
6. Event Detection Methods

The only reason for time is so that everything doesn’t happen at once.

Albert Einstein

Everything happens to everybody sooner or later if there is time enough.

George Bernard Shaw

The phenomenon of self-organized criticality (SOC) can only be identified and validated
by event statistics, which requires measurements of relevant observables, such as time
scales and size scales of avalanches. The most defining predictions of the ideal SOC model
are the scale-free powerlaw distributions of time and size scales, as well as the Poissonian
randomness of waiting times. In this Chapter we focus on the methods of measuring time
and size scale distributions, mostly based on events detected in astrophysical observations.
Apart from particle in-situ measurements in the heliosphere, astrophysical observations
generally provide light curves in some wavelength as input for event statistics. In a time
series, an event can then be defined by a start time, a peak time, and an end time, which
yields a convenient definition for the duration, peak flux, and integrated flux of an event,
to be used for statistics of SOC avalanches in terms of durations, peak energies, and to-
tal energies. However, the devil is always in the detail. There is no sure-fire method of
measuring a unique duration and a peak flux of an event from a light curve. There are nu-
merous diabolical effects such as the separation of events from a fluctuating background,
flux threshold biases, confusion from near-simultaneous events, the ambiguity of an event
definition in multiple-peak light curves, instrumental irregularities and data gaps, to name
just a few. The resulting distributions of measured values are often not robust, unless ev-
ery event can be uniquely defined, but rather subject to the event definitions and detection
algorithms. Thus, the methods used to detect events and to measure their parameters have
a profound impact on the results whether we find powerlaw distributions or different func-
tional forms, being our arbiters of SOC phenomena. The best way to investigate various
measurement biases is always to conduct a numerical simulation of data and to test a de-
tection algorithm with such well-defined data. The output of the resulting event statistics,
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in the form of parameter distributions and correlations, can then be cross-compared with
those of the input parameters and measurement biases can be quantified. In this Chapter
we will start with the simulation of a time series that contains SOC events according to our
standard model described in Section 3.1 and will scrutinize the performance and biases of
various detection methods that have been previously used for SOC event statistics.

6.1 Test Data for Event Detection

In order to test various structure detection algorithms it is useful to simulate first a realistic
model of a time series f (t). Since we are mostly interested in SOC phenomena, we use
our standard analytical model described in Section 3.1, which consists of avalanche events
that have an exponential growth during the rise time and a linear decay after the peak. The
canonical time profile of such a pulse is shown in Fig. 3.2. The pulses have random waiting
times and random rise times.

We simulate a time series containing n = 1,000 pulses with an average waiting time of
Δt0 = 5 and a time resolution of dt = 0.1, so the time series contains nΔt0/dt = 50,000
data points. The start times ti are randomly distributed in the time interval 0 < ti < tmax =
nΔt0 = 5,000, produced by a numerical random generator. We verify that the distribu-
tion of waiting times Δti follows the prescribed random (exponential) distribution N(Δt)
(Eq. 5.1.1), which is shown in Fig. 6.1 (bottom row, left). The rise times have a mean of
〈τ〉 = tS = 1 and are numerically generated with the function (Eq. 7.1.30),

τi = −tS log(1−ρi) , ρi = [0,1] , (6.1.1)

where ρi is a uniformly distributed random number in the interval [0,1], which is drawn
from a numerical random generator. We verify that the distribution of rise times τi fol-
low the prescribed random (exponential) distribution N(τ) (Eq. 3.1.4), which is shown in
Fig. 6.1 (third row, left).

Next we simulate the peak energies Pi according to Eq. (3.1.3),

Pi = W0

[
exp

(
τi

τG

)
−1

]
, (6.1.2)

using the constants W0 = 1 and τG = 1. The resulting distribution of peak energies Pi has a
powerlaw slope of αP = 1.89 (Fig. 6.1, third row right). The theoretical distribution of peak
energies Pi is expected to be a powerlaw distribution with a slope of αP = (1+τG/tS) = 2.0
(Eq. 3.1.28). This is compatible with the simulation, since we found that different random
number representations typically change the powerlaw slope of the distributions in the
order of about ±10%.

Next we can simulate the decay times Di of the pulses, which depend linearly on the
peak energy Pi (Eq. 3.1.13),

Di = tD

(
Pi

W0

)
, (6.1.3)
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Fig. 6.1 Simulation of a time series (top panel) consisting of pulses with an exponential rise and a linear
decay as defined in our analytical exponential-growth SOC model (Section 3.1), with the number of events
n = 1,000, average waiting time Δt0 = 5, time resolution dt = 0.1, growth time τG = 1, average saturation
time tS = 1, and decay time τD = 1. The different panels show the first pulses enlarged (second row left),
the distributions or rise times and waiting times (left column), correlations between E, T , and P (middle
column), and the frequency distributions N(T ), N(P), and N(E) with fitted powerlaws (right column).
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using the constant tD = 1. Adding the rise time τi and the decay time Di together, we obtain
the total pulse duration Ti (Eq. 3.1.14),

Ti = τi +Di . (6.1.4)

The resulting distribution of total durations Ti has a powerlaw slope of αT = 1.99 (Fig. 6.1,
second row right). This value is compatible with the theoretical expectation αT = αP =
(1+ τG/tS) = 2.0 (Eq. 3.1.28).

Now we can calculate the total energy Ei (with the background level W0 subtracted),
according to Eq. (3.1.20),

Ei = PitG −W0τi +
1
2

PiDi . (6.1.5)

The resulting distribution of total energies Ei has a powerlaw slope of αP = 1.41 (Fig. 6.1,
bottom row right). Theoretically, we expect the relation αE = (αP + 1)/2 = (2 + 1)/2 =
1.50, which indeed is compatible. For our particular random representation shown in
Fig. 6.1 we actually expect αE = (αP +1)/2 = (1.89+1)/2 = 1.44, which is even closer
to the measured value.

We can also plot the correlations between E and P and find a powerlaw fit of E ∝ P1.98

(Fig. 6.1, third row middle), which agrees with the theoretical limit of E ∝ P2 for large
values (Eq. 3.1.28). Plotting the correlation between T and P we obtain T ∝ P0.99 (Fig. 6.1,
bottom row middle), which agrees with the theoretical limit of T ∝ P1 for large values
(Eq. 3.1.28).

Fig. 6.1 shows such a simulated flux time profile f (t), with the full time series shown
(Fig. 6.1, top), as well as an enlargement of the first pulses (Fig. 6.1, second row left).
Thus we have a simulation of frequency distributions with well-defined values which can
be cross-compared with those obtained from different pulse detection algorithms, as we
will carry out in the following sections.

When we refer to the peak energy P and total energy E we follow the nomenclature of
the SOC terminology, but actually mean the peak flux P and total (time-integrated) flux
or fluence E when we detect events from the photon flux of an astrophysical time series.
Strictly speaking, the energy rate is then defined in terms of the radiated energy dE/dt =
(nph/dt)hν , where (nph/dt) is the number of photons per seconds. We will discuss other
definitions of energies for SOC avalanches in Chapter 9 on physical SOC models.

6.2 Threshold-Based Event Detection

The probably most common and conceptually simplest method of defining events and mea-
suring their duration in astrophysical time series is based on flux thresholds. The essential
assumption is that background fluctuations have fluxes below the threshold, while events
of interest exceed the flux threshold. This method of event detection is straightforward and
pretty safe for large events and high thresholds, but systematically degrades when we de-
tect weaker events, as desirable for SOC studies spanning over a large logarithmic range of
time or size scales. In order to obtain some insight how methods of threshold-based event
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detection affect the statistical distribution of SOC parameters, we apply this method to the
test data shown in Fig. 6.1.

We detect an event simply by identifying the start and end times when the flux profile
f (t) crosses the threshold Fth at those times according to,

f (t) < Fth for t < tstart
f (t) ≥ Fth for tstart < t < tend
f (t) < Fth for t > tend

(6.2.1)

The total time duration T is then defined by the time difference, the peak energy P by the
maximum flux during this time interval, and the total energy E by the integral of the flux
above the threshold,

Ti = tend − tstart
Pi = max[ f (tstart), ..., f (tend)]−W0

Ei = ∑iend
i=istart

[ f (ti)−W0]dt
(6.2.2)

The frequency distributions and parameter correlations obtained with this detection method
is shown in Fig. 6.2, which can be compared with the input parameters of the simulated
time series shown in Fig. 6.1. The biggest difference is that we detect only 172 pulses out
of the 1,000 simulated pulses, where we lose progressively more pulses towards weaker
fluxes, because they either are below the threshold, or occur near-simultaneously during
larger pulses. This progressive insensitivity towards weaker events leads to a peak flux-
dependent under-abundance of shorter pulse durations, and thus to an underestimate of the
powerlaw slope, i.e., αT = 1.48 for a threshold of Fth = 1.5W0 ( Fig. 6.2, second row right),
compared with αT = 1.99 of the input data. Similarly, also the powerlaw slope of the peak
energy distribution is underestimated, i.e., αP = 1.50 (Fig. 6.2, third row right), compared
with α = 1.89 of the input data. Also the powerlaw slope of the total energy distribution
is underestimated, i.e., αP = 1.28 (Fig. 6.2, bottom row right), compared with α = 1.41 of
the input data. The correlations between the parameters are less severely affected, because
the threshold effects cancel out to some degree, so we find E ∝ P1.88 (instead of ∝ P2) and
T ∝ P0.93 (instead of ∝ P1) (Fig. 6.2, left).

This example clearly demonstrates that a flux threshold leads to a significant underes-
timate of the powerlaw slopes, even for noise-free data (Fig. 6.2). The bias mostly occurs
for pulse durations that are shorter than the average waiting time. Only for time series con-
taining well-separated events this bias vanishes in the limit of infinitely small thresholds.

Light curves from astrophysical objects often have a low signal-to-noise ratio, in which
case the rate of arriving photons at our detector exhibits fluctuations of comparable magni-
tude as the weakest SOC events we try to detect. The observed photon flux Fobs(t) follows
Poisson statistics,

fobs(ti) ≈ f (ti)+ρ(ti)
√

f (ti) , (6.2.3)

where ρ(ti) is a random number with a mean of μ = 〈ρ(ti)〉 = 0 and a standard deviation
of σ = 1 in the Gaussian approximation (Section 4.1). The addition of this photon noise to
the simulated time profile shows clearly a noisier background, while the signal-to-noise ra-
tio is better at the peak of large pulses (Fig. 6.3, top). If we detect temporal structures with
a threshold of Fth = 4.0W0, we detect a total of N = 1,015 structures (Fig. 6.3), compared
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Fig. 6.2 The same time series as shown in Fig. 6.1 (top panel), with frequency distributions of event pa-
rameters (right) and correlations between event parameters (left), for events detected above a flux threshold
of Fth ≥ 1.5W0. The histograms of detected structures are shown in gray, while the histograms of the input
data (Fig. 6.1) are shown in white.
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Fig. 6.3 The same time series as shown in Fig. 6.1 but with added Poissonian photon noise (top panel).
The frequency distributions of event parameters (right) and correlations between the event parameters are
shown (left) for events detected above a flux threshold of Fth ≥ 4.0W0.
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with N = 172 in the noise-free data (Fig. 6.2), out of the simulated N = 1,000 pulses. The
threshold of Fth = 4.0W0 corresponds to a 3-sigma significance level (for a Gaussian dis-
tribution), which has a confidence level of 99.73%, so we expect about 0.27% fluctuations
beyond the threshold level (i.e., positive and negative), or half of it (0.135%) above the
positive threshold, which amounts to excess fluctuations in 68 time bins for our time series
of n = 50,000 data points, which explains the observed excess of 15 events. If we compare
the observed frequency distribution of time scales between the input parameters (Fig. 6.1)
and the noisy data (Fig. 6.3), we can see that we detect an over abundance of events with
small peak energies, leading to a much steeper slope for peak fluxes (αP = 2.97 instead
of αP = 1.89), a slightly steeper slope for energies (αE = 1.67 instead of αE = 1.41), and
a flatter slope for durations (αT = 1.57 instead of αT = 1.99). Consequently, event detec-
tion with noisy data lead to substantially modified frequency distributions, hence, we have
to apply suitable procedures to suppress the photon noise. This is more of a problem for
photon-starved astrophysical time series, but much less so for the generally photon-rich
solar data.

An efficient and robust technique to get rid of photon noise is the smoothing of a time
series with a boxcar function, which is defined as the replacement of the flux value f sm

i =
f sm(ti) at each time point with the average within a “boxcar” centered around the time
point ti,

f sm
i = f sm(ti) =

i+nsm/2

∑
j=i−nsm/2

f (t j) . (6.2.4)

We demonstrate this technique by applying a boxcar smoothing with a length of nsm =
2tS/dt = 20 datapoints to the noisy time series of Fig. 6.3, which is shown in Fig. 6.4. We
notice that the data noise is mostly gone; an individual pulse shape is again recognizable
with a well-defined rise and decay time (Fig. 6.4, second row left), and the resulting fre-
quency distributions have similar powerlaw slope as the noise-free data (Fig. 6.2), i.e., for
durations αT = 1.42 versus αT = 1.48, for peak energies αP = 1.43 versus αT = 1.50, for
energies αE = 1.23 versus αT = 1.28. What is even more important, we detect a similar
number (N = 211) of structures in the smoothed data for a threshold of Fth = 1.5 as in the
noise-free data with the same threshold (N = 172), so we get rid of most false structures
produced by the photon noise.

The consequences of time-overlapping pulses, photon noise, thresholding, and pho-
ton noise on the measurement of time scale distributions, as we exemplified here, apply
specifically to pulses that have a powerlaw distribution in their amplitude and duration,
as expected for the classical SOC model. Statistics of pulses with other amplitude and
duration distributions may exhibit a different behavior. The analysis of astrophysical time
series consisting of pulses with random (exponential) distributions in amplitude and dura-
tions has been studied in Scargle (1981), with a model called the moving average model
therein, in contrast to the autoregressive model (Scargle 1981), where pulses are clus-
tered in time and have a memory over their recent past. The effects of the event definition
and threshold (see Fig. 5.4, middle column) on the measured time scale distribution was
also quantitatively studied in a particular time series constructed from an MHD turbulence
model (Buchlin et al. 2005), and the main drawbacks were found to be similar as demon-
strated here: (i) the loss of small events that produces a cutoff for short time scales, (ii)
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Fig. 6.4 The same simulation of a time series (top panel), correlations (left), and frequency distributions
(right) as shown in Fig. 6.3, but a smoothing with a boxcar length of nsm = 2tS/dt = 20 datapoints has
been applied.
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the inability to separate closely-spaced events, and (iii) the adjustment of thresholds in
nonstationary time series (with varying mean rates), which requires Bayesian statistics.
Multi-level detection of pulses using the flux levels in the preceding and following time
intervals has been applied in the automated detection of gamma ray bursts (Quilligan et al.
2002).

6.3 Highpass-Filtered Event Detection

In order to overcome the non-detection of weaker pulses that occur simultaneously during
longer pulses, a fundamental difficulty with threshold-based detection methods (Section
6.2), it is sometimes useful to use a highpass filter, which filters out the slowly-varying time
components, so that small pulses on top of a longer pulses can be detected. We demonstrate
this method in Fig. 6.5, where we use the same smoothed time series as shown in Fig. 6.4,
but subtract a moving-average time profile that is smoothed with a 20 times longer boxcar,
nsm2 = nsm1 × 20. The method of subtracting a smoothed time profile from the original
data is also called unsharp masking, and is defined as,

f HP
i = f HP(t = ti) = fi −

i+nsm2/2

∑
j=i−nsm2/2

f (t j) . (6.3.1)

Since we already smoothed the original data with a smoothing boxcar nsm1, which repre-
sents a lowpass filter, we have actually a bipass filter,

f BF
i = f BF(t = ti) =

i+nsm1/2

∑
j=i−nsm1/2

f (t j)−
i+nsm2/2

∑
j=i−nsm2/2

f (t j) , (6.3.2)

where the lowpass filter constant has to be longer than the highpass filter constant, i.e.,
nsm2 > nsm1. A bipass filter is essentially sensitive to time structures in the time range of
approximately nsm1 × dt < T < nsm2 × dt. In our example shown in Fig. 6.5 we expect
a lower cutoff of T1 = nsm1 ∗ dt/2 = 1.1 and an upper cutoff of T2 = nsm2 ∗ dt/2 = 20.
As we can see from the number of detected time structures, the highpass filter method
yields a more complete sample, i.e., N = 939 for a threshold of Fth = 0.01 W0, compared
with N = 172 in the noise-free data (Fig. 6.2). The resulting frequency distributions of
the bipass-filtered structures are remarkably robust in retrieving the powerlaw slopes of
fluxes (αP = 1.74 versus αP = 1.89) and total energies (αE = 1.27 versus αP = 1.41),
and durations (αT = 1.87 versus αP = 1.99), but impose an upper cutoff at the filter time
scale (T <∼ nsm2 dt = 40) (dashed line in Fig. 6.5, second row right). Thus, except for the
filter cutoff of time scales, this method yields robust powerlaw slopes and has a detection
efficiency of ≈ 94% for the example analyzed here. However, the parameter correlations
are significantly distorted, i.e., E ∝ P1.44 (instead of P2), and T ∝ P0.84 (instead of P1)
(Fig. 6.5, left). Apparently, the distortion of the parameter correlations cancel out to a
large extent in the frequency distributions.
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Fig. 6.5 The same simulation of a time series (top panel), correlations (left), and frequency distribu-
tions as shown in Fig. 6.3, except for application of a lowpass filter (smoothing) with a boxcar of
nsm1 = 2tS/dt = 20 datapoints and a highpass filter with a boxcar introduces a cutoff at T <∼ 40 in the
time duration histogram (marked with a dashed line in second row right).



182 6. Event Detection Methods

Taking advantage of these properties, we could conceive an improved method by com-
bining multiple bipass filters with adjacent but not overlapping time scale ranges, in order
to obtain a complete sampling in each filter. Extending this method into the continuum
limit we arrive at the so-called multi-scale methods, which include the wavelet method
(Section 6.7) or principal component analysis (Section 6.8).

6.4 Peak-Based Event Detection

A method of pulse detection that is independent of flux thresholds is the detection of pulse
peaks, which of course strongly depends on the pulse shape. In the case of noise-free
data (Fig. 6.1), the detection efficiency could approach 100%, because every pulse has a
single peak that can be separated temporally, except for near-simultaneous pulses within
<∼ 2dt, where dt is the time resolution of the data. In noisy data, however (Fig. 6.3), every
pulse has multiple peaks, which even persist in smoothed (Fig. 6.4) and bipass-filtered data
(Fig. 6.5). Effects of the event definition by peak times (Fig. 5.4, left) on the frequency
distribution of pulse durations are studied in Buchlin et al. (2005) for a particular dataset
of MHD turbulence. The problem is mostly to discriminate between peaks of significant
pulses and noise peaks. As the enlarged pulse in Figs. 6.3 to 6.5 show, a single pulse
can have a multitude of noise peaks. Generally, a decomposition of a multi-peak structure
with n local peaks into a denoised structure is ambiguous, because there are n(n− 1)/2
possible combinations to form subgroups, which can have a significant combined flux
about the local background. Thus, a denoising method has first to be applied to the time
series, such as smoothing (Fig. 6.4) or a Fourier lowpass filter (Fig. 6.6), before unique
peaks can be attributed to individual pulse structures. A peak-based event detection is the
less problematic the better the signal-to-noise ratio of the data is.

Once the peaks of significant structures have been identified with a unique peak time,
we still have to find the start and end times in order to obtain the total duration. The start
time can usually be found by tracking the next significant local minimum (valley) before
the peak time. The end time can be estimated the same way by the next local minimum
after the peak time, but since our pulses naturally have a longer decay time than rise time,
there may be multiple peaks that occur during the decay time. In order to bypass those
secondary structures, one would have to require the following minimum to be as low in
flux as the flux minimum at the start time.

6.5 Fourier-Filtered Event Detection

A common method of denoising a time series is the application of a Fourier lowpass filter,
which we demonstrate in Fig. 6.6. Strictly speaking, this is a special method of the more
general category of threshold-based event detection methods (Section 6.2). We use a Fast
Fourier Transform (FFT) to produce a power spectrum, apply a cutoff to frequencies,
ν < νcuto f f = 1/t f ilter, or time scales of T >∼ t f ilter, and apply the inverse Fourier transform
to return a smoothed time profile, so it is a three-step process,



6.5 Fourier-Filtered Event Detection 183

0 1000 2000 3000 4000
Time t

1

10

100

1000
F

lu
x 

F
(t

)

0 5 10 15
Time t

0

2

4

6

8

10

F
lu

x 
F

(t
)

Threshold

1 10 100 1000
Total durations T

0.01

0.10

1.00

10.00

100.00

1000.00

N
um

be
r 

of
 e

ve
nt

s 
dN

/d
T aT= 1.99, N=1000

aT= 1.94, N= 752

1 10 100 1000
Peak energy P

0.01

0.10

1.00

10.00

100.00

1000.00

N
um

be
r 

of
 e

ve
nt

s 
dN

/d
P aP= 1.89, N=1000

aP= 2.01, N= 752

1 10 100 1000
Total energy E

0.01

0.10

1.00

10.00

100.00

1000.00

N
um

be
r 

of
 e

ve
nt

s 
dN

/d
E aE= 1.41, N=1000

aE= 1.67, N= 752

1 10 100 1000
Peak energy P

1

10

100

1000

T
ot

al
 e

ne
rg

y
E

c= 1.60

1 10 100 1000
Peak energy P

1

10

100

1000

T
ot

al
 d

ur
at

io
ns

T

c= 0.84

Fig. 6.6 The same simulation of a time series (top panel), correlations (left), and frequency distributions
(right) as shown in Fig. 6.1, except for application of a Fourier lowpass filter with a filter passband for
time scales t ≤ t f ilter = 3 and threshold Fth = 4.
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f (t) �→ P(ν) = FFT [ f (t)] ,
P(ν) �→ P(ν ≥ νcuto f f ) ,
P(ν ≥ νcuto f f ) �→ flowpass(t) = FFT−1[P(ν ≥ νcuto f f )] .

(6.5.1)

Once we obtain the Fourier lowpass-filtered time profile, either a threshold-based (Section
6.2) or a peak-based (Section 6.4) method can be applied to produce statistics of peak
fluxes and time durations.

In Fig. 6.6 we demonstrate a peak-based detection method applied to a denoised time
profile using a Fourier filter with a cutoff of t f ilter = 3. In addition we require a thresh-
old of Fth = 4. The detection of a structure requires a local peak above this threshold.
The start time is found at the next local minimum before the peak, while the end time is
found at the next local minimum after the maximum that has a lower flux than at the start
time. With this detection scheme we detect 752 (75%) structures in the example shown in
Fig. 6.6. As the enlarged time profile in Fig. 6.6 shows, there are two local peaks during the
fist time segment of t = [0,15], which can be compared with the input of four structures
that appear clustered (Fig. 6.1). Thus, the Fourier filter has some capability to discrimi-
nate near-simultaneous structures, but the number of discriminated structures depends on
the filter cutoff. The resulting frequency distributions are relatively robust for this cutoff
filter and flux threshold, i.e., for the duration αT = 1.94 versus αT = 1.99, for the peak
energy αP = 2.01 versus αP = 1.89, and the total energy αE = 1.67 versus αT = 1.41
(Fig. 6.6). Thus the application of a Fourier lowpass filter is a quite robust technique in
retrieving the correct slope of the frequency distributions, has a high detection efficiency
(≈ 75%), but has the disadvantage of missing time structures longer than the time scale
cutoff (T >∼ t f ilter). The results, of course, depend very much on the Fourier filter cutoff
ν f ilter and flux threshold Fth.

6.6 Time Scale Statistics from Power Spectra

A Fourier spectrum of a time series is primarily used to detect hidden periodicities, one
famous example in astrophysics being the periodic signals from pulsars. Alternatively, a
power spectrum can also serve to characterize the occurrence of time structures, such as
the 1/ f noise spectrum, which corresponds to a Poissonian (random) distribution of time
scales (Section 4.6). In Section 4.8.2 we derived the specific function of power spectra
P(ν) for randomly distributed pulses with a fixed or mean duration 〈T 〉 according to the
shot noise model, as well as for a powerlaw distribution N(T ) of pulse durations (Section
4.8.4). Therefore, we can invert the distribution of time scales N(T ) analytically from the
power spectra P(ν) of a time series for those special cases.

We demonstrate the inversion of the time scale distribution N(T ) from the power spec-
trum P(ν) with the example simulated in Fig. 6.3. In Fig. 6.7 we show the Fourier spectrum
of the noisy time series f (t) simulated in Fig. 6.3, computed with a standard FFT. We fit a
powerlaw spectrum and obtain a slope of p = 1.03 for the spectrum P(ν) ∝ ν−p. The time
series was simulated with a growth time τG = 1 and a mean saturation time tS = 1, which
yields a peak energy distribution with a powerlaw slope of αP = (1+τG/tS) = 2. The dis-
tribution of total durations has a powerlaw slope of αT = αP = 2, while the distribution
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Fig. 6.7 Fourier power spectrum F(ν) of time series f (t) shown in Fig. 6.3 (top panel). The spectrum is
fitted with a powerlaw function, P(ν) ∝ ν−p with a slope of p ≈ 1.03.

of energies is αE = (αP + 1)/2 = 1.5 (Eq. 3.1.28). From the relation Eq. (4.8.23), i.e.,
−αE(1 + γ) + γ = −αT we can constrain the correlation coefficient γ between energies
and time durations, E ∝ T (1+γ),

γ =
αT −αE

αE −1
, (6.6.1)

which yields γ = (2−1.5)/(1.5−1) = 1. The corresponding powerlaw index of the power
spectrum, P(ν) ∝ ν−p, is then p = (2−αE)(1+ γ) = (2−1.5)(1+1) = 1.0 according to
Eq. (4.8.27), which agrees with our measurement of p ≈ 1.03 obtained in Fig. 6.7. The
inversion of the time scale distribution requires the knowledge of both the power spectrum
with slope p and the correlation coefficient γ , as we can infer from Eqs. (4.8.22) and
(4.8.27),

αT = αE(1+ γ)− γ = 2(1+ γ)− p− γ (6.6.2)

so the correlation E ∝ T (1+γ) between the total energies E and total durations T has to be
measured too, at least for the larger pulses.

A power spectrum from a solar light curve observed with the GOES 6 satellite over a
total of 32 months during the years 1991–1994 was measured by Ueno et al. (1997), who
finds three different spectral components, which can be characterized with the following
powerlaw slopes (Fig. 6.8): p = 1.50 ± 0.02 in the frequency range of ν ≥ 10−3.8 Hz
(<∼1.8 hrs), p = 0.95 ± 0.03 in the frequency range of 10−4.7 < 10−3.8 Hz (1.8–14 hrs),
and p = 0.45 ± 0.08 in the frequency range of ν ≤ 10−4.7 Hz (>∼14 hrs). If we translate
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Fig. 6.8 Power spectrum from a solar soft X-ray time profile observed by GOES during 1991-1994, show-
ing three segments with different powerlaw slopes of p ≈ 0.45,0.95, and 1.50 (separated by arrows). The
insert shows a power spectrum from Cygnus X-1 obtained by Negoro (1992) which has a similar spectrum
(Ueno et al. 1997; reproduced by permission of the AAS).

these powerlaw slopes of the power spectrum p into the powerlaw slopes αT of a time scale
distribution, using γ = 1 as above, we would obtain values of αT = 1.55,2.05, and 2.55 in
order of increasing time scales, which appears to be similar to those found from numerical
SOC simulations of cellular automatons by Lu and Hamilton (1991), where a mean slope
of p = 2.17 was found, being somewhat flatter at smaller time scales and somewhat steeper
at longer time scales (Eq. 2.6.15). Interestingly, this three-part power spectrum for the Sun
resembles also a similar power spectrum observed from the black hole candidate Cygnus
X-1 (Negoro et al. 1992; Ueno et al. 1997); see insert in Fig. 6.8.

Other applications of Fourier power spectra analysis to astrophysical time series address
the restoration and enhancement of astronomical data (Brault and White 1971), unevenly
spaced data (Scargle 1982, 1989), and uncertainties in the Fourier power spectrum due to
noise (Hoyng 1976).
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6.7 Wavelet-Based Time Scale Statistics

When analyzing non-periodic time structures, to be expected for randomly occurring SOC
events, a Fourier decomposition of a time profile is not a natural tool, since the har-
monic modes used in the expansions are themselves periodic, while the time profile is
non-periodic. A better approach is to use other spectral methods, such as the Windowed
Fourier Transform, a wavelet-based method, or a multi-resolution method. A windowed
Fourier transform chops up a time series f (t) into a sequence of windows and yields a
Fourier spectrum P(ν , ti) for every window ti as a function of time. The wavelet trans-
form can be considered as a generalization of the windowed Fourier transform, which also
yields a gliding power spectrum as a function of time, but uses a better adapted functional
decomposition of pulses in a time series, using a so-called mother wavelet function, rather
than the harmonic sinusoidal functions used in the windowed Fourier transform. There is
extensive literature on wavelet methods in general (e.g., Mallat 1989; Daubechies 1992;
Meyer and Ryan 1993; Kaiser 1994, Chan 1995), which we do not review here.

Wavelet methods in the analysis of astrophysical time series have been introduced by
Scargle (1993), and applied, e.g., to study geomagnetic time series (Kovacs et al. 2001;
Vieira et al. 2003), solar helioseismology (Fröhlich et al. 1997), solar diameter variations
(Vigoroux and Delache 1993), solar cycle variability (Watari 1995, 1996a; Polygiannakis
et al. 2003), solar irradiance (Willson and Mordvinov 1999), solar chromospheric oscil-
lations (Bocchialini and Baudin 1995), sunspot oscillations (Jess et al. 2007), solar hard
X-ray flares (Aschwanden et al. 1998a; McAteer et al. 2007), solar radio bursts (Schwarz et
al. 1998), stellar chromospheric oscillations (Frick et al. 1997), quasi-periodic oscillations
in accretion disks (Scargle et al. 1993), or gamma-ray bursts (Young et al. 1995), just to
name a few that deal with wavelet-based analysis of time series. In addition, wavelet-based
analysis has also been applied in the spatial domain, especially in solar imaging data.

For statistics of SOC parameters, in particular for durations T of pulses, we are inter-
ested whether the output of standard wavelet algorithms, the time-dependent Fourier power
spectral density P(ν , ti), consisting of scalegrams S(T ) for each time interval [ti, ti+1],

S(T ) = 〈|P(ν [T ], t)|2〉 , for ti < t < ti+1 (6.7.1)

where ν [T ] = 1/t, can be transformed into a distribution N(T ) of time scales T . Such
a transformation has been developed in Aschwanden et al. (1998a). The procedure is
sketched in Fig. 6.9 and examples are simulated in Fig. 6.10. Essentially, a scalegram
S(T ) can be considered as a convolution of a distribution function N(T ) of time scales T
with a kernel function p(T ). The distribution N(T ) of time scales can then be obtained
from the inversion of a scalegram S(T ) using the kernel function p(T ) that corresponds
to a particular mother wavelet function. The schematic in Fig. 6.9 shows a rectangular
distribution N(T ) of time scales and how the convolution of a (double-powerlaw) kernel
function p(T ) produces the scalegram S(T ). The numerical simulations in Fig. 6.10 show
artificial time profiles f (t), the wavelet scalegrams S(T ), and the inverted time scale distri-
butions N(T ) (histograms in Fig. 6.10, right), compared with the theoretical distributions
N(T ) (delta-functions and Gaussians) that have been used as input in the generation of the
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Fig. 6.9 Top: Triangle mother wavelet function w(t) (thick line) and smoothing function q(t) (dotted).
Bottom: Schematic illustration of the convolution of a standard distribution function N(T ) (bottom) of
time scales with kernel functions p(Ti) that sum up to a scalegram S(T ) (Aschwanden et al. 1998a).

time profiles f (t). These examples demonstrate that the wavelet-based inversion method
can retrieve the original time scales.

A practical example of a wavelet scalegram of an observed time profile observed in a so-
lar flare is shown in Fig. 6.11, along with the inverted time scale distributions N(T ) in four
different time intervals. This method has been applied to the time profiles of 46 solar flare
events and exponential distributions of time scales were found, in contrast to powerlaw-
like distributions expected for SOC models. In the study of McAteer et al. (2007), the
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Fig. 6.10 Eight numerical simulations (A–H) of time profiles f (t) (left panels), the computed wavelet
scalegrams S(T ) (middle panels), and inverted time scale distribution functions N(T ) (right panels). The
time profiles contain also the noise templates (left panels). The scalegrams (diamonds in middle panels)
contain also the noise scalegrams (thin solid line) with the 3σ -limit (dashed line). The slope βmax is
measured at the steepest part of the scalegrams. The inverted time scale distribution functions (histograms
in right panels) are compared with the theoretical distribution functions (thick curve) used in the simulation
of f (t), with mean time scales Tsim, and are compared with the inverted peak times Tpeak (weighted over
hatched part of histogram) (Aschwanden et al. 1998a).
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Fig. 6.11 Time profile (top), scalogram P(T, t) (middle panel with grayscale), time-averaged scalegrams
S(T ) (third row), and inverted time scale distribution functions N(T ) (fourth row) for the Masuda flare,
92-Jan-13, 17:27:42 UT, observed with BATSE/CGRO (Aschwanden et al. 1998a).
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wavelet-based analysis of a solar flare revealed a Hölder exponent that indicates a high
degree of memory between subsequent hard X-ray peaks, which is also in contrast to the
supposed independent events in a SOC process. Wavelet-based statistics of time scales
has not been exploited to the full extent yet, but appears to be a very promising method
for obtaining statistics of temporal structures from convolved time series, which contain
near-simultaneous events with differing time scales.

6.8 Principal Component Analysis

While a Fourier analysis decomposes a time series into harmonic sinusoidal components,
and a wavelet analysis decomposes into stretched and shifted mother wavelet functions
(e.g., a Mexican hat function), there is an even better adjusted decomposition method that
attempts to find a minimum number of best-fit components, which is called Principal Com-
ponent Analysis (PCA), Independent Component Analysis (ICA), Proper Orthogonal De-
composition (POD), Complex Empirical Orthogonal Function (CEOF) analysis, Hotelling
transform, or Karhunen–Loève transform (KLT). The mathematical procedure transforms
a number of possibly correlated variables into a smaller number of uncorrelated (indepen-
dent, or orthogonal) variables, called principal components, and involves the calculation of
eigenvalues of a data covariance matrix, or a singular value decomposition of a data matrix.
The PCA method can be used for automated detection of spatial or temporal features.

In astrophysical time series (or image time series), the PCA method (or a PCA-like ex-
tension) has been applied, e.g., to solar EUV data to detect propagating waves (Terradas et
al. 2004), to solar cycle synoptic data to characterize the “butterfly diagram” over ≈25–50
years (Lawrence et al. 2005; Vecchio et al. 2005a), to solar magnetogram data to identify
low-frequency oscillations in photospheric motion (Vecchio et al. 2005b), to interplanetary
magnetic field polarity data (Cadavid et al. 2008), or to ≈17,000 light curves of variable
stars such as RR Lyrae’s, Cepheids, and Mira variables (Deb and Singh 2009).

An example of a PCA analysis is shown in Fig. 6.12 for a time series of solar EUV
data (Terradas et al. 2004). A decomposition into oscillatory components with indepen-
dent periods is attempted, called empirical mode decomposition (EMD), which obtains
from the analyzed signal six different components with different periods and amplitudes.
The sum of the six decomposed components represent the original data within the data
noise. The EMD method produces a decomposition into frequency band-limited compo-
nents by using information from the signal itself instead of prescribing basis functions with
fixed frequency, such as in Fourier or wavelet methods. The decomposition is not unique,
but attempts to represent a time series with a minimum number of time scale ranges. An-
other example is shown in Fig. 6.13 for a time series from a variable star (Deb and Singh
2009). The full quasi-periodic time series was decomposed with both Fourier and PCA de-
composition techniques. Fig. 6.13 shows the reconstruction of a fundamental mode (FU)
Cepheid light curve using the first 1, 3, 7, and 10 principal components. It was found that
10 principal components contain nearly 90% of the variance in the data.

These examples demonstrate how an arbitrary time profile can be decomposed into a
relatively small number of noise-free time time profiles fT (t), each one having a char-
acteristic time scale T within a prescribed bandwidth Δt. From these time profiles fT (t),
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Fig. 6.12 A time series of EUV flux observed in a loop in the solar corona (top), decomposed into six
principal components with increasing time scales, according to an empirical mode decomposition (EMD)
method. Each component is not strictly periodic (as a Fourier mode), but has its own characteristic time
scale within a small tolerance range, T ±ΔT (Terradas et al. 2004; reproduced by permission of the AAS).
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Fig. 6.13 Reconstruction of four FU Cepheid light curves using the first 1, 3, 7, and 10 principal compo-
nents (Deb and Singh 2009).

the peak amplitudes PT , and total time-integrated fluxes ET of pulse structures with a
time scale T can be sampled, using either a threshold-based or peak-based event detection
method. This would allow us, after proper normalization, to obtain the frequency distri-
butions of time scales N(T ), peak energies N(P), and total energies N(E). Therefore, the
PCA method appears to be a useful and efficient method for SOC statistics, probably better
adapting to unknown pulse shapes than Fourier-based and wavelet-based methods.

6.9 Image-Based Event Detection

In the previous sections we discussed SOC event statistics obtained from one-dimensional
(1-D) time series data f (t), as we usually obtain from astrophysical observations, but
statistics of SOC events has also been inferred from time sequences of images f (x,y; t),
such as from magnetospheric or solar imaging data. Although the automated processing
of three-dimensional (3-D) data f (x,y; t) is more complex, the chief advantage for SOC
statistics is the spatial separation of near-simultaneous events, which can conveniently be
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discriminated in the space domain, while they coincide in the time domain. This is particu-
larly important for SOC statistics because spatial correlations can introduce time clustering
and deviation from Poissonian random statistics (e.g., aftershocks of earthquakes, or sym-
pathetic solar flares), in contrast to spatially independent events that are expected to obey a
true random behavior of waiting times. Event or feature detection in imaging data became
a growing industry and for general introductions into digital image processing we refer
to the textbooks of Gonzales and Woods (2008), Jain (1989), Castleman (1996), Jähne
(2005), Woods (2006) and Mallat (2008), and more specifically for astrophysical data see
Starck et al. (1998) and Starck and Murtagh (2002), or for image processing techniques
and feature recognition in solar physics see Aschwanden (2009). Here we will discuss only
a few examples that are most relevant for SOC statistics.

A threshold-based detection method of temporal features essentially involves a crite-
rion f (x,y; t) ≥ Fth in 3-D space, but additionally requires the automated detection of
spatially coherent and contiguous features. A common procedure is to perform an image
segmentation in an image f (x,y; t = ti) that detects spatially coherent shapes above a pre-
scribed threshold, with subsequent identification of co-spatial structures in the preceding
or following images f (x,y; t = ti−1, tn+1) that have at least one pixel above the prescribed
threshold in common. An example is given in Fig. 6.14, which shows a result of detected

TRACE  195 A  1999-02-17 02:16:06-02:59:45 UT

0 200 400 600 800 1000
EW distance [pixel]

400

600

800

1000

N
S

 d
is

ta
nc

e 
[p

ix
el

]

0134

5

6

7

8

9

10

11

12

13

15

16 17

19

20

21

22

24

25

26

27

28

30

34

36

37 38

40

41

42

43

44

48

51

52

5354

55

5760

61

63

64

65 67

69

71

73

74

77

81

82

85

86

91

92

95

97102

104

109

110

111

112

118

119

128

131

137

138

144

148

149

152

154

155

161

162

163

165

167

169

174

175

177

178

184
189

190

193

201

205

210

212

213

218

222

227

229

232

240

241

243

244

245

247

250

252

254

256

257

261

269

272

282 287

296

297

300

301

307

308

311
312

313

314

315

320

321

324

326

327

330

333

334

336

354

358361

366

369

370

371

376

380

381

384

385

387

390

394399

404

405

414

415

417

418

421

424

432

436

442

451

452
453

454

465

471

472

475

477

478

487

492

500

503

505

513

515

516

517

519

521

522

524

526

527

533

537

538

542546

550

555

557

558

559

560

561

565

566

571

572

573

575

581

584

587

597

604

608

611

614619

622

624

643

655
658

659

660

664

669

680

687

694

696

699

701

702

703

716
718

722

730

734

738

739

740

741

742

743

745
752

753

755

760

761

763

767

779

781

782

803

808

812

813

822
823

824

834

846

850

853

861

865

866

867
873

887

889

892

893

895

896

901

902

281 Microflare events

Fig. 6.14 This synthesized TRACE 195 Å image is summed from 22 images recorded during 1999-Feb-17
02:16:06–02:59:45 UT. The circle encompasses the analyzed field-of-view with a diameter of ≈ 8 arcmin.
The numbered ellipses mark 281 flare-like events that fulfill the flare definition criterion, out of a total of
901 EUV brightening events. The geometric size and orientation of the ellipses is on scale, encompassing
the simultaneously-varying pixels of a flare event (Aschwanden et al. 2000b).
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solar nanoflares in a solar EUV data cube (Aschwanden et al. 2000a,b). Since SOC phe-
nomena are dynamic events, the threshold criterion for an event detection is in this case
not simply a flux threshold, but rather a variability threshold Δ fth, which can be defined in
terms of a flux change that exceeds the level of random fluctuations,

f (x,y; ti+1)− f (x,y; ti) ≥ Δ fth = 3σ f , (6.9.1)

where σ f is the standard deviation of the photon Poisson noise in a time bin correspond-
ing to the exposure time of the image. Examples of such variability maps are shown in
Fig. 6.15, where it can be seen that those pixels with high fluxes (indicated with flux
contours in Fig. 6.15) are not necessarily identical with those of significant flux variabil-
ities from one to the next time frame. To ensure a proper tracking of a coherent event
in time, only pixels that exhibit a co-spatial variability in the previous and/or subsequent
time frame are considered as part of the same coherent event, or SOC avalanche (marked
with diamonds in Fig. 6.15), while other pixels with significant variability occurring in
one single time frame only are considered as event-unrelated (instrumental or unresolved)
brightness fluctuations. The time evolution of such automatically traced features observed
in two different wavelengths (Fig. 6.16) exhibits the typical fast rise and exponential decay
of a solar flare event. The multi-wavelength coverage of these events moreover ensures the
self-consistent physical evolution of an elementary solar flare process, which consists of a
rapid impulsive heating phase with subsequent plasma cooling by thermal conduction and
radiative cooling. It exhibits the typical exponential decay, which appears delayed in the
wavelength with the cooler temperature. Proper definition of events are extremely impor-
tant in image-based feature detection methods, because multi-dimensional data are more
prone to erroneous event detections of unrelated other variabilities contained in the data
than 1-D time series.

The numerical event detection code used for the examples shown in Fig. 6.14–6.16 was
especially designed to detect solar microflares and nanoflares, which represent the faintest
counterparts of solar flares, and thus are important to extend the dynamic range of fre-
quency distributions of flare energies over nine orders of magnitude. Similar codes were
also developed by Krucker and Benz (1998) and Parnell and Jupp (2000), which spurred
controversial results on the powerlaw slopes in the nanoflare regime. A number of issues
were considered that contribute to the initially discrepant results of powerlaw slopes, such
as event definition, selection, and discrimination, sample completeness, observing cadence
and exposure times, pattern recognition algorithms, threshold criteria, instrumental noise,
wavelength coverage, fractal geometry, but also physical modeling issues of energy, tem-
perature, electron density, line-of-sight integration, and fractal volume (e.g., Aschwanden
and Parnell 2002; Benz and Krucker 2002). The issue of the correct powerlaw slope of
the frequency distribution of nanoflare energies was further aggravated by the fact that
the initially discrepant results scattered on both sides of the critical value (with a slope of
αE = 2) that decides whether the energy of nanoflares is more important for coronal heat-
ing (if αE > 2). We will come back to this issue when we discuss physical energy models
of SOC events in Section 9.3.

A similar task is the automated detection of solar bright points, which are small, bipo-
lar magnetic fields in the photosphere and can be detected best in EUV. These events
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Fig. 6.15 The spatial clustering of the pattern recognition code is illustrated for the 12 largest events on 99-
Feb-17, 02:15–03:00 UT. The contours outline local EUV intensity maps around the detected structures.
The crosses mark the positions of macropixels with significant variability (Nσ > 3). The spatio-temporal
pattern algorithm starts at the pixel with the largest variability, which is located at the center of each
field of view, and clusters nearest neighbors if they fulfill the time coincidence criterion (tpeak ± 1Δt).
These macropixels that fulfill the time coincidence criterion define an event, marked with diamonds, and
encircled with an ellipse. Each macropixel that is part of an event, is excluded in subsequent events. Note
that events 0,1,3,11 belong to the same active region, where the four near-cospatial zones have peaks at
different times and thus make up four different events (Aschwanden et al. 2000a).
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Fig. 6.16 Time profiles of the 171 Å (thin line) and 195 Å (thick line) flux of 20 EUV microflares. Both
fluxes are normalized to unity, with the absolute fluxes indicated in each panel. The error bars include all
instrumental and photon noise components. Note that the 171 Å flux is highly correlated with the 195 Å
flux, but generally delayed, as expected for a plasma cooling process (Aschwanden et al. 2000b).
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have been detected with a highpass-filter method with proper noise threshold estimates
from a long-time data series over 9 years to the extent of an unheard number of 1.3×108

events (McIntosh and Gurman 2005). Such large statistics is extremely useful for SOC
statistics, regarding the accurate functional form of the frequency distributions and their
time-dependent changes.

Automated detection of coronal mass ejection (CME) events in coronagraph images
represent a specially challenging task because of their highly transient nature and com-
plex and inhomogeneous spatial morphology. A CME rapidly expands in 3-D space, the
observed brightness becomes quickly diluted, and the morphology evolves from an ini-
tial fan pattern to a turbulent spherical shape, possibly containing multiple shock fronts
with accelerating and decelerating speeds. Thus, typical SOC parameters like a peak flux
P, total flux E, and duration T are difficult to define for such dramatically changing
morphological structures. Even waiting times Δt of CMEs (Fig. 5.13) are problematic
to measure, because multiple CMEs interfere with each other in an observed field-of-
view. Frequency distributions of CMEs have only been sampled for their (angular) sizes,
which were found to exhibit invariant powerlaw slopes during a solar cycle (Robbrecht
et al. 2009). Thus, typical CME observables entail an angular width, an apparent latitude,
and apparent velocities, which are not straightforward to translate into SOC parameters.
These parameters would correspond to a geometric aspect ratio, location, and velocity of
sandpile avalanches. Nevertheless, automated detection algorithms for CME events have
been developed by using a threshold-segmentation technique of radial off-limb images
(Olmedo et al. 2008), a wavelet-based multi-scale edge detection technique (Young and
Gallagher 2008), or a Hough transform with a morphological opening operator (Robbrecht
and Berghmans 2004). An example of a CME detection by Young and Gallagher (2008) is
shown in Fig. 6.17. The optical brightness of CMEs is usually so weak that they can only
be detected in running time-difference or in polarized brightness images. CME-related
phenomena are so-called EIT waves, which according to one model propagate concentri-
cally to the CME over the solar surface and can be traced by means of flux threshold-based
detection of spherically propagating ring patterns (Podladchikova and Berghmans 2005).

Future automated detection algorithms of spatio-temporal patterns are expected to in-
volve more artificial-intelligence algorithms or neural-network-learning techniques, which
can adjust to the unknown or unquantified morphological shapes progressively with the in-
creasing number of detected events.

6.10 Summary

Feature and event detection methods represent the input for SOC statistics and thus it
is extremely important to simulate and understand their statistical biases on the result-
ing frequency distributions of SOC events. We simulated a time series that is particularly
designed for typical SOC events, characterized by powerlaw distributions of amplitudes
and durations, as well as by Poisson statistics of waiting times (Section 6.1). Armed with
such test data, we simulate the detection biases for threshold-based event detection (Sec-
tion 6.2), for both noise-free data and data affected by heavy photon noise. We test how
smoothing of a time series, which is one option to suppress the data noise, affects the
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Fig. 6.17 Illustration of a CME edge detection in subsequent images. (a) The original LASCO C2 images,
(b) running difference images of the LASCO C2 images, and (c) application of the multiscale edge de-
tection algorithm to the sequence of the original images. The edges are the black lines displayed over the
running difference images. The CME erupted on 18 April 2000, the times for the frames are (from left to
right) 16:06 UT, 16:30 UT, 16:54 UT, and 17:06 UT (Young and Gallagher 2008).

resulting frequency distribution. To overcome the main disadvantage of threshold-based
event detection, namely the loss of weak events in the presence of large events, we test a
highpass-filtered and bipass-filtered detection method (Section 6.3). Other alternatives are
peak-based detection methods (Section 6.4) and Fourier-filtered time series (Section 6.5).
We demonstrate that Fourier power spectra P(ν) (Section 6.6) or wavelet-based methods
(Section 6.7) can be used to retrieve the frequency distribution of time scales N(T ). A re-
lated method is the principal component analysis (Section 6.8), which has not been much
used for SOC statistics yet. Finally, given the availability of imaging data in magneto-
spheric and solar physics, image-based spatio-temporal detection methods are appropriate
for SOC statistics, which have the chief advantage of spatial discrimination of cotempo-
raneous events. We illustrate such spatio-temporal feature recognition techniques for the
detection of solar nanoflares and coronal mass ejections. The simulation and testing of any
automated event detection technique cannot be taken seriously enough, because system-
atic errors and biases occur most dramatically for the weakest events, which populate the
largest fraction of the logarithmic scale range covered in SOC statistics.
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6.11 Problems

Problem 6.1: Simulate the time series described in Section 6.1 for longer mean waiting
time (e.g., Δt0 = 10,50,100) and find the scaling how the number of time-overlapping
events reduces with increasing waiting time.

Problem 6.2: Using the test time series simulated in Problem 6.1, develop a simple peak-
based event detection algorithm and test whether you can retrieve the frequency distri-
bution of the input parameters for longer waiting times.

Problem 6.3: With a threshold-based event detection algorithm determine how the number
of detected events scales with the threshold.

Problem 6.4: Calculate the powerlaw slopes of the frequency distribution of times for the
three spectral segments shown in the power spectrum of Cygnus X-1 (Fig. 6.8), using
Eq. (6.6.2) and assuming correlations of E ∝ T and E ∝ T 2.

Problem 6.5: Discuss the pro’s and con’s of Fourier-based, Windowed Fourier transform,
wavelet-based, and principal component analysis for periodic, quasi-periodic, and non-
periodic time series.

Problem 6.6: Discuss and simulate two different strategies for an image-based event de-
tection method: (1) Detect temporal structures in nx × ny time series f (t) for every
image pixel first and then identify co-spatial patterns; or (2) detect spatial structures in
each image plane f (x,y) first and then track co-spatial structures in time.
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