
7. Occurrence Frequency Distributions

Probability is expectation founded upon partial knowledge. A perfect acquaintance
with all the circumstances affecting the occurrence of an event would change expec-
tation into certainty, and leave neither room nor demand for a theory of probabili-
ties.

George Boole (1815–1864)

Nevertheless, as is a frequency occurrence in science, a general hypothesis was con-
structed from a specific instances of a phenomenon.

Sidney Altman (born 1939)

It is customary in the statistics of nonlinear processes to histogram the logarithmic number
of events versus a logarithmic size scale, which is called a log N − log S diagram, size
distribution, occurrence frequency distribution, or simply frequency distribution. In such
log-log representations, the difference between (i) a Poissonian random process, which
can be characterized by an exponential distribution function that drops off sharply above
an e-folding size scale, and (ii) nonlinear processes governed by self-organized criticality,
which ideally produce a scale-free powerlaw distribution function, appears most striking.
Frequency distributions thus have become the arbiters of SOC versus non-SOC processes,
starting from the famous magnitude diagram of earthquakes discovered by Beno Guten-
berg and Charles Francis Richter in 1954 (i.e., the Gutenberg–Richer law). Frequency
distributions of SOC phenomena obtained from astrophysical data were first identified in
solar flare data by Ed Lu and Russell Hamilton (1991), based on log-log histograms pub-
lished earlier without an interpretation in terms of SOC (e.g., Dennis 1985). Frequency dis-
tributions can be plotted for any conceivable parameter, preferably a (model-independent)
observable, which does not require an arbitrary choice of a physical model. For earth-
quake statistics, the most commonly used parameter is the magnitude, measured by well-
calibrated seismometers. In astrophysical data, where the observable is typically a time
series of flux intensity in some given wavelength range, obvious parameters used for fre-
quency distributions are the peak flux P, the total (time-integrated) flux or fluence E, and
the total duration T of an event. While such observables can be unambiguously measured
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from well-calibrated detectors, the ultimate desire is to obtain frequency distributions of
physical parameters, such as the thermal energy Eth, the nonthermal energy Enth, the mag-
netic energy EB, the kinetic energy Ekin, or the potential energy Epot , which of course are
all model-dependent, to be discussed in Chapter 9. In the following section we review the
occurrence frequency distributions of (preferably) observables measured from astrophysi-
cal events that are (hypothetically) associated with SOC processes and we will compare the
observations with analytical SOC models (Chapter 3) in order to evaluate their consistency
with SOC theory.

7.1 Basics of Frequency Distribution Functions

The data input for an occurrence frequency distribution is usually a list or a catalog of
events, characterized by some size parameter xi for i = 1, ...,n events, regardless whether
the list was generated by visual inspection or by an automated computer algorithm (Chap-
ter 6). How do we construct a log-log histogram from an event catalog? There are essen-
tially two ways, either a logarithmically binned histogram if large statistics is available, or
a rank-order plot if the size of the statistical sample is rather small.

7.1.1 Differential Frequency Distributions

If we have large statistics (at least n >∼ 102, ...,103), we can first establish a logarithmic
binning axis bound between the minimum and maximum value, xmin ≤ xi ≤ xmax, with n j
bins,

xbin
j = xmin

(
xmax

xmin

)( j−1)/(n j−1)

, j = 1, ...,n j (7.1.1)

which is equidistant on a logarithmic scale, but has variable intervals on a linear scale,

Δxbin
j = xbin

j+1 − xbin
j = xbin

j

[(
xmax

xmin

)1/(n j−1)

−1

]
. (7.1.2)

In a next step we can count the number of events Nbin
j that fall in each bin with interval

xbin
j ≤ xi ≤ xbin

j+1. We have to be aware that this number Nbin
j depends on the particular

bin size Δxbin
j we have chosen. In order to obtain the functional form of the frequency

distribution, which should be independent of the binning, we have to divide the number of
events by the bin size,

Nj = N(x j) =
Nbin

j

Δxbin
j

, (7.1.3)

and can plot the frequency distribution with Nj on the y-axis versus the size x j on the x-
axis. This representation normalizes the distribution to the total number of events n, which
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we should obtain by integration over the x-axis, or summing over all (non-equidistant) bins
on the x-axis,

∫ ∞

0
N(x) dx =

n j

∑
j=0

Nj dx j =
n j

∑
j=0

N(x j)Δxbin
j =

n j

∑
j=0

Nbin
j = n . (7.1.4)

Instead of expressing the number of occurrences by the actually observed numbers Nj, it is
also customary to use a probability distribution function P(x), which is simply the number
of events in each bin normalized by the total number of events n,

P(x) =
N(x)

n
(7.1.5)

which has the total integral normalized to unity,
∫ xmax

xmin

P(x) dx =
∫ xmax

xmin

N(x)
n

dx = 1 . (7.1.6)

Both representations, N(x) or P(x), are called a differential frequency distribution, because
they express the number of events in a “differential” bin dx.

7.1.2 Cumulative Frequency Distributions

An integrated differential frequency distribution N(x)dx is called a cumulative frequency
distribution Ncum(> x), which expresses in each bin the sum of all events that are larger
than the size parameter of the bin x,

Ncum(>x) =
∫ xmax

x
N(x)dx , (7.1.7)

which we denote by Ncum(>x), in contrast to the differential distribution N(x). The cumu-
lative frequency distribution contains more statistics in the rarer bins at larger sizes, and
thus appears smoother at the upper end than differential distribution functions. However,
the values in each bin are statistically not independent, but always contain information
from all other bins on the right-hand side. The particular functional shape at the upper
cutoff can dominate the entire distribution function.

If the differential frequency distribution is a powerlaw function with slope α , the cu-
mulative frequency distribution is expected to have a flatter powerlaw slope by one,

N(x) ∝ x−α

Ncum(>x) ∝ x−β <∼ x−(α−1) . (7.1.8)

For instance, both the differential and cumulative frequency distributions for earthquakes
are shown in the same plot (Fig. 1.7), with slopes of α = 2 and β = 1. However, the
powerlaw relationship β = α −1 is only true when the differential frequency distribution
extends to infinite, which is never the case. In reality, there is always a largest event at xmax,
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Fig. 7.1 A differential frequency distribution function N(x) is shown with a powerlaw slope of α = 1.5
and cutoff at xmax = 100 (top). The corresponding cumulative frequency distribution function Ncum(>x) is
fitted in the lower half (logarithmic) range x = [1, ...,10], which gives a powerlaw slope of β = 0.61, which
is steeper than expected for an ideal powerlaw distribution without upper cutoff xmax, i.e., β = α −1 = 0.5.

which causes a sharp cutoff in the differential frequency distribution N(x), but a gradual
steepening in the cumulative frequency distribution, because of the missing contributions
from x > xmax. This detail is quite important, because it leads to a significant over-estimate
of the powerlaw slope when the rule α = β + 1 is applied. We demonstrate this in the
following. We define a powerlaw distribution function with a sharp cutoff at xmax,

N(x) = (α −1)x−α , x ≤ xmax . (7.1.9)

The cumulative frequency distribution function can then be calculated by integrating over
the range from x to xmax,

Ncum(>x) = n
∫ xmax

x N(x′) dx′∫ xmax
xmin

N(x′) dx′
= n

∫ xmax
x x′−α dx′∫ xmax
xmin

x′−α dx′
= n

(x1−α − x1−α
max )

(x1−α
min − x1−α

max )
. (7.1.10)
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We see that the second term in the integral, x1−α
max steepens the slope and lets the cumulative

distribution drop to zero when x approaches xmax. We plot the two distribution functions
in Fig. 7.1 for α = 1.5. The powerlaw slope of the cumulative distribution function is
expected to be β = α −1 = 1.5−1 = 0.5 at the lower end x 	 xmax, but becomes system-
atically steeper near the upper cutoff. If we were to fit a powerlaw over the powerlaw-like
range of x, say in the range xmin ≤ x ≤ xmax/10, we would measure a slope of β = 0.61
(Fig. 7.1). This steepening effect on the slope due to the presence of an upper cutoff does
not occur in the differential distribution, so it is important to take this effect into consider-
ation when dealing with cumulative frequency distribution functions, e.g., see Fig. 1.7 for
earthquakes or Fig. 1.15 for stellar flares.

How can this upper cutoff effect be taken properly into account? The best way is
to fit the exact analytical function of the cumulative frequency distribution function,
which is Ncum(>x) ∝ (x1−α −x1−α

max ) (Eq. 7.1.10), rather than the powerlaw approximation
Ncum(>x) ∝ x1−α . Alternatively, if the original data are not available, but only a powerlaw
fit to the cumulative distribution is known (e.g., from literature),

Ncum(>x) = n
(

x
xmin

)−β
, (7.1.11)

we can calculate the relationship between the cumulative powerlaw slope β and the differ-
ential powerlaw slope α . A practical way is to assume that the cumulative powerlaw slope
β gives a good fit of the parameter x in the lower half (logarithmic) range [xmin,xmax] (see
Fig. 7.1), which we define with the fractions [q1,q2] with q1 = xmin/xmax and q2 = q1/2

1 .
For instance, for xmin = 1 and xmax = 100 (Fig. 7.1), the lower logarithmic half has the
fractions q1 = 0.01 and q2 = 0.1. From the cumulative powerlaw fit we have the following
occurrence ratio between these two points (using q1 = q2

2),

Ncum(>x2)
Ncum(>x1)

=
(

x2

x1

)−β
=

(
q2

q1

)−β
= qβ

2 . (7.1.12)

On the other side, from Eq. (7.1.10) we have, using q1 = q2
2 and applying (x2 − 1) =

(x−1)(x+1) for x = q1−α
2 ,

Ncum(>x2)
Ncum(>x1)

=

(
q1−α

2 −1
q1−α

1 −1

)
=

(
q1−α

2 −1

q2(1−α)
2 −1

)
=

1

q(1−α)
2 +1

. (7.1.13)

Setting these two expressions (Eqs. 7.1.12 and 7.1.13) equal, we obtain the following
relationship for α as a function of β ,

α = 1− log[q−β
2 −1]

log(q2)
. (7.1.14)
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or vice versa, the relationship for β as a function of α ,

β = − log [q(1−α)
2 +1]

log(q2)
. (7.1.15)

We see that both expressions yield the approximation α ≈ 1+β , if q−β
2 � 1 or q1−α

2 � 1,
which comes down to the condition of large logarithmic ranges, i.e. xmax � xmin. For the
case shown in Fig. 7.1 with q2 = 0.1 and α = 1.5, we obtain β = log(1+0.1−0.5) = 0.62,
which is significantly different from the approximation β ≈ α − 1 = 0.5. The difference
is even larger for smaller logarithmic ranges, say for one decade (xmin/xmax = 0.1), as it is
the case for small samples, such as statistics of stellar flares (Fig. 1.15).

7.1.3 Rank-Order Plots

If the statistical sample is rather small, in the sense that no reasonable binning of a his-
togram can be done, either because we do not have multiple events per bin or because
the number of bins is too small to represent a distribution function, we can create a rank-
order plot. A rank-order plot is essentially an optimum adjustment to minimum statistics
that gives every single event a single bin. From an event list of a parameter xi, i = 1, ...,n,
which is generally not sorted, we have first to generate a rank-ordered list by ordering the
events according to increasing size,

x1 ≤ x2 ≤ ... ≤ x j ≤ ... ≤ xn , j = 1, ...,n . (7.1.16)

The bins are generally not equidistant, neither on a linear nor logarithmic scale, defined by
the difference between subsequent values of the ordered x j,

Δxbin
j = xbin

j+1 − xbin
j . (7.1.17)

In a rank-ordered sequence of n events, the probability for the largest value is 1/n, for
events that are larger than the second-largest event it is 2/n, and so forth, while events
larger than the smallest event occur in this event list with a probability of unity. Thus, the
cumulative frequency distribution is simply the reversed rank order,

Ncum(>x j) = (n+1− j) , j = 1, ...,n , (7.1.18)

and the distribution varies from Ncum(>x1) = n for j = 1 to Ncum(>xn) = 1 for j = n. We
can plot a cumulative frequency distribution with Ncum(>x j) on the y-axis versus the size
x j on the x-axis. The distribution is normalized to the number of events n,

∫ xn

x1

N(x) dx = Ncum(>x1) = n . (7.1.19)

The differential frequency distribution function N(x) could in principle be computed from
the derivative of the cumulative distribution, but there is usually considerable noise be-
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tween subsequent events in a rank order, so that smoothing is recommended before differ-
entiation.

We show two examples of rank-ordered plots in Fig. 7.2. The first example is based
on a differential frequency distribution of time scales that correspond to an exponential
function with time scale τ = 1,

N(t) =
1
τ

exp
(
− t

τ

)
, (7.1.20)

Using a random generator we are producing n = 100 values of time scales ti, i = 1, ...,n
that correspond to this differential distribution according to the method described in the
following Section 7.1.4, which we plot in a rank-ordered diagram as shown in Fig. 7.2
(left; diamonds). In order to prove that this rank-order plot corresponds to the cumulative
distribution, we calculate the distribution analytically by integrating Eq. (7.1.20),

Ncum(> t) =
∫ ∞

t
N(t ′) dt ′ =

∫ ∞

t

1
τ

exp
(
− t ′

τ

)
dt ′ = exp

(
− t

τ

)
. (7.1.21)

which agrees (Fig. 7.2 left, thick solid curve) with the rank-ordered values.
The second example is based on a differential frequency distribution of energies that

have a powerlaw function with slope of α = 1.5,

N(E) = (α −1)E−α . (7.1.22)
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Fig. 7.2 Numerically generated rank-order plots (diamonds) and theoretical cumulative frequency distri-
bution functions (thick solid curves) for an exponential function with τ = 1 (left) and a powerlaw function
with α = 1.5 (right).
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Again, using a random generator we are producing n = 100 values of energy Ei, i = 1, ...,n
that correspond to this differential distribution according to the method described in the
following Section 7.1.4, which we plot in a rank-order diagram as shown in Fig. 7.2 (right;
diamonds). In order to prove that this rank-order plot corresponds to the cumulative distri-
bution, we calculate the distribution analytically by integrating Eq. (7.1.22),

Ncum(>E) =
∫ Emax

E
(α −1)ε−α dε = E(1−α) −E1−α

max . (7.1.23)

which agrees (Fig. 7.2 right, thick solid curve) with the rank-ordered values.
An observational example of cumulative frequency distributions based on a rank-order

plot is shown in Fig. 1.15 for stellar flares, where the statistics literally does not include
more than about a dozen events per star (Audard et al. 2000).

Sometimes it is also convenient to plot the size versus the rank, such as the ranking of
cities by population size shown in Fig. 1.4. This is essentially the rank-order plot defined
in Eq. (7.1.18), but with exchanged x- and y-axis. The rank order on the x-axis is the
independent variable Nj, while the y-axis is the dependent variable x j = x(Nj). Since the
axes are exchanged, a powerlaw function would have approximately the reciprocal value
for the slope,

N(x) ∝ x−α

x(N) ≈ N−1/α (7.1.24)

This type of rank-order plot with size versus rank was originally used by Zipf (1949) for
statistics of word usage (Section 1.3), and thus is also called Zipf plot.

7.1.4 Numerical Generation of Frequency Distributions

For numerical simulations of frequency distributions, for instance Monte-Carlo simula-
tions of SOC models, we need to create randomly distributed values xi that have a par-
ticular prescribed function of their frequency distribution, such as an exponential function
for waiting times, or a powerlaw function for energies. Let us prescribe the form of the
frequency distribution with a probability function p(x) in the interval [x,x+dx], which has
the normalization, ∫ ∞

0
p(x) dx = 1 . (7.1.25)

The total probability ρ(x) to have a value in the range of [0,x] is then the integral,

ρ(x) =
∫ x

0
p(x′) dx′ . (7.1.26)

If the analytical function ρ(x) can be inverted, say with the analytical inverse function
ρ−1, so that

x = ρ−1(ρ) = ρ−1(ρ[x]) , (7.1.27)

we have a transformation that allows us to generate values xi from a distribution of prob-
ability values ρi. There are many numerical random generator algorithms available that
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produce a random number ρi in a unity range of [0,1], which can then be used to generate
values xi with the mapping transform xi = ρ−1(ρi). The frequency distribution of these
values xi will then fulfill the prescribed function p(x).

As an example we demonstrate the numerical generation of a sample of time scales t
that has a frequency distribution function following an exponential function,

p(t) =
1
τ

exp
(
− t

τ

)
, (7.1.28)

which fulfills the normalization
∫ 1

0 p(t) dt = 1. The total probability ρ(t) to have a value
in the range [0, t] is then the integral function of p(t),

ρ(t) =
∫ t

0
p(t ′) dt ′ =

∫ t

0

1
τ

exp
(
− t ′

τ

)
dt ′ =

[
1− exp

(
− t

τ

)]
. (7.1.29)

The inverse function t(ρ) of ρ(t) is

t(ρ) = −τ ln(1−ρ) . (7.1.30)

In Fig. 7.3 (left) we use a random generator that produces 10,000 values ρi, uniformly
distributed in the range of [0,1], and use the transform Eq. (7.1.30) to generate values
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Fig. 7.3 Left: An exponential frequency distribution is numerically generated, based on n = 10,000 uni-
formly distributed values ρi in the range [0, ...,1] and times ti = −τ ln(1− ρi) (Eq. 7.1.30) (histogram),
leading to the occurrence probability function p(t) as defined in Eq. (7.1.28) (thick curve). Right: A pow-
erlaw frequency distribution is numerically generated, based on n = 10,000 values ρi uniformly distributed
in the range [0, ...,1], with energies Ei = (1+ρi)1/(1−α) with α = 1.5 (Eq. 7.1.33) (histogram), leading to
the occurrence probability function p(E) as defined in Eq. (7.1.31) (thick curve).
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ti = −τ ln(1−ρi) with τ = 1 and sample the frequency distribution of the 10,000 values
ti, which follows the prescribed exponential function p(t) defined in Eq. (7.1.28).

As a second example we prescribe a powerlaw function p(E) for the frequency distri-
bution,

p(E) = (α −1)E−α , (7.1.31)

which fulfills the normalization
∫ ∞

1 p(E) dE = 1. The total probability ρ(E) in the range
[0,E] is then the integral function of p(E) (Eq. 7.1.31),

ρ(E) =
∫ E

0
p(ε) dε =

∫ E

0
(α −1)ε−α dε =

[
1−E(1−α)

]
. (7.1.32)

The inverse function E(ρ) of ρ(E) (Eq. 7.1.32) is

E(ρ) = [1−ρ]1/(1−α) . (7.1.33)

In Fig. 7.3 (right) we use a random generator that produces 10,000 values ρi uniformly
distributed in the range of [0,1], choose a powerlaw index of α = 1.5, and use the transform
Eq. (7.1.33) to generate values Ei = [1− ρi]−2 and sample the frequency distribution of
the 10,000 values Ei, which follows the prescribed powerlaw function p(E) = 0.5E−1.5 as
defined in Eq. (7.1.31).

7.1.5 Integrals of Powerlaw Distributions

For normalization purposes or when the total number n of events needs to be evaluated
from a powerlaw distribution N(x) = (α −1)x−α , we have to integrate over the valid range
bound by xmin < x < xmax,

n =
∫ xmax

xmin

N(x) dx =
∫ xmax

xmin

(α −1)x−α dx = x1−α
min − x1−α

max , (7.1.34)

which is defined for α �= 1. Generally both boundaries contribute significantly to the total
number, unless the powerlaw distribution extends over a very large range, say more than
three orders of magnitude. For such large ranges, the following approximations can be
used,

n =
{≈ x1−α

min for (xmax � xmin) and (α > 1)
≈ x1−α

max for (xmax � xmin) and (α < 1)
. (7.1.35)

The total integral (or first moment) of a powerlaw distribution function, for instance
the total energy of an occurrence frequency distribution of energies, can be obtained by
convolving the variable x with the powerlaw distribution N(x) = (α −1)x−α over the valid
range xmin ≤ x ≤ xmax,

xtot =
∫ xmax

xmin

x N(x) dx =
∫ xmax

xmin

(α −1)x1−α dx =
(

α −1
2−α

)[
x2−α

max − x2−α
min

]
, (7.1.36)
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which is only defined for α �= 2. Again, generally both boundaries contribute significantly
to the total number, unless the powerlaw distribution extends over a very large range, in
which case the following approximations can be used,

xtot ≈
(

α −1
2−α

){
x2−α

min for (xmax � xmin) and (α > 2)

x2−α
max for (xmax � xmin) and (α < 2)

. (7.1.37)

The critical value is α = 2, which decides whether the integral diverges at the lower bound
(if α > 2) or upper bound (if α < 2). A far-reaching application of this integral is the
total energy contained in the distribution of solar or stellar flares, which is also responsible
for heating of the solar or stellar corona, and could be dominated by nanoflares if α > 2
applies over a large energy range, as pointed out by Hudson (1991).

7.1.6 Powerlaw Scaling Laws and Correlations

We consider the case where two parameters x and y are correlated with each other by a
powerlaw function with the power coefficient β ,

y ∝ xβ , (7.1.38)

where x and y could be the peak energy P, the total energy E, duration T , or any other
SOC parameter. Since every SOC parameter has a powerlaw-like distribution function in
our SOC standard model (Section 3.1),

N(x) ∝ x−αx

N(y) ∝ y−αy , (7.1.39)

it is useful to calculate the relationship between the power indices αx, αy, and β . The
general way to substitute a variable y(x) in a frequency distribution N(x) is,

N(y) dy = N[x(y)]
∣∣∣∣dx(y)

dy

∣∣∣∣dy , (7.1.40)

which yields, for the function y(x) ∝ xβ defined in Eq. (7.1.38), using the inverse function
x(y) ∝ y1/β and derivative dx/dy ∝ y(1/β−1),

N(y) dy = y−αx/β+1/β−1 dy = y−αy dy , (7.1.41)

leading to the following relationship between the power indices,

β =
(αx −1)
(αy −1)

. (7.1.42)

This is a useful relationship to compute (or verify) the power index β of two correlated
parameters from their frequency distributions. For instance in Fig. 6.1, we have for x = P
and y = E the frequency distributions with a powerlaw slope of αx ≈ 2.0 and αy ≈ 1.5,
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which predicts β = (αx − 1)/(αy − 1) = (2.0− 1)/(1.5− 1) = 1/0.5 = 2, which indeed
corresponds to the power index β ≈ 2.0 in the scatterplot of E ∝ P2 (Fig. 6.1, third row
middle).

7.1.7 Accuracy of Powerlaw Fits

There are a number of effects that determine the accuracy of derived powerlaw indices
in frequency distributions, N(x) ∝ x−α , and underlying correlations, y(x) ∝ xβ , such as
formal errors of linear regression fits, the choice of dependent and independent variables,
the statistical uncertainty of the number of events, a small logarithmic range, statistical
weighting, histogram binning, cutoffs, truncations, deviations from powerlaws, sensitiv-
ity limits, etc. In addition, the sampling of events is also affected by data pre-processing,
such as dead-time corrections, spike removals, or background subtractions. When error
bars are given in literature, they usually refer to formal errors of a least-squares fit, but
do not include systematic errors that result from numerous biases of the data set or model
assumptions. The best way to obtain a realistic error is often to use a Monte-Carlo sim-
ulation of the data and measurement procedure based on a realistic model of the data. In
order to give a typical assessment of various errors in our study of occurrence frequency
distributions and parameter correlations we conduct some Monte-Carlo simulations of our
standard SOC model (Section 3.1).

Following the numerical simulation procedure outlined in Section 7.1.4 we generate
two sets of n = 100 variables, one for peak energies Pi, i = 1, ...,n and one for total energies
Ei, i = 1, ...,n, which both have powerlaw distribution functions, with powerlaw slopes of
αP = 2 and αE = 1.5,

N(P) = (αP −1)P−αP

N(E) = (αE −1)P−αE
. (7.1.43)

They can be generated using two sets of random numbers ρi and ρ j uniformly distributed
in the range [0, ...,1], produced with a numerical random generator and the transform
(Eq. 7.1.33),

Pi = [1−ρi]1/(1−αP)

E j = [1−ρ j]1/(1−αE ) (7.1.44)

In order to ensure a parameter correlation we sort each set in increasing number, but add
some random noise in both parameters. We mimic also an instrumental sensitivity limit by
applying a flux threshold of P ≥ 0.5, which causes a truncation error in P.

We plot the two sets of variables in form of a scatterplot E j versus Pi in Fig. 7.4 (top
left), which show a linear regression fit of E ∝ P1.78 instead of the theoretically expected
relationship E ∝ P2. A linear regression fit with inverted axis yields P ∝ E0.52, which
corresponds to E ∝ P(1/0.52) = P1.93, so part of the difference results from the choice of
the independent variable. There are other linear regression fits that treat both variables
equally, such as the bisector method or the minimization of the orthogonal distance to
the linear regression fit, which eliminate this bias. However, there is still an additional bias
introduced by the flux threshold, which affects a truncation of data for P but not for E. This
could be corrected by using a truncation limit that is orthogonal to the linear regression fit.



7.1 Basics of Frequency Distribution Functions 213

1.0
Peak energy P

0.1

1.0

T
ot

al
 e

ne
rg

y
E

N=  100
= 1.78

1
Peak energy P

10

100

1000

O
cc

ur
re

nc
e 

 N
(P

) P= 2.04

1
Total energy E

10

100

1000

O
cc

ur
re

nc
e 

 N
(E

) E= 1.94

1.0
Peak energy P

0.1

1.0

T
ot

al
 e

ne
rg

y
E

N= 1000
= 1.91

1
Peak energy P

100

1000

10000
O

cc
ur

re
nc

e 
 N

(P
) P= 2.27

1
Total energy E

100

1000

10000

O
cc

ur
re

nc
e 

 N
(E

) E= 1.59

1.0
Peak energy P

0.1

1.0

T
ot

al
 e

ne
rg

y
E

N=10000
= 1.94

1
Peak energy P

103

104

105

O
cc

ur
re

nc
e 

 N
(P

) P= 2.13

1
Total energy E

103

104

105

O
cc

ur
re

nc
e 

 N
(E

) E= 1.58

Fig. 7.4 Three Monte-Carlo simulations of peak energies P (middle column) and total energies E (right
column) from random samples of prescribed powerlaw distributions N(P) ∝ P2.0 and N(E) ∝ E1.5, for
sample sizes of n = 100 (top row), n = 103 (middle row), and n = 104 (bottom row). Note the truncation
bias for a threshold at P ≥ 0.5, which causes a lower rollover in the frequency distributions. The parameter
correlations E ∝ Pβ were fitted with a linear regression fit (left column) and the powerlaw slopes were
fitted in the decreasing part on the right-hand side of the maximum of the distributions.

We bin the range of P and E each with 10 bins and determine the powerlaw slope with
a linear regression for the bins right to the peak of the frequency distributions, in order to
eliminate the rollover due to the sensitivity loss at low values, and find slopes of αP = 2.04
and αE = 1.94 (Fig. 7.4, top row), while we expect theoretically αP = 2.0 and αE = 1.5.
Part of the discrepancy results from the small number statistics and the choice of bins in
the linear regression fit, while part of the difference is caused by the generation of random
numbers.

We repeat the same simulation for two larger sets of n = 103 (Fig. 7.4, middle row) and
n = 104 events (Fig. 7.4, bottom row). We see that the correlation converges to a value
of β = 1.94, which is still slightly different from the theoretical value of β = 2.0, either
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because of the truncation bias of the flux threshold or the random number generation. The
powerlaw slopes of the distribution of peak energies P converges to αP = 2.13, and the
slope of total energies E to αE = 1.58. The latter result is closer to the theoretical value
of αE = 1.5, so increased statistics helps. The remaining difference in the powerlaw slope
in the order of ≈ 5% is caused by a combination of the truncation bias, the choice of
fitted bins, and the random number generation. A bin-free powerlaw fitting procedure is
described in Parnell and Jupp (2000), which may be preferable in some cases. A different
option is also weighting of the bins by the number of events per bin. However, a best-
fit in a log-log plot is generally achieved when equidistant bins on a logarithmic scale
have equal weights, which is different from the weighting by number of events per bin.
Whatever fitting strategy is considered best, we have always to keep in mind that the data
often do not exactly correspond to a theoretical model, in which case a fitting parameter is
in principle ill-defined. For instance, if the data obey an exponential distribution, a fit with
a powerlaw model will yield a variable slope that starts from very flat at the lower end to
very steep at the upper end of the distribution, so the powerlaw slope is ill-defined.

Let us also test the consistency between the linear regression fit of the correlation and
the powerlaw fits of the frequency distributions. From the statistically largest sample we
measure αP = 2.13 and αE = 1.58 (Fig. 7.4, bottom row), which provides a prediction of
β = (αP−1)/(αE −1) = (2.13−1)/(1.58−1) = 1.948 that indeed agrees with the linear
regression fit of the correlation plot, β = 1.94, with high accuracy ( <∼ 0.4%), confirming
the robustness of the fitting procedures used in this case. The discrepancy to the theoretical
values of β = 2 seems to be caused by the particular random number representation used
in the Monte-Carlo simulation for this case.

7.2 Frequency Distributions in Magnetospheric Physics

Let us now turn to observed occurrence frequency distributions of SOC events, starting
from the magnetosphere. Some examples of frequency distributions of area sizes and dis-
sipated power of magnetospheric substorm events are shown in Fig. 1.10, and lifetime dis-
tributions of substorm-related events are shown in Fig. 7.5, which are listed in Table 7.1.

Table 7.1 Frequency distributions measured in magnetospheric physics. References: 1, Lui et al. (2000);
2, Angelopoulos et al. (1999); 3, Takalo (1993); 4, Takalo et al. (1999a); 5, Freeman et al. (2000b); 6, Chap-
man and Watkins (2001), 7, Crosby et al. (2005).

Phenomenon Parameter Powerlaw Reference
slope α

Substorms (active) area size 1.21±0.08 1
power 1.05±0.08 1

Substorms (quiet) area size 1.16±0.03 1
power 1.00±0.02 1

Substorms flow burst durations 1.59±0.07 2
AE index lifetimes 1.24 3,4
AU index burst lifetimes 1.3 5,6
Outer radiation belt electron counts 1.5–2.1 7
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Frequency distributions of substorms have been obtained by measuring the projected
area (in units of square kilometers) of auroral blobs with the POLAR spacecraft (Fig. 1.9),
as well as by measuring the dissipated power (in units of watts) with the Ultraviolet Im-
ager UVI (Lui et al. 2000). As a first-order approximation we can consider both the area
or the dissipated power as a measure of the total energy E of substorm events. The fre-
quency distributions (Fig. 1.10) show powerlaw distributions during quiet time intervals
with slopes of αE ≈ 1.00–1.16, and a similar slope of αE ≈ 1.05–1.21 during substorm
active time intervals, although there is in addition a Gaussian hump at the upper end of
the distribution, which has been interpreted as a finite-size effect (Chapman et al. 1998),
as simulated with a numerical model (Fig. 2.13; Section 2.5.1). Count rates of electrons
accumulated by microsatellites during each crossing of the Earth’s outer radiation belt re-
vealed also powerlaw distributions, with slopes of αE ≈ 1.5–2.1 (Crosby et al. 2005). It
would be interesting to compare the same dataset N(E) with the frequency distributions
N(P) of peak energies and N(T ) of burst durations, in order to test SOC models. However,
we find related frequency distributions of burst durations measured from the AE index
(Fig. 7.5 top; Takalo 1993) and AU index (Fig. 7.5 bottom; Freeman et al. 2000b), as well
as from the durations of bursty bulk flow bursts in the magnetotail plasma sheet (Fig. 7.5
middle; Angelopoulos et al. 1999), which all exhibit powerlaw-like distributions in the
range of αT ≈ 1.2–1.6 (Table 7.1).

If we interpret these magnetospheric substorms as SOC events and apply our standard
model of SOC avalanches with exponential growth and linear decay (Section 3.1), we
expect the following relations for powerlaw slopes as summarized in Eq. (3.1.28),

αP = 1+ τG/tS
αT = αP
αE = (αP +1)/2

. (7.2.1)

The fact that powerlaw slopes of αT ≈ 1.24–1.6 are measured in substorms, would in-
dicate that the ratio of the exponential growth rate τG to the mean saturation time tS has
a relatively low value of (τG/tS) = αP − 1 = αT − 1 = 0.2–0.6, which implies that the
responsible instability saturates after (tS/τG) = 1.6–5.0 growth times. This implies rel-
atively large amplification factors of exp(tS/τG) ≈ 5–150, which could be verified from
the exponential growth during the rise time of substorm events. Such high amplification
factors require coherent growth without a competing damping mechanism or collisional in-
teractions, a characteristic that could constrain possible physical mechanisms responsible
for geomagnetic substorms. Another prediction from our standard model is the powerlaw
slope of the frequency distribution of energies, which based on αT ≈ 1.2–1.6 would fall
according to Eq. (7.2.1) in the range of αE = (αP +1)/2 = (αT +1)/2 ≈ 1.1–1.3, which
indeed is close to the values that Lui et al. (2000) observed during active time intervals of
substorms, i.e., αE ≈ 1.21 ± 0.08 for the areas of substorms, and αE ≈ 1.05 ± 0.08 for
the dissipated power, respectively.

In summary, we can conclude that the observed frequency distribution of magneto-
spheric substorms exhibit powerlaw-like functions for energy E and time duration T
parameters, which are consistent with the statistics of an exponentially growing insta-
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7.3 Frequency Distributions in Solar Physics 217

bility that has saturation times in the order of tS/τG ≈ 1.6–5.0, amplification factors of
exp(tS/τG) ≈ 5–150, leading to powerlaw slopes of αT = αP ≈ 1.2–1.6 for durations, and
αE = 1.1–1.3 for energies of substorm events.

7.3 Frequency Distributions in Solar Physics

Solar flares are probably the best-studied datasets regarding SOC statistics in astrophysics.
Solar flares are catastrophic events in the solar corona, most likely caused by a magnetic
instability that triggers a magnetic reconnection process, producing emission in almost all
wavelengths, such as in gamma rays, hard X-rays, soft X-rays, extreme ultraviolet (EUV),
Hα emission, radio wavelengths, and sometimes even in white light. Since the emission
mechanisms are all different in each wavelength, such as nonthermal bremsstrahlung (in
hard X-rays), thermal bremsstrahlung (in soft X-rays and EUV), gyrosynchrotron emis-
sion (in microwaves), plasma emission (in metric and decimetric waves), etc., we expect
that the calculation of energies contained in each event strongly depends on the emission
mechanism, and thus on the wavelength. It is therefore advisable to investigate the statis-
tics of SOC events in each wavelength domain separately. The most unambiguous SOC
parameters to report are the peak flux P, the total flux or fluence E, defined as the time-
integrated flux over the entire event, and the total time duration T of the event. Conversions
of fluxes and fluences into energy release rates and total energies require physical models,
which will be discussed in Chapter 9.

7.3.1 Solar Flare Hard X-rays

Hard X-ray emission in solar flares mostly results from thick-target bremsstrahlung of non-
thermal particles accelerated in the corona that precipitate into the dense chromosphere.
Thus, the hard X-ray flux is the most direct measure of the energy release rate, and thus is
expected to characterize the energy of SOC events in a most uncontaminated way, while
emission in other wavelengths exhibit a more convolved evolution of secondary emission
processes.

One of the earliest reports of a frequency distribution of solar hard X-ray flare fluxes
was made by Datlowe et al. (1974), who published the cumulative frequency distribution of
123 flare events detected in the 20–30 keV energy range above a threshold of >∼0.1 photons
(cm−2 s−1 keV−1) with the OSO-7 spacecraft during 10 Oct 1971–6 June 1972, finding a
powerlaw slope of βP ≈ 0.8. For compatibility we list only powerlaw slopes of differential
frequency distributions in Table 7.2, and use the conversion α = β + 1 if needed (but see
bias described in Section 7.1.2). We list also the logarithmic ranges of the x-axis over
which the powerlaw fit was obtained, e.g., 10 log(Pmax/Pmin) = 10 log(30/0.3) ≈ 2 in the
case of Datlowe et al. (1974), which is a good indicator of the accuracy of the powerlaw
slope fit.

A sample of 25 microflares of smaller size were detected at 20 keV with a balloon-
borne instrumentation of University of California Berkeley (UCB) during 141 minutes of
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Table 7.2 Frequency distributions measured from solar flares in hard X-rays and gamma-rays. References:
1, Datlowe et al. (1974); 2, Lin et al. (1984); 3, Dennis (1985); 4, Schwartz et al. (1992); 5, Crosby et al.
(1993); 6, Biesecker et al. (1993); 7, Biesecker et al. (1994); 8, Crosby (1996); 9, Lu et al. (1993); 10, Lee
et al. (1993); 11, Bromund et al. (1995); 12, Perez-Enriquez and Miroshnichenko (1999); 13, Georgoulis et
al. (2001); 14, Su et al. (2006); 15, Christe et al. (2008); 16, Lin et al. (2001); 17, Tranquille et al. (2009).

Powerlaw Powerlaw Powerlaw log Instrument Reference
slope of slope of slope of range
peak flux total fluence durations
αP αE αT

1.8 2 OSO-7 1
2.0 1 UCB 2
1.8 4 HXRBS 3
1.73±0.01 3.5 HXRBS 4
1.73±0.01 1.53±0.02 2.17±0.05 3.5 HXRBS 5
1.61±0.03 3.5 BATSE 4
1.75±0.02 4 BATSE 6
1.68±0.02 3.5 BATSE 7
1.59±0.02 2.28±0.08 3 WATCH 8
1.86 1.51 1.88 3 ISEE-3 9
1.75 1.62 2.73 2.5 ISEE-3 10
1.86±0.01 1.74±0.04 2.40±0.04 3.5 ISEE-3 11
1.80±0.01 1.39±0.01 1 PHEBUS 12
1.59±0.05 1.39±0.02 1.09-1.15 2 WATCH 13
1.80±0.02 3.6 [0.9] 3.5 RHESSI 14
1.58±0.02 1.7±0.1 2.2±0.2 2 RHESSI 15
1.6 3 RHESSI 16
1.61±0.04 2 ULYSSES 17

observations on 1980 June 27, yielding a powerlaw distribution with a slope of β ≈ 1 (Lin
et al. 1984).

A much larger amount of statistics was obtained with the Hard X-Ray Burst Spectrom-
eter (HXRBS) onboard the Solar Maximum Mission (SMM) spacecraft, which recorded
6,775 flare events during the 1980–1985 period, exhibiting a powerlaw distribution of
peak count rates with a slope of αP = 1.8 over four orders of magnitude (Dennis 1985),
see Fig. 1.13.

A next mission with hard X-ray detector capabilities was the Compton Gamma Ray
Observatory (CGRO). Although it was designed to detect gamma-ray flashes from astro-
physical objects, it detected also solar flares systematically during the period of 1991–
2000. Using the Burst And Source Transient Experiment (BATSE), statistics of flares with
energies >25 keV was sampled and more detailed powerlaw distributions of peak fluxes
were reported with values of αP = 1.61 ± 0.03 (Schwartz et al. 1992), αP = 1.75 ± 0.02
(Biesecker et al. 1993). and αP = 1.68 ± 0.02 (Biesecker et al. 1994) for BATSE.
Biesecker et al. (1994) noticed slight differences of the powerlaw slope during low ac-
tivity (αP = 1.71 ± 0.04) and high activity periods (αP = 1.68 ± 0.02), which appear not
to be significant.

A systematic study of flares observed with HXRBS over the entire mission duration of
1980–1989 was conducted by Crosby et al. (1993), measuring peak count rates Pcts (cts
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Fig. 7.6 Top: Monthly averages of solar flare rates observed during the last three solar cycles in hard X-
rays with HXRBS/SMM (1980–1989), BATSE/CGRO (1991–2000), and RHESSI (2002–2010), corrected
for the duty cycles of the instruments. Bottom: Monthly averages of the solar flare rate observed in soft
X-rays with GOES, including events above the C3-class level.

s−1), converted into photon fluxes Pph (photons cm−2 s−1 keV−1) at energies >25 keV,
peak HXR spectrum-integrated fluxes PX (photons cm−2 s−1), peak electron fluxes Pe
(ergs s−1), flare durations T , and time-integrated total energies in electrons Ee (ergs), for
four different time intervals of the solar cycle. The variability of the solar flare rate during
the last three solar cycles can be seen in form of monthly averages in Fig. 7.6. In Table 7.2
we list the values for the time range of 1980–1982, which covers the solar maximum and
has the largest statistics. The values of the powerlaw slopes change only by <∼2% during
the solar minimum. The multi-parameter statistics of P, E, and T allowed also to derive
the following parameter correlations (see Section 7.1.6),

T ∝ P0.43[0.41]
ph

PX ∝ P0.95[1.06]
ph

Pe ∝ P1.02[0.93]
ph

Ee ∝ P1.21[1.25]
ph

, (7.3.1)

where the powerlaw index is derived by linear regression between the parameters, as well
as from the slopes of each frequency distribution with Eq. (7.1.42) (indicated in brackets
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[...]). The peak parameters seem to be all close to proportional to each other, i.e., PX ∝
Pe ∝ Pph, so it does not matter much which one is used to characterize the peak energies
of SOC avalanches. It is interesting to compare these correlation coefficients with our
standard SOC model (Section 3.1), which predicts αP = αT and αE = (αP +1)/2, and the
correlations T ∝ P1 and E ∝ P2. We have to investigate observations in other wavelengths
and explore whether different definitions of event durations and energies can explain the
discrepancy of observed correlations (Eq. 7.3.1) to the theoretical model.

From the Wide Angle Telescope for Cosmic Hard X-Rays (WATCH) onboard the Rus-
sian satellite Granat, a sample of 1,546 flare events was observed at energies of 10–30 keV
or 14–40 keV during 1990–1992, yielding similar powerlaw slopes for peak count rates,
αP = 1.59 ± 0.02, and flare durations αT = 2.28 ± 0.08 as reported before (Crosby 1996;
Crosby et al. 1998). However, it was noted that the frequency distribution of flare dura-
tions exhibits a gradual rollover for short flare durations, approaching a slope of αT ≈ 1,
so it cannot be fitted with a single powerlaw distribution over the entire range of flare dura-
tions. From the PHEBUS instrument on Granat, which is sensitive to gamma-ray energies,
Perez-Enriquez and Miroshnichenko (1999) analyzed 110 high-energy solar flares ob-
served in the energy range of 100 keV–100 MeV and found the following powerlaw slopes:
αP = 1.80 ± 0.01 for (bremsstrahlung) hard X-ray fluxes at >100 keV, αP = 1.38 ± 0.01
for photon energies at 0.075–124 MeV, αP = 1.39 ± 0.01 for bremsstrahlung at 300–
850 keV, αE = 1.50 ± 0.03 for the 511 keV electron-positron annihilation line fluence,
αE = 1.39 ± 0.02 for the 2.223 MeV neutron capture line fluence, and αE = 1.31 ± 0.01
for the 1–10 MeV gamma-ray line fluence. We have to be aware that this selection of high-
energy (gamma-ray) flares is not representative for all hard X-ray flares, and thus has a
biased distribution towards the largest events, which explains that most frequency distribu-
tions in gamma rays have a flatter slope than in hard X-rays. The flatter slope corresponds
according to our standard model (αP = 1 + tS/τG) also to events with higher exponen-
tial growth factors exp(τ/tS), which is certainly expected for gamma ray-producing flare
events.

Using data from a >25 keV hard X-ray detector onboard the ISEE-3/ICE spacecraft
during 24 Aug 1978 and 11 Jul 1986, Lu et al. (1993) determined the frequency distribu-
tions of the peak luminosity P (erg s−1), the energy E (erg), and flare duration T (s) and
found that the measured distributions could be best fitted with a cellular automaton model
that produced powerlaw slopes of αP = 1.86, αE = 1.51, and αT = 1.88. The fits of the
distributions included an exponential rollover at the upper end, which explains that they
inferred a less steep slope for durations than previously reported. Interestingly, these val-
ues agree much more closely with our standard model, which predicts for αP = 1.86 the
slopes αT = αP = 1.86 and αE = (αP +1)/2 = 1.43. This tells us that the rollovers at the
lower and upper end of the distributions have to be included in the model fits in order to
obtain proper powerlaw slopes. Lee et al. (1993) analyzed the same data and determined
the correlations and frequency distribution powerlaw slopes with special care of trunca-
tion biases and obtained similar values for ISEE-3 (αP = 1.75, αE = 1.62, αT = 2.73)
as Crosby et al. (1993) for HXRBS. A third study was done with the same data (Bro-
mund et al. 1995), where the energy spectrum was also calculated to determine differ-
ent energy parameters, similar to the study of Crosby et al. (1993), finding the following
powerlaw slopes: αP = 1.86, ...,2.00 for the peak photon flux Pph (photons cm−2 s−1),
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αP = 1.92, ...,2.07 for the peak electron power Pe (erg s−1), αE = 1.67, ...,1.74 for the
total electron energy Ee (erg), and αT = 2.40, ...,2.94 for the total duration T (s), where
the range of powerlaw slopes results from the choice of the fitting range. The flare dura-
tion T was defined at a level of 1/e times the peak count rate. The following parameter
correlations were found,

P ∝ T 0.75[1.52]

E ∝ T 1.60[2.08]

E ∝ P1.35[1.36]
, (7.3.2)

where the powerlaw index is derived by orthogonal linear regression fits, as well as from
the slopes of the frequency distributions Eq. (7.1.42) (indicated in brackets [...]). Inter-
estingly, the first two correlations are consistent with our standard model, which predicts
P ∝ T 1 and E ∝ T 2, within the uncertainty of the two methods.

From the latest solar mission with hard X-ray capabilities, the Ramaty High-Energy
Solar Spectroscopic Imager (RHESSI) spacecraft, frequency distributions were determined
in the 12–25 keV energy band from 2002–2005 (Su et al. 2006), finding powerlaw slopes
of αP = 1.80 ± 0.02 for the peak fluxes, and a broken powerlaw αT = 0.9–3.6 for the
flare duration, similar to previous findings (e.g., Crosby et al. 1998). Christe et al. (2008)
conducted a search of microflares and identified a total of ≈25,000 events observed with
RHESSI during 2002–2007 and investigated the frequency distributions at lower energies,
finding powerlaw slopes of αP = 1.50± 0.03 for 3–6 keV peak count rates Pph (cts s−1),
αP = 1.51± 0.03 for 6–12 keV peak count rates, and αP = 1.58± 0.02 for 12–25 keV
peak count rates. Converting the peak count rates P into total energy fluxes by integrating
their energy spectra, Christe et al. (2008) find an energy distribution with a powerlaw
slope of αE = 1.7 ± 0.1, with an average energy deposition rate of <∼1026 erg s−1. It is
interesting that this microflare statistics is fairly consistent with overall flare statistics, even
if it represents only a subset in the lowest energy range.

Flare statistics was also gathered from the Solar X-ray/Cosmic Gamma-Ray Burst Ex-
periment (GRB) onboard the Ulysses spacecraft (Tranquille et al. 2009), finding similar
results for >25 keV events, i.e., a powerlaw slope of αP = 1.61 ± 0.04 for the peak count
rate, which steepens to αP = 1.75 ± 0.08 if the largest events with pulse pile-up are ex-
cluded.

A specialized study investigated also how the frequency distribution of hard X-ray peak
fluxes depends on the associated size of the active region and found evidence for an upper
cutoff due to a finite size limit (Kucera et al. 1997). Besides flare events per se, one can also
consider substructures in flares and conduct SOC statistics. If the substructures are self-
similar to the overall structure, one would expect similar powerlaw slopes of the frequency
distributions, which was indeed found to be the case for hard X-ray subpulses (Aschwan-
den et al. 1995), although subpulses from a single flare can have exponential distributions,
while their superposition from many flares converges towards powerlaw distributions (As-
chwanden et al. 1998b). These subpulses have typical time scales of Tsub = 0.5–1.5 s (As-
chwanden et al. 1995) and Tsub = 1.9 ± 0.5 s (Qiu and Wang 2006).

A summary plot of frequency distributions of the peak count rate P is shown for the
three instruments HXRBS/SMM, BATSE/CGRO, and RHESSI in Fig. 7.7, yielding an
average powerlaw slope of αP = 1.75 ± 0.05. The corresponding frequency distributions
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Fig. 7.7 Occurrence frequency distributions of hard X-ray peak count rates P(cts/s) observed with
HXRBS/SMM (1980–1989), BATSE (1991–1993), and RHESSI (2002–2007), with powerlaw fits. Note
that BATSE/CGRO has larger detector areas, and thus records higher count rates. RHESSI flares were
detected at energies of ≥12 keV, while HXRBS and BATSE flares were detected at energies of ≥25 keV.
The average slope value is αP = 1.75 ± 0.05.

of total counts or fluences are shown in Fig. 7.8, which have an average powerlaw slope of
αE = 1.61 ± 0.04. The distributions of flare durations are shown in Fig. 7.9, which exhibit
an average of αT = 2.08 ± 0.10, with a tendency toward a rollover at the low end. Thus,
our best values are,

N(P) ∝ P−αP αP = 1.75 ± 0.05
N(E) ∝ E−αE αE = 1.61 ± 0.04
N(T ) ∝ T−αT αT = 2.08 ± 0.10

(7.3.3)

It is interesting to note that these best observational values closely correspond to the nu-
merically simulated values in the cellular automaton model of Lu and Hamilton (1991),
see Eq. (2.6.15), i.e., N(P) ∝ P−1.67±0.04, N(E) ∝ E−1.53±0.02, and N(T ) ∝ T−2.17±0.05.
Using the averaged values of Eq. (7.3.3), we expect the following correlations between
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Fig. 7.8 Occurrence frequency distributions of hard X-ray total counts or fluence E(cts) observed with
HXRBS/SMM (1980–1989), BATSE (1991–1993), and RHESSI (2002–2007), with powerlaw fits. The
average slope value is αE = 1.61 ± 0.04.

these three parameters (using Eq. 7.1.42),

E ∝ Pβ β = (αP −1)/(αE −1) = (1.75−1)/(1.61−1) = 1.23 ± 0.09
T ∝ Pβ β = (αP −1)/(αT −1) = (1.75−1)/(2.08−1) = 0.70 ± 0.07
E ∝ T β β = (αT −1)/(αE −1) = (2.08−1)/(1.61−1) = 1.77 ± 0.16

(7.3.4)

In Fig. 7.10 we show the actual correlation plots between the parameters and determine lin-
ear regression fits, which give a comparable result, with E ∝ P1.26±0.04 and T ∝ P0.44±0.04.
The latter correlation, of course, cannot be determined accurately from linear regression
fits due to the large scatter in flare duration values. Thus, we have obtained representative
values of the powerlaw slopes α and correlation coefficients β for solar flare hard X-ray
parameters, averaged from three major missions over the last 30 years and three solar
cycles, which can serve as reference for other wavelengths.
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Fig. 7.9 Occurrence frequency distributions of hard X-ray flare durations T (s) observed with
HXRBS/SMM (1980-1989), BATSE (1991-1993), and RHESSI (2002-2007), with powerlaw fits. The
flare durations for RHESSI were estimated from the time difference between the start and peak time, be-
cause RHESSI flare durations were determined at a lower energy of 12 keV (compared with 25 keV for
HXRBS and BATSE), where thermal emission can dominate in large flares, causing a flatter powerlaw
slope (αT ≈ 1.4). The average slope value is αT = 2.08±0.10.

7.3.2 Solar Flare Soft X-rays

Soft X-ray emission in solar flares mostly originates from free-free bremsstrahlung emis-
sion of heated flare plasma, which typically reaches temperatures of T ≈ 10–35 MK. A
pragmatic relationship between soft and hard X-ray emission of flare plasmas is charac-
terized with the so-called Neupert effect (e.g., Dennis and Zarro 1993), which essentially
states that the time profile of hard X-ray emission corresponds to the heating rate pro-
duced by nonthermal particles bombarding the chromosphere, while soft X-ray emission
represents the chromospheric response of flare plasma heating. This model is called the
chromospheric evaporation scenario. The thermal energy of the heated plasma and thus
the time profile of emitted soft X-ray emission consequently approximately follows the
time integral of the hard X-rays, until cooling by thermal conduction and radiative loss
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Fig. 7.10 Scatterplots between for the total counts E(P) (left panels) or flare duration T (P) (right panels)
versus the peak count rate P for solar flares with HXRBS/SMM (1980–1989) (top), BATSE/CGRO (1991–
1993) (middle), and RHESSI (2002–2007) (bottom). Linear regression fits are applied to all datapoints
above a threshold of five times the minimum value in each parameter. All data are subject to a flux threshold
Pmin, which causes a truncation at P ≤ Pmin, but does not affect linear regression fits of the form y(x).
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overcomes the heating rate in the late flare phase. From this scenario we expect the rela-
tionship,

FSXR(t) ≈
∫ t

0
FHXR(t ′) dt ′ . (7.3.5)

If we define a SOC event by the energy release as observed in hard X-rays, characterized
with a flare start time ts, end time te, total duration T = (te − ts), peak energy flux PHXR =
F(t = tp), and total flux or fluence E =

∫ te
ts FHXR(t) dt, then the peak time tHXR

p of the
hard X-rays corresponds to the inflection point with the steepest rise in the soft X-ray time
profile, while the end time tHXR

e corresponds to the peak time in soft X-rays. In order to
obtain a consistent flare duration T in the two wavelengths, we have therefore to define,

T = (tHXR
e − tHXR

s ) = (tSXR
p − tHXR

s ) , (7.3.6)

and to calculate the time derivative of the soft X-ray light curve FSXR(t) according to the
Neupert effect (Eq. 7.3.5),

F proxi(t) =
dFSXR(t)

dt
, (7.3.7)

to obtain a proxy F proxi(t) for the hard X-ray-like flare light curve where we can measure
the peak energies P and total energies E. If we do not correct for this Neupert effect, we
expect some significantly different frequency distributions and correlation parameters for
flare event statistics in soft X-rays and hard X-rays.

First frequency distributions of flare peak fluxes in soft X-rays were reported from
OSO-3 observations in the energy range of 7.7–12.5 keV (Hudson et al. 1969), where a
cumulative distribution with a powerlaw tail with a slope of β ≈ 0.8 was found which cor-
responds to a slope of α ≈ β +1 = 1.8 for the differential frequency distribution. Further
data in the 2–12 Å range (1–6 keV) with Explorer 33 and Explorer 35 satellites yielded
solar flare statistics for ≈3,000 events during July 1966 and September 1968, from which
powerlaw distributions of the peak flux (αP = 1.75) and the fluence (αE = 1.44) were
reported (Drake 1971).

The Yohkoh mission (1991–2002) provided imaging observations of solar flares with
the Soft X-ray Telescope (SXT) at temperatures of T > 1.5 MK (>0.13 keV). Shimizu
(1995) analyzed small active region transient brightenings (small flares) during August
1992 and inferred from a sample of some 5,000 events in a single active region frequency
distributions of soft X-ray peak fluxes with powerlaw slopes in the range of αP = 1.64–
1.89, depending on the spatial area used in the sampling. The thermal energy of these
events were estimated in the range of E ≈ 1027–1029, and the powerlaw slope for ener-
gies was calculated to αE ≈ 1.5–1.6 (Shimizu 1995). A similar study was performed by
Shimojo and Shibata (1999), who analyzed 92 microflares during the lifetime of a single
bright point (i.e., a miniature active region) and found a power law slope of αP = 1.7 ± 0.4
for the soft X-ray peak flux.

The difference between frequency distributions sampled in hard X-rays and soft X-
rays was modeled by Lee et al. (1995). For this purpose, flare statistics in hard X-rays
(HXRBS, ISEE-3) and in soft X-rays (SMM/BCS, GOES) were reanalyzed (Fig. 7.11),
but similar powerlaw slopes were found for the two wavelength ranges, which could only
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Fig. 7.11 Frequency distributions of peak fluxes (peak) and total fluxes (total) for soft X-ray (SMM/BCS,
GOES) and hard X-ray (ISEE-3, HXRBS) flare events. The occurrence rates are arbitrarily scaled. Note
the similar slopes in the two wavelength ranges (Lee et al. 1995; reproduced by permission of the AAS).

be reconciled with the expected difference for the chromospheric evaporation scenario if
one assumes a special scaling law between temperature and density, i.e., n ∝ T−4/5 (Lee
et al. 1995).

Using soft X-ray light curves from the Geostationary Operational Environmental Satel-
lites (GOES), which observe the Sun uninterrupted thanks to multiple spacecraft, complete
flare statistics can be gathered. Feldman et al. (1997) sampled during 1993–1995 some
1,000 flare events in the 1–8 Å (0.08–0.67 keV) range and inferred a soft X-ray peak flux
distribution with a powerlaw slope of αP = 1.88 ± 0.21. A more comprehensive study
of 50,000 soft X-ray flares observed with GOES during 1976–2000 was performed by
Veronig et al. (2002a,b). The obtained frequency distributions exhibit significantly steeper
slopes than previously found, i.e., αP = 2.11 ± 0.13 for the peak flux, αE = 2.03 ± 0.09 for
the fluence, and αT = 2.93 ± 0.12 for durations. This discrepancy with previous statistics
(Table 7.3) most likely arises from two facts: (1) no pre-event background flux was sub-
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Table 7.3 Frequency distributions measured from solar flares in soft X-rays. References: 1, Hudson et al.
(1969); 2, Drake et al. (1971); 3, Shimizu (1995); 4, Lee et al. (1995); 5, Feldman et al. (1997); 6, Shimojo
and Shibata (1999); 7, Veronig et al. (2002d); 8, Veronig et al. (2002a); 9, Yashiro et al. (2006).

Powerlaw Powerlaw Powerlaw log Instrument Reference
slope of slope of slope of range
peak flux total fluence durations
αP αE αT

1.8 1 OSO-3 1
1.75 1.44 2 Explorer 2
1.64–1.89 1.5–1.6 2 Yohkoh 3
1.79 2 SMM/BCS 4
1.86 2 GOES 4
1.88±0.21 3 GOES 5
1.7±0.4 2 Yohkoh 6
1.98 1.88 3 GOES 7,8

2.11 ± 0.13∗ 2.03 ± 0.09∗ 2.93 ± 0.12∗ 3 GOES 8
2.16 ± 0.03∗ 2.01 ± 0.03∗ 2.87 ± 0.09∗ 3 GOES 9

∗ No background subtracted.

tracted, which substantially overestimates the peak flux and fluence of small events, and
thus causes a steeper powerlaw slope, and (2) the Neupert effect could explain some dis-
crepancy with respect to hard X-rays, but there seems to be a small difference (Fig. 7.11)
according to the comparison of Lee et al. (1995). The Neupert effect has been investi-
gated by correlating the soft X-ray peak flux with the hard X-ray fluence (Eq. 7.3.5) and
a strong correlation was found, but it is not strictly proportional as predicted by the chro-
mospheric evaporation model (Veronig et al. 2002c). Similar values (αP = 2.16 ± 0.03,
αE = 2.01 ± 0.03, and αT = 2.87 ± 0.09 were inferred by Yashiro et al. (2006), but these
distributions suffer from the same lack of background subtraction as the study of Veronig
et al. (2002a,b), which causes a bias in overestimating the flux of weak events and thus
steepens the powerlaw slopes. Moreover, the study of Yashiro et al. (2006) demonstrated
that a subset of flare events with simultaneous CME events exhibited flatter powerlaw dis-
tributions, which is to be expected for any subset that contains preferentially larger events.

In summary, for flare events observed in soft X-rays, we can group the results into two
categories: (1) event statistics with pre-flare background subtraction, and (2) without pre-
flare background subtraction. From the compilation shown in Table 7.3 it is clear that each
group produces quite consistent results among themselves, but they differ significantly
due to the well-understood bias caused by neglecting background subtraction, especially
in GOES data, where every light curve contains also the total soft X-ray emission from all
other active regions on the solar surface besides a particular flare event (e.g., Bornmann
1990). Thus, ignoring the second group (Veronig et al. 2002a,b; Yashiro et al. 2006) in
Table 7.3, we obtain the following averages from the first group,

N(PSXR) ∝ P−αP αP = 1.79±0.06
N(ESXR) ∝ E−αE αE = 1.50±0.05 , (7.3.8)
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which is not much different from the values obtained in hard X-rays (Eq. 7.3.3), i.e.,
N(PHXR) ∝ P−1.75±0.05 and N(EHXR) ∝ E−1.61±0.04. Although we expect some difference
due to the Neupert effect (Eq. 7.3.5) in the relationship between soft and hard X-rays,
the dissimilarity in the frequency distributions of SOC parameters is apparently not large,
either because the time profiles are close to self-similar, or because the soft X-ray light
curves are not purely thermal emission, but contain also significant nonthermal emission
as observed at higher energies in hard X-rays. Insight into these problems could be ob-
tained by comparing SOC statistics obtained from GOES light curves directly versus event
detection from the time derivative of the GOES light curve (Eq. 7.3.7).

7.3.3 Solar Flare Extreme Ultraviolet Emission

The evolution of a solar flare in different wavelengths can be best understood by their
temperature dependence. In a large flare, plasma becomes heated to T ≈ 20–35 MK,
which produces bright emission in soft X-rays. Once the plasma cools down in the post-
flare phase, soft X-ray emission fades and extreme ultraviolet (EUV) emission becomes
brighter, which is produced by free-free and bound-bound emission at temperatures of
T ≈ 1–2 MK. The systematic delay in the peak of the emission in different wavelengths
can best be seen in multi-wavelength observations of a large flare, such as during the
Bastille-Day (14 July 2000) flare shown in Fig. 7.12, where the timing of the peak emis-
sion in each wavelength is exactly ordered according to the temperature peak sensitivity
of the different instruments. It peaks first in the Yohkoh/HXT 14–23 keV channel, which is
sensitive to the highest temperature that occurred in the flare (T ≈ 35 MK), then in the soft
X-ray channels (GOES, Yohkoh/SXT), and finally in the EUV channels (TRACE 195, 171
Å), which are sensitive in the temperature range of T ≈ 1–2 MK. Therefore, SOC statistics
of flare events can in principle be performed in all these wavelengths, but the frequency
distributions of peak flux (P), fluence (E), and durations (T ) are not necessarily identical,
unless the time profiles in the different wavelengths are self-similar. The comparison of the
light curves from 7 different wavelength ranges shown in Fig. 7.12 suggests that the dura-
tions become systematically longer in wavelengths corresponding to cooler temperatures,
which implies a temperature-dependent scaling between peak flux and duration, P ∝ T β .
Large flares with total energies of E ≈ 1027–1032 erg are visible in hard X-rays and soft
X-rays (Fig. 1.14), but tiny flares with energies of E ≈ 1024–1026, dubbed nanoflares, can
only be detected in EUV, because they seem not to exceed temperatures of T <∼ 2 MK, and
thus lack soft or hard X-ray emission. Frequency distributions reported in solar EUV have
mostly concentrated on these nanoflares, but EUV statistics on larger flares are strangely
lacking completely.

A first systematic study on EUV nanoflares was carried out by Krucker and Benz
(1998), using images from the Extreme-ultraviolet Imaging Telescope (EIT) onboard the
SOlar and Heliospheric Observatory (SOHO). The detection of events in the EUV images
was performed with a code similar to the one described in Section 6.9, using the 171 and
195 Å filters (T ≈ 1.1–1.9 MK), and the energy was calculated based on a special phys-
ical model of the flare volume, assumed to be proportional to the area, i.e., V ∝ A. This
was the first study that reported significantly steeper powerlaw slopes (αP ≈ 2.3–2.6) than
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Fig. 7.12 Top: Light curves from Yohkoh/HXT (hard X-rays), Yohkoh/SXT and GOES (soft X-rays), and
TRACE (EUV) of the 14 July 2000 Bastille-Day flare. Note that the different light curves are not self-
similar. Bottom: Enlarged view of the emissions during their peak fluxes. Note a systematic delay that
occurs in order of the decreasing temperature sensitivity of the instruments, due to the cooling of the flare
plasma (Aschwanden and Alexander 2001).
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Table 7.4 Frequency distributions measured in small-scale events in EUV, UV, and Hα . References:
1, Krucker and Benz (1998); 2, Aletti et al. (2000); 3, Parnell and Jupp (2000); 4, Aschwanden et al.
(2000a,b); 5, Benz and Krucker (2002); 6, Aschwanden and Parnell (2002); 7, Georgoulis et al. (2002); 8,
Greenhough et al. (2003); 9, McIntosh and Gurman (2005); 10, Nishizuka et al. (2009).

Powerlaw Powerlaw Powerlaw log Waveband Reference
slope of slope of slope of range
peak flux total fluence durations

or energy
αP αE αT λ (Å)

2.3−2.6 1.3 171, 195 1
1.19 ± 1.13 2 195 2

2.0−2.6 1.5 171, 195 3
1.68−2.35 1.79 ± 0.08 1.5 171, 195 4

2.31−2.59 1.3 171, 195 5
2.04−2.52 1.5 171, 195 5

1.71 ± 0.10 2.06 ± 0.10 2 171 6
1.75 ± 0.07 1.70 ± 0.17 2 195 6
1.52 ± 0.10 1.41 ± 0.09 1.5 AlMg 6

1.54 ± 0.03 4 171+195+AlMg 6
2.12 ± 0.05 1 6563 7
1.5−3.0 1.5 1–500 8

1.4−2.0 1 171,195,284 9
1.5 2.3 1.5 1550 10

previously reported in soft and hard X-rays. In Table 7.4 we list the powerlaw slopes αE
of energies (which are model-dependent), when the fluence was not reported. A similar
study was done independently with another, but similar, event detection code, and power-
law slopes in the range of αP = 2.4–2.6 were reported for the same volume model V ∝ A,
but a different range of αP = 2.0–2.1 for a modified volume model, i.e., V ∝ A3/2 (Parnell
and Jupp 2000). The same data from these first two studies were reanalyzed with both vol-
ume models and powerlaw slopes of αe = 2.52–2.59 were inferred for the model V ∝ A,
and αe = 2.04–2.31 for the model V ∝ A3/2 (Benz and Krucker 2002), so we learned that
the choice of the flare volume model changes the powerlaw slope of energies by about
Δα ≈ 0.4.

A third study was conducted with the automated event detection code described in Sec-
tion 6.9, which was designed to discriminate flare events (defined by impulsively heated
and cooling loops) from non-flare events. For the frequency distributions of peak fluxes, a
broken powerlaw was found at 171 Å with a slope varying from αP = 1.68 to αP = 2.35,
but a single powerlaw at 195 Å with a slope of αP = 1.85 (Aschwanden et al. 2000a,b).
Thermal flare energies were also determined using a cylindrical loop geometry for the flare
volume, leading to a powerlaw slope of αE = 1.79 ± 0.08 in the energy range of E = 1024–
1026.5 erg (Fig. 1.14). This study also demonstrated that the selection of flare events can
change the powerlaw slope by Δα ≈ 0.3. The next, more detailed, study was conducted
using the combined EUV (TRACE) and soft X-ray data (Yohkoh), which allowed syn-
thesize of a more complete temperature range, yielding more reliable total flare energies
than previous studies in a single waveband (Aschwanden and Parnell 2002). The peak flux
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Fig. 7.13 Synthesized frequency distributions from all three wavebands (TRACE 171 Å, 195 Å, and
Yohkoh/SXT AlMg) (gray histograms), along with the separate distributions from each waveband (in
grayscales). Each of the distributions is fitted with a powerlaw, with the slope values and formal fit errors
given in each panel. The four panels belong to the four parameters of the length l, area A, total emission
measure M (which is proportional to the peak flux P), and the thermal energy E (Aschwanden and Parnell
2002).

distributions were found to have powerlaw slopes of αP = 1.71 ± 0.10 (TRACE, 171 Å),
αP = 1.75 ± 0.07 (TRACE 195 Å), and αP = 1.52 ± 0.10 (Yohkoh/SXT, AlMg, T >∼ 2.4
MK). Thermal flare energies were computed by taking the synthesized full temperature
range as well as the fractal volume geometry (Chapter 8) of the flares into account, which
yielded powerlaw slopes as steep as αE = 2.06 ± 0.10 for the filter with the lowest tem-
perature (T ≈ 1.0 MK; TRACE 171 Å), or as low as αE = 1.41 ± 0.09 for the filter with
the highest temperature (T >∼ 2.4 MK; Yohkoh/SXT), while the synthesized distribution
yields a powerlaw slope of αE = 1.54 ± 0.03. Thus, this study demonstrated that there is
also a temperature bias that steepens the powerlaw slope up to Δα ≈ 0.9, if the statistics is
limited to a single narrowband filter of the lowest EUV temperature band. In Fig. 7.13 we
show the frequency distributions of various parameters (length, area, total emission mea-
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sure, and thermal energy) of the same event set measured in three different wavebands.
Note the systematic flattening of the powerlaw slopes when including data with higher
temperatures.

Further studies on frequency distributions were performed on EUV brightenings in the
quiet Sun (αP = 1.19 ± 0.09; Aletti et al. 2000), on full-disk EUV/XUV solar irradiance
(αP = 1.5–3.0; Greenhough et al. 2003), or on EUV bright points over 9 years (αT = 1.4–
2.0; McIntosh and Gurman 2005). Frequency distributions in flares were also evaluated for
substructures that occur during a flare, such as UV brightenings of flare kernels observed
in the C IV line (αP = 1.5, αT = 2.3; Nishizuka et al. 2009). Besides the EUV waveband,
frequency distributions of small-scale variability events were also analyzed in the Hα line,
which originates in the photosphere and chromosphere, such as in short-lived and small-
scale events called Ellerman bombs (αP = 2.12; Georgoulis et al. 2002).

In summary we can say that the frequency distribution of nanoflares observed in EUV
exhibit approximately the same powerlaw distributions of peak fluxes P and total ener-
gies E as observed in hard X-rays and soft X-rays, if the event definition is restricted to
flare-like phenomena and if sufficiently broad temperature coverage is ensured to capture
emission at the peak temperature of each event. However, several biases in the measure-
ment of powerlaw slopes have been identified that are more severe in the cooler EUV
waveband than in hotter soft X-ray wavebands, resulting from the event selection, narrow-
band temperature filters, and the geometric model of the flare volume, which enters the
calculation of the thermal energy.

7.3.4 Solar Radio Emission

Solar radio bursts can be detected from ground-based instruments, and have thus been ob-
served since their discovery by Hey and Southworth in 1942. Most solar radio bursts occur
during solar flares, but they display a rich morphological variety that point to a number of
different emission mechanisms, such as gyrosynchrotron emission of relativistic particles,
electron beam-driven instabilities, loss-cone instabilities, or free-free (bremsstrahlung)
emission. Radio emission at decimetric and microwave frequencies originate at the flare
site and thus may show a detailed temporal co-evolution with the hard X-ray emission,
while radio emission at metric and decametric wavelengths originate in the upper corona
and heliosphere (Fig. 7.14), where they originate from local plasma instabilities or CME-
driven shocks detached from the flare energy release process in the lower corona. This
splits the statistics of solar radio bursts into two different realms, depending on the con-
nectivity with the flare site, and consequently we expect possibly different frequency dis-
tributions for the two types. Solar radio bursts also span a large range of frequencies, from
millimeter (≈ 300 GHz) to hectometer (≈ 3 MHz) wavelengths, and thus we might expect
quite different frequency distributions depending on the wavelength or emission mecha-
nism. A compilation of reported frequency distributions of solar radio bursts is given in
Table 7.5.

The earliest frequency distributions of solar radio bursts were reported by Akabane
(1956), who recorded solar radio bursts during 1951–1956 at 3 GHz and found powerlaw
distributions with slopes of αP ≈ 1.8. Further observations were reported in microwaves
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Table 7.5 Frequency distributions measured from solar radio bursts, classified as type I storms, type III-
like bursts, decimetric pulsation types (DCIM-P), decimetric millisecond spikes (DCIM-S), microwave
bursts (MW), and microwave spikes (MW-S). References: 1, Akabane (1956); 2, Kundu (1965); 3, Kak-
inuma et al. (1969); 4, Fitzenreiter et al. (1976); 5, Aschwanden et al. (1995); 6, Aschwanden et al. (1998b);
7, Mercier and Trottet (1997); 8, Das et al. (1997); 9, Nita et al. (2002); 10, Ning et al. (2007).

Powerlaw Powerlaw Powerlaw log Waveband Reference
slope of slope of slope of range frequency and type
peak flux total flux or durations

total energy
αP αE αT f

1.8 2 3 GHz 1, MW
1.5 2 3, 10 GHz 2, MW
1.8 2 1, 2, 3.75, 9.4 GHz 3, MW
1.9–2.5 2 3.75, 9.4 GHz 3, MW
1.26–1.69 3 110 kHz–4.9 MHz 4, type III
1.28 2 100 MHz–3 GHz 5, type III
1.45 ± 0.31 3 100 MHz–3 GHz 6, type III
1.33 ± 0.11 3 100 MHz–3 GHz 6, DCIM-P
1.22–1.65 2.5 0.245–17 GHz 8, III, MW
1.71–1.91 4 0.100–2 GHz 9, III, MW

2.99 ± 0.63 3 100 MHz–3 GHz 6, DCIM-S
2.9–3.6 1.5 164, 237 MHz 7, type I
7.4 ± 0.4 5.4 ± 0.9 0.5 4.5–7.5 GHz 10, MW-S

(most likely to be produced by gyrosynchrotron emission) at 3 and 10 GHz during 1958–
1959 with values of αP = 1.5 (Kundu 1965), at 1.2, 3.75, and 9.4 GHz during 1957–
1962, with values of α = 1.8 (Kakinuma et al. 1969), and at 3.75, and 9.4 GHz during
1957–1962, with values of α = 1.9–2.5 (Kakinuma et al. 1969). Fitzenreiter et al. (1976)
observed interplanetary type III bursts (produced by an electron beam instability) with
the IMP-6 satellite during May–July 1971 at frequencies from 110 kHz to 4.9 MHz and
found powerlaw distributions of their fluxes with slopes in the range of αP = 1.26–1.69.
Interestingly, the value of the powerlaw slope systematically increases toward higher fre-
quencies, which tells us something about the ratio of growth time τG to the saturation
time tS of the radio emission-producing instability, according to our model of exponen-
tially growing instabilities, i.e. αP = (1+τG/tS) (Eq. 3.1.28). Statistics of flare-associated
metric type III bursts yielded powerlaw slopes of αP = 1.28 (Aschwanden et al. 1995).
Statistics on different types of flare-associated decimetric radio bursts included decimetric
type III types (produced by electron beams) with αP = 1.45 ± 0.31, decimetric pulsa-
tion types (produced by an oscillating instability) with αP = 1.33 ± 0.11, and decimetric
millisecond spikes (conceivably produced by an electron-cyclotron maser instability) with
αP = 2.99 ± 0.63 (Aschwanden et al. 1998b). There are always multiple radio bursts per
flare, but when the distribution of peak fluxes or durations is investigated among the bursts
occurring during a single flare, both powerlaw-like and exponential-like distributions are
found. The relatively more restricted parameter space for a single flare could explain the
exponential frequency distributions, which are not scale-free but define a dominant tem-
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Fig. 7.14 Schematic overview of solar flare-related radio bursts: plasma emission excited by an electron
beam instability produces radio bursts along open field lines escaping the acceleration region in upward
direction (type III bursts), along upward escaping closed field lines (type U and N bursts), or in downward
direction (reverse-slope drift [RS] bursts). Various decimetric (DCIM) radio bursts are produced by a
losscone-type instability, sometimes with oscillatory patterns. Microwave emission (MW) produced by
incoherent gyrosynchrotron emission mostly originates in flare loops where particles are injected from the
acceleration region and subsequently become trapped (Aschwanden 2004).

poral or spatial scale. Mercier and Trottet (1997) sampled radio bursts from type I noise
storms, which are produced above solar active regions without flares, probably associated
with gentle continuous electron acceleration and found powerlaw distributions with slopes
of αP = 2.9–3.6. Das et al. (1997) sampled radio bursts at frequencies from 245 MHz
to 17 GHz and found some deviations from a strict powerlaw, which mostly affects the
rollover at the low end of the distribution. A statistical analysis of decimetric millisecond
spikes observed during single flares between 237 and 610 MHz exhibited both powerlaw-
like and exponential-like flux distribution functions (Meszarosova et al. 1999, 2000). Is-
liker and Benz (2001) investigated how insufficient spatial and temporal resolution of these
fast millisecond spikes affects the peak flux distribution function and found a tendency to-
ward exponential behavior at large flux values. The most comprehensive statistics of solar
radio bursts recorded over 40 years (1960–1999) compiled in NOAA catalogs was un-
dertaken by Nita et al. (2002), finding powerlaw distributions with slopes in the range of
α = 1.71–1.91, using two different peak detection methods and sampling radio bursts in
8 frequency bands from 100 MHz to >2 GHz. Two examples of cumulative frequency
distributions are shown in Fig. 7.15, measured at 2 GHz, which have a powerlaw slope (of
the differential frequency distribution) of α = 1.82 ± 0.01 during the solar maximum and
α = 1.81 ± 0.02 during the solar minimum, so there is no significant variation during the
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Fig. 7.15 Cumulative frequency distributions of radio bursts measured at 2 GHz during the solar maximum
(left) and solar minimum (right) (Nita et al. 2002; reproduced by permission of the AAS).

solar cycle. Ning et al. (2007) reported very steep powerlaw slopes of α = 7.4 ± 0.4 for
microwave bursts during a single event.

Inspecting Table 7.5 we see a clear pattern of two groups. The first group includes
statistics of radio bursts occurring in many flare events, such as type III bursts and mi-
crowave bursts, which show similar powerlaw-like distributions as hard X-ray and soft
X-ray flares, in the range of αP ≈ 1.3–1.9. The second group includes statistics of radio
burst fine structure during single flare events, such as decimetric millisecond spikes, type
I sub-bursts, or microwave sub-bursts, which all exhibit very steep powerlaw distributions
α >∼ 3 or exponential distribution functions. The dissimilarity of statistical distributions of
sub-bursts sampled during single flare events and the overall statistics sampled from many
flares is clearly evident when they are juxtaposed in the same diagram (e..g, see examples
in Aschwanden et al. 1998b). We conclude that physical parameters are more restricted
during a single flare, and thus reveal a dominant temporal or spatial scale in the statistics
of finestructure or sub-bursts, while a large statistical ensemble of many flares involves a
much larger parameter range and produces the scale-free powerlaw distributions that are
typical for flare statistics observed in other wavelength domains.
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7.3.5 Solar Energetic Particle (SEP) Events

The highest particle energies detected in our heliosphere, mostly by in-situ detectors on
spacecraft or by ground-based neutron monitors, can reach energies up to >∼100 MeV
for electrons and >∼1 GeV for protons. While such high-energy particles were associated
with cosmic rays earlier on, the current understanding is that they are accelerated either
by shocks in coronal mass ejections, at typical distances of R ≈ 1–5 solar radii, or in
magnetic reconnection regions of solar flares in the lower corona. There is evidence for
both scenarios, based on the timing inferred from the velocity dispersion of the detected
particles: about half of the events have the time of their origin coincident with the flare
peak times, while the other half originate with some significant delay, as expected for a
CME-associated acceleration source. Nevertheless, whatever the origin of SEP events is,
they represent very energetic phenomena and thus are expected to exhibit much flatter
frequency distributions, like a subset of the largest and most energetic flare events.

An early frequency distribution of the intensity of 20–80 MeV protons (in units of
protons cm−2 s−1 MeV−1) was reported by Van Hollebeke et al. (1975), based on mea-
surements of 185 SEP events during 1967–1972 with the Interplanetary Monitoring
Platform (IMP) 4 and 5 spacecraft, who find a powerlaw distribution with a slope of
αP = 1.10 ± 0.05. Cliver et al. (1991) reported a powerlaw slope of αP = 1.13 ± 0.04
for 24–43 MeV proton fluxes and αP = 1.30 ± 0.07 for 3.6–18 MeV electron fluxes,
based on 92 SEP events detected with the IMP-8 spacecraft during 1977-1983. Gabriel
and Feynman (1996) collected data from the IMP 1, 2, 3, 5, 6, 7, 8, and the Orbiting Geo-
physical Observatory (OGO) 1 spacecraft observed during 1956–1990 and sampled fre-
quency distributions of time-integrated particle fluxes (fluences), finding powerlaw slopes
of αE = 1.32 ± 0.05 for >10 MeV protons, αE = 1.27 ± 0.06 for >30 MeV protons,
and αE = 1.32 ± 0.07 for >60 MeV protons, with little variation during the three solar
cycles. A comprehensive compilation of the size distribution of >10 MeV solar proton
events is provided by Miroshnichenko et al. (2001) for different datasets, based on the
IMP spacecraft (αP = 2.12±0.03), the NOAA list (αP = 1.47 ± 0.06), or SPE catalogues
(αP = 1.00–1.43). The large range of powerlaw slopes in the latter dataset results from
different threshold intensities, time ranges, or subsets with sudden storm commencement
(SSC) associated events. The flattest slope αP = 1.00 ± 0.03 was found for the lowest
threshold, which corresponds to the most complete dataset, while the steepest powerlaw
slope αP = 2.12 ± 0.03 was found for the highest threshold and smallest data subset,
and thus may be affected by the upper cutoff of the distribution. Looking at the temporal
occurrence of SEP events, they are not well-correlated with the solar cycle, and thus unpre-
dictable on time scales longer than the lifetime of an active region that has the necessary
complex magnetic pattern (Xapsos et al. 2006; Hudson 2007).

In summary, the compilation in Table 7.6 shows that the frequency distributions of both the
peak fluxes and fluences of SEP events are significantly flatter (αP ≈ αE ≈ 1.1–1.3) than
for a comprehensive set of solar flares (αP = 1.75 ± 0.05 and αE = 1.61 ± 0.04). Since
virtually all SEP events are also accompanied by a flare (unless the flare was occulted at
the solar limb), the dataset of SEP events is essentially the most energetic subset of a flare
distribution, regardless whether the acceleration of the high-energy particles occurred at



238 7. Occurrence Frequency Distributions

Table 7.6 Frequency distributions of solar energetic particle (SEP) events. References: 1, Van Hollebeke
et al. (1975); 2, Belovsky and Ochelkov (1979); 3, Cliver et al. (1991); 4, Gabriel and Feynman (1996);
5, Smart and Shea (1997); 6, Mendoza et al. (1997); 7, Miroshnichenko et al. (2001); 8, Gerontidou et al.
(2002).

Powerlaw Powerlaw Powerlaw log Energy Reference
slope of slope of slope of range range and type
peak flux total flux or durations

total energy
αP αE αT f

1.10 ± 0.05 3 20–80 MeV protons 1
1.40 ± 0.15 >10 MeV protons 2
1.13 ± 0.04 4 24–43 MeV protons 3
1.30 ± 0.07 4 3.6–18 MeV electrons 3

1.32 ± 0.05 4 >10 MeV protons 4
1.27 ± 0.06 4 >30 MeV protons 4
1.32 ± 0.07 4 >60 MeV protons 4

1.47–2.42 >10 MeV protons 5
1.27–1.38 >10 MeV protons 6
1.00–2.12 >10 MeV protons 7
1.35 3.5 >10 MeV protons 8

the flare site in the lower corona or in associated CMEs further out in the heliosphere.
The selection criterion for SEP events, e.g., the threshold for detecting > 10 MeV protons,
includes all largest events of a peak flux distribution, but includes gradually less of the flare
events with lower fluxes, which explains that their frequency distribution is flatter than for
a complete set of flare events. Applying our exponential-growth model (Section 3.1), a
powerlaw slope of αP = (1+τG/tS)≈ 1.1–1.3 corresponds to a mean ratio of tS/τG = 3–10
growth times, or mean amplification factors of exp(tS/τG) ≈ 30–20,000, which is hugely
larger than the mean for average flares (exp(tS/τG) = exp [1./(αE −1)] ≈ 5. If we relate
this mean amplification factor to the energy gain of the acceleration process, we expect
that SEP events (with a powerlaw slope of αE ≈ 1.1) produce a factor of 20,000/5 = 4,000
higher energies, which explains the detection of > 10 MeV protons and >4 MeV electrons
in SEP events.

7.4 Frequency Distributions in Astrophysics

While the Sun represents our local SOC laboratory that provides us abundant statistics and
spatial information on each SOC event, observations of astrophysical sources offer only
a few glimpses with sparse event statistics (due to the limited observing time allocation
with expensive large telescopes) and no spatial information at all. This crucial limitation
severely limits the characterization of frequency distributions, which requires ample statis-
tics, but on the other hand, we can study exciting new phenomena that do not exist in our
local solar system. The most-studied extra-solar SOC phenomena are stellar flares and
accretion-disk or black-hole objects.
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7.4.1 Stellar Flares

Here we review a few observations with published occurrence frequency distributions of
stellar flares, mostly in UV wavelengths, which probe the transition regions at the base of
stellar coronae. Robinson et al. (1999) observed the YZ Canis Minoris (YZ CMi) flare star
(spectral type dM4.5e) on 1993 Nov 10 with the High-Speed Photometer (HSP) on the
Hubble Space Telescope (HST) for 2.5 hrs and identified 54 flare events, finding a cumula-
tive frequency distribution of the (time-integrated) flux with a slope of βE ≈ 1.25 ± 0.10,
approximately corresponding to a slope of αE ≈ 2.01 ± 0.13 for the differential frequency
distribution, using Eq. (7.1.14) which includes the steepening effect of the cumulative fre-
quency distribution near the upper cutoff, based on the logarithmic range Emax/Emin ≈ 10
(see Fig. 3 in Robinson et al. 1999). The cumulative frequency distribution exhibits two
bumps, so it is not well-characterized by a powerlaw function, which is often the case for
small samples.

Audard et al. (2000) sample the flare activity of 12 (late-type) cool stars (spectral type
F to M) from Extreme Ultraviolet Explorer (EUVE) Deep Survey observations. The cu-
mulative frequency distributions of their total radiative energies E (which is assumed to be
proportional to the total number of photon counts observed in the energy range of 0.01–10
keV) of these 12 stars is shown in Fig. 7.16. The cumulative frequency distributions are
shown in form of rank-order plots, since there are only about 5–15 datapoints (flare events)
measured for each star. Fitting a powerlaw distribution in the log-log plane they find the
cumulative powerlaw indices β and estimate the powerlaw indices of the differential fre-
quency distribution with the approximate relation α = β + 1, listed in the first column of
Table 7.7 (which corresponds to the value αb in the fourth column of their Table 2). We
estimate the corresponding powerlaw slopes α of the differential frequency distributions
with the relationship α(β ) given in Eq. (7.1.14), based on a powerlaw fit in the lower half
of the cumulative distribution (marked with a thick line in Fig. 7.16) and the logarithmic
range ΔElog = log(Emax/Emin), with q2 = 10(−ΔElog/2), listed as values αP

E in Table 7.7.
We also fit the exact cumulative distribution function Ncum(>x) as defined in Eq. (7.1.10),
which includes the steepening at the upper end (marked with thin curves in Fig. 7.16),
listed as values αC

E in Table 7.7. We see that discrepancies between the three methods
mostly arise where the logarithmic range of the sampled energies is small (listed in paren-
thesis in the column ΔElog in Table 7.7), say <∼0.7 decades (a factor of 5), excluding the
rightmost energy bin containing the largest event. Powerlaw fits over such small ranges are
not reliable because they could fit the gradual exponential-like cutoff without constraining
the powerlaw part at lower energies. Thus, if we focus on the more reliable events with
energy ranges of ΔElog ≥ 0.8 (excluding the uppermost bin), we find 7 cases (out of the 12
stars analyzed by Audard et al. 2000) which have the following mean powerlaw slopes for
each of the three methods: β +1 = 2.01±0.15, αP

E = 1.65 ± 0.18, and αC
E = 1.75±0.26.

Thus, we find a significantly flatter slope of αE ≈ 1.7 ± 0.2 based on the two methods (αP
E

and αC
E ) that include the upper cutoff effect in the cumulative frequency distribution than

the method α = β + 1 that neglects this effect, used in Audard et al. (2000). A summary
of various biases in the derivation of frequency distributions from stellar data is given in
Güdel et al. (2003).
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Table 7.7 Frequency distributions observed in stellar flares. The powerlaw slope α of the differential
frequency distribution of energies is calculated with three methods: β + 1 is from a powerlaw fit to the
cumulative distribution (reported by authors); αP

E is from a powerlaw fit to the lower half of the bins
with correction Eq. (7.1.14), and αC

E by fitting the cumulative distribution (Eq. 7.1.10). The logarithmic
ranges ΔElog = log(Emax/Emin) are given, where the numbers in parentheses give the range excluding
the uppermost bin in the cumulative distribution that contains the largest flare. The values flagged with
an asterisk were obtained from fitting photon arrival time distributions using Monte-Carlo simulations.
References: 1, Robinson et al. (1999); 2, Audard et al. (2000); 3, Kashyap et al. (2002); 4, Güdel et
al. (2003); 5, Arzner and Güdel (2004); 6, Arzner et al. (2007); 7, Stelzer et al. (2007).

Powerlaw Logarithmic Object Instrument Reference
slope of range
total flux
β +1 αP

E αC
E ΔElog

2.25 ± 0.10 2.01 1.0 YZ Cmi HSP/HST 1
1.89 2.40 2.15 1.6 (0.6) HD 2726 EUVE 2
1.98 1.79 1.95 1.3 (0.8) 47 Cas EUVE 2
2.27 1.71 1.93 1.0 (0.9) EK Dra EUVE 2
1.90 1.67 2.14 0.8 (0.4) κ Cet 1994 EUVE 2
2.21 2.22 2.18 1.0 (0.6) κ Cet 1995 EUVE 2
1.97 1.64 1.83 1.4 (1.1) AB Dor EUVE 2
2.50 2.00 2.68 0.5 (0.4) ε Eri EUVE 2
1.96 1.65 1.69 1.3 (1.1) GJ 411 EUVE 2
1.85 1.72 1.81 1.5 (1.2) AD Leo EUVE 2
1.90 1.75 1.84 1.3 (1.0) EV Lac EUVE 2
1.91 2.20 1.79 1.6 (0.7) CN Leo 1994 EUVE 2
2.14 1.26 1.19 1.0 (0.8) CN Leo 1995 EUVE 2
2.60 ± 0.34∗ FK Aqr EUVE 3
2.74 ± 0.35∗ V1054 Oph EUVE 3
2.03–2.32∗ AD Leo EUVE 3
2.0–2.5∗ AD Leo EUVE 4
2.3 ± 0.1∗ AD Leo EUVE 5
1.9–2.5∗ HD 31305 XMM 6
2.4 ± 0.5 TMC XMM 7

Kashyap et al. (2002) analyzed also observations from the EUVI Deep Survey and
inferred the frequency distribution N(E) ∝ E−α in an indirect way by Monte–Carlo sim-
ulations of photon arrival times, where the numerical model has three free parameters: α
the powerlaw index of the energy distribution, rF the average count rate due to flares, and
rC the average background count rate. So, the value α is found from the best fit of the
modeled to the observed distribution of photon arrival times. The obtained values in the
range of α ≈ 2.2–2.7 are significantly steeper than previously inferred values from similar
stars. A similar value was obtained for AD Leo using the same method (Güdel et al. 2003;
Arzner and Güdel 2004). Arzner et al. (2007) applied the same Monte-Carlo simulation
technique to a sample of 22 stars observed with the XMM-Newton Extended Survey of
the Taurus Molecular Cloud (XEST), but could constrain the powerlaw slope of the flare
energy distribution with an acceptable fit (αE = 2.02.5

1.9) only for one case (HD 31305). It
would be interesting to test the validity of this novel simulation method (that infers pow-
erlaw slopes from fitting photon arrival time distributions) by comparing with powerlaw
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Fig. 7.16 Cumulative frequency distributions of flare energies (total counts) observed for 12 cool (type
F to M) stars with EUVE (Audard et al. 2000). The flare events are marked with diamonds, fitted with a
powerlaw fit in the lower half (P; thick line), and fitted with a cumulative frequency distribution (C; curved
function).
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slopes obtained from cumulative frequency distributions using the same data sets. System-
atic biases of this method are not known yet, but it is conceivable that some assumptions
(e.g., self-similar flare time profile) could influence the inferred powerlaw slopes (Arzner
et al. 2007).

The inference of powerlaw slopes of frequency distributions from stellar flares cannot
be obtained in the same way as for solar flares, where abundant statistics is available and a
powerlaw slope can directly be fitted to the differential frequency distribution. Instead, the
very small samples of flaring events per star require either the inversion of a rank-order
plot (or cumulative frequency distribution) or a Monte Carlo simulation technique that fits
a distribution of observed photon arrival times. Both methods have their own bias that need
to be determined. For cumulative frequency distributions, the effect of the upper cutoff
needs to be taken into account in small samples, which changes the powerlaw slope in the
order of Δα ≈ 0.3. If this effect is taken into account, we infer values of αE ≈ 1.7±0.2,
which is similar to solar flares αE ≈ 1.61± 0.04 (Fig. 7.8), although the energies of the
detected stellar flares are up to two orders of magnitude higher than the largest solar flares
(Fig. 1.15).

7.4.2 Pulsar Glitches

Pulsars exhibit glitches in pulse amplitudes and frequency shifts that correspond to large
positive spin-ups of the neutron star, probably caused by sporadic unpinning of vortices
that transfer momentum to the crust. Conservation of the momentum produces then an
increase of the angular rotation rate, like a twirling ice skater who draws the hands closer.
The pulse height distribution of the Crab pulsar (NGC 0532 or PSR B0531+21) observed
at 146 MHz was found to have a powerlaw slope of αP ≈ β + 1 = 3.5 over a range of
2.25 to 300 times the average pulse size (Argyle and Gower 1972). Similar values were
measured by Lundgren et al. (1995), with αP ≈ 3.06–3.36 (Fig. 7.17). While the Crab
pulsar is the youngest known pulsar (born in the year 1054), PSR B1937+21 is an older
pulsar with a 20 times faster period (1.56 ms) than the Crab pulsar (33 ms). Cognard et
al. (1996) measured a powerlaw distribution with a slope of αP ≈ β +1 = 2.8±0.1 from
its occasional giant pulses. A theoretical model of the inertial momentum change in pulsar
macro-glitches predicts a frequency distribution of N(E) ∝ E−1.14 (Morley and Garcia-
Pelayo 1993), which is much flatter than previously observed. However, statistics on nine
pulsars found powerlaw slopes in a range of αE = −0.13, ...,2.4 (see Table 7.8) for the
size distribution of pulse glitches (Melatos et al. 2008), but no correlation between the
powerlaw slope and the spin-down age was found.

Interestingly, while most pulsars have a Gaussian or exponential pulse-amplitude dis-
tribution, only few pulsars, including the Crab pulsar, exhibit a powerlaw (Lundgren et
al. 1995), which could be interpreted in terms of a SOC phenomenon (Young and Kenny
1996). Assuming a SOC model would also imply a powerlaw distribution for the pulse du-
ration. Turbulence in neutral non-ionized fluids were considered as a possible mechanism
that exhibit spatial and temporal scale invariance (Young and Kenny 1996). Alternative
models in terms of modulational instabilities with stochastic growth and wave collapse
were also proposed, which produce log-normal energy distributions with a steep power-
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Fig. 7.17 Frequency distribution of giant-pulse flux densities measured from the Crab pulsar, observed
during 15–27 May 1991 with the Green Bank 43-m telescope at 1,330, 800, and 812.5 MHz. The tail
can be represented by a powerlaw distribution NF ∝ F−α with α = 3.46± 0.04 for fluxes F > 200 Jy
(Lundgren et al. 1995; reproduced by permission of the AAS).

Table 7.8 Frequency distributions observed from pulsar (giant-pulse) glitches (PSR), soft gamma-ray
repeaters (SGR), black-hole object Cygnus X-1, and blazar GC 0109+224. Uncertainties in terms of one
standard deviation are quoted in parentheses [...] for some cases. References: 1, Argyle and Gower (1972);
2, Lundgren et al. (1995); 3, Cognard et al. (1996); 4, Melatos et al. (2008); 5, Gogus et al. (1999);
6, Gogus et al. (2000); 7, Chang et al. (1996); 8, Mineshige and Negoro (1999); 9, Ciprini et al. (2003).

Powerlaw slope Powerlaw slope Waveband Object Ref.
flux αP fluence αE

3.5 146 MHz Crab pulsar 1
3.06-3.36 813–1330 MHz Crab pulsar 2
2.8 ± 0.1 430 MHz PSR B1937+21 3
2.4 [1.5,5.2] PSR 0358+5413 4
1.2 [1.1,1.4] PSR 0534+2200 4
0.42 [0.39,0.43] PSR 0537-6910 4
1.8 [1.2,2.7] PSR 0631+1036 4
−0.13 [−0.20,+0.18] PSR 0835-4510 4
1.4 [1.2,+2.1] PSR 1341-6220 4
1.1 [0.98,1.3] PSR 1740-3015 4
0.57 [0.092,1.1] PSR 1801-2304 4
0.36 [-0.30,1.0] PSR 1825-0935 4

1.66 >25 keV SGR 1900+14 5
1.43, 1.76, 1.67 20.8 keV SGR 1806-20 6,7

7.1 1.2–58.4 keV Cygnus X-1 8
1.55 optical GC 0109+224 9
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law tail αE ≈ 4–7 at high energies, which could correspond to the “giant pulses” (Cairns
2004; Cairns et al. 2004).

Finally, a detailed cellular automaton SOC model was proposed for pulsar glitches,
which could reproduce powerlaw slopes of αE ≈ 2.0–4.3 for pulse sizes and αT = 2.2–5.5
for pulse durations (Warzawski and Melatos 2008). The underlying theoretical model of
pulsar glitches is summarized by Warzawski and Melatos (2008) as follows: The neutron
superfluid in the stellar interior is threaded by many (≈1016) vortices, approximately one
per cent of which are pinned to the stellar crust at grain boundaries and/or nuclear lat-
tice sites. As the pulsar crust spins down electromagnetically, a lag builds up between the
velocity of the pinned vortex lines (corotating with the crust) and the superfluid. When
the transverse Magnus force (directly proportional to the lag) surpasses a threshold value
(equal to the strength of the pinning force), a catastrophic unpinning of vortices occurs,
transferring angular momentum to the crust. In order for this mechanism to generate
glitches on the scale observed, it requires up to 1012 vortices to unpin simultaneously,
exhibiting a high level of collective, non-local behaviour.

7.4.3 Soft Gamma-Ray Repeaters

Observations with the Compton Gamma Ray Observatory (CGRO) revealed a rare class of
objects that show repetitive emission of low-energy gamma rays (>25 keV), termed soft
gamma-ray repeaters (SGR). In 1999, only four such SGR sources were known (three in
our galaxy and one in the Magellanic Cloud), but at least three of them were identified to be
associated with slowly rotating, extremely magnetized neutron stars, located in supernova
remnants (Kouveliotou et al. 1998, 1999). They emit gamma-ray bursts with relatively
soft spectra (like optically-thin bremsstrahlung at kBT ≈ 20–40 keV) and short duration of
≈0.1 s. Thompson and Duncan (1996) suggested that these gamma-ray bursts occur from
neutron star crust fractures driven by the stress of an evolving, ultrastrong magnetic field
(B >∼ 1014 G).

Gogus et al. (1999) analyzed a database of 187 gamma-ray bursts (at energies of ≥25
keV) from SGR 1900+14 during the 1998–1999 active phase and found that the fluence
or energy distribution of the bursts follows a powerlaw distribution over 4 orders of mag-
nitude (Fig. 7.18, left). Also a correlation between the energy and duration was found,
E ∝ T 1.13, similar to solar flares (Eq. 7.3.2). Gogus et al. (2000) analyzed 290 events
of SGR 1806-20 using data from the Rossi X-Ray Timing Explorer (RXTE), 111 events
detected with CGRO/BATSE, and 134 events detected with the International Cometary
Cometary Explorer (ICE), and found powerlaw slopes of αE = 1.43, 1.76, and 1.67 for
the fluences, respectively (Fig. 7.18, right). The results were interpreted in support of the
neutron star crustquake model of Thompson and Duncan (1996), in analogy to the SOC
interpretation of earthquakes.

Soft gamma-ray repeaters with pulses originating from the same object are the ex-
ception rather than the rule, while most gamma-ray bursts detected with CGRO are non-
repetitive, and thus come sporadically from different objects. Statistics of the temporal
properties of those gamma-ray bursts has been gathered for several hundreds of events
(e.g., Norris 1995; Norris et al. 1996; Quilligan et al. 2002), but it is not clear whether any
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Fig. 7.18 Differential frequency distributions of the fluences of soft gamma-ray repeater sources: SGR
1900+14 (left), and SGR 1806-20 (right), observed with CGRO, RXTE, and ICE (Gogus et al. 1999,
2000; reproduced by permission of the AAS).

SOC characteristic could be retrieved from an observational sample that contains only one
event per SOC system, where each SOC system has vastly different (unknown) distances
to the observer.

7.4.4 Black Hole Objects

We discussed observations of black-hole candidates such as Cygnus X-1 in Section 1.9,
numerical cellular automaton models of the surrounding accretion disks in Section 2.7.1,
a shot-noise model of their power spectra in Section 4.8.4, and their waiting-time distri-
butions in Section 5.7.2. In Fig. 7.19 (right) we show an observed occurrence frequency
distribution of the peak intensity of the shots from a light curve of Cygnus X-1 (Negoro
et al. 1995; Mineshige and Negoro 1999), along with a theoretical distribution (Fig. 7.19,
left), simulated according to the cellular automaton model of Mineshige et al. (1994a,b).
The observed peak-intensity distribution has a steep slope of approximately αP ≈ 7.1. The
cellular automaton model can accommodate a range of powerlaw slopes, depending on
what fraction of mass m′ (Eq. 2.7.4) is transferred by gradual diffusion in addition to the
avalanche-like shots, e.g., simulations with m′ = m/100,m/10, or m/5 produce powerlaw
slopes of αP ≈ 5.6,7.7, and 11.5 (Mineshige and Negoro 1999; Takeuchi et al. 1995). Ini-
tial simulations without gradual diffusion produced energy distributions with powerlaws
of N(E) ∝ E−2.8 and time scale distributions of N(T ) ∝ T−1.4 (Mineshige et al. 1994b).
Whatever the detailed scaling of the mass transfer in the accretion disk is, the fact of a
powerlaw distribution of peak fluxes in the light curve is thought to support a SOC inter-
pretation in terms of an avalanching system in a self-organized critical state.
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Fig. 7.19 Left: Numerically simulated frequency distribution of a cellular automaton model of mass
avalanches in an accretion disk (Mineshige and Negoro 1999). Right: Observed frequency distribution
of the peak intensities of pulses in the light curve of the black-hole object Cygnus X-1, exhibiting a pow-
erlaw slope of αP ≈ 7.1 (Negoro et al. 1995; Mineshige and Negoro 1999).

7.4.5 Blazars

Blazars (blazing quasi-stellar objects) are very compact quasars (quasi-stellar objects) as-
sociated with super-massive black holes in the center of active, giant elliptical galaxies.
They represent a sub-group of active galactic nuclei (AGNs) which emit a relativistic jet
in the direction of the Earth. Because of this particular geometry, where the jets are co-
aligned with the line-of-sight to the observer, rapid variability and apparent super-luminous
features are the paramount characteristics of these objects.

The optical variability of blazar GC 0109+224 was monitored from 1994 and the light
curve was found to exhibit an intermediate behavior between flickering and shot noise,
with a power spectrum of P(ν) ∝ ν−p with 1.57 < p < 2.05 (Ciprini et al. 2003). A com-
bination of two modes between flickering (pink noise with p > 0.8) and pure shot noise
(Brownian random walk or brown noise with p ≥ 2) seems to be common in blazars (Huf-
nagel and Bregman 1992). Ciprini et al. (2003) constructed an occurrence frequency dis-
tribution of the peak fluxes of flare events and found a powerlaw distribution N(P) ∝ P−α

with a slope of α ≈ 1.55, within a range of about one order of magnitude, and excluding
the largest flares (Fig. 7.20). The powerlaw distribution of peak fluxes, along with the 1/ f
flicker noise spectrum of the light curve, was considered as an indication that blazars also
represent a SOC phenomenon (Ciprini et al. 2003).
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Fig. 7.20 Left: Frequency distribution of peak fluxes of flaring events in blazar GC 0109+224, including
fluxes above of a 3σ -threshold, fitted with a powerlaw N(P) ∝ P−1.55. Right: A cartoon that illustrates the
analogy of toppling avalanches in SOC sandpiles with jets emerging out of a blazar (Ciprini et al. 2003).

7.5 Summary

We have reviewed most of the occurrence frequency distributions observed in astrophys-
ical event sets: magnetospheric substorms, solar and stellar flares, solar energetic particle
events, solar radio bursts, pulsar glitches, soft gamma-ray repeaters, black hole objects, and
blazars. Many frequency distributions of peak fluxes or fluences are found to be close to
powerlaw distributions, with slopes varying in a considerable range of α ≈ 1, ...,10, with
a preference around α ≈ 1.5–2.0 for most phenomena. Statistics of the same phenomenon
type exhibit their own characteristic value, such as (in increasing order): αE ≈ 1.1–1.3 for
magnetospheric substorm events, αP ≈ 1.1–1.5 for solar energetic particle events (SEP),
αE ≈ 1.4–1.8 for soft gamma-ray repeaters, αP <∼ 1.5 for blazars, αP ≈ 1.5–1.8 for so-
lar radio bursts, αE ≈ 1.6–1.8 for solar (and probably stellar) flares, αE ≈ 3 for pulsar
glitches, or αP ≈ 7 for black-hole objects. We identified a number of measurement biases
that entered the published values, such as: (1) the “instrumental waveband bias” and “in-
complete temperature coverage bias”, which can lead to an overestimate of the powerlaw
slope (e.g., for solar nanoflares detected with narrowband EUV filters); (2) the ”big-event
selection bias”, which can lead to an underestimate of the powerlaw slope for event subsets
that select larger events with a higher probability (e.g., SEP or CME events are not repre-
sentative subsets of solar flares); or (3) the “upper-cutoff bias of cumulative frequency dis-
tributions”, which leads to an overestimate of the powerlaw slope for small samples (e.g.,
stellar flares). All these biases in the measurement of powerlaw slopes and derivation of
power indices in parameter correlations can be systematically studied with Monte-Carlo
simulations (Section 7.1.4) and forward-fitted to the observed data. A self-consistent de-
termination of the powerlaw slopes of peak fluxes (αP), fluences (αE ), and durations (αT )
can quantify the correlations between the observables (P,E,T ) that are most important for
infering the scaling laws of underlying physical processes (see Chapter 9).
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7.6 Problems

Problem 7.1: Simulate a distribution of random values that obey an exponential fre-
quency distribution and verify that the histogrammed differential frequency distribution
matches the analytical exponential function (follow Eqs. 7.1.28–7.1.30 and Fig. 7.3,
left).

Problem 7.2: Simulate a distribution of random values that obey a powerlaw frequency
distribution and verify that the histogrammed differential frequency distribution matches
the analytical powerlaw function (follow Eqs. 7.1.31–7.1.33 and Fig. 7.3, right).

Problem 7.3: Use the numerically generated values of Problem 7.2 to construct the cumu-
lative frequency distribution function and a rank-order plot (Fig. 7.2). What powerlaw
slope do you infer from the cumulative frequency distribution or rank-order plot and
how do you explain the difference to the original powerlaw slope of the numerically
generated values?

Problem 7.4: Simulate the third case (n = 104 events) shown in Fig. 7.4 with different
sets of random numbers and quantify the average accuracy or reproducibility or the
powerlaw slopes and power indices of the parameter correlations.

Problem 7.5: What are necessary and sufficient conditions that the frequency distributions
of solar flare energies observed in soft X-ray and hard X-ray wavelengths be identical?

Problem 7.6: Simulate a small sample of 15 random events that obey a powerlaw distri-
bution function with a slope of αE = 1.5 to mimic a dataset of stellar flares (Fig. 7.16)
and determine the powerlaw slope with three different methods: (1) with an overall
powerlaw fit, (2) with a half powerlaw fit and the correction given in Eq. (7.1.14), and
(3) with fitting the cumulative distribution function given in Eq. (7.1.10). How much
different are the values determined with the three methods? Do you find a systematic
bias when repeating the same experiment with different random number sets?
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