoretical property of the embedding: when
Z3 completes with a satisfiable ground saturation, it is furthermore possible to
extract a Kripke model for the core. The theory was implemented, and we use
two models extracted from the case study as an illustration.

2 An Introduction to DKAL

Nowadays, the most widespread method to deal with security policies in sys-
tems are access control lists (ACL). This method basically consists of a list of
permissions attached to each of the objects that may be accessed. ACLs allow
expressing detailed policies at a very granular level, but they have their limita-
tions when it comes to expressing access policies that depend on conditions and
that combine policies of potentially multiple parties that don’t necessarily trust
each other on anything else than a few objects. An approach to authorization
based on logic has on the other hand the prospect of expressing policies using ex-
pressive conditions and properly combining the intent of multiple parties. Logic
based approaches also allow policies to be the object of formal verification, and
to thoroughly analyze properties such as security leaks.

In this context, Distributed Knowledge Authorization Language (DKAL) and
affiliated logic was proposed in [13] and later DKAL was given a foundation
based on a combination of modal and intuitionistic logic in [15].

At the core, this logic deals with pieces of information called infons, e.g. John
has the right to access the network Corporate. Infons are not required to be
true or false, but instead infons can be known or not by relevant principals. For
example, we can ask whether the administrator of the network Corporate knows
that John has the right to access the network. In this way, each principal has
some knowledge (that is, infons that are known to him). DKAL also provides
a way in which principals can share the information they have. For example, if
Admin knows that John has read access to Corporate, he can communicate this
to Patrick and (if Patrick accepts that communication), then Patrick will know
that Admin said that John has read access to Corporate.

506 S. Mera and N. Bjørner

One may study the logic of infons, and some natural operators arise. You
know a∧ b if you know a and you know b, and the implication connective is also
natural, if you know a and a → b, then you know b. In addition to conjunction
and implication, infon logic has two unary connectives p said and p implied,
for any principal p. Both connectives represent a way to model the knowledge
that are passed from one principal to the other by means of communication
assertions. Let us see the intuitive difference between them. A principal p may
just say a to q, and then, if the communication is successful, q learns the infon
p said a. But p may condition his claim on q knowing b, so then q learns the
infon b → (p implied a). So implied is a weaker condition, and it will be useful
to avoid undesired delegation or probing attacks.

Infons are also partially ordered in terms of information, and the intuitive
idea is that a ≤ b when the information in a is contained in that of b. In this
sense, infons can be studied from the point of view of algebra. For example, a+b
is the least upper bound of a and b, and a→ b = min{z : a+ z ≥ b}.

There is also interest in studying the logic of infons itself. In this direction,
two fragments were identified: the full infon logic, and the primal infon logic.
The latter is weaker, but has nice computational properties and is still expressive
enough for modeling security issues. We will say infon logic to refer to either of
both logics.

2.1 Syntax and Semantics

In this section we present the syntax and semantics of DKAL and the infon logic.
We do not give the full definitions, just enough details for the purposes of this
article. For a more complete definition see [14].

DKAL. There are three kinds of DKAL assertions: knowledge, communication
and filter assertions. Knowledge assertions have the form:

A knows x

where A is a principal and x is an infon term. The intended meaning of this is
asserting that A has the knowledge x. The way a principal has to communicate
knowledge is through communication assertions. They have the form:

A to q : [x← y]⇐ z

where A is a principal, q is either a principal or a variable (that ranges over
principals), and x, y and z are infon terms. We use the following shorthands
[x← y] instead of [x← y] ⇐ true, [x] ⇐ z instead of [x← true] ⇐ z, and [x]
instead of [x← true]⇐ true. We are going to give the precise semantics later, but
intuitively, with this assertion the principal A communicates to q the knowledge
x, with y as a proviso. This communication takes place only if A already knows
z. Filter assertions are used to receive communications. They have the form:

B from p : [x← y]⇐ z

DKAL and Z3: A Logic Embedding Experiment 507

where B is a principal, p is either a principal or a variable (that ranges over
principals), and x, y and z are infons terms.

The rules that control how knowledge and communications are handled are
the following:

(Com1)

Proviso-free scenario
B to p : [t1]⇐ t3
B knows t3η, pη = A
A from q : [s1]⇐ s3
A knows s3θ, qθ = B
s1θ = t1ηθ
A knows B said s1θ

(Com2)

Proviso-present scenario
B to p : [t1 ← t2]⇐ t3
B knows t3η, pη = A
A from q : [s1 ← s2]⇐ s3
A knows s3θ, qθ = B
s1θ = t1ηθ
s2θ = t2ηθ
A knows (s2θ → B implied s1θ)

where η and θ are appropriate substitutions. The knowledge that a principal gets
from his knowledge assertions and the communications from other principals
gives rise to more knowledge. Here is where the infon logic plays its part.

(Ensue)
A knows Γ
Γ) x
A knows x

The sequent Γ) x represents a derivable sequent in the infon logic, in which
Γ is a set of infons, and x is an infon. Note that the derived knowledge is infinite,
but A does not compute it all. He will just be interested whether some specific
queries follow from his knowledge.

The Infon Logic. We now introduce the syntax and semantics of the infon
logic. The syntax is the same for both the full and the primal fragment. Given
an infinite set of principals, and a vocabulary of functions names, the set of
formulas is defined as:

ϕ ::= true | A(t1, . . . , tk) | ϕ1 + ϕ2 | ϕ1 → ϕ2 | p said ϕ | p implied ϕ (1)

where true and A(t1, . . . , tk) are primitive formulas, A is a function name,
t1, . . . , tk are terms, ϕ,ϕ1 and ϕ2 range over formulas and p ranges over princi-
pals. For the purpose of this article the structure of primitive formulas is of no
real importance.

For practical reasons, it is useful to have some fixed built-in functions, such
as the nullary function asInfon that act as a casting operator that converts the
Boolean value true into the uninformative infon true asInfon. We will also
introduce the shortcuts tdonS and tdonI used in DKAL for expressing that
principals are trusted on saying or implying certain infons:

p tdonS x abbreviates (p said x) → x,
p tdonI x abbreviates (p implied x) → x.

The infon logic is basically an extension of the intuitionistic propositional
system NJp [18], and was introduced is [15]. Here we present the sequent calculus
for the full infon logic.

508 S. Mera and N. Bjørner

Axioms and Inference Rules

(True)) true (x2x) x) x

(PI)
Γ) y
Γ, x) y

(+ E)
Γ) x + y

Γ) x
Γ) x + y

Γ) y (+ I)
Γ) x Γ) y
Γ) x + y

(→E)
Γ) x Γ) x→ y

Γ) y (→I)
Γ, x) y
Γ) x→ y

(S)
Γ) y

q said Γ) q said y
(I)

Γ) y
q told Γ) q implied y

The rule (PI) is short for premise inflation.
If Γ = {x1, . . . , xn}, then q said Γ = {q said x1, . . . , q said xn}, and q told Γ

is any of the 2n sets {q told1 x1, . . . , q toldn xn}, where each toldi ∈ {said,
implied}.

Primal infon logic can be given by a sequent calculus that is obtained from the
calculus above by replacing (→I) with the combination of the weaker inference
rules (→IW) and (Trans):

(→IW)
Γ) y

Γ) x→ y
(Trans)

Γ) x Γ, x) y
Γ) y

Model Theory. A Kripke structure is a nonempty set of elements W , equipped
with a binary relation ≤ and a collection of binary relations Iq and Sq for every
principal p. Additionally a Kripke structure must fulfill the following require-
ments:

K1. Iq ⊆ Sq.
K2. if u ≤ w and wIqv, then uIqv, and the same for Sq.

The satisfaction relation is defined by induction for every formula ϕ in terms
of a cone C(ϕ) of worlds (that is, an upward closed set). If u ∈ C(x) we say that
x holds in u, and we write u |= x. If x is primitive, then C(x) is an arbitrary
cone. The satisfaction relation for composite formulas for the full infon logic is
the following:

K3. C(x + y) = C(x) ∩ C(y).
K4. C(x→ y) = {u : C(x) ∩ {v : v ≥ u} ⊆ C(y)}.
K5. C(q implied x) = {u : {v : uIqv} ⊆ C(x)}.
K6. C(q said x) = {u : {v : uSqv} ⊆ C(x)}.
K7. C(true) = W .

DKAL and Z3: A Logic Embedding Experiment 509

Let C(Γ) =
⋂

x∈Γ C(x). A Kripke structure M models a sequent Γ) x iff
C(Γ) ⊆ C(x) in M . A sequent s is valid if every structure models s.

The definition for the satisfaction relationship for the primal infon is similar
to the above except that K4 is replaced with the following weaker requirement:

K4W. C(x → y) is an arbitrary cone such that C(y) ⊆ C(x → y) ⊆ {u :
C(x) ∩ {v : v ≥ u} ⊆ C(y)}.

The following theorem can be established:

Theorem 1 ([15]). In the case of either full or primal infon logic, the following
claims are equivalent for any sequent s:

1. s is provable.
2. s is valid.
3. Every finite Kripke structure models s.
4. There is a proof of s that uses only subformulas of s.

In particular, we are going to see that the subformula property is particularly
useful for us. Regarding the complexity of the infon logic, the following two
theorems are relevant:

Theorem 2 ([15]). The validity problem for the full infon logic is polynomial-
space complete.

For the primal infon logic, the complexity bound can be improved when the
maximum depth of a formula is fixed:

Definition 1 (Primal quotation depth). The primal quotation depth of for-
mulas is defined by induction:

– δ(x) = 0 if x is a variable.
– δ(p told x) = 1 + δ(x).
– δ(x + y) = max{δ(x), δ(y)}.
– δ(x→ y) = δ(y).

Furthermore, δ(Γ) = maxx∈Γ δ(x) for any set Γ of formulas.

Theorem 3 ([15]). For every natural number d, there is a linear time algorithm
for the multiple derivability problem for primal infon logic restricted to formulas
x, with δ(x) ≤ d. Given hypothesis Γ and queries Q, the algorithm determines
which of the queries in Q follow from the hypothesis Γ .

3 DKAL@Starbucks

We will now develop an example using DKAL. The example has been processed
mechanically using our Z3 based prototype described in Section 5. We present
the example using the syntax used by the front-end to the prototype. The ex-
ample is extracted from a document that was not specifically aimed at studying

510 S. Mera and N. Bjørner

authorization but rather various Windows Vista networking user-scenarios, yet
several aspects of the scenario can be described directly using DKAL. We in-
clude a somewhat detailed excerpt from the document with the intent of giving
a sufficient amount of example material for illustrating the different features of
DKAL. It models part of the procedure involved to allow Patrick to login re-
motely to a secure network using a wireless connection. The story begins when
Patrick enters in a Starbucks, sits down and opens his laptop. He first has to
login to the operating system by introducing his user name and password.

Login Authorization. The entities involved in this part of the process are:

Patrick, the user
OSLogon, the module in charge of the login process
AuthProvider, the module that provides the authentication protocol
LoginGUI, the graphical interface for the login process
KeyboardAPI, the interface that listens to the keyboard events

The primitive functions all take a principal p as argument. They are:

p hasEnteredUsername, p hasValidCredentials, p couldLogin,
p hasEnteredPassword, p hasCredentialsCached, p isLoggedIn

And we are going to use the substrate function p passesSecurityChecks that
returns a truth value.

Patrick begins by typing his user-name and password. This action is informed
by the keyboard API to the login graphical interface:

KeyboardAPI to LoginGUI: [Patrick hasEnteredUsername]
KeyboardAPI to LoginGUI: [Patrick hasEnteredPassword]

Recall that [x] is an abbreviation for [x← true]⇐ true.
The graphical interface trusts any information, encoded using a variable X ,

provided by the keyboard API.

LoginGUI knows KeyboardAPI tdonS X

and the graphical interface also accepts communications Y from any participant
X :

LoginGUI from X: [Y]

It therefore follows that the graphical interface learns that Patrick has entered
his user-name and password:

? LoginGUI knows Patrick hasEnteredUsername
? LoginGUI knows Patrick hasEnteredPassword

The graphical interface caches someones credentials when it knows that this
person has entered his user-name and password. When that happens, it informs
that to the authorization provider. This is encoded using the rule:

LoginGUI to AuthProvider: [X hasCredentialsCached] <=
X hasEnteredUsername + X hasEnteredPassword

DKAL and Z3: A Logic Embedding Experiment 511

and the authorization provider accepts all communications from the graphical
interface, as the following rule encodes:

AuthProvider from LoginGUI: [X]

Therefore, we can deduce that the provider learns that the interface has cached
Patrick’s credentials:

(A1) ? AuthProvider knows LoginGUI said
Patrick hasCredentialsCached

On the other hand, the authorization provider allows someone to login when the
graphical interface has cached his credentials and those credentials are valid. If
that is the case, he informs that to the logon module:

AuthProvider to OSLogon: [X couldLogin] <=
(LoginGUI said X hasCredentialsCached) +
X hasValidCredentials

The authorization provider checks Patrick’s credentials with its internal
database, and concludes that they are valid, so it learns:

(A2) ? AuthProvider knows Patrick hasValidCredentials

Given (A1) and (A2), the authorization provider communicates to the logon
module that Patrick can be logged in. Since the logon module accepts commu-
nications from the authorization provider regarding a successful login:

OSLogon from AuthProvider: [X couldLogin]

the logon module learns that:

(A3) ? OSLogon knows AuthProvider said Patrick couldLogin

The logon module will allow a user X to login when the authorization provider
says so, and when it can verify that X passes all the security checks:

OSLogon to X: [X isLoggedIn] <= AuthProvider said
X couldLogin + asInfon(X passesSecurityChecks)

Given (A3) and the fact that Patrick effectively passes all the security checks,
the logon module informs that Patrick is logged in. Patrick accepts any commu-
nication from the logon module:

Patrick from OSLogon:[X]

So Patrick learns:

? Patrick knows OSLogon said Patrick isLoggedIn

Patrick trusts the logon module with respect to login issues, so assert the
following:

Patrick knows winLogon tdonS Patrick isLoggedIn

Consequently Patrick learns that he is logged in:

? Patrick knows Patrick isLoggedIn

512 S. Mera and N. Bjørner

Patrick Launches IE. A new principal Windows, the operating system, is
involved in this section. We also use the following primitive functions, where p
is a principal and s is a piece of software:

p wantsToExecute s, p isAllowedToRun s, s shouldBeLaunched

We assume there is a constant IE that represent the Internet Explorer.
Patrick now continues logging in to the wireless network, and then accessing

the secure network. He needs to authenticate with T-Mobile to use hotspot, so he
launches IE. He communicates to Windows all the software he wants to execute:

Patrick to Windows: [Patrick wantsToExecute X]
<= Patrick wantsToExecute X

and today he wants to run Internet Explorer:

Patrick knows Patrick wantsToExecute IE

Windows runs a specific piece of software if the user wants to execute it and he
is allowed to do it:

Windows knows
((P said P wantsToExecute Software) +
P isAllowedToRun Software)

-> Software shouldBeLaunched

Patrick is allowed to run IE:

Windows knows Patrick isAllowedToRun IE

and Windows accepts all communication events related to running software:

Windows from P: [P wantsToExecute Software]

So Windows learns it should run IE:

? Windows knows IE shouldBeLaunched

Establishing an SSL Connection. In this section these new principals are
involved:

TMobile, the wireless router
TrustedRoot, the entity that provides validation for certificates

And we use the following functions, where s is a website, c is a certificate and
sw is a piece of software:

s supportsSSL, s hasCertificate c, c isValid,
c isProperlySigned, sw shouldShowLock

We use the constants ThisCert, a certificate, IECurrSite, a website, and the
substrate functions x currTime, that returns an integer representing the current
time of the running operating system x, y expTime that returns an integer repre-
senting the expiration time of a certificate y, and the usual comparison function
< between integers.

DKAL and Z3: A Logic Embedding Experiment 513

The T-Mobile router redirects IE to the T-Mobile authentication manager
web site and it communicates that the authentication site IECurrSite supports
SSL and the certificate for the authentication site is ThisCert:

TMobile to Windows: [IECurrSite supportsSSL]
TMobile to Windows: [IECurrSite hasCertificate ThisCert]

Windows accepts any communication from T-Mobile:

Windows from TMobile:[X]

so Windows learns that T-Mobile said that the current site supports SSL and
that the certificate is ThisCert:

? Windows knows TMobile said IECurrSite supportsSSL
? Windows knows TMobile said IECurrSite hasCertificate ThisCert

The trusted root communicates that a given certificate is valid when it is properly
signed, and with the proviso that the certificate has not expired considering the
current time:

TrustedRoot to Windows:
[Y isValid <- asInfon(Windows currTime < Y expTime)]

<= Y isProperlySigned

We will assume that the trusted root knows that ThisCert is properly signed.
We will also assume that Windows currTime is an hour away from ThisCert
expTime. Therefore:

? TrustedRoot knows ThisCert isProperlySigned
? TrustedRoot knows asInfon(

Windows currTime < ThisCert expTime)

Assuming Windows accepts any communication from the trusted root:

Windows from TrustedRoot:[X]

Windows learns:

? Windows knows TrustedRoot implied ThisCert isValid

Windows trusts everything the trusted root says:

Windows knows TrustedRoot tdonI X

so it learns:

? Windows knows ThisCert isValid

Windows knows that it must display the lock on IE when T-Mobile says that
the current site supports SSL, and the site certificate is valid:

Windows knows

TMobile said IECurrSite supportsSSL +
TMobile said IECurrSite hasCertificate ThisCert +
ThisCert isValid
-> IE shouldShowLock

so it learns:
? Windows knows IE shouldShowLock

514 S. Mera and N. Bjørner

At the T-Mobile Web-site. In this section we add the principal TMobileHTTP,
the HTTP module of the router, and the function showThisWelcomePageTo x,
where x is a principal.

At the T-Mobile Authentication web site, Patrick successfully enters his T-
Mobile credentials. T-Mobile gets Patrick’s credentials and validates them. Then,
it communicates to Windows that the credentials are valid:

TMobile to Windows: [Patrick hasValidCredentials]

Windows is already receiving any communication from T-Mobile, so it learns:

? Windows knows TMobile said Patrick hasValidCredentials

The T-Mobile HTTP module redirects a user to the welcome page with the
proviso that T-Mobile says that the user has valid credentials:

TMobileHTTP to Windows: [showThisWelcomePageTo X <-
TMobile said X hasValidCredentials]

Windows receives any communication from the HTTP module:

Windows from TMobileHTTP:[X]

So Windows learns that:

? Windows knows TMobileHTTP implied
showThisWelcomePageTo Patrick

To summarize, the example illustrated the use ofDKAL in a distributed scenario
involving several parties. The communication assertions were constrained with fil-
ters that allowed the parties to exchange just the information they were authorized
to. Furthermore, the infon logic was used to express conditional delegation.

4 What Is Z3 Good For?

Z3 [8] is a state-of-the-art Satisfiability Modulo Theories (SMT) solver developed
at Microsoft Research by the second author and Leonardo de Moura. It is a
theorem prover for first-order logic augmented with various built-in theories, such
as the theories of additive arithmetic over reals and integers, bit-vectors and an
extension of McCarthy’s theory of arrays. Z3 is furthermore a decision procedure
for quantifier-free formulas over a combination of the built-in theories. Formulas
using quantifiers are handled using an instantiation-based approach that creates
ground instances of universal quantifiers based on a search on subterms created
during search.

Z3 is currently used in a large array of software analysis, verification and
test-case generation tools from Microsoft. These include Spec#/Boogie [2,10],
Pex [21], HAVOC [17], PREfix [19], Vigilante [6], a verifying C compiler
(VCC) [5], SAGE [11], SLAM/SDV [1], and Yogi [12].

SMT solvers are gaining a distinguished role in the context of software analysis
since they offer support for most domains encountered in programs. A well tuned
SMT solver that takes into account the state-of-the-art breakthroughs usually
scales orders of magnitude beyond custom ad-hoc solvers.

DKAL and Z3: A Logic Embedding Experiment 515

4.1 Embeddings with SMT Solvers and Theorem Provers

The experiment in this paper is for using Z3 to prototype an application it is
not directly built for. The underlying combination of modal and intuitionistic
logic used in DKAL requires a deep embedding into Z3. We make critical use
of the subformula properties of DKAL and the infon logic, and encode both the
infon logic and full DKAL. We will be using first-order formulas with quantifiers
to encode the DKAL logic and then rely on the instantiation-based quantifier-
support in Z3. This strategy is similar to embedding.

The embedding method we pursue here is a variation of deep embeddings of
non-classical logics into classical logic; see for instance [20]. We should point out
that this is far from being the only way to use a theorem prover for classical logic
in the context of non-classical logics. In the context of model checking, where
temporal formulas are checked against finite (and even infinite) state systems,
the method of bounded model checking [3] is used to reduce PSPACE problems
into propositional satisfiability problems. The main idea behind bounded model
checking is to unfold transition relations a finite number of times, creating a
propositional or first-order formula summarizing an n-unfolding of system steps.
Given a bound on the diameter required for unfolding, the resulting problem
can be solved using classical methods. Another approach for PSPACE complete
problems is pursued in [4] where a logic with linear functional fixed-points is
reduced to propositional linear time temporal logic. The paper develops a hybrid
approach using a symbolic model checker and the theorem prover Z3.

Finally, it is entirely possible to use methods, such as Prolog, that are more
directly tailored at encoding inference rules. In this context, we also developed an
encoding of DKAL into the FORMULA [16] tool. In contrast to Prolog systems,
FORMULA performs forward chaining.

4.2 Quantifiers in Z3

There are several motivations for integrating strong quantifier support in the
context of SMT solvers. The main motivation stems from program verification
applications. In this context, quantified formulas that come from program ver-
ification can typically be instantiated based on a local analysis of the ground
terms occurring in the input formula. A current main approach to integrating
quantifiers with SMT solving is therefore by producing quantifier instantiations.
The instantiated quantifiers are then quantifier free formulas that are handled by
the main ground SMT solving engine. It is an art and craft to control quantifier
instantiations to produce just the useful instantiations.

For controlling which instantiations of the axioms are produced let us consider
an annotation of the axioms using triggers. A trigger annotated universal formula
is a formula of the form

ψannot : ∀x . {p1(x), . . . , pk(x)} . ψ(x),

where k ≥ 1, p1, . . . , pk, are terms that contain all variables from x. Given a model
M of a quantifier free formula ϕ we say that ϕ is saturated with respect to ψannot if

516 S. Mera and N. Bjørner

whenever there are subterms t1, . . . , tk inϕ and a substitution θ, such that p1θ
M =

tM1 , . . . , pkθ
M = tMk , then ϕ implies the formula ψθ. If it is not the case that ϕ

implies ψθ, then a saturation process adds the conjunct ψθ to ϕ.
We can associate more than one trigger with a quantified formula. In this

case we write the set of triggers as different sets of patterns enclosed by {}. For
example,

∀a, i, j, v .
{read(write(a, i, v), j)}
{write(a, i, v), read(a, j)} .

read(write(a, i, v), j) = if i = j then v else read(a, j) .

The patterns instruct the theorem prover to instantiate the axioms for arrays
whenever there is a subterm matching the first pattern read(write(a, i, v), j), or
if there are two subterms. The first is equal to write(a, i, v) and the second is
equal to read(a, j) for some instances of the variables a, i, j, v.

E-matching. As mentioned, pattern instantiation is performed using a match-
ing algorithm. To take into account equalities that are assumed during search,
the matching algorithm performs E-matching. The problem of E-matching is
a special case of rigid E-unification [9]. As with (non-simultaneous rigid E-
unification) it remains NP -complete, but it is conceptually much simpler. An
E-matching algorithm takes as input a set of ground equations E, a ground
term t and a term p possibly containing variables. It produces the set of sub-
stitutions θ over the variables in p, such that E |= t * θ(p). In the context of
Z3 [7], we found that the NP -hardness of E-matching is not the real challenge
with integrating good E-matching support. Rather, an emphasis on supporting
incremental matching in the context of a backtracking search algorithm is more
important for performance.

5 DKAL and Z3

We will now describe an embedding of DKAL into Z3. The embedding encodes
inference rules from DKAL as first-order axioms presented to Z3. The encoding
furthermore prescribes using patterns how the axioms should be instantiated
based on ground terms that have already been created. We later show that the
encoding preserves decidability of ground DKAL queries as the set of instantia-
tions that can be created based on the patterns is finite.

Terms in Z3 are sorted according to a simple theory of sorts. The universe is
assumed partitioned into a set of disjoint sorts and a sort can be introduced by
declaring a name identifying the sort. The sorts that are used for DKAL are:

– Infon - the sort of infons.
– InfonSet - for a set of Infons.
– Principal - the sort of principals.

The main functions and predicates on these sorts follow the presentation from
Section 2 closely.

DKAL and Z3: A Logic Embedding Experiment 517

5.1 The Logic of Infons

To encode infon sequents we introduce the following functions and relations:

– ∈: Infon × InfonSet → B. The axiomatization will maintain that x ∈ Γ
holds if x is a member of the set Γ

– insert : Infon× InfonSet→ InfonSet. The operation insert(x, Γ) creates the
union of the set Γ and {x}.

The properties that are needed of these functions and relations are similar to
the properties useful for the non-extensional theory of arrays. They are:

∀x : Infon, Γ : InfonSet . {insert(x, Γ)} . x ∈ insert(x, Γ)
∀x : Infon, y : Infon, Γ : InfonSet . {x ∈ insert(y, Γ)} .

x �= y → (x ∈ insert(y, Γ)↔ x ∈ Γ)

To ease readability in the following, we will avoid explicit universal quantifiers and
simply list the axioms together with their triggers. The above axioms become:

{insert(x, Γ)} . x ∈ insert(x, Γ) (2)
{x ∈ insert(y, Γ)} . x �= y → (x ∈ insert(y, Γ)↔ x ∈ Γ) (3)

In the following, we let x, y, z, k range over the Infon sort, Γ ranges over
InfonSet, and p, p1, p2 have the sort Principal.

The Infon Inference Rules. The infons are built according to the BNF gram-
mar outlined in (1). For the embedding we introduce functions that build ab-
stract terms corresponding to each case in the grammar. true : Infon, asInfon :
B → Infon, + , imp : Infon × Infon → Infon and said , implied :
Principal × Infon → Infon.

The entailment relation between infon sets and infons is a binary predicate
) : InfonSet × Infon → B. It encodes the entailment relation for sequents over
infons. To encode the entailment relation it suffices to follow the inference rules
for the infon logic. The subformula property of the infon logic is critical in
this context. Rule axioms are only instantiated if there are existing subterms
matching the maximal subterms in either the premise or conclusion.

asInfon {Γ) asInfon(true)} . Γ) asInfon(true) (4)
true {Γ) true} . Γ) true (5)
x2x {x ∈ Γ} , {Γ) x} . x ∈ Γ → Γ) x (6)
PI {insert(x, Γ)) y} . Γ) y → insert(x, Γ)) y (7)
+I {Γ) x+ y} . Γ) x ∧ Γ) y → Γ) x+ y (8)

+E1 {x+ y, Γ) x} . Γ) x+ y → Γ) x (9)
+E2 {x+ y, Γ) y} . Γ) x+ y → Γ) y (10)
→ E {Γ) y, (x imp y)} . (Γ) x ∧ Γ) x imp y) → Γ) y (11)
→ I {Γ) x imp y} . insert(x, Γ)) y → Γ) x imp y (12)

518 S. Mera and N. Bjørner

Encoding Rules for said and implied . The rules S and I require some
additional encoding. We will use auxiliary functions saidOf(,), toldOf(,) :
Principal × InfonSet → InfonSet to extract the subset of an infon set Γ where
principal p either said or at least implied some infon.

S1 {p said x ∈ Γ} . p said x ∈ Γ ↔ x ∈ saidOf(p, Γ) (13)
S2 {Γ) p said x} . saidOf(p, Γ)) x → Γ) p said x (14)

Extracting implied infons is almost similar, except we take into account that if
p said x then p implied x.

I1 {p implied x ∈ Γ} . p implied x ∈ Γ ↔ x ∈ toldOf(p, Γ) (15)
I2 {p said x ∈ Γ} . p said x ∈ Γ ↔ x ∈ toldOf(p, Γ) (16)
I3 {Γ) p implied x} . toldOf(p, Γ)) x → Γ) p implied x (17)

Ground Completeness. The main property of the pattern-based encoding of
the infon logic is the following Theorem.

Theorem 4 (Ground Infon Logic Completeness). Let A be the axioms
given by equations (2)-(17) and let Γ) ϕ be a ground sequent, then Γ) ϕ
is derivable in the infon logic if and only if the (pattern-guided) saturation of
A ∧ ¬(Γ) ϕ) contains a subset of ground inconsistent formulas.

Proof: It is very simple to observe that the encoding of the infon logic is sound,
so we need only to consider the case where Γ) ϕ is derivable, and we wish to
show that the saturation A∧¬(Γ) ϕ) contains a subset of ground inconsistent
formulas. If Γ) ϕ is derivable, then there is a proof in the infon logic satisfying
the subformula property: only subformulas of the original sequent are used in
the proof. In particular, consider each proof step. We outline a justification that
a corresponding axiom from A gets instantiated.

The rules +I,+E1,+E2,→ E,→ I are similar in that if the last step in
the subformula preserving proof is one of these, then the pattern annotation
matches the conclusion and one of the existing subformulas. The corresponding
axiom is instantiated. Since we assume that the current saturation satisfies the
negation of the conclusion of the rule, it will also have to falsify at least one of
the premises.

The axioms for x2x, true and asInfon are more liberal from their inference
rule counter-parts, as they apply in the context of an arbitrary context Γ , but
the rule PI ensures that this difference is benign.

Finally, the rules I and S are simulated using axioms S1−2, I1−3 since they
encode a sequence of PI rules followed by either S or I. These axioms introduce
the auxiliary sets saidOf(p, Γ) and toldOf(p, Γ). On the other hand x2x and (2)
and (3) take care of extracting premises when they become relevant.

DKAL and Z3: A Logic Embedding Experiment 519

For good order we should note that axiom instantiation also terminates. In
other words, it is not possible to repeatedly instantiate the axioms without re-
introducing an already existing instance.

5.2 DKAL Knowledge and Communication Rules

In DKAL, knowledge (using the predicate knows : Principal × Infon → B)
is accumulated through derivations on infons and through communication. We
model the communication assertions as predicates with two principals and a
knowledge filter. Their signatures are: to , from : Principal×Principal×
KnowledgeFilter → B. The different filters are presented as auxiliary functions
[]⇐ : Infon× Infon→ KnowledgeFilter, [←]⇐ : Infon× Infon× Infon→
KnowledgeFilter.

One difficulty arises when encoding the communication rules. The original
formulation of the rules (Com1) and (Com2) delay instantiating premises, but
we will have to present the rules with eagerly instantiated premises in order to
present the rules with ground instances. We use a predicate T() : Infon → B
to capture premises that are tautologies. The predicate satisfies T(true). We use
the following encoding of the communication rules:

(Com1)
Proviso-free scenario{
p1 to p2 : [x]⇐ y,
p2 from p1 : [x]⇐ z

}
{p2 knows (p1 said x),T(y),T(z)}
{p1 to p2 [x] ⇐ y, T(z)}
{p2 from p1 [x]⇐ z, T(y)}

p1 to p2 [x]⇐ y
∧ p1 knows y
∧ p2 from p1 [x] ⇐ z
∧ p2 knows z
→ p2 knows (p1 said x)

(Com2)
Proviso-present scenario{
p1 to p2 [x← y]⇐ z,
p2 from p1 [x← y]⇐ k

}
,

{p2 knows (y imp p1 implied x),T(z),T(k)}
{p1 to p2 [x← y]⇐ z,T(k)}
{p2 from p1 [x← y]⇐ k, T(z)}

p1 to p2 [x← y]⇐ z
∧ p1 knows z
∧ p2 from p1 [x← y]⇐ k
∧ p2 knows k
→ p2 knows (y imp p1 implied x)

We split the Ensue rule into two parts. The first part applies the Ensue rule
assuming x is derivable from some set knowsOf(p) comprising of the infons known
to x. The second defines the set knowsOf(p).

(Ensue1) (Ensue2)
{p knows x} {p knows x}
{knowsOf(p)) x} {x ∈ knowsOf(p)}
knowsOf(p)) x → (p knows x) (p knows x) ↔ x ∈ knowsOf(p)

We make a note that our treatment of the communication rules is specialized
to our embedding into an instantiation-based procedure. The encoding ensures
that the rules are not instantiated indiscriminately, but on the other hand, it

520 S. Mera and N. Bjørner

restricts rule applications to a subset of the general formulation from Section 2.1.
The main sanity check of this limited encoding has been through experimental
evaluation through case studies, including the one presented in Section 3.

6 Derivations and Model Extraction

The embedding of DKAL into first-order axioms with patterns allows Z3 to
answer DKAL queries as a first order theorem proving task. This process takes
a query Q and checks it relative to a collection of knowledge and communication
assertions A. Z3 checks if A ∧ ¬Q is consistent, and if that is the case, then
A implies Q is a DKAL theorem, as reflected in Theorem 4. When a proof
cannot be found, a useful feature is to have a way to obtain a counter-model as
a justification for the failure of finding a proof. Having a counter-model at hand
may help the user who wrote the specification to understand the reasons of why
the theory A does not implies the query Q. In our context, for counter-model we
mean a Kripke model M in which there is a state w ∈M where M, w |= A but
M, w �|= Q. In this section we present a procedure to extract a counter-model
when Z3 fails to find a proof for A ∧ ¬Q.

Our algorithm is based on a Z3 feature that returns a potential ground
counter-model when the saturation procedure does not succeed in finding a proof.
The algorithm we propose takes that model and extract a Kripke model from
it. Let’s see first a sketch of how Z3 outputs the ground model. Z3 saturates the
assertions A with respect to the negated query Q (we denote this Sat(A∧¬Q)).
The pattern annotations ensures that the saturation takes into account the sub-
terms in Q. The saturation works by instantiating the universally quantified
assertions from A and the rules encoding the infon logic, communication and
knowledge rules. This saturation procedure ends when no new instantiations
can be produced. Then ground assertions are checked for satisfiability. If they
are unsatisfiable, then a proof for (A ⇒ Q) is found. If they are satisfiable, a
(finite) propositional model M is produced, in which each ground assertion is
assigned to true or false.

Recall that saturation is complete for establishing ground facts for the infon
logic as is reflected by Theorem 4. This of course limits the procedure to work
only with ground queries, leaving outside parametrized queries. These limitations
also are reflected in the encoding of the Com rules. As we said before, the original
formulation of these rules delay instantiating premises, but the encoding forces
the rules to behave eagerly in order to use the pattern-based instantiation.

We will here show how a Kripke model according to Section 2.1 can be ex-
tracted. In overview, the main algorithm for extracting a model is as follows:

1. Given a saturated conjunction Sat(A ∧ ¬Q) let M be an evaluation that
satisfies all ground conjuncts in the saturation.

2. We collect the set of atomic formulas of the form Γ) ϕ in Sat(A ∧ ¬Q),
such that M assigns Γ) ϕ to false. These sequents are underivable.

3. The Kripke model K = 〈W,≤, Sq, Iq : W ×W,V : prop → ℘(W)〉 is built
using these underivable sequents as the building blocks. An element wΓ is

DKAL and Z3: A Logic Embedding Experiment 521

the set of all underivable sequents in M with the same antecedent (wΓ =
{Γ) ϕ | M �|= Γ) ϕ, for fixed Γ and arbitrary ϕ})

(a) The domain of K is the set of all sets wΓ .
(b) The valuation function V is the following: wΓ ∈ V (p) ⇐⇒ Γ) p �∈ wΓ

(c) For every pair of elements wΓ1 , wΓ2 in K, wΓ1 ≤ wΓ2 iff Γ1 ⊆ Γ2.
(d) For every pair of elements wΓ1 , wΓ2 ∈ K, saidp(wΓ1 , wΓ2) ⇐⇒ {ϕ |

p said ϕ ∈ Γ1} ⊆ Γ2, and for all ψ in the Sub(Γ1), Γ2) ψ ∈ wΓ2 implies
that Γ1) p said ψ ∈ wΓ1 .

(e) For every pair of elements wΓ1 , wΓ2 ∈ K, impliedp(wΓ1 , wΓ2) ⇐⇒ {ϕ |
p told ϕ ∈ Γ1} ⊆ Γ2, and for all ψ in the Sub(Γ1), Γ2) ψ ∈ wΓ2 implies
that Γ1) p implied ψ ∈ wΓ1 .

We will now justify the model construction with more rigorous detail.

Definition 2 (ΩΓ). Given a set Γ of formulas, we define ΩΓ as any set of
sequents of the shape Γ) ϕ, with ϕ arbitrary.

Definition 3 (Complete sets). A set ΩΓ is complete if each Γ) ϕ ∈ ΩΓ is
underivable and for each ψ ∈ Sub(Γ ∪ {ϕ}), either

1. ψ ∈ Γ or
2. Γ) ψ ∈ ΩΓ or
3. both Γ) ψ and Γ, ψ) ϕ are derivable.

Definition 4 (Saturation). A set ΩΓ is saturated for invertible rules if every
sequent Γ) ϕ ∈ ΩΓ is underivable and the following conditions are satisfied for
any ψ1, ψ2 ∈ Sub(Γ):

1) if Γ) ψ1 + ψ2 ∈ ΩΓ then Γ) ψ1 ∈ ΩΓ or Γ) ψ2 ∈ ΩΓ

2) Let ψ1 + ψ2 ∈ Sub(Γ). Then if Γ) ψ1 ∈ ΩΓ or Γ) ψ2 ∈ ΩΓ then Γ)
ψ1 + ψ2 ∈ ΩΓ

3) if ψ1 + ψ2 ∈ Γ then Γ) ψ1 �∈ ΩΓ and Γ) ψ2 �∈ ΩΓ

4) if ψ1 → ψ2 ∈ Γ then Γ) ψ1 ∈ ΩΓ or Γ) ψ2 �∈ ΩΓ

Lemma 1. If ΩΓ is complete, then it is saturated for invertible rules.

Proof: We say that ψ clashes with Γ) ϕ if both Γ, ψ) ϕ and Γ) ψ are
derivable.

1) Note that if
Γ) ψ1 and Γ) ψ2 (18)

are derivable, then Γ) ψ1 + ψ2 is derivable by (+I) rule, contradicting
completeness of ΩΓ . Hence one of ψ1, ψ2 (say ψ1) is not in Γ , and one of
ψ1, ψ2 does not clash with Γ) ψ1 +ψ2. If Γ) ψ1 �∈ ΩΓ , then ψ1 clashes with
Γ) ψ1 +ψ2 by completeness. Hence the sequent Γ) ψ1 is derivable, and ψ2

does not clash with Γ) ψ1 + ψ2. Also ψ2 �∈ Γ , since otherwise sequents in
(18) are derivable. Hence Γ) ψ2 ∈ ΩΓ as required.

522 S. Mera and N. Bjørner

2) We know that one of the two sequents (say Γ) ψ1) is in ΩΓ . If ψ1 +ψ2 ∈ Γ ,
then Γ) ψ1 + ψ2 is derivable, and using (+E), Γ) ψ1 is derivable. This
is not possible since Γ) ψ1 ∈ ΩΓ , and hence is underivable. On the other
hand, because ΩΓ is complete and ψ1 + ψ2 ∈ Sub(Γ), if ψ1 + ψ2 �∈ Γ and
Γ) ψ1 + ψ2 �∈ ΩΓ , then ψ1 + ψ2 clashes with Γ) ψ1 + ψ2, and again by
the same argument, Γ) ψ1 is derivable. This is again absurd, and therefore
Γ) ψ1 + ψ2 ∈ ΩΓ .

3) Let ψ1 +ψ2 ∈ Γ . Then Γ) ψ1 +ψ2 is derivable using (x2x). Then, by (+E),
both Γ) ψ1 and Γ) ψ2 are derivable. Then none of them can be in ΩΓ .

4) Let ψ1 → ψ2 ∈ Γ . By (x2x), we know that Γ) ψ1 → ψ2 is derivable. If
ψ1 ∈ ΩΓ , again by (x2x) the sequent Γ) ψ1 is derivable. Applying (→ E)
we derive Γ) ψ2, and therefore Γ) ψ2 �∈ ΩΓ . The other possibility is,
ψ1 �∈ Γ and Γ) ψ1 �∈ ΩΓ , and given that ΩΓ is complete, we know that
Γ) ψ1 is derivable, and we can apply (→ E) again to derive Γ) ψ2, and
therefore Γ) ψ2 �∈ ΩΓ .

Lemma 2 (Completion). Given two set of formulas, Γ and Δ, such that Σ =
{Γ) ϕ | ϕ ∈ Δ} is a set of underivable sequents, then Σ can be extended to a
complete set consisting of subformulas of Γ ∪Δ.

Proof: Consider an enumeration ψ0, ψ1, . . . of all formulas in Sub(Γ,Δ). Define
the sequences Γ ⊂ Γ1 ⊂ . . . , and Δ ⊂ Δ1 ⊂ . . . of finite sets of formulas, and
ΩΓi = {Γi) ψ | ψ ∈ Δi} such that ΩΓi is complete for all formulas ψj , j < i,
that is to say, for each sequent Γi) ϕ ∈ ΩΓi either ψj ∈ Γi, or Γi) ψj ∈ ΩΓi ,
or both Γi) ψj and Γi, ψj) ϕ are derivable. Let Γi+1 := Γi ∪ {ψi} if all
the sequents {Γi, ψi) ϕ | ϕ ∈ Δi} are underivable; otherwise Γi+1 := Γ .
Then let Δi+1 := Δi ∪ {ψi} if Γi+1) ψi is underivable, and otherwise let
Δi+1 := Δi. Finally, let Γ+ :=

⋃
Γi and Δ+ :=

⋃
Δi. The completeness of

ΩΓ+ = {Γ+) ϕ | ϕ ∈ Δ+} easily follows.

Definition 5. Consider the Kripke model K = 〈W,≤, Sq, Iq, V 〉, over the signa-
ture 〈prop,rel〉, where W is a nonempty set, ≤, Sq and Iq are binary relations
over W , V : prop→ ℘(W) and

– W is the set of all sets of complete sequents.
– ΩΓ ≤ ΩΓ ′ iff Γ ⊆ Γ ′.
– Sq(ΩΓ , ΩΓ ′) iff {ϕ | p said ϕ ∈ Γ} ⊆ Γ ′ and for all ψ ∈ Sub(Γ), Γ ′) ψ ∈
ΩΓ ′ implies Γ) p said ψ ∈ ΩΓ .

– Iq(ΩΓ , ΩΓ ′) iff {ϕ | p told ϕ ∈ Γ} ⊆ Γ ′ and for all ψ ∈ Sub(Γ), Γ ′) ψ ∈
ΩΓ ′ implies Γ) p implied ψ ∈ ΩΓ .

– ΩΓ ∈ V (p) iff Γ) p �∈ ΩΓ .

Let’s see that the model K is a Kripke model for the infon logic.

– ≤ is reflexive and transitive given that ⊆ is reflexive and transitive.
– We have to check that, if ΩΓ ≤ ΩΓ ′ and Sp(ΩΓ ′ , ΩΓ ′′), then Sp(ΩΓ , ΩΓ ′′)

(and the same for Ip). If Γ ⊆ Γ ′, and {ϕ | p said ϕ ∈ Γ ′} ⊆ Γ ′′, then

DKAL and Z3: A Logic Embedding Experiment 523

{ϕ | p said ϕ ∈ Γ} ⊆ Γ ′′. If Γ ′′) ψ ∈ ΩΓ ′′ , then Γ ′) p said ψ ∈ ΩΓ ′ .
Thus, Γ ′) p said ψ is underivable, and because, Γ ⊆ Γ ′, Γ) p said ψ
is also underivable. Therefore, p said ψ �∈ Γ , and by completeness of ΩΓ ,
Γ) p said ψ ∈ ΩΓ . Therefore Sp(ΩΓ , ΩΓ ′′) as desired. The same reasoning
can be applied to Ip.

– To see that the valuation function V is monotonic, we have to prove that
given ΩΓ and ΩΓ ′ such that Γ ⊆ Γ ′, then if Γ) p �∈ ΩΓ then Γ ′) p �∈ ΩΓ ′ .
Assume that Γ) p �∈ ΩΓ . If p ∈ Γ , then p ∈ Γ ′, therefore Γ ′) p is derivable,
and therefore Γ ′) p �∈ ΩΓ ′ . On the other hand, if p �∈ Γ , and knowing that
ΩΓ is complete, then Γ) p is derivable. That means that Γ ′) p is also
derivable, and again we have that Γ ′) p �∈ ΩΓ ′ .

Definition 6. A set M of sets ΩΓ is saturated for non-invertible rules if the
following conditions are satisfied for every ΩΓ ∈M :

1) If Γ) ψ1 → ψ2 ∈ ΩΓ then there is a ΩΓ ′ ∈M such that Γ ∪ {ψ1} ⊆ Γ ′ and
Γ ′) ψ2 ∈ ΩΓ ′ .

2) If Γ) p said ϕ ∈ ΩΓ then there is a ΩΓ ′ ∈ M such that Sp(ΩΓ , ΩΓ ′) and
Γ ′) ϕ ∈ ΩΓ ′ .

3) If Γ) p implied ϕ ∈ ΩΓ then there is a ΩΓ ′ ∈M such that Ip(ΩΓ , ΩΓ ′) and
Γ ′) ϕ ∈ ΩΓ ′ .

A set M of sets ΩΓ is saturated if every ΩΓ ∈ M is saturated for invertible
rules, and M is saturated for non-invertible rules.

Lemma 3. The set W of all sets of complete sequents ΩΓ is saturated.

Proof: We check the three conditions:

1) If Γ) ψ1 → ψ2 ∈ ΩΓ , then the sequent Γ, ψ1) ψ2 is underivable (we can
apply rule (→ I) otherwise). By the Completion Lemma 2, we can extend
the singleton set {Γ, ψ1) ψ2} to a complete set ΩΓ ′ such that Γ ⊆ Γ ′ and
Γ ′) ψ2 ∈ ΩΓ ′ . Therefore ΩΓ ′ ∈W .

2) Let Δ = {ϕ | Γ) p said ϕ ∈ ΩΓ }. Let Γ ′ = Γ ′
1 ∪ Γ ′

2, where Γ ′
1 = {ψ |

p said ψ ∈ Γ} and Γ ′
2 = {β | Γ) p said β is derivable}. Let’s check first that

{Γ ′) ϕ | ϕ ∈ Δ} is a set of underivable sequents. If that is not the case, then
there is some sequent Γ ′) ϕi that is derivable. Let us restrict to the premises
that are used in the derivation of the sequent, so ψ1, . . . , ψn, β1, . . . , βm) ϕi

is derivable, where ψi ∈ Γ ′
1 and βi ∈ Γ ′

2. Using rule (S), we can derive
p said {ψ1, . . . , ψn, β1, . . . , βm}) p said ϕi. Applying rule (→ I) m times,
we get p said {ψ1, . . . , ψn}) p said β1 → · · · → p said βm → p said ϕi. We
know that p said {ψ1, . . . , ψn} ⊆ Γ , so Γ) p said β1 → . . . p said βm →
p said ϕi is also derivable. Because each Γ) p said βi, 1 ≤ i ≤ m, is deriv-
able, we can apply (→ E) m times, and conclude Γ) p said ϕi is derivable.
This is absurd, since Γ) p said ϕi ∈ ΩΓ .

Therefore we can use Completion Lemma 2 and extend {Γ ′) ϕ | ϕ ∈ Δ}
to a complete set ΩΓ+ , and therefore ΩΓ+ ∈M . Let us now check that ΩΓ+

satisfies the conditions we want. By construction, we know that for each

524 S. Mera and N. Bjørner

Γ) p said ϕ ∈ ΩΓ , Γ+) ϕ ∈ ΩΓ+ . Furthermore, let’s see that for every ψ
such that Γ+) ψ ∈ ΩΓ+ , Γ) p said ψ ∈ ΩΓ . If we assume the contrary,
there is a ψ such that Γ+) ψ ∈ ΩΓ+ , but Γ) p said ψ �∈ ΩΓ . Observe
that if p said ψ ∈ Γ , then by construction ψ ∈ Γ+, and Γ+) ψ would be
derivable. Since Γ+) ψ ∈ ΩΓ+ , this is absurd. So, by completeness of ΩΓ ,
Γ) p said ψ is derivable, but in that case ψ ∈ Γ+ again by construction. This
implies that Γ+) ψ is derivable, which is an absurd. Therefore, the desired
condition holds. Finally, it is easy to see that {ϕ | p said ϕ ∈ Γ} ⊆ Γ+, and
therefore Sp(ΩΓ , ΩΓ+).

3) The proof for this condition is similar to 2).

Theorem 5. Let K be as in Definition 5. Then for w ≡ ΩΓ , w ∈ M , the
following holds for all ϕ ∈ Sub(Γ):

ϕ ∈ Γ implies K,w |= ϕ (19)

Γ) ϕ ∈ ΩΓ iff K,w �|= ϕ (20)

Proof: We prove both claims by simultaneous induction on ϕ. For the base
case, let ϕ = p. To see claim (19), if p ∈ Γ , then Γ) p is derivable, and therefore
Γ) p �∈ ΩΓ . That means by definition of V that K,w |= p. Claim (20) follows
directly by definition of the valuation function V .

For the case ϕ = ψ1 + ψ2. If ψ1 + ψ2 ∈ Γ , by Lemma 1 (3), both Γ) ψ1 and
Γ) ψ2 do not belong to ΩΓ . Therefore by inductive hypothesis K,w |= ψ1 and
K,w |= ψ2, and by the truth definition, K,w |= ψ1 +ψ2. To see the other claim,
Γ) ψ1 + ψ2 ∈ ΩΓ iff (by Lemma 1, 1) and 2)) one of Γ) ψ1, Γ) ψ2 (say
Γ) ψ1) is in ΩΓ . By inductive hypothesis, K,w �|= ψ1, and by the definition of
truth, K,w �|= ψ1 + ψ2.

For the case ϕ = ψ1 → ψ2. If ψ1 → ψ2 ∈ Γ , then for every w′ ≡ ΩΓ ′ such that
ΩΓ ≤ ΩΓ ′ , we have ψ1 → ψ2 ∈ Γ ′. By Lemma 1 (4), this implies that Γ ′) ψ1 ∈
ΩΓ ′ or Γ ′) ψ2 �∈ ΩΓ ′ . By inductive hypothesis, K,w′ �|= ψ1 or K,w′ |= ψ2. This
implies K,w |= ψ1 → ψ2 as desired. For the second claim, if Γ) ψ1 → ψ2 ∈ ΩΓ ,
by the saturation condition we know that there is a w′ ≡ ΩΓ ′ ∈ M such that
ΩΓ ≤ ΩΓ ′ , ψ1 ∈ Γ ′ and Γ ′) ψ2 ∈ ΩΓ ′ . By the inductive hypothesis, K,w′ |= ψ1

and K,w′ �|= ψ2. Therefore K,w �|= ψ1 → ψ2. For the other direction, let us
suppose that K,w �|= ψ1 → ψ2. By the truth definition, that means that there is
a w′ ≡ ΩΓ ′ ∈M such that ΩΓ ≤ ΩΓ ′ , K,w′ |= ψ1 and K,w′ �|= ψ2. By inductive
hypothesis, this implies that Γ ′) ψ1 �∈ ΩΓ ′ and Γ ′) ψ2 ∈ ΩΓ ′ . First note
that Γ ′) ψ1 is derivable (this is because either ψ1 ∈ Γ ′, and therefore Γ ′) ψ1

is derivable, or because ψ1 �∈ Γ ′ and then the completeness condition imposes
derivability). That means that Γ ′) ψ1 → ψ2 cannot be derivable, because in
that case we could apply (→ E) and conclude that Γ ′) ψ2 is derivable, which
would contradict the fact that Γ ′) ψ2 ∈ ΩΓ ′ . Because Γ ⊆ Γ ′, we know that
Γ) ψ1 → ψ2 is not derivable either. Therefore ψ1 → ψ2 �∈ Γ , and by the
completeness condition, the only possibility is Γ) ψ1 → ψ2 ∈ ΩΓ .

DKAL and Z3: A Logic Embedding Experiment 525

For the case ϕ = p said ψ. If p said ψ ∈ Γ , then for every w′ ≡ ΩΓ ′ such that
Sp(ΩΓ , ΩΓ ′) we have ψ ∈ Γ ′. By inductive hypothesis, K,w′ |= ψ. Using the
truth definition, this implies K,w |= p said ψ as desired. For the second claim,
if Γ) p said ψ ∈ ΩΓ , then by the saturation condition, there is a ΩΓ ′ ∈M such
that Sp(ΩΓ , ΩΓ ′) and Γ ′) ψ ∈ ΩΓ ′ . By the inductive hypothesis, K,w′ �|= ψ.
Therefore K,w �|= p said ψ. For the other direction, if K,w �|= p said ψ, there is
a w′ ≡ ΩΓ ′ ∈ M such that Sp(w,w′) and K,w′ �|= ψ. By inductive hypothesis,
we know that Γ ′) ψ ∈ ΩΓ ′ . Because Sp(ΩΓ , ΩΓ ′) and Γ ′) ψ ∈ ΩΓ ′ , Γ)
p said ψ ∈ ΩΓ .

The case for ϕ = p implied ψ is equivalent to the previous one.

Corollary 1. K,w �|= Γ) ϕ for every Γ) ϕ ∈ ΩΓ .

Proof: This is an immediate consequence of Theorem 5.

Corollary 2 (Completeness). Each underivable sequent in the infon calculus
is falsified in a state of the canonical model K. Therefore, every valid sequence
is derivable in the infon calculus.

Proof: By the Completion Lemma 2, any underivable sequent Γ) ϕ can be
extended to a complete set w ≡ ΩΓ ′ such that Γ ⊆ Γ ′ and Γ ′) ϕ ∈ ΩΓ ′ .
By Theorem 5, there is a w ≡ ΩΓ ′ ∈ M such that K,w �|= Γ ′) ϕ. Therefore
K,w �|= Γ) ϕ.

Corollary 3 (Z3oundness). The model extraction algorithm is complete for
ground sequents when using the pattern-based encoding.

Proof: Theorem 4 establishes that the pattern-based encoding is complete for
ground sequents. In particular, every sequent that evaluates to false in the model
produced by saturation is underivable. Lemma 2 establishes that a subset of these
underivable sequents can be extended to a complete set. Corollary 2 therefore
applies and allows extracting a model K for the underivable ground sequent.

6.1 DKAL Models@Starbucks

Here we show examples of some models that have been extracted using our pro-
totype. In order to force the desired query to be underivable we feed the tool
with an incomplete specification. Recall the Starbucks example presented in Sec-
tion 3, in which an SSL connection is established. When the trusted root informs
Windows that the certificate is valid (and Windows accepts the communication)
it learns:

? Windows knows TrustedRoot implied ThisCert isValid

But in this example we will remove the fact that says that Windows trusts
on the trusted root:

526 S. Mera and N. Bjørner

/* Windows knows TrustedRoot tdonI X*/

So now the query:

? Windows knows ThisCert isValid

will not be derivable. The Kripke model K returned by the prototype in this
case is the following (for the knowledge relevant to Windows):

w0 w1

where the valuation function is the following: V (ThisCert isValid) = ∅, and
the value for the rest of the atoms is the set {w0, w1}. In the picture the relation
≤ is shown, and the other relations are empty. Note that

K,w0 �|= ThisCert isValid,

but in K,w0 the rest of the assertions are satisfied. So K is effectively a counter-
model. The next query that is tested relates to the process of establishing an
SSL connection:

? Windows knows IE shouldShowLock

It is not derivable either, since knowing that the certificate is valid is a condition
for Windows to know that it should show the lock on IE. The output in this case
is the following Kripke model K:

w0w1w2

In the picture, the dashed edges represent the ≤ relationship. All the other
relations (saidpatrick, saidwindows, etc.) are the same and they are represented
by the solid edges. The valuation function V is the following:

V (ThisCert isValid) = ∅,
V (IECurrSite supportsSSL) = {w0, w1, w2}
V (ThisCert isProperlySigned) = {w0, w1, w2}
V (IE shouldShowLock) = {w1, w2}.

We can see again that

K,w0 �|= ThisCert isValid,

but the rest of the assertions are satisfied.

DKAL and Z3: A Logic Embedding Experiment 527

7 Conclusion

We experimented with embedding the DKAL logic into the theorem prover Z3
for classical first-order logic and interpreted theories. More specifically, we used
the instantiation-based support for quantifiers in Z3. We also established how
ground counter-models produced by Z3 can be mapped back to Kripke models
for the infon logic. A prototype embedding into Z3 was implemented and checked
on smaller illustrative case studies. This paper includes one such case study that
exercised various features available in DKAL. We do not claim to have produced
any dedicated, high-performance, DKAL engine, but the embedding into Z3
allows re-using the extensible support for theories in Z3 to handle auxiliary
logical constraints, such as comparing timeouts symbolically.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static

analysis. SIGPLAN Not. 37(1), 1–3 (2002)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An

Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)

CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.

In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,

Heidelberg (1999)

4. Bjørner, N., Hendrix, J.: Linear functional fixed-points. In: Bouajjani, A., Maler,

O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 124–139. Springer, Heidelberg (2009)

5. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: A Precise Yet Efficient Memory

Model For C. In: Proceedings of Systems Software Verification Workshop (SSV

2009) (2009) (to appear)

6. Costa, M., Crowcroft, J., Castro, M., Rowstron, A.I.T., Zhou, L., Zhang, L.,

Barham, P.: Vigilante: end-to-end containment of internet worms. In: Herbert,

A., Birman, K.P. (eds.) SOSP, pp. 133–147. ACM, New York (2005)

7. de Moura, L., Bjørner, N.: Efficient E-Matching for SMT Solvers. In: Pfenning,

F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg

(2007)

8. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg

(2008)

9. Degtyarev, A., Gurevich, Y., Narendran, P., Veanes, M., Voronkov, A.: Decidability

and complexity of simultaneous rigid E-unification with one variable and related

results. Theoretical Computer Science 243, 167–184 (2000)

10. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking

object-oriented programs. Technical Report 2005-70, Microsoft Research (2005)

11. Godefroid, P., Levin, M., Molnar, D.: Automated Whitebox Fuzz Testing. Technical

Report 2007-58, Microsoft Research (2007)

12. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Syn-

ergy: a new algorithm for property checking. In: Young, M., Devanbu, P.T. (eds.)

SIGSOFT FSE, pp. 117–127. ACM, New York (2006)

13. Gurevich, Y., Neeman, I.: Dkal: Distributed-knowledge authorization language. In:

CSF, pp. 149–162. IEEE Computer Society, Los Alamitos (2008)

528 S. Mera and N. Bjørner

14. Gurevich, Y., Neeman, I.: DKAL 2 — A Simplified and Improved Authorization

Language. Technical Report 2009-11, Microsoft Research (2009)

15. Gurevich, Y., Neeman, I.: The Infon Logic. Bulletin of European Association for

Theoretical Computer Science (2009)

16. Jackson, E.K., Schulte, W.: Model Generation for Horn Logic with Stratified Nega-

tion. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008.

LNCS, vol. 5048, pp. 1–20. Springer, Heidelberg (2008)

17. Lahiri, S.K., Qadeer, S.: Back to the Future: Revisiting Precise Program Verifica-

tion using SMT Solvers. In: POPL 2008 (2008)

18. Mints, G.: Grigori. In: A short introduction to intuitionistic logic. Kluwer Aca-

demic, New York (2000)

19. Moy, Y., Bjørner, N., Sielaff, D.: Modular Bug-finding for Integer Overflows in the

Large: Sound, Efficient, Bit-precise Static Analysis. Technical Report MSR-TR-

2009-57, Microsoft Research (2009)

20. Ohlbach, H.J., Nonnengart, A., de Rijke, M., Gabbay, D.M.: Encoding two-valued

nonclassical logics in classical logic. In: Robinson, J.A., Voronkov, A. (eds.) Hand-

book of Automated Reasoning, pp. 1403–1486. Elsevier, MIT Press (2001)

21. Tillmann, N., Schulte, W.: Unit Tests Reloaded: Parameterized Unit Testing with

Symbolic Execution. IEEE software 23, 38–47 (2006)

Decidability of the Class E
by Maslov’s Inverse Method

Grigori Mints

Stanford University, Stanford, CA

gmints@stanford.edu

Dedicated to Yuri Gurevich on the occasion of his 70th birthday

Abstract. We present a simple formulation of S. Maslov’s inverse me-

thod of proof (and proof search) for first order predicate logic and illus-

trate it by proving decidability of validity for formulas with one existential

quantifier and arbitrary function symbols.

Keywords: decidable classes, automated deduction, inverse method.

1 Introduction

This paper contains a proof of a result obtained independently by two quite
different methods by Yuri Gurevich [6] and V. Orevkov and S. Maslov [14], [9]
in the sixties. These two methods made it possible to give definitive treatments
of decidable fragments for classical predicate logic in [9] and [6]. It was the
time of the frequent and fruitful contacts of Yuri with the Leningrad group
of mathematical logic headed by N. Shanin which included (among others) S.
Maslov, V. Orevkov and the present author. The proof in the present paper is
very close to one presented [in Russian] in [8].

An important reason for the present publication is the need to reintroduce
into the literature on and around automated deduction the basic ideas of the
inverse method proposed by to S. Maslov [7]. This powerful extension of Gentzen-
style treatment for classical predicate logic allows for very smooth extensions to
almost any non-classical logic admitting Gentzen-style treatment. Unfortunately
the untimely death of S. Maslov in July 1982 at the age of 43 years prevented him
from developing his ideas in that direction. His publications on inverse method
are notoriously brief which may have been an obstacle for their assimilation into
logic and computer science, and the vast potential of the suggested methods and
results have not been realized. S. Maslov also developed versions of the resolution
method having close connections to Gentzen-style systems [10]. These ideas were
taken up, presented in detail and developed by the present author [11], [12], by
A. Voronkov and Degtyarev [4] as well as by other authors. In this later work the
term inverse method is applied to resolution-like developments, while S. Maslov
used it primarily for his enhancement of Gentzen-type methods. The authors
of [4] present an inverse method with a lot of technical detail, then switch to

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 529–537, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

530 G. Mints

resolution-like methods and explain the reason for the switch at the beginning
of their Sect. 4.

In Sect. 1 we present S. Maslov’s formulation of his inverse method for skolem-
ized formulas which avoids many technical details and give a short proof of its
completeness which shows a close connection with Gentzen-type derivations.
Then we discuss two notions most prominent in S. Maslov’s approach to de-
cidable classes and automated deduction: those of a favorable free clause and
of factorization. They make it possible to simplify a formula to be tested for
validity “on the fly”, in the process of testing.

S. Maslov proved in [7] decidability of a class K containing essentially all de-
cidable classes of predicate formulas known by the time [7] was written. That
proof used a combination of Lemmas 1 and 2 with much more careful analysis of
tautological disjunction than in the present paper. It would be interesting to give
decision procedures using inverse method for decidable classes that were discov-
ered after that, for example guarded formulas [2]. Another possible application
that requires development of the inverse method for intuitionistic logic may be a
new more efficient decision algorithm for the formulas of intuitionistic predicate
logic that do not contain negative quantifiers [13]. Negative quantifiers are ones
that become ∃ in the prenex normal form. The need for such an algorithm in
computer science is noticed in [5] where an algorithm close to [13] is provided
for an extension of this class.

I thank Elena Maslova for help in editing this paper.

2 Inverse Method for Skolemized Formulas

2.1 Calculus UF for Deriving Clauses

A clause is a disjunction of literals P (t1, . . . , tn), ¬P (t1, . . . , tn) where ti are
terms possibly containing function symbols. As usual, clauses are treated up to
order of literals and contraction of identical literals. For exmple L ∨ K ∨ L is
identified with K ∨ L.

We consider closed prenex first order formulas of the form

∃x1 . . . ∃xn&1≤i≤δDi ≡ ∃xM ≡ F (1)

where Di are clauses.
An F -substitution is an expression of the form (t1/x1, . . . , tn/xn) where ti are

terms.
Derivable objects of the calculus UF constructed for the formula F are clauses

Di1σ1 ∨ . . . ∨Dimσm (m ≥ 0; 1 ≤ i1, . . . im ≤ δ)

where σ1, . . . , σm are F -substitutions.
Rule A: C, if C is a tautology.
Rule B.

C1 ∨ (D1σ1) . . . Cδ ∨ (Dδσδ)

C1σ
1 ∨ . . . Cδσ

δ B

Decidability of the Class E by Maslov’s Inverse Method 531

provided σ1σ
1 = . . . = σδσ

δ.
A clause is F -favorable iff it is derivable in UF .
Comment. A simple (but sufficiently general) instance of the rule B is

C ∨ (D1σ) . . . C ∨ (Dδσ)
C

B

which can be seen as
C ∨ (&Diσ)

C
B

Here a substitution instance of the whole formula F is cut out of the derived
clauses to infer the clause C.

Example 1. Consider
F ≡ ∃x(¬Px ∨ Pf(x)).

Here we have δ = 1 hence just one premise in the rule B. The following figure is
a derivation of the the empty clause ∅ in UF .

axiom
D1 ∨D1(fx/x)

D1
B

∅ B

2.2 Completeness of UF

Theorem 1. A clause C is F -favorable iff C ∨ F is valid, that is, derivable in
predicate logic.

Proof. If C ∨ F is valid, there are F -substitutions τ1, . . . , τp such that

C ∨Mτ1 ∨ . . . ∨Mτp

is derivable (in fact is a tautology). We use induction on p to construct a deriva-
tion (of height p) of C in UF .

Induction base. p = 0, that is C is a tautology. Then C is an axiom of UF .
Induction step. If

C ∨Mτ1 ∨ . . . ∨Mτp ∨Mθ

is derivable, then distributing the last conjunction

Mθ ≡ &iDiθ

over disjunction we get δ disjunctions

(C ∨D1θ) ∨Mτ1 ∨ . . . ∨Mτp, . . . (C ∨Dδθ) ∨Mτ1 ∨ . . . ∨Mτp.

By induction hypothesis we have in UF

C ∨D1θ, . . . , C ∨Dδθ,

532 G. Mints

and hence one application of the rule B derives the clause C.
Only if. Use induction on the derivation in UF . One application of the rule B

is simulated by derivable implications:

(C1 ∨D1σ ∨ F)& . . .&(Cδ ∨Dδσ ∨ F)→

(C1 ∨ . . . ∨ Cδ) ∨ (D1 ∨ . . . ∨Dδ)σ ∨ F ≡
(C1 ∨ . . . ∨ Cδ) ∨Mσ ∨ F →

(C1 ∨ . . . ∨Cδ) ∨ F ∨ F → (C1 ∨ . . . ∨ Cδ) ∨ F
where σ = σ1σ

1 = . . . = σδσ
δ. �

Corollary 1. A formula F is derivable iff the empty clause ∅ is F -favorable.

Proof. Let C = ∅ in the theorem; ∅ ∨ F is ⊥ ∨ F ⇐⇒ F . �

2.3 Free Favorable Clauses, Factorization, General Proof Search
Method

The main tool of decidability proofs by inverse method is the following simplifi-
cation lemma.

Lemma 1. If Dα is F -favorable, then

F ⇐⇒ ∃x&i
=αDi

(abbreviated F ⇐⇒ F−).

Proof. F → F− is obvious. By Theorem 1 Dα ∨ F is derivable in the predicate
logic, and hence

∀xDα ∨ F.
Hence in the proof of F− → F one can use ∀xDα, but then the task is trivial. �

Definition 1. A favorable clause Di1σ1 ∨ . . . Dipσp is free if each of the substi-
tutions σ1, . . . , σp is the identity (x1/x1, . . . , xn/xn).

A favorable clause Dα is a unit free clause.

We shall see below how Lemma 1 decides the class E.
Another source of simplification is the notion of factorization.

Definition 2. A clause C ∨D is factored into clauses C and D (and C,D are
called its factors) if C and D have no common variables.

Notation C) E for derivability of a clause E from a clause C in UF is self-
explaining.

Lemma 2. If an F -favorable clause C∨D is factored into C and D and a clause
E does not have common variables with C ∨D then

C ∨D) E if and only if (C) E and D) E).

Decidability of the Class E by Maslov’s Inverse Method 533

Proof. If C ∨D) E then erasing all traces of D from the given derivation of E
we get C) E and similarly for D) E, even if E has common variables with
C ∨D.

Let C) E. Since D has no common variables with C,E, we can rename
variables in D so that they do not occur at all in the given derivation. Then
adding the resulting clause (say D′) to all clauses in the derivation gives us

(C ∨D′)) E ∨D′. (2)

Renaming variables from D in the derivation D) E we get D′) E. Adding
this to (2) we get C ∨ D′ ∨ D′) E ∨ E, and after contraction and renaming
C ∨D) E as required. �
A general proof search algorithm for the first order logic based on the inverse
method [3] generates favorable clauses for the goal formula F from the clauses
given by the rule A by the application of the rule B combined with the unification
as it is done in the resolution method. The proof search terminates when an
empty clause is generated.

If at some moment a free unit clause is derived, it is deleted from the formula
(cf. Lemma 1) and the proof search is continued with a simplified formula. If a
factorable clause C ∨D is generated, the search branches according to Lemma
2. If in addition one of the clauses C,D is a unit free clause, the formula F can
be simplified in corresponding branch.

Example. F ≡ ∃x∃y[(¬Px ∨ Pf(x))& (¬Qy ∨Qg(y))]
≡ ∃x∃y[D1(x)&D2(y)].
Rule A gives two favorable clauses:

D1(x) ∨D1(f(x)); D2(y) ∨D2(g(y)).

Rule B gives (with substitutions σ1 = (x/f(x)), σ2 = (y/g(y)))

D1(x) ∨D2(y).

This clause is factored into two unit free clauses D1(x) and D2(y). Taking first
the factor D2(y) (to save notation), we simplify F to D1(x) and have ∅ by
Example 1. The factor D1(x) is treated similarly. �

3 Decidability of the Class E

From now on we assume that n = 1 in (1) that is

F ≡ ∃xM ≡ ∃x&i≤δDi. (3)

Writing substitution (t/x) we shall drop x, so that E(t) is the result of substi-
tuting t for all occurrencies of x in E.

Definition 3. Define the depth d(t) to be the nesting of function symbols in a
term t: d(a) = 0 for variables and constants a, and

d(f(t1, . . . , tn)) = max(d(t1), . . . , d(tn)) + 1.

534 G. Mints

Let d(F) be the maximum of d(t) for terms t occurring in F .
The Herbrand universe of the formula F is the least set of terms containing

all constants occurring in F and closed under substitutions into terms occurring
in F .
Hm(F) is the Herbrand expansion of the depth m for F , that is

M(t1) ∨ . . . ∨M(tk) (4)

where {t1, . . . tk} is the list of all terms of the depth ≤ m from the Herbrand
universe of F .
F -terms are terms of the depth ≤ d(F) constructed from constants and vari-

able x by means of function symbols in F .
F -atoms are constructed from F -terms by means of predicates in F .
Formula F is saturated if each clause Di contains each F -atom (possibly with

negation).

Obviously each formula can be made saturated by using

D ⇐⇒ (D ∨A)&(D ∨ ¬A).

The next four lemmas are used in the proof of the main Theorem 2.

Lemma 3. Let E,E′ be terms or literals, r be a term not occurring in E,E′

and E(r) ≡ E′(r). Then E ≡ E′.

Proof. Induction on E,E′. �

Lemma 4. Let T, t, s, t′, s′ be terms, d(T) > max(d(t), d(t′)) and T ≡ t(s) ≡
t′(s′). Then s contains s′ or s′ contains s.

Proof. Induction on max(d(t), d(t′)). �

Lemma 5. Let T, r, s, r′, s′ be terms, T ≡ r(s) ≡ r′(s′), m = max(d(r), d(r′)),
d(T) ≥ 2m, d(s′) ≥ d(s). Then d(r) ≥ d(r′).

Proof. Induction on m. �

Lemma 6. Let u, u′ be literals or terms, s, T terms, u′(s) ≡ u(T), d(T) ≥
max(d(u), d(u′), d(s)), and x occurs in u. Then there is a term r such that

u′ ≡ u(r) and r(s) ≡ T.

Proof. Induction on d(u′). �
Now we prove the basic result.

Theorem 2. Let F be a derivable formula of the form (3) and H2d(F)(F) be
underivable. Then one of the clauses Di (1 ≤ i ≤ δ) is derivable in UF by at
most one application of the rule B.

Decidability of the Class E by Maslov’s Inverse Method 535

Proof. Case 1. One of Di does not contain x. If this Di is a tautology, it is
derivable by the rule A. Otherwise F is underivable, since Di is refutable.

Case 2. All Di contain x. Find Herbrand expansion (4) which is a tautology.
Adding to (4) new clauses and changing the order of formulas M(ti) we can
achieve the following:

a If some tj (j = 1, . . . k) contains a term t then M(t) is also contained in (4),
b tj �= tl for j �= l,
c if d(tj) < d(tl) then j < l.

Distributing & over ∨ in (4), we see that (4) is a tautology iff all clauses

Dα1(t1) ∨ . . . ∨Dαk
(tk) (1 ≤ α1, . . . , αk ≤ δ) (5)

are tautologies. Reducing k if necessary we can assume that

Disjunction M(t1) ∨ . . . ∨M(tk−1) is not a tautology. (6)

So there is a non-tautological disjunction

Γ ≡ Dα1(t1) ∨ . . . ∨Dαk−1(tk−1)

such that all clauses
Γ ∨D1[T], . . . , Γ ∨Dk[T] (7)

are tautologies. By (3), T has the maximal depth among all tj , and since
H2d(F)(F) is underivable, we have

d(T) > 2d(F) ≥ d(F) (8)

so that T does not occur in F .
Case 2.1. One of the clauses Di(T) is a tautology. This means that L1(T) ≡

¬L2(T) for some literals L1, L2 in Di. By (8) and Lemma 3 this implies L1 ≡
¬L2, that is, Di is a tautology, and hence derivable in UF by the rule A.

Case 2.2. None of Di(T) is a tautology. Since Γ is not a tautology, all Dαj (tj)
for j = 1, . . . , k − 1 are not tautologies. From the fact that all clauses (7) are
tautologies it follows that for every β = 1, . . . , δ there is a j, 1 ≤ j ≤ k − 1 and
a literal Lj in a clause Dαj such that Lj(tj) is the negation of some literal from
Dβ(T), that is of some literal Lβ(T) where Lβ occurs in Dβ.

Assume (for contradiction) that each of these literals Lβ, β ∈ {1, . . . , δ} does
not contain x. Then Lβ(t) ≡ Lβ for any term t, in particular for t ≡ tj , and
hence the clause Lj(tj)∨Dβ(t) contains a pair of complementary literals. Setting
β := αj we see that Γ ∨Dαj (tj) ≡ Γ is a tautology, contrary to the assumption
concerning Γ . So one of the literals Lβ has to contain x. Using equality Lj(tj) ≡
¬Lβ(T) and Lemma 6 (which is applicable in view of (3)) we obtain

Lj ≡ ¬Lβ(r) and T ≡ r(tj) (9)

for some F -term r. In view of (8) and Lemma 4 there is a maximal term tl
(1 ≤ l ≤ k − 1) such that

T ≡ t(tl) (10)

536 G. Mints

for some F -term t. In other words, from (9,10) for some F -terms r and t it
follows that tj is contained in tl, in particular d(tl) ≥ d(tj). By (8) and Lemma
5 this implies

d(r) ≥ d(t). (11)

Now we shall prove that it is the clause Dαl
that is derivable in UF by one

application of the rule B. For this it is sufficient to establish that

Dαl
∨Dβ(t) (12)

is a tautology for every β = 1, . . . , δ. For this it is sufficient to establish that

Dαl
contains ¬Lβ(t). (13)

where Lβ is the literal occurring as a disjunctive term in Dβ and mentioned in
(9). By (9,11) we have

d(Lβ(t)) ≤ d(Lβ(r)) = d(Lj) ≤ d(F),

the latter because Lj belongs to Dαj . So Lβ(t) is an F -atom, and since F is
saturated, the clause Dαl

has to contain either this literal or its negation. But
Dαl

cannot contain Lβ(t) as a disjunctive term, since in that case Γ and even
Dαj (tj)∨Dαl

(tl) would be tautologies in view of the equality Lj(tj) ≡ ¬Lβ(t(tl)).
This concludes the proof of the theorem. �
Now the decision algorithm for the class E is given by Lemma 1 and Theorem 2.

References

1. Chang, C., Lee, R.: Symbolic Logic and Mechanical Theorem Proving. Academic

Press, New York (1973)

2. Andreka, H., van Benthem, J., Nemeti, I.: Modal Logics and Bounded Fragments

of Predicate Logic. J. Philos. Log. 27, 217–230 (1998)

3. Davydov, G., Maslov, S., Mints, G., Orevkov, V., Slisenko, A.: A Computer Al-

gorithm for Establishing Deducibility Based on Inverse Method. In: Seminars in

Math., V.A. Steklov Math. Inst., vol. 16, pp. 1–16 (1971)

4. Degtyarev, A., Voronkov, A.: The Inverse Method. In: Robinson, A., Voronkov,

A. (eds.) Handbook of Automated Reasoning, pp. 179–272. Elsevier, Amsterdam

(2001)

5. Dowek, G., Jiang, Y.: Eigenvariables, Bracketing and the Decidability of Positive

Minimal Predicate Logic. Theor. Comput. Sci. 360, 193–208 (2006)

6. Gurevich, Y.: Decision Problem for the Logic of Predicates and Operations. Algebra

and Log. 8(3), 284–308 (1968)

7. Maslov, S.: The Inverse Method for Logical Calculi. Trudy Mat. Inst. Steklov 98,

26–87 (1968)

8. Maslov, S., Mints, G.: Proof Search Theory and the Inverse Method (Russian).

Supplement to the Russian Translation of the book by Chang and Lee [1], Nauka,

Moscow, pp. 310–340 (1983)

9. Maslov, S., Orevkov, V.: Decidable Classes Reducible to the One-quantifier Class.

Trudy Inst. Steklov 121, 57–66 (1972)

Decidability of the Class E by Maslov’s Inverse Method 537

10. Maslov, S.: Connection between the Strategies of the Inverse Method and

the Resolution Method Seminars in Math., vol. 16, pp. 48–54. Plenum Press,

New York (1971)

11. Mints, G.: Gentzen-type Systems and Resolution Rules. Part I. Propositional Logic.

In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 198–231.

Springer, Heidelberg (1990)

12. Mints, G.: Gentzen-type Systems and Resolution Rule. Part II. In: Logic Collo-

quium 1990. Lecture Notes in Logic, vol. 2, pp. 163–190 (1994)

13. Mints, G.: Solvability of the Problem of Deducibility in LJ for the Class of For-

mulas not Containing Negative Occurrences of Quantifiers. Proc. Steklov Inst. of

Mathematics 98, 135–145 (1971)

14. Orevkov, V.: One Decidable Class of Formulas of the Predicate Calculus with

Function Symbols. In: Proceedings of the II-nd Symposium in Cybernetics, Tbilisi,

p. 176 (1965)

Logics for Two Fragments beyond the Syllogistic
Boundary

Lawrence S. Moss

Department of Mathematics, Indiana University, Bloomington, IN, USA 47405

lsm@cs.indiana.edu

Dedicated to Yuri Gurevich

Abstract. This paper is a contribution to natural logic, the study of

logical systems for linguistic reasoning. We construct a system with the

following properties: its syntax is closer to that of a natural language

than is first-order logic; it can faithfully represent simple sentences with

standard quantifiers, subject relative clauses (a recursive construct), and

negation on nouns and verbs. We also give a proof system which is com-

plete and has the finite model property. We go further by adding compar-

ative adjective phrases, assuming interpretations by transitive relations.

This last system has all the previously-mentioned properties as well.

The paper was written for theoretical computer scientists and logi-

cians interested in areas such as decidability questions for fragments of

first-order logic, modal logic, and natural deduction.

Keywords: natural logic, natural deduction, relative clause, compara-

tive adjective, decidability.

1 Introduction

Q: Hello, I’m wondering if you can help me.

A: Sure, but who are you? Your manner is familiar, but I don’t recognize your
face. I think I need an Introduction.

Q: Well, my name is Quisani, and . . .

A: Quisani! It’s a pleasure to meet you. I almost feel that I know you already,
since I’ve been following your discussions with Yuri Gurevich for so many years.
What brings you here?

Q: I have heard that there is a resurgence of interest in logical systems that
deal with inference in natural language. Is this so? And can you explain a bit of
it to me, an open-minded theoretical computer scientist?

A: This is a tall order of business for a short chat, but I’ll try. It is true that
there has been activity in the last few years that could be of interest. One area
coming from AI and natural language processing has been concerned with getting

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 538–564, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Logics for Two Fragments beyond the Syllogistic Boundary 539

programs to carry out the inferences from te that people do, or usually do, when
they read some text. This is an active area with connections to Information
Extraction. But there is not much logic there, at least not yet. Another area,
one probably closer to your interests, has been an exploration of fragments of
natural language that correspond to complexity classes. This work has been
carried out by Ian Pratt-Hartmann [13,14]. I think it could be interesting to
complexity theorists. And then there is the matter of giving logical systems in
which one can carry out as much simple reasoning in language as possible. This
has been going on for some time (see van Benthem [1] for one early reference),
and I could tell you more about it.

Q: But surely the general problem is undecidable. Actually, when I think about
matters like vagueness, incomplete sentences, failures of reference, figurative lan-
guage, and more and more problems . . ., I’m not even sure it makes much sense
to talk about what you call “simple reasoning in language”.

A: To quote your teacher [8] on the Entscheidungsproblem,

The ambitious attempt to mechanize mathematics via a decision algo-
rithm for first-order logic failed. Does this mean that the field should be
abandoned? Of course not. One should try to see what can be done. It
is natural to try to isolate special cases of interest where mechanization
is possible. There are many ways to define syntactic complexity of logic
formulas. It turns out that, with respect to some natural definitions,
sentences of low syntactic complexity suffice to express many mathe-
matical problems. For example, many mathematical problems can be
formulated with very few quantifier alternations. The decision problem
for such classes of sentences is of interest.

If we replace “mathematics” by “language”, and “mathematical problems” by
“simple natural language arguments,” you’ll get my point.

Q: All right, I would like to know more about this. But first, could you please
give me an example of some non-trivial inference carried out in natural language?

A: Sure, I’d be happy to. Let’s say we’re talking about a big table full of fruit.
(He writes on the board.)

Every sweet fruit is bigger than every ripe fruit
Every pineapple is bigger than every kumquat
Every non-pineapple is bigger than every unripe fruit
Every fruit bigger than some sweet fruit is bigger than every kumquat

(1)

I say that if we assume (or believe, or know) all the sentences above the line,
then we should do the same for the sentence below the line.

Q: “non-pineapple”?! I thought this was supposed to be natural language.

A: Take it as a shorthand for “piece of fruit which is not a pineapple”.

540 L.S. Moss

Q: Ok, I get it. But is everything either a pineapple or a non-pineapple?

A: You bet. You’ll need to use this when you convince yourself that (1) is valid.

Q: Do I need to use anything else?

A: Yes, you need to know that bigger than is a transitive relation.

Q: I’ll have to think about the reasoning. But anyhow, why don’t you just type
(1) into a theorem prover? It is in first-order logic. Or rather, it translates easily
into FOL.

A: I’d rather translate to a decidable system. The full expressive power of first-
order logic does not seem appropriate either to modeling how people reason, or for
the matter of getting a computer to carry out the reasoning in examples like (1).

Q: Well, looking more carefully, I can see that your argument can be translated
into the two-variable fragment FO2. Then it really would fit into a decidable
logic, by Mortimer’s Theorem [11].

A: Not so fast. Although what I wrote translates to FO2, the fact that bigger
than is transitive means that we go beyond it. As you know, three variables
is enough to have undecidability. You might try to study FO2 on transitive
relations, but this too is undecidable [7].

Q: But are there other logics that are on the one hand big enough to express
the sentences in (1) and yet are decidable?

A: Yes, there is at least one that I can think of: Boolean modal logic, again with
the stipulation that the semantics lives on transitive relations. This is known to
be decidable [9].

Q: I thought that modal logic was about possible worlds, that sort of thing. It’s
hard to see why it’s rearing its ugly head here. But again, I ask: if this Boolean
modal logic is so great, why not translate (1) into it, and be done with it?

A: If I was only interested in the complexity of the example, or similar ones,
then I’d agree. But with my logical baggage, I mean background, I feel that I
should be looking for general principles and not just algorithms and complexity
results. Think about Aristotle. As it happens, his system can be reformulated
a little, and it turns out to be complete. But do you think he would have been
happy if someone came and told him to forget the syllogisms because they had an
algorithm to tell whether a conclusion followed, without telling him the reasons?

Q: Aristotle, . . ., hmm. You know, I once heard that the three greatest logicians
of all time are Aristotle, Frege, and Gödel. I know a bit about the last two, but
I have almost no idea what Aristotle did. Something about all men are mortal?

A: Aristotle raised the matter of inference in the first place, with no precedent.
And then for the fragment he was concerned with he provided a complete answer.
I can’t imagine a bigger project.

Logics for Two Fragments beyond the Syllogistic Boundary 541

Q: I can see that you’re really taken with Aristotle. But okay, let’s go back
to what’s on the blackboard (1). Do you have a logical system in which we can
prove (1), and which is still decidable?

A: Yes. Want to see it?

Q: Sure, but before you start in, I have a last question. You started out men-
tioning that there is some interest in natural logic from people in much more
applied areas of computer science. Are they going to be interested in logical
systems for cases like (1), the kind of thing that you are going to show me?

A: Probably not. Presumably they would be much more interested in an algo-
rithm that worked quickly and correctly on 90% of the real-world inferences that
come up in practice, than on a logical system that was complete in the logician’s
sense but was only good for a small amount of real-world inference. On the other
hand, knowing what a complete system looked like could be an inspiration, or
at least a comfort.

Q: Can you give me an example? Something that a logical system is not likely
to get, but which is an inference from text in the sense of current work in natural
language processing?

A: (Again writing on the board.)

Frege’s favorite food was sushi
Frege ate sushi at least once

(2)

Q: Are you sure you don’t mean Russell?

A: Oh yes. By the way, nearly everyone would agree to (2), but almost nobody
will get (1) on their own.

Q: Yes, but real-world knowledge . . . that’s just not my cup of tea. Actually,
formal systems and completeness proofs are not really my cup of tea either, but
I’m curious enough to want to see yours.

A: Speaking of tea, can I show you the logical system for (1) and related matters
over a cup?

Q: Sure, but now that you bring up eating, I’d prefer sushi and pineapples.

2 Logic for a Fragment L with Set Terms and Negation

There are only two languages in this paper (actually they are families of lan-
guages parameterized by sets of basic symbols): the language L of this section,
and the extension L(adj) studied in Section 3. L is based on three pairwise dis-
joint sets called P, R, and K. These are called unary atoms, binary atoms, and
constant symbols. (The reason we use the letters P and R is that they remind
us of predicate symbols and relation symbols.)

542 L.S. Moss

Expression Variables Syntax

unary atom p, q
binary atom s
constant j, k
unary literal l p | p̄
binary literal r s | s̄
set term b, c, d l | ∃(c, r) | ∀(c, r)
sentence ϕ, ψ ∀(c, d) | ∃(c, d) | c(j) | r(j, k)

Fig. 1. Syntax of sentences of L

2.1 Syntax and Semantics

We present the syntax of L in Figure 1. Sentences are built from constant sym-
bols, unary and binary atoms using an involutive symbol for negation, a forma-
tion of set terms, and also a form of quantification. The second column indicates
the variables that we shall use in order to refer to the objects of the various
syntactic categories. Because the syntax is not standard, it will be worthwhile to
go through it slowly and to provide glosses in English for expressions of various
types.

One might think of the constant symbols as proper names such as John and
Mary. The unary atoms may be glossed as one-place predictates such as boys,
girls, etc. And the relation symbols correspond to transitive verbs (that is, verbs
which take a direct object) such as likes, sees, etc. They also correspond to com-
parative adjective phrases such as is bigger than. (However, later on in Section 3,
we introduce a new syntactic primitive for the adjectives.)

Unary atoms appear to be one-place relation symbols, especially because we
shall form sentences of the form p(j). However, we do not have sentences p(x),
since we have no variables at this point in the first place. Similar remarks apply
to binary atoms and two-place relation symbols. So we chose to change the
terminology from relation symbols to atoms.

We form unary and binary literals using the bar notation. We think of this as
expressing classical negation. So we take it to be involutive, so that p = p and
s = s.

The set terms in this language are the only recursive construct. If b is read
as boys and s as sees, then one should read ∀(b, s) as sees all boys, and ∃(b, s)
as sees some boys. Hence these set terms correspond to simple verb phrases. We
also allow negation on the atoms, so we have ∀(b, s); this can be read as fails to
see all boys, or (better) sees no boys or doesn’t see any boys. We also have ∃(b, s),
fails to see some boys. But the recursion allows us to embed set terms, and so we
have set terms like

∃(∀(∀(b, s), h), a)

which may be taken to symbolize a verb phrase such as admires someone who
hates everyone who does not see any boy.

Logics for Two Fragments beyond the Syllogistic Boundary 543

We should note that the relative clauses which can be obtained in this way
are all “missing the subject”, never “missing the object”. The language is too
poor to express predicates like λx.all boys see x.

The main sentences in the language are of the form ∀(b, c) and ∃(b, c); they
can be read as statements of the inclusion of one set term extension in another,
and of the non-empty intersection. We also have sentences using the constants,
such as ∀(g, s)(m), corresponding to Mary sees all girls. But we are not able to say
all girls see Mary; the syntax again is too weak. (However, in our Conclusion we
shall see how to extend our system to handle this.) This weakness in expressive
power corresponds to a less complex decidability result, as we shall see.

Semantics. A structure (for this language L) is a pair M = 〈M, [[]]〉, where M
is a non-empty set, [[p]] ⊆M for all p ∈ P, [[r]] ⊆M2 for all r ∈ R, and [[j]] ∈M
for all j ∈ K.

Given a model M, we extend the interpretation function [[]] to the rest of the
language by setting

[[p]] = M \ [[p]]
[[r]] = M2 \ [[r]]
[[∃(l, t)]] = {x ∈M : for some y such that [[l]](y), [[t]](x, y)}
[[∀(l, t)]] = {x ∈M : for all y such that [[l]](y), [[t]](x, y)}

We define the truth relation |= between models and sentences by:

M |= ∀(c, d) iff [[c]] ⊆ [[d]]
M |= ∃(c, d) iff [[c]] ∩ [[d]] �= ∅
M |= c(j) iff [[c]]([[j]])
M |= r(j, k) iff [[r]]([[j]], [[k]])

If Γ is a set of formulas, we write M |= Γ if for all ϕ ∈ Γ , M |= ϕ.

Example 1. We consider a simple case, with one unary atom p, one binary atom
s, and two constants j and k. Consider the following model. We take M =
{w, x, y, z}, and [[p]] = {w, x, y}. For the relation symbol, s, we take the arrows
below:

w ��

��
��

��
��

��
x

����
��

��
��

��
y

��

�� �� z
��

For example, [[p]] = {z}, [[∀(p, s)]] = ∅, [[∃(p, s)]] = M , and [[∃(∀(p, s), s)]] = ∅.
Here are two L-sentences true in M: ∀(p, ∃(p, s)) and ∀(∃(∀(p, s), s), p).

Now set [[j]] = w and [[k]] = x. We get additional sentences true in M such as
s(j, k), s(k, j), and ∃(p, s)(k).

Here is a point that will be important later. For all terms c, M |= c(j) iff
M |= c(k). (The easiest way to check this is to show that for all set terms c, [[c]]
is one of the following four sets: ∅,M, {w, x, y}, or {z}.) However, M |= s(j, k)
and M |= s(k, j).

544 L.S. Moss

Satisfiability. A sentence ϕ is satisfiable if there exists M such that M |= ϕ;
satisfiability of a set of formulas Γ is defined similarly. We write Γ |= ϕ to mean
that every model of every sentence in Γ is also a model of ϕ.

The satisfiability problem for the language is decidable for a very easy rea-
son: the language L translates to the two-variable fragment FO

2 of first-order
logic. (We shall see this shortly.) Thus we have the finite model property (by
Mortimer [11]) and decidability of satisfiability in non-deterministic exponen-
tial time (Grädel et al [6]). It might therefore be interesting to ask whether
the smaller fragment L is of a lower complexity. As it happens, it is. Pratt-
Hartmann [14] showed that the satisfiability problem for a certain fragment E2

of FO2 can be decided in ExpTime in the length of the input Γ , and his fragment
was essentially the same as the one in this paper.

The bar notation. We have already seen that our unary and binary atoms come
with negative forms. We extend this notation to all sentences in the following
ways: p = p, s = s, ∃(l, r) = ∀(l, r), ∀(l, r) = ∃(l, r), ∀(c, d) = ∃(c, d), ∃(c, d) =
∀(c, d), c(j) = c(j), and r(j, k) = r(j, k).

Translation of the syllogistic into L. We indicate briefly a few translations to
orient the reader. First, the classical syllogistic translates into L:

All p are q 	→ ∀(p, q)
Some p are q 	→ ∃(p, q)

No p are q 	→ ∀(p, q)
Some p aren’t q 	→ ∃(p, q)

The same is true of the relational syllogistic; cf. [15]. In the other direction, we
translate L to FO2, the fragment of first order logic using only the variables x
and w. We do this by mapping the set terms two ways, called c 	→ ϕc,x and
c 	→ ϕc,y. Here are the recursion equations for c 	→ ϕc,x:

p 	→ P (x)
p 	→ ¬P (x)

∀(c, r) 	→ (∀y)(ϕc,y(y)→ r(x, y))
∃(c, r) 	→ (∃y)(ϕc,y(y) ∧ r(x, y))

The equations for c 	→ ϕc,y are similar. Then the translation of the sentences
into FO2 follows easily.

Translation of L into Boolean modal logic. We shall write L̂ for the following
version of Boolean modal logic. L̂ has each p ∈ P as an atomic proposition, and
it has two modal operators, �s and s, one for each s ∈ R. The syntax of L̂ is
given by

ϕ := p ¬ϕ ϕ ∧ ψ �sϕ sϕ

The language is interpreted on the same kind of structures that we have been
using for L. Then [[p]] is given for all atoms p, and we also set [[¬ϕ]] = M \ [[ϕ]],
[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], and

[[�sϕ]] = {x ∈M : for all y such that [[s]](x, y), y ∈ [[ϕ]]}
[[sϕ]] = {x ∈M : for all y such that not [[s]](x, y), y ∈ [[ϕ]]}

Logics for Two Fragments beyond the Syllogistic Boundary 545

We write Γ |= ϕ to mean that for all structures M and all x ∈M , if x ∈ [[ψ]] for
all ψ ∈ Γ , then again x ∈ [[ϕ]].

Let L0 be the set of sentences of L which do not involve constants. We trans-
late L0 into L̂. First, for each set term c, we define a sentence c∗ of L̂. The
definition is: p∗ = p, p∗ = ¬p,

∀(c, s)∗ = s¬c∗
∃(c, s)∗ = ¬�s¬c∗

∀(c, s)∗ = �s¬c∗
∃(c, s)∗ = ¬s¬c∗

An easy induction shows that [[c]] = [[c∗]] for all set terms c. Then we translate
∀(c, d) to ∀(c, d)∗ and ∃(c, d) to ∃(c, d)∗:

∀(c, d)∗ = �s(c∗ → d∗) ∧s(c∗ → d∗)
∃(c, d)∗ = ¬∀(c, d)∗

where s is an arbitrary element of R. Then for all sentences ϕ of L0, and all
models M,

M |= ϕ iff [[ϕ∗]] = M iff [[ϕ∗]] �= ∅.

It follows easily from this that for Γ ∪ {ϕ} a set of L0 sentences, Γ |= ϕ in the
semantics of L iff Γ ∗ |= ϕ∗ in the semantics of L̂.

2.2 Proof System

Pratt-Hartmann and Moss [15] investigated several logical systems for the rela-
tional syllogistic and asked whether they were axiomatizable in a purely syllo-
gistic fashion. We shall not enter into their definition of syllogistic proof system
except to say that it is an adequate formalization of the concept. It comes in
two flavors, depending on whether one permits reductio ad absurdum or not.
It turns out that the consequence relation for some some logical languages can
be captured by syllogistic systems even without reductio, some can be captured
with reductio but (provably) not without it, and some are so strong that they
cannot be captured even with reductio. The language of this paper would be one
example of this latter phenomenon. Theorem 6.12 of [15] shows that for the lan-
guage L of this paper (but without constant symbols), there indeed is no finite
complete syllogistic system. It is therefore of interest to build a proof system
which goes beyond syllogistic logic. This is the main technical goal of this paper.

We present our system in natural-deduction style in Figure 3. It makes use
of introduction and elimination rules, and more critically of variables. For a
textbook account of a proof system for first-order logic presented in this way,
see van Dalen [3].

General sentences in this fragment are what usually are called formulas. We
prefer to change the standard terminology to make the point that here, sentences
are not built from formulas by quantification. In fact, sentences in our sense do
not have variable occurrences. But general sentences do include variables. They
are only used in our proof theory.

546 L.S. Moss

Expression Variables Syntax

individual variable x, y
individual term t, u x | j
general sentence α ϕ | c(x) | r(x, y) | ⊥

Fig. 2. Syntax of general sentences of L, with ϕ ranging over sentences

The syntax of general sentences is given in Figure 2. What we are calling
individual terms are just variables and constant symbols. (There are no function
symbols here.) Using terms allows us to shorten the statements of our rules, but
this is the only reason to have terms.

An additional note: we don’t need general sentences of the form r(j, x) or
r(x, j). In larger fragments, we would expect to see general sentences of these
forms, but our proof theory will not need these.

The bar notation, again. We have already seen the bar notation c for set terms c,
and ϕ for sentences ϕ. We extend this to formulas b(x) = b(x), r(x, y) = r(x, y).
We technically have a general sentence ⊥, but this plays no role in the proof
theory.

We write Γ) ϕ if there is a proof tree conforming to the rules of the system
with root labeled ϕ and whose axioms are labeled by elements of Γ . (Frequently
we shall be sloppy about the labeling and just speak, e.g, of the root as if it were
a sentence instead of being labeled by one.) Instead of giving a precise definition
here, we shall content ourselves with a series of examples in Section 2.3 just
below.

The system has two rules called (∀E), one for deriving general sentences of
the form c(x) or c(j), and one for deriving general sentences r(x, y) or r(j, k).
(Other rules are doubled as well, of course.) It surely looks like these should be
unified, and the system would of course be more elegant if they were. But given
the way we are presenting the syntax, there is no way to do this. That is, we do
not have a concept of substitution, and so rules like (∀E) cannot be formulated
in the usual way. Returning to the two rules with the same name, we could have
chosen to use different names, say (∀E1) and (∀E2). But the result would have
been a more cluttered notation, and it is always clear from context which rule
is being used.

Although we are speaking of trees, we don’t distinguish left from right. This
is especially the case with the (∃E) rules, where the canceled hypotheses may
occur in either order.

Side Conditions. As with every natural deduction system using variables, there
are some side conditions which are needed in order to have a sound system.

In (∀I), x must not occur free in any uncanceled hypothesis. For example, in
the version whose root is ∀(c, d), one must cancel all occurrences of c(x) in the
leaves, and x must not appear free in any other leaf.

Logics for Two Fragments beyond the Syllogistic Boundary 547

c(t) ∀(c, d)

d(t)
∀E

c(u) ∀(c, r)(t)

r(t, u)
∀E

c(t) d(t)

∃(c, d)
∃I

r(t, u) c(u)

∃(c, r)(t)
∃I

[c(x)]
....

d(x)

∀(c, d)
∀I

[c(x)]
....

r(t, x)

∀(c, r)(t)
∀I

∃(c, d)

[c(x)] [d(x)]
..
..
α

α ∃E ∃(c, r)(t)

[c(x)] [r(t, x)]
..
..
α

α ∃E

α α
⊥ ⊥I

[ϕ]
..
..
⊥
ϕ RAA

Fig. 3. Proof rules. See the text for the side conditions in the (∀I) and (∃E) rules.

In (∃E), the variable x must not occur free in the conclusion α or in any
uncanceled hypothesis in the subderivation of α.

In contrast to usual first-order natural deduction systems, there are no side
conditions on the rules (∀E) and (∃I). The usual side conditions are phrased in
terms of concepts such as free substitution, and the syntax here has no substi-
tution to begin with. To be sure on this point, one should check the soundness
result of Lemma 1.

Formal proofs in the Fitch style. Textbook presentations of logic overwhelmingly
use natural deduction. Pelletier [12] discusses the history of this in texts used in
philosophy classes. In such books, by far the most common style of presentation
is via Fitch diagrams. Pelletier was not concerned with books for computer
science students, and here the situation is more mixed, I believe. I have chosen
to present the system in a more “classical” Gentzen-style format. But the system
may easily be re-formatted to look more like a Fitch system, as we shall see in
Example 3 and Figure 5. These examples might give the impression that we have
merely re-presented Fitch-style natural deduction proofs. The difference is that
our syntax is not a special case of the syntax of first-order logic. Corresponding
to this, our proof rules our rather restrictive, and the system cannot be used for
much of anything beyond the language L. However, the fact that our Fitch-style
proofs look like familiar formal proofs is a virtue: for example, it means that one
could teach logic using this material.

548 L.S. Moss

1 ∀(c, d) hyp

2 x ∃(c, r)(x) hyp

3 c(y) ∃E, 2

4 r(x, y) ∃E, 2

5 d(y) ∀E, 1, 3

6 ∃(d, r)(x) ∃I , 4, 5

7 ∀(∃(c, r),∃(d, r)) ∀I , 1–6

[∃(c, r)(x)]2
[r(x, y)]1

[c(y)]1 ∀(c, d)

d(y)
∀E

∃(d, r)(x)
∃I

∃(d, r)(x)
∃E1

∀(∃(c, r),∃(d, r))
∀I2

Fig. 4. Derivations in Example 3

2.3 Examples

We present a few examples of the proof system at work, along with comments
pertaining to the side conditions. Many of these are taken from the proof system
R∗ for the language R∗ of [15]. That system R∗ is among the strongest of the
known syllogistic systems, and so it is of interest to check the current proof
system is at least as strong.

Example 2. Here is a proof of the classical syllogism Darii : ∀(b, d), ∃(c, b))
∃(c, d):

∃(c, b)

[b(x)]1 ∀(b, d)
d(x)

∀E
[c(x)]1

∃(c, d) ∃I

∃(c, d) ∃E1

Example 3. Next we study a principle called (K) in [15]. Intuitively, if all watches
are expensive items, then everyone who owns a watch owns an expensive item. The
formal statement in our language is ∀(c, d)) ∀(∃(c, r), ∃(d, r)). See Figure 4.
We present a Fitch-style proof on the left and the corresponding one in our
formalism on the right. One aspect of the Fitch-style system is that (∃E) gives
two lines; see lines 3 and 4 on the left in Figure 4.

Example 4. Here is an example of a derivation using (RAA). It shows ∀(c, c))
∀(d, ∀(c, r)).

[d(x)]2

[c(y)]1 ∀(c, c)
c(y)

∀E
[c(y)]1

⊥ ⊥I
r(x, y)

RAA

∀(c, r)(x) ∀I
1

∀(d, ∀(c, r)) ∀I2

Logics for Two Fragments beyond the Syllogistic Boundary 549

Example 5. Here is a statement of the rule of proof by cases: If Γ + ϕ) ψ and
Γ + ϕ) ψ, then Γ) ψ. (Here and below, Γ + ϕ denotes Γ ∪ {ϕ}.) Instead
of giving a derivation, we only indicate the ideas. Since Γ + ϕ) ψ, we have
Γ + ϕ + ψ) ⊥ using (⊥I). From this and (RAA), Γ, ψ) ϕ. Take a derivation
showing Γ + ϕ) ψ, and replace the labeled ϕ with derivations from Γ + ψ. We
thus see that Γ + ψ) ψ. Using (⊥I), Γ + ψ) ⊥. And then using (RAA) again,
Γ) ψ. (This point is from [15].)

Example 6. The example at the beginning of this paper cannot be formalized
in this fragment because the correct reasoning uses the transitivity of is bigger
than. However, we can prove a result which may itself be used in a formal proof
of (1):

Every sweet fruit is bigger than every ripe fruit
Every pineapple is bigger than every kumquat
Every non-pineapple is bigger than every unripe fruit
Every sweet fruit is bigger than every kumquat

(3)

To discuss this, we take the set P of unary atoms to be

P = {sweet, ripe, pineapple, kumquat}.

We also take R = {bigger} and K = ∅. Figure 5 contains a derivation showing
(3), done in the manner of Fitch [4]. The main way in which we have bent
the English in the direction of our formalism is to use the bar notation on the
nouns. The main reason for presenting the derivation as a Fitch diagram is that
the derivation given as a tree (as demanded by our definitions) would not fit on
a page. This is because the cases rule is not a first-class rule in the system, it is a
derived rule (see Example 5 above). Our Fitch diagram pretends that the system
has a rule of cases. Another reason to present the derivation as in Figure 5 is to
make the point that the treatment in this paper is a beginning of a formalization
of the work that Fitch was doing.

2.4 Soundness

Before presenting a soundness result, it might be good to see an improper deriva-
tion. Here is one, purporting to infer some men see some men from some men see
some women:

∃(m, ∃(w, s))
[∃(w, s)(x)]2

[s(x, x)]1 [m(x)]2

∃(s,m)(x)
∃I

[m(x)]2

∃(m, ∃(m, s)) ∃I

∃(m, ∃(m, s)) ∃E1

∃(m, ∃(m, s)) ∃E2

The specific problem here is that when [s(x, x)] is withdrawn in the application
of ∃I1, the variable x is free in the as-yet-uncanceled leaves labeled m(x).

550 L.S. Moss

1 Every sweet fruit is bigger than every ripe fruit hyp

2 Every pineapple is bigger than every kumquat hyp

3 Every pineapple is bigger than every ripe fruit hyp

4 x x is a sweet fruit hyp

5 x is bigger than every ripe fruit ∀E, 1, 4

6 x is a pineapple hyp

7 x is bigger than every kumquat ∀E, 2, 6

8 x is a pineapple hyp

9 x is bigger than every ripe fruit ∀E, 3, 8

10 y y is a kumquat hyp

11 y is a ripe fruit hyp

12 x is bigger than y ∀E, 5, 11

13 y is a ripe fruit hyp

14 x is bigger than y ∀E, 9, 13

15 x is bigger than y cases, 13–14, 11–12

16 x is bigger than every kumquat ∀I , 10–15

17 x is bigger than every kumquat cases, 6–7, 8–16

18 Every sweet fruit is bigger than every kumquat ∀I , 4–17

Fig. 5. A derivation corresponding to the argument in (3)

To state a result pertaining to the soundness of our system, we need to define
the truth value of a general sentence under a variable assignment. First, a variable
assignment in a model M is a function v : V →M , where V is the set of variable
symbols and M is the universe of M. We need to define M |= α[v] for general
sentences α. If α is a sentence, then M |= α[v] iff M |= α in our earlier sense.
If α is b(x), then M |= α[v] iff [[b]](v(x)). If α is r(x, y), then M |= α[v] iff
[[r]](v(x), v(y)). If α is ⊥, then M �|= ⊥ for all models M.

Lemma 1. Let Π be any proof tree for this fragment all of whose nodes are
labeled with L-formulas, let ϕ be the root of Π, let M be a structure, let v : X →
M be a variable assignment, and assume that for all uncanceled leaves ψ of Π,
M |= ψ[v]. Then also M |= ϕ[v].

Proof. By induction on Π . We shall only go into details concerning two cases.
First, consider the case when the root of Π is

∃(c, r)(t)

[c(x)] [r(t, x)]....
α

α ∃E

Logics for Two Fragments beyond the Syllogistic Boundary 551

To simplify matters further, let us assume that t is a variable. Let v be a vari-
able assignment making true all of the leaves of the tree, except possibly c(x)
and r(t, x). By induction hypothesis, M |= ∃(c, r)(t)[v]. Let a ∈ A witness this
assertion. In the obvious notation, [[c]](a) and [[r]](tM,v, a). Let w be the same
variable assignment as v, except that w(x) = a. Then since x is not free in any
leaves except those labeled c(x) and r(t, x), we have M |= ψ[w] for all those ψ.
And so M |= α[w], using the induction hypothesis applied to the subtree on the
right. And since x is not free in the conclusion α, we also have M |= α[v], as
desired.

Second, let us consider the case when the root is

c(y) ∀(c, r)(x)
r(x, y)

∀E

(That is, we are considering an instance of (∀E) when the terms t and u are
variables.) The variables x and y might well be the same. Let M be a structure,
and v be a variable assignment making true the leaves of the tree. By induc-
tion hypothesis, [[c]](v(y)) and also [[r]](v(x),m)) for all m ∈ [[c]]. In particular,
[[r]](v(x), v(y)).

The remaining cases are similar. �

2.5 The Henkin Property

The completeness of the logic parallels the Henkin-style completeness result for
first-order logic. Given a consistent theory Γ , we get a model of Γ in the following
way: (1) take the underlying language L, add constant symbols to the language
to witness existential sentences; (2) extend Γ to a maximal consistent set in the
larger language; and then (3) use the set of constant symbols as the carrier of a
model in a canonical way. In the setting of this paper, the work is in some ways
easier than in the standard setting, and in some ways harder. There are more
details to check, since the language has more basic constructs. But one doesn’t
need to take a quotient by equivalence classes, and in other ways the work here
is easier.

Given two languages L and L′, we say that L′ ⊇ L if every symbol (of any
type) in L is also a symbol (of the same type) in L′. In this paper, the main case
is when P(L) = P(L′), R(L) = R(L′), and K(L) ⊆ K(L′); that is, L′ arises by
adding constants to L.

A theory in a language is just a set of sentences in it. Given a theory Γ in
a language L, and a theory Γ ∗ in an extension L′ ⊇ L, we say that Γ ∗ is a
conservative extension of Γ if for every ϕ ∈ L, if Γ ∗) ϕ, then Γ) ϕ.

Lemma 2. Let Γ be a consistent L-theory, and let j /∈ K(L).

1. If ∃(c, d) ∈ Γ , then Γ + c(j) + d(j) is a conservative extension of Γ .
2. If ∃(c, r)(j) ∈ Γ , then Γ + r(j, k) + c(k) is a conservative extension of Γ .

552 L.S. Moss

Proof. For (1), suppose that Γ contains ∃(c, d) and that Γ + c(j) + d(j)) ϕ.
Let Π be a derivation tree. Replace the constant j by an individual variable x
which does not occur in Π . The result is still a derivation tree, except that the
leaves are not labeled by sentences. (The reason is that our proof system has
no rules specifically for constants, only for terms which might be constants and
also might be individual variables.) Call the resulting tree Π ′. Now the following
proof tree shows that Γ) ϕ:

∃(c, d)

[c(x)] [d(x)]....
ϕ

ϕ ∃E

The subtree on the right is Π ′. The point is that the occurrences of c(x) and
d(x) have been canceled by the use of ∃E at the root.

This completes the proof of the first assertion, and the proof of the second is
similar. �

Definition 1. An L-theory Γ has the Henkin property if the following hold:

1. If ∃(c, d) ∈ Γ , then for some constant j, c(j) and d(j) belong to Γ .
2. If r is a literal of L and ∃(c, r)(j) ∈ Γ , then for some constant k, r(j, k) and
c(k) belong to Γ .

Lemma 3. Let Γ be a consistent L-theory. Then there is some L∗ ⊃ L and
some L∗-theory Γ ∗ such that Γ ∗ is a maximal consistent theory with the Henkin
property. Moreover, if s ∈ R(L), j ∈ K(L∗) and k ∈ K(L), and if s(j, k) ∈ Γ ∗,
then j ∈ K(L).

Proof. This is a routine argument, using Lemma 2. One dovetails the addition
of constants which is needed for the Henkin property together with the addition
of sentences needed to insure maximal consistency. The formal details would use
Lemma 2 for steps of the first kind, and for the second kind we need to know that
if Γ is consistent, then for all ϕ, either Γ +ϕ or Γ +ϕ is consistent. This follows
from the derivable rule of proof by cases; see Example 5 in Section 2.3. �

The last point in Lemma 3 states a technical property that will be useful in
Section 3.1.

It might be worthwhile noting that the extensions produced by Lemma 3 add
infinitely many constants to the language.

2.6 Completeness via Canonical Models

In this section, fix a language L and a maximal consistent Henkin L-theory Γ .
We construct a canonical model M = M(Γ) as follows: M = K(L); [[p]](j) iff
p(j) ∈ Γ ; [[s]](j, k) iff s(j, k) ∈ Γ ; and [[j]] = j. That is, we take the constant
symbols of the language to be the points of the model, and the interpretations
of the atoms are the natural ones. Each constant symbol is interpreted by itself.

Logics for Two Fragments beyond the Syllogistic Boundary 553

Lemma 4. For all set terms c, [[c]] = {j : c(j) ∈ Γ}.
Proof. By induction on c. The base case of unary atoms p is by definition of M.

Before we turn to the induction proper, here is a preliminary point. Assuming
that [[c]] = {j : c(j) ∈ Γ}, we check that [[c]] = {j : c(j) ∈ Γ}:

j ∈ [[c]] iff j /∈ [[c]] iff c(j) /∈ Γ iff c(j) ∈ Γ.

The last point uses the maximal consistency of Γ .
Turning to the inductive steps, assume our result for c; we establish it for

∀(c, s) and ∃(c, s); it then follows from the preliminary point that we have the
same fact for ∀(c, s) and ∃(c, s).

Let j ∈ [[∀(c, s)]]. We claim that ∀(c, s)(j) ∈ Γ . For if not, then ∃(c, s)(j) ∈ Γ .
By the Henkin property, let k be such that Γ contains c(k) and s(j, k). By the
induction hypothesis, k ∈ [[c]], and by the definition of M, [[s]](j, k) is false. Thus
j /∈ [[∀(c, s)]]. This is a contradiction.

In the other direction, assume that ∀(c, s)(j) ∈ Γ ; this time we claim that
j ∈ [[∀(c, s)]]. Let k ∈ [[c]]. By induction hypothesis, Γ contains c(k). By (∀E),
we see that Γ) s(j, k). Hence Γ contains s(j, k). So in M, [[s]](j, k). Since k was
arbitrary, we see that indeed j ∈ [[∀(c, s)]].

The other induction step is for ∃(c, s). Let j ∈ [[∃(c, s)]]. We thus have some k ∈
[[c]] such that [[s]](j, k). That is, s(j, k) ∈ Γ . Using (∃I), we have Γ) ∃(c, s)(j);
from this we see that ∃(c, s)(j) ∈ Γ , as desired.

Finally, assume that ∃(c, s)(j) ∈ Γ . By the Henkin condition, let k be such
that Γ contains c(k) and s(j, k). Using the derivation above, we have the desired
conclusion that j ∈ [[∃(c, s)]].

This concludes the proof. �
Lemma 5. M |= Γ .

Proof. We check the sentence types in turn. Throughout the proof, we shall use
Lemma 4 without mention.

First, let Γ contain the sentence ∀(c, d). Let j ∈ [[c]], so that c(j) ∈ Γ . We
have d(j) ∈ Γ using (∀E). This for all j shows that M |= ∀(c, d).

Second, let ∃(c, d) ∈ Γ . By the Henkin condition, let j be such that both
c(j) and d(j) belong to Γ . This element j shows that [[c]] ∩ [[d]] �= ∅. That is,
M |= ∃(c, d).

Continuing, consider a sentence c(j) ∈ Γ . Then j ∈ [[c]], so that M |= c(j).
Finally, the case of sentences r(j, k) ∈ Γ is immediate from the structure of

the model. �
Theorem 1. If Γ |= ϕ, then Γ) ϕ.

Proof. We rehearse the standard argument. Due to the classical negation, we
need only show that consistent sets Γ are satisfiable. Let L be the language of
Γ , Let L′ ⊇ L be an extension of L, and let Γ ∗ ⊇ Γ be a maximal consistent
theory in L′ with the Henkin property (see Lemma 3). Consider the canonical
model M(Γ ∗) as defined in this section. By Lemma 5, M(Γ ∗) |= Γ ∗. Thus Γ ∗ is
satisfiable, and hence so is Γ . �

554 L.S. Moss

2.7 The Finite Model Property

Let Γ be a consistent finite theory in some language L. As we now know, Γ has a
model. Specifically, we have seen that there is some Γ ∗ ⊇ Γ which is a maximal
consistent theory with the Henkin property in an extended language L∗ ⊇ L.
Then we may take the set of constant symbols of L∗ to be the carrier of a model
of Γ ∗, hence of Γ . The model obtained in this way is infinite. It is of interest to
build a finite model, so in this section Γ must be finite. The easiest way to see
that Γ has a finite model is to recall that our overall language is a sub-language
of the two variable fragment FO

2 of first-order logic. And FO
2 has the finite

model property by Mortimer’s Theorem [11].
However, it is possible to give a direct argument for the finite model property,

along the lines of filtration in modal logic (but with some differences). We sketch
the result here because we shall use the same method in Section 3.1 below to
prove a finite model property for our second logical system L(adj) with respect
to its natural semantics; that result does not follow from others in the literature.

Let M = M(Γ ∗) be the canonical model as defined in Section 2.6. Let Sub(Γ)
be the collection of set terms occurring in any sentence in the original finite
theory Γ . So Sub(Γ) is finite, and if ∀(c, r) ∈ Sub(Γ) or ∃(c, r) ∈ Sub(Γ), then
also c ∈ Sub(Γ). For constant symbols j and k of L∗, write j ≡ k iff the following
conditions hold:

1. If either j or k is a constant of L, then k = j.
2. For all c ∈ Sub(Γ), c(j) ∈ Γ iff c(k) ∈ Γ .

Remark 1. The equivalence relation ≡ may be defined on any structure. It is
not necessarily a congruence, as Example 1 shows. Specifically, we had constant
symbols j and k such that j ≡ k, and yet in our structure s(j, k) and s(k, j). In
the case of M(Γ ∗), we have no reason to think that ≡ is a congruence. That is,
the construction in Section 2.6 did not arrange for this.

Let N = {[k] : k ∈ K(L)} × {∀, ∃}. (We use ∀ and ∃ as tags to give two copies
of the quotient K/≡.) We endow N with an L-structure as follows:

[[p]] = {([j], Q) : p(j) ∈ Γ ∗ and Q ∈ {∀, ∃}}.
[[s]](([j], Q), ([k], Q′)) iff one of the following two conditions holds:

1. There is a set term c such that Γ ∗ contains c(k) and ∀(c, s)(j).
2. Q′ = ∃, and for some j∗ ≡ j and k∗ ≡ k, Γ ∗ contains s(j∗, k∗).

For a constant j of L, [[j]] = ([j], ∃). (Of course, [j] is the singleton set {j}.)

Before going on, we note that the first of the two alternatives in the defini-
tion of [[s]](([j], Q), ([k], Q′)) is independent of the choice of representatives of
equivalence classes. And clearly so is the second alternative.

We shall write N for the resulting L-structure, hiding the dependence on Γ
and Γ ∗.

Lemma 6. For all c ∈ Sub(Γ), [[c]] = {([j], Q) : c(j) ∈ Γ ∗ and Q ∈ {∀, ∃}}.

Logics for Two Fragments beyond the Syllogistic Boundary 555

Proof. By induction on set terms c. We are not going to present any of the
details here because in Lemma 10 below, we shall see all the details on a more
involved result. �

Lemma 7. N |= Γ .

Proof. Again we are only highlighting a few details, since the full account is
similar to what we saw in Lemma 5, and to what we shall see in Lemma 11. One
would check the sentence types in turn, using Lemma 6 frequently. We want to
go into details concerning sentences in Γ of the form s(j, k) or s(j, k). Recall that
we are dealing in this result with sentences of L, and so j and k are constant
symbols of that language. Also recall that [[j]] = ([j], ∃), and similarly for k.

First, consider sentences in Γ of the form s(j, k). By the definition of [[s]], we
have

[[s]](([j], ∃), ([k], ∃)).

By the way binary atoms and constants are interpreted in N, we have N |= s(j, k),
as desired.

We conclude with the consideration of a sentence in Γ of the form s(j, k). We
wish to show that N |= s(j, k). Suppose towards a contradiction that N |= s(j, k).
Then we have [[s]](([j], ∃), ([k], ∃)). There are two possibilities, corresponding to
the alternatives in the semantics of s. The first is when there is a set term c such
that Γ ∗ contains c(k) and ∀(c, s)(j). By (∀E), Γ ∗ then contains s(j, k). But
recall that Γ contains s(j, k). So in this alternative, Γ ∗ ⊇ Γ is inconsistent. In
the second alternative, there are j∗ ≡ j and k∗ ≡ k such that s(j∗, k∗) ∈ Γ ∗. But
recall that the equivalence classes of constant symbols from the base language L

are singletons. Thus in this alternative, j∗ = j and k∗ = k; hence s(j, k) ∈ Γ ∗.
But then again Γ ∗ is inconsistent, a contradiction. �

Theorem 2 (Finite Model Property). If Γ is consistent, then Γ has a model
of size at most 22n, where n is the number of set terms in Γ .

Complexity notes. Theorem 2 implies that the satisfiability problem for our lan-
guage is in NExpTime. We can improve this to an ExpTime-completeness result
by quoting the work of others. Pratt-Hartmann [14] define a certain logic E2 and
showed that the complexity of its satisfiability problem is ExpTime-complete.
E2 corresponds to a fragment of first-order logic, and it is somewhat bigger than
the language L. (It would correspond to adding converses to the binary atoms
in L, as we mention at the very end of this paper.) Since satisfiability for E2 is
ExpTime-complete, the same problem for L is in ExpTime.

A different way to obtain this upper bound is via the embedding into Boolean
modal logic which we saw in Section 2.1. For this, see Theorem 7 of Lutz and
Sattler [9]. We shall use an extension of that result below in connection with an
extension L(adj) of L.

The ExpTime-hardness for L follows from Lemma 6.1 in [15]. That result
dealt with a language called R†, and R† is a sub-language of L.

556 L.S. Moss

3 Adding Transitivity: The Language L(adj)

Before going further, let us briefly recapitulate the overall problem of this paper
and point out where we are and what remains to be done. We aim to formalize a
fragment of first-order logic in which one may represent arguments as complex as
that in (1) in the Introduction. We are especially interested in decidable systems,
and so the systems must be weaker than first-order logic. We presented in Section 2
a language L and a proof system for it. Validity in the logic cannot be captured
by a purely syllogistic proof system, and so our proof system uses variables. But
the use is very special and restricted. The proof system is complete and decidable
in exponential time. To our knowledge, it is the first system with these properties.

There are a number of ways in which one can go further. In this paper, we want
to explore one such way, connected to our example in (1). One key feature of this
example is that comparative adjectives such as bigger than are transitive. This is
true for all comparative adjectives. (Another point of interest is that comparative
adjectives are typically irreflexive.We are going to ignore that in thepresentpaper.)

We extend our language L to a language L(adj) by taking a basic set A
of comparative adjective phrases in the base. The proof system simply extends
the one we have already seen with a rule corresponding to the transitivity of
comparatives. Our completeness result, Theorem 1, extends to the new setting.
The next section does this. The decidability of the language is a more delicate
matter than before, since it does not follow from Mortimer’s Theorem [11] on
the finite model property for FO2. Indeed, adding transitivity statements to FO2

renders the logic undecidable, as shown in Grädel, Otto, and Rosen [7]. Instead,
one could use Theorem 12 of Lutz and Sattler [9] on the decidability of a variant
on Boolean modal logic in which some of the relations are taken to be transitive.
This would indeed give the ExpTime-completeness of L(adj) with our semantics.
However, we have decided to present a direct proof for several reasons. First, Lutz
and Sattler’s result does not give a finite model property, and our result does do
this. Second, our argument is shorter. Finally, our treatment connects to modal
filtration arguments and is therefore different; [9] uses automata on infinite trees
and is based on Vardi and Wolper [16].

I do not wish to treat the transitivity of comparison with adjectives as an
enthymeme (missing premise) because the transitivity seems more fundamental,
more ‘logical’ somehow. Hence it should be treated on a deeper level. The decid-
ability considerations give a supporting argument: if we took the transitivity to
be a meaning postulate, then it would seem that the underlying language would
have to be rich enough to state transitivity. This requires three universal quan-
tifiers. For other reasons, we want our languages to be closed under negation. It
thus seems very likely that any logical system with these properties is going to
be undecidable. The upshot is a system in which the transitivity turns out to be
a proof postulate rather than a meaning postulate. We turn to the system itself.

Syntax and semantics. We start with four pairwise disjoint sets A (for compar-
ative adjective phrases) and the three that we saw before: P, R, and K. We use
a as a variable to range over A in our statement of the syntax and the rules.

Logics for Two Fragments beyond the Syllogistic Boundary 557

For the syntax, we take elements a ∈ A to be binary atoms, just as the
elements s ∈ R are. Thus, the binary literals are the expressions of the form s,
s, a, or a.

The syntax is the same as before, except that we allow the binary atoms
to be elements of A in addition to elements of R. So in a sense, we have the
same syntax is before, except that some of the binary atoms are taken to render
transitive verbs, and some are taken to render comparative adjective phrases.
The only difference is in the semantics. Here, we require that (in every model
M) for an adjective a ∈ A, [[a]] must be a transitive relation.

Proof system. We adopt the same proof system as in Figure 3, but with one
addition. This addition is the rule for transitivity:

a(t1, t2) a(t2, t3)
a(t1, t3)

trans

This rule is added for all a ∈ A.

Example 7. We have seen an informal example in (1) at the beginning of this
paper. At this point, we can check that our system does indeed have a derivation
corresponding to this. We need to check that Γ) ϕ, where Γ contains

∀(sw, ∀(ripe, bigger)), ∀(pineapple, ∀(kq, bigger)), ∀(pineapple, ∀(ripe, bigger)),

and ϕ is
∀(∃(sw, bigger), ∀(kq, bigger)).

(We are going to use kq as an abbreviation of kumquat for typographical con-
venience, and similarly for sw and sweet.) In Example 6, we saw that Γ)
∀(sweet, ∀(kq, bigger)). (Recall that we saw this with a derivation in a differ-
ent format, in Figure 5. This could be converted to our official format of natural
deduction trees.) That work used R = {bigger}, but here we want R = ∅ and
A = {bigger}. The same derivation works, of course. Transitivity enables us to
obtain a derivation for (1):

[∃(sw, bigger)(x)]3

[bigger(x, y)]2
[kq(z)]1

[sw(y)]2

.

...
∀(sw,∀(kq, bigger))

∀(kq, bigger)(y)
∀E

bigger(y, z)
∀E

bigger(x, z)
trans

∀(kq, bigger)(x)
∀I1

∀(kq, bigger)(x)
∃E2

∀(∃(sw, bigger),∀(kq, bigger))
∀I3

Adding the transitivity rule gives a sound and complete proof system for the
semantic consequence relation Γ |= ϕ. The soundness is easy, and so we only

558 L.S. Moss

sketch the completeness. We must show that a set Γ which is consistent in
the new logic has a transitive model. The canonical model M(Γ) as defined in
Section 2.6 is automatically transitive; this is immediate from the transitivity
rule. And as we know, it satisfies Γ .

3.1 L(adj) Has the Finite Model Property

Our final result is that L(adj) has the finite model property. We extend the work
in Section 2.7. The inspiration for our definitions comes from the technique of
filtration in modal logic, but we shall not refer explicitly to this area.

We again assume that Γ is consistent, and Γ ∗ has the properties of Lemma 3.

Definition 2. For a ∈ A, we say that j reaches k (by a chain of ≡ and a
statements) if there is a sequence

j = j0 ≡ k0, j1 ≡ k1, . . . , jn ≡ kn = k (4)

such that n ≥ 1, and Γ ∗ contains a(k0, j1), . . ., a(kn−1, jn).

Lemma 8. Assume that j reaches k by a chain of ≡ and a statements.

1. If c(k) ∈ Γ ∗, then Γ ∗ contains ∃(c, a)(j).
2. If j, k ∈ K(L), then Γ ∗ contains a(j, k).

Proof. By induction on n ≥ 1 in (4). For n = 1, we have essentially seen the
argument as a step in Lemma 6. Here it is again. Since c(k1) and j1 ≡ k1, we
see that c(j1). Together with s(k0, j1), we have ∃(c, a)(k0). And as j0 ≡ k0, we
see that ∃(c, a)(j0).

Assume our result for n, and now consider a chain as in (4) of length n + 1.
The induction hypothesis applies to

j = j1 ≡ k1, j2 ≡ k2, . . . , jn+1 ≡ kn+1 = k

and so we have ∃(c, a)(j1). Since a(k0, j1), we easily have ∃(c, a)(k0) by transi-
tivity. And as j0 ≡ k0, we have ∃(c, a)(j0).

The second assertion is also proved by induction on n ≥ 1. For n = 1, we
have j = j0 ≡ k0, Γ ∗ contains a(k0, j1); and j1 ≡ k1 = k. Then since the ≡ is
the identity on K(L), j = j0 = k0, and j1 = k1 = k. Hence Γ ∗ contains s(j, k).
Assuming our result for n, we again consider a chain as in (4) of length n + 1.
Just as before, j = j0 = k0, and so Γ ∗ contains a(j, j1). By induction hypothesis,
Γ ∗ contains a(j1, k). By transitivity, Γ ∗ contains a(j, k). �

We endow N with an L-structure as follows:

[[p]] = {([j], Q) : p(j) ∈ Γ ∗ and Q ∈ {∀, ∃}}.
[[s]](([j], Q), ([k], Q′)) iff one of the following two conditions holds:

1. There is a set term c such that Γ ∗ contains c(k) and ∀(c, s)(j).
2. Q′ = ∃, and for some j∗ ≡ j and k∗ ≡ k, Γ ∗ contains s(j∗, k∗).

Logics for Two Fragments beyond the Syllogistic Boundary 559

[[a]](([j], Q), ([k], Q′)) iff

1. If ∀(c, a)(k) ∈ Γ ∗, then also ∀(c, a)(j) ∈ Γ ∗.
2. In addition, either (a) or (b) below holds:

(a) There is a set term c such that Γ ∗ contains c(k) and ∀(c, a)(j).
(b) Q′ = ∃, and j reaches k by a chain of ≡ and a statements.

(Notice that this definition is independent of the representatives in [j]
and [k].)

For a constant j of L, [[j]] = ([j], ∃).

Once again, we suppress Γ and Γ ∗ and simply write N for the resulting L-
structure.

Lemma 9. For a ∈ A, each relation [[a]] is transitive in N.

Proof. In this proof and the next, we are going to use l to stand for a constant
symbol, even though earlier in the paper we used it for a literal. Assume that

([j], Q) [[a]] ([k], Q′) [[a]] ([l], Q′′). (5)

Clearly we have the first requirement concerning [[a]]: if ∀(c, a)(l) ∈ Γ ∗, then also
∀(c, a)(j) ∈ Γ ∗.

We have four cases, depending on the reasons for the two assertions in (5).
Case 1 There is a set term b such that Γ ∗ contains b(k) and ∀(b, a)(j), and

there is also a set term c such that Γ ∗ contains c(l) and ∀(c, a)(k). By (1), Γ ∗

contains c(l) and ∀(c, a)(j). And so we have requirement (2a) concerning [[a]] for
([j], Q) and ([l], Q′′).

Case 2 There is a set term b such that Γ ∗ contains b(k) and ∀(b, a)(j), and k
reaches l. Note that a(j, k). So j reaches l.

Case 3 j reaches k by a chain of ≡ and a statements, and there is a set term
c such that Γ ∗ contains c(l) and ∀(c, a)(k). Then a(k, l). And so j reaches l.

Case 4 j reaches k, and k reaches l. Then concatenating the chains shows that
j reaches l. �

Lemma 10. For all c ∈ Sub(Γ), [[c]] = {([j], Q) : c(j) ∈ Γ ∗ and Q ∈ {∀, ∃}}.

Proof. We argue by induction on c. Much of the proof is as in Lemma 6, For c a
unary atom, the result is obvious. Also, assuming that [[c]] = {([j], Q) : c(j) ∈ Γ ∗}
we easily have the same result for c using the maximal consistency of Γ ∗:

([j], Q) ∈ [[c]] iff ([j], Q) /∈ [[c]] iff c(j) /∈ Γ ∗ iff c(j) ∈ Γ ∗.

Assume about c that if c ∈ Sub(Γ), then [[c]] = {([j], Q) : c(j) ∈ Γ ∗}. In view
of what we just saw, we only need to check the same result for ∀(c, s), ∃(c, s),
∀(c, a), and ∃(c, a).

560 L.S. Moss

∀(c, s) Suppose that ∀(c, s) ∈ Sub(Γ), so that c ∈ Sub(Γ) as well. We prove that

[[∀(c, s)]] = {([j], Q) : ∀(c, s)(j) ∈ Γ ∗}.

Let ([j], Q) ∈ [[∀(c, s)]]. We shall show that ∀(c, s)(j) ∈ Γ ∗. If not, then by
maximal consistency, ∃(c, s)(j) ∈ Γ ∗. By the Henkin property, let k be such
that Γ ∗ contains c(k) and s(j, k). By induction hypothesis, ([k], ∀) ∈ [[c]]. And
so ([j], ∀)[[s]]([k], ∀). Thus there is a set term b such that Γ ∗ contains b(k) and
∀(b, s)(j). From these, Γ ∗ contains s(j, k). And thus Γ ∗ is inconsistent. This
contradiction shows that indeed ∀(c, s)(j) ∈ Γ ∗.

In the other direction, suppose that ([j], Q) is such that ∀(c, s)(j) ∈ Γ ∗. Let
([k], Q′) ∈ [[c]], so by induction hypothesis, c(k) ∈ Γ ∗. By the way we interpret
binary relations in N, [[s]](([j], Q), ([k], Q′)). This for all ([k], Q′) ∈ [[c]] shows that
([j], Q) ∈ [[∀(c, s)]].

∃(c, s) Suppose that ∃(c, s) ∈ Sub(Γ), so that c ∈ Sub(Γ) as well. Let ([j], Q) ∈
[[∃(c, s)]]. Let k and Q′ be such that [[c]]([k], Q′) and [[s]](([j], Q), ([k], Q′)). By
induction hypothesis, c(k) ∈ Γ ∗. First, let us consider the case whenQ′ = ∀. Let b
be such that Γ ∗ contains b(k) and ∀(b, s)(j). Using (∀E), we have Γ ∗) ∃(c, s)(j).
And as Γ ∗ is closed under deduction, ∃(c, s)(j) ∈ Γ ∗ as desired. The more
interesting case is when Q′ = ∃, so that for some j∗ ≡ j and k∗ ≡ k, Γ ∗ contains
s(j∗, k∗). Since c(k) and k ≡ k∗, we have c(k∗) ∈ Γ ∗. Then using (∃I), we see
that ∃(c, s)(j∗) ∈ Γ ∗. Since j ≡ j∗, once again we have ∃(c, s)(j) ∈ Γ ∗.

Conversely, suppose that ∃(c, s)(j) ∈ Γ ∗. By the Henkin property, let k be such
that c(k) and s(j, k) belong to Γ ∗. Then [[s]](([j], Q), ([k], ∃)), and by induction
hypothesis, [[c]](k). Hence ([j], Q) ∈ [[∃(c, s)]].

∀(c, a) Suppose that ∀(c, a) ∈ Sub(Γ), so that c ∈ Sub(Γ) as well. We prove
that

[[∀(c, a)]] = {([j], Q) : ∀(c, a)(j) ∈ Γ ∗}.

The first part argument is the left-to-right inclusion. It is exactly the same as
what we saw above for the sentences of the form ∀(c, s).

In the other direction, suppose that ∀(c, a)(j) ∈ Γ ∗; we show that ([j], Q) ∈
[[∀(c, a)]]. For this, let ([k], Q′) ∈ [[c]]. By induction hypothesis, c(k) ∈ Γ ∗. We
must verify that if ∀(b, a)(k) ∈ Γ ∗, then also ∀(b, a)(j) ∈ Γ ∗. This is shown in
the derivation below:

c(k) ∀(c, a)(j)
a(j, k)

∀E
[b(x)]1 ∀(b, a)(k)

a(k, x)
∀E

a(j, x)
trans

∀(b, a)(j) ∀I
1

Since Γ ∗ is closed under deduction, we see that indeed ∀(b, a)(j) ∈ Γ ∗. Going on,
we see from the structure of N that [[s]](([j], Q), ([k], Q′)). This for all ([k], Q′) ∈
[[c]] shows that ([j], Q) ∈ [[∀(c, a)]].

Logics for Two Fragments beyond the Syllogistic Boundary 561

∃(c, a) Suppose that ∃(c, a) ∈ Sub(Γ), so that c ∈ Sub(Γ) as well.
Let ([j], Q) ∈ [[∃(c, a)]]. Let k and Q′ be such that the following two assertions

hold: [[a]](([k], Q′) and [[a]](([j], Q), ([k], Q′)). By induction hypothesis, c(k) ∈ Γ ∗.
There are two cases depending on whether Q′ = ∀ or Q′ = ∃. The argument for
Q′ = ∀ is the same as the one we saw in our work on sentences ∃(c, s) above.
The more interesting case is when Q′ = ∃. This time, j reaches k. By Lemma 8,
∃(c, a)(j) ∈ Γ ∗.

Conversely, suppose that ∃(c, a)(j) ∈ Γ ∗. By the Henkin property, let k be
such that c(k) and a(j, k) belong to Γ ∗. The derivation below shows that if
∀(d, a)(k) ∈ Γ ∗, then ∀(d, a)(j) ∈ Γ ∗ as well:

a(j, k)
[d(x)]1 ∀(d, a)(k)

a(k, x)
∀E

a(j, x)
trans

∀(d, a)(j) ∀I1

So [[a]](([j], Q), ([k], ∃)), and by induction hypothesis, [[c]](k). Hence ([j], Q) ∈
[[∃(c, a)]].
This completes the induction. �
Lemma 11. N |= Γ .

Proof. We check the sentence types in turn, using Lemma 10 without mention.
First, let Γ contain the sentence ∀(b, c). Then b and c belong to Sub(Γ). Let

([j], Q) ∈ [[b]], so that b(j) ∈ Γ ∗. We have d(j) ∈ Γ ∗ using (∀E). This for all
([j], Q) shows that N |= ∀(b, c).

Second, let ∃(c, d) ∈ Γ . By the Henkin property, let j be such that both c(j)
and d(j) belong to Γ ∗. The element ([j], ∀) shows that [[c]] ∩ [[d]] �= ∅. That is,
N |= ∃(c, d).

Continuing, consider a sentence b(j) ∈ Γ . As b ∈ Sub(Γ), we have ([j], ∃) ∈
[[b]], so that N |= b(j).

The work for sentences of the forms s(j, k) and s(j, k) was done in Lemma 7.
The most intricate part of this proof concerns sentences a(j, k), a(j, k) ∈ Γ .

Recall that we are dealing in this result with sentences of L, and so j and k are
constant symbols of that language. Also recall that [[j]] = ([j], ∃), and similarly
for k.

Consider sentences in Γ of the form a(j, k). It is easy to see that if ∃(c, a)(k)
belongs to Γ , then so does ∃(c, a)(j). (See the ∃(c, a) case in Lemma 10.) From
this it follows easily that [[a]]([[j]], [[k]]). And so N |= a(j, k) in this case. We
conclude with the consideration of a sentence in Γ of the form a(j, k). We wish
to show that N |= a(j, k). Suppose towards a contradiction that N |= a(j, k).
Then we have [[a]](([j], ∃), ([k], ∃)). There are two possibilities, corresponding to
the alternatives in the semantics of a. The first is when there is a set term c such
that Γ ∗ contains c(k) and ∀(c, a)(j). Using (∀E), Γ ∗ then contains a(j, k). But
recall that Γ contains a(j, k). So in this alternative, Γ ∗ ⊇ Γ is inconsistent. In the
second alternative, j reaches k by a chain of ≡ and a statements. By Lemma 8,
a(j, k) ∈ Γ ∗. So Γ ∗ is inconsistent, and we have our contradiction. �

562 L.S. Moss

Once again, this gives us the finite model property for L(adj). The result is not
interesting from a complexity-theoretic point of view, since we already could see
from Lutz and Sattler [9] that the logic had an ExpTime satisfiability problem.

4 Conclusion and Future Work

This paper has provided two logical systems, L and L(adj), along with semantics.
We presented proof systems in the format of natural deduction, and in both cases
we have completeness theorems and the finite model property. The semantics of
the language allows us to translate some natural language sentences into the
languages faithfully.

Set terms in this sense of this paper come from McAllester and Givan [10],
where they are called class terms. That paper was probably the first to present an
infinite fragment relevant to natural language and to study its logical complexity.
The language of [10] did not have negation, and they showed that satisfiability
is NP-complete. The language of [10] is included in the language R∗ of Pratt-
Hartmann and Moss [15]; the difference is that R∗ has “a small amount” of
negation. Yet more negation is found in the language R∗† of [15]. This fragment
has binary and unary atoms and negation. It is equivalent in most respects to the
language L of this paper, but there are two small differences. First, here we have
added constant symbols. In addition to making the system more expressive, the
reason for adding constants is in order to present the Henkin-style completeness
proof in Sections 2.5. The other change is that R∗† does not allow recursively
defined set terms, only “flat” terms. However, from the point of view of decid-
ability and complexity, this change is really minor: one may add new symbols to
flatten a sentence, at the small cost of adding new sentences. The flat version is
also essentially the same as the language E2 of Pratt-Hartmann [14].

The decidability of L(adj) follows from known results on Boolean modal log-
ics [9], but the finite model property appears to be new here.

Proof systems for fragments that are weaker than L appear in [15]. These proof
systems are syllogistic; there are no variables or what we have in this paper
called general sentences. Modulo complexity hypotheses, the proof systems of
this paper are the first ones which are complete and go beyond the capabilities
of syllogistic proof systems. At the same time, they are decidable and useable.
For example, we have seen how the inference in (1) in the Introduction is handled
in our system; see Examples 6 and 7.

The use of natural deduction proofs in connection with natural language is
very old, going back to Fitch [4]. Fitch’s paper does not deal with a formalized
fragment, and so it is not possible to even ask about questions like completeness
and decidability. Also, the phenomena of interest in the paper went beyond what
we covered here. We would like to think that the methods of this paper could
eventually revive interest in Fitch’s proposal by giving it a foundation.

Francez and Dyckhoff [5] propose a proof-theoretic semantics for natural lan-
guage. Their far-ranging proposal goes beyond what we can discuss in this paper.
We only want to mention that our proof rules bear some similarity to theirs.

Logics for Two Fragments beyond the Syllogistic Boundary 563

Their system had no recursive constructs and also no negative determiners, but
it went beyond ours in covering both readings of scope-ambiguous simple sen-
tences. Since our motivation was not proof-theoretic in this paper, we did not
investigate proof-theoretic properties of our system. But it would be interesting
to do so.

It is of interest to go further in order to render more of natural language infer-
ence in complete and decidable logical systems. One next step would be to add
converses to the binary atoms in order to express simple sentences beyond what
we have seen. For example, writing sees−1 for the inverse of see, we could render
Every girl sees Mary as ∀(girl, see−1)(Mary). It is possible to extend our work in
such a way as to incorporate these converses. The logic would axiomatized on
top of L by adding the rule deriving r−1(t, u) from r(u, t). But this is only one
of the many things to do.

Acknowledgments

My thanks to Andreas Blass and Ian Pratt-Hartmann for useful discussions of
these topics and for corrections at various stages.

References

1. van Benthem, J.: Essays in Logical Semantics. Reidel, Dordrecht (1986)

2. Böerger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. In: Per-

spectives in Mathematical Logic, p. 1197. Springer, Heidelberg

3. van Dalen, D.: Logic and Structure, 4th edn. Springer, Berlin (2004)

4. Fitch, F.B.: Natural Deduction Rules for English. Philosophical Studies 24(2),

89–104 (1973)

5. Francez, N., Dyckhoff, R.: Proof-Theoretic Semantics for a Natural Language Frag-

ment. In: Jaeger, G., Ebert, C., Michaelis, J. (eds.) Proceedings, MoL 10/11. LNCS

(LNAI). Springer, Heidelberg (2010) (to appear)

6. Grädel, E., Kolaitis, P., Vardi, M.: On the Decision Problem for Two-Variable

First-Order Logic. Bulletin of Symbolic Logic 3(1), 53–69 (1997)

7. Grädel, E., Otto, M., Rosen, E.: Undecidability Results on Two-Variable Logics.

Archive for Mathematical Logic 38, 313–354 (1999)

8. Gurevich, Y.: On the Classical Decision Problem. Logic in Computer Science Col-

umn. The Bulletin of the European Association for Theoretical Computer Science

(October 1990)

9. Lutz, C., Sattler, U.: The Complexity of Reasoning with Boolean Modal Logics.

In: Wolter, F., et al. (eds.) Advances in Modal Logics, vol. 3. CSLI Publications,

Stanford (2001)

10. McAllester, D., Givan, R.: Natural Language Syntax and First Order Inference.

Artificial Intelligence 56 (1992)

11. Mortimer, M.: On Languages with Two Variables. Zeitschrift für Mathematische

Logik und Grundlagen der Mathematik 21, 135–140 (1975)

12. Pelletier, F.J.: A Brief History of Natural Deduction. History and Philosophy of

Logic 20, 1–31

564 L.S. Moss

13. Pratt-Hartmann, I.: A Two-Variable Fragment of English. Journal of Logic,

Language and Information 12(1), 13–45 (2003)

14. Pratt-Hartmann, I.: Fragments of Language. Journal of Logic, Language and In-

formation 13, 207–223 (2004)

15. Pratt-Hartmann, I., Moss, L.S.: Logics for the Relational Syllogistic. Review of

Symbolic Logic 2(4), 647–683 (2009)

16. Vardi, M.Y., Wolper, P.: Automata-Theoretic Techniques for Modal Logics of Pro-

grams. Journal of Computer and System Sciences 32(2), 183–221 (1986)

Choiceless Computation and Symmetry

Benjamin Rossman�

Computer Science and Artificial Intelligence Laboratory, MIT

brossman@theory.csail.mit.edu

Abstract. Many natural problems in computer science concern struc-

tures like graphs where elements are not inherently ordered. In contrast,

Turing machines and other common models of computation operate

on strings. While graphs may be encoded as strings (via an adjacency

matrix), the encoding imposes a linear order on vertices. This enables a

Turing machine operating on encodings of graphs to choose an arbitrary

element from any nonempty set of vertices at low cost (the Augmenting
Paths algorithm for Bipartite Matching being an example of the

power of choice). However, the outcome of a computation is liable to

depend on the external linear order (i.e., the choice of encoding). More-

over, isomorphism-invariance/encoding-independence is an undecidable

property of Turing machines. This trouble with encodings led Blass,

Gurevich and Shelah [3] to propose a model of computation known

as BGS machines that operate directly on structures. BGS machines

preserve symmetry at every step in a computation, sacrificing the ability

to make arbitrary choices between indistinguishable elements of the

input structure (hence “choiceless computation”). Blass et al. also in-

troduced a complexity class CPT+C (Choiceless Polynomial Time with

Counting) defined in terms of polynomially bounded BGS machines.

While every property finite structures in CPT+C is polynomial-time

computable in the usual sense, it is open whether conversely every

isomorphism-invariant property in P belongs to CPT+C. In this paper

we give evidence that CPT+C �= P by proving the separation of

the corresponding classes of function problems. Specifically, we show

that there is an isomorphism-invariant polynomial-time computable

function problem on finite vector spaces (“given a finite vector space

V , output the set of hyperplanes in V ”) that is not computable by

any CPT+C program. In addition, we give a new simplified proof of

the Support Theorem, which is a key step in the result of [3] that a

weak version of CPT+C absent counting cannot decide the parity of sets.

Keywords: choiceless polynomial time, descriptive complexity, finite

model theory.

1 Introduction

Is there a “logic” capturing exactly the polynomial-time computable properties
of finite structures? This question was raised by Gurevich [9] in the mid 80s,
� Supported by the NSF Graduate Research Fellowship.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 565–580, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

566 B. Rossman

nearly a decade after Fagin [8] showed that the NP properties of finite structures
are precisely what can be defined in existential second-order logic. Today this
question remains a central open problem in finite model theory.

Addressing this question, Blass, Gurevich and Shelah [3,4] introduced an
logic/complexity class known as CPT+C or Choiceless Polynomial Time with
Counting. CPT+C is based on a model of computation known as BGS machines
(after the inventors). BGS machines operate directly on structures in a manner
that preserves symmetry at every step of a computation. By contrast, Turing
machines encode structures as strings. This encoding violates the symmetry of
structures like graphs (which might possess nontrivial automorphisms) by im-
posing a linear order on elements. Note that Turing machines are able to exploit
this linear order to efficiently choose an element from any set constructed in the
course of a computation. Thus, it is not uncommon in the high-level description
of an algorithm (say, the well-known Augmenting Paths algorithm for Bipar-

tite Matching) to read something along the lines of “let w be any unmatched
neighbor of the vertex v”. A description like this (implicit) carries a claim that
the ultimate outcome of the computation will not dependent on the choice of
w. However, the validity of such claims cannot be taken for granted: by Rice’s
Theorem, encoding-invariance is an undecidable property of Turing machines.

The BGS machine model of computation is said to be “choiceless” because
it disallows choices which violate the inherent symmetry of the input structure.
Pseudo-instructions of the form “let i be an arbitrary element of the set I” is
forbidden. Similarly, “let w be the first neighbor of v” is meaningless (unless
referring to an explicitly constructed linear order on vertices). The inability of
BGS machines to choose is compensated by parallelism (the power to explore
all choices in parallel) and the machinery of set theory (the power to build sets
using comprehension).

BGS machines may in fact be viewed as the syntactic elements (i.e., formulas)
of a logic, whose semantics is well-defined on any structure. One rough descrip-
tion BGS logic is:

BGS logic = propositional logic +

• a least-fixed-point operator
• a cardinality operator
• basic set-theoretic predicates (∈, ∪, etc.) and
• comprehension terms {term1(x) : x ∈ term2 : formula(x)}

evaluated in the domain HF(A) = A ∪ ℘(A) ∪ ℘(A ∪ ℘(A)) ∪ · · ·
of hereditarily finite objects over a structure A with universe A.

The complexity class CPT+C or Choiceless Polynomial Time with Counting (it-
self also a logic) is obtained by imposing polynomial bounds on the running time
and number of processors required to run a BGS machine. (Somewhat more pre-
cisely: this involves requiring that fixed-points converge in polynomially many
steps and that only polynomial many elements of HF(A) participate in the evalu-
ation of a formula.) Every CPT+C computable property of structures like graphs

Choiceless Computation and Symmetry 567

can be implemented on a polynomial-time Turing machine (on encodings on such
structures). Thus, CPT+C ⊆ P. However, it is open whether, conversely, ev-
ery isomorphism-invariant polynomial-time property of finite structures is com-
putable in CPT+C.

The main result of this paper (Theorem 6) suggests that CPT+C �= P.
We show that there is an isomorphism-invariant polynomial-time computable
function problem on finite vector spaces (“given a finite vector space V , output
the set of hyperplanes in V ”) that is not computable by any CPT+C program.
An additional result of this paper (Theorem 5) is a new simplified proof of the
Support Theorem of [3], which is a key step in the result of [3] that a weak
version of CPT+C absent counting cannot decide the parity of sets.

Outline of the paper. In §2 we present all relevant definitions. §3 contains a brief
summary of the key results on CPT and CPT+C from previous work of Blass
et al. [3] and others. In §4 we introduce some new notions relating BGS machines
to the automorphism groups of structures. In §5 we prove that the symmetric
group has a certain “support property”, leading to a simplified proof of the
Support Theorem from the original paper of Blass et al. [3]. In §6 we establish
a similar result for the general linear group; as a corollary, we show that there
is a polynomial-time computable function problem on finite vector spaces that
is not computable by any CPT+C program.

2 Definitions

We begin by defining hereditarily finite expansions of structures in §2.1. We
then define BGS logic and classes CPT and CPT+C in §2.2. The definition of
BGS logic presented here differs from the BGS machines of Blass, et al. [3], but
classes CPT and CPT+C are exactly the same. BGS logic has a bare-bones
syntax that is well-suited for induction, whereas the BGS machines of [3] have
an intuitive and attractive syntax (borrowing from Abstract State Machines)
that is recommended for the actual description of CPT+C algorithms (see [3]
for examples). Let us also mention that CPT(+C) is elsewhere [3,4,7] written
as C̃PT(+C), the tilde over C evoking the “less” in “choiceless”.

2.1 Hereditarily Finite Expansion

For every structure A in a signature σ, we define a structure HF(A) in an
enlarged signature σHF called the hereditarily finite expansion of A.

Definition 1. [Hereditarily Finite Objects] Let A be for a set (a special case
being the universe of a structure A) whose elements we call atoms and assume
to be non-set entities (or “ur-elements”).

1. HF(A) denote the (unique) smallest set such that A ⊆ HF(A) and B ∈
HF(A) for every finite subset B of HF(A). Elements of HF(A) are called
hereditarily finite objects (h.f. objects) over A and elements of HF(A) \ A

568 B. Rossman

(i.e., elements of HF(A) which are sets) are called hereditarily finite sets
(h.f. sets) over A. (Note that if A is finite, then HF(A) is the countable
union A ∪ ℘(A) ∪ ℘(A ∪ ℘(A)) ∪ ℘(A ∪ ℘(A) ∪ ℘(A ∪ ℘(A))) ∪ · · · .)

2. The rank of a h.f. object x is defined as 0 if x ∈ A ∪ {∅} and 1 +
maxy∈x rank(y) otherwise.

3. A h.f. set x is transitive if y ⊆ x for all y ∈ x such that y is a set. The
transitive closure TC(x) of a h.f. object x is the (unique) smallest transitive
set containing x as an element.

4. The finite von Neumann ordinals κi for i < ω are elements of HF(∅) defined
by κ0 = ∅ and κi+1 = {κ0, . . . , κi}.

Definition 2. [Group Actions] For a group G acting on A (a special case being
the action of Aut(A) on the universe of a structure A), we shall consider the
extension of this action to HF(A) defined for g ∈ G and x ∈ HF(A)\A inductively
by gx = {gy : y ∈ x}.

Definition 3. [Signatures and Structures] A signature σ consists of relation
symbols Ri and function symbols fj (with designated arities) as well as constant
symbols ck. A σ-structure A (or structure with signature σ) consists of a set A
(called the universe of A) together with interpretations for the various symbols
in σ, that is, relations RA

i ⊆ Aarity(Ri), functions fAj : Aarity(fj) → A and
constants cAk ∈ A (or simply Ri, fj and ck when A is known from context).

Definition 4. [Hereditarily Finite Expansion] σHF denotes the disjoint union
of σ and {In,EmptySet,Atoms,Union,Pair,TheUnique,Card} where In is a binary
relation symbol, EmptySet and Atoms are constant symbols, Union, TheUnique
and Card unary function symbols, and Pair is a binary function symbol. For a
finite σ-structure A, let HF(A) denote the σHF-structure with universe HF(A)
where:

– symbols from σ have the same interpretation in HF(A) as in A, with the
convention that functions from σ take value ∅ whenever any coordinate of
the input is not an atom,

– (x, y) ∈ In if and only if x ∈ y,
– EmptySet = ∅, Atoms = A, Pair(x, y) = {x, y},
– Union(x) =

⋃
y∈x y (in particular, Union(x) = ∅ if x ∈ Atoms ∪ {∅}),

– TheUnique(x) =

{
y if x = {y},
∅ if x is not a singleton,

– Card(x) =

{
|x| as a von Neumann ordinal if x is a set,
∅ if x is an atom.

HF(A) is called the hereditarily finite expansion of A. Structures of the form
HF(A) are called hereditarily finite structures.

Choiceless Computation and Symmetry 569

2.2 BGS Logic and CPT+C

Just like first-order logic, BGS logic (and its weaker cousin BGS− logic) are
defined with respect to a fixed signature σ. Similarly, BGS logic has terms and
formulas. However, BGS logic has an additional syntactic element called pro-
grams (which compute a term t(t(t(...t(∅) . . .))) iteratively using a “step” term
t(·) until some “halting” formula is satisfied, whereupon an “output” term is
computed).

Definition 5. [BGS Logic]
BGS logic over a signature σ consists of terms, formulas and programs, defined
below.

1. Terms and formulas are defined inductively:
◦ (base case) variables are terms;
◦ (base case) constant symbols in σHF are terms;
◦ if f is an r-ary function symbol in σHF and t1, . . . , tr are terms, then
f(t1, . . . , tr) is a term;

◦ if R is an r-ary relation symbol in σHF and t1, . . . , tr are terms, then
R(t1, . . . , tr) is a formula;

◦ if t1 and t2 are terms, then t1 = t2 is a formula;
◦ if φ1 and φ2 are formulas, then so are ¬φ1 and φ1 ∧ φ2 and φ1 ∨ φ2;
◦ if s and t are terms, v is a variable (which is not free in t) and φ is a

formula, then {s(v) : v ∈ t : φ(v)} is a term (“the set of s(v) for v ∈ t such
that φ(v) is true”).

Terms of the form {s(v) : v ∈ t : φ(v)} are called comprehension terms.
2. Each occurrence of a variable in a term or formula is either free or bound,

with the comprehension construct {s(v) : v ∈ t : φ(v)} binding the free
occurrences of v within s and φ. As a matter of notation, we write t(v1, . . . , v�)
or φ(v1, . . . , v�) for a term or formula whose free variables are contained
among v1, . . . , v�. A term or formula with no free variables is said to be
ground.

The variable rank of a term t (resp. formula ϕ) is the maximum number
of free variables in any subterm/formula of t (resp. ϕ).

3. Terms and formulas have the obvious semantics when evaluated on heredi-
tary finite structures with free variables assigned to h.f. objects. For a term
t(v1, . . . , v�) and elements x1, . . . , x� ∈ HF(A), the value of t when free vari-
ables v1, . . . , v� are assigned to x1, . . . , x� is denoted by [[t(x̄)]]A ∈ HF(A) (or
simply [[t(x̄)]] if A is known from context). For a formula ϕ(v1, . . . , v�), the
value [[ϕ(x̄)]]A is an element of {True,False} where (following [3]) we identify
True = {∅} and False = ∅.

We omit a rigorous definition of the semantic operator [[·]]. Let us however
explicitly state the semantics of comprehension terms (since this construct
may be less familiar). For a comprehension term r(v̄) = {s(v̄, w) : w ∈ t(v̄) :
ϕ(v̄, w)} and parameters x̄ from HF(A), the value [[r(x̄)]] is defined (in the
obvious way) as the set of [[s(x̄, y)]] for y ∈ [[t(x̄)]] such that [[ϕ(x̄, y)]] = True.

570 B. Rossman

4. A program Π = (Πstep, Πhalt, Πout) consists of a term Πstep(v), a formula
Πhalt(v), and a term or formula Πout(v) (depending whether Π computes a
decision problem or produces an output) all with a single free variable v. If
Πout is a formula, then Π is said to be Boolean.

The variable rank of Π is the maximum of the variable ranks of Πstep,
Πhalt and Πout.

5. A program Π is executed on an input structure A as follows. Let x0 = ∅ and
xi+1 = [[Πstep(xi)]] for all i < ω. In the event that [[Πhalt(xi)]] = False for
all i, let Π(A) = ⊥ (and the computation is said to diverge). Otherwise, let
Π(A) = [[Πout(xi)]] for the minimal i such that [[Πhalt(xi)]] = True.

6. BGS− logic consists of all terms, formulas and programs of BGS logic which
exclude unary function symbol Card.

We remark that BGS logic has the ability to carry out bounded existential and
universal quantification in HF(A) (and thus subsumes first-order logic over the
base structure A). To see this, note that (∃v ∈ t)φ(v) is equivalent to the formula
{∅ : v ∈ t : φ(v)} = {∅} (pedantically, we should write EmptySet instead of ∅ and
Pair(EmptySet,EmptySet) instead of {∅}). Similarly, (∀v ∈ t)φ(v) is equivalent
to the formula {∅ : v ∈ t : ¬φ(v)} = ∅.

We now define the crucial resource by which we measure the complexity of
BGS programs. Informally, a h.f. object x ∈ HF(A) is active for the operation
of a program Π on a structure A if x is the value of any term involved in the
computation of Π on A (until a halt state is reached). By setting a polynomial
bound on the number of active objects, as well as requiring programs to halt on
every input, we arrive at classes CPT and CPT+C.

Definition 6. [Active Objects and Classes CPT and CPT+C] As in the def-
inition of [[·]]A, we omit the superscript from the active-element operator 〈〈·〉〉A
(defined below) when the structure A is clear from context (as below).

1. For every term t(v1, . . . , v�) and assignment of free variables to values
x1, . . . , x� ∈ HF(A), we define 〈〈t(x1, . . . , x�)〉〉 ∈ HF(A) inductively as fol-
lows:
◦ (base case) if term t(v) is precisely the variable v, then 〈〈t(x)〉〉 = {x} for

every x ∈ HF(A);
◦ (base case) if c is a constant symbol in σHF, then 〈〈c〉〉 = {cHF(A)};
◦ if R is an r-ary relation symbol in σHF and t1, . . . , tr are terms, then

〈〈R(t1, . . . , tr)〉〉 =
⋃r

i=1〈〈ti〉〉;

◦ if f is an r-ary function symbol in σHF and t1, . . . , tr are terms, then

〈〈f(t1, . . . , tr)〉〉 =
{
[[f(t1, . . . , tr)]]

}
∪
⋃r

i=1〈〈ti〉〉;

◦ for logical connectives,

〈〈¬φ〉〉 = 〈〈φ〉〉, 〈〈φ∧ψ〉〉 = 〈〈φ∨ψ〉〉 = 〈〈φ〉〉 ∪ 〈〈ψ〉〉, 〈〈t1 = t2〉〉 = 〈〈t1〉〉 ∪ 〈〈t2〉〉;

Choiceless Computation and Symmetry 571

◦ for comprehension terms,1

〈〈{s(v) : v ∈ t : φ(v)}〉〉
=
{
[[{s(v) : v ∈ t : φ(v)}]]

}
∪ 〈〈t〉〉 ∪

⋃
x∈[[t]]

(
〈〈φ(x)〉〉 ∪ 〈〈s(x)〉〉

)
.

2. The set Active(Π,A) ⊆ HF(A) of active objects of Π on A is defined as:⋃
i<ω〈〈Πstep(xi)〉〉 ∪ 〈〈Πhalt(xi)〉〉 if Π(A) = ⊥,

〈〈Πhalt(xt)〉〉 ∪ 〈〈Πout(xt)〉〉 ∪
⋃t−1

i=0

(
〈〈Πstep(xi)〉〉 ∪ 〈〈Πhalt(xi)〉〉

)
otherwise,

where x0 = ∅, xi+1 = [[Πstep(xi)]] and t is the least nonnegative integer such
that [[Πhalt(xt)]] = True.

3. For a function f(n), we denote by BGS
(−)(f(n)) the class of BGS(−) pro-

grams Π such that Π(A) �= ⊥ and |Active(Π,A)| � f(|A|) for all finite
structures A.

4. Classes CPT and CPT+C are defined by

CPT = BGS
−(nO(1)), CPT+C = BGS(nO(1)).

We also denote by CPT(+C) the “complexity class” consisting of classes
(“languages”) of finite structures recognized by a Boolean program Π ∈
CPT(+C). That is, for a class C of finite structures, we write C ∈ CPT(+C)
if and only if C = {A : Π(A) = True} for some CPT(+C) program Π .

3 Brief Survey of Results on CPT and CPT+C

For background we give a brief and partial survey of results on CPT and
CPT+C. Theorems 1, 2, 3 are from the original paper [3] of Blass, Gurevich
and Shelah.

Theorem 1. CPT+C ⊆ P.

The idea behind the proof is that a CPT+C program Π can be simulated by
a polynomial-time dynamic programming algorithm. The “subproblems” in the
dynamic program correspond to terms and formulas occurring in the evaluation
of Π , together with assignments of free variables to h.f. objects. The key obser-
vation is that, while these terms and formulas like Πstep(Πstep(. . . Πstep(v) . . .))
may grow polynomially long, there can only be polynomial many such terms
and formulas and, moreover, the number of free variables in any subformula is
bounded by a constant (the variable rank of Π).
1 There is a reasonable alternative:

〈〈{s(v) : v ∈ t : φ(v)}〉〉
=
{
[[{s(v) : v ∈ t : φ(v)}]]} ∪ 〈〈t〉〉 ∪⋃x∈[[t]]〈〈φ(x)〉〉 ∪⋃x∈[[t]] : [[φ(x)]]=True〈〈s(x)〉〉.

For the purposes of this paper, either definition is fine (i.e., all results hold just the

same).

572 B. Rossman

Theorem 2. CPT = CPT+C = P on structures with a built-in linear order.

Theorem 2 uses the fact that least-fixed-point logic LFP is a subclass of CPT

(this is shown in [3]) and that LFP = P on structures with a built-in linear
order [10,12].

Theorem 3. The class PARITY of finite sets of even cardinality is not definable
in CPT.

Theorem 3 moreover shows that CPT �= CPT+C, since PARITY is clearly
definable in CPT+C. In a significantly strengthening of Theorem 3, Shelah [11]
proved that CPT has a “zero-one law” (see [1] for an alternative exposition of
this result):

Theorem 4. For every relational signature σ and every CPT-definable prop-
erty P of σ-structures, the probability that a uniform random σ-structure of
cardinality n has property P tends (as a function of n) to 0 or 1.

Although it is open whether CPT+C = P, a number of “choiceless” algorithms
have been devised which solve some particular P problems on unordered struc-
tures in new and surprising ways.

– The paper [4] contains a CPT+C algorithm for Bipartite Matching

among other problems.
– In [2] it is explained how “choicelessly” to implement the Csanky algorithm

for computing the determinant of an unordered matrix, that is, a function
I × I → F where I is a finite (unordered) set and F is a finite field.

– The paper [7] presents a CPT algorithm that solves a tractable special case of
Graph Isomorphism due to Cai, Fürer and Immerman [5]. (The Cai-Fürer-
Immerman problem was used to show that LFP+C �= P, that is, first-order
logic with least-fixed-point and counting operators does not capture P.)

Among polynomial-time problems for which no CPT+C algorithm is known is
Perfect Matching (see [4]).

4 The Role of Symmetry

This section introduces a tool for showing that certain h.f. objects in certain
structures (with rich automorphism groups) cannot be activated by any CPT+C

program.

Definition 7. Let G be a group acting faithfully on a finite set A of cardinality
n (a special case is Aut(A) acting on the universe of a structure A). Recall that
the action of G extends to HF(A) via gx = {gy : y ∈ x} for sets x ∈ HF(A) \A.

1. For x ∈ HF(A), the stabilizer of x is the subgroup of G defined by Stab(x) =
{g ∈ G : gx = x}. If x is a set, the pointwise stabilizer of x is the subgroup
of G defined by Stab•(x) = {g ∈ G : gy = y for all y ∈ x}.

Choiceless Computation and Symmetry 573

2. A set of atoms B ⊆ A is a support for a subgroup H ⊆ G if Stab•(B) ⊆ H .
If H has a support of size � k, then H is said to be k-supported.

3. For all k and r, the set of (k, r)-constructible subgroups of G is the minimal
family of subgroups of G such that
– every k-supported subgroup is (k, r)-constructible, and
– if H1, . . . , Hr are (k, r)-constructible, H1 ∩ · · · ∩Hr ⊆ H and [G : H] �
nk, then H is (k, r)-constructible.2

4. G has the (k, r)-support property if every (k, r)-constructible subgroup is
k-supported.

We extend the notion of (k, r)-constructibility from subgroups of G to elements
of HF(A).

5. A h.f. object x ∈ HF(A) is (k, r)-constructible if Supp(y) is a (k, r)-
constructible subgroup of G for all y ∈ TC(x).

Note that (k, r)-constructibility is a transitive property: if a h.f. set x is
(k, r)-constructible, then so are all y ∈ x. Whenever we speak about “(k, r)-
constructible” elements of HF(A) in the context of a structure A without men-
tioning G, let it be understood that G is the automorphism group Aut(A).

The following lemma gives a condition equivalent to the (k, r)-support property.

Lemma 1. G has the (k, r)-support property if, and only if, every kr-supported
subgroup with index � nk is k-supported.

Proof. (=⇒) Suppose G has the (k, r)-support property and H is kr-supported
and [G : H] � nk. LetB ⊆ A be a support forH of size |B| � kr. Fix an arbitrary
partition B = B1 ∪ · · · ∪ Br into sets of size |Bi| � k. For i ∈ {1, . . . , r}, let
Hi = Stab•(Bi) and note that Hi is (k, r)-constructible (since every k-supported
subgroup is (k, r)-constructible). Since H1 ∩ · · · ∩ Hr = Stab•(B) ⊆ H and
[G : H] � nk, it follows that H is (k, r)-constructible.

(⇐=) Suppose that every kr-supported subgroup with index � nk is k-
supported. To show that every (k, r)-constructible subgroup is k-supported, as-
sume H1, . . . , Hr are k-supported and H1 ∩ · · · ∩Hr ⊆ H and [G : H] � nk. It
suffices to show that H is k-supported. But note that H is kr-supported (the
union of the supports for H1, . . . , Hr of size � k is a support for H). So H is
k-supported by assumption.

The following proposition links these concepts to CPT+C.

Proposition 1. Suppose Π is a non-Boolean program in BGS(nk) with variable
rank � r. Then Π(C) is (k, r)-constructible for every finite structure A.

The proof follows after two lemma. The first lemma states that the semantics of
terms and formulas respects automorphisms of A in the expected way.

2 Recall that the index of H in G is defined by [G : H] = |G|/|H |.

574 B. Rossman

Lemma 2. Let γ(v1, . . . , v�) be any term or formula of BGS logic. For every
structure A, automorphism α ∈ Aut(A) and elements x1, . . . , x� ∈ HF(A),

[[γ(αx1, . . . , αx�)]] = α[[γ(x1, . . . , x�)]],
〈〈γ(αx1, . . . , αx�)〉〉 = α〈〈γ(x1, . . . , x�)〉〉.

In particular, Stab([[γ]]) = Stab(〈〈γ〉〉) = Aut(A) for every ground term or for-
mula γ.

The proof (omitted) is a straightforward induction on terms and formulas.

Lemma 3. Suppose t(v1, . . . , v�) is a term with variable rank � r and
x1, . . . , x� are (k, r)-constructible elements of HF(A) such that |{αy : y ∈
〈〈t(x1, . . . , x�)〉〉, α ∈ Aut(A)}| � nk. Then [[t(x1, . . . , x�)]] is (k, r)-constructible.

Proof. The proof is by induction on terms. The bases cases are when t is a
constant symbol or a variable; both cases are trivial. For the induction step, we
consider the various types of term constructs (see Definition 5(1)), namely when
t is:

(i) f(t1(v̄), . . . , tm(v̄)) where f is an m-ary function symbol f in the signa-
ture of A,

(ii) Pair(t1(v̄), t2(v̄)),
(iii) TheUnique(t1(v̄)),
(iv) Union(t1(v̄)), or
(v) {s(v̄, w) : w ∈ t1(v̄) : ϕ(v̄, w)} (i.e., a comprehension term with subterms

t1(v̄) and s(v̄, w) and subformula ϕ(v̄, w)).

That is, in each case we assume that the lemma holds for subterms t1, t2, . . .
(as well as s in case (v)) and prove that [[t(x̄)]] is (k, r)-constructible. For this,
it is sufficient to show: first, that every element of [[t(x̄)]] is (k, r)-constructible;
and second, that Stab([[t(x̄)]]) is a (k, r)-constructible subgroup of Aut(A) (using
Lemma 2).

As for the first claim that every element of [[t(x̄)]] is (k, r)-constructible, we
consider cases (i)–(v) separately. Note that every subterm ti of t has variable rank
� r and satisfies |{αy : y ∈ 〈〈ti(x̄)〉〉, α ∈ Aut(A)}| � nk since 〈〈ti(x̄)〉〉 ⊆ 〈〈t(x̄)〉〉;
therefore, [[ti(x̄)]] is (k, r)-constructible by the induction hypothesis.

◦ Case (i): [[f(t1(x̄), . . . , tm(x̄))]] is either an atom (if [[t1(x̄)]], . . . , [[tm(x̄)]] are
all atoms) or ∅ (otherwise). In either case, [[f(t1(x̄), . . . , tm(x̄))]] is (k, r)-
constructible.

◦ Case (ii): By the induction hypothesis, [[t1(x̄)]] and [[t2(x̄)]] are both (k, r)-
constructible.

◦ Case (iii): If [[t1(x̄)]] is not a singleton, then [[TheUnique(t1(x̄))]] = ∅ and
hence is (k, r)-constructible. So assume [[t1(x̄)]] is a singleton {y}. By the
induction hypothesis, [[t1(x̄)]] is (k, r)-constructible. By transitivity of (k, r)-
constructibility, y is (k, r)-constructible.

Choiceless Computation and Symmetry 575

◦ Case (iv): By the induction hypothesis, [[t1(x̄)]] is (k, r)-constructible. By
transitivity of (k, r)-constructibility, all elements of

⋃
[[t1(x̄)]] are (k, r)-

constructible.
◦ Case (v): Suppose t(v̄) is a comprehension term {t2(v̄, w) : w ∈ t1(v̄) :
ϕ(v̄, w)}. Recall that

[[t(x̄)]] = {[[s(x̄, y)]] : y ∈ [[t1(x̄)]] such that [[ϕ(x̄, y)]] = True}.

By the induction hypothesis, [[t1(x̄)]] is (k, r)-constructible. Therefore, every
y ∈ [[s(x̄)]] is (k, r)-constructible (by transitivity of (k, r)-constructibility); it
follows that [[s(x̄, y)]] is (k, r)-constructible (by the induction hypothesis on
s, noting that s has variable rank � r and 〈〈s(x̄, y)〉〉 ⊆ 〈〈t(x̄)〉〉 so |{αz : z ∈
〈〈s(x̄, y)〉〉, α ∈ Aut(A)}| � nk).

To finish the proof, we prove that Stab([[t(x1, . . . , x�)]]) is a (k, r)-constructible
subgroup of Aut(A) (in all cases (i)–(v)). Because t has variable rank � r, at
most r of the variables v1, . . . , v� occur free in t (this is obvious if � � r, but
we allow � > r). Let j1, . . . , jr ∈ {1, ..., �} be such that vj1 , . . . , vjr are the only
variables which occur free in t. Let Hi = Stab(xji) for i = 1, . . . , r. Lemma 2
implies that

H1 ∩ · · · ∩Hr ⊆ Stab([[t(x̄)]]),

that is, every automorphism of Aut(A) which fixes each of xj1 , . . . , xjr also fixes
[[t(x̄)]]. Since H1, . . . , Hr are (k, r)-constructible subgroups of Aut(A) (by the
assumption that xj1 , . . . , xjr are (k, r)-constructible elements of HF(A)) and
their intersection is contained in Stab([[t(x̄)]]), it suffices to show that [Aut(A) :
Stab([[t(x̄)]])] � nk. This follows from our assumption that |{αy : y ∈ 〈〈t(x̄)〉〉, α ∈
Aut(A)}| � nk, as we have

[Aut(A) : Stab([[t(x̄)]])] = |{α[[t(x̄)]] : α ∈ Aut(A)}|
� |{αy : y ∈ 〈〈t(x̄)〉〉, α ∈ Aut(A)}|

(since [[t(x̄)]] ∈ 〈〈t(x̄)〉〉)
� nk (by assumption).

Finally, we prove Proposition 1 using Lemma 3.

Proof (Proof of Proposition 1). Let Π be a non-Boolean program BGS(nk) with
variable rank � r. For any finite structure A, note that

Π(A) = [[Πout(Πstep(. . . Πstep(∅) . . .)︸ ︷︷ ︸
m times

)]]

for some finite m. Let t denote this term Πout(Πstep(. . . Πstep(∅) . . .)). Whatever
m happens to be, t is a ground term with variable rank � r. By Lemma 2, 〈〈t〉〉
is fixed by all automorphisms of A (i.e., Stab(〈〈t〉〉) = Aut(A)). Thus,

{αy : y ∈ 〈〈t〉〉, α ∈ Aut(A)} = {y : y ∈ 〈〈t〉〉} ⊆ Active(Π,A).

Since |Active(Π,A)| � nk (by definition of BGS(nk)), we have |{αy : y ∈
〈〈t〉〉, α ∈ Aut(A)}| � nk. Therefore, Π(A) is (k, r)-constructible by Lemma 3.

576 B. Rossman

In the next two sections, we will use Proposition 1 to prove that CPT+C pro-
grams cannot activate certain h.f. objects over “naked” sets and vector spaces.

5 PARITY /∈ CPT

We denote by [n] the “naked” set {1, . . . , n} viewed as structure in the empty
signature. Let PARITY denote the class of naked sets with even cardinality (i.e.,
the “language” of empty sets). Earlier we stated the result of Blass et al. from
[3] that PARITY /∈ CPT (Theorem 3). A key step in the proof is the following
so-called Support Theorem (Theorem 24 of [3]).

Theorem 5. For every Π ∈ CPT, there is a constant c such that for all suffi-
ciently large n, every object in Active(Π, [n]) has a support of cardinality � c.

The original proof of Theorem 5 in [3] involves a fairly intricate combinatorial
argument. We give an alternative and simpler proof using the support property
defined in the previous section. Theorem 5 follows directly from Proposition 1
and the following proposition.

Proposition 2. For n > 2kr, the symmetric group Sn has the (k, r)-support
property.

We remark that Skr+1 fails to have the (k, r)-support property, as the alternating
subgroup is (k, r)-constructible but not k-supported (its smallest support has
size kr). The following lemma and corollary from [3] are also used in the original
proof of Theorem 5. We include proofs for completeness.

Lemma 4. Let H ⊆ Sn and suppose U, V ⊂ [n] such that Stab•(U), Stab•(V) ⊆
H and U ∪ V �= [n]. Then Stab•(U ∩ V) ⊆ H.

Proof. Stab•(U∩V) is generated by transpositions (i j) where i, j ∈ [n]\(U∩V).
Therefore, it suffices to show that (i j) ∈ H for all i, j ∈ [n] \ (U ∩ V). By
assumption, there exists k ∈ [n]\ (U ∪V). Since (i j) = (i k)(j k)(i k), it suffices
to show that (i k) ∈ H for all i ∈ [n]\ (U ∩V). We consider two cases depending
whether i /∈ U or i /∈ V : if i /∈ U , then (i k) ∈ Stab•(U) and hence (i k) ∈ H
as Stab•(U) � H ; if i /∈ V , then (i k) ∈ Stab•(V) and hence (i k) ∈ H as
Stab•(V) � H .

Corollary 1. If H ⊆ Sn has a support of size < n/2, then H has a unique
minimal support of size < n/2. �

We now give our proof of Proposition 2 (which bypasses the lengthy combinato-
rial argument in [3]).

Proof (Proof of Proposition 2). Suppose H1, . . . , Hr are k-supported subgroups
of Sn. Let H be another subgroup of Sn such that H1 ∩ · · · ∩ Hr ⊆ H and
[Sn : H] � nk. By Lemma 1, it suffices to show that H is also k-supported.
For each i ∈ [r], fix Ui ⊂ [n] such that |Ui| � k and Stab•(Ui) ⊆ Hi. Let

Choiceless Computation and Symmetry 577

U = U1 ∪ · · · ∪ Ur. Note that U is a support for H , as Stab•(U) = Stab•(U1) ∩
· · · ∩ Stab•(Ur) ⊆ H1 ∩ · · · ∩ Hr ⊆ H . Also note that |U | � rk < n/2. So by
Corollary 1, H has a unique minimal support V of size < n/2.

We claim that H ⊆ Stab(V). For contradiction, assume otherwise. Then there
exists h ∈ H such that hV �= V . Note that hV is a support for hHh−1 = H . Since
V ∪hV �= [n] (as |V ∪hV | � 2|V | < n), the intersection V ∩hV is a support for H
by Lemma 4. But V ∩hV ⊂ V , which contradicts the minimality of V . Therefore,
H ⊆ Stab(V) as claimed. It follows that [Sn : H]
 [Sn : Stab(V)] =

(
n
|V |
)
. Since

[Sn : H] � nk, we conclude that |V | � k. Therefore, H is k-supported.

6 CPT+C Cannot Construct the Dual of a Finite Vector
Space

Let V be a finite vector space over a fixed finite field F . We view V as a structure
with binary operation + and unary operations for scalar multiplication by each
element of F . Let H(V) denote the set of hyperplanes in V . Note that H(V) is
an element of HF(V) (in particular, H(V) is a set of subsets of V).

The task of computing H(V) given V is a polynomial-time function problem
(as opposed to decision problem) in the usual sense of complexity theory (H(V)
has a polynomial-size description as a hereditary finite object, i.e., |TC(H(V))| =
O(poly(|V |)). Moreover, H(V) is an invariant of V (i.e., not depending on any
extrinsic linear order on V). It is thus reasonable to ask whether any CPT+C

program computes the operation V 	−→ H(V).
We remark the results of this section hold just the same for the operation

V 	−→ V ∗ of computing from V the dual space V ∗ of linear functions V −→ F
(suitably represented as an element of HF(V ∪ F)).

Theorem 6. No program in CPT+C program computes the operation V 	−→
H(V) over finite vector spaces over a fixed finite field F .

Noting that a hyperplane in an n-dimensional vector space has smallest sup-
port size n − 1, Theorem 6 follows from the following vector-space analogue of
Proposition 2.

Proposition 3. If V is a finite vector space of dimension > r2k2, then the
group GL(V) of linear automorphisms of V has the (k, r)-support property.

To prove Theorem 6 from Proposition 3, note that if Π ∈ CPT+C, then Π ∈
BGS(nk) for some k. Let r be the variable rankΠ . Consider a finite vector space
V on dimension > r2k2. By Proposition 1, Π(V) (the output of Π on V) is
(k, r)-constructible. By Proposition 3, GL(V) (= Aut(V)) has the (k, r)-support
property. Therefore, Π(V) is k-supported. Since H(V) is not k-supported for
any k < dim(V), we conclude that Π(V) �= H(V).

The proof of Proposition 3 proceeds along similar lines as the proof of Proposi-
tion 2. We have the following vector-space analogues of Lemma 4 and Corollary 1.

578 B. Rossman

Lemma 5. If subspaces W,W ′ ⊆ V both support a subgroup H ⊆ GL(V) and if
W +W ′ �= V , then the intersection W ∩W ′ supports H.

Proof. Let P , P ′ and Q denote the pointwise stabilizers of W , W ′ and W ∩W ′,
respectively. It suffices to show that Q is the subgroup of GL(V) generated by
P ∪ P ′. This is a simple exercise in linear algebra. Choose a basis v1, ..., vn for
V such that for some 1 � i � j � j′ < n = dim(V),

– v1, ..., vj span W ,
– vi, ..., vj′ span W ′,
– vi, ..., vj span W ∩W ′.

We now identify particular sets of generators for P , P ′ and Q. For all r, s ∈
{1, . . . , n} and λ ∈ F×, define n× n matrix σr,s,λ by

σr,s,λ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
Ir−1

1 λ

Is−r−1

0 1
In−s

⎞⎟⎟⎟⎟⎟⎟⎠ if r < s,

⎛⎜⎝ Ir−1

λ

In−r

⎞⎟⎠ if r = s,

⎛⎜⎜⎜⎜⎜⎜⎝
Is−1

1 0
Ir−s−1

λ 1
In−r

⎞⎟⎟⎟⎟⎟⎟⎠ if r > s.

For all r, s ∈ {1, . . . , n} with r < s, define n× n matrix τr,s by

τr,s =

⎛⎜⎜⎜⎜⎝
Ir−1

0 1
Is−r−1

1 0
In−s

⎞⎟⎟⎟⎟⎠ .

Linear transformations σr,s,λ and τr,s are the familiar “row reduction” generators
of GL(V) with respect to the basis v1, ..., vn. Note that P (respectively: P ′,
Q) is generated by the set of all σr,s,λ such that r /∈ {1, ..., j} (respectively:
r /∈ {i, ..., j′}, r /∈ {i, ..., j}), together with all τr,s such that r, s /∈ {1, . . . , j}
(respectively: r, s /∈ {i, ..., j′}, r, s /∈ {i, ..., j}) .

The only generators of Q which are not also generators of P or P ′ are those
of the form τr,s where r ∈ {1, ..., i−1} and s ∈ {j+1, ..., j′}. Note that τr,s =
τr,nτs,nτr,n and τr,n ∈ P ′ and τs,n ∈ P . Therefore, τr,s is in the subgroup of
GL(V) generated by P ∪ P ′. We conclude that Q is the subgroup of GL(V)
generated by P ∪ P ′.

Choiceless Computation and Symmetry 579

Corollary 2. If a subgroup H ⊆ GL(V) is supported by a subspace of dimension
< n/2, then H is supported by a unique minimal subspace of dimension < n/2.

�

With this corollary, we are ready to prove Proposition 3.

Proof (Proof of Proposition 3). Let H1, . . . , Hr be k-supported subgroups of
GL(V). Let H be another subgroup of GL(V) such that H ⊇ H1 ∩ · · · ∩Hr and
[GL(V) : H] � |V |k = qnk where q is the size of the field F . By Lemma 1, it
suffices show that H is also k-supported. For each i ∈ [r], fix Ui ⊂ [n] such that
|Ui| � k and Stab•(Ui) ⊆ Hi. Let U = U1∪· · ·∪Ur. Note that U is a support for
H , as Stab•(U) = Stab•(U1) ∩ · · · ∩ Stab•(Ur) ⊆ H1 ∩ · · · ∩Hr ⊆ H . Also note
that |U | � rk < n/2. So by Corollary 1, H is supported by a unique minimal
subspace W of dimension � rk.

We claim thatH ⊆ Stab(W). For contradiction, assume otherwise. Then there
exists h ∈ H such that hW �= W . Note that hW is a support for hHh−1 = H .
SinceW+hW �= V (as dim(W+hW) � 2 dim(W) < n), the intersectionW∩hW
is a support for H by Lemma 4. But W ∩ hW ⊂ W , which contradicts the
minimality of W . Therefore, H ⊆ Stab(W) as claimed. It follows that [GL(V) :
H]
 [GL(V) : Stab(W)] = #{dim(W)-dimensional subspaces of V }. For all
d � rk (=

√
n), we have

#{d-dimensional subspaces of V } =
d−1∏
i=0

qn−i − 1
qi+1 − 1

d−1∏
i=0

qn−2i−2

= qdn−2(d−1
2)−2

 qdn−(
√

n−1)(
√

n−2)−2

= q(d−1)n+3
√

n−4

> |V |d−1.

Since [GL(V) : H] � |V |k, it follows that dim(W) � k. Because every basis for
W is a support for H , it follows that H is k-supported.

Acknowledgements. My thanks to Swastik Kopparty and an anonymous referee
for their helpful comments.

References

1. Blass, A., Gurevich, Y.: Strong extension axioms and Shelah’s zero-one law for

choiceless polynomial time. Journal of Symbolic Logic 68(1), 65–131 (2003)

2. Blass, A., Gurevich, Y.: A quick update on the open problems in Blass-Gurevich-

Shelah’s article. On polynomial time computations over unordered structures (De-

cembmer 2005),

http://research.microsoft.com/en-us/um/people/gurevich/Opera/150a.pdf

3. Blass, A., Gurevich, Y., Shelah, S.: Choiceless polynomial time. Annals of Pure

and Applied Logic 100(1–3), 141–187 (1999)

http://research.microsoft.com/en-us/um/people/gurevich/Opera/150a.pdf

580 B. Rossman

4. Blass, A., Gurevich, Y., Shelah, S.: On polynomial time computation over un-

ordered structures. Journal of Symbolic Logic 67(3), 1093–1125 (2002)

5. Cai, J.-Y., Fürer, M., Immerman, N.: An optimal lower bound on the number of

variables for graph identification. Combinatorica 12(4), 389–410 (1992)

6. Chandra, A., Harel, D.: Structure and complexity of relational queries. Journal of

Computer and System Sciences 25, 99–128 (1982)

7. Dawar, A., Richerby, D., Rossman, B.: Choiceless polynomial time, counting and

the Cai-Fürer-Immerman graphs. Annals of Pure and Applied Logic 152, 31–50

(2008)

8. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.

In: Karp, R.M. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7,

pp. 43–73 (1974)

9. Gurevich, Y.: Toward logic tailored for computational complexity. In: Richter,

M.M., et al. (eds.) Computation and Proof Theory. Springer Lecture Notes in

Mathematics, pp. 175–216. Springer, Heidelberg (1984)

10. Immerman, N.: Relational queries computable in polynomial time. Information and

Control 68(1–3), 86–104 (1986)

11. Shelah, S.: Choiceless polynominal time logic: Inability to express. In: Clote, P.G.,

Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 72–125. Springer, Hei-

delberg (2000)

12. Vardi, M.Y.: The complexity of relational query languages. In: Proc. 14th ACM

Symp. on Theory of Computing, pp. 137–146 (1982)

Hereditary Zero-One Laws for Graphs

Saharon Shelah and Mor Doron�

Department of Mathematics, The Hebrew University of Jerusalem, Israel

{shelah,mord}@math.huji.ac.il

This article is dedicated to Yuri Gurevich, on the occasion of his
seventieth birthday.

Abstract. We consider the random graph Mn
p̄ on the set [n], where

the probability of {x, y} being an edge is p|x−y|, and p̄ = (p1, p2, p3, ...)
is a series of probabilities. We consider the set of all q̄ derived from p̄ by

inserting 0 probabilities into p̄, or alternatively by decreasing some of

the pi. We say that p̄ hereditarily satisfies the 0-1 law if the 0-1 law (for

first order logic) holds in Mn
q̄ for every q̄ derived from p̄ in the relevant

way described above. We give a necessary and sufficient condition on p̄
for it to hereditarily satisfy the 0-1 law.

Keywords: random graphs, zero-one laws.

1 Introduction

In this paper we will investigate the random graph on the set [n] = {1, 2, ..., n}
where the probability of a pair i �= j ∈ [n] being connected by an edge depends
only on their distance |i− j|. Let us define:

Definition 1. For a sequence p̄ = (p1, p2, p3, ...) where each pi is a probability,
i.e. a real in [0, 1], let Mn

p̄ be the random graph defined by:

– The set of vertices is [n] = {1, 2, ..., n}.
– For i, j ≤ n, i �= j, the probability of {i, j} being an edge is p|i−j|.
– All the edges are drawn independently.

Convention 1. Formally speaking Definition 1 defines a probability on the space
of subsets of Gn := {G : G is a graph with vertex set [n]}. If H is a subset
of Gn we denote its probability by Pr[Mn

p̄ ∈ H]. If φ is a sentence in some
logic we write Pr[Mn

p̄ |= φ] for the probability of {G ∈ Gn : G |= φ}. Sim-
ilarly if An is some property of graphs on the set of vertices [n], then we
write Pr[An] or Pr[An holds in Mn

p̄] for the probability of the set {G ∈ Gn :
G has the property An}.
� The authors would like to thank the Israel Science Foundation for partial support

of this research (Grant no. 242/03). Publication no. 953 on Saharon Shelah’s list.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 581–614, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

582 S. Shelah and M. Doron

If L is some logic, we say that Mn
p̄ satisfies the 0-1 law for the logic L if for each

sentence ψ ∈ L the probability that ψ holds in Mn
p̄ tends to 0 or 1, as n ap-

proaches ∞. The relations between properties of p̄ and the asymptotic behavior
of Mn

p̄ were investigated in [2]. It was proved there that for L, the first order
logic in the vocabulary with only the adjacency relation, we have:

Theorem 2. 1. Assume p̄ = (p1, p2, ...) is such that 0 ≤ pi < 1 for all i > 0
and let fp̄(n) := log(

∏n
i=1(1 − pi))/ log(n). If limn→∞ fp̄(n) = 0 then Mn

p̄

satisfies the 0-1 law for L.
2. The demand above on fp̄ is the best possible. Formally for each ε > 0, there

exists some p̄ with 0 ≤ pi < 1 for all i > 0 such that |fp̄(n)| < ε but the 0-1
law fails for Mn

p̄ .

Part (1) above gives a sufficient condition on p̄ for the 0-1 law to hold in Mn
p̄ , but

the condition is not necessary and a full characterization of p̄ seems to be harder.
However we give below a complete characterization of p̄ in terms of the 0-1 law in
Mn

q̄ for all q̄ “dominated by p̄”, in the appropriate sense. Alternatively one may
ask which of the asymptotic properties of Mn

p̄ are kept under some operations
on p̄. The notion of “domination” or the “operations” are taken from examples
of the failure of the 0-1 law, and specifically the construction for part (2) above.
Those are given in [2] by either adding zeros to a given sequence or decreasing
some of the members of a given sequence. Formally define:

Definition 3. For a sequence p̄ = (p1, p2, ...):

1. Gen1(p̄) is the set of all sequences q̄ = (q1, q2, ...) obtained from p̄ by adding
zeros to p̄. Formally q̄ ∈ Gen1(p̄) iff for some increasing f : N → N we have
for all l > 0

ql =
{
pi f(i) = l
0 l �∈ Im(f).

2. Gen2(p̄) := {q̄ = (q1, q2, ...) : l > 0⇒ ql ∈ [0, pl]}.
3. Gen3(p̄) := {q̄ = (q1, q2, ...) : l > 0⇒ ql ∈ {0, pl}}.

Definition 4. Let p̄ = (p1, p2, ...) be a sequence of probabilities and L be some
logic. For a sentence ψ ∈ L denote by Pr[Mn

p̄ |= ψ] the probability that ψ holds
in Mn

p̄ .

1. We say that Mn
p̄ satisfies the 0-1 law for L, if for all ψ ∈ L the limit

limn→∞ Pr[Mn
p̄ |= ψ] exists and belongs to {0, 1}.

2. We say that Mn
p̄ satisfies the convergence law for L, if for all ψ ∈ L the limit

limn→∞ Pr[Mn
p̄ |= ψ] exists.

3. We say that Mn
p̄ satisfies the weak convergence law for L, if for all ψ ∈ L,

lim supn→∞ Pr[Mn
p̄ |= ψ]− lim infn→∞ Pr[Mn

p̄ |= ψ] < 1.
4. For i ∈ {1, 2, 3} we say that p̄ i-hereditarily satisfies the 0-1 law for L, if for

all q̄ ∈ Geni(p̄), Mn
q̄ satisfies the 0-1 law for L.

5. Similarly to (4) for the convergence and weak convergence law.

The main theorem of this paper is the following strengthening of Theorem 2:

Hereditary Zero-One Laws for Graphs 583

Theorem 5. Let p̄ = (p1, p2, ...) be such that 0 ≤ pi < 1 for all i > 0, and
j ∈ {1, 2, 3}. Then p̄ j-hereditarily satisfies the 0-1 law for L iff

(∗) lim
n→∞

log(
n∏

i=1

(1 − pi))/ logn = 0.

Moreover we may replace above the “0-1 law” by the “convergence law” or “weak
convergence law”.

Note that the 0-1 law implies the convergence law which in turn implies the
weak convergence law. Hence it is enough to prove the “if” direction for the 0-1
law and the “only if” direction for the weak convergence law. Also note that the
“if” direction is an immediate consequence of Theorem 2 (in the case j = 1 it
is stated in [2] as a corollary at the end of section 3). The case j = 1 is proved
in section 2, and the case j ∈ {2, 3} is proved in section 3. In section 4 we deal
with the case U∗(p̄) := {i : pi = 1} is not empty. We give an almost full analysis
of the hereditary 0-1 law in this case as well. The only case which is not fully
characterized is the case j = 1 and |U∗(p̄)| = 1. We give some results regarding
this case in section 5. The case j = 1 and |U∗(p̄)| = 1 and the case that the
successor relation belongs to the dictionary, will be dealt with in [3]. Table 1
summarizes the results in this article regarding the j-hereditary laws.

Table 1. Summation of Results

|U∗| = ∞ 2 ≤ |U∗| <∞ |U∗| = 1 |U∗| = 0

The 0-1 law holds See

j = 1 � section limn→∞
log(

∏n
i=1(1−pi))

log n
= 0

The weak {l : 0 < pl < 1} = ∅ 5 �
The 0-1 law holds The 0-1 law holds

j = 2 convergence � �
|{l : pl > 0}| ≤ 1 The convergence law holds

law fails The 0-1 law holds �
j = 3 � The weak convergence law holds

{l : 0 < pl < 1} = ∅

Notation 1. 1. N is the set of natural numbers (including 0), N∗ denotes the
set N \ {0}.

2. n,m, r, i, j and k will denote natural numbers. l will denote a member of N∗

(usually an index).
3. p, q and similarly pl, ql will denote probabilities, i.e. reals in [0, 1].
4. ε, ζ and δ will denote positive reals.
5. L = {∼} is the vocabulary of graphs, i.e. ∼ is a binary relation symbol. All
L-structures are assumed to be graphs, i.e. ∼ is interpreted by a symmetric
irreflexive binary relation.

6. If x ∼ y holds in some graph G, we say that {x, y} is an edge of G or that
x and y are “connected” or “neighbors” in G.

584 S. Shelah and M. Doron

2 Adding Zeros

In this section we prove Theorem 5 for j = 1. As the “if” direction is immediate
from Theorem 2 it remains to prove that if (∗) of 5 fails then the 0-1 law for L
fails for some q̄ ∈ Gen1(p̄). In fact we will show that it fails “badly” i.e. for some
ψ ∈ L, Pr[Mn

q̄ |= ψ] has both 0 and 1 as limit points. Formally:

Definition 6. 1. Let ψ be a sentence in some logic L, and q̄ = (q1, q2, ...)
be a series of probabilities. We say that ψ holds infinitely often in Mn

q̄ if
lim supn→∞ Prob[Mn

q̄ |= ψ] = 1.
2. We say that the 0-1 law for L strongly fails in Mn

q̄ , if for some ψ ∈ L both
ψ and ¬ψ hold infinitely often in Mn

q̄ .

Obviously the 0-1 law strongly fails in some Mn
q̄ iff Mn

q̄ does not satisfy the weak
convergence law. Hence in order to prove Theorem 5 for j = 1 it is enough if we
prove:

Lemma 7. Let p̄ = (p1, p2, ...) be such that 0 ≤ pi < 1 for all i > 0, and assume
that (∗) of 5 fails. Then for some q̄ ∈ Gen1(p̄) the 0-1 law for L strongly fails in
Mn

q̄ .

In the remainder of this section we prove Lemma 7. We do so by inductively
constructing q̄, as the limit of a series of finite sequences. Let us start with some
basic definitions:

Definition 8. 1. Let P be the set of all, finite or infinite, sequences of prob-
abilities. Formally each p̄ ∈ P has the form 〈pl : 0 < l < np̄〉 where each
pl ∈ [0, 1] and np̄ is either ω (the first infinite ordinal) or a member of
N \ {0, 1}. Let Pinf = {p̄ ∈ P : np̄ = ω}, and Pfin := P \Pinf .

2. For q̄ ∈ Pfin and increasing f : [nq̄]→ N, define q̄f ∈ Pfin by nq̄f = f(nq̄),
(q̄f)l = qi if f(i) = l and (q̄f)l = 0 if l �∈ Im(f).

3. For p̄ ∈ Pinf and r > 0, let Genr
1(p̄) := {q̄ ∈ Pfin : for some increasing f :

[r + 1]→ N, (p̄|[r])f = q̄}.
4. For p̄, p̄′ ∈ P denote p̄ � p̄′ if np̄ < np̄′ and for each l < np̄, pl = p′l.
5. If p̄ ∈ Pfin and n > np̄, we can still consider Mn

p̄ by putting pl = 0 for all
l ≥ np̄.

Observation 1. 1. Let 〈p̄i : i ∈ N〉 be such that each p̄i ∈ Pfin, and assume
that i < j ∈ N ⇒ p̄i � p̄j. Then p̄ = ∪i∈Np̄i (i.e. pl = (pi)l for some p̄i with
np̄i > l) is well defined and p̄ ∈ Pinf .

2. Assume further that 〈ri : i ∈ N〉 is non-decreasing and unbounded, and that
p̄i ∈ Genri

1 (p̄′) for some fixed p̄′ ∈ Pinf , then ∪i∈Np̄i ∈ Gen1(p̄′).

We would like our graphs Mn
q̄ to have a certain structure, namely that the

number of triangles in Mn
q̄ is o(n) rather than say o(n3). We can impose this

structure by making demands on q̄. This is made precise by the following:

Definition 9. A sequence q̄ ∈ P is called proper (for l∗), if:

Hereditary Zero-One Laws for Graphs 585

1. l∗ and 2l∗ are the first and second members of {0 < l < nq̄ : ql > 0}.
2. Let l∗∗ = 4l∗ + 2. If l < nq̄, l �∈ {l∗, 2l∗} and ql > 0, then l ≡ 1 (mod l∗∗).

For q̄, q̄′ ∈ P we write q̄ �prop q̄′ if q̄ � q̄′, and both q̄ and q̄′ are proper.

Observation 2. 1. If 〈p̄i : i ∈ N〉 is such that each p̄i ∈ P, and i < j ∈ N ⇒
p̄i �prop p̄j, then p̄ = ∪i∈Np̄i is proper.

2. Assume that q̄ ∈ P is proper for l∗ and n ∈ N. Then the following event
holds in Mn

q̄ with probability 1:
(∗)q̄,l∗ If m1,m2,m3 ∈ [n] and {m1,m2,m3} is a triangle in Mn

q̄ , then
{m1,m2,m3} = {l, l+ l∗, l + 2l∗} for some l > 0.

We can now define the sentence ψ for which we have failure of the 0-1 law.

Definition 10. Let k be an even natural number. Let ψk be the L sentence
“saying”: There exists x0, x1, ..., xk such that:

– (x0, x1, ..., xk) is without repetitions.
– For each even 0 ≤ i < k, {xi, xi+1, xi+2} is a triangle.
– The valency of x0 and xk is 2.
– For each even 0 < i < k the valency of xi is 4.
– For each odd 0 < i < k the valency of xi is 2.

If the above holds (in a graph G) we say that (x0, x1, ..., xk) is a chain of triangles
(in G).

Definition 11. Let n ∈ N, k ∈ N be even and l∗ ∈ [n]. For 1 ≤ m < n− k · l∗ a
sequence (m0,m1, ...,mk) is called a candidate of type (n, l∗, k,m) if it is without
repetitions, m0 = m and for each even 0 ≤ i < k, {mi,mi+1,mi+2} = {l, l +
l∗, l + 2l∗} for some l > 0. Note that for given (n, l∗, k,m), there are at most 4
candidates of type (n, l∗, k,m) (and at most 2 if k > 2).

claim 1. Let n ∈ N, k ∈ N be even, and q̄ ∈ P be proper for l∗. For 1 ≤ m <
n − k · l∗ let En

q̄,m be the following event (on the probability space Mn
q̄): “No

candidate of of type (n, l∗, k,m) is a chain of triangles.” Then Mn
q̄ satisfies with

probability 1: Mn
q̄ |= ¬ψk iff Mn

q̄ |=
∧

1≤m<n−k·l∗ E
n
q̄,m

Proof. The “only if” direction is immediate. For the “if” direction note that by
Observation 2(2), with probability 1, only a candidate can be a chain of triangles,
and the claim follows immediately. �
The following claim shows that by adding enough zeros at the end of q̄ we can
make sure that ψk holds in Mn

q̄ with probability close to 1. Note that we do
not make a “strong” use of the properness of q̄, i.e we do not use item (2) of
Definition 9.

claim 2. Let q̄ ∈ Pfin be proper for l∗, k ∈ N be even, and ζ > 0 be some
rational. Then there exists q̄′ ∈ Pfin such that q̄ �prop q̄′ and Pr[M

nq̄′
q̄′ |= ψk] ≥

1− ζ.
Proof. For n > nq̄ denote by q̄n the member of P with nq̄n = n and (qn)l is
ql if l < nq̄ and 0 otherwise. Note that q̄ �prop q̄n, hence if we show that for n

586 S. Shelah and M. Doron

large enough we have Pr[Mn
q̄n |= ψk] ≥ 1 − ζ then we will be done by putting

q̄′ = q̄n. Note that (recalling Definition 8(5)) Mn
q̄ = Mn

q̄n so below we need not
distinguish between them. Now set n∗ = max{nq̄, k · l∗}. For any n > n∗ and
1 ≤ m ≤ n− n∗ consider the sequence s(m) = (m,m+ l∗,m+ 2l∗, ...,m+ k · l∗)
(note that s(m) is a candidate of type (n, l∗, k,m)). Denote by Em the event
that s(m) is a chain of triangles (in Mn

q̄). We then have:

Pr[Mn
q̄ |= Em] ≥ (ql∗)k · (q2l∗)k/2 · (

nq̄−1∏
l=1

(1− ql))2(k+1).

Denote the expression on the right by p∗q̄ and note that it is positive and depends
only on k and q̄ (but not on n). Now assume that n > 6 · n∗ and that 1 ≤ m <
m′ ≤ n − n∗ are such that m′ − m > 2 · n∗. Then the distance between the
sequences s(m) and s(m′) is larger than nq̄ and hence the events Em and Em′

are independent. We conclude that Pr[Mn
q̄ �|= ψk] ≤ (1− p∗q̄)n/(2·n∗+1) →n→∞ 0

and hence by choosing n large enough we are done. �

The following claim shows that under our assumptions we can always find a long
initial segment q̄ of some member of Gen1(p̄) such that ψk holds in Mn

q̄ with
probability close to 0. This is where we make use of our assumptions on p̄ and
the properness of q̄.

claim 3. Let p̄ ∈ Pinf , ε > 0 and assume that for an unbounded set of n ∈ N we
have

∏n
l=1(1− pl) ≤ n−ε. Let k ∈ N be even such that k · ε > 2. Let q̄ ∈ Genr

1(p̄)
be proper for l∗, and ζ > 0 be some rational. Then there exists r′ > r and
q̄′ ∈ Genr′

1 (p̄) such that q̄ �prop q̄′ and Pr[M
nq̄′
q̄′ |= ¬ψk] ≥ 1− ζ.

Proof. First recalling Definition 9 let l∗∗ = 3l∗ + 2, and for l ≥ nq̄ define r(l) :=
-(l − nq̄ + 1)/l∗∗.. Now for each n > nq̄ + l∗∗ denote by q̄n the member of P
defined by:

(qn)l =

⎧⎨⎩
ql 0 < l < nq̄

0 nq̄ ≤ l < n and l �≡ 1 mod l∗∗

pr+r(l) nq̄ ≤ l < n and l ≡ 1 mod l∗∗.

Note that nq̄n = n, q̄n ∈ Genr′
1 (p̄) where r′ = r + r(n − 1) > r and q̄ �prop q̄n.

Hence if we show that for some n large enough we have Pr[Mn
q̄n
|= ¬ψk] ≥ 1− ζ

then we will be done by putting q̄′ = q̄n. As before let n∗ := max{kl∗, nq̄ + l∗}.
Now fix some n > n∗ and for 1 ≤ m < n − k · l∗ let s(m) be some candidate
of type (n, l∗, k,m). Denote by E = E(s(m)) the event that s(m) is a chain of
triangles in Mn

q̄n
. We then have:

Pr[Mn
q̄n
|= E] ≤ (ql∗)k · (q2l∗)k/2 · (

�(n−n∗)/2�∏
n∗+1

(1 − (qi)l))k.

Now denote:

p∗q̄ := (ql∗)k · (q2l∗)k/2 · (
n∗∏
l=1

(1− (qi)l))−k

Hereditary Zero-One Laws for Graphs 587

and note that it is positive and does not depend on n. Together we get:

Pr[Mn
q̄n
|= E] ≤ p∗q̄ · (

�(n−n∗)/2�∏
l=1

(1− (qi)l))k ≤ p∗q̄ · (
�(n−n∗)/(2l∗∗)�∏

l=1

(1− pl))k.

For each m in the range 1 ≤ m < n − k · l∗ the number of candidates of type
(n, l∗, k,m) is at most 4, hence the total number of candidates is no more then 4n.
We get that the expected number (in the probability space Mn

q̄n
) of candidates

which are a chain of triangles is at most p∗q̄ · (
∏�(n−n∗)/(2l∗∗)�

l=1 (1− pl))k · 4n. Let
E∗ be the following event: “No candidate is a chain of triangles”. Then using
Claim 1 and Markov’s inequality we get:

Pr[Mn
q̄ |= ψk] = Pr[Mn

q̄ �|= E∗] ≤ p∗q̄ · (
�(n−n∗)/(2l∗∗)�∏

l=1

(1− pl))k · 4n.

Finally by our assumptions, for an unbounded set of n we have∏�(n−n∗)/(2l∗∗)�
l=1 (1−pl) ≤ (/(n−n∗)/(2l∗∗)0)−ε, and note that for n large enough

we have (/(n−n∗)/(2l∗∗)0)−ε ≤ n−ε/2. Hence for infinitely many n ∈ N we have
Pr[Mn

q̄ |= ψk] ≤ p∗q̄ · 4 · n1−ε·k/2, and as ε · k > 2 this tends to 0 as n tends to
∞, so we are done. �
We are now ready to prove Lemma 7. First as (∗) of 5 does not hold we have
some ε > 0 such that for an unbounded set of n ∈ N, we have

∏n
l=1(1−pl) ≤ n−ε.

Let k ∈ N be even such that k · ε > 2. Now for each i ∈ N we will construct a
pair (q̄i, ri) such that the following holds:

1. For i ∈ N, q̄i ∈ Genri
1 (p̄) and put ni := nq̄i .

2. For i ∈ N, q̄i �prop q̄i+1.
3. For each odd i > 0, Pr[Mni

q̄i
|= ψk] ≥ 1− 1

i and ri = ri−1.
4. For each even i > 0, Pr[Mni

q̄i
|= ¬ψk] ≥ 1− 1

i and ri > ri−1.

Clearly if we construct such 〈(q̄i, ri) : i ∈ N〉 then by taking q̄ = ∪i∈Nq̄i (recall
Observation 1), we have q̄ ∈ Gen1(p̄) and both ψk and ¬ψk holds with probability
approaching 1 in Mn

q̄ , thus finishing the proof. We turn to the construction of
〈(q̄i, ri) : i ∈ N〉, and naturally we use induction on i ∈ N.

Case 1: i = 0. Let l1 < l2 be the first and second indexes such that pli > 0. Put
r0 := l2. If l2 ≤ 2l1 define q̄0 by:

(q0)l =

⎧⎨⎩
pl l ≤ l1
0 l1 ≤ l < 2l1
pl2 l = 2l1.

Otherwise if l2 > 2l1 define q̄0 by:

(q0)l =

⎧⎪⎪⎨⎪⎪⎩
0 l < -l2/2.
pl1 l = -l2/2.
0 -l2/2. < l < 2-l2/2.
pl2 l = 2-l2/2..

588 S. Shelah and M. Doron

clearly q̄0 ∈ Genr0
1 (p̄) as desired, and note that q̄0 is proper (for either l1 or

-l2/2.).
Case 2: i > 0 is odd. First set ri = ri−1. Next we use Claim 2 where we set:
q̄i−1 for q̄, 1

i for ζ and q̄i is the one promised by the claim. Note that indeed
q̄i−1 �prop q̄i, q̄i ∈ genri(p̄) and Pr[Mni

q̄i
|= ψk] ≥ 1− 1

i .

Case 3: i > 0 is even. We use Claim 3 where we set: q̄i−1 for q̄, 1
i for ζ and (ri, q̄i)

are (r′, q̄′) promised by the claim. Note that indeed q̄i−1 �prop q̄i, q̄i ∈ Genri
1 (p̄)

and Pr[Mni
q̄i
|= ψk] ≥ 1− 1

i . This completes the proof of Lemma 7.

3 Decreasing Coordinates

In this section we prove Theorem 5 for j ∈ {2, 3}. As before, the “if” direction
is an immediate consequence of Theorem 2. Moreover as Gen3(p̄) ⊆ Gen2(p̄) it
remains to prove that if (∗) of 5 fails then the 0-1 law strongly fails for some
q̄ ∈ Gen3(p̄). We divide the proof into two cases according to the behavior of∑n

l=1 pi, which is an approximation of the expected number of neighbors of a
given node in Mn

p̄ . Define:

(∗∗) ⇐⇒ lim
n→∞

log(
n∑

i=1

pi)/ logn = 0.

Assume that (∗∗) above fails. Then for some ε > 0, the set {n ∈ N :
∑n

i=1 pi ≥
nε} is unbounded, hence we finish by Lemma 12. On the other hand if (∗∗)
holds then

∑n
i=1 pi increases slower than any positive power of n; formally for

all δ > 0 for some nδ ∈ N we have that n > nδ implies
∑n

i=1 pi ≤ nδ. As
we assume that (∗) of Theorem 5 fails we have that for some ε > 0 the set
{n ∈ N :

∏n
i=1(1− pi) ≤ n−ε} is unbounded. Together (with −ε/6 as δ) we have

that the assumptions of Lemma 13 hold, hence we finish the proof.

Lemma 12. Let p̄ ∈ Pinf be such that pl < 1 for l > 0. Assume that for some
ε > 0 we have for an unbounded set of n ∈ N:

∑
l≤n pl ≥ nε. Then for some

q̄ ∈ Gen3(p̄) and ψ = ψisolated := ∃x∀y¬x ∼ y, both ψ and ¬ψ holds infinitely
often in Mn

q̄ .

Proof. We construct a series, (q̄1, q̄2, ...) such that for i > 0: q̄i ∈ Pfin, q̄i � q̄i+1

and ∪i>0q̄i ∈ Gen3(p̄). For i ≥ 1 denote ni := nq̄i . We will show that:

∗even For even i > 1: Pr[Mni
q̄i
|= ψ] ≥ 1− 1

i .
∗odd For odd i > 1: Pr[Mni

q̄i
|= ¬ψ] ≥ 1− 1

i .

Taking q̄ = ∪i>0q̄i will then complete the proof. We construct q̄i by induction
on i > 0:

Case 1: i = 1: Let n1 = 2 and (q1)1 = p1.

Case 2: even i > 1: As (q̄i−1, ni−1) is given, let us define q̄i where ni > ni−1

is to be determined later: (qi)l = (qi−1)l for l < ni−1 and (qi)l = 0 for ni−1 ≤

Hereditary Zero-One Laws for Graphs 589

l < ni. For x ∈ [ni] let Ex be the event: “x is an isolated point”. Denote
p′ := (

∏
0<l<ni−1

(1 − (qi−1)l)2 and note that p′ > 0 and does not depend on
ni. Now for x ∈ [ni], Pr[Mni

q̄i
|= Ex] ≥ p′, furthermore if x, x′ ∈ [ni] and

|x − x′| > ni−1 then Ex and Ex′ are independent in Mni
q̄i

. We conclude that
Pr[Mni

q̄i
|= ¬ψ] ≤ (1 − p′)�ni/(ni−1+1)� which approaches 0 as ni → ∞. So by

choosing ni large enough we have ∗even.

Case 3: odd i > 1: As in case 2 let us define q̄i where ni > ni−1 is to be
determined later: (qi)l = (qi−1)l for l < ni−1 and (qi)l = pl for ni−1 ≤ l < ni.
Let n′ = max{n < ni/2 : n = 2m for some m ∈ N}, so ni/4 ≤ n′ < ni/2. Denote
a =

∑
0<l≤n′(qi)l and a′ =

∑
0<l≤�ni/4�(qi)l. Again let Ex be the event: “x is

isolated”. Now as n′ < ni/2, Pr[Mni
q̄i
|= Ex] ≤

∏
0<l≤n′(1− (qi)l). By a repeated

use of: (1−x)(1−y) ≤ (1− x+y
2)2 we get Pr[Mni

q̄i
|= Ex] ≤ (1− a

n′)n′
which for n′

large enough is smaller then 2·e−a, and as a′ ≤ a, we get Pr[Mni
q̄i
|= Ex] ≤ 2·e−a′

.
By the definition of a′ and q̄i we have a′ =

∑�n1/4�
l=1 pl −

∑
l<ni−1

(pl − (qi−1)l).
By our assumption for an unbounded set of ni ∈ N we have a′ ≥ (/ni/40)ε −∑

l<ni−1
(pl − (qi−1)l). But as the sum on the right is independent of ni we

have (again for ni large enough): a′ ≥ (ni/5)ε. Consider the expected number of
isolated points in the probability space Mni

q̄i
, denote this number by X(ni). By

all the above we have:

X(ni) ≤ ni · 2 · e−a ≤ ni · 2 · e−a′
≤ 2ni · e−(ni/5)ε

.

The last expression approaches 0 as ni → ∞. So by choosing ni large enough
(while keeping a′ ≥ (ni/5)ε we have ∗odd.

Finally notice that indeed ∪i>0q̄i ∈ Gen3(p̄), as the only change we made in
the inductive process is decreasing pl to 0 when ni−1 < l ≤ ni and i is even. �
Lemma 13. Let p̄ ∈ Pinf be such that pl < 1 for l > 0. Assume that for some
ε > 0 we have for an unbounded set of n ∈ N:

(α)
∑

l≤n pl ≤ nε/6.
(β)

∏
l≤n(1− pl) ≤ n−ε.

Let k = - 6
ε . + 1 and ψ = ψk be the sentence “saying” there exists a connected

component which includes a path of length k, formally:

ψk := ∃x1...∃xk∧
1≤i
=j≤k

xi �= xj ∧
∧

1≤i<k

xi ∼ xi+1 ∧ ∀y[(
∧

1≤i≤k

xi �= y)→ (
∧

1≤i≤k

¬xi ∼ y)].

Then for some q̄ ∈ Gen3(p̄), each of ψ and ¬ψ holds infinitely often in Mn
q̄ .

Proof. The proof follows the same line as the proof of 12. We construct an
increasing series, (q̄1, q̄2, ...), and demand ∗even and ∗odd as in 12. Taking q̄ =
∪i>0q̄i will then complete the proof. We construct q̄i by induction on i > 0:

Case 1: i = 1: Let l(∗) := min{l > 0 : pl > 0} and define n1 = l(∗) + 1 and
(q1)l = pl for l < n1.

590 S. Shelah and M. Doron

Case 2: even i > 1: As before, for ni > ni−1 define: (qi)l = (qi−1)l for l < ni−1

and (qi)l = 0 for ni−1 ≤ l < ni. For 1 ≤ x < ni − k · l(∗) let Ex be the
event: “(x, x + l(∗), ..., x + l(∗)(k − 1)) exemplifies ψ.” Formally Ex holds in
Mni

q̄i
iff {(x, x + l(∗), ..., x + l(∗)(k − 1))} is isolated and for 0 ≤ j < k − 1,

{x+jl(∗), x+(j+1)l(∗)} is an edge of Mni
q̄i

. The remainder of this case is similar
to case 2 of Lemma 12 so we will not go into details. Note that Pr[Mni

q̄i
|= Ex] > 0

and does not depend on ni, and if |x− x′| is large enough (again not depending
on ni) then Ex and Ex′

are independent in Mni
q̄i

. We conclude that by choosing
ni large enough we have ∗even.

Case 3: odd i > 1: In this case we make use of the fact that almost always, no
x ∈ [n] has to many neighbors. Formally:

claim 4. Let q̄ ∈ Pinf be such that ql < 1 for l > 0. Let δ > 0 and assume that
for an unbounded set of n ∈ N we have,

∑n
l=1 ql ≤ nδ. Let En

δ be the event: “No
x ∈ [n] has more than 8n2δ neighbors”. Then we have:

lim sup
n→∞

Pr[En
δ holds in Mn

q̄] = 1.

Proof. First note that the size of the set {l > 0 : ql > n−δ} is at most n2δ.
Hence by ignoring at most 2n2δ neighbors of each x ∈ [n], and changing the
number of neighbors in the definition of En

δ to 6n2δ we may assume that for
all l > 0, ql ≤ n−δ. The idea is that the number of neighbors of each x ∈ [n]
can be approximated (or in our case only bounded from above) by a Poisson
random variable with parameter close to

∑n
i=l ql. Formally, for each l > 0 let

Bl be a Bernoulli random variable with Pr[Bl = 1] = ql. For n ∈ N let Xn

be the random variable defined by Xn :=
∑n

l=1 Bl. For l > 0 let Pol be a
Poisson random variable with parameter λl := − log(1 − ql) that is for i =
0, 1, 2, ... P r[Pol = i] = e−λl (λl)

i

i! . Note that Pr[Bl = 0] = Pr[Pol = 0]. Now
define Pon :=

∑n
i=1 Pol. By the last sentence we have Pon ≥st X

n (Pon is
stochastically larger than Xn) that is, for i = 0, 1, 2, ... P r[Pon ≥ i] ≥ Pr[Xn ≥
i]. Now Pon (as the sum of Poisson random variables) is a Poisson random
variable with parameter λn :=

∑n
l=1 λl. Let n ∈ N be such that

∑n
l=1 ql ≤ nδ,

and define n′ = n′(n) := min{n′ ≥ n : n′ = 2m for some m ∈ N}, so n ≤
n′ < 2n. For 0 < l ≤ n′ let q′l be ql if l ≤ n and 0 otherwise, so we have:∏n

l=1(1− ql) =
∏n′

l=1(1− q′l) and
∑n

l=1 ql =
∑n′

l=1 q
′
l. Note that if 0 ≤ p, q ≤ 1/4

then (1− p)(1− q) ≥ (1− p+q
2)2 · 1

2 . By a repeated use of the last inequality we

get that
∏n′

i=l(1 − q′l) ≥ (1−
∑n′

i=l q′
l

n′)n′ · 1
n′ . We can now evaluate λn:

λn =
n∑

l=1

λl =
n∑

l=1

− log(1 − ql) = − log(
n∏

l=1

(1 − ql)) = − log(
n′∏

l=1

(1 − q′l))

≤ − log[(1 −
∑n′

l=1 q
′
l

n′
)n′ · 1

n′
] = − log[(1 −

∑n
l=1 ql
n′

)n′ · 1
n′

]

≈ − log[e−
∑n

l=1 ql · 1
n′

] ≤ − log[e−nδ · 1
2n

] ≤ − log[e−n2δ

] = n2δ.

Hereditary Zero-One Laws for Graphs 591

Hence by choosing n ∈ N large enough while keeping
∑n

l=1 ql ≤ nδ (which is
possible by our assumption) we have λn ≤ n2δ. We now use the Chernoff bound
for Poisson random variables: If Po is a Poisson random variable with parameter
λ and i > 0 we have Pr[Po ≥ i] ≤ eλ(i/λ−1) · (λ

i)i. Applying this bound to Pon

(for n as above) we get:

Pr[Pon ≥ 3n2δ] ≤ eλn(3n2δ/λn−1) · (λ
n

3n2δ
)3n2δ ≤ e3n2δ · (λ

n

3n2δ
)3n2δ ≤ (

e

3
)3n2δ

.

Now for x ∈ [n] let Xn
x be the number of neighbors of x in Mn

q̄ (so Xn
x is

a random variable on the probability space Mn
q̄). By the definition of Mn

q̄ we
have Xn

x ≤st 2 · Xn ≤st 2 · Pon. So for unboundedly many n ∈ N we have
for all x ∈ [n], Pr[Xn

x ≥ 6n2δ] ≤ (e
3)3n2δ

. Hence by the Markov inequality for
unboundedly many n ∈ N we have,

Pr[En does not hold in Mn
q̄] = Pr[for some x ∈ [n], Xn

x ≥ 3n2δ] ≤ n · (e
3
)6n2δ

.

But the last expression approaches 0 as n approaches ∞, Hence we are done
proving the claim. �

We return to Case 3: of the proof of 13, and it remains to construct q̄i. As
before for ni > ni−1 define: (qi)l = (qi−1)l for l < ni−1 and (qi)l = pl for
ni−1 ≤ l < ni. By the claim above and (α) in our assumptions, for ni large
enough we have Pr[Eni

ε/6 holds in Mni
q̄i

] ≥ 1/2i, so assume in the rest of the
proof that ni is indeed large enough, and assume that Eni

ε/6 holds in Mni
q̄i

, and
all the probabilities on the space Mni

q̄i
will be conditioned to Eni

ε/6 (even if not
explicitly said so). A k-tuple x̄ = (x1, ..., xk) of members of [ni] is called a k-path
(in Mni

q̄i
) if it is without repetitions and for 0 < j < k we haveMni

q̄i
|= xj ∼ xj+1.

A k-path is isolated if in addition no member of {x1, ..., xk} is connected to a
member of [ni]\{x1, ..., xk}. Now (recall we assume Eni

ε/6) with probability 1: the
number of k-paths in Mni

q̄i
is at most 8k · n1+kε/3. For each (x1, ..., xk) without

repetitions we have:

Pr[(x1, ..., xk) is isolated in Mni
q̄i

] =
k∏

j=1

∏
y
=xj

(1−(qi)|xj−y|) ≤ (
�ni/2�∏

l=1

(1−(qi)l))k.

By assumption (β) we have for an unbounded set of ni ∈ N:

�ni/2�∏
l=1

(1− (qi)l) ≤
�ni/2�∏
l=ni−1

(1− pl) ≤
∏
l<ni

(1− ql) · (/ni/20)−ε ≤ (ni)−ε/2.

Together letting Y (ni) be the expected number of isolated k tuples in Mni
q̄i

we
have:

Y (ni) ≤ 8k · (ni)1+kε/3 · (ni)−kε/2 = 8k · (ni)1−kε/6 →ni→∞ 0.

So by choosing ni large enough and using Markov’s inequality, we have ∗odd, and
we are done. �

592 S. Shelah and M. Doron

4 Allowing Some Probabilities to Equal 1

In this section we analyze the hereditary 0-1 law for p̄ where some of the pi-s may
equal 1. For p̄ ∈ Pinf let U∗(p̄) := {l > 0 : pl = 1}. The situation U∗(p̄) �= ∅ was
discussed briefly at the end of section 4 of [2], and an example was given there of
some p̄ consisting of only ones and zeros with |U∗(p̄)| = ∞ such that the 0-1 law
fails for Mn

p̄ . We follow the lines of that example and prove that if |U∗(p̄)| = ∞
and j ∈ {1, 2, 3}, then the j-hereditary 0-1 law for L fails for p̄. This is done in
14. The case 0 < |U∗(p̄)| < ∞ is also studied and a full characterization of the
j-hereditary 0-1 law for L is given in Conclusion 1 for j ∈ {2, 3}, and for j = 1,
1 < |U∗(p̄)|. The case j = 1 and 1 = |U∗(p̄)| is discussed in section 5.

Theorem 14. Let p̄ ∈ Pinf be such that U∗(p̄) is infinite, and j be in {1, 2, 3}.
Then Mn

p̄ does not satisfy the j-hereditary weak convergence law for L.

Proof. We start with the case j = 1. The idea here is similar to that of section
2. We show that some q̄ ∈ Gen1(p̄) has a structure (similar to the “proper”
structure defined in 9) that allows us to identify the sections “close” to 1 or n in
Mn

q̄ . It is then easy to see that if q̄ has infinitely many ones and infinitely many
“long” sections of consecutive zeros, then the sentence saying: “there exists an
edge connecting vertices close to the the edges”, will exemplify the failure of the
0-1 law for Mn

q̄ . This is formulated below. Consider the following demands on
q̄ ∈ Pinf :

1. Let l∗ < l∗∗ be the first two members of U∗(q̄); then l∗ is odd and l∗∗ = 2 · l∗.
2. If l1, l2, l3 all belong to {l > 0 : ql > 0} and l1 + l2 = l3 then l1 = l2 = l∗.
3. The set {n ∈ N : n− 2l∗ < l < n⇒ ql = 0} is infinite.
4. The set U∗(q̄) is infinite.

We first claim that some q̄ ∈ Gen1(p̄) satisfies the demands (1)-(4) above. This is
straightforward. We inductively add enough zeros before each nonzero member
of p̄ guaranteeing that it is larger than the sum of any two (not necessarily
different) nonzero members preceding it. We continue until we reach l∗, then
by adding zeros either before l∗ or before l∗∗ we can guarantee that l∗ is odd
and that l∗∗ = 2 · l∗, and hence (1) holds. We then continue the same process
from l∗∗, adding at least 2l∗ zero’s at each step. This guarantees (2) and (3). (4)
follows immediately from our assumption that U∗(p̄) is infinite. Assume that q̄
satisfies (1)-(4) and n ∈ N. With probability 1 we have:

{x, y, z} is a triangle in Mn
q̄ iff {x, y, z} = {l, l+ l∗, l + l∗∗} for some 0 < l ≤ n.

To see this use (1) for the “if” direction and (2) for the “only if” direction. We
conclude that letting ψext(x) be the L formula saying that x belongs to exactly
one triangle, for each n ∈ N and m ∈ [n] with probability 1 we have:

Mn
q̄ |= ψext[m] iff m ∈ [1, l∗] ∪ (n− l∗, n].

Hereditary Zero-One Laws for Graphs 593

We are now ready to prove the failure of the weak convergence law in Mn
q̄ , but

in the first stage let us only show the failure of the convergence law. This will
be useful for other cases (see Remark 15 below). Define

ψ := (∃x∃y)ψext(x) ∧ ψext(y) ∧ x ∼ y.

Recall that l∗ is the first member of U∗(q̄), and hence for some p > 0 (not
depending on n) for any x, y ∈ [1, l∗] we have Pr[Mn

q̄ |= ¬x ∼ y] ≥ p and
similarly for any x, y ∈ (n− l∗, n]. We conclude that:

Pr[(∃x∃y)(x, y ∈ [1, l∗] or x, y ∈ (n− l∗, n]) and x ∼ y] ≤ 1− p2(l∗
2) < 1.

By all the above, for each l such that ql = 1 we have Pr[M l+1
q̄ |= ψ] = 1, as the

pair (1, l + 1) exemplifies ψ in M l+1
q̄ with probability 1. On the other hand if n

is such that n − 2l∗ < l < n ⇒ ql = 0 then Pr[Mn
q̄ |= ψ] ≤ 1 − p2(l∗

2). Hence
by (3) and (4) above, ψ exemplifies the failure of the convergence law for Mn

q̄ as
required.

We return to the proof of the failure of the weak convergence law. Define:

ψ′ = ∃x0...∃x2l∗−1[
∧

0≤i<i′<2l∗
xi �= xi′ ∧ ∀y((

∧
0≤i<2l∗

y �= xi)→ ¬ψext(y))

∧
∧

0≤i<2l∗
ψext(xi) ∧

∧
0≤i<l∗

x2i ∼ x2i+1].

We will show that each of ψ′ and ¬ψ′ holds infinitely often in Mn
q̄ . First let n ∈ N

be such that qn−l∗ = 1. Then by choosing for each i in the range 0 ≤ i < l∗,
x2i := i+1 and x2i+1 := n−l∗+1+i, we will get that the sequence (x0, ..., x2l∗−1)
exemplifies ψ′ in Mn

q̄ (with probability 1). As by assumption (4) above the set
{n ∈ N : qn−l∗ = 1} is unbounded we have lim supn→∞[Mn

q̄ |= ψ′] = 1. For the
other direction let n ∈ N be such that for each l in the range n−2l∗ < l < n, ql =
0. Then Mn

q̄ satisfies (again with probability 1) for each x, y ∈ [1, l∗]∪ (n− l∗, n]
such that x ∼ y: x ∈ [1, l∗] iff y ∈ [1, l∗]. Now assume that (x0, ..., x2l∗−1)
exemplifies ψ′ in Mn

q̄ . Then for each i in the range 0 ≤ i < l∗, x2i ∈ [1, l∗] iff
x2i+1 ∈ [1, l∗]. We conclude that the set [1, l∗] is of even size, thus contradicting
(1). So we have Pr[Mn

q̄ |= ψ′] = 0. But by assumption (3) above the set of natural
numbers, n, for which we have n− 2l∗ < l < n implies ql = 0 is unbounded, and
hence we have lim supn→∞[Mn

q̄ |= ¬ψ′] = 1 as desired.
We turn to the proof of the case j ∈ {2, 3}, and as Gen3(p̄) ⊆ Gen2(p̄) it is

enough to prove that for some q̄ ∈ Gen3(p̄) the 0-1 law for L strongly fails in
Mn

q̄ . Motivated by the example mentioned above appearing in the end of section
4 of [2], we let ψ be the sentence in L implying that each edge of the graph is
contained in a cycle of length 4. Once again we use an inductive construction
of (q̄1, q̄2, q̄3, ...) in Pfin such that q̄ =

⋃
i>0 q̄i ∈ Gen3(p̄) and both ψ and ¬ψ

hold infinitely often in Mn
q̄ . For i = 1 let nq̄1 = n1 := min{l : pl = 1} + 1

and define (q1)l = 0 if 0 < l < n1 − 1 and (q1)n1−1 = 1. For even i > 1
let nq̄i = ni := min{l > 4ni−1 : pl = 1} + 1 and define (qi)l = (qi−1)l if

594 S. Shelah and M. Doron

0 < l < ni−1, (qi)l = 0 if ni−1 ≤ l < ni − 1 and (q1)n1−1 = 1. For odd i > 1
recall n1 = min{l : pl = 1} + 1 and let nq̄i = ni := ni−1 + n1. Now define
(qi)l = (qi−1)l if 0 < l < ni−1 and (qi)l = 0 if ni−1 ≤ l < ni. Clearly we have
for even i > 1, Pr[Mni+1

q̄ni+1
|= ψ] = 0 and for odd i > 1 Pr[Mni

q̄ni
|= ψ] = 1. Note

that indeed
⋃

i>0 q̄i ∈ Gen3(p̄), and hence we are done. �

Remark 15. In the proof of the failure of the convergence law in the case j = 1
the assumption |U∗(p̄)| = ∞ is not needed, our proof works under the weaker
assumption |U∗(p̄)| ≥ 2 and for some p > 0, {l > 0 : pl > p} is infinite. See
below more on the case j = 1 and 1 < |U∗(p̄)| <∞.

Lemma 16. Let q̄ ∈ Pinf and assume:

1. Let l∗ < l∗∗ be the first two members of U∗(q̄) (in particular assume
|U∗(q̄)| ≥ 2); then l∗∗ = 2 · l∗.

2. If l1, l2, l3 all belong to {l > 0 : ql > 0} and l1 + l2 = l3 then {l1, l2, l3} =
{l, l+ l∗, l + l∗∗} for some l ≥ 0.

3. Let l∗∗∗ be the first member of {l > 0 : 0 < ql < 1} (in particular assume
|{l > 0 : 0 < ql < 1}| ≥ 1); then the set {n ∈ N : n ≤ l ≤ n + l∗∗ + l∗∗∗ ⇒
ql = 0} is infinite.

Then the 0-1 law for L fails for Mn
q̄ .

Proof. The proof is similar to the case j = 1 in the proof of Theorem 14, so
we will not go into detail. Below n is some large enough natural number (say
larger than 3 · l∗∗ · l∗∗∗) such that (3) above holds, and if we say that some
property holds in Mn

q̄ we mean it holds there with probability 1. Let ψ1
ext(x) be

the formula in L implying that x belongs to at most two distinct triangles. Then
for all m ∈ [n]:

Mn
q̄ |= ψ1

ext[m] iff m ∈ [1, l∗∗] ∪ (n− l∗∗, n].

Similarly for any natural t < n/3l∗∗ define (using induction on t):

ψt
ext(x) := (∃y∃z)x ∼ y ∧ x ∼ z ∧ y ∼ z ∧ (ψt−1

ext (y) ∨ ψt−1
ext (z))

we then have for all m ∈ [n]:

Mn
q̄ |= ψt

ext[m] iff m ∈ [1, tl∗∗] ∪ (n− tl∗∗, n].

Now for 1 ≤ t < n/3l∗∗ let m∗(t) be the minimal number of edges in
Mn

q̄ |[1,t·l∗∗]∪(n−t·l∗∗,n] i.e only edges with probability one and within one of the
intervals are counted, formally

m∗(t) := 2 · |{(m,m′) : m < m′ ∈ [1, t · l∗∗] and qm′−m = 1}|.

Let 1 ≤ t∗ < n/3l∗∗ be such that l∗∗∗ < l∗∗ · t∗ (it exists as n is large enough).
Note that m∗(t∗) depends only on q̄ and not on n and hence we can define

ψ := “There exist exactly m∗(t∗) couples {x, y} s.t. ψt∗
ext(x) ∧ ψt∗

ext(y) ∧ x ∼ y.”

Hereditary Zero-One Laws for Graphs 595

We then have Pr[Mn
q̄ |= ψ] ≤ (1 − ql∗∗∗)2 < 1 as we have m∗(t∗) edges on

[1, t∗l∗∗]∪ (n− t∗l∗∗, n] that exist with probability 1, and at least two additional
edges (namely {1, l∗∗∗ + 1} and {n − l∗∗∗, n}) that exist with probability ql∗∗∗
each. On the other hand if we define:

p′ :=
∏
{1− qm′−m : m < m′ ∈ [1, t∗ · l∗∗] and qm′−m < 1}

and note that p′ does not depend on n, then (recalling assumption (3) above)
we have Pr[Mn

q̄ |= ψ] ≥ (p′)2 > 0 thus completing the proof. �

Lemma 17. Let q̄ ∈ Pinf be such that for some l1 < l2 ∈ N \ {0} we have:
0 < pl1 < 1, pl2 = 1 and pl = 0 for all l �∈ {l1, l2}. Then the 0-1 law for L fails
for Mn

q̄ .

Proof. Let ψ be the sentence in L “saying” that some vertex has exactly one
neighbor and this neighbor has at least three neighbors. Formally:

ψ := (∃x)(∃!y)x ∼ y∧(∀z)[x ∼ z → (∃u1∃u2∃u3)
∧

0<i<j≤3

ui �= uj∧
∧

0<i≤3

z ∼ ui].

We first show that for some p > 0 and n0 ∈ N, for all n > n0 we have Pr[Mn
q̄ |=

ψ] > p. To see this simply take n0 = l1 + l2 + 1 and p = (1 − pl1)(pl1). Now for
n > n0 in Mn

q̄ , with probability 1−pl1 the node 1 ∈ [n] has exactly one neighbor
(namely 1 + l2 ∈ [n]) and with probability at least pl1 , 1 + l2 is connected to
1 + l1 + l2, and hence has three neighbors (1, 1 + 2l2 and 1 + l1 + l2). This
yields the desired result. On the other hand for some p′ > 0 we have for all
n ∈ N, Pr[Mn

q̄ |= ¬ψ] > p′. To see this note that for all n, only members of
[1, l2]∪ (n− l2, n] can possibly exemplify ψ, as all members of (l2, n− l2] have at
least two neighbors with probability one. For each x ∈ [1, l2] ∪ (n − l2, n], with
probability at least (1− p1)2, x does not exemplify ψ (since the unique neighbor
of x has less then three neighbors). As the size of [1, l2] ∪ (n− l2, n] is 2 · l2 we
get Pr[Mn

q̄ |= ¬ψ] > (1− p1)2l2 := p′ > 0. Together we are done. �

Lemma 18. Let p̄ ∈ Pinf be such that |U∗(p̄)| < ∞ and pi ∈ {0, 1} for i > 0.
Then Mn

p̄ satisfies the 0-1 law for L.

Proof. Let Sn be the (not random) structure in vocabulary {Suc}, with universe
[n] and Suc is the successor relation on [n]. It is straightforward to see that any
sentence ψ ∈ L has a sentence ψS ∈ {Suc} such that

Pr[Mn
p̄ |= ψ] =

{
1 Sn |= ψS

0 Sn �|= ψS .

Also by a special case of Gaifman’s result from [1] we have: for each k ∈ N there
exists some nk ∈ N such that if n, n′ > nk then Sn and Sn′

have the same first
order theory of quantifier depth k. Together we are done. �

Conclusion 1. Let p̄ ∈ Pinf be such that 0 < |U∗(p̄)| <∞.

596 S. Shelah and M. Doron

1. The 2-hereditary 0-1 law holds for p̄ iff |{l > 0 : pl > 0}| ≤ 1.
2. The 3-hereditary 0-1 law holds for p̄ iff {l > 0 : 0 < pl < 1} = ∅.
3. If furthermore 1 < |U∗(p̄)| then the 1-hereditary 0-1 law holds for p̄ iff {l >

0 : 0 < pl < 1} = ∅.

Proof. For (1) note that if indeed |{i > 0 : pl > 0}| > 1 then some q̄ ∈ Gen2(p̄)
is as in the assumption of Lemma 17; otherwise any q̄ ∈ Gen2(p̄) has at most 1
nonzero member and hence Mn

q̄ satisfies the 0-1 law by either 18 or 2.
For (2) note that if {i > 0 : 0 < pl < 1} �= ∅ then some q̄ ∈ Gen3(p̄) is as in

the assumption of Lemma 17; otherwise any q̄ ∈ Gen3(p̄) is as in the assumption
of Lemma 18 and we are done.

Similarly for (3) note that if 1 < |U∗(p̄)| and {l > 0 : 0 < pl < 1} �= ∅
then some q̄ ∈ Gen1(p̄) satisfies assumptions (1)-(3) of Lemma 16; otherwise
any q̄ ∈ Gen1(p̄) is as in the assumption of Lemma 18 and we are done. �

5 When Exactly One Probability Equals 1

In this section we assume:

Assumption 1. p̄ is a fixed member of Pinf such that |U∗(p̄)| = 1 and we write
U∗(p̄) = {l∗}, and assume

(∗)′ lim
n→∞

log(
∏

l∈[n]\{l∗}
(1 − pl))/ log(n) = 0.

We try to determine when the 1-hereditary 0-1 law holds. The assumption of
(∗)′ is justified as the proof in section 2 works also in this case and in fact in any
case that U∗(p̄) is finite. To see this replace in section 2 products of the form∏

l<n(1 − pl) by
∏

l<n,l
∈U∗(p̄)(1 − pl), sentences of the form “x has valency m”
by “x has valency m+2|U∗(p̄)|”, and similar simple changes. So if (∗)′ fails then
the 1-hereditary weak convergence law fails, and we are done. It seems that our
ability to “identify” the l∗-boundary (i.e. the set [1, l∗] ∪ (n − l∗, n]) in Mn

p̄ is
closely related to the holding of the 0-1 law. In Conclusion 2 we use this idea and
give a necessary condition on p̄ for the 1-hereditary weak convergence law. The
proof uses methods similar to those of the previous sections. Finding a sufficient
condition for the 1-hereditary 0-1 law seems to be harder. It turns out that the
analysis of this case is, in a way, similar to the analysis when we add the successor
relation to our vocabulary. This is because the edges of the form {l, l+l∗} appear
with probability 1 similarly to the successor relation. There are, however, some
obvious differences. Let L+ be the vocabulary {∼, S}, and let (M+)n

p̄ be the

random L+ structure with universe [n], ∼ is the same as in Mn
p̄ , and S(M+)

n
p̄ is

the successor relation on [n]. Now if for some l∗∗ > 0, 0 < pl∗∗ < 1 then (M+)n
p̄

does not satisfy the 0-1 law for L+. This is because the elements 1 and l∗∗ + 1
are definable in L+ and hence some L+ sentence holds in (M+)n

p̄ iff {1, l∗∗ + 1}
is an edge of (M+)n

p̄ which holds with probability pl∗∗ . In our case, as in L we
can not distinguish edges of the form {l, l + l∗} from the rest of the edges, the

Hereditary Zero-One Laws for Graphs 597

0-1 law may hold even if such l∗ exists. In Lemma 24 below we show that if, in
fact, we can not “identify the edges” in Mn

p̄ then the 0-1 law holds in Mn
p̄ . This

is translated in Theorem 27 to a sufficient condition on p̄ for the 0-1 law holding
in Mn

p̄ , but not necessarily for the 1-hereditary 0-1 law. The proof uses “local”
properties of graphs. It seems that some form of “1-hereditary” version of 27 is
possible. In any case we could not find a necessary and sufficient condition for
the 1-hereditary 0-1 law, and the analysis of this case is not complete.

We first find a necessary condition on p̄ for the 1-hereditary weak convergence
law. Let us start with a definition of a structure on a sequence q̄ ∈ P that enables
us to “identify” the l∗-boundary in Mn

q̄ .

Definition 19. 1. A sequence q̄ ∈ P is called nice if:
(a) U∗(q̄) = {l∗}.
(b) If l1, l2, l3 ∈ {l < nq̄ : ql > 0} then l1 + l2 �= l3.
(c) If l1, l2, l3, l4 ∈ {l < nq̄ : ql > 0} then l1 + l2 + l3 �= l4.
(d) If l1, l2, l3, l4 ∈ {l < np̄ : ql > 0}, l1 + l2 = l3 + l4 and l1 + l2 < nq̄ then

{l1, l2} = {l3, l4}.
2. Let φ1 be the following L-formula:

φ1(y1, z1, y2, z2) := y1 ∼ z1 ∧ z1 ∼ z2 ∧ z2 ∼ y2 ∧ y2 ∼ y1 ∧ y1 �= z2 ∧ z1 �= y2.

3. For k ≥ 0 define by induction on k the L-formula φ1
k(y1, z1, y2, z2) by:

– φ1
0(y1, z1, y2, z2) := y1 = y2 ∧ z1 = z2 ∧ y1 �= z1.

– φ1
1(y1, z1, y2, z2) := φ1(y1, z1, y2, z2).

– φ1
k+1(y1, z1, y2, z2) :=

(∃y∃z)[(φ1
k(y1, z1, y, z) ∧ φ1(y, z, y2, z2)) ∨ (φ1

k(y2, z2, y, z) ∧
φ1(y1, z1, y, z))].

4. For k1, k2,∈ N let φ2
k1,k2

(y, z) be the following L-formula:

(∃x1∃x2∃x3∃x4)[φ1
k1

(y, z, x2, x3) ∧ φ1
k2

(x2, x1, x4, x3) ∧ ¬x1 ∼ x4].

5. For k1, k2,∈ N let φ3
k1,k2

be the following L formula:

φ3
k1,k2

(x) := (∃!y)[x ∼ y ∧ ¬φ2
k1,k2

(x, y)].

Observation 3. Let q̄ ∈ P be nice and n ∈ N be such that n < nq̄. Then the
following holds in Mn

q̄ with probability 1:

1. For y1, z1, y2, z2 ∈ [n], if Mn
q̄ |= φ1[y1, z1, y2, z2] then y1− z1 = y2− z2. (Use

(d) in the definition of nice).
2. For k ∈ N and y1, z1, y2, z2 ∈ [n], if Mn

q̄ |= φ1
k[y1, z1, y2, z2] then y1 − z1 =

y2 − z2. (Use (1) above and induction on k).
3. For k1, k2 ∈ N and y, z ∈ [n], if Mn

q̄ |= φ2
k1,k2

[y, z] then |y− z| �= l∗. (Use (2)
above and the definition of φ2

k1,k2
(y, z)).

4. For k1, k2 ∈ N and x ∈ [n], if Mn
q̄ |= φ3

k1,k2
[x] then x ∈ [1, l∗] ∪ (n − l∗, n].

(Use (3) above).

598 S. Shelah and M. Doron

The following claim shows that if q̄ is nice (and has a certain structure) then,
with probability close to 1, φ3

3,0[y] holds in Mn
q̄ for all y ∈ [1, l∗] ∪ (n − l∗, n].

This, together with (4) in the observation above gives us a “definition” of the
l∗-boundary in Mn

q̄ .

claim 5. Let q̄ ∈ Pfin be nice and denote n = nq̄. Assume that for all l > 0,
ql > 0 implies l < /n/30. Assume further that for some ε > 0, 0 < ql < 1 ⇒ ε <
ql < 1− ε. Let y0 ∈ [1, l∗] ∪ (n− l∗, n]. Denote m := |{0 < l < np̄ : 0 < ql < 1}|.
Then:

Pr[Mn
q̄ |= ¬φ3

3,0[y0]] ≤ (
∑

{y∈[n]:|y0−y|
=l∗}
q|y0−y|)(1− ε11)m/2−1.

Proof. We deal with the case y0 ∈ [1, l∗]; the case y0 ∈ (n− l∗, n] is symmetric.
Let z0 ∈ [n] be such that l0 := z0− y0 ∈ {0 < l < n : 0 < ql < 1} (so l0 �= l∗ and
l0 < /n/30), and assume that Mn

q̄ |= y0 ∼ z0. For any l1, l2 < /n/30 denote (see
Figure 1): y1 := y0 + l1, y2 := y0 + l2, y3 := y2 + l1 = y1 + l2 = y0 + l1 + l2 and
symmetrically for z1, z2, z3 (so yi and zi for i ∈ {0, 1, 2, 3} all belong to [n]).

y0
l0

l1

l2

��
��

��
��

��
��

��
��

��
��

��
z0

l1

l2

��
��

��
��

��
��

��
��

��
��

��

y1

l2

��
��

��
��

��
��

��
��

��
��

��
z1

l2

��
��

��
��

��
��

��
��

��
��

��

y2
l0

l1

z2

l1

y3
l0 z3

Fig. 1.

The following holds in Mn
q̄ with probability 1: If for some l1, l2 < /n/30 such

that (l0, l1, l2) is without repetitions, we have:

(∗)1 (y0, y1, y3, y2), (z0, z1, z3, z2) and (y2, y3, z3, z2) are all cycles in Mn
q̄ .

(∗)2 {y1, z1} is not an edge of Mn
q̄ .

Then Mn
q̄ |= φ2

0,3[y0, z0]. Why? As (y1, y0, z0, z1), in the place of (x1, x2, x3, x4),
exemplifies Mn

p̄ |= φ2
0,3[y0, z0]. Let us fix z0 = y0 + l0 and assume that Mn

q̄ |=
y0 ∼ z0. (Formally we condition the probability space Mn

q̄ on the event y0 ∼ z0.)
Denote

Ly0,z0 := {(l1, l2) : ql1 , ql2 > 0, l0 �= l1, l0 �= l2, l1 �= l2}.

Hereditary Zero-One Laws for Graphs 599

For (l1, l2) ∈ Ly0,z0 , the probability that (∗)1 and (∗)2 holds, is (1 −
ql0)(ql0)2(ql1)4(ql2)4. Denote the event that (∗)1 and (∗)2 holds by Ey0,z0(l1, l2).
Note that if (l1, l2), (l′1, l′2) ∈ Ly0,z0 are such that (l1, l2, l′1, l′2) is without repe-
titions and l1 + l2 �= l′1 + l′2 then the events Ey0,z0(l1, l2) and Ey0,z0(l′1, l

′
2) are

independent. Now recall that m := |{l > 0 : ε < ql < 1 − ε}|. Hence we have
some L′ ⊆ Ly0,z0 such that: |L′| = /m/2−10, and if (l1, l2), (l′1, l

′
2) ∈ L′ then the

events Ey0,z0(l1, l2) and Ey0,z0(l′1, l
′
2) are independent. We conclude that

Pr[Mn
q̄ |= ¬φ2

0,3[y0, z0]|Mn
q̄ |= y0 ∼ z0] ≤

(1 − (1− ql0)(ql0)2(ql1)4(ql2)4)m/2−1 ≤ (1 − ε11)m/2−1.

This is a common bound for all z0 = y0 + l0, and the same bound holds for all
z0 = y0− l0 (whenever it belongs to [n]). We conclude that the expected number
of z0 ∈ [n] such that: |z0 − y0| �= l∗, Mn

q̄ |= y0 ∼ z0 and Mn
q̄ |= ¬φ2

0,3[y0, z0] is
at most (

∑
{y∈[n]:|y0−y|
=l∗} q|y0−y|)(1− ε11)m/2−1. Now by (3) in Observation 3,

Mn
q̄ |= φ2

0,3[y0, y0 + l∗]. By Markov’s inequality and the definition of φ3
0,3(x) we

are done.

We now prove two lemmas which allow us to construct a sequence q̄ such that
for ϕ := ∃xφ3

0,3(x) each of ϕ and ¬ϕ will hold infinitely often in Mn
q̄ .

Lemma 20. Assume p̄ satisfies
∑

l>0 pl = ∞, and let q̄ ∈ Genr
1(p̄) be nice. Let

ζ > 0 be some rational number. Then there exists some r′ > r and q̄′ ∈ Genr′
1 (p̄)

such that: q̄′ is nice, q̄ � q̄′ and Pr[M
nq̄′
q̄′ |= ϕ] ≤ ζ.

Proof. Define p1 := (
∏

l∈[nq̄]\{l∗}(1 − pl))2, and choose r′ > r large enough so

that
∑

r<l≤r′ pl ≥ 2l∗ · p1/ζ. Now define q̄′ ∈ Genr′
1 (p̄) in the following way:

q′l =

⎧⎪⎪⎨⎪⎪⎩
ql 0 < l < nq̄

0 nq̄ ≤ l < (r′ − r) · nq̄

pr+i l = (r′ − r + i) · nq̄ for some 0 < i ≤ (r′ − r)
0 (r′ − r) · nq̄ ≤ l < 2(r′ − r) · nq̄ and l �≡ 0 (mod nq̄).

Note that indeed q̄′ is nice and q̄ � q̄′. Denote n := nq̄′ = 2(r′ − r) · nq̄. Note
further that every member of Mn

q̄′ have at most one neighbor of distance more
more than n/2, and all the rest of its neighbors are of distance at most nq̄. We
now bound from above the probability of Mn

q̄′ |= ∃xφ3
0,3(x). Let x be in [1, l∗].

For each i in the range 0 < i ≤ (r′ − r) denote yi := x + (r′ − r + i) · nq̄

(hence yi ∈ [n/2, n]) and let Ei be the following event: “Mn
q̄′ |= yi ∼ z iff

z ∈ {x, yi + l∗, yi − l∗}”. By the definition of q̄′, each yi can only be connected
either to x or to members of [y − nq̄, y + nq̄], and hence we have

Pr[Ei] = q′(r′−r+i)·nq̄
· p1 = pr+i · p1.

As i �= j ⇒ n/2 > |yi − yj| > nq̄ we have that the Ei-s are independent events.
Now if Ei holds then by the definition of φ2

0,3 we have Mn
q̄′ |= ¬φ2

0,3[x, yi], and

600 S. Shelah and M. Doron

as Mn
q̄′ |= ¬φ2

0,3[x, x + l∗] this implies Mn
q̄′ |= ¬φ3

0,3[x]. Let the random variable
X denote the number of i in the range 0 < i ≤ (r′ − r) such that Ei holds in
Mn

q̄′ . Then by Chebyshev’s inequality we have:

Pr[Mn
q̄′ |= φ3

0,3[x]] ≤

Pr[X = 0] ≤ V ar(X)
Exp(X)2

≤ 1
Exp(X)

≤ p1∑
0<i≤(r′−r)

pr+i

≤ ζ

2l∗
.

This is true for each x ∈ [1, l∗] and the symmetric argument gives the same
bound for each x ∈ (n − l∗, n]. Finally note that if x, x + l∗ both belong to [n]
then Mn

q̄′ |= ¬φ2
0,3[x, x+ l∗] (see Observation 3(4)). Hence if x ∈ (l∗, n− l∗] then

Mn
q̄′ |= ¬φ3

0,3[x]. We conclude that:

Pr[Mn
q̄′ |= ∃xφ3

0,3(x)] = Pr[Mn
q̄′ |= φ] ≤ ζ

as desired. �

Lemma 21. Assume p̄ satisfies 0 < pl < 1 ⇒ ε < pl < 1 − ε for some ε > 0,
and

∑∞
n=1 pn = ∞. Let q̄ ∈ Genr

1(p̄) be nice, and ζ > 0 be some rational number.
Then there exist some r′ > r and q̄′ ∈ Genr′

1 (p̄) such that: q̄′ is nice, q̄ � q̄′ and
Pr[M

nq̄′
q̄′ |= ϕ] ≥ 1− ζ.

Proof. This is a direct consequence of Claim 5. For each r′ > r denote m(r′) :=
|{0 < l ≤ r′ : 0 < pl < 1}|. Trivially we can choose r′ > r such that m(r′)(1 −
ε11)m(r′)/2−1 ≤ ζ. As q̄ is nice there exists some nice q̄′ ∈ Genr′

1 (p̄) such that
q̄ � q̄′. Note that ∑

{y∈[n]:|1−y|
=l∗}
q′|1−y| ≤

∑
{0<l<nq̄′ :l
=l∗}

q′l ≤ m(r′)

and hence by 5 we have:

Pr[Mn
q̄′ |= ¬φ] ≤ Pr[Mn

q̄′ |= ¬φ3
2,0[1]] ≤ m(r′)(1 − ε11)m(r′)/2−1 ≤ ζ

as desired. �

From the last two lemmas we conclude:

Conclusion 2. Assume that p̄ satisfies 0 < pl < 1 ⇒ ε < pl < 1 − ε for
some ε > 0, and

∑∞
n=1 pn = ∞. Then p̄ does not satisfy the 1-hereditary weak

convergence law for L.

The proof is by inductive construction of q̄ ∈ Gen1(p̄) such that for ϕ :=
∃xφ3

0,3(x) both ϕ and ¬ϕ hold infinitely often in Mn
q̄ , using Lemmas 20, 21

as done in previous proofs.
From Conclusion 2 we have a necessary condition on p̄ for the 1-hereditary

weak convergence law. We now find a sufficient condition on p̄ for the (not
necessarily 1-hereditary) 0-1 law. Let us start with definitions of distance in
graphs and of local properties in graphs.

Hereditary Zero-One Laws for Graphs 601

Definition 22. Let G be a graph on vertex set [n].

1. For x, y ∈ [n] let

distG(x, y) := min{k ∈ N : G has a path of length k from x to y}.

Note that for each k ∈ N there exists some L-formula θk(x, y) such that for
all G and x, y ∈ [n]:

G |= θk[x, y] iff distG(x, y) ≤ k.

2. For x ∈ [n] and r ∈ N let BG(r, x) := {y ∈ [n] : distG(x, y) ≤ r} be the ball
with radius r and center x in G.

3. An L-formula φ(x) is called r-local if every quantifier in φ is restricted to
the set BG(r, x). Formally each appearance of the form ∀y... in φ is of the
form (∀y)[θr(x, y) → ...], and similarly for ∃y and other variables. Note that
for any G, x ∈ [n], r ∈ N and an r-local formula φ(x) we have:

G |= φ[x] iff G|B(r,x) |= φ[x].

4. An L-sentence is called local if it has the form

∃x1...∃xm

∧
1≤i≤m

φ(xi) ∧
∧

1≤i<j≤m

¬θ2r(xi, xj)

where φ = φ(x) is an r-local formula for some r ∈ N.
5. For l, r ∈ N and an L-formula φ(x) we say that the l-boundary of G is r-

indistinguishable by φ(x) if for all z ∈ [1, l] ∪ (n − l, n] there exists some
y ∈ [n] such that BG(r, y) ∩ ([1, l] ∪ (n− l, n]) = ∅ and G |= φ[z]↔ φ[y]

We can now use the following famous result from [1]:

Theorem 23 (Gaifman’s Theorem). Every L-sentence is logically equivalent
to a boolean combination of local L-sentences.

We will use Gaifman’s theorem to prove:

Lemma 24. Assume that for all k ∈ N and k-local L-formulas ϕ(z) we have:

lim
n→∞

Pr[The l∗-boundary of Mn
p̄ is k-indistinguishable by ϕ(z)] = 1.

Then the 0-1 law for L holds in Mn
p̄ .

Proof. By Gaifman’s theorem it is enough if we prove that the 0-1 law holds in
Mn

p̄ for local L-sentences. Let

ψ := ∃x1...∃xm

∧
1≤i≤m

φ(xi)
∧

1≤i<j≤m

¬θ2r(xi, xj)

be some local L-sentence, where φ(x) is an r-local formula.
Define H to be the set of all 4-tuples (l, U, u0, H) such that: l ∈ N, U ⊆ [l],

u0 ∈ U and H is a graph with vertex set U . We say that some (l, U, u0, H) ∈ H
is r-proper for p̄ (but as p̄ is fixed we usually omit it) if it satisfies:

602 S. Shelah and M. Doron

(∗1) For all u ∈ U , distH(u0, u) ≤ r.
(∗2) For all u ∈ U , if distH(u0, u) < r then u+ l∗, u− l∗ ∈ U .
(∗3) Pr[M l

p̄|U = H] > 0.

We say that a member of H is proper if it is r-proper for some r ∈ N.
Let H be a graph on vertex set U ⊆ [l] and G be a graph on vertex set [n].

We say that f : U → [n] is a strong embedding of H in G if:

– f in one-to one.
– For all u, v ∈ U , H |= u ∼ v iff G |= f(u) ∼ f(v).
– For all u, v ∈ U , f(u)− f(v) = u− v.
– If i ∈ Im(f), j ∈ [n] \ Im(f) and |i− j| �= l∗ then G |= ¬i ∼ j.

We make two observations which follow directly from the definitions:

1. If (l, U, u0, H) ∈ H is r-proper and f : U → [n] is a strong embedding of H
in G then Im(f) = BG(r, f(u0)). Furthermore for any r-local formula φ(x)
and u ∈ U we have, G |= φ[f(u)] iff H |= φ[u].

2. Let G be a graph on vertex set [n] such that Pr[Mn
p̄ = G] > 0, and x ∈ [n]

be such that BG(r− 1, x) is disjoint to [1, l∗]∪ (n− l∗, n]. Denote by m and
M the minimal and maximal elements of BG(r, x) respectively. Denote by
U the set {i − m + 1 : i ∈ BG(r, x)} and by H the graph on U defined
by H |= u ∼ v iff G |= (u + m − 1) ∼ (v + m − 1). Then the 4-tuple
(M −m+ 1, U, x−m+ 1, H) is an r-proper member of H. Furthermore for
any r-local formula φ(x) and u ∈ U we have G |= φ[u−m+ 1] iff H |= φ[u].

We now show that for any proper member of H there are many disjoint strong
embeddings into Mn

p̄ . Formally:

claim 6. Let (l, U, u0, H) ∈ H be proper, and c > 1 be some fixed real. Let En
c

be the following event on Mn
p̄ : “For any interval I ⊆ [n] of length at least n/c

there exists some f : U → I a strong embedding of H in Mn
p̄ ”. Then

lim
n→∞

Pr[En
c holds in Mn

p̄] = 1.

We skip the proof of this claim because an almost identical lemma is proved in
[2] (see Lemma at page 8 there).

We can now finish the proof of Lemma 24. Recall that φ(x) is an r-local
formula. We consider two possibilities. First assume that for some r-proper
(l, U, u0, H) ∈ H we have H |= φ[u0]. Let ζ > 0 be some real. Then by the claim
above, for n large enough, with probability at least 1 − ζ there exist f1, ..., fm

strong embeddings of H into Mn
p̄ such that 〈Im(fi) : 1 ≤ i ≤ m〉 are pairwise

disjoint. By observation (1) above we have:

– For 1 ≤ i < j ≤ m, BMn
p̄ (r, fi(u0)) ∩BMn

p̄ (r, fj(u0)) = ∅.
– For 1 ≤ i ≤ m, Mn

p̄ |= φ[fi(u0)].

Hence f1(u0), ..., fm(u0) exemplifies ψ in Mn
p̄ , so Pr[Mn

p̄ |= ψ] ≥ 1− ζ and as ζ
was arbitrary we have limn→∞ Pr[Mn

p̄ |= ψ] = 1 and we are done.

Hereditary Zero-One Laws for Graphs 603

Otherwise assume that for all r-proper (l, U, u0, H) ∈ H we have H |= ¬φ[u0].
We will show that limn→∞ Pr[Mn

p̄ |= ψ] = 0 which will finish the proof. Towards
contradiction assume that for some ε > 0 for unboundedly many n ∈ N we have
Pr[Mn

p̄ |= ψ] ≥ ε. Define the L-formula:

ϕ(z) := (∃x)(θr−1(x, z) ∧ φ(x)).

Note that ϕ(z) is equivalent to a k-local formula for k = 2r − 1. Hence by the
assumption of our lemma for some (large enough) n ∈ N we have with probability
at least ε/2: Mn

p̄ |= ψ and the l∗-boundary of Mn
p̄ is k-indistinguishable by ϕ(z).

In particular for some n ∈ N and G a graph on vertex set [n] we have:

(α) Pr[Mn
p̄ = G] > 0.

(β) G |= ψ.
(γ) The l∗-boundary of G is k-indistinguishable by ϕ(z).

By (β) for some x0 ∈ [n] we have G |= φ[x0]. If x0 is such that BG(r − 1, x0) is
disjoint to [1, l∗]∪(n−l∗, n] then by (α) and observation (2) above we have some r-
proper (l, U, u0, H) ∈ H such that H |= φ[u0] in contradiction to our assumption.
Hence assume thatBG(r−1, x0) is not disjoint to [1, l∗]∪(n−l∗, n] and let z0 ∈ [n]
belong to their intersection. So by the definition of ϕ(z) we have G |= ϕ[z0] and
by (γ) we have some y0 ∈ [n] such that BG(k, y0) ∩ ([1, l∗] ∪ (n− l∗, n]) = ∅ and
G |= ϕ[y0]. Again by the definition of ϕ(z), and recalling that k = 2r−1 we have
some x1 ∈ [n] such that BG(r − 1, x1) ∩ ([1, l∗]∪ (n− l∗, n]) = ∅ and G |= φ[x1].
So again by (α) and observation (2) we get a contradiction. �

Remark 25. Lemma 24 above gives a sufficient condition for the 0-1 law. If we are
only interested in the convergence law, then a weaker condition is sufficient; all
we need is that the probability of any local property holding in the l∗-boundary
converges. Formally:

Assume that for all r ∈ N and r-local L-formulas, φ(x), and for all 1 ≤ l ≤ l∗

we have: Both 〈Pr[Mn
p̄ |= φ[l] : n ∈ N〉 and 〈Pr[Mn

p̄ |= φ[n − l + 1] : n ∈ N〉
converge to a limit. Then Mn

p̄ satisfies the convergence law.
The proof is similar to the proof of Lemma 24. A similar proof on the conver-

gence law in graphs with the successor relation is Theorem 2(i) in [2].

We now use 24 to get a sufficient condition on p̄ for the 0-1 law holding in Mn
p̄ .

Our proof relies on the assumption that Mn
p̄ contains few cycles, and only those

that are “unavoidable”. We start with a definition of such cycles:

Definition 26. Let n ∈ N.

1. For a sequence x̄ = (x0, x1, ..., xk) ⊆ [n] and 0 ≤ i < k denote lx̄i :=
xi+1 − xi.

2. A sequence (x0, x1, ..., xk) ⊆ [n] is called possible for p̄ (but as p̄ is fixed we
omit it and similarly below) if for each i in the range 0 ≤ i < k, p|lx̄i | > 0.

3. A sequence (x0, x1, ..., xk) is called a cycle of length k if x0 = xk and
〈{xi, xi+1} : 0 ≤ i < k〉 is without repetitions.

604 S. Shelah and M. Doron

4. A cycle of length k, is called simple if (x0, x1, ..., xk−1) is without repetitions.
5. For x̄ = (x0, x1, ..., xk) ⊆ [n], a pair (S∪·A) is called a symmetric partition

of x̄ if:
– S∪·A = {0, ..., k − 1}.
– If i �= j belong to A then lx̄i + lx̄j �= 0.
– The sequence 〈lx̄i : i ∈ S〉 can be partitioned into two sequences of length
r = |S|/2: 〈li : 0 ≤ i < r〉 and 〈l′i : 0 ≤ i < r〉 such that li + l′i = 0 for
each i in the range 0 ≤ i < r.

6. For x̄ = (x0, x1, ..., xk) ⊆ [n] let (Sym(x̄), Asym(x̄)) be some symmetric
partition of x̄ (say the first in some prefixed order). Denote Sym+(x̄) :=
{i ∈ Sym(x̄) : lx̄i > 0}.

7. We say that p̄ has no unavoidable cycles if for all k ∈ N there exists some
mk ∈ N such that if x̄ is a possible cycle of length k then for each i ∈
Asym(x̄), |lx̄i | ≤ mk.

Theorem 27. Assume that p̄ has no unavoidable cycles,
∑∞

l=1 pl = ∞ and∑∞
l=1(pl)2 <∞. Then Mn

p̄ satisfies the 0-1 law for L.

Proof. Let φ(x) be some r-local formula, and j∗ be in {1, 2, ..., l∗} ∪
{−1,−2, ...,−l∗}. For n ∈ N let z∗n = z∗(n, j∗) equal j∗ if j∗ > 0 and n− j∗ + 1
if j∗ < 0 (so z∗n belongs to [1, l∗] ∪ (n − l∗, n]). We will show that with
probability approaching 1 as n → ∞ there exists some y∗ ∈ [n] such that
BMn

p̄ (r, y∗)∩([1, l∗]∪(n−l∗, n]) = ∅ and Mn
p̄ |= φ[z∗n]↔ φ[y∗]. This will complete

the proof by Lemma 24. For simplicity of notation assume j∗ = 1 hence z∗n = 1
(the proof of the other cases is similar). We use the notations of the proof of 24.
In particular recall the definition of the set H and of an r-proper member of H.
Now if for two r-proper members of H, (l1, x1, U1, H1) and (l2, x2, U2, H2) we
have H1 |= φ[x1] and H2 |= ¬φ[x2] then by Claim 6 we are done. Otherwise all
r-proper members of H give the same value to φ[x] and without loss of gener-
ality assume that if (l, x, U,H) ∈ H is a r-proper then H |= φ[x] (the dual case
is identical). If limn→∞ Pr[Mn

p̄ |= φ[1]] = 1 then again we are done by 6. Hence
we may assume that:

1 For some ε > 0, for an unbounded set of n ∈ N, Pr[Mn
p̄ |= ¬φ[1]] ≥ ε.

In the construction below we use the following notations: 2 denotes the set {0, 1}.
k2 denotes the set of sequences of length k of members of 2, and if η belongs to
k2 we write |η| = k. ≤k2 denotes

⋃
0≤i≤k

k2 and similarly <k2. 〈〉 denotes the
empty sequence, and for η, η′ ∈ ≤k2, η̂η′ denotes the concatenation of η and η′.
Finally for η ∈ k2 and k′ < k, η|k′ is the initial segment of length k′ of η.

Call ȳ a saturated tree of depth k in [n] if:

– ȳ = 〈yη ∈ [n] : η ∈ ≤k2〉.
– ȳ is without repetitions.
– {y〈0〉, y〈1〉} = {y〈〉 + l∗, y〈〉 − l∗}.
– If 0 < l < k and η ∈ l2 then {yη + l∗, yη − l∗} ⊆ {yη̂〈0〉, yη̂〈1〉, yη|l−1}.

Let G be a graph with set of vertices [n], and i ∈ [n]. We say that ȳ is a cycle
free saturated tree of depth k for i in G if:

Hereditary Zero-One Laws for Graphs 605

(i) ȳ is a saturated tree of depth k in [n].
(ii) G |= i ∼ y〈〉 but |i− y〈〉| �= l∗.
(iii) For each η ∈ <k2, G |= yη ∼ yη̂〈0〉 and G |= yη ∼ yη̂〈1〉.
(iv) None of the edges described in (ii),(iii) belongs to a cycle of length ≤ 6k

in G.
(v) Recalling that p̄ has no unavoidable cycles let m2k be the one from

Definition 26(7). For all η ∈ ≤k2 and y ∈ [n] if G |= yη ∼ y and
y �∈ {yη̂〈0〉, yη̂〈1〉, yη|l−1 , i} then |y − yη| > m2k.

For I ⊆ [n] we say that 〈ȳi : i ∈ I〉 is a cycle free saturated forest of depth k for
I in G if:

(a) For each i ∈ I, ȳi is a cycle free saturated tree of depth k for i in G.
(b) As sets 〈ȳi : i ∈ I〉 are pairwise disjoint.
(c) If i1, i2 ∈ I and x̄ is a path of length k′ ≤ k in G from yi1

〈〉 to i2, then for

some j < k′, (xj , xj+1) = (yi1
〈〉 , i1).

claim 7. For n ∈ N and G a graph on [n] denote by I∗k (G) the set ([1, l∗] ∪ (n−
l∗, n]) ∩ BG(1, k). Let En,k be the event: “There exists a cycle free saturated
forest of depth k for I∗k (G)”. Then for each k ∈ N:

lim
n→∞

Pr[En,k holds in Mn
p̄] = 1.

Proof. Let k ∈ N be fixed. The proof proceeds in six steps:

Step 1. We observe that only a bounded number of cycles starts in each vertex
of Mn

p̄ . Formally: For n,m ∈ N and i ∈ [n] let E1
n,m,i be the event: “More than

m different cycles of length at most 12k include i”. Then for all ζ > 0 for some
m = m(ζ) (m depends also on p̄ and k but as those are fixed we omit them from
the notation and similarly below) we have:

�1 For all n ∈ N and i ∈ [n], PrMn
p̄
[E1

n,m,i] ≤ ζ.

To see this note that if x̄ = (x0, ..., xk′) is a possible cycle in [n], then

Pr[x̄ is a weak cycle in Mn
p̄] := p(x̄) =

∏
i∈Asym(x̄)

p|lx̄i | ·
∏

i∈Sym+(x̄)

(plx̄i
)2.

Now as p̄ has no unavoidable, cycles let m12k be as in 26(7). Then the expected
number of cycles of length ≤ 12k starting in i = x0 is∑

k′≤12k,x̄=(x0,...,xk′)
is a possible cycle

p(x̄) ≤

(m12k)12k ·
∑

0<l1,...,l6k<n

6k∏
i=1

(pli)
2 ≤ (m12k)12k · (

∑
0<l<n

(pl)2)6k.

But as
∑

0<l<n(pl)2 is bounded by
∑∞

l=1(pl)2 := c∗ < ∞, if we take m =
(m12k)12k · (c∗)6k/ζ then we have �1 as desired.

606 S. Shelah and M. Doron

Step 2. We show that there exists a positive lower bound on the probability that
a cycle passes through a given edge of Mn

p̄ . Formally: Let n ∈ N and i, j ∈ [n] be
such that p|i−j| > 0. Denote By E2

n,i,j the event: “There does not exists a cycle
of length ≤ 6k containing the edge {i, j}”. Then there exists some q2 > 0 such
that:

�2 For any n ∈ N and i, j ∈ [n] such that p|i−j| > 0, PrMn
p̄
[E2

n,i,j |i ∼ j] ≥ q2.

To see this call a path x̄ = (x0, ..., xk′) good for i, j ∈ [n] if x0 = j, xk′ = i,
x̄ does not contain the edge {i, j} and does not contain the same edge more
than once. Let E′2

n,i,j be the event: “There does not exists a path good for i, j of
length < 6k”. Note that for i, j ∈ [n] and G a graph on [n] such that G |= i ∼ j
we have: (i, j, x2, ..., xk′) is a cycle in G iff (j, x2, ..., kk′) is a path in G good for
i, j. Hence for such G we have: E2

n,i,j holds in G iff E′2
n,i,j holds in G. Since the

events i ∼ j and E′2
n,i,j are independent in Mn

p̄ we conclude:

PrMn
p̄
[E2

n,i,j |i ∼ j] = PrMn
p̄
[E′2

n,i,j |i ∼ j] = PrMn
p̄
[E′2

n,i,j].

Next recalling Definition 26(7) let mk be as there. Since
∑

l>0(pl)2 < ∞, (pl)2

converges to 0 as l approaches infinity, and hence so does pl. Hence for some
m0 ∈ N we have that l > m0 implies pl < 1/2. Letm∗

k := max{m6k,m
0}. We now

define for a possible path x̄ = (x0, ...xk′), Large(x̄) = {0 ≤ r < k′ : |lx̄r | > m∗
k}.

Note that as p̄ has no unavoidable cycles we have for any possible cycle x̄ of length
≤ 6k, Large(x̄) ⊆ Sym(x̄), and |Large(x̄)| is even. We now make the following
claim: For each k∗ in the range 0 ≤ k∗ ≤ /k/20 let E′2,k∗

n,i,j be the event: “There
does not exists a path, x̄, good for i, j of length < 6k with |Large(x̄)| = 2k∗”.
Then there exists a positive probability q2,k∗ such that for any n ∈ N and
i, j ∈ [n] we have:

PrMn
p̄
[E′2,k∗

n,i,j] ≥ q2,k∗ .

Then by taking q2 =
∏

0≤k∗≤�k/2� q2,k∗ we will have �2. Let us prove the claim.
For k∗ = 0 we have (recalling that no cycle consists only of edges of length l∗):

PrMn
p̄
[E′2,0

n,i,j] =
∏

k′≤6k, x̄=(i=x0,j=x1,...,xk′)
is a possible cycle, |Large(x̄)|=0

(1 −
k′−1∏
r=1

p|lx̄r |)

≥ (1−max{pl : 0 < l ≤ m∗
k, l �= l∗})6k·(m∗

k)6k−1
.

But as the last expression is positive and depends only on p̄ and k we are done.
For k∗ > 0 we have:

PrMn
p̄
[E′2,k∗

n,i,j] =
∏

k′≤6k, x̄=(i=x0,j=x1,...,xk′)
is a possible cycle, |Large(x̄)|=k∗

(1 −
k′−1∏
m=1

p|lx̄m |)

Hereditary Zero-One Laws for Graphs 607

=
∏

k′≤6k, x̄=(i=x0,j=x1,...,xk′)
is a possible cycle,

|Large(x̄)|=k∗ ,0
∈Large(x̄)

(1 −
k′−1∏
m=1

p|lx̄m |) ·

∏
k′≤6k, x̄=(i=x0,j=x1,...,xk′)

is a possible cycle,
|Large(x̄)|=k∗ ,0∈Large(x̄)

(1 −
k′−1∏
m=1

p|lx̄m |).

But the product on the second line is at least

[
∏

l1,...,lk∗>m∗
k

(1−
k∗∏

m=1

(plm)2)](m
∗
k)(6k−2k∗)·(6k)2k∗

,

and as
∑

l>m∗
k
(pl)2 ≤ c∗ <∞ we have

∑
l1,...,lk∗>m∗

k

∏k∗

m=1(plm)2 ≤ (c∗)k∗
<∞

and hence
∏

l1,...,lk∗>m∗
k
(1−

∏k∗

m=1(plm)2) > 0 and we have a bound as desired.
Similarly the product on the third line is at least

[
∏

l1,...,lk∗−1>m∗
k

(1−
k∗−1∏
m=1

(plm)2) · 1/2](m
∗
k)(6k−2k∗−1)·(6k)2k∗

,

and again we have a bound as desired.

Step 3. Denote

E3
n,i,j := E2

n,i,j ∧
∧

r=1,...,k

(E2
n,j+(r−1)l∗,j+rl∗ ∧ E2

n,j,j−(r−1)l∗,j−rl∗)

and let q3 = q
(2l∗+1)
2 . We then have:

�3 For any n ∈ N and i, j ∈ [n] such that p|i−j| > 0 and j + kl∗, j − kl∗ ∈ [n],
PrMn

p̄
[E3

n,i,j |i ∼ j] ≥ q3.

This follows immediately from �2, and the fact that if i, i′, j, j′ all belong to
[n] then the probability PrMn

p̄
[E2

n,i,j |E2
n,i′,j′] is no smaller then the probability

PrMn
p̄
[E2

n,i,j].

Step 4. For i, j ∈ [n] such that j + kl∗, j − kl∗ ∈ [n] denote by E4
n,i,j the event:

“E3
n,i,j holds and for x ∈ {j + rl∗ : r ∈ {−k,−k+ 1, ..., k}} and y ∈ [n] \ {i} we

have x ∼ y ⇒ (|x− y| = l∗ ∨ |x− y| > m2k)”. Then for some q4 > 0 we have:

�4 For any n ∈ N and i, j ∈ [n] such that p|i−j| > 0 and j + kl∗, j − kl∗ ∈ [n],
PrMn

p̄
[E4

n,i,j |i ∼ j] ≥ q4.

To see this simply take q4 = q3 · (
∏

l∈{1,...,m2k}\{l∗}(1− pl))2k+1, and use �3.

Step 5. For n ∈ N, S ⊆ [n], and i ∈ [n] let E5
n,S,i be the event: “For some

j ∈ [n]\S we have i ∼ j, |i− j| �= l∗ and E4
n,i,j”. Then for each δ > 0 and s ∈ N,

for n ∈ N large enough (depending on δ and s) we have:

608 S. Shelah and M. Doron

�5 For all i ∈ [n] and S ⊆ [n] with |S| ≤ s, PrMn
p̄
[E5

n,S,i] ≥ 1− δ.

First let δ > 0 and s ∈ N be fixed. Second for n ∈ N, S ⊆ [n] and i ∈ [n] denote by
Jn,S

i the set of all possible candidates for j, namely Jn,S
i := {j ∈ (kl∗, n−kl∗]\S :

|i− j| �= l∗}. For j ∈ Jn,∅
i let Uj := {j+ rl∗ : r ∈ {−k,−k+1, ..., k}}. For m ∈ N

and G a graph on [n] call j ∈ Jn,S
i a candidate of type (n,m, S, i) in G, if each

j′ ∈ U(j), belongs to at most m different cycles of length at most 6k in G.
Denote the set of all candidates of type (n,m, S, i) in G by Jn,S

i (G). Now let
Xn,m

i be the random variable on Mn
p̄ defined by:

Xn,m
i (Mn

p̄) =
∑
{p|i−j| : j ∈ Jn,S

i (Mn
p̄)}.

Denote Rn,S
i :=

∑
{p|i−j| : j ∈ Jn,S

i }. Trivially for all n,m, S, i as above,Xn,m
i ≤

Rn,S
i . On the other hand, by �1 and the definition of a candidate, for all ζ > 0

we can find m = m(ζ) ∈ N such that for all n, S, i as above and j ∈ Jn,S
i , the

probability that j is a candidate of type (n,m, S, i) in Mn
p̄ is at least 1− ζ. Then

for such m we have: Exp(Xn,m
i) ≥ Rn,S

i (1 − ζ). Hence we have PrMn
p̄
[Xn,m

i ≤
Rn,S

i /2] ≤ 2ζ. Recall that δ > 0 was fixed, and let m∗ = m(δ/4). Then for all
n, S, i as above we have with probability at least 1− δ/2, Xn,m∗

i (Mn
p̄) ≥ Rn,S

i /2.
Now denote m∗∗ := (2l∗ + 1)(m∗ + 2m2k)6k(m∗ + 1), and fix n ∈ N such that∑

0<l<n pl > 2 · ((m∗∗/(q4 · δ) · 2m2k(2l∗ + 1) + (s+ 2kl∗ + 2)). Let i ∈ [n] and
S ⊆ [n] be such that |S| ≤ s. We relativize our probability space Mn

p̄ to the
event Xn,m∗

i (Mn
p̄) ≥ Rn,S

i /2, and all probabilities until the end of Step 5 will
be conditioned to this event. If we show that under this assumption we have
PrMn

p̄
[E5

n,S,i] ≥ 1− δ/2, then we will have �5.

Let G be a graph on [n] such that,Xn,m∗
i (G) ≥ Rn,S

i /2. For j ∈ Jn,S
i let Cj(G)

denote the set of all the pairs of vertices which are relevant for the event E4
n,i,j .

Namely Cj(G) will contain: {i, j}, all the edges {u, v} such that : u ∈ U(j),
v �= i and |u− v| < m2k, and all the edges that belong to a cycle of length ≤ 6k
containing some member of U(j). We make some observations:

1. Xn,m∗
i (G) ≥ (m∗∗/(q4 · δ)) · 2m2k(2l∗ + 1).

2. There exists J1(G) ⊆ Jn,S
i such that:

(a) The sets U(j) for j ∈ J1(G) are pairwise disjoint. Moreover if j1, j2 ∈
J1(G), ul ∈ U(jl) for l ∈ {1, 2} and j1 �= j2 then |u1 − u2| > m2k.

(b) Each j ∈ J1(G) is a candidate of type (n,m∗, S, i) in G.
(c) The sum

∑
{p|i−j| : j ∈ J1(G)} is at least m∗∗/(q4 · δ).

[To see this use (1) and construct J1 by adding the candidate with the
largest p|i−j| that satisfies (a). Note that each new candidate excludes at
most m2k(2l∗ + 1) others.]

3. Let j belong to J1(G). Then the set {j′ ∈ J1(G) : Cj(G) ∩ Cj′ (G) �= ∅}
has size at most m∗∗. [To see this use (2)(b) above, the fact that two cycles
of length ≤ 6k that intersect in an edge give a cycle of length ≤ 12k and
similar trivial facts.]

Hereditary Zero-One Laws for Graphs 609

4. From (3) we conclude that there exists J2(G) ⊆ J1(G) and 〈j1, ...jr〉 an
enumeration of J2(G) such that:
(a) For any 1 ≤ r′ ≤ r the sets C(jr′) and ∪1≤r′′<r′C(jr′′) are disjoint.
(b) The sum

∑
{p|i−j| : j ∈ J2(G)} is greater or equal 1/(q4 · δ).

Now for each j ∈ Jn,S
i let E∗

j be the event: “i ∼ j and E4
n,i,j”. By �4 we

have for each j ∈ Jn,S
i , PrMn

p̄
[E∗

j] ≥ q4 · p|i−j|. Recall that we condition the

probability space Mn
p̄ to the event Xn,m∗

i (Mn
p̄) ≥ Rn,S

i /2, and let 〈j1, ...jr〉 be
the enumeration of J2(Mn

p̄) from (4) above. (Formally speaking r and each jr′

is a function of Mn
p̄). We then have for 1 ≤ r′ < r′′ ≤ r, PrMn

p̄
[E∗

jr′ |E
∗
jr′′] ≥

PrMn
p̄
[E∗

jr′
], and PrMn

p̄
[E∗

jr′
|¬E∗

jr′′
] ≥ PrMn

p̄
[E∗

jr′
]. To see this use (2)(a) and

(4)(a) above and the definition of Cj(G).
Let the random variables X and X ′ be defined as follows. X is the number

of j ∈ J2(Mn
p̄) such that E∗

j holds in Mn
p̄ . In other words X is the sum of r

random variables 〈Y1, ..., Yr〉, where for each r′ in the range 1 ≤ r′ ≤ r, Yr′

equals 1 if E∗
jr′

holds, and 0 otherwise. X ′ is the sum of r independent random
variables 〈Y ′

1 , ..., Y
′
r 〉, where for each r′ in the range 1 ≤ r′ ≤ r Y ′

r′ equals 1 with
probability q4 · p|i−jr′ | and 0 with probability 1 − q4 · p|i−jr′ |. Then by the last
paragraph for any 0 ≤ t ≤ r,

PrMn
p̄
[X ≥ t] ≥ Pr[X ′ ≥ t].

But Exp(X ′) = Exp(X) = q4 ·
∑

1≤r′≤r p|i−jr′ | and by (4)(b) above this is
greater than or equal to 1/δ. Hence by Chebyshev’s inequality we have:

PrMn
p̄
[¬E5

n,S,i] ≤ PrMn
p̄
[X = 0] ≤ Pr[X ′ = 0] ≤ V ar(X ′)

Exp(X ′)2
≤ 1
Exp(X ′)

≤ δ

as desired.

Step 6. We turn to the construction of the cycle free saturated forest. Let ε > 0,
and we will prove that for n ∈ N large enough we have Pr[En,k holds in Mn

p̄] ≥
1 − ε. Let δ = ε/(l∗2k+2) and s = 2l∗((k + 2k)(2l∗k + 1)). Let n ∈ N be large
enough so that �5 holds for n, k, δ and s. We now choose (formally we show
that with probability at least 1− ε such a choice exists) by induction on (i, η) ∈
I∗k (Mn

p̄)× ≤k2 (ordered by the lexicographic order) yi
η ∈ [n] such that:

1. 〈yi
η ∈ [n] : (i, η) ∈ I∗k (Mn

p̄)× ≤k2〉 is without repetitions.
2. If η = 〈〉 then Mn

p̄ |= i ∼ yi
η, but |i− yi

η| �= l∗.
3. If η �= 〈〉 then Mn

p̄ |= yi
η ∼ yi

η||η|−1
.

4. If η = 〈〉 then Mn
p̄ satisfies E4

n,i,yi
η
; else, denoting ρ := η||η|−1, Mn

p̄ satisfies

E4
n,yi

ρ,yi
η
.

Before we describe the choice of yi
η, we need to define sets Si

η ⊆ [n]. For a graph
G on [n] and i ∈ I∗k (G) let S∗

i (G) be the set of vertices in the first (in some fixed

610 S. Shelah and M. Doron

order) path of length ≤ k from 1 to i in G. Now let S∗(G) =
⋃

i∈I∗
k(G) S

∗
i (G).

For (i, η) ∈ I∗k (Mn
p̄)× ≤k2 and 〈yi′

η′ ∈ [n] : (i′, η′) <lex (i, η)〉 define:

Si
η(G) = S∗(G) ∪ {[yi′

η′ − kl∗, yi′
η′ + kl∗] : (i′η′) <lex (i, η)}.

Note that indeed |S∗(G)| ≤ s for all G. In the construction below when we write
Si

η we mean Si
η(Mn

p̄) where 〈yi′
η′ ∈ [n] : (i′, η′) <lex (i, η)〉 were already chosen.

Now the choice of yi
η is as follows:

– If η = 〈〉 by �5 with probability at least 1−δ, E5
n,Si

η ,i holds in Mn
p̄ and hence

we can choose yi
η that satisfies (1)-(4).

– If η = 〈0〉 (resp. η = 〈1〉) choose yi
η = yi

〈〉 − l∗ (resp. yi
η = yi

〈〉 + l∗). By the
induction hypothesis and the definition of E4

n,i,j this satisfies (1)-(4) above.
– If |η| > 1, |yi

η||η|−1
− yi

η||η|−2
| �= l∗ and η(|η|) = 0 (resp. η(|η|) = 1) then

choose yi
η = yi

η||η|−1
− l∗ (resp. yi

η = yi
η||η|−1

+ l∗). Again by the induction
hypothesis and the definition of E4

n,i,j this satisfies (1)-(4).
– If |η| > 1, yi

η||η|−1
−yi

η||η|−2
= l∗ (resp. yi

η||η|−1
−yi

η||η|−2
= −l∗) and η(|η|) = 0,

then choose yi
η = yi

η||η|−1
− l∗ (resp. yi

η = yi
η||η|−1

+ l∗).

– If |η| > 1, |yi
η||η|−1

−yi
η||η|−2

| = l∗ and η(|η|) = 1, then by �5 with probability
at least 1 − δ, E5

n,Si
η ,yi

η||η|−1

holds in Mn
p̄ , and hence we can choose yi

η that

satisfies (1)-(4).

At each step of the construction above the probability of “failure” is at most δ;
hence with probability at least 1−(l∗2k+2)δ = 1−ε we complete the construction.
It remains to show that indeed 〈yi

η : i ∈ In, η ∈ ≤k2〉 is a cycle free saturated
forest of depth k for I∗k in Mn

p̄ . This is straightforward from the definitions.
First each 〈yi

η : η ∈ ≤k2〉 is a saturated tree of depth k in [n] by its construction.
Second (ii) and (iii) in the definition of a saturated tree holds by (2) and (3)
above (respectively). Third note that by (4) each edge (y, y′) of our construction
satisfies E2

n,y,y′ and E4
n,y,y′ and hence (iv) and (v) (respectively) in the definition

of a saturated tree follows. Lastly we need to show that (c) in the definition of
a saturated forest holds. To see this note that if i1, i2 ∈ i∗k(Mn

p̄) then by the
definition of Si

η(Mn
p̄) there exists a path of length ≤ 2k from i1 to i2 with all its

vertices in Si
η(Mn

p̄). Now if x̄ is a path of length ≤ k from yi1
〈〉 to i2 and (yi1

〈〉 , i1)

is not an edge of x̄, then necessarily {yi1
〈〉 , i1} is included in some cycle of length

≤ 3k + 2. This is a contradiction to the choice of yi1
〈〉 . This completes the proof

of the claim. �

By 1 and the claim above we conclude that, for some large enough n ∈ N, there
exists a graph G = ([n],∼) such that:

1. G |= ¬φ[1].
2. Pr[Mn

p̄ = G] > 0.

Hereditary Zero-One Laws for Graphs 611

3. There exists 〈ȳi : i ∈ I∗r (G)〉, a cycle free saturated forest of depth r for
I∗r (G) in G.

Denote B = BG(1, r), I = I∗r (G), and we will prove that for some r-proper
(l, u0, U,H) ∈ H we have (B, 1) ∼= (H,u0) (i.e. there exists a graph isomorphism
from G|B to H mapping 1 to u0). As φ is r-local we will then have H |= ¬φ[u0]
which is a contradiction of our assumption and we will be done. We turn to the
construction of (l, u0, U,H). For i ∈ I let r(i) = r − distG(1, i). Denote

Y := {yi
η : i ∈ I, η ∈ <r(i)2}.

Note that by (ii)-(iii) in the definition of a saturated tree we have Y ⊆ B. We
first define a one-to-one function f : B → Z in three steps:

Step 1. For each i ∈ I define

Bi := {x ∈ B : there exists a path of length ≤ r(i) from x to i disjoint to Y }

and B0 := I ∪
⋃

i∈I Bi. Now define for all x ∈ B0, f(x) = x. Note that:

•1 f |B0 is one-to-one (trivially).
•2 If x ∈ B0 and distG(1, x) < r then x + l∗ ∈ [n] ⇒ x + l∗ ∈ B0 and

x− l∗ ∈ [n]⇒ x− l∗ ∈ B0 (use the definition of a saturated tree).

Step 2. We define f |Y . We start by defining f(y) for y ∈ ȳ1, so let η ∈ ≤r2
and denote y = y1

η. We define f(y) using induction on η where ≤r2 is ordered
by the lexicographic order. First if η = 〈〉 then define f(y) = 1 − l∗. If η �= 〈〉
let ρ : η||η|−1, and consider u := f(y1

ρ). Denote F = Fη := {f(y1
η′) : η′ <lex η}.

Now if u − l∗ �∈ F define f(y) = u − l∗. If u − l∗ ∈ F but u + l∗ �∈ F define
f(y) = u+ l∗. Finally, if u− l∗, u+ l∗ ∈ F , choose some l = lη such that pl > 0
and u−l < minF−rl∗−n, and define f(y) = u−l. Note that by our assumptions
{l : pl > 0} is infinite so we can always choose l as desired. Note further that we
chose f(y) so that f |ȳ1 is one-to-one. Now for each i ∈ I ∩ [1, l∗] and η ∈ <r(i)2,
define f(yi

η) = f(y1
η) + (f(i) − 1) (recall that f(i) = i was defined in Step 1,

and that k(i) ≤ k(1) so f(yi
η) is well defined). For i ∈ I ∩ (n − l∗, n] perform

a similar construction in “reversed directions”. Formally define f(yi
〈〉) = i + l∗,

and the induction step is similar to the case i = 1 above only now choose l such
that u+ l > maxF + rl∗ + n, and define f(y) = u+ l. Note that:

•3 f |Y is one-to-one.
•4 f(Y) ∩ f(B0) = ∅. In fact:
•+4 f(Y) ∩ [n] = ∅.
•5 If i ∈ I ∩ [1, l∗] then i− l∗ ∈ f(Y) (namely i− l∗ = f(yi

〈〉)).
•′5 If i ∈ I ∩ (n− l∗, n] then i+ l∗ ∈ f(Y) (namely i+ l∗ = f(yi

〈〉)).
•6 If y ∈ Y \ {yi

〈〉 : i ∈ I} and distG(1, y) < r then f(y) + l∗, f(y)− l∗ ∈ f(Y).
(Why? If distG(1, yi

η) < r then |η| < r(i), and the construction of Step 2).

612 S. Shelah and M. Doron

Step 3. For each i ∈ I and η ∈ <r(i)2, define Bi
η by

{x ∈ B : there exists a path of length ≤ r(i) from x to yi
η disjoint to Y \ {yi

η}}

and B1 :=
⋃

i∈I,η∈<r(i)2B
i
η.

We now make a few observations:

(α) If i1, i2 ∈ I then, in G there exists a path of length at most 2r from i1 to
i2 disjoint to Y . Why? By the definition of I and (c) in the definition of a
saturated forest.

(β) B0 and B1 are disjoint and cover B. Why? Trivially they cover B, and by
(α) and (iv) in the definition of a saturated tree they are disjoint.

(γ) 〈Bi
η : i ∈ I, η ∈ <r(i)2〉 is a partition of B1. Why? Again trivially they cover

B1, and by (iv) in the definition of a saturated tree they are disjoint.
(δ) If {x, y} is an edge of G|B then either x, y ∈ B0, {x, y} = {i, yi

〈〉} for some
i ∈ I, {x, y} ⊆ Y or {x, y} ⊆ Bi

η for some i ∈ I and η ∈ <r(i)2. (Use the
properties of a saturated forest.)

We now define f |B1 . Let 〈(Bj , yj) : j < j∗〉 be some enumeration of 〈(Bi
η, y

i
η) : i ∈

I, η ∈ <r(i)2〉. We define f |Bj by induction on j < j∗ so assume that f |(∪j′<jBj′)

is already defined, and denote: F = Fj := f(B0) ∪ f(Y) ∪ f(∪j′<jBj′). Our
construction of f |Bj will satisfy:

– f |Bj is one-to-one.
– f(Bj) is disjoint to Fj .
– If y ∈ Bj then either f(y) = y or f(y) �∈ [n].

Let 〈zj
s : s < s(j)〉 be some enumeration of the set {z ∈ Bj : G |= yj ∼ z}. For

each s < s(j) choose l(j, s) such that pl(j,s) > 0 and:

⊗ If k ≤ 4r, (m1, ...,mk) are integers with absolute value not larger than 4r
and not all equal 0, and (s1, ...sk) is a sequence of natural numbers smaller
than j(s) without repetitions, then |

∑
1≤i≤m(mi · l(j, si))| > n+ max{|x| :

x ∈ Fj}.

Again as {l : pl > 0} is infinite we can always choose such l(j, s). We now define
f |Bj . For each y ∈ Bj let x̄ = (x0, ...xk) be a path in G from y to yj , disjoint
to Y \ {yj}, such that k is minimal. So we have x0 = y, xk = yj, k ≤ r and x̄
is without repetitions. Note that by the definition of Bj such a path exists. For
each t in the range 0 ≤ t < k define

lt = lt(x̄) =

⎧⎨⎩
l(j, s) lx̄t = |yj − zj

s| for some s < s(j)
−l(j, s) lx̄t = −|yj − zj

s| for some s < s(j)
lx̄t otherwise.

Now define f(y) = f(yj)+
∑

0≤t<k lt. We have to show that f(y) is well defined.
Assume that both x̄1 = (x0, ...xk1) and x̄2 = (x′0, ...x′k1

) are paths as above. Then
k1 = k2 and x̄ = (x0, ..., xk1 , x

′
k2−1, ..., x

′
0) is a cycle of length k1+k2 ≤ 2r. By (v)

Hereditary Zero-One Laws for Graphs 613

in the definition of a saturated tree we know that for each s < s(j), |yj − zj
s| >

m2r. Hence as p̄ is without unavoidable cycles we have for each s < s(j) and
0 ≤ t < k1 + k2, if |lx̄t | = |yj − zj

s| then t ∈ Sym(x̄). (see Definition 26(6,7)).
Now put for w ∈ {1, 2} and s < s(j), m+

w(s) := |{0 ≤ t < kw : lx̄w
t = yj − zj

s}|
and similarly m−

w(s) := |{0 ≤ t < kw : −lx̄w
t = yj − zj

s}|. By the definition of x̄
we have, m+

1 (s)−m−
1 (s) = m+

2 (s)−m−
2 (s). But from the definition of lt(x̄) we

have for w ∈ {1, 2},∑
0≤t<kw

lt(x̄w) =
∑

0≤t<kw

lx̄w
t +

∑
s<s(j)

(m+
w(s)−m−

w(s))(l(j, s) − (yj − zj
s)).

Now as
∑

0≤t<k1
lx̄1
t =

∑
0≤t<k2

lx̄2
t we get

∑
0≤t<k1

lt(x1) =
∑

0≤t<k2
lt(x2) as

desired.
We now show that f |Bj is one-to-one. Let y1 �= y2 be in Bj . So for w ∈ {1, 2}

we have a path x̄w = (xw
0 , ...x

w
kw

) from yw to yj . As before, for s < s(j) denote
m+

w(s) := |{0 ≤ t < kw : lx̄w
t = yj − zj

s}| and similarly m−
w(s). By the definition

of fBj we have

f(y1)− f(y2) = y1 − y2 +
∑

s<s(j)

[(m+
1 (s)−m−

1 (s)) − (m+
2 (s)−m−

2 (s))] · l(j, s).

Now if for each s < s(j), m+
1 (s) −m−

1 (s) = m+
2 (s) −m−

2 (s) then we are done
as y1 �= y2. Otherwise note that for each s < s(j), |m+

1 (s)−m−
1 (s)| = |m+

2 (s)−
m−

2 (s)| ≤ 4r. Note further that |{s < s(j) : m+
1 (s)−m−

1 (s) = m+
2 (s)−m−

2 (s) �=
0}| ≤ 4r. Hence by ⊗, and as |y1 − y2| ≤ n we are done.

Next let y ∈ Bj and x̄ = (x0, ..., xk) be a path in G from y to yj . For
each s < s(j) define m+(s) and m−(s) as above, hence we have f(y) = yj +∑

s<s(j)(m
+(s)−m−(s))l(j, s). Consider two cases. First if (m+(s)−m−(s)) = 0

for each s < s(j) then f(y) = y. Hence f(y) �∈ f(B0) = B0 (by (β) above),
f(y) �∈ f(Y) (as f(Y) ∩ [n] = ∅) and f(y) �∈ f(∪j′<jBj′) (by (γ) and the
induction hypothesis). So f(y) �∈ Fj . Second assume that for some s < s(j),
(m+(s) − m−(s)) �= 0. Then by the ⊗ we have f(y) �∈ [n] and furthermore
f(y) �∈ Fj . In both cases the demands for f |Bj are met and we are done. After
finishing the construction for all j < j∗ we have f |B1 such that:

•7 f |B1 is one-to-one.
•8 f(B1) is disjoint to f(B0) ∪ f(Y).
•9 If y ∈ B1 and distG(1, y) < r then f(y) + l∗, f(y) − l∗ ∈ f(B1). In fact

f(y + l∗) = f(y) + l∗ and f(y − l∗) = f(y) − l∗. (By the construction of
Step 3.)

Putting •1 − •9 together we have constructed f : B → Z that is one-to-one and
satisfies:

(◦) If y ∈ B and distG(1, y) < r then f(y)+ l∗, f(y)− l∗ ∈ f(B). Furthermore:
(◦◦) {y, f−1(f(y)− l∗)} and {y, f−1(f(y) + l∗)} are edges of G.

614 S. Shelah and M. Doron

For (◦◦) use: •2 with the definition of f |B0 , •5+•′5 with the fact that G |= i ∼ yi
〈〉,

•6 with the construction of Step 2 and •9.
We turn to the definition of (l, u0, U,H) and the isomorphism h : B → H . Let

lmin = min{f(b) : b ∈ B} and lmax = max{f(b) : b ∈ B}. Define:

– l = lmin + lmax + 1.
– u0 = lmin + 2.
– U = {z + lmin + 1 : z ∈ Im(f)}.
– For b ∈ B, h(b) = f(b) + lmin + 1.
– For u, v ∈ U , H |= u ∼ v iff G |= h−1(u) ∼ h−1(v).

As f was one-to-one so is h, and trivially it is onto U and maps 1 to u0. Also
by the definition of H , h is a graph isomorphism. So it remains to show that
(l, u0, U,H) is r-proper. First (∗)1 in the definition of proper is immediate from
the definition of H . Second for (∗)2 in the definition of proper let u ∈ U be
such that distH(u0, u) < r. Denote y := h−1(u); then by the definition of H we
have distG(1, y) < r, hence by (◦), f(y) + l∗, f(y)− l∗ ∈ f(B) and hence by the
definition of h and U , u+ l∗, u− l∗ ∈ U as desired. Lastly to see (∗)3 let u, u′ ∈ U
and denote y = h−1(u) and y′ = h−1(u′). Assume |u − u′| = l∗; then by (◦◦)
we have G |= y ∼ y′ and by the definition of H , H |= u ∼ u′. Now assume that
H |= u ∼ u′; then G |= y ∼ y′. Using observation (δ) above and rereading 1-3
we see that |u−u′| is either l∗, |y− y′|, lη for some η ∈ <r2 (see Step 2) or l(j, s)
for some j < j∗, s < s(j) (see step 3). In all cases we have P|u−u′| > 0. Together
we have (∗)3 as desired. This completes the proof of Theorem 27. �

References

1. Gaifman, H.: On local and nonlocal properties. In: Proceedings of the Herbrand

symposium (Marseilles, 1981). Stud. Logic Found. Math., vol. 107, pp. 105–135.

North-Holland, Amsterdam (1982)

2. �Luczak, T., Shelah, S.: Convergence in homogeneous random graphs. Random Struc-

tures Algorithms 6(4), 371–391 (1995)

3. Shelah, S.: Hereditary convergence laws with successor (in preparation)

On Monadic Theories of Monadic Predicates

Wolfgang Thomas

RWTH Aachen University, Lehrstuhl Informatik 7, 52056 Aachen, Germany

thomas@informatik.rwth-aachen.de

For Yuri Gurevich on the occasion of his 70th birthday

Abstract. Pioneers of logic, among them J.R. Büchi, M.O. Rabin,

S. Shelah, and Y. Gurevich, have shown that monadic second-order logic

offers a rich landscape of interesting decidable theories. Prominent ex-

amples are the monadic theory of the successor structure S1 = (N,+1)

of the natural numbers and the monadic theory of the binary tree, i.e.,

of the two-successor structure S2 = ({0, 1}∗, ·0, ·1). We consider expan-

sions of these structures by a monadic predicate P . It is known that

the monadic theory of (S1, P) is decidable iff the weak monadic theory

is, and that for recursive P this theory is in Δ0
3, i.e. of low degree in

the arithmetical hierarchy. We show that there are structures (S2, P) for

which the first result fails, and that there is a recursive P such that the

monadic theory of (S2, P) is Π1
1 -hard.

Keywords: monadic second-order logic, tree automata, decidable

theories.

1 Introduction

Over the past century, starting with Löwenheim [16] in 1915, monadic second-
order logic has been developed as a framework in which decision procedures
can be provided for interesting theories of high expressive power. In building
this rich domain of effective logic, two techniques were crucial. The first was
based on the correspondence between monadic second-order formulas and finite
automata. This “match made in heaven” (cf. Vardi [28]) was first established
for weak monadic second-order logic over the successor structure S1 = (N,+1)
by Büchi, Elgot, and Trakhtenbrot. Büchi [2] and Rabin [19] extended this
to the full monadic second-order theory of S1 and of the binary tree S2 =
({0, 1}∗, ·0, ·1). The logic-automata connection first led to the decidability of
MT(S1) and MT(S2), the monadic second-order theories of S1 and S2, respec-
tively (or shorter: the “monadic theory” of these structures). The results were
extended to many further logical systems and led to new approaches in verifica-
tion, data base theory, and further areas of computer science.

A. Blass, N. Dershowitz, and W. Reisig (Eds.): Gurevich Festschrift, LNCS 6300, pp. 615–626, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

616 W. Thomas

The second technique, technically more demanding but more general in its
scope, is the “composition method” as developed by Shelah [24] (building on
earlier work by Ehrenfeucht, Fräıssé, Läuchli, and others). The idea here is to
consider finite fragments of a theory and to compose such theory-fragments ac-
cording to the combination of models. The method has been applied successfully
over orderings, trees, and graphs. Over orderings, the “combination” is concate-
nation. Shelah’s work provided a deep analysis of monadic theories of orderings
where automata do not help (or at least are hard to imagine), for example over
dense orderings.

In both approaches, Yuri Gurevich has played a central role and contributed
most influential papers. For the automata theoretic approach, it might suffice to
recall his path-breaking work with Harrington [12] on the monadic second-order
theory of the binary tree. As an example of his papers involving the composition
method, we mention the work [13,14] which explains over which “short” orderings
(neither embedding ω1 nor its reverse) the monadic theory is decidable. For the
reader who wants to enter the field, Yuri’s survey Monadic second-order theories
[11] is still the first choice.

In the present paper, a very small mosaic piece is added to this rich picture.
We consider the expansions of the binary tree S2 by recursive monadic predicates
P . We study which complexity (on the scale of recursion theory) the monadic
second-order theory of such an expansion (S2, P) can have, and we compare the
weak and the strong monadic second-order theory of the structures (S2, P).

As a starting point we take the corresponding results on expansions of the
successor structure S1 by recursive predicates. We recall (in Sect. 2) that for
recursive P ⊆ N, the monadic theory of (S1, P) belongs to a low level of the
arithmetical hierarchy, namely to the class Δ0

3. It is also known that for any
monadic predicate P , the unrestricted monadic theory of (S1, P) is decidable
iff the weak monadic theory is (where set quantification is restricted to finite
sets). In contrast, we show in Sect. 3 that for recursive P the monadic theory
of (S2, P), which in general is confined to the analytical class Δ1

2, can be Π1
1 -

hard. In Sections 4 and 5 we prove that there is a predicate P such that the weak
monadic theory of (S2, P) is decidable but the full monadic theory is undecidable.
For the proofs, both the automata theoretic and the composition method are
useful.1

We assume that the reader is familiar with the basics of the subject. We use
standard terminology on monadic theories, automata, and recursion theory (see,
e.g., [10,11,21,27]).

1 The second result should be attributed to the late Andrei Muchnik; it is stated

in a densely written abstract Automata on infinite objects, monadic theories, and
complexity of the Dagstuhl seminar report [7] of 1992. This abstract, written jointly

by A. Muchnik and A.L. Semenov, lists – in a dozen of lines – ten topics and results,

among them “an example of predicate on tree for which the weak monadic theory

is decidable and the monadic theory undecidable”. A manuscript with Muchnik’s

proof does not seem to exist. The talk itself, which was a memorable scientific event

appreciated by all who attended (among them the present author), dealt with a

different result, the “Muchnik tree iteration theorem”; see for example [1].

On Monadic Theories of Monadic Predicates 617

2 The Monadic Theory of Structures (S1, P)

Let us recall some well-known facts on structures (S1, P). First we remark that
for recursive P the theory MT(S1, P) may be undecidable:

Proposition 1. There is a recursive predicate P ⊆ N such that MT(S1, P) (and
even the first-order theory FT(S1, P)) is undecidable.

Proof. Let Q be a non-recursive, recursively enumerable set of natural numbers
with effective enumeration j0, j1, j2, From this enumeration we define P . We
present the characteristic sequence χP of P (with χP (i) = 1 iff i ∈ P , else
χP (i) = 0):

χP = 1 0j0 1 0j1 1 0j2 1

Clearly χP (and hence P) is recursive. We have

n ∈ Q iff (S1, P) |= ∃x(P (x) ∧
n∧

i=1

¬P (x+ i) ∧ P (x+ n+ 1)) ,

where x+i indicates the i-fold application of “+1” to x. So Q is 1-reducible even
to the first-order order theory of (S1, P). Hence also MT(S1, P) is undecidable.

�

The set P of prime numbers gives an interesting example of a predicate P where
the status of MT(S1, P) is unknown. Observing that we can express the order
relation < over N in monadic logic over S1, we note that the (open) twin prime
hypothesis is expressible by the sentence

∀x∃y (x < y ∧ P(y) ∧ P(y + 2)).

Hence it will be hard to show decidability of MT(S1,P); for a detailed analysis
see [4]. On the other hand, no “natural” examples of predicates P are known
such that MT(S1, P) is undecidable. The known undecidability results rely on
predicates built for the purpose, as in Proposition 1 above.

The conversion of monadic formulas into automata provides nice examples of
predicates P where MT(S1, P) is decidable. We use the results of Büchi [2] and
McNaughton [17] which together yield a transformation from monadic formulas
to deterministic ω-automata: For each monadic second-order formula ϕ(X) in
the monadic second-order language of S1 = (N,+1) one can construct a deter-
ministic Muller automaton Aϕ such that for each predicate Q

S1 |= ϕ[Q] iff Aϕ accepts χQ.

We can use the left-hand side for a fixed predicate P , replacing in ϕ(X) each
occurrence of X by the predicate constant P . Then we have for each sentence ϕ
of the monadic second-order language of the structure (S1, P):

(S1, P) |= ϕ iff Aϕ accepts χP .

618 W. Thomas

This reduces the decision problem for the theory MT(S1, P) to the following
acceptance problem AccP : Given a Muller automaton A over the input alphabet
{0, 1}, does A accept χP ?

This reduction can be exploited in a concrete way, regarding example predi-
cates P , and also in a general way, regarding the recursion theoretic complexity
of theories MT(S1, P).

Concrete examples of predicates P such that MT(S1, P) is decidable were first
proposed by Elgot and Rabin [9], namely, the set of factorial numbers, the set
of k-th powers and the set of powers of k, for each k > 1. The idea is to solve
the acceptance problem AccP as follows: A given automaton A accepts χP iff
A accepts a modified sequence χ′ where the distances between successive letters
1 are contracted below a certain length (a contracted 0-segment just should
induce the same state transformation as the original one and should cause the
automaton to visit the same states as the original one). In each of the cases
mentioned above (factorials, k-th powers, powers of k), the contracted sequence
χ′ turns out to be ultimately periodic (where phase and period depend on A).
So one can decide whether A accepts χ′ and hence whether it accepts χP . The
method has been extended to further predicates (see e.g. [8]), and criteria for
the decidability of MT(S1, P) have been developed in [23,4,22].

For the general aspect we analyze the acceptance problem AccP for a Muller
automaton A = (S,Σ, s0, δ,F) in more detail. As usual, we write S for the set
of states, Σ for the input alphabet, s0 for the initial state, δ for the transition
function from S × Σ to S, and F ⊆ 2S for the acceptance component; recall
that A accepts an input word α if the set of states visited infinitely often in the
unique run of A on α coincides with a set in F . Let us write δ(s0, α[0, j]) for
the state reached by A after processing the initial sement α(0) . . . α(j). Then,
taking α = χP , the automaton A accepts χP iff the following condition holds:

(∗)A,P

∨
F∈F

(∧
s∈F (∀i∃j > i δ(s0, χP [0, j]) = s)

∧
∧

s∈S\F (¬∀i∃j > i δ(s0, χP [0, j]) = s)
) .

Assuming that P is recursive, we obtain a reduction of the decision problem for
MT(S1, P) to Boolean combinations of conditions that are in Π0

2 ; note that the
condition δ(s0, χP [0, j]) = s can be decided if P is recursive. By relativization,
and using recursion theoretic terminology, we obtain for arbitrary P ⊆ N:

MT(S1, P) ≤tt P ′′.

Here ≤tt is truth-table reducibility and P ′′ is the second jump of P . (In [25]
it is shown that the slightly sharper bounded truth-table reducibility does not
suffice.) We conclude the following fact, first noted in [3]:

Proposition 2. ([3]) For each recursive P ⊆ N, the theory MT(S1, P) belongs
to the class Δ0

3 of the arithmetical hierarchy.

In particular, it is not possible to show the undecidability of a theory MT(S1, P)
by a reduction of true first-order arithmetic to it.

On Monadic Theories of Monadic Predicates 619

A second consequence of the formulation (∗)A,P is a reduction of the strong
monadic language over (S1, P) to the weak monadic language. For this we observe
that the condition (∗)A,P from above can be formalized in the weak monadic
language over (S1, P); note that the statement “δ(s0, χP [0, x]) = s” involves only
a finite run (up to position x) and hence can be expressed by a weak monadic
formula ψs(y). This shows that for each monadic sentence ϕ one can construct
an equivalent weak monadic sentence ϕ′ such that (S1, P) |= ϕ iff (S1, P) |= ϕ′

(in ϕ′ we use a definition of < in weak monadic logic over S1). So we obtain:

Proposition 3. For each P ⊆ N: MT(S1, P) is decidable iff WMT(S1, P) is
decidable.2

Our aim in the subsequent sections is to show that both propositions fail when
we consider the binary tree S2 instead of the successor structure S1.

3 A Recursive Predicate Where MT(S2, P) Is Π1
1 -Hard

In the same way as described above for theories MT(S1, P), the automata theo-
retic approach can be applied to study the complexity of the monadic theory of
an expansion (S2, P) of the binary tree. Here we identify a structure (S2, P) with
a {0, 1}-labelled tree tP which has label 1 at node u iff u ∈ P . We know from
Rabin’s Tree Theorem [19] that for each monadic sentence ϕ in the language of
(S2, P) one can construct a Rabin tree automaton Aϕ such that

(S2, P) |= ϕ iff Aϕ accepts tP .

For recursive P , the right-hand side is a Σ1
2 -statement of the form ∃X∀Y ψ(X,Y)

with first-order formula ψ, namely, “there is an Aϕ-run on tP such that each
infinite path of this run satisfies the Rabin acceptance condition”. Since Rabin
automata are closed under complement, the statement can also be phrased in
Π1

2 -form. This proves the first statement of the following result:

Theorem 1. For recursive P ⊆ {0, 1}∗, the theory MT(S2, P) belongs to the
class Δ1

2, and there is a recursive P ⊆ {0, 1}∗ such that MT(S2, P) is Π1
1 -hard.

For the proof of the second statement we have to find a recursive P such that
a known Π1

1 -complete set is reducible to MT(S2, P). As Π1
1 -complete set we

use a coding of finite-path trees (cf. [21, Ch. 16.3]). We work with the infinitely
branching tree Sω whose nodes are sequences (n1, . . . nk) of natural numbers.
The empty sequence is the root, and the nodes (n1, . . . , nk, i) are the successors
of (n1, . . . , nk). Paths in Sω are defined accordingly. We say that a subset S
of Sω defines a finite-path tree if S is closed under taking predecessors and if
it does not contain an infinite path. For a recursion theoretic treatment, we
use a computable bijective coding of the finite sequences over N by natural

2 Although this Proposition is very close to Proposition 2, a result of [3], it was left as

an open problem in [3]. In a more general context an answer was then given in [26].

620 W. Thomas

numbers, writing 〈n1, . . . , nk〉 for the code of (n1, . . . , nk). Furthermore, we refer
to a standard numbering of the partial recursive functions; we write fe for the
function with number e. A function f : N → N is the characteristic function of
a finite-path tree if

1. f is total and has only values 0 or 1,
2. the set {(n1, . . . , nk) | f(〈n1, . . . , nk〉) = 1} defines a finite-path tree.

Let

FPT = {e ∈ N | fe is characteristic function of a finite-path tree}.

We use the following fact (see [21, Ch. 16.3]):

Proposition 4. FPT is a Π1
1 -complete set of natural numbers.

Proof of Theorem 1: It suffices to define a recursive set P of nodes of the binary
tree S2 such that for each number e we can construct a monadic second-order
sentence ϕe with

e ∈ FPT iff (S2, P) |= ϕe.

We build the structure (S2, P) as a sequence of {0, 1}-labelled trees t0, t1, . . .
attached to the rightmost branch of S2. So the root of te is the node re :=
1e0. In the tree te we obtain a copy of Sω : Its node (n1, . . . , nk) is coded by
re1n1+101n2+1 . . . 1nk+10. The predicate P will only apply to nodes of the left-
most branch starting in such a node. We define P by attaching labels 0 and 1 to
the nodes re1n1+101n2+1 . . . 1nk+10i for i = 1, 2, 3 All other nodes get label
0 by default.

In order to define the labelling, we imagine an effective procedure P that
computes, in a dovetailed fashion, the values fe(〈n1, . . . , nk〉) of all functions
fe simultaneously. So the procedure treats each pair (e, 〈n1, . . . , nk〉) again and
again, and when dealing with this pair it progresses with the computation of
fe(〈n1, . . . , nk〉) for one further step (unless a value has been computed already).
Consider the i-th step of P (i = 1, 2, 3, . . .). It will determine the bit label at-
tached to all the nodes re1n1+101n2+1 . . . 1nk+10i, reporting on the current status
of the computation of fe(〈n1, . . . , nk〉) at P-step i. If the i-th P-step produces the
value fe(〈n1, . . . , nk〉) then we attach label 1 to the node re1n1+10 . . . 1nk+10i,
for all other nodes re′1m1+101m2+1 . . . 1mk′+10i we attach label 0. In fact, when
we find a value for fe(〈n1, . . . , nk〉), we attach to the nodes re1n1+10 . . . 1nk+10j

for j = i, i+1, i+ 2 the labels 100, respectively 110, respectively 111, depending
on whether the computation of fe(〈n1, . . . , nk〉) produced value 0, 1, or > 1,
respectively. After such a block of letters 1 on the path re1n1+10 . . . 1nk+10ω, all
subsequent labels will be 0.

Clearly this attachment of labels defines a recursive predicate over S2. ¿From
the labels on the 0ω-parts of the paths re1n1+10 . . . 1nk+10ω (for fixed e) we
can infer whether fe is a characteristic function, i.e., whether for all tuples
(n1, . . . , nk) the value fe(〈n1, . . . , nk〉) is defined and either 0 or 1: This hap-
pens if for all (n1, . . . , nk), on the 0ω-part of re1n1+10 . . . 1nk+10ω precisely one

On Monadic Theories of Monadic Predicates 621

or two labels 1 occur. (Let us call such a path associated to (n1, . . . , nk) “once
1-labelled”, respectively “twice 1-labelled”.) So, using P , we can easily express
in monadic logic for any given e whether fe is a characteristic function. The
function fe is the characteristic function of a finite-path tree if moreover the
nodes re1n1+10 . . . 1nk+10 whose associated path is twice 1-labelled form a set
that that is closed under prefixes (i.e., there is no prefix whose associated path
is only once 1-labelled), and that each path through re(1+0)ω eventually hits a
node outside the coded tree, i.e., a node whose associated path is only once 1-
labelled. All these conditions can be expressed by a monadic sentence ϕe. Hence
we have e ∈ FPT iff (S2, P) |= ϕe, as desired. �

4 Some Background on Types and Tree Automata

For the comparison between the weak and the strong monadic theory of struc-
tures (S2, P), we need some preparations concerning “types” (i.e., finite theory
fragments) and concerning tree automata. For a more detailed treatment, the
reader can consult [11] or [27].

For the analysis of weak monadic logic over structures (S2, P), it is convenient
to use a syntax in which only second-order variables X,Y, Z, . . . are present. As
atomic formulas we use X ⊆ Y , Sing(X) (“X is a singleton”), Si(X,Y) for
i = 0, 1 (“X,Y are singletons, and the element of X has the element of Y as the
i-th successor”), and X ⊆ P . Formulas are built up from atomic formulas by
means of Boolean connectives and the (weak monadic) quantifiers ∃, ∀. It is clear
that this relational language is equivalent in expressive power to the original one
with first-order and weak monadic second-order quantifiers and the (functional)
signature with symbols for the functions ·0 and ·1.

As in the previous section, we identify a structure (S2, P) with a {0, 1}-labelled
tree tP , i.e. with a mapping tP : {0, 1}∗ → {0, 1}. Conversely, each {0, 1}-
labelled infinite binary tree t induces a structure (S2, Pt); we freely use this
correspondence and mean by “tree” always a {0, 1}-labelled infinite tree. The set
of all these trees is denoted by T{0,1}. A tree t is regular if it has only finitely many
non-isomorphic subtrees (or equivalently, if a finite Moore automaton generates t
by producing the label t(u) after processing the input word u). It is well-known
that a regular tree is definable in the weak monadic language over S2; so its
(weak and strong) monadic theory is decidable.

Let m > 1. Two trees s, t are m-equivalent (short: s ≡m t) if they satisfy
the same weak monadic sentences (of the relational signature just introduced)
of quantifier depth ≤ m. There are finitely many equivalence classes, called m-
types. Each m-type τ is definable by a weak monadic sentence ϕτ which again
is of quantifier depth m. As finite representations of an m-type τ we use such a
sentence ϕτ defining it.

In the sequel we shall work with natural compositions of trees and correspond-
ing compositions of m-types. First we consider the combination of two trees via
a 0-labelled or 1-labelled root: For two trees s, t let 0 · 〈s, t〉, respectively 1 · 〈s, t〉,
be the tree with a 0-, respectively 1-labelled root and s, t as its left and right sub-
tree. Next, we consider the composition of a given infinite sequence t0, t1, t2, . . .

622 W. Thomas

of trees or of a sequence (s0, t0), (s1, t1), . . . of pairs of trees. In the first case we
attach the trees t0, t1, . . . along the 0-labelled right-hand branch of the binary
tree: We insert the tree ti at the node 1i0; i.e., the root of t0 is node 0, the root
of t1 is 10, etc., and – as mentioned – the right-hand branch 1ω is labelled 0.
The resulting tree we denote as [t0, t1, . . .]. In the second case we consider the
two sons of the nodes 0, 10, 110 etc. and insert si at the left son of 1i0 and ti at
the right son of 1i0. The nodes 1i and 1i0 are all labelled 0. We denote the tree
obtained in this way as [(s0, t0), (s1, t1), . . .].

A simple Ehrenfeucht-Fräıssé type argument now shows the following lemma:
Lemma 1. Let m > 1.

(a) The m-types σ of s and τ of t determine the m-types of 0 · 〈s, t〉 and 1 · 〈s, t〉
and these types are computable from σ, τ .
(b) If ti ≡m t′i for i > 0 then [t1, t2, . . .] ≡m [t′1, t′2, . . .]. Similarly, if si ≡m s′i
and ti ≡m t′i, then [(s0, t0), (s1, t1), . . .] ≡m [(s′0, t

′
0), (s

′
1, t

′
1), . . .].

(c) If the sequence τ0, τ1, . . . of m-types of t0, t1, . . . is ultimately perdiodic, say
of the form τ0 . . . τk−1(τk . . . τ�−1)ω, then the m-type of [t0, t1, . . .] is determined
by the types τ1, . . . , τ�−1 and computable from them.

Next we turn to prerequisites from tree automata theory, mainly using the con-
cept of Büchi tree automaton (see e.g. [27] for details) and a fundamental exam-
ple due to Rabin [20] which shows their expressive weakness in comparison with
Rabin tree automata. Rabin presented a tree language T0 which is definable in
monadic logic (or by a Rabin tree automaton) but which is not recognizable by
a Büchi tree automaton. It is a variant of the language of finite-path trees:

T0 = {t ∈ T{0,1} | on each path of t there are only finitely many letters 1}.

We have to recall the construction of Rabin since we exploit it below. For n ≥ 0
define the tree tn inductively as follows:

1. t0 has a 1-labelled root and is otherwise labelled 0.
2. tn+1 has a 1-labelled root, otherwise a 0-labelled right-hand branch 1ω, a

0-labelled left subtree, and a copy of tn inserted at each node in 1+0.
So

tn(u) = 1 iff (u = ε or u ∈ 1+0 + (1+01+0) + . . .+ (1+0)n).

Let us verify that the m-type of tn determines the m-type of tn+1 (and that the
latter can be computed from the former): By Lemma 1 (c) we can compute the
m-type of the right-hand subtree of the root of tn+1 from the m-type of tn (note
that the copies of tn give a constant and hence periodic sequence of m-types).
The left-hand subtree of the root of tn+1 is labelled 0; we can compute its m-type
(since it is regular). Now Lemma 1 (a) yields the claim. So there is a map F over
the finite domain of m-types that produces the m-type of tn+1 from the m-type
of tn. Starting with the m-type τ0 of t0, we obtain with the values F (i)(τ0) an
ultimately periodic sequence. We summarize:

Lemma 2. The m-types of the trees t0, t1, t2, . . . form a computable ultimately
periodic sequence τ0 . . . τk−1(τk . . . τ�−1)ω.

On Monadic Theories of Monadic Predicates 623

Clearly, each tree tn belongs to T0. We use the following lemma shown in [20]
(see also [27]):

Lemma 3. For each Büchi tree automaton A with < n states accepting tn one
can construct a regular tree t′n �∈ T0 which is again accepted by A.

Let us sketch the proof. Assume that the Büchi tree automaton A with < n
states and the set F of final states accepts tn. Then one can construct a regular
run & of A on tn (since tn is regular and accepted). We define a path in & as
follows: Pick a node u1 = 1k1 on the right-hand branch where &(1k1) ∈ F . Pick
a node u2 = 1k101k2 on the right-hand branch starting in 1k10 where again
&(u2) ∈ F , and so on until such a node un = 1k101k2 . . . 1kn with &(un) ∈ F
is chosen. These nodes exist since on each path of & infinitely many visits of F
occur. Now tn(ui0) = 1 for i = 1, . . . , n by definition of tn. Since A has < n
states, there are ui, uj with i < j such that &(ui) = &(uj); observe that between
these nodes a 1-labelled node of tn occurs (for example at ui0). Repeating the
tn-segment determined by the path segment from ui (included) to uj (excluded)
indefinitely, we obtain a regular tree t′n which is accepted by A and which has a
path with infinitely many labels 1.

A set of trees definable in weak monadic logic is easily seen to be recognized
by a Büchi tree automaton. So the lemma also shows that T0 is not definable in
weak monadic logic.

5 Comparing Weak and Strong Monadic Logic

The aim of this section is to show the following:

Theorem 2. There is a predicate P ⊆ {0, 1}∗ such that WMT(S2, P) is deci-
adable and MT(S2, P) undecidable.

We shall start with a tree tω which for each given quantifier depth m is m-
equivalent to an effectively constructible regular tree. This gives us the decid-
ability of the weak monadic theory of tω. Then we modify tω first to a tree sω

and then to a tree t′ω such that for each quantifier depth m the trees tω, sω,
and t′ω cannot be distinguished by m-types from some computable level onwards
(which ensures that the weak monadic theory of t′ω is also decidable). However,
t′ω will be constructed such that in the full monadic theory an undecidability
proof as for Proposition 1 can be carried through.

Proof of Theorem 2: Define, using the trees ti of the previous section,

tω := [(t0, t0), (t1, t1), (t2, t2), . . .].

By Lemma 2, for each given m the tree tω is m-equivalent to an effectively
constructible regular tree; just take a fixed representative for each m-type τ that
appears in the ultimately periodic sequence of m-types of the trees 0 · 〈t0, t0〉, 0 ·
〈t1, t1〉, . . . (use Lemma 2 and Lemma 1 (a)). Hence the weak monadic theory of
tω is decidable.

624 W. Thomas

As a next step we now construct a tree sω from tω. First we pick, for each
m-type τ (m = 1, 2, . . .), a Büchi tree automaton Aτ that defines τ . Let nτ be
the number of states of Aτ . Define

Nm := max{nτ | τ is m-type} + 1.

These numbers Nm will be called special below.
Consider tNm ; denote by τ its m-type. Then Aτ accepts tNm . The number of

states of Aτ is < Nm. By Lemma 3, we can construct a tree t′Nm
�∈ T0 that is

again accepted by Aτ ; so its m-type is τ . We conclude

(∗) tNm ≡m t′Nm
and also tNi ≡m t′Ni

for i > m.

Now let sω be obtained from tω = [(t0, t0), (t1, t1), (t2, t2), . . .] by replacing, for
each m > 1, the pair (tNm , tNm) of subtrees by (t′Nm

, tNm). By Lemma 1 (b), for
each m, the subtree of sω with root 1Nm is m-equivalent to the corresponding
subtree of tω (note that tNi ≡m t′Ni

for i ≥ m). Hence also sω is m-equivalent
to an effectively constructible regular tree, and thus its weak monadic theory is
decidable.

We now focus on the “special numbers” Nm (including N0 which is set to 0).
A tree node 1n is called special if n is special. It is worth noting that the set of
special tree nodes 1n of sω is definable in monadic logic: A node 1n is special
iff the subtree with root 1n00 does not belong to the tree language T0, which in
turn is definable in (strong!) monadic logic.

Now, copying Proposition 1, we code a non-recursive, recursively enumerable
set Q with enumeration j0, j1, . . . on the domain S of special numbers. We in-
troduce a marker on a special number Ni when in the proof of Proposition 1
the value 1 was chosen for i. So the number N0 is marked, the next j0 special
numbers are unmarked, the special number Nj0+1 is marked, the next j1 spe-
cial numbers are unmarked, and so on. For each marked Ni we modify the entry
(t′Ni

, tNi) of sω to (t′Ni
, t′Ni

), thus obtaining the desired tree t′ω, or in other words,
the desired predicate P over S2. Again we call a node 1n marked if n is marked.

We finish the proof by verifying that the weak monadic theory of t′ω is decid-
able and that the strong monadic theory of t′ω is undecidable.

For the first claim, one observes, using (∗), that exactly as for the tree sω,
also t′ω is m-equivalent to an effectively constructible regular tree, for each given
m > 0. For the second claim we use the following equivalence, regarding the
considered non-recursive set Q: n ∈ Q iff there are two marked and special
nodes 1k, 1k′

in t′ω such that there are exactly n special nodes between them, all
of them unmarked. Clearly this condition is expressible in monadic logic. Hence
Q is 1-reducible to the monadic theory of t′ω (=: (S2, P)). �

6 Conclusion

The study of the monadic theory of structures (S2, P) with monadic predicate
P seems far from finished. Let us list three open problems.

On Monadic Theories of Monadic Predicates 625

1. More examples of predicates P shold be found such that MT(S2, P) is decid-
able. The “contraction method” of Elgot and Rabin [9] has been transferred
to the binary tree by Montanari and Puppis [18], but it seems that not many
interesting predicates are (as yet) manageable by this approach. For exam-
ple, consider predicates induced by the binary representations (or inverse
binary representations) of numbers of interesting sets S ⊆ N. For the powers
of 2, the corresponding predicate P with the nodes 0, 10, 100, . . . is a defin-
able set, whence the monadic theory of (S2, P) is decidable. What about the
corresponding predicate for the set of squares?

2. The lack of a deterministic automaton model over trees (capturing monadic
logic over the binary tree) may be considered as the deeper reason for the
result of Sect. 3 that the theory MT(S2, P) can be non-arithmetical for re-
cursive P . However, this leaves open the question whether an undecidability
proof for such a theory can be done via a reduction of true first-order arith-
metic. A partial (negative) answer follows from work of Gurevich and Shelah
[15] on the uniformization problem for monadic logic over S2; it is shown
there that no well-ordering of S2 exists that is definable in monadic logic. A
more recent treatment, also covering definability in structures (S2, P) with
monadic P , is given in [5,6]: The structure (N, <) (and hence (N,+, ·)) is not
monadic second-order interpretable in a structure (S2, P) (even with non-
recursive P) when the universe N is represented by the full domain of the
binary tree.

3. A natural question, already raised at the end of Rabin’s paper [20] (and
attributed there to H. Gaifman), is concerned with decidability of weak de-
finability: Can one decide for a monadic formula ϕ(X1, . . . , Xn) interpreted
over S2 whether it is equivalent to a formula of weak monadic logic?

Acknowledgment

Many thanks are due to Nachum Dershowitz for his patience and help and to
Christof Löding and Alex Rabinovich for their comments.

References

1. Berwanger, D., Blumensath, A.: The monadic theory of tree-like structures. In:

Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and Infinite Games.

LNCS, vol. 2500, pp. 285–302. Springer, Heidelberg (2002)

2. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Nagel,

E., et al. (eds.) Logic, Methodology, and Philosophy of Science: Proceedings of the

1960 International Congress, pp. 1–11. Stanford Univ. Press, Stanford (1962)

3. Büchi, J.R., Landweber, L.H.: Definability in the monadic second-order theory of

successor. J. Symb. Logic 34, 166–170 (1969)

4. Bateman, P.T., Jockusch, C.G., Woods, A.R.: Decidability and undecidability of

theories with a predicate for the primes. J. Symb. Logic 58, 672–687 (1993)

5. Carayol, A., Löding, C.: MSO on the infinite binary tree: Choice and order. In: Du-

parc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 161–176. Springer,

Heidelberg (2007)

626 W. Thomas

6. Carayol, A., Löding, C., Niwiński, D., Walukiewicz, I.: Choice functions and well-

orderings over the infinite binary tree. Central Europ. J. of Math. (to appear)

7. Compton, K., Pin, J.E., Thomas, W. (eds.): Automata Theory: Infinite Computa-

tions. Dagstuhl Seminar Report 9202 (1992)

8. Carton, O., Thomas, W.: The monadic theory of morphic infinite words and gen-

eralizations. Information and Computation 176, 51–76 (2002)

9. Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second

(first) order theory of (generalized) successor. J. Symb. Logic 31, 169–181 (1966)

10. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.

LNCS, vol. 2500. Springer, Heidelberg (2002)

11. Gurevich, Y.: Monadic theories. In: Barwise, J., Feferman, S. (eds.) Model-

Theoretic Logics, pp. 479–506. Springer, Berlin (1985)

12. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proc. 14th STOC,

pp. 60–65 (1982)

13. Gurevich, Y.: Modest theory of short chains. J. Symb. Logic 44, 481–490 (1979)

14. Gurevich, Y., Shelah, S.: Modest theory of short chains II. J. Symb. Logic 44,

491–502 (1979)

15. Gurevich, Y., Shelah, S.: Rabin’s uniformization problem. J. Symb. Logic 48, 1105–

1119 (1983)

16. Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Math. Ann. 76, 447–470

(1915)

17. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.

Inf. Contr. 9, 521–530 (1966)

18. Montanari, A., Puppis, G.: A contraction method to decide MSO theories of de-

terministic trees. In: Proc. 22nd IEEE Symposium on Logic in Computer Science

(LICS), pp. 141–150

19. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.

Trans. Amer. Math. Soc. 141, 1–35 (1969)

20. Rabin, M.O.: Weakly definable relations and special automata. In: Bar-Hillel, Y.

(ed.) Math. Logic and Foundations of Set Theory, pp. 1–23. North-Holland, Ams-

terdam (1970)

21. Rogers, H.: The Theory of Recursive Functions and Effective Computability.

McGraw-Hill, New York (1967)

22. Rabinovich, A., Thomas, W.: Decidable theories of the ordering of natural numbers

with unary predicates. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 562–574.

Springer, Heidelberg (2006)

23. Semenov, A.: Decidability of monadic theories. In: Chytil, M.P., Koubek, V. (eds.)

MFCS 1984. LNCS, vol. 176, pp. 162–175. Springer, Heidelberg (1984)

24. Shelah, S.: The monadic theory of order. Ann. Math. 102, 379–419 (1975)

25. Thomas, W.: The theory of successor with an extra predicate. Math. Ann. 237,

121–132 (1978)

26. Thomas, W.: On the bounded monadic theory of well-ordered structures. J. Symb.

Logic 45, 334–338 (1980)

27. Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Language Theory, vol. 3. Springer, New York (1997)

28. Vardi, M.Y.: Logic and Automata: A match made in heaven. In: Baeten, J.C.M.,

Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,

pp. 64–65. Springer, Heidelberg (2003)

Author Index

Artemov, Sergei 61

Avron, Arnon 75

Bès, Alexis 95

Bjørner, Nikolaj 504

Blass, Andreas 1, 108

Boker, Udi 135, 147

Cégielski, Patrick 165

Chen, Yijia 251

Crouch, Michael 181

Dawar, Anuj 201

Dershowitz, Nachum 1, 135

Doron, Mor 581

Durand, Bruno 208

Eiter, Thomas 227

Ferbus-Zanda, Marie 301

Flum, Jörg 251

Furia, Carlo Alberto 277

Gottlob, Georg 227

Grigorieff, Serge 301

Grohe, Martin 328

Guessarian, Irène 165

Hodges, Wilfrid 354

Huggins, James K. 405

Immerman, Neil 181

Jackson, Marcel 414

Kotek, Tomer 444

Kozen, Dexter 463

Kreinovich, Vladik 470

Kupferman, Orna 147

Lahav, Ori 75

Lifschitz, Vladimir 488

Makowsky, Johann A. 444

Mera, Sergio 504

Meyer, Bertrand 277

Mints, Grigori 529

Moss, J. Eliot B. 181

Moss, Lawrence S. 538

Rabinovich, Alexander 95

Reisig, Wolfgang 1

Romashchenko, Andrei 208

Rossman, Benjamin 565

Schwentick, Thomas 227

Shelah, Saharon 581

Shen, Alexander 208

Thomas, Wolfgang 615

Van den Bussche, Jan 49

Volkov, Mikhail 414

Wallace, Charles 405

	Title Page
	Preface
	Table of Contents
	On Yuri Gurevich
	Yuri, Logic, and Computer Science
	Annotated List of Publications of Yuri Gurevich

	Database Theory, Yuri, and Me
	Database Theory
	Typed Template Dependencies
	Database Queries
	The QPTIME Problem
	Datalog vs. First-Order Logic
	Metafinite Structures
	Honorary Doctorate
	Choiceless Polynomial Time
	Finite Cursor Machines, Stream Queries
	Conclusion
	References

	Technical Papers
	Tracking Evidence
	Introduction
	Basics of Justification Logic
	Epistemic Semantics
	Correspondence between Modal and Justification Logics

	Russell's Example: Induced Factivity
	Two-Agent Setting: Observer and Object Agent
	Some Model Theory
	Distinguishing Induced Factivity
	Observer's Factivity

	Conclusions
	References

	Strict Canonical Constructive Systems
	Introduction
	Strict Canonical Constructive Systems
	Natural Deduction Version

	Semantics for Strict Canonical Constructive Systems
	Soundness, Completeness, Cut-Elimination
	Analycity and Decidability
	Related Works and Further Research
	References

	Decidable Expansions of Labelled Linear Orderings
	Introduction
	Definitions, Notations and Useful Results
	Labelled Linear Orderings
	Logic
	Composition Theorems

	The Case of N
	The Case of Z
	Main Result
	Further Results and Open Questions
	References

	Existential Fixed-Point Logic, Universal Quantifiers, and Topoi
	Introduction to EFPL
	Good Behavior of EFPL
	Capturing PTime
	Hoare Logic and Expressivity
	Finite Determination
	No Transfinite Iteration
	Homomorphisms
	Topoi and Geometric Morphisms

	Implications between Good Behaviors
	Geometric Preservation Implies Homomorphism Preservation
	Geometric Preservation Implies Finite Determination

	Negation and Universal Quantification – Closed Worlds
	Geometric Preservation
	References

	Three Paths to Effectiveness
	Introduction
	Algorithms
	Effective Models
	Distinguishing Models
	Computable Models
	Constructive Models

	Equivalence of Definitions of Effectiveness
	Computable and Distinguishing
	Computable and Constructive

	Conclusions
	References

	The Quest for a Tight Translation of Büchi to co-Büchi Automata
	Introduction
	Preliminaries
	Upper Bound
	Lower Bound
	A Linear Lower Bound
	A Quadratic Lower Bound
	An Exponential Lower Bound

	Discussion
	References

	Normalization of Some Extended Abstract State Machines
	Introduction
	Definitions
	Definition of ASMs
	Syntax
	Semantics

	Definition of Extended ASMs
	Syntax
	Semantics

	Normalization
	References
	Appendix

	Finding Reductions Automatically
	Introduction
	Reductions in Descriptive Complexity
	Vocabularies and Structures
	Ordering
	Complexity Classes and Their Descriptive Characterizations
	Transitive Closure Operators
	Inductive Definitions
	Reductions

	Strategy
	Solving a $Σ^p_2$ Problem via Repeated Calls to a SAT Solver

	Implementation
	Problem Input
	Search Spaces
	The Searching Process
	Timing

	Results
	Size and Timing Data
	A Map of Complexity Theory
	Sample Reductions

	Conclusions and Future Directions
	References

	On Complete Problems, Relativizations and Logics for Complexity Classes
	Introduction
	Recursive Enumerations and Complete Problems
	Relativization Barriers
	Concluding Remarks
	References

	Effective Closed Subshifts in 1D Can Be Implemented in 2D
	Introduction
	The Idea of the Construction
	Variable Zoom Factor
	Conscious and Subconscious Bits
	Checking Bit Groups
	Dealing with the Degenerate Case
	Final Adjustments
	Final Remarks
	References

	The Model Checking Problem for Prefix Classes of Second-Order Logic: A Survey
	Introduction
	Preliminaries and Classical Results
	Results on ESO over Strings
	Results on Full SO over Strings
	Regular vs. Non-regular Prefix Classes
	Complexity

	Results on ESO over Graphs
	SO over Trees
	Further Work and Conclusion
	References

	A Logic for PTIME and a Parameterized Halting Problem
	Introduction
	Preliminaries
	Parameterized Complexity
	Logic
	Logics Capturing Polynomial Time

	Order-Invariant Variants of LFP
	A Halting Problem and Its Relationship to $L≤$
	Proof of Theorem 1 and Some Consequences

	The Parameterized Complexity of p-Acc=
	The Parameterized Complexity of p-Acc≤.
	Relating P[TC] $=$ NP[TC] to Other Statements

	A Deterministic Variant of p-Acc≤
	The Construction Problem Associated with p-Acc≤
	Conclusions
	References

	Inferring Loop Invariants Using Postconditions
	Overview
	Taking Advantage of Postconditions
	Inferring Assertions: The Assertion Inference Paradox

	Illustrative Examples
	Constant Relaxation
	Variable Aging
	Uncoupling
	Term Dropping

	Implementation and Experiments
	Foundations
	Invariants
	Boogie
	Notational Conventions

	Generating Loop Invariants from Postconditions
	Main Algorithm
	Building Mutated Postconditions
	Coupled Mutations
	Uncoupled Mutations

	Discussion and Related Work
	Discussion
	Limitations
	Related Work

	Conclusion and Future Work
	References

	ASMs and Operational Algorithmic Completeness of Lambda Calculus
	Introduction
	Operational versus Denotational Completeness
	Lambda Calculus and Operational Completeness
	Road Map

	ASMs
	The Why and How of ASMs on a Simple Example
	Gurevich Sequential Thesis
	The ASM Modelization Approach
	Vocabulary and States of an ASM
	Initialization Maps
	ASM Programs
	Action of an L-Program on an L-State
	Definition of ASMs and ASM Runs
	Operational Completeness: The ASM Theorem

	Lambda Calculus
	Lambda Terms
	β-Reduction
	Normal Forms
	Lists in Λ-Calculus
	Booleans in Λ-Calculus
	Integers in Λ-Calculus
	Datatypes in Λ-Calculus
	Lambda Calculus with Benign Constants
	Good F-Terms

	Variations on Curry's Fixed Point
	Curry's Fixed Point
	Padding Reductions
	Constant Cost Updates
	Constant Cost Conditional Updates

	ASMs and Lambda Calculus
	Datatypes and ASM Base Sets
	Tailoring Lambda Calculus for an ASM
	Main Theorem for Type 0 ASMs
	Main Theorem for All ASMs

	References

	Fixed-Point Definability and Polynomial Time on Chordal Graphs and Line Graphs
	The Quest for a Logic Capturing PTIME
	Logics Capturing PTIME
	Fixed-Point Logics
	Capturing PTIME on Classes of Graphs
	Isomorphism Testing and Canonisation
	Stronger Logics

	Preliminaries
	Graphs
	Relational Structures
	Logics
	Syntactical Interpretations
	Definable Canonisation

	Negative Results
	Chordal Graphs
	Line Graphs

	Capturing Polynomial Time on Chordal Line Graphs
	On the Structure of Chordal Line Graphs
	Canonisation

	Further Research
	References

	Ibn Sīnā on Analysis: 1. Proof Search. Or: Abstract State Machines as a Tool for History of Logic
	Introduction
	Historical Background
	$taḥṣīl$
	Mathematical Prerequisites on Syllogisms
	Syllogistic Sentences
	Inconsistent Sets
	Simple Syllogisms
	Connected Syllogisms
	Other Kinds of Syllogism

	Extracting the Algorithm
	The Class of Input Data
	What Question Is Answered?
	Is the Procedure Mechanical?

	Review
	Summary of the Algorithm
	The Place of the Algorithm in History

	Appendices
	References

	Abstract State Machines and the Inquiry Process
	Introduction
	The Practice of Problem Solving
	The Unknown as Known
	ASMs and Inquiry
	Encouraging Inquiry through ASMs and Problem Frames
	Results
	Conclusion
	References

	The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion
	Introduction and Overview
	Graphs and Their Classes
	The Adjacency Semigroup of a Graph
	Proof of Theorem A
	Equations Satisfied by Adjacency Semigroups
	A Normal Form
	Subvarieties of A and Sub-uH Classes of G

	Proof of Theorem B
	Applications
	Conclusion
	References

	Definability of Combinatorial Functions and Their Linear Recurrence Relations
	Introduction
	The Speed of a Class of Finite Relational Structures
	Combinatorial Functions and Specker Functions
	Formal Power Series
	Extending MSOL and Order Invariance
	Main Results

	Linear Recurrence Relations for Lk-Specker Functions
	L^k-Specker Polynomials
	Proof of Theorem 4

	Modular Linear Recurrence Relations
	Specker Index
	Proof of Theorem 5
	Counting Order Invariant MSOL2

	Examples
	Examples of MSOL^k-Specker Functions
	Examples of MSOL^k-Specker Polynomials

	Conclusions and Open Problems
	References

	Halting and Equivalence of Program Schemes in Models of Arbitrary Theories
	References

	Metrization Theorem for Space-Times: From Urysohn’s Problem towards Physically Useful Constructive Mathematics
	Introduction
	Known Space-Time Metrization Results: Reminder
	Towards a Physically Reasonable Constructive Definition of Causality
	Constructive Space-Time Version of Urysohn's Lemma
	Constructive Space-Time Metrization Theorem
	Additional Results
	Remaining Challenges
	References

	Thirteen Definitions of a Stable Model
	Introduction
	Minimal Models, Completion, and Stratified Programs
	Minimal Models vs. Completion
	The Challenge

	Nonmonotonic Reasoning
	Circumscription
	Default Logic
	Autoepistemic Logic
	Relations between Nonmonotonic Formalisms

	Definitions A and B, in Terms of Translations into Nonmonotonic Logic
	Definition C, in Terms of the Reduct
	Definitions D and E, in Terms of Unfounded Sets and Loop Formulas
	Definition F, in Terms of Circumscription
	Definition G, in Terms of Support
	Definitions H and I, in Terms of Tightening and the Situation Calculus
	Definition J, in Terms of Equilibrium Logic
	Definitions K and L, in Terms of Modified Reducts
	Definition M, in Terms of Modified Circumscription
	Conclusion
	References

	DKAL and Z3: A Logic Embedding Experiment
	Introduction
	An Introduction to DKAL
	Syntax and Semantics

	DKAL@Starbucks
	What Is Z3 Good For?
	Embeddings with SMT Solvers and Theorem Provers
	Quantifiers in Z3

	DKAL and Z3
	The Logic of Infons
	DKAL Knowledge and Communication Rules

	Derivations and Model Extraction
	DKAL Models@Starbucks

	Conclusion
	References

	Decidability of the Class E by Maslov’s Inverse Method
	Introduction
	Inverse Method for Skolemized Formulas
	Calculus U_F for Deriving Clauses
	Completeness of U_F
	Free Favorable Clauses, Factorization, General Proof Search Method

	Decidability of the Class E
	References

	Logics for Two Fragments beyond the Syllogistic Boundary
	Introduction
	Logic for a Fragment L with Set Terms and Negation
	Syntax and Semantics
	Proof System
	Examples
	Soundness
	The Henkin Property
	Completeness via Canonical Models
	The Finite Model Property

	Adding Transitivity: The Language $L(adj)$
	$L(adj)$ Has the Finite Model Property

	Conclusion and Future Work
	References

	Choiceless Computation and Symmetry
	Introduction
	Definitions
	Hereditarily Finite Expansion
	BGS Logic and CPT+C

	Brief Survey of Results on CPT and CPT+C
	The Role of Symmetry
	PARITY $/∈$ CPT
	CPT+C Cannot Construct the Dual of a Finite Vector Space
	References

	Hereditary Zero-One Laws for Graphs
	Introduction
	Adding Zeros
	Decreasing Coordinates
	Allowing Some Probabilities to Equal 1
	When Exactly One Probability Equals 1
	References

	On Monadic Theories of Monadic Predicates
	Introduction
	The Monadic Theory of Structures (S_1, P)
	A Recursive Predicate Where MT$(S2, P) Is Π11$-Hard
	Some Background on Types and Tree Automata
	Comparing Weak and Strong Monadic Logic
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

