
8. Fractal Geometry

Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark
is not smooth, nor lightenings travel in a straight line.

Benoit Mandelbrot

What really interests me is whether God had any choice in the creation of the world.

Albert Einstein

Fractals in nature originate from self-organized critical dynamical processes.

Per Bak and Kan Chen (1989)

Since Euclid (300 BC) we have been used to perceiving nature with the concept of a three-
dimensional (3-D) geometry. We measure linear structures in one dimension, area-like
structures in two dimensions, and volume-like structures in three dimensions. However,
when we measure an object in terms of these three dimensions, we are aware that the
geometric model describes a solid body, while a natural object may be inhomogeneous,
porous, or even mostly empty, if we think on atomic scales. The counterpart to Euclidean
geometry, the set theory with discrete elements, has been introduced by mathematicians

cept of discrete, irregular, inhomogeneous structures has then been discovered in the real
world by Benoit Mandelbrot, who coined the definition of a fractal dimension, which
represents a generalization (in terms of rational or irrational numbers) to the Euclidean
dimension (which is restricted to integer values of 1, 2, 3, or n). A fractal dimension is a
scale-free quantity that describes the fractional filling of a structure over some scale range,
but usually does not extend to infinite microscopic or macroscopic scales. Popular exam-
ples are the coastline of Norway, ferns, trees, mountain landscapes, snowflakes, or clouds.
The reason why we dedicate a chapter to fractal geometry here is, of course, because self-
organized criticality also is governed by scale-free powerlaw distributions of observable
parameters. Therefore, fractal geometry is nothing else than the spatial counterpart of self-
organized criticality processes observed in the temporal and energy domain. In a paper

like Georg Cantor, Karl Weierstrass, and Augustin-Louis Cauchy. The mathematical con-
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entitled “The physics of fractals”, Bak and Chen (1989) succinctly summarized Fractals
in nature originate from self-organized critical dynamical processes.

General introductions to fractal geometry can be found in textbooks like Fractals (Man-
delbrot 1977), The Fractal Geometry of Nature (Mandelbrot 1983), The Beauty of Fractals
(Peitgen and Richter 1986), Fractals Everywhere (Barnsley 1988), The Science of Frac-
tal Images (Peitgen and Saupe 1988), Fractals, Chaos, Power Laws (Schroeder 1991),
Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder
(Sornette 2004), Discovery of Cosmic Fractals (Baryshev and Teerikorpi 2002), or Frac-
tals and Chaos in Geology and Geophysics (Turcotte 1997). Related articles can also be
found in The Physics of Fractals (Bak and Chen 1989) and in popular articles like The
Language of Fractals (Juergens et al. 1990) or Chaos and Fractals in Human Physiology
(Goldberger et al. 1990). In the following we focus mostly on measurements of fractal di-
mensions or related spatial parameter distributions from astrophysical observations, which
we relate to other SOC parameter distributions. Fractal structures were found in mag-
netospheric phenomena, solar flares, planetary systems, stardust, galactic structures, and
cosmology.

8.1 1-D Fractals

In the next three sections we divide the discussion of fractal dimensions by their approx-
imate spatial dimension, but this should not be taken too literally, because it is an in-
trinsic property of fractal structures that they deviate from a strict Euclidean dimension.
One-dimensional structures are lines, segments of lines, contours, which can be straight,
curved, intermittent, discrete, folded, intertwined, or deformed by any conceivable trans-
form. If there is a repetitive pattern on different scales, such structures can be self-similar
and fractal. Fractal structures are most naturally generated by a replication process that
works in a self-similar way at different scales. For instance the growth of crystals occurs
in subsequent layers that replicates the original molecular grid structure. Therefore, also
the mathematical definition of fractal geometries usually makes use of a simple transfor-
mation rule that is repeated on successive size scales.

8.1.1 The Cantor Set and Koch Curve

A Cantor set, also called “Cantor dust”, is a subdivision of a set into smaller pieces with a
fixed fraction in each subsequent step. With progressive iterations, the number of elements
increases to infinity, but their total length approaches zero. For instance, in the Cantor set
shown in Fig. 8.1, a bar is subdivided into two bars by erasing the middle third, so the
number of elements increases as N = 2i with every iteration i, while the length decreases
as ε = (1/3)i. In mathematical language, the set is uncountable but has a measure of zero.
The Hausdorff dimension D of a one-dimensional fractal structure is defined as a powerlaw
relation between the number N of elements and the length scale ε of an element,

N(ε) ∝ ε−D for ε �→ 0 , (8.1.1)
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Fig. 8.1 Construction of the “middle-third-erasing” Cantor set: The replication rule is to eliminate the
middle third of every bar in subsequent subdivisions. The total length converges to zero, while the fractal
dimension is D = log(2)/ log(3) = 0.630930....

and quantifies how the number N of elements depends on the size scale ε . Thus, we can
obtain the Hausdorff dimension D from N = 2i, ε = (1/3)i = 3−i, and Eq. (8.1.1),

D = − logN
logε

=
log2
log3

≈ 0.630930.... , (8.1.2)

for this Cantor set. The fact that the fractal dimension D is smaller than the Euclidean
value of D = 1 means that the 1-D structure has less than solid filling, and if the fractal
process is continued to infinitely microscopic scales, it even approaches a total length of
zero. Perhaps our whole universe has this fractal property if we probe matter down to
microscopic scales, or even down to atomic and sub-atomic scales.

A classical example of a fractal one-dimensional structure is the Koch curve (Fig. 8.2).
The initiator function is a straight line. A generator function is constructed by replacing
the middle third by an equilateral triangle, so that the length of the fractal generator func-
tion is 4 units, while the size of the initiator function is 3 units. In subsequent iterations,
each straight segment is replaced by another generator function (Fig. 8.2). The number
of segments thus increases a factor of 4 with each iteration (N = 4i), while the length of
each segment becomes a factor 3 smaller each time (ε = (1/3)i = 3−i), which yields the
Hausdorff dimension

D = − logN
logε

=
log4
log3

≈ 1.26186.... , (8.1.3)

Note that the fractal dimension is now larger than the Euclidean dimension D = 1 of a
straight or smooth line, which indicates that the line is increasingly folded in a meander-
ing pattern with smaller scales. Famous examples of this fractal structure is the coastline
of Norway or Great Britain, which both became eroded by many fjords, valleys, rivers,
streams, and creeks, so that the ragged coastal length increases the finer the spatial resolu-
tion of the topographical map is.

8.1.2 Irregularity of Time Series

Every type of one-dimensional data can be investigated in terms of fractal analysis. For
instance, a string of binary data (e.g., 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0) or
a Morse code (e.g., ...—...–.-....–.—-.-.–..) resemble pretty much the Cantor set shown in
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Fig. 8.2 Construction of the “Koch curve”: The generator function consists of three segments, with an
equilateral triangle in the middle third, forming four straight segments of equal length. Six successive
iterations are shown, where each straight segment is replaced by the fractal generator function.

Fig. 8.1, and thus a Hausdorff dimension (Eq. 8.1.1) can be determined, regardless whether
the pattern is regular or irregular. However, a structure is only fractal, when the value of
the Hausdorff dimension is found to be invariant at different scales, which means that the
ratio of log(N) to log(ε) is constant, and thus implies a powerlaw behavior.

While the Cantor set (Fig. 8.1) represents a binary structure, 1-D data are generally
multi-valued, such as a time series fi = f (ti) with values in a range of fmin ≤ fi ≤ fmax.
A technique to measure the fractal dimension of a set of points [ti, fi = f (ti)] forming a
graph or time profile of a function f has been developed by Higuchi (1988). The tech-
nique is normalized in such a way that a fractal dimension of D = 1 corresponds to a
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completely regular time profile (such as a constant or slowly-varying smooth time profile),
but approaches the value of D = 2 for a completely irregular time series. Thus, the fractal
dimension is a measure of the irregularity or complexity of a time profile. Let us consider
a time series of values fi = f (i) as a function of the time step i = 1, ...,N,

f (1), f (2), f (3), ..., f (N) . (8.1.4)

Then we generate subsets of time series with different time steps k = 1,2,3, ..., starting at
all possible phases m = 1,2,3, ...,k,

f (m), f (m+ k), f (m+2k), f (m+3k), ..., f (m+[(N −m)/k]k) . (8.1.5)

For each time step k and phase m we can now define a length Lm(k),

Lm(k) =
1
k

[(|(N−m)/k|
∑
i=1

| f (m+ ik)− f (m+(i−1)k)|
)

N −1
[(N −m)/k]k

]
(8.1.5)

Since we are interested in a time scale spectrum, but not in the phases m, we average the
length Lm(k) over all phases m and obtain a mean value 〈Lm(k)〉 for every time step k. If
the length 〈Lm(k)〉 shows a powerlaw dependence on the time step k, the time series has a
fractal dimension D,

〈Lm(k)〉 ∝ k−D . (8.1.6)

Higuchi (1988) applied this algorithm to a time series of a fractional Brownian function,
which has the property of self-similarity on all scales, and determined with this method
the precise value of its fractal dimension D = 2.

8.1.3 Variability of Solar Radio Emission

The fractal analysis of Higuchi (1988) has been applied to time series of solar radio emis-
sion by Watari (1996a). The analyzed data consist of nine time series of daily solar radio
fluxes at different frequencies from ν = 245 MHz to ν = 15.4 GHz, observed during the
years 1976–1990, published in the Solar-Geophysical Data catalog, as well as the time
series of the sunspot number. Thus the time resolution of the data is 1 day and the length is
15 years (i.e., 5,479 days or datapoints for each set). The time series are shown in Fig. 8.3,
which all represent measures of the solar cycle variability observed at different wave-
lengths, different physical conditions, and different physical emission mechanisms. The
measurement of the fractal dimension (Eq. 8.1.6) requires a time scale spectrum 〈Lm(k)〉,
which are shown in Fig. (8.4), calculated in a range from k = 1 day to k = 40 days. Since a
half solar rotation represents the longest possible time interval during which a solar radio
source can be observed contiguously, the time series is expected to change its behavior at
k <∼ 13 days. The time scale spectra 〈Lm(k)〉 shown in Fig. 8.4 clearly show a powerlaw
behavior at all frequencies in the range of k ≈ 1–10 days, while a drop-off is visible in the
range of k ≈ 10–40 days, as expected from the solar rotation effect.
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Fig. 8.3 Time profiles of the daily sunspot number (top left) and daily solar radio fluxes at frequencies of
245, 410, 610, 1,415, 2,695, 2,800, 4,995, 8,800, and 15,400 MHz (Watari 1996a).
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Fig. 8.4 Time scale spectrum 〈Lm(k)〉 of the 10 time series shown in Fig. 8.3 (Watari 1996a).
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Fig. 8.5 Variation of the fractal dimension D(ν) as a function of the radio frequency ν from the year 1978,
at the beginning of the solar cycle 21 (Watari 1996a).

An interesting result that came out of this study, besides the fractality of solar radio
emission, is the dependence of the fractal dimension D(ν) on the radio frequency ν , which
is shown in Fig. 8.5. There is a variation from a lowest fractal dimension of D ≈ 1.2 at fre-
quencies of ν ≈ 2–5 GHz, to the highest fractal dimension with values of D ≈ 1.8 at
frequencies of 400 MHz, as well as near 15 GHz. This difference in the fractal dimension
is likely to be a consequence of different radiation mechanisms. At decimetric frequencies
(ν ≈ 0.3− 3.0 GHz), solar radio emission is dominated by so-called decimetric type III
bursts, which are caused by a beam-driven bump-in-tail instability producing plamsa emis-
sion. Such type III-like bursts occur very sporadically and irregularly due to the nonlinear
nature of plasma instabilities, and thus can explain the high value of the fractal dimension
measured in the ν ≈ 0.3–1.0 GHz range. At higher frequencies, gyroresonance emission in
strong magnetic fields, such as above sunspots, is the most dominant radio emission (e.g.,
Dulk 1985). Since the strong magnetic field above sunspots has a slowly-varying time evo-
lution, this could explain the lower fractal dimension of D ≈ 1.2–1.3 at radio frequencies
of ν ≈ 1–5 GHz. This is also corroborated by the fact that Watari (1996a) found a similar
low fractal dimension of D ≈ 1.2 for the variability of the sunspot number. The third fre-
quency domain at ν >∼ 10 GHz, is too high to contain significant gyroresonance emission,
and thus could be dominated by free-free bremsstrahlung from flare events, which occur
very sporadically (see monthly averages in hard X-rays in Fig. 7.6), which could explain
the upturn to a higher fractal dimension (Fig. 8.5) observed by Watari (1996a). In con-
clusion, the fractal dimension of the time series seems to provide a sensible diagnostic of
physical emission mechanisms with different time variability characteristics.

8.2 2-D Fractals

By 2-D fractals we mean structures that can be measured from 2-D data, such as a flat or
slightly curved image, as they are produced in abundance from CCD readouts of astro-
nomical telescopes. If an image is strictly flat, any extracted structure can have a fractal
dimension in the range of D = 0, ...,2. Essentially, solid blobs appearing in an image have
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an Euclidean dimension of D = 2, curvilinear structures a dimension near D = 1, and
dots a dimension near D = 0. A nice selection of fractal structures sorted by their dimen-

by Hausdorff dimension).

8.2.1 Hausdorff Dimension and Box-Counting Method

For Euclidean structures, the area A of a square is a quadratic function of the length scale
or size L, i.e., A = LD with Euclidean dimension D = 2. If we cover the area A of linear
size L with n squares, we have n = LD and can define an Euclidean dimension D by

D =
logn(L)

logL
, (8.2.1)

which is also valid for other Euclidean dimensions D = 1 or D = 3. The same definition
is extended to fractal structures, called the Hausdorff dimension, where D generally is a
non-integer number,

D = lim
ε �→0

logn(ε)
log(1/ε)

, (8.2.2)

where n(ε) is the number of self-similar structures of linear size ε = 1/L that are needed
to cover the whole structure. In Fig. 8.6 we show the iterative generation of the Sierpinski
triangle, which is constructed by subdividing an equilateral triangle into four smaller tri-
angles of half the size in each iteration step. Thus the fractal dimension of the Sierpinski

Fig. 8.6 Construction of the Sierpinski triangle in six iterative steps. Each triangle is subdivided into four
triangles of half the size, with the middle one taken out. The Hausdorff dimension of the Sierpinski triangle
is D = log(3)/ log(2) ≈ 1.585.

sion can be viewed on the wikipedia website (http://en.wikipedia.org/wiki/List of fractals

http://en.wikipedia.org/wiki/ListoffractalsbyHausdorffdimension
http://en.wikipedia.org/wiki/ListoffractalsbyHausdorffdimension
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triangle can directly be calculated with Eq. (8.2.2),

D = lim
ε �→0

logn(ε)
log(1/ε)

= lim
i�→∞

log(3i)
log(2i)

=
log3
log2

≈ 1.58496... , (8.2.3)

The definition of the Hausdorff dimension (Eq. 8.2.2) leads directly to a practical mea-
surement method. If we grid a 2-D image with a cartesian grid of size L×L, where each
macropixel has a size ε , the number of pixels n(ε) that cover a fractal structure can be
directly counted and set into relation with the linear extension of the structure L = 1/ε .
If we define the number of pixels that cover a fractal structure as the area A = n(ε), the
fractal or Hausdorff dimension D can be obtained by

D =
logn(ε)
log(1/ε)

=
logA
logL

. (8.2.4)

Of course, a structure is only fractal when the same value D holds for a range of spa-
tial resolutions ε = 1/L, so the box-counting has to be repeated for a range of spatial
resolutions ε . For pixelized astronomical images with a size of Nx ×Nx, such as digital
images from a CCD readout, it is often convenient to rebin the image by factors of 2i,
i.e., ε = 1,2,4,8,16, ...,Nx, which mimics the asymptotic limit ε �→ 0 in the definition of
Eq. (8.2.3).

Sometimes, the fractal dimension D is also evaluated from the perimeter P or an area
A, which is related as,

P ∝ AD/2 . (8.2.5)

Note that the perimeter would scale as P ∝ A1/2 for linear features (D = 1), while it scales
as P ∝ A for area-filling, meandering curves (D = 2).

The reader should be cautioned that the fractal dimension measured from a given obser-
vation depends very much on the definition of the measurement method. Thus, different
computation methods may give differing values. The value of the Hausdorff dimension
D (defined with Eq. 8.2.4) does not necessarily need to be identical with the fractal di-
mension D measured with the perimeter method (defined with Eq. 8.2.5), even when they
are measured from an identical data set. Different methods used are specified in Table 8.1
(second column).

We show an example of the determination of the Hausdorff dimension for a solar
EUV image recorded during the 1998 July 14 flare in Fig. 8.7 (called the Bastille-Day
event because it occurred during the French national holiday). The image is rebinned
into macropixels of size ε = 1,2,4,8,16,32,64 and the fractal dimension is determined
by counting the macropixels with a brightness above some flux threshold, which yields
the values of D(ε = 1) = 1.607, D(ε = 2) = 1.563, ...., D(ε = 64) = 1.503. The mean
and standard deviation of the dimension determined with different macropixel sizes is
D = 1.55 ± 0.03, so it is approximately constant and thus the structure can be called frac-
tal. A more accurate method would be to obtain D from the graph log(n) vs. log(1/ε)
(Eq. 8.2.4).
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Fig. 8.7 Measurement of the fractal area of the Bastille-Day flare, observed by TRACE 171 Å on 2000-Jul-
14, 10:59:32 UT. The Hausdorff dimension is evaluated with a box-counting algorithm for pixels above
a threshold of 20% of the peak flux value, with a mean of D2 = 1.55 ± 0.03 for the 7 different spatial
scales shown here. Note that the Hausdorff dimension is nearly invariant when rebinned with different
scales (macropixel sizes of Δx = ε = 1, 2, 4, 8, 16, 32, 64, indicated with a mesh grid). The original
image with full resolution image (Nx ×Ny = 640× 256 pixels) is shown on a logarithmic greyscale in
the top left frame, with a pixel size of Δx = 0.5′′. The fractal dimension D = log(A)/ log(L) is simply
evaluated from the number of rebinned macropixels A(L) above the flux threshold and the rebinned image
size L =

√
Nx ×Ny/Δx (Aschwanden and Aschwanden 2008a).

8.2.2 Solar Photosphere and Chromosphere

The solar surface exhibits various features related to the magneto-convection (granulation,
meso-granulation, super-granulation, network) or to areas of concentrated magnetic flux
(sunspot umbrae, penumbrae, active regions, pores), which all have irregular geometries
that have been subjected to fractal analysis (Table 8.1).
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Table 8.1 Area fractal dimension D2 of scaling between length scale L and fractal area A(L) ∝ LD2 of
various solar phenomena observed in white light, magnetograms, H-α , EUV, and soft X-rays. References:
1, Roudier and Muller (1987); 2, Hirzberger et al. (1997); 3, Bovelet and Wiehr (2001); 4, Paniveni et al.
(2005); 5, Janssen et al. (2003); 6, Lawrence (1991); 7, Lawrence and Schrijver (1993); 8, Balke et al.
(1993); 9, Meunier (1999); 10, Meunier (2004); 11, Lawrence et al. (1993); 12, Cadavid et al. (1994); 13,
Lawrence et al. (1996); 14, McAteer et al. (2005); 15, Gallagher et al. (1998); 16, Georgoulis et al. (2002);
17, Aschwanden and Parnell (2002); 18, Aschwanden and Aschwanden (2008a,b).

Wavelengths regime and phenomenon Method Area fractal
(reference in superscript) dimension D

Photosphere
White-light of granules1 perimeter area 1.25,2.15
White-light of granules2 perimeter area 1.3,2.1
White-light of granular cells2 perimeter area 1.16
White-light of granules3 perimeter area 1.09
Magnetogram super-granulation4 perimeter area 1.25
Magnetograms of small scales5 perimeter area 1.41 ± 0.05
Magnetograms of active regions6,7 linear size area 1.56 ± 0.08
Magnetograms of plages8 linear size area 1.54 ± 0.05
Magnetograms of active regions9 linear size area 1.78–1.94

perimeter area 1.48–1.68
Magnetograms of active regions10 perimeter area

− Total 1.71–1.89
− Cycle minimum 1.09–1.53
− Cycle rise 1.64–1.97
− Cycle maximum 1.73–1.80

Magnetograms quiet Sun, active regions11 box-counting multifractal
Magnetograms of active regions12,13 box-counting multifractal
Magnetograms of active regions14 box-counting 1.25–1.45
Chromosphere
EUV of quiet Sun network15 box-counting 1.30–1.70
H-α of Ellerman bombs16 box-counting 1.4
Corona, Flares
EUV 171 Å of nanoflares17 box-counting 1.49 ± 0.06
EUV 195 Å of nanoflares17 box-counting 1.54 ± 0.05
Yohkoh SXT of nanoflares17 box-counting 1.65
EUV 171 Å of Bastille-Day flare18 box-counting 1.57–1.93

The solar granulation has a typical spatial scale of L = 1,000 km, or a perimeter of
P = πL ≈ 3,000 km. Roudier and Muller (1987) measured the areas A and perimeters P of
315 granules and found a powerlaw relation P ∝ AD/2 (Eq. 8.2.5), with D = 1.25 for small
granules (with perimeters of P ≈ 500–4,500 km) and D = 2.15 for large granules (with
P = 4,500–15,000 km). The smaller granules were interpreted in terms of turbulent origin,
because the predicted fractal dimension of an isobaric atmosphere with isotropic and ho-
mogeneous turbulence is D = 4/3 ≈ 1.33 (Mandelbrot 1977). Similar values were found
by Hirzberger et al. (1997). Bovelet and Wiehr (2001) tested different pattern recognition
algorithms (Fourier-based recognition technique FBR and multiple-level tracking MLT)
and found that the value of the fractal dimension strongly depends on the measurement
method. The MLT method yielded a fractal dimension of D ≈ 1.1, independent of the spa-
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Fig. 8.8 Left: A speckle-reconstructed broadband image (top) and magnetogram (bottom) obtained with
the Göttingen Fabry-Perot spectrometer at the Vacuum Tower Telescope on Tenerife. Tickmarks are given
in arcseconds. Right: Snapshot of a numerical simulation of magneto-convection with the MURAM code,
tuned to an average vertical field of 50 G. The upper panel shows the frequency-integrated intensity, while
the lower panel shows the vertical magnetic field component Bz at a height with opacity τ5000 = 1. The
pixel size is 21 km, and the full image has a size of 6,000 km. Both the data and the numerical simulations
were found to have a very similar fractal dimension of D ≈ 1.4 (Janssen et al. 2003).

tial resolution, the heliocentric angle, and the definition in terms of temperature or velocity.
Meunier (1999) evaluated the fractal dimension with the perimeter–area method and found
D = 1.48 for supergranular structures to D = 1.68 for the largest structures, while the lin-
ear size-area method yielded D = 1.78 and D = 1.94, respectively. In addition, a solar
cycle dependence was found by Meunier (2004), with the fractal dimension varying from
D = 1.09 ± 0.11 (minimum) to D = 1.73 ± 0.01 for weak-field regions (Bm < 900 G), and
D = 1.53 ± 0.06 (minimum) to D = 1.80 ± 0.01 for strong-field regions (Bm > 900 G),
respectively. A fractal dimension of D = 1.41 ± 0.05 was found by Janssen et al. (2003),
but the value varies as a function of the center-to-limb angle and is different for a speckle-
reconstructed image that eliminates seeing and noise. An example of data and numerical
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simulations with a time-dependent magneto-convection code is shown in Fig. 8.8, which
both were found to have a very similar fractal dimension.

A completely different approach to measuring the fractal dimension D was pursued in
terms of a 2-D diffusion process, finding a fractal diffusion with dimensions in the range
of D ≈ 1.3–1.8 (Lawrence 1991) or D = 1.56 ± 0.08 (Lawrence and Schrijver 1993) by
measuring the dependence of the mean square displacement of magnetic elements as a
function of time. Similar results were found by Balke et al. (1993), The results exclude
Euclidean 2-D diffusion but are consistent with percolation theory for diffusion of clus-
ters at a density below the percolation threshold (Lawrence and Schrijver 1993; Balke et
al. 1993).

Fractal dimensions were also evaluated with a box-counting method, finding a range of
D≈ 1.30–1.70 for chromospheric network structures in a temperature range of T = 104.5 –
106 K (Gallagher et al. 1998), a value of D≈ 1.4 for so-called Ellerman bombs (Georgoulis
et al. 2002), which are short-lived brightenings seen in the wings of the Hα line from the
low chromosphere, or a range of D ≈ 1.25–1.45 from a large survey of 9,342 active region
magnetograms (McAteer et al. 2005),

The physical understanding of solar (or stellar) granulation has been advanced by nu-
merical convection models and N-body dynamic simulations, which predict the evolution
of small-scale (granules) into large-scale features (meso or supergranulation), which is
organized by surface flows which sweep up small-scale structures and form clusters of re-
current and stable granular features (Hathaway et al. 2000; Berrilli et al. 2005; Rieutord et
al. 2008, 2010). The fractal structure of the solar granulation is obviously a self-organizing
pattern that is created by a combination of subphotospheric magneto-convection and sur-
face flows, which is a turbulence-type phenomenon, but is not in a critical state. The fractal
structure of magnetic features, however, such as sunspots, active regions, magnetic pores),
originate from magnetic flux emergence by buoyancy from the solar interior, which occur
at independent places and times, and thus could possibly be attributed to a SOC system.
The finding of a fractal dimension in magnetic features thus represents a necessary condi-
tion for scale-free (spatial) parameters that is typical for SOC, but not a sufficient condi-
tion. If the distributions of lifetimes, peak energies, and total energies of magnetic features
also reveal powerlaw distributions, we can consider the driving system, i.e., the solar dy-
namo at the bottom of the tachocline (in a depth of ≈0.3 solar radii below the surface), to
operate in a self-organized critical state. Instead of trickling sand grains on top of a SOC
sandpile, the solar dynamo generates buoyant magnetic fluxtubes down in the tachocline,
which cluster into small or large magnetic filament bundles when bubbling up to the solar
surface in an avalanche-like fashion. The question is whether it is a SOC phenomenon or
percolation. We will discuss percolation theory in Section 10.6.

8.2.3 Solar Flares

We have already extensively established that solar flares fulfill all criteria of a SOC system,
regarding powerlaw distributions of total energies, peak energies, durations (Section 7.3),
and waiting-time distributions in terms of a nonstationary Poisson process (Section 5.6).
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Fig. 8.9 Fractal geometric concept of nanoflares and flares: The cartesian grids (top row) indicate three
different spatial resolutions. Flare structures consist of single flux tubes or arcades of multiple flux tubes
(middle row) that form fractal contours. The flare area can roughly be estimated from the rectangular
area A = l ×w (gray areas in bottom row), regardless of the curvature and composition of the shape.
The equivalent width w = A/l provides also a good estimate of the line-of-sight depth according to the
geometric single or multi-fluxtube models (middle row) and can be used to estimate the scaling of the
volume, i.e., V = l ×w2 (Aschwanden and Parnell 2002).

Consequently we expect also scale-free (powerlaw) distributions of spatial scales (lengths,
areas, volumes) with fractal properties.

A fractal geometric concept of a solar flare is shown in Fig. 8.9, which consists of
arcades of semi-circular flux tubes that generally are expected to have fractal (i.e., less
than solid area-filling) contours above some flux level. For small flares (e.g., nanoflares
observed in EUV), the fractal structure may not be resolved even in high-resolution (<∼1′′)
images, but a crude characterization of their projected area A would at least show some
asymmetry in their shape, which can be measured from the length l and width w of their
elliptical shape (Fig. 8.9, bottom panels). Scaling the width w to the length l with a power-
law index b, and characterizing the occurrence frequency distribution N(l) of lengths with
a powerlaw index a, we expect the following scaling relations and frequency distributions
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for fractal flare areas,
w(l) ∝ lb

l(w) ∝ w1/b

A(l) ∝ lw = l1+b = lD

N(l) dl ∝ l−a dl
N(w) dw ∝ w−[1+(a−1)/b] dw
N(A) dA ∝ A−(a+b)/(1+b) dA

. (8.2.6)

The corresponding Hausdorff dimension D = log(A)/ log(l) is

D = (1+b) < 2 , (8.2.7)

Data analysis of ≈1000 nanoflares observed in EUV (TRACE and soft X-rays (Yohkoh)
yielded values of a = 2.5 ± 0.2 and b = 0.5 ± 0.2, which corresponds to a Hausdorff
dimension of D = 1.5 ± 0.2 and an area distribution of N(A) ∝ A−2.0 (Aschwanden and
Parnell 2002).

The geometric flare concept shown in Fig. 8.9 visualizes small flares that consist of only
one single or a few loops (Fig. 8.9, left and middle), which is typical for EUV nanoflares,
but also large flares, which consist of hundreds of loops, geometrically arranged in near-
concentric arcades (Fig. 8.9, right). The fractal structure of such large flares has been inves-
tigated in detail for the Bastille-Day flare of 2000 July 14 (Aschwanden and Aschwanden
2008a). The story is not simple. Measuring the fractal dimension as a function of time, but
normalizing it to the same flare area Amax defined around the peak time of the flare, the
fractal area varies in the range of A(t)/Amax = 0.08–0.67, corresponding to a Hausdorff
dimension of D(t) = 1.57–1.93. The time evolution is shown in Fig. 8.10, which exhibits
some correlation of the fractal dimension with the EUV flux, which essentially tells us that
more and more fractal structures (flare loops) brighten up before the flare peak. Typically,
a flare starts when a first loop brightens up, which is a nearly linear feature and thus has
a dimension of D >∼ 1, while more and more loops come into play as the flare progresses,
until the flare area is almost solidly filled with D <∼ 2. Moreover, the determination of the
fractal dimension depends also on the flux threshold. Data as well as simulations show a
variation of the fractal dimension of D ≈ 1.4–1.9 depending on the chosen flux threshold,
say in the range of Fth = 10–50 DN s−1 as shown in Fig. 8.11. Generally, the value of
the fractal dimension drops with higher thresholds. In the same study, a total of 20 large
(GOES X-class and M-class) flares were investigated from TRACE observations, which all
have very complex fractal finestructure, as shown in Fig. 8.12, and the fractal dimensions
cover a substantial range during the flare evolution. A summary of the fractal areas ranges
A(L) versus the length scale L is shown in Fig. 8.13, which has a mean fractal dimension
of D = 1.89 ± 0.05 during the flare peak, but covers a range of lower values of D >∼ 1.0–1.5
at the beginning of the flare. Thus, a complete SOC theory should also include the time
evolution of the fractal geometry. Our simplest SOC work model (Section 3.1) quantifies
a SOC avalanche in terms of an exponential growth phase and a linear decay phase, which
implies a multiplicative pattern in energy release and spatial structures. In order to predict
the temporal evolution of the 2-D fractal dimension, the 3-D evolution of spatial structures
has to be mapped into a 2-D plane (see Section 8.3).
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Fig. 8.10 The time evolution of the normalized EUV 171 Å flare flux F(t) (diamonds) and soft X-ray flux
from GOES (smooth curve) are shown for the Bastille-Day flare (top panel), along with the fractal area
A(t)/A f and fractal dimension D2(t) (second panel). The TRACE 171 Å images at start (t1), middle (t35),
and end time (t68) are shown in the three lower panels on a logarithmic flux scale (three lower left panels)
and high-pass filtered (three lower right panels). The instantaneous flare areas A(t) are marked with thick
black contours, while the time-integrated flare area A f is marked with thin contours (Aschwanden and
Aschwanden 2008a).
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Fig. 8.11 The fractal area A(F > Fth) is shown for the same data image (left panels) and model image
(right panels) as given in Fig. 8.10 for different flux thresholds Fth = 10,20, ...,50 DN s−1. The flare area
is contoured at a flux threshold of Fth = 5 DN s−1. Note the similar dependence of the fractal dimension
D2 (indicated at bottom left corner of each panel) on the flux threshold for data and model (Aschwanden
and Aschwanden 2008a).
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Fig. 8.12 Highpass-filtered images of nine X-class flares are shown, which enhance the fractal finestruc-
ture of flare loops (Aschwanden and Aschwanden 2008a).

8.3 3-D Fractals

The theoretical extension of 2-D to 3-D fractal dimension is straightforward. In the def-
inition of the Hausdorff dimension we have to replace the area A by the volume V , and
the number n(ε) of elements that cover a fractal structure are 3-D voxels, rather than 2-D
pixels,

DV = lim
ε �→0

logn(ε)
log(1/ε)

=
logV
logL

. (8.3.1)

The practical measurement of a 3-D fractal dimension DV , however, is not straightforward,
but can be inferred with help of tomographic 2-D projections and computer simulations.
Especially in astrophysical applications, only 2-D data are available in general, and thus
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Fig. 8.13 Fractal areas A(t) of flares as a function of the spatial length scale L =
√

A f . For each flare
there is an evolution of the fractal area A(t) as a function of time (vertical range). The cross symbols mark
the maximum of the fractal dimension reached during the entire flare duration. The fractal dimensions
of D2 = 1.0,1.5,2.0 are indicated with dotted lines, and the average maximum fractal dimension D2 is
indicated with a thick solid line, having a mean of D2 = 1.89 ± 0.05 (Aschwanden and Aschwanden
2008a).

the inference of a 3-D fractal dimension requires a spatial model, stereoscopic observa-
tions, or tomographic reconstructions. The scale invariance in terms of 3-D fractal geom-
etry, however, has been probed from microscopic structures such as snow crystals (e.g.,
Westbrook et al. 2004), all the way to clustering of galaxies, cosmic voids, and dark matter
(e.g., Gaite 2007).

8.3.1 Cellular Automaton Simulations

Cellular automaton simulations of SOC models have generally been performed in both 2-
D and 3-D geometries (e.g., Bak et al. 1987, 1988; Lu and Hamilton 1991; Charbonneau et
al. 2001). Special attention to the relationship between the 2-D and 3-D fractal dimension
has been paid in the studies of Charbonneau et al. (2001), McIntosh and Charbonneau
(2001), and McIntosh et al. (2002). An example of a 3-D avalanche with 2-D projections
in a cellular automaton run is shown in Fig. 8.14. For their largest simulated datacubes
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Fig. 8.14 The 3-D structure of a time-integrated avalanche in a 323 lattice. The 2-D projections of the
avalanche are shown separately in the right-hand panels, with the gray-scale indicating the number of
avalanching nodes, which corresponds to the column depth along the line-of-sight in astronomical obser-
vations (McIntosh and Charbonneau 2001; reproduced by permission of the AAS).

(N3 = 643), they obtained a relationship,

V (A) ∝ A1.41±0.04 , (8.3.2)

while the Euclidean scaling would be V ∝ A3/2, so the relationships are not identical for
fractal and solid bodies.

There are different ways to define the linear size L of a fractal structure. One method is
to define a radius of gyration R,

R2 =
1
M

M

∑
i=1

|ri −R0|2 , (8.3.3)

where the sum runs over the M nodes that are part of the avalanche cluster, and R0 =
(1/M)∑ri is the cluster’s center of mass. Physically, R is the radius of the thin spherical
shell (circular ring in 2-D) that has the same “mass” and moment of inertia as the original
cluster (Stauffer and Aharony 1994; Charbonneau et al. 2001). Using this definition for
the length scale (L = R), Charbonneau et al. (2001) find the following scaling for their
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simulation with the largest 3-D cube (N3 = 1283),

A(L) ∝ L1.78±0.02 , (8.3.4)

while the Euclidean scaling would be A ∝ L2. Combining these two fractal scaling laws
(Eqs. 8.3.2 and 8.3.4) we infer the relationship between the fractal volume V and the length
scale L,

V (L) ∝ L2.51±0.06 , (8.3.5)

which also differs from the Euclidean scaling V ∝ L3. Of course, these scaling laws apply
to the particular setup of cellular automaton models we described in Chapter 2, but slightly
different values are expected for different avalanche models or length scale definitions. We
have also to be aware that these simulated fractal structures (as shown in Fig. 8.14) rep-
resent time-integrated structures, while the fractal dimensions of instantaneous snapshots
are generally smaller.

8.3.2 Solar Flares

Since geometric 3-D models of solar flares are unavoidable in calculating electron densi-
ties and thermal energies from the observed volume-integrated emission measures in soft
X-rays and EUV, which are necessary parameters to infer occurrence frequency distribu-
tions of flare energies for SOC models, the 3-D fractal dimension DV is a fundamental
parameter. Alternatively, one can specify a volume-filling factor qV , which is the ratio of
the fractal V to the Euclidean volume V0,

qV =
V
V0

=
LDV

L3 = LDV−3 , (8.3.6)

while the area-filling factor qA can be defined analogously in terms of the area fractal
dimension DA,

qA =
A
A0

=
LDA

L2 = LDA−2 . (8.3.7)

Based on the geometric concept of flares introduced in Fig. 8.9, we can construct a
volumetric model in terms of an arcade that contains a variable number of concentric half
loops that fill the half-cylindric volume to some extent, parameterized by the arcade length
la, arcade width wa, and average loop width wloop. While the 3-D volume is invariant to
rotation, the projected area will depend on the aspect angle, longitude, or center-to-limb
distance, as shown in Fig. 8.15. If we allow for fractal filling with nloop loop structures,
which has the limit of nmax

loop ≈ lawa/2w2
loop for the arcade model shown in Fig. 8.15, one

can derive the following geometric filling factors (Aschwanden and Aschwanden 2008b),

qV =
nloop

nmax
loop

= nloop

(
2w2

loop

lawa

)
. (8.3.8)
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Fig. 8.15 The geometry of a semi-cylindrical flare arcade model is shown, quantified by the arcade length
la in the east–west direction, the arcade width wa in the north–south direction, and the line-of-sight angle
α to the solar vertical (or relative longitude difference to solar disk center). The three cases correspond
to α = 0◦,45◦,90◦ with an aspect ratio of wa/la = 1. The total (Euclidean) flare area is outlined in thick
linestyle, while the loop quantization is indicated with thin lines (Aschwanden and Aschwanden 2008b).

qA =
A(nloop)

A0
=

[
1− exp

(
−nloop

A1

A0

)]
, (8.3.9)

where A1 is the Euclidean area that depends on the aspect angle α ,

A1(α) ≈ wloop
wa

2

[
1+

(π
2
−1

)
sin3/2(α)

]
. (8.3.10)

Using the definitions of Eqs. (8.3.6) and (8.3.7), the area and volume fractal dimensions
can then be calculated from the area- and volume-filling factors,

DV = 3+
lnqV

lnL
. (8.3.11a)

DA = 2+
lnqA

lnL
. (8.3.11b)

where the length scale L can be defined from the Euclidean volume V0,

V0 =
π
2

(wA

2

)2
la , (8.3.12)

L = V 1/3
0 . (8.3.13)



272 8. Fractal Geometry

-1000 -500 0 500 1000
Time (relative to peak)  t[s]

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a 
fil

lin
g 

fa
ct

or
q A

=
A

(t
)/

A
0

-1000 -500 0 500 1000
Time (relative to peak)  t[s]

0.00

0.05

0.10

0.15

0.20

V
ol

um
e 

fil
lin

g 
fa

ct
or

q V
=

V
(t

)/
V

0

Fig. 8.16 The area-filling factor qA(t) (bottom panel) and the inferred volume-filling factor qV (t) (top
panel) are shown for 20 flares, as a function of the time relative to the peak in the maximum fractal area.
Flares which have an increase of more than 0.5 in the fractal area during the rise time are outlined with
thick linestyle. Note that maximum area-filling factors do not exceed 0.8, while maximum volume-filling
factors do not exceed 0.15 (Aschwanden and Aschwanden 2008b).

We have already shown how the observed area fractal dimension varies as a function of
time during a flare (Fig. 8.10), and consequently also the area- and volume-filling factors
do. In Fig. 8.16 the results of the time evolution of flare-filling factors qA and qV are
shown for 20 large flares, varying typically in the range of qV ≈ 0.001–0.03 at flare start,
qV ≈ 0.03–0.08 at flare peak, and qV ≈ 0.01–0.06 at flare end. These filling factors are
very important, because they constrain the true mean electron density ne. If an average
electron density 〈ne〉 =

√
EM/V0 is estimated for a unity filling factor (solid filling of the

flare volume), the correct mean electron density in the fractal flare volume scales as.
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ne =
√

EM/V = 〈ne〉
√

V0/V = 〈ne〉
√

1/qV . (8.3.14)

This correction is important in deriving correct thermal energies of flares,

Eth =
∫

3ne(T )kBTV (T ) dT ≈ 3nekBTeV =
3kBEMTe

ne
, (8.3.15)

where EM is the total emission measure, Te the electron temperature, and ne the electron
density at the peak time of the flare.

8.4 Multifractal Analysis

The geometric concepts we described so far are all monofractal, which contain self-similar
and scale-invariant structures that can be characterized by a single fractal dimension, such
as the Hausdorff dimension D. However, there is no structure in the universe that exhibits
the same fractal dimension at all scales from the microscopic to the macroscopic limit.
Geometric structures are generated by different physical processes that operate within a
preferred scale range each, and thus the resulting structures have a different degree of
inhomogeneity or fractality at different scales. The concept of multifractals attempts to
characterize the degree of geometric complexity with multiple scaling exponents or fractal
dimensions, which in the continuum limit results into a spectrum of fractal dimensions.
While the fractal dimension D is defined by n(ε) ≈ ε−D for monofractals in the frame-
work of the box-counting method (Eq. 8.2.2), there is a spectrum f (α) of exponents for
multifractals, also called singularity spectrum,

n(ε) ∝ ε− f (α) , (8.4.1)

where α is the relative strength or significance. Examples of the singularity spectrum f (α)
are shown in Fig. 8.17 for a monofractal (Sierpinski carpet with Hausdorff dimension
D = log(8)/log(3) ≈ 1.89279), for a theoretical multifractal image (Cadavid et al. 1994),
and for observational data from solar magnetogram data (Hewett et al. 2008; Conlon et
al. 2008). The latter example shows a typical singularity spectrum, which has a peak of
f (α)max and a minimum of f (α)min, which is also characterized by the terms contribution
diversity Cdiv = αmax −αmin and dimensional diversity Ddiv = f (α)max − f (α)min, both
being measures of the geometric complexity and richness of a fractal structure. Related
measures of complexity are also multiscaling of Kadanoff and Lipshitz–Hölder exponents
(e.g., see Georgoulis et al. (1995) and references therein).

The magnetic field seen at the solar surface reveals a richness of morphological struc-
tures that are termed sunspots, plages, network, intranetwork, magnetic knots and pores,
etc. A quiet-Sun photospheric magnetogram was first analyzed in terms of multifractal
analysis by Lawrence et al. (1993), who modeled the singularity spectrum with a Gaussian
random process. More detailed modeling was done by Cadavid et al. (1994) by adding
Gaussian white noise to theoretical self-similar and multifractal structures, finding that the
degree of multifractality is enhanced for more intermittent distributions and strong correla-
tions between cells. The influence of finite spatial resolution on the determination of multi-
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Fig. 8.17 A monofractal image of the Sierpinski carpet (left), a theoretical multifractal image (middle),
and an observed multifractal solar magnetogram of active region NOAA 10030 (right), along with the
singularity spectra f (α) (bottom panels) determined for these structures (Conlon et al. 2008).

fractal scaling was investigated by Lawrence et al. (1996) who found that the box-counting
method is unreliable if it does not fill the embedding Euclidean dimension (D < 2). The
multifractal singularity spectrum was also applied in time sequences of photospheric mag-
netograms to study the evolution of active regions (Conlon et al. 2008), see a snapshot in
Fig. 8.17. It was found that active regions that evolved into large-scale coherent structures
show a decrease of dimensional diversity Ddiv, and a relationship was found between the
flaring rate in an active region and the multifractal properties (Conlon et al. 2008). The
multifractal complexity was also found to vary as a function of the solar cycle, or between
the northern and southern hemisphere (Sen 2007).

Multifractal analysis appears to be a sensitive tool for characterizing complexity and
changes in complexity of spatial morphological structures, either as a function of space, or
as a function of time, similar to the Bayesian statistics of nonstationary Poisson processes
used in the time domain (Section 5.2).

Another multi-scale method that is related to multifractal analysis is the structure func-
tion, which has been developed to describe the statistical behavior of fully developed turbu-
lence (Kolmogorov 1941). Structure functions express the degree of correlation at different
length scales, equivalent to the correlation function of velocity fluctuations as a function
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of the spatial distance, which has a similar scaling behavior as the singularity spectrum
of a multifractal structure. The scaling behavior of structure functions has been studied in
magnetograms of the solar photosphere (Abramenko et al. 2002, 2003; Abramenko 2005),
revealing significant changes of the structure function before and during solar flares, simi-
lar to the evolutionary changes of the multifractal singularity spectrum measured for active
regions (Conlon et al. 2008).

8.5 Spatial Power Spectrum Analysis

A more traditional multi-scale method is the spatial 2-D Fourier power spectrum of a 2-D
spatial image, which quantifies the correlated intensity as a function of spatial scales. If
we take an image with a size of N ×N pixels and denote the image coordinates with the
indices (n,m), the intensity of a particular pixel is In,m. 2-D power spectra Ik (with complex
Fourier coefficients) can then be calculated (e.g., Gomez et al. 1993a),

Ik =
N

∑
n=1

N

∑
m=1

In,m exp
[

2πi
N

(nn′ +mm′)
]

, (8.5.1)

where the Fourier component or wave vector (k = 2π/λ ) in the (kx,ky) plane is,

k =
2π

NΔx
(n′,m′) , n′,m′ = 0,1, ...,(N −1) , (8.5.2)

and Δx is the linear pixel size. The 2-D power spectrum P(kx,ky) is then defined as

P(kx,ky) =
(

Δx
2π

)2

|Ik|2 . (8.5.3)

An example of such a 2-D Fourier power spectrum of a solar image recorded in soft
X-ray wavelengths is shown in Fig. 8.18. The presence of a broad-band spectrum (in con-
trast to a δ -function peak for non-fractal large-scale spatial structures) indicates spatial
structures over a large scale range, down to the image resolution Δx. From the 2-D power
spectra, 1-D omnidirectional power spectra can be computed, which average the spectra in
all radial directions. Such omnidirectional Fourier spectra have been found to scale with
P(k) ∝ k−3 for some solar active regions (Martens and Gomez 1992; Gomez et al. 1993a),
which was explained in terms of a turbulent Kolmogorov spectrum P(k) ∝ k−5/3, combined
with the spectral modifications resulting from the velocity distribution of photospheric
granulation and the emission mechanism observed in soft X-rays (Gomez et al. 1993b).

Power spectra analysis in other regions of the solar surface and in other wavelengths
were performed in a number of studies. The power spectra are very wavelength-dependent.
In the quiet Sun, power spectra of P(k) ∝ k−2.7 were measured in soft X-rays (Benz et
al. 1997), and P(k) ∝ k−2.5 in EUV Fe XII (Berghmans et al. 1998). Power spectra de-
rived from photospheric magnetograms, after correction for the seeing (modulation trans-
fer function), yielded P(k) ∝ k−1 for the photospheric network, P(k) ∝ k−3.5 for the non-
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Fig. 8.18 2-D Fourier power spectrum of a soft X-ray image of a solar active region recorded with the
Normal Incidence X-ray Telescope (NIXT) telescope during a rocket flight in 1989, with a spatial resolution
of 0.75′′. The 2-D power spectrum is nearly isotropic (Gomez et al. 1993a; reproduced by permission of
the AAS).

network (Lee et al. 1997), P(k) ∝ k−1.7 for active regions, and P(k) ∝ k−1.3 for quiet-Sun
regions (Abramenko et al. 2001). Observations in extreme ultraviolet, which probe the
lower corona rather than the photosphere, yield power spectra of P(k) ∝ k−2.0 for bright
points, P(k) ∝ k−2.1 for loops, P(k) ∝ k−1.9 for the background corona, P(k) ∝ k−1.6 for
dark lanes (network), while power spectra in the transition region (in the He II line) yield
values of P(k) ∝ k−1.5 for the same structures (Berghmans et al. 1998). Similar power
spectra were measured for full-Sun images in EUV, P(k) ∝ k−1.57 in the S VI (933 Å) and
P(k) ∝ k−1.74 in the S VI (944 Å) (Buchlin et al. 2006). Power spectra measured with a
highest resolution of 0.1′′ (70 km on the solar surface) in the G-band were found to be
as steep as P(k) ∝ k−4.0 in sunspot penumbrae, and P(k) ∝ k−3.6 in active granulation
(Rouppe Van der Voort et al. 2004).

The variety of power spectra measured in solar data reflects a number of effects that
affect the precise value of the slope: (1) the physical mechanism (e.g., MHD turbulence
in subphotospheric granulation cells), (2) the wavelength of the observer (optical, EUV,
soft X-rays), which mostly indicates different altitude levels (photosphere, chromosphere,
transition region, corona), and (3) instrumental effects (seeing and spatial resolution). The
powerlaw index p of a spatial power spectrum P(k) ∝ k−p can be transformed into a distri-
bution of spatial length scales N(L) with k = 2π/L, with a similar formalism as we derived
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in Section 4.8.4 in the time domain. However, there are also other methods to measure the
distribution N(L) of length scales directly, as we describe in the next Section 8.6.

8.6 Statistics of Spatial Scales

The common denominator of fractal structures with SOC theory is the property of scale-
free parameter ranges, which can be described with powerlaw relations between various
geometric parameters (e.g., length, area, volume). The fractal property implies two im-
portant consequences for SOC theory: (1) it describes the geometry of the instantaneous
internal microstructure of a SOC event, but also (2) describes the relationships of geomet-
ric size parameters between different SOC events. The two relationships may even influ-
ence each other during a SOC event. For instance, a landscape has a fractal structure as a
static property, but leaves an imprint of its static fractality also on dynamic events, such
as landslides, flooding, or show avalanches, which follow the channeling and ducting of
the fractal terrain. Fractal landscapes (valleys, craters) may even be the witnesses of SOC-
like processes (erosion, mountain slides, volcanic eruptions). Solar flares are magnetic
reconnection events that occur in the environment of a fractal magnetic field, and thus the
resulting energy of a magnetic instability released in a flare, which heats up chromospheric
plasma and redistributes it throughout coronal fluxtubes, reflects a similar fractality as the
previous static magnetic field. So, we can interpret the fractal geometry of static structures
as ducts or remnants of dynamical SOC events, which exhibit the multiplicative imprints
of exponentially-growing catastrophes. It is like the domino effect, where an avalanche
chain reaction takes place in a pre-arranged fractal geometry.

In the following we focus on the second consequence of fractal geometries, namely
the statistics of spatial size scales between different events. If the main SOC parameters
we used so far (i.e., the peak energy P, the total (time-integrated) energy E, and the du-
ration T ) possess powerlaw frequency distributions, and if there is a simple powerlaw
scaling law of the SOC parameters (P,E,T ) with length scales L, we expect also occur-
rence frequency distributions N(L) of length scales to exhibit a powerlaw-like functional
form (Section 7.1.6). Hence, we study the length scale frequency distributions N(L) for
different astrophysical SOC processes in the following.

8.6.1 Solar Photosphere and Chromosphere

As we alluded to in previous sections on the (multi)fractal structure of magnetic structures
seen on the solar surface and in the solar atmosphere, there is the notion that the internal
solar dynamo is the driver and generator of magnetic features (sunspots, active regions,
filaments, flares, coronal mass ejections), and thus could represent a dissipative nonlinear
system in the state of self-organized criticality (in contrast to turbulence or percolation
theories). The static magnetic features seen on the solar surface represent then the remnants
of buoyant magnetic fluxtubes generated by the SOC state of the tachocline on one hand,
while dynamic magnetic reconnection processes in the solar corona represent a secondary
SOC process generated by the SOC state of the solar atmosphere on the other hand.
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Early statistics (before SOC) on the distribution of the most prominent magnetic fea-
tures on the solar atmosphere, namely active regions, was obtained by measuring the areas
of over 1,000 active regions during 1967–1981 in daily magnetograms from the Mount
Wilson Observatory, detected above a threshold of 10 G. The resulting area size distribu-
tion with sizes of A = 3–1,350 square degrees (1 square deg = 48.5× 10−6 of the solar
hemisphere), were found to fit an exponential distribution of N(A) ∝ exp(−A/175) (Tang
et al. 1984). A more extended study was conducted by Harvey and Zwaan (1993), which
differed from the study of Tang et al. (1984) in several ways: (1) only bipolar regions that
reach their peak size on the visible hemisphere were included, (2) regions are included
only once, (3) each region was measured during the peak, and (4) corrections for visibility
and data gaps were made. The resulting size distribution was characterized by a sum of ex-
ponential and logarithmic terms and was much different from the one obtained by Tang et
al. (1984), but agreed in the invariance of the functional shape during the solar cycle. The
size distribution of sunspots sampled over more than 100 years (from Greenwich Obser-
vatory 1874–1976) was found to follow a log-normal distribution (Baumann and Solanki
2005), which is powerlaw-like at the upper end, but exhibits a gradual flattening towards
smaller sizes. Statistics on areas of magnetic features depend very much on the selection
(active regions, sunspots, emerging bipoles), the time evolution (growth, peak, or decay
phase), and the counting method (daily records, multiple countings per solar rotation).
Moreover, since the total available magnetic energy per feature depends on both the area
and the field strength, statistics on areas alone may not be most useful.

An area-related quantity is the magnetic flux Φ =
∫

B dA ≈ BA, which includes the
magnetic field strength B and is largely independent on the instrumental resolution, be-
cause it represents a spatial integral. However, the relationship between the magnetic flux
Φ ≈ BA and the area A is not simple and seems to vary in an active region on time scales of
days (Chumak and Zhang 2003). Statistics on the distribution of magnetic field strengths
in the range of B = 0–1,800 G has been quantified in Dominquez Cerdena et al. (2006),
which depends very much on the instrumental resolution and whether the Zeeman sig-
nal tends to cancel opposite polarization. A powerlaw-like distribution of magnetic fluxes
was found for intranetwork (with a slope of α ≈ 1.68) and network flux (with a slope of
α ≈ 1.27) in the a range of Φ ≈ 1016–1018 Mx (Wang et al. 1995; Meunier 2003). A series
of studies was conducted (Hagenaar et al. 1997, 2003; Hagenaar 2001; Hagenaar and Shine
2005) on the statistical distribution of cell sizes in the chromospheric network, ephemeral
magnetic regions, and moving magnetic features around sunspots, and synthesized the dif-
ferent statistics into a single composite powerlaw-like distribution function that contains
the magnetic fluxes of emerging bipoles at the lower end and entire active regions at the
upper end, spanning a range of about four orders of magnitude (Φ ≈ 5×1018 −5×1022

Mx), shown in Fig. 8.19 (left). Parnell et al. (2009) used a “clumping algorithm” and ex-
tended this way the range of magnetic fluxes over about seven decades and found that the
synthesized distribution of all magnetic features in the range of Φ = 1016 − 1023 Mx fit
a powerlaw distribution with a slope of α ≈ 1.85 ± 0.14 (Fig. 8.19, right). The statistical
distributions of magnetic fluxes in active regions has been modeled in terms of percolation
models (Wentzel and Seiden 1992; Seiden and Wentzel 1996; Fragos et al. 2004). We will
discuss physical SOC models that involve the observed size distributions of magnetic areas
and magnetic fluxes in Chapter 9.



8.6 Statistics of Spatial Scales 279

100 101 102 103 104 105

Flux (1018 Mx)

10-6

10-4

10-2

100

102

104

N
 (

pe
r 

da
y)

ER AR

Fig. 8.19 Left: Composite distribution function of magnetic bipoles emerging on the Sun per day, per
flux interval of 1018 Mx, and active regions (Hagenaar et al. 2003). Right: Synthesized histograms of
magnetic features observed with SOT/Hinode and MDI/SOHO, identified with an automated clumping-
feature algorithm. The combined powerlaw slope is α = 1.85 ± 0.14 (Parnell et al. 2009), (reproduced by
permission of the AAS).

8.6.2 Solar Flares

There are only few studies that offer statistics on spatial scales of solar flares (Table 8.2).
Area statistics of very small solar flares in the energy range of E ≈ 1024–3× 1025 erg,
called EUV transient brightenings, was sampled by Berghmans et al. (1998), finding an
approximate powerlaw distribution with a slope of αA = 2.7 at a transition region wave-
length (304 Å) and αA = 2.0 in a coronal wavelength (195 Å), measured with SOHO/EIT
at spatial scales of L ≈ 3–20 Mm. A similar SOHO/EIT study was conducted by Aletti
et al. (2000), who measured the size of an EUV brightening from the number of pixels
that have an intensity above a threshold of 2σ or 3σ , and obtained a (fractal area) size

Table 8.2 Frequency distributions of area sizes observed in solar flares. References: 1, Berghmans et
al. (1998); 2, Aletti et al. (2000); 3, Aschwanden and Parnell (2002).

Events type Wavelength Range Powerlaw slope
of lengths of areas αA

L N(A) ∝ A−αA

EUV brightenings1 304 Å (He II) 3–20 Mm 2.7
EUV brightenings1 195 Å (Fe XII) 3–20 Mm 2.0
EUV brightenings (2σ)2 195 Å (Fe XII) 2–60 Mm 1.26 ± 0.04
EUV brightenings (3σ)2 195 Å (Fe XII) 2–20 Mm 1.36 ± 0.05
EUV nanoflares3 171, 195 Å 2–20 Mm 2.56 ± 0.23
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distribution with powerlaw slopes of αA = 1.26–1.36 in the range of A = 1–1,000 pix-
els (corresponding to a length scale of L ≈ 2–60 Mm). In a systematic study of EUV
nanoflares detected with TRACE 171 and 195 Å, the (fractal) flare areas were measured
with an elliptical area with length l and width w, yielding an area of A = lw (Eq. 8.2.6).
From a set of 281 automatically detected nanoflare events, size distributions of N(l) ∝ l−αl

with αl = 2.10 ± 0.11 and N(w) ∝ w−αw with αw = 4.43 ± 0.22 and N(A) ∝ A−αA with
αA = 2.56 ± 0.23 were found (Aschwanden and Parnell 2002), for a size range of L ≈ 2–
20 Mm.

Thus, there is very scarce statistics on distribution of spatial scales. A full-scale SOC
model should also include geometric scaling laws, but little effort has been put into this
aspect. What are our theoretical expectations for a geometric SOC model? One potential
model is Euclidean fragmentation, which we envision simply by breaking down a solid
structure into smaller space fragments. For instance, if we break a square-like chocolate
into 16 equal pieces, each little square has a quarter length of the original size, so we
have N(L = 1) = 1 and N(L = 1/4) = 16, and thus N(L) ∝ L−2. For solid structures, the
expected scaling would then just be the reciprocal relationship of Euclidean scaling, e.g.,
N(L) ∝ L−1 for breaking a linear structure into smaller pieces, N(L) ∝ L−2 = A−1 for
subdividing an area-like 2-D structure, and N(V ) ∝ L−3 = V−1 for fragmenting a volume
structure. For fractal geometries, we might expect a reciprocal scaling of the fractal dimen-
sion, but the definition of a length scale for fractal structures is more tricky. A comparison
with the distributions measured in Table 8.2 shows at least some values are close to the
expected scaling of N(A) ∝ A−1, but clearly more statistics is needed to narrow down more
reliable values of the powerlaw slope based on a wider range of spatial scales.

There are some other area-related flare studies. The study of Sammis et al. (2000) inves-
tigated the flare peak fluxes as a function of the area of active regions and a trend was
found that large active regions produce larger flares, but this general trend was found to
be less significant than the dependence on the magnetic classification (α,β ,γ,δ classes
of magnetic complexity of sunspots). In addition some studies explored whether the fre-
quency distribution of peak fluxes in flares depends on the sizes of active regions and some
systematic differences were found (e.g., Kucera et al. 1997; Sammis 1999) as expected for
biased subsets, while the scale invariance was corroborated when compared among differ-
ent active regions (Wheatland 2000c), which is expected for SOC models.

8.6.3 Lunar Craters

Craters can generally be produced either by volcanic eruptions or by meteoroid impacts,
both representing violent catastrophic events that may exhibit SOC behavior. Many craters
seen on the Moon or Earth appear to be the result of meteoroid impacts. Both the Moon
and the Earth were subjected to intense bombardment between 4.6 and 4.0 billion years
ago, which was the final stage of the sweep-up of debris left over from the formation of the
solar system. The impact rate during that time was a thousand times higher than today’s
rate. Lunar craters, therefore, represent remnants or witnesses of catastrophic events that
left a measurable imprint from which we can measure the size and perhaps even calculate
the energy.
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Fig. 8.20 Left: The lunar crater Daedalus, about 93 km in diameter, was photographed by the crew of
Apollo 11 as they orbited the Moon in 1969 (NASA photo AS11-44-6611). Right Cumulative frequency
distribution of crater diameters measured from Ranger 8 in the lunar Mare Tranquillitatis (Cross 1966).

The size distribution of lunar craters was measured from pictures of the lunar orbiters
Ranger 7, 8, 9 by Cross (1966), who measured the diameters L from a total of 1,600
craters, ranging from 0.65 to 69,000 m, and found an approximate powerlaw function for
the cumulative frequency distribution,

Ncum(>L) ∝ L−2 (8.6.1)

which corresponds to a differential frequency distribution of N(L) ∝ L−3 according to
(Eq. 7.1.8). Cross (1966) conducted statistics of lunar craters for each Mare separately. One
example of a cumulative frequency distribution of craters from the Mare Tranquillitatis
using Ranger 8 measurements is shown in Fig. 8.20 (right). A similar powerlaw index of
2.75 was also found for the size distribution of meteorites and space debris from man-made
rockets and satellites (Fig. 3.11 in Sornette 2004).
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Interpreting this result, we may think again of the concept of Euclidean fragmentation,
for which we expect N(L) ∝ L−3. The more or less solid mass that was forming the solar
system probably has been fragmented by collisions and tidal forces into smaller pieces.
Conservation of mass and volume yields then the scaling law, N(L) ∝ L−3, since

V = N(L0)L3
0 = N(L)L3 = const , (8.6.2)

where L0 is the original average size and L is the smaller average size of fragments at
a later time of the fragmentation process. The fragmentation process leads naturally to a
self-similar fractal geometry, since fragments from frequent collisions tend to grind spher-
ical objects, and combined with the spherically propagating shock waves during an impact
event, leads also to a self-similar distribution of circular craters. Do impact craters qual-
ify for a SOC system? Both the Euclidean fragmentation process (driven by two-body
collisions) as well as the impact of a fragment on the lunar surface are both highly non-
linear dissipation processes, occur with a random waiting-time distribution, and exhibit
scale-free powerlaw distributions of energies and sizes, and thus possess all typical char-
acteristics of a SOC process. However, we cannot measure the time history of the event
to obtain the peak energy, total energy, and duration, but are left with the imprints of the
spatial sizes only.

8.6.4 Asteroid Belt

The asteroid belt between the planets Mars and Jupiter contains a large number of irregu-
lar bodies or minor planets with sizes from about 1,000 km (Ceres 1,020 km; Pallas 538
km; Vesta 549 km; Juno 248 km) down to the size of dust particles. While most plan-
etesimals from the primordial solar nebula formed bigger planets under the influence of
self-gravitation, the gravitational perturbations from the giant planets Jupiter and Saturn
prevented a stable conglomeration of planetesimals in the zone between Mars and Jupiter,
and thus we still live with a fragmented soup of primordial planetesimals, called the as-
teroid belt (Fig. 8.21, left). The asteroid belt has evolved into the present configuration
by dynamical depletion due to the gravitational disturbance from the giant planets (which
pull planetesimals into highly eccentric orbits) and collisions (which fragment the plan-
etesimals further).

The asteroid size distribution has been studied in the Palomar Leiden Survey (Van
Houten et al. 1970) and Spacewatch Surveys (Jedicke and Metcalfe 1998), where a power
law of Ncum(>L) ∝ L−1.8 was found for the cumulative size distribution of larger asteroids
(L > 5 km), which corresponds to a differential powerlaw slope of αL ≈ 2.8. In a Sloan
Digital Sky Survey collaboration (Fig. 8.21, right), a broken powerlaw was found with
N(L) ∝ L−2.3 for large asteroids (5–50 km) and N(L) ∝ L−4 for smaller asteroids (0.5–
5 km) (Ivezic et al. 2001). In the Subaru Main-Belt Asteroid Survey, a cumulative size
distribution Ncum(>L) ∝ L−1.29±0.02 was found for small asteroids with L ≈ 0.6–1.0 km
(Yoshida et al. 2003; Yoshida and Nakamura 2007), which corresponds to a differential
powerlaw slope of αL ≈ 2.3.

Interpreting these results, which specify powerlaw slopes of the differential size dis-
tribution in the range of αL ≈ 2.3–4.0, the average is close to the value αL ≈ 3 expected
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Fig. 8.21 Left top: A picture of the near-Earth asteroid Eros with a size of 30 km, pictured by a space
probe. Left bottom: The main asteroid belt located between the Jupiter and Mars orbit. The subgroup
of Trojan asteroids are leading and trailing along the Jupiter orbit. (Courtesy of NASA/Johns Hopkins
University Applied Physics Laboratory). Right: Differential size distribution of asteroids observed in the
Sloan Digital Sky Survey collaboration (Ivezic et al. 2001). (Reprinted with permission of Elsevier)

for Euclidean fragmentation, which predicts N(L) ≈ L−3, similar to the statistics of lu-
nar craters (Section 8.6.3). However, the observational manifestation is quite different for
these two phenomena, one observed before impact and the other after impact on a specific
target. The fact that the size distribution exhibits a broken powerlaw could indicate that two
different physical processes dominate in the two regimes, for instance dominant collisions
with less gravitational orbit perturbation for the large asteroids (L >∼ 5 km), but stronger or-
bit perturbation and pre-dominant dynamic depletion for smaller asteroids. Nevertheless, a
similar argument for asteroid formation as a SOC process can be made as for the creation
of lunar craters.

8.6.5 Saturn Ring

Jupiter and Saturn are the two largest planets in our solar system, and thus it is no surprise
that they also have numerous moons, rings, and ringlets thanks to their strong gravitational
field. While the rings are located close to the planet (7,000 km to 80,000 km above Saturn’s
equator), the orbits of the moons are outside the rings. Mechanical resonances (i.e., in
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Fig. 8.22 Photo of Saturn’s B-ring with Huygens gap, Cassini division, and spoke structures, recorded by
the Cassini spacecraft (credit: NASA, JPL, Space Science Institute).

orbits that have a period with a harmonic ratio to the outer moons’ periods) destabilize
inner rings, leading to gaps (e.g., Encke gap, Cassini division), or stabilize the zones in
between (Figs. 1.11 and 8.22). The Saturn ring consists of particles ranging from 1 cm to
10 m, with a total mass of 3× 1019 kg, just about a little less than the moon Mimas. The
origin of the ring was hypothesized to come either from nebular material left over from the
formation of Saturn itself or from the tidal disruption of a former moon.

The distribution of particle sizes in Saturn’s ring was determined with radio occultation
observations using data from the Voyager 1 spacecraft and a scattering model, which ex-
hibited a powerlaw distribution of N(r) ∝ r−3 in the range of 1 mm < r < 20 m (Zebker
et al. 1985; French and Nicholson 2000). This result, again, is consistent with Euclidean
fragmentation, similar to the distribution of sizes of asteroids (Section 8.6.4) and lunar
craters (Section 8.6.3). Can we consider the evolution of the Saturn ring as a SOC pro-
cess? Events are caused by collisional encounters, which probably occur at random time
intervals (though very rare on human time scales) and the energy release during a col-
lisional impact is likely to be a nonlinear dissipative (fragmentation) process, leading to
powerlaw distributions of energies with some scaling to the powerlaw size distribution
of the projectile and target. The critical threshold is some minimal velocity difference Δv
(between the projectile and target body) for inelastic impacts with subsequent fracturing,
while small Δv merely cause elastic reflections without catastrophic disintegration. Hence
the same argument for a SOC process can be made as for asteroids and lunar craters.
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8.7 Summary

SOC processes produce scale-free powerlaw-like size distributions of their dynamical pa-
rameters (peak energy, total energy, duration), which also extends to their geometric pa-
rameters (length, area, volume). The powerlaw-like size distributions of geometric param-
eters then consequently imply also powerlaw-like scaling laws between geometric param-
eters, such as A(L) ∝ LDA and V (L) ∝ LDV . These geometric scaling laws can be either Eu-
clidean (DA = 2 and DV = 3) or fractal (DA < 2 and DV < 3). Cellular automaton models of
SOC processes can reproduce fractal geometries in the spatial propagation of avalanches,
and thus fractal scaling laws are expected for most SOC processes. We discussed 1-D frac-
tals (Section 8.1), which can be applied to 1-D time series of astrophysical observations
(e.g., variability of solar radio emission). Measuring 2-D fractals (Section 8.2) can be done
most conveniently in astrophysical images inside our solar system (e.g., magnetospheric
substorms, solar photosphere, or solar flares). The derivation of 3-D fractal dimensions
(Section 8.3) is more tricky, because it requires either geometric models or lattice-based
computer simulations. The measurement of fractal characteristics can be done either by
box-counting algorithms (Section 8.2), multifractal analysis (Section 8.4), spatial power
spectrum analysis (Section 8.5), or by statistics of spatial scales (Section 8.5). With the
latter method we explored magnetic structures in the solar photosphere as well as during
flares and found them all to be fractal. In contrast, the size distribution of lunar craters,
asteroids, and Saturn ring particles all exhibit a Euclidean scaling law of N(L) ∝ L−3, as
expected for a fragmentation process. In summary, fractal or Euclidean scaling laws of
geometric parameters and their powerlaw-like size distributions are necessary conditions
for SOC processes, but not sufficient to prove a SOC process, because non-SOC processes
(such as intermittent turbulence) can also produce powerlaw-like distributions of spatial
scales.

8.8 Problems

Problem 8.1: What is the 1-D (“Sierpinski dust”) and 3-D analog (“Sierpinski tetahedron)
of the 2-D Sierpinski triangle shown in Fig. 8.6. Calculate their fractal dimensions.

Problem 8.2: Construct a time series (say N = 10,000 points) with a random generator
and measure its fractal dimension with the method of Higuchi (Section 8.1.2). Smooth
the time series with a box-car of nsm = 10 and 100 and determine its fractal dimension.
How much smoothing is needed to obtain a near-Euclidean dimension of D ≈ 1 within
1%?

Problem 8.3: Download digital astronomical images of a spiral galaxy, a globular cluster,
and a star field. Measure their fractal dimensions for various thresholds (say 10%, 20%
and 50% of the maximum intensity). In which cases do you obtain a near-Euclidean
dimension of D = 1 as expected for dot-like stars. Which case shows the highest fractal
dimension and what spatial structure is it associated with?

Problem 8.4: Verify the analytical expressions of the area- qA and volume-filling factors
qV given Eqs. 8.3.8–8.3.10 for an aspect angle of α = 0◦ by means of a Monte-Carlo
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simulation for nloop = 10,100, and 1,000 loop elements in a half-cylinder configuration
as shown in Fig. 8.15.

Problem 8.5: Design a simple Monte-Carlo simulation for the fragmentation of planetes-
imals, assuming that collisions occur in random time intervals and between random
fragments, where each collision splits a planetesimal into two half volumes. Sample
the size distribution N(L) after 103, 104 and 105 events and fit a powerlaw distribution
N(L) ∝ L−αL . Do you find a Euclidean dimension of αL = 3? Think of improvements
that would make the model more realistic.
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