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Preface

This volume in the Springer Lecture Notes in Computer Science (LNCS) series
contains the papers presented at the S+SSPR 2010 Workshops, which was the
seventh occasion that SPR and SSPR workshops have been held jointly. S+SSPR
2010 was organized by TC1 and TC2, Technical Committees of the International
Association for Pattern Recognition (IAPR), and held in Cesme, Izmir, which is
a seaside resort on the Aegean coast of Turkey. The conference took place during
August 18–20, 2010, only a few days before the 20th International Conference on
Pattern Recognition (ICPR) which was held in Istanbul. The aim of the series of
workshops is to create an international forum for the presentation of the latest
results and exchange of ideas between researchers in the fields of statistical and
structural pattern recognition.

SPR 2010 and SSPR 2010 received a total of 99 paper submissions from many
different countries around the world, giving it a truly international perspective,
as has been the case for previous S+SSPR workshops. This volume contains 70
accepted papers, 39 for oral and 31 for poster presentation. In addition to paral-
lel oral sessions for SPR and SSPR, there were two joint oral sessions of interest
to both SPR and SSPR communities. Furthermore, to enhance the workshop
experience, there were two joint panel sessions on “Structural Learning” and
“Clustering,” in which short author presentations were followed by discussion.
Another innovation this year was the filming of the proceedings by Videolec-
tures. The workshop program was enriched by invited talks from four prominent
speakers: Narendra Ahuja (University of Illinois at Urbana-Champaign), Ernesto
Estrada (University of Strathclyde), Fatih Porikli (Mitsubishi Electric Research
Laboratories) and Luc Devroye (McGill University), who was winner of the 2010
Pierre Devijver award.

S+SSPR 2010 was sponsored by the IAPR and PASCAL2. We gratefully
acknowledge generous financial support from the PASCAL2 network to cover
the costs of filming the proceedings of the joint workshop by Videolectures, and
thank IAPR for their support. We would like to take this opportunity to ex-
press our gratitude to all those who helped to organize S+SSPR 2010. First
of all, thanks are due to the members of the SPR and SSPR Scientific Com-
mittees and additional reviewers, who selected the best papers from a large
number of submissions to create excellent technical content. Special thanks are
due to the members of the Organizing Committee for their efforts and to our
host Ilkay Ulusoy for running the event smoothly. We would also like to thank
Miguel-Angelo Lozano who set up the website, and Lin Han and Weiping Xu
for their help in paper management. We also appreciate the help of the editorial
staff at Springer in producing this book, and for supporting the event through
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publication in the LNCS series. Finally, we thank all the authors and the invited
speakers for helping to make this event a success, and for producing a high-
quality publication to document the event.

August 2010 Edwin Hancock
Richard Wilson
Terry Windeatt

Ilkay Ulusoy
Francisco Escolano
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From Region Based Image Representation
to Object Discovery and Recognition

Narendra Ahuja1 and Sinisa Todorovic2

1 Department of Electrical and Computer Engineering,
Coordinated Science Lab, and Beckman Institute,

University of Illinois Urbana-Champaign
2 School of Electrical Engineering and Computer Science,

Oregon State University

Abstract. This paper presents an overview of the work we have done over the
last several years on object recognition in images from region-based image repre-
sentation. The overview focuses on the following related problems: (1) discovery
of a single 2D object category frequently occurring in a given image set; (2)
learning a model of the discovered category in terms of its photometric, geomet-
ric, and structural properties; and (3) detection and segmentation of objects from
the category in new images. Images in the given set are segmented, and then
each image is represented by a region graph that captures hierarchy and neigh-
bor relations among image regions. The region graphs are matched to extract the
maximally matching subgraphs, which are interpreted as instances of the discov-
ered category. A graph-union of the matching subgraphs is taken as a model of the
category. Matching the category model to the region graph of a new image yields
joint object detection and segmentation. The paper argues that using a hierarchy
of image regions and their neighbor relations offers a number of advantages in
solving (1)-(3), over the more commonly used point and edge features. Experi-
mental results, also reviewed in this paper, support the above claims. Details of
our methods as well of comparisons with other methods are omitted here, and can
be found in the indicated references.

1 Introduction

This paper presents an overview of the region based approach to object recognition and
related problems that we have developed over the last several years, and briefly explains
its advantages over the more commonly used methods based on point and edge features
(e.g., [1, 20, 21, 32, 39, 52, 59, 65]). We briefly describe the major components of our
work; details can be found in [6, 54–56].

As a way of addressing recognition-related issues, we consider the following prob-
lem. Suppose we are given a set of arbitrary, unlabeled images that contains frequent
occurrences of 2D objects from an unknown category. Whether, and where, any objects
from the category occur in a specific image from the set is unknown. We are interested
in extracting instances of the category from the image set, and obtaining a compact
category model in terms of photometric, and geometric and other structural properties.
A model derived from such training can then be used to determine whether a new test
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image contains objects from the learned category, and when it does, to segment all
occurrences of the object.

This problem brings together most recognition related issues of interest here, and
serves well to highlight the strengths and shortcomings of different approaches. Our
region based formulation of this problem, originally presented in [6, 54–56], offers a
general framework, subsumes most existing region-based methods, and achieves best
performance on challenging benchmark datasets, including Caltech-101 and Caltech-
256 [20], and Weizmann Horses [9]. We have shown that our approach:

1. Facilitates access to important object properties that are frequently used as recog-
nition cues, including
(a) Photometric (e.g., color, brightness),
(b) Geometric (e.g., size, shape), and
(c) Structural properties (e.g., layout and recursive embedding of object parts), and

2. Allows simultaneous detection and segmentation, of the target objects and their
parts;

3. Simplifies object representation, e.g., for use as statistical models for object classi-
fication;

4. Allows efficient and robust learning and inference of object models; and
5. Enables object modeling under various degrees of supervision, including no super-

vision.

In this paper, we review the part of our work related to objects belonging to a single cat-
egory [6, 54–56]. Our approach therein consists of four major steps. Given an arbitrary
image set, in step 1, each image is segmented using a multiscale segmentation algo-
rithm, and then represented by a region graph capturing the hierarchical and neighbor
relations among image regions. Nodes of this graph correspond to regions, ascendant-
descendant edges capture their recursive embedding, and lateral edges represent neigh-
bor relations with sibling regions, i.e., those other regions that are embedded within the
same parent region. The root of the graph represents the entire image. Step 2 discovers
frequent occurrences of an object category in the images by searching for their similar
subimages. This is done by matching the corresponding region graphs, and finding their
common subgraphs. The set of maximally matching subgraphs is interpreted as occur-
rences of the discovered object category. In step 3, the matching subgraphs are fused
into a single graph-union, which is taken to constitute the canonical model of the dis-
covered object. The graph-union is defined as the smallest graph which contains every
subgraph extracted in step 2. In step 4, a newly encountered image is also represented
by the region graph that captures the hierarchical and neighbor relations among the
image regions. This region graph is then matched with the graph-union model learned
in step 3 to simultaneously detect and segment all occurrences of the category in the
new image. This matching also identifies object parts along with their containment and
neighbor relationships present, which can be used as an explanation of why each object
is recognized.

We have also investigated the following other closely related recognition problems,
the work on which we will not review in this paper. In [5], we presented a region-
based method for extracting a taxonomy of categories from an arbitrary image set. The
taxonomy captures hierarchical relations between the categories, such that layouts of
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frequently co-occurring categories (e.g., head, body, legs, and tail) define more com-
plex, parent categories (e.g., horse). The taxonomy also encodes sharing of categories
among different ascendant categories. In the rest of this paper, by “hierarchy” we will
refer to both region embedding and their neighbor relations, or layout. As demonstrated
in [5], the above hierarchical region-based image representation improves the efficiency
of search for shared categories; the available inter-category taxonomy yields sublinear
complexity of recognizing all categories that may be present in the image set. Also, in
[55], we showed that a hierarchy of regions helps capturing contextual properties of an
object (e.g., co-occurrence statistics, and layout of other objects in the vicinity). This is
used for estimating the significance of detecting a category in pointing to the presence
of other, co-occurring categories in the image. Finally, in [4, 57], we addressed two re-
lated problems, that of texture segmentation, and detecting and segmenting the texture
elements, called texels. An image texture can be characterized by statistical variations
of the photometric, geometric, and structural properties of texels, and relative orien-
tations and displacements of the texels. Since regions facilitate direct capturing these
texel properties, our region-based approach outperforms existing methods on bench-
mark datasets.

The remainder of this paper is organized as follows. Sec. 2 briefly reviews differ-
ent image features frequently used for recognition. Extraction of a hierarchy of regions
from an image is presented in Sec. 3. Sec. 4.1 explains how to discover frequent occur-
rences of an object category by matching the region hierarchies of a given set of images.
Fusing the matching subgraphs into a graph-union, which constitutes the object model,
is presented in Sec. 4.2. Finally, Sec. 5 presents some of our empirical results that
demonstrate the advantages of using hierarchical region-based image representations
for single-category discovery, modeling, and recognition.

2 Regions as Image Features

Recent work typically uses point-based features (e.g., corners, textured patches) and
edges (e.g., Canny, Berkeley’s edge map) to represent images [16, 35–37, 48]. Inter-
est points and edges have been shown to exhibit invariance to relatively small affine
transforms of target objects across the images [35, 37, 48]. However, there are a num-
ber of unsatisfying aspects associated with point features and edges. They are usually
defined only in terms of local, gray-level discontinuities (e.g., gradients of brightness),
whereas target object occurrences in the image occupy regions. Therefore, the inher-
ent locality of points and edges is dimensionally mismatched with the full 2D spatial
extent of objects in the image. As a direct consequence, point-based object detection
requires the use of scanning windows of pre-specified size and shape, and often result
in multiple, overlapping, candidate detections that need to be resolved in a postpro-
cessing step (e.g., non-maxima suppression). This postprocessing is usually based on
heuristic assumptions about the numbers, sizes, and shapes of objects present. Since
the final result of this is identification of the points associated with detected objects, it
leads to only approximate object localization, not exact object segmentation . To obtain
object segmentation, usually the probabilistic map is thresholded which provides likely
object locations. This suffers from errors because both locations of local features and
the threshold values depend on the particular scene and imaging conditions.
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A number of approaches, including our previous work, use image regions as features
[2, 6, 8, 11, 18, 27, 28, 31, 43, 55, 56, 64, 67–69]. These methods argue that regions
are in general richer descriptors, more discriminative, and more noise-tolerant than in-
terest points and edges. Regions are dimensionally matched with object occurrences
in the image. Therefore, regions make various constraints, frequently used in object
recognition—such as those dealing with continuation, smoothness, containment, and
adjacency—implicit and easier to incorporate than points and edges. Region boundaries
coincide with the boundaries of objects and their subparts. This allows simultaneous ob-
ject detection and segmentation. Since there are fewer regions than local features, using
regions often leads to great computational savings, and better performance because,
e.g., the number of outliers is significantly reduced.

As always, it is worth noting that the impact of any shortcomings of an image seg-
mentation algorithm should not be confused with the weaknesses of region based rep-
resentation. For example, oversimplifying assumptions made by some segmentation
algorithms about shape, curvature, size, gray-level contrast, and topological context of
regions to be expected in an image [24, 38] may lead to segmentation errors of specific
types. The same holds for algorithms that implement scale as input parameter which
controls the degree of image blurring and subsampling for segmentation [10, 34], or
pre-select the number of regions as input parameter [49]. In addition, most segmen-
tation algorithms also use an oversimplified model of photometric profiles of image
regions, as being homogeneous and surrounded by step discontinuities, instead of the
more realistic ramp (non-step) discontinuities. Therefore, many regions in real images
with small intensity gradients do not get segmented, thus adversely affecting object
recognition. These limitations of specific segmentation algorithms aside, the use of re-
gions as primitives well serves the objectives of object recognition.

To obtain good segmentation results, we use a multiscale segmentation algorithm
presented in [3, 7, 53]. It partitions an image into homogeneous regions of a priori un-
known shape, size, gray-level contrast, and topological context. A region is considered
to be homogeneous if variations in intensity within the region are smaller than intensity
change across its boundary, regardless of its absolute degree of variability. Image seg-
mentation is performed at a range of homogeneity values, i.e., intensity contrasts. As
the intensity contrast increases, regions with smaller contrasts strictly merge. A sweep
of the contrast values thus results in the extraction of all the segments present in the
image.

3 Segmentation Tree and Region Descriptors

After segmenting an image, the resulting regions and their spatial and structural rela-
tionships can be used for recognition. A number of approaches do not exploit region
relationships, but account for region intrinsic properties, and treats the regions as a bag
of visual words [28, 45]. Other methods additionally account for pairwise region rela-
tions [27], and the contextual information provided by larger ancestor regions within
which smaller regions are embedded [33]. Our work [6, 55, 56], along with several
other methods [25], generalizes previous approaches by additionally accounting for the
spatial layout and recursive embedding of regions in a segmentation tree.
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Fig. 1. Segmentation trees of sample Caltech-101 images [20]: (left) segmentations obtained for
two sample intensity contrast values from the exhaustive range [1,255]; (right) sample nodes of
the corresponding segmentation tree, where the root represents the whole image, nodes closer to
the root represent large regions, while their children nodes capture smaller embedded details. The
number of nodes (typically 50–100), branching factor (typically 0–10), and the number of levels
(typically 7–10) in different parts of the segmentation tree are image dependent, and automatically
determined.

In the segmentation tree, the root represents the whole image, nodes closer to the root
represent large regions, while their children nodes capture smaller embedded details, as
depicted in Fig. 1. The tree in general may not have regular structure (e.g., quad-tree).
For example, the multiscale segmentation of [3, 7, 53] gives the number of nodes (typ-
ically 50–100), branching factor (typically 0–10), and the number of levels (typically
7–10) that are image dependent in different parts of the tree. Thus, the segmentation
tree is a rich image representation that is capable of capturing object properties (a)–(d),
mentioned in Sec. 1.

The segmentation tree (ST), however, cannot distinguish among many different ways
in which the same set of subregions may be spatially distributed within the parent re-
gion. This may give rise to significantly different visual appearances, while the region-
embedding properties remain the same. Consequently, STs for many visually distinct
objects are identical. The ST can be extended by including the information about 2D
spatial adjacency among the regions – while retaining the information about their re-
cursive embedding. This new model augments ST with region adjacency graphs, one
for the children of each ST node. A neighbor edge is added between two sibling nodes
in ST if the corresponding two regions are neighbors in the image. This transforms ST
into a graph, consisting of two distinct sets of edges – one representing the original,
parent-child hierarchy, and the other, consisting of lateral links, representing the newly
added neighbor relationships (Fig. 2). The neighbor relationships between any nonsib-
ling nodes in CST can be easily retrieved by examining the neighbor relations of their
ancestor nodes. To highlight the presence of the complementary, neighbor informa-
tion modifying the segmentation tree, the new representation is referred to as connected
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Fig. 2. Example Connected Segmentation Trees (CSTs): Lateral edges (red) that link neighboring
image regions are added to the corresponding segmentation trees (black) of the images. CSTs
reduce ambiguity about the region layout.

segmentation tree (CST), even though it is strictly a graph. Both nodes and edges of CST
have attributes, i.e., they are weighted, where the node (edge) weight is defined in terms
of properties of the corresponding region (spatial relationship between regions). Thus,
CST generalizes ST to represent images as a hierarchy of region adjacency graphs. As
multiscale regions may be viewed as a basic vocabulary of object categories, the CST
may be seen as a basis for defining general purpose image syntax, which can serve as an
intermediate stage to isolate and simplify inference of image semantics. In the follow-
ing, we will interchangeably use CST and region hierarchy to denote the same image
representation—namely, the hierarchical graph representation that captures recursive
embedding of regions, as well as region layout at all levels.

Each node v in the region hierarchy can be characterized by a vector of properties of
the corresponding region, denoted as ψv. In our previous work, we use intrinsic photo-
metric and geometric properties of the region, as well as relative inter-region properties
describing the spatial layout of the region and its neighbors. In this way, ψv encodes
the spatial layout of regions, while the CST structure itself captures their recursive con-
tainment. The properties are defined to allow scale and rotation-in-plane recognition
invariance. In particular, elements of ψv are defined relative to the corresponding prop-
erties of v’s parent-node u, and thus ultimately relative to the entire image.

Let w, v, and u denote regions forming a child-parent-grandparent triple. Then, the
properties of each region v we use are as follows: (1) normalized gray-level contrast
gv, defined as a function of the mean region intensity G, gv� |Gu−Gv|

|Gv−Gw| ; (2) normal-

ized area av�Av/Au, where Av and Au are the areas of v and u; (3) area dispersion
ADv of v over its children w∈C(v), ADv� 1

|C(v)|
∑

w∈C(v)(aw−aC(v))2, where aC(v)

is the mean of the normalized areas of v’s children; (4) the first central moment μ11
v ;

(5) squared perimeter over area PAv� perimeter(v)2

Av
; (6) angle γv between the principal

axes of v and u; the principal axis of a region is estimated as the eigenvector of ma-

trix 1
μ00

[
μ20 μ11

μ11 μ02

]
associated with the larger eigenvalue, where the μ’s are the stan-

dard central moments; (7) normalized displacement
−→
Δv� 1√

Au

−→
d v , where |−→d v| is the
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Fig. 3. Fig. 3. Properties of a region associated with the corresponding node in the segmentation
tree: Region u (marked red) contains a number of embedded regions v, v1, v2, . . . (marked blue).
The principal axes of u and v subtend angle γv , the displacement vector dv connects the cen-
troids of u and v, while the context vector Fv records the general direction in which the siblings
v1, v2, . . . of v are spatially distributed.

distance between the centroids of u and v, and �−→d v is measured relative to the prin-
ciple axis of parent node u, as illustrated in Fig. 3;

√
Au represents an estimate of the

diameter of parent region u; and (8) context vector
−→
F v�

∑
s∈S(v)

As

|−→d vs|3
−→
d vs, where

S(v) is the set of v’s sibling regions s, and |−→d vw| is the distance between the cen-

troids of v and s, and �−→d vs is measured relative to the principle axis of their parent
node u; as illustrated in Fig. 3, the context vector records the general direction v sees
its sibling regions and disallows matching of scrambled layouts of regions at a spe-
cific tree level. In summary, the vector of region properties associated with node v

is ψv=[gv, av, ADv, μ
11
v , PAv, γv,

−→
Δv,

−→
F v]T. Each element of ψv is normalized over

all multiscale regions of all training images to take a value in the interval [0, 1]. This
list of useful region properties, can be easily modified to reflect the needs of different
applications.

The aforementioned hierarchical region-based image representation will allow recog-
nition performance with the following desirable invariance characteristics with respect
to: (i) Translation, in-plane rotation and object-articulation (changes in relative orienta-
tions of object parts): because the segmentation tree itself is invariant to these changes;
(ii) Scale: because subtree matching is based on relative properties of nodes, not ab-
solute values; (iii) Occlusion in the training set: because subtrees are registered and
stitched together within the tree-union encoding the entire (unoccluded) category struc-
ture; (iv) Occlusion in the test set: because subtrees corresponding to visible object parts
can still be matched with the model; (v) Small appearance changes (e.g. due to noise):
because changed regions may still be the best matches; (vi) Region shape deformations
(e.g., due to minor depth rotations of objects): because changes in geometric/topological
properties of regions (e.g., splits/mergers) are accounted for during matching; and (vii)
Clutter: because clutter regions, being non-category subimages, are not repetitive and
therefore frequent.
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Any object occurrences in images will correspond to subgraphs within the corre-
sponding CSTs. The goal of learning is to identify these subgraphs and capture their
canonical node and node-connectivity properties. The goal of inference is to use this
graph model to identify, within the CST of a new image, subgraphs that represent in-
stances of the learned class. In the following two sections, we explain object learning
and recognition using the region hierarchy.

4 Learning Object Properties

This section argues that hierarchical region-based representations of images possess
two major features—namely, that they: (a) facilitate learning under various degrees of
supervision, and (b) relax the requirements for complex object models and classifiers.

4.1 Object Discovery as Graph Matching

To communicate the natural variations of objects to a recognition algorithm, typically, a
set of training images has to be manually annotated. Supervision in training may involve
the following: manually segmented object instances in training images, bounding boxes
placed around the objects, or only object labels associated with the entire images. In
case the bounding boxes are available in training, they immediately provide access to
similar subgraphs of region hierarchies corresponding to instances of the target object
class. If the bounding boxes are not available, the object occurrences can be discovered
by matching the region hierarchies of images from the same class, and thus identifying
their similar subgraphs. Below, we explain how to match CSTs, and thus obtain a set of
their similar subgraphs, which will be used then to learn the object model or classifier.

Two images may have a number of similar regions, which may confuse the matching
algorithm. However, if similar regions also have similar nesting and layout properties,
then it is very likely that they represent meaningful image parts, e.g., instances of the
same object class, which indeed should be matched. Our algorithm achieves robustness
by pairing regions whose photometric, geometric, and structural properties match, and
the same holds for their neighbors, and these two conditions recursively hold for their
embedded subregions. Such region matching can be formalized using the graph match-
ing techniques. In the following, we first briefly review graph-based image matching
methods, and then present our approach.

Image matching using graph image representations may be performed by: (a) exploit-
ing spectral properties of the graphs’ adjacency matrices [44, 50, 51]; (b) minimizing
the graph edit-distance [12, 47, 62]; (c) finding a maximum clique of the association
graph [41]; (d) using energy minimization or expectation-maximization of a statistical
model [23, 63]. All these formulations can be cast as a quadratic assignment problem,
where a linear term in the objective function encodes node compatibility functions, and
a quadratic term encodes edge compatibility functions. Therefore, approaches to graph
matching mainly focus on: (i) finding suitable definitions of the compatibility functions;
and (ii) developing efficient algorithms for approximately solving the quadratic assign-
ment problem (since it is NP-hard), including a suitable reformulation of the quadratic
into linear assignment problem. However, most popular approximation algorithms (e.g.,
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relaxation labeling, and loopy belief propagation) critically depend on a good initializa-
tion and may be easily trapped in a local minimum, while some (e.g., deterministic
annealing schemes) can be used only for graphs with a small number of nodes. Grad-
uated nonconvexity schemes [26], and successive convexification methods [30] have
been used to convexify the objective function of graph matching, and thus alleviate
these problems. In our work, we use the replicator dynamics algorithm to solve the
underlying convex problem, as explained in the sequel.

Let H = (V,E, ψ, φ) denote the region hierarchy, where V = {v} and E =
{(v, u)} ⊆ V × V are the sets of nodes and edges, and ψ and φ are functions that
assign attributes to nodes, ψ : V→[0, 1]d, and to edges, φ : E→[0, 1]. Given two
shapes, H and H ′, the goal of the matching algorithm is to find a subgraph isomor-
phism, f :U→U ′, where U⊆V and U ′⊆V ′, which minimizes the cost, C, defined as

C = min
f

⎡⎣β ∑
(v,v′)∈f

avv′ + (1 − β)
∑

(v,v′,u,u′)∈f×f

bvv′uu′

⎤⎦ , (1)

where the a’s are non-negative costs of matching nodes v and v′ = f(v), and the b’s
are non-negative costs of matching edges (v, u) ∈ E and (v′, u′) ∈ E′, and β ∈ [0, 1]
weights their relative significance to matching.

To minimize C, we introduce a confidence vector, X , indexed by all node pairs
(v, v′)∈V×V ′, whose each element xvv′∈[0, 1] encodes the confidence that node pair
(v, v′) should be matched. Matching can then be reformulated as estimating X so that
C is minimized. That is, we relax the discrete problem of (1) to obtain the following
quadratic program (QP):

min
X

[
βATX + (1 − β)XTBX

]
,

s.t. ∀(v, v′)∈V×V ′, xvv′≥0,
∀v′∈V ′,

∑
v∈V xvv′=1,

∀v∈V,
∑

v′∈V ′ xvv′=1,

(2)

where A is a vector of costs avv′ , and B is a matrix of costs bvv′uu′ . We define avv′ =
‖ψ(v) − ψ(v′)‖2. Also, we define bvv′uu′ so that matching edges of different types–
namely, hierarchical and neighbor edges—is prohibited, and matches between edges of
the same type with similar weights are favored in (2): bvv′uu′ = ∞ if edges (v, u) and
(v′, u′) are not of the same type; and bvv′uu′ = |φ(v, v′)− φ(u, u′)| if edges (v, u) and
(v′, u′) are of the same type. Both the a’s and b’s are normalized to [0,1].

To satisfy the isomorphism constraints of matching, the algorithm matches regions
with regions, and separately region relationships with corresponding relationships, while
preserving the original node connectivity of H and H ′. The constraints in (2) are typi-
cally too restrictive, because H and H ′ may have relatively large structural differences
in terms of the number of nodes and their connectivity, even if H and H ′ represent two
objects from the same class. These structural differences may, e.g., arise from different
outputs of the segmentation algorithm on images of the same object class but captured
under varying illumination. In this case, splitting or merging regions along their shared,
low-contrast boundary may occur which affects the structure of H and H ′. Therefore,
a more general many-to-many matching formulation would be more appropriate for
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our purposes. The literature reports a number of heuristic approaches to many-to-many
matching [19, 42, 58], which however are developed only for weighted graphs, and thus
cannot be used for our region hierarchies that have attributes on both nodes and edges.
To relax the constraints in (2), we first match H to H ′, which yields solution X1. Then,
we match H ′ to H , which yields solution X2. The final solution, X̃ , is estimated as
an intersection of non-zero elements of X1 and X2. Formally, the constraints in (2) are
relaxed as follows: (i) ∀(v, v′) ∈ V×V ′, xvv′ ≥ 0; and (ii) ∀v ∈ V,

∑
v′∈V ′ xvv′ = 1

when matching H to H ′; and ∀v′ ∈ V ′,
∑

v∈V xvv′ = 1 when matching H ′ to H .
Thus, by using an auxiliary matrix W = βdiag(A)+ (1−β)B, we reformulate (2) and
arrive at the following one-to-many matching problem

min
X

XTWX,

s.t. ∀(v, v′)∈V×V ′, xvv′≥0,
∀v′∈V ′,

∑
v∈V xvv′=1,

(3)

which can be efficiently solved by using the replicator dynamics update rule [40]:

X ← WX

XTWX
. (4)

The proof that the optimization of (3) results in the subgraph isomorphism follows from
the well-known Motzkin-Strauss theorem, as shown in [40, 41].

Complexity of our matching is O((|V |+|E|)2). Our implementation in C takes about
1min on a 2.8GHz, 2GB RAM PC for two CSTs with approximately 50 nodes.

The matching subgraphs may represent complete object occurrences or their parts
(e.g., due to partial occlusion, or changes in illumination, viewpoint, or scale variations
across the images). Therefore, the extracted similar subgraphs provide for many ob-
servations of entire objects or their parts in the class. This allows robust estimation of
the region-based object model. Note that as a result of matching region hierarchies, we
immediately have access to correspondences between nodes and edges of all extracted
subgraphs. These correspondences can be used to learn a canonical graph of the object
class that subsumes all extracted instances, and thus represents the object model.

4.2 Region-Based Object Model

The region-based object model is aimed at capturing how image regions are recursively
laid out to comprise an object, and what their geometric and photometric properties are.
From a set of given or extracted similar CSTs, as explained in the previous section,
our goal is to obtain a compact, canonical model of the target class. In our work we
formulate this canonical graph as graph-union.

Graph-unions are well studied graph structures, the detailed treatment of which can
be found, for example, in [13–15, 29, 60, 61]. The graph-union T is the smallest graph,
which contains every graph from a given set D. Ideally, T should be constructed by
first finding the maximum common subgraph of D, and then by adding to the com-
mon subgraph, and appropriately connecting, the remaining nodes from D. However,
finding this maximum common subgraph would entail prohibitive complexity if D is
large. Therefore, we resort to a suboptimal sequential approach. In each iteration T is
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Fig. 4. Construction of graph-union T from the extracted set of similar CSTs
D={t1, t2, . . . , tN}: In each iteration, a selected CST t from D is first matched against
the current estimate T (n), which yields their maximum common subgraph τ (marked black).
Then the unmatched nodes from t are added and appropriately connected (marked gray), to form
T (n+1). The result is the graph-union.

extended by adding a new CST t from D until every CST from D has been added to
the graph-union, as illustrated in Fig. 4. As can be seen, the selected t is first matched
against the current estimate T (n), which results in their common subtree τ , and then the
unmatched nodes from t are added and appropriately connected to τ in order to form
T (n+1). For matching t and T (n), we use the same algorithm presented in Sec. 4.1.
After adding the unmatched nodes, the result is the graph-union, which preserves the
node connectivity from D.

5 Results

Region hierarchies, as our image representations, allow joint object detection, recog-
nition and segmentation. This can be achieved by matching the learned graph-union
model, presented in the previous section, with the region hierarchy of a new image. In
our approach, the matching subgraphs whose similarity measure is larger than a spec-
ified threshold are taken as detected objects. This detection simultaneously delineates
object boundaries, due to using regions as basic image features. This section reviews
the empirical validation of our approach, presented in [6]. The experiments demon-
strate advantages of using region-based image representations and object modeling for
recognition versus alternative approaches.

We consider 14 categories from four datasets: 435 faces, 800 motorbikes, 800 air-
planes, 526 cars (rear) from Caltech-101 [20]; 328 Weizmann horses [9]; 1554 images
queried from LabelMe [46] to contain cars, trees, and buildings together; and 200 im-
ages with 715 occurrences of cows, horses, sheep, goats, camels, and deer from UIUC
Hoofed Animals dataset [6]. Caltech-101 images contain only a single, prominently
featured object from the category, except for images of cars (rear) containing multiple,
partially occluded cars appearing at different scales, with low contrast against textured
background. The Weizmann dataset contains sideviews of walking/galloping horses of
different breeds, colors and textures, with different object articulations in their natural
(cluttered) habitat. LabelMe is a more difficult collection of real-world images which
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contain many other object categories along with the queried ones, captured under dif-
ferent lighting conditions, and at varying scales. The Hoofed Animals dataset presents
the mentioned challenges, and has higher complexity as it contains multiple instances
of multiple very similar animal categories per image, requiring high inter-category
resolvability.

The Caltech-101 and Weizmann categories are learned one category at a time on
the training set that consists of Mp randomly selected examples showing the category,
and Mn≥0 images from the background category in Caltech-101 (M=Mp+Mn). The
LabelMe and Hoofed Animals categories are all learned together by randomly selecting
M images from the corresponding dataset. To recognize and segment any category
occurrences in a test image, the learned category model is matched with CST of the
image. The matched subtrees (i.e., detections) whose similarity measure is larger than
a threshold are adjudged as detected objects. Results shown in tables and figures are
obtained for the threshold that yields equal error rate. We use the following definitions
of detection (DE), and segmentation (SE) errors. Let D denote the area that a detection
covers in the test image, and G denote the ground-truth object area. Then, DE�D∩G

D∪G ,

and SE�XOR(D,G)
D∪G . A detection is a false positive if DE<0.5, otherwise it is a true

positive (TP). Recognition is evaluated only on TP’s by visual inspection.

5.1 Qualitative Evaluation – Segmentation

Figs. 5–6 demonstrate high accuracy of simultaneous object detection and segmentation
in images from LabelMe and Hoofed Animals datasets, using M=50 training images.
Each TP in the figures is correctly recognized. CSTs outperform STs in both object
detection and segmentation, especially in cases of partial occlusion (e.g., cars and cows
in Fig. 6), and for objects defined rather as a region spatial layout than containment
(e.g., spotted cows in Fig. 6). In these cases, modeling of the region adjacency by CSTs
proves advantageous. Segmentation is good even in cases when object boundaries are
jagged and blurred (e.g., trees in Fig. 5), and when objects from the same category
occlude each other, forming a complex region topology with low-intensity contrasts

Fig. 5. Samples from Hoofed Animals (left) and LabelMe (right). Segmentation results of CST
are overlaid on the original. Different colors denote recognized categories. CST successfully
resolves small differences between the categories sheep and goats.
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(a) original image (b) STs (c) CSTs

Fig. 6. CSTs outperform STs in both detection and segmentation on samples from Hoofed Ani-
mals (top) and LabelMe (bottom). Undetected image parts are masked out.

(e.g., cars in Fig. 5). Objects that are not detected, for the most part, have low intensity
contrasts with the surround, and thus do not form category-characteristic subgraphs
within CSTs that can be matched with the category model.

5.2 Qualitative Evaluation – Model

Fig. 7 illustrates the model G obtained for the category horses, learned on six, randomly
selected images D from the Weizmann dataset. Nodes v in G, depicted as rectangles,
contain regions from D that got matched with v during learning. As can be seen, the
structure of G correctly captures the recursive containment and neighbor relations of
regions occupied by the horses in D. For example, nodes head, neck, and mane are
found to be children of node head&neck, and they are all identified as neighbors. Also,
it is correct that head&neck and tail are not neighbors. Similar background regions that
co-occur with horses in D may also be included in the model (e.g., nodes corresponding
to fence). Typically, the percentage of background nodes out of the total number of
model nodes is small (3-5%).

5.3 Quantitative Evaluation

Fig. 8 (left) presents the recall-precision curves (RPC) of detection for the Caltech-101
categories using CSTs and STs. Detection performance in the presence of occlusion is
tested by masking out a randomly selected rectangular area in the image, and replacing
this area with a patch from the background category of Caltech-101. CST increases
the area under the RPC of ST by 6.5 ± 0.3%, and by 3.1 ± 0.2% in the presence
of the occluding patch covering 20% of the image. Invariance to in-plane rotation is
tested by randomly rotating test images. Performance on these rotated images is the
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Fig. 7. CST-based model of Weizmann horses learned on the input images shown in the top row

Fig. 8. (left) Detection recall-precision curves: “CST-unweight” means that edges in CST are not
weighted. 20% is the size of a rectangular occlusion w.r.t. the image size. Mp=10, Mn=10. ST
is the method of [54]. (right) Recognition accuracy of CST and ST for the varying ratio of Mp

and Mn in the training set.

same as the one presented in Fig. 8. Measuring the strength of neighborliness using
the generalized Voronoi diagram improves performance over the case when the weights
of links in CST are set to take only values 1 or 0, referred to as CST-unweight. CST
increases the area under the RPC of CST-unweight by 2.3± 0.3%. Fig. 8 (right) shows
recognition accuracy of CST and ST. A small increase in Mn does not downgrade the
accuracy. As Mn becomes larger, objects belonging to other categories start appearing
more frequently, and thus get learned, making the training set inappropriate. Increasing
Mp yields smaller recognition error. CST outperforms ST in recognition, and longer
maintains high accuracy with the increase of Mn. In general, the number of nodes in the
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Table 1. Detection recall, segmentation and recognition errors (in %) on LabelMe and Weizmann
Horses datasets, using the same number of training and test images as in [17, 45, 66]

LabelMe Trees LabelMe Buildings LabelMe Cars Weizmann Horses
Recall 47.6±6.9 92.6±6.9 67.6±6.9 91.9±5.2

Seg. error 41.6±7.9 34.6±13.4 32.5±8.2 7.2±2.5
Rec. error 19.7±3.8 11.6±2.9 12.9±4.8 7.9±4.1

Table 2. Detection recall, segmentation and recognition errors (in %) on UIUC Hoofed Animals
dataset, using the same number of training and test images as in [17, 45, 66]

Horses Cows Deer Sheep Goats Camels
Recall 81.2±10.3 78.4±4.2 88.1±6.9 81.2±5.3 78.2±8.6 89.9±7.2

Seg. error 15.9±5.3 17.1±4.6 11.1±8.4 24.8±7.2 20.1±8.1 11.5±5.1
Rec. error 7.8±4.2 6.5±6.2 7.7±3.4 7.8±4.1 12.2±5.4 3.2±3.9

model quickly reaches saturation as new positive examples are added to the training set,
and continues to very slowly increase, in part, due to chance repetitions of background
regions.

Table 1 and Table 2 summarize detection recall, and segmentation and recognition
errors obtained for the equal error rates on LabelMe, Weizmann, and Hoofed Animals
datasets. For Hoofed Animals, CST outperforms ST in detection recall by 7.5%, seg-
mentation by 10.7%, and recognition by 8.6%. For comparison, we obtained SE=6.5%
on a relatively simple UIUC (multiscale) car dataset, using the same set-up as in [22],
while their result is SE=7.9%. The other hierarchical approaches cited here use non-
benchmark datasets, or report a single retrieval result for the entire Caltech-101, be-
yond the focus of this paper. Non-hierarchical approaches that model objects using
image segments obtained at only one pre-selected scale, report the following state-of-
the-art results: [45] – SE=47% for buildings, and SE=79% for cars of LabelMe; [66]
– SE=7% for Weizmann horses; and [17] – SE=18.2% for Weizmann horses. In com-
parison with these approaches, Table 1 indicates that the CSTs yield better, or, in only
a few cases, very similar performance. Regarding recognition accuracy, Fig. 8 shows
that we outperform by 1.8 ± 0.3% the recognition rate of 94.6% of [17] on the four
Caltech-101 categories. Other approaches cited here use a different, less demanding
recognition evaluation based on classifying either the entire images or bounding boxes
around objects.

The results demonstrate that our approach is invariant with respect to: (i) translation,
in-plane rotation and object articulation, since CST itself is invariant to these changes;
(ii) certain degree of scale changes, since matching is based on relative properties of
regions; (iii) occlusion in the training and test sets, since graph-union registers the entire
(unoccluded) category structure from partial views of occurrences in the training set,
while subgraphs of visible object parts in the CST of a test image can still be matched
with the model; (iv) minor depth rotations of objects causing their shape deformations,
because structural instability of CSTs (e.g., due to region splits/mergers) is accounted
for during matching; and (v) clutter, since clutter regions are not frequent and thus
not learned.
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6 Conclusions

We have argued in this paper that using multiscale regions as basic image features:
(a) Facilitates capturing photometric, geometric, and structural properties of objects;
(b) Allows simultaneous object discovery, recognition and segmentation; and (c) En-
ables efficient and robust learning and inference of region-based object representations.
We have reviewed our region-based object recognition framework developed over the
last several years. While the framework is capable of extracting a taxonomy of object
categories from an arbitrary image set, and segmenting textures into texels, we have
focused here on a compact subset of these problems. We have considered the related
problems of single category discovery, detection, and segmentation. We have discussed
how this set of problems poses many recognition related challenges, which are inade-
quately addressed by existing methods that use point and edge features. The summary
of our experimental results that we have presented here shows that use of regions offers
a number of advantages for object recognition over point and edge features.
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Abstract. Mathematical formulation of certain natural phenomena ex-

hibits group structure on topological spaces that resemble the Euclidean

space only on a small enough scale, which prevents incorporation of

conventional inference methods that require global vector norms. More

specifically in computer vision, such underlying notions emerge in dif-

ferentiable parameter spaces. Here, two Riemannian manifolds including

the set of affine transformations and covariance matrices are elaborated

and their favorable applications in distance computation, motion estima-

tion, object detection and recognition problems are demonstrated after

reviewing some of the fundamental preliminaries.
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1 Topological Spaces

A group G is a set that is endowed with a binary operation and satisfies the
closure, associativity, identity, and invertibility properties. A simple example
of a group is the set of integers Z under addition where the identity is 0 and
the inverse of any integer is its negative, which is still in Z. Note that, if the
binary operation is chosen to be multiplication the set of integers is no longer
a group because the inverse may not be an integer. A subset of G is called as a
subgroup if it satisfies all the group properties of being a group under the same
binary operation. For example the set of positive rational numbers Q+ forms
a subgroup of rational numbers under multiplication. Yet, the set of negative
rational numbers Q− is not a subgroup since it does not contain the identity
and it is not closed under multiplication.

A topological space is a set S together with a family of subsets T if the empty
set ∅ ∈ T and S ∈ T , the union of any family of sets in T also lies in T , and
the intersection of any finite number of sets in T belongs to T . The family T
is said to be the a topology of S and the sets in T are called open sets of the
topological space. A given set may have many different topologies. Any open
set U ∈ T which contains point X ∈ S is called the neighborhood of the point.
A Hausdorff space is a topological space in which distinct points have disjoint
� Throughout this paper, learning on manifolds refers to the family of supervised and

unsupervised methods to search, cluster, classify, and recognize given observations

on smooth manifolds without flattening, charting, or dimensionality reducing them.
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neighborhoods, such that, X,Y ∈ S and there exists UX ,UY ∈ T , X ∈ UX ,
Y ∈ UY and UX ∩UY = ∅. For instance, the real numbers constitute a Hausdorff
space.

For functions defined on Hausdorff spaces it is possible to introduce notions
such as continuity by saying that as we move towards a point X , the value
of the function gets closer to the value of the function at the point. The idea
of being ‘close’ to a particular point is captured by its neighborhood and the
continuity of a function is defined by how it maps open sets of the topology.
A mapping between two topological spaces is called continuous if the inverse
image of any open set with respect to the mapping is again an open set. A
bijective (one-to-one and onto) mapping that is continuous in both directions
is called a homeomorphism. Such mappings preserve the topological properties
of a given space. Two spaces with a homeomorphism between them are called
homeomorphic, and from a topological viewpoint, they are the same, e.g. a square
and a circle are homeomorphic to each other, but a sphere and a torus are not.

A manifold M of dimension d is a connected Hausdorff space for which every
point has a neighborhood that is homeomorphic to an open subset U of Rd.
In other words, a manifold corresponds to a topological space which is locally
similar to an Euclidean space. For any point X ∈ M, there exists an open
neighborhood U ⊂ M containing the point and homeomorphism φ mapping the
neighborhood to an open set V ⊂ Rd, such that φ : U �→ V . The pair (U , φ) is
called as a coordinate chart. An atlas is a family of charts for which the open
sets constitute an open covering of the manifold. Every topological manifold has
an atlas.

Let (UX , φX) and (UY , φY ) be two coordinate charts, such that, UX ∩ UY is
nonempty. The transition map φX ◦ φ−1

Y is a mapping between two open sets
φX(UX ∩ UY ) and φY (UX ∩ UY ). In other words, the transition maps relate
the coordinates defined by the various charts to one another. A differentiable
manifold Ck is a topological manifold equipped with an equivalence class of
atlas whose transition maps are k-times continuously differentiable. In case all
the transition maps of a differentiable manifold are smooth, i.e. all its partial
derivatives exist, then it is a smooth manifold C∞.

It is possible to define the derivatives of the curves on a differentiable mani-
fold and attach to every point X a tangent space TX , a real vector space that
intuitively contains the possible directions in which one can tangentially pass
through X . Suppose two curves with γ1(0) = γ2(0) = X are equivalent, that is
the ordinary derivatives of φ ◦ γ1 and φ ◦ γ2 at 0 coincide for all charts (U , φ)
where X ∈ U . A tangent vector at X is defined by the equivalence class of the
smooth curves γ(0) = X . Tangent vectors are the tangents to the smooth curves
lying on the manifold. The tangent space TX is the set of all tangent vectors at
X . The tangent space is a vector space, thereby it is closed under addition and
scalar multiplication.

A Riemannian manifold (M, g) is a differentiable manifold in which each
tangent space has an inner product g metric, which varies smoothly from point
to point. It is possible to define different metrics on the same manifold to obtain
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different Riemannian manifolds. In practice this metric is chosen by requiring it
to be invariant to some class of geometric transformations. The inner product g
induces a norm for the tangent vectors on the tangent space ‖X‖2 =< X,X >=
g(X). A detailed description of these concepts can be found in [1].

A Lie group is a group G with the structure of a differentiable manifold such
that the group operations, multiplication and inverse, are differentiable maps.
The tangent space to the identity element of the group forms a Lie algebra.
The group operation provides Lie groups with additional algebraic structure.
Let X ∈ G. Left multiplication by the inverse of the group element X−1 : G → G
maps the neighborhood of X to neighborhood of identity. The inverse mapping
is defined by left multiplication by X .

2 Distance on Riemannian Manifolds

A geodesic is a smooth curve that locally joins their points along the shortest
path. Suppose γ(r) : [r0, r1] �→ M be a smooth curve on M. The length of the
curve L(γ) is defined as

L(γ) =
∫ r1

r0

‖γ′(r)‖dr. (1)

A smooth curve is called geodesic if and only if its velocity vector is constant
along the curve ‖γ′(r)‖ = const. Suppose X and Y be two points on M. The
distance between the points d(X,Y ), is the infimum of the length of the curves,
such that, γ(r0) = X and γ(r1) = Y . All the shortest length curves between the
points are geodesics but not vice-versa. However, for nearby points the definition
of geodesic and the shortest length curve coincide. For each tangent vector x ∈
TX , there exists a unique geodesic γ starting at γ(0) = X having initial velocity
γ′(0) = x.

The exponential map, expX : TX �→ M, maps the vector y in the tangent
space to the point reached by the geodesic after unit time expX(y) = 1. Since
the velocity along the geodesic is constant, the length of the geodesic is given by
the norm of the initial velocity d(X, expX(y)) = ‖y‖X . An illustration is shown in
Figure 1. Under the exponential map, the image of the zero tangent vector is the
point itself expX(0) = X . For each point on the manifold, the exponential map
is a diffeomorphism (one-to-one, onto and continuously differentiable mapping

Fig. 1. Manifold and tangent space
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in both directions) from a neighborhood of the origin of the tangent space TX

onto a neighborhood of the point X . In general, the exponential map expX is
onto but only one-to-one in a neighborhood of X . Therefore, the inverse mapping
logX : M �→ TX is uniquely defined only around the neighborhood of the point
X . If for any Y ∈ M, there exists several y ∈ TX such that Y = expX(y), then
logX(Y ) is given by the tangent vector with the smallest norm. Notice that both
operators are point dependent. For certain manifolds the neighborhoods can be
extended to the whole tangent space and manifold hence the exponential map
is a global diffeomorphism. From the definition of geodesic and the exponential
map, the distance between the points on manifold can be computed by

d(X,Y ) = d(X, expX(y)) =< logX(Y ), logX(Y ) >X= ‖ logX(Y )‖X = ‖y‖X .
(2)

For Riemannian manifolds endowing an inverse mapping, the geodesic distance
between two group elements can be written as

d(X,Y ) = ‖ log(X−1Y )‖. (3)

The exponential identity exp(X) exp(Y ) = exp(X+Y ) does not hold for noncom-
mutative matrix Lie groups. The identity is expressed through Baker-Campbell-
Hausdorff formula [2] exp(X) exp(Y ) = exp(BCH(X,Y )) as

BCH(X,Y ) = X + Y +
1
2
[X,Y ] + O(|(X,Y )|3). (4)

where [X,Y ] = XY − Y X is the Lie bracket operation for nonsingular matrix
group.

2.1 Space of Nonsingular Covariance Matrices

The d×d dimensional symmetric positive definite matrices S+
d , can be formulated

as a Riemannian manifold. Let points on this manifold are covariance matrices
X,Y. An invariant Riemannian metric on the tangent space of S+

d is given by [4]

< y, z >X= tr
(
X− 1

2 yX−1zX− 1
2

)
. (5)

The exponential map associated to the Riemannian metric

expX(y) = X
1
2 exp

(
X− 1

2 yX− 1
2

)
X

1
2 (6)

is a global diffeomorphism. Therefore, the logarithm is uniquely defined at all
the points on the manifold

logX(Y) = X
1
2 log

(
X− 1

2 YX− 1
2

)
X

1
2 . (7)

Above,the exp and log are the ordinary matrix exponential and logarithm oper-
ators. Not to be confused, expX and logX are manifold specific operators which
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are also point dependent, X ∈ S+
d . The tangent space of S+

d is the space of d× d
symmetric matrices and both the manifold and the tangent spaces are d(d+1)/2
dimensional.

For symmetric matrices, the ordinary matrix exponential and logarithm oper-
ators can be computed easily. Let Σ = UDUT be the eigenvalue decomposition
of a symmetric matrix. The exponential series is

exp(Σ) =
∞∑

k=0

Σk

k!
= U exp(D)UT (8)

where exp(D) is the diagonal matrix of the eigenvalue exponentials. Similarly,
the logarithm is given by

log(Σ) =
∞∑

k=1

(−1)k−1

k
(Σ − I)k = U log(D)UT . (9)

The exponential operator is always defined, whereas the logarithms only exist
for symmetric matrices with positive eigenvalues, S+

d . From the definition of the
geodesic given in the previous section, the distance between two points on S+

d is
measured by substituting (7) into (5)

d2(X,Y) = < logX(Y), logX(Y) >X

= tr
(
log2(X− 1

2 YX− 1
2 )
)
. (10)

An equivalent form of the affine invariant distance metric was first given in [3],
in terms of joint eigenvalues of X and Y as

d(X,Y) =

(
d∑

k=1

(lnλk(X,Y))2
) 1

2

(11)

where λk(X,Y) are the generalized eigenvalues of X and Y, computed from

λkXvk −Yvk = 0 k = 1 . . . d (12)

and vk are the generalized eigenvectors. This distance measure satisfies the met-
ric axioms, positivity, symmetry, triangle inequality, for positive definite sym-
metric matrices.

An orthogonal coordinate system on the tangent space can be defined by the
vector operation. The orthogonal coordinates of a vector y on the tangent space
at point X is given by

vecX(y) = upper(X− 1
2 yX− 1

2 ) (13)

where upper refers to the vector form of the upper triangular part of the matrix.
The mapping vecX, relates the Riemannian metric (5) on the tangent space to
the canonical metric defined in Rd.
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2.2 Region Covariance Descriptor and Pattern Search

Suppose θ be a feature map extracted from a given image I comprising pixel coor-
dinates, color values, pixel-wise derivatives, oriented gradients, filter responses,
etc. of appearance and spatial attributes θm,n = [m,n, I, Im, ...]Tm,n. Different
functions of coordinates enables imposing of different spatial structures e.g. ro-
tational invariance, symmetry, etc.

A region covariance matrix X for any image region is defined as

X =
1
N

N∑
m,n∈R

(θm,n − θ̄)(θm,n − θ̄)T (14)

where N is the number of pixels and θ̄ is the mean vector of the corresponding
features within the region R. Note that, this is not the computation of the
covariance of two image regions, but the covariance of image features of a region.
Refer to [5] for more details. Such a descriptor provides a natural way of fusing
multiple features without a weighted average. Instead of evaluating the first order
statistics of feature distributions through histograms, it embodies the second
order characteristics. The noise corrupting individual samples are largely filtered
out by the multitude of pixels. It endows spatial scale and feature shift invariance.
It is possible to compute covariance matrix from feature images in a very fast
way using integral image representation [6]. After constructing d(d+1)/2 tensors
of integral images corresponding to each feature dimension and multiplication of
any two feature dimensions, the covariance matrix of any arbitrary rectangular
region can be computed in O(d2) time independent of the region size.

The space of region covariance descriptors is not a vector space. For example,
it is not closed under multiplication with negative scalars. They constitute the
space of positive semi-definite matrices S0,+

d . By adding a small diagonal matrix
(or guaranteeing no features in the feature vectors would be exactly identical),
they can be transformed into S+

d , which is a Riemannian manifold, in order to
apply the Riemannian metrics (10, 11).

A first example using the covariance region descriptor is pattern search to lo-
cate a given object of interest in an arbitrary image. To find the most similar re-
gion in the image, distances between the descriptors of the object and candidate
regions are computed. Each pixel of the image is converted to a 9-dimensional
feature vector θm,n =

[
m,n, Ir, Ig, Ib, |Im|, |In|, |Imm|, |Inn|

]T
m,n

where Ir,g,b are

Fig. 2. Object representation by multiple covariance matrices of subregions
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the RGB color values, and Im,n are spatial derivatives. An object is represented
by a collection of partial region covariance matrices as shown in Figure 2.

At the first phase, only the covariance matrix of the whole region from the
source image is computed. The target image is searched for a region having simi-
lar covariance matrix at all the locations and different scales. A brute force search
can be performed since the covariance of an arbitrary region can be obtained
efficiently. Instead of scaling the target image, the size of the search window is
changes. Keeping the best matching locations and scales, the search for initial
detections is repeated using the covariance matrices of NR partially occluded
subregions at the second phase. The distance of the object model O and a can-
didate region R is computed as

|O −R| = minj

[
NR∑
i=0

d(XR
i ,XO

i )− d(XR
j ,XO

j )

]
(15)

where the worst match is dismissed to provide robustness towards possible oc-
clusions and changes. The region with the smallest distance is selected as the
matching region. Sample matching results are presented in Figure 3 where the
manifold search using the Riemannian metrics is compared to the histogram
features using the Bhattacharyya distance.

Region covariance descriptor can be used for texture recognition within a k-NN
framework. Each texture class in the training dataset is represented by a bag of
region covariance descriptors of the randomly sampled subregions with random
sizes between 16 × 16 and 128 × 128. Given a test image, a certain number of
subregions are extracted and their descriptors are computed. For each covariance
matrix, the distances from matrices in the training set are calculated. The label is
predicted according to the majority voting among the k nearest neighbors. Votes
are accumulated for all images in the dataset and the class having the maximum
vote is assigned as the matching class.

Fig. 3. Regions found via region covariance descriptor and feature histograms
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Fig. 4. Samples from 6 classes that are all correctly classified 109 classes out of 112

A multi-class classifier on Brodatz texture database that consists of 112 gray
scale textures (Figure 4) is also tested. Image intensities and norms of first and
second order derivatives in both x and y direction are incorporated into the pixel
feature vector. Each pixel is mapped to a d = 5 dimensional feature space (only
15 independent coefficients). Due to the nonhomogeneous nature, recognition on
this dataset is a challenging task. Each 640× 640 texture image is divided into
four 320 × 320 subimages and half of the images are used for training and half
for testing. The k-NN on manifold is compared with the results reported in [7].
Even though the best performing conventional approach utilizes computationally
very expensive texton histograms of 560 coefficients, its performance is limited
to 97.32%. Experiments with 100 random covariances from each texture image,
k = 5 for the k-NN algorithm shows 97.77% recognition with a fraction of
the load.

3 Computing Mean on Riemannian Manifolds

Similar to Euclidean spaces, the Karcher mean [8] of points on Riemannian
manifold, is the point on M which minimizes the sum of squared distances

X̄ = arg min
X∈M

K∑
k=1

d2(Xk, X) (16)

where the distance metric is defined by (10,11).
Differentiating the error function with respect to X and setting it equal to

zero gives the following gradient descent procedure [4]

X̄j+1 = expX̄j

[
1
K

K∑
k=1

logX̄j (Xk)

]
(17)

which finds a local minimum of the error function. The method iterates by
computing the first order approximations to the mean on the tangent space.
The weighted mean computation is similar to arithmetic mean. Replacing the
inside of the exponential, the mean of the tangent vectors with the weighted
mean can be obtained as

X̄j+1 = expX̄j

[
1∑
wk

K∑
k=1

wk logX̄j (Xk)

]
. (18)
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Fig. 5. Mean computation is achieved by transforming points on manifold to the neigh-

borhood of I on the manifold by X−1Xi, mapping them to the tangent space of X,

finding the mean in the tangents space, back projecting the tangent space mean onto

the manifold, and repeating these steps until the dislocation between the successive

iterations becomes negligible

3.1 Object Model Update

Finding the correspondences of the previously detected objects in the current
frame, called as tracking, is an essential task in many computer vision
applications.

For a given object region, the covariance matrix of the features can be com-
puted as the model of the object. within all possible locations of the current
frame, the region that has the minimum covariance distance from the model can
be searched and assigned as the estimated location. Note that such an exhaustive
search is performed to highlight the discriminant power of the region descriptor
and the distance metric on manifold. Often search is constrained by a predictive
prior. In order to adapt to variations in object appearance, a set of previous
covariance matrices are stored and a mean covariance matrix is computed on
the manifold as the object representative. Sample tracking results are shown in
Figure 6 below.

Fig. 6. Montages of the detection results (middle) without model update: detection rate

is 47.7%, (right) with weighted mean based update mechanism on manifold: detection

rate is 100%
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4 Computing Kernel Density

The mean-shift is a nonparametric clustering technique which does not require
prior knowledge of the number of clusters, and does not constrain the shape
of the clusters. Data points are assumed to be originated from an unknown
distribution which is approximated by kernel density estimation in vector spaces

f(x) =
1
N

N∑
i=1

H (x− xi) =
κ

N

N∑
i=1

h
(
‖x− xi‖2

)
(19)

where H(x) = κh(‖x‖2) is a radially symmetric kernel with unit radius. The
cluster centers are located by the mean-shift procedure and the data points
associated with the same modes produce a partitioning of the feature space. By
taking the gradient of the above equation, the stationary points of the density
function can be found iteratively via

x̄ =
∑

i xi · k
(
‖x− xi‖2

)∑
i k (‖x− xi‖2)

(20)

where k(x) = −h′(x). At each step, a local weighted mean is computed, and
the computation is repeated centered on the previous estimate. The difference
between the current and the previous location estimates is called the mean-shift
vector

m(x) = x̄− x. (21)

Starting at each data point, mean-shift iterations convergence to a local mode
of the distribution, i.e. a basin of attraction.

A generalization of the mean-shift procedure for parameter spaces having ma-
trix Lie group structure where the mean-shift algorithm runs on a Lie group by
iteratively transforming points between the Lie group (on Riemannian manifold)
and Lie algebra (on tangent space). Using the intrinsic distance, the multivariate
kernel density estimate at X is given by

f(X) =
κ

N

N∑
i=1

h
(
‖ log(X−1Xi)‖2

)
(22)

where xi = log(X−1Xi).
The group operation maps the neighborhood of X to the neighborhood of I

and the tangent space at X to the Lie algebra g. The approximation error can
be expressed in terms of the higher order terms in BCH formula (4). The error
is minimal around I and the mapping assures that the error is minimized. The
point X is mapped to 0, thus the second term in the mean-shift vector does not
exists. The mean-shift vector on the tangent space can be transferred to the Lie
group as

m(X) = exp

(∑
i log(X−1Xi) · k

(
‖ log(X−1Xi)‖2

)∑
i k (‖ log(X−1Xi)‖2)

)
(23)
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and the location of X can be updated as

X̄ = X exp(m(X)). (24)

An invariant estimator on the linear group of non-singular matrices with positive
determinant can be found in [11].

4.1 Motion Detection

Several parameter spaces which commonly occur in computer vision problems
do not form a vector space. For instance, the set of all affine transformations
forms a matrix Lie group. Two-dimensional affine transformation A(2) is given
by the set of matrices in the following form

X =
[
A b
0 1

]
3×3

(25)

where A is a nonsingular 2 × 2 matrix. By selecting each of the entries as an
orthonormal basis, X constitutes a d = 6 dimensional manifold.

One application of the mean-shift on manifolds is multiple rigid motion es-
timation from noisy point correspondences in presence of large amount of out-
liers [9]. Given two images, local feature points such as corner points are found.
These points are paired via a descriptor matching algorithm. Due to occlusions
and errors in the point matching process most of the point correspondences are
outliers. For each set of randomly selected 3-point correspondences a 2D rigid
affine transformation (A,b) is estimated. These transformations constitute the
set of X. Then the above mean-shift procedure is applied to find the local modes
that represent rigid objects having distinct affine motions. A sample result is
given in Figure 7.

Fig. 7. (Left) 2D images with 83 points are detected via corner detection algorithm.

Less than 50% of the point correspondences are accurate. (Right) The boundaries of

the bodies and transformed boundaries with the estimated motion parameters. The

estimation is almost perfect. Courtesy O. Tuzel.

5 Linear Regression on Riemannian Manifolds

Regression refers to understand the relationship between multiple variables. Lin-
ear regression assumes the relationship depends linearly on a model in which the
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conditional mean of a scalar variable given the other variables is an affine func-
tion of those variables. Numerous procedures have been developed for parameter
estimation and inference in linear regression. Here a least squares estimator is
described.

Suppose (αi, Xi) are the pairs of observed data α ∈ Rd in vector space and the
corresponding points on the manifold X ∈ M. The regression function ϕ maps
the vector space data onto the manifold ϕ : Rd �→ M. An objective function is
defined as the sum of the squared geodesic distances between the estimations
ϕ(αi) and the points Xi

J =
∑

i

d2 [ϕ(αi), Xi] . (26)

Assuming a Lie algebra on the manifold can be defined, the objective function
can be written using the Baker-Campbell-Hausdorff approximation (4) as

J =
∑

i

∥∥log
[
ϕ−1(αi)Xi

]∥∥2 ≈∑
i

‖log [ϕ(αi)] − log [Xi]‖2 (27)

up to the first order terms. The regression function ϕ can be written as

ϕ(αi) = exp
(
αT

i Ω
)

(28)

to learn the function Ω : Rd �→ Rn which estimates the tangent vectors log (Xi)
on the Lie algebra where Ω is the d× n matrix of regression coefficients. Thus,
the objective function (27) becomes

J =
∑

i

∥∥αT
i Ω − log [Xi]

∥∥2 (29)

Let X be the k × d matrix of initial observations and Y be the k × n matrix of
mappings to the Lie algebra

X =

⎡⎢⎣ [α1]T
...

[αk]T

⎤⎥⎦ Y =

⎡⎢⎣ [log(X1)]
T

...
[log(Xk)]T

⎤⎥⎦ (30)

Substituting (30) into (29), one can obtain

J = tr[(XΩ −Y)T (XΩ −Y)] (31)

where the trace replaces the summation in (27). Differentiating the objective
function J with respect to Ω, the minimum is achieved at Ω = (XT X)−1XTY.
To avoid overfitting, additional constraints on the size of the regression coeffi-
cients can be introduced

J = tr[(XΩ −Y)T (XΩ −Y)] + β‖Ω‖2 (32)

which is called the ridge regression [10]. The minimizer of the cost function J
is given by Ω = (XT X + βI)−1XTY where I is an d × d identity matrix. The
regularization coefficient β determines the degree of shrinkage on the regression
coefficients.
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5.1 Affine Motion Tracking

At the initialization of the object, the affine motion tracker estimates a regres-
sion function that maps the region feature vectors to the hypothesized affine
motion vectors by first hypothesizing a set of random motion vectors within the
given bounds, determining the transformed regions for these motions, and then
computing the corresponding features within each warped region. In the tracking
time, it extracts the feature vector only for the previous object region location
and applies the learned regression function.

Let M transforms a unit square at the origin to the affine region enclosing the
target object [x y 1]TI = M[x y 1]TO where the subscripts indicate the image and
object coordinates respectively. The inverse M−1 is an affine motion matrix and
transforms the image coordinates to the object coordinates. The aim of tracking
is to estimate the transformation matrix Mi, given the previous images and the
initial transformation M0. The transformations are modeled incrementally

Mi = Mi−1.ΔMi (33)

and estimate the increments ΔMi at each time. The transformation ΔMi corre-
sponds to motion of target from time i− 1 to i in the object coordinates.

Suppose the target region is represented with orientation histograms com-
puted at a regular grid inside the unit square in object coordinates, i.e with
α(I(M−1

i )) ∈ Rd where d is the dimension of the descriptor. Given the previous
location of the object Mi−1 and the current observation Ii, the new transforma-
tion ΔMi by the regression function is estimated as

ΔMi = ϕ(αi(M−1
i−1)). (34)

The problem reduces to learning and updating the regression function ϕ.
During the learning step, a training set of K random affine transformation

matrices {ΔMj}j=1...K are generated around the identity matrix (Figure 8). The
approximation is good enough since the transformations are in a small neigh-
borhood of the identity. The object coordinates are transformed by multiplying
on the left with ΔM−1

j and the descriptor αj is computed at ΔM−1
j .M−1

i . The
transformation M−1

i moves the object back to the unit square. The training set
consists of samples {αj , ΔMj}j=1...K . The size of the training set is kept rela-
tively small K = 200. Since number of samples is smaller than the dimension
of the feature space, K < d, the system is underdetermined. To relieve this, the
ridge regression is applied to estimate the regression coefficients.

Since objects can undergo appearance changes in time, it is necessary to adapt
to these variations. The model update achieves reestimating the regression func-
tion. During tracking, a set of random observations are generated at each frame
with the same method described above. The observations stored for most re-
cent frames constitute the update training set. More details and an importance
sampling based adaptation can be found in [12].
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Fig. 8. Random transformations are applied in object coordinates to generate the

training features for regression function estimation

Fig. 9. Regression tracking on manifold for a given region. Note that the tracking is

still valid even the region undergoes out-of-plane rotations.

5.2 Pose Invariant Detection

Above method can be used to build an affine invariant object detection algorithm
by incorporating a class specific regression function to an existing pose dependent
detector. Instead of learning a tracking function of the specific target object, a
regression function of the object class is trained. The learning is performed on the
training set generated by applying a total of K random affine transformations
to multiple samples from the same class, e.g. face images. The training stage is
an offline process and a more complicated model can be learned compared to
tracking applications. However, the learned function should be evaluated fast at
runtime, since the tracker is initiated at several locations for each test image.

On a sparse grid on the test image a sparse scan of the image is performed.
At each grid point the class specific regression function is applied and the region
it converges is determined. This scan finds all the locations in the motion space
(e.g. affine) which resemble the object model. The object detector is then eval-
uated only at these locations. The benefits of the approach is two-fold. First,
the size of the search space drastically reduces. Secondly, it performs contin-
uous estimation of the target pose in contrast to the existing techniques per-
form search on a quantized space. Utilizing a pose dependent object detection
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Fig. 10. (Top) Class specific affine invariant face detection. (Bottom) VJ multi-pose

face detector results for sample images containing non-frontal faces.

algorithm (e.g., frontal in upright position), the method enables to detect objects
in arbitrary poses.

In experiments on a face dataset which consists of 803 face images from CMU,
MIT and MERL datasets, the Viola and Jones (VJ) face detector [13] evaluated
at the affine warped face images could detect only 5% of the faces that are
norm 0.5 distant. The Lie algebra based estimation is significantly superior by
achieving 95.6% detection for the same images. Sample detection results for
affine invariant detection of faces are given in Figure 10.

6 Classifiers on Riemannian Manifolds

Let {(Xi, yi)}i=1...N be the training set with respect to class labels, where Xi ∈
M, yi ∈ {0, 1}. Our task is to find a classifier Z(X) : M �→ {0, 1}, which divides
the manifold into two sets based on the training samples of labeled points. A
function to divide a manifold is an intricate notion compared to Euclidean spaces.
A linear classifier that is represented by a point and a direction vector on R2

separates the space into two. However, such lines on the 2-torus cannot divide
the manifold. A straightforward approach for classification would be to map the
manifold to a higher dimensional Euclidean space, which can be considered as
flattening or charting the manifold. However, there is no such mapping that
globally preserves the distances between the points on the manifold in general.

6.1 Local Maps and Boosting

One can design an incremental approach by training several weak classifiers on
the tangent space and combining them through boosting. Since the mappings
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Fig. 11. Illustration of successive learning of weak classifiers on tangent spaces

from neighborhoods on the manifold to the Euclidean space are homeomorphisms
around the neighborhood of the points, the structure of the manifold is preserved
locally in tangent spaces, thus, the classifiers can be trained on the tangent space
at any point on the manifold. The mean of the points (16) minimizes the sum
of squared distances on the manifold, therefore it is a good approximation up to
the first order.

At each iteration, the weighted mean of the points where the weights are
adjusted through boosting are computed. The points to the tangent space are
mapped at the mean and a weak classifier on this vector space is learned. Since
the weights of the samples which are misclassified during earlier stages of boost-
ing increase, the weighted mean moves towards these points producing more
accurate classifiers for these points (Figure 11). The approach minimizes the
approximation error through averaging over several weak classifiers.

6.2 LogitBoost on Riemannian Manifolds

The probability of X being in class 1 is represented by

p(X) =
eZ(X)

eZ(X) + e−Z(X)
Z(X) =

1
2

L∑
l=1

zl(X). (35)

The LogitBoost algorithm learns the set of regression functions {zl(X)}l=1...L

(weak learners) by minimizing the negative binomial log-likelihood of the data

−
N∑

i=1

[yi log(p(Xi)) + (1 − yi) log(1 − p(Xi))] (36)

through Newton iterations. At the core of the algorithm, LogitBoost fits a
weighted least square regression, zl(X) of training points Xi ∈ Rd to response
values βi ∈ R with weights wi.

The LogitBoost algorithm on Riemannian manifolds is similar to original Log-
itBoost, except differences at the level of weak learners. In our case, the domain
of the weak learners are in M such that zl(X) : M �→ R. Following the discus-
sion of the previous section, the regression functions are learned in the tangent
space at the weighted mean of the points on the manifold. The weak learners
are defined as

zl(X) = vl(vecX̄l
(logX̄l

(X))) (37)
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Input: Training set {(Xi, yi)}i=1...N , Xi ∈ M, yi ∈ {0, 1}

– Start with weights wi = 1/N , i = 1...N ,

Z(X) = 0 and p(Xi) = 1
2

– Repeat for l = 1...L
• Compute the response values and weights

βi =
yi−p(Xi)

p(Xi)(1−p(Xi))

wi = p(Xi)(1 − p(Xi))

• Compute weighted mean of the points

X̄l = arg minY ∈M
∑N

i=1 wid
2(Xi, Y ) (17)

• Map the data points to the tangent space at Xl

xi = vecX̄l
(logX̄l

(Xi))

• Fit the function vl(x) by weighted least-square regression of βi

to xi using weights wi

• Update Z(X) ← Z(X) + 1
2
zl(X) where zl is defined in (37)

and p(X) ← eZ(X)

eZ(X)+e−Z(X)

– Output the classifier sign

[Z(X)] = sign [
∑L

l=1 zl(X)]

Fig. 12. LogitBoost on Riemannian Manifolds

and learn the functions vl(x) : Rd �→ R and the weighted mean of the points
X̄l ∈ M. Notice that, the mapping vec (13), gives the orthogonal coordinates
of the tangent vectors. For functions {vl}l=1...L, it is possible to use any form
of weighted least squares regression such as linear functions, regression stumps,
etc., since the domain of the functions are in Rd.

6.3 Object Detection

Due to the articulated structure and variable appearance of the human body,
illumination and pose variations, human detection in still images presents a
challenge. For this task, K = 30 LogitBoost classifiers on S+

8 are combined with
rejection cascade, as shown in Figure 13. Weak classifiers {vl}l=1...L are linear
regression functions learned on the tangent space of S+

8[
m n |Im| |In|

√
I2
m + I2

n |Imm| |Inn| arctan
|Im|
|In|

]T

(38)

The covariance descriptor of a region is an 8 × 8 matrix and due to symmetry
only upper triangular part is stored, which has only 36 different values. The
tangent space is d = 36 dimensional vector space as well.

Let Np and Nn be the number of positive and negative images in the train-
ing set. Since any detection window sampled from a negative image is a negative
sample, it is possible to generate much more negative examples than the number
of negative images. Suppose that the kth cascade level is being trained. All the
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possible detection windows on the negative training images are classified with
the cascade of the previous (k−1) LogitBoost classifiers. The samples which are
misclassified form the possible negative set. Since the cardinality of the possible
negative set is very large, examples from this set are sampled as the negative
examples at cascade level k. At every cascade level, all the positive training
images are considered as the positive training set.

A very large number of covariance descriptors can be computed from a single
detection window and it is computationally intractable to test all of them. At
each boosting iteration of kth LogitBoost level, subwindows are sampled, and
normalized region covariance descriptors are constructed. The weak classifiers
representing each subwindow are learned, and the best classifier which minimizes
negative binomial log-likelihood (36) is added to the cascade level k.

Fig. 13. Cascade of LogitBoost classifiers. The kth classifier selects normalized region

covariance descriptors of the corresponding subregions.

Each level of cascade detector is optimized to correctly detect at least 99.8%
of the positive examples, while rejecting at least 35% of the negative examples.
In addition, a margin constraint between the positive samples and the decision
boundary is enforced. Let pk(X) be the probability of a sample being positive
at cascade level k, evaluated through (35). Let Xp be the positive example that
has the (0.998Np)th largest probability among all the positive examples. Let Xn

be the negative example that has the (0.35Nn)th smallest probability among
all the negative examples. Weak classifiers are added to cascade level k until
pk(Xp) − pk(Xn) > τ , where τ = 0.2. When the constraint is satisfied, a new
sample is classified as positive by cascade level k if pk(X) > pk(Xp)−τ > pk(Xn)
or equivalently Zk(X) > Zk(Xn).

Since the sizes of the pedestrians in novel scenes are not known a priori, the
images are searched at multiple scales. Utilizing the classifier trained on the
INRIA dataset, sample detection examples for crowded scenes with pedestrians
having variable illumination, appearance, pose and partial occlusion are shown
in Figure 14.
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Fig. 14. Detection examples using cascade of LogitBoost classifiers on manifold. White

dots show all the detection results. Black dots are the modes generated and the ellipses

are average detection window sizes. There are extremely few false detections and misses.

7 Conclusions

Several parameter spaces that commonly occur in computer vision problems have
Riemannian manifold structure including invertible affine transformations, non-
zero quaternions with multiplication, general linear group (invertible square real
matrices), real matrices with unit determinant, orientation-preserving isometries,
real orthogonal matrices, and symplectic matrices.

Manifold based methods provide major improvements over the existing Eu-
clidean techniques as demonstrated in this paper.
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Abstract. Breiman, Friedman, Gordon and Stone recognized that tree

classifiers would be very valuable to practicing statisticians. Their cart
algorithm became very popular indeed. Designing tree-based classifiers,

however, has its pitfalls. It is easy to make them too simple or too com-

plicated so that Bayes risk consistency is compromised. In this talk, we

explore the relationship between algorithmic complexity of tree-based

methods and performance.

Extended Abstract

In scientific applications, the dual objective of a classification method is to clas-
sify and explain. It is this argument that makes partition methods interesting—
these are methods in which the space is split up into disjoint sets. On each
set, classification is performed by a simple majority vote. More formally, if
(X,Y ) ∈ Rd×{0, 1} is the unknown underlying distribution of a datum (X) and
its class (Y ), and the data consist of independent identically distributed copies
of (X,Y ), namely Dn = ((X1, Y1), . . . , (Xn, Yn)), then a classifier is an estimator
gn(X,Dn) ∈ {0, 1} of Y , and the probability of error is

Ln = P{gn(X,Dn) �= Y |Dn}.

The Bayes error L∗ = infg P{g(X) �= Y } is the smallest error one can hope
to obtain. If g were known, then we could consider consider the partition into
A = {x ∈ Rd : g(x) = 1} (the unknown Bayes discriminant set) and its com-
plement. And indeed, most classifiers can be considered as partition classifiers
for the partition (An, A

c
n), where An = {x ∈ Rd : gn(x) = 1}, where An is an

approximation of A.
What matters however is the explanatory aspect—how can the partition be

described and constructed? For example, histograms based on regular grids could
be considered, but they suffer from several drawbacks—first and foremost, they
ignore the possible clustering in the data, and secondly, they can hardly be called
instructional tools for explaining data. Thirdly, even modest dimensions quickly
lead to histograms with underpopulated cells.
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This has led many researchers to consider smart and simple partitions. The
linear discriminant, and the perceptron (Rosenblatt, 1962), are based upon par-
titions by hyperplanes. The question is whether we have universality, i.e., does
Ln → L∗ in probability as n → ∞ for any distribution of (X,Y )? The answer
is negative if one linear discriminant is used—how can it hope to get close to
the unknown Bayes discriminant set A, which can be of arbitrary form? But
the answer is affirmative, provided that linear discriminants are cleverly used as
building blocks.

Buoyed by the intriguing comparison between brain function and learning
machines, early methods of classification often involved combinations of linear
discriminants. For example, in the committee machine (Nilsson, 1965), many
linear discriminants are considered, each delivering a vote to each halfspace (to
class “one” on one side, and to the “zero” class on the other side). For a partic-
ular X , its votes are totalled to make a final decision. Neural networks can be
considered as smooth generalizations of this simple machine. Grid histograms
can be considered as generalizations of committee machines in which all sepa-
rating hyperplanes are aligned with the axes and regularly spaced—they have
more degrees of freedom though. While not important in high dimensions, grid
histograms do have one salient feature—they lead to universally consistent rules
provided that the grid cell sizes shrink to zero with n and the average number
of points per cell tends to infinity with n. The question then is whether commit-
tee machines are universally consistent. For example, we optimize k hyperplanes
by minimizing the errors on the data, and if k → ∞ and k = o(n), then one
would expect universal consistency. However, this is unknown (see Problem 30.6
in Devroye, Györfi and Lugosi, 1996).

Partitions based on hyperplanes are called arrangements. All arrangements in
turn can be emulated by trees in which decisions are made by verifying signs of
linear expressions. This leads naturally to tree classifiers. Each node in such a
classifier makes a decision based on whether x is in certain set (ball, halfspace,
simplex, hyperrectangle, and so forth) or not. Leaves in the tree correspond to
sets in a partition.

Tree classifiers come in many flavors. One can cross-categorize by the style
of partition. At the top of the list are the linear partitions perpendicular to the
axes, which we shall call orthogonal cuts. They were preferred in the popular
cart method (Breiman, Friedman, Olshen, Stone, 1984) because of the easy way
in which classifiers can be explained, one variable (coordinate) at a time. Trees
obtained by consecutive orthogonal cuts are called k-d trees in the computer
science literature. Linear cuts lead to so-called hyperplane search trees—they too
were proposed in the 1970s. Occasionally, one finds partitions by membership in
simplices and rectangles.

More fundamental is the type of information used to create the tree-based
partition. If only the Xi’s are used, the partition can at best attempt to keep
close points together, hoping that the joint distribution of (X,Y ) shows some
smoothness. Yet, ignoring the Yi’s has its advantages. For example, one obtains
universal consistency under the following simple (and optimal) conditions. Let
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C be the cell of the partition in which a random datum X falls, and let its
diameter and cardinality be D and N , respectively. Then D → 0 and N → ∞
in probability suffice (Devroye, Györfi and Lugosi, 1996, p. 94). An example
includes the median tree partition—split each coordinate in turn at the median
of the Xi’s, until each leaf cell has about k points. Then k → ∞ and k = o(n),
and the existence of a density for X are the only conditions needed (Devroye,
Györfi and Lugosi, 1996, p. 323).

However, ignoring the Yi’s is against human nature. For data on the real line
(d = 1), there is an optimal binary split that minimizes the error on the data
itself, which we shall call a Stoller (after Stoller, 1954). The Stoller split can be
used in any direction, and indeed, one could consider the best linear or orthogonal
split for d > 1. However, even today, we are missing simple theorems with easy-
to-check conditions for universal consistency when trees, or partitions, are based
on Dn in general. There are indeed many pitfalls that lead to inconsistency.

Thirdly, and perhaps most importantly, tree classifiers can be categorized by
the algorithm used in their construction. Consider first top-down constructions,
in which we keep splitting leaves until we are satisfied. One can optimize a
criterion at each step, choosing a leaf that is most promising to split. However,
selecting a leaf that yields the best orthogonal Stoller split at each step is not
good enough—it is generally not consistent (Devroye, Györfi and Lugosi, 1996,
p. 335). One can however, remedy this by finding the best Stoller split of a leaf
using hyperrectangles as separators (Devroye, Györfi and Lugosi, 1996, chapter
20.13). This is the greedy approach to design. At the other end of the spectrum
is the one-shot design of a tree of a given complexity (number of nodes) using
optimization, such as minimization of the error on the data. This is phenomenally
expensive, but its consistency is usually easy to guaranteee thanks to powerful
inequalities for the empirical measures of sets initially derived by Vapnik and
Chervonenkis (1971).

Bottom-up strategies first make a fine partition, e.g., a partition in which
each final cell has one Xi. Then, in a second step, cells are recombined in a given
fashion. cart follows this approach.

Ensemble methods, popular in machine learning, are learning algorithms that
construct a set of many individual classifiers (called base learners) and combine
them to classify new data points by taking a weighted or unweighted vote of
their predictions. It is now well-known that ensembles are often much more ac-
curate than the individual classifiers that make them up. The success of ensemble
algorithms on many benchmark data sets has raised considerable interest in un-
derstanding why such methods succeed and identifying circumstances in which
they can be expected to produce good results. These methods differ in the way
the base learner is fit and combined. For example, bagging (Breiman, 1996) pro-
ceeds by generating bootstrap samples from the original data set, constructing a
classifier from each bootstrap sample, and voting to combine. In boosting (Fre-
und and Shapire, 1996) and arcing algorithms (Breiman, 1991) the successive
classifiers are constructed by giving increased weight to those points that have
been frequently misclassified, and the classifiers are combined using weighted
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voting. For a comprehensive review of ensemble methods, we refer the reader to
Dietterich (2000).

Breiman (2001) provides a general framework for tree ensembles called “ran-
dom forests”. Each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees. Thus, a random for-
est is a classifier that consists of many decision trees and outputs the class that
is the mode of the classes output by individual trees.

Random forests have been shown to give excellent performance on a number of
practical problems. They work fast, generally exhibit a substantial performance
improvement over single tree classifiers such as cart, and yield generalization
error rates that compare favorably to the best statistical and machine learning
methods.

Different random forests differ in how randomness is introduced in the tree
building process, ranging from extreme random splitting strategies (Breiman
(2000), Cutler and Zhao (2001)) to more involved data-dependent strategies (see
Amit and Geman (1997), Breiman (2001), or Dietterich (2000)). Some attempts
to investigate the consistency of random forests are by Breiman (2000, 2004),
and Lin and Jeon (2006), who establish a connection between random forests
and adaptive nearest neighbor methods.

Many examples of Breiman-style random forests are analyzed by Biau, De-
vroye and Lugosi (2008), and Biau and Devroye (2008). For example, sample k
data from Dn uniformly at random, make a random k-d tree in a certain way
and split until X has exactly one Xi in its cell. Record the vote Yi. Now repeat
many times and estimate Y by a majority rule. Without repetition, there is no
consistency, but averaging the votes leads under some conditions to consistent
rules.
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Abstract. The study of some structural properties of networks is introduced 
from a graph spectral perspective. First, subgraph centrality of nodes is defined 
and used to classify essential proteins in a proteomic map. This index is then 
used to produce a method that allows the identification of superhomogeneous 
networks. At the same time this method classify non-homogeneous network 
into three universal classes of structure. We give examples of these classes from 
networks in different real-world scenarios. Finally, a communicability function 
is studied and showed as an alternative for defining communities in complex 
networks. Using this approach a community is unambiguously defined and  
an algorithm for its identification is proposed and exemplified in a real-world 
network. 

Keywords: subgraph centrality, Estrada index, communicability, network 
communities. 

1   Introduction 

The study of complex networks has become a major field of interdisciplinary research 
in XXI century [1-3]. These networks are the skeleton of complex systems in a variety 
of scenarios ranging from social and ecological to biological and technological sys-
tems [4]. One of the main objectives of this research is the understanding of the struc-
tural organizational principles of such networks [5]. Network structure determines 
most -if not all- of network functions. Important dynamical processes taken place on 
networks are very much determined by their structural organization [6]. Then, some 
universal topological properties which explain some of the dynamical and functional 
properties of networks have been observed, such as ‘small-world’ [7] and ‘scale-free’ 
[8] phenomena. Despite the ubiquity of these phenomena in real-world systems, they 
have not been able to explain many of the structural and dynamical processes involv-
ing complex networks. Consequently, the search for other structural invariants that 
describe properties of complex networks in terms of structural parameters is needed. 
Among these other approaches spectral methods occupy an important place. 

Spectral graph theory is a well established branch of the algebraic study of graphs 
[9]. Despite there are many results in this field they are mostly applicable to small 
graphs and not to gigantic complex networks having thousands or even millions of 
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nodes. Without an excess of criticisms it can be said that many on the bounds found in 
spectral graph theory are very far from the real value when applied to large graphs, 
which make these approximation useless for practical purposes. On the other hand, 
the study of spectral properties of complex networks has been mainly focused to the 
study of the spectral density function in certain classes of random graphs [10-13]. 
This gives little information about the structure of real-world complex networks, 
which differ from random graphs in many structural characteristics.  

Here we attack the problem from a different perspective. We attempt the definition 
of some spectral invariants for nodes and networks which give important structural 
information about the organization of these very large graphs. First, we study the 
characterization of local spectral invariants, in particular subgraph centrality [14] as a 
way for accounting for a ‘mesoscale’ characterization of nodes in a network. Using 
this concept we show analytically the existence of four universal topological classes 
of networks and give examples from the real-world about each of them [15, 16].  
Finally, we study a communicability function [17] which allows to identify communi-
ties in complex networks [17, 18]. 

2   Background 

We consider here networks represented by simple graphs ( )EVG ,:= . That is, graphs 

having nV =  nodes and mE =  links, without self-loops or multiple links between 

nodes. Let ( ) AA =G  be the adjacency matrix of the graph whose elements ijA  are 

ones or zeroes if the corresponding nodes i  and j  are adjacent or not, respectively. 

A walk of length k is a sequence of (not necessarily different) vertices 

kk vvvv ,,,, 110 −  such that for each ki ,2,1=  there is a link from 1−iv  to iv . Conse-

quently, these walks communicating two nodes in the network can revisit nodes and 
links several times along the way, which are sometimes called “backtracking walks.” 
Walks starting and ending at the same node are named closed walks. 

Let nλλλ ≥≥≥ 21  be the eigenvalues of the adjacency matrix in a non-

increasing order and let ( )pjϕ  be the p th entry of the j th eigenvector which is 

associated with the eigenvalue jλ  [9]. The number of walks ( )qpk ,μ  of length k  

from node p  to q  is given by 

( ) ( ) ( ) ( ) k
jj

n

j
jpq

k
k qpqp λϕϕμ ∑

=

==
1

, A  . (1) 

3   Local Patterns: Subgraph Centrality 

A ‘centrality’ measure is a characterization of the ‘importance’ or ‘relevance’ of a 
node in a complex network. The best known example of node centrality is the “degree 
centrality”, DC [4], which is interpreted as a measure of immediate influence of a 
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node over its nearest neighbors. Several other centrality measures have been studied 
for real world networks, in particular for social networks. For instance, betweenness 
centrality (BC) measures the number of times that a shortest path between nodes i  
and j  travels through a node k  whose centrality is being measured. On the other 
hand, the farness of a node is the sum of the lengths of the geodesics to every other 
vertex. The reciprocal of farness is closeness centrality (CC). A centrality measure, 
which is not restricted to shortest paths [4], is defined as the principal or dominant 
eigenvector of the adjacency matrix A of a connected network. This centrality  
measure simulates a mechanism in which each node affects all of its neighbors simul-
taneously [4]. In fact, if we designate the number of walks of length L  starting at 
node i  by ( )iNL  and the total number of walks of this length existing in the network 
by ( )GNL . The probability that a walk selected at random in the network has started 
at node i  is simply[19]: 

( ) ( )
( )GN

iN
iP

L

L
L =  . (2) 

Then, for non-bipartite connected network with nodes n,,2,1 … , it is known that for 

∞→L , the vector ( ) ( ) ( )[ ]nPPP LLL 21  tends toward the eigenvector centrality 

of the network [19]. Consequently, the elements of EC represent the probabilities  
of selecting at random a walk of length L  starting at node i  when ∞→L : 

( ) ( )iPiEC L= . 

If we compare degree and eigenvector centrality we can see that the first account 
for very local information about the interaction of a node and its nearest neighbors 
only. However, eigenvector centrality accounts for a more global environment around 
a node, which in fact includes all nodes of the network. Then, an intermediate charac-
terization of the centrality of a node is needed in such a way that regions closest to the 
node in question make a larger contribution than those regions which are far apart 
from it. This sort of ‘mesoscopic’ type of centrality is obtained by considering the 
subgraph centrality of a node. 

The subgraph centrality of a node is defined as the weighted sum of all closed 
walks starting and ending at the corresponding node [14]. If we designate by ( )ikμ  

the number of such closed walks of length k  starting and ending at node i , the sub-
graph centrality is given by 

( ) ( )∑
∞

=

=
0

!
k

k

k

i
iEE

μ
 , (3) 

where the factorial penalization guaranties that walks visiting nearest neighbors re-
ceive more weights than those visiting very distant nodes. It is straightforward to 
realize that the subgraph centrality of node i  converges to the i th diagonal entry of 
the exponential of the adjacency matrix: 
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This index can be expressed in terms of the spectrum of the adjacency matrix of the 
corresponding network as [14]: 

( ) ( )[ ]∑
=

=
n

j
j

jeiiEE
1

2 λϕ , (5) 

where ( )ijϕ  is the i th entry of the eigenvector associated with the j th eigenvalue 

jλ  of the adjacency matrix.  

The subgraph centrality can be split into the contributions coming from odd and 
even closed walks as follows [20]: 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )j
j

jj
j

jevenodd iiiEEiEEiEE λϕλϕ coshsinh
2

1

2

1
∑∑
==
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The sum of all subgraph centralities for the nodes of a network is known as the 
Estrada index of the graph and has been extensively studied in the mathematical lit-
erature (see [21, 22] and references therein): 

( ) ( ) ( ) ∑∑
==

===
n

j

A
n

i

jeetriEEGEE
11

λ  . (7) 

In Fig. 1 we illustrate an example of the discriminant power of the subgraph centrality 
for the nodes of a graph. The graph illustrated in Fig. 1 displays the same degree, 
closeness and eigenvector centrality for all nodes. However, subgraph centrality iden-
tifies the three nodes at the top as the most central as they take part in triangles, while 
the others not. The second group of nodes according to their subgraph centrality is 
formed by two nodes taken place in no triangle but in three squares, while the least 
central nodes take part only in two squares but in no triangle. 

A real-world example of the utility of centrality measures is provided by the identi-
fication of essential proteins in a protein-protein interaction (PPI) network. A PPI is a 
map of the physical interactions taken place between proteins in a cell. These interac-
tions between proteins are responsible for many, if not all, biological functions of 
proteins in a cell. In every organism there are some proteins which are essential for 
the functioning of its cells. Knocking out these essential proteins produces the death 
of this organism. If such organism is a pathogenic one, then essential proteins are 
good targets for drugs attempting to kill such pathogen. Consequently, the in silico 
identification of essential proteins can play an important role in drug design by  
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Fig. 1. Illustration of a simple graph in which all nodes have the same degree, closeness and 
eigenvector centralities. Subgraph centrality differentiates between three types of nodes, which 
are drawn with sizes proportional to ( )iEE . 

accelerating the process in which some protein targets are identified. Here an example 
is provided about the utility of centrality measures in identifying such essential pro-
teins in the yeast PPI.  

The PPI of Saccharomyces cerevisiae (yeast) was compiled by Bu et al. [23] from 
data obtained by von Mering et al. [24] by assessing a total of 80,000 interactions 
among 5400 proteins by assigning each interaction a confidence level. Here we study 
the main connected component of this network consisting of 2224 proteins sharing 
6608 interactions. They were selected from 11,855 interactions between 2617 proteins 
with high and medium confidence in order to reduce the interference of false posi-
tives, from which Bu et al. [23] reported a network consisting of 2361 nodes and 6646 
links (http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm). We illustrate 
the main connected component of this PPI in Fig. 2A. 

In order to test the efficacy of different centrality measures in identifying essential 
proteins we ranked all proteins in the yeast PPI according to their subgraph, eigenvec-
tor, degree, closeness and betweenness centrality. Then, we select the top 5% of these 
proteins and analyze which of them has been reported experimentally as essential for 
yeast. As a null model we rank all proteins randomly, select the top 5% of these ranks 
and count the number of essential proteins. We take here the average of 1000 random 
realizations. In Fig. 2B we illustrate the results obtained by using this approach. As 
can be seen as average a random selection of proteins in yeast is able to identify only 
25% of essential proteins. All centrality measures analyzed display significantly lar-
ger percentages of essential proteins identified than the random selection method. 
Both spectral methods used, the eigenvector centrality and the subgraph centrality, 
identify more than 50% of essential proteins in this proteome. In particular, subgraph 
centrality identifies 56.4% of essential proteins in the top 5% of the proteins [25]. In 
closing, centrality measures which are based only on topological information  
contained in the PPI network account for important biological information of yeast 
proteome. 
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Fig. 2. (A) Illustration of the protein-protein interaction (PPI) network of yeast. Every node 
represents a protein and two nodes are linked if the corresponding proteins have been found to 
interact physically. Red nodes represent essential proteins, blue represent non-essential and 
yellow represent proteins with unknown essentiality. (B) Percentage of essential proteins identi-
fied by different centrality measures in the yeast PPI. SC, EC, DC, CC and BC stand for  
subgraph, eigenvector, degree, closeness and betweenness centrality, and Rnd stands for the 
average of 1000 random realizations.  

4   Global Patterns 

4.1   Structural Classes of Networks 

The simplest class of networks we can consider is one consisting of very homogene-
ous structure. In these networks ‘what you see locally is what you get globally’. Thus, 
describing the structure of a part of these networks gives an idea of their global topo-
logical structures. In order to have a quantitative criterion for classifying these  

networks we can consider a subset of nodes VS ⊆  with cardinality S . Let S∂  

denotes the boundary of S , which is the number of links between a node in S  and a 
node which is not in this set. Let us introduce the expansion or isoperimetric constant 
of the network as [26]: 

( ) ,
2

0,,inf
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+∞<≤<⊆
∂

=
V

SVS
S

S
Gφ  (8) 

In a ‘superhomogeneous’ network as the ones described in the previous paragraph it is 
expected that ( ) ( )1OG =φ , which means that the number of links inside the subset S  
is approximately the same as the number of links going out from it for all the subsets 

VS ⊆  in the network. This means that high expansion implies high homogeneity and 
better connectivity of the network, which means that the number of links that must be 
removed to separate the network into isolated chunks is relatively high in comparison 
with the number of nodes in the network.  
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A well-known result in spectral graph theory relates the expansion constant and the 
eigenvalues of the adjacency matrix. That is, if G  is a regular graph with eigenvalues 

nλλλ ≥≥≥ …21 , then the expansion factor is bounded as [26], 

( ) ( )211
21 2

2
λλλφλλ −≤≤−

G , (9) 

which means that a network has good expansion if the gap between the first and  
second eigenvalues of the adjacency matrix ( 12 λλλ −=Δ ) is sufficiently large. In 
closing, a superhomogeneous network, also known as expander, is characterized by a 
very large spectral gap 12 λλλ −=Δ . 

Let us consider what happen to the subgraph centralilty in these superhomogene-
ous networks. Without any loss of generality we study here the contribution of odd 
closed walks to the subgraph centrality ( )iEEodd . We can write the expression for the 

odd-subgraph centrality in the following way by noting that ( ) ( )iiEC 1ϕ=  

( ) ( )[ ] ( ) ( )[ ] ( ),sinhsinh
2

2
1

2
j

j
jodd iiECiEE λϕλ ∑

=

+=  , (10) 

Because the network we are considering here is a superhomogeneous one we can 
assume that 21 λλ >>  in such a way that  

( )[ ] ( ) ( )[ ] ( )j
j

j iiEC λγλ sinhsinh
2

2
1

2 ∑
=

>>
 

, (11) 

Consequently, in a superhomogeneous network we can approximate the odd-subgraph 
centrality as, 

( ) ( )[ ] ( )1
2 sinh λiECiEEodd ≈

 
, (12) 

which can be written as a straight line by applying logarithm as [15]: 

( )[ ] ( )[ ]iEEAiEC oddlogloglog η+= , (13) 

where, ( )[ ] 5.0
1sinh −≈ λA  and 5.0≈η . 

We have seen previously that eigenvector centrality is a characterization of a node 
environment that takes into account infinite walks visiting all nodes in the network. 
On the other hand, subgraph centrality is a mesoscopic characterization of the node 
environment giving a measure of the cliquishness of a close neighbourhood around it. 
Consequently, in a superhomogeneous network a log-log plot of ( )iEC  vs. ( )iEEodd  

displays a perfect straight line fit  

( ) ( ) ( )[ ]1sinhlog5.0log5.0log λ−= iEEiEC odd
Homo

 , (14) 

indicating a perfect scaling between local and global environment of a node. In other 
words, “what you see locally is what you get globally” in such networks. Deviations 
from perfect superhomogeneity can be accounted by measuring the departure of the 

points from the straight line respect to ( )iECHomolog  [16]: 
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Then, using (15) a network with ( ) 0log ≅Δ iEC is classified as superhomogeneous. 

Other three classes can be identified, which correspond, respectively to the following 
cases [16]: 

(i) ( ) 0log ≤Δ iEC  for all nodes: what you see locally is more densely connected 

that what you get globally, which indicates that the network contains ‘holes’ in its 
structure, 

(ii) ( ) 0log ≥Δ iEC  for all nodes: what you see locally is less densely connected that 

what you get globally, which indicates the existence of a core-periphery structure of 
the network,  

(iii) ( ) 0log ≤Δ iEC  for some nodes and ( ) 0log >Δ iEC  for the rest, which indicates 

the existence of a combination of the previous two patterns in a network.  

The negative and positive deviations from the perfect scaling can be accounted by  
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where ∑+
and ∑−

are the sums carried out for the +N  points having 

( ) 0log 1 >Δ iγ  and for the −N  having ( ) 0log 1 <Δ iγ , respectively. In Fig. 3 we illus-

trate these three patterns of networks together with their spectral scaling. 
In Fig. 4 we illustrate one example of each of the four structural patterns found in 

complex networks. The first network is a 1997 version of Internet at autonomous 
system, which displays a large homogeneity as can be seen in the perfect spectral 
scaling given in the same figure. The negative and positive deviations from perfect 

scaling for this network are 41021.6 −×  and 31020.1 −× , respectively. The second 
network corresponds to the residue-residue interaction network in the protein with 
Protein Data Bank code (1ash), which corresponds to the structure of Ascaris suum 
hemoglobin domain I at 2.2 angstroms resolution. This network corresponds to the 
class of positive deviations from perfect scaling, which indicates the presence of 
structural holes in its structure. These structural holes correspond to the cavities pro-
tein structures have, which in many cases display biological functionality and repre-
sent important binding sites for proteins [27]. The third network correspond to the 
food web of Canton Creek, which is primarily formed by trophic interactions between 
invertebrates and algae in a tributary, surrounded by pasture, of the Taieri River in the 
South Island of New Zealand. This network is characterized by a central core of spe-
cies with a large number of interactions among them and a periphery of species which 
weakly interact to each other and with the central core. The final network represents 
social ties in a karate club in USA, which eventually polarizes into two factions due to 
an internal conflict. It is characterized by two main clusters or communities, followers 
of the administrator and followers of the trainer in which intersection the presence of 
holes is observed. At the same time each of the two clusters form some small core-
periphery structure giving rise to the spectral scaling observed. 
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Network Model Spectral Scaling 
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Fig. 3. Illustration of the three patterns of networks that deviate from perfect spectral scaling. 
The spectral scaling is a log-log plot of the eigenvector centrality, EC(i) versus subgraph cen-
trality, EE(i) for all nodes in the graph.  
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Fig. 4. Illustration of the four structural patterns in real-world complex networks. The first 
corresponds to Internet autonomous system in 1997, the second is the protein residue network 
of 1ASH, the third represents a food web of Canton Creek and the fourth corresponds to a 
social network of friendship ties in a karate club. 
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A characteristic feature of all networks which are not superhomogeneous is that 
nodes can be grouped together in certain clusters or communities. These communities 
can play an important role in understanding the structure and dynamics of complex 
networks in different scenarios. There are several approaches to detect communities 
in networks which are used today [28]. In the following section we explain one which 
is based on the concept of communicability between nodes in a network. 

4.2   Communicability and Communities in Networks 

In continuation with the line we have followed in the previous sections we define the 
communicability between a pair of nodes in a network as follows [17]: 

The communicability between a pair of nodes qp,  in a network is a weighted 

sum of all walks starting at node p  and ending at node q , giving more weight 

to the shortest walks. 

This definition accounts for the known fact that in many situations the communication 
between a pair of nodes in a network does not take place only through the  
shortest path connecting them. A mathematical formulation of this concept is obtained 
by considering the sum of all walks of different lengths that connect nodes p  and  

q  [17]: 

( ) ( )pq
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pq
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pq e
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G AA
==∑

∞

=0
!

 , (16) 

which can be expressed in terms of the eigenvalues and eigenvectors of the adjacency 
matrix as follows 

( ) ( )∑
=

=
n

j
jjpq

jeqpG
1

λϕϕ . (17) 

The detection of communities by using the communicability function is based on the 

analysis of the sign of the term ( ) ( ) jeqp jj
λϕϕ , which can be either positive or nega-

tive on the basis of the signs of the p th and q th components of the corresponding 

eigenvector. We can think that the eigenvectors of the adjacency matrix represent 
vibrational normal modes of the network. The sign of the p th component of the j th 

eigenvector indicates the direction of the vibration. If two nodes, p  and q , have the 

sign for the j th eigenvector it indicates that these two nodes are vibrating in the same 

direction. As we have previously seen all entries of the principal eigenvector 1ϕ   

have the same sign. Consequently, we consider it as a translational movement of the 
whole network. Then, we can divide the communicability function into three contri-
butions [17]: 
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where the term ‘intra-cluster’ refers to the sum over all components ( )pjϕ  and ( )qjϕ  

having the same sign. The ‘inter-cluster’ term refer to the case when ( )pjϕ  and 

( )qjϕ  have different signs. Note that the last term, i.e., the ‘inter-cluster’ communi-

cability is negative. Then, as we are interested in partitioning the network into com-
munities or clusters we simply subtract the translational contribution to obtain the  
difference between intra- and inter-cluster communicability [17]: 

( ) ( ) ( ) ( )∑∑
==

−=Δ
cluster-inter

2

cluster-intra

2 j
jj

j
jjpq

jj eqpeqpG
λλ ϕϕϕϕ  . (19) 

Note that for computing (19) it is not necessary to make any sign analysis of the ei-
genvectors of the network. It is enough to compute the communicability between two 

nodes and then subtract the translational term, i.e., ( ) ( ) 1
11

λϕϕ eqpGG pqpq −=Δ . 

Now, we can define a community in a network as follows [18]: 

A network community is a group of nodes VC ⊆  for which the intra-cluster 
communicability is larger than the inter-cluster one: 

CqpG qp ∈∀>Δ ),(   0)(, β .  

In practice, in order to find such communities we represent the values of qpG ,Δ   

between pairs of nodes as a matrix )(GΔ  and then we dichotomize such matrix, such 

that the qp,  entry of the new matrix is 1 if, and only if  0, >Δ qpG and zero other-

wise. This new matrix can be considered as the adjacency matrix of a new graph, 
which we call the communicability graph )(GΘ [18]. The nodes of )(GΘ  are the 

same as the nodes of G , and two nodes p  and q  in )(GΘ  are connected if, and only 

if, 0, >Δ qpG  in G . Finally, a community is identified as a clique in the communica-

bility graph [18]. 

 

Fig. 5. Communicability graph for the network of friendship ties in a karate club. Circles and 
squares are used to represent the two known communities existing in this network as a conse-
quence of its polarization as followers of the administrator and followers of the trainer. 
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As an example we illustrate in Fig. 5 the communicability graph for the social net-
work of friendship ties in a karate club given in Fig. 4. The analysis of the cliques in 
this communicability graph indicates the existence of 5 overlapped communities, 
which are given below: 

}34,33,32,31,30,29,28,27,26,24,23,21,19,16,15,10{:1C ; 

}34,33,32,31,30,29,28,27,24,23,21,19,16,15,10,9{:2C ; 

}34,33,32,30,29,28,27,26,25,24,23,21,19,16,15,10{:3C ; 

}22,20,18,17,14,13,12,11,8,7,6,5,4,3,2,1{:4C ; 

}10,3{:5C . 

 
The overlap between two communities iC  and jC  can be computed by using an 

appropriate index 
jiCCS  [18]. Then, communities can be merged together according 

to a given mergence parameter α in such a way that a new matrix is created accord-
ing to 

⎪⎩

⎪
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=<
≥

=
jiCC
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CC CCS

S
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ji

ji or    ,  if   0

                      if   1

α
α

, 

and the process is finished when no pair of communities have overlap larger than α . 
Applying this criterion with 5.0=α  the following two communities are obtained for 
the previously studied network: 53211 CCCCU ∪∪∪=  and 542 CCU ∪= , which 

are the two communities observed experimentally for this network. 

5   Conclusions 

The study of spectral invariants is an interesting alternative for characterizing the 
structure and properties of complex networks. We have studied here some invariants 
which are based on the concept of walks in networks and its relation with eigenvalues 
and eigenvectors of the adjacency matrices of such networks. Subgraph centrality, 
spectral scaling and communicability are three of these measures characterizing local 
or global properties of networks. Similar concepts have been extended to study be-
tweenness [29], bipartitions [30], as well as to account for other matrix functions [31]. 
Recently, subgraph centrality has been used to study [32] the topological evolution in 
dense granular materials. It proved to be a good indicator of the topological dynamic 
in such materials with very good correlation with the constitutive properties of nonaf-
fine deformation and dissipation, spatially and with respect to strain. On the other 
hand, communicability was used as a classifier in human brain networks [33]. In this 
work two groups of brain networks are studied, one group corresponds to healthy 
humans and the other to patients who suffer stroke in the last six months. The dis-
criminating power of the communicability function of a normalized weighted matrix 
was higher than other spectral methods for differentiating between the two studied 
groups. All these examples show the versatility of these spectral measures for study-
ing the structure and properties of complex networks. 
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Abstract. This paper describes a new approach for embedding graphs

on pseudo-Riemannian manifolds based on the wave kernel. The wave

kernel is the solution of the wave equation on the edges of a graph. Un-

der the embedding, each edge becomes a geodesic on the manifold. The

eigensystem of the wave-kernel is determined by the eigenvalues and the

eigenfunctions of the normalized adjacency matrix and can be used to

solve the edge-based wave equation. By factorising the Gram-matrix for

the wave-kernel, we determine the embedding co-ordinates for nodes un-

der the wave-kernel. We investigate the utility of this new embedding as

a means of gauging the similarity of graphs. We experiment on sets of

graphs representing the proximity of image features in different views of

different objects. By applying multidimensional scaling to the similarity

matrix we demonstrate that the proposed graph representation is capa-

ble of clustering different views of the same object together.

Keywords: Wave Equation, Pseudo Riemannian manifolds, Edge-based

Laplacian, Graph Embedding.

1 Introduction

Graph embeddings have found widespread use in machine learning and pattern
recognition for the purposes of clustering, analyzing and visualizating relational
data. However, they have also proved to be useful as a means of graph char-
acterization. There are many examples in the literature including ISOmap [13],
the Laplacian eigenmap [1], and the heat-kernel embedding [16], to name a few.
Once embedded, a graph can be characterised using a feature-vector that char-
acterises the point-set distribution resulting from the embedding [15]. This kind
of representation is convenient since a Euclidean vector space makes available
powerful geometric analysis tools for data analysis, not available for discrete or
structural representations. However, such an embedding assumes that the origi-
nal relational data is metric. Sometimes, however, this is not the case. This is the
case when the matrix characterisation of the relational graph contains negative
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eigenvalues, i.e. it is not positive semi-definite. Under these circumstances the
graph embeds not into a Euclidean space, but into pseudo-Euclidean or Krein
space [12]. This problem has attracted relatively little attention in the litera-
ture. Our aim in this paper is to embed the nodes of a graph as points on the
surface of a pseudo-Riemannian manifold in a pseudo-Euclidean space, and to
use the resulting point-set as the basis from which to compute graph character-
istics. To provide a framework for our study, we turn to the wave kernel. This
is the solution of a wave equation, which is an important second-order linear
partial differential equation that describes the propagation of a variety of waves.
Crucially, the solutions are complex and therefore reside in a pseudo-Euclidean
space. Although the wave equation has been extensively studied in the continu-
ous domain, there has been relatively little effort devoted to understanding its
behavior on a graph. In common with the heat kernel, the wave kernel can be
defined in terms of a combinatorial Laplacian. However, in the case of the wave
kernel this is the edge-based Laplacian, introduced by Friedman [6].

In this paper we explore how to solve the edge-based wave equation, in terms
of the eigensystem of the edge-based Laplacian. Since the solution is a sinusoid,
it contains both real and imaginary parts. Hence, we embed the nodes of the
graph as points residing on a pseudo-Riemannian manifold, determined by the
eigenvalues and eigenvectors of the edge-based Laplacian. In our experiments
on graphs extracted from 2D image data, we use this matrix for the purpose of
graph visualization. The remainder of this paper is organized as follows: In Sec-
tion 2 we commence by embedding graphs onto pseudo Riemannian manifolds.
First we show how to find the solution of the wave equation on a graph using
the edge-based Laplacian in §2.1. Then we construct the coordinate matrix for
the pseudo-Euclidean embedding in §2.2. Finally, §2.3 is devoted to establishing
the edge-based Laplacian matrix. In Section 3 we illustrate how to manipu-
late vectors in a pseudo Euclidean space, commencing by computing the square
distance between any arbitrary pair of vectors in §3.1. In §3.2 we show how
to construct an orthonormal basis, and in §3.3 how to project vectors from a
pseudo Euclidean space onto a 2D sub-space. Section 4 gives a brief review for
the Hausdorff distance as a tool of comparing sets of unordered observations
resulting from the embedding of the graphs. Section 5 presents our experimen-
tal evaluaton. Finally, conclusions are drawn and future directions of research
suggested in Section 6.

2 Embedding Graphs into Pseudo Riemannian Manifolds

2.1 Edge-Based Wave Equation

Friedman [6] has developed a graph-based version of the wave equation that has
many of the properties of the classical Laplacian wave equation. The development
is based on a variant of the combinatorial Laplacian referred to as the edge-
based Laplacian. This graph theoretic version of the wave equation provides an
interesting link with the continuous wave eqaution, and has a simple physical
interpretation. The edges of the graph can be viewed as taut strings, joined
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together at the vertices. In fact, the edge-based Laplacian has been shown in the
physics literature to be the ”limiting case” of a ”quantum wire” [8].

Graph theory defines a combinatorial Laplacian, L, as an operator on func-
tions whose domain is the set of vertices of a graph. On the vertex-set the wave
equation is Utt = −LU (the negative sign is due to that the combinatorial
Laplacians are positive semi-definite). However, this wave equation fails to give
a finite speed for wave propagation. As a result there is no simple link between
the graph theoretic wave equation and its continuous counterpart. To overcome
this problem a so-called edge-based wave equation Wtt = −LEW was introdiced
by Friedman [6], where LE is the edge-based Laplacian, which is a better ap-
proxomation to the continuous Laplacian (i.e. the second derivative) than the
combinatorial Laplacian L. The edge-based wave equation has unit wave prop-
agation speed, while that based on the combinatorial Laplacian L has infinite
speed.

For the edge-based Laplacian, the eigenfunction f satisfies LEf = λf and
Lf = 0 where ΛE = {λ} is the set of Laplacian eigenvalues. In fact, if L is
normalized and the graph under study has each edge weight equal to unity, then
L is similar to

(
1 − cos

√
LE

)
. That is to say if Δ is a continuous Laplacian

then Δ̃ = 1 − cos
√
−Δ is the corresponding combinatorial Laplacian. Hence,

the eigenvalue λ is in ΛE if and only if
(
1 − cos

√
λ
)

is in Λ (the set of all
eigenvalues of the combinatorial Laplacians). Note that ΛE is an infinite set of
non-negative values (whose square roots are periodic), and exclude those which
are multiples of π from ΛE . Recall that the general solution of the wave equation

Wtt = −LEW

W |t=0 = f

Wt|t=0 = g

(1)

has the form

W =
sin
(√

LEt
)

√
LE

g + cos
(√

LEt
)

f (2)

For our work it suffices to compute the fundamental solution W that satisfies
W |t=0 = 0 and Wt|t=0 = 1, that is

W =
sin

√
LEt√

LE

(3)

Since, LE is positive semi-definite [6], W can be approximated using the MacLau-
rin series, giving

W = t[I − 1
6
LEt2] (4)

Now we can consider the nodes of the graph as residing on a pseudo-Riemannian
manifold and the edges as geodesics on the manifold.



Graph Embedding Using an Edge-Based Wave Kernel 63

2.2 The Embedded Coordinates Matrix

Positive definite Riemannian manifolds can be represented in one of two ways.
Either a) their properties are defined intrinsically, or b) they can be regarded
as subsets of a Euclidean space of higher dimension. Following the work of
Nash [10,11] and Whitney [14], it has been known for some time that these
approaches are equivalent, in the sense that any intrinsically defined Rieman-
nian manifold can be embedded, with appropriate differentiability, into a Eu-
clidean space. In [2], Clarke showed that the same situation holds in the case of
pseudo-Riemannian manifolds, with metrics of indefinite signature.

The pseudo-Euclidean space generalizes the well-known Euclidean space to
the case where inner products are indefinite. This effectively amounts to two
Euclidean spaces, one of which has a positive semi-definite inner product and the
second with a negative semi-definite inner product. For squared Euclidean dis-
tances, the embedding is determined by the pseudo Gram matrix C = − 1

2QWQ
derived from the kernel matrix W , where Q = eeT − Iand e = (1, ..., 1)T . If the
matrix with the embedding co-ordinates as columns is XT , then

C = − 1
n
XXT (5)

In the pseudo Euclidean space

C = − 1
n
X

(
M 0(p+q)×k

0k×(p+q) 0k×k

)
XT (6)

where

M =
(

Ip×p 0p×q

0q×p −Iq×q

)
(7)

and 0k×k is the k × k matrix filled with zeros, and p + q + k = n. We can
then write XMXT = ΦΛΦT = Φ|Λ| 12 M |Λ| 12 ΦT , where Φ is the column-matrix
of the eigenvectors and Λ the diagonal matrix of the corresponding eigenvalues.
The vectors are recovered via the transformation XL = ΦL|ΛL|

1
2 , where ΦL is

the column-matrix of the selected eigenvectors and ΛL the diagonal matrix of
the corresponding eigenvalues. Hence, the columns of XL are the vectors in the
pseudo-Euclidean space.

2.3 Edge-Based Eigenvalues and Eigenfunctions

Before we experiment with our embedding, we need first to construct the edge-
based Laplacian matrix. We follow the procedure given in [6] where the edge-
based eigenvalues and eigenfunctions are determined using those of a normalized
adjacency matrix. To commence, consider a finite graph denoted by G = (V,E)
with node-set V and edge-set of edges E ⊆ V ×V , with all edges of unit weight.
The elements of the adjacency matrix A of the graph G are

A(u, v) =
{

1 if(u, v) ∈ E
0 otherwise

(8)
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Let T be a diagonal matrix whose elements are the degrees of the nodes of G,
that is T (u, u) =

∑
v∈V A(u, v) = degu. By dividing each row of the adjacency

matrix A by its corresponding degu, we obtain the normalized adjacency matrix
Ã. For each eigenvalue, λ of Ã there is a unique value of cos−1(λ) ∈ [0, π].
The edge-based eigenvalues are 2nπ + cos−1(λ) and 2(n+1)π− cos−1(λ), where
{n = 0, 1, 2, ...}. Hence, if ω ∈ {� \ nπ} then ω2 is an edge-based eigenvalue if
and only if cosω is an eigenvalue of Ã. For each corresponding eigenfunction, f,
of Ã, f can be extended to obtain an edge-based eigenfunction [6]. To summarize,
for the edge-based eigenpair (f, λ), we have that:

1- cosλ is an eigenvalue of Ã,
2- f is an eigenfunction of Ã; that is Ãf = cosλ f,
3- LEf = λf and Lf = 0.

The existence of a complete set of eigenvalues and eigenfunctions for the continu-
ous Laplacian has been demonstrated in [7]. Friedman has extended the analysis
to the edge-based Laplacian for finite graphs [6]. To outline the theory, let G be
a finite graph. For G there exists eigenpairs fi, λi for the edge-based Lalacian,
such that

1- 0 � λ1 � λ2 � ...,
2- fi satisfies the Dirichlet (Neumann) conditions,
3- fi forms a complete orthonormal basis for L2

Dir(G) (L2(G)),
4- λi →∞.

Physically, the equations LEf = λf and Lf = 0 describe the vibrational modes
associated with a taut strings on each edge that are joined together at the ver-
tices. If we excite or ”pluck” the system, it would produce tones with frequencies√

λ, with λ ranging over the edge-based eigenvalues.

3 Pseudo Euclidean Space

A pseudo Euclidean space is an n-dimensional space r1, r2, ..., rn where ri = r or
ir and r is a set of real numbers and i =

√
−1. In this section we describe how

to manipulate vectors in a pseudo Euclidean space. Firstly, we explain how to
compute the square distance between any arbitrary pair of vectors. Secondly, we
show how to construct an orthonormal basis. Thirdly, we show how to project
vectors from a pseudo Euclidean space onto a 2D sub-space.

3.1 Distance Function

With a pseudo Euclidean space Rn we assign a symmetric bilinear form ρ :
Rn × Rn → R, ρ(x, y) = xT Sy where S is the matrix whose elements sij =
1
2 (d2

ii + d2
jj − d2

ij); d is a distance function with pairwise distances dij for all
1 � i, j � n. For any two vectors x, y ∈ Rn, ρ(x, y) is the inner product of x and
y and ‖x− y‖2 = ρ(x− y, x− y) is the squared distance between x and y. Since
S is real symmetric, there is an orthogonal matrix Ψ and a diagonal matrix Γ
such that S = ΨΓΨT , the elements δi of Γ are the eigenvalues of S arranged in
order and the columns of Ψ are the correspondingly ordered eigenvectors. It is
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worth mentionng that if the matrix S has negative eigenvalues, then the squared
distance between two vectors in the pseudo Euclidean space may be negative.
It for this reason that we do not speak about ”distance” between vectors in
pseudo Euclidean space. Moreover, the fact that the squared distance between
two vectors vanishes does not imply that these two vectors are the same. This
is not the case in a Euclidean space.

3.2 An Orthonormal Basis

The columns {bi}, i = 1, ..., n of the matrix B = IΨ represent an orthogonal basis
of Rn, since S is the matrix of ρ with respect to the natural basis {ei}, i = 1, ..., n
where ei = (0, ..., 1i, ..., 0). We can therefore write the bilinear form ρ with
respect to the basis bi as Sb = ΨTSΨ , so that Sb = Γ . For any two vectors x and
y in Rn, ρ(x, y) = xT Sy = [xT

b ΨT ][ΨSbΨ
T ][ΨybΨ

T ]. Hence, ρ(x, y) = xT
b Sbyb =

xT
b Γyb. Accordingly, the inner product of x and y can be written as ρ(x, y) =

Σn
i=1δi(xb)i(yb)i and the squared distance as ‖x − y‖2 = Σn

i=1δi ([xb]i − [yb]i)
2.

The matrix Xb = XΨ has as columns the coordinates with respect to the basis
{bi}. Conversely, the coordinate matrix Xe = XoΨ

T has as columns the co-
ordinate vectors with respect to an orthogonal natural basis.

Let us define a diagonal matrix J = diag(jij) with elements

ji =

⎧⎨⎩
1 δi > 0
0 δi = 0
−1 δi < 0

and i = 1, . . . , n, Furthermore, let Γ̃ = diag(γi) where

γi =
{
|δi| if δi �= 0
1 otherwise

Now consider the matrix Ψ̃ = ΨΓ̃− 1
2 . The first l columns of this matrix are

orthonormal vectors with respect to {bi}. To show this consider the matrix

Ψ̃T SΨ̃ = Γ̃− 1
2 ΨT [ΨSbΨ

T ]ΨΓ̃− 1
2 = Γ̃− 1

2 Γ Γ̃− 1
2 = J

The diagonal elements Ji, i = 1, . . . , l are either 1 or −1, while the remainder are
zeros. Hence, the first l columns of the matrix B̃ = BΓ̃− 1

2 form an orthonormal
basis of Rl. Finally, for the matrix Xe whose columns are the co-ordinate vectors
in the pseudo Euclidean space with respect to the natural basis {ei}i=1,...,n,
the corresponding matrix of coordinates with respect to the orthonormal basis
{bi}i=1,...,n is Xb̃ = XeΨ̃ .

3.3 Projection into a 2D Subspace

Suppose we order eigenvalues of the matrix S so that first l+ eigenvalues are
positive, the following l− are negative and the remainder are zero, where l =
l+ + l−. As a result {bi}1≤i≤l, and the first l columns of the matrix B given in
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Section 3.2 form an orthogonal basis of the space Rl. Using the first l columns
of the matrix Ψ̃ , we can locate the projections of the column vectors of the
matrix X onto the space Rl with respect to {bi}1≤i≤l as Xl = BΨ̃T . To obtain
the coordinates of Xl with respect to the orthonormal basis b̃i, we construct
the matrix Xl

b̃
= B̃D̃

− 1
2

l ΨT
l = (p1|p2|...), where D̃l = diag(γi), 1 ≤ i ≤ l is the

lth leading principle submatrix of D̃ and pi is the projected coordinate vector
of the ith node of G. Again we can define the inner product of two arbitrary
vectors, x and y, as ρ(x, y) = Σn

i=1δi(xb)i(yb)i and the squared distance as
‖x− y‖2 = Σn

i=1δi ([xb]i − [yb]i)
2.

To avoid problems associated with dealing with a space of high dimensionality,
we will ignore the dimensions for which the eigenvalues are small in magnitude.
Therefore, if we arrange the eigenvalues in descending order by their absolute
values, the first k eigenvalues (typically k = 2 or 3) where k < l will span a
space Rk in which we can project the exact vector representation of the pseudo
Euclidean space Rn.

4 Hausdorff Distance

We experiment with the wave kernel embedding as a graph characterization for
the purposes of graph-matching. We represent the graphs under study using sets
of coordinate vectors corresponding to the embedded node position, and compute
the similarity of the sets resulting from different graphs using the robust modi-
fied Hausdorff distance. The Hausdorff distance provides a means of computing
the distance between sets of unordered observations when the correspondences
between the individual items are unknown. In its most general setting, the Haus-
dorff distance is defined between compact sets in a metric space. Given two such
sets, we consider for each point in one set is the closest point in the second
set. The modified Hausdorff distance is the average over all these values. More
formally, the modified Hausdorff distance (MHD) [4] between two finite point
sets A =

{
pA
1 |pA

2 |...|pA
|VA|

}
and B =

{
pB
1 |pB

2 |...|pB
|VB |

}
representing the projected

embeddings of the graphs GA(VA, EA) and GB(VB , EB)

H(A,B) = max(h(A,B), h(B,A)) (9)

where the directed modified Hausdorff distance from A to B is defined to be

h(A,B) =
1

NA

∑
a∈A

min
b∈B

‖a− b‖ (10)

and ‖.‖ is some underlying norm on the points of A and B (e.g., the L2 or
Euclidean norm). We can now write the distances between two graphs as follows:

hMHD(GA, GB) =
1

|VA|
∑
i∈VA

min
j∈VB

‖pA
i − pB

j ‖) (11)
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5 Experiments and Results

In our experiments we aim to investigate weather the edge-based wave kernel em-
bedding can be used as a graph characterization, for gauging the similarity of
graphs, and hence clustering them. We use the standard CMU,MOVI and chalet
house sequences as our data set [9]. These data sets contain different views of
model houses from equally spaced viewing directions. We have used ten views for
each of the three houses. We have also applied our method to objects selected from
the COIL database. This contains 72 different views of each object from equally
spaced viewing directions. For each image corner features are extracted, and De-
launay graphs representing the arrangement of the feature points are constructed.

To commence, we compute the eigensystem of the edge-based Laplacian from
the eigensystem of the normalized adjacency matrix, and hence compute the
edge-based Laplacian matrix introduced in Section 2.3. The edge-based wave
kernel then is computed as described in Section 2.1 with the values of t =
10.0, 1.0, 0.1 and 0.01. From the wave-kernel we compute the embedding co-
ordinate matrix, whose columns are the coordinates of the embedded nodes
in a pseudo-Euclidean space. Finally, we project the co-ordinate vectors onto
a pseudo-Euclidean space with low dimension using the orthonormal basis as
shown in Section 3. With the vector representations residing in a low dimension
space we construct the distances matrices between the thirty different graphs us-
ing the modified Hausdorff distance [5]. Finally, we subject the distance matrices
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Fig. 1. MDS embedding obtained when using the Wave Kernel for the houses data
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Fig. 2. MDS embedding obtained when using the Wave Kernel for the COIL data

Table 1. A rand index vs. t

t=10 t=1.0 t=0.1 t=0.01

Houses data 0.2333 0.0000 0.0333 0.1000

COIL data 0.3333 0.3333 0.3333 0.7000

to multidimensional scaling MDS [3] to embed them into a 2D space. Here each
graph is represented by a single point. Figure 1 shows the results obtained using
the modified Hausdorff distance. The subfigures are ordered from left to right
(up to down), using t = 10.0, 1.0, 0.1 and 0.01 in the wave kernel. We have also
investigated the COIL data, and the results are shown in Figure 2.

To investigate the data in more detail Table 1 shows the Rand index for the
data as a function of t. This index is computed as follows: 1) compute the mean
for each cluster; 2) compute the distance from each point to each mean; 3) if
the distance from correct mean is smaller than those to remaining means, then
classification is correct, if not then classification is incorrect; 4) compute the
Rand-index (incorrect/(incorrect+correct)).

There are number of conclusions to be drawn from the plots. First, the wave
kernel gives good separation of the objects into distinct clusters particularly for
values of t close to 1. Second, the individual objects form clear trajectories in
the embedding space which correlate will with the view ordering.
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6 Conclusion and Future Plan

In this paper we have established a procedure to embed the nodes of a graph into
a pseudo-Riemannian manifold using the wave kernel, which is the solution of
an edge-based wave equation. The edge-based Laplacian matrix was constructed
using the eigensystem of the normalized adjacency matrix. Based on experiments
on objects from two datasets (the York Model House and COIL datasets), we
are confident that an edge-based wave kernel embedding can be used for the
purpose of graph characterization.

To take this work further if the nodes of a graph residing on a pseudo-Riemannian
manifold, then we can associate curvatures with the edges of the graph since these
can be viewed as geodesics on the manifold [15]. In future research aimed at de-
veloping the work reported in this paper, we aim to investigate if we can use the
geometry of the pseudo-Riemannian manifold to characterize graphs.
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Abstract. In this paper, we describe the use of concepts from structural and sta-
tistical pattern recognition for recovering a mapping which can be viewed as an
operator on the graph attribute-set. This mapping can be used to embed graphs
into spaces where tasks such as categorisation and relational matching can be
effected. We depart from concepts in graph theory to introduce mappings as op-
erators over graph spaces. This treatment leads to the recovery of a mapping
based upon the graph attributes which is related to the edge-space of the graphs
under study. As a result, this mapping is a linear operator over the attribute set
which is associated with the graph topology. Here, we employ an optimisation
approach whose cost function is related to the target function used in discrete
Markov Random Field approaches. Thus, the proposed method provides a link
between concepts in graph theory, statistical inference and linear operators. We
illustrate the utility of the recovered embedding for shape matching and cate-
gorisation on MPEG7 CE-Shape-1 dataset. We also compare our results to those
yielded by alternatives.

1 Introduction

In the pattern analysis community, there has recently been renewed interests in the em-
bedding methods motivated by graph theory. One of the best known of these is ISOMAP
[1]. Related algorithms include locally linear embedding which is a variant of PCA that
restricts the complexity of the input data using a nearest neighbor graph [2], and the
Laplacian eigenmap that constructs an adjacency weight matrix for the data-points and
projects the data onto the principal eigenvectors of the associated Laplacian matrix [3].
Collectively, these methods are sometimes referred to as manifold learning theory.

Embedding methods can also be used to transform the relational-matching problem
into a point-pattern matching problem in a high-dimensional space. The idea is to find
matches between pairs of point sets when there are noises, geometric distortion and
structural corruption. This problem arises in shape analysis, motion analysis and stereo
reconstruction. The main challenge in graph matching is how to deal with differences
in node and edge structure. One of the most elegant approaches to the graph matching
problem has been to use graph spectral methods [4], and exploit information conveyed
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by the eigenvalues and eigenvectors of the adjacency matrix. More recently, Sebastian
and Kimia [5] have used a distance metric analogous to the string edit distance to per-
form object recognition from a dataset of shock graphs.

The main argument levelled against the methods mentioned above is that they adopt
a heuristic approach to the relational matching problem by using a goal-directed graph
similarity measure. To overcome this problem, several authors have proposed more
general approaches using ideas from information and probability theory. For instance,
Wong and You [6] defined an entropic graph-distance for structural graph matching.
Christmas, Kittler and Petrou [7] have shown how a relaxation labeling approach can
be employed to perform matching using pairwise attributes whose distribution is mod-
eled by a Gaussian. Wilson and Hancock [8] have used a MAP (maximum a posteriori)
estimation framework to accomplish purely structural graph matching. Recently, Cae-
tano et al. have proposed a method to estimate the compatibility functions for purposes
of learning graph matching [9].

In this paper, we aim at estimating a linear mapping so as to embed a graph into
a high-dimensional space where distances between nodes correspond to the structural
differences between graphs. This can be viewed as a statistical learning process in which
the goal of computation is the recovery of a linear operator which maps the attribute-
set of a graph onto an embedding space in order to minimise a cost function arising
from a Markovian formulation. In this manner, the recovered mapping is related to the
space defined by the graph edge-set while being an operator on the attribute-set. Such
an embedding permits the use of metrics in the target space for relational matching and
shape categorisation tasks.

Thus, the motivation here is to recover a statistically optimal solution for the graph
embedding problem. The bulk of the work elsewhere in the literature hinges in the use of
dimensionality reduction techniques or relational similarity and matching algorithms.
Here we take a more general view of the problem through learning. This learning ap-
proach leads to the statistical methods, where, for Graphical Models, MRFs are the
ideal choice due to their use of pairwise potentials. Moreover, the method provides a
link between structural and statistical pattern recognition techniques through the alge-
braic graph theory [10], graph spectral methods [4] and Markov Random Fields [11].

2 Graph Theory and Statistical Learning

Here we work with a data set Γ of attributed graphs. As mentioned earlier, we aim
at learning a linear mapping T that can be used to embed the attributes of the graph-
vertices into a space of dimensionality Ω whose basis is the optimal transformation of a
linear map from the vertex to the edge space. In this manner, the embedding will reflect
the structure of the edge-space of the graph while being based upon its attribute-set.
This has two main advantages. Firstly, the target space for the learned mapping will
reflect the structure of the graphs under study. Since similar graphs should have akin
edge-spaces, this provides an embedding that is inherently related to a graph topology
common to the set Γ . Secondly, note that the mapping T embeds the vertex-attributes
into the graph edge-space according to a linear operator drawn from spectral geometry.
This is not only practically useful but theoretically important since it provides a link
between the spectra of graphs and linear operators.
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2.1 Structured Learning

To commence, we require some formalism. Let Gi = (Vi, Ei, Ai) denote the graph
indexed i in Γ with node-set Vi = {Vi,1, . . . , Vi,|Vi|}, edge-set Ei = {e|Vi,a, Vi,c ∈ Vi}
and attribute-set Ai = {Ai,1, . . . , Ai,|Vi|}. Here, we aim at learning a global mapping
T which is a matrix whose dimensionality is Ω× | Ai |. In other words, we aim at
recovering an operator which can embed any of the attributes for a given Gi ∈ Γ into a
space �Ω .

In this manner, the aim of computation is the recovery of the optimal transformation
matrix over the field of attributes for the graphs in Γ . To recover this transformation
matrix, we provide a link to Markov Random Field (MRF) models so as to abstract the
problem into a graphical setting which takes profit of the inherent strength of Markovian
approaches as related to pairwise potentials. To commence, we associate each Vi,a ∈ Vi

with a hidden variable Xa in the state space Λ. The probability distribution represented
by the MRF is given by

P (X ) =
1
Z

∏
Gi∈Γ

∏
Vi,a∈Vi

ζi(Xa)
∏

Gi∈Γ
Gk∈Γ

∏
Vi,a∈Vi

Vk,b∈Vk

ϕi,k(Xa, Xb) (1)

where X = {Xa}a=1,...,|Vi| is the set of hidden variables, ζi(Xa) and ϕi,k(Xa, Xb) are
unitary and binary potential functions which determine the likelihood of the graphs in
the data set corresponding to the state � ∈ Λ and Z =

∫
Λ P (X ) is the normalisation

factor.
Since this normalisation factor is invariant with respect to Xa, the inference of the

above MRF model can be recast as an Maximum A Posteriori (MAP) estimation prob-
lem to maximise the probability P (X ) over the state space Λ. Moreover, we can con-
sider Xa as a vector of continuous variables whose elements can be viewed as the linear
product such that Xa = T Ai(a), where Ai(a) is the row indexed a of the matrix Ai,
whose rows correspond to the node attribute set Ai for the graph Gi. In other words, the
hidden variables correspond to the embeddings of the graph-vertex attributes onto the
space defined by the linear mapping T : Ai �→ �Ω . From an alternative viewpoint, we
can consider Xa to be the weighted analogue of the attribute-vector for the ath vertex in
the graph indexed i in Γ .

Taking the logarithm of Equation 1, we have

logP (X ) =
∑

Gi∈Γ

∑
Vi,a∈Vi

X T
a ci(a) +

∑
Gi∈Γ
Gk∈Γ

∑
Vi,a∈Vi

Vk,b∈Vk

X T
a wi,k(a, b)Xb (2)

where log ζi(Xa) = X T
a ci(a) and logϕi,k(Xa, Xb) = X T

a wi,k(a, b)Xb are determined
by the potential functions. Note that, in the expression above, ci(a) is a vector and
wi,k(a, b) is a matrix, respectively. Also, the normalisation factor has become an addi-
tive constant and, as a result, we have removed it from further consideration.

Maximising the above cost function is equivalent to solving the original MRF in-
ference problem, as defined in Equation 1. The cost function is in quadratic form and,
hence, it is a natural choice to apply quadratic programming techniques to solve the
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relaxation problem. However, the Hessian of Equation 2 is determined by the coeffi-
cients of the second order term wi,k(a, b) which are not necessarily convex. A number
of techniques have been proposed to relax the discrete problem above and convert the
MRF cost functional into more tractable forms. Along these lines, some examples are
SDP [12], SOCP [13], and spectral relaxation [14].

Instead of finding a continuous relaxation for the original cost function of the MRF
model, we propose an alternative cost function which is closely related to it. Notice that
the first and the second terms on the right-hand-side of the cost function in Equation 2
can be treated as correlation terms. The first of them measures the correlation between
the graph and the single node potential. The second term measures the compatibility
between graphs and the pairwise node-potential wi,k(a, b). By thinking of correlation
as a measure of similarity and viewing it as an inverse distance, we can transform the
maximisation problem at hand into a minimisation one. To do this, the L2 norm is a
natural choice. The corresponding cost function is hence defined as follows

min f(X ) =
∑

Gi∈Γ

∑
Vi,a∈Vi

||ci(a) − Xa||2 + η
∑

Gi∈Γ
Gk∈Γ

∑
Vi,a∈Vi

Vk,b∈Vk

||wi,k(a, b)||2||Xa − Xb||2

(3)
where η is a regularisation constant. For the sake of consistency, we have used vector
norms where appropriate.

The reformulation of the cost function as above has several appealing properties.
First, it is closely related to the MRF model in terms of its physical meaning. Like the
MRF, our cost function also accommodates two complementary terms, i.e. a term which
measures the compatibility between the data and its transformed field variable and a
smoothness term which can be used to enforce the consistency between the variables
for those nodes corresponding to the same graph, i.e. i = k. The main difference in
the cost functions above is the replacement of the inner product with squared distance.
Secondly, the cost function defined above is convex. Thus, we can always attain globally
optimal solutions for the relaxed problem on the continuous variables. Moreover, the
problem can be reduced to that of solving a sparse linear system of equations with
positive semidefinite Hessian.

2.2 The L2-Norm

In this section, we explore the use of the L2-norm for purposes of recovering the map-
ping T . We show how the extremisation of the cost function defined in Equation 3 can
be reduced to that of solving a sparse linear system of equations. Recall that we have
let Xa = T Ai(a), then the cost function can be rewritten as follows

argmin
T

f(X ) =
∑

Gi∈Γ

∑
Vi,a∈Vi

||ci(a) − T Ai(a)||2

+ η
∑

Gi∈Γ
Gk∈Γ

∑
Vi,a∈Vi

Vk,b∈Vk

||wi,k(a, b)||2||T Ai(a) − T Ak(b)||2 (4)
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Further, by using the factorisation properties of matrix norms and enforcing consistency
between those nodes corresponding to the same graph, i.e. ||wi,k(a, b)|| = 1 iff i = k
and zero otherwise, we can greatly simplify the equation above as

argmin
T

f(X ) =
∑

Gi∈Γ

∑
Vi,a∈Vi

||ci(a) − T Ai(a)||2 + ηγ||T ||2 (5)

where
γ =

∑
Gi∈Γ
Gk∈Γ

∑
Vi,a∈Vi

Vk,b∈Vk

||wi,k(a, b)||2||Ai(a) −Ak(b)||2 (6)

Since γ does not depend on T , and, hence, becomes a constant, from now on, and for
the sake of convenience, we use the shorthand λ = ηγ.

To minimise the cost function above, in practice, we can treat the problem as a con-
tinuous relaxation one which leads to a convex quadratic optimisation problem. To this
end, we constraint the rows of the transformation matrix to add up to unity and introduce
the vector of lagrange multipliers N. The cost function becomes

g = f(X ) −NT (T Te− e) (7)

where e is a vector of ones whose dimensionality is given by the context.
With these ingredients, we compute the partial derivative with respect to T . We get

∂g

∂T
= 2(T AT

i −CT
i )AT

i + 2λT (8)

where Ci is a matrix whose ath row corresponds to the vector ci(a) for the node indexed
a in the graph Gi and Ai is the matrix defined earlier.

We now introduce the shorthands Fi = 2AT
i Ai and Gi = 2CT

i AT
i . As a result, we

can now write the partial derivative above in the following manner

∂g

∂T
= T Fi −Gi + 2λT (9)

Following a similar approach, we can compute the partial of the function g with respect
to the Lagrange multipliers in N. By equating both partial derivatives to zero, we can
write the solution as a the linear equation. This linear equation can be written using
matrix notation in a straightforward manner by adding over the graphs in Γ .

3 Implementation Issues

Based on the above components, we now turn our attention to the implementation and
application of our embedding method. Here, training can be viewed as the stage where
the linear mapping T is learned from the graph vertex-attributes and the PCA of the in-
cidence mapping. The testing stage then becomes the use of the mapped graph attributes
into the target space for different purposes, for example, categorisation and relational
matching.

The training stage starts from constructing the attributes of the graph-vertices. The
attribute-set is application dependent. Here, we view, in general, the vertex-attributes
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Ai(a) as vectors, where each of these has a one-to-one correspondence to a graph ver-
tex. This also permits the computation of the weight matrix W with elements W(a, c)
for the graph Gi. The weight matrix W can be related to the un-normalised Lapla-
cian through the relationship L = D − W , where D is a diagonal matrix such that
D = diag(deg(1), deg(2), . . . , deg(|Vi|)) and deg(c) =

∑|Vi|
a=1 W(a, c) is the degree

of the node indexed c in the graph [4].
The use of the graph Laplacian is important, since it permits the computation of the

unary potentials ci(a). Consider the mapping I of the functions g(e) over the set of
edges Ei to all the functions h(·) over the set of vertices Vi. The incidence mapping I
is then an operator such that Ig(e) = h(e+) − h(e−), where the nodes Vi,a = e+ and
Vi,c = e− are the head and tail, respectively, of the edge e ∈ Ei. As a result, I is a
| Vi | × | Ei | matrix which satisfies

L = IIT (10)

Note that the incidence mapping I is independent of the orientation of the edges in Ei.
Moreover, it is an operator, so it is independent of the vertex-basis, i.e. it is permutation
invariant [10]. Further, the incidence mapping is recovered via a Young-Householder
[15] decomposition on L. With these ingredients, we proceed to define the unary po-
tential ζi(Xa) as an exponential family over the optimal linear transformation of the
incidence mapping I into a space in �Ω . Thus, in practice, we can recover the po-
tential ζi(Xa) using the Principal Component Analysis (PCA) of the matrix I. This is,
we perform an eigendecomposition on I so as to select the leading Ω eigenvectors of
the incidence mapping. This yields ci(a) = [φ1(a), φ2(a), . . . , φΩ(a)]T , where φk(a)
is the ath coefficient of the kth eigenvector of the incidence mapping I for the graph
indexed i in Γ , such that φk = [φk(1), φk(2), . . . , φk(| Vi |)]T .

Our choice of unary potential hinges in the developments in [16]. It can be shown
that the space spanned by the PCA analysis is equivalent to the vertex-to-node scatter
for the graph. Thus, we can view the terms ci(a)X T

a e as the projections of the vectors Xa

onto the subspace defined by the principal directions of the covariance for the mapping
between the sets Vi and Ei in Gi. With ci(a) at hand, the linear mapping matrix T can
be solved by extremising f(X ) as described in the previous sections.

As related to computational complexity, note that the embedding recovery is effected
via Quadratic Programming and, therefore can be solved in polynomial time. The em-
bedding operation, in practice, is a matrix multiplication, which can also be rendered
computationally efficient. In summary, the step sequence of the method is as follows:

1. For every graph in Γ , compute the corresponding incidence mapping I via the
Young-Householder decomposition of the Laplacian L.

2. Compute the vectors ci(a) via PCA on the incidence mappings for the graphs in
the data set.

3. Compute the linear mapping T by extremising the cost function in Equation 5.

Using the the linear mapping matrix T , we can transform any Ai(a) into a target space,
where each graph is represented as a matrix whose ath row corresponds to the coordi-
nates associated to the attribute indexed a in the ith graph in Γ . As a result, relational
matching between graphs can be performed by comparing the distances between the



76 H. Zhao, J. Zhou, and A. Robles-Kelly

transformed attributes. This is due to the fact that there is a known one-to-one rela-
tionship between vertices and attributes in the graph. Further, these row vectors can be
used to represent each graph as a probability distribution of pairwise vertex distance in
the target space. In practice, these can be done via a histogram of distance frequencies
whose bin-centres in the embedding space can be recovered using a clustering method
such as k-means or maximum-likelihood estimation (MLE) approaches. This can be
viewed as a codebook in the target space. In this way, we transfer the structural repre-
sentation of a graph into a statistical representation that can be used for categorisation
or relational matching tasks.

4 Experimental Results

Now, we turn our attention to the applicability of the embedding T to shape categorisa-
tion and relational matching settings. We use the MPEG7 CE-Shape-1 shape database,
which contains 1400 binary shapes of 70 different classes with 20 images in each cat-
egory. Fig. 1 shows some examples in the dataset. We have represented each shape as
a graph whose vertices correspond to contour pixels sampled in regular intervals. Here,
we have sampled 1 in every 10 pixels on the shape contours. With the sample contour
pixels, we build a fully connected graph whose edge-weights are given by the Euclidean
distances on the image plane between each pair of pixel-sites. Thus, the entries of the
weight matrix for the graph correspond to the pairwise distances between the image-
coordinates for every pair of vertices in the graph. The weigh matrix is then normalised
to unity so as to have every weight in the graph in the interval [0, 1]. The attribute set is
given by the frequency histogram of these distances for every clique. That is, for the ath

vertex in Gi, Ai(a) is given by the histogram for the edge-weights for the clique cen-
tered at the node indexed a. In our experiments, we have used 12 bins for the frequency
histogram computation.

4.1 Relational Matching

Firstly, we illustrate the applicability of the embedding for relational matching making
use of sample shapes in the dataset. We have learned the embedding T for the MPEG7
CE-Shape-1 database so as to embed the set of graphs corresponding to the shapes

Fig. 1. Samples images from the MPEG7 CE-Shape-1 dataset
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Fig. 2. Example matching results for our embedding (left-hand column) and graduated assign-
ment (right-hand column)

into a space whose Ω = 70. Once the embedding is at hand, relational matching was
performed by viewing the node matching task as a point-matching one in the embed-
ding space. We have used the coordinates Xa = T Ai(a) in the target space in order to
compute the distances between nodes in the graph-vertices to be matched. The corre-
spondences are deemed to be the nearest neighbours for the vertex embeddings for each
of the graphs under study. That is, the vertex a in the data graph is a match to the node
b in the model graph iff the Euclidean distance between the corresponding embedded
coordinate vectors Xa and Xb is minimum for all the nodes in the graph pair.

In the the right-hand panels of Fig. 2, we show the results obtained using the re-
covered embedding T . In the left-hand panel are the results obtained via graduated
assignment [17]. Note that, from the panels, its clear that the distances in the target
space provide a means to relational matching. Moreover, qualitatively, the results ob-
tained making use of the embedding T show less mis-assignments than those recovered
using the alternative.

4.2 Shape Categorisation

As mentioned earlier, one of the advantages of the embedding strategy adopted here is
that it provides a means to connect structural pattern recognition with statistical pattern
recognition. Here, we employ the histogram of pairwise distances in the embedding
space for the coordinates Xa = T Ai(a) and construct a frequency histogram as a graph
feature vector that can be used to obtain a “codeword” for each graph. To this end,
we have used the frequency histograms for the distances between pairs of embeddings
Xa = T Ai(a) for those attributes in the same graph. These distance histograms have
been used to recover a codebook which is computed using k-means clustering, where
k = 200. Using the pairwise distances for the histogram representation of graphs, we
can construct a codebook for all shapes, which we have performed categorisation using
a linear SVM. This enables us to perform supervised learning and, thus, the proposed
method can take advantage of the recent progresses in machine learning.

For our shape categorisation experiments, we divided the graphs in the MPEG-7
dataset dataset into a training and a testing set. Each of these contains half of the graphs
in each dataset. This is, we have used 700 graphs for training and 700 for testing. In
contrast to our relational matching examples, here we have recovered the embedding
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Table 1. Shape categorisation result comparison on the MPEG7-CE-Shape-1 dataset

Method Proposed Method Skeletal Contexts Shape Contexts Structured Learning
[18] [19] [20]

Accuracy 91.8% 88.4% 76.51% 87.3%

matrix T making use of those graphs in the training set only. We have tuned the SVM
parameters using ten-fold cross validation. The experiments were done on a server with
Xeon 2.33GHz CPU and 16G memory. In our experiments, the main computational
burden was at training time, where graph generation took approximately 10 minutes,
whereas the k-means application and SVM training took 50s.

The categorisation results are shown in Table 1. For purposes of comparing our re-
sults with alternatives elsewhere in the literature, we show recognition rates for the
skeletal matching method by Demirci et al. [18], the shape context method by Belongie
et al. [19] and the structured learning method by Chen et al. [20]. The former two
methods are unsupervised categorisation ones, while the last one is a supervised learn-
ing method. As shown in Table 1, our method shows a margin of improvement over the
alternatives. Note that the alternative methods above have been specifically designed to
provide optimum performance on binary shapes. Our method, on the other hand, makes
a very simple abstraction of the shape in hand and can be naturally adapted to any
shape whose structure can be captured by a relational structure. Moreover, our method
is quite general in nature, permitting different tasks, such as the shape matching and
categorisation, to be effected in a single computational framework.

5 Conclusions

In this paper, we have proposed a method to recover a mapping which is based upon the
graph attribute-set and, at the same time, is inherently related to the graph topology. We
have done this by drawing a link between the incidence mapping and a linear operator
over the graph-vertex attributes. This linear operator is, in fact, a mapping that can be
used for purposes of embedding graphs in a space where matching and categorisation
tasks can be effected. We recover this embedding using a Markovian formulation which
can be viewed as a learning process over a common topology for the set of graphs under
study. This learning process is based upon a cost function which is convex in nature. We
exemplify the utility of our method for shape categorisation and matching on MPEG7
CE-Shape-1 dataset.

Acknowledgement

This work was done while Haifeng Zhao was a visiting scholar at the Canberra Research
Laboratory of NICTA. He is supported by the National Natural Science Foundation of
China (NSFC) under No.60775015.



A Structured Learning Approach to Attributed Graph Embedding 79

References

1. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

2. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science 290, 2323–2326 (2000)

3. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clus-
tering. In: NIPS. Number, vol. 14, pp. 634–640 (2002)

4. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Providence (1997)
5. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Shock-based indexing into large shape databases.

In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352,
pp. 731–746. Springer, Heidelberg (2002)

6. Wong, A.K.C., You, M.: Entropy and distance of random graphs with application to structural
pattern recognition. IEEE TPAMI 7, 599–609 (1985)

7. Christmas, W.J., Kittler, J., Petrou, M.: Structural matching in computer vision using proba-
bilistic relaxation. IEEE TPAMI 17(8), 749–764 (1995)

8. Wilson, R., Hancock, E.R.: Structural matching by discrete relaxation. IEEE TPAMI 19(6),
634–648 (1997)

9. Caetano, T., Cheng, L., Le, Q., Smola, A.: Learning graph matching. In: ICCV, pp. 14–21
(2007)

10. Biggs, N.L.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1993)
11. Bremaud, P.: Markov Chains, Gibbs Fields, Monte Carlo Simulation and Queues. Springer,

Heidelberg (2001)
12. Keuchel, J.: Multiclass image labeling with semidefinite programming. In: Leonardis, A.,

Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 454–467. Springer, Heidel-
berg (2006)

13. Kumar, M., Torr, P., Zisserman, A.: Solving markov random fields using second order cone
programming relaxations. In: CVPR, pp. 1045–1052 (2006)

14. Cour, T., Shi, J.: Solving markov random fields with spectral relaxation. In: Intl. Conf. on
Artificial Intelligence and Statistics (2007)

15. Young, G., Householder, A.S.: Discussion of a set of points in terms of their mutual distances.
Psychometrika 3, 19–22 (1938)

16. Ding, C., He, X.: K-means clustering via principal component analysis. In: ICML,
pp. 225–232 (2004)

17. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE
TPAMI 18(4), 377–388 (1996)

18. Demirci, M.F., Shokoufandeh, A., Dickinson, S.J.: Skeletal shape abstraction from examples.
IEEE TPAMI 31(5), 944–952 (2009)

19. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape con-
texts. IEEE TPAMI 24(24), 509–522 (2002)

20. Chen, L., McAuley, J.J., Feris, R.S., Caetano, T.S., Turk, M.: Shape classification through
structured learning of matching measures. In: CVPR (2009)



Combining Elimination Rules in Tree-Based
Nearest Neighbor Search Algorithms

Eva Gómez-Ballester1, Luisa Micó1, Franck Thollard2,
Jose Oncina1, and Francisco Moreno-Seco1

1 Dept. Lenguajes y Sistemas Informáticos
Universidad de Alicante, E-03071 Alicante, Spain

{eva,mico,oncina,paco}@dlsi.ua.es
2 Grenoble University, LIG

BP 53, 38041 Grenoble Cedex 9
thollard@univ-st-etienne.fr

Abstract. A common activity in many pattern recognition tasks, im-
age processing or clustering techniques involves searching a labeled data
set looking for the nearest point to a given unlabelled sample. To re-
duce the computational overhead when the naive exhaustive search is
applied, some fast nearest neighbor search (NNS) algorithms have ap-
peared in the last years. Depending on the structure used to store the
training set (usually a tree), different strategies to speed up the search
have been defined. In this paper, a new algorithm based on the combina-
tion of different pruning rules is proposed. An experimental evaluation
and comparison of its behavior with respect to other techniques has been
performed, using both real and artificial data.

1 Introduction

Nearest Neighbor Search (NNS) is an important technique in a variety of appli-
cations including pattern recognition [6], vision [13], or data mining [1,5]. These
techniques aim at finding the object of a set nearest to a given test object, using
a distance function [6]. The use of a simple brute-force method is sometimes a
bottleneck due to the large number of distances that should be computed and/or
their computational effort. In this work we have considered the computational
problem of finding nearest neighbors in general metric spaces. Spaces that may
not be conveniently embedded or approximated in an Euclidean space are of par-
ticular interest. Many techniques have been proposed for using different types of
structures (vp-tree [16], GNAT [3], sa-tree [10], AESA [14], M-tree [4]): the tree-
based techniques are nevertheless more popular. The Fukunaga and Narendra
algorithm (FNA [7]) is one of the first known tree-based example of this type
of techniques. It prunes the traversal of the tree by taking advantage, as the
aforementioned methods, of the triangular inequality of the distance between
the prototypes. This sets up a general framework for designing and evaluating
new pruning rules, as stated in [9].

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 80–89, 2010.
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In this paper we study the combination of different pruning rules: recent
table rule [12], a rule that is based on information stored in the sibling node (the
sibling rule [9]), the original rule from the FNA (Fukunaga and Narendra rule,
FNR), and a generalization of both the sibling rule and the FNR one [9]. We
end up with a new algorithm for combining the rules that significantly reduces
the number of distance computations.

The algorithm is evaluated on both artificial and real world data and compared
with state-of-the-art methods.

The paper is organized as follows: we will first recall the FNA algorithm and
define the general framework of the new algorithm (in particular how the tree is
built). We then review the different rules we aim at combining (section 3). We
then propose our new algorithm (section 4). Sections 5 presents the experimental
comparison.

2 The Basic Algorithm

The FNA is a fast tree-based search method that can work in general metric
spaces. In the original FNA the c-means algorithm was used to define the parti-
tion of the data. In the work by Gómez-Ballester et al [8] many strategies were
explored: the best one, namely the Most Distant from the Father tree (MDF),
in which the representative of the left node is the same as the representative of
its father, is the strategy used in the experiments presented in this work. Thus,
each time when an expansion of the node is necessary, only one new distance
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Fig. 1. Partition of the data using the MDF strategy. Representatives of each node in
different levels are drawn as rings.
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needs to be computed (instead of two), hence reducing the number of distances
computed. This strategy was also successfully used by Noltomeier et al [11] in
the context of bisector trees.

In the MDF tree each leaf stores a point of the search space. The information
stored in each node t is St, the set of points stored in the leaves of t sub-tree,
Mt (the representative of St) and the radius of St, Rt = argmaxx∈St

d(Mt, x).
Figure 1 shows a partition of the data in a 2-dimensional unit hypercube. The
root node will be associated with all the points of the set. The left node will rep-
resent all the points that belong to the hyperplane under the segment [(0, 0.95)
; (0.65,0)]; the right node will be associated with the other points. According to
the MDF strategy, the representative of the right node (Mr) is the same as the
father, and the representative of the left node (M�) is the most distant point to
Mr. The space is then recursively partitioned.

3 A Review of Pruning Rules

Fukunaga and Narendra Rule (FNR)

The pruning rule defined by Fukunaga and Narendra for internal nodes makes
use of the information in the node t to be pruned (with representative Mt and
radius Rt) and the hyperspherical surface centered in the sample point x with
radius d(x, nn), where nn is current nearest prototype. To apply this rule it is
necesary to compute the distance from the test sample to the representative of
candidate node that aim to be eliminated. Figure 2a presents a graphical view
of the Fukunaga and Narendra rule.

Rule: No y ∈ St can be the nearest neighbor to x if d(x, nn) +Rt < d(x,Mt)

The Sibling Based Rule (SBR)

Given two sibling nodes r and �, this rule requires that each node r stores the
distance d(Mr, e�), that is the distance between the representative of the node,
Mr, and the nearest point, e�, in the sibling node � (S�). Figure 2b presents a
graphical view of the Sibling based rule.

Rule: No y ∈ S� can be the nearest neighbor to x if d(Mr, x) + d(x, nn) <
d(Mr, e�).

Unlike the FNR, SBR can be applied to eliminate node � without computing
d(M�, x), avoiding some extra distance computations at search time.

Generalized Rule (GR)

This rule is an iterated combination of the FNR and the SBR (due to space
constraints we refer the reader to [9] for details on the generalized rule). In GR,
the distance to the representative of a given node is needed to know if the node
can be pruned or not.
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(a) Geometrical view of FNR rule.
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(b) Geometrical view of SBR rule.

The Table Rule (TR)

This recent rule [12] prunes the tree by taking the current nearest neighbor as a
reference. In order to do so, a new distance should be defined:

Definition. Given a prototype or sample point p, the distance between p to a
set of prototypes S is defined as

d(p, S) = min
y∈S

d(p, y)

At pre-process time, the distances from each prototype to each prototype set
of each node t, St, in the tree are computed and stored in a table, allowing a
constant time pruning. Note that the size of this table is quadratic in the number
of prototypes since, as the tree is binary, the number of nodes is two times the
number of prototypes.

Rule: No y ∈ St can be the nearest neighbor to x if 2d(nn, x) < d(nn, St).
Figure 2 presents a graphical view of the table rule. Note that this rule can

be used before computing the distance to the node that will be explored.

Mt

x
nn

RtSt
e td(nn,St)

Mt

x
nn

RtSt

e

Fig. 2. Table rule and node St: situation where it can be pruned (up) and where it
cannot (down)
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4 CPR: Combining Pruning Rules Algorithm

In Algorithm 1 an efficient combination of pruning rules is proposed. Note that,
as the GR generalizes both the FNR and the SBR, these two rules are not applied
while the generalized one is activated (lines 11-19). When the MDF method is
used to build the tree, it is important to note that each time a node is expanded,
only one of the representatives is new (the left node), while the other (right)
is the same as the father node (in this case, only the radius of the node can
change). For this reason, in this case the distance dr = d(x,Mr) in line 9 is
never computed (as it is already known). Then, when a node is examined during
the search, every pruning that can be applied without computing a new distance
is applied (lines 3 to 8). If none of these rules is able to prune, the distance to the
current node is computed (line 9). The pruning rules that use the new distance
are then applied (lines 11 to 28).

Algorithm 1. CPR(t,x)
Data: t: a node tree; x: a sample point;
Result: nn: the nearest neighbor prototype; dmin: the distance to nn;
if t is not a leaf then1

r = right_child(t); � = left_child(t);2
if ( SBR(�) || TR(�) ) then3

if (no FNR(r)) && (no TR(r)) then4
CPR(r, x) /* left (sibling) node has been pruned */;5

end6
Return /* ie prune both */ ;7

end8
dr = d(x,Mr) ; d� = d(x,M�);9
update dmin and nn;10
if Activated(GR) then11

if d� < dr then12
if ( no GR(�) ) then CPR(�, x);13
if ( no GR(r) ) then CPR(r, x);14

else15
if (no GR(r)) then CPR(r, x);16
if (no GR(�)) then CPR(�, x);17

end18

else19
if d� < dr then20

if (no FNR(�)) && (no SBR(�)) then CPR(�, x);21
if (no FNR(r)) && (no SBR(r)) then CPR(r, x);22

else23
if (no FNR(r)) && (no SBR(r)) then CPR(r, x);24
if (no FNR(�)) && (no SBR(�)) then CPR(�, x);25

end26

end27

end28
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5 Experiments

We have performed some experiments in order to compare our algorithm with
some state of the art methods. The first method, the multi-vantage-point tree
(mvp), is a balanced tree requiring linear space where the arity can be extended
and multiple pivots per node can be applied [2]. The second method is the Spatial
Approximation Tree (sat), whose structure uses a graph based on Delaunay
triangulation and it does not depend on any parameter [10]. The code of these
algorithms comes from the SISAP library (www.sisap.org). We applied the mvp
with only one pivot by node, a bucket size of 1 and an arity of 2 as this setting
leads to better performances according to preliminary experiments on these data
sets. All the experiments were performed on a Linux box with 16GB of memory.

From now and only for the graphs, the FNR rule (and respectively the SBR,
GR and TR rules) will be abbreviated by "f" (respectively "s", "g" and "t");
consequently, combining the FBR and SBR will be referred as "fs". The combi-
nations of rule "g" with "s" or "f" are not present as "g" generalizes these rules:
every branch pruned by one of them is also pruned by "g".

In order to evaluate the performance of different combined rules, we present in
this section the experiments on both artificial and real world data using different
settings of our algorithm.

5.1 Artificial Data with Uniform Distributions

We consider here points drawn in a space of dimension n ranging from 5 to 30.
The algorithms are compared with a growing number of prototypes. The size
of the prototype sets ranged from 2, 000 prototypes to 30, 000 in steps of 4, 000.
Each experiment measures the average distance computations of 10, 000 searches
(1, 000 searches over 10 different prototype sets). The samples are drawn from
the same distribution.

Figure 3a shows the average number of distance computations in a 10-
dimensional space following a uniform distribution. Standard deviation of mea-
sures is not included as it is almost negligible. As it can be seen, both sat and
mvp are outperformed by the other pruning rules. Although the table rule also
outperforms the FNR and GR ones, it is worth mentioning that these meth-
ods have a space consumption smaller than the table rule. In the case of small
space capabilities, these methods should be preferred. Considering the classic
FNA algorithm as a reference, we observe that GR and TR rules outperform
the original rule, namely FNR. Moreover, it appears that combining the table
rule, with either the sibling or generalized rule, does not perform better than
combining the FNR and the table rule. This is important as the FNR rule has
an effective computational cost smaller than the generalized rule. Furthermore,
since the "g" rule also generalizes the sibling rule, the combination of "fst" does
not perform better than "fg", as expected.

Another classic problem to address is the curse of dimensionality1. It expresses
the fact that the volume of the unit hypercube increases exponentially with the
1 The curse of dimensionality is usually considered in Euclidean spaces.



86 E. Gómez-Ballester et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  5000  10000  15000  20000  25000  30000

di
st

an
ce

 c
om

pu
ta

tio
ns

training set size

fst,ft,tg

dim 10

g

f,fs

mvp

sat

t

(a) Distance computations w.r.t. training
set size in a 10-dimensional space.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  5  10  15  20  25  30

dimension

fst,ft,tgsat tmvp f

11000 training samples

(b) Distance computations w.r.t dimen-
sionality.

Fig. 3. Comparison of different pruning rules combinations with sat and mvp
algorithms

dimension of the space. In other words, the points tend to be at the same distance
one to each other in great dimensions. In our setting, this will obviously prevent
a large number of prunings: the algorithm will tend to behave like the brute
force algorithm as the dimension increases. This algorithmic limitation is not a
real problem since looking for a nearest neighbor does not make sense in a space
where the distances between each pair of points are similar.

Figure 3b addresses a comparative analysis of the behavior of the methods as
the dimension increases. The number of prototype is set to 11, 000 points and
the dimensionality ranges from 2 to 30. It can be observed here that the TR
rule is less sensible to the dimensionality than the other methods. Moreover, as
before, combining the TR rule with the FNR one still performs better than the
other combinations: at dimension 25, the "ft" combination is able to save 20%
of distance computations while the other methods compute all the distances, as
the exhaustive search.

Two more experiments were performed: first, in order to show the differences
when a best-first strategy is used instead of a depth-first strategy. In Figure 4a
one can see that similar results are obtained, for this reason, only depth-first
strategy is used in this work. Second, as well as the distance computations, the
percentage of the database examined is analyzed for all the methods. Results can
be seen in Figure 4b. As in the case of distance computations, the CPR method
also reduces the overhead of the search visiting on average less nodes (or points
in the data set).

5.2 Real World Data

To show the performance of the algorithms with real data, some tests were con-
ducted on a spelling task. For these experiments, a database of 69, 069 words
of an English dictionary was used2. The input test of the speller was simulated
2 Here again the databases are taken from the SISAP repository.
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(a) Best-first (bf) versus depth-first (df)
strategies in 10 and 20 dimensional spaces.

(b) Visited nodes w.r.t. training set size.

Fig. 4. Average number of visited nodes during the search for the best pruning rule
combination, different search strategies and sat and mvp algorithms
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Fig. 5. Pruning rules combined in a spelling task in relation to others methods

distorting the words by means of random insertion, deletion and substitution op-
erations over the words in the original dictionary. The Levenshtein distance [15]
was used to compare the words. Dictionaries of increasing size (from 2, 000 to
30, 000) were obtained by extracting randomly words of the whole dictionary.
Test points were obtained distorting the words in the training set. For each ex-
periment, 1000 distorted words were generated and used as test set. To obtain
reliable results, the experiments were repeated 10 times. The averages are showed
on the plots.

The experiment performed in Figure 3a for artificial data (average number of
distance computations using increasing size prototype sets) was repeated in the
spelling task. Results are shown in Figure 5. The experiments show a reduction
in the number of distance computations around 20% when the SBR rule is com-
bined with the FNR, and around 40% for generalized rule with respect to the
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reference FNR rule. Moreover, when combining both the “f” and “t” rules (with
or without the “g” rule), the resulting combination clearly outperforms the other
combinations, as it happens with other kinds of data, saving 60% of the average
number of distance computations.

6 Conclusions and Further Works

A new algorithm has been defined to optimize the combination of several pruning
rules using the FNA tree-based search algorithm. When the rules are applied
alone, reductions between 20% and 60% are obtained for low dimensions and
this reduction decreases with the dimensionality (a normal behavior since the
problem is getting harder with increasing dimensionalities) when comparing with
the baseline FNR rule. When the rules are combined, more reductions in the
average number of distance computations and in the overhead of the methods
(measured as the average number of visited nodes or points), in particular can be
observed (e.g. roughly 80% reduction in a 10-dimensional space). Similar results
are also obtained on a real world task (namely a spelling task).

We are currently studying new pruning rules and combinations, and also how
to use them in dynamic tree structures. We think also that this algorithm can
be adapted with minor changes to other tree-based search methods not explored
in this work.
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Abstract. It is interesting to compare different criteria of kernel

machines. In this paper, the following is made: 1) to cope with the

scaling problem of projection learning, we propose a dynamic localized

projection learning using k nearest neighbors, 2) the localized method is

compared with SVM from some viewpoints, and 3) approximate nearest

neighbors are demonstrated their usefulness in such a localization. As a

result, it is shown that SVM is superior to projection learning in many

classification problems in its optimal setting but the setting is not easy.

1 Introduction

In pattern recognition, the design of a classifier can be made through regression.
To achieve this, a dummy output y is introduced instead of the class-label output,
e.g., y = +1 for one class and y = −1 for another class in two-class problems
as seen in the paradigm of the support vector machines (SVMs) [1]. The goal
of this type of classifiers is to estimate the target function f such as y = f(x),
where x ∈ Rp is a sample with p input features and y ∈ R is the corresponding
output. We try to find a good approximator/regressor f̂ from a limited number
of training sample pairs (xi, yi) (i = 1, . . . , �). According to whether there is
noise or not, a regressor or an approximator becomes more appropriate than
the other.

In this paper we compare two typical but criterion-different kernel machines:
SVM [1] and Projection Learning [2]. The goal of this paper is described in
three-fold: 1) to propose a localized projection learning to bring scalability into
the projection learning, 2) to examine how well the proposed localized projec-
tion learning is competitive to the original projection learning, and 3) using the
localized projection learning, to compare the projection learning and the SVM
in performance and in speed.

2 Reproducing Kernel Hilbert Spaces

Reproducing kernel Hilbert spaces [3,4] is the key concept to interpret above
approaches in a unified framework.

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 90–99, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Definition 1. [3] Let Rp be a p-dimensional real vector space and let H be a
class of functions defined on D ⊂ Rp, forming a Hilbert space of real-valued
functions. A function K(x, x̃) (x, x̃ ∈ D) is called the reproducing kernel if

1. For every x̃ ∈ D, K(x, x̃) is a function of x belonging to H.
2. For every x̃ ∈ D and every f ∈ H, f(x̃) = 〈f(x),K(x, x̃)〉H, where 〈·, ·〉H

denotes the inner product of the Hilbert space H.

The Hilbert space H that has a reproducing kernel is called a reproducing kernel
Hilbert space (RKHS). The reproducing property (the second condition) enables
us to treat a function value by the inner product of two elements of H.

Next, we introduce the Schatten product [5] that is a convenient tool to reveal
the reproducing property of kernels.

Definition 2. [5] Let H1 and H2 be Hilbert spaces. The Schatten product of
g ∈ H2 and h ∈ H1 is defined by

(g ⊗ h)f = 〈f, h〉H1g, f ∈ H1.

Note that (g ⊗ h) is a linear operator from H1 onto H2. It is easy to show that
the following relations hold for h, v ∈ H1, g, u ∈ H2.

(h⊗ g)∗ = (g ⊗ h), (h⊗ g)(u⊗ v) = 〈u, g〉H2(h⊗ v),

where the superscript ∗ denotes the adjoint operator.

3 Projection Learning (PL)

Let {(yi,xi)|i = 1, . . . , �} be a given training data set xi ∈ Rp, yi ∈ R, satisfying

yi = f(xi) + ni,

where f denotes the true function and ni denotes a zero-mean additive noise.
In this paper, we assume that the unknown function f belongs to the RKHS

HK with the kernel function K. If f ∈ HK , then by the reproducing property
above equation is rewritten as

yi = 〈f(x),K(x,xi)〉HK + ni.

Let y = [y1, . . . , y�]′ and n = [n1, . . . , n�]′ with the superscript ′ denoting the
transposed matrix (or vector), then applying the Schatten product yields

y =

(
�∑

k=1

[e(�)
k ⊗K(x,xk)]

)
f(x) + n, (1)

where e(�)
k denotes the kth vector of the canonical basis of R�. For a convenience

of description, with the sample set X = {x1, . . . , x�}, we write

AK,X =

(
�∑

k=1

[e(�)
k ⊗K(x,xk)]

)
.
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Here AK,X is a linear operator that maps an element of HK onto R�. Then
Eq.(1) can be simply written by

y = AK,Xf + n. (2)

That is, the result of sampling of f on X of fixed � samples was contaminated
by noise n and observed as y.

Projection learning [2] is derived to attain the minimum squared error on
X between the target function f and an estimator f̂ measured in H in the
case of zero-mean noise. By solving (2) without n, such an optimal estimator is
given as

f̂(·) = A+
K,Xy = A∗

K,X(AK,XA∗
K,X)+y (3)

=
�∑

k=1

y′G+
K,Xe

(�)
k K(·,xk), (4)

where ∗ is the adjoint matrix, + is the Moore-Penrose generalized inverse, and
GK,X = (K(xi,xj)) is the �× � “Gram matrix.”

When no error exists, Eq.(3) can be rewritten as

f̂ = A∗
K,X(AK,XA∗

K,X)+AK,Xf = PR(A∗
K,X )f =

�∑
k=1

αkK(x,xk).

As a result, we have f̂ as the minimizer of

JPL(f̂) = ||f − f̂ ||2HK
, f̂ ∈ span{K(·, x1),K(·, x2), . . . ,K(·, x�)},

where span{·} is the closure of linear combinations of the elements.
It is also easy to show that f̂ is equivalent to f on a sample set X, that is,

with f = [f(x1), . . . , f(x�)]′ and f̂ = [f̂(x1), . . . , f̂(x�)]′, f̂ ≡ f holds as long
as G+ = G−1.

The solution by PL is optimal in the sense of minimum squared error if no
error is considered. However, things change when noise is taken into account. A
clear relationship for the case is given by Tanaka et al. [6,7]. Roughly speaking,
as the number of training samples increases, the projection error is reduced but
the error caused by noise is increased, so that the total approximation error
||f − f̂ ||2Hk

is unknown on whether reduced or increased. When noise exists,
from (2) and (3), our estimate becomes

f̂ =A+
K,Xy=A+

K,X(AK,Xf + n)=A+
K,XAK,Xf + A+

K,Xn=PR(A∗
K,X )f + A+

K,Xn.

In [6], ||PR(A∗
K,X )f ||2HK

= f ′G+
K,Xf and, in [7], ||A+

K,Xn||2HK
= n′G+

K,Xn were
shown. Thus, we have the following relationship:

||f − f̂ ||2HK
= ||f − PR(A∗

K,X )f ||2HK
+ ||A+

K,Xn||2HK

= ||f ||2HK
− f ′G+

K,Xf + n′G+
K,Xn. (5)
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Since G+
K,X is symmetric and non-negative definite, the second and third terms

increase in their absolute values as the sizes of f ,n, GK,X increase with increas-
ing samples. Therefore a trade-off arises.

4 Support Vector Machines (SVM)

Although it was originally formulated for classification as the norm minimiza-
tion under a separation condition, support vector machines are also seen as a
regression algorithm. Indeed the criterion in a regression form is given by

JSV M (f̂) =
1
�

�∑
i=1

|1 − yif̂(xi)|+ + λ‖ĥ‖2
HK

, (6)

where | · |+ is a function to remain the value for a positive value and zero
otherwise. Here, f is decomposed as f̂ = ĥ + ĉ and ĥ ∈ H and ĉ is a constant
and P f̂ = ĥ. Therefore, if {1} ⊂ HK then this equation is rewritten as

JSV M (f̂) =
1
�

�∑
i=1

|1 − yif̂(xi)|+ + λ‖P f̂‖2
HK

, (7)

where P f̂ is the projection of f̂ into the orthogonal complement of {1} in HK .
It is also known that the minimizer of this criterion has the form f̂(·) =∑c
i=1 ciK(·, xi)+c0. That is, P f̂ is the projection of f̂ into span{K(·, x1),K(·, x2),

. . . ,K(·, x�)}.

5 Localized Projection Learning (LPL)

Projection learning (4) can be expressed explicitly as

f̂(x) = (K(x,x1), . . . ,K(x,x�))

⎛⎜⎜⎜⎝
K(x1,x1) K(x1,x2) · · · K(x1,x�)
K(x2,x1) K(x2,x2) · · · K(x2,x�)

...
...

. . .
...

K(x�,x1) K(x�,x2) · · · K(x�,x�)

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎜⎝

y1

y2

...
y�

⎞⎟⎟⎟⎠
= K(x)G−1

K,Xy.

In the localized version, we use data-dependent k(≤ �) training samples for f̂ .
Let Ni (i = 1, 2, . . . , k) be the ith nearest neighbor of x in X. By limiting the
sample set from X to XkNN (x) = {xN1 ,xN2 , . . . ,xNk

}, we have

f̂(x) = (K(x,xN1), . . . ,K(x,xNk
))

⎛⎜⎝K(xN1 ,xN1) · · · K(xN1 ,xNk
)

...
. . .

...
K(xNk

,xN1) · · · K(xNk
,xNk

)

⎞⎟⎠
−1
⎛⎜⎜⎜⎝

yN1

yN2

...
yNk

⎞⎟⎟⎟⎠
= KkNN (x)G−1

K,XkNN
ykNN
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This localization is clearly effective only for kernels in which the value of K(x,y)
takes near zero when x and y are far from each other in the original feature space,
such as a radial basis function.

It should be noted that f̂ changes depending on a given data x. A singularity
of GK,X often becomes a problem when � is large, but the reduced GK,XkNN

becomes non-singular in most cases. Of course, the most advantage of LPL is the
calculation cost compared with the original PL. Note that we have to calculate
the inverse of GK,XkNN

of size k × k for every data x, although the inverse of
GK,X is possible to be pre-calculated in the original PL. However, the cost is
negligible because k is ignorably small to �.

Even in the performance, we might expect a little raise compared with PL.
Let us consider a trade-off of Eq. (5). By choosing the k nearest neighbors of a
given data, the first (approximation) term is almost kept compared with the case
that all samples are used, while the second time is necessary reduced because of
its smaller size. As a result, a better trade off can be expected to be realized.

6 Comparison between SVM and LPL

Now let us compare SVM, PL and LPL in their criteria to minimize. For simplic-
ity, we assume that every training samples are correctly classified with a positive
margin. We also assume {1} ⊂ HK .

Then, SVM minimizes

JSV M (f̂) = ‖f̂‖2
HK

, f̂ ∈ span{K(·, x1),K(·, x2), . . . ,K(·, x�)}

under the condition of
∑N

i=1 |1−yif̂(xi)|+ = 0. Eventually, only support vectors
S1, . . . , St are necessary for minimizing

JSV M (f̂) = ‖f̂‖2
HK

, f̂ ∈ span{K(·, xS1),K(·, xS2), . . . ,K(·, xSt)}.

Similarly, PL minimizes

JPL(f̂) = ||f − f̂ ||2HK
, f̂ ∈ span{K(·, x1),K(·, x2), . . . ,K(·, x�)}.

under the condition of
∑N

i=1 |f(xi) − f̂(xi)| = 0, and LPL minimizes, with k
nearest neighbors,

JLPL(f̂) = ||f − f̂ ||2HK
, f̂ ∈ span{K(·, xN1),K(·, xN2), . . . ,K(·, xNk

)}.

under the condition of
∑k

i=1 |f(xNi) − f̂(xNi)| = 0. These criteria are shown in
Fig.1 and Fig.2. The following is worth noticing:

1. SVM and PL find the estimator f̂ in the same subspace of HK when a
constant is ignored.

2. Nevertheless, SVM finds the minimum norm solution in ||f̂ || and PL finds
the minimum difference solution in ||f − f̂ ||. They take reverse directions.
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Fig. 1. Support Vector Machine
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Fig. 2. Localized Projection Learning

3. LPL is expected to simulate PL well as long as k is large enough.
4. LPL has a high scalability because of the number of samples is limited to k.
5. Limiting the space by nearest neighbors in LPL works in a direction to

worsen the approximation to the target but to increase the robustness against
noise.

6. The necessary conditions are totally different. In SVM, the absolute value
of f̂(xi) is not important as long as yif̂(xi) ≥ 1, while f̂(xi) = f(xi) has to
be satisfied in PL. The latter is stronger than the former.

7 Approximate Nearest Neighbors

One advantage of LPL is to use k nearest neighbors for obtaining a scalability.
However, when we want the exact k nearest neighbors, we need linear time both
in dimensionality and in data size. Most sophisticated algorithms cannot beat
this complexity in high dimensions. Therefore, for recent years, approximate
nearest neighbors or probably correct nearest neighbors are gathering much at-
tention [8,9]. In such a relaxation, the computational cost can be greatly reduced,
usually sub-linear in sample size. Fortunately, in LPL, we do not necessary need
the exact k nearest neighbors and suboptimal k nearest neighbors are accept-
able. So, we can use such efficient techniques. We will use ANN [8] in this study.
Its time complexity in search phase is O(cp,η log �) with cp,η ≤ p�1 + 6p/η�p,
where η ≥ 0 is an approximation parameter.

8 Complexity

Time complexities of these algorithms are compared in Table 1. Usually the
number t of support vectors is nearly proportional to the number � of training
samples. In Table 1, the number k of nearest neighbors in LPL is ignored because
k is small enough compared with �. The complexity of LPL comes from that of
ANN to find k nearest neighbors. The other cost is quite low in LPL.
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Table 1. Time complexity. Here, � is the

number of training samples, p is the di-

mensionality and t is the number of sup-

port vectors.

Phase PL LPL SVM

Training O(�2p) O(�p log �) O(�tp)

Testing O(�p) O(p log �) O(tp)

Table 2. Statistics of datasets

Dataset # samples (c1, c2) Dim.

heart-statlog 270 (150, 120) 13

ionosphere 351 (225, 126) 34

sonar 208 (111, 97) 60

diabetes 768 (500, 268) 8

liver-disorders 345 (200, 145) 6

spambase 4601 (2788, 1813) 57

9 Experiments

We carried out experiments using one synthetic dataset and six real-life two-
class datasets taken from UCI machine learning repository [10] (Table 2). The
synthetic dataset is of two classes in 2-dimensional space (Fig. 3).

We compared PL, LPL and SVM. The SVM is the one implemented by lib-
svm [11] with a soft margin parameter C = 1. The kernel function is a Gaussian
with a standard deviation σ. The number of nearest neighbors k in LPL was
chosen to k = �log10 � + 1� in order to simulate a consistent nature of k near-
est neighbors, that is, k-NN approaches to Bayes classifier with k = o(n). In
ANN, we have used η = 0.0, that is, we found the exact nearest neighbors.
Even if η = 0.0, the computational cost is known to be sublinear in � for a low-
dimensional space. The recognition rate was evaluated by 10-fold cross validation
technique.

9.1 Comparison of PL and LPL

First we compared PL and LPL in performance and in time. The result for the
synthetic dataset showed that the performance is almost the same in range σ ∈
[0.01, 10]. Indeed, there is almost no difference between the decision boundary of
PL and that of LPL (Fig. 3). As for the time, LPL was faster than PL in both
of training and testing phases (Fig. 4). This is consistent with the theoretical
analysis in Table 1. Even in real-life datasets, this tendency was observed. As
seen in Fig. 5, the recognition rates of LPL were comparative with those of PL,
while the time for testing was greatly reduced as described later. Therefore, we
will mainly compare LPL and SVM in the following.

9.2 Comparison of LPL and SVM

In comparison between LPL and SVM, the difference of time complexities ap-
peared clearly in the synthetic data (Fig. 4). LPL is the fastest among three
algorithms in both of training and testing phases. Even for spambase, which
is the largest in sample size, LPL was remarkable faster than SVM. Indeed, the
training time and testing time were 0.019 and 0.027 seconds, respectively, in LPL,
while 6.461 and 0.632 seconds, respectively, in SVM. For the other datasets, an
obvious difference was not observed because of the short time.
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Fig. 3. Decision boundaries of PL and LPL (σ = 1.0)
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Fig. 4. Time consumed by PL and LPL on a synthetic dataset. The curve of LPL is

almost identical to the horizontal axis.

In performance, we have to be careful about the values of parameters, es-
pecially σ for Gaussian kernel. We have compared LPL and SVM in the same
σ = 1.0 for time comparison. However, the optimal value of σ should be dif-
ferent in LPL and SVM. Therefore, we chose the best value σ∗ in the range of
σ ∈ [0.01, 100] at 39 values in a log scale.

As shown in Fig. 5, with their optimal values, SVM was superior to LPL in
most cases. This maybe implies that the separation criterion (largest margin
criterion) employed in SVM is better than the approximation criterion (closest
criterion) for classification problems.

9.3 Robustness

Although SVM was better than LPL with the optimal σ∗, such an optimal setting
is time consuming and is sometimes even difficult to be made. So we examined
how sensitive LPL and SVM are against the change of σ. In Fig. 6, a result is
shown for sonar dataset. We can see that SVM shows a high performance only
in a narrow range of σ and that LPL has a larger range for it and PL follows.
The difference of robustness is also confirmed from a comparison of two cases of
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Fig. 8. Recognition rate of LPL for k = 5, 9, 13, 17 and σ ∈ [1, 100] on diabetes

σ = 1 and σ = σ∗. In Fig. 7, we can see that the difference of LPL is smaller
than that of SVM. It means that SVM is more sensitive than LPL.

The value of parameter k is also important in LPL, because the value deter-
mines the samples that affect the decision of a given sample. In deabetes, in
which LPL was worse than SVM in performance largely, we have changed the
value of k in k = 5, 9, 13, 17 (our default setting was k = 3) (Fig.8). From Fig.8,
we can see that a better performance of LPL can be obtained with larger values
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of k. With k = 17, the performance of LPL is comparable with that of SVM. As
a result, the optimal choice of k would improve the performance of LPL.

10 Conclusion

In this paper, scalability was brought to projection learning (PL) by localiz-
ing it with nearest neighbors of a given sample to be classified. First, it was
confirmed that the classification performance is almost maintained by this lo-
calization and that the testing speed is rather improved, as it is sublinear in the
number of training samples. In comparison of performance between SVM and
LPL (localized PL), SVM was a little superior to LPL with the optimally chosen
parameters. This might imply that the criterion of SVM is better than that of
LPL for classification problems. However, we need more investigation. On the
contrary, it was revealed that LPL is faster than SVM and is more robust than
SVM against the parameter change. One attractive point of LPL is that it allows
us to use approximate nearest neighbors so that we can use efficient algorithms
even in high-dimensional problems.

One of the future studies is to compare the performance in multi-class prob-
lems. In that case, several ways of giving dummy quantitative variables have to
be considered.
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Abstract. In this paper, we propose a fast entropy-based variational scheme for
learning Gaussian mixtures. The key element of the proposal is to exploit the
incremental learning approach to perform model selection through efficient iter-
ation over the Variational Bayes (VB) optimization step in a way that the number
of splits is minimized. In order to minimize the number of splits we only select
for spliting the worse kernel in terms of evaluating its entropy. Recent Gaussian
mixture learning proposals suggest the use of that mechanism if a bypass entropy
estimator is available. Here we will exploit the recently proposed Leonenko es-
timator. Our experimental results, both in 2D and in higher dimension show the
effectiveness of the approach which reduces an order of magnitude the computa-
tional cost of the state-of-the-art incremental component learners.

1 Introduction

Mixture models, in particular those that use Gaussian kernels, have been widely used
in areas involving statistical modeling of data like pattern recognition, computer vision,
image analysis or complex probability density functions (pdfs) approximation. In sta-
tistical pattern recognition, mixture models provide a formal approach for clustering
[1][2]. Mixtures model the data as being generated by one of a set of kernels. The es-
timation of the parameters of each kernel leads to a clustering of the data set. Whereas
traditional clustering methods are based on heuristics (e.g. k-means algorithm) or hier-
archical agglomerative techniques [3], mixture models allow us to address the problem
of validating the parameters of a given model in a formal way. Mixture models are also
suitable for representing complex class-conditional pdfs in Bayesian supervised learn-
ing scenarios [4][5] or Bayesian parameter estimation [6]. The task of estimating the
parameters of a given mixture can be achieved with different approaches: maximum
likelihood, maximum a posteriori (MAP) or Bayesian inference [7].

The same is true for the Bayesian Maximum a Posteriori (MAP) estimation approach
that tries to find the parameters that correspond to the location of the MAP density
function, and it is used when this density cannot be obtained directly [8]. Bayesian in-
ference models the a posteriori parameter probability distribution, so it is assumed that
the parameters are not uniquely described and they are modeled by probability density
functions (pdfs) [7]. Thus, an additional set of hyperparameters is required in order
to model the distribution of parameters. Then, the a posteriori probability of the data
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set is obtained by integration over the probability distribution of the parameters. The
task of defining proper distribution functions for parameters can be computationally
heavy and may result in intractable integrals. There are some approaches that try to
solve those drawbacks: Laplacian method [9], Markov Chain Monte Carlo (MCMC)
[10], and Variational methods [11][12]. Laplacian methods employ an approximation
based on the Taylor expansion for the expression of the integrals [9]. However, in high
dimensional contexts this approach is computationally expensive and may provide poor
approximation results. MCMC methods require both an appropriate distribution selec-
tion and sampling techniques in order to draw suitable data samples. Besides, due to
their stochastic nature, MCMC algorithms may require a long time to converge [10].
Variational algorithms are guaranteed to provide a lower bound of the approximation
error [11]. In most approaches, parameter initialization is selected randomly, defined
over a given range of values, but it could lead to overfitting and poor generalization
[13]. Although the results show good performance in clustering, blind signal detection
or color image segmentation, the computational complexity of the Variational EM al-
gorithm is higher than the classic EM with the maximum likelihood criterion. However,
variational methods are more suitable than EM-MDL based methods [14][15][8][16]
for model-order selection. Thus in this paper, we propose an fast extension of the Varia-
tional Bayes (BV) method proposed in [17] for inferring Gaussian mixtures and solving
the model-order selection problem.

2 Variational Bayes for Mixtures

Given N i.i.d. samplesX = {x1, . . . ,xN} of a d-dimensional random variable X , their
associated hidden variables Z = {z1, . . . , zN} and the parameters Θ of the model, the
Bayesian posterior is given by [18]:

p(Z,Θ|X) =
p(Θ)

∏N
n=1 p(xn, zn|Θ)∫

p(Θ)
∏N

n=1 p(xn, zn|Θ)dΘ
. (1)

Since the integration w.r.t. Θ is analytically intractable, the posterior is approximated
by a factorized distribution q(Z,Θ) = q(Z)q(Θ) and the optimal approximation is the
one that minimizes the variational free energy:

L(q) =
∫

q(Z,Θ) log
q(Z,Θ)

p(Z,Θ|X)
dΘ − log

∫
p(Θ)

N∏
n=1

p(xn|θ)dΘ , (2)

where the first term is the Kullback-Leibler divergence between the approximation and
the true posterior. As the second term is independent of the approximation, the Vari-
ational Bayes (VB) approach is reduced to minimize the latter divergence. Such min-
imization is addressed in a EM-like process alternating the updating of q(Θ) and the
updating of q(Z) [19]:

q(Θ) ∝ p(Θ) exp

{
N∑

n=1

〈log p(xn, zn|Θ)〉q(Z)

}
(3)

q(Z) ∝ exp

{
N∑

n=1

〈log p(xn, zn|Θ)〉q(Θ)

}
(4)
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When the posterior is modeled by a mixture we have that

p(X |Ω) =
K∑

k=1

πkp(X |Ωk), (5)

where 0 ≤ πk ≤ 1, k = 1, . . . ,K ,
∑K

k=1 πk = 1, K is the number of kernels,
π1, . . . , πK are the a priori probabilities of each kernel, and Ωk are the parameters that
describe the kernel. In Gaussian mixtures, Ωk = {μk, Σk}, that is, the mean vector and
the covariance matrix. Consequently we have

p(X,Z|Θ) =
N∏

n=1

K∏
k=1

zn
k πkp(xn|Ωk). (6)

where zi = [zn
1 , . . . , zn

K ] is a binary vector and zn
m = 1 and zn

p = 0, if p �= m,
denote that xn has been generated by the kernel m. Then, considering the complete
mixture let μ = {μk}, Σ = {Σk}, π = {πk} and K the parameters of the model, that
is, Θ = {μ,Σ, π,K}. Including in the parameter set the number of mixtures implies
dealing with the problem of model order selection (obtain the optimal K). In [17],
model order selection is implicitly solved within the Bayesian approach. In the latter
framework, it is assumed that a number of K − s components fit the data well in their
region of influence (fixed components) and then model order selection is posed in terms
of optimizing the parameters of the remaing s (free components). Let α = {πk}s

k=1

the coefficients of the free components and β = {πk}K
k=s+1 the coefficients of the fixed

components. Obviously, the sum of coefficients in α and β must be the unit. In addition,
under the i.i.d. sampling assumption, the prior distribution of Z given α and β can be
modeled by a product of multinomials:

p(Z|α, β) =
N∏

n=1

s∏
k=1

πk
zn

k

K∏
k=s+1

πk
zn

k . (7)

Moreover, assuming conjugate Dirichlet priors over the set of mixing coefficients, we
have that

p(β|α) =

(
1 −

s∑
k=1

πk

)−K+s Γ
(∑K

k=s+1 γk

)
∏K

k=s+1 Γ (γk)
·

K∏
k=s+1

(
πk

1 −
∑s

k=1 πk

)γk−1

. (8)

Then, considering fixed coefficients Θ is redefined as Θ = {μ,Σ, β} and we have the
following factorization:

q(Z,Θ) = q(Z)q(μ)q(Σ)q(β) . (9)
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Then, in [17], the optimization of the variational free energy yields:

q(Z) =
N∏

n=1

s∏
k=1

rkn
zn

k

K∏
k=s+1

ρkn
zn

k (10)

q(μ) =
K∏

k=1

N (μk|mk, Σk) (11)

q(Σ) =
K∏

k=1

W(Σk|νk, Vk) (12)

q(β) =

(
1 −

s∑
k=1

πk

)−K+s Γ
(∑K

k=s+1 γ̃k

)
∏K

k=s+1 Γ (γ̃k)
·

K∏
k=s+1

(
πk

1 −
∑s

k=1 πk

)γ̃k−1

(13)

where N (.) and W(.) are respectively the Gaussian and Wishart densities, and the rest
of parameters are obtained as specified in [17]. Furthermore, after the maximization of
the free energy w.r.t. q(.), it proceeds to update the coefficients in α. This interwinted
process is repeated until convergence. However, how is model selection solved within
this approach?

3 Model Order Selection in VB: The EBVS Approach

An incremental model order selection algorithm starts from a small number of compo-
nents (one or two) and proceeds to split them until convergence. For instance, in [16]
a unique initial kernel is used. However in [17] the VBgmm method [20] is used for
training an initial K = 2 model. Then, in the so called VBgmmSplit, they proceed by
sorting the obtained kernels and then trying to split them recursively. Each splitting con-
sists of: (i) removing the original component, and (ii) replacing it by two kernels with
the same covariance matrix as the original but with means placed in opposite directions
along the maximum variabiability direction. Such direction is given by the principal
axis (eigenvector φ) of the inverse of the original covariance matrix and the amount
of displacement, and the amount of displacement is ±

√
λφ, being λ the corresponding

eigenvalues. If the original mixing coefficient is π the new coefficients are π/2. A more
complex and robust split method is proposed in [21] and used efficiently in [16]. Inde-
pendently of the split strategy, the critical point of VBgmmSplit is the amount of splits
needed until convergence. At each iteration of the latter algorithm the K current exisit-
ing kernels are splited. Consider the case of any split is detected as proper (non-zero π
after running the VB update described in the previous section, where each new kernel
is considered as free). Then, the number of components increases and then a new set of
splitting tests starts in the next iteration. This means that if the algorithm stops (all splits
failed) with K kernels, the number of splits has been 1 + 2 + . . . + K = K(K + 1)/2.
Although the computational cost of a split is not critical, what is critical is the increasing
amount of kernels considered for the VB optimization. Thus, it is important to control
the number of splits because it has an important impact in the complexity of the VB
optimization step. This is our main contribution in this paper, and we dubbed it the
Entropy-based Variational Scheme (EBVS).
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3.1 The EBVS Split Scheme

Instead of considering all the current kernels K at each iteration, we split only one
kernel per iteration. In order to do so, we implement a selection criterion based on
measuring the entropy of the kernels. According to [16], as the Gaussian distribution
maximizes entropy among all the distributions with the same covariance, the lower the
entropy of a kernel, the more suitable it is for being split. The main problem of this ap-
proach is the fact that entropy must be estimated and this may be a very difficult task if
data dimensionality d is high (curse of dimensionality) if a bypass entropy estimator (no
need to estimate the probability density function) is not used. For instance, in [16], the
Entropic Graphs based estimator [22] is extrapolated from Rényi entropy to the Shan-
non one. However, if ones uses the recently proposed Leonenko’s estimator [23] (see
above) then there is no need of extrapolation, and asymptotic consistence is ensured.
This is the entropy estimator used in this paper. Then, at each iteration of the algorithm
we select the worse, in terms of low entropy, to be split. If the split is successful we will
have K + 1 kernels to feed the VB optimization in the next iteration. Otherwise, there
is no need to add a new kernel and the process converges to K kernels. The key ques-
tion here is that the overall process is linear (one split per iteration) with the number of
kernels instead of being quadratic.

3.2 Entropy Estimation

A simple way to understand the k-NN entropy estimation proposed by Leonenko [23] is
to look at the Shannon entropy formula H(X) = −

∫
f(x) log f(x)dx, as an average

of log f(x), being f(x) an existing pdf. The estimation of ̂log f(x) would allow the

estimation of Ĥ(X) = −N−1
∑N

i=1
̂log f(x). For this purpose the probability distri-

bution Pk(ε) of the distance between a sample xi and its k-NN is considered. If a ball
of diameter ε is centered at xi and there is a point within distance ε/2, then there are
k − 1 other points closer to xi and N − k − 1 points farther from it. The probability of
this to happen is Pk(ε)dε = k

(
N−1

k

)dpi(ε)
dε pk−1

i (1− pi)N−k−1 being pi the mass of the
ε-ball and pi(ε) =

∫
||ξ−xi||<ε/2

f(ξ)dξ.

The expectation of of log pi(ε) is E(log pi) =
∫∞
0

Pk(ε) log pi(ε)dε that is

= k
(
N−1

k

) ∫ 1

0 pk−1(1 − p)N−k−1 log p · dp = ψ(k) − ψ(N), where ψ(·) is the well-
known digamma function. If assumed that f(x) is constant in the entire ε-ball, then
the approximation pi(ε) ≈ Vd

2d εdμ(xi) can be formulated. Here d is the dimension and

Vd is the volume of the unit ball B(0, 1), defined as Vd = π
d
2

Γ ( d
2 +1)

. From the previ-

ous approximation and using the expectation of log pi(ε), we have the approximation
log f(ε) ≈ ψ(k) − ψ(N) − dE(log ε)− log Vd

2d , and finally,

Ĥ(X) = −ψ(k) + ψ(N) + log
Vd

2d
+

d

N

N∑
i=1

log εi (14)

is the estimation of H(X), where εi = 2||xi − xj || is twice the distance between the
sample xi and its k-NN xj . It is suggested that the error for Gaussian and uniform
distributions is ∼ k/N or ∼ k/N log(N/k).
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4 Experiments

We present serveral experiments in order to show the performance of our method. We
have tested the algorithm on both synthetic and real data.

4.1 Simple Densities

In this first experiment we have generated 2, 500 samples from five bidimensional Gaus-
sians with different prior probabilities, averages and covariance matrices. However the
distributions do not overlap and are well separated. Fig. 1 shows the estimations of the
mixtures and the final Bayesian classification of the samples. The parameters of the
mixture of this experiment are:

Σ1 =
[
0.20 0.00
0.00 0.30

]
, Σ2 =

[
0.60 0.15
0.15 0.60

]
,

Σ3 =
[
0.40 0.00
0.00 0.25

]
, Σ4 =

[
0.60 0.00
0.00 0.30

]
,

Σ5 =
[
0.20 0.00
0.00 0.30

]
,

πk = 0.2,
μ1 = [−1,−1]T , μ2 = [6, 3]T , μ3 = [3, 6]T ,

μ4 = [2, 2]T , μ5 = [0, 0]T .
(15)
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Fig. 1. First experiment: Easy density estimation

4.2 Overlapping Densities

This experiment presents the problem of having overlaping densities. The method show
a sucessful density estimation and classification. We generated 1, 000 samples from four
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Fig. 2. Overlaped components experiment

bidimensional Gaussians with different prior probabilities, averages and covariance ma-
trices. Fig. 2 shows the estimations of the mixtures and the final Bayesian classification
of the samples. The mixture parameteres are the following:

Σ1 =
[

1 0.5
0.5 1

]
, Σ2 =

[
6 −2
−2 6

]
,

Σ3 =
[

2 −1
−1 2

]
, Σ4 =

[
0.125 0

0 0.125

]
,

π1 = π2 = π3 = 0.3,
π4 = 0.1,

μ1 = μ2 = [−4,−4]T , μ3 = [2, 2]T , μ4 = [−1,−6]T .
(16)

This experiment is used in [16] to argument that their proposed incremental improves
the results obtained in [8] (in both cases a MDL criterion is used for model selection).
Then our method produces also a good result in this case.

4.3 Symmetric Densities

This experiment presents the problem of having symmetric densities. One Gaussian is
placed in the center and four symmetric Gaussians, with symmetric covariances, are
placed around the center. We generated 1, 000 samples from this mixture. Fig. 3 shows
the successful estimations of the mixtures and the final Bayesian classification of the
samples. The mixture parameteres are the following:

Σ1 =
[

1 0
0 1

]
, Σ2 = Σ4 =

[
1 0.5

0.5 1

]
, Σ3 = Σ5 =

[
1 −0.5

−0.5 1

]
,

πk = 0.2,
μ1 = [0, 0]T , μ2 = [3,−3]T , μ3 = [3, 3]T , μ4 = [−3, 3]T , μ5 = [−3,−3]T .

(17)



Entropy-Based Variational Scheme for Fast Bayes Learning of Gaussian Mixtures 107

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6
Contour plot of the estimated p.d.f.

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6
Model order after ebvs

Fig. 3. Experiment with symmetric densities

4.4 Real Data

We have experimented with real data in the context of unsupervised pattern classifi-
cation. The data set we tested has a relatively high number of dimensions. The well-
known Wine data set contains three classes of 178 samples of 13 dimensions. This data
set comes from chemical analysis of wines grown in different cultivars from the same
region, in Italy. The dimensions correspond to 13 constituents found in each one of the
three types (classes) of wines. The data set is preprocessed in order to have zero mean
and unit variance in each one of the dimensions. The classification performance we
obtain on this data set is 86%.

Altough experiments in higher dimensions can be performed, when the number of
samples is not high enough, the risk of unbounded maxima of the likelihood function is
higher, due to singular covariance matrices. The entropy estimation method, however,
performs very well with thousands of dimensions.

5 Conclusions and Future Work

In this paper we have proposed a significant improvement, in terms of computational
complexity, of the VBgmmSplit method. Such an improvement relies on the reduction
of the quadratic number of splits per iteration to a linear one and this is key for reducing
the complexity of the VB optimization method. Splits are reduced by selecting only the
worse (lowest entropy) kernel to split and entropy estimation is addressed through a
recently proposed bypass method. Our future work includes the extension to other kind
of mixtures as well as the incorporation of a more robust/reliable split strategy.
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Abstract. This contribution extends learning vector quantization to

the domain of graphs. For this, we first identify graphs with points in

some orbifold, then derive a generalized differentiable intrinsic metric,

and finally extend the update rule of LVQ for generalized differentiable

distance metrics. First experiments indicate that the proposed approach

can perform comparable to state-of-the-art methods in structural pattern

recognition.

1 Introduction

Learning vector quantization (LVQ) as introduced by Kohonen [11] is a su-
pervised learning algorithm for pattern classification. To classify patterns, LVQ
applies the nearest neighbor rule using a condensed set of prototypes. Prototypes
are learned by combining competitive learning with supervision. LVQ is easy to
implement, runs efficiently, allows to control the complexity of the resulting clas-
sifier, naturally deals with multiclass problems, provides an interpretable rather
than a block-box model, and in many cases provides state of the art performance.

LVQ and related methods have been originally devised for feature vectors
equipped with the Euclidean metric. Extensions have been proposed, for exam-
ple, for vectors with arbitrarily differentiable distance functions [8], for variable
length and warped feature sequences [18], and for strings [12]. But there have
been no efforts reported towards extending LVQ for the domain of attributed
graphs, although there are a number of related unsupervised methods that ex-
tend competitive learning for central clustering to structured data [7,6,9],

In this contribution, we generalize LVQ to learning graph quantization (LGQ).
The challenge consists in formulating an update rule for prototype adaption. For
differentiable metrics on vectors such as the Euclidean metric, adaption amounts
in moving prototypes along the line determined by the gradient of the underlying
distance metric. Graph distance metrics, however, are not differentiable in gen-
eral and therefore local gradient information is unavailable for prototype adap-
tion. To overcome this problem, an appropriate approach to represent graphs
is necessary. As such an approach, we suggest to represent graphs as points in
some Riemannian orbifold. An orbifold is a quotient of a manifold by a finite
group action. Using orbifolds, we derive an intrinsic metric that enables us to
adopt concepts such as the derivative and gradient. Since the intrinsic metric

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 109–118, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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of a graph orbifold is generalized differentiable, we can apply local gradient in-
formation for adapting graph prototypes almost everywhere. At this point, it
is important to note that the intrinsic metric is not an artificial construction
for analytical purposes but rather a common choice of graph distance metric
in a number of applications [1,2,3,5,19,21]. Experiments on three data sets of
the IAM graph database [15] show that the proposed LGQ approach returns
state-of-the-art results.

The approach presented in this contribution can be applied to finite com-
binatorial structures other than graphs such as, for example, point patterns,
sequences, trees, and hypergraphs. For the sake of concreteness, we restrict our
attention exclusively to the domain of graphs. For graphs consisting of a single
vertex with feature vectors as attributes, the proposed learning graph quantiza-
tion (LGQ) reduces to LVQ.

This paper is organized as follows. Section 2 represents graphs as point in
some orbifold. Section 3 extends LVQ to LGQ. In Section 4, we present and
discuss experiments. Finally, Section 5 concludes.

2 Graph Orbifolds

Crucial for designing pattern classification algorithms is an appropriate repre-
sentation of the data space. We suggest to represent attributed graphs as points
in some graph orbifold. A graph orbifold is the simplest form of a Riemannian
orbifold. For proofs of the statements in this section we refer to [10].

2.1 Representation of Attributed Graphs

Let E = Rd be a Euclidean space. An attributed graph is a triple X = (V,E, α)
consisting of a set V of vertices, a set E ⊆ V × V of edges, and an attribute
function α : V × V → E, such that α(i, j) �= 0 for each edge and α(i, j) = 0 for
each non-edge. Attributes α(i, i) of vertices i may take any value from E.

For simplifying the mathematical treatment, we assume that all graphs are
of order n, where n is chosen sufficiently large. Graphs of order less than n, say
m < n, can be extended to order n by including isolated vertices with attribute
zero. For practical issues, it is important to note that limiting the maximum order
to some arbitrarily large number n and extending smaller graphs to graphs of
order n are purely technical assumptions to simplify mathematics. For pattern
recognition problems, these limitations should have no practical impact, because
neither the bound n needs to be specified explicitly nor an extension of all graphs
to an identical order needs to be performed. When applying the theory, all we
actually require is that the graphs are finite.

A graph X is completely specified by its matrix representation X = (xij)
with elements xij = α(i, j) for all 1 ≤ i, j ≤ n. By concatenating the columns of
X, we obtain a vector representation x of X .

Let X = En×n be the Euclidean space of all (n × n)-matrices with elements
from E and let T denote a subgroup of all (n × n)-permutation matrices. Two



Learning Graph Quantization 111

matrices X,X ′ ∈ X are said to be equivalent, if there is a permutation matrix
P ∈ T such that P TXP = X′. The quotient set

XT = X/T = {[X] : X ∈ X}

consisting of all equivalence classes [X] is a graph orbifold over the representation
space X . Its orbifold chart is the surjective continuous mapping

π : X → XT , X �→ [X]

that projects each point X to its orbit [X]. A graph orbifold is the simplest
form of a so called Riemannian orbifold.

In the following, we identify X with EN (N = n2) and consider vector- rather
than matrix representations of abstract graphs. We use capital letters X,Y, Z, . . .
to denote graphs from XT and write x ∈ X if x is a vector representation that
projects to X (i.e. if π(x) = X). Since E is Euclidean so is X . By ‖·‖ we denote
the Euclidean norm defined on X .

2.2 Generalized Differentiable Graph Metric

Next, we introduce and analyze an intrinsic metric structure on graph orbifolds.
For graphs with discrete attributes the intrinsic metric is related to the concept
of maximum common subgraph.

The Graph Metric. We consider graph metrics of the form

d(X,Y ) = min
{
‖x− y‖2 : x ∈ X,y ∈ Y

}
.

A pair x,y ∈ X×Y is an optimal alignment if d(X,Y ) = ‖x− y‖2. By A(X,Y )
we denote the set of all optimal alignments of X and Y .

Since T is a group, we have

dX(Y ) = min
{
‖x− y‖2 : y ∈ Y

}
= d(X,Y ),

where x ∈ X is an arbitrary vector representation. Hence, the graph distance
d(X,Y ) can be determined by fixing an arbitrary vector representation x ∈ X
and then finding a vector representation y∗ ∈ Y that minimizes ‖x− y‖ 2 over
all vector representations y ∈ Y . Note that we also have dX(Y ) = d(Y,X) by
symmetry.

Generalized Differentiability. The lift d̃X of the parametrized graph distance
function dX is defined by

d̃X : X → R, y �→ min
{
‖x− y′‖2 : y′ ∈ Y

}
.

where x ∈ X is an arbitrary vector representation. Certainly, the lift d̃X satisfies
d̃X = dX ◦π and is invariant under group actions of T , that is d̃X(y) = d̃X (γ(y))
for all γ ∈ T .
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By lifting the distance function dX to the Euclidean space X , we are in the
position to transfer analytical concepts such as differentiability and gradients
to functions on graph orbifolds. We say, the function dX is continuous (locally
Lipschitz, differentiable, generalized differentiable) at point Y ∈ XT if its lift
d̃X is continuous (locally Lipschitz, differentiable, generalized differentiable) at
some vector representation y ∈ Y .1 This definition is independent of the choice
of vector representations that project to X and Y .

As a minimizer of a set of continuously differentiable distance functions, the
function dX is generalized differentiable at any point Y . Though dX is not dif-
ferentiable, it is locally Lipschitz and therefore differentiable almost everywhere.

Gradients. Suppose that dX is differentiable at Y and let x ∈ X be arbitrary.
Then the lift d̃X is differentiable at any vector representation that projects to
Y . The gradient ∇d̃X(y) of d̃X at y is of the form

∇d̃X(y) = −2(x− y∗)

where (x,y∗) ∈ A(X,Y ) is an optimal alignment. Since dX is differentiable at
Y , the optimal alignment (x,y∗) is unique. From

∇d̃X(γ(y)) = γ
(
∇d̃X(y)

)
for all γ ∈ T follows that the gradients of d̃X at y and γ(y) are vector repre-
sentations of the same graph. Hence, at differentiable points Y , the gradient of
dX(Y ) at Y is defined by the projection

∇dX(Y ) = π
(
∇d̃X(y)

)
of the gradient ∇d̃X(y) at vector representation y ∈ Y . Thus, the gradient of
dX at Y is a well-defined graph pointing to the direction of steepest ascent.

Generalized Gradients. Now suppose that dX is generalized differentiable at
Y . Then the lift d̃X is generalized differentiable at any vector representation that
projects to Y . The subdifferential ∂d̃X(y) of d̃X at y is a convex set containing

−2(x− y∗) ∈ ∂d̃X(y)

as generalized gradient, where (x,y∗) ∈ A(X,Y ) is an optimal alignment. From

∂d̃X(γ(y)) = γ
(
∂d̃X(y)

)
for all γ ∈ T follows that the subderivatives of d̃X at y and γ(y) project to
the same subset of graphs. Hence, at generalized differentiable points Y , the
subderivative of dX(Y ) at Y is defined by the projection

∂dX(Y ) = π
(
∂d̃X(y)

)
1 Appendix A defines generalized differentiable functions.
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of the subderivative ∇d̃X(y) at an arbitrary vector representation y ∈ Y . Thus,
the subderivative of dX at Y is well-defined and coincides with the gradient at
differentiable points, that is ∂dX(Y ) = {∇dX(Y )}.

3 Learning Graph Quantization

The task of Learning Graph Quantization (LGQ) is to construct a classifier
c : XT → C that maps graphs from XT to class labels from a finite set C. The
classifiers are parameterized by a set of k prototypes Y1, . . . , Yk ∈ XT with class
labels c1, . . . , ck ∈ C. We predict the class label c(X) of a new graph X ∈ XT by
assigning it to the class label of the closest prototype according to the nearest
neighbor rule. The goal of learning is to find a set of k prototypes that best
predicts the class labels of graphs from XT . In the following, we extend LVQ
and LVQ2.1 to the domain of graph orbifolds.

3.1 LGQ

Suppose that S = {(Xi, yi)} n
i=1 ⊆ XT × C is a training set consisting of n

input graphs Xi ∈ XT together with class labels yi ∈ C. The algorithm first
chooses k prototypes Y = {(Yj , cj)} k

j=1 such that each class is represented by at
least one prototype. Next, during adaption, the algorithm randomly choses an
example (X, y) ∈ S from the training set and modifies the closest prototype YX

in accordance with the current example. The input graph X attracts its closest
prototype YX if the class labels y of X and cX of YX agree. Otherwise, if the
class labels differ, the input X repels the closest prototype YX . To determine
the closest prototype, LGQ applies the nearest neighbor rule

YX = arg min
Y ∈Y

{d(X,Y )} .

To update the closest prototype YX , the algorithm fist selects an optimal align-
ment (x,yx) ∈ A(X,Y ). Then it applies the standard LVQ update rule

yx ←
{
yx + η(x− yx) : y = cx

yx − η(x− yx) : y �= cx
,

where η is a monotonically decreasing learning rate following the guidelines of
stochastic optimization. The updated vector representation projects to the up-
dated graph prototype. This process continues until the procedure satisfies a
termination criterion. Algorithm 1 summarizes the LGQ procedure.

3.2 LGQ2.1

In contrast to LGQ the LGQ2.1 procedure updates the two closest prototypes Y 1
X

and Y 2
X in accordance to the current training example (X, y) ∈ S. The algorithm

adapts the prototypes Y 1
X and Y 2

X if the following conditions hold:
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Algorithm 1. Learning Graph Quantization

Input:
training set S = {(X1, y1), . . . , (Xn, yn)} ⊆ XT × C

Procedure:

1. choose initial prototypes Y = {(Y1, c1), . . . , (Yk, ck)} ⊆ XT × C
2. choose vector representations y1 ∈ Y1, . . . , yk ∈ Yk

3. repeat until termination

3.1. randomly select a training example (X, y) ∈ S
3.2. let YX = arg minY ∈Y d(X, Y )

3.3 choose optimal alignment (x, yx) ∈ A(X, YX)

3.4. determine learning rate η > 0

3.5. update according to the rule

yx ←
{
yx + η (x− yx) : if y = cX

yx − η (x− yx) : if y �= cX

Return: set Y of prototypes

1. Exactly one of both prototypes Y 1
X and Y 2

X has the same class label as X
2. The input graph X falls in a window around the decision border defined by

d
(
X,Y 2

X

)
d (X,Y 1

X)
>

1 − w

1 + w
,

where w is the relative width of the window.

For each prototype LGQ2.1 uses the same update rule as LGQ.

4 Experiments

To assess the performance of the proposed LGQ algorithms, we conducted first
experiments.

4.1 Data

We selected four data sets described in [15]. Each data set is divided into a
training, validation, and a test set. The description of the data sets are mainly
excerpts from [15]. Table 1 provides a summary of the main characteristics of
the data sets.

Letter Graphs (high distortion level). The letter data set compiles distorted letter
drawings from the Roman alphabet that consist of straight lines only (A, E, F,
H, I, K, L, M, N, T, V, W, X, Y, Z). The graphs are uniformly distributed over
the 15 classes (letters). The letter drawings are obtained by distorting prototype
letters at high distortion level. Lines of a letter are represented by edges and
ending points of lines by vertices. Each vertex is labeled with a two-dimensional
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Table 1. Summary of main characteristics of the data sets

data set #(graphs) #(classes) avg(nodes) max(nodes) avg(edges) max(edges)

letter 750 15 4.7 8 3.1 6

grec 528 22 11.5 24 11.9 29

fingerprint 900 3 8.3 26 14.1 48

vector giving the position of its end point relative to a reference coordinate
system. Edges are labeled with weight 1.

GREC Graphs. This data set [4] consists of graphs representing symbols from
architectural and electronic drawings. The images occur at five different distor-
tion levels. Depending on the distortion level, either erosion, dilation, or other
morphological operations are applied. The result is thinned to obtain lines of
one pixel width. Finally, graphs are extracted from the resulting denoised im-
ages by tracing the lines from end to end and detecting intersections as well
as corners. Ending points, corners, intersections and circles are represented by
vertices and labeled with a two-dimensional attribute giving their position. The
vertices are connected by undirected edges which are labeled as line or arc. An
additional attribute specifies the angle with respect to the horizontal direction
or the diameter in case of arcs.

Fingerprint Graphs. This data set represents fingerprint images of the NIST-4
database [20] from four classes arch, left, right, and whorl. Fingerprint images
are converted into graphs by filtering the images and extracting regions that are
relevant [13]. Relevant regions are binarized and a noise removal and thinning
procedure is applied. This results in a skeletonized representation of the ex-
tracted regions. Ending points and bifurcation points of the skeletonized regions
are represented by vertices. Additional vertices are inserted in regular intervals
between ending points and bifurcation points. Finally, undirected edges are in-
serted to link vertices that are directly connected through a ridge in the skeleton.
Each vertex is labeled with a two-dimensional attribute giving its position. Edges
are attributed with an angle denoting the orientation of the edge with respect
to the horizontal direction.

4.2 Experimental Setup

Setting of LGQ. We initialized the prototypes in a class-wise manner as follows:
For every class, we applied the k-means algorithm for graphs proposed by [10].
To set the number k and initialize the clusters, we partitioned the graphs ac-
cording to their number of vertices. Each cell of the partition forms a cluster, if
it contains at least m graphs. The number m was optimized with respect to the
validation set. After applying k-means, we used the resulting cluster centers as
initial prototypes of the LGQ algorithms.

We terminated both algorithms after maxt = 100 cycles through the training
set. The learning rate was annealed according to ηt = 0.01 · (1− t/maxt), where
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0 ≤ t refers to the t-th cycle. For LGQ2.1 the window width was set to 0.1 for
the letter and GREC data set and to 0.2 for the fingerprint data set.

Graph Distance Calculations and Optimal Alignment. For graph distance cal-
culations and finding optimal alignments, we applied the graduated assignment
algorithm [5]. This algorithm returns an approximate double-stochastic match
matrix. We applied Munkres algorithm to convert the match matrix to a permu-
tation sub-matrix. Using the permutation sub-matrix, we aligned the first graph
towards the second.

Protocol. Both LGQ algorithms have been applied to the training set of each
data set 10 times. To assess the generalization performance on the test sets,
we have chosen the model that best predicts the class labels on the respective
validation set. We compared the LGQ algorithms with the kNN method [15],
the similarity kernel in conjunction with the SVM (SK+SVM) and the family of
Lipschitz embeddings in conjunction with SVM (LE+SVM) proposed by [16] as
well as the topological embedding approach based on the signature of a graph
(TESG) proposed by [17].

4.3 Results

Table 2 summarizes the results. For TESG no results on letter (high) and finger-
print have been reported. Since LE+SVM refers to a family of related methods
rather than a single method, Table 2 presents the best result over all methods
of the LE+SVM family for each data set. In doing so, the comparison is biased
towards LE+SVM.

The first observation to be made is that LGQ2.1 performs slightly superior
than LGQ. Thus, as for feature vectors, pairwise adjustments of two prototypes
belonging to different classes apparently better approximates the Bayes rule
whereas LGQ tends to repel prototypes from Bayes decision surfaces in the
graph space. The second observation to be made is that LGQ2.1 is comparable
with the family of LE+SVM methods on GREC and fingerprint. Performance
of LE+SVM family is, however, clearly superior on the letter data set.

As the results indicate, classifiers that directly operate in the domain of graphs
can perform comparable to methods that embed graphs into vector spaces in
order to apply state-of-the-art machine learning methods. An advantage of LVQ
is its simplicity and efficiency. A simple initialization heuristic is sufficient to

Table 2. Classification accuracy (in %) of LGQ and LGQ2.1

Letter GREC Fingerprint

kNN 90.0 95.5 77.6

SK+SVM 79.1 94.9 41.0

LE+SVM 92.5 96.8 82.8

TE nil 95.8 nil

LGQ 80.9 94.7 79.2

LGQ2.1 83.7 97.3 82.2
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learn a relatively small number of prototypes, which, in addition, can be used
to extract information about characteristic structural properties of a class.

5 Conclusion

Learning graph quantization generalizes LVQ by identifying attributed graphs
with points in some Riemannian orbifold. The intrinsic metric of this orbifold
turns out to be a generalized differentiable graph metric, which is widely used in
a number of applications. The final step, to extend the update rule of LVQ for
generalized differentiable distance function is straightforward and can be applied
for distance spaces other than graphs. Despite its simplicity LGQ and LGQ2.1
performed comparable to state-of-the-art methods. The promising results sug-
gest to extend generalized LVQ and soft LVQ to the domain of graphs.

A Generalized Differentiable Functions

Let X = Rn be a finite-dimensional Euclidean space. A function f : X → R
is generalized differentiable at x ∈ X in the sense of Norkin [14] if there is a
multi-valued map ∂f : X → 2X in a neighborhood of x such that

1. ∂f(x) is a convex and compact set;
2. ∂f(x) is upper semicontinuous at x, that is, if yi → x and gi ∈ ∂f(yi) for

each i ∈ N, then each accumulation point g of (gi) is in ∂f(x);
3. for each y ∈ X and any g ∈ ∂f(y) holds f(y) = f(x)+〈g,y − x〉+o (x,y, g),

where the remainder o (x,y, g) satisfies the condition

lim
i→∞

|o (x,yi, gi)|
‖yi − x‖

= 0

for all sequences yi → y and gi ∈ ∂f (yi).

We call f generalized differentiable if it is generalized differentiable at each point
x ∈ X . The set ∂f(x) is the subdifferential of f at x and its elements are called
generalized gradients.

Generalized differentiable functions have the following properties [14]: 1. Gen-
eralized differentiable functions are locally Lipschitz and therefore continuous
and differentiable almost everywhere. 2. Continuously differentiable, convex, and
concave functions are generalized differentiable. 3. Suppose that f1, . . . , fn : X →
R are generalized differentiable at x ∈ X . Then

f∗(x) = min(f1(x), . . . , fm(x)) and f∗(x) = max(f1(x), . . . , fm(x))

are generalized differentiable at x ∈ X . 4. Suppose that f1, . . . , fm : X → R
are generalized differentiable at x ∈ X and f0 : Rm → R is generalized differ-
entiable at y = (f1(x), . . . , fm(x)) ∈ Rm. Then f(x) = f0(f1(x), . . . , fm(x)) is
generalized differentiable at x ∈ X . The subdifferential of f at x is of the form

∂f(x)=con
{
g ∈ X : g=

[
g1g2 . . . gm

]
g0, g0 ∈ ∂f0(y), gi ∈ ∂fi(x), 1 ≤ i ≤ m

}
.
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where [g1g2 . . . gm] is a (N × m)-matrix. 5. Suppose that F (x) = Ez [f(x, z)],
where f(·, z) is generalized differentiable. Then F is generalized differentiable
and its subdifferential at x ∈ X is of the form ∂F (x) = Ez [∂f(x, z)].
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Abstract. In this work we evaluate purely structural graph measures for 3D ob-
ject classification. We extract spectral features from different Reeb graph
representations and successfully deal with a multi-class problem. We use an
information-theoretic filter for feature selection. We show experimentally that a
small change in the order of selection has a significant impact on the classification
performance and we study the impact of the precision of the selection criterion.
A detailed analysis of the feature participation during the selection process helps
us to draw conclusions about which spectral features are most important for the
classification problem.

1 Introduction

Although feature selection (FS) plays a fundamental role in pattern classification [1],
there are few studies about this topic in structured patterns, mainly when graphs are not
attributed (pure structure). One exception is the work of Luo et al. [2] where different
spectral features are investigated, but for embedding purposes. Regarding application
areas, graph-based descriptors have been used for 3D object retrieval and classification.
In this paper we study Reeb graphs [3] obtained from different functions. What is the
role of each function? What is the role of each spectral feature, beyond the ones stud-
ied so far? Answering these questions, through an information-theoretic [4] method,
is the main contribution of this paper. Not less important is the successful multi-class
classification of unattributed graphs, using only structural information.

2 Reeb Graphs

Given a surface S and a real function f : S → R, the Reeb graph (RG) [5] rep-
resents the topology of S through a graph structure whose nodes correspond to the
critical points of f . When f is differentiable, the critical points are located in corre-
spondence of topological changes of S, such as birth, join, split and death of connected
components of the surface. Hence, RGs describe the global topological structure of S,
while also coding local features identified by f . RGs are becoming popular in several
application domains including shape comparison, segmentation and visualisation. A de-
tailed overview of mathematical properties, computational techniques and applications
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Fig. 1. Left: Extended Reeb graphs. Right: some samples of the 3D shapes database [9].

of Reeb graphs is presented in [6]. The graph representation we adopt in this paper
is the Extended Reeb Graph (ERG) proposed in [7,3] for triangle meshes representing
closed surfaces embedded in R3. The salient feature of ERG is the approximation of
the RG by using a fixed number of level sets (63 in this paper) that divide the surface
into a set of regions; critical regions, rather than critical points, are identified according
to the behaviour of f along level sets; ERG nodes correspond to critical regions, while
the arcs are detected by tracking the evolution of level sets.

The most interesting aspect of RGs is their parametric nature. By changing f , we
have different descriptions of the same surface S that highlight different shape proper-
ties. Here we choose three alternative scalar functions f , namely the integral geodesic
distance defined in [8] and the two distance functions f(p) = ||p − b||2, with b the
center of mass and the center of the sphere circumscribing the triangle mesh respec-
tively. Fig. 1 exemplifies our three ERG representations on a hand model, namely a)
using geodesic distance [8], b) the distance from the mass center, and c) from the center
of the circumscribing sphere (Fig. 1-left).

3 Features from Graph Spectra

The design of the feature extraction process is the most important part in a subse-
quent classification task. Concerning the characterization of a graph G = (V,E), the
degree distribution is a major source of statistical information. For instance, testing
whether a graph is scale-free or not is posed in terms of checking whether its de-
gree distribution follows the power law [10]. A more elaborate feature is the subgraph
node centrality [11], which quantifies the degree of participation of a node i in struc-
tural subgraphs. It is defined in terms of the spectrum of the adjacency matrix A, i.e.
CS(i) =

∑n
k=1 φk(i)2eλk , where n = |V |, λk the k-th eigenvalue of A and φk its cor-

responding eigenvector. In this regard, φn (the eigenvector corresponding to the largest
eigenvalue) is the so called Perron-Frobenius eigenvector. The components of the lat-
ter vector denote the degree of importance of each node in a connected component and
they are closely related to subgraph centrality [11]. Furthermore, the magnitudes |φk|
of the (leading) eigenvalues of A have been been experimentally validated for graph
embedding [2]. Besides the study of the adjacency matrix, it is also interesting to ex-
ploit the spectrum of the Laplacian L = D − A or the spectrum of the normalized
Laplacian L = D−1/2LD−1/2, where D is the diagonal degree matrix. These spec-
tra encode significant structural information. For instance, λ2 ≤ n/(n − 1) , n ≥ 2;
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in addition, the multiplicity of the trivial eigenvalue yields the number of connected
components. in the case of L we have λk ≤ 2, 2 ≤ k ≤ n, and the Laplacian
spectrum plays a fundamental role in the design of regularization graph kernels. Such
kernels encode a family of dissimilarity measures between the nodes of the graph. Re-
garding the eigenvectors of the Laplacian, the Friedler vector, that is, the eigenvec-
tor corresponding to the first non-trivial eigenvalue, φ2 in connected graphs, encodes
the connectivity structure of the graph (actually its analysis is the core of graph-cuts
methods) and it is related to the Cheeger constant. In addition, both the eigenvectors
and eigenvalues of the Laplacian are key to defining a metric between the nodes of
the graph, namely the commute time, CT (i, j). It is the average time taken by a ran-
dom walk starting at i to reach j and then returning. If we use the un-normalized
Laplacian, we have that CT (i, j) = vol

∑n
k=2(1/λk)(φk(i) − φk(j))2, where vol is

the volume of the graph, that is, the trace of D. In the normalized case CT (i, j) =
vol
∑n

k=2(1/λk)(φk(i)/
√

di − φk(j)/
√

dj)2, where di and dj are the degrees of i
and j respectively. Since the commute time is a metric, and because of its utility for
graph embedding [12], the path-length structure of the graph is partially encoded. Fi-
nally, considering diffusion kernels on graphs, which belong to the family of regular-
ization kernels, the analysis of the diffusion process itself yields a valuable source of
information concerning the structure of the graph. A recent characterization of the dif-
fusion process is the the flow complexity trace [13], a fast version of polytopal complex-
ity [14]. The complexity trace encodes the amount of heat flowing through the edges
of G for a set of inverse temperatures β: from β = 0 (no flow) to β →∞ (flow equal
to 2|E|) there is a phase-transition point. More precisely, the instantaneous flow for a
given β is F (G;β) =

∑n
i=1

∑n
j �=i Aij(

∑n
k=1 φk(i)φk(j)e−βλk) and the trace

element for this inverse temperature is the instantaneous complexity C(G;β) =
log2(1 + F (G;β)) − log2(n) where the final term is for the purpose of size
normalization.

4 Feature Selection

4.1 Mutual Information Criterion

In filter feature selection methods, the criterion for selecting or discarding features does
not depend on any classifier. We estimate the mutual information (MI) between the fea-
tures set and the class label, provided that we tackle a supervised classification problem:
I(S;C) = H(S) −H(S|C). Here S is a matrix of size m× n and C of size m × 1
where m is the number of samples and n the number of features of the feature subset.
Traditionally the MI has been evaluated between a single feature and the class label.
Here we calculate the MI using the entire set of features to select. This is an important
advantage in FS, as the interactions between features are also taken into account [1].
The entropies H(·) of a set with a large n number of features can be efficiently esti-
mated using the k-NN-based method developed by Leonenko [15]. Thus, we take the
data set with all its features and determine which feature to discard in order to produce
the smallest decrease of I(Sn−1;C). We then repeat the process for the features of
the remaining feature set, until only one feature is left. A similar information-theoretic
selection approach is described in detail in [16]. They use minimal spanning trees for
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entropy estimation, while in this work we use the method of Leonenko which is simpler
and allows us to vary the precision of the estimation by using the Approximate Nearest
Neighbours algorithm [17].

4.2 Entropy Estimation

A simple way to understand the k-NN entropy estimation proposed by Leonenko [15] is
to look at the Shannon entropy formula H(X) = −

∫
f(x) log f(x)dx, as an average

of log f(x), being f(x) an existing pdf. The estimation of ̂log f(x) would allow the

estimation of Ĥ(X) = −N−1
∑N

i=1
̂log f(x). For this purpose the probability distri-

bution Pk(ε) of the distance between a sample xi and its k-NN is considered. If a ball
of diameter ε is centered at xi and there is a point within distance ε/2, then there are
k − 1 other points closer to xi and N − k − 1 points farther from it. The probability of
this to happen is Pk(ε)dε = k

(
N−1

k

)dpi(ε)
dε pk−1

i (1− pi)N−k−1 being pi the mass of the
ε-ball and pi(ε) =

∫
||ξ−xi||<ε/2

f(ξ)dξ.

The expectation of of log pi(ε) is E(log pi) =
∫∞
0 Pk(ε) log pi(ε)dε that is =

k
(
N−1

k

) ∫ 1

0 pk−1(1 − p)N−k−1 log p · dp = ψ(k) − ψ(N), where ψ(·) is the well-
known digamma function. If assumed that f(x) is constant in the entire ε-ball, then
the approximation pi(ε) ≈ Vd

2d εdμ(xi) can be formulated. Here d is the dimension and

Vd is the volume of the unit ball B(0, 1), defined as Vd = π
d
2

Γ ( d
2 +1)

. From the previ-

ous approximation and using the expectation of log pi(ε), we have the approximation
log f(ε) ≈ ψ(k) − ψ(N) − dE(log ε)− log Vd

2d , and finally,

Ĥ(X) = −ψ(k) + ψ(N) + log
Vd

2d
+

d

N

N∑
i=1

log εi (1)

is the estimation of H(X), where εi = 2||xi − xj || is twice the distance between the
sample xi and its k-NN xj . It is suggested that the error for Gaussian and uniform
distributions is ∼ k/N or ∼ k/N log(N/k).

4.3 Experimental Setup

In this work each sample is originally a 3D object represented by a triangle mesh. From
each 3D object, three types of graphs (Sec. 2) are extracted (labeled in the figures as
a) Sphere, b) Baricenter and c) Geodesic). Only the structural graph information is
used for classification. For each graph, 9 different measures (listed in the area plots in
Fig. 4) are calculated, as described in Sec. 3. They are transformed into histograms after
normalizing them by the volume of the graph. Commute time is normalized twice, 1)
linearly and 2) quadratically. Histograms are used in order to characterize the graph
without dependence on the number and order of nodes. Only the complexity flow curve
is not histogrammed, for the sake of order preservation. Since there is no optimal way
to select the number of bins, we perform several different binnings on each measure (2,
4, 6 and 8 bins). All histograms form a bag of features, of size 9 · 3 · 20 = 540 features
(see Fig. 2). We let the FS process decide which binning from which measure and from
which graph to discard.
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Fig. 2. The process of extracting from the 3D object the three graph representations, unattributed
graph features, histogram bins, and finally selecting the features

5 Results and Discussion

The experiments are performed on the pre-classified 3D shapes database [9]. It consists
of 15 classes× 20 objects. Each one of the 300 samples is characterized by 540 features,
and has a class label l ∈ {human, cup, glasses, airplane, chair, octopus, table, hand,
fish, bird, spring, armadillo, buste, mechanic, four-leg}; see Fig. 1-right.

5.1 Classification Error

The errors are measured by 10-fold cross validation (10-fold CV). In Fig. 3 we show
how MI is maximized as the number of selected features grows, and its relation to the
decrease in error. The figure shows how a high number of features degrades the clas-
sification performance. For the 15-class problem, the optimal error (23, 3) is achieved
with a set of 222 features. This error is lower for 10 classes (15, 5%), 5 classes (6%)
and 2 classes problems (0%). These results depend on the classifier used for measuring
the error. However the MI curve, as well as the selected features, do not depend on the
classifier, as it is a purely information-theoretic measure.

5.2 Features Analysis

Several different unattributed graph measures are used in this work. We aim to deter-
mine which measures are most important and in which combinations. In Fig. 4-left we
show the evolution of the proportion of selected features. The coloured areas in the plot
represent how much a feature is used with respect to the remaining ones (the height on
the Y axis is arbitrary). For the 15-class experiment, in the feature sets smaller than 100
features, the most important is the Friedler vector, in combination with the remaining
features. Commute time is also an important feature. Some features that are not rele-
vant are the node centrality and the complexity flow. Turning our attention to the graphs
type, all three appear relevant. In Fig. 4-right we show the proportion of features se-
lected for the 222-feature set, which yielded the lowest error in our experiments. (The
dashed vertical line in Fig. 4-left also shows the 222-feature set) In the plot representing
the selected binnings we can see that the four different binnings of the features do have
importance for graph characterization.
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Fig. 4. Feature selection on the 15-class experiment (left) and the feature statistics for the best-
error feature set (right)

These conclusions concerning the relevance of each feature cannot be drawn without
performing some additional experiments with different groups of graph classes. For
this purpose in Fig. 5 we present four different 3-class experiments. The classes share
some structural similarities, for example the 3 classes of the first experiment have a
head and limbs. Although in each experiment the minimum error is achieved with very
different numbers of features, the participation of each feature is highly consistent with
the 15-class experiment. The Friedler vector is always the most important for feature
sets smaller than 100. On the other hand, the commute time measure is not important
for feature sets smaller than 20, but then it becomes as important as the Friedler vector.
The main difference among experiments (Fig. 5) is that node centrality seems to be
more important for discerning among elongated sharp objects. Although all three graph
types are relevant, the sphere graph performs best for blob-shaped objects.

5.3 The Impact of Feature Selection

In Fig. 3 it is obvious that, if the number of features used for classification is too low,
the error is higher, and on the other hand if the number of features is too high, the
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Fig. 5. Feature Selection on 3-class experiments: Human/Armadillo/Four-legged, Air-
craft/Fish/Bird, Cup/Bust/Mechanic, Chair/Octopus/Table

error could also rise. However this depends on the order of features are added. In this
work we use mutual information as the evaluation criterion because it is related to the
minimization of the Bayesian error. What would happen if a worse criterion is used? To
what extent the precision of the mutual information estimation is important? What is its
impact on the final classification error?

Following we present some experiments which answer these questions. All of them
refer to the 15-classes experiment. In order to vary the precision of the mutual infor-
mation criterion we change the error bound ε of the ANN algorithm which is used for
entropy estimation. ANN builds a kd-tree structure, whose cells are visited in increas-
ing order of distance from the query point. A stop condition of the search algorithm
occurs when the distance is closer than an error bound ε. This premature stop can save
computational time, as shown in Fig. 6-right. It also causes a decrease in the precision
of the k-NN computation. Thus, the entropy estimation, and so, the mutual information
estimations, are degraded. To what extent? This is shown in Fig. 6-left. It is interesting
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to see that the error bound ε = 0 yields significantly better feature selection results, in
terms of 10-fold Cross Validation error. Also, the increment of the error bound is not
linear with respect to the increment of the 10-fold CV error.

The differences in the classification performance are due to small differences in the
feature sets. For example, the difference among the feature sets yielded by ε = 0 and
ε = 1 are significant (see Fig. 7,-top-left). Then, before the error bound ε arrives the 0.5
value, the feature sets remain very similar. Other significant changes in the feature sets
are plotted in Fig. 7. Each one of the figures compares two different feature selection
processes, as a consequence of different ε values. The first process is represented as a
coloured area plot, and the second one is represented with black solid lines.
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Fig. 6. Left: the 10-fold CV errors yielded by several feature selection runs, with different ANN
error bound values (ε). Right-top: the milliseconds it takes (on a 1.6GHz Intel Centrino processor
and DDR2 RAM) to evaluate the mutual information between the 300 samples with 540 fea-
tures, and the 15 class labels. Right-bottom: the minimal errors achieved in the 15-class feature
selection, for different Error bound (ε) values.

The most important differences are observed in the early stage of feature selection
(before the first 200 features are selected). After that, the proportion among the different
features selected converges, because there are no more features left for selecting. It is
the early stage of the selection process which strongly conditions the maximum error
which could be achieved, as shown in Fig. 6-left: a good run (ε = 0) yields an error plot
which decreases to 23, 3%, and after that increases to 37, 33%. A run which yields poor
results is the case of ε = 0.5, for instance. In this case the error decreases progressively
until achieving 37, 33%, but none of the feature subsets produces a lower error.

It is also worth observing that the node centrality and the Friedler vector features
are always important in the beginning of the process, disregarding the precision of the
feature selection criterion. Shortly after the beginning, commute times start to play an
important role. Regarding the Reeb graph types, most of the features are selected from
the “sphere graph” type.
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Fig. 7. Four feature selection comparisons of different pairs of ε values. The first feature selection
process is represented as a coloured area plot, while the second one is plotted with black solid
lines.

6 Conclusions

The contributions of this work to graph classification are twofold. Firstly, it demon-
strates the feasibility of multi-class classification based on purely structural spectral
features. Secondly, an information-theoretic feature analysis suggests that similar fea-
tures are selected for very different sets of objects. Moreover, the feature selection ex-
periments show that even if the precision of the selection criterion is degraded, the most
important features are still the same.

On the other hand this paper demonstrates some important effects of feature selec-
tion. In the first place we prove that the precision of the mutual information estimation
has a great impact on the final classification performance. The same experiments show
how very small changes in the order of the selected features can also affect the classifi-
cation result. Working with the maximum precision available is key to minimizing the
classification error.

As future work we consider using attributed and directed graphs for improving clas-
sification accuracy. We also find it necessary to use a wider range of graph features, as
well as other kinds of graph extraction methods.
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Abstract. In this paper, we propose to solve multiple instance learning

problems using a dissimilarity representation of the objects. Once the

dissimilarity space has been constructed, the problem is turned into a

standard supervised learning problem that can be solved with a general

purpose supervised classifier. This approach is less restrictive than kernel-

based approaches and therefore allows for the usage of a wider range of

proximity measures. Two conceptually different types of dissimilarity

measures are considered: one based on point set distance measures and

one based on the earth movers distance between distributions of within-

and between set point distances, thereby taking relations within and be-

tween sets into account. Experiments on five publicly available data sets

show competitive performance in terms of classification accuracy com-

pared to previously published results.

Keywords: dissimilarity representation, multiple instance learning, bag

dissimilarity measure.

1 Introduction

In multiple instance learning (MIL), complex objects are represented by sets of
“sub-objects” where only the sets have an associated label, not the sub-objects.
Following MIL terminology, the sets are termed bags and the sub-objects are
termed instances. This kind of problem might, e.g., arise in medical image clas-
sification where a subject is known to suffer from a certain disease, but it is
not clear exactly which regions in the associated medical image that contain the
corresponding pathology. In this case, local image patches are the instances, the
whole image is the bag, and the label of the bag is either ill or healthy.

The traditional approach to solving MIL problems involves explicit learning
of a decision boundary in instance space that separates the instances capturing
the concept from the remaining instances [1,2]. A bag is then classified based
on whether it contains an instance falling in this area. An alternative instance
space approach involves labeling all instances with the same label as the bag
they belong to. The problem is then treated as a standard supervised learning

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 129–138, 2010.
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problem where all instances are classified in instance space, ultimately disregard-
ing the multiple instance aspect of the original problem, and a bag is classified
by combining the individual instance classifications in that bag [3].

The above mentioned approaches treat instances in the same bag indepen-
dently in the learning step thereby disregarding potentially useful information.
In some MIL problems, instances from the same bag collectively constitute that
bag and should as such all contribute to the classification of that bag. Several
authors have looked into using this information by applying learning at bag level
with kernel-based methods. To name a few: Andrews et al. reformulated a sup-
port vector machine (SVM) optimization problem to operate directly on MIL
problems at bag level [4]. Gärtner et al., Tao et al., and Zhou et al. designed
specialized kernels for MIL problems and used standard SVMs with these kernels
[5,6,7]. Chen et al. represented bags in an n-dimensional space where each di-
mension was the similarity between one of the n instances in the training set and
the closest instance in a bag. Then a 1-norm SVM was used to simultaneously
select the relevant features, or instances, and train a bag classifier [8].

In this paper, we propose to use the dissimilarity representation approach
to learning [9] for solving MIL problems at the bag level. Once the bag dis-
similarity space has been constructed, the problem is turned into a standard
supervised learning problem that can be solved with a general purpose super-
vised classifier. This is a proximity-based approach as are kernel-based methods,
however, the dissimilarity representation approach does not require Mercer ker-
nels as do kernel-based methods. A broader range of proximity measures, such as
well known measures in pattern recognition like the Hausdorff distance and the
single linkage distance, can therefore be used for solving MIL problems with this
approach. We further propose, not only to consider all instances collectively in
bag classification, but also to consider the relations among the instances within
and between bags. This is similar in spirit to [7] where graphs capturing in-
stance relations were constructed and used in a SVM with a graph kernel [5]. A
novel non-Mercer bag dissimilarity measure that is based on the earth movers
distance (EMD) between instance distance distributions is proposed for this
purpose. Compared to the graph kernel approach used in [7], the proposed bag
dissimilarity measure is less rigid since distributions of instance distances are
considered instead.

Dissimilarity-based learning has previously been applied in MIL. Wang and
Zucker applied the k nearest neighbor (kNN) classifier to MIL problems by
using the Hausdorff distance between the instances in two bags as the distance
between these bags [10]. They showed that this was not sufficient to get good
performance on the classical MIL data sets MUSK1 and MUSK2 [1], due to
noise in the presence of negative instances in the positive bags, and suggested
two adaptations of kNN instead. A key observation is that kNN using Hausdorff
distance between instances is working on dissimilarities between bags, and one
way of arriving at a more global and robust decision rule when dissimilarities
between objects are available is via a dissimilarity representation [9]. Building
a global classifier like the Fisher linear discriminant classifier (Fisher) on such a
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representation leads to a global decision rule that uses a weighted combination of
the dissimilarities to all training set objects in classification. This means better
utilization of the available training data, with possibly increased accuracy and
less sensitivity to noise.

The rest of the paper is organized as follows: Sections 2 and 3 briefly de-
scribe the MIL problem and the dissimilarity representation approach to learn-
ing. Section 4 presents two conceptually different types of dissimilarity measures
between bags of instances. The first type is points set distance measures and
the second type is based on EMD between distributions of instance distances
within- and between bags. The proposed approach is evaluated by training and
testing traditional supervised classifiers on dissimilarity representations of five
publicly available MIL data sets. This is reported in Section 5. Finally, Section
6 provides a discussion and conclusions.

2 Multiple Instance Learning in Short

In MIL [1], an object xi is represented by a set, or bag, Bi = {xij}ni of ni

instances xij , and a label Yi = {+1,−1} is associated with the entire bag. There
are no labels yij associated directly with the instances, only indirectly via the
label of the bag. This is different from standard supervised learning where objects
are represented by a single instance, i.e., Bi = xi and all instances therefore
are directly labeled. The bag labels are interpreted in the following way in the
original MIL formulation [1]: if Yi = −1, then ∀xij ∈ Bi : yij = −1. If Yi = +1,
then ∃xij ∈ Bi : yij = +1. In other words, if a bag is labeled as positive, then at
least one instance in that bag is a positive example of the underlying concept.
This formulation can be relaxed to cope with a large and noisy set of instances by
requiring that a positive bag contains a number or fraction of positive instances
instead. In this work, we only consider two-class problems, but MIL can also be
generalized to multi-class problems.

3 Dissimilarity Representations in Short

Objects x are traditionally represented by feature vectors in a feature vector
space, and classifiers are built in this space. Alternatively, one can represent
the objects by their pair-wise dissimilarities d(xi, xj) and build classifiers on the
obtained dissimilarity representation [9]. From the matrix of pair-wise object
dissimilarities D = [d(xi, xj)]n×n computed from a set of objects {x1, . . . , xn},
there are different ways of arriving at a feature vector space where traditional
vector space methods can be applied. In this work, we consider the dissimilarity
space approach [9].

Given a training set T = {x1, . . . , xn}, a subset R = {p1, . . . , pk} ⊆ T called
the representation set containing prototype objects pi is selected. An object x is
represented with respect to R by the vector D(x,R) = [d(x, p1), . . . , d(x, pk)] of
dissimilarities computed between x and the prototypes in R. This k-dimensional
vector space based on R is called a dissimilarity space, and it is in this space
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that we propose to solve MIL problems at the bag level. In this work, we apply
learning in the full dissimilarity space, i.e., R = T .

4 Bag Dissimilarity Space

The idea we propose is to map the bags into a dissimilarity space D(·, R =
{Bi}k). Here the bags are represented as single objects, positioned with respect
to their dissimilarities to the prototype bags in R. In this space, the MIL problem
can be considered as a standard supervised classification problem where each
object xi = Bi has label Yi and general purpose supervised classifiers can be
directly applied. The separation of the bags in the obtained dissimilarity space
is very much dependent on the choice of bag dissimilarity measure d(Bi, Bj).
In the following, we present two conceptually different types of dissimilarity
measures for bags of instances.

4.1 Point Set Distance Measures

The instances x reside in a common space and bags B can therefore be thought
of as sets of objects in this space. In the case of vectorial instances, these objects
are points in a vector space. This leads to the idea of computing dissimilarities
between bags using point set distance measures. In this work, we experiment
with the minimum distance

dmin(Bi, Bj) = min
p,q

||xip − xjq ||2 (1)

and the Hausdorff distance

dH(Bi, Bj) = max{ddir(Bi, Bj), ddir(Bj , Bi)} (2)

which is based on the directed distance ddir(Bi, Bj) = maxp minq ||xip − xjq ||2.
These point set distance measures were also used in a modified kNN classifier
in [10].

Both point set distance measures (1) and (2) use the distance between two
single instances in the end. These measures may therefore be sensitive to noisy
instances, and they are in general insensitive to the number of positive instances
in a positive bag. This may not be desirable when constructing a bag dissimilarity
representation, and taking more information about the instances in a bag into
account in the bag dissimilarity measure may lead to a better representation of
the bags.

4.2 Measures Based on between- and within Bag Instance Distances

Zhou et al. conjectured that instances in a bag are rarely independently and
identically distributed and that relations among the instances may convey im-
portant information when applying learning at bag level [7]. In a similar spirit,
we propose two bag dissimilarity measures that take relations among instances
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Fig. 1. Left: Illustration of two similar bag class distributions where one of the dis-

tributions, typically the positive bag distribution, has an extra mode corresponding to

the positive instances. Right: Distributions of instance distances, from top to bottom:

within bag instance distances in a bag from the class with no additional mode, typically

the negative class; within bag instance distances in a bag from the class with an addi-

tional mode, typically the positive class. Notice the extra “bump” in the distribution;

instance distances between two bags, one from each class.

into account, or more precisely, the distribution of instance distances within a
bag and between bags. It is assumed that the instances in the two bag classes
follow distributions in the common instance space that are very similar, with the
slight difference that one distribution contains additional modes capturing the
concept(s). This situation is illustrated, for one additional mode, to the left in
Figure 1. This could, e.g., be the situation in a MIL problem in medical image
classification where the positive medical images contain lesions surrounded by
healthy tissue whereas the negative images only contain healthy tissue. The ad-
ditional mode in one of the bag class distributions gives rise to an extra “bump”
in the distribution of instance distances within bags from that class, compared
to bags from the other class, as illustrated to the right in Figure 1. Further, the
bump can also be seen in the histogram of instance distances computed between
bags from the two classes.

We propose to use the within bag instance distance histograms HBi and
HBj , computed from bag Bi and Bj , respectively, and the between bag in-
stance distance histogram HBi,Bj , computed between bag Bi and Bj . The bag
dissimilarity measure is then computed as the pair-wise histogram dissimilarity
di,ij = d(HBi , HBi,Bj ). di,ij can be seen as the directed dissimilarity from Bi to
Bj . The maximum and the mean of the directed dissimilarities from each of the
two bags are proposed as two symmetric dissimilarity measures for bags

dBWmax(Bi, Bj) = max{di,ij , dj,ij} (3)

and
dBWmean(Bi, Bj) =

1
2
(di,ij + dj,ij). (4)

The histogram dissimilarities are computed using EMD [11] between the normal-
ized empirical distributions. For one-dimensional histograms H = [h1, . . . , hn]T

and K = [k1, . . . , kn]T of equal number of bins n and equal mass, EMD can
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be computed as the L1-norm between the cumulative histograms of H and K:
dEMD(H,K) =

∑n
i=1 |

∑
j≤i hj −

∑
j≤i kj |.

4.3 A Second Dissimilarity Space

Initial experiments showed that linear classifiers performed poorly when built
on the obtained bag dissimilarity representations whereas the nearest neighbor
classifier (1NN) performed quite well. This indicates that the bags are separated
in the obtained dissimilarity representations, but that the decision boundaries
between the positive bags and the negative bags are complicated and non-linear,
and/or that the class distributions are multi-modal in these new representations.
An extra preprocessing step is therefore done before applying linear classifiers.
From D(·, X) computed on the full data set X , a new dissimilarity representation
D2 is constructed such that D2(xi, xj) = ||D(xi, X) − D(xj , X)||2, ∀xi,xj ∈ X .
The linear classifiers are built on this representation. This is a transductive
learning approach since all objects are used to construct the representation D2.
It is, however, important to note that the labels of the objects are not considered
in this construction. Tao et al. also used transductive learning to solve MIL
problems [6].

5 Experiments and Results

The proposed approach is evaluated on the two standard data sets in MIL,
namely MUSK1 and MUSK2 originally used in [1], and on three recently pub-
lished image retrieval data sets [4].

5.1 MUSK1 and MUSK2

These are the standard MIL data sets, and they consist of descriptions of aro-
matic molecules that have been labeled according to whether they smell “musky”
or not. A bag represents a molecule, and the instances in a bag are low en-
ergy shapes of the molecule described by 166-dimensional feature vectors. The
MUSK1 data set comprises 47 positive bags and 45 negative bags, and each bag
is represented by 2 to 40 instances. The MUSK2 data set comprises 39 positive
bags and 63 negative bags, and each bag is represented by 1 to 1044 instances.
The data was obtained from the UCI Machine Learning Repository [12], and we
refer to this source as well as to [1] for further information about the data.

5.2 Image Retrieval

This data comprises three data sets that are subsets of the Corel data set. Each
data set consists of 100 positive bags, or example images; elephant, fox, or tiger,
and 100 negative bags, or background images, which are randomly drawn from
a pool of photos of other animals. Each image is represented by 2-13 instances
(apart from a single image in the tiger data set that is represented by a single in-
stance), which are 230-dimensional feature vectors describing the color, texture
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and shape in subsegments of the image. The data was obtained from the home-
page1 associated with [4] and we refer to these sources for further information
about the data.

5.3 Evaluation

The proposed dissimilarity representations are evaluated by training and test-
ing three supervised classifiers on the bags in the given dissimilarity space.
These classifiers are: 1NN; SVM with a linear kernel K(xi,xj) = xT

i xj where
xi = D2(Bi, X) and trade-off parameter C = 1; and Fisher. For 1NN and Fisher
we use the pattern recognition toolbox PRTools [13], and for SVM we use LIB-
SVM [14].

Table 1. Classification accuracy on the MUSK1 and MUSK2 data set, reported as

leave-one-out / ten-fold cross-validation. Accuracies reported in the literature are

shown in the bottom part of the table. Cases in the literature where the classification

accuracy is not reported using leave-one-out or ten-fold cross-validation are marked

with “-”. The highest accuracy among the dissimilarity representation-based classifiers

as well as the highest accuracy in general is marked in boldface in each column.

Classifier Bag dissimilarity measure MUSK1 MUSK2

1NN (on D)

dmin (1) 90.2 / 91.3 86.9 / 84.6

dH (2) 88.0 / 87.9 86.1 / 82.5

dBWmax (3) 85.8 / 86.9 82.8 / 77.7

dBWmean (4) 89.1 / 91.2 85.3 / 80.7

SVM (on D2)

dmin (1) 90.0 / 90.1 92.2 / 87.5

dH (2) 88.0 / 88.0 91.2 / 85.5

dBWmax (3) 89.1 / 89.0 82.2 / 88.3

dBWmean (4) 91.2 / 89.0 85.3 / 85.0

Fisher (on D2)

dmin (1) 90.1 / 90.1 93.5 / 92.7
dH (2) 88.0 / 86.9 90.3 / 88.2

dBWmax (3) 90.1 / 87.9 87.7 / 87.4

dBWmean (4) 91.2 / 91.2 89.8 / 90.3

citation-kNN [10] 92.4 / - 86.3 / -

iterated discrim APR [1] - / 92.4 - / 89.2

diverse density [2] - / 88.9 - / 82.5

mi-SVM [4] - / 87.4 - / 83.6

MI-SVM [4] - / 77.9 - / 84.3

SVM polynomial minimax kernel [5] 92.4 / - 86.3 / -

SVM MI kernel [5] 87.0 / - 92.2 / -

MILES [8] 86.3 / 87.0 87.7 / 93.1
k∧ emph transduction [6] - / 91.2 - / 90.3

k∧/∨ emph transduction [6] - / 90.2 - / 92.2

MIGraph [7] - / 90.0 - / 90.0

miGraph [7] - / 88.9 - / 90.3

1 http://www.cs.columbia.edu/˜andrews/mil/datasets.html
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Classification accuracies are estimated using leave-one-out and 10-fold cross-
validation, since these are commonly used performance measures in the MIL
literature [1,2,10,4,5,3,7]. 10-fold cross-validation is sometimes performed once
and sometimes the average of a repeated number of 10-fold cross-validation pro-
cedures is reported. Here we perform one 10-fold cross-validation. The results
are presented in Table 1 and Table 2 where also previously published results are
reported.

The classification accuracies of 1NN are quite close to the ones previously
reported in the literature. The high 1NN classification accuracies on the MUSK1
and MUSK2 data set indicate that the bags are well separated in the obtained
bag dissimilarity space defined by D. Fisher performs poorly when built on D
with an average classification accuracy of 62.1% whereas SVM performs decent
when built on D with an average classification accuracy of 78.4%. However,
building them on a second dissimilarity representation D2 constructed from D,
as described in Section 4.3, improves performance considerably for Fisher with an
average absolute increase of 19.3% and slightly for SVM with an average absolute
increase of 4%. 1NN performs slightly worse when applied to D2 compared to
D, and the numbers reported in Table 1 and Table 2 for 1NN are therefore based
on D. SVM and Fisher generally perform better than 1NN. We also tried kNN
with k optimized using cross-validation on the training set in each fold which
achieved similar performance to 1NN.

Across all five data sets, SVM and Fisher built on dissimilarity representations
show excellent performance. On the MUSK1 and MUSK2 data set, the classifiers
achieve accuracies close to the best reported accuracies in the literature. On the

Table 2. Classification accuracy on the image retrieval data. See the caption of Table

1 for further details.

Classifier Bag dissimilarity measure elephant fox tiger

1NN (on D)

dmin (1) 78.0 / 78.0 60.0 / 59.5 77.0 / 74.0

dH (2) 70.0 / 69.5 52.0 / 50.0 67.0 / 64.5

dBWmax (3) 75.0 / 77.5 57.5 / 57.0 68.0 / 66.0

dBWmean (4) 80.0 / 79.0 59.5 / 59.0 70.5 / 71.5

SVM (on D2)

dmin (1) 85.5 / 83.5 67.5 / 65.0 77.5 / 78.0

dH (2) 84.0 / 84.5 37.5 / 49.0 73.5 / 73.5

dBWmax (3) 89.0 / 89.0 64.5 / 56.0 69.5 / 62.0

dBWmean (4) 87.0 / 87.0 62.5 / 58.5 78.0 / 76.5

Fisher (on D2)

dmin (1) 86.0 / 84.5 66.0 / 66.0 78.5 / 78.0

dH (2) 84.5 / 85.0 59.0 / 59.0 73.5 / 72.0

dBWmax (3) 88.5 / 88.5 66.5 / 63.0 81.0 / 78.5

dBWmean (4) 89.0 / 88.5 64.5 / 64.0 81.5 / 79.5

mi-SVM [4] - / 82.2 - / 58.2 - / 78.9

MI-SVM [4] - / 81.4 - / 59.4 - / 84.0

MIGraph [7] - / 85.1 - / 61.2 - / 81.9

miGraph [7] - / 86.8 - / 61.6 - / 86.0
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image retrieval data sets, SVM with a linear kernel, as well as Fisher, perform
better than the SVM’s adapted to MIL problems [4] in two out of three data
sets. This indicates that taking instance relations into account is beneficial in
this kind of problems, as is also seen in [7].

6 Discussions and Conclusions

The linear classifiers built on the proposed dissimilarity representations per-
formed better than the best results in the MIL literature in some cases, and
in the remaining cases close to the best published results [1,2,10,4,5,8,6,7]. It
should be noted that the classifiers were applied “off the shelf” and that, e.g.,
the trade-off parameter C in SVM was not tuned by cross-validation but fixed to
1. Also, the classifiers were trained and tested in dissimilarity spaces of dimen-
sion equal to the number of training samples. This is no problem for SVM. For
Fisher, the pseudo-inverse was used. It may be possible to obtain even better
results than the ones reported in Table 1 and Table 2 by proper regularization
or by reducing the dimensionality of the dissimilarity space, e.g., by prototype
selection [15].

SVM shows worse than random performance on some of the image retrieval
data sets, in particular when built on the dissimilarity representation obtained
using the Hausdorff distance, dH , on the fox data set. This could be caused by
a strong class overlap in the dissimilarity space. This is also indicated by the
fact that both 1NN and Fisher perform worse on this representation compared
to the other representations.

The minimum point set distance, dmin, works well as bag dissimilarity mea-
sure. Similar results were reported in [10]. This is somewhat surprising since
classes are expected to be overlapping in MIL due to positive bags also contain-
ing negative instances. The explanation is that the distribution of the positive
instances is more dense compared to the negative instances in the used data sets,
and therefore a bag containing at least one positive instance is more likely to
be close to another bag containing at least one positive instance than to a bag
containing only negative instances.

To conclude, we have shown that the dissimilarity representation approach
can be used to solve MIL problems. Global decision rules in the form of general
purpose supervised linear classifiers built in a bag dissimilarity space achieves
excellent classification accuracies on publicly available MIL data sets. The ap-
proach is general, and we see this as a promising direction that allows for using a
wider range of proximity measures between bags in solving MIL problems com-
pared to the popular kernel-based approaches. Further, there are indications
that taking relations among instances into account improves the performance on
certain MIL problems, such as the image retrieval problems.
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5. Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.J.: Multi-instance kernels.

In: Sammut, C., Hoffmann, A.G. (eds.) ICML, pp. 179–186. Morgan Kaufmann,

San Francisco (2002)

6. Tao, Q., Scott, S.D., Vinodchandran, N.V., Osugi, T.T., Mueller, B.: Kernels for

generalized multiple-instance learning. IEEE Trans. Pattern Anal. Machine In-

tell. 30(12), 2084–2098 (2008)

7. Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as

non-i.i.d. samples. In: Danyluk, A.P., Bottou, L., Littman, M.L. (eds.) ICML. ACM

International Conference Proceeding Series, vol. 382, pp. 1249–1256. ACM, New

York (2009)

8. Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded

instance selection. IEEE Trans. Pattern Anal. Machine Intell. 28(12), 1931–1947

(2006)

9. Pekalska, E., Duin, R.P.W.: Dissimilarity representations allow for building good

classifiers. Pattern Recog. Lett. 23(8), 943–956 (2002)

10. Wang, J., Zucker, J.D.: Solving the multiple-instance problem: A lazy learning

approach. In: Langley, P. (ed.) ICML, pp. 1119–1126. Morgan Kaufmann, San

Francisco (2000)

11. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for

image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)

12. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
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15. Pekalska, E., Duin, R.P.W., Pacĺık, P.: Prototype selection for dissimilarity-based

classifiers. Pattern Recognition 39(2), 189–208 (2006)

http://www.csie.ntu.edu.tw/~cjlin/libsvm


A Game Theoretic Approach to Learning Shape
Categories and Contextual Similarities

Aykut Erdem and Andrea Torsello

Dipartimento di Informatica
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Abstract. The search of a model for representing and evaluating the

similarities between shapes in a perceptually coherent way is still an

open issue. One reason for this is that our perception of similarities is

strongly influenced by the underlying category structure. In this paper

we aim at jointly learning the categories from examples and the similar-

ity measures related to them. There is a chicken and egg dilemma here:

class knowledge is required to determine perceived similarities, while

the similarities are needed to extract class knowledge in an unsuper-

vised way. The problem is addressed through a game theoretic approach

which allows us to compute 2D shape categories based on a skeletal rep-

resentation. The approach provides us with both the cluster information

needed to extract the categories, and the relevance information needed

to compute the category model and, thus, the similarities. Experiments

on a database of 1000 shapes showed that the approach outperform other

clustering approaches that do not make use of the underlying contextual

information and provides similarities comparable with a state-of-the-art

label-propagation approach which, however, cannot extract categories.

1 Introduction

The unsupervised learning of shape categories is a central problem in computer
vision with significant theoretical and practical impacts. There are two interre-
lated aspects to the problem: The first is the discovery of the shape categories
present, and this can be effectively addressed as a problem of clustering shapes,
while the second is the generalization of the class properties, i.e., the ability to
assign each newly encountered shape to one of the extracted classes, or to rec-
ognize it as an outlier. Fundamental to both tasks is the problem of determining
how similar two shapes really are.

These issues have been extensively studied with geometric characterizations
of shape using both simple descriptors such as landmark points on the bound-
ary [4], or more complex ones such as curve descriptors [8]. Shape-classes can
then be located by vectorizing the shape-attributes and applying standard cen-
tral clustering techniques to the shape-vectors, while the problem of determining
the membership to a class can be solved by performing principal components
analysis. An alternative to the use of a single vectorial representation of the
shape’s geometry is to use a structural abstraction where the object is divided
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into atomic components whose arrangement is then represented using a rela-
tional graph [7,20]. Typically in this context, the similarity between two shapes
is a measure of how well the primitives forming the shapes and/or their spatial
organizations agree, and the assessment of whether a shape belongs to a par-
ticular class is performed by comparing in isolation the shape to one or more
prototypes and by applying the nearest neighbor rule, while categories can be
extracted using pairwise clustering [15].

One problem with these approaches is that they all assume the existence of
a single universal measure of similarity between shapes, often requiring metric
properties as well, while psychological experiments suggest that the human per-
ception of similarity is not only non-metric [5], but also strongly dependent on
the surrounding context [17,11]. In particular, the observed variation within a
shape-class is fundamental for determining the perception of the similarities of
the shapes belonging to that class. Recently, this issue has also been surfaced
from a computational point of view [19,9].

In this paper, we propose a game theoretic approach to compute shape cate-
gories in an unsupervised way. There is a chicken and egg problem here: Class
knowledge is required to determine perceived similarities, while the similarities
are needed to extract class knowledge. We solve this problem using a EM-like
approach where we iteratively estimate the class memberships and maximize for
the parameters of our category representation. The expectation of class member-
ship is obtained by adopting a game theoretic clustering framework presented
in [16]. Then the similarities are computed as the edit-distance of a skeletal rep-
resentation presented in [3] using the newly estimated cost coefficients. Central
to the approach is the ability of the clustering framework to provide both the
cluster information needed to extract the categories, and the relevance informa-
tion (or the degree of membership) needed to compute the category model, and
thus the similarities, in a robust way. Interestingly, the contextual similarity de-
fined in [3] is not symmetric, making the ability of the game-theoretic approach
to deal with asymmetric affinities particularly attractive.

2 Disconnected Skeletons and Category Influenced
Matching

Skeletons are one of the most common representation scheme for generic shape
recognition [20,14], as they capture part structure and provide insensitivity to ar-
ticulations and occlusions. However, in practice, two visually very similar shapes
might have structurally different skeletons, hence this instability issue should be
resolved either in extracting the skeleton or in the matching process. In this re-
gard, disconnected skeletons [2,1] provide an alternative solution as the method
aims at obtaining a coarse yet a very stable skeleton representation from scratch.

Disconnected skeletons are defined in terms of a special distance surface (Aslan
surface), the level curves of which are increasingly smoothed versions of the ini-
tial shape boundary, and which has a single extremum point that captures the
center of a blob-like representation of the shape (Fig. 1(a)). Each branch ex-
tracted from this surface is classified as either positive or negative, identifying
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(a) (b) (c)

Fig. 1. Disconnected skeletons. (a) Level curves of Aslan surface (b) Positive and neg-

ative skeleton branches, respective drawn in blue and red (before pruning) (c) Spatial

organization of skeleton branches (taken from [3]).

whether it originates from a positive curvature maxima (a protrusion) or a nega-
tive curvature minima (an indentation). Among the extracted branches, at least
two positive and two negative branches reach the shape center, and these are
called major branches since they represent the most prominent visual features
of the shape. All the other branches terminate at some disconnection points
where a positive branch and a negative branch collide (Fig. 1(b)). It has been
shown that these points are very stable under visual transformations such as
articulation and deformation of parts. The skeletal attributes used to represent
each skeleton branch are simply its type, the location of its disconnection points
(r, θ), and its length l measured in the formed coordinate frame.

In [3], disconnected skeletons are represented as rooted attributed depth-1 trees
and tree-edit distance is used to match these structures. Moreover, Baseski and
coworkers [3] used the category of one of the shapes to be matched to determine
the edit-costs. The cost functions are computed on the basis of category specific
statistics about the skeletal attributes that are stored in an auxiliary tree union
structure. In this version, the cost function for the label change operation is
defined in terms of a generic cost function. The idea resembles Mahalanobis dis-
tance in that when the distance within the observed range of skeletal attributes,
but rapidly increases outside of that region.

3 Grouping Game

In [16], a novel framework for grouping and clustering was presented which
was derived from a game-theoretic formalization of the competition between the
hypotheses of group membership. The basic idea is as follows: Let the hypotheses
that each element belongs to a group compete with one-another, each obtaining
support from compatible elements and competitive pressure from all the others.
Competition will reduce the population assuming hypotheses that do not receive
strong support from the rest, while it will allow populations assuming hypotheses
with strong support to thrive. Eventually, all inconsistent hypotheses will be
driven to extinction, while all the surviving hypotheses will reach an equilibrium
with all receiving the same average support. Clustering was thus formalized as a
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repeated non-cooperative game where competition for class membership selects
elements belonging to a coherent cluster.

Specifically, let O = {1, · · · , n} be the set of available elements, for each pair
of strategies i, j ∈ O, aij represents the payoff of an individual playing strat-
egy i against an opponent playing strategy j. A mixed strategy is a probability
distribution x = (x1, . . . , xn)T over the available strategies O.

Δ =
{
x ∈ IRn : xi ≥ 0 for all i ∈ O, 1Tx = 1

}
,

where 1 = (1, . . . , 1)T , while the support of a mixed strategy x ∈ Δ, denoted
by σ(x), is defined as the set of elements chosen with non-zero probability:
σ(x) = {i ∈ O | xi > 0}.

The expected payoff received by a player choosing element i when playing
against a player adopting a mixed strategy x is (Ax)i =

∑
j aijxj , hence the

expected payoff received by adopting the mixed strategy y against x is yT Ax.
The best replies against mixed strategy x is the set of mixed strategies

β(x) = {y ∈ Δ | yT Ax = max
z

(zT Ax)} .

A strategy x is said to be a Nash equilibrium if it is the best reply to itself, i.e.,

∀y ∈ Δ xTAx ≥ yT Ax . (1)

Within this formalization, Nash equilibria abstracts the main characteristics of
a group: internal homogeneity, that is, a high mutual support of all elements
within the group, and external dishomogeneity, or low support from elements
of the group to elements that do not belong to the group. Equilibria, and thus
groups, are found using the replicator dynamics [18], a well-known formalization
of a natural selection process.

The main characteristics of the framework are that it is generic, as it can
deal with asymmetric as well as negative affinities; it does not require a priori
knowledge of the number of clusters as it is inherently a multi-figure/ground dis-
crimination process; and it provides immediate measures of both the cohesiveness
of the cluster in the form of its average payoff xTAx, and of the participation of
an element to the cluster. In fact the value xi can be interpreted as a degree of
participation of element i to the cluster defined by the stable point x.

4 The Proposed Method

In this study, we attempt to solve the interrelated problems of discovering shape
categories and computing the corresponding contextual similarities using a EM-
like approach where we iteratively estimate the class memberships and maximize
for the parameters of our category representation. The expectation of class mem-
bership is obtained by adopting the game theoretic clustering framework sum-
marized in Section 3. Then the similarities are computed as the edit-distance of
a skeletal representation presented in [3] using the newly estimated cost coeffi-
cients. The details of these steps are as follows.
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4.1 Discovering Shape Categories

We define the shape category in terms of a clustering game where shapes present
in the training set compete for category membership. The outcome of the compe-
tition is determined by the payoff or utility matrix A = (aij) which represents the
similarity of shape i with shape j. Initially, these payoffs simply correspond to the
similarities among the given set of shapes obtained with aij = exp

(
− (dist(i,j))2

σ2

)
where σ is a scaling factor, and dist(i, j) is the tree-edit distance between the
disconnected skeletons of the shapes i and j.

Since no category information is available in the beginning, the initial simi-
larities were computed in isolation without any context, thus A is a symmetric
matrix. However, in the subsequent iterations, the category structure discovered
in the previous step influences the similarity computations by differentiating the
roles of the shapes in comparison. Now, each row index corresponds to a query
shape whereas each column index is a shape which has a category label assigned
by the previous grouping game (if it is not found to be an outlier), and the cost
functions are determined by the context about the category of the second shape.
Thus, this results in an asymmetric similarity matrix.

Given the payoff matrix A, we extract shape categories by applying a peal-off
strategy. At first, we start with a grouping game that considers all the shapes
and we extract a cluster by running the replicator dynamics. Following that,
we define a new game on the set of remaining (unlabeled) shapes and reiterate
the procedure until all groups are extracted. The game theoretic framework
also provides us a direct way to evaluate the coherency of extracted clusters.
Let S ∈ S be an extracted group, the coherency of S can be computed as its
average payoff xT

SAxS ∈ [0, 1]. By inspecting these values, we obtain an initial
set C (⊆ S) of coherent shape categories which is formed by the clusters S ∈ S
with xT

SAxS > ζ1. This allows us to discard incoherent classes hence enforcing
robustness in the extraction process.

The payoff information can also be used to assign additional members to the
clusters in C. To compute the similarity between a shape i to a cluster S, we
use the weighted similarity function γS(i) = (AxS)i

xT
S AxS

. We evaluate this similarity
measure for every unlabeled shape i and assign it to the most similar cluster if
γS(i) ≥ ζ2. Otherwise, it is considered as an outlier shape which does not belong
to any of the extracted categories. The ability of assigning an unclustered object
either to a category or to the outlier class is instrumental to the generalization
capabilities. Note that the outlier class should be interpreted as a “don’t know”
label where the approach cannot say anything about the shape rather than
recognizing the shape as a new class not seen in the other examples.

After reassigning the leftover elements, we re-examine the groups that were
rejected by the first thresholding step and check whether they became more
coherent with the removal of the reassigned elements. To evaluate their coherency
we use an hysteresis strategy: we accept the groups with |S| > 3 whose average
payoffs xT

SAxS > ζ3, with ζ3 < ζ1. The purpose of this hysteresis is to reduce
the effect the implicit change in scale induced by the peel-off strategy and to
increase robustness with respect to the scaling factor σ.
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4.2 Computing Contextual Similarities

To model the influence of the discovered category structure on the computation of
shape similarities, we adopt the tree-edit distance based shape matching method
proposed by Baseski et al. [3]. Here, however, we form the union in an unsupervised
way, based on the clusters obtained with the game-theoretic approach. Further,
in the computation of the edit-cost, we substitute the minimum and maximum
values of the skeletal attributes in the category with soft bounds that make use of
the membership information supplied by the clustering framework. In particular,
we use the weighted mean μx and weighted standard deviation σx (Eqn. 2) to
determine the range μx ± 3σx which has experimentally shown to account for the
shape variability and provide a robust inference process.

μx =
∑n

i=1 xiyi∑n
i=1 xi

, σx =

√√√√ 1
1 −
∑n

i=1 x2
i

n∑
i=1

xi(yi − μx)2 (2)

In obtaining the affinity matrix A = (aij) at time step t > 0, we introduce a soft
indexing scheme where we propagate the information about the similarities to
the extracted classes: When computing the similarity between the query shape
i and the shape j, if j belongs to a cluster S extracted in the previous step,
we multiply the similarity influenced by the new category information, with the
similarity of the shape i to the cluster S normalized with respect to the most
similar category. This allows us to bias the similarities towards the previously
extracted clusters, thus propagating the membership throughout the iterations.
Clearly, if j is an outlier shape, i.e. no category information is available about
it, we keep the original distance which does not utilize any context information.
Moreover, the corresponding multiplier bij is taken as 1.

aij = bij × exp
(
−(dist(i, j))2)/σ2

)
(3)

where bij =

⎧⎨⎩
1 if j is an outlier

γS(i)
max
T∈C

γT (i) if j ∈ S

Category discovery and similarity computation are iterated until the change in
the ratio of unlabeled (outlier) shapes to the total number of shapes is smaller
than a threshold ζ4. Experimentally it was observed that the resulting group
and distance information, as well as the query performance, are relatively stable
after meeting this condition.

5 Experimental Results

In order to evaluate the performance of the proposed approach, we used the shape
database provided in [3] which contains a total of 1000 shapes from 50 shape
categories, each having 20 examples. We start by extracting the disconnected
skeletons. After the descriptions are formed, we iteratively run the proposed
method with the empirically set parameters σ2 = 24, ζ1 = 0.85, ζ2 = 0.95 and
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Table 1. The quantitative evaluation of the clustering results

The Method Rand Index
Corrected

Rand Index
NMI

Our method at t=0 0.9818 0.9929 0.8517

Our method

(asymmetric case)
0.9854 0.9933 0.8722

Normalized Cut [13]

(with # of classes=51)
0.9832 0.9833 0.8381

Normalized Cut [13]

(with # of classes=61)
0.9848 0.9854 0.8380

Foreground Focus [9]

(with # of classes=50)
0.9748 0.7329

Table 2. The final shape categories extracted from asymmetric affinities. The number

of outlier shapes is 80.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Precision 1.00 0.67 1.00 0.95 1.00 0.95 1.00 1.00 0.87 0.70 0.67 1.00 1.00 0.91 0.95
Recall 0.90 0.70 0.85 0.90 0.90 0.95 0.90 0.90 0.65 0.35 0.60 0.95 0.80 1.00 1.00
Payoff 0.96 0.95 0.92 0.94 0.95 0.94 0.96 0.97 0.91 0.88 0.94 0.94 0.94 0.94 0.92
Entropy 2.75 2.77 2.69 2.72 2.81 2.77 2.77 2.89 2.47 1.60 2.75 2.63 2.39 2.94 2.87

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Precision 1.00 0.50 0.75 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Recall 0.65 0.35 0.15 1.00 0.75 0.70 0.45 0.20 0.90 0.60 0.40 0.45 0.25 0.25 0.80
Payoff 0.94 0.94 0.77 0.96 0.93 0.93 0.92 0.84 0.94 0.93 0.93 0.87 0.87 0.80 0.93
Entropy 2.39 2.55 1.34 2.92 2.59 2.46 2.03 1.38 2.78 2.44 2.03 2.13 1.61 1.57 2.71

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Precision 1.00 0.62 1.00 0.83 1.00 0.37 0.86 0.92 1.00 1.00 0.91 0.95 1.00 1.00 1.00
Recall 0.50 0.50 0.55 0.25 0.80 0.35 0.60 0.60 0.95 0.50 0.50 0.95 0.90 0.25 1.00
Payoff 0.91 0.87 0.92 0.89 0.94 0.94 0.92 0.93 0.95 0.94 0.92 0.91 0.93 0.80 0.95
Entropy 2.10 2.19 2.28 1.61 2.68 2.75 1.94 2.43 2.79 2.30 2.38 2.72 2.78 1.58 2.77

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Precision 1.00 0.75 1.00 1.00 1.00 1.00 0.74 1.00 1.00 1.00 0.95 0.94 1.00 1.00 0.55
Recall 0.80 0.15 0.95 0.90 0.35 1.00 0.70 0.75 0.90 0.60 0.95 0.75 0.20 0.85 0.55
Payoff 0.90 0.83 0.96 0.95 0.84 0.97 0.95 0.95 0.95 0.91 0.93 0.93 0.86 0.96 0.94
Entropy 2.56 1.38 2.92 2.69 1.85 2.93 2.63 2.70 2.81 2.33 2.66 2.55 1.39 2.83 2.85

61 62 63 64

Precision 0.78 1.00 1.00 0.42
Recall 0.35 0.55 0.30 0.50
Payoff 0.90 0.92 0.85 0.91
Entropy 2.01 2.27 1.61 2.80

ζ3 = 0.75, and stop when ζ4 ≤ 0.005. In this setting, the algorithm converges at
the 2nd iteration. The shape categories extracted are given in Table 2, where for
each class we show the shape with the highest membership score.
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Table 1 shows some cluster validity measures [6] on the classes extracted with
our approach. The first measure is the standard Rand index, i.e. the ratio of
agreements over all possible pairs. The second measure is a corrected version of
the Rand index where the disagreements in the outlier class are not penalized,
as this class is not supposed to form a coherent group. Note that the latter form
of the Rand index favors more conservative approaches, where we prefer the
approach not to label a shape when in doubt, while the former version favors
bolder assignments where we prefer to make a few mistakes rather than not assign
a shape to a class. Which version is to be preferred is clearly dependent on the
application. The last measure is the normalized mutual information (NMI) which
measures the closeness between the class distributions and the ground truth.
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Fig. 2. Average precision-recall curves

In an attempt to assess information content in the asymmetry of the similarity
matrix, we also perform the same experiment using the same parameters but
rendering the affinities symmetric before applying pairwise clustering. In this
case, the approach requires 3 iterations to converge. When the number of outlier
shapes and the average precision recall values (Fig. 2) are considered alone, the
symmetric case seems to work better than the asymmetric case. However, the
difference between the plain and corrected Rand index show that the asymmetric
approach is more conservative, i.e. it has a higher tendency to label shapes as
belonging to an unknown class, but makes fewer misclassifications when it does
assign shapes to a class, on the other hand the symmetric approach is more likely
to assign shapes to a class, even when this results in more misclassifications.

We compared the results with several alternatives. The first, which should be
seen as a baseline comparison, is performed by applying a pairwise clustering
approach in order to extract the class structure, while assuming global, non-
contextual similarities. Here we used Normalized Cut [13] as a baseline pairwise
clustering approach. Note that the normalized cut approach requires the number
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of classes to be known ab initio. Here we choose two different values: 51 (the
existing 50 semantic categories plus 1 for the outliers) and 61 (a number closer to
the number of categories extracted with our approach). The additional number
of classes is due to the fact that there can be a substantial semantic gap between
appearance and categories, and allowing more freedom can result in better overall
categorization. Indeed, as it can be seen in Table 1, normalized cut performs
better with more degrees of freedom, but still performs significantly worse than
the proposed approach.

The second approach we are comparing against is Foreground Focus [9]. This
is an unsupervised algorithm proposed to learn categories from sets of partially
matching image features. Just like our approach, it utilizes an EM-like algorithm
to infer the categories. However, its goal is to learn relevant features rather than
the actual contextual similarities. In order to compare with this method, we first
form Inner-Distance Shape Context [10] descriptions of each shape by uniformly
sampling 100 landmark points across the shape boundary and using a total of
5 inner-distance bins and 12 inner-angle bins. Earth Mover’s Distance (EMD)
algorithm [12] is then used to compute the matchings of shape features and
similarities, and Normalized Cut [13] is used to determine the clusters. Here, the
total number of extracted clusters is kept fixed at 50 (the actual number of shape
categories exist in the database). Table 1 and Fig. 2 show that the performance
of this approach is even significantly lower than the baseline normalized cuts over
the skeletal distance. The huge difference can probably be explained by the lower
descriptive power of the Inner-Distance Shape Context features with respect to
disconnected skeletons, or bad performance of EMD matching algorithm.

The last comparison is with the label propagation method [19] and is limited
to the retrieval performance of the contextual similarities. This method has three
parameters which are used to construct the affinity matrix, the neighborhood size
and the window size that are respectively set as C = 0.275, neighborhood size
K = 10, window size W = 250 × 250. When applied to the initial (symmetric)
similarities, the approach offers a slightly better precision/recall (Fig. 2). How-
ever, note that the approach solves a slightly different problem; it concentrates
only on improving retrieval rate and does not provide any category structure or
an estimation of perceptually relevant similarities.

6 Summary and Conclusion

In this paper, we presented an approach for the simultaneous discovering of
2D shape categories and the corresponding contextual similarities. This was
achieved by adopting the game theoretic clustering approach introduced in [16]
and by modifying the shape retrieval system presented in [3] in order to account
for the uncertainty in the category information. The game theoretic framework
naturally provides us the membership information about the extracted categories
which quantifies this uncertainty, and is capable of dealing with the asymmetric
similarities obtained using the contextual information. We have demonstrated
the potential of the proposed framework on a large shape database composed of
highly varying 1000 shapes from 50 categories.
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Abstract. In this paper we consider two existing methods to generate

a representative of a given set of graphs, that satisfy the following two

conditions. On the one hand, that they are applicable to graphs with

any kind of labels in nodes and edges and on the other hand, that they

can handle relatively large amount of data. Namely, the approximated

algorithms to compute the Median Graph via graph embedding and a

new method to compute the Barycenter Graph. Our contribution is to

give a new algorithm for the barycenter computation and to compare

it to the median Graph. To compare these two representatives, we take

into account algorithmic considerations and experimental results on the

quality of the representative and its robustness, on several datasets.

1 Introduction

The straight advantages of the use of graphs for representation purposes appear
to be useless in some applications due to the lack of mathematical structure in the
graph domain. An illustrative example is the problem of finding a representative
of a set of graphs. While in vector spaces it is easy to compute representatives
such as medians and means with respect to a wide range of distances, in the
graph domain the analogy turns out to be a highly non–trivial task.

In the literature we can distinguish different methodologies to tackle this
problem, both probabilistic and deterministic. Random Graphs such as First-
Order Random Graphs (FORGs) [1], Function-Described Graphs (FDGs) [2,3]
and Second-Order Random Graphs (SORGs) [4]; a Maximally General Prototype
[5]; the Median Graph [6] and the Barycenter Graph [7] have been proposed as
representatives of a set of graphs, among others. Most of these methods suffer
from a prohibitive computation time or are limited to a restricted family of
graphs.

In this paper we aim to compare those algorithms that on the one hand are
applicable to graphs with any kind of labels in nodes and edges and on the
other can handle relatively large amount of data. Namely, the approximated al-
gorithms to compute the Median Graph via graph embedding and a new method
to compute the Barycenter Graph. It includes some algorithmical considerations
and experiments on several real–world and artificial datasets.

This paper is organized as follows. Some basic definitions are given in Section
2, the computation of the Median Graph is discussed in Section 3 and the pro-
posed computation for the barycenter graph is presented in Section 4. Section 5

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 149–158, 2010.
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is devoted to comparing the Median and Barycenter Graphs. Finally, in Section
6 we draw some conclusions.

2 Definitions

Throughout the paper, let S = {g1, g2, ..., gn} be a set of graphs and let L be
the set of labels of the nodes and edges of the graphs of S. Let U be the set of
all graphs that can be constructed using labels from L, and observe that S ⊆ U .
Also, let d : U × U → R be a distance over the set U .

Given a set of graphs S, the Set and Generalized Median Graphs [6] are
defined as follows.

Definition 1. The set Median Graph ĝ and the generalized Median Graph ḡ
of S are defined as:

ĝ = arg min
g∈S

∑
gi∈S

d(g, gi) and ḡ = arg min
g∈U

∑
gi∈S

d(g, gi).

The set Median Graph is a graph of the set S which minimizes the sum of
distances (SOD) to all the graphs in S. The generalized Median Graph ḡ, is also
a graph that minimizes the SOD to all the graphs in S, but the minimum is taken
over U . Thus, the generalized Median Graph does not necessarily belong to the
original set S. Since the minimum is taken over a larger set, the generalized
Median Graph is expected to be a better representative for the set S of graphs.
Notice that in general more than one set and generalized Median Graph may
exist for a given set S.

Note that the median graph is analogous to the concept of median vector
in a vector space. Similarly, the definition of Barycenter Graph is natural, by
adapting the definition of barycenter of a set of points in Rn.

Definition 2. The set Barycenter Graph b̂ and the generalized Barycenter Graph
(or just Barycenter Graph) b̄ of S are defined as:

b̂ = arg min
g∈S

∑
gi∈S

d(g, gi)2 and b̄ = arg min
g∈U

∑
gi∈S

d(g, gi)2.

That is, the Barycenter Graph is the graph in U minimizing the sum of squared
distances (SOSD) to all the graphs in S. The set barycenter is the argument
minimizing the SOSD, when the search is limited to the given set S.

Although definitions 1 and 2 apply for any distance, we let d be the well known
graph edit distance [8]. This choice makes it possible to apply the algorithms
below to sets of graphs of different sizes and with any kind of labels.

Finally, we introduce the notion of weighted mean, first presented in [9].

Definition 3. Let g, g′ be graphs. Let I = {h ∈ U | d(g, g′) = d(g, h)+d(h, g′)},
be the set of intermediate graphs. Given 0 ≤ a ≤ d(g, g′), the weighted mean of
g and g′ is a graph

g′′ = WM(g, g′, a) = argmin
h∈I

|d(g, h)− a|.
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That is, given two graphs, g and g′, and a parameter a, the weighted mean is an
intermediate graph, not necessarily unique, whose distance to g is as similar as
possible to a. Consequently, its distance to g′ is also the closest to d(g, g′) − a.
Again, we let d be the graph edit distance.

Remark 1. Note that, the so called error, ε(a) = |d(g, g′′)− a|, is not necessarily
null. This fact, regardless of the exactness of the computation, depends on the
properties of the search space U .

3 Computation of the Median Graph

The most popular exact algorithm is called Multimatch [10], and was first pre-
sented by Münger and Bunke in 1995. This approach, as any exact Median Graph
computation, suffers from a high computational complexity, and its application
is very limited. The use of suboptimal methods is thus the unique feasible option
to extend the use of the Median Graph to more realistic sets of graphs.

Approximate algorithms developed so far include a genetic based strategy
[6,10] and one greedy-based algorithm [11]. Both solutions generally apply some
kind of heuristics in order to reduce both the cost of the graph distance compu-
tation and the size of the search space. Finally, the most recent approach, which
is based on the proposal by Riesen et al [12], consists on embedding the graphs
into an auxiliary Euclidean space. Let us give a more thorough explanation of
this last technique, since the algorithms that we have used in the experiments
presented in this paper follow it.

3.1 Median Graph via Graph Embedding

The general embedding procedure is composed of three main steps, detailed in
the following.

– Step I: Graph Embedding in a Vector Space: Each graph in the set S is
embedded into an n-dimensional vector space. The vector representation pi

of a graph gi of the set is obtained by computing its distance to all the graphs
in the set. More precisely, the j-th coordinate of the vector corresponds to
the distance to the j-th graph of the set.

– Step II: Median Vector Computation: This step consists in computing
the median vector p̄ of the points obtained in the first step. Although the
Euclidean Median cannot be calculated in a straightforward way [13], an ap-
proximation, as good as desired, can be obtained by means of the Weiszfeld’s
algorithm [14]. It is an iterative procedure that converges to the solution.

– Step III: Going Back to the Graph Domain: The last step consists in
going back to the graph domain converting the median vector into a graph
g̃. This graph is taken as the Median Graph of the set. Different options on
how to perform this last step have been proposed.
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Linear Interpolation Procedure. In this algorithm from [15], once the median
vector p̄, is computed, the two closest points, p1 and p2 without lost of generality,
are used to obtain the approximate median. The approximate generalized Median
Graph, g̃, is then the weighted mean of g1 and g2, with a = 1

2d(g1, g2). We will
refer to this algorithm as linear embedding (MLE).

Triangulation Procedure. In this case, the three closest points to p̄ are selected
for the approximated generalized Median Graph computation. This computation
consists on generating an intermediate weighted mean using two of the three
points followed by a second and definitive weighted mean which makes use of
the third point and the previous weighted mean. The procedure, referred to as
triangulation embedding (MTE), was proposed and explained in [15].

Recursive Procedure. A third option is to take into account all the points, this
is, all the graphs in the set S in Step III. That is what the authors propose in
[16]. We will refer to this algorithm as recursive embedding (MRE).

4 Computation of the Barycenter Graph

The algorithm that we propose to approximate the Barycenter Graph is based
on the following geometrical property of the barycenter in Euclidean spaces.

Lemma 4. Given a set P = {p1, p2, . . . , pm} of m points with pi ∈ Rn for
i = 1 . . .m, the barycenter

Bar(P ) = arg min
y∈Rn

m∑
i=1

||pi − y||2,

of the set P satisfies, for any 1 ≤ j ≤ m,

Bar(P ) =
1
m

pj +
m− 1

m
Bar(P \ {pj}). (1)

As it is deduced from equation (1), Bar(P ) lies in the segment with ends pj and
Bar(P \ {pj}) and

‖Bar(P \ {pj})−Bar(P )‖ = (m− 1)‖Bar(P ) − pj‖,

where ‖ · ‖ denotes the Euclidean distance. Therefore, in Euclidean spaces, the
barycenter of m points can be recursively computed by subtracting a point in the
set and computing the barycenter of the remaining ones. Then, the barycenter
is easy to compute because it belongs to a segment with known ends and the
distance to these ends is also known.

4.1 Algorithm

The procedure explained above can be easily adapted to the domain of graphs,
since the last step corresponds to the computation of the weighted mean. The
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Algorithm 1. Algorithm to approximate Barycenter Graph computation
input : A set S = {g1, . . . , gn} of n graphs

output: b̃ = Approximate Barycenter Graph of S
begin

B2 = WM(g1, g2, d(g1, g2)/2)1

for 3 ≤ m ≤ n do2

Bm = WM(Bm−1, gm, d(Bm−1, gm)/m)3

Return b̃ = Bn.4

end

resulting algorithm, Algorithm 1, may be considered an extension to the al-
gorithm presented in [7]. The main contribution is that the graph edit distance,
instead of the geometrically restricted distance function required in [7], can be
used as the graph similarity measure of the graph domain.

The output of Algorithm 1 is an approximation b̃ ≈ b̄ to the barycenter
graph. This inaccuracy is on the one hand due to the error ε(a), and a conse-
quence of the suboptimal computation of distances and weighted means, which
is unavoidable unless the number and size of the graphs of the set S is very
small. On the other hand, it cannot be theoretically proved that the algorithm
minimizes the SOSD. Nevertheless, the fact that our method gives results with
small SOSD is supported by experimental results.

It is important to remark that there is no need to transform the graphs into
vectors to apply our method. This means that the structural information of the
graphs is preserved at every step in the process.

4.2 Different Sorting Schemes

In Algorithm 1 the graphs are taken as they arrive, without any sorting. Then
the question whether the ordering of the input plays a non-negligible part in the
accuracy of the approximation arises. For this reason, we have developed and
implemented two methods, the Ascendent SOSD–based sorting (BSA) and the
Descendent SOSD–based sorting (BSD), to study the effect of the ordering.

In the BSA method the graphs of the input are ordered upwards, such that
the first graph, g1, is that with minimum SOSD: the set barycenter. In the BSD
method, the ordering of the graphs is the inverse.

The method explained in Section 4.1, without preprocessing the data, will
be referred to as unordered barycenter computation method (BN). We also
compute the set barycenter (SB).

5 Comparison between Median and Barycenter Graphs

In this section we aim to compare the quality of the median and the Barycenter
Graphs, as representatives of a set of graph. To do so, we compare experimental
results on three real–data–based and five artificial datasets, some characteristics
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of which are displayed in Table 1. The LetterLOW, LetterHIGH, Molecules,
Mutagenicity and Webpages datasets are from [17], where more information on
them is available. The Synthetic datasets were created by the authors.

Table 1. Some dataset characteristics: size, number of classes (#c) and the average

and maximum size of graphs

Database Size # c ∅|g| max|g| Database Size # c ∅|g| max|g|
LetterLOW 2,250 15 4.7 8 Webpages 2,340 6 186.1 834

LetterHIGH 2,250 15 4.7 8 SyntheticSmall 2,000 10 10 13

Molecules 2,000 2 15.7 95 SyntheticMedium 2,000 10 50 62

Mutagenicity 4,337 2 30.3 417 SyntheticLarge 2,000 10 100 122

The exact computation of both the generalized Median Graph and the gen-
eralized Barycenter Graph is unaffordable for these data. To carry on the ex-
periments for this paper we have selected those suboptimal algorithms that can
handle graphs with thousands of nodes. Table 2 shows the methods used.

Table 2. Methods to Approximate the Median and Barycenter Graphs and number

of distances and weighted means that are computed for each of them, where n is the

number of graphs in the given set S

Method Shortening #distances #WMs

Medians

Set Median SM O(n2) 0

Linear Interpolation Embedding MLE O(n2) 1

Triangulation Embedding MTE O(n2) 2

Recursive Embedding MRE O(n2) O(n)

Barycenters

Set Barycenter SB O(n2) 0

Unordered Barycenter Computation BN O(n) O(n)

Ascendent SOSD–Based Sorting BSA O(n2) O(n)

Descendent SOSD–Based Sorting BSD O(n2) O(n)

5.1 Algorithmical Considerations

Before showing the result of our experiments, we want to compare the different
algorithms in terms of time complexity. Table 2 shows the number of distances
and weighted means that need to be computed for each of the methods, where
n is the number of graphs in the given set S.

The embedding procedure has been shown to be the only method for the Gen-
eralized Median Graph computation potentially applicable to real world prob-
lems, due to its lower computational demand [15]. Still, the embedding step
(Step I) requires the computation of all the pairwise distances of the graphs in
the given set S. That means that the number of distances computed is quadratic
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on the number n of graphs. In terms of computation time Step II is negligible,
and Step III does not depend on n if MLE or MTE are used. The MRE procedure
computes a linear, on n, number of weighted means.

In all the barycenter computation algorithms from Table 2, a linear number
of weighted means must be computed. In the case of BSA and BSD, the compu-
tation of a quadratic number of distances is also needed. The number of distance
computations that requires the unsorted algorithm BN, is linear on n, instead.

In this paper, we have chosen to follow [18] and [19] for the graph edit distance
computation and [9] to compute the weighted mean. This makes the graph edit
distance computation more time demanding than the weighted mean, and the
BN method the fastest one.

It is important to remark, then, that BN may be an interesting choice from
the computational point of view. At sight of conclusions drawn in [20], the loss of
quality of the approximation in comparison with other barycenter computations
is small when special robustness against outliers is not needed. Finally, let us
note that the BN method is incremental, making it unnecessary to store all the
information to be processed. The rest of the algorithms are not.

5.2 Stability

Some of the methods that we are considering, namely MRE, BSA and BSD
compute n − 1 intermediate approximations, being the last one taken as the
definitive one. In this section we study, experimentally, the evolution of the
quality of the approximation along these n − 1 steps. Recall that the Median
Graph aims to minimize the SOD while the Barycenter Graph approximates
the graph with minimum SOSD. For this reason, SOD and SOSD will be our
reference values.

In this experiments we compute the Median Graph of several graph sets for
letter, molecule, mutagenicity and web databases. More precisely, we compute
the median and the barycenter of sets of 50 and 100 randomly chosen graphs
belonging to the same class, and we do so for all the classes in each database
and using each of the methods we want to evaluate. Each of these experiments
is repeated 10 times.

As an example, Figure 1 shows the evolution of the SOD and SOSD, corre-
spondingly, for the different methods in the experiments carried out with the
Webpages dataset with sets of 50 graphs. We want to remark that the meth-
ods to compute the barycenter show a convergent tendency, while the evolution
of the recursive embedding method is more irregular. Similar result concerning
other datasets are skipped due to space constraints.

5.3 Distance to Prototype

In this section we present a second experiment, devoted to comparing the median
and the barycenter as representatives of a given set of graphs. To this end,
we have performed experiments with LetterLOW, LetterHIGH and the three
Synthetic databases. All this datasets have been created by distorting initial
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Fig. 2. Mean distance to prototype of several approximations to the barycenter and

the median graphs, performed on letterLOW, letterHIGH, SyntheticSmall, Synthet-

icMedium and SyntheticLarge datasets

prototypes. This allows us to compare the medians and barycenters provided by
the different methods, to the original prototype. Under the assumption that the
best possible representative is the prototype itself, we consider that the smaller
the distance to the prototype, the better the representative is.

For each of the datasets, we have computed the representative of sets of dif-
ferent sizes (50 and 100 for letters and 10, 50 and 100 for Synthetics) using
each of the methods displayed in Table 2. In each database, 20 sets of graphs
are considered for each class. Figure 2 shows the mean distance of the resulting
approximation to the prototype, taken over all the classes and all the repetitions.

In the LetterLOW and LetterHIGH datasets we observe that the set median,
followed by the set barycenter is the closest representative to the prototype.
Recall that, by definition, the generalized Median Graph has lower or equal



A Comparison between Two Representatives of a Set of Graphs 157

SOD than the set median and similarly, the generalized barycenter has lower or
equal SOSD than the set barycenter. This means that the set median and the
set barycenter are expected to be worse representatives. In other words, they are
the dummy approximations to beat.

We conclude that for the letter datasets, the approximated algorithms used
for median and barycenter computation, although they have been experimen-
tally validated [16,15], fail to give satisfactory results. Let us remark that these
databases suffer from a high level of distortion, potentiated by the fact that the
graphs have few nodes. The embedding technique for Median Graph computation
gives better representatives than the barycenter techniques. We may conclude
that the Median Graph shows a higher robustness against large distortion. That
it behaves better in difficult datasets, in other words.

In the Synthetic databases, the set median and the set barycenter are out-
performed by all the algorithms to compute the generalized barycenter. Three
facts are to be underlined. First, that the Barycenter Graphs give representa-
tives closer to the prototype than the Median Graphs computed via embedding.
Secondly, that the BSD gives the closest representatives to the prototype in the
three Synthetic datasets. Thirdly, that the BN method, which as we said before
is faster to compute than the rest of the methods, gives similar results to the
rest of the barycenter methods.

6 Conclusions

In the present paper we have compared two representatives of a set of graphs,
the median graph and the barycenter graph. Since their exact computation is
unaffordable, this comparison is carried out by means of several algorithms that
provide approximate medians and barycenters.

By comparing these algorithms we have concluded that an approximation to
the barycenter can be computed faster than an approximation to the median.
Also, we have noted that the algorithms for barycenters show a high level of
convergence in the process of computing intermediate solutions, the last of which
is the definitive approximation.

Finally, we have designed an experiment to discuss whether, among the me-
dian and the barycenter graph, one is better than the other as a representative.
We have observed that results are not uniform for different datasets, which makes
us conclude that none of them can be said to be better than the other. Never-
theless, we remark that, for datasets for which the grade of distortion is not very
high, barycenters give better representatives.
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Abstract. Nowadays, multimedia documents composed of text and im-

ages are increasingly used, thanks to the Internet and the increasing

capacity of data storage. It is more and more important to be able to

retrieve needles in this huge haystack. In this paper, we present a multi-

media document model which combines textual and visual information.

Using a bag-of-words approach, it represents a textual and visual doc-

ument using a vector for each modality. Given a multimedia query, our

model combines scores obtained for each modality and returns a list of

relevant retrieved documents. This paper aims at studying the influence

of the weight given to the visual information relative to the textual in-

formation. Experiments on the multimedia ImageCLEF collection show

that results can be improved by learning this weight parameter.

1 Introduction

In order to retrieve documents in multimedia collections, especially in the con-
text of the Web, the development of methods and tools suitable to these data
types is nowadays a challenging problem in Information Retrieval (IR). Most of
the current IR systems handling multimedia documents can be classified into
several categories, depending on their ability to exploit textual information, vi-
sual information, or a combination of both.

In the first category, namely Text based Image Retrieval, an image is indexed
using only the textual information related to the image (file name, legend, text
surrounding the image, etc.), without taking into account the image intrinsic
features. This is the case, for example, of the main commercial search engines,
and also of some systems specialized in images retrieval, such as Picsearch1.

In the second category, namely Content Based Image Retrieval (CBIR), only
the visual content of the image, represented by local color, shape or texture fea-
tures, is used [1,2]. For example, QBIC, the IBM precursor system [3], proposes
to retrieve images considering a query expressed using only those basic color,
shape and texture features. The systems giving the best results are those han-
dling a query image built by the user or an image example provided by the user

1 Picsearch: http://www.picsearch.com

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 159–169, 2010.
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(”Search by image”, e.g. QBIC or more recently the search engine TinEye2).
So, some systems propose to the user to sketch the image sought (”Search by
sketch”, e.g. the Gazopa and Retrievr3 search engines) while other propose to
the user to arrange on a canvas the icons corresponding to concepts that have
been previously identified in the image database. But one drawback of these
systems is that users do not always have a reference image, and query languages
based on visual features are not always very intuitive.

Finally, the last category deals with systems handling textual and visual fea-
tures simultaneously. For example, the PicHunter system [4] aims at predicting
users’ goal given their actions while the Picitup system4 proposes to define a tex-
tual query and then to filter results using visual elements (a picture, a category,
a color, a shape, etc.). Recently, these approaches aiming at combining textual
and visual information have been encouraging [5,6], but they have to fill the
semantic gap between the objects and their visual representation [1]. A possible
research direction deals with using visual ontology [7]; another one, proposed
recently by Tollari, aims at associating keywords and visual information [8].

These previous works led us to propose a first approach which combines tex-
tual and visual information. Starting from a first set of documents returned for
a given textual query, our system enriches the query, adding some visual terms
to the original textual query in an automatic way or a semi-automatic way (i.e.
asking the user for feedback on the first returned documents) [9].

Our preliminary experiments have shown the potential of combining visual
and textual information. The first aim of the present work is to study how to
estimate the weight of the visual information relative to the textual informa-
tion. We propose to learn automatically this weight, using an IR collection as a
learning set. The second aim is to check if the optimal weight accorded to each
information type varies by the kind of queries, and if estimating a specific weight
for each query can significantly improve the results. Indeed, the visual informa-
tion is less important for concepts like e.g. ”animal” or ”vehicle”, because these
concepts can be described by very different visual features.

The next section describes the document model we proposed, combining text
and images, then we present some experiments on an IR task using the Image-
CLEF collection in section 3; we present the results in section 4.

2 Visual and Textual Document Model

2.1 General Framework

The figure 1 presents the global architecture of our multi-modal IR model. The
first component aims at indexing the documents D and the queries Q, both
composed by textual and visual information. The textual content, as well as the
visual one, is represented by a bag-of-words. The second component estimates,

2 TinEye: http://www.tineye.com/
3 Gazopa: http://www.gazopa.com/, Retrievr: http://labs.systemone.at/retrievr/
4 http://www.picitup.com/picitup
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Fig. 1. Multi-modal IR model

given a query, a score for each document and for each modality (textual and
visual). Finally, the last component combines linearly the score obtained for
each modality, in order to retrieve the most relevant documents given a query.

2.2 Textual Document Model

Given a collection of documents D and T = {t1, ..., tj , ..., t|T |} the set of words
occurring in the documents, each document di ∈ D is represented as a vector of
weights wi,j (vector space model [10]): di = (wi,1, ..., wi,j , ..., wi,|T |), with wi,j ,
the weight of the term tj in the document di, computed by a tf.idf formula
(wi,j = tfi,j ∗ idfj). wi,j is high when the term tj is frequent in the document di

but rare in the others.
tfi,j is the term frequency that characterizes the representativeness of the

term tj in the document di. We use the variant of the BM25 weighting function
defined in Okapi [11] and implemented by the Lemur system [12]:

tfi,j =
k1 × ti,j

ti,j + k1 × (1 − b + b ∗ |di|
davg

)

where ti,j is the number of occurrences of the term tj in the document di, |di|
the size of the document di, davg the average size of all documents and k1 and
b two constants.

idfj is the inverse document frequency which estimates the importance of the
term tj over the corpus of documents. We use also the BM25 variant implemented
by Lemur:

idfj = log
|D| − dfj + 0.5

dfj + 0.5
where |D| is the size of the corpus and dfj the number of documents where the
term tj occurs at least one time.

If we consider a query qk in the same way (i.e. as a short document), we can
also represent it as a vector of weights. A score is then computed between the
query qk and a document di:

scoreT (qk, di) =
∑

tj∈qk

tfi,jidfj ∗ tfk,jidfj
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2.3 Visual Document Model

In order to combine the visual and the textual information, we also represent
images as vectors of weights. It is possible to use the tf.idf formula in the same
way, provided we are able to extract visual words from images. It requires a visual
vocabulary V = {v1, ..., vj , ..., v|V |}, which is built in two steps using a bag of
words approach [13]. In the first step, each image of the collection D is segmented
into a regular grid of 16×16 cells, with at least 8×8 pixels by cell. Then, each cell
is described by the visual descriptor SIFT (Scale-Invariant Feature Transform)
based on histograms of gradient orientation [14]. SIFT converts each cell into
128-dimensional vector in such a way that each image is a collection of vectors.
We have evaluated other visual descriptors, like meanstd [9], but only the best
results, provided by SIFT, are presented in this article.

In the second step, the visual words are built by performing a k-means cluster-
ing over the visual vectors. The words of the visual vocabulary V are then defined
as the centers of the clusters and the size of the visual vocabulary corresponds
to the number of clusters.

This bag of visual words is analogous to the bag of textual words inasmuch as
an image can then be represented by an histogram of visual words. Indeed, an
image, belonging to a document or a query, can be segmented into cells described
by SIFT vectors and, each vector can be assigned to the nearest cluster (i.e. visual
word) according to the Euclidean distance. This way, it is possible to count the
number vi,j of occurrences of the visual word vj in the image, in other words
the number of cells vi,j assigned to the cluster with the center vj . Like in the
textual model, an image is represented by a vector where the weights for the
visual words are given by the tf.idf formula in which ti,j is replaced by vi,j and
tj by vj .

Finally, a visual score scoreV (qk, di) is then computed between a document
di and a query qk by:

scoreV (qk, di) =
∑

vj∈qk

tfi,jidfj ∗ tfk,jidfj

2.4 Combining Textual and Visual Informations

The global score for a document di given a query qk is computed, combining
linearly the scores computed for each modality:

score(qk, di) = α× scoreV (qk, di) + (1 − α) × scoreT (qk, di)

where α is a parameter allowing to give more or less importance to the visual
information relative to the textual information.

3 Experiments

In order to experiment our model, we have used the IR collection ImageCLEF
[15]. Our aim is to evaluate the impact of visual information on multimedia IR:
this requires to study the influence of the fusion parameter α.



Impact of Visual Information on Text and CBIR 163

3.1 ImageCLEF: IR Collection

The ImageCLEF collection is composed by 151,519 XML documents extracted
from Wikipedia, composed by one image (photos, drawings or painting) and a
short text, which describes the image but which can also give some information
related to the owner or to the copyright.

Each year, a different set of queries is delivered: in ImageCLEF 2008, used as
a training collection, there are 75 queries. 42 queries contain both a textual part
(a few words) and a visual part. The 33 others queries are provided with only a
textual part. In order to have a visual information obtained in a similar way for
all queries, the two first images ranked by a preliminary textual querying step
have been used as a visual query part for all the 75 queries. In ImageCLEF 2009,
used as a testing collection, there are 45 queries, containing both a textual part
and a visual part (1.84 images per query).

3.2 Evaluation Measures

Several evaluation measures have been used, such as MAP , P10 and iP [0.1]. Let
Q = {q1, ..., qk, ..., q|Q|} be the set of queries and Dk = {dk,1, ..., dk,i, ..., dk,|Dk|}
the set of relevant documents given qk. The Nk retrieved documents for the
query qk is a list of documents ranked according to their score. In ImageCLEF
competition, Nk equals to 1000. The rank r corresponds to the rth document
ranked by the system. Precision Pk(N) is defined as the number of relevant
retrieved documents given qk divided by the N retrieved documents. Recall
Rk(N) is defined as the number of relevant retrieved documents divided by the
number of relevant documents. APk is the average precision for qk.

Pk(N) =
∑N

r=1 relk(r)
N

Rk(N)=
∑N

r=1 relk(r)
|Dk|

APk =
∑Nk

r=1(Pk(r) × relk(r))
|Dk|

where relk(r) is a binary function which equals 1 if the rth document is relevant
for the query qk and 0 otherwise.

Three evaluation measures have been used to evaluate our model. The first
one (MAP : Mean Average Precision) corresponds to the average for all queries
of the average precision APk. The second one (P10) is the precision at 10th rank.
The last one (iP [0.1]) is the interpolated precision at 10% recall.

MAP =
∑|Q|

k=1 APk

|Q| P10 =
∑|Q|

k=1 Pk(10)
|Q| iP [0.1] =

∑|Q|
k=1 iPk[0.1]

|Q|
with:

iPk[0.1] =
{

max1≤r≤Nk
(Pk(r)|Rk(r) ≥ 0.1) if 0.1 ≤ Rk(Nk)

0 otherwise

3.3 Experimental Protocol

Many experiments were conducted in order to evaluate the interest of considering
visual information on an IR task, and to study the α’s influence.
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Learning the α parameter: firstly, queries from the ImageCLEF 2008 (resp.
ImageCLEF 2009) collection are used as training set in order to calculate α2008

g

(resp. α2009
g ), the α value that globally optimize results on ImageCLEF 2008

(resp. ImageCLEF 2009). The optimal value of α correspond to the value of
α that gives the best results for a given criterion, such as the MAP measure,
obtained using a stepped search on the training set. We have used the MAP
measure which is the main one used in the ImageCLEF competition. The learned
α2008

g value has been used by our system to process all the queries from the Im-
ageCLEF 2009 collection. Our first question concerns the possibility of learning
the parameter of the model on a set of queries and using it on a new set of queries:
is it possible to estimate the optimized value α2009

g using the ImageCLEF 2008
collection? The comparison of α2008

g and α2009
g will allow to conclude on the

effectiveness of learning α.

Robustness of α with regard to evaluation measures: the second aim
is to determine the importance of visual information relative to the textual
information, depending on the use case: 1) recall-oriented (exhaustive search),
retrieving a lot of documents more or less relevant, 2) precision-oriented (focused
search), retrieving a smaller set of documents mostly relevant. For this purpose,
we have studied the parameter αg regarding several evaluation measures: in the
first hand MAP , which focus on recall, and in the other hand P10 and iP [0.1],
which focus on precision.

Optimizing α parameter depending on the query: thirdly, we study the
behavior of our model depending on the query type. Some queries seem to mainly
depend on the textual information, such as ”people with dogs”, ”street musician”,
while others require more visual information, such as ”red fruit”, ”real rainbow”.
Studying how the performance of the system change depending on the kind of
query is thus interesting. This local approach aims at calculating αk, the α value
optimized given a query qk. The mean and the standard deviation of αk will let
us conclude on the variation of the α parameter depending on the query and
on the interest of methods that aim at estimating the optimal αk value for a
new query. We will also study the optimization of α depending on the evaluation
measures and thus, we will calculate the αk optimized for the MAP , P10 and
iP [0.1] measures.

Global vs local approach: in the global approach, we study the variation
of the α parameter in order to optimize the evaluation measure MAPα (resp.
P10α, iP [0.1]α). Let αg be the optimal global value of the α paramater that
maximizes MAPα (resp. P10α, iP [0.1]α) on the training set:

αg = α|MAPαg = max{MAPα, α ∈ [0, 1]}

αg is then used for all queries of the test set. During the ImageCLEF 2009
competition, αg was obtained using all the queries of the 2008 collection and it
was then used for processing the queries of the 2009 collection.

The local approach that uses a specific α per query should be the best solution.
However, in practice, this local approach can not be performed since a training
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set is not available for a new query. Nevertheless, in order to compare our global
approach with this local approach, we have searched the αk value that optimizes
the APk, Pk(10) and iPk[0.1] measures for each query qk using the test set. Then
the MAPαl

measure, corresponding to the average of the optimized average
precision APk, is defined by:

MAPαl
=
∑|Q|

k=1 APk|α = αk

|Q|

3.4 Setting Up of Our Model

The lemur software has been used with the default parameters as defined in [12].
The k1 parameter of BM25 is set to 1. As |dk| and davg are not defined for a
query qk, b is set to 0 for the tfk,j computation. When the tfi,j is computed for a
document di and a term tj , this paramater b is set to 0.5. Moreover, stop-words
have not been removed and a Porter stemming algorithm have been applied.
The number of visual words, corresponding to the parameter k of the k-means,
has been empirically set to 10,000.

4 Results

4.1 Learning Parameter α

MAP is a global measure corresponding to the average of the average precision
for each query. This is the official ImageCLEF measure. Table 1 summarizes
the results obtained, depending on which modality is used (text, visual, text +
visual), and also on the optimizing method that is used. According to the MAP
measure, the visual information leads to poor results (MAP = 0.0085) compared
to those obtained using only the text (MAP = 0.1667).

However, figure 2 shows that giving more importance to the visual information
significantly improves the results obtained only with text, especially with α close
to 0.1. Nevertheless, giving too much importance to α (i.e. α > 0.1) reduces the
results quality. The α values are not normalized: thus it is difficult to interpret
them directly, and only the improvement of IR results should allow to evaluate
the interest of integrating visual information.

The parameter α2008
g computed with the 2008 learning collection improves

the results obtained using only the text on 2009 collection (+14.16%, MAP

Table 1. Results on the ImageCLEF 2009 collection (MAP measure)

Run MAP
Gain /

text only

Text only 0.1667

Visual only 0.0085 -94.90%

Text+Visual (α2008
g ) 0.1903 +14.16%

Text+Visual (α2009
g ) 0.1905 +14.28%
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Fig. 2. MAP measure vs. α (2008 and 2009)

= 0.1903). This result is very interesting, particularly when it is compared to
the optimal result (MAP = 0.1905) obtained using the α2009

g value optimized on
the 2009 collection itself. The MAP curves according to α, which look similar,
and the values of α2008

g = 0.084 and α2009
g = 0.085, show a good robustness of

the αg parameter while changing collection (w.r.t. the MAP ). Thus we think
that learning αg is possible.

4.2 Stability of Parameter αg regarding the Evaluation Measure

Regarding more specific evaluation measures, as for example the precision ori-
ented measures P10 and iP [0.1], the α parameter seems less stable than regard-
ing the MAP measure, especially on the 2009 collection, as shown by figure 3
(note that P10 and iP [0.1] are averages, while MAP is an average of averages).

For these measures, the value of the α parameter learned on 2008 (P10: α2008
g

= 0.140; iP [0.1]: α2008
g = 0.108) is quite different than the optimal α value for

2009 (P10: α2009
g = 0.095; iP [0.1]: α2009

g = 0.078). Nevertheless, the weighting of
the visual information through the parameter α2008

g , even if relatively different
than the optimal value α2009

g , still allows to significantly improve the results
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Table 2. Results on the collection ImageCLEF 2009 (P10 and iP [0.1] measures)

Run P10
Gain /

iP [0.1]
Gain /

text only text only

Text only 0.2733 0.3929

Visual only 0.0178 -93.49% 0.0160 -95.93%

Text+visual (α2008
g ) 0.3267 +19.54% 0.4302 +9.49%

Text+visual (α2009
g ) 0.3289 +20.34% 0.4466 +13.67%

regarding P10 as well as iP [0.1], as shown by table 2. We observe an improvement
of 19.54% regarding P10, and of 9.49% regarding iP [0.1].

4.3 Global Approach vs. Local Approach: Optimizing α w.r.t.
a Query

The local approach, i.e. using a specific αk parameter for each query qk, is more
challenging than the global approach, because it needs to compute a priori the
value of αk for each new query; this is an open problem. However, this approach
would allow to dramatically improve the results: the potential gain is +29.99%
(resp. +52.87%, +39.14%) reagrding the MAP measure (resp. P10, iP [0.1]),
as shown by table 3. But implementing this local approach seems very difficult
as it exists an important disparity of αk regarding to the queries, as shown by
μαl

(mean of αk) and σαl
(standard deviation) observed for the 3 evaluation

measures.

Table 3. Optimizing αk for each query

Run
Gain /

μαl σαltext only

MAP
Text only 0.1667

Text+visual (αl) 0.2167 +29.99% 0.080 0.063

P10
Text only 0.2733

Text+visual (αl) 0.4178 +52.87% 0.055 0.058

iP [0.1]
Text only 0.3929

Text+visual (αl) 0.5467 +39.14% 0.083 0.072

5 Conclusion and Future Work

In this paper, we have presented a multimedia IR model based on a bag-of-
words approach. Our model combines linearly textual and visual information of
multimedia documents. It allows to weight the visual information relative to the
textual information using a parameter α.

Our experiments show that it is possible to learn a α2008
g value for this pa-

rameter (using the ImageCLEF 2008 collection as a learning collection) and then
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to use it successfully on the ImageCLEF 2009 collection. This value sometimes
differs compared to the optimal value α2009

g (computed on the collection Image-
CLEF 2009) regarding P10 and iP [0.1], but remains relatively stable regarding
MAP . However it allows to significantly improve the results regarding MAP as
well as P10 and iP [0.1].

According to our results, using a specific αk for each query seems to be an
interesting idea. In order to learn this parameter, a first approach could be to
classify the queries: visual, textual and mixed queries. Maybe it is possible for
this purpose to use the length of the textual queries, which seems to be related
to the queries’ class. Another direction could be to analyze some visual words
extracted from the first set of textual results given the query, hypothesizing that
they carry some visual information about the query. Their distribution should
allow to estimate a specific αk for each query.
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Abstract. Automatic and intelligence Road traffic monitoring is a new research 
issue for high resolution satellite imagery application in transportation. One of 
the results of this research was to control the traffic jam in roads and to recog-
nize the traffic density quickly and accurately. This article presents a new  
approach for recognizing the vehicle and the road in satellite high-resolution 
images in non-urban areas. For road recognition, they used feature extraction 
and image processing techniques like Hough transform, Gradient, and thre-
sholding operation and they presented an artificial immune approach to extract 
vehicle targets from high resolution panchromatic satellite imagery. The aver-
age of results is about 94 percent and it shows that the used procedure has the 
suitable efficiency. 

Keywords: Road Extraction, vehicle Detection, Hough transform, Artificial 
Immune System, Intelligence Traffic monitoring, Satellite images. 

1   Introduction 

With the growth of urban traffic and the necessity to control it, the attention has been 
paid to intelligent traffic control systems. Nowadays urban traffic is controlled by the 
cameras which are installed in highways located at a long distance from each other. 
With the development of technology, this procedure seems so slow and deficient. 
According to the satellite images considered recently, the existence of an intelligent 
system for road and vehicle recognition to control road's traffic will be so useful. 

Hence, area-wide images of the entire road network are required to complement 
these selectively acquired data. Since the launch of new optical satellite systems like 
IKONOS and NAVTEQ, this kind of imagery is available with 0.6-1.0 meter resolu-
tion. Vehicles can be observed clearly on these high resolution satellite images. Thus 
new applications like vehicle detection and traffic monitoring are raising up.  

Traffic, road and vehicle recognition in satellite images with very high resolution 
are very new discussions in machine vision science which makes many projects and 
other operations depend on it. Main factors having the most influence on the topic is 
the number of different objects in the image, the amount of their interconnections and 
the features that can distinguish them from other objects. 
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This paper proposes the technique using the artificial immune network concept to 
extract the vehicle targets and using Hough transform and parallel lines detection to 
extract roads and then recognize traffic in space imagery. First we detect road and its 
boundaries, then we start to detect vehicle in it, because after edge detection, only the 
objects within the boundaries of that road are processed. To do this, extraction of road 
and vehicle features is necessary. One of the most useful features of the road is that 
the road appeared in satellite images will usually be referred to as a direct confine-
ment with a different color [7-8]; so the linear feature can be a proper one to detect 
road confinement. The other feature of roads is the lines drawn on them, these white 
lines which exist on almost all roads and help a lot in road detection. The lines close 
to roadsides and in the middle count as one of the proper features. The other feature 
used is road's color while in high resolution satellite images, distinguishes completely 
the roads from the roadside. With thresholding, the roads can be distinguished  
from background so that other operations can be performed on the image. This color-
ful threshold can be extracted by averaging images existing in the data. After using 
road's features to detect it, the vehicle will be detected in the roads. After road detec-
tion, vehicle detection is easier, because only the objects within the road limits are to 
be studied. 

We used, the technique using the artificial immune network concept to extract the 
vehicles. The immune system is one of the highly evolved biological information 
processing systems and is capable to learn and memorize. Many kinds of immune 
systems have been studied by mathematical methods. In recent years, applications of 
artificial immune system have been proposed in many engineering problems [9-10]. 
In this study, we attempt to use them for target recognition. Observed targets are re-
garded as foreign antigens, and a template is regarded as an antibody. Complementary 
template matching is considered to be exactly the same as the binding of the Paratope 
and Epitope. The algorithm implements morphology operations on images to enhance 
vehicle features. Some of sub-images in the processed images are selected as the 
vehicle and non-vehicle training samples for antibody learning. The learned template 
antibodies are tested on real road segments. 

2   Correlated Issues 

Since satellite images with very high resolution include lots of information and elabo-
rations of recognition process, the choice of appropriate features for recognition is one 
of the main operations in processing and analyzing satellite images. 

The studied satellite images with very high resolution in this paper are caught by 
xerographic satellites. These images have high resolution which makes it easier to 
extract their features with high accuracy. 

These images are fully colored taken in the same distance from Earth. The distance 
between cameras and the Earth is very important in taking satellite images, because 
some of the features which have been used have direct relationship with distance and 
size dimensions, and if the distance changes noticeably, we will need a new features 
measurement requiring standard modules. 

Here it is assumed that the images are taken from a specific distance and resolu-
tion. Processing was done on color images in RGB, HSV. It should be considered that 
these images are taken of the non-urban roads with low probability of crossroads. 
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Fig. 1. Left: Antibodies learning flowchart. Middle: Vehicle Detection flowchart. Right: Road 
Detection Flowchart. 

3   Road Detection  

In this section, the represented method for road detection is implemented on satellite 
images (Figure 1). To do this, first we applied proper filters of image processing on 
the image, so that the image's edges will be clearer. One of these filters is sharpening 
filter which increases the image clearness and makes the image's edges more vivid. 

Detection is applied on the image. Road’s color is distinguished from other parts of 
the image with the help of a filter and through thresholding. First, the thresholding is 
performed to discriminate road from other parts of the image. This operation is done 
on the base of color difference between the road and other parts of the image.  

This thresholding can be measured by the histogram of the road’s satellite image. 
According to the histogram in Figure (2), it can be seen that, this histogram is divided 
into many areas. The areas which show roads in the image, is ranges 5 to 9 of hori-
zontal axis of histogram which assign the greater amount of image color to itself. 
According to the histogram of satellite image and analysis of different images values 
red, green and blue which have the most similarities to the road’s background color. 

 

Fig. 2. Left: Satellite image of Karaj-Qazvin Highway. Right: Histogram of Satellite image of a 
Karaj-Qazvin Highway. 
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Fig. 5. Road and Highway after detection operation 

Hough transform is done with a change of its parameters to improve the efficiency 
to detect road boundaries, and then vehicle detection in roads will be continued. 

4   Vehicle and Traffic Detection 

4.1   Definition of Immunological Terms 

In this section, the immunological terms are defined in the following manner: 

• Antigen: Vehicle targets. 
•Antibody: Vehicle template images extracted from processed images by the mor-

phology transform. 

The used morphology transform is to enhance vehicle features. It is defined by 

G( f ) = f ⊕ g – f         (1) 

Where g is a structuring element, f is a gray scale image, f ⊕ g means dilate opera-
tion, i.e. Dilation:     

(f ⊕ g) (x) = max { f(z) g∗(z) :  z∈D [g∗ ]}                    (2) 

Where (z) = g(z − x),  g*(z) = −g(−z)  and D[g] is the domain of g. 
Figure (6), shows an original image and its morphology processing result. It can be 

clearly seen that all vehicle bodies or contours are enhanced. These enhanced features 
can be used to discriminate vehicle targets and non-vehicle targets. Figures (6) and (7) 
show some antibody examples collected from the morphology processed image, and 
each example image has same size. 

 

   (a)  

   (b) 

   (c) 

Fig. 6. (a) An original image. (b) The morphology preprocessing result. (c) Antibody examples. 
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• Affinity: Matching index. It is inspired from image correlation concept. It is de-
fined by 

 

R = 
∑ ∑ , ,∑ ∑ , ∑ ∑ ,       (3) 

w(x, y) is the template antibody image of size K. L and  f(x, y) is the antigen image of 

size K ⋅ L, w is the average intensity value of the pixels in template antibody image 

w, f is the average intensity value of the pixels in template antigen image f. 
The greater the value of R has the higher the antibody’s affinity. 

4.2   Antibody Learning 

For antibody learning (Figure 1), we setup an image database which includes vehicle 
samples and non-vehicle samples. In the database, all samples are collected from 
morphology processed images using same sampling window (Figure 7). To compare 
Antibodies with Antigens, chosen samples of both of them should be in the same 
direction. It should be considered that the movement orientation of the vehicles in the 
road, is the same as road’s orientation, which was obtained in the previous section 
from the equation Y=αX+β. With rotation the vehicles as much as it is desire, all the 
extracted samples from the roads, will have same orientation. We randomly select N 
vehicle samples from the database as the initial antibody population, the rest samples 
are regarded as training sets. According to the immune network theory, antibodies 
interact with each other and with the environment (antigens). The interaction property 
leads to the establishment of a network. When an antibody recognizes an epitope or 
an idiotope, it can respond either positively or negatively to this recognition signal.  

A positive response would result in antibody activation, antibody proliferation  
and antibody secretion, while a negative response would lead to tolerance and  
suppression. 

According to these antibody properties, we develop an immune network for vehicle 
detection. A set of rules are proposed for antibody selection and updating in the  
immune network. These rules are as follows. 
 
Rule 1. Eliminate the antibody if the maximum affinity of the antibody to vehicle 
samples is under the threshold (<0.6). 
Rule 2. Eliminate the antibody that has high similarity over the threshold (>0.9) to 
other antibodies. 
Rule 3. Eliminate the antibody if the affinity of the antibody to any non-vehicle sam-
ple is over the threshold (>0.6). 
Rule 4. Add a vehicle sample from training sets into the antibody population as a new 
antibody if the affinity of the vehicle sample to any antibody is under the threshold 
(<0.6). 

Based on above rules, the antibody learning procedure in the immune network is 
described as follows: 
Step 1: Randomly select N vehicle samples from the database as the initial antibody 
population. 
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number of vehicles in a specific area and can be sent to the stations. This model also 
has the same deficiencies. Most important of them is that it cannot distinguish mul-
tiple roads in the image. 

5   Results and Conclusions 

In this research, we tried to detect road and vehicle in satellite images with very high 
resolution. This model can help drivers who want to pass the mentioned road, and 
also can help policemen to control the traffic on roads. At the present time, these 
images can be taken by xerography satellite and special airplanes. NAVTEQ pan-
chromatic data set used in our study was collected from Space Imaging Inc. web site 
[23]. The data set contains different city pictures. A total of 6 roads segments contain-
ing over 200 vehicles were collected. Most vehicles in the images are around 8 to 10 
pixels in length and around 3 to 5 pixels in width. 

Since the vehicles are represented by a short number of pixels, their detection is 
very sensitive to the surrounding context. Accordingly, the sample database consists 
of vehicle and non-vehicle samples in a variety of conditions, such as road intersec-
tions, curved and straight roads, roads with lane markings, road surface discontinuity, 
pavement material changes, trees' shadow on the roads, etc. This represents most of 
the typical and difficult situations for vehicle detection. 

Table 1. Results of present method 

  
No. of  

vehicles 
No. of detected 

vehicles 

No. of  
missing 
vehicles 

No. of  
false alarm

Missing  
detection 

rate % 

False detection  
rate % 

Road1 5 5 0 0 0 0 
Road2 8 8 0 0 0 0 
Road3 10 10 0 1 0 10 
Road4 15 15 0 1 0 6 
Road5 19 17 1 1 5.3 5.2 
Road6 16 15 1 0 6.2 0 
Road7 23 23 2 2 8 8 
Road8 60 56 6 5 10 8.3 
Road9 52 47 5 4 11.5 7.6 

 
For each selected image, roads were extracted in advance and vehicle detection 

was performed only on the extracted road surfaces. To build the vehicle example 
database, manually delineated the rectangular outer boundaries of vehicles in the 
image [15-16]. A total of 200 vehicles were delineated in this manner from 5 road 
segments. Sub-images of 10×5 pixels centered at vehicle were built in. In addition, 
200 non-vehicle sub-image samples covering different road surfaces were also col-
lected to build the non-vehicle example database (Figure (7)). The vehicle example 
database and used for features extraction. Results are shown in table (1).  

Kuthadi Sumalatha, in his master's thesis “Detection of Objects from High-
Resolution Satellite Images” has worked on road, vehicle and urban areas. He had 
used thresholding and color extraction methods in his thesis [20] (Figure (9)).  
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According to the results obtained, Kuthadi had carried out his research with higher 
accuracy in comparison with others. With the help of four images which Kutadi used 
for his work, we compared Kuthadi’s method with the recommended method. This 
comparison is shown in table (2). 

 

Fig. 9. Kuthadi’s result for road and vehicle detection (A highway in France). Left: original 
image, Middle: road detection, Right: vehicle detection. 

Table 2. Comparison of present method and Kuthadi method  

  No. of 
vehicles 

Kutadi's 
detected 
vehicles 

Kutadi's 
missing 
vehicles 

Kutadi 
Performance 

% 

Present Method 
detected  
Vehicles  

Present Method 
Performance % 

Road 1 21 12 9 57.1 19 90.5 

Road 2 14 10 4 71.5 13 93 

Road 3 41 32 9 78 39 95.1 
Road 4 9 9 0 100 9 100 
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Abstract. In pattern recognition applications, it is useful to represent objects by 
attributed graphs considering their structural properties. Besides, some graph 
matching problems need a Common Labelling between vertices of a set of 
graphs. Computing this Common Labelling is an NP-complete problem. State-
of-the-art algorithms are composed by two steps: in the first, they compute all 
pairwise labellings among the graphs and in the second, they combine this in-
formation to obtain a Common Labelling. The drawback of these methods is 
that global information is only considered in the second step. To solve this 
problem, by reducing the Common Labelling problem to the quadratic assign-
ment one, all graphs nodes are labelled to a virtual structure whereby the  
Common Labeling is generated using global information. We tested the algo-
rithm on both real-world and synthetic data. We show that the algorithm offers 
better performance than a reference method with same computational cost.  

Keywords: Graduated Assignment, Multiple graph matching, graph common 
labelling, inconsistent labelling, softassign. 

1   Introduction 

From 80’s, graphs have increase its importance in Pattern Recognition, being one of 
the most powerful characteristics the abstraction they achieve. Therefore, the same 
structure is able to represent a wide sort of problems from image understanding to 
interaction networks. Consequently, algorithms based on graph models are suitable in 
a very large problem space. There is an interesting review of graph representation 
models, graph matching algorithms and its applications in [1]. 

Sometimes in graph based Pattern Recognition applications, given a set of graphs, 
which all represent equivalent or related structures, it is required to find global consis-
tent correspondences among all those graphs. These correspondences are called a 
Common Labelling (CL). Reference applications could be found in [2], where repre-
sentations obtained from Infra-red, Optical, Cartographic and SAR images must be 
combined or in [3] where a prototype has to be synthesized from noisy data represent-
ing the same object. 

                                                           
* This research is supported by Consolider Ingenio 2010 (CSD2007-00018), by the CICYT 

(DPI 2007-61452) and by the Universitat Rovira I Virgili through a PhD research grant. 
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Unfortunately, only a few techniques to compute these correspondences have been 
developed when the elements are represented by Attributed Graphs (AGs). Among 
them we could name: [4] where optimal pairwise labelings are required or [5] and [6] 
where, in this case, the CL computation is based on sub-optimal pairwise labelings. 
Although [5] is quite more effective than [6], both share the same weakness: the use 
of pairwise labelings, where a simple labeling error taken at initial stages could derive 
in a bad global result. Moreover [5] have tendency to add extra nodes in the final CL, 
which might be not desired in some applications. In [2], Williams et al. introduce a 
method, which could induce a solution for this problem. However, this method is not 
extensible to N graphs. Another method, which seems to solve both problems, was 
published in [7]. Nevertheless, its high computational complexity makes its use infea-
sible with large graphs sets. 

In this article, we present an energy function that represents the global cost of a 
given CL. Moreover, we present an algorithm, similar to the Graduated Assignment 
algorithm presented in [8] that iteratively seeks for a CL that maximizes this energy. 

The document is structured as follows. In Section 2, we present some theoretical 
basis of the CL problem. In Section 3 and 4, the Graduated Assignment algorithm for 
graph matching [8] and our new algorithm are presented. The evaluation of our 
method is presented in Section 5. Finally, Section 6 finalizes the article with some 
conclusions. 

2   Definitions 

Definition 1. Attributed Graph: Let Dv and De denote the domains of possible values 
for attributed vertices and arcs, respectively. An attributed graph AG over (Dv and De) 
is defined by a tuple AG=(Sv, Se, gv, ge), where Sv= {vk | k = 1,…,R} is the set of verti-
ces (or nodes), Se œ {eij | i,j œ {1,…,R}, i ∫ j} is the set of arcs (or edges) and gv:Sv  → 
Dv, ge : Se  →  De assign attribute values to vertices and arcs respectively. In case it is 
required, any AG can be extended with null nodes. A null node is a special AG node 
which has special attribute Ø œ Dv 

Definition 2. Isomorphism between AGs: Let Gp = (Sv
p, Se

p, gv
p, ge

p) and Gq=(Sv
q, 

Se
q, gv

q, ge
q) be two AGs. If the selected graphs have initially different node size or it 

is desired to permit some extra null to vertex labelings, Gp and Gq can be extended 
with any number of null nodes. Besides, let Τ  be a set of isomorphisms between two 
vertex sets Sv. The isomorphism f 

p,q:Sv
p→Sv

q, fp,qœT, assigns each vertex from Gp to 
only one vertex of Gq. There is no need to define the arcs isomorphism since they are 
mapped accordingly to the node isomorphism of their terminal nodes. 

Definition 3. Cost and Distance between AGs: Let f 

pq be the isomorphism 
fp,q:Sv

p→Sv
q that assigns each vertex from Gp to a vertex of Gq. The cost of this iso-

morphism, CG(Gp,Gq, f 

p,q) is a function that represents how similar are the AGs and 
how correct is the isomorphism. We consider this cost to be: 
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where Fp,q[a,i] is a permutation matrix which values are 1 if 
q
i

p
a

pq vvf =)(  and qp
bjaiC ,

,  

represents the cost of matching nodes
p
av  to q

iv  and p
bv  to q

jv  plus the cost of match-

ing the corresponding edge eab
p to eij

q. 
Usually, CG=0 represents that both AGs are identical and that the isomorphism cap-

tures this similarity. The distance D between two AGs is defined to be the minimum 

cost of all possible isomorphisms fp,q. That is, ( ) ( )qpqpG

Tf

qp fGGCGGD
qp

,,,min,
, ∈

= . We 

say that the isomorphism f 

p,q is optimal if it is the one used to compute the distance. 

Definition 4. Multiple Isomorphism (MI) of a set of AGs: Let Γ={G1, G2, …, GN} 
be a set of N AGs. We say that the set φ is a Multiple Isomorphism of Γ if it contains 
one and only one isomorphism between elements, φ = {f 1,2, …, f 2,1, …, fN,N}. 

We assume that the AGs have R nodes. If it is not the case, the AGs would have to 
be extended with null nodes. We say that a multiple isomorphism is consistent if con-
catenating all the isomorphisms we can define disjoint partitions [5] of vertices. 
Every partition is supposed to contain one and only one vertex per each AG and, in 
addition, every vertex must belong to only one partition. Fig 1a shows a Consistent 
Multiple Isomorphism between three AGs, being R=2. We can distinguish two parti-
tions, P1 and P2. Fig 1b. shows the same AGs with an Inconsistent Multiple Isomor-
phism, consequently partitions can not be defined. 

 

  

 
We define the cost of a MI as the addition of the costs of all isomorphisms in φ:  
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(2)

Definition 5. Consistent Multiple Isomorphism of a set of AGs (CMI): Let φ be a 
Multiple Isomorphism of Γ. φ is a CMI of Γ if it fulfils that: 

⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ p

i
kpp

i
qpkq vfvff ,,,

, RiNkqp ≤<≤< 0,,,0  (3)

We define the cost of a CMI as the cost of the related MI. The Optimal Consistent 
Multiple Isomorphism (OCMI) is the CMI with the minimum cost. Note that, the cost 
of the OCMI may be obtained by non-optimal isomorphisms since it is restricted to be 
consistent. 

Fig. 1b. Inconsistent MI Fig. 1a. Consistent MI 
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Definition 6. Optimal Consistent Multiple Isomorphism of a set of AGs (OCMI): 
Let φ be a CMI of Γ. φ is an Optimal Consistent Multiple Isomorphism (OCMI) of Γ 

if it fulfils that ( )∑
∀∈

=
qppq

GG

qpqpG

Tf

fGGC

,

,,,minargϕ . 

Given Γ, we can define a Common Labelling (CL) which is a bijective mapping be-
tween all graph nodes in the AGs to a virtual structure. We construct this CL through 
a CMI. The CMI requirements are mandatory due to if not, the CL would not be a 
bijective since an AG node would have to be labeled to several nodes of the virtual 
structure. 

Definition 7. Common Labelling of a set of AGs (CL): Let φ be a CMI of Γ and let 
L be a vertex set, L œ Σv. The Common Labelling ψ= { h1, h2, … , hn} is defined to be 
a set of bijective mappings from the vertices of AGs to L as follows:  

h1(vi
1)=i, hp(vi

p)=hp-1(vj
p-1), 1≤ i,j ≤R, 2≤ p≤N, being f 

p-1,p(vj
p-1)=vi

p.  (4)

Fig. 2 illustrates this definition. 
Finally, the Optimal Common Labelling of a set is a CL computed through an 

OCMI. The prototype or representative of the set synthesized using this CL would be 
the best representative, from the statistical point of view, since the sum of the costs of 
each pair of AGs, considering the global consistency requirement, is the lowest 
among all possible CL.  

 

 

Definition 8. Optimal Common Labelling of a set of AGs (OCL): Let ψ be a CL of 
Γ computed by a CMI φ. We say that ψ is an Optimal Common Labelling (OCL) of Γ 
if φ is an OCMI of Γ.  

3   Common Labelling Framework 

Given two graphs G
p and G

q, there are several error-tolerant graph matching algo-
rithms that return the best isomorphism f

p,q between them, given a minimization  
 

Fig. 2. From a CMI to a CL 
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criteria. Considering that these graphs have a degree of disturbance and also the ex-
ponential complexity of the problem, some of these algorithms [8], [9], [10], [11] do 
not return exactly isomorphism f p,q but a probability matrix related to it. We represent 
this matrix by Pf

p,q where each cell contains: 
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qpqp
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To adapt the CL problem to the matching problem, we define the probability of match 
between a graph node vi

p and a virtual node lj as Ph
p
[i,j]=Prob(h

p
(vi

p
)=lj) (Fig. 3). 

Both, Pf
p,q and Ph

p are stochastic matrices [12], note that Fp,q in (1) and (2) is a special 
case of Pf

p,q, when Pf
p,q is composed by zeros and ones. At the end of the proposed 

algorithm, it is necessary to convert Pf
p,q into f p,q and Ph

p into hp. There are several 
techniques to find these isomorphisms, e.g. [8], [13], which are out of the scope of 
this paper. We will indentify this discretization process as Λ. 

We consider, as Fig 3 depicts, that the probability of matching a vertex vi
p of graph 

G
p, to a vertex lj of the virtual structure L is the probabilistic union of all the paths 

that goes through the nodes of a third graph Gq. That is,  
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Combining (6) with Pf and Ph definitions and assuming independence of events  
we have: 
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In a similar way, we could infer that Pf
p,q = Ph

p·(Ph
q)T. 

Hence, following (7) we could obtain Ph
p in several equivalent ways if Λ(φ) is a CMI, 

Fig. 3. Probability of matching v1
1 

to l1. 
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However, in real data (due to distortion on the object representation and distortion 
induced by sub-optimality of the matching algorithms), it is usual that [2]: 
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For this reason, probabilities Ph

p cannot be computed directly through matrices Pf
p,q, 

as in (8), when we cannot assume that Pf
p,q will compose a CMI. 

In this article, we propose and algorithm for the computation of a suboptimal solu-
tion to the CL problem, the algorithm is inspired in the Graduated Assignment. For 
ease of understanding, we first present an overview of the Graduated Assignment 
algorithm to later introduce the proposed algorithm. 

4   The Graduated Assignment Algorithm 

The Graduated Assignment algorithm is probably the most popular algorithm to com-
pute a suboptimal solution for the graph isomorphism problem. Its cornerstone is how 
it reduces the referenced problem to the quadratic assignment problem. The proposed 
development starts by defining the energy of an isomorphism as: 
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analyzing the approximation it is seen that:  
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Program Graduated_Assignment input 
Gp,Gq returns f 
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fP ,  

 Begin A: (Do A until β ≥ βf) 
  Begin B: (Do B until qp

iaQ ,
, converges)   

   [ ]( )∑ ∑= =
⋅=

R

b

R

j

qp
bjai

qp
f

qp
ia CjbPQ

1 1

,
,

0,,
, ,  

   [ ] )exp(, ,
,

, qp
ia

qp
f QiaP ⋅= β   

   Begin C:            

    [ ] [ ] [ ]∑ =
=

R

a

qp
f

qp
f

qp
f iaPiaPiaP

1

,,, ,,,  

    [ ] [ ] [ ]∑ =
=

R

i

qp
f

qp
f

qp
f iaPiaPiaP

1

,,, ,,,   

   End C 
  End B 
 End A 

 )( ,qp
fPf Λ=  

End Program 

Algorithm 1. GA algorithm 

Program CL input Γ returns ψ 
 Initialise P

h
   

 Begin A: (Do A until β ≥ βf) 
  Begin B: (Do B until p

aQ
1,ω converges) 

   Compute p
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1,ω (Alg. 3 or Alg. 4) 
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End Program 
 

Algorithm 2. CL algorithm 
The algorithm proposed in [8] minimizes (10) under the assumption that it minimizes 
at same point as (12) is maximized. In this way, the problem is equivalent to the quad-
ratic assignment one, where Q represents a cost matrix, and Pf  represents a stochastic 
matrix [12] which contains the desired assignation probability. 

The Graduated Assignment algorithm proceeds in the following way: start with a 
valid Pf, compute cost matrix Q given by (12), apply softassign to compute Pf and 
start again. A pseudo code of the Graduated Assignment is listed in Algorithm 1. 

5   N-Graduated Assignment for the CL Problem 

The methodology that we present applies a similar procedure as the Graduated As-
signment methodology to solve the CL problem. The proposed algorithm instead of 
computing an isomorphism of two graphs, it computes the isomorphism of a set of 
graphs Γ and in addition, it imposes to those isomorphisms to be consistent (3). 

 

 
Due to our objective is to compute a CL, our new energy function depends on the 

probabilities Ph instead of Pf. Nevertheless, the CL has to represent consistent and 
bijective isomorphisms between the involved graphs and the virtual structure, for this 

Fig. 4a. non valid: ω1=ω2 Fig. 4c. non valid: i=j Fig. 4b. non valid: a=b 
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reason, we impose the restrictions a≠b, i≠j and ω1≠ω2. Fig. 4a,b,c shows non valid 
isomorphisms. Our new energy function is, 
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From (13) we compute the Taylor series expansion deducing that in our case Q is 
given by: 

[ ]

[ ] [ ] [ ]∑ ∑ ∑ ∑ ∑
≠

Γ∈∀ = ≠= ≠= ≠= ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅⋅=

=
∂

∂=

pq

q

R

i

R

abb

R

ijj

qp
bjai

R
q
h

p
h

q
h

p
h

CL
p
a

CjPbPiP

aP

E
Q

1 ,1 ,1

,
,

,1
221

1
,

122

1

,,,

,

ωωω

ω

ωωω

ω  (14)

Finally, Algorithm 2 obtains a CL ψ given a set of graphs Γ. Note that in (4), we im-
pose h1(vi

1)=li. For this reason, in the algorithm we present, we impose Ph
1 to be the 

identity matrix throughout the iterative process. This requirement is due to the fact 
that the virtual structure does not contain any type of attributes nor structure. Forcing 
nodes of G1 to concrete nodes of the virtual structure L, we force the other graphs to 
label each other according to this prior labeling. The other probability matrices can be 
initialized to any stochastic matrix. 

Function Exact_Q computes Q (14) with a cost of O(N2·R6)(Algorithm 3).  But, 
with the aim of reducing this cost, we have relaxed constraint ω1≠ω2 in (14) (Fig. 4.a) 
which allows to compute an approximation of (14) with a cost of O(N2·R4). Algorithm 
4 shows the pseudocode. We don’t show evaluation results of the Exact_Q due to the 
results are equivalent to the approximation ones. Moreover, it can be proven that, with 
large size of Γ, the noise introduced by the non valid isomorphism when ω1=ω2 in the 
approximation algorithm is not significant. 

Function Exact_Q input P
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,Γ returns Q 
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Algorithm 3. Calculus of Q 

Func Approx_Q input P
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Algorithm 4. Calculus of approx Q 
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6   Evaluation 

To evaluate the presented algorithm we have compared to the algorithm presented by 
Bonev et al. [5]. We consider it is the only one generic enough. The method applies 
the Graduated Assignment algorithm [8] to compute the N2 possible probabilistic 
assignation matrices Pf between the graphs. Next, the N

2
·R

2 probabilities Pf
p,q are 

sorted and processed in descending order to compute what they call a Super-graph. 
The cost of the algorithm is O(N2·(#iterations ·R4)). 

We evaluate both algorithms using two datasets composed by AGs that represent 
objects embedded in the plane. In both cases, nodes are defined over a two-
dimensional domain that represents its plane position (x, y). Edges have a binary 
attribute that represents the existence of a line between two terminal points. The  
former dataset, created synthetically, is composed by 35 classes. The number of 
graphs per class is N œ [3, 5, 7, 9, 11] and the noise level between graphs is ν œ [10, 
20, 40...80]. Therefore, we defined 5 x 7 = 35 different classes: seven classes with 
four graphs (with different noise levels), seven classes with five graphs (with different 
noise levels), and so on. Each class was created as follows. We randomly generate a 
base graph composed of R=10 nodes with random attributes in the range Dv=[0..100, 
0..100]. Edges are defined by the Delaunay triangulation. Then, with this base graph, 
we created N other graphs by: 1, generating Gaussian noise at every node with stan-
dard deviation σ= ν/100. 2, removing v% nodes randomly. 3, inserting v% nodes 
(with random attributes) and 4, changing the state of v% edges. The latter dataset, 
created at the University of Bern [14], is called Letter. It is composed of 15 classes 
and 150 graphs per class representing the Roman alphabet i.e. A, E, F, …, X, Y, Z. 
From each class, we randomly selected N œ [3, 5, 7, 9, 11] graphs, to generate the CL. 
To compute the cost C in equations (2), (12) and (14) we used the Edit Distance [15] 
applied to the sub-graphs induced by {va

p, vb
p} and {vi

q, vj
q}. Finally, with the aim of 

obtaining non-biased results, each experiment was performed 7 times.  
The ground truths of our experiments are the MIs in which each isomorphism has 

been computed through Algorithm 1. Note that these MIs are not restricted to be con-
sistent (3) and so, do not compose a CL (Def. 7). Their costs are computed through 
CMI (2) and they are supposed to be the lowest ones due to the consistency restriction 
are not imposed. The results of the evaluation procedure are presented in Fig. 5 for the 
Letter dataset and in Table 2 for the Synthetic dataset. Each point in Fig. 5 shows the 
mean cost minus the cost of the ground truth of an experiment set performed by both 
algorithms. Each set is constructed by 7 random experiments with letter ‘A’, 7 with 
letter ‘B’, … and 7 with letter ‘Z’ given a concrete size of Γ. Besides, we present the 
results using the synthetic dataset in Table 1. In this case, each cell of the table repre-
sents the percentage of increment of the proposed algorithm in comparison with [5]. 
Each value is computed using the mean of 7 random experiments using a concrete 
size of Γ and a concrete noise level.  

We see in Fig. 5 that the presented algorithm achieve better CLs than [5], we ob-
serve that as the size of Γ increases the performance of the presented algorithm tens 
also to increase respect [5]. In the results performed over the synthetic dataset (Table 
1), we can observe that with noises greater than 10, the percentage of increment is 
considerable and also tends to increase together with the size of Γ and the noise level.  
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Fig. 5. Results of Letter dataset 

Table 1. Results of Synthetic dataset 

 

 

 

7   Conclusions and Further Work 

Graphs are a very flexible representation of data capable of representing a large sort 
of problems related to pattern recognition. Examples could be found in image data-
bases, video analysis, biomedical and biological applications and so on. A nice review 
can be found in [1]. In some of these applications, it is usual the need of finding a 
structure that represents a set of graphs. This structure is used as a representative of 
the set. The first step to generate this structure is to find a Common Labeling between 
the vertices of all the graphs such that a general cost is minimized. It is crucial to find 
a good common labeling to generate a good representative. In addition some works 
[2] deduce that, due to the noise, in some applications it is more useful to find a CL 
(of three graphs) instead of just pairwise labellings. 

Known algorithms to compute a Common Labeling consist on first finding the la-
beling between any pairs of graphs and then combining this information to compute 
the Common Labeling. The presented algorithm differs from others because it com-
putes the Common Labeling at the same time as the pairwise labelings, mixing the 
local and global knowledge at each step of the algorithm. 

We have compared our algorithm with the most popular one in the literature and 
we present and evaluation which shows that our method finds better common label-
ings with similar computational cost. This means that, the approaches that need a 
Common Labeling between graphs would perform better. Moreover, the proposed 
iterative approach allows using the current Common Labeling at each step of the 
algorithm, in comparison with [5] which must wait for all pairwise computations 
before concluding a solution. 

As a future work, we will apply this new technique to the representative of a set of 
graphs called Structurally-Defined Random Graph [3] and we will analyze its ability 
to keep the structural and semantic knowledge of the Γ set. 
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Abstract. This paper focusses on the problem of locating object class exemplars
from a large corpus of images using affinity propagation. We use attributed re-
lational graphs to represent groups of local invariant features together with their
spatial arrangement. Rather than mining exemplars from the entire graph cor-
pus, we prefer to cluster object specific exemplars. Firstly, we obtain an object
specific cluster of graphs using a similarity propagation based graph clustering
(SPGC) method. Here a SOM neural net based tree clustering method is used
to incrementally cluster a large corpus of local invariant descriptors. The popu-
lar affinity propagation based clustering algorithm is then individually applied to
each object specific cluster. Using this clustering method, we obtain object spe-
cific exemplars together with a high precision for the data associated with each
exemplar. The strategy adopted is one of divide and conquer, and this greatly
increases the efficiency of mining exemplars. Using the exemplars, we perform
recognition using a majority voting strategy that is weighted by nearest neigh-
bor similarity. Experiments are performed on over 80K images spanning �500
objects, and demonstrate the performance in terms of efficiency, scalability and
recognition.

1 Introduction

One of the most effective means of knowledge discovery from a large corpus of data is
to search for class exemplars. Detecting exemplars goes beyond simple clustering, as
the exemplars themselves store compressed information. Frey and Dueck [1] propose
an affinity propagation method for locating an optimal set of exemplars. Each data
item in the corpus is then associated with the exemplar that best represents it. Affinity
propagation uses an index of similarity s(i� k) to indicate how well the data item with
index k is suited to be the exemplar for data item i. Affinities are updated in an iterative
manner reminiscent of both belief propagation and relaxation labeling. The method can
be applied to high dimensional vectors, graphs or any data-structure provided a suitable
similarity measure can be defined.

Many knowledge discovery tasks require the identification of exemplars from among
a set of sparsely related data, i.e., where most similarities are either unknown or large
and negative. To deal with affinity propagation in this case, a sparse similarity matrix
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(SSM) with similarity set to �� is used. When affinity propagation is applied to this
sparse similarity matrix, because messages need not be exchanged between i and k if
s(i� k) = ��, each iteration requires exchanging messages only between a very small
subset of the data pairs. Another interesting capability of affinity propagation is that is
can be applied to asymmetric or non-metric similarities (i.e. those for which s(i� k) �
s(k� i)) and those for which the similarities do not satisfy the triangle inequality (i.e.,
s(i� k) � s(i� j) � s( j� k)).

The affinity propagation method has been applied to a moderately large image corpus
[1]. However, it is still difficult to apply the algorithm to a very large sparse similarity
matrix, for instance where the number of data items exceed 107. Furthermore, it is
difficult to efficiently obtain a sparse similarity matrix for large datasets, and this can
cause difficulties in locating exemplars. In this paper we address the question of how to
obtain exemplars of a specific object rather than all exemplars of a large image corpus,
and how to propagate affinity in this context.

Recently, Xia and Hancock have shown how graph clustering can be effected us-
ing similarity propagation and used to discover the set of object classes present in a
database of images[7][6][4]. In this work, each image of an object is represented by
a graph constructed from a selected group of robust SIFT features. For each pair of
graphs, a similarity measure is computed using the cardinality of the maximum com-
mon subgraph and the consistency of geometric spatial alignment of the image features.
A recursive self organizing map is used to locate a clustering tree (termed RSOM) for
the SIFT descriptors, which is then incrementally trained using the method outlined in
[2]. For each graph, the K nearest neighbor graphs under the pairwise graph similarity
measure can be efficiently located using the RSOM clustering tree.

In this paper, we propose an integrated framework for obtaining object specific im-
age exemplars based on the more principled use of affinity propagation. The paper is
organized as follows. In Section 2, we introduce some preliminaries for our work. In
Section 3, we present the outline of our method used for exemplar mining. We present
experimental results in Section 4 and conclude the paper in Section 5.

2 Ingredients of Our Method

2.1 Image Representation

For each image in the dataset local invariant features are detected. A variety of feature
detectors have been developed [8][14][9][15], and these include SIFT [9] and SURF
( Speeded Up Robust Features ) [8]. We use the method proposed in [5] to extract
a selected number � , e.g. � = 40, of salient SIFT features. Each group of selected
local features together with their spatial arrangement is regarded as a semantic visual
entity. This kind of structured data can be represented by using attributed graphs G [11]
(hereafter simply graphs). We can obtain a set of graphs � =�Gl� l � 1� 2� ���� N� from a
set of images.

2.2 Pairwise Graph Matching

As shown in [10][16][20], the recognition or retrieval results can be significantly im-
proved using the geometry of spatial feature arrangement to verify consistency. In our
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approach, on the other hand, each image is represented by a graph. As a result the
spatial verification problem becomes one of pairwise graph matching (PGM). We per-
form PGM with the aim of finding a maximum common subgraph (MCS) between two
graphs Gl and Gq, and the result is denoted as MCS (Gl,Gq). There are a plethora of
available methods for finding matching features consistent with a given set of geomet-
ric constraints, and the problem has been proven to be NP-hard. RANSAC provides
one popular set of methods, however their implementation is slow [18]. In [3], pair-
wise graph matching is achieved by combining SIFT feature matching and iterative
Procrustes alignment [19]. The method can not only be used to align the feature points,
but can also be used to discard those features that do not satisfy the spatial arrangement
constraints. Given the MCS (Gl�Gq) obtained by PGM, a similarity measure between
the graphs Gl and Gq is defined as follows:

R(Gl�Gq) � �MCS (Gl�Gq)� � ( exp(� e(Xl� Xq)) )�� (1)

Here a) �MCS (Gl�Gq)� is the cardinality of the MCS of Gl and Gq, b) � is the num-
ber of roughly mismatched feature pairs by SIFT matching, which is used to amplify
the influence of the geometric dissimilarity between Xl and Xq, and c) Xl and Xq are
respectively the position coordinates in graphs Gl and Gq corresponding to the vertices
of MCS (Gl�Gq).

2.3 Obtaining K-Nearest Neighbors Using RSOM Tree

Consider the graph set � =�Gq� q � 1� 2� ���� N�. For each graph Gl � �, and the re-
maining graphs in the set (	Gq � �), we obtain the pairwise graph similarity measures
R(Gl�Gq) using Equation (1). Using the similarity measures we rank the graphs in de-
scending order of similarity and the K top-ranked graphs are defined as the generalized
K-nearest neighbor graphs (KNNG) of graph Gl, denoted as ��Gl�.

With increasing size of the graph dataset, it becomes time consuming to obtain all
��Gl� if a sequential search strategy is adopted. However, in a large graph set, most of
the values of the the similarity measures are very low. For a single graph Gl, if we can
efficiently find a subset �� with significant similarity values from the complete set � as
a filtering stage. Then we only need to perform pairwise graph matching for this subset.
To this end, we employ a tree based clustering method.

We use the incremental clustering tree-RSOM reported in [2] for incrementally learn-
ing a large corpus of SIFT descriptors. To obtain ��Gl� for each training graph using a
trained RSOM tree we proceed as follows. Given a graph Gl, we find the winner of the
leaf nodes for each descriptor of this graph and define the union of all graphs for the
winners as follows:

UG�Gl� � � Gq 
 U j
q � Gq�U

j
q � WL�Ut

l ��U
t
l � Gl�� (2)

where WL�Ut
l � is the winner of the leaf nodes for descriptor Ut

l . The frequency of graph
Gq, denoted as Hq, represents the number of roughly matched descriptors between two
graphs. Since we aim to obtain ��Gl�, we need not process all graphs in the subsequent
stages. We rank the graphs in UG�Gl� according to decreasing frequency Hq of graph
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Gq. From the ranked list, we select the first K graphs, denoted by �
�

�Gl� as follows:

�
�

�Gl� � � Gq 
 Gq � UG�Gl�� Hq � Hq�1� q � 1� 2� ���� K��� (3)

For each graph Gq in �
�

�Gl�, we will obtain the similarity measure according to Equa-
tion (1) and then ��Gl� can be obtained.

2.4 Similarity Propagation Based Graph Clustering(SPGC)

In the text retrieval literature, a standard method for improving performance is query
expansion. The query expansion strategy used in [4] is based on the RSOM tree and the
set ��Gl� for each graph, obtained in the training stage. Stated simply, the method is as
follows. A group of graphs are referred to as siblings of a given graph Gl provided they
satisfy the following condition:

S �Gl� � �Gq � ��Gl� 
 R(Gl�Gq) � �� � S ��Gl�� (4)

where � is a similarity threshold. We use the definition to recursively obtain the family
tree for the graph Gl, and this is formally defined as follows.
Family Tree of a Graph (FTOG): For any given similarity threshold �, an FTOG of Gl

with k generations and denoted as M�Gl� k�, is defined as follows:

M�Gl� k� � M�Gl� k � 1�
�

Gq�L�Gl �k�1�

S ��Gq�� (5)

where, if k � 1, L�Gl� 1� � L�Gl� 0�
�

S �Gl� and M�Gl� 0� = �Gl�; and the process stops
when M�Gl� k� � M�Gl� k � 1�. An FTOG, whose graphs satisfy the restriction defined
in Equation (4), can be regarded as a cluster of graphs. However, it must be stressed that
this is not a clustering method based on a central prototype.

2.5 Affinity Propagation Clustering

Affinity propagation is a clustering method, which commences by considering all the
data items as potential exemplars, and then recursively transmits real-valued messages
along edges of a network whose nodes are data items. At any item and at any time, the
magnitude of each message reflects the current affinity (or support) provided by one
node for another as its potential exemplar [1]. After a number of iterations, a good set
of exemplars and corresponding clusters emerges. The input of affinity propagation is
a collection of real-valued similarities between data items, where the similarity s(i� k)
indicates how well data point k is suited as the exemplar for data-point i. In affinity
propagation, the number of clusters is not required to be specified. The method can be
biassed by adjusting values of s(i� i) referred to as the ”preference”. A data point with a
large value of s(i� i) is more likely to be chosen as an exemplar. Two kinds of messages
are exchanged between data items, namely ”responsibility” and ”availability”. The ”re-
sponsibility” r(i� k), transmitted from item i to item k, reflects how well-suited data item
k is to serve as the exemplar for data item i. The ”availability” a(i� k), transmitted from
candidate exemplar item k to item i, reflects the accumulated evidence for choosing item
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k as the exemplar of item i, given the support from the remaining items in the network.
Updating takes place according to the following rules:

�������������

r(i� k) : � s(xi� xk) � max
k��k

�a(i� k�) � s(xi� xk�)�

a(i� k) : � min�0� r(k� k) �
�

i����i�k�

max�0� r(i�� k)��
(6)

The self-availability is updated in a slightly different way as

a(k� k) �
�

i��k

max�0� r(i�� k)�� (7)

Upon convergence, the exemplar for the data item indexed i is chosen as e(xi) � xk

where k satisfies the criterion:

k � arg max
k
�a(i� k) � r(i� k)�� (8)

The algorithm is halted after a fixed number of iterations or after the exemplars do not
change for a given number of iterations. Affinity propagation is not a universally effi-
cient data clustering method. Firstly, if the desirable number of clusters K is small, then
the combinatorial problem can be tackled by brute force (considering all NK possible
solutions). Secondly, and most importantly, affinity propagation suffers from quadratic
computational complexity in the number of data items N. This hinders its direct use
in large-scale applications. To reduce the computational complexity of affinity propa-
gation, in this paper we proposed an algorithm based on similarity propagation based
clustering. We split the entire dataset into subsets of graphs, and then perform exemplar
extraction on each subset.

3 Mining Exemplars Using Three Stage Clustering

Suppose that we have obtained a large graph set � =�Gl� l � 1� 2� ���� N�, extracted from
an image corpus. In this section, we demonstrate how to efficiently obtain object specific
exemplars from such datasets. Our method involves four main steps:

– Step 1 Train the RSOM tree clustering of SIFT descriptors;
– Step 2 Obtain the KNNG for each graph in �;
– Step 3 Obtain the FTOG in a weakly supervised manner using SPGC;
– Step 4 Detect exemplars for each FTOG individually using affinity propagation.

Steps 1-3 follow directly the work reported in [4]. In Step 4, we firstly apply affinity
propagation to each FTOG and rank all graphs according to arg maxk�a(i� k)�r(i� k)�. We
select J exemplars according to Equation 8 and check whether these J exemplars form
an FTOG. If not, we select the J� � J top ranked graphs such that these selected graphs
form an FTOG. In this way, we simplify each FTOG Ml to M

�

l which is constructed
from a group of exemplar graphs Gl

j� j � 1� 2� ���� �M
�

l� and their similarity relationships.
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For each feature point as a node k of an exemplar graph Gl
j in the FTOG M

�

l , we count

the frequency nl
jk of being matched by its nearest neighbors. The simplified FTOG M

�

l
depends on Ml and R 0 and is a more compact representation.

In this way a compact representation of each FTOG is obtained. The set of com-
pact FTOGs forms the learned model of the object of interest. Once the object model
is trained, for a test graph Gl, we can obtain K �Gl� and use a weighted voting method
based on k-nearest neighbor graphs for recognition, where the similarity measure
R(Gl�Gq) is used as the weight. We then use the well known F-measure in order to
evaluate the recognition performance. A high value of the F-measure f means that both
high recall and high precision are achieved. The ideal result is f � 1.

4 Experimental Results

4.1 Datasets

We have collected 53,536 images as a training set. This dataset spans more than 500
objects, including some human faces and natural scenes. The image corpus is composed
as follows: there are a) 3600 images of 50 objects from COIL 100, labeled A1�A50; b)
161 images of 8 objects used in [18], labeled B1 to B8; c) 20000 images of 10 objects
collected in our own lab., labeled as C1 to C10. For each of the objects in C1 to C9, we
have collected 1500 images which traverse large variations of imaging conditions, and
similarly 6500 images for C10; d) 29875 unlabeled images from many other standard
datasets, e.g. Caltech101 [13], PASCAL VOC’07 [12] and Google image, spanning over
450 objects and used as negative samples. For simplicity, the 4 data sets are denoted as
A, B, C and D. The objects in Figure 1,2 and 3 are numbered from left to right and then
from top to bottom as shown in the corresponding figures. We take 68 images as object
examples for recognition, and these are identified as Object 1 to Object 68 in Figure 1,
2 and 3.

For each of these images, we extract ranked SIFT features, using the method pre-
sented in [5], of which at most 40 highly ranked features are selected to construct a
graph.

4.2 Clustering Results

From the training data we have obtained an RSOM clustering tree with 25334 leaf nodes
using the method described in [2]. The method was implemented using Matlab 7.2 and
run on a 2.14GHz computer with 2G RAM. In the incrementally training process, we
have obtained K �Gl� for each of the graphs.

Following RSOM tree clustering, we individually obtain FTOG’s for the above 68
labeled object classes using the similarity propagation based graph clustering method
presented in Section 2. The object clustering results for the 68 object problem are shown
in Figure 5. For most of the objects sampled under controlled imaging conditions, ideal
performance has been achieved. For 35 objects in COIL 100, 35 models are individually
clustered with total unit recall and precision in one FTOG. For 13 objects, 6 FTOGs are
obtained. Each group of objects in Figure 6 (A)(B)(C)(D) are actually identical in shape
but color. Since it only uses gray scale information in SIFT, our method fails in this case.
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Fig. 1. 50 objects in Coil 100

Fig. 2. 8 objects in[18]

Fig. 3. 10 objects collected by the authors

Fig. 4. Unlabeled sample images
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Fig. 5. Results of object clustering using similarity based graph clustering. In the above table, ID
is the Object ID; Ni is the number of the initial images of an object; Nd is the number of images
clustered by using similarity based graph clustering; N�

d is the number of correctly clustered
images; p is the precision defined as N�

d �Nd; r is recall defined as N�

d �Ni. Nc is the number of
clusters for each object.

Fig. 6. 6 groups of objects are overlapping-clustered into 6 clusters

We hence regard these objects in the four groups as being correctly clustered according
to shape.

Unfortunately, in most practical situations, the images of an object are likely to be
obtained with large variations of imaging conditions and are more likely to be clustered
into several FTOGs. As a result, each object gives rise to multiple clusters. For objects
51 to 58 there are more than 30 images with large variations in viewing conditions, and
the images are not representative enough to perform ideal recognition. However, for
objects 59 to 68, the images clustered together are sufficient to form an effective object
model which can be used for recognition. For object 68, since there are thousands of
images, the different views form a single cluster.

For each FTOG, the exemplar graphs are obtained individually using affinity propa-
gation. The percentage of the exemplar graphs for each object are shown in Figure 7.

4.3 Recognition Test Results

We also collect images of Objects 1 to 68 for recognition experiments. For each of
objects A1 to A50 (i.e. those contained in the COIL database), we synthesis 6 images
by adding a mixture of salt and pepper noise, speckle noise and Gaussian noise to their
original image. The variances of the noise processes are randomly set to 0.03, 0.04 or
0.05. In total, 21600 images of the 50 objects are obtained. For objects B1 to B8, we
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Fig. 7. The numbers and percentages of exemplars obtained by using SPCG and affinity propaga-
tion for the objects of interest

Table 1. F-measure f for given test set of Object 1�68

ID f ID f ID f ID f ID f ID f ID f ID f ID f ID f
1 .997 2 .965 3 1.0 4 .984 5 1.0 6 1.0 7 1.0 8 .990 9 1. 10 1.0
11.983 12 1.0 13.988 14 1.0 15 1.0 16 1.0 17 1.0 18.982 19.981 20 1.0
21.986 22 1.0 23 1. 24 1.0 25 1.0 26 1.0 27.993 28 1.0 29 1. 30 1.0
31 1.0 32 1.0 33.994 34 1.0 35 1.0 36 1.0 37 1.0 38.995 39.980 40 1.0
41 1.0 420.988 43 1.0 44.995 45.941 46 1.0 47 1.0 48 1.0 49 1.0 50.989
51.625 52 1.0 53 1.0 54 1.0 55.714 56 1.0 57.954 58 1.0 59.992 60.998
51.625 52 1.0 53 1.0 54 1.0 55.714 56 1.0 57 1.0 58 1.0
61.992 62 .997 63.993 64.983 65.991 66.989 67.994 68 1.0

have manually obtained all 78 ROI’s (ROI: region of interest), each of which includes
one object of interest, from 51 test images presented in [18]. For each of the objects C1
to C10, we collect 500 images under similar but not identical imaging conditions. For
each of these images, we also extract ranked SIFT features to construct a graph, using
the same method presented in [5].

Using the trained model, these object images are recognized according to the follow-
ing Steps:

1) Obtaining the KNNG for each graph;
2) Recognition by making using a majority voting strategy weighted by the similari-

ties of the corresponding KNNG.
Suppose NT P is the number of correctly recognized instances for an object of interest,

NFP is the number of instances incorrectly recognized as the object of interest, NP is the
number of instances belonging to the object of interest. Then the F-measure is defined
as follows:

f �
2

1�recall � 1�precision
� (9)

where recall � NT P
NP

, precision �
NT P

NT P�NFP
. The F-measures for the recognition test

for Object 1 to Object 68 are shown in Table1. It is interesting to note that the test
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recognition performance of Object B1 to B8 is very close to that obtained in [18] when
only SIFT features are used (corresponding to the 8 objects marked in magenta in Ta-
ble1. However, we emphasize that our results are obtained with large negative sample
sets.

5 Conclusion

This paper has described a framework for learning recognition oriented exemplar mod-
els from a large corpus of multi-view images. Our model is a comprehensive integra-
tion of the global and local information contained in the local features from different
views. The exemplars are extracted in a three-stage clustering process. First, RSOM
tree clustering is used to incrementally cluster a large corpus of local invariant feature
descriptors. Using RSOM, the K nearest neighbor graphs of each graph can be effi-
ciently obtained without linear search. Second, the similarity propagation based graph
clustering method is used to cluster the graph instances of a specific object with high
precision. Such a graph cluster is termed an FTOG. Third, each FTOG is then subjected
to affinity propagation to obtain the exemplars for a single FTOG. For each additional
test graph, the recognition decision is made according to its nearest exemplar. Experi-
ments demonstrate high performance in terms of efficiency, scalability and recognition.
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Abstract. Image partitioning separates an image into multiple visu-

ally and semantically homogeneous regions, providing a summary of vi-

sual content. Knowing that human observers focus on interesting objects

or regions when interpreting a scene, and envisioning the usefulness of

this focus in many computer vision tasks, this paper develops a user-

attention adaptive image partitioning approach. Given a set of pairs of

oversegments labeled by a user as “should be merged” or “should not

be merged”, the proposed approach produces a fine partitioning in user

defined interesting areas, to retain interesting information, and a coarser

partitioning in other regions to provide a parsimonious representation.

To achieve this, a novel Markov Random Field (MRF) model is used to

optimally infer the relationship (“merge” or “not merge”) among over-

segment pairs, by using the graph nodes to describe the relationship

between pairs. By training an SVM classifier to provide the data term,

a graph-cut algorithm is employed to infer the best MRF configuration.

We discuss the difficulty in translating this configuration back to an

image labelling, and develop a non-trivial post-processing to refine the

configuration further. Experimental verification on benchmark data sets

demonstrates the effectiveness of the proposed approach.

1 Introduction

As human observers, when we are observe the world around us there are things
in our field of view that interest us more than others. We subconsciously pay
more attention to these areas, taking in more information about them than their
surroundings. In computer vision, partitioning an image into multiple visually
and semantically homogeneous regions is an important step in scene understand-
ing. It provides a useful summary of visual content and allows a complex visual
recognition process to be decomposed to region-level subtasks. While image par-
titioning has been well studied and widely applied in many vision problems,
existing segmentation techniques can not reflect this type of human focussing
behavior. In this paper, we present a method for partitioning an image such that
some user-defined interesting object(s) are preserved at higher resolution than
uninteresting objects.

The idea that the human brain devotes more attention to some areas in the
visual field has support from the field of psychology [1]. Such research has likened
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perception to a spotlight, illuminating different players on a stage as attention
is focussed on them. The rest of the stage remains visible, but more details
stand out about the interesting actor. The partitioning that we propose is a
good analogue of this model of human visual attention. It is important to note
that we neither construct or utilize a specific attention model in our approach.
Instead, we attempt to produce an informative image partitioning which expands
on user input to produce a result which reflects this information by detailing
interesting areas with a finer partitioning (placing more, smaller-sized segments)
while abstracting uninteresting areas with coarser partitioning (placing fewer,
larger-sized segments).

In this paper, we present a new framework for incorporating user-defined in-
terestingness information in order to produce such an informative partitioning.
Instead of segmenting an image at the object level, we split an image into a large
number of oversegments, small-sized image patches containing similar visual in-
formation. A user expresses the relative interestingness of parts of the image
by labelling a set of example pairs of oversegments as “should be merged” or
“should not be merged”, that is, as side information. Importantly, it is up to
the user to define which areas should not be merged, allowing them to dictate
objects that may otherwise be seen as background as interesting objects, or to
define the focus of an image as uninteresting.

From this side information, an SVM classifier is learned to describe the rela-
tionship between pairs of oversegments. To take spatial context in account, an
MRF model is employed to optimally infer the relationship between neighbor-
ing oversegments as “merge” or “not”. Unlike the standard form, the nodes of
the graph in our work denote the relationship of oversegment pairs rather than
oversegments themselves, essentially producing an inversion of the edges and
nodes in a typical image MRF. The graph-cut algorithm is employed to infer
the best MRF configuration. However, we show that the result of a graph-cut
with the Potts model, or any other local smoothness criterion cannot be readily
used, and a non-trivial post-processing has to be developed to refine the above
configuration further, reducing the impact of classification errors.

This distribution of differently sized segments across an image based on the
interestingness of their contents provides a novel method for allocating resources
to an image for whatever purpose the user has, particularly for classification and
compression tasks. Our supervised approach allows us to learn a high quality
system for producing this segmentation from a limited amount of side informa-
tion. The modification we make to the standard MRF image representation to
incorporate spatial relationships into our framework has potential application in
many areas outside of this paper. We present experimental validation of the ideas
presented in this paper, achieving excellent performance across a wide range of
image classes.

Clearly, this objective can be seen as an image segmentation problem. How-
ever, existing segmentation methods are unable to truly reflect the interest fo-
cussing behavior that we describe. Unsupervised segmentation methods such as
[2,3] typically generate a segmentation of an image by identifying areas with
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similar colour or texture, or by attempting to locate the most likely location of
the boundary between different objects. These methods do not take the user’s
interest into account, and are unable to accommodate user input that expresses
this interest. Supervised segmentation methods classify areas of an image based
on a model learned from a large amount of training data into a set of pre-defined
object classes. However, they are focused on how to accurately infer the class
label of each pixel to achieve the best segmentation, rather than the resolution of
this segmentation. Intuitively, we can choose to consider user attention for each
segmented part after segmenting the whole image with an existing method. How-
ever, this is not efficient because i) Initial segmentation ignores user input when
generating the segmentation, and as such much of the effort is wasted elegantly
segmenting non-interesting areas; ii) it forces user attention to be expressed at
the level of segmented areas; iii) the number of segments generally has to be pre
defined. Alternatively, our technique can be seen as a region merging algorithm,
such as that in [4]. However, existing region merging methods are typically unsu-
pervised or take user input in the form of segment biases. They also do not allow
for regions to be specifically not merged despite similarity, which is required to
produce the partitioning we desire.

2 Generating an Informative Image Partitioning

2.1 Use of Oversegments and Oversegment Features

In order to reduce the size of the graph that we process, and to simplify the
acquisition of human input, we use an oversegmentation of the input image in our
process. The method used to generate this oversegmentation is largely arbitrary,
however it is important for the process that the oversegments produced contain
only a small-sized image patch with sufficiently homogeneous visual content.

Superpixel methods are a good way of generating the required oversegments,
as they attempt to maximally follow the criteria that we have defined. Mori’s
superpixel generation method [5], based on the Normalized Cut algorithm [3],
produces similarly sized typically homogeneous segments across an image. Su-
perpixels are not constrained to any particular distribution across the image,
and this lends itself well to ensuring that multiple image objects do not fall into
the same oversegment.

The Superpixel Lattice method of Moore et al [6] provides a viable alternative
to Mori’s superpixels in our work, and the two methods can be used interchange-
ably. We did not investigate less homogeneous oversegmentation methods, such
as the work of Felzenszwalb and Huttenlocher [2] and the classic watershed image
transform [7], for generating our input, as it is difficult to control the number of
segments obtained from these methods and they tend to produce very differently
sized segments within the image.

We have used a simple feature set for classification in this paper. We use
colour histograms in the CIE Lab colour space and a texture set. One ten bin,
equal bin width histogram is generated for each colour channel. Each histogram
is normalised by the size of the superpixel from which it is extracted to remove



Guided Informative Image Partitioning 205

the effect of oversegment size in comparison. We utilize a set of eight texture
features, derived using the method presented by Varma and Zisserman in [8].
The average response of each pixel in an oversegment to each of these eight
features is taken as a description of the texture of the oversegment. A feature
vector c for each oversegment is constructed from this set of visual information.

2.2 Acquiring User Input

User input is taken in the form of pairs of oversegments and an instruction,
either “Merge” or “Do Not Merge” these two oversegments. In this way, we
do not require any knowledge of the number of classes of object in the image,
nor do we require the user to directly assign labels to any part of the image.
Input data can represent one of four things: In-class merges (merging similar
oversegments), In-class no-merges (marking an object as interesting), interclass
no-merges (Identifying that two oversegments belong to different objects) and
finally interclass merges (Identifying that two oversegments belong to different
objects, but the user would still like them to be merged).

The amount of user input required depends largely on the complexity of the
image. Simple problems can be solved with as few as 20 pairs, while more complex
scenes can take up to 100 pairs to build a robust model. In class merges, interclass
merges and in class no merges can be acquired with a brush input device, but
interclass no merges require the user to specify the specific oversegments which
should not be merged, as brush input in this case is unreliable.

3 MRF-Based Region Merging

3.1 MRF Model with Edge-to-Vertex Transformation

It is very common in the literature to represent an image as a Markov Random
Field [9]. This MRF typically represents each pixel (or oversegment) as a vertex
V , with edges E between adjacent pixels, resulting in an MRF described by
G = (V , E). Most applications seek to infer the optimal configuration of this
MRF, that is, assigning class labels to each vertex by considering the spatial
smoothness. In contrast, our problem is not going to assign a class label directly
to each vertex. Instead, we want to optimally infer the label (“merge” or “not
merge”) for each edge. To achieve our goal, we have to conduct an edge-to-vertex
transformation, as shown in Figure 1.

Edge-to-vertex transformation has been used in graph and network analysis.
For example, the work in [10] applies this method to analyze a city traffic net-
work, in which roads are mapped to vertexes and intersections to edges between
vertexes. This transformation is taken by our approach to map the edges in the
preceding MRF graph to the vertexes of a new graph. By doing so, each vertex
in the new graph denotes the relationship between superpixels, and its label is
either “merge” or “not merge”. Formally, we define a new graph G∗ = (V∗, E∗)
with vertices V∗ (corresponding to the edge E in the preceding graph) and edges
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(a) (b)

Fig. 1. (a) Initial MRF representation of an image G. (b) The transformed graph G∗

in which we represent edges from G as nodes.

E∗. α∗
i (α∗

i ∈ {0, 1}) is the label assigned to V∗
i . Each vertex V∗

i retains the
visual information ci of the two vertices that it connects as an edge in the old
graph. This formulation allows us to simplify the problem into a simple binary
labelling, which allows us to employ the standard MRF inference method to find
the optimal labels. Because semantic concepts of an image are formed by groups
of oversegments and users often pay attention to meaningful objects, adjacent
oversegments will often share the same merging (or non-merging) labels. This
implies that the distribution of merge and non-merge labels will be distributed
in a smooth fashion across the image, except at boundaries among interesting
and uninteresting areas.

With the above MRF model, we represent our inference problem as minimi-
sation of the cost function in equation (1), taking the form:

U(α∗; c∗) = λ
∑
i∈V∗

U1(α∗
i ; c

∗
i ) +

∑
ij∈E∗

U2(c∗i ; c
∗
j )δ[α

∗
i �= α∗

j ] (1)

Its data term U1 represents the cost of assigning vertex i to αi = 0 (do not
merge) or αi = 1 (do merge). Its local smoothing term U2 represents the cost
associated with assigning different labels to adjacent nodes. Derivation of the
data term used is discussed in section 3.2. Using this form for our cost function
allows us to use a graph cut algorithm to find an optimal labelling. Specifically,
we use the max flow algorithm described in [11] to efficiently find a minimum
cut over a graph where edge weights are defined as:

zij =U2(c∗i , c
∗
j )=

1
||c∗i − c∗j || + 1

; zi0 =λ · U1(α∗
i =0; c∗i ); zi1 =λ · U1(α∗

i =1; c∗i )(2)

where zi1 is the cost of assigning a node to merge, zi0 is the cost of not merging
and zij is calculated based on the similarity between nodes. As shown, we reflect
this smoothness by a simple Potts model, assigning the penalty for assigning
different labels to adjacent nodes based on the difference between the features
in the two nodes. Assigning smoothness in this way allows us to reduce the cost
of assigning different labels when there is a significant difference between two
nodes, as expected.
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3.2 Learning the Data Term with a Support Vector Machine

The data term from Equation (1) is computed as follows. Let c∗ia and c∗ib denote
the visual feature vectors of the two vertices that V∗

i connects when it is an edge
in the initial graph. The problem is to estimate the possibility that V∗

i is labeled
as 0 or 1 solely based on c∗ia and c∗ib. Since a user has labeled some example pairs
of superpixels as merged or not, calculating the data term can be solved by a
learning task.

An SVM classifier is trained as follows. Suppose a user provides a set of exam-
ple pairs of superpixels. We stack two superpixels c∗ia and c∗ib in each pair as a long
vector c∗i . Thus, a training set is obtained as {c∗1, α1}, {c∗2, α2}, · · · , {c∗m, αm},
where c∗i is the training vector and αi is the corresponding label, 0 or 1. Note
that whether two superpixels are to be merged or not is independent of its
order presented in c∗i . Hence, for each c∗i (i = 1, · · · ,m), we can generate a
”shadow” training vector c∗i in which the order of c∗ia and c∗ib is switched and
its label remains. Thus, there are 2m training samples to be used for SVM
training. We use a SVM classifier with a Gaussian RBF kernel of the form:
k(c∗i , c

∗
j ) = exp(−γ||c∗i − c∗j ||2), where γ is a nonnegative parameter which needs

to be tuned for our specific application. A misclassification cost parameter C
also needs to be tuned to produce optimal classification results. We use a grid
search method with ten-fold cross validation on the training set to find optimal
values for these parameters.

Feature components in the training set are scaled to the range (0,1) based
on the full range of values that are present in the image, not only the training
set. Using the popular LibSVM tool [12], we are able to directly determine
(with the switch -b in LibSVM) a probability for each vertex V∗

i being assigned
label αi = 0. We define this value as Θ[fSV M (c∗i )]. From this, we can obtain
U1(α∗

i = 1, c∗i ) = Θ[fSV M(c∗i )] and U1(α∗
i = 0, c∗i ) = 1 − U1(α∗

i = 1, c∗i ).

3.3 Inverse Edge-to-Node Transformation

After manipulating the graph to incorporate side information in this fashion,
we aim to determine whether adjacent nodes in the original graph G should be
merged or not, based on the label assigned in the transformed graph G∗. Clearly,
to realise this, we must convert from the node labelling in G∗ back to a labelling
on the initial graph G. First, each oversegment is assigned a unique label. Then,
we are able to sequentially apply the merges described by G∗, eliminating labels
as we merge oversegments. Once all merges have been performed, this labelling
corresponds directly to the partitioning of the image.

Unfortunately, the merging behavior described by G∗ cannot always be di-
rectly applied, as doing so can produce unresolvable ambiguities in the labelling,
in which two nodes should both be merged and not merged.

As such, an additional translation between the edge graph and a partitioning
of the image is required. A global translation method is described here with two
possible solutions: merge a set of pairs that should otherwise not be merged,
which converts some zeros into ones, or split a set of merges by converting ones
in the graph into zeros until there are no conflicts.
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Applying the first solution is quite simple. One needs only to apply all merges
present in G∗. Given the sequential merging of labels that we conduct to generate
our partitioning, this will resolve conflicts by allowing merges that our graph
cut classifier would otherwise prevent. The second solution prioritises the “do
not merge” instruction from G∗ over the merge instruction. This indicates that
if α∗

i = 0 in the transformed graph, then under no circumstances should the
oversegments represented by vertex V∗

i be present in a single partition, even if
there exists a path that would otherwise allow these segments to merge. The
location of such splits can be arbitrarily decided, but we are also able to make
use of a hierarchical clustering type approach to produce a partitioning in more
structured fashion.

3.4 Hierarchical Clustering

Hierarchical clustering is a commonly used clustering method in which the best
available merging of two existing clusters is found and applied repetitively, either
until a set number of clusters is reached or the best merge passes below some
threshold of quality. This lends itself naturally to our application, allowing us to
organically grow the partitioning to produce more consistent results.

Cluster Distance and Constrained Hierarchical Clustering. While we do
not have a direct measure of the distance between oversegments, the SVM model
learned above provides an estimate of the likelihood that any two oversegments
should be merged. This can be used to determine the pair of oversegments most
likely to be merged, and gives us a non-metric distance measure.

As we aim to preserve the “do not merge” instructions from our edge labelling,
we require that any pair of oversegments marked this way remain in separate
clusters. This can be taken into account by adding a significant cost to the
merging of any two clusters that would break this restriction. Furthermore, we
require a spatial restriction such that oversegments and clusters that are not
adjacent to one another cannot be merged. This is done by applying a similar
cost to non-neighboring clusters as to disjoint clusters.

Constrained Clustering Algorithm. To perform the hierarchical clustering,
we first use our SVM to determine the distance between each pair of oversegments
in our image. We store these distances as elements in a symmetrical n × n
distance matrix, D, where n is the number of oversegments. We then construct
from the edge graph a binary disjoint matrix X , which is set to one at Xij if
oversegments i and j have a “do not merge” instruction between them. Finally,
a binary neighborhood matrix N is constructed with element Nij = 1 if i and j
share an edge, and zero otherwise.

We initialise each cluster to contain a single oversegment, then perform hier-
archical clustering using a single-link approach, as described in Algorithm 1. The
single-link methodology is used here rather than the full-link methodology based
on experimental performance. This is likely a result of our non-metric distance
function together with the spatial and disjoint constraints we apply.
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Data: Matrices D, X and N of size n × n(see text)
Result: Set of Clusters
set number of clusters c to n
set cluster contents ci(s) to cluster number
while more possible merges exist do

set high value for bestCdist for i ← 1 to c do
for j ← i to c do

foreach element a in cluster i and element b in cluster j do
if (there exists Xab = 1) or (∀Nab = 0) then

Break
else

minCdist = minDab

end

end
if minCdist < bestCdist then bestCdist = minCdist, store ij

end

end
if bestCdist has changed then

merge clusters ij
else

no possible merges
end

end

Algorithm 1. The constrained Hierarchical Clustering Algorithm

4 Experimental Results

4.1 Experimental Setup

For each of the experiments detailed below, we make use of a subset of images
from the MSRC data set [13]. We use first 15 entries in the livestock, tree,
building, cow and aeroplane subsets of the data set for this test, resulting a
total data set of 75 images. All images are segmented using Mori’s method [5]
to generate approximately 1000 oversegments for each image, and we train a
separate model for each image using between 25 and 50 positive and negative
training pairs for each image, which corresponds to between 1 and 3% of all
neighboring oversegment pairs in the image. The number of training pairs used
depended on the complexity of the image. Void areas from the data set are
always treated as uninteresting. Some images from the first livestock category
were removed from these calculations, as they contained only uninteresting areas.
The same set of training pairs is used in each of the experiments presented.

4.2 Focussing Performance

Primarily, we are interested in determining how effective our merging algorithm
is at successfully reducing the number of segments in uninteresting regions while
leaving a significant number of segments in areas of interest. To do this, we
have defined one class of object as the object of interest, as defined in Table
1 and we determine the number of segments present within these objects and
within uninteresting objects both before and after applying our method. As we
are interested in the amount of merging that takes place in these areas, we have
presented the difference between the average number of partitions in these areas
as a percentage of the initial number of oversegments in the same area.
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Table 1. The partition focussing performance of our approach. We show the average

reduction in the number of partitions within interesting and uninteresting objects after

applying our method under several resolutions of the loop condition for five different

image classes. Method A prioritises merging, Method B prioritises not merging and

HC is a Hierarchical approach to Method B.

Interesting Object Uninteresting Object
(Average% Reduction) (Average% Reduction)

Interesting Object Method A Method B HC Method A Method B HC

Livestock 33.8% 32.0% 30.5% 96.7% 95.7% 95.4%
Trees 16.0% 15.2% 14.0% 95.5% 94.3% 93.9%

Buildings 18.0% 17.0% 16.2% 94.7% 93.8% 93.4%
Aeroplanes 27.7% 25.6% 23.7% 95.7% 94.7% 93.6%

Cows 28.9% 27.0% 25.3% 96.2% 94.7% 94.3%
Overall 24.0% 22.5% 21.1% 95.7% 94.6% 94.0%

(a) (b)

(c) (d)

Fig. 2. (a) Input image with ground truth label overlay. (b) Partitioning generated from

Method A. (c) Partitioning generated from method B. (d) Partitioning generated from

Hierarchical Clustering. The green lines indicate partition boundaries. As can be seen,

the partitioning in (b) has allowed excessive merging to the right of screen, combining

trees and building with sky. This has been fixed in (c), but with the introduction of

unwanted partitions. (d) produces a higher-quality partitioning than (c).

As can be seen from these results, we show a significantly higher reduction in
uninteresting areas than in interesting ones under all translation methods. These
results demonstrate the effectiveness of our approach at producing a focussed
partitioning of an input image given some user information.

In addition to observing the quality of the partition focusing behaviour, we
also investigated the amount of segmentation error associated with each of the
partitions generated. To calculate this, we first find the partitions that contain
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more than one class of object from the ground truth, and then we find the num-
ber of pixels that would be classified as a different class if these partitions were to
be classified according to the predominant label. As expected, we find that there
is some increase in the segmentation error after merging, ranging between less
than 0.5% and 7% of the image. The loop resolution method has a large impact
on this error, which shows that there is a tradeoff between reducing the num-
ber of partitions placed over uninteresting areas and reducing the segmentation
error. Figure 2 shows a sample initial image, ground truth label and the image
partitions produced by allowing merges, disallowing merges, and with various
hierarchical clustering schemes.

Our results are slightly skewed due to disparities between the human labeled
ground truth information and the true location of the boundary between ob-
jects, which typically results in a larger reduction of the number of partitions in
interesting areas being reported than is actually observed. This affects both the
focussing effect and the segmentation error calculations and is particularly preva-
lent in the livestock and aeroplanes subsets, as the interesting region in ground
truth is noticeably larger than the actual interesting object. Additionally, when
more than one uninteresting area was present in the image, our method reported
less reduction in these areas as it retains separation between these objects.

The data presented above also allows us to compare the effectiveness of each
of the methods that we have used to resolve ambiguities in the instructions
between nodes. We are also able to see the effect of the loop resolution method
when translating from the edge graph to image labels. Method A, which favors
merges, produces slightly fewer partitions in regions of interest, but significantly
fewer in uninteresting regions than Method B, which favors keeping objects
separate. The hierarchical clustering approach mimics the behaviour of Method
B, but provide an obvious improvement in partitioning performance.

5 Conclusions

We have presented in this paper a framework for mimicking the top-down ‘spot-
light focussing’ aspect of the human visual system in digital images, together
with a new way of representing an image using a Markov Random Field to in-
corporate side information. Under this framework, we demonstrate that we are
able to produce a high-quality focussed partitioning of an input image given only
a relatively small amount of side information.
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Abstract. Recognition systems for complex and deformable objects

must handle a variety of possible object appearances. In this paper, a

compositional approach to this problem is studied which splits the set of

possible appearances into easier sub-problems. To this end, a grammar is

introduced that represents objects by a hierarchy of increasingly abstract

visual alphabets. These alphabets store features, complex patterns and

different views of objects. The geometrical constraints are optimised to

the respective level of abstraction. The performance of the method is

demonstrated on a cartoon data base with high intra-class variance.

1 Introduction

Many recent studies are based on compositional approaches where objects are
modeled as parts in comparably loose geometric relationships [1,3,4,12,20]. The
idea is to tolerate geometric distortions to a certain degree but to model the
characteristic features of an object still correctly. The geometrical constraints
are formulated statistically [20,4] or structural [1]. Most research on composi-
tional object models covers the training of single object views (e.g. [4]). While
this is appropriate for objects that occur preferentially in a certain distinctive
pose, it fails for deformable or moving objects. The trade-off between a bag-of-
features model and precise geometric constellations [3,1,4] in the image plane
is often discussed. Hierarchical models that cover geometric constellations on
different levels of abstraction on the other hand are rare, so possible important
dependencies remain widely unidentified. To account for noise or the high intra-
class variances of deformable objects, the training methods are usually based
on flexible matching procedures. Probabilistic approaches are preferred to exact
graph matching procedures [7,5,22].

Although the modeling of the local and global geometry has also been ad-
dressed by researchers with a stronger computer graphics background (e.g. [16]),
the parts of the compositional models are mostly represented by local descrip-
tors in the shape of feature vectors [10,11,17,6]. Heuristical learning or clustering
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methods (e.g. [9,8,12,11]) are used to condense the feature set, possibly tuning
it to a particular application [21]. The resulting feature sets constitute a certain
parallel to the alphabet of moderately complex features found by Tanaka [19]
in the inferior temporal (IT) cortex. However, the question how these cells work
together to build an internal multi-view object representation, has not been an-
swered yet. Nielsen et al. [15] indicate that monkeys represent rotated objects
by different sets of features for different angles of the rotation. Humans how-
ever seem to use another mechanism. Miyashita et al. [13,14] report that cells
in the IT of a monkey could be trained to sequences of arbitrary patterns and
conclude that this mechanism could be used to learn different appearances of a
single object.

The work presented here takes these considerations into account. In order to
recognise deformable objects in multiple views, we propose a hierarchical model
that represents objects by visual alphabets on different levels of abstraction.
This allows for a more accurate trade-off between geometry and the part char-
acteristics.

2 Noise-Tolerant Syntactical Model

Inspired by Han and Zhu’s [5] recognition procedure, we use an attribute gram-
mar for object modelling. Significant differences consist in the visual primitives,
the production rules and the noise handling, though. Let

G = (AN , AT , R, S) (1)

denote our attribute grammar consisting of a visual alphabet AN of non-terminal
elements, a visual alphabet AT of terminal elements including the empty word
ε, a set of rules R and a root element S ∈ AN .

The terminal elements are the visual primitives that describe our objects.
We use edge points, corners and skeleton points as visual primitives, since there
are many suitable feature detectors with known performance. Edge points are
further parameterised by their orientation. Skeleton points are parameterised
by the orientation of the local skeleton line, the local image intensity and the
distance to the nearest edge. The different parameterisations are enumerated
and each parameterisation is assigned a single terminal element.

Terminal elements are grouped to complex parts of objects which are rep-
resented by the non-terminal elements. Non-terminal elements can in turn be
grouped to more complex parts or whole objects.

Terminal and non-terminal elements are attributed by a vector

g = (x, y, θ, σ, w) (2)

which stores the image position x, y of a recognised visual element as well as
trained (attributes θ and σ) and temporary (w) information about the recogni-
tion process.
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Non-terminal elements are expanded to strings of terminal and non-terminal
elements using production rules of the form

a0 → a1a2a3 . . . an|ε, a0 ∈ AN , a1, a2, a3 . . . an ∈ AT ∪AN , (3)

defining a context free grammar, basically. Each rule is however associated with
a number of constraint equations of the general form

fi(x(a0)) = gi(x(a1), x(a2), x(a3), . . . ), i = 1, 2, 3, . . . (4)

where fi and gi are projection functions on the attributes of the terminal and
non-terminal elements [5]. These functions specify the geometrical relationship
between visual elements and guide an acyclic, bottom up recognition procedure.
Top down information passing could support rule expansions on lower levels of
abstraction by providing information about the surrounding. This is an option
for future work, however, and the recognition already works without it. Figure 1
illustrates the usage of the production rules.

Fig. 1. Illustration of a production rule a0 → a1a2a3a4a5. The sub-parts are arranged

in certain relative positions, which are modeled by geometric constraints. To account

for deformations, small displacements within a tolerance σ are allowed.

The design of the grammar takes into account that due to noise, elements on
the right side of a production rule may not be found in an image or that they
are spuriously assigned to a wrong element. Noise in the parameterisation of the
base features is handled by additional production rules. If an element a2 is likely
to be mistaken for an element a3, the alternative production rules

a0 → a1a2|a1a3 (5)

are created.
If a non-terminal or terminal from the right side of a production rule is not

detected in an image, the non-terminal on the left side cannot be expanded.
To relax this situation by admitting such missing elements, new rules could be
introduced that enumerate all valid subsets of elements on the right side of the
original rule. This however would enlarge the rule set unnecessarily.

Instead, special constraint equations are introduced that compensate for miss-
ing elements. The aim of these equations is to transfer information about the
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presence or absence of a certain visual element into the attribute w of a non-
terminal element. For the expansion to single terminal elements, this yields the
production rules and constraint equations

a0 → a1, w(a0) = 1 (6)
a0 → ε, w(a0) = 0, a0 ∈ AN , a1 ∈ AT . (7)

The non-terminal a0 only expands into a terminal if its weight w is equal to 1.
Otherwise it indicates a missing feature.

To handle missing non-terminal elements, the geometry must be taken into
account. In our approach, geometric constraints define a relative position dx, dy

between two elements a0, ai ∈ AN , which could be expressed by a constraint
equation like

dist(x(a0), y(a0), x(ai) + dx, y(ai) + dy) < σ(a0), (8)

where a0 is on the left side of a production rule, ai is on the right side, and
dist is a suitable distance measure (e.g. the Lmax-distance). Noise tolerance is
introduced by demanding that the number of correctly detected elements on the
right side of the production rule exceeds the threshold θ in the attribute vector
of the element on the left side of the rule. This results in the production rules
and constraint equations

a0 → a1a2a3 . . . , a0, a1, · · · ∈ AN (9)

θ(a0) ≤
∑
i≥1

{
w(ai) if eq. 8 holds
0 otherwise

(10)

w(a0) = 1 (11)

for the correct matching of a part a0 to a number of sub-parts a1, a2, a3, . . . , and

a0 → ε, w(a0) = 0 (12)

for non-terminal a0 that is not recognised. Equation 10 asserts that the expan-
sion 9 is only valid if a sufficient number of non-terminals on the right side of
the production rule is detected. Both the presence of a sub-part (indicated by
w(ai) = 1) as well as the geometry are checked. Otherwise, only the expansion
into the empty word ε is possible. The non-terminal on the left side is then
characterised by the attribute w = 0 (eq. 12).

Object recognition works by evaluating the constraint equations bottom up
from the level of features, over the level of parts, over the level of object poses
and appearances, to the level of object classes until the root element S of the
grammar is reached. For the root element, a constraint equation demands the
attribute value w(S) = 1. All visual elements that yield a weight of w = 1 are
regarded as recognised. Elements with a weight w = 0 mark the (near) end of a
rule expansion. They occur only if a part of an object can not be matched.
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3 Training on Different Levels of Abstraction

The training of the model addresses the visual alphabets AN and AT , the noise
suppressing parameters σ and θ of the attribute vectors, and the geometrical
constraints dx and dy of the production rules. The importance of geometrical
constraints compared to the feature type is judged differently in the literature.
While Weber, Perona et al. [20] promote a highly restrictive constellation model,
Crandall et al. [2] and Fergus [4] report a better performance for models with
small clique-sizes, i.e. fewer part dependencies. Stommel and Kuhnert [18] find
out that the geometrical constraints also depend on the level of abstraction.
Therefore we decide to use a differenciated training procedure, that is tuned to
the depth of the rule expansion. The training is carried out on the cartoon data
base described later. Figure 2 gives an overview.

Fig. 2. The Training process comprises the definition of 4 visual alphabets on different

levels of abstraction. Taken together they form AN ∪ AT . The production rules assert

that non-terminals can only be expanded to less abstract elements.

3.1 Terminal Elements

The deepest level of expansion concerns the terminal elements. They represent
edge pieces in different orientations, corners, and center points of homogeneous
areas (skeletonisation) with differing intensity, diameter and orientation. The
quantisation intervals for the feature parameters are optimised with respect to
the information contents measured in a trial classification task. This yields a ter-
minal alphabet of about 1200 elements and the corresponding noise suppressing
non-terminals (eq. 6 and 7). The dual integration of edges and the skeletonisation
widens the area of application.

3.2 Non-terminals for Object Parts

The non-terminals from the previous step are now grouped to complex object
parts. For every part, a non-terminal and the corresponding production rule is
created. Since statistical measurements on feature co-occurrences by Stommel
and Kuhnert [18] show that spatial proximity is crucial for the frequency of a
feature combination in a sample, the creation of more complex visual alphabets
is based on the principle of locality.

First, groups of spatially proximate feature vectors are identified in the sample
images. To obtain a compact part alphabet with high information capacity, these
candidate patterns are clustered with regard to their mutual similarity. To this
end, every pattern is described by a non-terminal and the corresponding rules
that relate it to its terminal features. The relative feature positions are expressed
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Fig. 3. Patterns from the part alphabet (corresponding to right rule sides): Two

patterns from one cluster (patterns A, B). Cluster prototypes of size 20 (C, D, E) and

40 pixels (F, G). Square markings represent edge features, triangles area features.

by constraint equations. Two pattern are regarded similar if the non-terminal
of one pattern can be expanded to the terminal elements of the other one. For
every resulting cluster, one pattern that is compatible to all other patterns in
the cluster is included in the part alphabet. The resulting set consists of about
5000 non-terminals for patterns with a diameter of 10 to 60 pixels.

Initial clusterings showed a high dependency between the threshold θ and
the spatial tolerance σ of the attribute vector. Since high thresholds provided
the most exact localisations, a fixed threshold θ = 90% is chosen for all parts.
Further optimisations are done via the remaining free parameter σ, for which an
good linear approximation based on the diameter of a pattern is found. Figure
3 shows elements from the resulting part alphabet.

3.3 Non-terminals for Object Appearances

Next, a visual alphabet is trained that abstracts from object pose and appear-
ance. Distinct appearances are found by hierarchically clustering the training
images into homogeneous groups. Every group is modeled by a non-terminal
together with a production rule that maps it to suitable elements of the part al-
phabet. The resulting new non-terminals thus constitute a visual alphabet that
enumerates the poses and appearances of single objects. The approach is partly
neurophysiologically motivated [13,14,15].

Since the right rule sides consist of elements from the part alphabet, the
appearance clustering is based on the number of parts that occur jointly in two
samples. The occurrence is measured in terms of possible rule expansions.

The result of the clustering is a dendrogram that represents possible group-
ings of sample images with respect to intersecting part occurrences. Figure 4
illustrates the procedure. For 800 training images and about 5000 patterns in
the part alphabet, the dendrogram has a depth of 15.

Next, a set of nodes from the dendrogram must be chosen for modeling and
the non-terminals and production rules must be parameterised with respect to
their attributes and geometrical constraints.
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The production rules are constructed by sub-sampling the image positions
where parts can be found for all images of a group. For every such position and
part, the corresponding non-terminal is added to the right side of the production
rule. The geometric constraint is defined accordingly.

The nodes of the dendrogram that are selected for modeling should at least
cover all training samples to maximise recall. Overlapping groupings introduce
redundancy that increases the robustness to noise at the cost of a bigger model.

Experiments with single appearance models identify the position (depth and
height, fig. 4) of a node in the dendrogram as a crucial variable for the parame-
terisation of the model and the resulting model size (tab. 1): Appearance models
for nodes near the root of the dendrogram quickly grow infeasibly large or do not
achieve a high precision during classification. It is however possible to restrict
the parameter space to a region where a linear model for the noise suppression
attribute σ is applicable and the model size stays within treatable limits. The
threshold θ is optimised with respect to a minimum number of false matches.
Outliers in the histogram of the precision of appearance models are removed,
since they increase the false positive rate.

3.4 Non-terminal Elements for Categorisation

A last category alphabet is introduced that builds a layer between the root ele-
ment S and the appearance alphabet. The purpose of this alphabet is to use the
redundancy within the appearance alphabet for the optimisation of the recog-
nition system to different configurations in terms of precision and recall. In the

Fig. 4. Clustering of object appearances. The table shows which elements of the part

alphabet can be expanded to features of a certain sample image by the application of

production rules. Samples with similar parts are grouped together. Related groups are

represented as nodes in a dendrogram. The height and depth of the nodes are crucial

for the parameterisation of the model.

Table 1. Correlation between model parameters and the position of nodes in the

appearance dendrogram (fig. 4). The correlation coefficient is normalised to [−1 1].

1st Variable 2nd Variable Correlation

Std. deviation size Size 0.79
Optimal threshold θ Height 0.73
Optimal threshold θ Depth −0.70
Spatial tolerance σ Height 0.92
Spatial tolerance σ Depth −0.69
Number of parts Spatial tolerance σ 0.81
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following, we present two example configurations to achieve either a high sup-
pression of false matches or a high number of detections. Since the appearance
models already represent whole objects, the geometrical constraints are set to
dx = dy = 0, i.e. all production rules on this level function as pixelwise bags
of features. The elements of the category alphabet represent different classes of
objects and therefore the end of the classification process. A sample is assigned
the predominant class of all category nodes that have the attribute w = 1 after
the recognition process.

The first model configuration aims at the suppression of false matches. To this
end, for every foreground sample a non-terminal category element is defined that
combines all elements of the appearance alphabet that are consistent with this
sample. A certain proportion of the resulting category alphabet will also respond
to samples from wrong classes. To suppress false matches, the thresholds θ of
the category non-terminals are set to an upper bound of the noise level which
is estimated practically as the maximum number of non-terminals on the right
side of a rule that simultaneously recognise wrong samples.

The second model configuration aims at a higher rate of recognised positive
samples. To this end, the threshold θ of every non-terminal from the category
alphabet is optimised towards the maximum accuracy measured over all samples.
The resulting lower thresholds increase the likelihood of a category element to
be expanded to a sample image. The category alphabet is finally pruned until
the maximum accuracy is achieved.

4 Data Base and Test Results

The cartoon data base consists of 1600 images showing the head of a cartoon
character and 1600 background images of equal size. The background images
do not show any cartoon heads. Figure 5 gives an impression of the diversity

Fig. 5. Samples from the cartoon data base. The upper rows show foreground samples,

the bottom row background samples.
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of object poses and geometric deformations. The seemingly clear boundaries be-
tween adjacent areas are often affected by misalignments between different print-
ing colours. Intensity variations occur across one cartoon page, but also within
small areas due to half-tone printing, and between different pages. The data base
is thus sufficiently difficult to validate the recognition system. Foreground and
background images are randomised and split into equally sized training and test
sets. For the first model configuration a precision of 97%, a recall of 57% and an
accuracy of 78% is achieved. The recognition is thus very reliable, but also rather
selective. The second model configuration yields a recall of 89%, a precision of
72% and an overall accuracy of 77%. The general performance of the model is
thus equally high but the recall is significantly higher and the classifier works
less conservative.

5 Conclusion

An object recognition system is presented that combines a syntactical model and
statistical training method. The structure of the underlying grammar is noise
resistent and based on both the geometric properties of feature co-occurrence
statistics, as well as on neurophysiological findings about pose representation.
Since the training method creates visual alphabets on different levels of abstrac-
tion, crucial dependencies on the depth of the rule expansion are taken into
account. A data base with images of a strongly deformable cartoon character
is used to test the method. Two exemplary model configurations are presented
which tune the model either towards a high precision of 97% or a high recall
of 89%. A rate of correct classifications of 77%–78% for both configurations
demonstrates the performance of the method.
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Abstract. Although graph embedding has recently been used to extend

statistical pattern recognition techniques to the graph domain, some ex-

isting embeddings are usually computationally expensive as they rely on

classical graph-based operations. In this paper we present a new way

to embed graphs into vector spaces by first encapsulating the informa-

tion stored in the original graph under another graph representation by

clustering the attributes of the graphs to be processed. This new repre-

sentation makes the association of graphs to vectors an easy step by just

arranging both node attributes and the adjacency matrix in the form of

vectors. To test our method, we use two different databases of graphs

whose nodes attributes are of different nature. A comparison with a ref-

erence method permits to show that this new embedding is better in

terms of classification rates, while being much more faster.

1 Introduction

Most real-world problems do not fit under the usual data representation by
means of feature vectors. Instead, structural representations are more suitable.
Graph-based representations offer interesting properties in terms of binary rela-
tions between features allowing to adapt the representation to the complexity of
data while vectors are constrained to the use of a predefined number of features.

However, while structured representations provide us with a complex and
powerful description of the patterns under study, their own complexity makes
the processing and analysis of graphs a really hard problem. Graph matching
is the process that tries to discover the structural similarity of two graphs. To
know more about graph matching we refer the reader to [1], a detailed survey
that organizes the whole map of techniques for solving this problem.

On the other hand, many pattern recognition techniques have been developed
for data represented in the form of feature vectors. The fact that vector spaces
have strong and straightforward mathematical properties, both theoretical and
practical, has contributed to the expansion of pattern analysis techniques for the
case when patterns are represented by elements in a feature space. In order to
make all these techniques available for the case of data structurally represented,
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for instance, by using graphs, the scientific community has devoted several efforts
to find out new ways of adapting them to structured data. Graph embedding is
one of them. By graph embedding we understand a function that given a set of
graphs G, it maps each graph in the set to an n-dimensional vector,

φ : G → Rn

g �→ φ(g) = (x1, x2, . . . , xn). (1)

Several graph embeddings have been proposed in the literature so far. Some of
them are based on a spectral study of the adjacency matrix or on the Laplacian
matrix of the graphs [2]. Other approaches are based on random walks, and par-
ticularly on quantum walks, in order to embed nodes into a vector space [3]. Fi-
nally, let us consider the embedding proposed in [4] which is based on similarity
measures between graphs and a set of prototypes. The measure considered by the
authors is the Graph Edit Distance. This embedding will be later explained more
in detail as it will be used as a reference system in order to evaluate our approach.

However, some of these embeddings are constrained to specific classes of
graphs or still rely on graph matching. The computational complexity of graph
matching lies on what is known as the assignment problem. Nodes of one graph
have to be identified with nodes of the other one, and such procedure has an
exponential computational cost in the number of nodes of the involved graphs.
This problem has been addressed, for instance, by means of best-first search
techniques like the A∗ algorithm or by bipartite graph matching procedures and
the Hungarian method. Ideally, however, if nodes of one graph could directly be
identified with nodes of the other, we would not have to face this problem and
graph matching would be a problem with a straightforward solution.

In this paper we aim to propose a graph embedding avoiding the computa-
tional cost of graph matching through an intermediate meta-representation of
the graphs in which nodes of a family of graphs become identifiable. We will call
this meta-representation graph of words as the underlying idea is based on the
well-known bag of words technique for document and image classification [5].
Thus, we will cluster node attributes to obtain representatives (words) of the
node attributes of a set of graphs. This will lead to represent the whole set by
graphs that have exactly the same number of nodes and share the same node

Fig. 1. General scheme of the proposed approach. First step: graph generalization.

Second step: graph embedding.
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labels. Then, this graph representation can be easily converted into a vector by
just taking node attributes and serializing the adjacency matrix. In Fig. 1 the
whole procedure is depicted.

In the remainder of this paper we describe, first in Section 2, how the gen-
eralization of a set of graphs into a graph of words can be done, and second,
in Section 3, how these generalized graphs are converted into vectors. Section
4 describes the databases we have used for the experimentation part and the
results and discussions are presented in Section 5. Finally, Section 6 concludes
and present the future work to be done.

2 Graph of Words Representation

An attributed graph g, or just a graph, is a 4-tuple g = (V,E, μ, ν), where V
is a finite set of elements, called nodes, E ⊆ V × V is the set of edges, and
μ : V → L and ν : E → L′ are the corresponding labelling functions for
which each node and edge is correspondingly attributed with a specific label.
As there is no restriction on the set of labels for both nodes and edges, this
definition allows to describe a large family of graphs. For instance, the set of
nodes labels L could be represented either by the vector space Rn or even by a set
of non-numerical attributes L = {l1, l2, l3, . . . } with a certain specific semantics.
The same happens for the case of edges attributes L′. Edges of the graphs are
described by pairs of nodes (u, v), where u ∈ E is the source node and v ∈ E is
target one. Undirected graphs are all those graphs which contain both (u, v) ∈ E
and (v, u) ∈ E satisfying ν(u, v) = ν(v, u). Unlabelled graphs are graphs where
both nodes and edges have the same label, usually called the null label ε. In this
work we will just consider undirected graphs with unlabelled edges and with all
the node labels being of the same nature.

In this section we will introduce a way to generalize almost any set of graphs
described as before into a new set of graphs with the same number of nodes and
sharing the same node labels. The only constraint about the input graphs is that
all node attributes must be of the same type. In addition, if edges of the original
graphs are labelled, these labels are ignored in the conversion procedure. The
generalization is done in two steps: first, getting the set of nodes of the new graph
by clustering and selecting representatives among the original node attributes
and second, getting the edges that link the new set of nodes. These two steps
are further described in the next subsections.

2.1 Node Representatives

As we already pointed out in the introduction, one of the main problems in graph
matching is node assignment. To avoid such problem, we would appreciate an
ideal situation where nodes in a family of graphs were directly in correspondence.
Not by just a priori knowledge about the information stored in the nodes, but
by the fact that those nodes were exactly representing the same attributes, in
other words, that two graphs in a family of graphs share exactly the same nodes.
A possible way to reach this situation is the one described as follows.
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Given a set of graphs G = {g1, g2, . . . , gn}, each one with its corresponding
nodes, edges and labelling functions, gi = (Vi, Ei, μi, νi), and the corresponding
labels sets (Li, L

′
i), we want to represent the whole family of graphs using gen-

eralized representations sharing the same nodes. To do so, we first consider all
node attributes L = {Li | i = 1, . . . , n}. We assume all these sets of labels are of
the same nature, this is, we do not consider -if there is such- the case in where
for instance Lj would be representing numerical attributes and Lk semantic
attributes.

Second, from this set of labels we select a finite number of representatives.
Such representatives do not need to be elements from L. We will hereby adopt
a quite known notation extracted from the bag of words technique for document
-originally- and image classification [5]. This technique represents an image by
first extracting visual features from interest points and selecting representatives,
usually called visual words, from the whole set of features of the images under
study. The set of representatives is usually built by clustering and is called the
visual vocabulary. Every interest point is assigned to its closest word in the
vocabulary and finally the image is represented as a histogram of appearing
words in the image. We perform the selection of node attribute representatives
in a similar way. For this reason we call this new representation the graph of
words. From the whole set of attributes L, we select representatives, words, by
means of any clustering technique. How the selection of representatives has to
be done for a given family of graphs will depend on the nature of the nodes
attributes, and it will be a key issue in the generalization graph. For instance, a
k-Means algorithm could be applied if the attributes of the set of graphs belong
to Rn, but in other cases, the clustering should be done in a semantic way.

Assume we have already selected a vocabulary V = {wi | i = 1, . . . , N} from
the set of attributes L of the graph family G. We call every wi a word. The
generalization of a graph g = (V,E, μ, ν) is done as follows: every node u ∈ V
of the graph is assigned to its closest or most similar word in V . We denote this
assignment by

λ : V → V
u �→ λ(u) = w.

(2)

The concept of similarity here will depend on the nature of the attributes and
selected words. The set of words in the vocabulary that has been assigned to
at least one point of the original graph will now constitute the set of nodes of
the generalized graph. We label each node of the new graph, each word, with
the frequency of nodes assigned to it. Fig. 2 shows an example of the procedure.
The graph has six nodes. Three of them have been assigned to the red word,
two to the green one and one to the blue word. In the generalized graph, these
three words will appear as nodes, with their corresponding frequencies. In this
example, we assume a vocabulary which also contains a yellow word but no node
of the original graph has been assigned to it.

By this procedure we have got a representation of graphs where the set nodes
of all the graphs in a given family is the same, this is, the set of representatives
or vocabulary. This will allow to treat the assignment problem in a very specific
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Fig. 2. A graph (left) and its generalization graph (right) or graph-of-words

way so that no computational issues are involved. However, before describing
the way to deal with it, we still need to declare which is the set of edges in the
graph of words representation. Next section is devoted to it.

2.2 Structural Relations of Representatives

The way of defining edges between words in the generalized graph is the most
intuitive one. Given a graph g, let us assume there exist an edge e = (u, v) ∈ E.
Each node is assigned to a word in the vocabulary: there are w,w′ ∈ V such that
λ(u) = w and λ(v) = w′. Then we just add the edge (w,w′) in the set of edges
of the generalized graph. Formally,

(w,w′) ∈ E′ ⇐⇒ (u, v) ∈ E such that λ(u) = w and λ(v) = w′ (3)

where E′ ⊆ V × V is denoting the set of edges of the graph of words. We will
label the edge (w,w′) ∈ E′ with the frequency this fact occurs, this is, how many
times two nodes of the original graph that have been assigned to the words w and
w′ are linked with an edge of the original set of edges E. Again, Fig. 2 depicts
an example of the procedure. For example, a node that has been assigned to the
green word is connected to a node that has been assigned to the red word. Thus,
the pair (green, red) will constitute an edge of the graph of words. Actually this
situation occurs four times, so we label the edge with the number 4.

3 Graph of Words Embedding

Our generalized graphs, the graphs of words, are of a very particular nature as
all of them share the same nodes. This property makes the transition between
the domain of the graphs and a vector space a really easy problem. Next section
describes formally how this can be done.

3.1 Definition

Let g = (V,E, μ, ν) be a graph of words with respect to the vocabulary V =
{wi | i = 1, . . . , N} of size N . Remember μ was describing the frequency of a
word, and ν the frequency of a relation between two words. We can always
describe the set of nodes of g as V ≡ V . If a specific word w does not appear as
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a node of the graph we can consider it as a node with μ(w) = 0. Exactly as the
yellow word in the example shown in Fig. 2.

The fact that we control which words are there in the vocabulary, makes the
nodes of g identifiable, and therefore, sortable. We can arrange, for all graphs in
a set G of graphs of words, the node labels as:

φV
w : G → RN

g �→ φV
w(g) = (μ(w1), . . . , μ(wN )). (4)

Let us now consider the adjacency matrix A of the graph g. Matrix A is an
N × N matrix and each entry of it aij is giving the frequency of the relation
between the words wi and wj . Here, as for the case of the nodes, we can represent
a non-existing edge (wi, wj), by labelling it with zero value, ν(wi, wj) = 0. This
matrix is obviously symmetric since the graph-of-words is an undirected graph.

In this case, we can just arrange the adjacency matrix in the form of a vector.
Not all entries of the matrix are needed since it is symmetric and that would
be redundant. We can just consider, for instance, the upper part of the diagonal
and the diagonal.

φV
r : G → Rp

g �→ φV
r (g) = (ν(a11), ν(a12), . . . , ν(aij), . . . , ν(aNN )), ∀ i ≤ j.

(5)

Finally, we define the embedding of a set of graph of words G with respect
to the vocabulary V as the simple concatenation of both the nodes and the
edges attributes, this is, of both the words frequencies and the frequencies of the
relations between words. Formally,

φV
A : G → Rn

g �→ φV
A(g) = (φV

w(g), φV
r (g)). (6)

3.2 Computational Issues and Potential Solutions

The main problem we might face after embedding the graphs using φV
A is the

dimension of the vectors. Indeed, such dimension increases quadratically with
respect to the vocabulary size N . The first part of the vector, the words part
φV

w(g) has size N and the second one, φV
r (g), has size p = (N2 + N)/2 resulting

in a vector of dimension n = (N2 + 3N)/2. Processing this vector could not be
treatable for a large enough vocabulary size.

Dimensionality reduction techniques could be applied in these situations. Se-
mantically, such reduction would discover which are the specific relations of
words that are really important in the graph of words representations. Also, in
order to avoid such large dimensions, the whole construction of the generalized
representation could be performed in a supervised manner. This is, selecting
representatives class-wise and executing the embedding part of the adjacency
matrix φV

r by just considering relations of words belonging to the same class.
We had not faced this problem as the vocabularies we have selected for our
databases of graphs were not that large. The construction of the generalized
graphs for two different databases is explained in the next section.
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4 Experimental Setup

The whole set of experiments is carried out using two databases inspired in the
IAM Graph Database Repository [6]. Even though we do not consider semantic
attributes of nodes, the two situations under study refer to two different kind of
attributes. In the first case, nodes are labelled with (x, y) positions and in the
second one with visual descriptors.

In the way the graph of words representation has been defined, the embedded
graphs clearly depend on the chosen vocabulary. For instance, the use of a small
vocabulary makes easy the introduction of errors in the assignment of points
to words and every word would represent too many and possibly wrong points.
On the other hand, a large vocabulary would create too much sparsity on the
resulting vectors making difficult further analysis of data. Due to these situations,
in order to check the sensibility of the representation to the selected vocabulary,
different sizes of the nodes representatives sets have been tried for each dataset.

4.1 IAM Letter Database Generalization

The graphs in this database are representing distorted letter drawings. Only
the 15 capital letters of the Roman alphabet that consist of straight lines are
considered: A, E, F, H, I, K, L, M, N, T, V, W, X, Y, and Z. For details on
the construction of the graphs we refer the reader to the database reference. We
use exactly the same sets as the authors in the reference: uniformly distributed
graphs all over the 15 classes and a training, validation and test sets of 750 graph
each. We only work on the low level of distortion.

By representing distorted letters using the graph of words, we aim to undo the
distortion each letter has suffered. In order to build the generalized graphs for
the letters, let us notice that nodes of the graphs are attributed with the (x, y)
coordinates with respect to a reference coordinate system. We do not cluster
all these coordinates, but instead we just pick a regular grid of n× n points in
the range of the nodes attributes (n = 3, 7, 11). This decision was made after
viewing how all nodes of all letter graphs were distributed over the plane.

4.2 COIL-100 Database Generalization

The second graph dataset we use in our experiments is representing the COIL-
100 object database [7]. It consists of 100 different object, and each image is
taken every 5 degrees of rotation. We represent these objects modifying the
COIL-DEL representation from the IAM Graph Dataset repository. This repre-
sentation takes interest points by using the Harris corner detection algorithm,
labels these points with their corresponding pixel coordinates and applies a De-
launay triangulation to the nodes for the set of edges. Our modification consists
of labelling such points with a visual descriptor that could provide texture infor-
mation of the objects. In particular we label each node with a SIFT descriptor
[8]. Again, the same sets for training, validating and testing the systems are used.
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By building the generalized graphs for these objects we intent to describe
the structural relations of textural patterns, this is, how visual descriptors are
structurally related. In this case, we cluster the set of SIFT descriptors using
the k-Means algorithm and finding k = 50, 100, 150 centroids as representatives.
Thus, the dimensionality of the vector space where graphs are embedded is much
larger than in the letter dataset, yet the vectors are still manageable.

5 Results

We want to classify both databases by using the graph of words embedding. Such
classification is done by using a Support Vector Machine [9,10] on the embedded
graphs. Kernels and parameters are properly tuned using the validation sets. We
need a reference system to which we can compare how the proposed embedding
works, in other words, how good is the idea of embedding the graphs by just
arranging their nodes and edges attributes in a row. To do so, we select the pro-
posed embedding in [4], by which each graph is assigned to a vector constructed
out of Graph Edit Distances from itself to a set of prototypes. This embedding
has been applied to the intermediate graph of words representation. Next section
recalls the formal definition of the embedding.

5.1 A Reference System

Let G be a set of graphs and P = {p1, p2, . . . , pn} ⊆ G a set of prototypes. The
embedding is defined as the function ϕP

n : G → Rn such that

ϕP
n (g) = (d(g, p1), d(g, p2), . . . , d(g, pn)) (7)

where d(g, pi) is the Graph Edit Distance between the graph g and the proto-
type pi.

As we are using the Graph Edit Distance between instances of graph of words,
we need to specify which is the cost function we have used during the matching
process. Briefly, the node and edge deletion and insertion costs are the labels
(frequencies) of the inserted or deleted nodes and edges. For the substitution of
nodes and edges we pick the difference of labels if the substitution is of the same
words or edges between the same words, and infinity otherwise.

5.2 Classification Rates

Results for both databases, the Letters and the COIL-100 objects, using the
proposed embedding and the reference one are shown in Tab. 1.

We see how the proposed embedding φV
A works better than the reference

one no matter whether the dimension of the vectors is larger or smaller than
for the graph edit distance embedding. For instance, in the letter database the
embedded graphs with respect to the 3×3 grid of points live in a 54-dimensional
space when using φV

A, and in a 750-dimensional one when the case is ϕP
n . On

the other database, when using a vocabulary size of 150 words and the proposed
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Table 1. Classification rates for both databases using the proposed embedding and the

reference one. Vocabularies for the Letter Database are n × n regular grids; k-Means

algorithm is used for the COIL Database case. For the case of ϕP
n the whole set of

training elements is used as the prototypes set.

Database Vocabulary Embedding approach

Proposed φV
A GED-based ϕP

n

Letter

3 × 3 97.33% 96.4%

7 × 7 99.2% 96.13%

11 × 11 96.93% 94.4%

COIL

50 82.8% 80.6%

100 88% 85.6%

150 89.4% 88.9%

embedding, the COIL objects are represented by really high dimensional vectors
($ 12000 dimensions) and not that large but still (2400 dimensions) in the case
of the graph edit distance based embedding.

Of course, related to what it has been already said in the introduction, the
computational cost of the processing and comparison of the graphs is actually
null when we arrange them in the form of vectors using φV

A. The other situation
is not desirable since graph edit distance takes a lot of time. For example, the
embedding of COIL objects using ϕP

n took a couple of days in a regular personal
computer.

6 Conclusions and Future Work

In this work, we have proposed a new way of solving the graph classification
problem by means of embedding graphs into vectorial spaces. The embedding
procedure consists mainly in two steps: a generalization of the graphs using what
we call the graph of words representation by assigning nodes to attribute rep-
resentatives and then, arranging this new representation in the form of vectors.
The experiments have shown the power of the described approach in terms of
classification rates and time consuming with respect to a well-known and estab-
lished embedding of graphs.

The generalization step, the so-called graph of words representation, is depen-
dent on the choice of a set of representatives of the nodes attributes. Different
selections of both vocabulary types and sizes will lead to different classifiers, not
necessarily one better than others. Small vocabularies will gather more points
together into every word, describing global structural relations between nodes
of the original graphs, while larger vocabularies will distribute the points into
more specific words retaining local information of the graphs under study. Such
a situation could be exploited by ensembles of classifiers that would increase the
overall accuracy of the individual classifiers.
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The whole procedure explained does not take into account edge attributes
of the graphs. Several graph databases do have edge attributes in their graphs
because such attributes may describe important information about the relation
between nodes of the graphs. It is quite clear that we should adapt our graph
embedding to those cases where edge attributes are present. One possible way to
proceed in this situation would be to also cluster the edge attributes and add a
new semantic feature to the relation between words. Then, we should probably
face the problem of dimensionality reduction.

This paper is mainly about a really preliminary work in the sense that a lot
of experimentation is still needed. We focused on evaluating only the second
step in the whole procedure: the representation of the graph of words using
vectors. A comparison between the whole proposed embedding, which needs a
transition to the generalized graph, and embeddings of the original graphs with
other techniques has to be done and constitutes the current work of the authors.
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Abstract. In order to use structural techniques from graph-based pat-

tern recognition, a first necessary step consists in extracting a graph in

an automatic way from an image. We propose to extract plane graphs, be-

cause of algorithmic properties these graphs have for isomorphism related

problems. We also consider the problem of extracting semantically well-

founded graphs as a compression issue: we get simple graphs from which

can be rebuilt images similar to the initial image. The technique we intro-

duce consists in segmenting the original image, extracting interest pixels

on the segmented image, then converting these pixels into pointels, which

in turn can be related by region-based triangulation. We show the feasi-

bility and interest of this approach in a series of experiments.

Keywords: Plane graphs, images, interest pointels, segmentation,

Delaunay triangulation.

1 Introduction

Representing images with graphs is an approach followed in pattern recognition
in which it is hoped to benefit from the structural properties of the graphs, but
also to be able to use the robustness associated with them [2,10]. A number
of ideas have been analysed in order to use these graphs once built, involving
edit distances [17] or graph matching [14]. Moreover, databases of synthetically
generated graphs [19] or graphs related to pattern recognition benchmarks [16]
have been created.

Many different models of graphs extracted from images have already been
proposed. A first alternative consists in segmenting the image, in representing
each region by a vertex and putting an edge between two vertices whenever the
regions have a common border. Further arguments can be added to indicate the
size of the region, the length of the border, and so forth. The obtained graphs
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are called Region Adjacency Graphs [18] and have been improved, yielding dual
graphs [11], ordered graphs [9], combinatorial maps [12]. A second option con-
sists in extracting interest points (they will now be the vertices) and in relating
them according to some neighbourhood relationship (the Delaunay triangula-
tion may be a way to do this). Again, numerical attributes can be added to the
representation, either attached to the vertices or to the edges.

Yet neither of the two aforementioned techniques is satisfying: typical draw-
backs in the first case are that the structure of the graph actually has little to do
with the topological nature of the image (i.e. the spatial disposition of depicted
objects, their borders and connexity), in particular when the segmentation is
rough. In the second case, not only do many of the so-called interest points not
seem to be that interesting (requiring to extract many more points than neces-
sary in order to be sure to have all the important ones), but also, since these
points are actually pixels (with non null thickness), the construction is hindered
by discrete geometry issues (e.g. what is the frontier between two regions?).

What should be the features of a good graph extracted from an image? On one
hand, it should be robust: if the image is slightly distorted, the graph should not
be deeply modified. It should also have good algorithmic properties: typically the
central isomorphism problem, the related problems of sub-graph isomorphism,
maximum common subgraph and graph edit distance should be solvable with
polynomial algorithms. Furthermore what we may call the semantic properties
of the image should be present in the graph: this might mean that the graph,
when drawn, actually is a symbolic representation of this image; for instance,
the boundaries between the regions could coincide with the edges of the graph.
Finally we would like to be able to rebuild an image from the graph and for this
new image to be a good compression of the initial image. In other terms, the
loss due to the extraction process should be minimal.

In this paper we explore the possibility of combining the advantages of both
the techniques presented above: on the one hand, segmentation introduces ro-
bustness; on the other hand, extraction of interesting pixels is a good idea and
much less pixels are going to be needed from a segmented image. The method
we suggest is thus as follows: (1) segment the image into regions, (2) extract s
interest pixels, (3) add s′ intersection pixels (s′ being generally less than s), (4)
compute the corresponding interest pointels, (5) relate them according to the
boundaries of the regions and (6) triangulate the pointels of each region.

2 Definitions

A (digital) image I is an array of n∗m pixels. Each pixel p has a colour described
by a 3 dimensional vector cI(p) in standard RBG colour system; that latter
hypothesis corresponds to our experimental settings but any other colour system
could be used. The coordinates of the pixels consist in pairs (i, j); their range
goes from (0, 0) to (n− 1,m− 1). Each pixel is delimited from each of his four
neighbours by a linel, and the four corners of the pixels are called pointels.
Such pointels and linels are mathematical points and line respectively, with null
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thickness. This enables us to associate the coordinates of the pointels to those
of the pixels; their range goes from (0, 0) to (n,m).

We now introduce the main criterion used in this paper to measure the loss
between an original image I1 and an image I2 obtained after a series of trans-
formations. We assume that both I1 and I2 have the same size (n ∗ m). The
loss is the L1 distance between I1 and I2 divided by the number n ∗ m of pix-
els. Formally, we first define the distance dp between any pixel p1 in image
I1 and pixel p2 in image I2 as the normalised distance between corresponding
colour vectors. That is, if cI1(p1) = (r1, g1, b1) and cI2(p2) = (r2, g2, b2), then
dp(p1, p2) = (|r2 − r1|+ |g2 − g1|+ |b2 − b1|)/(3 ∗ 255). And we state:

loss(I1, I2) =

∑i=n−1
i=0

∑j=m−1
j=0 dp

(
p(I1, i, j), p(I2, i, j)

)
n ∗m

, (1)

where p(I�, i, j) denotes pixel with coordinates (i, j) in image I�.
We now introduce plane graphs. We recall that a graph G = (V,E) is planar

if it can be embedded in the plane, in such a way that no two edges cross.
Note that several non homeomorphic embeddings may exist for a given planar
graph (i.e. several incomparable drawings of the same graph) [3]. Moreover, it is
always possible to move the vertices so that the edges are drawn with straight-
line segments [6]. Thus by a plane graph, we mean a planar graph for which the
embedding is fixed and such that (1) every embedded edge is a straight-line and
(2) no two embedded edges intersect, except at their endpoints.

Plane graphs are interesting to represent images for at least two reasons.
On one hand, they can be nicely represented as combinatorial maps which also
provide us with an elegant data structure [20]. On the other hand, isomorphism
and subisomorphism problems were recently studied for combinatorial maps [5],
with the following interesting consequence:

Theorem 1. Let G = (V,E) and G = (V ′, E′) be two plane graphs. Deciding
whether G and G′ are isomorphic is solvable in time O(|V |×|V ′|). Moreover, if G
is face-connected, deciding if G is a pattern of G′ is solvable in time O(|V |×|V ′|).
A pattern of a graph can be seen as a subgraph obtained by erasing faces and
then edges (called bridges) separating 2 erased faces and finally singular ver-
tices (called hinges) separating 2 non-contiguous erased faces [4]. Other positive
algorithmic results for special classes of graphs are described in [9].

In this paper, we develop techniques to extract a plane graph G from an image.
In order to rebuild an image, we also need to have (1) a vector P mapping each
vertex with the coordinates of corresponding pointel and (2) a vector C mapping
each face of G with the colour in which it should be drawn1. Although G, P and
C are known, a variety of images can still be drawn. Indeed, embedded edges will
cross many pixels and divide them into several parts, so which colour should these
pixels be given? We choose the following rule: for each split pixel, we consider
the colours of its four corners (pointels) (inherited from the faces in which they
1 Faces of plane graphs can be denoted and saved using directed edges, and a conven-

tion stating that such or such face is on the right of such or such directed edge.
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stand - pointels that lie between regions are not taken into account), compute
the average colour and assign it to the pixel.

We denote by Im(G,C, P ) the resulting image and can now measure the loss
between Im(G,C, P ) and original image I using Eq.(1). Obviously, the loss be-
tween an image obtained through some compression or representation by graphs
could also be looked into w.r.t. the gain in terms of space. We claim that whereas
the space needed to encode an image is n · m · K, where K is a constant cor-
responding to the size needed to encode one colour vector (here 24), to encode
Im(G,C, P ) the space is about |V | · (logn + logm + 3 + K).

3 Construction

In this section, we propose a new way to represent an image as a graph, by
taking advantage of both image preprocessing tasks introduced in Section 1:
the segmentation task, combined to interest pixels extraction. This allows us
to obtain graphs that preserve the semantics and the topology of the original
images, while providing us with a valid approximation that minimises the loss.
Remember that the goal is to extract, given an image I, a graph G such that,
with correct P and C functions, we have loss(I, Im(G,P,C)) as small as possible.

3.1 Segmentation

Any segmentation process aims at defining disjoint regions made of homogeneous
sets of pixels (in some predefined way). Many segmentation algorithms exist, and
it is generally possible to target an approximate number of regions by tuning
the parameters of any chosen algorithm (see Fig. 1).

Aiming at minimising loss(I, Im(G,P,C)), it would be suitable to more or less
preserve the regions of segmented image while building the graph: the boundaries
between them should match, in as close a way as possible, the edges of the graph.
We recall that two adjacent pixels are separated by a linel (see Section 2), so
the regions are delimited by boundaries, sets of consecutive separating linels
that form cycles. Of course, one given region may be delimited by more than
one cycle, and the borders of the image need to be included.

Now our thesis is that the vertices of the graph should be selected among the
endpoints of the separating linels described above, that is, the pointels. Indeed,

Fig. 1. An image and two segmentations at different levels, coming from the Berkeley

Segmentation Dataset [15]
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the vertices (and then the edges) must be chosen in such a way as to cover all
the important elements structuring the boundaries. Obviously, too many vertices
will make us deal with large graphs (which for combinatorial reasons is not rec-
ommended). Conversely, too few vertices will result in embedded edges (straight
lines) which will be far apart from the boundaries. This means that we have to
compress the information displayed in the segmented regions (which was already
a compression of the original image): we are not interested in the exact shape of
the regions, but in a rough although lifelike sketch (see Fig. 3 w.r.t. Fig. 1).

3.2 Extracting and Cleaning Up Interest Pixels

In order to select the vertices of the graph, we now make use of an interest pixels
detector. No consensus exists on what an interest pixel is: each detector (e.g.,
[8,13]) performs its own measures of local information (based on texture, colour,
shape,. . . ) on the image and then extracts most stable and rich sets of pixels
w.r.t. these features. While usually applied on original images, we run interest
pixels detectors on segmented images. Indeed, segmented images are simplified,
and detected pixels will thus be situated on, or close to, boundaries. This will
prevent us from detecting pixels on textured areas, salient corners pixels situated
inside a region, or pixels corresponding to noise. Note that if the number of
extracted interest pixels is low, some regions (e.g. regions strictly included in
others) may not be detected and thus may not be represented in the final graph.

Despite these precautions, the set of pixels obtained is generally not satisfying
for two reasons. On the one hand, due to the principles of detectors, it is still
possible for a pixel to be selected while it is far from any region boundary. We
aim at eliminating them: for each interest pixel, we consider a mask containing
this pixel and its eight neighbours, and then remove the interest pixel from the
set if all the pixels in the mask belong to the same region.

On the other hand, the detector is often not able to come up with all the
pixels that act as boundaries to three regions or more (i.e. pixels that belong to
one region and have at least two other regions among their eight neighbours).
Yet these pixels are necessary in order to have embedded edges of the graph close
to the boundaries, so we aim at adding them: we consider 3x3 masks again, this
time for all the pixels of the image, and add as interest pixels those whose mask
intersect three different regions (or at least two, if the pixel is on image’s border).
We finally add the four corners of the image to the set.

We are clearly now in possession of a “clean” set of interest pixels that could
be the vertices of the graph. However, we are still faced with a problem, well-
known to researchers in discrete geometry: when tracing the lines corresponding
to the edges of such a graph, because of the discrete nature of the pixels, we can
end up with zones that are not colourable, or even to edges which intersect. Thus
the vertices of the graph should not be pixels but pointels (with null thickness).

3.3 From Pixels to Pointels

In order to define the vertices, we now draw a parallel between linels separating
segmented regions and interest pixels. Since linels lie between pixels, we will
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Fig. 2. On the left, the border between 3 regions: 9 (hatched) interest pixels + 1

(striped) intersection pixel yield 12 interest pointels (big dots). On the right, the ex-

tracted plane graph: the edges are built following regions boundaries.

Fig. 3. Several plane graphs obtained from rightmost segmentation in Fig. 1. For the

leftmost (resp. middle, rightmost) graph, 25 (resp. 50, 100) interest pixels were de-

tected (and none of them deleted using the uniform mask rule), then 37 (resp. 36, 36)

intersection pixels were added, generating 68 (resp. 108, 194) vertices (pointels).

analyse the four corners (pointels) of each interest pixel. Then the goal is to
select among these pointels, those which are the most relevant. The rule is as
follows: (1) Consider each pointel π of each interest pixel separately; (2) Let
p0, p1, p2 and p3 be the 4 pixels which share pointel π; (3) If ∃pi such that
cI(pi−1) �= cI(pi) and cI(pi) �= cI(pi+1) (modulo 4) then the pointel is selected.

At this stage, the selected pointels become the vertices of the graph. Note that
function P is also defined straightforwardly (we use coordinates of the pointels
in the image). They are yet to be related: the edges are built by linking vertices,
following the boundaries of each region (see Fig. 2 and 3).

3.4 Triangulation

To complete our method, we finally make use of a kind of Delaunay triangulation.
The reason is threefold. (1) Such a technique will improve the robustness of the
graph: if the positions of the vertices are slightly modified by transformations
applied to the original image, the Delaunay triangulation will remain stable.
(2) In a problem such as the plane graph isomorphism discussed in Section 2,
triangulation edges will prevent one from matching faces with similar boundaries
but different shapes. Note that the benefit of Delaunay triangulation has been
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investigated for other problems in Pattern Recognition [7]. (3) The first stage
of our technique is a segmentation. Yet the resulting regions may be strictly
included one into another (see Fig. 1). On the other hand, in the last stage,
the edges are built following the boundaries of the regions. So the graph we get
is generally not connected (as shown in Fig. 3), which is not combinatorially
suitable; the use of the Delaunay triangulation will settle this issue.

Now, in order to preserve existing edges, a Delaunay triangulation takes place
in each face of the embedded graph independently of the others. As a region may
not be convex and often contains other included regions, the triangulation edges
that are not totally included in the region are eliminated. Finally, we merge
together the triangulated faces, and obtain the target plane graph G.

4 Experiments

The public benchmark of the Berkeley Segmentation Dataset [15] contains 300
images (481x321 RGB) of natural scenes, coming from the Corel dataset (widely
used in computer vision). Each image contains at least one discernible object,
and was segmented at varying levels by several individuals without any particular
instruction on the type of criterion to use (see Fig. 1 for an example). The number
of regions is at least 2, for an average of 20. As for the interest pixels detector,
we have used the one from [1], based on multi-resolution contrast information.
Below, I denotes an image, Ik its segmentation into k regions, and Bg(Ik, s) the
graph obtained by extracting s interest pixels from the segmented image and
following all the steps described in Section 3 (Bg=Build Graph).

4.1 Losses Due to the Graph Extraction Process

Firstly, we have evaluated loss(I, Ik), that is the loss due to the segmentation of
I into k regions. For the 1633 available segmentations, the average loss is 10.0%.
We also wanted to study its correlation with the number of regions. So, for regions
ranging from 3 to 30, we selected 10 images (for a total of 280 segmentations)
and computed the corresponding loss, together with the standard deviation.
The results are shown on the left of Fig. 4: no correlation can be found. As
the individuals who divided the images did not have any particular instructions,
the segmentation was mostly semantic. Regions thus depict objects or parts of
objects, and they are not necessarily homogeneous in terms of colours, whatever
the level of segmentation.

Next, we have studied how the number of interest pixels affected the loss
from Ik (the image segmented into k regions) to Bg(Ik, s) (the graph obtained
by extracting s interest pixels from Ik). To this extent, we have extracted 10
to 500 interest pixels and built corresponding graphs. The results are shown on
the right of Fig. 4. The loss ranges from 3.1% for 10 interest pixels to 0.2% for
500. Basically, the larger the extracted graph is, the closer the boundaries of the
regions are followed by the edges, thus the lower loss(Ik,Bg(Ik, s)) is.

Finally note that the processing of interest pixels induces widely less loss than
the segmentation stage (< 3% w.r.t. 10%). To confirm this, we have considered
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Fig. 4. loss(I, Ik) w.r.t. the number of regions (on the left) and loss(Ik, Bg(Ik, s))
w.r.t. the number of interest pixels (on the right)

Table 1. For one image, losses corresponding to different levels of segmentation

s k |V | loss(I, Ik)) loss(Ik, Bg(Ik, s)) loss(I, Bg(Ik, s))
50 3 104 0.084 0.006 0.089
50 7 123 0.084 0.005 0.089
50 9 175 0.084 0.006 0.090
50 13 149 0.084 0.007 0.091
50 20 207 0.083 0.007 0.090

one particular image at different levels of segmentation k and extracted a fixed
number of interest pixels. See Table 1.

4.2 Comparison with Another Plane Graph Extraction Method

In order to compare our graph extraction method, we use another more classic
one: interest pixels are directly extracted from original images (without pre-
segmentation), then converted into interest pointels as described in Sect. 3.3
(with, added, the 4 corners pointels in order to fit whole image) and related
by the Delaunay triangulation. We denote Bg(I, ts) this graph and compare
loss(I,Bg(I, ts)) with loss(I,Bg(Ik, s)) (see Fig. 5): our method induces slightly
less loss, while providing a graph that preserves the semantics of original image.

4.3 Size of the Graph

Given an image, in order to obtain a graph of a given size |V |, we can work on
the segmentation level and the number of extracted pixels. To assess the trade-
off between both, we compare loss(I,Bg(Ik, s)) for different values of k and s.
Of particular interest is the case where Bg(Ik, s) and Bg(Ik′ , s′) have similar
sizes.The situation for 2 images A and B is depicted in Table 2. loss(I,Bg(Ik, s))
is quite similar whether we are considering an important number of interest
pixels and a small number of regions, or conversely. Thus any of parameters k
and s can be tuned to obtain of graph of a given size, with a slight preference
for the first due to the decrease of loss(Ik,Bg(Ik, s)) when s becomes larger.
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Table 2. Influence of k and s on the losses for extracting a graph of size |V |

Image s k |V | loss(I, Ik) loss(Ik, Bg(Ik, s)) loss(I, Bg(Ik, s))
A 80 7 182 0.084 0.004 0.088

20 18 188 0.076 0.023 0.098
B 80 11 146 0.166 0.009 0.175

20 25 145 0.166 0.022 0.188
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More precisely, to assess the influence of the number s of detected interest
pixels on |V |, we extracted 10 to 500 interest pixels from 1633 segmented images,
added the intersection pixels and computed the corresponding pointels; left-hand
curve of Fig. 6 shows that |V | is a quasi-linear function of s.

Finally, concerning the influence of the level of segmentation k on |V |, we
selected 10 segmentations for a number of regions varying from 3 to 30 (yielding
280 segmentation files); for each of them, we extracted 50, 100, 150 and 200
interest pixels and computed the corresponding pointels (see right of Fig. 6):
Even if the curves do not increase steadily, for some fixed s, the more regions
there are, the more selected pointels there are; this is due to the intersection
pixels, that grows up with the number of regions.

Finally, even though the method is not intended as a compression algorithm, it
can be noted that the original images have a theoretical size of 450kB (encoded



242 É. Samuel, C. de la Higuera, and J.-C. Janodet

as JPEG, they are about 70kB). The segmented files have an average size of
28kB, and a graph with 150 vertices requires less than 1kB.

5 Discussion, Open Questions and Conclusion

The bottleneck problem to using graphs in pattern recognition for image recog-
nition tasks is to extract good graphs, where good means both reasonably small
and semantically stable. We have introduced a new method for extracting graphs
from images, which compresses the original information while preserving the se-
mantics. Experiments show that the loss due to this process is limited. Moreover,
these graphs have nice properties that are interesting for isomorphism-related
problems: they are planar and connected, and their size is low. Moreover, this
method is general enough to be applied to any kind of images (while usual meth-
ods are often adapted to particular classes of images (e.g see [16]).

It would be interesting to study alternative loss functions, to experiment
with different segmentation algorithms and other ways of creating connexity
and structural rigidity. Finally, we aim at proving the validity of the extracted
graphs in pattern recognition tasks, and contributing to the field with a free
distribution of the described software.
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Abstract. In pattern recognition, graphs become alluring more and

more as structural pattern representations due to their richer repre-

sentability than feature vectors. However, there are many challenging

problems using graphs for pattern recognition. One is that it is difficult

to investigate the relationships of graphs effectively, even of trees. In

this paper, we focus on the structure relationship analysis of trees, such

as tree and subtree isomorphism, maximum common subtree, minimum

common supertree, etc., which is almost suffered from all kinds of tree

recognition problems. For investigating the relationships of structures of

trees, we propose a structure network to represent the evolutional rela-

tionships of structures of trees. Moreover, for a lot of tree isomorphism

problems appearing in the application of structure network, we propose

a method that encodes the structure of tree as a numerical sequence,

and illustrate its efficiency by comparing it with traditional matching

method for tree isomorphism problem.

Keywords: tree isomorphism, subtree isomorphism, tree indexing, struc-

ture analysis, tree measure.

1 Introduction

In pattern recognition and computer vision, the graph representation of objects
has become alluring more and more along with the increase of the needs to con-
sider the context of features. In a graph, not only the traditional features can be
represented as vertices, but also the relationships defined on them can be repre-
sented as edges. Especially the tree as the simplest graph is used widely in many
studies, such as data mining, computational biology, image analysis, document
analysis, even in automatic theorem proving and compiler optimization [1].

However, when we are enjoying the advantages brought from the graph rep-
resentation, we are suffering from some difficult problems at the same time.
One is the high computational complexity; there exist many NP-complete or
NP-hard problems in graph and tree problems [2]. Moreover, many efficient tra-
ditional methods working on the feature vectors can not be used on the graph
and tree patterns straightforwardly [3]. Since matching graphs or trees directly
is impractical when considering their computational complexity, many approxi-
mation methods are discussed, such as tree edit distance [1,4], spectrum-based

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 244–253, 2010.
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methods [5,6], common supergraph methods [7], and kernel methods [8]. In all of
these methods, the tree edit distance methods are studied very widely in prac-
tices [9,10], and are extended to kernel methods [11], pair HMM methods [12],
etc. On the other hand, in order to convert the tree classification problems to
traditional classification problems, some approaches that embed trees into vector
space, based on the dissimilarity computed by edit distance [13,14] or based on
the spectrum of tree [15] had been proposed. Furthermore, by selecting a num-
ber of candidates from database with indexing methods [16,17] before matching
them one by one, the times of matching can be reduced greatly.

In all of these problems of trees, a basic problem is the relationship analysis
of tree structures, such as isomorphism, subtree or supertree, minimum common
supertree, maximum common subtree, etc. Even more, in edit distance algo-
rithm, as a sub-problem in the dynamic program, it is necessary to investigate
all the matching possibility of common subtrees. Although tree isomorphism can
be determined by matching method, no method can measure the structure of tree
by numerical value clearly. In this paper we focus on these tree problems, and
try to address the relationships analysis of tree structures by defining a structure
map. Furthermore we also propose a method for encoding the structure of a tree.

The rest of this paper is structured as follows. In section 2, we discuss how to
construct the structure network for addressing the relationship analysis of tree
structures. In section 3, by clustering the vertices in a tree, we give a method
to encode the structure of tree that can be used to query a tree by its structure
in database or in the structure network. In section 4, we state experiments for
identifying the effectiveness of the proposed encoding method. Finally we will
discuss some potential applications, and give our conclusion in section 5.

2 Structure Network

In this section, we discuss how to construct the structure map. First, we give
some definitions and algorithms that are used throughout this paper. The trees
considering in this paper are unlabeled and undirected trees. The graph isomor-
phism is defined as follow.

Definition 1. Two graphs G1 = (V1, E1), G2 = (V2, E2) are isomorphic if and
only if there is a bijection ϕ between V1 and V2 such that for every pair of vertices
i, j ∈ V1, (i, j) ∈ E1 if, and only if, (ϕ(i), ϕ(j)) ∈ E2.

In this paper, when two trees are isomorphic we will say that their structures
are equal or they have the same structure. To determine whether two unlabeled
trees T1 and T2 are isomorphic, we use the algorithm introduced by Kucera in
[18] as shown bellow:

1. In each tree, label all the leaves with 1. If the numbers of leaves in T1 and
T2 do not coincide, stop with “non-isomorphic”.

2. In each tree, determine the sets of unlabeled vertices S1 and S2 such that
every neighbor of v ∈ Si, except at most one, has a label. Tentatively, label
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Fig. 1. Structure map under 8 vertices

v with the list (l1, · · · , lk) of labels of its labeled neighbors, sorted in non-
decreasing order. Compare the respective tentative labels for the vertices
in S1 and S2. If these labels do not agree (as multi-sets), stop with “non-
isomorphic”.

3. Substitute the tentative labels (which are lists of numbers) by new labels
which are just numbers k, k + 1, k + 2, · · · in an arbitrary way. The only
restriction is that vertices with the same tentative labels should get the
same new labels, and that the labels k, k + 1, k + 2, · · · have not been used
before.

4. If not all vertices have labels, go back to step 2.
5. Stop with “isomorphic”.

As stated in section 1, usually, except for determining the isomorphism problem
between two trees, we also need to deal with other relationships between trees.
Although for subtree isomorphism problem Shamir gives an efficient matching
method in [19], matching every pair of trees in a database is a very hard work
when only using matching methods. So in this section we propose a method to
construct a structure network, and discuss how to joint a structure of tree into
this network. An example of this structure network under 8 vertices is shown
in Fig. 1. In the structure network, each structure is drawn as a node that can
indicate a cluster of trees with the same structure. All nodes of the network are
organized into layers by their size. The edge indicates a sub-super relationship
and only the adjacent layers can be linked. The numbers around each node will
be discussed later.

There are two ways to construct the structure network, one is a top-down
way that evolve the network from a two vertices structure. Another is a bottom-
up way. When a tree is given, if its structure is outside of this network, then
decompose it bottom-up until it can be completely connected into the network.
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Fig. 2. The probability of reduction(a) and growth(b) of a topolgy

For a node in the network, there are two related processes; one is reduction:
by removing a leaf in it, it can reduce to a sub-structure, and the other one is
growth: by inserting an edge into a structure, it can grow up to a super-structure.
First, let us consider the number that how many sub-structures can reduce to
from a structure and the number that how many super-structures can grow up
to. In general, the number of sub-structure that can reduce to is equal to the
number of categories of its leaves. Inversely, the number of super-structures that
can grow up to is equal to the number of categories of all vertices. For example,
considering the structure shown in Fig. 2, (a) shows the reduction, and (b) shows
the growth. In this case all of the vertices can be clustered into 4 categories, and
two of them are leaves.

{1, 2, 3}, {4}, {5}, {6, 7}

For the clusters of leaves, their sizes are 3 and 2, which indicate the probabili-
ties reducing to these two kinds of sub-structure when removing a leaf randomly.
Similarly, the size of each cluster indicates the probability growing to each super-
topology when inserting an edge randomly. Here we can cluster vertices by using
their histogram of graph distance. Firstly for a vertex compute the graph dis-
tances from it to all the other vertices, and use a histogram diagram to count the
distribution of distances. Such histograms of vertices in Fig. 2 are shown in Fig.
3. The histograms of vertices 1,2,3 are (a), 4 is (b), 5 is (c), 6,7 are (d). Then by
using these histograms we can cluster vertices and find out the super-structures
and sub-structures in up and down layers efficiently.

The top-down algorithm to construct the structure network until size N is
shown as bellow. T (N) denotes a structure with N vertices.

initialize the structure network S = φ;
initialize the two-vertices structure t(2) and add it into S;
for each i from 2 to N − 1; do

for each structure tsub ∈ T (i), where T (i) ⊆ S; do
cluster all vertices in tsub;
for each cluster C do

select an arbitrary vertex v ∈ C;
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Fig. 3. Four kinds of histogram of vertex graph distance

add an edge connecting to v to construct a new structure tnew;
look for the isomorphic structure tsup of tnew, where tsup ∈ T (i+1)

and T (i+1) ⊆ S;
if found then

link the structure tsub to tsup;
else

add tnew into S;
link the structure tsub to tnew;

end if
done;

done;
done;

When a given structure indicated by t(N) is not in the network S, a bottom-up
algorithm used to joint it into the structure network is:

look for the isomorphic structure tsup of t(N), where tsup ∈ T (N) and T (N) ⊆ S;
if found then

return tsup;
else

add a new cluster into S and use t(N) to indicate it;
for each tsup ∈ S where tsup have no link to the structure in T (Size(tsup)−1);

do
cluster all leaves in tsup;
for each cluster C; do

select an arbitrary leaves v ∈ C;
remove v to construct a new structure tnew;
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lookforthe isomorphicstructure tsub oftnew,where tsub ∈ T (size(tnew))

and T (size(tnew)) ⊆ S;
if found then

link the structure tsup to tsub;
else

add tnew into S;
link the structure tsup to tnew;

end if
done;

done;
end if;

3 Encoding a Structure

In this section, we focus on how to describe a structure in a numerical way. As
described in section 2, generally, to determine the isomorphism of two trees the
matching method given by Kucera in [18] is used. Although its time complexity
is O(n), since it is a matching method, in some applications such as querying a
structure from a database, a large amount of matching is neccesary. For dealing
with the structures of trees more efficiently, in this section we discuss how to
encode the structure informations of trees. We noticed that the essence of the
isomorphism algorithm in fact is a procedure of clustering vertices step by step.
In another way, as shown in section 2, using the histogram of graph distances the
vertices can be clustered well too. For example, let us consider two isomorphic
trees shown in Fig. 4. In the isomorphism algorithm a label is computed and
assigned to each node, and their correspondences are shown in Table 1. In the
matching method, to decide these correspondent relationship the adjacent labels
should also be considered.

In contrast, in a column in Table 1, we show their histograms of graph dis-
tances. In this way, the correspondent relationships between vertices are decided
uniquely by their histograms. Furthermore, the difference from matching method
is that we can use histograms to encode the topology of a tree. Due to the con-
nectivity of the tree, the histogram is also connected. That is for an arbitrary

Fig. 4. Example of the isomorphic matching algorithm for Tree (a) and (b)
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Table 1. The correspondence between vertices and their histograms

Vertices in Tree (a) Vertices in Tree (b) Label Histogram

1,2,4 5,6,7 [1] [1,3,2,4,2]

9,D C,D [1] [1,2,2,2,5]

3,8 A,B [1] [1,2,2,5,2]

C 9 [1] [1,2,4,5]

5 2 [1,1,1] [4,2,4,2]

A 8 [1,1] [3,2,2,5]

7 4 [1,1] [3,2,5,2]

B 3 [[1,1],[1]] [3,4,5]

6 1 [[1,1,1],[1,1]] [3,7,2]

distance i, if ith element of the histogram is not zero, then the (i− 1)th element
is not zero too. So we can use a sequence to denote the histogram only including
the nonzero element namely histogram sequence. Using this histogram sequence
we can encode each cluster to a field defined as:

h := histogram sequence;
l := lengh of h;
s := size of cluster;

field := (l + 2), s, h;

Finally, sort all cluster fields alphabetically, and link them to compose a long
sequence. This long sequence is the final result of encoding the structure of a
tree, and it includes all the clustering informations of vertices obviously. For
example, the structure of the tree in Fig. 4 can be encoded as

( 5, 1, 3, 4, 5,5, 1, 3, 7, 2,6, 1, 1, 2, 4, 5,6, 1, 3, 2, 2, 5,6, 1, 3, 2, 5, 2,
6, 1, 4, 2, 4, 2,7, 2, 1, 2, 2, 2, 5,7, 2, 1, 2, 2, 5, 2,7, 3, 1, 3, 2, 4, 2).

In the algorithm proposed in section 2, by replacing the matching method to
the encoding method where the step is looking for isomorphic structure, the
algorithm could be more efficient.

4 Experiments

In this section, we will verify the effectiveness of the encoding method and discuss
the indexing tree and subtree by structure network. We first create a database
that contains about 20,000 unlabeled and undirected trees with up to 20 vertices.

4.1 Experimental Settings

In this section, we address the algorithm used to create the database of trees.
Here we use T (j) to denote the set of j vertices trees, and T

(j)
i denotes its element.

The algorithm is:
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prepare T (2);
foreach j from 2 to 20 do

if |T (j)| ∗ (j + 1) < 1500 then
foreach T j

i do
foreach vertex v ∈ V (T j

i ) do
add an edge adjacent to v to construct a new tree and save it;

done
done

else do
while |T (j+1)| < 1500 do

select a T
(j)
i randomly;

select a vertex v ∈ V (T (j)
i ) randomly;

add an edge adjacent to v to construct a new tree and save it;
done

done
done

With this algorithm, we made a tree database including 19,410 trees. These trees
are clustered into 8,251 categories by using the isomorphism algorithm. In these
clusters, 2,898 clusters which include more than one tree.

4.2 Results

Firstly, we cluster all the trees in database by using the proposed encoding
method. Then the result is compared with the one of the isomorphism algorithm.
As shown in Table. 2, the clustering result of the proposed encoding method is the
same as the isomorphism algorithm. In concern with the computing complexity,
in an LAM/MPI environment with 10 nodes(CPUs), clustering this database by
using isomorphism algorithm spent about 9.5 days. In contract, computing all
the encoding sequence only needs 45 minutes.

For the structure network, because constructing it is based on the encoding
method or isomorphism algorithm, the correctness of clustering is clear. With
it, we discuss the time and spatial complexity of construction. In Fig. 5 we show
three kinds of rough statistic data of constructing the structure network of under
15 vertices by using top-down algorithm. In Fig. 5 (a) we show the raise of the
number of nodes and edges along with the size of tree. In Fig. 5 (b) the comput-
ing time is shown. Although it is expensive to construct the structure network,
once the network is be constructed offline, to investigate the relationships be-
tween trees can be achieved by only using shortest path algorithm. Moreover, by
using the bottom-up algorithm, it is possible to construct the structure network
partially.

Table 2. The results of experiments

proposed method Encoding Index

correct rate 100%



252 M. Zhang and S. Omachi

Fig. 5. Complexity of constructing the structure network:(a) the number of nodes and

edges (b) the computing times

5 Conclusion

In this paper, we proposed a method to construct a structure network for index-
ing tree and subtree, and based on the clustering vertices of a tree, we proposed
an encoding method to indicate the structure of a tree as a numerical sequence
for indexing. As shown in the results of experiment, we can conclude the effec-
tiveness of the proposed methods. Furthermore, tree edit distance algorithm is
exploited widely in the applications as stated in section 1. Since each edit opera-
tor in tree edit distance algorithm is related to a link in the structure network, by
defining proper cost functions on the edges and nodes of structure network it is
possible to find out the optimal edit path efficiently on the structure network for
two trees. On the other hand, since each edge of structure network is related to
two probabilities according to two different directions, it is possible to compute a
conditional probability between two structure and the joint probability of them
by proability propagation. For future work, first we are going to investigate the
encoding method in detail for a more compact index. In application side, we will
try to combine the structure network with the tree edit distance to improve the
efficiency of tree edit distance algorithm or to develop the structure network to
a Bayesian network for recognition of tree patterns.
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Abstract. Image-features matching based on SIFT descriptors is sub-

ject to the misplacement of certain matches due to the local nature of

the SIFT representations. Some well-known outlier rejectors aim to re-

move those misplaced matches by imposing geometrical consistency. We

present two graph matching approaches (one continuous and one dis-

crete) aimed at the matching of SIFT features in a geometrically con-

sistent way. The two main novelties are that, both local and contextual

coherence are imposed during the optimization process and, a model of

structural consistency is presented that accounts for the quality rather

than the quantity of the surrounding matches. Experimental results show

that our methods achieve good results under various types of noise.

Keywords: attributed graph matching, SIFT, image registration, dis-

crete labeling, softassign.

1 Introduction

Image-features matching based on Local Invariant Features Extraction (LIFE)
methods has become a topic of increasing interest over the last decade. LIFE
methods extract stable representations from a selected set of characteristic re-
gions (features) of the image. These local representations are aimed to be invari-
ant at a certain extent to image deformations such as changes in illumination,
position of the camera, ... Mikolajczyk and Schmid [1] identified Lowe’s SIFT
descriptors [2] as the most stable representations among a number of approaches.

SIFT features are located at the salient points of the scale-space. Each SIFT
feature retains the magnitudes and orientations of the image gradient at its
neighboring pixels. This information is represented in a 128-length vector.

Despite its efficiency, image-features matching based on local information is
still subject to the misplacement of certain matches. A number of approaches
have been presented aimed at fixing these misplacements by removing incorrect
associations with the use of higher-level information. To cite some examples,
RANSAC [3] has been successfully applied to outlier rejection by fitting a geo-
metrical model. More in the topic of the present paper, Aguilar et al. [4] have

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 254–263, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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recently presented an approach that use a graph transformation to select a subset
of geometrically consistent associations.

The main aim of our work is to fix the misplaced matches by relocating them
when possible, so as to obtain a higher amount of useful matches than the out-
lier rejectors. We face this relocation as an attributed graph matching problem
where we seek for the set of assignments that best fit the constraints imposed by
both the local descriptors (attributes of the nodes) and the geometrical arrange-
ment of the features (structural relations). One of the main contributions of this
work is the development of a structural model of consistency that accounts, not
only for edge-consistency, but also for the matching quality of the surrounding
assignments.

We present two graph matching approaches. The first, presented in section
3, is cast in the continuous assignment framework provided by Softassign [5].
The second, presented in section 4, is a probabilistic model cast in a discrete
labeling scheme [6]. We have evaluated the matching precision and recall of both
methods under different sources of noise.

In section 2 some preliminary concepts are given. We present in section 5
comparative results with Aguilar et al.’s outlier rejector [4], RANSAC used to
fit a fundamental matrix [7], and Luo and Hancock’s structural graph matching
approach [8]. Finally, in section 6 some conclusions are drawn.

2 Preliminaries

Consider an image IM showing a certain scene. Consider another image ID

showing the same scene as IM but with some random variations such as viewpoint
change, illumination variation, nonrigid deformations in the objects of the scene,
etc ... Consider two sets of SIFT features (keypoints) X,Y from the images ID

and IM .

Definition 1. According to SIFT matching, a keypoint i from ID with descrip-
tor (column) vector xi and position inside the image

(
p
(i)
1 ,p

(i)
2

)
is matched to a

keypoint j from IM iff:
||xi − yj ||

||xi − yi,2min||
< ρ (1)

where ||x|| =
√

x�x is the Euclidean length (L2 norm), yi,2min ∈ Y is the
descriptor with the second smallest distance from xi ∈ X, and 0 < ρ ≤ 1 is a
ratio defining the tolerance to false positives.

This is, a keypoint i from ID is matched to the closest (in the descriptor-vector
space) keypoint j from IM if the ratio of their distance to the second smallest
distance from i is below a certain value 0 < ρ ≤ 1. If this condition is not met,
then keypoint i is leaved unmatched.

Definition 2. We define a graph GM representing a set of SIFT keypoints from
the image IM as a three tuple GM = (VM ,M, Y ) where vα ∈ VM is a node
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associated to a SIFT keypoint with position
(

p
(α)
1 ,p

(α)
2

)
, yα ∈ Y is the SIFT

descriptor associated to node vα and, M is the adjacency matrix (thus, Mαβ = 1
indicates that nodes vα and vβ are adjacent and Mαβ = 0 otherwise).

Consider also the graph GD = (VD, D,X) that represent a set of keypoints
from ID.

Definition 3. We define the probability of matching nodes va ∈ VD with vα ∈
VM with regards to the nodes’ attributes with the following quantity

Paα =
1

||xa−yα||∑
α′

1
||xa−yα′ ||

=
1

||xa − yα||
∑

α′
1

||xa−yα′ ||
(2)

which is a quantity proportional to the inverse of the distance between their
descriptors (normalized to sum up to one).

Definition 4. We define the threshold probability for sending a node va ∈ VD

to null (i.e., leaving it unmatched) as

Pa∅ =
1

ρ||xa−ya,2min||∑
α′

1
||xa−yα′ ||

=
1

ρ||xa − ya,2min||
∑

α′
1

||xa−yα′ ||
(3)

which places the threshold probability for va → ∅ at the distance ρ||xa − ya,2min||
which is the maximum distance permitted for an vα to satisfy ||xa−yα||

||xa−ya,2min|| < ρ.

Note that the matching probabilities of equations (2) and (3) define the same
matching criterion as definition 1.

It is a well-known strategy to state that a match from a node va ∈ VD to a
node vα ∈ VM is more likely to occur as more nodes adjacent to va are assigned
to nodes adjacent to vα [5][8].

Definition 5. We define a hit as a node vb ∈ VD adjacent to va that is matched
to a node vβ ∈ VM adjacent to vα.

In sections 3 and 4 we develop measures for gauging the structural consistency
of a given match va → vα. The novelty of the proposed measures lies on the fact
that they do not rely on the quantity but on the quality of those hits.

Our approaches to attributed graph matching aim to estimate an assignment
function f : VD → VM that best fits the criteria imposed by both the SIFT
attributes (local constraints) and the structural relations of the graphs (contex-
tual constraints). Accordingly, f(a) = α means that node va ∈ VD is matched
to node vα ∈ VM , and f(a) = ∅ means that it is not matched to any node.

Definition 6. We define the assignment variable S such that saα ∈ S and saα =
1 if f(a) = α and saα = 0 otherwise. The assignment variable is subject to the
constraints ∀a,

∑
α saα = {0, 1} and ∀α,

∑
a saα = {0, 1}.

This is, each node va ∈ VD can be assigned only to one node vα ∈ VM .
In the following two sections we present a continuous and a discrete labeling

approach to attributed graph matching.
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3 A Continuous Labeling Approach

Graduated Assignment (Softassign) [5] is a well-known optimization algorithm
that has been widely used to find suboptimal solutions to the graph matching
problem. It estimates the assignment variable S that minimizes the following
objective function:

F (S) = −1
2

|VD |∑
a

|VM |∑
α

|VD |∑
b

|VM |∑
β

saαsbβCaαbβ (4)

where sij are the components of the assignment variable S (definition 6) and
Caαbβ are the compatibility coefficients for the simultaneous associations va → vα

and vb → vβ .
This measure originates from the relaxation labeling processes [9]. Gold and

Rangarajan [5] have turned this minimization into an iterative assignment prob-
lem where a double stochastic matrix of continuous assignments S̃ is updated at
iteration (n + 1) according to the following expression

S̃(n+1) = argmax
S̃

|VD |∑
a

|VM |∑
α

QaαS̃ (5)

where Qaα is a quantity depending on the continuous assignment matrix of the
current iteration S̃(n), and corresponds to the derivative of the objective function

Qaα = − δF
δs̃aα

= +
|VD|∑

b

|VM |∑
β

s̃(n)
bβ Caαbβ (6)

where 0 ≤ s̃ij ≤ 1 is the (i, j) component of the continuous assignment matrix
S̃. The assignment problem of equation (5) is solved in a continuous (soft) way
using a continuation method controlled by a parameter to gradually push from
continuous to discrete solutions (see reference [5] for more details about the
algorithm).

We consider that a candidate association va → vα with a high probability re-
garding the local information but with low support from its surrounding matches
is likely to be an outlier (i.e., a geometrically inconsistent association). In this
case va should not be matched to vα. On the other hand, a candidate association
with a not-enough-high local probability (i.e., Paα < Pa∅) but with high support
from the surrounding matches, is likely to be an inlier. In that case va should
be matched to vα. We propose the following expression as it reflects this desired
behaviour

Taα =
Paα

Pa∅
+

Paα

Pa∅

⎡⎣|VD |∑
b

|VM |∑
β

(
Pbβ

Pb∅
DabMαβ s̃bβ

)
−K∅1

⎤⎦ (7)

where Pij , Pi∅ are the probabilities for matching vi → vj , vi → ∅ regarding the
nodes’ attributes (equations (2), (3)) and; D and M are the adjacency matrices
of GD and GM .
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This measure is composed by a sum of two parts. The first part contributes
with the matching quality regarding the nodes’ local information, Paα

Pa∅
. This

quotient is > 1 if va → vα is more likely than va → ∅ in terms of local consistency
and, ≤ 1 otherwise. The second part contributes with a quantity proportional to
the sum of the quality of the hits. The hits are by definition the only terms of the
double summatory different to zero (i.e., {(b, β) |Dab = 1,Mαβ = 1, s̃bβ �= 0}).
The constant K∅1 represents the threshold contribution required from the hits
in order to boost the overall measure Taα. This second part can be interpreted
in the following way: it is > 0 if va → vα is more likely than va → ∅ in terms of
contextual consistency and, it is ≤ 0 otherwise.

Consider the case of a candidate association with a high local and a low
contextual consistency. Despite of the high quantity of the first part of Taα,
the negative contribution of the second part would smooth the overall measure.
In the case of a candidate association with a not-enough-high local and a high
contextual consistency, the positive contribution of the second part would boost
the overall measure.

We have to express Taα in the same terms of Qaα (equation (6)) so that
we can use it under the framework of Softassign. In the following expression we
rearrange the terms in order to express our measure in terms of the compatibility
coefficients Caαbβ

Qaα =
|VD |∑

b

|VM |∑
β

s̃(n)
bβ

[
Paα

Pa∅

(
Pbβ

Pb∅
DabMαβ +

1 −K∅1

N

)]
(8)

where the expression between brackets corresponds to Caαbβ of equation (6) and
N =

∑
b

∑
β s̃bβ that is a number aproximately equal to the number of nodes of

the graphs (due to the double stochastic nature of the assignment variable used
in Softassign).

At the end of the algorithm the continuous assignment matrix S̃ is turned into
a (discrete) assignment variable S such that all the nodes va ∈ VD are assigned
to some vα ∈ VM . Finally, we remove the assignments saα = 1 with coefficients
Qaα < 1 since they do not satisfy the combined constraints.

4 A Discrete Labeling Approach

The idea of discrete labelling [6] is to visit each node and update f in order to
gain the maximum improvement in our matching criterion. The difference with
other approaches such as softassign [5] or probabilistic relaxation [9] is that the
assignment variable is discretely updated, not allowing for soft assignments.

We want to maximise the joint probability of a graph given the assignment
function f . To do so, our iterative algorithm visits all the nodes of the graph at
each iteration, and updates f in order to increase this joint probability

P (GD|GM , f) =
∏

va∈VD

P
(
va → vf(a)|f

)
(9)
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The update equation of the assignment function is

f(u) = arg max
{α=1...|VM |}

⋃
{∅}

P (va → vα|f) (10)

(we use a cleaning heuristic in order to guarantee that f is an injective function).
We have designed our matching criterion as a product of the following two

quantities:

P (va → vα|f) = PaαRaα (11)

where Paα and Raα stand for the matching probability according to the current
node attributes and the structural relations, respectively. We use the multi-
plication to combine both quantities as we find it a natural way to combine
probability measures as well as it doesn’t need further parameters (as opposed
to other operators such as linear weighting).

We use the expresion presented in equation (2) (and equation (3)) to gauge
the likelihood, regarding the node’s attributes, of the putative match va → vα

(and va → ∅, when appropriate).
In the remainder of this section we develop the matching likelihood for the

association va → vα regarding the structural relations (Raα). Our aim is to
define a model that takes into account the quality of the surrounding matches.

Luo and Hancock [8] showed how to factorise, using the Bayesian theory, the
hard-to-model matching probability given the entire state of the assignments S
into easy-to-model unary assignment probability terms:

P (va → vα|S) = ga

∏
vb∈VD

∏
vβ∈VM

p (va → vα|sbβ) (12)

where ga = [1/p(va)]|VD ||VM |−1 is a constant only depending on node va.
The model for the unary assignment probabilities presented in [8] used the

Bernoulli distribution in order to accomodate hits and no hits (definition 5)
with fixed probabilities (1 − Pe) and Pe (being Pe the probability of error). We
present a new model aimed at giving a more fine-grained measure by assessing
the hits according with their quality, while giving room for possible structural
errors in the case of no hit. The proposed expression is

p (va → vα|sbβ) = P
DabMαβsbβ
bβ [ξPb∅]

(1−DabMαβsbβ) (13)

where D and M are the adjacency matrices of GD and GM , respectively; Pbβ is
the quality term of the association vb → vβ (eq. (2)) and, [ξPb∅] is the gound-
level contribution in the case of no hit expressed in reference to Pb∅ (eq. (3)).
The parameter 0 < ξ ≤ 1 regulates the ground-level contribution. When ξ → 0,
there is small room for structural errors and then, the update equation (11) relies
mostly on the structural model. On the other hand, when ξ → 1, the ground-level
approaches the quality term and the structural model becomes ambiguous.
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In a similar manner that is done in [8], we state equations (12) and (13) in
the exponential form, obtaining the following expression

Raα = ha exp

⎡⎣∑
b

∑
β

log
(

Pbβ

ξPb∅

)
DabMαβsbβ

⎤⎦ (14)

where ha = exp[∑ b

∑
β log(ξPb∅)]ga is a constant that does not depend on either

the graph structure or the state of the correspondences.
Finally, we define the threshold probability for sending a node va ∈ VD to

null according to the structural relations as

Ra∅ = ha exp
[
K∅2 log

(
1
ξ

)]
= ha exp [−K∅2 log (ξ)] (15)

where K∅2 ≥ 0,K∅2 ∈ � is a parameter defining the minimum number of hits
with quality term Pbβ ≥ Pb∅ required for the match va → vα to be more struc-
turally likely than va → ∅.

The algorithm operates updating the assignment function f as stated in equa-
tion (10) with the new combined constraints provided in equation (11). This is,
at each iteration, each node va ∈ VD is assigned to the node vα ∈ VM with the
highest probability. If the target with the highest probability is ∅, then va is
leaved unmatched.

5 Experiments

We have compared both the continuous and the discrete attributed graph match-
ing approaches of the present work (C-AGM and D-AGM) to the following ap-
proaches: Graph Transformation Matching (GTM) [4], RANSAC used to fit a
fundamental matrix [7] and, Structural Graph Matching with the EM Algorithm
(SGM-EM) [8]. We have evaluated the matching Precision and Recall scores of
each method under the following types of perturbations: image distortions, geo-
metrical noise and clutter (point contamination). We have used the F-measure
to plot the results. F-measure is defined as the weighted harmonic mean of Pre-
cision (P) and Recall (R) and its expression is F = (2 × P × R) / (P + R).

The graphs used in our methods (C-AGM and D-AGM) have been generated
as described in definition 2. Graph structures for all the methods using graphs
(i.e., C-AGM, D-AGM, GTM and SGM-EM) have been generated using a K-
nearest-neighbours approach with K = 4 (i.e., edges are placed joining a keypoint
with its K nearest neighbours in space). All the methods have been initialized
with the configuration of matches returned by a classical SIFT matching using
a ratio ρ = 1 (the best value for the outlier rejectors). As the C-AGM method
permits the use of continuous assignments we have initialized them with the
probabilities due to local information (i.e., saα = Paα). The keypoint-sets size
used in the experiments has been N = 20. Our methods (C-AGM and D-AGM)
have done 20 iterations, and we have used ξ = 0.5 (D-AGM) and ρ = 1 (C-
AGM and D-AGM). We have empirically set K∅1 = 0.6 and K∅2 = 2.3 in the
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clutter experiments, and K∅1 = K∅2 = 0 in the others. The tolerance threshold
for RANSAC has been set to 0.01, and the number of iterations to 1000 (as
suggested in [7]). The probability of error Pe for the SGM-EM method has been
set to 0.0003, and the number of iterations to 100.

For each experiment we have arbitrarly chosen a grayscale image I0 from the
Camera Movements and Deformable Objects’ databases used in [4].

In the image distortion experiments, we generate I1 by simultaneously ap-
plying the following types of perturbations to I0: image resizing, to simulate
changes in the distance from the objects in the image; image rotation, to simu-
late changes in viewpoint; image intensity adjustement, to simulate illumination
changes and; gaussian white noise addition to pixel intensity values, to simulate
deterioration in the viewing conditions.

We extract the SIFT keypoints from images I1 and I0, obtaining coordinate
vector-sets P and Q, and SIFT descriptor-sets X and Y , respectively. We define
P̃ as the result of the mapping from points in P back to the reference of I0.
We compute P̃ by applying to P the inverse resizing and rotation from the
perturbation. We set the ground truth assignments on the basis of the proximity
between the points in Q and P̃. Then, for a given qi ∈ Q, we select as its ground
truth assignment the most salient p̃j ∈ P̃ among the ones falling inside a certain
radius r from qi. Saliency is decided according to the gradient magnitude of the
SIFT features [2]. The proximity radius has been set to r = 0.03 × l, where l
is the diagonal-length of the image. The keypoints that are not involved in any
ground truth assignment are discarded. So, at the end of this step we end up
with keypoint-sets Q′ = (q′

1, . . . ,q
′
N ) and P′ = (p′

1, . . . ,p
′
N ), and a bijective

mapping fgtr : P′ → Q′ of ground truth assignments.
Once the N ground truth assignments have been established, we implement

the clutter by adding a certain amount of the remaining points in both P and Q
to P′ and Q′. Clutter points are carefully selected not to fall inside the radius
of proximity r of any pre-existent point. Thus, we can safely assume that they
have no correspondence in the other point-set.

Finally, geometrical noise consists on adding random gaussian noise with zero
mean and a certain standard deviation σg to the point positions pi = (px, py).
This type of noise simulates nonrigid deformations in the position of the features.

Each plot is the average of the experiments on 10 images. Due to the random
nature of the noise, we have run 10 experiments for each image.

Figure 1 shows the F-measure plots for an increasing amount of image distor-
tions. Both geometrical noise and clutter have been set to zero.

Figure 2 shows the results for an increasing number of clutter points. The
amount of point contamination has ranged from 0% to 80% of the total N
points. Neither background geometrical noise nor image distortions have been
introduced.

Figure 3 shows the results for geometrical noise with σg ranging from 0% to
50% of μd (where μd is the mean of the pairwise distances between the points).
Neither image distortions nor clutter have been introduced.
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Fig. 1. Image distortions
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Fig. 2. Point contamination
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Fig. 3. Geometrical noise

6 Conclusions

We have presented a continuous and a discrete graph matching approach aimed
at the matching of SIFT features in a structurally consistent way. They present
two main novelties. On one hand, they force local and contextual consistency
during the optimization process. On the other hand, they present a model of
structural consistency based on the quality, rather than the quantity, of the
surrounding matches. These features make them flexible and robust in front of
various types of noise as seen in the experiments.

In the image distortion experiments, the methods that are not based on
outlier rejection (C-AGM, D-AGM, SGM-EM) recover better than the others
from matching misplacements. Specifically our attributed approaches (C-AGM,
D-AGM) perform better than a purely structural one (SGM-EM). In the exper-
iments with geometrical noise, the methods that only use structural information
(GTM, SGM-EM) experience a considerable decreasing in performance. Our
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approaches (C-AGM, D-AGM) remain the most stable even under severe noise
conditions. In the point contamination experiments, outlier rejectors (GTM,
RANSAC) show the best performance. The continuous approach (C-AGM) per-
forms better than the discrete one (D-AGM) in the image distortions and geo-
metrical noise experiments. Results suggest us to work towards the achievement
of a better stability in front of point contamination.
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Abstract. Applicative fields based on the analysis of large images must

deal with two important problems. First, the size in memory of such

images usually forbids a global image analysis hereby inducing numer-

ous problems for the design of a global image partition. Second, due to

the high resolution of such images, global features only appear at low

resolutions and a single resolution analysis may loose important infor-

mation. The tiled top-down pyramidal model has been designed to solve

this two major challenges. This model provides a hierarchical encoding of

the image at single or multiple resolutions using a top-down construction

scheme. Moreover, the use of tiles bounds the amount of memory required

by the model while allowing global image analysis. The main limitation

of this model is the splitting step used to build one additional partition

from the above level. Indeed, this step requires to temporary refine the

split region up to the pixel level which entails high memory requirements

and processing time. In this paper, we propose a new splitting step within

the tiled top-down pyramidal framework which overcomes the previously

mentioned limitations.

Keywords: Irregular pyramid; Topological model; Tiled data structure;

Combinatorial map.

1 Introduction

High resolution image analysis usually entails memory issues that prevent them
from being processed by common models. Moreover, in multi-resolution images,
the amount of details at full resolution is likely to mask global features which
only appear at lower resolutions. For instance, applicative fields such as whole
slide microscopic imaging produce large multi-resolution images with resolu-
tions up to 40 000 × 40 000: low resolutions let appear global features such as
tissues delimitations while high resolutions allow to discern the different phases
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of mitosis within cells. As a result, analyzing such images implies a hierarchical
representation with memory constraint.

The segmentation of an image defines an image partition into connected re-
gions. Models for such partitions usually encode either geometrical or topological
features of the partition. Operations involving both types of information are thus
hard or costly to implement. For example, RAG-based data structures lack ef-
ficient access to regions’ geometry. This drawback has entailed the design of
topological maps [3,5] for an efficient representation of both geometrical and
topological information while allowing modifications of a partition through split
and merge operations. Yet, they cannot apply to multi-resolution images since
they do not encode a hierarchy of partitions.

Quadtrees and regular pyramids’ frameworks provide a multi-resolution de-
scription of the image and a hierarchical segmentation scheme [1] inducing a hi-
erarchy of regions that may be defined onto such models. However, both models
present several drawbacks: a given regular pyramid may fail to encode connected
regions of any size and shape nor provide an efficient access to the neighborhood
of a region. Moreover, both quadtrees and regular pyramids do not ensure that
connected regions defined at a given level remain connected at the level below.
The irregular pyramid framework has been introduced by [16,17] to overcome
these limitations with different segmentation schemes such as [10,14]. Finally,
in order to access both geometrical and topological information, [4,8] proposed
a model of irregular pyramids composed of combinatorial maps. When applied
to high resolution images, the bottom-up construction scheme of combinatorial
pyramids raises at least two issues: memory usage and relevance of extracted
information. Indeed, a bottom-up scheme starts from an explicit encoding of the
whole initial partition: for large images this requires a large amount of memory
especially if additional levels must also be computed. Moreover, in hierarchical
data analysis, extracted information is usually more relevant if the construc-
tion scheme allows to use a region to influence the way its children (defined
at a higher resolution) are processed. As a result, [7] have introduced the tiled
top-down framework for combinatorial pyramids.

A tiled top-down pyramid is a hierarchical model based on topological maps
[3,5] and thus, provides an efficient access to both geometrical and topological
information. A top-down pyramidal model allows to reduce memory usage by
encoding upper levels in the pyramid and refining only areas of interest. More-
over, the subdivision in tiles allows to bound the required amount of memory.
Yet, its main drawback comes from its construction process [6]: in order to re-
fine a region, a first step splits it into basic regions enclosing single pixels before
the application of a merging step. This step may thus require a large amount
of available memory to make temporary regions. Since the main operation in
a top-down scheme consists in regions’ splitting, we have explored alternative
splitting techniques for combinatorial models. Different approaches have been
proposed such as insertion operations [2] or incremental extractions [5,3] but
those methods are not designed for a causal hierarchical model [9]. This causal
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property is fundamental within the tiled top-down pyramidal framework since
it ensures the existence of a hierarchy.

In this paper, we propose a new method for the construction of tiled top-down
pyramids which avoids the temporary split of a region into basic regions enclos-
ing a single pixel while preserving the causality of the pyramid. In section 2, we
present the different topological models used to define a tiled top-down pyramid.
In section 3, we detail our causal extraction for such pyramids. Finally, experi-
ments and segmentation results are proposed in section 4 in order to emphasize
the advantage of our method.

2 Recalls

2.1 Combinatorial Maps

In two dimensions, a combinatorial map (noted 2-map) is a set of vertices, edges
and faces that encodes the subdivision and incidence relationships of a topologi-
cal space [15]. A complete decomposition of an image results in a set of abstract
basic elements called darts. We introduce two operators noted βi, i ∈ {1, 2} that
apply on darts in order to represent adjacency relationships (Fig. 1).

Definition 1 (2-dimensional combinatorial map). A two-dimensional com-
binatorial map M (or 2-map) is a triplet M = (D, β1, β2) where:

(1) D is a finite set of darts;
(2) β1 is a permutation1 on D;
(3) β2 is an involution2 on D.

Fig. 1. Combinatorial maps: construction by successive decompositions. (a) Original

image. (b) Decomposed faces. (c) Decomposed edges. (d) 2-Map: arrows represent

darts, β1 and β2 operators are respectively represented by arcs and segments.

Intuitively, we can consider a map as a planar graph where βi operators explicitly
define the relationships between edges and where darts allow to differentiate the
two extremities of an edge (a dart may be assimilated to a half-edge). In practice,
the β1 permutation allows to turn around a face: it links a dart of a face to
the next one encountered while turning clockwise around it. The β2 involution
separates two adjacent faces: it links a dart to the other dart that belongs to the
1 A permutation is a one to one mapping from S onto S.
2 An involution f is a one to one mapping from S onto S such that f = f−1.
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Fig. 2. Topological map: three complementary models for image representation.

(a) Original image. (b) Combinatorial map for topological relationships. Dotted arrow

denotes the dart of the infinite region. (c) Interpixel matrix for geometrical encoding:

pointels and linels are represented by bold circles and segments. (d) Tree of regions.

same edge but has an opposite orientation. For instance, in figure 1.d, β1(3) = 4
and β2(4) = 5. As a result, a 2-map is a connected set of cells of 0, 1, and 2
dimensions. For i ∈ {0, 1, 2}, an i-cell respectively denotes a vertex, an edge and
a face. The degree of an i-cell is its number of distinct incident (i + 1)-cells.

2.2 Topological Maps

Since combinatorial maps only describe topological relationships, an extension
of the model which also encodes geometrical information has been introduced for
a full representation of a partition: the model of topological map [3,5]. A topo-
logical map combines three distinct models: a 2-map that encodes topological
relationships, a matrix of interpixel elements [13,12] that encodes the geometry
of the partition elements, and a tree of regions for inclusion relationships. These
three models are illustrated in figure 2 and described below.

Minimal combinatorial map. As illustrated in figure 2.b, a 2-map encodes topo-
logical relationships through β1 and β2 operators (section 2.1). The combinatorial
map is minimal in number of cells: there is not any vertex with a degree equal
to 2 and therefore, the removal of any element would change the topology. For
implementation purposes, darts and regions are linked together: a dart knows
the region it belongs to and a region knows a representative dart (arbitrary cho-
sen on the external border of the region). Note that the infinite region may be
omitted in some figures for visibility reasons.

Matrix of interpixel elements. Pointels, linels and pixels [12] represent the geom-
etry of a partition. Associating geometrical information to a topological element
is an operation called embedding. Similarly to vertices, edges and faces, we respec-
tively refer to pointels, linels and pixels as i-cells, i ∈ {0, 1, 2}. We respectively
denote by pointel(d) and linel(d) the first pointel and linel of the embedding of a
dart d. For example, in figure 2.c, the embedding of the edge (1,2) is the sequence
of linels (l1, l2, l3); linel(1) = l1, pointel(2) = p2; degree(p1) = degree(p2) = 3.

Tree of regions. The tree of regions describes inclusion relationships: a region is
the father of the regions it contains. In figure 2.d, r1 contains r2, r3 and r4, r2
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and r3 are adjacent. The root of the tree encodes the background of the image
and is called the infinite region (noted r∞).

2.3 Tiled Top-Down Framework for Combinatorial Pyramids

A hierarchical extension of the topological map model is proposed by [6]. Con-
trary to bottom-up methods, this framework uses a top-down approach which
induces a segmentation process based on a rough partition refined at further
levels: it results in a major memory reduction since regions may only be en-
coded at the top level of the pyramid. Moreover, it allows to take advantage
of the focus of attention over interesting regions: the segmentation of a region
can be adapted according to the features of its parent. Despite this memory
reduction, [7] proposes a subdivision of the levels into topological tiles in order
to bound the amount of required memory.

A topological tile is a topological map with an additional involution β′
2 which

applies on darts belonging to a border shared by two adjacent tiles [7] to ensure
their topological connection. The juxtaposition of topological tiles composes a
tiled topological map. Such a map may contain fictive elements along the tiles’
borders when, according to a given merging criterion, pixels on both sides of a
tile’s border belong to a same region. Linels encoding these fictive borders are
marked by a flag indicating their fictive state. Tiled combinatorial maps (defi-
nition 2) redefine the operators β1 and β2 [7] to abstract those fictive elements
(figure 3.c).

Definition 2 (Tiled combinatorial map). Let T be a set of connected topo-
logical tiles T = {t(i, j)}(i,j)∈{0,...,W}×{0,...,H}. Let D be the set of darts of T
with a real embedding. A tiled combinatorial map M is a triplet M = (D, δ1, δ2)
where, ∀d ∈ D:

(1) δ1 is a permutation on D such as:

δ1(d) = β1((β′
2β1)n(d)) with n = min{p ∈ N | linel(β1((β′

2β1)p(d)) is real}

(2) δ2 is an involution on D such as:

δ2(d) =
{

β′
2(d) if β′

2(d) exists
β2(d) otherwise

A tiled top-down topological pyramid is a stack of finer and finer partitions
denoted by P = {Gk}k∈{0,...,n} where Gk+1 is a tiled combinatorial map (defi-
nition 2) deduced from Gk by splitting operations. Within a pyramid, a tiles is
denoted by t(i, j, k) where (i, j, k) are the coordinates (i, j) of t at level Gk. Be-
sides, the pyramid may swap or load tiles between memory and disk and spread
global modifications: if an operation modifies a tile’s border, adjacent tiles that
are either on disk or in memory should be updated. Note that a stack of suc-
cessively refined partitions differs from the notion of resolution used within the
regular pyramid framework: top-down pyramids can be constructed either from
single or multi-resolution images. Although, the pyramid mixes both regular
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Fig. 3. Representation of a top-down pyramid composed of two levels Gk and Gk+1.

(a) Original image: a tile t is decomposed in two tiles t1 and t2 (ratio = 2 × 2).

(b) Interpixel matrix: fictive borders appear between t1 and t2. (c) Tiled combinatorial

maps: δ1 and δ2 are represented by arcs and segments. Dotted arrows denote darts

with a fictive embedding. (d) Relationships between darts.

Fig. 4. Refinement of the regions that compose a level of a top-down pyramid. (a) Origi-

nal image. (b) Level duplication and up/down relationships between darts and regions.

(c) Burst of selected regions into basic regions enclosing a single pixel. (d) Regions

merging according to segmentation criterion.

and irregular notions, the top-down model remains an irregular pyramid since
it handles fictive borders between the tiles. The resulting sequence of partitions
is a causal structure [9] where hierarchical relationships are encoded through
up/down relationships between tiles, darts and regions.

A first strategy to build the pyramid is to start from a single region and refines
it according to segmentation criteria. The operation is performed in three steps.
First, the last level is duplicated and up/down relationships are set (figure 4.b).
Second, a splitting criterion indicates the regions to refine. Those regions are
split into a set of basic regions enclosing a single pixel (figure 4.c). Third, the
basic regions are merged according to a merging criterion (figure 4.d). Since any
couple of adjacent regions may be merged, this refinement step may encode any
subdivision of the parent region. Yet, this solution presents a major drawback:
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the splitting step in one region per pixel is a bottom-up refinement that encodes
every pixel of the split region. Such an operation implies useless calculus and
important memory requirements.

3 A Causal Extraction Scheme for Tiled Top-Down
Pyramids

Our main objective consists in avoiding the bottom-up refinement step tempo-
rary creating one region per pixel. We propose with algorithm 1 a hierarchical
extension of the extraction scheme introduced by [5]. In order to adapt it to the
tiled top-down pyramidal framework, we must fulfill two main constraints:

– the causal constraint entails that existing borders are preserved from one
level to an other: any border defined in Gk must exist in Gk+1 and darts
and regions of Gk must be connected to their children in Gk+1.

– the top-down constraint (focus of attention): since we use a splitting criterion
which determines whether a region should be refined in the next level, no
border should be created within regions whose splitting criterion is false.

Those two constraints are illustrated in figure 5. In figure 5.a, the causality is
ensured as each border defined in Gk exists in Gk+1 with up/down relationships
set accordingly. For example, when the darts 3 and 4 are created, they must be
linked with their respective parents 1 and 2. In figure 5.b, the focus of attention
for the top-down construction is respected as regions whose splitting criterion is
set to false are not refined: no border is inserted in down(r1) while r2 is refined
in Gk+1.

The global scheme of the extraction algorithm is the following. All the pix-
els of a tile t in Gk+1 are traversed with a scanline traversal from top-left to
bottom-right corner. For each pixel p, we create the region enclosing it (line 1
of algorithm 1) which results in the insertion of two new borders between the p
and its top and left neighbors. Then, we determine whether those borders should

Fig. 5. Extraction constraints for a tiled top-down pyramid. Gk is a single tile t decom-

posed in Gk+1 into 4 subtiles (ratio = 2 ∗ 2). (a) Causal constraint: preserves existing

borders. (b) Top-down constraint: the focus of attention only refines regions whose

splitting criterion is true. Dotted arrows denote fictive borders.
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Algorithm 1. Causal extraction algorithm.
Data: A tile t in Gk.

Result: Extraction of the sons of t in Gk+1.

S1 ← embedding structure of t;
S2 ← regions structure of t;
foreach son t′ of t in Gk+1 do

foreach pixel p(x, y) in t′ do
p ← p(x, y), p′ ← p(x − 1, y), p′′ ← p(x, y − 1);

Create region r enclosing p;1

if SameRegion(p, p′, S1, S2) then2

Remove border between region(p) and region(p′);

if SameRegion(p, p′′, S1, S2) then3

Remove border between region(p) and region(p′′);

Set up/down relationships for r and its darts;4

Simplify and compute the tree of regions for t′;5

be kept or removed (line 2-3) by calling algorithm2. First, our two constraints
must be respected: a border is kept if it corresponds to an existing border in Gk

(line 1 of algorithm2) and is removed if it corresponds to a forbidden refinement
(line 2). Once those two conditions are verified, a merging criterion determines if
the border is kept (line 3). Since a topological map aims at representing regions,
the merging criterion has to define a partition: we may use a quantization of
the tile up but conversely, a criterion based on a minimum gradient would lead
to the creation of an inconsistent map with dangling edges. The last step final-
izes the extraction by removing degree two vertices and computing the tree of
regions (line 5 of algorithm 1) as described in [5]. In the following, we implicitly
use projections between levels: if p is a pixel of Gk+1, region(p) in Gk refers to
the region of the projection of pixel p in Gk. In order to answer the first two con-
ditions of algorithm2, two external structures related to up(t) called embedding
structure and regions structure are required and detailed below.

Embedding structure. This structure establishes the correspondence between
darts and their embedding in a tile by mapping each linel to its dart. Thus,
we can determine from the embedding of a dart d in Gk+1 if there exists a dart
d′ in Gk whose embedding is down-projected onto the one of d. In this case, the
border is kept and we establish up/down relationships between d = down(d′)
and d′ = up(d) (line 4 of algorithm 1).

Regions structure. Similarly to an image of labels, this structure maps each tile’s
pixel to its region. It allows to know the splitting criterion of a pixel p in the
above level. For instance in figure 5.b, we can determine that region(p7) in Gk

is r1 whose splitting criterion is false (r1 must not be refined) so we do not keep
the border between p7 and p5.
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Algorithm 2. SameRegion.
Data: Two adjacent pixels p and p′ of a tile t at Gk+1.

embedding structure and regions structure of up(t) at Gk.

Result: true if p and p′ belong to the same region.

r ← region(p) in Gk, r′ ← region(p′) in Gk;

if r �= r′ then
return false;1

if splitting criterion(r) = false then
return true;2

return merging criterion(p, p′);3

4 Experiments

This section has two main objectives: show the advantage of our causal extrac-
tion algorithm compared to the initial burst-merge refinement and present first
segmentation results obtained on histological images.

Table 1. Memory usage and runtime comparisons between the burst-merge refinement

construction and the causal extraction process for a multi-resolution histological image

level size number number burst-merge causal extract.

(pixels) of darts of regions runtime (s) ram (MB) runtime (s) ram (MB)

4 000×3 036 483 662 187 033 181 104 105 90

8 000×6 072 962 368 392 395 354 106 272 90

32 000×24 291 4 670 978 1 767 890 4 611 100 3 869 92

Fig. 6. Causal extraction of a tiled top-down pyramid from a multi-resolution histo-

logical image. From left to right: low resolution of the original image, three different

levels of the pyramid with increasing resolutions encoding a same small area.

In table 1, we provide runtime3 and memory usage for our causal extraction
algorithm (column 6-7) compared to a burst-merge refinement (column 4-5) with
3 The model is implemented in C++ and computations are carried out on an Intel

E5300@2GHz with 2GB RAM.
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a fixed tile size of 512× 512. We can notice that our extraction method globally
improves the computational time from 15 to 40% with a reduction of memory us-
age around 10%. The computational time is mostly due to pixel traversal (to get
colorimetric information for the regions) and segmentation criteria computation.

We illustrate the results of our extraction in figure 6. This example shows the
tiled map of the same small area of an histological image at different resolutions
(4 000 × 3 036, 8 000× 6 072, 32 000× 24 291). The segmentation is based on an
image quantization algorithm in two classes [11].

5 Conclusion

In this paper, we have presented an alternative construction scheme for the ex-
traction of tiled top-down pyramids that overcomes the main drawbacks of the
previous method. First, our method requires less computational time and mem-
ory usage. Second, it still preserves the top-down hierarchical relationships of the
model. Therefore, our method can favorably act as a replacement for the burst
and merge refinement step during the construction of a tiled top-down pyra-
mid. Finally, our causal extraction algorithm presents interesting perspectives
for parallel computation that we plan to implement in our future work.
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Abstract. We propose a fast population game dynamics, motivated by

the analogy with infection and immunization processes within a popula-

tion of “players,” for finding dominant sets, a powerful graph-theoretical

notion of a cluster. Each step of the proposed dynamics is shown to have

a linear time/space complexity and we show that, under the assumption

of symmetric affinities, the average population payoff is strictly increas-

ing along any non-constant trajectory, thereby allowing us to prove that

dominant sets are asymptotically stable (i.e., attractive) points for the

proposed dynamics. The approach is general and can be applied to a

large class of quadratic optimization problems arising in computer vi-

sion. Experimentally, the proposed dynamics is found to be orders of

magnitude faster than and as accurate as standard algorithms.

1 Introduction

Dominant sets are a graph-theoretical notion of a cluster [1], which have found
application in problems as diverse as the analysis of fMRI data [2], content-
based image retrieval [3], detection of anomalous activities in video streams [4],
bioinformatics [5], human action recognition [6] and matching problems [7,8].

Computationally, the standard approach to finding dominant sets in an
edge-weighted graph is to use replicator dynamics, a class of evolutionary game-
theoretic algorithms inspired by Darwinian selection processes. However, a typ-
ical problem associated with these algorithms is the scaling behavior with the
number of data. On a dataset containing N examples, the computationally com-
plexity of each replicator dynamics step is O(N2), thereby hindering their ap-
plicability to problems involving very large data sets, such as high-resolution
imagery and spatio-temporal data.

In order to avoid this drawback, in this paper we propose a new popula-
tion game dynamics for finding dominant sets which turns out to be dramati-
cally faster and even more accurate than standard approaches from evolutionary
game theory. Our approach is motivated by the analogy with infection and im-
munization processes within a population of “players.” The selection mechanism

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 275–285, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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governing our dynamics iteratively performs an infection step, which consists
of spreading (or suppressing) the most successful (unsuccessful) strategies in
the population. The infection phase is then protracted as long as the selected
“infective” strategy performs better (or worse, if not extinct) than the average
population’s payoff. As opposed to standard techniques, such as the replica-
tor dynamics or best-response dynamics, which can be considered interior-point
methods, our algorithm resembles a vertex-pivoting method. Each step of the
proposed dynamics is shown to have a linear time/space complexity and we show
that, under the assumption of symmetric affinities, the average population payoff
is strictly increasing along any non-constant trajectory, thereby allowing us to
prove that dominant sets (i.e., ESS equilibria of the underlying “grouping game”
[9]) are asymptotically stable points for the proposed dynamics.

We provide experimental evidence that the proposed algorithm is orders of
magnitude faster than standard dynamics on two computer vision applications,
namely image segmentation and region-based hierarchical image matching, while
preserving the quality of the solutions found.

Although the main focus in this paper is dominant sets, we note that the
proposed approach is general and can be applied to a large class of optimization
problem, instances of which abound in computer vision and pattern recognition
(e.g., graph matching, stereo matching, image labeling, etc. ).

2 Basics of Evolutionary Game Theory

Evolutionary game theory considers an idealized scenario whereby pairs of in-
dividuals are repeatedly drawn at random from a large, ideally infinite, popu-
lation to play a symmetric two-player game. Let O = {1, . . . , n} be the set of
pure strategies available to the players and let A be the n × n payoff or utility
matrix [10], where aij is the payoff that a player gains when playing the strategy
i against an opponent playing strategy j. A mixed strategy is a probability distri-
bution x = (x1, x2, . . . , xn)� over the available strategies in O. Mixed strategies
lie in the standard simplex Δ of the n-dimensional Euclidean space, which is
defined as

Δ =

{
x ∈ �

n :
n∑

i=1

xi = 1 and xi ≥ 0, i = 1, . . . , n

}
.

We denote by ei the ith column of the identity matrix. The support of a mixed
strategy x ∈ Δ, denoted by σ(x), defines the set of elements with non-zero
probability: σ(x) = {i ∈ O : xi > 0}. The expected payoff that a player obtains
by playing the pure strategy i against an opponent playing a mixed strategy x
is π(ei|x) = (Ax)i =

∑
j aijxj .Hence, the expected payoff received by adopting

a mixed strategy y is given by π(y|x) = y�Ax while the population expected
payoff is π(x) = π(x|x) = x�Ax . For notational compactness, in the sequel we
will write π(y − x|z) for the payoff difference π(y|z) − π(x|z), and π(y − x) for
π(y − x|y) − π(y − x|x).
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A mixed strategy x is a (symmetric) Nash (equilibrium) strategy if for all
y ∈ Δ, we have π(y − x|x) ≤ 0. This implies that π(ei − x|x) ≤ 0 for all i ∈ O,
which in turn implies that π(ei − x|x) = 0 for all i ∈ σ(x). Hence, the payoff
is constant across all (pure) strategies in the support of x, while all strategies
outside the support of x earn a payoff that is less than or equal π(x).

A strategy x is said to be an Evolutionary Stable Strategy (ESS) if it is a Nash
strategy (equilibrium condition) and for all y ∈ Δ\{x} satisfying π(y − x|x) = 0
we have π(y − x|y) < 0 (stability condition). Intuitively, ESS’s are strategies
such that any small deviation from them will lead to an inferior payoff. ESS’s
can be found by replicator dynamics (RD), a classic formalization of a natural
selection process [10].

3 Dominant Sets and Their Characterizations

The dominant set framework is a pairwise clustering approach [1] that is based
on the notion of a dominant set, which can be seen as an edge-weighted general-
ization of a clique. The framework is based on a recursive characterization of the
weight WS(i) of element i with respect to a set S of elements, and characterizes
a group as a dominant set, i.e., a set that satisfies:

1. WS(i) > 0, for all i ∈ S,
2. WS∪{i}(i) < 0, for all i /∈ S.

These conditions correspond to the two main properties of a cluster: the first
regards internal homogeneity, whereas the second regards external heterogeneity.

The characteristic vector xS of a set S ⊆ V is defined as

xS
i =

{
WS(i)
W (S) if i ∈ S ,

0 otherwise .

The following result establishes a one-to-one correspondence between ESS’s and
dominant sets [9].

Theorem 1. If S ⊆ V is a dominant set with respect to affinity matrix A, then
xS is an ESS for a two-player game with payoff matrix A.

Conversely, if x is an ESS for a two-person game with payoff matrix A, then
S = σ(x) is a dominant set with respect to A, provided that WS∪{i}(i) �= 0 for
all i /∈ S.

Under the assumption of a symmetric affinity matrix A there exists a one-to-
one correspondence between dominant sets and the (strict) local solutions of the
following so-called standard quadratic program (StQP) [1]:

max
{
x�Ax : x ∈ Δ

}
. (1)
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4 A New Class of Evolutionary Dynamics

Let x ∈ Δ be the incumbent population state, y be the mutant population
invading x and let z = (1 − ε)x + εy be the population state obtained by
injecting into x a small share of y-strategists. The score function of y versus x
[11] is given by:

hx(y, ε) = π(y − x|z) = επ(y − x) + π(y − x|x) .

Following [12], we define the (neutral) invasion barrier bx(y) of x ∈ Δ against
any mutant strategy y as the largest population share εy of y-strategists such
that for all smaller positive population shares ε, x earns a higher or equal payoff
than y in the post-entry population z. Formally:

bx(y) = inf({ε ∈ (0, 1) : hx(y, ε) > 0} ∪ {1}) .

Given populations x,y ∈ Δ, we say that x is immune against y if bx(y) > 0.
Trivially, a population is always immune against itself. Note that, x is immune
against y if and only if either π(y − x|x) < 0 or π(y − x|x) = 0 and π(y−x) ≤ 0.
If π(y − x|x) > 0 we say that y is infective for x. We denote the set of infective
strategies for x as

Υ (x) = {y ∈ Δ : π(y − x|x) > 0} .

Consider y ∈ Υ (x); clearly, this implies bx(y) = 0. If we allow for invasion of a
share ε of y-strategists as long as the score function of y versus x is positive,
at the end we will have a share of δy(x) mutants in the post-entry population,
where

δy(x) = inf ({ε ∈ (0, 1) : hx(y, ε) ≤ 0} ∪ {1}) .

Note that if y is infective for x, then δy(x) > 0, whereas if x is immune against
y, then δy(x) = 0. Since score functions are (affine-)linear, there is a simpler

expression δy(x) = min
[

π(x−y|x)
π(y−x) , 1

]
, if π(y− x) < 0, and δy(x) = 1, otherwise.

Proposition 1. Let y ∈ Υ (x) and z = (1 − δ)x + δy, where δ = δy(x). Then
y /∈ Υ (z).

The proof of this result is straightforward by linearity and can be found, e.g.,
in [13].

The core idea of our method is based on the fact that x ∈ Δ is a Nash
equilibrium if and only if Υ (x) = ∅ (we prove this in Theorem 2). Therefore, as
long as we find a strategy y ∈ Υ (x), we update the population state according
to Proposition 1 in order obtain a new population z such that y /∈ Υ (z) and we
reiterate this process until no infective strategy can be found, or in other words,
a Nash equilibrium is reached.

The formalization of this process provides us with a class of new dynam-
ics which, for evident reasons, is called Infection and Immunization Dynamics
(InImDyn ):

x(t+1) = δS(x(t))(x
(t))[S(x(t))− x(t)] + x(t) . (2)
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Here, S : Δ → Δ is a generic strategy selection function which returns an
infective strategy for x if it exists, or x otherwise:

S(x) =

{
y for some y ∈ Υ (x) if Υ (x) �= ∅ ,

x otherwise .
(3)

By running these dynamics we aim at reaching a population state that can
not be infected by any other strategy. In fact, if this is the case, then x is a
Nash strategy, which happens if and only if it is fixed (i.e., stationary) under
dynamics (2):

Theorem 2. Let x ∈ Δ be a strategy. Then the following statements are equiv-
alent:
(a) Υ (x) = ∅: there is no infective strategy for x;
(b) x is a Nash strategy;
(c) x is a fixed point under dynamics (2).

Proof. A strategy x is a Nash strategy if and only if π(y − x|x) ≤ 0 for all
y ∈ Δ. This is true if and only if Υ (x) = ∅. Further, δ = 0 implies S(x) = x.
Conversely, if S(x) returns x, then we are in a fixed point. By construction of
S(x) this happens only if there is no infective strategy for x.

The following result shows that average payoff is strictly increasing along any
non-constant trajectory of the dynamics (2), provided that the payoff matrix is
symmetric.

Theorem 3. Let {x(t)}t≥0 be a trajectory of (2). Then for all t ≥ 0,

π(x(t+1)) ≥ π(x(t)) ,

with equality if and only if x(t) = x(t+1), provided that the payoff matrix is
symmetric.

Proof. Again, let us write x for x(t) and δ for δS(x)(x). As shown in [13], we
have

π(x(t+1)) − π(x(t)) = δ [hy(x, δ) + π(y − x|x)] .

If x(t+1) �= x(t), then x is no Nash strategy, and y = S(x) returns an infective
strategy. Hence δ > 0 and

hy(x, δ) + π(y − x|x) ≥ π(y − x|x) > 0

(in fact, if δ < 1, then even hy(x, δ) = 0), so that we obtain a strict increase
of the population payoff. On the other hand, if π(x(t+1)) = π(x(t)), then the
above equation implies δ = 0 or hx(x, δ) = π(y−x|x) = 0, due to nonnegativity
of both quantities above. In particular, we have δ = 0 or π(y − x|x) = 0. In
both cases, y = S(x) cannot be infective for x. Thus Υ (x) = ∅ and x must be
a fixed point, according to Theorem 2. This establishes the last assertion of the
theorem.
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Theorem 3 shows that by running InImDyn , under symmetric payoff function,
we strictly increase the population payoff until we reach a Nash equilibrium at
a fixed point. This of course holds for any selection function S(x) satisfying (3).
However, the way we choose S(x) may affect the efficiency of the dynamics.
The next section introduces a particular selection function that leads to a well-
performing dynamics for our purposes.

5 A Pure Strategy Selection Function

Depending on how we choose the function S(x) in (2), we may obtain different
dynamics. One in particular, which is simple and leads to nice properties, consists
in allowing only infective pure strategies.

Given a population x, we define the co-strategy of ei with respect to x as

ei
x =

xi

xi − 1
(ei − x) + x .

Note that if π(ei − x|x) �= 0 then either ei ∈ Υ (x) or ei
x ∈ Υ (x).

Consider the strategy selection function SPure(x), which finds a pure strategy
i maximizing |π(ei −x|x)|, and returns ei, ei

x or x according to whether π(ei −
x|x) is positive, negative or zero. Let M(x) be a pure strategy such that

M(x) ∈ arg max
i=1,...,n

|π(ei − x|x)| .

Then SPure(x) can be written as

SPure(x) =

⎧⎪⎨⎪⎩
ei if π(ei − x|x) > 0 and i = M(x)
ei

x if π(ei − x|x) < 0 and i = M(x)
x otherwise .

Note that the search space for an infective strategy is reduced from Δ to a finite
set. Therefore, it is not obvious that SPure(x) is a well-defined selection function,
i.e., it satisfies (3). The next theorem shows that indeed it is.

Proposition 2. Let x ∈ Δ be a population. There exists an infective strategy
for x, i.e., Υ (x) �= ∅, if and only if SPure(x) ∈ Υ (x).

Proof. Let y ∈ Υ (x). Then 0 < π(y − x|x) =
∑n

i=1 yiπ(ei − x|x). But this
implies that there exists at least one infective pure strategy for x, i.e., ei ∈ Υ (x)
for some i = 1, . . . , n. The converse trivially holds.

A fixed point of InImDyn is asymptotically stable if any trajectory starting
sufficiently close to x converges to x.

Theorem 4. A state x is asymptotically stable for InImDyn with SPure as
strategy selection function if and only if x is an ESS, provided that the payoff
matrix is symmetric.
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Proof. If the payoff matrix is symmetric, every accumulation point of InIm-
Dyn with SPure is a Nash equilibrium [13]. Moreover ESSs are strict local
maximizers of π(x) over Δ and vice versa [10].

If x is asymptotically stable, then there exists a neighborhood U of x in Δ
such that any trajectory starting in U converges to x. By Theorem 3 this implies
that π(x) > π(y) for all y ∈ U , y �= x. Hence, x is a strict local maximizer of
π(x) and therefore x is an ESS.

Conversely, if x is an ESS then x is a strict local maximizer of π(x) and an
isolated Nash equilibrium. Hence, there exists a neighborhood U of x in Δ where
π(x) is strictly concave and x is the only accumulation point. This together with
Theorem 3 implies that any trajectory starting in U will converge to x. Hence,
x is asymptotically stable.

This selection function exhibits the nice property of rendering the complexity per
iteration of our new dynamics linear in both space and time, as opposed to the
replicator dynamics, which have quadratic space/time complexity per iteration.

Theorem 5. Given the iterate x(t) and its linear transformation Ax(t), both
space and time requirement of one iteration step is linear in n, the number of
objects.

Proof. Again abbreviate x = x(t). Now, given Ax we can straightforwardly com-
pute in linear time and space π(x) and SPure(x). Assume that SPure(x) = ei,
then the computation of δei(x) has a linear complexity, since π(x − ei|x) =
(Ax)i − π(x) and π(ei − x) = aii − 2Ax + π(x). Moreover, Ax(t+1) can be also
computed in linear time and space since

Ax(t+1) = δei(x) [Ai −Ax] + Ax ,

where Ai is the ith column of A. Similar arguments hold if SPure(x) = ei
x.

Indeed,

π(ei
x − x|x) =

xi

xi − 1
π(ei − x|x) ,

π(ei
x − x) =

(
xi

xi − 1

)2

π(ei − x) ,

and finally,

Ax(t+1) =
(

xi

xi − 1

)
δ
ei

x
(x) [Ai −Ax] + Ax .

Hence the result.

The only step of quadratic complexity is the first one, where we need to compute
Ax(0). Even this can be reduced to linear complexity, if we start from a pure
strategy ei, in which case we have Ax(0) = Ai. Note that the latter is impossible,
e.g., for the replicator dynamics.
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6 Experimental Results

In order to test the effectiveness of our algorithm, we present experiments on
some computer vision problems, which have been attacked using the dominant-
set framework or related quadratic optimization problems. Our aim is to show the
computational gain over the standard algorithm used in the literature, namely
the replicator dynamics (RD). Specifically, we present comparisons on image
segmentation [1] and region-based hierarchical image matching [8].

The stopping criterion adopted with our dynamics is a measure of the accuracy
of the Nash equilibrium, which is given by ε(x) =

∑
i min

{
xi, π(x − ei|x)

}2.
Indeed, ε(x) is 0 if and only if x is a Nash equilibrium. In the experiments, we
stopped the dynamics at accurate solutions, namely when ε(x) < 10−10. As for
RD, we stopped the dynamics either when ε(x) < 10−10 or when a maximum
number of iterations was exceeded.

6.1 Image Segmentation

We performed image segmentation experiments over the whole Berkeley dataset
[14] using the dominant-set framework as published in [1]. The affinity between
two pixels i and j was computed based on color and using the standard Gaussian
kernel. Our InImDyn algorithm was compared against standard replicator dy-
namics (RD) [1] (using the out-of-sample extension described in [15]) as well as
the Nyström method [16]. The algorithms were coded in C and run on a AMD
Sempron 3 GHz computer with 1GB RAM. To test the behavior of the algo-
rithms under different input sizes we performed experiments at different pixel
sampling rates, namely 0.005, 0.015, 0.03 and 0.05, which roughly correspond to
affinity matrices of size 200, 600, 1200 and 2000, respectively. Since the Nyström
method, as opposed to the dominant set approach, needs as input the desired
number of clusters, we selected an optimal one after a careful tuning phase.

In Figure 2(a) we report (in logarithmic scale) the average computational
times (in seconds) per image obtained with the three approaches. The computa-
tional gain of InImDyn over the replicator dynamics is remarkable and it clearly
increases at larger sampling rates. It is worth mentioning that InImDyn other
than being faster, achieved also better approximations of Nash equilibriums as
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Fig. 1. Precision/Recall plots obtained on the Berkeley Image Database (s.r.=sampling

rate)



Fast Population Game Dynamics for Dominant Sets 283

0.01

0.1

1

10

100

1000

0.005 0.015 0.03 0.05

ti
m

e
(s

ec
.)

sampling rate

Nyström
RD

InImDyn

(a) Image segmentation

1e-05

0.0001

0.001

0.01

0.1

1

10

100

500 1000 1500 2000 2500 3000

ti
m

e
(s

ec
.)

size

RD
InImDyn

(b) Image matching

Fig. 2. Average execution times (in logarithmic scale) for the image segmentation and

region-based hierarchical image matching applications

opposed to RD. As for the quality of the segmentation results, we report in
Figure 1 the average precision/recall obtained in the experiment with the differ-
ent sampling rates. As can be seen, all the approaches perform equivalently, in
particular RD and InImDyn achieved precisely the same results as expected.

6.2 Region-Based Hierarchical Image Matching

In [8] the authors present an approach to region-based hierarchical image match-
ing, aimed at identifying the most similar regions in two images, according to a
similarity measure defined in terms of geometric and photometric properties. To
this end, each image is mapped into a tree of recursively embedded regions, ob-
tained by a multiscale segmentation algorithm. In this way the image matching
problem is cast into a tree matching problem, that is solved recursively through
a set of sub-matching problems, each of which is then attacked using replicator
dynamics (see [8] for details). Given that typically hundreds of sub-matching
problems are generated by a single image matching instance, it is of primary
importance to have at one’s disposal a fast matching algorithm. This makes our
solution particularly appealing for this application.

We compared the running time of InImDyn and RD over a set of images taken
from the original paper [8]. We run the experiments on a machine equipped with
8 Intel Xeon 2.33 GHz CPUs and 8 GB RAM. Figure 2(b) shows the average
computation times (in seconds) needed by RD and InImDyn to solve the set of
sub-matching problems generated from 10 image matching instances. Since each
image matching problem generated sub-matching problems of different sizes, we
grouped the instances having approximately the same size together. We plotted
the average running time within each group (in logarithmic scale) as a function
of the instance sizes and reported the standard deviations as error bars. Again,
as can be seen, InImDyn turned out to be orders of magnitude faster than RD.

7 From QPs to StQPs

Although in this paper we focused mainly on dominant sets, which lead to
quadratic optimization problems over the standard simplex (StQPs), the
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proposed approach is indeed more general and can be applied to a large class of
quadratic programming problems (QPs), instances of which frequently arise in
computer vision and pattern recognition.

In fact, consider a general QP over a bounded polyhedron

max
{

1
2
x�Qx + c�x : x ∈ M

}
, (4)

where M = conv {v1, . . . ,vk} ⊆ �
n is the convex hull of the points vi, which

form the columns of a n× k-matrix V . Then we can write the QP in (4) as the
following StQP:

max
{
y�Q̂y : y ∈ Δ

}
,

where Q̂ = 1
2

(
V �QV + e�V �c + c�V e

)
.

Thus every QP over a polytope can be expressed as an StQP. This approach
is of course only practical if the vertices V are known and k is not too large. This
is the case of QPs over the �1 ball, where V = [I|−I], I the n×n identity matrix
and Δ ⊂ �

2n and, more generally, for box-constrained QPs [17]. However, even
for general QPs, where the constraints are expressed as M = {x ∈ �

n
+ : Ax = b},

we can use StQP as a relaxation without using all vertices (see [18] for details).
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Abstract. In this paper we establish a formal link between network

complexity in terms of Birkhoff-von Neumann decompositions and heat

flow complexity (in terms of quantifying the heat flowing through the

network at a given inverse temperature). We propose and proof charac-

terization theorems and also two fluctuation laws for sets of networks.

Such laws emerge from studying the implicacions of the Fluctuation The-

orem in heat-flow characterization. Furthermore, we also define heat flow

complexity in terms of thermodynamic depth, which results in a novel

approach for characterizing networks and quantify their complexity In

our experiments we characterize several protein-protein interaction (PPI)

networks and then highlight their evolutive differences, in order to test

the consistence of the proposed complexity measure in terms of the sec-

ond law of thermodynamics.

1 Introduction

The quantification of the intrinsic complexity of networks has attracted sig-
nificant attention, in a number of fields including complexity science, pattern
recognition and machine learning, due to its fundamental practical importance.
Some complexity characterizations rely on spectral graph theory (see [1] for ap-
plications in computational biology, [2] for biological, social and other kinds of
networks, and [3][4] for applications to pattern recognition). The work presented
herein concerns the global analysis of structural patterns but not their fine dis-
criminability. For instance, two undirected complete graphs (the simplest ones
according to our approach) of very different size should have a similar complex-
ity; however in terms of their discrimination, they will be different for an inexact
graph matching strategy. However, complexity can be used as a MDL-principled
measure for graph learning. In addition, fine discrimiability methods like match-
ing are not suitable for finding global characterizations of structural patterns
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like identifying clusters corresponding to sub-populations. In the particular case
of Protein-Protein Interaction (PPI) networks, we have found in a preliminary
study that networks with similar complexity are quite different in terms of edit
distance. Therefore our contribution fits a global (low-frequency) methodology
for analysis of graphs. In this regard, spectral graph theory is a recurrent formal
tool. Recent extensive use of spectral graph theory is due to: a) that it explains
some previous approaches (the number of spanning trees, path-length distribu-
tion, clusterization, and so on) from a random walks perspective and b) that it is
flexible enough to allow the development of new characterizations. In this paper
we explore the connection between convex polytopes (and those of the Birkhoff
type in particular), heat kernels in graphs, the well known thermodynamic depth
approach to complexity, and network complexity itself. Some work in this direc-
tion has been done recently [3], but no formal connections between polytopes
and heat-flow characterization of structural entropy [3] has been developed so
far. Our main contribution here is to formally specify the complexity profiles of
both approaches to structural complexity, showing that they have a qualitatively
similar behavior and that the complexity corresponding to the maximum entropy
(ME) Birkhoff-von Neumann decomposition is derived from that corresponding
to the maximum flow. Thus, the phase-transition point always exists and it is
characterized by such maxima. Moreover we establish links between heat flow
complexity, the fluctuation theorem and thermodynamic depth. We also apply
this characterization to PPI networks.

2 Polytopal vs. Heat Flow Complexity

Theorem 1 (Birkhoff-von Neumann (BvN) [5]). Let Bn be is the set of doubly
stochastic matrices B = [bij ]n×n of dimension n× n (Birkhoff polytope). Then
every doubly stochastic matrix (DSM) B can be expressed as a convex combina-
tion of permutation matrices (PM):

B =
∑

α

pαPα, ∀B ∈ Bn and
∑

α pα = 1
pα ≥ 0 ∀α .

Thus Bn is the convex hull of the set of the n×n permutation matrices. However,
the representation of a DSM in terms of many PMs is not unique because Bn is
not a simplex. The barycenter of Bn is the van der Waerden constant matrix B∗
with all entries equal to 1/n.

Theorem 2 (Agrawal, Wang & Ye [6]). The maximum entropy (ME) BvN de-
composition of a DSM B is the solution to the left optimization problem below
(primal) whose dual one is on the right:

min
∑

α∈Sn
pα(log pα − 1) max B : Y − 1

s.t.
∑

α pαPα ≤ B s.t.
∑

α e(Y :Pα)Pα ≤ B

pα ≥ 0 0 ≥ Yij ≥ −n log n
bmin

∀i, j
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where Sn is the set of permutations of {1, 2, . . . , n}, X : Z =
∑

ij XijZij =
trace(XZT ) is the Frobenius inner product, Y ∈ Rn×, a matrix of Lagrange
multipliers each corresponding to one constraint (component) in B =

∑
α pαPα,

and bmin = min{Bij}.

In [6] it is shown how to solve approximately the dual of the ME problem. In
practice, however, instead of finding a unique representation for B it is preferable
to obtain greedily just one of them. To that end, the constructive proof of the
BvN theorem is used. This is the origin of polytopal complexity [3].

Definition 1 (Polytopal Complexity [3]). Given G = (V,E), an undirected and
unweighted graph with diffusion kernel Kβ(G), and BvN decomposition Kβ(G) =∑γ

α=1 pαPα, we define the polytopal complexity of G as the β-dependent function

BCβ(G) =
H(P)
log2 n

=
log2 γ + D(P||Uγ)

log2 n
, (1)

where P = {p1, . . . , pγ} is the probability density function (pdf) induced by
the decomposition, H(.) the entropy and D(.) the Kullback-Leibler divergence
D(P||Q) =

∑
α pα log pα

qα
.

In [3] it is argued that the typical signature is heavy tailed, monotonically in-
creasing from 0 to β+ ≡ arg max{BCβ(G)} and either monotonically decreasing
or stable from β+ to ∞ where BCβ(G) = 1 is reached. Thus, β+ represents the
most significant topological phase transition regarding the impact of the diffu-
sion process in the topology of the input graph. However, no characterization
theorem has been enunciated so far in order to validate the latter assumptions.
In addition, in [4] it is showed that the O(n5) computational complexity of the
greedy BvN decomposition for each β precludes the use of the descriptor for
the practical analysis of complex networks. Thus, a new descriptor, qualitatively
similar but more efficient than the current one, and also providing a simpler
analytical framework, is needed.

Definition 2 (Heat Flow Complexity [4]). Given G = (V,E) with |V | = n
and adjacency matrix A. The diffusion kernel is Kβ(G) = exp(−βL) ≡ ΦΛΦT ,
being Λ = diag(e−βλ1, e−βλ2 , . . . , e−βλn), and λ1 = 0 ≤ λ2 ≤ . . . ≤ λn are the
eigenvalues of L. Therefore, the total heat flowing through the graph at a given
β is:

F β(G) =
n∑

i=1

n∑
j �=i

δij

(
n∑

k=1

φk(i)φk(j)e−λkβ

)
︸ ︷︷ ︸

Kβ
ij

, (2)

where δij = 1 iff (i, j) ∈ E. Then, heat flow complexity is defined as:

FCβ(G) =
log2(1 + F β(G))

log2 n
. (3)
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3 Characterization of Polytopal and Flow Complexity

3.1 Characterization of Phase Transition

Theorem 3 (Phase-Transition Point). Let G = (V,E) be a graph with |V | = n
and edge-set E. Then, there exists a unique finite inverse temperature β+ ≥ 0
so that β+ is the maximal value for which the sum of the off-diagonal elements
of the diffusion kernel (or Gram matrix) on graph G is less that the sum of the
on-diagonal elements. In other words, there exists an unique β+ ≥ 0 so that∑n

i=1

∑n
j �=i Kβ+

ij < trace(Kβ+
), and

∑n
i=1

∑n
j �=i Kβ

ij ≥ trace(Kβ) ∀β > β+.

Proof. Let us analyze the behavior of the function Ξβ = trace(Kβ) −∑n
i=1

∑n
j �=i Kβ

ij . The analysis of the limiting cases K0 = In and K∞ = B∗
yields Ξ0 = n and Ξ∞ = −n. Actually −n may be reached as soon as the
kernel converges to B∗ (reaches the equilibrium point). Local maxima of Ξβ are
precluded by the monotonic nature of the diffusion process and therefore Ξβ is
a monotonically decreasing function with a minimum at equilibrium. Thus, the
PTP exists just before the zero-crossing Ξβ = 0 and it is unique. �
The existence of a unique PTP is key to relating heat flow and maximal entropy.

Theorem 4 (Phase-Transition). Let β+ > 0 define a PTP. Then, the heat flow
F β+

(G) corresponding to the PTP is maximal among all choices of β. Moreover,
this implies that the entropy Hβ+

(P) with P = {p1, . . . , pγ} corresponding to the
maximal entropy BvN decomposition of Kβ+

(G) =
∑γ

α=1 pαPα is maximal over β.

Proof (Flow Maximality at PTP). Consider β < β+ and suppose that F β >

F β+
, that is,

∑
ij δijK

β
ij >

∑
ij δijK

β+

ij . We can write
∑

ij δijKij = A : K, where
A the adjacency matrix of G and X : Y =

∑
ij XijYij denotes here the Frobenius

inner product. It follows that A : Kβ > A : Kβ+
. All the off-diagonal elements of

Kβ decrease at β, with respect to their values at β+ due to the diffusion process.
As a result, the sum of off-diagonal elements of Kβ is smaller than the sum of off-
diagonal elements of Kβ+

. Moreover, as on-diagonal elements are zero on A, we
have that A : Kβ ≤ A : Kβ+

which is a contradiction. Therefore F β ≤ F β+
.

Consider now the case β > β+ and also F β > F β+
. Then, we should have

that A : Kβ > A : Kβ+
which is consistent with the fact that the sum of off-

diagonal elements is more and more greater or equal than the sum of on-diagonal
elements as β increases. This is due to the fact that off-diagonal values which
are not associated to an edge in the graph increase whereas on-diagonal ones
decrease. However the individual values of both diagonal and off-diagonal ele-
ments are bounded by 1/n, and tend to such value as β increases. Furthermore,
when all values reach 1/n at a given inverse temperature, such equilibrium state
remains constant for greater values of the inverse temperature. If the equilibrium
is reached later than β, only off-diagonal elements which are not associated to
an edge (but to a path) increase. However, edge-associated off-diagonal elements
decrease which implies A : Kβ < A : Kβ+

, that is F β < F β+
which is a con-

tradiction. If β corresponds to an inverse temperature beyond the equilibrium
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value, then we have that Fβ = 2|E|
n which must be greater than Fβ+ (where

the sum of the on-diagonal elements is greater than that of the off-diagonal ele-
ments) and the off-diagonal elements associated with edges have a greater value
since β+ < β1. Therefore we have again a contradiction. The limiting case is
that equilibrium is reached at β = β+. In that case we have also contradiction
because F β = Fβ+ = 2|E|

n . From the contradiction in the two cases β < β+ and
β > β+, we have F β+

> F β for all values of β ∈ [0,+∞).

Proof (Entropy Maximality at PTP). Let Hβ the entropy corresponding
to the maximum entropy BvN decomposition for a given β. Now, we have to
prove that F β+

> F β ⇒ Hβ+
> Hβ , for any β. The maximum entropy BvN

decomposition yields pα = eY :Pα , and Y ∈ Rn×n is the matrix of Lagrange
multipliers satisfying the condition 0 ≤ Kβ : Y = trace(KβY

T ) ≤ −n logn (see
proof of Lemma 5 in [6]). Such a BvN decomposition is unique for the given
value of β, and the Lagrange multipliers which correspond to dual variables
associated to the n×n constraints Kβ(G) =

∑γ
α=1 pαPα. Let kmin = minij{Kβ

ij}
be the minimal component in Kβ. Then, every multiplier satisfies the bound
0 ≥ Yij ≥ −n log n

kmin
. Consequently, those kernel elements that are zero or close-to-

zero may enlarge the bounds (see the dual problem) up to −∞ (when kmin = 0).
These large bounds imply that pα → 0 for some value of α (the exponential
argument in eY :Pα may be −∞), but not necessarily to all of them because of
the different structures of the associated permutation matrices Pα in each case.
This occurs at every β for the same graph G. In the limiting cases of β = 0 and
β → +∞ we have, respectively, pα = 1 for the unique Pα = In and pα = 1/n
(all kernel components are 1/n) for the n permutation matrices, where H0 = 0
and H+∞ = log2 n. The respective flows are F 0 = 0 and F+∞ = 2|E|

n .
Proving that Hβ < Hβ+

for each β �= β+ is equivalent to prove −n logn ≤
Kβ : Y β < Kβ+

: Y β+ ≤ 0 for each β �= β+, since we are maximizing K :
Y −1 in the dual problem, being Y β and Y β+

respectively the optimal Lagrange
multipliers corresponding to the maximum entropy BvN decompositions at β
and β+. This means that the multipliers (which are all negative) are set to their
maximal (close-to-zero) values provided that the decomposition constraints are
satisfied. Given their theoretical bounds 0 ≥ Y β+

ij ≥ −n log n

kβ+
min

and 0 ≥ Y β
ij ≥

−n log n

kβ
min

, the Lagrange multipliers can be arbitrarily close to zero. Each multiplier

is related to a kernel component (the Frobenius inner product is the sum of the
elements of the matrix resulting from the Hadamard product) and both kernels
are DSMs. Hence, we must only set Y β+

ij and Y β
ij to their minimal values when

Kβ+

ij = 0 and Kβ
ij = 0 so that each Frobenius product is maximized (given that

pα is defined by the exponential of Y : Pα).
For β < β+, As β+ defines a PTP,we have that the sum of the n2−n off-diagonal

values in Kβ is lower than the n on-diagonal elements. Therefore we obtain Kβ :

1 Furthermore, for largeβ wehave thatKβ = e−βλ2φ2φ
T
2 , whereφ2 is theFriedler vector.
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Y β < Kβ+
: Y β+

which is due to the fact that, although the multipliers are chosen
as close to zero as possible, the most negative multipliers must be assigned to the
lower elements in Kβ in order to maximize the Frobenius product. Although the
less negative elements correspond with the (dominant) diagonal elements of Kβ ,
they become more closer to zero than at β+. There will be an increasing number of
zero elements as β → 0, since in these conditions we have Kβ = (In − Lβ) which
means that the on-diagonal elements will be closer to the unity, and we have the
freedom to assign negative multipliers to increasingly small off-diagonal elements.
The latter assigment yields a small Kβ : Yβ . However, as we approach β+, where
off-diagonal elements start todominate, it ismore convenient to assign the close-to-
zero multipliers to dominant elements and then the Frobenius product increases.

When β > β+, the sum of off-diagonal values is greater to the sum of on-
diagonal ones until the equilibrium point is reached. If in addition A : Kβ+

>
A : Kβ before equilibrium and recalling that on-diagonal elements at β are
smaller than their values at β+, we obtain Kβ+

: Y β+
> Kβ : Y β . This is due

to: (i) that it is desirable to assign the closer-to-zero multipliers the off-diagonal
elements, and the more negative ones to the diagonal in order to maximize the
Frobenius product; (ii) that the latter assignment is increasingly infasible as β
grows because of the increasing number of constraints over these multipliers as
Ξβ = trace(Kβ) −

∑n
i=1

∑n
j �=i Kβ

ij decreases. Under this latter condition, heat
flow increases through the edges and establishes virtual paths (reachability) be-
tween those node pairs not connected by edges. As a result, there is an increase
of the off-diagonal elements associated with indirect paths (rather than connect-
ing edges) . An increasing number of close-to-zero multipliers are needed for
the latter elements in order to maximize the Frobenius product. However, not
all off-diagonal elements can have a close-to-zero multiplier and some of them
will be very negative. If β is closer to β+ than to the equilibrium point, the
off-diagonal elements associated to indirect paths can be very negative and thus
Kβ+

: Y β+
> Kβ : Y β . As β reaches the equilibrium point all the elements

tend to 1/n, which implies that all multipliers are almost equal but less or equal
to any multiplier at β+. Then, again Kβ+

: Y β+
> Kβ : Y β even beyond the

equilibrium point. Therefore, for β �= β+ we have Hβ+ ≥ Hβ. �

3.2 The Fluctuation Laws

The fluctuation theorem (FT) states that the probability of destroying entropy
in an isolated (macroscopic or microscopic) system decreases exponentially with
time.Herein, as the β inverse temperature is assimilated to time t, and entropy
Hβ is assimilated to heat flow Fβ , we do not have the case of destroying entropy
in the sense of having a negative entropy. However, due to the existence of a
PTP, for each flow trace Fβ a entropy production phase [0, β+] and an entropy
stabilization/destruction phase (β+, βmax]. Entropy decayment after the PTP
is due to the structure imposed by the network (but in the complete graph
where there is no topological constrain) because structure means information.
However, is there a formal relation between the rate of entropy production and
that of entropy reduction in a set of networks representing, for instance, the same
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phenomenon like a PPI? We have found that (see the experimental section) for
many sets of networks such a relation exists and also that it is linear. Moreover,
besides linearity, there also exists an exponential decay.

Definition 3 (Fluctuation Laws). Let Ω = {Gi = (Vi, Ei)} where for Gi ∈ Ω

we have that Fβ(Gi) is the heat flow trace for β ∈ [0, β+] and 〈∇F (Gi)〉ba is the
average flow gradient between β = a and β = b. Such set of networks satisties
the linear fluctuation law (LFL) if exists k > 0 so that

Pr
(
〈∇F (Gi)〉β

max

β+ = −k 〈∇F (Gi)〉β
+

0

)
≈ 1,

that is,entropy variation decay is, with high probability, larger (in absolute value) as
the entropy variation increase grows (the more entropy is produced at the beginning,
the more is distroyed beyond the PTP) and variation decay is linear with respect to
variation increasing along the population of networks. If in addition to satisfying
LFL , for every pair (Gi, Gj), i �= j so that Gi, Gj ∈ Ω and exists λ > 0 so that

Pr
(∣∣∣〈∇F (Gi)〉β

max

β+ − 〈∇F (Gj)〉β
max

β+

∣∣∣) = e−λ , we have that the set of networks
satisfies the linear fluctuation law with exponential decay (LFLED).

4 Heat Flow - Thermodynamic Depth Complexity

The application of thermodynamic depth (TD) to characterize network com-
plexity demands the formal specification of the micro-states whose history leads
to the macro-state (of the network). Here we define such micro-states in terms
of expansion subgraphs.

Definition 4 (Node History & Expansion Subgraphs). Let G = (V,E) with
|V | = n. Then the history of a node i ∈ V is hi(G) = {e(i), e2(i)), . . . , ep(i)}
where: e(i) ⊆ G is the first-order expansion subgraph given by i and all j ∼ i,
e2(i) = e(e(i)) ⊆ G is the second-order expansion consisting on z ∼ j : j ∈
Ve(i), z �∈ Ve(i), and so on until p cannot be increased. If G is connected ep(i) = G,
otherwise ep(i) is the connected component to which i belongs.

Every hi(G) defines a different causal trajectory leading to G itself, if it is con-
nected, or to one of its connected components otherwise. Thus, in terms of
TD the full graph G or the union of its connected components is the macro-
state (macroscopic state). The depth of such macro-state relies on the vari-
ability of the causal trajectories leading to it. The higher the variability, the
more complex it is to explain how the macro-state is reached and the deeper
is this state. Therefore, in order to characterize each trajectory we combine
the heat flow complexities of its expansion subgraphs by means of defining
minimal enclosing Bregman balls (MEBB) [8]. Bregman divergences DF de-
fine an asymmetric family of similarity measures, each one characterized by
a strictly convex generator function F : X → R+, where X ⊆ Rd is a convex
domain, and d the data dimension (in this case the number of discretized β -
inverse temperatures). Given two patterns (discretized functions in this case)
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f and g, DF (f ||g) = F (f ) − F (g) − (f − f)T∇F (f). Here, we use the I-
Kullback-Leibler divergence DF (f ||g) =

∑d
i=1 fi log fi

gi
−
∑d

i=1 fi +
∑d

i=1 gi with

F (f) =
∑d

i=1(fi log fi−fi) (un-normalized Shannon entropy) which yields better
results (more representative centroids of heat flow complexities) than other di-
vergences/distorions like that of Itakura-Saito. When using the I-KL divergence
in Rd, we have that ∇F (fi) = log fi and also that ∇−1F (fi) = efi (obviously
the natural logarithm is assumed). Using these formal ingredients we define the
causal trajectory in terms of MEBBs.

Definition 5 (Causal Trajectory). Given hi(G), the heat flow complexity f t =
f(et(i)) for the t− th expansion of i, a generator F and a Bregman divergence
DF , the causal trajectory leading to G (or one of its connected components)
from i is characterized by the center ci ∈ Rd and radius ri ∈ R of the MEBB
Bci,ri = {f t ∈ X : DF (ci||f t) ≤ ri}.

Solving for the center and radius implies finding c∗ and r∗ minimizing r subject
to DF (ci||f t) ≤ r ∀t ∈ X with |X | = T . Considering the Lagrange multipliers
αt we have that c∗ = ∇−1F (

∑T
t=1 αtf t∇F (f t)). The efficient algorithm in [8]

estimates both the center and multipliers. This idea is closely related to Core
Vector Machines [9], and it is interesting to focus on the non-zero multipliers
(and their support vectors) used to compute the optimal radius. More precisely,
the multipliers define a convex combination and we have αt ∝ DF (c∗||f t), and
the radius is simply chosen as: r∗ = maxαt>0 DF (c∗||f t).

Definition 6 (TD Network Depth). Given G = (V,E), with |V | = n and
all the n pairs (ci, ri), the heat flow-thermodynamic depth complexity of G
is characterized by the MEBB Bc,r = {ct ∈ Xi : DF (c||ci) ≤ r} and Dmin =
minf∈Bc,r DF (f∞||f), where f∞ = f(B∗) ∈ Rd is the van der Waerden com-
plexity trace . As a result, the TD depth of network is given by D(G) = r×Dmin.

The above definitions of complexity and depth are highly consistent with sum-
marizing node histories to find a global causal trajectory which is as tightly
bounded as possible. Here, r quantifies the historical uncertainty: the smaller r
the simpler (shallower) is G. However, this is not sufficient for structures because
many networks with quite different complexities may have the same value of r.
Therefore, we define the depth of the network complementing randomness as
suggested in the thermodynamic depth approach. In our case, the projection of
f∞ on the MEBB preserves the definition of entropy in terms of the distance
to the uniform distribution. The combinations or hierarchies of MEBBs have
proved to be more effective than ball trees for nearest-neighbor retrieval [10].
In the computation of depths, the Legrendre duality (convex conjugate) is key
because it establishes a one-to-one correspondence between the gradients ∇F
and ∇F−1 due to the convexity of F . Therefore, the Bregman projection f of
f∞ on the the border of Bc,r lies on the curve f−1

θ = θ∇F (c) + (1− θ)∇F (f∞)
with θ ∈ [0, 1] and fθ = ∇−1F (f−1

θ ). The projection f be easily found (approx-
imately) through bisection search on θ.
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5 Experiments: TD of PPIs

We have designed an experimental section using PPIs extracted from STRING–
8.22. In a first experiment, we consider PPIs related to histidine kinase, a key
protein in the development of signal transduction, corresponding to 10 species
belonging to 10 phyla of bacteria. We select subjectively 3 PPIs (simple, com-
plex and more-complex) from each species and compute their TDs. In 70%
of the cases, TD matches intuition. When comparing with Estrada’s spectral
homogeneity descriptor [2] we also find that the ratio between intraclass and
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Fig. 1. PPI analysis with TD and Illustration of Fluctuation Laws (bottom-left)

interclass variability is slightly better (smaller) for TD (0.6840 vs 0.7383). The
second experiment consists of analyzing 222 PPIs, also related to histidine ki-
nase, from 6 different groups (all the PPIs in the same group corresponds to
the same species) with the following evolutive order (from older to more recent):
Aquifex –4 PPIs, Thermotoga–4 PPIs, Gram-Positive–52 PPIs, Cyanobacteria–
73 PPIs Proteobacteria–45 PPIs. There is an additional class (Acidobacteria—46
PPIs). Histogramming TDs reveals typically long tailed distributions with most
of the TDs concentrated at a given point. Are these points ordered according to
the evolutive order? This question can be answered by studying the cumulative
distributions instead of the pdfs (Fig. 1-left/top). In such case, reaching the top
(cumulative=1) soon indicates low TD whereas reaching it later indicates high
TD. Then, it can be seen that the evolving complexity of the signal transduc-
tion mechanism driven by the histidine kinase is properly quantified by TD for
2 http://string.embl.de/
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the 5 first phyla studied. However, the Acidobacterium sp. chosen seems older
than Gram-Postive which seems not to be the case. In the bottom of Fig. 1-
left/bottom we show some cis of all classes, and their intraclass variability is
low (similar shape). Thus, we can conclude that TD is a good principled tool for
analying the complexity of networks. In a third experiment we analyze the cu-
mulatives of three different species of the same phylum (76 PPIs of Spirochaetes)
to check that the intra-species variability is low (Fig. 1-right/top). Finally, we
show how the PPIs analyzed in the second experiment follow the fluctuation law,
and some of them (we preserve the colors of Fig. 1-left/top) like Cianobacteria
follow the LFLED.

6 Conclusions and Future Work

In this work, there are four contributions: a) the characterization heat flow com-
plexity in terms of information theory, b) to define structural complexity in
terms of Heat Flow-Thermodynamic Depth, c) to explore connections between
the heat-flow thermodynamic depth and the fluctuation theorem and d) test the
formal definition in terms of characterizing the evolution of Bacteria through
quantifying the TD of their PPIs. Future work includes both exploring formal
links with the Ihara Zeta function and studying different kind of networks.
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Abstract. Trees are a powerful data structure for representing data for

which hierarchical relations can be defined. They have been applied in a

number of fields like image analysis, natural language processing, protein

structure, or music retrieval, to name a few. Procedures for comparing

trees are very relevant in many task where tree representations are in-

volved. The computation of these measures is usually a time consuming

tasks and different authors have proposed algorithms that are able to

compute them in a reasonable time, through approximated versions of

the similarity measure. Other methods require that the trees are fully

labelled for the distance to be computed. In this paper, a new measure is

presented able to deal with trees labelled only at the leaves, that runs in

O(|TA| × |TB |) time. Experiments and comparative results are provided.

Keywords: Tree edit distance, multimedia, music comparison and

retrieval.

1 Introduction

The computation of a measure of the similarity between two trees is a subject
of interest in very different areas where trees are suitable structures for data
coding. Trees are able to code hierarchical relations in their structure in a natural
way and they have been utilized in many tasks, like text document analysis [8],
protein structure [11], image representation and coding [2], or music retrieval [9],
to name just a few.

Different approaches have been proposed in order to perform this comparison.
Some of them pose a restriction on how the comparison is performed, other
establish valid mappings. While some methods pay more attention to the tree
structure, others do it to the content of the nodes and leaves. Most of them are
designed to work with fully labelled trees.

The method proposed in this paper is designed to work with partially labelled
trees, more precisely with those labelled only at the leaves. This fact, places the
focus more on the coded content and the relations within its context. One of the
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fields where this situation is relevant is music comparison and retrieval. Trees
have been used for this task and a number of representation and comparison
schemes have been applied based on tree edit distances [9] or probabilistic simi-
larity schemes [3].

In any case, the computation of these measures is usually a time consuming
task and different authors have proposed algorithms that are able to compute
them in a reasonable time [12], through approximated versions of the similarity
measure. In this paper, a new algorithm is presented, able to deal with trees
labelled only at the leaves that runs in O(|TA|× |TB|) time, where |Tx| stand for
the number of nodes in tree Tx.

2 Tree Comparison Methods

A number of similarity measures for the ordered non-evolutionary trees have
been defined in the literature. Some of them measure the sequence of operations
needed to transform one tree in another one, others look for the longest common
path from the root to a tree node, and there are methods that allow wildcards in
the matching process in the so-called variable-length doesn’t care (VLDC) dis-
tance. Several taxonomies of these measures have been proposed. The interested
reader can look up a hierarchy of tree edit distance measures in [7] and [14], and
a survey in [1].

2.1 Definitions and Notations

In this section, the terms and notations that will be used in this paper will be
defined.

Let T = (V, E, L) be a labelled tree formed by a finite non-empty set V of
vertices, a finite set E ⊆ V × V of arcs, and a set L of labels for nodes. Each
node contains a label, possibly empty. The labelling function will be defined by
label : V → L. The empty tree will be denoted as λ, and the empty label as ε.

This tree is said to be a labelled rooted tree if there is a distinguished node
r ∈ V , called the root of the tree and denoted by root: T → V such that for all
nodes v ∈ V , there is an only path from root r to node v. All the trees used in
this report are labelled rooted trees, so both terms will be used interchangeably.

The level or depth of a node v ∈ V , denoted by depth : V → N ∪ {0}, is the
length of the unique path from the root node root(T ) to node v. The height
denoted by h: T → N ∪ {0} is defined as h(T ) = maxv∈V {depth(v)}.

Lettwonodesv, w ∈ V ,v is saidtobetheparentofw, if (v, w) ∈ E anddepth(w)=
depth(v) + 1. The parent of a node will be obtained by the function par: V → V .
The node w is said to be a child of v. Let’s define the function children: V → 2V as
the set of all children of node v. children(v) = {w| par(w) = v}.

The arity, rank, or outdegree of a node v ∈ V , denoted by rank: V → N∪{0},
is the number of children of a node. rank(v) = | children(v)|. When applied to a
tree T , rank(T ) = maxv∈V {rank(v)}.
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A node v ∈ V is said to be a leaf if rank(v) = 0. A boolean function leaf :
V → B is defined to denote it. Similarly, leaves(T ) is the set of nodes of that
tree that have no children: {v ∈ V | leaf(v) = true}.

An ordered tree is a tree where the relative order of its children is fixed for
each node. It allows us to define the function child: N × V → V , such that
childi(v) is just before childj(v) iff i = j − 1, ∀i, j ∈ N.

The postorder numbering of a tree consists of giving the visit order of each
node of the tree following a postorder traversal of the tree. To uniquely identify
nodes in a tree T , lets define T [i] ∈ N as the ith node in a postorder numbering,
beginning from 1.

A forest is a disjoint union of trees, and an ordered forest has the property
that its components follow an order being this way a sequence of trees that will
be denoted as T +. The operation T [childi(T ).. childj(T )] is the set composed
by the children of T from positions i to j, both included, and it forms a forest.
For abbreviating the notation, T [i..j] will be used in the sequel to denote this
operation.

Tree Edit Distance. The classical edit distance between two trees is the min-
imal cost to transform one input tree into an output one by edit operations. An
edit operation over two trees TA = (V, E, L) and TB = (V ′, E′, L′) is any of the
following:

– relabel the label l of a node v ∈ V by the label l′ of another node w ∈ V ′,
denoted by (v, w) (Fig. 1a).

– deletion of a non-root node v ∈ V , denoted by (v, λ), consists of deleting it,
making the children of v become the children of par(v), just in the position
that was occupied by v, preserving this way the left to right ordering of
leaves (Fig. 1b).

– insertion of a non-root node w ∈ V ′, denoted by denoted by (λ, w). Given a
sequence wi · · ·wj of subtrees of a common parent w, the insertion of node
w′ makes those wi · · ·wj subtrees children of w′, and w′ child of w (Fig. 1c).

a b

T T1 2

(a) Substitute operation

T T1 2

aa

b

(b) Delete operation

a

T T1 2

a

b

(c) Insert operation

Fig. 1. Tree edit operations (from [5])

To each operation, a so-called edit cost ct : V × V ′ → R is assigned based on
that of the edit cost of the symbols at labels, c : L × L → R that depends on
the given application. Therefore, ct(a, b) denotes the cost of applying the edit
operation (v, w) where v is an input node and w is an output node. If v = λ, the
operation denotes an insertion, if w = λ the operation is a deletion. Note that
the operation (λ, λ) is not allowed.
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Definition 1. An edit script et = et1 · · · etn is a sequence of edit operations
eti = (ai, bi) ∈ (V ∪ {λ}) × (V ∪ {λ}) allowing the transformation of a tree X
into a tree Y . The cost of an edit script πt(et) is the sum of the costs of the edit
operations involved in the script: π(et) =

∑n
i=1 ct(eti).

Definition 2. Let St(X, Y ) be the set of all the scripts that enable the emission
of Y given X, the edit distance between X and Y is defined by: dt(X, Y ) =
minet∈St(X,Y )π(et).

2.2 Review of Tree Edit Distances

The first author to give a solution to the general tree edit problem was Tai [13],
proposing an algorithm with time complexity O(|TA| × |TB| × depth(TA)2 ×
depth(TB)2), where |Ti| denotes the number of nodes in tree Ti. This algorithm
was improved by Shasha and Zhang [15] giving a dynamic programming al-
gorithm with time complexity O(|TA| × |TB| × min(depth(TA), | leaves(TA)|) ×
min(depth(TB), | leaves(TB)|)).

The alignment distance is a restricted version of the edit distance based on
forcing the application of all insertions before any deletions. Hence, the edit
distance is always lower or equal than the optimal alignment [1]. It seems that
alignment charges more for the structural dissimilarity at the top levels of the
trees than at the lower levels, whereas edit treats all the levels the same [6]. In
that work, an algorithm to solve the problem in O(|TA| × |TB| × (rank(TA) +
rank(TB))2) time and O(|TA| × |TB| × (rank(TA) + rank(TB))) space is given.

Another interesting variant of the edit distance was introduced by Selkow [12],
where deletions and insertions are constrained to leaves. Thus, in order to delete
an inner node, all its descendants must be deleted before. This algorithm has its
strength in its low temporal cost O(|TA| × |TB|).

Finally, the bottom-up distance between two non-empty rooted trees TA and
TB and is equal to 1−f/ max(|TA|, |TB|), where f is the size of a largest common
forest of TA and TB [14] . Valiente [14] reported a time complexity O(|TA|+|TB|).
However, this complexity is actually O(|TA| × |TB| × log (TA + TB)), because in
the original paper the computing of the bottom-up mapping is not included in
the complexity calculation1.

2.3 Proposed Partially Labelled Tree Comparison Algorithm

The presented similarity measures between trees are designed to work with fully
labelled trees. In order to apply those algorithms to trees labelled only at leaves,
the non-labelled inner nodes can be assigned a special label “empty”. However
it is expected that they don’t work as well as they do with fully labelled trees.
1 The nested loop in the mapping function (lines from 3 to 12 of the algorithm included

in [14]) that traverses in level-order all the nodes of both trees leads to O(|TA| ×
|TB | × log (TA + TB)), where the logarithm corresponds to the map operations on a

(|TA| + |TB |) size map inside the double loop.
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TA x TB y

(a)

TA x TB y z

(b)

TA w x TB y z

(c)

Fig. 2. Similarity function sp representative cases

In order to overcome this situation two approaches are possible. The first one
consists of labelling all nodes using any bottom-up propagation scheme based on
the application domain specific knowledge . The main drawback to that option is
that any intermediate process might add noise to the resulting trees. The second
approach is the definition of a similarity function designed just to compare those
partially labelled trees.

The partially labelled tree comparison algorithm sp is based on the assumption
that the similarity value between a labelled leaf and a non-labelled inner node
should be the average of chances of finding that leaf in the descendants of that
inner node. Fig. 2a shows the simplest case of having two leaf trees: sp(TA, TB) =
δ(x, y), where δ(x, y) = 1 ⇐⇒ x = y, and 0 elsewhere. For comparing the trees
shown in Fig. 2b, the chances of finding the label x in TB are computed as
sp(TA, TB) = (δ(x, y) + δ(x, z))/2. If instead of being a label, y were another
tree, the function should be computed recursively. Finally, when none of the
trees is composed by a single leaf (Fig. 2c), the similarity of the ordered forests
wx and yz can be computed like an edit distance between sequences wx and yz
where each symbol is a tree.

This similarity method omits the accounting of the insertion or deletion of
nodes and just measures the chance of finding coincident labels, giving more
importance to the information hierarchically contained in the tree than to the
tree structure.

Being designed for working with partially labelled trees, however,we can slightly
adapt the original idea to work also with fully labelled trees. The case of compar-
ing a leaf to a non-leaf tree (Fig. 3a), is computed as sp(TA, TB) = (δ(x, b) +
δ(x, y)+ δ(x, z))/3. Likewise, the similarity sp(TA, TB) between two fully labelled
trees (Fig. 3b) is computed as the edit distance between sequences wx and yz,
where each symbol is a tree, plus the similarity between labels a and b.

Let sp : T×T → R be a similarity function between trees and sfp : T +×T + be
a similarity function between forests. Let us also use rlabel : T → L that returns
the label of the root of the tree, and Rm as an abbreviation for rank(Tm). The
similarity between two trees, fully or partially labelled, is defined as:

TA x TB b

y z

(a)

TA a

w x

TB b

y z

(b)

Fig. 3. Similarity function sp working on fully labelled trees
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Definition 3

(i) sp(TA, TB) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ(rlabel(TA), rlabel(TB)) : if leaf(TA) ∧ leaf(TB) (1)
δ(rlabel(TA),rlabel(TB))+

∑RB
j=1 sp(TA,childj(TB))

1+RB
: if leaf(TA) ∧ ¬ leaf(TB) (2)

δ(rlabel(TA),rlabel(TB))+
∑RA

i=1 sp(childi(TA),TB)

1+RA
: if ¬ leaf(TA) ∧ leaf(TB) (3)

δ(rlabel(TA),rlabel(TB))+sfp(TA,TB)
max(RA,RB)+1 : otherwise (4)

(ii) sfp(λ, λ) = 0

(iii) sfp(i..i
′, λ) = sfp(i..i

′ − 1, λ)

(iv) sfp(λ, j..j
′) = sfp(λ, j..j

′ − 1)

(v) sfp(i..i
′, j..j′) =

max

⎧⎪⎨⎪⎩
sfp(i..i

′ − 1, j..j′)
sfp(i..i

′, j..j′ − 1)

sfp(i..i
′ − 1, j..j′ − 1) + sp(TA[i

′], TB [j
′])

The simplest situation in Fig. 2a is solved by case (i)-(1). Cases (i)-(2) and (i)-
(3) solve the problems depicted in Fig. 2b and 3a. Finally, (i)-(4) computes the
similarity for Fig. 3b. After comparing the roots, the ordered forests composed
by the tree children (Fig. 2c) are compared with the similarity function between
forests sfp in the the indirect recurrence (ii) to (v).

Complexity of the partial edit distance. In order to calculate the time com-
plexity of sp and sfp, the functions T s and T sf will be used respectively. In both
cases the size of the problem is the number of nodes of the compared trees:
(|TA|, |TB|).

T s(|TA|, |TB|) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 : if |TA| = 1 ∧ |TB| = 1
RB × T s(|TA|, |TB|/ rank(TB)) : if |TA| = 1 ∧ |TB| > 1
RA × T s(|TA|/ rank(TA), |TB|) : if |TA| > 1 ∧ |TB| = 1
T sf (|TA|, |TB|) : if |TA| > 1 ∧ |TB| > 1

The function sfp can be solved using a dynamic programming scheme as the used
for any edit distance. On a classical edit distance, where the substitution cost
has constant complexity, given the problem size (|TA|, |TB|), the complexity is
O(|TA| × |TB|) because its implementation is a simple double loop traversing a
|TA| × |TB| matrix. However, in our case, in each step of that iteration, the sp

is called. Under these assumptions, the temporal complexity of the algorithm is
obtained:
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T s(|TA|, |TB|) = c + T sf (|TA| − 1, |TB| − 1)

T sf (|TA|, |TB|) =
RA∑
i=1

RB∑
j=1

T s(
|TA|
RA

,
|TB|
RB

) = RA ×RB × T s(
|TA|
RA

,
|TB|
RB

)

and it can be shown that this time is O(|TA| × |TB|).

3 Experiments

The experiments are devised to assess the suitability of the proposed algorithm
working with both partially and fully labelled tree corpora, and compare it with
classical tree comparison algorithms.

In the selected case study, the main goal is to identify a melody from a set
of all the different variations played by the musicians. In our experiments, we
use tree representations of monophonic music pieces [10] (Fig. 4c). The node la-
bels are symbols from a pitch description alphabet Σp. In this paper, the inter-
val modulo 12 from the tonic of the song is utilized as pitch descriptor (Fig. 4a):
Σp = {p | 0 ≤ p ≤ 11} ∪ {−1}, where −1 is used to encode rests. For measuring
the similarity between the melody and each of the variations, the different tree
comparison algorithms have been used.

��
0

�
44

�
2

�
2

��

(a) The figures below the score

indicate the Σp (interval from

tonic that is C in this case).

0

4 4 2 2

(b) Corresponding tree

representation.

4

4 0

4 2

4 4 2 2

(c) Corresponding prop-

agated tree.

Fig. 4. A short melody sample and its representation as a tree

Initially, only leaf nodes are labelled. Then, in order to reduce tree sizes and im-
prove performing times, a pruning operation at level L can be applied that prop-
agates bottom-up leaf labels until getting all leaves at level L or less labelled. For
deciding which label to propagate, a melodic analysis [4] is applied to decide which
notes are more important and then are more suitable to be promoted. Optionally,
if we want to label all nodes in the tree, the same propagation method must be
followed until reaching the root.

Corpora. In our experiments, we used a corpus consisting of a set of 420 mono-
phonic 8-12 bar incipits of 20 worldwide well known tunes of different musical gen-
res2. For each song, a canonic version was created by writing the score in a musical
2 The MIDI data set is available upon request to the authors.

textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5.ly:18:27:27
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5-defs.ly:7:28:28
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5.ly:18:15:15
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5.ly:18:11:11
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5-defs.ly:7:26:26
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5-defs.ly:7:4:4
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5.ly:18:23:23
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5-defs.ly:7:21:21
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5.ly:18:19:19
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5-defs.ly:7:16:16
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5-defs.ly:7:11:11
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notation application and exported to MIDI and MP3 format. The MP3 files were
given to three amateur and two professional musicians who listened to the songs
(mainly to identify the part of the tune to be played) and played with MIDI con-
trollers the same tune several times with different embellishments and capturing
performance errors. This way, for each of the 20 original scores, 20 different vari-
ations have been built.

Melody classification accuracy. The experiments have been performed using
a query / candidates scheme, i.e., given a corpus, for each song the query prototype
is compared to all the scores in the dataset. The similarity values are considered as
distances and, following a nearest neighbor (NN) rule, the class of the file closest to
the querywill be taken as the retrieved song.This answer is correct if it corresponds
to the same song of the query. Any other situation is considered as an error.

The success rate is measured as the ratio of correct answers to all the queries.
Running times are measured in milliseconds taking into account only the test
phase, leaving aside the construction of the representations that may be done off-
line. All experiments have been performed using a MacBook Pro machine with 4
Gb RAM and 2 Intel(R) Core 2 Duo(R) CPU running at 2.26GHz, with a Java
virtual machine 1.6.

Results. The experiments have been performed feeding all algorithms with sev-
eral versions of the trees that have been pruned from level L = 1 to L = 6 (which
is the maximum depth found in the corpus). For each pruning level the average
number of nodes has been extracted to be used as x-axis in the plots.

The results plotted in Fig. 5a show that the proposed algorithm behaves the
best for not-pruned trees or L = 6 (see results for x > 350). For pruned trees, it
behaves also the best in average.

When working with fully labelled trees (see Fig. 5b), the success rates of the
proposed method are comparable to the success rates of the Selkow and the Align-
ment distance. The plot in Fig. 6a shows the theoretical evolution of computing
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Fig. 5. Success rates of proposed method compared to classical tree edit distances
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Fig. 6. Time processing evolution of algorithm

times of the main tree edit distance algorithms given their time complexity, and
Fig. 6b describes the actual processing times of those distances in our experiments.
The actual times confirm the prediction from the theoretical complexities, being
our proposed algorithm the second faster one.

Thus, it seems that the proposed similarity is suitable for its purpose, being able
to compare successfully both trees labelled only at leaves and fully labelled trees
better than the other methods in terms of trade-off between time and success rate.

4 Conclusions

In this paper a new similarity tree algorithm has been introduced for working with
trees labelled only at the leaves. It has been applied to a real application: the simi-
larity computation between monophonic symbolic music pieces encoded with both
partially and fully labelled trees. The application has been tested using the pro-
posed algorithm and classical tree similarity algorithms from the literature. From
the results, it seems that the proposed algorithm outperforms the other ones in a
trade-off among computing time and success rates.

In the future thealgorithmmustbeapplied tootherapplications that require this
kind ofmeasure to compare trees.Currentlywe are applying the samemethodology
to bigger corpora encoded with different pitch encodings and other propagation
schemes, being the partial results obtained as good as those shown in this paper.
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2003. LNCS (LNAI), vol. 2652, pp. 838–846. Springer, Heidelberg (2003)

11. Russell, R.B., Barton, G.J.: Multiple protein sequence alignment from tertiary

structure comparison: Assignment of global and residue confidence levels. Proteins:

Structure, Function, and Bioinformatics 14, 309–323 (2004)

12. Selkow, S.M.: The tree-to-tree editing problem. Information Processing Letters 6(6),

184–186 (1977)

13. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26(3), 422–433 (1979)

14. Valiente, G.: An efficient bottom-up distance between trees. International Sympo-

sium on String Processing and Information Retrieval, 0,212 (2001)

15. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees

and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)



Complete Search Space Exploration for SITG
Inside Probability

Guillem Gascó, Joan-Andreu Sánchez, and José-Miguel Benedí

Institut Tecnològic d’Informàtica, Universitat Politècnica de València
Camí de Vera s/n, València, 46022, Spain

ggasco@iti.upv.es, {jandreu,jbenedi}@dsic.upv.es

Abstract. Stochastic Inversion Transduction Grammars are a very pow-
erful formalism in Machine Translation that allow to parse a string pair
with efficient Dynamic Programming algorithms. The usual parsing al-
gorithms that have been previously defined cannot explore the complete
search space. In this work, we propose important modifications that con-
sider the whole search space. We formally prove the correctness of the
new algorithm. Experimental work shows important improvements in the
probabilistic estimation of the models when using the new algorithm.

1 Introduction

Stochastic Inversion Transduction Grammars (SITGs) were introduced in [1]
for describing structurally correlated pairs of languages. SITGs can be used
to simultaneously analyze two strings from different languages and to correlate
them. SITGs have been used in the last few years for Machine Translation (MT),
especially for pairs of languages that are sufficiently non-monotonic. Several
works have explored its use for MT [2,3,4,5].

An efficient Dynamic Programming parsing algorithm for SITGs was pre-
sented in [2]. This algorithm is similar to the CKY algorithm for Probabilistic
Context Free Grammars. The parsing algorithm does not allow the association
of two items that have the empty string in one of their sides. This limitation
restricts the search space,and thus, it prevents exploring some valid parse trees.
Expressiveness capacity of SITGs by using Wu’s parsing algorithm has been
recently studied in [6,7].

In this paper, we propose a new version of the Inside parsing algorithm for
SITGs that allows to consider all valid parse trees. Then, we also present the
formal proof of the correctness, and a set of experiments to demonstrate the
usefulness of the new valid parse trees.

2 Inside Probability with SITG

A SITG in Chomsky Normal Form [2] can be defined as a set of lexical rules
that are noted as A → a/ε, A → ε/b, A → a/b; direct syntactic rules that
are noted as A → [BC]; and inverse syntactic rules that are noted as A →

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 306–315, 2010.
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〈BC〉, where A, B, C are non-terminal symbols, a, b are terminal symbols, ε is
the empty string, and each rule has a probability value p attached. The sum of
the probabilities of the rules with the same non-terminal in the left side must
be equal to 1. When a direct syntactic rule is used in parsing, both strings are
parsed with the syntactic rule A→ BC. When an inverse rule is used in parsing,
one string is parsed with the syntactic rule A → BC, and the other string is
parsed with the syntactic rule A→ CB.

The inside probability of a substring pair (xi+1 . . . xi+j , yk+1 . . . yk+l) from
the non-terminal symbol A is defined as follows:

Ei,i+j,k,k+l[A] = p(A ∗⇒ xi+1 · · ·xi+j/yk+1 · · · yk+l) , (1)

where j and l represent the size of the subproblems. In this way, the probability
of the string pair (x1 . . . x|x|, y1 . . . y|y|) is E0,|x|,0,|y|[S].

Let G be a SITG, and let (x1 . . . x|x|, y1 . . . y|y|) be a string pair. In general, we
can efficiently calculate the probability of this pair by means of a simple modi-
fication of the well-known CKY-based inside algorithm [8,2]. This algorithm is
essentially a Dynamic Programming method, which is based on the construction
of a triangular (n+1)×(n+1) probabilistic parse matrix E . Following a notation
very close to [2], each element of E is a probabilistic nonterminal vector, where
their components are computed for all A ∈ N as:

1. Initialization

Ei,i+1,k,k+1[A] = p(A→ xi+1/yk+1) 0 ≤ i < |x| 0 ≤ k < |y| (2)
Ei,i+1,k,k[A] = p(A→ xi+1/ε) 0 ≤ i < |x| 0 ≤ k ≤ |y| (3)
Ei,i,k,k+1[A] = p(A→ ε/yk+1) 0 ≤ i < |x| 0 ≤ k ≤ |y| (4)

2. Recursion

For all A ∈ N and i, j, k, l such that

⎧⎨⎩
0 ≤ i ≤ |x|, 0 ≤ j ≤ |x| − i
0 ≤ k ≤ |y|, 0 ≤ l ≤ |y| − k
j + l ≥ 2,

(5)

Ei,i+j,k,k+l[A] = E []
i,i+j,k,k+l[A] + E〈〉i,i+j,k,k+l[A]

where

E []
i,i+j,k,k+l[A] =

∑
B,C∈N

1≤I≤j, 1≤K≤l

((j−I)+(l−K))×(I+K) �=0

p(A→ [BC]) Ei,i+I,k,k+K [B] Ei+I,i+j,k+K,k+l[C] (6)

E〈〉i,i+j,k,k+l[A] =
∑

B,C∈N

1≤I≤j, 1≤K≤l

((j−I)K)×(I+(l−K)) �=0

p(A→ 〈BC〉) Ei,i+I,k+K,k+l[B] Ei+I,i+j,k,k+K [C] (7)
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The main differences of this algorithm with regard to the Wu’s original algo-
rithm are:

– The restriction j + l ≥ 2 in (5) substitutes the restriction j + l > 2 in Wu’s
algorithm, and

– The restrictions ((j− I) + (l−K))× (I + K) 	= 0 in (6) and ((j − I)+ K)×
(I + (l −K)) 	= 0 in (7) substitute the restriction I(j − I) + K(l −K) 	= 0
in Wu’s algorithm.

These modifications allow us to consider some parse trees that the original al-
gorithm ignore. Thus, for example, consider a SITG composed by the follow-
ing rules (the probabilities of the rules have been omited): (S → [SS], S →
〈SS〉, S → ε/b, S → a/ε, S → a/b). If the string pair is (a, b), this SITG could
parse this string pair with the parse trees that can be seen in Fig. 1.

Fig. 1. Parse trees for input pair (a, b) that are taken into account in the search process
with the modifications

However, the original algorithm would use just parse tree (a) of Fig. 1. The
original algorithm is not able to obtain parse trees (b-e) due to the restriction
j + l > 2. This restriction does not allow the algorithm to consider subproblems
in which each substring has length 1 which have not been previously considered
in the initialization step.

In fact, this situation appears for other string pairs (see Fig. 2) in which a
string in one side is associated with the empty string in the other side through
rules that are not lexical rules. For example, in Fig. 2b, substring aa could be
associated with ε. However, this parse tree cannot be considered with the original
algorithm due to the search restrictions that it applied.

Although the modifications to the algorithm allow it to explore more parse
trees, the time complexity is the same as in the original algorithm: O(N3|x|3|y|3)
where N is the number of non-terminal symbols, |x| is the length of the source
language string, and |y| is the length of the target language string.

In order to prove the correctness of the modified algorithm we show that
the inside probability of a bilingual string computed using it is the correct and
complete probability of the string.
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Fig. 2. Parse tree (a) can be obtained with Wu’s algorithm for aa#b, but parse tree
(b) was not considered

Theorem 1. If the inside algorithm is applied to the string pair (x1 . . . x|x|, y1 . . .
y|y|) with a SITG G, then the probabilistic parse matrix E collects correctly the
probability of this string pair.

Proof
Let G be a SITG, p(A +⇒ xi+1 . . . xi+j/yk+1 . . . yk+l) is the inside probability

of the substring pair (xi+1 . . . xi+j , yk+1 . . . yk+l).
If the size of subproblems is equal to 1, we can consider the following cases:

– If j = 1 and l = 0 then, by (3), we have:

p(A +⇒ xi+1/ε) = p(A→ xi+1/ε) = Ei,i+1,k,k[A]

with 0 ≤ i < |x|, 0 ≤ k < |y|.
– If j = 0 and l = 1 then, by (4), we have:

p(A +⇒ ε/yk+1) = p(A→ ε/yk+1) = Ei,i,k,k+1[A]

with 0 ≤ i < |x|, 0 ≤ k < |y|.
– If j = 1 and l = 1 then, the probability of the substring pair (xi+1, yi+1) is

computed with the following possibilities, as illustrated in Fig. 1:

p(A +⇒ xi+1/yk+1) = p(A→ xi+1/yk+1)

+
∑
B,C

p(A→ [BC])p(B +⇒ xi+1/ε)p(C +⇒ ε/yk+1)

+
∑
B,C

p(A→ [BC])p(B +⇒ ε/yk+1)p(C +⇒ xi+1/ε)

+
∑
B,C

p(A→ 〈BC〉)p(B +⇒ xi+1/ε)p(C +⇒ ε/yk+1)

+
∑
B,C

p(A→ 〈BC〉)p(B +⇒ ε/yk+1)p(C +⇒ xi+1/ε)
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with 0 ≤ i < |x|, 0 ≤ k < |y|. Considering the expressions (2), (3) and (4),
we have:

p(A +⇒ xi+1/yk+1) = Ei,i+1,k,k+1[A]

+
∑
B,C

p(A→ [BC])Ei,i+1,k,k [B]Ei,i,k,k+1[C]

+
∑
B,C

p(A→ [BC])Ei,i,k,k+1 [B]Ei,i+1,k,k[C]

+
∑
B,C

p(A→ 〈BC〉)Ei,i+1,k,k [B]Ei,i,k,k+1[C]

+
∑
B,C

p(A→ 〈BC〉)Ei,i,k,k+1 [B]Ei,i+1,k,k[C]

It is important to note that in Wu’s version [2], only the first term is possible,
since the rest of the terms are prohibited because it imposes the restriction
j + l > 2.
Furthermore, in our case, the last 4 terms correspond to the general term of
the algorithm for j = 1, l = 0 and j = 0, l = 1 both for the direct rules and
the inverse rules.

– Finally, the possibility j = 0 and l = 0 is excluded given that there are no
rules like p(A→ ε/ε) in the model.

For subproblems of size greater than 1, and in a similar way than in [2], the
probability of p(A +⇒ xi+1 . . . xi+j/yk+1 . . . yk+l) can be solved considering rules
(both direct and inverse) and a cutoff points as follows:

p(A +⇒ xi+1 . . . xi+j/yk+1 . . . yk+l) =∑
B,C

p(A→ [BC])

∑
1≤I≤j

1≤K≤l

p(B +⇒ xi+1 . . . xi+I/yk+1 . . . yk+K)p(C +⇒ xi+I+1 . . . xi+j/yk+K+1 . . . yk+l)

+
∑
B,C

p(A→ 〈BC〉)

∑
1≤I≤j

1≤K≤l

p(B +⇒xi+1 . . . xi+I+1/yk+K+1 . . . yk+l)p(C +⇒xi+I+1 . . . xi+j/yk+1 . . . yk+K)

With 0 ≤ i ≤ |x|, 0 ≤ j ≤ |x| − i, 0 ≤ k ≤ |y|, 0 ≤ l ≤ |y| − k. Considering the
definition (1) and the general term of the algorithm, the previous expression can
be rewritten as:
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p(A +⇒ xi+1 . . . xi+j/yk+1 . . . yk+l) =∑
B,C

p(A→ [BC])
∑

1≤I≤j

1≤K≤l

Ei,i+I,k,k+K [B]Ei+I,i+j,k+K,k+l [C]

+
∑
B,C

p(A→ 〈BC〉)
∑

1≤I≤j

1≤K≤l

Ei,i+I,k+K,k+l[B]Ei+I,i+j,k,k+K [C]

= Ei,i+j,k,k+l[A]

Corollary 1. The probability of the pair string (x1 . . . x|x|, y1 . . . y|y|) can be
computed by means of the probabilistic parse matrix E in the following terms:

p(S +⇒ x1 . . . x|x|/y1 . . . y|y|) = E0,|x|,0,|y|[S]

3 Experiments

In this section we present several experiments in order to show the performance
of the modified SITG parsing algorithm and compare it to the original algorithm.
To stress the differences between both algorithms we used the Viterbi parsing
algorithm instead of the Inside algorithm. However, similar assumptions can be
done for the inside algorithm. Viterbi parsing algorithm computes the most likely
parse tree for a given string pair and its probability. The modified version of the
Viterbi parsing algorithm [7] can be obtained using maximizations instead of
sums in the expressions that have been explained in the previous section.

Experiments were carried out over two different bilingual corpora, the Chinese-
English BTEC part of the IWSLT2009 and the French-English Hansard Corpus.
The former is a small corpus and we used it to test the differences of both Viterbi
parsing algorithms with two languages with a very distinct syntax structure. The
later is a larger corpus and is used to test the impact of the modified algorithm for
languages with a similar syntactic structure and for large corpora. We explored
also the impact of the use of bracketing information in both algorithms. For that
purpose we used a parsing strategy similar to the one used in [3], for the corpus
partially or fully bracketed. It must be noted that the bracketing information re-
stricts the search to only those parse trees that are consistent with the bracketing.
In order to obtain the bracketing information for the corpora, we used several lan-
guage versions (Chinese, French and English) of the Berkeley Parser [9].

3.1 IWSLT 2009 Corpus

The BTEC part of the IWSLT 2009 corpus [10] is a set of parallel travel sentences
in Chinese and English. For the experiments of this work we used the training and
the test partitions. Table 1 shows the statistics of this corpus.
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As previously mentioned, the original algorithm does not explore all the possi-
ble parse trees for a given sentence. In some cases, the algorithm misses the parse
tree with the highest probability. As proved in Section 2, the modified algorithm
explores the whole search space and, thus, it finds always the most probable tree.
In this experiment, we computed the percentage of sentences, for which the parse
tree obtained with the modified algorithm have a higher probability than the one
obtained with the original algorithm1. In other words, the number of times the
original algorithm could not explore the best tree. For this purpose, we used a
SITG obtained following the method explained in [3]. In addition, for some sen-
tences the original algorithm could not find any parse tree while the modified
could.

Table 1. Statistics for IWSLT 2009 Chinese-English BTEC corpus

Corpus Set Statistic Chinese English
Sentences 42,655

Training Words 330,163 380,431
Vocabulary Size 8,773 8,387

Sentences 511
Test Words 3,352 3,821

Vocabulary Size 888 813

Table 2 shows the results of the experiment for the non-bracketed corpus (Ch-
En), the corpus with only the Chinese side bracketed ([Ch]-En), the corpus with
only the English side bracketed (Ch-[En]) and the corpus bracketed in both sides
([Ch]-[En]).

Table 2. Percentage of sentences in IWSLT Corpus for which the original algorithm
does not find the parse tree with the highest probability and percentage of sentences not
parsed by the original algorithm

Experiment % of sentences with a % of sentences not parsed
different parse tree with the original algorithm

Ch - En 36.25% 0.24%
[Ch] - En 37.21% 1.4%
Ch - [En] 36.97% 1.02%
[Ch] - [En] 40.93% 3.92%

It must be noted that there was a high percentage of sentences for which the
original algorithm could not find the tree with the highest probability. This per-
centage was even higher when we used bracketing information. The percentage of
sentences that could not be parsed with the original algorithm using bracketing
in both sides was almost 4%.
1 Note that the contrary is not possible.
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Fig. 3. Log-likelihood of the SITG for several iterations of the Viterbi reestimation
using both algorithms on the IWSLT test set

For all the iterations, the reestimation with the modified algorithm results in a more
adjusted grammar.

The second experiment tried to determine the importance of the differences be-
tween the use of the original or the modified algorithm in the process of SITG rees-
timation. We performed several iterations of the Viterbi reestimation with each
algorithm and we then computed the log-likelihood for the SITG resulting in each
iteration over the test set; that is, the logarithm of the product of the probabil-
ities of the SITG parse trees for all the sentences of the test. It is worth noting
that for the computation of the log-likelihood we only used those sentences that
could be parsed by both algorithms. Figure 3 shows the log-likelihood for each of
the iterations and each of the algorithms.

3.2 Hansard Corpus

The Hansard corpus [11] is a set of parallel texts in English and Canadian French,
extracted from official records of the Canadian Parliament. Due to the high com-
putational cost of the SITG parsing algorithms and in order to get a faster process,
we only used the sentences of length lower than 40 words in each of the languages.
The statistics of the resulting corpus are shown in Table 3.
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Table 3. Statistics for Hansard French-English corpus (less than 40 words)

Corpus Set Statistic French English
Sentences 997,823

Training Words 16,547,387 14,266,620
Vocabulary Size 68,431 49,892

Table 4. Percentage of sentences of the Hansard corpus for which the original algorithm
does not find the parse tree with the highest probability

Experiment % of sentences with a
different parse tree

Fr - En 27.73%
[Fr] - En 28.06%
Fr - [En] 28.51%
[Fr] - [En] 30.56%

The experiment performed with this corpus is equivalent to the first one ex-
plained in the previous subsection. We computed the percentage of times the
original algorithm could not find the tree with the highest probability using or
not bracketing information. Table 4 shows the results of the experiment.

Compared to the experiment with the IWSLT Corpus, the percentage of sen-
tences with a different parse tree is lower. This behavior may be due to two factors:
the similarity in the syntactic structure of both languages and/or the size of the
corpus that allows for a better reestimation of the SITG. However, it is still high,
almost one third of the sentences of the corpus. The behavior of the algorithms, in
respect with the bracketing information is the same as in the IWSLT corpus: the
more restricted the search space is, the more differences have the resulting parse
trees.

4 Conclusions

SITGs have proven to be a powerful tool in Syntax Machine Translation. However,
the parsing algorithms that have been previously proposed do not explore all the
possible parse trees. This work propose a modified parsing algorithm that is able
to explore the whole search space. We prooved the completeness of the new search.
The experiments carried out over two different corpora show that there is a high
percentage of sentences for wich the original algorithm cannot find the tree with
the highest probability and, in some cases, it cannot find any parse tree at all.
In addition, the use of the modified algorithm for reestimation results in better
SITGs. As future work, we plan to study the impact of these modifications on the
use of SITGs for Machine Translation and the inside-outside SITG reestimation
algorithm.
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Abstract. Commute time has proved to be a powerful attribute for

clustering and characterising graph structure, and which is easily com-

puted from the Laplacian spectrum. Moreover, commute time is robust

to deletions of random edges and noisy edge weights. In this paper, we

explore the idea of using convolution kernel to compare the distributions

of commute time over pairs of graphs. We commence by computing the

commute time distance in graphs. We then use a Gaussian convolution

kernel to compare distributions. We use kernel kmeans for clustering

and use kernel PCA for illustration using the COIL object recognition

database.

Keywords: commute times, laplacian, graph kernel, convolution kernel.

1 Introduction

There has recently been a concerted effort in the literature to extend the kernel
paradigm from pattern-vectors to relational structures such as graphs, trees and
strings. In particular, various types of graph kernel have been suggested, with
specific goals in mind [5,8,9,11,13,14,15,18,24]. Generally speaking, there are two
sources of information that can be exploited in the construction of a graph ker-
nel. Firstly, there is information concerning the structure of the graph. This can
be encapsulated in a number of ways. However, one of the most powerful is to use
information concerning the distribution of path length or the frequency of differ-
ent cycle lengths. The second source of information is conveyed by the labels or
attributes on the nodes or edges of a graph. Finally, there are correspondences
between the nodes of the graphs being compared. There have been many exam-
ples of the use of kernels in conjunction with graphs for instance Smola et al [2],
develop path-length kernels and use them from comparing molecular structures.
Gartner et al [11], use kernels for mining graphs from large databases. Bunke
and Riesen [3] have shown how kernel methods can be used to transform pattern
analysis problems using graphs into equivalent statistical pattern analysis tasks.

These three sources of information are obtained at different cost and play
different roles. For instance, reliable node correspondences are both difficult and
costly to locate. If correspondences are to hand, then the attributes can provide
powerful discriminating information. In fact, the use of correspondences can be
viewed as implicitly vectorising the available attribute information for the graphs
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c© Springer-Verlag Berlin Heidelberg 2010



Commute-Time Convolution Kernels for Graph Clustering 317

under study. Relational structure, on the other hand is something that is intrinsic
to graphs, and distinguishes them from data in the form of vectors or strings.

The aim in this paper is to explore the extent to which structural information
alone can be used to construct a kernel, and the kernel used for the purposes
of graph clustering. We require a structural characterisation which is both eco-
nomically computed and robust to minor perturbations in graph structure due to
noise. The characterisation also needs to be fine enough so as to distinguish rea-
sonably subtle changes in structure. Path lengths provide one candidate which
have been extensively explored in the graph kernels literature. Examples include
the path-length kernel [1,23] and the diffusion map [16]. However, commute time
[19] provides an interesting alternative that captures the features of these two
alternatives in a robust way. The commute time is the expected number of steps
for a random walk to travel from one node of a graph to another, and then return
again. The quantity is averaged over all possible paths. As a result it is relatively
robust to edge deletion. It can also be shown to average the diffusion map over all
possible diffusion lengths. Moreover, it is a metric and can be simply computed
from the Laplacian spectrum in a time that is cubic in the number of nodes in
the graph.

To avoid the need for explicit correspondences, we make use of the convolution
kernel. Our idea is to compute the commute time between all pairs of nodes in a
graph using the Laplacian spectrum, yielding a commute time matrix. We then
compare the elements of the commute time matrices using the convolution kernel.
This avoids explicit element by element correspondences, which would normally
require the estimation of a permutation matrix between the nodes of the graph.
Instead the convolution matrix weights against commute times that differ in
magnitude. Viewed in this way the convolution kernel has features reminiscent
of the computation of Hausdorff distance between graphs [12].

2 Commute Time on Graph

We commence by briefly reviewing the relationship between the Laplacian spec-
trum and the commute time. Consider the weighted graph G = (V,E,Ω) where
V is the set of nodes, E ⊆ V × V is the set of edges and Ω : E → [0, 1] is the
set of weights associated with the edges. The adjacency matrix of the graph has
elements

Auv =
{

1 if (u, v) ∈ E
0 otherwise,

Let T = diag(du;u ∈ V ) be the diagonal weighted degree matrix with elements∑n
v=1 A(u, v), where n = |V |. The Laplacian matrix is given by L = T −A. The

normalized weighted Laplacian matrix is defined to be L = T−1/2(T −A)T−1/2,
and has elements

Luv =

⎧⎨⎩
1 ifu = v

− wu,v√
dudv

ifu 	= v and (u, v) ∈ E

0 otherwise,
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The spectral decomposition of the normalized Laplacian is L = ΦΛΦT , where
Λ = diag(λ1, λ2, ....λn) is the diagonal matrix with the eigenvalues as elements
satisfying the ordering 0 = λ1 ≤ λ2... ≤ λ|V | and Φ = (φ1 | φ2 | ... | φ|V |) is the
matrix with the correspondingly ordered eigenvectors as columns.

The Green’s function Γ is the pseudo inverse of the normalized Laplacian
matrix, which is computed by discarding the eigenvector associated with the
zero eigenvalue, i.e.

Γ (u, v) =
|V |∑
i=2

1
λi

φi(u)φi(v) (1)

The expected number of steps taken by a random walk to reach node v, com-
mencing from node u is defined as the hitting time O(u, v), and the commute
time CT (u, v) is the expected time for a random walk to travel from node u to
reach node v and then return. Thus, CT (u, v) = O(u, v) + O(v, u), and it has
been shown in [4],that it can be computed using the Green’s function Γ by,

CT (u, v) = vol(T−1/2(Γ (u, u) + Γ (v, v) − 2Γ (u, v))T−1/2) (2)

where vol is the volume of the graph. It has been proven in [4], that by substi-
tuting the spectral expression for the Green’s function into the definition of the
commute time, it is straightforward to show that in terms of the eigenvalues and
eigenvectors of the normalized Laplacian [19],

CT (u, v)=vol

|V |∑
i=2

1
λi

(
φ1(u)√

du

− φi(v)√
dv

)2

(3)

Thus, the only operation required to compute the commute time matrix is the ex-
tractionoftheeigenvectorsandeigenvaluesofthenormalizedLaplacianL.Thecom-
mute time is a metric on the graph. In the next section, we’ll show how we use the
commute time matrix to compare the distribution of this metric over the graphs.

3 Convolution Kernels on Graph

Our objective in this paper is to use the graph kernel to compare the distribution
of the commute time over the graphs and hence gauge graph similarity. One way
to do this is by constructing a convolution graph kernel between the two graphs
being considered.

Consider two graphs G1 = (V1, E1) and G2 = (V2, E2) with commute time
matrices CT1 and CT2, representing the distributions of commute time within
each graph. We wish to work without locating explicit correspondences between
nodes of the two graphs. Hence, we make use of the convolution kernel to compare
the commute-time matrices.

Convolution kernels were introduced by Haussler [10]. Consider two pattern-
vectors x = x1, ....xD and y = y1, ....yD. Suppose that for each corresponding
pairs of elements (xd, yd) where 1 ≤ d ≤ D, we have a kernel Kd that can be
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used to measure their similarity, i.e. Kd(xd, yd). The similarity K(x, y) between
the two pattern-vectors x and y is given by the following generalized convolution

K(x, y) =
∫

x

∫
y

D∏
d=1

Kd(xdyd)dydx (4)

We can use any positive definite kernel with this definition. Here we use the
Gaussian kernel to compare the commute time matrices for the graphs on an
element by element basis. As a result the convolution kernel is

K(G1, G2) =
1

|V1|
1

|V2|
∑

(a,b)∈V1×V1

∑
(α,β)∈V2×V2

exp− |CT1(a,b)−CT2(α,β)|2
2σ2 (5)

We have applied kernel PCA [21] to the convolution kernel for visualisation. Ker-
nel PCA is the extension of PCA to a kernel feature space. Kernel kmeans has been
well used for clustering. Here, we would like to cluster our kernel matrix based on
kernel kmeans algorithm. Kernel kmeans [20] is a generalization of the standards
kmeans algorithm where data points from input space are mapped into higher di-
mensional feature space through a nonlinear transformation φ and then kmeans
is applied in the feature space. Clustering a test set of objects using the kernel
kmeans approach involves partitioning the dataset into M disjoint clusters.

4 Experiment

In this section, we provide some experimental evaluation of our proposed method.
In our experiments, we use two datasets. The first of these is the COIL [17]
database of 72 views of each of a number of objects (see Figure 1). The second
is a database containing 72 views of four toys (example images are shown in
Figure 2). The datasets contain multiple images of objects as the camera pans
around the object. Corner features for the COIL data and SIFT features for
the toys, are extracted from the images and Delaunay graphs representing the
arrangement of feature points are constructed.

We commence the experiment by computing the commute time distance for
the graphs based on equation (3). With the value of the commute time at hand,
we construct the kernel matrix based on equation (5). Then the data is embedded
in a low dimensional space using kernel PCA and the kernel k-means algorithm
used for clustering.

We apply kernel PCA to the output of the convolution kernel using the al-
gorithm described in [22] and obtain an embedding of the graph data. Figure 3
shows the results obtained. Here the different coloured points refer to different
objects. We also compare our method with the shortest path kernel on a graph
and the modified Hausdorff distance. The path kernels used were constructed
by computing the product of kernel on edges encountered along the walk. Here,
we only take the edge weights into consideration in order to compute the path
kernel. This is because we work with unlabeled graphs in the implementation of
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Fig. 1. Coil images that are used for the experiment and the corresponding delaunay

graphs

Fig. 2. Examples images from the toys database

our kernel based on commute time matrix, and we wish to maintain compara-
bility. The results for the path-length kernel are shown in Figure 4. The results
obtained using the modified Hausdorff are shown in Figure 5. Here we compute
distances between the commute time matrices using the modified Hausdorff dis-
tance reported in [7] and then embed the graphs into a low dimensional pattern
space using multidimensional scaling [6]. Here we compare the results for both
unweighted and weighted graphs.

From visual inspection of the results, there is some suggestion that the convo-
lution kernel gives better results than the alternative two methods. Specifically,
the different objects are separated into clearer clusters. To be more quantitative,
we use the kernel K-means to perform clustering. Here we consider the first 5 ob-
jects from the COIL database. We use Rand index to validate the cluster. Rand
index measures the consistency of a given clustering, therefore higher values in-
dicate better clustering. We regard all pairs of objects (oi, oj) with oi 	= oj for
computing the Rand index. We denote pairs of object (oi, oj) that belong to same
class and to same cluster with N1, whereas N2 denotes the number of pairs that
neither belong to the same class nor to the same cluster. The number of pairs
belonging to the same class but not to the same cluster is denoted as N3, while
N4 represents the number of pairs belonging to different class but same cluster.
The Rand index is thus defined as Rand index = (N1+N2)/(N1+N2+N3+N4).
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Table 1. Rand index for different value of σ

Rand index

Data σ = 0.1 σ = 1 σ = 10

COIL data using commute time kernel 0.7954 0.7286 0.6587

COIL data using path length kernel 0.7202 0.6714 0.6714

toys data using commute time kernel 0.7670 0.6330 0.6330

toys data using path length kernel 0.6770 0.6670 0.6670

Table 1 shows the Rand index for the COIL and toys dataset computed using
commute time kernel and path length kernel with different value for σ.

From table 1, we can see that the performance of commute time kernel is
comparable to shortest path kernel if not better as it gives higher values when
σ is close to 0.1 for both COIL and toys datasets.

5 Conclusion

We have shown how the distribution of the commute time between pairs of vertices
in the graph can be used to compute a measure of similarity between graphs using
the convolution kernel. We have illustrated the effectiveness of the similarities on
graph clustering and classification experiments. The commute time between ver-
tices can be used as a more robust measure of vertex affinity than the path length
distance as it is more robust to errors in edge weight structure.
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Abstract. In the process of designing pattern recognition systems one

may choose a representation based on pairwise dissimilarities between ob-

jects. This is especially appealing when a set of discriminative features is

difficult to find. Various classification systems have been studied for such

a dissimilarity representation: the direct use of the nearest neighbor rule,

the postulation of a dissimilarity space and an embedding to a virtual,

underlying feature vector space.

It appears in several applications that the dissimilarity measures con-

structed by experts tend to have a non-Euclidean behavior. In this paper

we first analyze the causes of such choices and then experimentally verify

that the non-Euclidean property of the measure can be informative1.

1 Introduction

Dissimilarities are a natural way to represent objects. Some consider them as
more fundamental than features [1]. This paper studies particular aspects of dis-
similarities. First, we analyze why non-Euclidean dissimilarities arise in recog-
nition. Then, we discuss how non-Euclidean relations can become informative.

Dissimilarities have been studied in [2] for both supervised and unsupervised
learning as an alternative to the use of features in building representations. They
are especially useful in two contexts. First, when no clear properties are available
to become features and, secondly, when objects can be compared globally such
as shapes in images, time signals or spectra. Classifiers relying on dissimilarity
relations can outperform nearest neighbor approaches or template matching.

There are two main approaches for building vector spaces from dissimilarities.
One postulates a Euclidean space, the so-called dissimilarity space, in which fea-
tures are defined by dissimilarities to a representation set of objects. The other
relies on a linear embedding of the given dissimilarity matrix. The first is very
general and can always be used. It demands a proper choice of the representation
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Fig. 1. Illustration of the difference between Euclidean, metric, but non-Euclidean and

non-metric dissimilarities. If the distances between the four points A, B, C and D are

given as in the left plot, then an exact 2-dimensional Euclidean embedding is possible. If

the distances are given as given as in the middle plot, the triangle inequality is obeyed.

So the given distances are metric, but no isometric Euclidean embedding exists. The

distances in the right plot are non-Euclidean as well as non-metric.

set, a problem similar to feature selection [3]. In the selection of the representa-
tion set the intrinsic nature of the dissimilarities may be used, e.g. such that the
closer or the more likely objects belong to the same class. In the construction of
classifiers in this space, dissimilarities may be used in the same way as features.
This, however, neglects their original character of pairwise dissimilarities.

On the contrary, in the embedding of a dissimilarity matrix to a space with a
given metric, the nature of dissimilarities is preserved. It is natural to search for
an embedding to a Euclidean space as the Euclidean metric is assumed either
implicitly or explicitly in many classification systems. It appears however that in
many applications non-Euclidean and even non-metric dissimilarities are used
due to their good performance in template matching. (See Fig. 1 to understand
the difference between non-Euclidean and non-metric dissimilarities.) An early
example is given by Dubuisson and Jain [4] who showed that in a set of image
object matching examples the non-metric modified Hausdorff distance outper-
forms the original metric Hausdorff distance. Non-Euclidean distances can only
be approximately embedded in a Euclidean space. Goldfarb showed how a so-
called Pseudo-Euclidean (PE) embedding can be found [5] for any symmetric
dissimilarity matrix. It is error free, but requires a different distance measure.
Some classifiers can be defined in this space, such as the nearest mean, nearest
neighbor, Parzen classifier, LDA and QDA. The relation of the latter three with
densities is not clear yet, as the concept of probability density distributions has
not been well defined for the PE space.

The question on usefulness or non-importance of non-Euclidean distances has
been around for some time. Goldfarb did not find good applications for the
PE space and abandoned all vector space approaches [5]. Instead, he focussed on
the Evolving Transformation System (ETS) which by a structural representation
aimed to model relations between objects [6], but for which it was difficult to
find classifiers [7]. This is common for structural approaches, but is solved in
a heuristic way by the use of a dissimilarity space, in which the non-Euclidean
nature of the object relations in neglected. In [8] some studies are presented
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indicating that non-Euclideaness of the data (i.e. the deviation from Euclidean
distances) might contribute to the classification performance. In [9] Euclidean
corrections of non-Euclidean data are discussed.

Finding classifiers for non-Euclidean dissimilarities is directly related to study
of indefinite kernels, important for the optimization of Support Vector Machines
(SVMs). The quadratic programming solution used for SVMs is not guaran-
teed to be optimal for kernels that violate the Mercer conditions. As the inner
product definition for the pseudo-Euclidean space leads to indefinite kernels,
the construction of SVMs in such a space is thereby hampered. For that reason
there is a strong tendency in the machine learning community to design positive
semidefinite (psd), i.e. Mercer, kernels. On the other hand, since non-Euclidean
dissimilarities are frequently used in pattern recognition applications, it is rel-
evant to know how to deal with them. Should we avoid them, correct them
into Euclidean distances to make them suitable for the full set of traditional
classification tools, or keep them as they are and design special classifiers for
non-Euclidean data?

In this paper we want to contribute to this discussion in two ways. In Section 3
we will analyze the causes behind non-Euclidean dissimilarities. In Section 4
we will argue why non-Euclidean dissimilarities can be informative and we will
present some examples. First, however, the dissimilarity space and PE embedded
space will be briefly introduced in Section 2.

2 Dissimilarity Representations

The dissimilarity representation has extensively been discussed, e.g. in [2] or [10],
so we will only focus here on aspects that are essential for this paper.

Traditionally, dissimilarity measures were often optimized for the nearest
neighbor classification performance. In addition, they were also widely used in
hierarchical cluster analysis. Later, the resulting dissimilarity matrices served for
the construction of vector spaces and the computation of classifiers. Only more
recently proximity measures have been designed for classifiers that are more gen-
eral than the nearest neighbor rule. These are usually similarities and kernels
(but not dissimilarities), used in combination with SVMs. So, research on the
design of dissimilarity measures such that they fit to a wider range of classifiers
is still in an early stage. Consequently, we will restrict ourselves in this paper to
the common practice of measures optimized for nearest neighbor classifiers. New
objects are thereby classified just on the basis of pairwise comparisons. They are
not represented in a vector space. An additional step is necessary to create such
a space, and as a result, this will allow the use of other classifiers. The two ways
investigated so far are the dissimilarity space and PE embedded space.

2.1 Dissimilarity Space

Let X = {o1, . . . , on} be a training set of objects oi. These are not necessar-
ily vectors but can be real world objects, or e.g. images or time signals. Given a
dissimilarity function and/or dissimilarity data, we define a data-dependent map-
ping D(·, R) : X → Rk from X to the so-called dissimilarity space [11,12,13]. The
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k-element set R consists of objects that are representative for the problem. This
set, the representation or prototype set, may be a subset of X . In the dissimi-
larity space each dimension D(·, pi) describes a dissimilarity to a prototype pi

from R. Here we will choose R := X . As a result, every object is described by an
n-dimensional vector D(o,X ) = [d(o, o1) . . . d(o, on)]T , which are just the rows
of the given dissimilarity matrix D. The resulting vector space is endowed with
the traditional inner product and the Euclidean metric. As we have n training
objects in an n-dimensional space, a classifier such as SVM is needed to handle
this situation.

2.2 Pseudo-Euclidean Embedded Space

A Pseudo-Euclidean (PE) space E = R(p,q) = Rp ⊕ Rq is a vector space with a
non-degenerate indefinite inner product 〈·, ·〉E such that 〈·, ·〉E is positive definite
on Rp and negative definite on Rq [5,2]. The inner product in R(p,q) is defined
(using an orthonormal basis) as 〈x, y〉E = xTJpqy, where Jpq = [Ip×p 0; 0 −Iq×q ]
and I is the identity matrix. As a result, d2

E(x, y) = (x− y)TJpq(x− y).
Any symmetric n× n dissimilarity matrix D can be embedded into a (n−1)-

dimensional PE space [5,2]. The eigenvalue decomposition needed for the em-
bedding results in p positive and q negative eigenvalues λj , p+q = n−1, and the
corresponding eigenvectors. To inspect the amount of non-Euclidean influence
in the derived PE space, we use the negative eigenfraction (NEF )

NEF =
p+q∑

j=p+1

|λj |/
p+q∑
i=1

|λi| ∈ [0, 1] (1)

as a measure for the non-Euclidean behavior of the dissimilarity matrix.
If the negative eigenvalues are considered as the result of noise or errors, they

may be neglected. As a result, a ’corrected’ dissimilarity matrix Dp may be
computed by using a positive subspace Rp of the embedded space R(p,q):

d2
Ep(x, y) = (xp − yp)T (xp − yp), (2)

where xp, yp are projections of the vectors x, y from R(p,q) onto the subspace
Rp and all diagonal values of Jpq become +1. In order to investigate a possible
contribution of the negative eigenvalues, the residue can be computed by:

d2
Eq(x, y) = −(xq − yq)T (xq − yq) (3)

where xq, yq are projections of the vectors x, y from R(p,q) onto the negative sub-
space Rq and all diagonal values of Jpq become −1. The complete dissimilarity
matrix D can thereby be decomposed as

D∗2 = D∗2
p −D∗2

q (4)

in which the values of D∗2
q are positive and ∗2 denotes an element-wise squaring.

n-dimensional dissimilarity spaces may also be defined for Dp and Dq.
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3 Causes of Non-Euclidean Dissimilarity Measures

In the previous section two procedures for deriving vector spaces are presented.
One is general, but neglects the pairwise dissimilarity characteristics. The other
is specific but suffers from the possible non-Euclidean relations. If we want to
make use of the specific dissimilarity character, but suffer from the non-Euclidean
behavior, it is important to analyze why this happens. Should we avoid it, should
we correct it, or should we design special classifiers that deal with it?

First, it should be emphasized how common non-Euclidean measures are. In
[2] an extensive overview of such measures has been given, but in many occasions
we have encountered that this fact is not fully recognized. Almost all probabilistic
distance measures are non-Euclidean. This implies that by dealing with object
invariants, the dissimilarity matrix resulting from the overlap between the ob-
ject pdfs is non-Euclidean. Also the Mahalanobis class distance as well as the
related Fisher criterion are non-Euclidean. Consequently many non-Euclidean
distance measures are used in cluster analysis and in the analysis of spectra in
chemometrics and hyperspectral image analysis.

In shape recognition, various dissimilarity measures are used based on the
weighted edit distance, on variants of the Hausdorff distance or on non-linear
morphing. Usual parameters are optimized within an application w.r.t. the per-
formance based on template matching and other nearest neighbor classifiers [14].
Almost all have non-Euclidean behavior and some are even non-metric [4].

In the design and optimization of the dissimilarity measures for template
matching, their Euclidean behavior is not an issue. With the popularity of sup-
port vector machines (SVMs), it has become important to design kernels (sim-
ilarities) which fulfill the Mercer conditions. This is equivalent to a possibility
of an isometric Euclidean embedding of such a kernel (or dissimilarities). Next
subsections discuss reasons that give rise to violations of these conditions leading
to non-Euclidean dissimilarities or indefinite kernels.

3.1 Non-intrinsic Non-Euclidean Dissimilarities

Below we identify some non-intrinsic causes for non-Euclidean dissimilarities.

Numeric inaccuracies. Non-Euclidean dissimilarities arise due the numeric
inaccuracies caused by the use of a finite word length. If the intrinsic dimen-
sionality of the data is lower than the sample size, eigenvalues that should be
zero during embedding, may become negative due to numeric inaccuracies. It is
thereby advisable to neglect dimensions (features) that correspond to very small
positive and negative eigenvalues.

Overestimation of large distances. Complex measures are used when dis-
similarities are derived from raw data such as (objects in) images. They may
define the distance between two objects as the length of the path that trans-
forms one object into the other. Examples are the weighted edit distance [15]
and deformable templates [16]. In the optimization procedure that minimizes
the path length, the procedure may approximate the transformation costs from
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above. As a consequence, too large distances are found. If the distance measure
is Euclidean, such errors make it non-Euclidean or even non-metric.

Underestimation of small distances. The underestimation of small distances
has the same result as the overestimation of large distances. It may happen when
the pairwise comparison of objects is based on different properties for every pair,
like in studies on consumer preference data. Another example is the comparison
of partially occluded objects in computer vision.

3.2 Intrinsic Non-Euclidean Dissimilarities

The causes discussed in the above may be judged as accidental. They result either
from computational or observational problems. If better computers and observa-
tions were available, they would disappear. Now we will focuss on dissimilarity
measures for which this will not happen. We will present three possibilities.

Non-Euclidean Dissimilarities. As already indicated at the start of this
section, there can be arguments from the application side to use another metric
than the Euclidean one. An example is the l1-distance between energy spectra
as it is related to energy differences. Although the l2-norm is very convenient
for computational reasons and it is rotation invariant in a Euclidean space, the
l1-norm may naturally arise from the demands in applications.

Invariants. A very fundamental reason is related to the occurrence of invariants.
Frequently, one is not interested in the dissimilarity between objects A and B,
but between their equivalence classes i.e. sets of objects A(θ) and B(θ) in which
θ controls an invariant. One may define the dissimilarity between the A and B
as the minimum difference between the sets defined by all their invariants.

d∗(A,B) = min
θA

min
θB

(d(A(θA), B(θB))) (5)

This measure is non-metric: the triangle inequality may be violated as for dif-
ferent pairs of objects different values of θ are found minimizing (5).

Sets of vectors. Complicated objects like multi-region images may be rep-
resented by sets of vectors. Distance measures between such sets have already
been studied for a long time in cluster analysis. Many are non-Euclidean or even
non-metric, e.g. the single linkage procedures. It is defined as the distance be-
tween the two most neighboring points of the two clusters being compared, is
non-metric. It even holds that if d(A,B) = 0, then it does not follow that A ≡ B.

For the single linkage dissimilarity measure it can be understood why the
dissimilarity space may be useful. Given a set of such dissimilarities between
clouds of vectors, it can be concluded that two clouds are similar if the entire
sets of dissimilarities with all other clouds are about equal. If just their mutual
dissimilarity is (close to) zero, they may still be very different.

The problem with the single linkage dissimilarity measure between two sets
of vectors points to a more general problem in relating sets and even objects. In
[17] an attempt has been made to define a proper Mercer kernel between two
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sets of vectors. Such sets are in that paper compared by the Hellinger distance
derived from the Bhattacharyya’s affinity between two pdfs pA(x) and pB(x)
found for the two vector sets A and B:

d(A,B) =
[∫

(
√
pA(x) −√

pB(x))2
]1/2

. (6)

The authors state that by expressing p(x) in any orthogonal basis of functions,
the resulting kernel K is automatically positive semidefinite (psd). This is only
correct, if all vector sets A,B, ... to which the kernel is applied have the same
basis. If different bases are derived in a pairwise comparison of sets, the kernel
will become indefinite.

Thismakes clear that indefinite relationsmayarise in anypairwise comparisonof
realworldobjects if theyarefirst represented in some joint space for the twoobjects,
followedby a dissimilaritymeasure.These joint spacesmaybedifferent for different
pairs! Consequently, the total set of dissimilarities will likely have a non-Euclidean
behaior, even if a single comparison is defined as Euclidean, as in (6).

4 Informativeness

Are non-Euclidean dissimilarity measures informative? How should this question
be answered? It is different than the question whether non-Euclidean measures
are better than Euclidean ones. This second question can certainly not be an-
swered in general. After we study a set of individual problems and compare
a large set of dissimilarity measures we may find that for some problems of in-
terest the best measure is non-Euclidean. Such a result is always temporal. A
new Euclidean measure may later be found that outperforms the earlier ones.

The question of informativeness however may be answered in an absolute
sense. Even if a particular measure is not the best one, its non-Euclidean char-
acteristic can be informative as by removing it, performance deteriorates. Should
this result also be found by a classifier in the non-Euclidean space? If an Eu-
clidean correction can be found for an initial non-Euclidean representation that
enables the construction of a good classifier, is the non-Euclidean dissimilarity
measure then informative? We answer this question positively as any transfor-
mation can be included in the classifier and thereby effectively a classifier for
the non-Euclidean representation has been found.

We will therefore state that the non-Euclidean character of a dissimilarity
measure is non-informative if the classification result improves by removing its
non-Euclidean characteristic. The answer may be different for different classifiers.
The traditional way of removing the non-Euclidean characteristic is by neglecting
the negative eigenvectors in the pseudo-Euclidean embedding. This is represented
by the recomputed dissimilarities in the positive part of the pseudo-Euclidean
space, Dp in (4). The dissimilarity representation based on Dq isolates the non-
Euclidean characteristic of the given dissimilarity matrix D and can be used as
a check to see whether there is any class separability visibility in the removed
part of the embedding.
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Table 1. Classification errors of the linear SVM for several representations using leave-

one-out crossvalidation
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Chickenpieces45 446 5 0 0.156 0.791 0.022 0.132 0.175

Chickenpieces60 446 5 0 0.162 0.791 0.020 0.067 0.173

Chickenpieces90 446 5 0 0.152 0.791 0.022 0.052 0.148

Chickenpieces120 446 5 0 0.130 0.791 0.034 0.108 0.148

FlowCyto 612 3 1e-5 0.244 0.598 0.103 0.100 0.327

WoodyPlants50 791 14 5e-4 0.229 0.928 0.075 0.076 0.442

CatCortex 65 4 2e-3 0.208 0.738 0.046 0.077 0.662

Protein 213 4 0 0.001 0.718 0.005 0.000 0.634

Balls3D 200 2 3e-4 0.001 0.500 0.470 0.495 0.000

GaussM1 500 2 0 0.262 0.500 0.202 0.202 0.228

GaussM02 500 2 5e-4 0.393 0.500 0.204 0.174 0.252

CoilYork 288 4 8e-8 0.258 0.750 0.267 0.313 0.618

CoilDelftSame 288 4 0 0.027 0.750 0.413 0.417 0.597

CoilDelftDiff 288 4 8e-8 0.128 0.750 0.347 0.358 0.691

NewsGroups 600 4 4e-5 0.202 0.733 0.198 0.213 0.435

BrainMRI 124 2 5e-5 0.112 0.499 0.226 0.218 0.556

Pedestrians 689 3 4e-8 0.111 0.348 0.010 0.015 0.030

We analyze a set of public domain dissimilarity matrices used in various ap-
plications, as well as a few artificially generated ones. The details of the sets are
available from the D3.3 deliverable of the EU SIMBAD project2. See Table 1
for some properties: size (number of objects), (number of) classes, non-metric
(fraction of triangle violations), NEF (negative eigenfraction) and Rand Err
(classification error by random assignment). Every dissimilarity matrix is made
symmetric by averaging with its transpose and normalized by the average off-
diagonal dissimilarity. We compute the linear SVM in the dissimilarity spaces
based on the original, ’positive’ and ’negative’ dissimilarities D, Dp and Dq.
Error estimates are based on leave-one-out crossvalidation. These experiments
are done in a transductive way: test objects are included in the derivation of the
embedding as well as the dissimilarity representations.

The four Chickenpieces datasets are the averages of 11 dissimilarity matrices
derived from a weighted edit distance between blobs [15]. FlowCyto is the aver-
age of four specific histogram dissimilarities including an automatic calibration
correction. WoodyPlants is a subset of the shape dissimilarities between leaves
of woody plants [10]. We used classes with more than 50 objects. Catcortex is
based on the connection strength between 65 cortical areas of a cat, [12]. Protein
measures protein sequence differences using an evolutionary distance measure
[18]. Balls3D is an artificial dataset based on the surface distances of randomly

2 http://simbad-fp7.eu/
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positioned balls of two classes having a slightly different radius. GaussM1 and
GaussM02 are based on two 20-dimensionally normally distributed sets of ob-
jects for which dissimilarities are computed using the Minkowsky distances 1
respectively 0.2. The three Coil datasets are based on the same sets of SIFT
points in COIL images compared by different graph distances. BrainMRI is the
average of 182 dissimilarity measures obtained from MRI brain images. Pedestri-
ans is a set of dissimilarities between detected objects (possibly pedestrians) in
street images of the classes ’pedestrian’, ’car’, ’other’. They are based on cloud
distances between sets of feature points derived from single images.

5 Discussion and Conclusions

In this paper we identify a number of causes that give rise to non-Euclidean
and non-metric dissimilarities and we wonder whether they can play an infor-
mative role for classification purposes. In the above table some phenomena can
be observed that illustrate these issues and answer some questions.

– From the negative eigenfraction column (NEF) it can be understood that all
datasets are non-Euclidean. Protein set has a nearly Euclidean measure as
it has just a very small contribution from the negative eigenvalues.

– A number of datasets is metric. Chickenpieces, as we used the dataset here,
based on averages of weighted edit-distances between contours, should be
metric as the edit-distance searches for the smallest edit path. In the indi-
vidual dissimilarities matrices some violations can be observed due to ap-
proximations in the path optimization procedure. After averaging this is
solved. Interesting is that this procedure improves the results significantly.
The performances found in the dissimilarity space are to our knowledge the
best ever published for this dataset .

– The original, uncorrected, pseudo-Euclidean dissimilarities are the best (in
bold) in many cases. For these the deletion of the negative eigenvectors works
counter-productive.

– For the other datasets the Euclidean correction works out well.
– However, in almost all cases the negative part of the space alone shows

some separability of the classes (compare with the random assignment error),
proving that it contains some information.

– In a few cases the negative space shows very good results, e.g. Pedestrians.
– In the Balls3D example all information is concentrated in the negative space.

In conclusion it is stated that the non-Euclidean characteristic of dissimilarity
data, resulting from the search of the best representation for nearest neighbor
assignment should not be directly removed from the representation as by using
the positive space only. This space performs often similar or worse compared
to the original dissimilarities. The negative space itself, concentrating all non-
Euclidean characteristics, yields usually a better than random performance and
surprisingly leads to a very good result in some problems. From these two obser-
vations, removing the negative space often deteriorates results and the negative
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space alone shows a better than random performance, it is concluded that nega-
tive space and thereby the non-Euclideaness of the data is informative. It should
be realized that these conclusions are classifier dependent.
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3. P ↪ekalska, E., Duin, R., Pacĺık, P.: Prototype selection for dissimilarity-based clas-

sifiers. Pattern Recognition 39(2), 189–208 (2006)

4. Dubuisson, M., Jain, A.: Modified Hausdorff distance for object matching. In: Int.

Conference on Pattern Recognition, vol. 1, pp. 566–568 (1994)

5. Goldfarb, L.: A new approach to pattern recognition. In: Kanal, L., Rosenfeld, A.

(eds.) Progress in Pattern Recognition, vol. 2, pp. 241–402. Elsevier, Amsterdam

(1985)

6. Goldfarb, L., Gay, D., Golubitsky, O., Korkin, D.: What is a structural represen-

tation? second version. Technical Report TR04-165, University of New Brunswick,

Fredericton, Canada (2004)

7. Duin, R.P.W.: Structural class representation and pattern recognition by ets; a

commentary. Technical report, Delft University of Technology, Pattern Recognition

Laboratory (2006)

8. P ↪ekalska, E., Harol, A., Duin, R., Spillmann, B., Bunke, H.: Non-Euclidean or

non-metric measures can be informative. In: S+SSPR, pp. 871–880 (2006)

9. Duin, R.P.W., Pekalska, E., Harol, A., Lee, W.J., Bunke, H.: On euclidean cor-

rections for non-euclidean dissimilarities. In: Structural, Syntactic, and Statistical

Pattern Recognition, pp. 551–561 (2008)

10. Jacobs, D., Weinshall, D., Gdalyahu, Y.: Classification with Non-Metric Distances:

Image Retrieval and Class Representation. IEEE TPAMI 22(6), 583–600 (2000)

11. Duin, R., de Ridder, D., Tax, D.: Experiments with object based discriminant

functions; a featureless approach to pattern recognition. Pattern Recognition Let-

ters 18(11-13), 1159–1166 (1997)

12. Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on

pairwise proximity data. In: Advances in Neural Information System Processing,

vol. 11, pp. 438–444 (1999)
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Abstract. Mixture models have been widely used for data clustering.

However, commonly used mixture models are generally of a parametric

form (e.g., mixture of Gaussian distributions or GMM), which signifi-

cantly limits their capacity in fitting diverse multidimensional data dis-

tributions encountered in practice. We propose a non-parametric mixture

model (NMM) for data clustering in order to detect clusters generated

from arbitrary unknown distributions, using non-parametric kernel den-

sity estimates. The proposed model is non-parametric since the genera-

tive distribution of each data point depends only on the rest of the data

points and the chosen kernel. A leave-one-out likelihood maximization is

performed to estimate the parameters of the model. The NMM approach,

when applied to cluster high dimensional text datasets significantly out-

performs the state-of-the-art and classical approaches such as K-means,

Gaussian Mixture Models, spectral clustering and linkage methods.

1 Introduction

Data clustering aims to partition a given set of n objects represented either as
points in a d dimensional space or as an n×n similarity matrix. The lack of a uni-
versal definition of a cluster, and its task or data dependent nature has resulted
in publication of a very large number of clustering algorithms, each with different
assumptions about the cluster structure [1]. Broadly, the proposed approaches
can be classified into parametric vs. non parametric approaches. Parametric ap-
proaches impose a structure on the data, where as non-parametric methods infer
the underlying structure from the data itself.

Probabilistic finite mixture modeling [2,3] is one of the most popular para-
metric clustering methods. Several probabilistic models like Gaussian Mixture
Model (GMM) [3] and Latent Dirichlet Allocation [4] have been shown to be
successful in a wide variety of applications concerning the analysis of continu-
ous and discrete data, respectively. Probabilistic models are advantageous since
they provide principled ways to address issues like the number of clusters, miss-
ing feature values, etc. Parametric mixture models are effective only when the
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underlying distribution of the data is either known, or can be closely approxi-
mated by the distribution assumed by the model. This is a major shortcoming
since it is well known that clusters in real data are not always of the same shape
and rarely follow a “nice” distribution like Gaussian [5]. In a general setting,
each cluster may follow its own unknown distribution, which limits the perfor-
mance of parametric mixture models. Similar shortcomings can be attributed
to squared error based clustering algorithms such as K-means, which is one of
the most popular clustering algorithms due to its ease of implementation and
reasonable empirical performance [1].

The limitations of parametric mixture models can be overcome by the use of
algorithms that exploit non-parametric density estimation methods. Several non-
parametric clustering algorithms, for instance, Jarvis-Patrick [6], DBSCAN [7]
and Mean-shift [8], have been proposed1. These methods first find a single kernel-
density estimate of the entire data, and then detect clusters by identifying modes
or regions of high density in the estimated density [8]. Despite their success,
most of these approaches are not always successful in finding clusters in high-
dimensional datasets, since it is difficult to define the neighborhood of a data
point in a high-dimensional space when the available sample size is small [9].
For this reason, almost all non-parameteric density based algorithms have been
applied only to low-dimensional clustering problems such as image segmenta-
tion [8,10]. Further, it is not possible to a priori specify the desired number of
clusters in these methods.

In this paper, we assume that each cluster is generated by its own density
function that is unknown. The density function of each cluster may be arbitrary
and multimodal and hence it is modeled using a non-parametric kernel density
estimate. The overall data is modeled as a mixture of the individual cluster
density functions. Since the proposed approach, unlike other non-parametric
algorithms (e.g., Spectral clustering), constructs an explicit probabilistic model
for each cluster, it can naturally handle out-of-sample2 clustering by computing
the posterior probabilities for new data points. In summary, we emphasize that:

– The proposed approach is a non-parametric probabilistic model for data clus-
tering, and offers several advantages compared to non-probabilistic models
since (a) it allows for probabilistic assignments of data points to different
clusters, unlike other non-parametric models (b) it can effectively explore
probabilistic tools such as Dirichlet process and Gaussian process for non-
parametric priors, and (c) the model naturally supports out of sample cluster
assignments, unlike other non-parametric models.

– Contrary to most existing mixture models, the proposed approach does not
make any explicit assumption about the parametric form of the underlying
density function, and can model clusters following arbitrary densities.

1 Although spectral clustering and linkage methods can be viewed as non-parametric

methods, they are not discussed since they are not probabilistic models.
2 A clustering algorithm can perform out-of-sample clustering if it can assign a cluster

label to a data point unseen during the learning phase.
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We show the performance of the proposed clustering algorithm on high-
dimensional text datasets. Experiments demonstrate that, compared to several
widely used clustering algorithms such as K-means and Spectral clustering, the
proposed algorithm performs significantly better when data is of high dimen-
sionality and is embedded in a low dimensional manifold.

2 Non-parametric Mixture Model

2.1 Model Description

Let D = {x1, . . . , xn} be a collection of n data points to be clustered, where
each xi ∈ Rd is a vector of d dimensions. Let G be the number of clusters.
We aim to fit the data points in D by a non-parametric mixture model. Let
κ(·, ·) : Rd × Rd → R be the kernel function for density estimation. We further
assume that the kernel function is stationary, i.e., κ(xi, xj) = κs(xi −xj), where∫
κs(x)dx = 1. We denote by the matrix K = [κ(xi, xj)]n×n ∈ Rn×n

+ the pairwise
kernel similarity for data points in D.

Let {cg}, g = 1, . . . , G be the set of G clusters that forms a partition of D. We
specify the conditional density function pg(x|cg ,D) for each cluster cg as follows:

pg(x|cg ,D) =
1
|cg|
∑

xi∈cg

κ(x, xi) (1)

where |cg| is the number of samples in cluster cg, and
∑

g |cg| = n. The uncon-
ditional (on clusters) density p(x|D) is then written as

p(x|D) =
G∑

g=1

πgpg(x|cg,D) (2)

where πg = P (cg) is the mixture coefficient for cluster cg. We generalize the
cluster conditional density p(x|cg,D) in (1) by considering soft cluster participa-
tion, i.e each data point xi contributes qg

i ∈ [0, 1] to the kernel density estimate
of the cluster cg.

pg(x|cg ,D) =
n∑

i=1

qg
i κ(xi, x),where

n∑
i=1

qg
i = 1. (3)

We refer to qg = (qg
1 , . . . , q

g
n) as the profile vector for cluster cg, and Q =

(q1, . . . , qG) as the profile matrix. The objective of our clustering model is to
learn the profile matrix Q for data set D. We emphasize that due to the normal-
ization step, i.e.,

∑n
j=1 q

g
j = 1, qg

j can no longer be interpreted as the probability
of assigning xj to cluster cg. Instead, it only indicates the relative importance
of xj to the density function for cluster cg. The density function in (3) is also
referred to as the density estimate in “dual form” [11].
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2.2 Estimation of Profile Matrix Q

To estimate the profile matrix Q, we follow the idea of maximum likelihood, i.e.,
find the matrix Q by solving the optimization problem maxQ

∑n
i=1 log p(xi|D).

One major problem with this approach is that, when estimating p(xi|D), xi

is already an observed data point in D that is used to construct the density
function P (xi|D). As a result, simply maximizing the likelihood of data may
lead to an overestimation of the parameter Q, a problem that is often referred
to as overfitting in machine learning [12]. We resolve this problem by replacing
p(xi|D) with its leave-one-out (LOO) estimate [13].

Let pi(xi|cg,D−i) be the LOO conditional probability for each held out sample
xi, conditioned on the clusters and the rest of the data:

pi(xi|cg,D−i) =
1∑n

j=1(1 − δj,i)q
g
j

n∑
j=1

(1 − δj,i)q
g
jKi,j, (4)

where D−i = D\{xi} denotes the subset of D that excludes sample xi. Using the
LOO cluster conditional probability pi(xi|cg,D−i), we further define the LOO
unconditional (on cluster) density for each held out sample xi as follows:

pi(xi|D−i) =
G∑

g=1

γg
i pi(xi|cg, D−i). (5)

where γg
i = P (cg|D−i), and

∑
g γ

g
i = 1, ∀i = 1, . . . , n. Note that unlike the mix-

ture model in (2) where the same set of mixture coefficients {πg}G
g=1 is used for

any xi, the mixture coefficients {γg
i }G

g=1 depend on sample xi, due to the leave-
one-out estimation. We denote by γi = (γ1

i , · · · , γG
i ) and Γ = (γ1, . . . , γn)� ∈

Rn×G
+ .
To improve the robustness of estimation, we introduce a Gaussian prior for

profile matrix Q, i.e.,

p(Q) ∝ exp

(
−λ
∑

i

∑
g

[qg
i ]2
)
, (6)

where λ is a hyperparameter that will be determined empirically. For notational
convenience, we set Ki,i = 0 in Eq (4). Now, using the condition

∑n
i=1 q

g
i = 1,

the LOO log-likelihood of data, denoted by �LOO(D;Q,Γ ), can be expressed as
follows

�LOO(D;Q,Γ ) = log p(Q) +
n∑

i=1

log pi(xi|D−i)

= −λ

n∑
i=1

G∑
g=1

(qg
i )2 +

n∑
i=1

log

(∑
g

γg
i

∑n
j=1 Ki,jq

g
j

1 − qg
i

)
. (7)
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The parameters in the above simplified model are γg
i and qg

i , for i = 1, · · · , n
and g = 1, · · · , G. They are estimated by maximizing the LOO log-likelihood
�LOO(D;Q,Γ ). The optimal values of Q and Γ can be obtained by solving the
following optimization problem:

{Q∗, Γ ∗} = argmax
Q,Γ

�LOO(D;Q,Γ ) (8)

The optimization procedure is described in the following section.

2.3 Optimization Methodology

To determine the optimal values of Γ and Q that maximize the log-likelihood in
Eq (8), we apply an alternating optimization strategy [14]. At each iteration, we
first optimize Γ with fixed Q, and then optimize Q with fixed Γ , as summarized
below. For a fixed Q, the LOO log-likelihood of a sample xi is maximized when

γg
i = δ(g, argmax

g′
pi(xi|cg′ ,D−i)). (9)

The variable γg
i is closely related to the posterior distribution Pr(cg|xi), and

therefore can be interpreted as the cluster label of the i-th sample, i.e., γg
i = 1

if xi ∈ cg and 0, otherwise.

Algorithm 1. [Q,Γ ] = NonParametricMixtureFit(D, G, λ, σ)
Input: Dataset D, no. of clusters G, parameters λ and σ
Output: Cluster labels Γ and the profile matrix Q
1: Compute the kernel matrix K for the points in D with bandwidth σ. Normalize K

such that
∑

j Kij = 1.

2: Set the iteration t ← 0.
3: Initialize Q(t) ← Q0, such that Q0 � 0, QT

0 1n = 1G.

4: repeat
5: t ← t + 1;

6: Compute the γg
i using Eq (9)

7: By fixing the values of γg
i , obtain Q(t) by minimizing Eq (7).

8: ΔQ ← Q(t) − Q(t−1).

9: until ||ΔQ||22 ≤ ε, (ε is pre-set to a desired precision)

10: return Q,Γ

It is difficult to directly optimize the log-likelihood in Eq (7) with respect
to Q. Therefore, we minimize a convex variational upper bound on the negative
log-likelihood for efficient inference. At each iteration, we maintain a touch point
between the bound and the negative log-likelihood function, which guarantees
convergence to at least a local minima [15]. The procedure for finding Q and Γ
that maximize the log-likelihood in Eq (7) is summarized in Algorithm 1. Upon
convergence, the value of γi determines the cluster label for xi.
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2.4 Implementation Details

Normalization is one of the key issues in kernel density estimation. Conven-
tionally, the kernel function is normalized over the entire domain of the data,
κσ(x) = (πσ)−d exp

(
−||x||2/2σ2

)
. However, the σ−d term may be close to 0

(σ < 1) or be very large (σ > 1). This may cause serious numerical problems
in density estimation for high-dimensional data (large values of d) with small
sample size. To overcome this problem, we normalize the kernel matrix such that
each row sums to 1, i.e.

∑
j Ki,j = 1. This nullifies the effect of dimension on

the estimation process, and therefore is useful in handling sparse datasets.
The heuristic used in spectral clustering [16] to select the value for σ is also

effective in estimating kernel width. Empirical results show that the clustering
performance is not very sensitive to the choice of the kernel width σ. The pa-
rameter λ also is not very critical and is chosen to be sufficiently small; in all
of our experiments we choose λ = 10−4, which results in mild smoothing of
the qg

i values, and avoids any numerical instability in the algorithm due to the
logarithm. The number of variables to be solved for is of O(nG), similar to that
of spectral clustering. On the other hand, Gaussian mixture models solve for
O(d2) number of variables which is large, especially for high-dimensional sparse
datasets (specifically when (n + 1)G <

(
dG + d(d+1)

2

)
, as shown in Table 1).

3 Results and Discussion

The proposed non-parametric mixture fitting algorithm is evaluated on text
datasets derived from the 20-newsgroups3 dataset [17].

3.1 Baseline Methods

The proposed non-parametric mixture algorithm is compared with three classes
of well known clustering algorithms: (a) K-means and Gaussian mixture model
(GMM) with diagonal and full covariance matrices, (b) one kernel-based algo-
rithm: NJW spectral clustering [19], and (c) three non-parametric hierarchical
clustering algorithms: Single Link, Complete Link and Average Link. For (a) and
(c), we use the implementations from the Matlab’s Statistics Toolbox. For the
linkage based methods, the number of clusters is externally specified. We chose
the state-of-the-art spectral clustering algorithm implementation based on [19].
Each algorithm is run 10 times and the mean performance value is reported in
Table 1, with the best performance shown in bold face. Comparison with Mean-
shift, or related algorithms is difficult as the datasets are high-dimensional and
further, it is not possible to specify the number of clusters in these algorithms.
Since the number of dimensions is greater than the number of data points, GMM
is not succesful for this data.

At each run, the proposed algorithm, K-means and Spectral clustering were
initialized with 5 different starting points; only the best performance is reported.
3 http://people.csail.mit.edu/jrennie/20Newsgroups/
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(a) (b) (c) (d)

Fig. 1. Illustration of the non-parametric mixture approach and Gaussian mixture

model (GMM) on the “two-moon” dataset. (a) Input data with two clusters. (b) Gaus-

sian mixture model with two components. (c) and (d) the iso-contour plot of non-

parameteric estimates of the class conditional densities for each cluster. The warmer

the color, the higher the probability.

Due to the space limitation, we only show the best performance among the
three hierarchical linkage based algorithms, without specifying which algorithm
achieved it.

3.2 Synthetic Datasets

The proposed algorithm aims at identifying clusters of arbitrary shapes, while es-
timating their conditional density. Figure 1 illustrates the performance of NMM
on a dataset not suitable for GMM. Figure 1(a) shows the input data. Figure 1(b)
is shown to contrast the proposed non-parametric mixture approach against the
parametric Gaussian mixture model (GMM) with the number of mixture com-
ponents set to two. Figures 1(c) and (d) show the class conditional densities for
each of the two clusters. The proposed algorithm is able to recover the under-
lying clusters, as well as estimate the associated conditional densities, which is
not possible for GMM as shown in Figure 1(b).

Figure 2 illustrates the performance of the proposed algorithm on a dataset
that is known to be difficult for spectral clustering [18]. Both K-means and
spectral clustering fail to recover the clusters due to the difference in the variance
of the spherical clusters. The proposed algorithm however, is purely local, in that
the cluster label of a point is affected only by the cluster labels of neighboring
points. The clusters, therefore, are recovered nearly perfectly by the proposed
algorithm as shown in Figure 2(a) and the cluster conditional densities are shown
in Figures 2(d)-(f).

3.3 Text Datasets

We use eight high dimensional text datasets to show the efficacy of the algorithm.
These datasets are popularly used in document clustering [20].

Table 1 shows that the proposed non-parametric mixture (NMM) algorithm
performs significantly better (paired t-test, 95% confidence) than the other
clustering methods on all the high dimensional text datasets, except for
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(a) NMM (b) K-means (c) Spectral
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Fig. 2. Illustration of the non-parametric mixture approach, K-means and spectral

clustering on the example dataset from [18]. Input data contains 100 points each from

three spherical two-dimensional Gaussian clusters with means (0,0), (6,0) and (8,0) and

variances 4I2,0.4I2 and 0.4I2 respectively. Spectral clustering and NMM use σ = 0.95.
(a) NMM (b) K-means (c) Spectral clustering. Plots (d)-(f) show the cluster-conditional

densities estimated by the proposed NMM.

Table 1. Mean pairwise F1 value for different clustering algorithms over 10 runs of

each algorithm on eight high-dimensional text datasets. The kernel width is chosen as

the 5th percentile of the pairwise Euclidean distances for Kernel based algorithms. The

best performance for each dataset is shown in bold. The name of the dataset, number

of samples (n), dimensions (d), and the number of target clusters (G) are shown in

the first 4 columns, respectively. The last column shows the best F1 value achieved by

Single (S), Complete (C) and Average (A) link algorithms.

Proposed K-means NJW-Spec Linkage

Dataset n d G max(S,C,A)

cmu-different-1000 2975 7657 3 95.86 87.74 94.37 40.31

cmu-similar-1000 2789 6665 3 67.04 49.86 45.16 37.28

cmu-same-1000 2906 4248 3 73.79 49.40 48.04 30.01

cmu-different-100 300 3251 3 95.27 79.22 87.47 75.74

cmu-similar-100 288 3225 3 50.89 40.10 38.35 43.82

cmu-same-100 295 1864 3 48.97 44.85 46.99 41.79

cmu-classic300 300 2372 3 85.32 86.32 86.02 80.61

cmu-classic400 400 2897 3 61.26 60.13 51.01 53.31

cmu-classic-300, where its performance is slightly inferior to K-means. Since
the datasets are high-dimensional, and non-spherical, the proposed approach out-
performs K-means on most of the datasets. Spectral clustering considers only the
top G−1 eigenvectors for clustering a dataset into G clusters; the superior perfor-
mance of the proposed NMM can be attributed to its utilization of the complete
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Fig. 3. Performance of the non-parametric mixture model on three text datasets, with

varying value of the percentile (ρ) for choosing the kernel bandwidth (σ). The proposed

algorithm is compared with NJW (Spectral clustering), K-means and the best of three

linkage based methods.

kernel matrix without discarding any portion of it. These datasets could not be
clustered by GMM (Gaussian mixture models) since they are prone to numerical
estimation problems when the number of dimensions is larger than the number
of samples.

3.4 Sensitivity to Parameters

There are two parameters in the non-parametric mixture clustering algorithm:
the regularizer weight λ and the kernel width σ. The parameter σ is set to the
ρth percentile of the pairwise Euclidean distances among the data points. A use-
ful range for ρ is 5-10%, as suggested in [16]. Figure 3 shows the performance
of the proposed algorithm in comparison to K-means, spectral clustering and
hierarchical clustering on three text datasets. These plots show that there exists
a wide range of kernel bandwidth values for which the proposed algorithm per-
forms significantly better than the competing methods. For some datasets (e.g.,
Different-100 and Classic-400), the algorithm is more stable compared to that of
other datasets. We observed that the algorithm is not sensitive to the value of
λ, over the range (10−4, 104). While the performance is the same for almost all
the values of λ, the parameter λ does play a role in determining the sparsity of
the profile matrix. As λ increases, the profile of data points between the clusters
tends to get smoother. The key role of λ is to provide numerical stability to the
algorithm.

4 Conclusions and Future Work

We have proposed a non-parametric mixture model for data clustering. It is a
probablistic model that clusters the data by fitting a kernel density estimate to
each cluster. Experimental results show that the non-parametric mixture model
based clustering outperforms some of the well known clustering algorithms on
the task of document clustering, which can be characterized as high dimensional
sparse data. The non-parametric mixture model opens up a wide range of possi-
ble theoretical analysis related to clustering, which is a part of our ongoing work.
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Automatic kernel bandwidth selection, scalability of the algorithm and applica-
tion to other sparse data domains (e.g., bioinformatics) are possible extensions.
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A Probabilistic Approach to Spectral Unmixing
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Abstract. In this paper, we present a statistical approach to spectral unmixing
with unknown endmember spectra and unknown illuminant power spectrum. The
method presented here is quite general in nature, being applicable to settings
in which sub-pixel information is required. The method is formulated as a si-
multaneous process of illuminant power spectrum prediction and basis material
reflectance decomposition via a statistical approach based upon deterministic an-
nealing and the maximum entropy principle. As a result, the method presented
here is related to soft clustering tasks with a strategy for avoiding local minima.
Furthermore, the final endmembers depend on the similarity between pixel re-
flectance spectra. Hence, the method does not require a preset number of material
clusters or spectral signatures as input. We show the utility of our method on
trichromatic and hyperspectral imagery and compare our results to those yielded
by alternatives elsewhere in the literature.

1 Introduction

Spectral unmixing is commonly stated as the problem of decomposing an input spec-
tral signal into relative portions of known spectra of endmembers. The endmembers
can be any man-made or naturally occurring materials such as water, metals, etc. The
input data varies in many forms, such as radiance or reflectance spectra, or hyperspec-
tral images. The problem of unmixing applies to all those cases where a capability to
provide subpixel detail is needed, such as geosciences, food quality assessment and pro-
cess control. Moreover, unmixing can be viewed as a pattern recognition task related to
soft-clustering with known or unknown endmembers.

Current unmixing methods assume availability of the endmember spectra [1]. This
yields a setting in which cumbersome labelling of the endmember data is effected
through expert intervention. Added to the complexity of endmember labeling is the fact
that, often, illumination is a confounding factor in determining the intrinsic surface ma-
terial reflectance. As a result, in general, unmixing can be viewed as a dual challenge.
Firstly, endmembers shall, in case of necessity, be identified automatically. Secondly,
reflectance has to be recovered devoid of illumination and scene geometry. The for-
mer of these can be viewed as an instance of blind-source or unsupervised clustering
techniques. The latter is a photometric invariance problem.
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Spectral unmixing with automatic endmember extraction is closely related to the si-
multaneous estimation of illuminant power spectrum and material reflectance. Many of
the methods elsewhere in the literature hinge on the notion that the simultaneous re-
covery of the reflectance and illuminant power spectrum requires an inference process
driven by statistical techniques. In [2], Stainvas and Lowe proposed a Markov Random
Field to separate illumination from reflectance from the input images. On the other hand,
the physics-based approach in [3] for image colour understanding alternately forms hy-
potheses of colour clusters from local image data and verifies whether these hypotheses
fit the input image. More recently, in [4], Tajima performed an imperfect segmenta-
tion of the object colours in images by recursively subdividing the scene’s color space
through the use of Principal Component Analysis. Li et al. [5] proposed an energy min-
imisation approach to estimating both the illumination and reflectance from images.

Note that the methods above aim at tackling either the colour constancy or the im-
age segmentation problem and do not intend to recover subpixel information. Here, we
present an approach to spectral unmixing with unknown lighting conditions and un-
known endmember signatures. Unlike previous approaches related to the field of spec-
tral unmixing [6] and photometric invariants [7], our method does not assume known
power spectrum or colour of the illuminant. We adopt a probabilistic treatment of the
problem which allows for a soft clustering operation on the pixel reflectance spectra.
Thus, the method is quite general in the sense that it is applicable to any number of
colour channels assuming no prior knowledge of the illumination condition as well as
the surface reflectance.

The paper is organised as follows. In section 2, we cast the problem of simultaneous
spectral unmixing and illumination recovery in a probabilistic framework based on the
dichromatic reflection model [8] and the maximum entropy principle [9]. In this section,
we also describe a deterministic annealing approach to solve the problem for a single
spectral radiance image with unknown lighting condition and endmembers. Section 3
illustrates the utility of our method on real-world multispectral and trichromatic images.

2 Probabilistic Formulation

This section provides a probabilistic formulation of the problem of spectral unmixing
on multispectral imagery. To commence, we pose the problem in the general case as a
minimisation one governed by the interaction between image pixels and endmembers.
This yields a general formulation for spectral radiance images with no prior knowledge
of the lighting condition. By making use of the dichromatic model [8] and the maximum
entropy principle [9], our integrated spectral unmixing and illumination estimation al-
gorithm involves three interleaved steps

1. From the input spectral radiance image, find an optimal set of dichromatic hyper-
planes representing the current endmembers and material association probabilities
per pixel.

2. Estimate the illumination power spectrum making use of the least-squares intersec-
tion between the dichromatic hyperplanes.

3. Recover the endmembers from the reflectance image. The reflectance image is ob-
tained via the normalisation of the input radiance image with respect to the current
estimate of the illumination power.
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2.1 General Unmixing Formulation

Our general problem is formulated as follows. Given an input multispectral image I, we
aim to recover the basis material reflectance, i.e. endmember signatures, as well as their
relative proportions at each pixel in a single trichromatic or multi-band image. Let M be
the set of unknown endmembers in the scene under study. Here we take a probabilistic
viewpoint on the problem by equating material composition to the notion of association
probability relating the input signal at a pixel u to a basis material M ∈ M, which
we denote as p(M |u). The problem also involves a definition of the affinity between
the input signal at a pixel u and a basis material M , which we denote as d(u,M). The
spectral unmixing statement is then cast as minimising the expected affinity between
the given image I and the endmembers.

Thus, we aim to find a distribution of material association probabilities P =
{p(M |u)|M ∈ M, u ∈ I} that minimises the total expected pixel-material affinity

CTotal =
∑
u∈I

∑
M∈M

p(M |u)d(u,M) (1)

subject to the law of total probability
∑

M∈M p(M |u) = 1∀u ∈ I.
Note that the formulation in Equation 1 is reminiscent of a soft clustering problem.

Here we aim to find the optimal association of image pixels with a set of materials which
minimises the cost function. Since the above formulation often favours single-material
composition per pixel as each pixel is finally associated with its closest material with
probability one, we restate the problem as that of finding a distribution of material as-
sociation P that minimises the above cost function subject to the maximum entropy
criterion [10]. The justification of the additional constraint originates from the maxi-
mum entropy principle [9], which states that amongst all the probability distributions
that satisfy a set of constraints, the one with the maximum entropy is preferred.

To apply this principle to our problem, let us fix the expected affinity level at hand.
While several distributions of material association satisfy this level of expected affinity,
choosing non-maximal entropy distributions would imply making rather restrictive as-
sumptions on the problem. As a result, only the one with the maximum entropy shall
require no further constraints.

By making use of the entropy

H(P) = −
∑
u∈I

∑
M∈M

p(M |u) log p(M |u) (2)

to quantify the level of uncertainty of the material association distribution we reformu-
late the expected material affinity as

CEntropy = CTotal − L (3)

where

L = TH(P) +
∑
u∈I

α(u)

( ∑
M∈M

p(M |u) − 1

)
(4)

in which T ≥ 0 and α(u) are Lagrange multipliers. Note that T ≥ 0 weighs the level
of randomness of the material association probabilities whereas α(u) enforces the total
probability constraint for every image pixel u.
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2.2 Illumination Spectrum Estimation

With the expression in Equation 3 at hand, we now proceed to integrate the dichro-
matic reflection theory introduced by Shafer [8] into the general problem formulation
in Section 2.1.

The dichromatic model for a scene illuminated by a single illumination source relates
the observed image radiance to the illuminant power spectrum and material reflectance.
According to the dichromatic model, the observed colour or spectral radiance power at a
point in the scene is a linear combination of the body reflection and interface reflection.
The former component is affected by the material reflectance while the latter one is
purely governed by the illuminant power spectrum. Therefore, the spectral radiance
spectrum at a surface point composed of a single material belongs to a two-dimensional
linear subspace spanned by the illuminant spectrum and the diffuse radiance spectrum
of the material. We refer to this subspace as the dichromatic hyperplane.

In the most general case where each scene location is made of a mixture of materials,
the pixel radiance spectrum does not necessarily lie in any of the dichromatic hyper-
planes corresponding to the endmembers. Therefore, it is natural to quantify the notion
of pixel-material affinity as the distances between the pixel radiance spectrum and the
dichromatic planes corresponding to the endmembers. A zero-distance means purity in
terms of material composition. The further the distance, the lower the proportion of the
basis material or endmember.

To define the spectral unmixing problem using the dichromatic reflection model we
require some formalism. Let us consider a multispectral imaging sensor that samples
the spectral dimension of incoming light at wavelengths λ1, . . . λK . The input radiance
at pixel u and wavelength λi is denoted as I(u, λi) and the spectral component of
the illumination power at wavelength λi is L(λi). For brevity, we adopt thes vectorial
notations of the illumination spectrum, the input radiance spectrum at each pixel u and
the material reflectance spectrum of material M , which we denote L, I(u) and S(M),
respectively.

As discussed above, we characterise the combination of illumination power spec-
trum and material basis in a scene as a set of basis dichromatic planes, each of which
captures all the possible radiance spectra reflected from a point made of a single basis
material. Each of these two-dimensional planes can be further specified by two basis
vectors. Note that the choice of basis vectors is, in general, arbitrary. Let us denote
the dichromatic hyperplane for the endmember material M as Q(M), with two basis
column-vectors z1(M), z2(M).

With these ingredients, the affinity between the pixel u and the basis material M is
quantified as the orthogonal distance between a K-dimensional point representing its
radiance spectrum I(u) and the hyperplane Q(M). Since the linear projection matrix
onto Q(M) is defined as Q(M) = A(M)(A(M)TA(M))−1A(M)T , where A(M) =
[z1(M), z2(M)], the affinity distance is therefore defined as the squared L2-norm of the
hyperplane d(u,M) = ‖I(u) −Q(M)I(u)‖2

The unmixing problem on spectral radiance images becomes that of seeking for an
optimal set of linear projection matrices {Q(M),M ∈ M} corresponding to the end-
members and the material association probabilities p(M |u) that minimise the following
function



348 C.P. Huynh and A. Robles-Kelly

CLight =
∑
u∈I

∑
M∈M

p(M |u)‖I(u) −Q(M)I(u)‖2 − L (5)

For the recovery of the optimal dichromatic hyperplanes, we fix the material association
probability distribution. In this situation, we recast the problem as that of finding the
optimal basis vectors z1(M), z2(M) for each endmember M so as to minimise the
expected material affinity given by the first term on the right-hand side of Equation 5∑

u∈I
p(M |u)‖I(u) −Q(M)I(u)‖2 =

∑
u∈I

‖
√
p(M |u)I(u) −A(M)b(u,M)‖2 (6)

whereA(M)=[z1(M),z2(M)] and b(u,M)�
√
p(M |u)(A(M)TA(M))−1A(M)T I(u)

is a two-element column vector.
We note that the right-hand side of Equation 6 is the Frobenius norm of the matrix

I − J, where u1, u2, . . . uN are all the image pixels and

I =
[√

p(M |u1)I(u1),
√
p(M |u2)I(u2), . . . ,

√
p(M |uN )I(uN )

]
J = A(M)[b(u1,M)b(u2,M), . . . , b(uN ,M)]

Since rank(J) ≤ rank(A(M)) = 2, the problem above amounts to finding a matrix
J with rank at most 2 that best approximates the known matrix I. We achieve this via a
Singular Value Decomposition operation such that I = UΣV , where U and V are the
left and right singular matrices of I and Σ is a diagonal matrix containing its singular
values. The solution to this problem is then given by J = UΣ∗V , in which the only
non-zero singular values of Σ∗ are the two leading singular values of Σ. The vectors
z1(M), z2(M) correspond to the two leading eigenvectors of I, i.e. those corresponding
to the non-zero singular values in Σ∗. With the basis vectors z1(M), z2(M) at hand,
we can estimate the illumination power spectrum as a least-squares intersection between
dichromatic hyperplanes making use of the algorithm in [11].

2.3 Endmembers from Image Reflectance

With the illuminant power spectrum at hand, we can obtain the reflectance image from
the input radiance image by illumination normalisation. Let the reflectance spectrum at
each image pixel u be a wavelength-indexed vector R(u) = [R(u, λ1), . . . , R(u, λK)]T ,
where R(u, λ1) is given by R(u, λ) = I(u,λ)

L(λ) . Note that the affinity distance between a
pixel reflectance spectrum and a material reflectance spectrum can be defined based on
their Euclidean angle. Mathematically, the distance is given as follows

d(u,M) = 1 − R̃(u)T S(M)
‖S(M)‖ (7)

where R̃(u) has been obtained by normalising R(u) to unit L2-norm.
With this affinity distance, our unmixing problem becomes that to find a set of ba-

sis material reflectance spectra and a distribution of material association probabilities
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p(M |u) for each pixel u and material M that minimise the following cost function

CReflectance =
∑
u∈I

∑
M∈M

p(M |u)

(
1 − R̃(u)T S(M)

‖S(M)‖

)
− L (8)

We now derive the optimal set of endmember spectra so as to minimise the cost function
CReflectance in Equation 8. To minimise the cost function, we compute the derivatives
of CReflectance with respect to the endmember reflectance S(M) to yield

∂CReflectance

∂S(M)
= −
∑
u∈I

p(M |u)
‖S(M)‖2R̃(u) − (R̃(u)T S(M))S(M)

‖S(M)‖3

Setting this derivative to zero, we obtain

S(M) ∝
∑
u∈I

p(M |u)R̃(u) (9)

2.4 Material Association Probability Recovery

Note that, in the cost functions associated to the steps above, we require the material
association probability p(M |u) to be at hand. In this section, we describe how p(M |u)
can be recovered via deterministic annealing. A major advantage of the deterministic
annealing approach is that it mitigates attraction to local minima. In addition, determin-
istic annealing converges faster than stochastic or simulated annealing [12].

The deterministic annealing approach casts the Lagrangian multiplier T in the role
of the system temperature in an analogous annealing process used in statistical physics.
Initially, the whole process starts at a high temperature. At each temperature, the
system eventually converges to a thermal equilibrium. After reaching this state, the
system experiences a “phase transition” as the temperature is lowered. The optimal
parameters corresponding to the equilibrium state are tracked through such phase tran-
sitions. At zero temperature, we can directly minimise the expected pixel-material affin-
ity CEntropy to obtain the final material association probabilities P and the endmember
reflectance.

The recovery of the endmembers in step 3 described in Section 2 is, hence, somewhat
similar to a soft-clustering process. At the beginning, this process is initialised at a high
temperature with a single endmember by assuming all the image pixels are made of the
same material. As the temperature is lowered, the set of endmembers grows. This, in
essence, constitutes several “phase transitions”, at which new endmembers arise from
the existing ones. This phenomenon is due to the discrepancy in the affinity between
the image pixels and the existing endmembers.

At each phase of the annealing process, where the temperature T is kept constant, the
algorithm proceeds as two interleaved minimisation steps at each iteration so as to arrive
at an equilibrium state. These two minimisation steps are performed alternately with
respect to the material association probabilities P and the endmembers as captured by
the pixel-material affinity function d(u,M). For the recovery of the material association
probabilities, we fix the endmember set and seek for the probability distribution which
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minimises the cost function CEntropy in Equation 3. This is achieved by setting the
partial derivative ∂CEntropy

∂p(M|u) = d(u,M)+T log p(M |u)+T −α(u) to zero. We obtain

p(M |u) = exp
(
−d(u,M)

T
+

α(u)
T

− 1
)
∝ exp

(
−d(u,M)

T

)
∀M,u (10)

Since
∑

M∈M p(M |u) = 1, it can be shown that the optimal material association prob-
ability distribution for a fixed endmember set M is given by the Gibbs distribution

p(M |u) =
exp
(

−d(u,M)
T

)
∑

M ′∈M exp
(

−d(u,M ′ )
T

) (11)

3 Experiments

In this section, we provide validation results of our algorithm on real-world multispec-
tral and trichromatic imagery. To perform the validation task, we used two datasets.
The first of these comprises 321 Mondrian and specular images from the Simon Fraser
University database [13]. In addition, we have acquired an image database of 51 hu-
man subjects, each captured under one of 10 light sources with varying directions and
spectral power. The multispectral imagery has been acquired using a pair of benchtop
hyperspectral cameras. Each of which is equipped with Liquid Crystal Tunable Filters
which are capable of resolving up to 10nm in both the visible (430–720nm) and near
infrared (650–990nm) wavelength ranges. The ground truth illuminant spectra have
been measured using a white reference target, i.e. a Labsphere Spectralon.

On both the multispectral and trichromatic image databases, we configure the deter-
ministic annealing process with the initial and terminal temperatures ofTmax = 0.02 and
Tmin = 0.00025.We employ an exponential decay function as the cooling schedule with
a decay rate of 0.8. The maximum number of endmembers in each image is set to 20.

First, we provide results on the illuminant recovered by our algorithm. Since our
method is an unmixing one which delivers at output the illuminant power spectrum and
endmember reflectance, the error on the recovered illuminant is an indirect measure of
the efficacy of the algorithm. Here we present a quantitative comparison with Colour
Constancy methods that can be applied to single images with no pre-processing steps
and no prior statistics of image colours gathered from a large number of images. These
alternatives include the Grey-World [14] and White-Patch hypotheses [15] which are
special instances of the Shades of Grey method [16], and the Grey-Edge method [17].
The accuracy of the estimated multispectral illumination power and trichromatic illu-
minant colour is quantified as the Euclidean angle with respect to the ground truth.

In the fourth and fifth columns of Table 1, we present the trichromatic illuminant
estimation results on the Simon Fraser University dataset [13]. These include the Mon-
drian and specular datasets with 8 and 16-bit dynamic ranges. Overall our method yields
better results than the Grey-World method and is quite comparable to the White-Patch
method. The other methods outperform ours but the difference in performance is less
than two degrees. Recall that the illumination estimation method we employ is purely
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Table 1. A comparison of the illumination recovery performance of our method with a number
of alternatives. The angular error (in degrees) are shown for both multispectral and trichromatic
image datasets.

Method Multispectral Images Trichromatic Images
Visible Range Infrared Range 8-bit 16-bit

Our method 6.84 ± 3.92 4.19 ± 4.75 8.24 ± 8.73 7.99 ± 7.59

Grey-World [14] 8.44 ± 3.03 6.89 ± 2.23 9.75 ± 9.4 9.67 ± 9.25

White-Patch [15] 11.91 ± 8.02 8.53 ± 6.22 7.66 ± 6.92 7.70 ± 6.92

Shades of Grey (sixth-order norm) [16] 8.17 ± 4.61 5.16 ± 3.65 6.23 ± 6.50 6.27 ± 6.47

Grey-Edge (first-order norm) [17] 6.23 ± 2.06 2.21 ± 1.07 6.78 ± 4.37 6.82 ± 4.35

Grey-Edge (sixth-order norm) [17] 8.37 ± 7.77 6.45 ± 5.86 6.42 ± 5.82 6.45 ± 5.82

based on dichromatic patches [11], i.e. its stability and robustness improve with an in-
creasing number of materials and a higher level of image specularity. Therefore, it is
not surprising that the illumination estimates are severely affected by the large number
of images in this trichromatic database that are either completely diffuse or consist of
only a few materials.

In the second and third columns we show the accuracy of the illumination spec-
tra recovered from the multispectral images. On the multispectral images, our method
clearly outperforms all instances of the Shades of Grey method and the Grey-Edge
method implemented with a sixth-order Minkowski norm, by a significant margin. Note
that the Shades-of-Grey paradigm relies on the heuristics that the average scene colour
is achromatic. Therefore the accuracy of these methods is somewhat limited by the de-
gree of achromaticity of the average colours in the multispectral images. The Grey-Edge
method with a first-order Minkowski norm performs better than our method mainly be-
cause of the abundance of edges and material boundaries in the multispectral images.
However, it should be stressed that the former method does not recover endmembers
and material composition.

Now we turn our attention to the performance of our algorithm for the spectral un-
mixing task on the multispectral image database. We quantify the accuracy of the end-
member reflectance extracted by our method from the multispectral images as compared
to the ground truth measurements. To acquire the ground-truth endmembers, we nor-
malise each input radiance image by its ground-truth illumination spectrum and then
apply a K-means algorithm on the reflectance image to produce 20 clusters of pix-
els, each made of the same material. The resulting cluster centroids are deemed to be
the ground-truth endmember reflectance. As before, we have computed the Euclidean
angles between the basis material reflectance recovered by our method and those re-
covered by K-means clustering. The mean angular differences are 8.56 degrees for the
visible and 11.49 degrees for the infrared spectrum, which are comparable to those
produced by the alternative Colour Constancy methods shown before.

Next, we compare the association probability maps recovered by our method and
the Spectral Angle Mapper (SAM) [18]. As an input to this operation the SAM, the
illumination spectra are assumed to be those recovered by the Grey-Edge method with
the first-order Minkowski norm. Recall that this method is the only Colour Constancy
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Fig. 1. Material maps estimated from a visible image (top row) and a near infrared image (bottom
row). First column: the input image in pseudo colour. Second and third columns: the probability
maps of skin and cloth produced by our method. Fourth and fifth columns: the probability maps
of skin and cloth produced by the Spectral Angle Mapper(SAM).

method shown before that slightly outperforms our method in multispectral illumination
spectrum recovery. For the SAM, the endmember reflectance spectra are those resulting
from K-means clustering on the multispectral images.

In the second and third columns of Figure 1, we show the probability maps of skin
and cloth materials recovered by our method. In the fourth and fifth columns, we show
the probability maps recovered by the SAM. The two sample images shown have been
captured under different illumination conditions, one of which in the visible and the
other in the infrared spectrum. In the panels, the brightness of the probability maps is
proportional to the association probability with the reference material. It is evident that
our algorithm produces cleaner endmember maps than the SAM for both materials and
spectral regions. In other words, our method correctly labels the skin and cloth regions
as primarily composed of the respective ground truth endmember. We can attribute this
to the ability of deterministic annealing in escaping from local minima. On the other
hand, the SAM appears to assign a high proportion of non-primary materials to skin
and cloth regions. In fact, the material maps in the fourth and fifth columns show a very
weak distinction between the primary materials and the others in these regions. This
symptom is not surprising since the SAM may not be able to determine the primary
material in the case where a number of endmembers have nearly equal distances to the
pixel reflectance spectrum.

4 Conclusions

We have introduced a probabilistic method for simultaneous spectral unmixing and il-
lumination estimation provided no prior assumption on the lighting condition and the
end-member spectra. We have formulated the unmixing task making use of the dichro-
matic reflection model [8] and the maximum entropy principle [9]. Moreover, we have
used deterministic annealing as an optimisation method to improve convergence to the
globally optimal solution. We have illustrated the utility of the method on hyperspectral
and trichromatic imagery and compared our results against a number of alternatives.
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Abstract. In this paper we introduce a robust matching technique that

allows to operate a very accurate selection of corresponding feature points

from multiple views. Robustness is achieved by enforcing global geomet-

ric consistency at an early stage of the matching process, without the

need of ex-post verification through reprojection. Two forms of global

consistency are proposed, but in both cases they are reduced to pairwise

compatibilities making use of the size and orientation information pro-

vided by common feature descriptors. Then a game-theoretic approach

is used to select a maximally consistent set of candidate matches, where

highly compatible matches are enforced while incompatible correspon-

dences are driven to extinction. The effectiveness of the approach in

estimating camera parameters for bundle adjustment is assessed and

compared with state-of-the-art techniques.

1 Introduction

The selection of 3D point correspondences from their 2D projections is arguably
one of the most important steps in image based multi-view reconstruction, as er-
rors in the initial correspondences can lead to sub-optimal parameter estimation.
The selection of corresponding points is usually carried out by means of interest
point detectors and feature descriptors. Salient points are localized with sub-
pixel accuracy by general detectors, such as Harris Operator [2] and Difference
of Gaussians [6], or by using techniques that are able to locate affine invariant
regions, such as Maximally stable extremal regions (MSER) [7] and Hessian-
Affine [8]. This latter affine invariance property is desirable since the change in
appearance of a scene region after a small camera motion can be locally approx-
imated with an affine transformation. Once salient and well-identifiable points
are found on each image, correspondences between the features in the various
views must be extracted and fed to the bundle adjustment algorithm. To this
end, each point is associated a descriptor vector with tens to hundreds of di-
mensions, which usually include a scale and a rotation value. Arguably the most
famous of such descriptors are the Scale-invariant feature transform (SIFT) [4],
the Speeded Up Robust Features (SURF) [3], and the Gradient Location and
Orientation Histogram (GLOH) [9], and more recently the Local Energy based
Shape Histogram (LESH) [10]. Features are designed so that similar image re-
gions subject to similarity transformation exhibit descriptor vectors with small
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Fig. 1. Locally uniform 3D motion does not result in a locally uniform 2D motion.

From left to right: 3D scene, left and right views, and motion estimation.

Euclidean distance. This property is used to match each point with a candidate
with similar descriptor. However, if the descriptor is not distinctive enough this
approach is prone to select many outliers since it only exploits local information.
This limitation conflicts with the richness of information that is embedded in
the scene structure. For instance, under the assumption of rigidity and small
camera motion, features that are close in one view are expected to be close in
the other one as well. In addition, if a pair of features exhibit a certain dif-
ference of angles or ratio of scales, this relation should be maintained among
their respective matches. This prior information about scene structure can be
accounted for by using a feature tracker [5,12] to extract correspondences, but
this requires that the view positions be not far apart. Further, in the presence of
strong parallax, a locally uniform 3D motion does not result in a locally uniform
2D motion, and for these reasons the geometric constraints can be enforced only
locally (see Fig. 1 for an example). A common heuristic for the enforcement
of global structure is to eliminate points that exhibit a large reprojection error
after a first round of Bundle Adjustment [13]. Unfortunately this post-filtering
technique requires good initial estimates to begin with.

In this paper we introduce a robust matching technique that allows to oper-
ate a very accurate inlier selection at an early stage of the process and without
any need to rely on 3D reprojections. The approach selects feasible matches by
enforcing global geometric consistency. Two geometric consistency models are
presented. The first enforces that all pairs of correspondences between 2D views
are consistent with a common 3D rigid transformation. Here, as is common in
similar point-matching approaches, we assume that we have reasonable guesses
for the intrinsic camera parameters and reduce the problem space to the search
of a 3D rigid transformation from one image space to the other. This condition
is in general underspecified, as a whole manifold of pairs of correspondences
are consistent with a rigid 3D transformation. However, by accumulating mu-
tual support through a large set of mutually compatible correspondences one
can expect to reduce the ambiguity to a single 3D rigid transformation. In the
proposed approach, high order consistency constraints are reduced to a sec-
ond order compatibility where sets of 2D point correspondences that can be
interpreted as projections of rigidly-transformed 3D points all have high mutual
support. The reduction is obtained by making use of the scale and orienta-
tion information linked with each feature point in the SIFT descriptor [4] and a
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further reprojection that can be considered a continuous form of hypergraph
clique expansion [15].

The second geometric consistency constraint assumes a weak perspective cam-
era and matches together points whose maps are compatible with a common
affine transformation. This allows us to extract small coherent clusters of points
all laying at similar depths. The locally affine hypothesis could seem to be an
unsound assumption for general camera motion, and in effect cannot account for
point inversion due to parallax, but in the experimental section we will show that
it holds well with the typical disparity found in standard data sets. Further, it
should be noted that with large camera motion most, if not all, commonly used
feature detectors fail, thus any inlier selection attempt becomes meaningless.

Once the geometric consistency contraints are specified, we can use them to
drive the matching process. Following [14,1], we model the matching process in a
game-theoretic framework, where two players extracted from a large population
select a pair of matching points from two images. The player then receives a
payoff from the other players proportional to how compatible his match is with
respect to the other player’s choice, where the compatibility derives from some
utility function that rewards pair of matches that are consistent. Clearly, it is in
each player’s interest to pick matches that are compatible with those the other
players are likely to choose. In general, as the game is repeated, players will adapt
their behavior to prefer matchings that yield larger payoffs, driving all incon-
sistent hypotheses to extinction, and settling for an equilibrium where the pool
of matches from which the players are still actively selecting their associations
forms a cohesive set with high mutual support. Within this formulation, the solu-
tions of the matching problem correspond to evolutionary stable states (ESS’s),
a robust population-based generalization of the notion of a Nash equilibrium. In
a sense, this matching process can be seen as a contextual voting system, where
each time the game is repeated the previous selections of the other players affect
the future vote of each player in an attempt to reach consensus. This way, the
evolving context brings global information into the selection process.

2 Pairwise Geometric Consistency

In what follows we will describe the two geometric constraints that will be used
to drive the matching process. The first approach tries to impose that the points
be consistent with a common 3D rigid transformation.

There are two fundamental hypotheses underlying the reduction to second or-
der of this high-order 3D geometric consistency. First, we assume that the views
have the same set of camera parameters, that we have reasonable guesses for
the intrinsic parameters, and we can ignore lens distortion. Thus, the geometric
consistency is reduced to the compatibility of the projected points with a single
3D rigid transformation related to the relative positions of the cameras. Second,
we assume that the feature descriptor provides scale and orientation information
and that this is related to actual local information in the 3D objects present in
the scene. The effect of the first assumption is that the geometric consistency is
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reduced to a rigidity constraint that can be cast as a conservation along views of
the distances between the unknown 3D position of the feature points, while the
effect of the second assumption is that we can recover the missing depth infor-
mation as a variation in scale between two views of the same point and that this
variation is inversely proportional to variation in projected size of the local patch
around the 3D point and, thus, to the projected size of the feature descriptor.
More formally, assume that we have two points p1 and p2, which in one view
have coordinates (u1

1, v
1
1) and (u1

2, v
1
2) respectively, while in a second image they

have coordinates (u2
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2
1) and (u2
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where f is the focal lenght and a is the ratio between the actual scales of the
local 3D patches around points p1 and p2, whose projections on the two views
give the perceived scales s1

1 and s2
1 for point p1 and s1

2 and s2
2 for point p2.

The assumption that both scale and orientation are linked with actual prop-
erties of the local patch around each 3D point is equivalent to having 2 points
for each feature correspondence: the actual location of the feature, plus a virtual
point located along the axis of orientation of the feature at a distance propor-
tional to the actual scale of the patch. These pairs of 3D points must move
rigidly going from the coordinate system of one camera to the other, so that
given any two sets of correspondences with 3D points p1 and p2 and their corre-
sponding virtual points q1 and q2, the distances between these four points must
be preserved in the reference frames of every view (see Fig. 2).

Fig. 2. Scale and orientation offer depth information and a second virtual point. The

conservation of the distances in green enforces consistency with a 3D rigid transforma-

tion.

Under a frontal-planar assumption for each local patch, or, less stringently,
under small variation in viewpoints, we can assign 3D coordinates to the virtual
points in the reference frames of the two images:
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where θj
i is the perceived orientation of feature i in image j. At this point,

given two sets of correspondences between points in two images, namely the
correspondence m1 between a feature point in the first image with coordinates,
scale and orientation (u1

1, v
1
1 , s

1
1, θ

1
1) with the feature point in the second image
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2) in the first and second image respectively, we can compute a

distance from the manifold of feature descriptors compatible with a single 3D
rigid transformation as

d(m1,m2, a) = (||p1
1 − p1

2||2 − ||p2
1 − p2

2||2)2 + (||p1
1 − q1

2 ||2 − ||p2
1 − q2

2 ||2)2+
(||q1

1 − p1
2||2 − ||q2

1 − p2
2||2)2 + (||q1

1 − q1
2 ||2 − ||q2

1 − q2
2 ||2)2 .

From this we define the compatibility between correspondences as C(m1,m2) =
maxa e

−γd(m1,m2,a), where a is maximized over a reasonable range of ratio of
scales of local 3D patches. In our experiments a was optimized in the interval
[0.5; 2].

The second geometric consistency constraint assumes a weak perspective cam-
era and matches together points whose maps are compatible with a common
affine transformation. Specifically, we are able to associate to each matching
strategy (a1, a2) one and only one similarity transformation, that we call T (a1, a2).
When this transformation is applied to a1 it produces the point a2, but when
applied to the source point b1 of the matching strategy (b1, b2) it does not need
to produce b2. In fact it will produce b2 if and only if T (a1, a2) = T (b1, b2),
otherwise it will give a point b′2 that is as near to b2 as the transformation
T (a1, a2) is similar T (b1, b2). Given two matching strategies (a1, a2) and (b1, b2)
and their respective associated similarities T (a1, a2) and T (b1, b2), we calculate
their reciprocal reprojected points as:

a′2 = T (b1, b2)a1

b′2 = T (a1, a2)b1

That is the virtual points obtained by applying to each source point the similarity
transformation associated to the other match (see Fig 3). Given virtual points
a′2 and b′2 we are finally able to calculate the payoff between (a1, a2) and (b1, b2)
as:

Π((a1, a2), (b1, b2)) = e−λ max(||a2−a′
2||,||b2−b′2||) (1)
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Fig. 3. The payoff between two matching strategies is inversely proportional to the

maximum reprojection error obtained by applying the affine transformation estimated

by a match to the other

Where λ is a selectivity parameter that allows to operate a more or less strict
inlier selection. If λ is small, then the payoff function (and thus the matching)
is more tolerant, otherwise the evolutionary process becomes more selective as
λ grows.

The rationale of the payoff function proposed in equation 1 is that, while
by changing point of view the similarity relationship between features is not
mantained (as the object is not planar and the transformation is projective), we
can expect the transformation to be a similarity at least “locally”. This means
that we aim to extract clusters of feature matches that belong to the same region
of the object and that tend to lie in the same level of depth.

Each matching process selects a group of matching strategies that are coherent
with respect to a local similarity transformation. This means that if we want to
cover a large portion of the subject we need to iterate many times and prune
the previously selected matches at each new start. Obviously, after all the depth
levels have been swept, small and not significative residual groups start to emerge
from the evolution. To avoid the selection of this spurious matches we fixed a
minimum cardinality for each valid group.

3 Game-Theoretic Feature Matching

We model the matching process in a game-theoretic framework [1], where two
players extracted from a large population select a pair of matching points from
two images. The player then receives a payoff from the other players proportional
to how compatible his match is with respect to the other player’s choice. Clearly,
it is in each player’s interest to pick matches that are compatible with those the
other players are likely to choose. It is supposed that some selection process
operates over time on the distribution of behaviors favoring players that receive
larger payoffs and driving all inconsistent hypotheses to extinction, finally set-
tling for an equilibrium where the pool of matches from which the players are
still actively selecting their associations forms a cohesive set with high mutual
support. More formally, let O = {1, · · · , n} be the set of available strategies (pure
strategies in the language of game theory) and C = (cij) be a matrix specifying
the payoff that an individual playing strategy i receives against someone play-
ing strategy j. A mixed strategy is a probability distribution x = (x1, . . . , xn)T

over the available strategies O, thus lying in the n-dimensional standard sim-
plex Δn = {x ∈ IRn : ∀i ∈ 1 . . . n xi ≥ 0,

∑n
i=1xi = 1} . The expected payoff
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Fig. 4. An example of the evolutionary process. Four feature points are extracted

from two images and a total of six matching strategies are selected as initial hypothe-

ses. The matrix Π shows the compatibilities between pairs of matching strategies ac-

cording to a one-to-one similarity-enforcing payoff function. Each matching strategy

got zero payoff with itself and with strategies that share the same source or destina-

tion point (i.e., Π((b1, b2), (c1, b2)) = 0). Strategies that are coherent with respect to

a similarity transformation exhibit high payoff values (i.e., Π((a1, a2), (b1, b2)) = 1

and π((a1, a2), (d1, d2)) = 0.9)), while less compatible pairs get lower scores (i.e.,

π((a1, a2), (c1, c2)) = 0.1). Initially (at T=0) the population is set to the barycen-

ter of the simplex and slightly perturbed. After just one iteration, (c1, b2) and (c1, c2)

have lost a significant amount of support, while (d1, c2) and (d1, d2) are still played by

a sizable amount of population. After ten iterations (T=10) (d1, d2) has finally pre-

vailed over (d1, c2) (note that the two are mutually exclusive). Note that in the final

population ((a1, a2), (b1, b2)) have a larger support than (d1, d2) since they are a little

more coherent with respect to similarity.

received by a player choosing element i when playing against a player adopting
a mixed strategy x is (Cx)i =

∑
j cijxj , hence the expected payoff received by

adopting the mixed strategy y against x is yTCx. A strategy x is said to be a
Nash equilibrium if it is the best reply to itself, i.e., ∀y ∈ Δ, xTCx ≥ yTCx .
A strategy x is said to be an evolutionary stable strategy (ESS) if it is a Nash
equilibrium and ∀y ∈ Δ xTCx = yTCx ⇒ xTCy > yTCy. This condition
guarantees that any deviation from the stable strategies does not pay. The search
for a stable state is performed by simulating the evolution of a natural selection
process. Under very loose conditions, any dynamics that respect the payoffs is
guaranteed to converge to Nash equilibria and (hopefully) to ESS’s; for this rea-
son, the choice of an actual selection process is not crucial and can be driven
mostly by considerations of efficiency and simplicity. We chose to use the repli-
cator dynamics, a well-known formalization of the selection process governed by
the recurrence x(t+1)

i = xt
i

(Cxt)i

xtT Cxt , where xt
i is the proportion of the population

that plays the i-th strategy at time t. Once the population has reached a lo-
cal maximum, all the non-extincted pure strategies can be considered selected
by the game. One final note should be made about one-to-one matching. Since
each source feature can correspond with at most one destination point, it is
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desirable to avoid any kind of multiple match. It is easy to show that a pair
of strategies with mutual zero payoff cannot belong to the support of an ESS
(see [1]), thus any payoff function can easily be adapted to enforce one-to-one
matching by setting to 0 the payoff of mates that share either the source or the
destination point.

4 Experimental Results

To evaluate the performance of our proposals, we compared the results with
those obtained with the keymatcher included in the structure-from-motion suite
Bundler [13]. For the first set of experiments we selected pairs of adjacent views
from the ”DinoRing” and ”TempleRing” sequences from the Middlebury Multi-
View Stereo dataset [11]; for these models, camera parameters are provided
and used as a ground-truth. For all the sets of experiments we evaluated the
differences in radians between the (calibrated) ground-truth and respectively
the estimated rotation angle (Δα) and rotation axis (Δγ). The “Dino” model is
a difficult case in general, as it provides very few features; the upper part of Fig. 5
shows the correspondences produced by our game -theoretic matching approach

GT-3Drigid GT-2Daffine Bundler GT-3Drigid GT-2Daffine Bundler

Dino sequence
GT-3Drigid GT-2Daffine Bundler

Matches 262.5 ± 61.4 271.1 ± 64.2 172.4 ± 79.5

Δα 0.0668 ± 0.0777 0.0497 ± 0.0810 0.0767 ± 0.1172
Δγ 0.4393 ± 0.4963 0.3184 ± 0.3247 0.6912 ± 0.8793

Temple sequence
GT-3Drigid GT-2Daffine Bundler

Mathces 535.7 ± 38.7 564.3 ± 37.2 349.3 ± 36.2

Δα 0.1326 ± 0.0399 0.0989 ± 0.0224 0.1414 ± 0.0215
Δγ 0.0809 ± 0.0144 0.0792 ± 0.0091 0.0850 ± 0.0065

Fig. 5. Results obtained with the Dino and Temple data sets
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Fig. 6. Analysis of the performance of the approach with respect to variation of the

parameters of the algorithm

with geometric constraints enforcing a 3D rigid transformation (GT-3Drigid),
the approach with the weak perspective camera assumptions (GT-2Daffine),
and the Bundler matcher (Bundler). The color of the points matched using GT-
2Daffine relate to the extraction group, i.e., points with the same color have
been matched at th same re-iteration of the game-theoretic matching process.
The “Temple” model is richer in features and for visualization purposes we only
show a subset of the detected matches for all three techniques. The Bundler
matcher, while still achieving good results, provides some mismatches in both
cases. This can be explained by the fact that the symmetric parts of the object,
e.g. the pillars in the temple model, result in very similar features that are hard
to disambiguate by a purely local matcher. Both our methods, on the other
hand, by enforcing global consistency, can effectively disambiguate the matches.
Looking at the results we can see that both our approaches extract around 50%
more correspondences than Bundler. The first approach provides a slight increase
in precision and reduction in variance of the estimates. Note, however, that the
selected measures evaluate the quality of the underlying least square estimates
of the motion parameters after a reprojection step, thus small variations are
expected. The approach enforcing a global 2D affine transformation exhibits a
larger increase in precision and reduction in variance. This can be explained by
the fact that the adjacent views of the two sequences have very little parallax
effects, thus the weak persective camera assumption holds quite well. In this
context the stricter model is better specified and thus more discriminative.

Next, we analyzed the impact of the algorithm parameters over the quality of
the results obtained. To this end, we investigated three parameters: the similarity
decay λ, the number k of candidate mates per features, and the quality threshold,
that is the minimum support for a correspondence to be considered non-extinct,
divided by the maximum support in the population. Figure 6 reports the results
of these experiments. The goal of these experiments was to show the sensitivity
to the matcher’s parameters, not to choose between constraints, so only the
3D geometric constraint was used. Overall, these experiments show that almost
all reasonable values of the parameters give similar values for the match, thus
those parameters have little influence over the quality of the result, with the
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Game-Theoretic approach achieving better average results and smaller standard
deviation than the Bundler matcher.

5 Conclusions

In this paper we introduced a robust matching technique for feature points from
multiple views. Robustness is achieved by enforcing global geometric consistency
in a pairwise setting. Two different geometric consistency models are proposed.
The first enforces the compatibility with a single 3D rigid transformation of the
points. This is achieved by using the scale and orientation information offered by
SIFT features and projecting what is left of a high-order compatibility problem
into a pairwise compatibility measure, by enforcing the conservation of distances
between the unknown 3D positions of the points. The second model assumes a
weak perspective camera model and enforces that points are subject to an affine
transformation. This extracts only local groups at similar depths, but the match-
ing process is repeated to cover the whole scene. In both cases, a game-theoretic
approach is used to select a maximally consistent set of candidate matches, where
highly compatible matches are enforced while incompatible correspondences are
driven to extinction. Experimental comparisons with a widely used technique
show the ability of our approach to obtain more accurate estimates of the scene
parameters.
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Abstract. In this paper we present a model-based algorithm working

as a post-processing phase of any foreground object detector. The model

is suited to recover camouflage errors producing the segmentation of

an entity in small and unconnected parts. The model does not require

training procedures, but only information about the estimated size of

the person, obtainable when an inverse perspective mapping procedure

is used.

A quantitative evaluation of the effectiveness of the method, used after

four well known moving object detection algorithms has been carried

out. Performance are given on a variety of publicly available databases,

selected among those presenting highly camouflaged objects in real scenes

referring to both indoor and outdoor environments.

1 Introduction

Most of video analysis applications require the extraction of the moving objects
from the scene, so as to apply further processing aimed to classify them into dif-
ferent categories (persons, vehicles, animals, bags or luggage), or to characterize
the trajectories traced in the environment. Both these elaborations are necessary
processing steps toward the understanding of the events occurring in the scene.
Of course, the semantic analysis is unavoidably affected by any error occurring
in the detection phase, as the fragmentation of a single object into parts (for
instance, a person into pieces of body), or the merging of close objects into a
bigger one.

In this complex application framework, starting from the first approaches to
the problem, background subtraction is being considered as a simple and powerful
technique for detecting the moving objects as opposed to the static elements
that are part of the observed scene. Although many related issues have been
receiving further research attention, and some problems are still considered open,
the background subtraction techniques are gaining popularity among the object
detection algorithms.

Experimentation over the years, highlighted that the background subtraction
technique is subject to a set of well known problems, categorized in [9]; con-
sequently, most of the algorithms proposed up to now, have been devised so
as to face the above cited problems. A noteworthy exception is constituted by

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 365–374, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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camouflage: an intrinsic and hardly faceable problem occurring when the pixel
characteristics of a foreground object are too similar to the background to be
discerned, as happens when a person is wearing clothes having similar colors to
the background. The effect is that the difference of these pixels from the back-
ground model is under the threshold, and consequently incorrectly considered as
foreground pixels.

Camouflage has comparatively received less attention than the other prob-
lems, probably because most of detection methods operate at a pixel level, where
there is not enough information to effectively tackle this problem. So most au-
thors either ignore the issue, testing their detection algorithms in contexts where
camouflage is unlikely, or assume that later processing phases will be able to cor-
rect the anomalies induced by camouflage.

Among the papers specifically devoted to the camouflage problem, Tankus and
Yeshurum [8] propose the use of an operator to enhance areas whose shading
corresponds to a convex object to separate such areas from a “flat” background
with similar intensity and texture. However the method is not suitable for en-
vironments in which the background also contains convex objects, and does not
work well for objects with dark colors.

The paper by Harville et al. [4] is representative of an approach to the prob-
lem that involves the use of depth information to detect camouflaged objects.
The authors also evaluate other popular video analysis methods proposed in
the literature, maintaining that among the considered systems, only the ones
incorporating depth information are able to deal with camouflage. While the use
of depth information can surely improve the detection performance of a video
analysis system, it has a non negligible computational cost and, more important,
it precludes the use of the legacy cameras often already installed for applications
such as video-surveillance or traffic monitoring.

The paper by Boult et al. [1] is devoted to intentional camouflage, and uses
background subtraction with two thresholds: a larger and a smaller one, used to
respectively detect pixels that are certainly in the foreground, or either part of
the background or a camouflaged part of the foreground. The regions detected
using the two thresholds are then grouped using suitable conditions to form the
so called “Quasi Connected Components” to recover the split of camouflaged
objects.

The approach proposed by TrakulPong and Bowden [10] is instead based
on a simple model of the shape, integrated in the tracking phase; it builds a
statistical model of the shape of the tracked object, and when an abrupt shape
change occurs, the algorithm assumes it is due to camouflage and tries to match
the object image at the previous frame to restore the correct shape.

The paper by Guo et al. [3] proposes to address the camouflage problem by
performing a temporal averaging of the frames before computing or updating
the background model. The idea is that this way, the model will have a smaller
variance and so a smaller detection threshold can be used. However, as the
experiments performed by the authors show, the method has problems with
slowly moving objects.
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In this paper we propose a method for correcting the errors typically generated
in the detection phase of a background subtraction procedure, in presence of
camouflage; its generality allows the user to apply it as a post processing module
operating after a generic object detection algorithm.

The errors, consisting in the fragmentation of the actual object in the scene,
are detected and corrected by a grouping phase performed on the basis of a
model of the shape to be recognized, that in our system are isolated people.
Once the object have been detected, a set of merges of adjacent objects are
performed in the case that, after fusion the obtained object is more likely to be
a person. For the sake of notational simplicity, hereinafter we denote with blobs
all those objects generated as output by the detection phase, independently of
the fact that they are actually persons, fragments of them or unanimated objects.
The algorithm has been devised so as to make it possible the recursive merging
of blobs, so as to allow the possibility of recovering highly critical situations
caused by camouflage, as the split of a single person in a plurality of small parts,
otherwise considered as noise.

The algorithm has been widely experimented applying it on the output of four
well known detection algorithms, over a wide video database publicly available,
including indoor and outdoor scenes.

2 Proposed Method

As anticipated in the introduction, the camouflage problem causes that the fore-
ground mask of a person is split into two or more foreground blobs so generating
plenty of different configurations. The Fig. 1 shows the output of some different
foreground detection algorithms on various video sequences. It is evident from
the picture that, even recognizable by a human being, the obtained configura-
tions of blobs are far to be considered as ideal. A great effort must be done

Fig. 1. Examples of errors generated in the detection phase of a background subtraction

procedure in presence of camouflage. In all cases a person is detected as a set of

separated blobs.
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to process them so as to obtain, for each person a single blob. The problem
of recovering such kind of errors is equivalent to the problem of finding how
several foreground blobs can be grouped together in order to suitably represent
the object of interest, in our case a person. By examining a single blob it is
not possible to determine if it can be considered as a part of a larger object
or if it is spuriously generated during the foreground detection process. So, to
reconstruct the objects affected by camouflage errors we need to define a model
of the desired object and a procedure for suitably grouping the obtained blobs,
so as to adequately fit the model.

In this paper we focus our attention to the detection of moving people, but
the underlying idea can be generalized to the detection of other kinds of objects
(as cars, animals, etc.).

Obviously the model must be carefully defined: a too detailed model would
result in many missed detections, while on the contrary a too general one would
cause the spurious generation of a plenty of false positive errors (blobs due to
detection errors grouped to form, erroneously, objects of interest).

The chosen model starts from the simple consideration, that, as shown in
Fig. 1, however the parts are arranged, they fall into an ideal box representing a
person. It is worth noting that the model cannot be defined on the basis of the
size expressed in pixels. The perspective causes, in fact, that a same configuration
of pixels represents an object of different actual size depending on the distance
from the camera. Therefore, the model be must defined in terms of actual size,
and a suitably defined Inverse Perspective Mapping procedure must be used to
pass from measures in the pixel space to actual ones.

Algorithm 1. The pseudo-code of the grouping algorithm
S ← all detected blobs

C ← S × S
while ∃(X, Y ) ∈ C do

comment: Perform and verify the conditions for grouping blobs X and Y
R1 ← rightp(X) ≥ leftp(Y ) ∧ leftp(X) ≤ rightp(Y )

Z ← X ∪ Y
<perform Inverse Perspective Mapping to calculate the actual size of Z>
R2 ← heightr(Z) ∈ [h1, h2]

R3 ← widthr(Z) ∈ [b1, b2]

if R1 ∧ R2 ∧ R3 then
comment: Perform the grouping and update the set of blobs

<connect the two foreground blobs X and Y by joining their barycenter>
S ← S − {X, Y }
S ← S ∪ {Z}
C ← S × S

else
C ← C − {(X, Y )}

end if
end while
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Fig. 2. The possible configurations of the overlaps between the projections of two boxes

on the horizontal axis

a) b) c)

d) e) f) g) h)

Fig. 3. An example of the algorithm’s processing: a) original frame and the portion

under analysis; b) the resulting foreground detection and the c) resulting bounding

boxes; d), e), f), g), h) the steps of the algorithms on the considered portion of the

frame

The adopted model represents a person as a box defined by four parameters
h1, h2, b1 and b2 that, respectively, are the minimum and maximum actual height
and the minimum and maximum actual width.

The pseudo-code of the algorithm is sketched in Algorithm 1. The aim of
the algorithm is to group two or more blobs in order to form a unique blob
representing a person (according to the defined model). Coherently with the
adopted representation of a person, the algorithm represents each blob by its
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bounding box. The procedure operates by repeatedly merging couples of blobs
into larger ones until the new blob best fits the defined model of person. Two
blobs are grouped if and only if all the following conditions are verified:

R1. The projection on the horizontal axis of the bounding box of the consid-
ered blobs are overlapped (see Fig. 2). Note that the coordinates of the
two boxes (leftp(X), rightp(X), leftp(Y ), rightp(Y ) in Algorithm 1) are
expressed in pixels.

R2. The actual height, in meters, of the box grouping the two blobs (heightr(Z)
in Algorithm 1) is included between h1 and h2.

R3. The actual width, in meters, of the box grouping the two blobs (widthr(Z)
in Algorithm 1) is included between b1 and b2.

To verify the last two conditions, we firstly build the box grouping the considered
blobs starting from the corresponding boxes by their pixels coordinates. Then,
the Inverse Perspective Mapping is applied to the constructed box in order to
determine its real size.

It is important to highlight that the proposed method is not computationally
expensive because the number of detected boxes per frame is never greater than
one or two dozens.

In Fig. 3 an example of the application of the algorithm is sketched.

3 Experimental Results

The experimental validation of the proposed method has been carried out by
evaluating the performance improvements obtained when it is used as a post-
processing on the output of four well known techniques of foreground detection;
in particular:

– the Mixture of Gaussians (from now on called MOG), in the version proposed
by Kaewtrakulpong and Bowden in [5];

– the Enhanced Background Subtraction (from now on EBS ), proposed by
Conte et al. in [2];

– the Self-Organizing Background Subtraction (from now on SOBS ), proposed
by Maddalena and Petrosino in [7];

– the Statistical Background Algorithm (from now on SBA), proposed by Li et
al. in [6].

The performance is measured by using the f-score index, defined as the harmonic
mean of precision and recall, according to the following formulas:

precision =
TP

TP + FP
recall =

TP

TP + FN
(1)

In the previous formulas, the true positive (TP), false positive (FP) and false
negative (FN) are given by:
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TP =
∑
g∈G

∑
d∈D

|g ∩ d|
|g ∪ d| FP =

∑
d∈D

|d| −maxg∈G |d ∩ g|
|d|

FN =
∑
g∈G

|g| −maxd∈D |d ∩ g|
|g|

where G is the set of objects of the ground truth and D is the set of objects really
detected by the algorithm (each object is represented by its bounding box).

Tests have been done on a dataset of five real video sequences either indoor
or outdoor. In Table 1 the main features of the considered videos are reported:
the visual properties (number of frames of the sequence, frame rate expressed
in fps, resolution), a short description of the content. The dataset has been also
characterized in terms of the total number of foreground objects in each sequence
and the number of isolated persons. This data allows, on one side, to evaluate
the effectiveness of the proposed method in terms of people detected by grouping
single pieces and, on the other side, to quantify the overall detection performance
(i.e. when in the scene there are also objects the method was not designed to
handle, as animals, bags, ...)

The NA1-NA3 videos were acquired by the authors on a large square in dif-
ferent lighting and weather conditions, with several persons walking. The PETS
video belongs to the dataset published at the 2006 edition of the PETS work-
shop and contains a scene framed within a railway station. The MSA sequence,
presented in [7], refers to an indoor scene.

Table 2 reports the performance of the considered four algorithms when the
proposed method is adopted or not together with the relative improvements. The
results are given in two cases: respectively, when all the objects in the dataset
or only people objects are considered.

Table 1. Main features of the employed dataset: the properties (number of frames of

the sequence, frame rate expressed in fps, resolution), a short description of the content

and of the total number of objects and the number of isolated persons

Video Properties Description # of # of people
ID objects objects

NA1 9’365, 25, 352x288 outdoor, sunny, very dark shad-

ows

19’093 17’875 (93.6%)

NA2 4’575, 25, 352x288 outdoor, cloudy, very high cam-

ouflage, few shadows

9’333 7’651 (82.0%)

NA3 21’000, 25, 352x288 outdoor, late afternoon, high

camouflage, very long shadows

20’568 18’303 (89.0%)

PETS 2’556, 25, 768x576 indoor, reflections 5’779 4’823 (83.5%)

MSA 528, 30, 352x288 indoor, vertical shadows 685 329 (48%)
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Table 2. Object detection performance given in terms of f-score obtained considering

when all the objects of the dataset (rows denoted with all), or only people objects

(rows denoted with people). The columns before and after show the performance of the

original algorithms without and with the proposed post-processing, respectively.

Video Object EBS MOG SBA SOBS
ID type bef. aft. imp. bef. aft. imp. bef. aft. imp. bef. aft. imp.

NA1
all .671 .673 0.3% .657 .668 2.0% .220 .304 38.5% .530 .573 8.0%

people .732 .747 2.1% .646 .645 0.1% .212 .312 46,9% .516 .591 14.6%

NA2
all .775 .875 12.9% .671 .676 0.7% .256 .278 8.5% .434 .510 17.4%

people .729 .873 19.8% .648 .663 2.3% .198 .269 35.9% .416 .449 7.9%

NA3
all .555 .693 24.7% .644 .649 0.7% .204 .227 10.9% .287 .420 46.4%

people .554 .705 27.1% .646 .656 1.5% .202 .229 13.3% .304 .430 41.1%

PETS
all .773 .801 3.6% .753 .651 -13.4% .645 .635 -1.5% .582 .606 4.0%

people .724 .818 13.0% .623 .643 3.2% .423 .424 0.1% .544 .597 9.8%

MSA
all .847 .904 6.6% .520 .539 3.5% .163 .206 26.4% .850 .850 -

people .839 .921 9.7% .542 .565 4.3% .613 .622 1.5% .816 .828 1.5%

If we consider the results reported in Table 2 it is possible to note that in
the large majority of cases the use of the proposed method improves the object
detection performance.

By looking at the data in Table 2 with respect to the video sequence it is pos-
sible to consider that according to the obtained performance improvements, the
video sequences can be roughly divided in three groups. The first group, com-
posed by the NA2 and NA3 videos, is the one on which almost all the algorithms
reach the highest improvements, ranging from about 10% to over 45%, with the
exception of MOG whose behavior will be deeper discussed in the following. The
second group, containing the NA1 and the MSA sequences, presents moderate
improvements, while, finally, the performance is generally low on PETS. It is
worth pointing out that the behavior of the algorithms on the above defined
groups can be related to the characteristics of the videos as described in the
Table 1. The limitation of color gamut in the video sequences belonging to the
first group, due to the poor scene illumination (cloudy in NA2 and late noon in
NA3), favors the occurrence of the camouflage errors: in this case all the algo-
rithms significantly benefits from the use of the proposed grouping procedure.
Both the video sequences in the second group contain well illuminated scenes, so
as that the camouflage problem occurs less frequently, making the improvements
provided by our method less evident. A final consideration is about the efficiency
of most of the considered object detectors which tends to worsen when the pro-
posed method is applied on the PETS video. This behavior can be explained by
considering that these video sequences were framed in a complex indoor environ-
ment with artificial lighting and reflective surfaces. These conditions cause that
the original detection algorithms produce numerous false blobs, in some cases
erroneously grouped by the grouping procedure.

Moreover, if we analyze the data in Table 2 with respect to the original fore-
ground detection algorithm, it is evident that the adoption of the proposed
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Table 3. Absolute number of objects in the dataset associated to persons, split by the

considered detection algorithms; performance are given before and after the grouping

algorithm

Video EBS MOG SBA SOBS
ID bef. after impr. bef. after impr. bef. after impr. bef. after impr.

NA1 530 394 26.7% 338 333 1.5% 122 67 45.1% 362 273 24.6%

NA2 419 206 50.8% 151 125 17.2% 106 72 32.1% 216 171 20.8%

NA3 1043 206 80.2% 137 129 5.8% 147 81 44.9% 573 395 31.1%

PETS 215 147 31.6% 106 79 25.5% 91 76 16.5% 185 149 19.5%

MSA 17 5 70.6% 7 6 14.3% 21 19 9.5% 11 9 18.2%

grouping procedure after the EBS, the SBA and the SOBS object detection al-
gorithms produces significant improvements with respect to the f-score that in
many cases are above 10%. The only exception is represented by the MOG algo-
rithm that does not benefit from it. This behavior can be justified by considering
that the MOG technique (with the exception of the PETS video) tends to be
less sensitive to camouflage problems than other typical background subtraction
algorithms.

It is worth pointing out that the above considerations are generally valid either
when all the objects in the dataset are considered or the tests are carried out
with respect only to the people objects.

Table 3 reports an evaluation of the reduction of the problem of objects split-
ting when the proposed method is used or not. The tests were done by consid-
ering only the objects that are associated to persons. The results in Table 3 still
confirm that the grouping procedure is effective in recovering the split errors due
to camouflage: in all the experiments, the proposed method significantly reduces
the number of person detected as separated in several fragments.

4 Conclusions

In this paper we present a model-based method for removing errors caused by
camouflage in the detection of foreground isolated persons for video surveillance
applications. The approach is designed to be used as a post-processing phase of
a generic background subtraction algorithm.

A wide experimentation confirmed the effectiveness of the method able to
significantly improve the performance in the detection of persons. The tests also
highlighted that this improvement can sometimes be moderate, expecially when
it is used on videos characterized by very complex environments that cause the
detection of many false foreground blobs by the original background subtrac-
tion algorithm: in some cases, the false blobs may be merged so determining an
erroneous detection of persons. This problem has a very poor impact, even if
it can possibly be reduced by suitably refining the model. As future work, we
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are going to extend the approach to other application domains, as the traffic
monitoring through the definition of suitable models for the objects of interest
(i.e. cars, trucks, bus, ...).
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Abstract. The performance of many clustering algorithms such as k-

means depends strongly on the dissimilarity considered to evaluate the

sample proximities. The choice of a good dissimilarity is a difficult task

because each dissimilarity reflects different features of the data. There-

fore, different dissimilarities should be integrated in order to reflect more

accurately which is similar for the user and the problem at hand.

In many applications, the user feedback or the a priory knowledge

about the problem provide pairs of similar and dissimilar examples. This

side-information may be used to learn a distance metric and to improve

the clustering results. In this paper, we address the problem of learn-

ing a linear combination of dissimilarities using side information in the

form of equivalence constraints. The minimization of the error function

is based on a quadratic optimization algorithm. A smoothing term is

included that penalizes the complexity of the family of distances and

avoids overfitting.

The experimental results suggest that the method proposed outper-

forms a standard metric learning algorithm and improves the classical

k-means clustering based on a single dissimilarity.

1 Introduction

Clustering algorithms such as k-means depend critically on the choice of a good
dissimilarity [17]. A large variety of dissimilarities have been proposed in the lite-
rature [1]. However, in real applications no dissimilarity outperforms the others
because each dissimilarity reflects often different features of the data [11]. So,
instead of using a single dissimilarity it has been recommended in [10,11] to
consider a linear combination of heterogeneous dissimilarities.

Several authors have proposed techniques to learn a linear combination of
kernels (similarities) from the data [10,13,11,18]. These methods are designed
for classification tasks and assume that the class labels are available for the
training set. However, for certain applications such as Bioinformatics, domain
experts provide only incomplete knowledge in the form of which pairs of pro-
teins or genes are related [7]. This a priory information should be incorporated
into semi-supervised clustering algorithms via equivalence constraints [5]. Thus,
[17] proposed a distance metric learning algorithm that incorporates such si-
milarity/dissimilarity information using a convex programming approach. The

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 375–384, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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experimental results show a significant improvement in clustering results. How-
ever, the algorithm is based on an iterative procedure that is computationally
intensive particularly, for high dimensional applications. To avoid this problem,
[5,8,15] presented more efficient algorithms to learn a Mahalanobis metric. How-
ever, these algorithms are not able to incorporate heterogeneous dissimilarities
and rely on the use of the Mahalanobis distance that may not be appropriate
for certain kind of applications.

Our approach considers that the integration of dissimilarities that reflect di-
fferent features of the data should help to improve the clustering results. To this
aim, a linear combination of heterogeneous dissimilarities is learnt considering
the relation between kernels and distances [12]. A learning algorithm is pro-
posed to estimate the optimal weights considering the similarity/dissimilarity
constraints available. The method proposed is based on a convex quadratic op-
timization algorithm and incorporates a smoothing term that penalizes de com-
plexity of the family of distances avoiding overfitting.

The algorithm has been evaluated considering several benchmark UCI datasets
andtwohumancomplexcancerproblemsusingthegeneexpressionprofiles.Theem-
pirical results suggest that themethodproposed improves the clustering results ob-
tainedconsideringasingledissimilarityandawidelyusedmetriclearningalgorithm.

This paper is organized as follows: Section 2 introduces the idealized metric
considered in this paper, section 3 presents the algorithm proposed to learn a
combination of dissimilarities from equivalence constraints. Section 4 illustrates
the performance of the algorithm using several benchmark datasets. Finally,
Section 5 gets conclusions and outlines future research trends.

2 Idealized Dissimilarity: Impact on Clustering Results

Let {xi}n
i=1 ∈ Rd be the input patterns. We are given side-information in the

form of pairs that are considered similar or dissimilar for the application at hand.
Let S and D be the subset of pairs of patterns known to be similar/dissimilar
defined as:

S = {(xi,xj) : xi is similar to xj} (1)
D = {(xi,xj) : xi is dissimilar to xj} (2)

Let {dl
ij}M

l=1 be the set of heterogeneous dissimilarities considered. Each
dissimilarity can be embedded in a feature space via the empirical kernel map
introduced in appendix A. Let K l

ij be the kernel matrix that represents the
dissimilarity matrix (dl

ij)
n
i,j=1. The kernel function can be written as an inner

product in feature space [14] k(xi,xj) = 〈φ(xi), φ(xj)〉 and therefore, it can be
considered a similarity measure [15].

The ideal similarity (kernel) should be defined such that it becomes large for
similar patterns and small for dissimilar ones. Mathematically, the ideal kernel
is defined as follows:
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k∗ij =
{

maxl{kl
ij} If (xi,xj) ∈ S

minl{kl
ij} If (xi,xj) ∈ D (3)

The idealized kernel introduced in this paper is related to the one proposed by
[2] for classification purposes: k(xi, xj) = 1 if yi = yj and 0 otherwise, where
yi denotes the label of xi. However, there are two differences that are worth
to mention. First, the ideal kernel proposed by [2] doesn’t take into account
the topology and distribution of the data, missing relevant information for the
identification of groups in a semi-supervised setting. Second, this kernel can be
considered an extreme case of the idealized kernel defined earlier and thus, more
prone to overfitting.

Considering the relation between distances and kernels [14], the idealized dis-
tance between xi and xj can be written in terms of kernel evaluations as:

d2∗(xi,xj) = ‖φ(xi) − φ(xj)‖2 (4)
= k∗(xi,xi) + k∗(xj ,xj) − 2k∗(xi,xj) (5)

The idealized dissimilarity, collects information from a set of heterogeneous mea-
sures adapting the metric to the problem at hand and improving the clustering
results.

3 Learning a Combination of Dissimilarities from
Equivalence Constraints

In this section, we present a learning algorithm to estimate the optimal weights of
a linear combination of kernels from a set of similarity or dissimilarity constraints.

Let {kl
ij}M

l=1 be the set of kernels obtained from a set of heterogeneous dissi-
milarities via the empirical kernel map introduced in appendix A. If non-linear
kernels with different parameter values are considered, we get a wider family of
measures that includes non-linear transformations of the original dissimilarities.
The kernel sought is defined as:

kij =
M∑
l=1

βlk
l
ij , (6)

where the coefficients are constrained to be βl ≥ 0. This non-negative constraint
on the weights helps to interpret the results and guarantees that provided all the
individual kernels are positive semi-definite the combination of kernels is convex
and positive semi-definite [13].

The optimization problem in the primal may be formulated as follows:

min
β,ξ

1
2
‖β‖2 +

CS

NS

∑
(xi,xj)∈S

ξij +
CD

ND

∑
(xi,xj)∈D

ξij (7)
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s. t. βTKij ≥ K∗
ij − ξij ∀ (xi,xj) ∈ S (8)

βTKij ≤ K∗
ij + ξij ∀ (xi,xj) ∈ D (9)

βl ≥ 0 ξij ≥ 0 ∀ l = 1, . . . ,M (10)

where the first term in equation (7) is a regularization term that penalizes the
complexity of the family of distances, CS and CD are regularization parameters
that give more relevance to the similarity or dissimilarity constraints. NS, ND

are the number of pairs in S and D, Kij = [K1
ij , . . . ,K

M
ij ]T , K∗

ij is the idea-
lized kernel matrix and ξij are the slack variables that allows for errors in the
constraints.

To solve this constrained optimization problem the method of Lagrange Mul-
tipliers is used. Then, the dual problem becomes:

max
αij ,γ

− 1
2

∑
(xi,xj)∈S
(xk,xl)∈S

αijαklKT
ijKkl −

1
2

∑
(xi,xj)∈D
(xk,xl)∈D

αijαklKT
ijKkl (11)

+
∑

(xi,xj)∈S,

(xk,xl)∈D

αijαklKT
ijKkl −

∑
(xi,xj)∈S

αijγ
TKij −

1
2
γTγ (12)

+
∑

(xi,xj)∈D
αijγ

TKij +
∑

(xi,xj)∈S
αijK

∗
ij −

∑
(xi,xj)∈D

αijK
∗
ij , (13)

subject to:

0 ≤ αij ≤
{

CS

NS
for (xi,xj) ∈ S

CD

ND
for (xi,xj) ∈ D

(14)

γl ≥ 0 ∀ l = 1, . . . ,M , (15)

where αij and γl are the lagrange multipliers. This is a standard quadratic
optimization problem similar to the one solved by the SVM. The computational
burden does not depend on the dimensionality of the space and it avoids the
problem of local minima.

Once the αij and γl are computed, the weights βl can be obtained considering
∂L/∂β = 0:

β =
∑

(xi,xj)∈S
αijKij −

∑
(xi,xj)∈D

αijKij + γ . (16)

The weights βl can be substituted in equation (6) to get the optimal combination
of heterogeneous kernels. Next, a kernel k-means clustering algorithm [3] is run.
Notice that the learning algorithm proposed may be applied together with any
clustering based on kernels or dissimilarities.

Several techniques are related to the one proposed here. In [17] it has been pro-
posed an algorithm to learn a full or diagonal Mahalanobis metric from similarity
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information. The optimization algorithm is based on an iterative procedure that
is more costly particularly for high dimensional problems. [5] and [8,15] have pro-
posed more efficient algorithms to learn a Mahalanobis metric from equivalence
constraints. The first one (Relevant Component Analysis), can only take into ac-
count similarity constraints. Both of them, rely solely on a Mahalanobis metric
that may fail to reflect appropriately the sample proximities for certain kind of
applications. Hence, they are not able to integrate heterogeneous measures that
convey complementary information. Finally, [16] has proposed a modification
of the maximum margin clustering that is able to learn a linear combination
of kernels. However, this algorithm is unsupervised and can not incorporate a
priory information in a semi-supervised way. Besides, it can not be extended
to other clustering algorithms based on dissimilarities or kernels as the method
proposed here.

3.1 Support Vectors and KKT Complementary Conditions

The Lagrange Multipliers determine how difficult is for the linear combination of
kernels to satisfy the constraints (8)-(9). Next, we can obtain a relation between
the constraints satisfaction and the value of the Lagrange Multipliers.

The Karush-Kuhn-Tucker (KKT) complementary conditions in the primal are
the following:

αij(βTKij −K∗
ij + ξij) = 0, (xi, xj) ∈ S (17)

αij(βTKij −K∗
ij − ξij) = 0, (xi, xj) ∈ D (18)

ηijξij = 0, (xi, xj) ∈ S, (xi, xj) ∈ D (19)
γlβl = 0, ∀l = 1, . . . ,M . (20)

Now it can be easily shown the following proposition:

Proposition 1. For all (xi, xj) ∈ S

βT Kij

⎧⎪⎨⎪⎩
= K∗

ij 0 < αij < CS

NS

≥ K∗
ij αij = 0

< K∗
ij αij = CS

NS

For all (xi, xj) ∈ D

βT Kij

⎧⎪⎨⎪⎩
= K∗

ij 0 < αij < CD

ND

≤ K∗
ij αij = 0

> K∗
ij αij = CD

ND

When the Lagrange Multipliers are zero, the constraints are met with a margin
equal or greater than zero. The corresponding pairs will not appear in the solu-
tion. When the Lagrange Multipliers are larger than zero, the constraints may
be exactly met or violated. They are the support vectors as in the SVM. This
will allow to solve the optimization problem more efficiently.
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4 Experimental Results

The algorithm proposed has been evaluated considering a wide range of prac-
tical problems. Table 1 shows the features of the different datasets. We have
chosen problems with a broad range of signal to noise ratio (Var/Samp.), vary-
ing number of samples and classes. The first three problems correspond to
benchmark datasets obtained from the UCI database http://archive.ics.
uci.edu/ml/datasets/. The last ones aim to the identification of complex hu-
man cancer samples using the gene expression profiles. They are available from
bioinformatics2.pitt.edu.

Table 1. Features of the different datasets considered

Samples Variables Var./Samp. Classes

Wine (UCI) 177 13 0.17 3

Ionosphere (UCI) 351 35 0.01 2

Breast Cancer (UCI) 569 32 0.056 2

Lymphoma 96 4026 41.9 2

Colon Cancer 62 2000 32 2

All the datasets have been standardised subtracting the median and dividing
by the inter-quantile range.
For high dimensional problems such as gene expression datasets, dimension re-
duction helps to improve significantly the clustering results [9]. Therefore, for the
algorithms based on a single dissimilarity we have considered different number
of genes 280, 146, 101, 56 and 34 obtained by feature selection [11]. Genes have
been ranked according to the method proposed by [4]. Then, we have chosen the
subset that gives rise to the smallest error. Considering a larger number of genes
or even the whole set of genes does not help to improve the clustering perfor-
mance. Regarding the algorithm proposed to integrate several dissimilarities, we
have considered all the dissimilarities obtained for the whole set of dimensions.

The similarity/dissimilarity constraints are obtained as in [17]. S is generated
by picking a random subset of all pairs of points sharing the same class label.
The size is chosen such that the number of connected components is roughly
20% of the size of the original dataset. D is chosen in a similar way although the
size in this case is less relevant.

Regarding the value of the parameters, the number of clusters is set up to
the number of classes, CS and CD are regularization parameters and the opti-
mal value is determined by cross-validation over the subset of labeled patterns.
Finally, kernel k-means is restarted randomly 20 times and the errors reported
are averages over 20 independent trials.

Clustering results have been evaluated considering two objective measures.
The first one is the accuracy. It determines the probability that the clustering

http://archive.ics.uci.edu/ml/datasets/
http://archive.ics.uci.edu/ml/datasets/
bioinformatics2.pitt.edu
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Table 2. Accuracy for k-means clustering considering different dissimilarities. The

results are averaged over twenty independent random subsets S and D.

Technique Kernel Wine Ionosphere Breast Colon Lymphoma

k-means (Euclidean) linear 0.92 0.72 0.88 0.87 0.90

pol. 3 0.87 0.73 0.88 0.88 0.90

k-means (Best diss.) linear 0.94 0.88 0.90 0.88 0.94

pol. 3 0.94 0.88 0.90 0.88 0.93

χ2 Maha. Manha. Corr./euclid. χ2

Comb. dissimilarities linear 0.94 0.90 0.92 0.89 0.95

pol. 3 0.96 0.89 0.92 0.90 0.92

Metric learning (Xing) linear 0.87 0.74 0.85 0.87 0.90

pol. 3 0.51 0.74 0.86 0.88 0.90

Table 3. Adjusted RandIndex for k-means clustering considering different dissimilari-

ties. The results are averaged over twenty independent random subsets S and D.

Technique Kernel Wine Ionosphere Breast Colon Lymphoma

k-means (Euclidean) linear 0.79 0.20 0.59 0.59 0.65

pol. 3 0.67 0.21 0.60 0.59 0.65

k-means (Best diss.) linear 0.82 0.58 0.66 0.59 0.77

pol. 3 0.81 0.58 0.66 0.59 0.76

χ2 Maha. Manha. Corr./euclid. χ2

Comb. dissimilarities linear 0.82 0.63 0.69 0.60 0.79

pol. 3 0.85 0.60 0.69 0.63 0.73

Metric learning (Xing) linear 0.68 0.23 0.50 0.54 0.66

pol. 3 0.50 0.23 0.52 0.58 0.65

agrees with the “true” clustering in the sense that the pair of patterns belong
to the same or different clusters. It has been defined as in [17]:

accuracy =
∑
i>j

1{1{ci = cj} = 1{ĉi = ĉj}}
0.5m(m− 1)

, (21)

where ci is the true cluster label for pattern xi, ĉi is the corresponding label
returned by the clustering algorithm and m is the number of patterns. One
problem of the accuracy is that the expected value for two random partitions is
not zero. Therefore, we have computed also the adjusted randindex defined in
[6] that avoids this problem. This index is also normalized between zero and one
and larger values suggest better clustering.

Tables 2 and 3 show the accuracy and the adjusted randindex for the cluste-
ring algorithms evaluated. We have compared with a standard metric learning
strategy proposed by [17], k-means clustering based on the Euclidean distance
and k-means considering the best dissimilarity out of ten different measures.
Both tables indicates which is the best distance for each case.

From the analysis of tables 2 and 3, the following conclusions can be drawn:
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– The combination of dissimilarities improves significantly a standard metric
learning algorithm for all the datasets considered. Our method is robust to
overfitting and outperforms the algorithm proposed by Xing [17] in high
dimensional datasets such as Colon cancer and Lymphoma. These datasets
exhibit a high level of noise. We can explain this because the algorithm based
on a combination of dissimilarities allows to integrate distances computed
for several dimensions discarding the noise and reducing the errors.

– The combination of dissimilarities improves usually kernel k-means based
solely on the best dissimilarity. This suggests that the integration of several
dissimilarities allows to extract complementary information that may help to
improve the performance. Besides, the algorithm proposed always achieves
at least the same performance that k-means based on the best dissimilarity.
Only for lymphoma and polynomial kernel we get worst results, probably
because the value assigned to the regularization parameters overfit the data.
We remark that the algorithm proposed, helps to overcome the problem of
choosing the best dissimilarity, the kernel and the optimal dimension. This
a quite complex and time consuming task for certain applications such as
Bioinformatics.
Finally, the combination of dissimilarities improves always the standard k-
means clustering based on the Euclidean measure.

– Tables 2 and 3 show that the best distance depends on the dataset conside-
red. Moreover, we report that the performance of k-means depends strongly
on the particular measure employed to evaluate the sample proximities.

Figure 1 shows a boxplot diagram for the accuracy and adjusted randindex
coefficients. Odds numbers correspond to the combination of dissimilarities and
the even ones to the metric learning algorithm proposed by Xing. We can see
that the differences between the method proposed here and the one proposed
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Fig. 1. Boxplots that compare the combination of dissimilarities with the metric learn-

ing algorithm proposed by Xing according to (a) accuracy and (b) Adjusted RandIndex.

All the boxplots consider linear kernels.



Semi-supervised Clustering Using Heterogeneous Dissimilarities 383

by Xing are statistically significant at 95% confidence level for all the datasets
considered.

5 Conclusions

In this paper, we propose a semi-supervised algorithm to learn a combination of
dissimilarities from equivalence constraints. The error function includes a penalty
term that controls the complexity of the family of distances considered and the
optimization is based on a robust quadratic programming approach that does
not suffer from the problem of local minima.

The experimental results suggest that the combination of dissimilarities im-
proves almost always the performance of clustering algorithms based solely on
a single dissimilarity. Besides, the algorithm proposed improves significantly a
standard metric learning algorithm for all the datasets considered in this paper
and is robust to overfitting.

Future research trends will focus on the application of this formalism to the
integration of heterogeneous data sources.

Appendix A

This appendix introduces shortly the Empirical Kernel Map that allow us to
work with non-Euclidean dissimilarities considering kernel methods [12].

Let d: X × X → R be a dissimilarity and R = {x1, . . . ,xn} a subset of
representatives drawn from the training set. Define the mapping φ : F → Rn as:

φ(z) = D(z,R) = [d(z,x1), d(z,x2), . . . , d(z,xn)] (22)

This mapping defines a dissimilarity space where feature i is given by d(.,xi).
The kernel of dissimilarities can be defined as the dot product of two dissimilarity
vectors in feature space.

k(x,x′) = 〈φ(x), φ(x′)〉 =
n∑

i=1

d(x, pi)d(x′, pi) ∀x, x′ ∈ X . (23)
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1 Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal
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Abstract. Work on clustering combination has shown that clustering combina-
tion methods typically outperform single runs of clustering algorithms. While
there is much work reported in the literature on validating data partitions pro-
duced by the traditional clustering algorithms, little has been done in order to val-
idate data partitions produced by clustering combination methods. We propose
to assess the quality of a consensus partition using a pattern pairwise similarity
induced from the set of data partitions that constitutes the clustering ensemble.
A new validity index based on the likelihood of the data set given a data parti-
tion, and three modified versions of well-known clustering validity indices are
proposed. The validity measures on the original, clustering ensemble, and simi-
larity spaces are analysed and compared based on experimental results on several
synthetic and real data sets.

1 Introduction

Clustering ensemble approaches have been proposed aiming to improve data clustering
robustness and quality [1], reuse clustering solutions [2], and cluster data in a distributed
way. Schematically, these methods can be split into two main phases: the construction
of the clustering ensemble (CE); and the combination of information extracted from the
CE into a consensus partition. The Evidence Accumulation Clustering method (EAC)
[1] additionally produces, as an intermediate result, a learned pairwise similarity be-
tween patterns, summarized in a co-association matrix. In the literature on this topic,
one can find many alternative ways of building the clustering ensemble, defining the
combination strategy and extraction algorithm, and choosing the final number of clus-
ters. All these lead to a myriad of alternative clustering solutions. Hence, we are faced
with the following problem: “for a given data set, which clustering solution should be
selected?”.

While there is much work reported in the literature on validating data partitions pro-
duced by the traditional clustering algorithms [3], little has been done in order to vali-
date data partitions produced by clustering combination methods. Most of the reported
works use measures of consistency between consensus solutions and the clustering en-
semble, such as Average Normalized Mutual Information [2] and Average Cluster Con-
sistency [4]. The classical validity indices may also be used to assess the quality of
the consensus partition. This requires the original data representation to be available,

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 385–394, 2010.
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which may not always be possible. Also, not considering clustering ensemble infor-
mation should be a drawback, since the clustering structure, used by the clustering
combination methods to produce the consensus partitions, is not used.

In this paper we propose the validation of clustering combination results at three
levels:

– original data representation – measure the consistency of clustering solutions with
the structure of the data, perceived from the original representation (either feature-
based or similarity-based);

– clustering ensemble level – measure the consistency of consensus partitions with
the clustering ensemble;

– learned pairwise similarity – measure the coherence between clustering solutions
and the co-association matrix induced by the clustering ensemble.

Additionally to the methodology of evaluation at these distinct levels, we propose a new
criterion based on likelihood estimates, and adaptation of “classical” cluster validity
measures to pairwise similarity representations.

The remaining of the paper is organized as follows. Section 2 formulates the clus-
tering ensemble problem, and describes the EAC method, that will be used in our ex-
periments. The methodology for the validation of consensus partitions is presented in
section 3. In section 4, a new validity index based on pairwise similarities is proposed.
Experiments comparing all the validation measures are presented in section 5. Finally,
the conclusions appear in section 6.

2 Clustering Combination

Let X = {x1, · · · , xn} be a data set with n data patterns. Different partitions of X can
be obtained by using different clustering algorithms, changing parameters and/or ini-
tializations for the same clustering algorithm, using different subsets of data features or
patterns, projecting X to subspaces, and combinations of these. A clustering ensemble,
P , is defined as a set of N data partitions of X :

P = {P 1, · · · , PN}, P l = {Cl
1, · · · , Cl

Kl}, (1)

where Cl
k is the kth cluster in data partition P l, which contains K l clusters. Different

partitions capture different views of the structure of the data. Clustering ensemble meth-
ods use a consensus function f which maps a clustering ensemble P into a consensus
partition P ∗ = f(P).

The Evidence Accumulation Clustering method (EAC) [1] considers each data par-
tition P l ∈ P as an independent evidence of data organization. The underlying as-
sumption of EAC is that two patterns belonging to the same “natural” cluster will be
frequently grouped together. A vote is given to a pair of patterns every time they co-
occur in the same cluster. Pairwise votes are stored in a n × n co-association matrix,

C, normalized by the total number of combined data partitions, i.e., Cij =
∑N

l=1 votel
ij

N
where votel

ij = 1 if xi and xj co-occur in a cluster of data partition P l; otherwise
votel

ij = 0. The consensus partition is obtained by applying some clustering algorithm
over the co-association matrix, C.
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3 Consensus Partition Validation

We herein propose the assessment of the quality of a consensus partition, P ∗, by mea-
suring its consistency at three levels: the original representation space; the clustering
ensemble; and the learned pairwise similarity.

3.1 Validity Measures on the Original Data Space

Validity measures on the original data space are the most common approaches to per-
form clustering validation. The basic idea consists of evaluating a data partition using a
utility or cost function, and comparing it with other partitions of the same data set. The
utitlity/cost function usually measures the intra-cluster compactness and inter-cluster
separation of a given data partition. Many different validity measures on the original
data representation space have been proposed in the literature [3]. In this paper we will
focus on three of them: the Silhouette, Dunn’s and Davies-Bouldin indices.

Let X = {x1, · · · , xn} be the data set, P = {C1, · · · , CK} its partition into K
clusters, and |Cl| the number of elements in the l-th cluster. Let d(xi, xj) be the dissim-
ilarity (distance) between data patterns xi and xj .

The Silhouette index [5] is formally defined as follows. Let ai denote the average
distance between xi ∈ Cl and the other patterns in the same cluster, and bi the minimum
average distance between xi and all patterns grouped in another cluster:

ai =
1

|Cl| − 1

∑
xj∈Cl

j �=i

d(xi, xj), bi = min
k �=l

1
|Ck|

∑
xj∈Ck

d(xi, xj). (2)

The silhouette width, si, for each xi, produces a score in the range [−1, 1] indicating how
wellxi fits in its own cluster when compared to other clusters; the global Silhouette index,
S, is given by the average silhouette width computed over all samples in the data set:

si =
bi − ai

max{ai, bi}
, S =

1
n

n∑
i=1

si (3)

Dunn’s index, quantifying how well a set of clusters represent compact and separated
clusters [6], is defined as:

D =
min

1≤q≤K
min

1≤r≤K,r �=q
dist(Cq, Cr)

max
1≤p≤K

diam(Cp)
(4)

where dist(Cq, Cr) represents the distance between clusters Cq and Cr, and diam(Cp)
is the pth cluster diameter:

dist(Cq, Cr) = min
xi∈Cq, xj∈Cr

d(xi, xj), diam(Cp) = max
xi, xj∈Cp

d(xi, xj). (5)

The best partition is the one that maximizes the index value, D.
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Davies-Bouldin index [7], is defined as the ratio of the sum of within-cluster scatter
and the value of between-cluster separation:

DB =
1
K

K∑
k=1

max
m �=k

{
Δ(Ck) + Δ(Cm)

d(νk, νm)

}
, Δ(Ck) =

∑
xi∈Ck

d(xi, νk)
|Ck|

(6)

where Δ(Ck) is the average distance between all patterns in Ck and their cluster center

νk =
∑

xi∈Ck
xi

|Ck| . Small values of DB correspond to clusters that are compact, and
whose centers are far away from each other. The data partition that minimizes DB is
the optimal one.

3.2 Validity Measures on the Clustering Ensemble Space

These validity indices rely on the agreement between the consensus partition, P ∗, and
the partitions in the clustering ensemble P = {P1, · · · , PN}.

Let H(P ) = −
∑K

k=1 p(k) log p(k) be the entropy of data partition P , with p(k) =
nk

n , and nk the number of patterns in the kth cluster of P . The mutual information
between two data partitions, P ∗ and P l, is defined as:

MI(P ∗, P l) =
K∗∑
i

Kl∑
j

p(i, j)
p(i)p(j)

, (7)

with p(i, j) = 1
n |C∗

i ∩Cl
j |, the fraction of shared samples in clusters C∗

i and Cl
j . Strehl

and Ghosh [2] define the Average Normalized Mutual Information as:

ANMI(P ∗,P) =
1
N

N∑
l=1

MI(P ∗, P l)√
H(P ∗)H(P l))

. (8)

Higher values of ANMI(P ∗,P) suggest better quality consensus partitions.
The Average Cluster Consistency [4] (ACC) is another validity measure based on

the similarity between the partitions of the clustering ensemble and the consensus par-
tition. The main idea consists of measuring how well the clusters Cl

m of the clustering
ensemble fit in a cluster C∗

k of the consensus partition. If all patterns xi ∈ Cl
m belong to

the same cluster C∗
k , for all clusters of the clustering ensemble, then the average cluster

consistency between the consensus partition and the clustering ensemble is perfect. The
ACC measures the similarity between two partitions, P ∗ and P l, based on a weighting
of shared samples in matching clusters:

sim(P ∗, P l) =
1
n

Kl∑
m=1

max
1≤k≤K∗

|C∗
k ∩ Cl

m|
(

1 − |C∗
k |
n

)
, (9)

where K l ≥ K∗. Note that cluster intersection, |C∗
k ∩ Cl

m|, is weighted by (1 − |C∗
k |

n )
in order to prevent high similarity values in situations where P ∗ has a few clusters with
almost all the data patterns. The drawback is that consensus partitions with balanced



On Consensus Clustering Validation 389

cluster cardinality are preferred. The ACC is defined as the average similarity between
each data partition in the clustering ensemble (P l ∈ P) and the consensus partition P ∗:

ACC(P ∗,P) =
1
N

N∑
i=1

sim(P i, P ∗). (10)

From a set of possible choices, the best consensus partition is the one that achieves the
highest ACC(P ∗,P) value.

3.3 Validity Measures on a Similarity Space

In the following, modifications of the validity indices presented in subsection 3.1 are
proposed, aiming to accommodate the same principles to a pairwise similarity repre-
sentation. Consider a pairwise similarity measure s(xi, xj) between pairs of patterns
(xi, xj). In this paper, we will define s(xi, xj) = Cij , the pairwise similarity induced
from the clustering ensemble [1], summarized in matrix C (see section 2).

In order to compute a Silhouette-like validity index in a similarity space, we propose
to measure the within-cluster compactness and the inter-cluster separability adapting
the formulas defined in equation 2 as below:

asi =
1

|Cl| − 1

∑
xj∈Cl

j �=i

s(xi, xj), bsi = max
k �=l

1
|Ck|

∑
xj∈Ck

s(xi, xj). (11)

While in equation 2 low values for ai and high values for bi corresponded to high cluster
compactness and separation, in equation 11 it is the opposite since we are using similar-
ities. In this case, high values for asi and low values for bsi imply good data partitions.
For this reason, the numerator of equation 3 (left) is changed for the computation of the
silhouette width, being defined as:

ssi =
asi − bsi

max{asi , bsi}
. (12)

The average silhouette width using similarities is then computed as Ss = 1
n

∑n
i=1 ssi .

For Dunn’s index, the similarity between the qth and the rth clusters, and the diam-
eter of Cp were redefined:

sim(Cq, Cr) = max
xi∈Cq,xj∈Cr

s(xi, xj), diams(Cp) = min
xi,xj∈Cp

s(xi, xj). (13)

By the fact that we are using similarities instead of distances, we take the inverse of
equation 4 to define a Dunn-like validation index:

Ds =
min

1≤p≤K
diams(Cp)

max
1≤q≤K

max
1≤r≤K,r �=q

sim(Cq, Cr) + 1
. (14)

Since the information regarding the cluster centers {ν1, · · · , νK} is not available in
a similarity-based data representation, in our adaptation of the Davies and Bouldin’s
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validity index, it was necessary to introduce a new concept of center of a cluster. In order
to incorporate pairwise similarities instead of the original vectorial data representation,
we estimate the central pattern νk of cluster Ck as the element with maximum mean
similarity within each cluster (innermost pattern), as defined below.

νk = argmax
xi∈Ck

∑
xj∈Ck

j �=i

s(xi, xj), (15)

Davies and Bouldin’s validity index is redefined as

DBs =
1
K

K∑
k=1

max
m �=k

{
s(νk, νm)

Δs(Ck) + Δs(Cm)

}
, (16)

where Δs(Ck) is the average similarity between all patterns in Ck.

4 Statistical Validity Index Based on Pairwise Similarity

We now propose a new validity index to assess the quality of P ∗ based on the like-
lihood of the data constrained to the data partition, L(X|P∗), assessed from pairwise
similarities, as per in the co-association matrix, C, defined in section 2.

Our work is inspired in the Parzen-window density estimation technique [8] with
variable size window, also known as K-nearest neighbor density estimation. This tech-
nique estimates the probability density of pattern x, p(x), within a regionR with volume
VR. The volume R is defined as a function of the KN nearest neighbors of x, i.e., VR is
the volume enclosed by the region that contains all the KN nearest neighbors of x. The
probability density p(x) is estimated as p̂(x) = KN

nVR
.

The new validity measure based on the likelihood of the data X (assuming x ∈ X
to be independent and identically-distributed random variables) given a partition P , is
defined as:

L(X|P ) =
N∏

i=1

p(xi|P ), p(xi|P ) =
K∑

k=1

p(xi|Ck ∈ P ) · Pr(Ck). (17)

Following the idea behind the Parzen-window density estimation method, we define the
probability density of xi given cluster Ck as:

p(xi|Ck) =
KN

|Ck| · Vk(xi)
(18)

where Vk(xi) represents the volume of a sufficiently small region that contains all the
patterns of the neighborhood KNNk(xi)

⋃
{xi}, and KNNk(xi) is the set of the KN

most similar data patterns to xi in cluster Ck. Since we rely only on pairwise simi-
larities, as induced from the clustering ensemble, we approximate the intrinsic volume
Vk(xi) by a quantity proportional to it, defined by:

Vk(xi) � diamk(xi), diamk(xi) = 2
(

1 − min
xj∈KNNk(xi)

Cij

)
(19)
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where diamk(xi) represents the “diameter” of the region centered at xi that contains the
neighborhood of xi. Since the similarity matrix, C, takes values in the interval [0; 1],
the above transformation 1 − Cij leads to a dissimilarity measure; the diameter thus
corresponds to twice the dissimilarity of the Kth

N nearest neighbor of xi.
Using equations 17-18 and estimating Pr(Ck) as 1

n |Ck|, the likelihood of the data
set X given a data partition P is defined as:

L(X|P ) =
N∏

i=1

K∑
k=1

KN

n · Vk(xi)
. (20)

The underlying reasoning for using L as a validity index is the following.
Given a clustering ensemble, the co-association matrix, C, corresponds to the max-

imum likelihood estimate of the probability of pairwise co-occurrence of patterns in a
cluster. Taking this co-occurrence probability as the pattern pairwise similarity induced
by the CE, the likelihood of the data set X given a combination partition P ∗ is esti-
mated by L(X|P ∗). The statistical validity index based on the pairwise similarity, L,
thus corresponds to a goodness of fit of the combined partition, P ∗, with the clustering
ensemble and the pairwise information extracted from it. Best combination strategies
should therefore lead to highest likelihood values, L, of the data.

In a similar way, we can compute the likelihood of the data given the combina-
tion partition using the original data representation space. In this case, the likelihood
L corresponds to a goodness of fit of the combined partition, P ∗, with the statistical
properties of the data on the original representation. In the following we denote by LO

the likelihood computed from the original data representation, and by LS the likelihood
computed from the co-association matrix (induced similarity).

5 Experimental Results

Five real (available at the UCI repository http://archive.ics.uci.edu/ml)
and nine synthetic data sets were used to assess the performance of the validity mea-
sures on a wide variety of situations, including data sets with arbitrary cluster shapes,
different cardinality and dimensionality, well-separated and touching clusters, and dis-
tinct cluster densities. The Iris data set consists of 50 patterns from each of three species
of iris flowers, characterized by four features. The Std Yeast is composed of 384 pat-
terns (normalized to have 0 mean 0 and unit variance) characterized by 17 features,
split into 5 clusters concerning 5 phases of the cell cycle. The Optdigits is a subset of
Handwritten Digits data set containing only the first 100 patterns of each digit, from a
total of 3823 data samples characterized by 64 attributes. The House Votes data set is
composed of two clusters of votes for each of the U.S. House of Representatives Con-
gressmen on the 16 key votes identified by the Congressional Quarterly Almanac. From
a total of 435 (267 democrats and 168 republicans) only the patterns without missing
values were considered, resulting in 232 patterns (125 democrats and 107 republicans).
The Wine data set consists of the results of a chemical analysis of wines grown in the
same region in Italy divided into three clusters with 59, 71 and 48 patterns described
by 13 features. Both House Votes and Wine data sets were normalized to have unit
variance. The synthetic data sets are shown in figure 1.

http://archive.ics.uci.edu/ml
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(a) Cigar (b) Spiral (c) Bars (d) 2 Half Rings

(e) 3 Half Rings (f) Concentric (g) D1 (h) D2 (i) Complex

Fig. 1. Synthetic data sets

Table 1. NMI(P ∗, P 0) for the consensus partitions selected by each validity measure

Clustering Ensemble Construction Method A Clustering Ensemble Construction Method B
Data Set Lo So Do DBo Ls Ss Ds DBs ANMI ACC Best Lo So Do DBo Ls Ss Ds DBs ANMI ACC Best

Iris 0.81 0.81 0.71 0.71 0.81 0.81 0.71 0.81 0.81 0.81 0.81 0.81 0.81 0.72 0.72 0.81 0.81 0.72 0.72 0.81 0.81 0.81
Std Yeast 0.49 0.49 0.08 0.53 0.49 0.53 0.24 0.08 0.49 0.49 0.53 0.48 0.48 0.37 0.32 0.48 0.53 0.23 0.48 0.48 0.48 0.53
Optdigits 0.81 0.81 0.71 0.63 0.81 0.81 0.63 0.81 0.81 0.81 0.81 0.81 0.83 0.83 0.72 0.81 0.81 0.72 0.83 0.81 0.83 0.83

House Votes 0.50 0.50 0.03 0.03 0.50 0.14 0.14 0.14 0.50 0.50 0.50 0.49 0.49 0.02 0.49 0.49 0.49 0.14 0.14 0.49 0.49 0.49
Wine 0.77 0.77 0.66 0.08 0.77 0.66 0.08 0.66 0.77 0.77 0.77 0.77 0.80 0.06 0.17 0.80 0.77 0.17 0.06 0.77 0.77 0.80
Cigar 1.00 1.00 1.00 0.23 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84 1.00 1.00 1.00 0.84 1.00 0.38 1.00 0.84 0.84 1.00
Spiral 1.00 0.00 0.05 0.05 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.01 0.01 0.08 0.08 0.01 0.01 1.00 1.00 0.01 0.01 1.00
Bars 0.94 0.94 0.06 0.06 0.94 0.94 0.06 0.94 0.94 0.94 0.94 0.94 0.94 0.21 0.21 0.94 0.94 0.21 0.21 0.94 0.94 0.94

2 Half Rings 0.99 0.99 0.17 0.17 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.87 0.99 0.21 0.21 0.87 0.87 0.99 0.99 0.87 0.87 0.99
3 Half Rings 1.00 1.00 0.08 0.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Concentric 1.00 1.00 0.09 0.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70 1.00 0.14 0.14 0.70 0.70 1.00 1.00 0.70 0.70 1.00

D1 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.40 1.00 1.00 1.00 0.40 1.00 1.00 1.00 1.00 1.00 1.00
D2 1.00 1.00 0.14 0.14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.57 0.71 0.34 0.34 0.57 0.57 1.00 1.00 0.71 0.71 1.00

Complex 0.83 0.44 0.83 0.44 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.70 0.70 0.70 0.63 0.70 0.63 0.56 0.70 0.70 0.70 0.87
#Best criterion 13 11 3 1 13 11 7 10 12 12 5 11 5 4 6 7 6 9 6 7

For each data set, two different methods were used to build the clustering ensembles.
In the first method (A), the K-means algorithm was used to produce N = 150 data
partitions, each one with exactly K = 20 clusters for the Iris data set, K = 50 for
the Concentric data sets, K = 120 for the Complex data set, and K = 30 for all the
other data sets. In the second method (B), the K-means algorithm was also used to
build clustering ensembles with the same size, but the number of clusters for each data
partition was randomly chosen to be an integer in the interval [10; 30]. The clustering
ensemble construction method A (leading to PA) is expected to be a “good” clustering
ensemble, in the sense that its clusters have less probability of mixing patterns from
different “natural” clusters than the clustering ensemble construction method B (PB),
since K l, ∀Pl ∈ PA is always higher than minP l∈PB K l, with the exception of the Iris
data set. The consensus partitions were obtained applying the EAC method using the
Single-Link, Average-Link, Complete-Link, Centroid-Link and Ward-Link hierarchical
clustering algorithms at the final step. KN was defined as �

√
n�.

Table 1 shows the NMI(P ∗, P 0) values between the best data partition P ∗, ac-
cording to each validity measure, and the “real” (ground-truth) data partition P 0. The
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(a) (b) (c)

Fig. 2. Co-association matrices for (a) CE construction method A, (b) CE construction method B
and (c) “natural” partition of data, for Cigar data set

subscripts o and s point out that the validity measure was evaluated on the original
space or the similarity space, respectively. The columns designated by “Best” indicate
the value of NMI for the best obtained consensus partition. In order to use the criterion
based on the likelihood estimates (L) on the original space, the diameter of a region was
computed as diam(xi) = 2 maxxj∈KNN(xi) d(xi, xj), using the Euclidean distance to
measure dissimilarity, and KNN(xi) corresponds to the set of the KN closest patterns
to xi. The results for the clustering ensemble construction method A show that the L
validity measure had the best performance, both on the original and similarity spaces,
selecting the best consensus partition in 13 out of 14 data sets, followed by ANMI and
ACC criteria with 12, and SO and SS with 11. While Lo and Ls selected the same par-
titions, So and Ss had different choices on several data sets. The performances of D and
DB were better on the pairwise similarity space than on the original space, suggesting
that the first should be preferred. For the clustering ensemble construction method B,
S on the original space was the best validity measure, being the best criterion in 11
data sets. DB was the best on the similarity space by selecting in 9 data sets equal
or better partitions than the other indices. L was the best criterion only 5 times on the
original space and 6 on the similarity space. The poor performance of L is due to its
sensibility to “bad” clustering ensembles. Figure 2 shows the co-association matrices
for construction methods A and B and the “natural” partition for the Cigar data set.
While in figure 2 (a) there are no co-associations between patterns belonging to differ-
ent “natural” clusters, in figure 2 (b) it can be seen (especially on the lower right corner)
that some patterns from distinct “natural” clusters have co-association different from 0.
This explains why the Ls performed correctly on the clustering ensemble construction
method A and not on B.

From the comparison involving the criteria on the original and similarity spaces, we
conclude that L (on both spaces) is the best choice if the clustering ensemble is “good”,
S is robust on the original space, and D was the worst criterion (despite that the simi-
larity space version presents better results than the original space version). We also con-
clude that the consensus partition evaluation may also be restricted to the co-association
matrix. This has the advantages of exploring sparse similarities representations (particu-
larly when using Ls) and complying with data privacy. Evaluating consensus partitions
on the original space has also another disadvantage: how to validate a consensus parti-
tion if the partitions belonging to the clustering ensemble were produced using different
representations (e.g. distinct subset of feature, random projections, etc)?
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By comparing the criteria on the similarity spaces with the criteria based on the
consistency between the clustering ensemble partitions and the consensus partition, Ls

was better than ANMI and ACC in construction method A, and DBs was better in
construction method B; so we can discard both ANMI and ACC, and rely instead on
the similarity-based criteria in order to assess the consensus partitions.

6 Conclusions

The validation of clustering solutions were proposed at three distinct levels: original
data representation, learned pairwise similarity, and consistency with the clustering en-
semble partitions. A new validity measure based on the likelihood estimation of pattern
pairwise co-occurrence probabilities was introduced. Experimental results seem to indi-
cate that: the new validity measure is a good choice for performing consensus clustering
validation when the clusters belonging to the clustering ensemble are not likely to con-
tain patterns of different “natural” clusters; the learned similarity-based criteria can be
used, instead of the traditional clustering ensemble measures; and the similarity-based
criteria are a good option when the original data representation is not available. More
extensive evaluation of the validity indices is being conducted over a larger number of
data sets and on the comparison of consensus results produced by different combination
strategies.
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Abstract. In this paper we propose a new approach for consensus clus-

tering which is built upon the evidence accumulation framework. Our

method takes the co-association matrix as the only input and produces

a soft partition of the dataset, where each object is probabilistically as-

signed to a cluster, as output. Our method reduces the clustering problem

to a polynomial optimization in probability domain, which is attacked

by means of the Baum-Eagon inequality. Experiments on both synthetic

and real benchmarks data, assess the effectiveness of our approach.

1 Introduction

There is a close connection between the concepts of pairwise similarity and prob-
ability in the context of unsupervised learning. It is a common assumption that,
if two objects are similar, it is very likely that they are grouped together by
some clustering algorithm, the higher the similarity, the higher the probability
of co-occurrence in a cluster. Conversely, if two objects co-occur very often in
the same cluster (high co-occurrence probability), then it is very likely that they
are very similar. This duality and correspondence between pairwise similarity
and pairwise probability within clusters forms the core idea of the clustering
ensemble approach known as evidence accumulation clustering (EAC) [1].

Evidence accumulation clustering combines the results of multiple clusterings
into a single data partition by viewing each clustering result as an indepen-
dent evidence of pairwise data organization. Using a pairwise frequency count
mechanism amongst a clustering committee, the method yields, as an interme-
diate result, a co-association matrix that summarizes the evidence taken from
the several members in the clustering ensemble. This matrix corresponds to the
maximum likelihood estimate of the probability of pairs of objects being in the
same group, as assessed by the clustering committee. One of the main advantages
of EAC is that it allows for a big diversification within the clustering committee.
Indeed, no assumption is made about the algorithms used to produce the data
partitions, it is robust to incomplete information, i.e., we may include partitions
over sub-sampled versions of the original data set, and no restriction is made on
the number of clusters of the partitions.

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 395–404, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Once a co-association matrix is produced according to the EAC framework, a
consensus clustering is obtained by applying a clustering algorithm, which typ-
ically induces a hard partition, to the co-association matrix. Although having
crisp partitions as baseline for the accumulation of evidence of data organiza-
tion is reasonable, this assumption is too restrictive in the phase of producing
a consensus clustering. This is for instance the case for many important appli-
cations such as clustering micro-array gene expression data, text categorization,
perceptual grouping, labeling of visual scenes and medical diagnosis. In fact, the
importance of dealing with overlapping clusters has been recognized long ago [2]
and recently, in the machine learning community, there has been a renewed in-
terest around this problem [3,4]. Moreover, by inducing hard partitions we loose
important information like the level of uncertainty of each label assignment. It
is also worth considering that the underlying clustering criteria of ad hoc algo-
rithms do not take advantage of the probabilistic interpretation of the computed
similarities, which is an intrinsic part of the EAC framework.

In this paper we propose a new approach for consensus clustering which is
built upon the evidence accumulation framework. Our idea was inspired by a
recent work due to Zass and Sashua [5]. Our method takes the co-association
matrix as the only input and produces a soft partition of the data set, where
each object is probabilistically assigned to a cluster, as output. In order to find
the unknown cluster assignments, we fully exploit the fact that each entry of the
co-association matrix is an estimation of the probability of two objects to be in a
same cluster, which is derived from the ensemble of clusterings. Indeed, it is easy
to see that under reasonable assumptions, the probability that two objects i and
j will occur in the same cluster is a function of the unknown cluster assignments
of i and j. By minimizing the divergence between the estimation derived from
the co-association matrix and this function of the unknowns, we obtain the result
of the clustering procedure. More specifically, our method reduces the cluster-
ing problem to a polynomial optimization in the probability domain, which is
attacked by means of the Baum-Eagon inequality [6]. This inequality, indeed,
provides us with a class of nonlinear transformations that serve our purpose. In
order to assess the effectiveness of our findings we conducted experiments on
both synthetic and real benchmark data sets.

2 A Probabilistic Model for Clustering

Let O = {1, . . . , n} be a set of data objects (or simply objects) to cluster into
K classes and let E = {cli}N

i=1 be an ensemble of N clusterings of O obtained
by running different algorithms with different parameterizations on (possibly)
sub-sampled versions of the original data set O. Data sub-sampling is herein
put forward as a most general framework for the following reasons: it favors
the diversification of the clustering ensemble; it models situations of distributed
clustering where local clusterers have only partial access to the data; by using
this type of data perturbation, the co-association matrix has an additional inter-
pretation of pairwise stability that can further be used for the purpose of cluster
validation [7].
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Each clustering in the ensemble E is a function cli : Oi → {1, . . . ,Ki} from
the set of objects Oi ⊆ O to a class label. For the afore-mentioned reasons, Oi is
a subset of the original data set O and, moreover, each clustering may assume a
different number of classes Ki. We denote by Ωij the indices of the clusterings
where i and j have been classified, which is given by

Ωij = {p = 1 . . .N : i, j ∈ Op} .

Consider also Nij = |Ωij |, where | · | provides the cardinality of the argument,
which is the number of clusterings where i and j have been both classified.

The aim of our work is to learn, from the ensemble of clusterings E , how
to cluster the objects into K classes, without having, in principle, any other
information about the objects we are going to cluster. To this end, we start
from the assumption that objects can be softly assigned to clusters. Hence, the
clustering problem consists in estimating, for each object i ∈ O, an unknown
assignment yi, which is a probability distribution over the set of cluster labels
{1, . . . ,K}, or, in other words, an element of the standard simplex ΔK given by

ΔK = {x ∈ �
K
+ : ‖x‖1 = 1} ,

where �+ is the set of nonnegative reals, and ‖ ·‖1 is the �1-norm. The kth entry
of yi thus provides the probability of object i to be assigned to cluster k. Given
the unknown cluster assignments yi and yj of objects i and j, respectively, and
assuming independent cluster assignments, the probability of them to occur in a
same cluster can be easily derived as y�

i yj . Suppose now Y = (y1, . . . ,yn) ∈ Δn
K

to be the matrix formed by stacking the yi’s, which in turn form the columns of
Y . Then, the n× n matrix Y �Y provides the co-occurrence probability of any
pair of objects in O.

For each pair of objects i and j, let Xij be a Bernoulli distributed random
variable (r.v.) indicating whether objects i and j occur in a same cluster. Note
that, according to our model, the mean (and therefore the parameter) of Xij is
y�

i yj , i.e., the probability of co-occurrence of i and j. For each pair of objects
i and j, we collect from the clusterings ensemble Nij independent realizations
x

(p)
ij of Xij , which are given by:

x
(p)
ij =

{
1 if clp(i) = clp(j) ,
0 otherwise .

for p ∈ Ωij . By taking their mean, we obtain the empirical probability of co-
occurrence cij , which is the fraction of times objects i and j have been assigned
to a same cluster:

cij =
1

Nij

∑
p∈Ωij

x
(p)
ij .

The matrix C = (cij), derived from the empirical probabilities of co-occurrence
of any pair of objects, is known as the co-association matrix within the evidence
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accumulation-based framework for clustering [8,1]. Since C is the maximum like-
lihood estimate of Y �Y given the observations from the clustering ensemble E ,
we will refer to the former as the empirical co-association matrix, and to the
latter as the true co-association matrix.

At this point, by minimizing the divergence, in a least-square sense, of the
true co-association matrix from the empirical one, with respect to Y , we find a
solution Y ∗ of the clustering problem. This leads to the following optimization
problem:

Y ∗ = arg min ‖C − Y �Y ‖2
F

s.t. Y ∈ Δn
K .

(1)

where ‖ · ‖F is the Frobenius norm. Note that Y ∗ provides us with soft assign-
ments of the objects to the K classes. Indeed, y∗ki gives the probability of object
i to be assigned to class k. If a hard partition is needed, this can be forced
by assigning each object i to the highest probability class, which is given by:
arg maxk=1...K{y∗ki}. Moreover, by computing the entropy of each yi, we can
obtain an indication of the uncertainty of the cluster assignment for object i.

3 Related Work

In [5] a similar approach is proposed for pairwise clustering. First of all, a pre-
processing on the similarity matrix W looks for its closest doubly-stochastic
matrix F under �1 norm, or Frobenius norm, or relative entropy [9]. The k-
clustering problem is then tackled by finding a completely-positive factorization
of F = (fij) in the least-square sense, i.e., by solving the following optimization
problem:

G∗ = arg min ‖F −G�G‖2
F

s.t. G ∈ �
k×n
+ .

(2)

Note that this leads to an optimization program, which resembles (1), but is
inherently different. The elements gri of the resulting matrix G provide an in-
dication of object i to be assigned to class r. However, unlike our formulation,
these quantities are not explicit probabilities and it may happen for instance that
gri = 0 for all r = 1 . . . k, i.e., some objects may remain in principle unclassified.

The approach proposed to find a local solution of (2) consists in iterating the
following updating rule:

gri ←
gri

∑n
j �=i grjfij∑k

s=1 gsi

∑n
j �=i gsjgrj

.

The computational complexity for updating all entries in G once (complete iter-
ation) is O(kn2), while we expect to find a solution in O(γkn2), where γ is the
average number of complete iterations required to converge. A disadvantage of
this iterative scheme is that updates must be sequential, i.e., we cannot update
all entries of G in parallel.
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4 The Baum-Eagon Inequality

In the late 1960s, Baum and Eagon [6] introduced a class of nonlinear transfor-
mations in probability domain and proved a fundamental result which turns out
to be very useful for the optimization task at hand. The next theorem introduces
what is known as the Baum-Eagon inequality.

Theorem 1 (Baum-Eagon). Let X = (xri) ∈ Δn
k and Q(X) be a homoge-

neous polynomial in the variables xri with nonnegative coefficients. Define the
mapping Z = (zri) = M(X) as follows:

zri = xri
∂Q(X)
∂xri

/ k∑
s=1

xsi
∂Q(X)
∂xsi

, (3)

for all i = 1 . . . n and r = 1 . . . k. Then Q(M(X)) > Q(X), unless M(X) = X.
In other words M is a growth transformation for the polynomial Q.

This result applies to homogeneous polynomials, however in a subsequent paper,
Baum and Sell [10] proved that Theorem 1 still holds in the case of arbitrary
polynomials with nonnegative coefficients, and further extended the result by
proving that M increases Q homotopically, which means that for all 0 ≤ η ≤ 1,
Q(ηM(X) + (1 − η)X) ≥ Q(X) with equality if and only if M(X) = X .

The Baum-Eagon inequality provides an effective iterative means for maxi-
mizing polynomial functions in probability domains, and in fact it has served
as the basis for various statistical estimation techniques developed within the
theory of probabilistic functions of Markov chains [11]. It is indeed not diffi-
cult to show that, by starting from the interior of the simplex, the fixed points
of the Baum-Eagon dynamics satisfy the first-order Karush-Kuhn-Tucker nec-
essary conditions for local maxima and that we have a strict local solution in
correspondence to asymptotically stable point.

5 The Algorithm

In order to use the Baum-Eagon theorem for optimizing (1) we need to meet the
requirement of having a polynomial to maximize with nonnegative coefficients
in the simplex-constrained variables. To this end, we consider the following op-
timization program, which is proved to be equivalent to (1):

max 2Tr(CY �Y ) + ‖Y �EKY ‖2 − ‖Y �Y ‖2

s.t. Y ∈ Δn
K ,

(4)

where EK is the K ×K matrix of all 1’s, and Tr(·) is the matrix trace function.

Proposition 1. The maximizers of (4) are minimizers of (1) and vice versa.
Moreover, the objective function of (4) is a polynomial with nonnegative coeffi-
cients in the variables yki, which are elements of Y .

Proof. Let P (Y ) and Q(Y ) be the objective functions of (1) and (4), respectively.
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To prove the second part of the proposition note that trivially every term
of the polynomial ‖Y �Y ‖2 is also a term of ‖Y �EKY ‖2. Hence, Q(Y ) is a
polynomial with nonnegative coefficients in the variables yki.

As for the second part, by simple algebra, we can write Q(Y ) in terms of
P (Y ) as follows:

Q(Y ) = ‖C‖2 − P (Y ) + ‖Y �EKY ‖2

= ‖C‖2 − P (Y ) + 1 ,

where we used the fact that ‖Y �EKY ‖ = 1. Note that the removal of the
constant terms from Q(Y ) leaves its maximizers over Δn

K unaffected. Therefore,
maximizers of (4) are also maximizers of −P (Y ) over Δn

K and thus minimizers
of (1). This concludes the proof.

By Proposition 1 we can use Theorem 1 to locally optimize (4). This allows us to
find a solution of (1). Note that, in our case, the objective function is not a homo-
geneous polynomial but, as mentioned previously, this condition is not necessary
[10]. By applying (3), we obtain the following updating rule for Y = (yki):

y
(t+1)
ki = y

(t)
ki

n + [Y (C − Y �Y )]ki

n +
∑

k y
(t)
ki [Y (C − Y �Y )]ki

, (5)

where we abbreviated Y (t) with Y and any non-constant iteration of (5) strictly
decreases the objective function of (1).

The computational complexity of the proposed dynamics is O(γkn2), where γ
is the average number of iterations required to converge (note that in our exper-
iments we kept γ fixed). One remarkable advantage of this dynamics is that it
can be easily parallelized in order to benefit from modern multi-core processors.
Additionally, it can be easily implemented with few lines of Matlab code.

6 Experiments

We conducted experiments on different real data-sets from the UCI Machine
Learning Repository: iris, house-votes, std-yeast-cell and breast-cancer. Addi-
tionally, we considered also the image-complex synthetic data-set, shown in fig-
ure 1. For each data-set, we produced the clustering ensemble E by running
different clustering algorithms, with different parameters, on subsampled ver-
sions of the original data-set (the sampling rate was fixed to 0.9). The clustering
algorithms used to produce the ensemble were the following [12]: Single Link
(SL), Complete Link (CL), Average Link (AL) and K-means (KM).

Table 1 summarizes the experimental setting that has been considered. For
each data-set, we report the optimal number of clusters K and the size n of the
data-set, respectively. As for the ensemble, each algorithm was run several times
in order to produce clusterings with different number of classes, Ki. For each
clustering approach and each parametrization of the same we generated N = 100
different subsampled versions of the data-set.
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Fig. 1. Image Complex Synthetic data-set

Table 1. Benchmark data-sets and parameter values used with different clustering

algorithms (see text for description)

Data-Sets K n
Ensemble

Ki

iris 3 150 3-10,15,20

house-votes 2 232 2-10,15,20

std-yeast-cell 5 384 5-10,15,20

breast-cancer 2 683 2-10,15,20

image-complex 8 1000 8-15,20,30, 37

Once all the clusterings have been generated, we grouped them by algorithm
into several base ensembles, namely ESL, EAL, ECL and EKM. Moreover, we created
a large ensemble EAll from the union of all of them. For each ensemble we created a
corresponding co-association matrix, namely CSL, CAL, CCL, CKM and CAll. For
each of these co-association matrices, we applied our Pairwise Probabilistic Clus-
tering (PPC) approach, and compared it against the performances obtained with
the same matrices by the agglomerative hierarchical algorithms SL, AL and CL.
Each method was provided with the optimal number of classes as input parameter.

Figure 2 summarizes the results obtained over the benchmark data-sets. The
performances are assessed in terms of accuracy, i.e., the percentage of correct
labels. When we consider the base ensembles, i.e., ESL, EAL, ECL and EKM, on
average our approach achieves the best results, although other approaches, such
as the AL, perform comparably well. Our algorithm, however, outperforms the
competitors when we take the union EAll of all the base ensembles into account.
Interestingly, the results obtained by PPC on the combined ensemble are as
good as the best one obtained in the base ensembles and, in some cases like the
image-complex dataset, they are even better.

The different levels of performance obtained by the several algorithms over
the different clustering ensembles, as shown in Figures 2(a) to 2(d), are illus-
trative of the distinctiveness between the underlying clustering ensembles, and
the diversity of clustering solutions. It is then clear that the ensemble EAll has
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(b) Results with CSL
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(c) Results with CAL
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(d) Results with CAll

Fig. 2. Experiments on benchmark data-sets

(a) CAL (b) CKM

Fig. 3. Co-association matrices with ensembles EAL and EKM

the largest diversity when compared to the individual ensembles; this is quan-
titatively confirmed when computing average pairwise consistency values be-
tween partitions in the individual CEs and the one resulting by the merging of
these. This higher diversity causes the appearance of noisy-like structure in the
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Fig. 4. Results on the breast-cancer data-set

co-association matrices. This is illustrated in Figures 3(a) and 3(b) correspond-
ing to the co-association matrices CAL and CKM, respectively, when compared
to the CAll in Figure 4(a). The better performance of the PPC algorithm on
the latter CE, can be attributed to a leveraging effect over these local noisy
estimates, thus better unveiling the underlying structure of the data. This is
illustrated next.

Figures 4(a) and 4(b) show the empirical co-association matrix CAll and the
true one, respectively, for the breast-cancer data-set. While the block structure
of two clusters is apparent in both figures, we can see that the true co-association
turns out to be less noisy than the empirical one. In Figure 4(c) we plot the soft
cluster assignments, Y . Here, object indices are on the x-axis, and probabilities
are on the y-axis, each curve representing the profile of a cluster. As one can see
from the cluster memberships, the two clusters can be clearly evinced, although
there is a higher level of uncertainty in the assignments of objects belonging to
the smallest cluster. Indeed, this can also be seen in Figure 4(d), where we plot
the uncertainty hi in the cluster assignments, which is computed for each object
i as the normalized entropy of yi, i.e.,

hi = −
∑K

k=1 yki log(yki)
log(K)

.
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7 Conclusion

In this paper we introduced a new approach for consensus clustering. Taking ad-
vantage of the probabilistic interpretation of the computed similarities of the the
co-association matrix, derived from the ensemble of clusterings, using the Evi-
dence Accumulation Clustering, we propose a principled soft clustering method.
Our method reduces the clustering problem to a polynomial optimization in
probability domain, which is attacked by means of the Baum-Eagon inequality.
Experiments on both synthetic and real benchmarks assess the effectiveness of
our approach.
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Abstract. Cluster ensemble techniques are a means for boosting the

clustering performance. However, many cluster ensemble methods are

faced with high computational complexity. Indeed, the median partition

methods are NP-complete. While a variety of approximative approaches

for suboptimal solutions have been proposed in the literature, the perfor-

mance evaluation is typically done by means of ground truth. In contrast

this work explores the question how well the cluster ensemble methods

perform in an absolute sense without ground truth, i.e. how they compare

to the (unknown) optimal solution. We present a study of applying and

extending a lower bound as an attempt to answer the question. In partic-

ular, we demonstrate the tightness of the lower bound, which indicates

that there exists no more room for further improvement (for the par-

ticular data set at hand). The lower bound can thus be considered as a

means of exploring the performance limit of cluster ensemble techniques.

1 Introduction

Clustering, or finding partitions1, of data is a fundamental task in multivari-
ate data analysis. It receives increasingly importance due to the ever increasing
amount of data. A large variety of clustering algorithms [20] have been proposed
in the past. A recent development is constrained clustering [4], which accommo-
dates additional information or domain knowledge. Cluster ensemble techniques
provide another means for boosting the clustering performance.

Motivated by the success of multiple classifier systems, the idea of combining
different clustering results emerged. Given a data set, a cluster ensemble tech-
nique consists of two principal steps: ensemble generation and consensus compu-
tation. In the first step, an ensemble (with sufficient diversity) is computed. For
this purpose different clustering algorithms or the same algorithm with varying
parameter settings can be applied. Other options include the use of different
subsets of features and projection of the data into different subspaces. The main
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arship under the process number 290101-2006-9.
1 Recently, efforts have been undertaken to go beyond the traditional understanding

of clustering as partitions, i.e. [16]. This is, however, not the focus of this work.
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challenge of cluster ensemble techniques lies in an appropriate way of computing
a final clustering, which disagrees least overall with the input ensemble.

There exist two main approaches for consensus computation: co-occurrence
based and median partition methods. The fundamental assumption of co-occur-
rence based methods is that patterns belonging to a ”natural” cluster are very
likely to be co-located in the same cluster in different data partitions. Therefore,
a matrix with such co-location information can serve as plausibility values that
two patterns should be clustered together. Typically, a subsequent step based
on this matrix is designed to compute a final clustering; see for instance the
evidence accumulation method [6]. Median partition methods are based on an
optimization formulation of consensus computation; see for instance [17]. Since
this optimization problem is typically NP-complete [3], various suboptimal so-
lutions have been proposed.

The focus of this work is performance assessment of cluster ensemble tech-
niques without using any ground truth information. In the literature the ex-
perimental validation is typically done by means of ground truth. In contrast
we explore the question how well the cluster ensemble methods perform in an
absolute sense without ground truth, i.e. how they compare to the (unknown)
optimal solution. This paper presents a study of applying and extending the
lower bound presented in [11] as an attempt to answer the question.

2 Problem Statement

Given the data set X = {x1, x2, . . . , xn} of n patterns xi, a cluster ensemble is
a set P = {P1, P2, . . . , PN}, where Pi is a clustering of X . We denote the set
of all possible clusterings of X by PX (P ⊂ PX). The goal of cluster ensemble
techniques is to find a consensus clustering P ∗ ∈ PX , which optimally represents
the ensemble P .

In median partition methods this optimality is formulated as:

P ∗ = arg min
P∈PX

N∑
i=1

d(P, Pi)

where d() is a distance (dissimilarity) function between two clusterings. Note that
this definition is a special instance of the so-called generalized median problem,
which has been intensively investigated in structural pattern recognition, see
[12,10] for the case of strings and graphs.

The median partition problem has been proven to be NP-complete [3]. An
exhaustive search in PX is computationally intractable. In practice suboptimal
approaches [14,17] are thus developed to solve the optimization problem.

Given a suboptimal solution P̃ ∈ PX , however, the question of its accuracy
arises. In [11] a lower bound is proposed to answer this question (for the gen-
eral case of generalized median problems). For an approximate solution P̃ the
following relationship holds:
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SOD(P̃ ) =
N∑

i=1

d(P̃ , Pi) ≥
N∑

i=1

d(P ∗, Pi) = SOD(P ∗)

where SOD stands for sum of distances. The quality of P̃ can be absolutely
measured by the difference SOD(P̃ ) − SOD(P ∗). Since P ∗ and SOD(P ∗) are
unknown in general, we resort to a lower bound Γ with

0 ≤ Γ ≤ SOD(P ∗) ≤ SOD(P̃ )

and measure the quality of P̃ by SOD(P̃ )−Γ instead. Obviously, the trivial lower
bound Γ = 0 is useless. We require Γ to be as close to SOD(P ∗) as possible.

In [11] a lower bound based on linear programming is proposed for metric
spaces. Assuming a metric distance function d(), the lower bound for the median
partition problem is specified by the solution Γ of the following linear program:

minimize x1 + x2 + · · · + xN subject to

∀i, j ∈ {1, 2, . . . , N}, i 	= j,

⎧⎨⎩xi + xj ≥ d(Pi, Pj)
xi + d(Pi, Pj) ≥ xj

xj + d(Pi, Pj) ≥ xi

∀i ∈ {1, 2, . . . , N}, xi ≥ 0

Given a suboptimal solution P̃ and the computed lower bound, the deviation
Δ = SOD(P̃ )−Γ can thus give a hint of the absolute accuracy of P̃ . In particular,
if Δ ≈ 0, then it can be safely claimed that there is hardly room for further
improvement (for the particular data set at hand).

In this paper we present a study of the lower bound Γ using two cluster
ensemble methods and eleven data sets. Among others it will be demonstrated
that this lower bound can (almost) be reached by the computed solution. This
tightness indicates the limited room for further improvement. Therefore, the
lower bound Γ represents a means of exploring the performance limit of cluster
ensemble techniques.

The remainder of this paper is organized as follows. Section 3 describes the
experimental settings of our study. The experimental results are presented in
Section 4. Later in Section 5 the study is extended to deal with weighted cluster
ensemble techniques. Finally, some further discussions conclude this paper.

3 Experimental Settings

In this section we give the details of designing our study: Metric distance func-
tions, cluster ensemble methods, and data sets used in the experiments and the
test protocol.

3.1 Metric Distance Functions

Many distance functions have been suggested to measure the dissimilarity of two
partitions of the same data set; see [13] for a detailed discussion. For our study
the following three were selected, which are provably metric.
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Variance of information: This metric is an information-theoretic one. Given
two partitions P and Q of X , it is defined by

dvi(P,Q) = H(P ) + H(Q) − 2I(P,Q)

where H(P ) and H(Q) are the entropy of P and Q, respectively, and I(P,Q)
represents the mutual information of P and Q; see [13] for a proof of the metric
property.
van Dongen metric: Fundamental to this distance function [18] is a (non-
optimal) matching of the two sets of clusters.

dvd(P,Q) = 1 − 1
2n

·
( ∑

Cp∈P

max
Cq∈Q

|Cp ∩ Cq| +
∑

Cq∈Q

max
Cp∈P

|Cq ∩ Cp|
)

Mirkin metric: Let a equal to the number of pairs of patterns co-clustered in
P but not in Q and b equal to the number of pairs of patterns co-clustered in Q
but not in P . Then, the Mirkin metric belongs to the class of distance functions
based on counting pairs and is simply defined by dm(P,Q) = a + b. A proof of
the metric property can be found in [7].

3.2 Cluster Ensemble Methods

We used two cluster ensemble methods in our experiments. The first one is the
evidence accumulation method [6]. It computes the co-occurrence matrix, which
is interpreted as a new similarity measure between the patterns. The consensus
partition is then obtained by using a hierarchical clustering algorithm. We report
the results based on the average-linkage variant (EAC-AL) only, since it mostly
outperforms the single-linkage variant. The second cluster ensemble method (RW)
is based on the co-occurrence matrix as well. But it adapts a random walker
segmentation algorithm to produce a final clustering [1].

3.3 Data Sets

For our experiments we used two data sources. Nine UCI data sets [2] as sum-
marized in Table 1. Special remarks need to be made about the Mammographic
Mass (Mammo) and the Optical Recognition of Handwritten Digits (Optic) data
sets. For Mammo, all patterns with missing values were removed, reducing this
way the number of patterns from 961 to 830. For the Optic data set we ex-
tracted a subset of the first 100 patterns of each digit, producing a subset of
1000 patterns.

Two artificial data sets from [17] were included into our experiments. The
first data set (2D2K) contains 500 2D points from two Gaussian clusters and the
second data set (8D5K) contains 1000 points from five multivariate Gaussian
distributions (200 points each) in 8D space.
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Table 1. Summary of test data sets

Data set n # attributes # clusters

Iris 150 4 3

Wine 178 13 3

Breast 683 9 2

Optic 1000 64 10

Soy 47 35 2

Glass 218 9 7

Haberman 306 3 2

Mammo 830 5 2

Yeast 1484 8 10

2D2K 500 2 2

8D5K 1000 8 5

3.4 Test Protocol

Given an ensemble P , we compute a final clustering P̃ using either EAC-AL or
RW. The following measures are used to characterize the performance: SOD(P̃ ),
the lower bound Γ (for the ensemble), and the deviation

Δ′ = (SOD(P̃ ) − Γ )/SOD(P̃ )

(in percentage). For each data set, this procedure is repeated ten times (i.e. ten
different ensembles) and the average measures are reported.

4 Experimental Results and Discussions

For the two cluster ensemble methods EAC-AL and RW the performance mea-
sures are shown in Table 2. The deviation Δ′ can be interpreted as the potential
of further improvement. For three data sets (Haberman, Mammo, and 2D2K)
SOD(P̃ ) almost reaches the lower bound Γ for all three distance functions, in-
dicating practically no room for improvement. To some extent the same applies
to the data set Soy and 8D5K in conjunction with EAC-AL. In these cases the
lower bound turns out to be extremely tight. On the other hand, if the deviation
is large, we must be careful in making any claims. The large deviation may be
caused by two reasons: The lower bound is not tight enough in that particular
case or the computed solution P̃ is still far away from the (unknown) optimal
solution P ∗.

The second case is certainly more delicate. But we may interpret as of some,
although uncertain, potential of further improvement. Given such an ensemble,
we could generate more ensembles and compute additional candidates for consen-
sus clustering. The measure SOD can then be used for selecting a final solution.
This strategy has been suggested in [17] (although in a different context): ”Our
objective function has the added advantage that it allows one to add a stage
that selects the best consensus function without any supervisory information,
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Table 2. Deviation Δ′

Evidence accumulation method EAC-AL

dvi dvd dm

dataset SOD(P̃ ) Γ Δ′(%) SOD(P̃ ) Γ Δ′(%) SOD(P̃ ) Γ Δ′(%)

Iris 8.22 7.24 12.0 2.26 2.16 4.3 27621 25113 9.1

Wine 2.01 1.86 7.7 0.35 0.33 5.1 7232 6777 6.3

Breast 1.16 1.08 7.3 0.16 0.15 3.8 71244 68392 4.0

Optic 7.50 6.37 15.0 2.06 1.85 10.0 378439 315016 16.8

Soy 3.90 3.79 2.9 1.65 1.62 1.9 1616 1591 1.6

Glass 5.20 4.66 10.4 1.37 1.24 9.4 39909 33939 15.8

Haberman 7.60 7.58 0.3 2.84 2.84 0.0 233417 232994 0.2

Mammo 1.77 1.77 0.0 0.38 0.38 0.0 248649 248649 0.0

Yeast 13.94 11.40 18.3 3.85 3.34 13.4 3512666 3010184 14.3

2D2K 4.86 4.69 3.0 1.18 1.15 3.0 1037580 978050 5.7

8D5K 4.97 4.91 1.8 1.69 1.66 2.0 585462 579262 1.1

Random walker based method RW

dvi dvd dm

dataset SOD(P̃ ) Γ Δ′(%) SOD(P̃ ) Γ Δ′(%) SOD(P̃ ) Γ Δ′(%)

Iris 8.40 7.24 13.8 2.28 2.16 5.2 28067 25113 10.5

Wine 2.09 1.86 10.0 0.35 0.33 4.5 7242 6777 5.8

Breast 1.49 1.08 27.7 0.20 0.15 23.9 90032 68392 24.0

Optic 11.38 6.37 44.0 3.90 1.85 50.9 749459 315016 57.7

Soy 6.19 3.79 36.9 4.08 1.62 52.0 3433 1591 49.3

Glass 7.96 4.66 41.1 2.53 1.24 45.9 69186 33940 49.3

Haberman 7.70 7.58 1.5 2.86 2.84 0.7 234484 232995 0.6

Mammo 1.77 1.77 0.0 0.38 0.38 0.0 248650 248650 0.0

Yeast 18.60 11.40 38.2 10.51 3.34 67.5 6606869 3010185 53.4

2D2K 4.69 4.69 0.0 1.15 1.15 0.0 978050 978050 0.0

8D5K 5.24 4.91 5.9 2.43 1.66 15.0 721412 579262 11.3

by simply selecting the one with the highest ANMI” (ANMI is the particular
SOD used in that work). In doing so, a tight lower bound may give us a hint to
continue or terminate the procedure without any knowledge of ground truth.

There is also the issue of inconsistency among different distance functions.
Sometimes it happens that the deviation values for two distance functions vary,
partly substantially. This observation is not really surprising. Different distance
functions may not share the same view of dissimilarity, thus the quality of a
consensus clustering. It is up to the user to decide which distance function is
more suitable for a particular data clustering task.

Finally, we want to point out that the two cluster ensembles methods used in
our study do not belong the class of median partition techniques. But even in
this case the lower bound still provides useful information about the optimality
of the computed consensus clustering.
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Table 3. Comparison of lower bounds Γ and Γm

dataset Γ Γm (Γm − Γ )/Γ (%)

Iris 25113 26377 5.0

Wine 6777 6820 0.6

Breast 68392 71196 4.1

Optic 315016 335678 6.6

Soy 1591 1599 0.5

Glass 33940 34513 1.7

Haberman 232995 233273 0.1

Mammo 248650 248650 0.0

Yeast 3010185 3224160 7.1

2D2K 978050 1168728 8.4

8D5K 579262 584848 1.0

Special case dm: The cluster ensemble problem with Merkin distance dm has
been intensively investigated [7,8]. This is mainly due to the simplicity of dm,
which allows to obtain deep insight into this particular consensus clustering
problem. In particular, several suboptimal algorithms have been proposed with
known approximation factor. In addition, a lower bound specific to dm only can
be defined:

Γm =
∑
i<j

min
( N∑

k=1

X
(k)
ij , N −

N∑
k=1

X
(k)
ij

)
where X

(k)
ij is the Bernoulli random variable as 1 if xi and xj are co-clustered

in partition Pk and 0 otherwise. Γm takes the specific properties of dm into
account, whereas Γ is based on the general properties of a metric only. Γm is thus
better informed and expected to be tighter than Γ . In Table 3 we compare the
closedness of the two lower bounds. It is remarkable that without any knowledge
of dm and using the metric properties alone, the general lower bound Γ almost
reaches Γm.

5 Extension to Weighted Cluster Ensemble Techniques

Cluster ensembles techniques can be extended by assigning a weight wi to each
involved partition Pi, which represents the estimated relative merit of the par-
titions. In [19], for instance, four weights are considered: inter-cluster distance,
intra-cluster distance, mean size of clusters, and difference between the cluster
sizes. Then, the weighted median partition problem can be stated as:

P ∗ = arg min
P∈PX

N∑
i=1

wi · d(P, Pi)

Here we assume that smaller weights mean favorable partitions. The extension
of the linear program lower bound Γ to deal with the weighted cluster ensemble
problem is straightforward, resulting in a lower bound Γw.
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minimize w1 · x1 + w2 · x2 + · · · + wN · xN subject to

∀i, j ∈ {1, 2, . . . , N}, i 	= j,

⎧⎨⎩
xi + xj ≥ d(Pi, Pj)
xi + d(Pi, Pj) ≥ xj

xj + d(Pi, Pj) ≥ xi

∀i ∈ {1, 2, . . . , N}, xi ≥ 0

Many cluster ensembles methods can be easily extended to integrate such weights.
In co-occurrence based techniques such as EAC-AL and RW this can be done when
computing the co-occurrence matrix. In our case we have used the inter-cluster
distance as weights only.

For these weighted algorithms the performance measures are shown in Table 4.
Compared to the unweighted results in Table 2 the things have not changed

Table 4. Deviation Δ′ (weighted versions)

Weighted evidence accumulation method EAC-AL

dm dvd dvi

dataset SOD(P̃ ) Γw Δ′(%) SOD(P̃ ) Γw Δ′(%) SOD(P̃ ) Γw Δ′(%)

Iris 0.78 0.68 12.1 0.21 0.12 4.5 2599 2356 9.2

Wine 0.20 0.19 7.5 0.04 0.03 5.0 723 678 6.2

Breast 0.12 0.11 7.3 0.02 0.02 3.8 7119 6834 4.0

Optic 0.75 0.64 14.7 0.21 0.19 9.7 36742 31492 13.9

Soy 0.39 0.38 2.2 0.16 0.16 1.4 160 158 1.2

Glass 0.52 0.47 10.5 0.14 0.12 9.6 3996 3423 12.5

Haberman 0.77 0.76 1.5 0.29 0.29 0.8 23754 23303 1.9

Mammo 0.17 0.17 0.0 0.04 0.04 0.0 23794 23794 0.0

Yeast 1.40 1.14 18.4 0.38 0.33 13.2 353189 299571 15.0

2D2K 0.52 0.52 0.0 0.13 0.13 0.0 107322 107834 0.0

8D5K 0.49 0.48 1.3 0.16 0.16 1.6 56825 56218 1.0

Weighted random walker based method RW

dm dvd dvi

dataset SOD(P̃ ) Γw Δ′(%) SOD(P̃ ) Γw Δ′(%) SOD(P̃ ) Γw Δ′(%)

Iris 0.81 0.68 16.0 0.22 0.20 9.1 2753 2356 14.4

Wine 0.64 0.19 70.8 0.11 0.03 70.8 2303 677 70.6

Breast 0.22 0.11 50.6 0.03 0.02 50.5 13819 6834 50.5

Optic 1.12 0.64 43.0 0.36 0.19 46.0 55409 31492 42.2

Soy 0.52 0.38 25.5 0.39 0.16 47.6 307 157 42.3

Glass 0.85 0.47 44.7 0.30 0.13 51.9 6436 3422 42.5

Haberman 0.80 0.76 4.3 0.29 0.29 1.4 24101 23303 3.3

Mammo 0.17 0.17 0.0 0.04 0.04 0.0 23794 23794 0.0

Yeast 1.85 1.14 38.8 1.02 0.33 66.7 511552 299571 40.8

2D2K 0.52 0.52 0.9 0.13 0.13 0.9 108495 107833 0.5

8D5K 0.52 0.48 5.8 0.24 0.16 15.0 70603 56218 11.3



Exploring the Performance Limit of Cluster Ensemble Techniques 413

much. For the three data sets Haberman, Mammo, and 2D2K, SOD(P̃ ) again
almost reaches the lower bound Γw for all three distance functions, indicating
practically no room for further improvement. In conjunction with EAC-AL the
same can be said for the data set 8D5K. In these cases the lower bound turns
out to be extremely tight. On the other hand, if the deviation is larger, we must
be careful in making any claims. Also here we can take the deviation as a hint
for continuing optimization.

6 Discussions and Conclusion

In this paper we have presented a study of the lower bound Γ using eleven data
sets. It could be shown:

– In some cases this lower bound can (almost) be reached by the computed
solution. This tightness implies that there exists no more room for further
improvement for this particular data set (with respect to the used distance
function). Larger deviation may indicate some, although uncertain, potential
of improvement and thus serves as a hint for continuing optimization.

– The same observation can be made also for weighted version of cluster en-
semble methods.

– The tightness of Γ can be even demonstrated in case of Merkin distance dm

by comparing with another lower bound, which is derived from the special
nature of dm.

Based on these facts we consider the lower bound Γ (and Γm in case of dm) a
means of exploring the performance limit of cluster ensemble techniques.

The lower bound defined in [11] presumes a metric distance function d().
The triangle inequality of a metric excludes cases in which d(P,R) and d(R,Q)
are both small, but d(P,Q) is very large. In practice, however, there may exist
distance functions which do not satisfy the triangle inequality. The work [5]
extends the concept of metrics to a relaxed triangle inequality. Instead of the
strict triangle inequality, the relation:

d(P,R) + d(R,Q) ≥ d(P,Q)
1 + ε

is required, where ε is a small nonnegative constant. This is also called quasi-
metric in mathematics [9]. As long as ε is not very large, the relaxed tri-
angle inequality still retains the human intuition of similarity. Note that the
strict triangle inequality is a special case with ε = 0. The lower bound Γ
can be easily extended to quasi-metric distance functions by changing the in-
equalities in the linear program accordingly. This extended lower bound can be
expected to be useful in working with cluster ensemble methods based on quasi-
metrics.
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10. Jiang, X., Münger, A., Bunke, H.: On median graphs: Properties, algorithms, and

applications. IEEE Trans. on PAMI 23(10), 1144–1151 (2001)

11. Jiang, X., Bunke, H.: Optimal lower bound for generalized median problems in

metric space. In: Caelli, T., Amin, A., Duin, R.P.W., Kamel, M., de Ridder, D.

(eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 143–151. Springer, Heidel-

berg (2002)

12. Lopresti, D., Zhou, J.: Using consensus sequence voting to correct OCR errors.

Computer Vision and Image Understanding 67(1), 39–47 (1997)

13. Meila, M.: Comparing clusterings - an information based distance. Journal of Mul-

tivariate Analysis 98(5), 873–895 (2007)

14. Luo, H., Jing, F., Xie, X.: Combining multiple clusterings using information theory

based genetic algorithm. In: Proc. of Int. Conf. on Computational Intelligence and

Security, pp. 84–89 (2006)

15. Mirkin, B.G.: Mathematical Classification and Clustering. Kluwer Academic Press,

Dordrecht (1996)

16. Pelillo, M.: What is a Cluster? Perspectives from Game Theory. In: NIPS Workshop

on ”Clustering: Science of Art?” (2009)

17. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combin-

ing multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

18. van Dongen, S.: Performance criteria for graph clustering and Markov cluster ex-

periments. Technical Report INSR0012, Centrum voorWiskunde en Informatica

(2000)

19. Vega-Pons, S., Correa-Morris, J., Ruiz-Shulcloper, J.: Weighted cluster ensemble

using a kernel consensus function. In: Ruiz-Shulcloper, J., Kropatsch, W. (eds.)

CIARP 2008. LNCS, vol. 5197, pp. 195–202. Springer, Heidelberg (2008)

20. Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Trans. on Neural

Networks 16(3), 645–678 (2005)



Contour Grouping by Clustering with
Multi-feature Similarity Measure

Xue Bai, Siwei Luo, Qi Zou, and Yibiao Zhao

School of Computer and Information Technology

Beijing Jiaotong University

Beijing, China

bjtuxbai@gmail.com

Abstract. Contour grouping is a key task in computer vision domain.

It extracts the meaningful objects information from low-level image fea-

tures and provides the input for the further processing. There have been

many techniques proposed over the decades. As a useful data analy-

sis method in machine learning, clustering is a natural way for doing

the grouping task. However, due to many complicated factors in natural

images, such as noises and clutter in background, many clustering algo-

rithms, which just use pairwise similarity measure, are not robust enough

and always fail to generate grouping results that are consistent with the

visual objects perceived by human. In this article, we present how the

grouping performance is improved by utilizing multi-feature similarity

under the information based clustering framework compared with other

clustering methods using pairwise similarity.

1 Introduction

As an important task in computer vision, contour grouping takes the basic im-
age features (e.g. edgels) as input and forms the object contours for further
processing. This vision task can be seen as a clustering process with some pre-
defined similarity measure if there is no prior information about the detected
objects. According to the Gestalt Laws of perceptual organization [1], the simi-
larity between any pair of edgels can be calculated, so most methods use pairwise
similarity matrix as input for clustering procedure. However, in practice, due to
the limitation of pairwise similarity on capturing global data structure, the unsu-
pervised recognition process is very sensitive to the quality of feature description
and is affected significantly by the noisy features in background. In [2], the multi-
feature grouping cue is introduced. It can be defined over three or more data
features and is considered to be more general and reliable.

The information-based clustering (Iclust) [3] provides more flexible descrip-
tions on data relationships by utilizing collective rather than pairwise measures
of similarity. For contour grouping, we propose to use the collective similarity
measure, named multi-feature similarity, as the input information for clustering
process, and we compare the grouping results with the one produced by pairwise

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 415–422, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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similarity. The experiments show that the grouping quality is obviously improved
by using multi-feature similarity.

In the rest of this paper, the Iclust algorithm and its framework for multi-
feature similarity measure is introduced in Sect. 2. In Sect. 3, we describe the
contour grouping process based on Iclust with multi-feature similarity. The ex-
perimental results is presented in Sect. 4, and the last part is our conclusion.

2 Information Based Clustering

The information based clustering method formulate clustering as a tradeoff be-
tween maximizing the mean similarity of elements within a cluster and minimiz-
ing the complexity of the description provided by cluster membership. The goal
of the algorithm is, for each data element i, finding a probabilistic assignment
to clusters P (C|i) that maximize the object function

F = 〈s〉 − TI(C; i) , (1)

where 〈s〉 =
∑NC

C=1 P (C)s(C) is the mean similarity of elements chosen at ran-

dom out of each cluster, I(C; i) = 1
N

∑N
i=1

∑NC

C=1 P (C|i) log
[

P (C|i)
P (C)

]
is the mu-

tual information between the clusters variable C and elements variable i, and T
is the Lagrange multiplier. Furthermore, s(C) is defined as the average similarity
among elements chosen out of a single cluster

s(C) =
N∑

i1=1

N∑
i2=1

· · ·
N∑

ir=1

P (i1|C)P (i2|C) · · ·P (ir|C)s(i1, i2, · · · , ir) . (2)

The similarity measure s(i1, i2, · · · , ir) in above formulation is a collective mea-
sure of similarity among r(r > 2) elements i1, i2, · · · , ir. It is very useful for
contour grouping task when multi-feature grouping cues (e.g. cocircularity re-
quires at least three data elements [2]) are involved. Thus, Iclust provides a good
framework for describing more various data relations, not just limited to pair-
wise relation. We will demonstrate how the multi-feature similarity affects the
grouping results through experiments in Sect. 4.

3 Contour Grouping

To do contour grouping, the first step is to obtain edges detected by an edge
detector. Here, we use pb edge detector [4] to get the edge points and then use
edgelink algorithm [5] to form small line segments (edgels). Figure 1 gives an
example of edges and edgels of the same image. We now can take these edgels
as basic features or elements for further grouping process.
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(c) Edgels

Fig. 1. An example of edges and edgels generated from the same image. (a) original

image; (b) edges detected by edge detector; (c) edgels formed by edgelink.

3.1 Multi-feature Grouping Cue

For each edgel, we compute the mean gray value of nearby area to represent
that edgel. As an edgel reflects the change of gray value from one side to the
other, we need to calculate the mean gray values of two areas on both sides of
the edgel respectively. As shown in Fig. 2, the mid point of an edgel is firstly
picked up, and we can obtain a certain size of square area (e.g. 6×6). So, taking
the edgel as a borderline, the mean gray values on both sides of the edgel can be
calculated by pixels within the area enclosed by the square and the borderline.

fig1.jpg

Fig. 2. Two regions beside an edgel

So far, we have two gray values for each edgel, one representing the area
with small gray level and the other representing the area with higher gray level.
To measure the similarity among multiple features or edgels, we first calculate
the variance for each gray value among the edgels. It is inspired by the variance
definition that “it is a measure of the dispersion of a sample”. Then, the similarity
value of r(r > 2) edgels in terms of gray values is defined as following:

s(i1, i2, · · · , ir) = e
− var2

1(i1,i2,··· ,ir)

σ2
1 · e

− var2
2(i1,i2,··· ,ir)

σ2
2 , (3)

where var1(i1, i2, · · · , ir) =
∑ r

i=1(xi−x)2

r−1 , and var2(i1, i2, · · · , ir) =
∑ r

i=1(yi−y)2

r−1 .
Variables x and y represent the two gray values respectively. The parameters σ1
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and σ2 are the prior knowledge of the two variances. Here, we choose the average
of all the values of var1 for σ1 and the average of all the values of var2 for σ2.

3.2 Clustering Process with Multi-feature Similarity Measure

As we mention in Sect. 2, the formulation of Iclust algorithm contains a collec-
tive measure of similarity which can describe the relation among multiple data
elements. According to [3], if the derivative of object function (1) with respect
to the variables P (C|i) is equated to zero, we can obtain the optimal solution:

P (C|i) =
P (C)
Z(i;T )

exp
{

1
T

[rs(C; i) − (r − 1)s(C)]
}

, (4)

where Z(i;T ) is a normalization constant and s(C; i) is the expected similarity
between i and r − 1 elements in cluster C. Equation (4) can be turned into an
iterative algorithm that finds an explicit numerical solution for P (C|i) corre-
sponding to a (perhaps local) maximum of (1). Algorithm 1 gives the detailed
procedure of the clustering algorithm. We implemented the algorithm based on
[6], and for the calculation of s(C) and s(C; i), we only consider the “pure”
multi-feature similarity s(i1, i2, · · · , ir) in which the r elements i1, i2, · · · , ir are
different from each other.

Algorithm 1. Information-based clustering algorithm with multi-feature simi-
larity
Input:

– parameter T and convergence parameter ε (we set T = 1/25 and ε = 1×10−10

in our experiment)

– number of clusters NC

– number of elements r in similarity measure s(i1, i2, · · · , ir)
Output: “soft” partition of the N elements into NC clusters.

Initialization:
1. m=0

2. For each element i = 1, · · · , N : P (m)(C|i) ← random distribution.

While True
For each element i = 1, · · · , N :

1. update P (m)(C|i):
P (m+1)(C|i) =

P (m)(C)
Z(i;T )

· exp

{
1
T

[rs(m)(C; i) − (r − 1)s(m)(C)]

}
where

– s(C; i) =
∑N

i1=1 · · ·
∑N

ir−1=1 P (i1|C) · · ·P (ir−1|C)s(i1, · · · , ir−1, i)

– s(C) =
∑N

i1=1

∑N
i2=1 · · ·

∑N
ir=1 P (i1|C)P (i2|C) · · ·P (ir|C)s(i1, i2, · · · , ir)

– P (i|C) = P (C|i)P (i)/P (C), P (C) =
∑N

i=1 P (C|i)P (i), P (i) = 1/N

– Z(i; T ) =
∑NC

C
′
=1

P (C
′ |i)

2. m=m+1

3. if

∣∣∣P (m+1)(C|i) − P (m)(C|i)
∣∣∣ ≤ ε, break.
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4 Experimentation and Analysis

In our experiment, we pick up gray images and only consider gray value in-
formation when calculate similarities described in Sect. 3.1. To investigate the
influence of multi-feature similarity measure on grouping performance, we test
two clustering algorithms using pairwise similarity. One is Ncut [7], which is
considered an effective clustering method for perceptual organization of low-
level image features by partitioning a graph representation [8]. The other is also
based on Iclust in the case of parameter r = 2. We define the pairwise similarity
measure based on mean gray values of areas beside an edgel as well:

s(i1, i2) = e
− d2

1(i1,i2)

σ2
1 · e

−d2
2(i1,i2)

σ2
2 , (5)

where d1(i1, i2) = |x1−x2|, and d2(i1, i2) = |y1−y2|. Variables x and y represent
the two gray values respectively. The parameters σ1 and σ2 are the prior knowl-
edge of two distance measures d1 and d2. Specifically, we choose the average of all
the values of d1 for σ1 and the average of all the values of d2 for σ2. For grouping
with multi-feature similarity measure, we test the case where r = 3. As men-
tioned in Sect. 3.2, only the “pure” 3-feature similarities s(i1, i2, i3) (i1, i2, i3 are
different edgel elements) are considered. Thus, the clustering process is totally
based on multi-feature similarity.

We first test whether the clustering procedures can distinguish different object
contours in the image including two salient objects. Figure 3 shows that Ncut
and Iclust with 3-feature similarity have better performance than Iclust with
pairwise similarity.
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Fig. 3. Grouping results for the image with multiple objects
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(f) Iclust (3-feature)
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(l) Iclust (3-feature)
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(r) Iclust (3-feature)

Fig. 4. Grouping results produced by Ncut, information-based clustering with pairwise

similarity and information-based clustering with 3-feature similarity
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Table 1. Grouping performance measure

Image Label Performance Measure Ncut Iclust(pairwise) Iclust(3-feature)

Precision 0.78 0.50 0.60

Fig.4 (a) Recall 0.54 0.85 0.89

β 0.65 0.65 0.73

Precision 0.41 0.47 0.78

Fig.4 (g) Recall 0.70 1.00 0.95

β 0.54 0.68 0.86

Precision 0.57 0.44 0.59

Fig.4 (m) Recall 0.64 0.92 0.85

β 0.60 0.64 0.71

Figure 4 shows the grouping results for extracting one salient object contour
from background. We evaluate the grouping quality by calculating precision and
recall values, and the total performance is measured by β =

√
precision · recall.

Table 1 lists the performance measure for each clustering procedure. As we
just consider gray information in calculating similarities, and a gray value is an
average gray level within a certain small area, this feature description is relatively
rough and could bring some inaccuracy to the measurement of similarity. We
observe that 3-feature similarity measure has more stable and better grouping
performance than the other two clustering procedures using pairwise similarity.
It indicates that multi-feature similarity is more robust and not sensitive to the
quality of feature description.

5 Conclusion

We present how the multi-feature similarity measure influence the grouping re-
sults under the information-based clustering framework for the computer vision
task of contour grouping. We define this kind of similarity based on the variance
of gray values over multiple edgels. Through the experiment, we find that multi-
feature grouping cue is more reliable and robust compared with bi-feature cue.
In the future work, more image data and various values of parameter r should be
tested. And beside using variance for calculating multi-feature similarity, other
grouping cues should be further investigated.
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Abstract. Delivering digitally a realistic appearance of materials is one

of the most difficult tasks of computer vision. Accurate representation

of surface texture can be obtained by means of view- and illumination-

dependent textures. However, this kind of appearance representation pro-

duces massive datasets so their compression is inevitable. For optimal

visual performance of compression methods, their parameters should be

tuned to a specific material. We propose a set of statistical descriptors

motivated by textural features, and psychophysically evaluate their per-

formance on three subtle artificial degradations of textures appearance.

We tested five types of descriptors on five different textures and combina-

tion of thirteen surface shapes and two illuminations. We found that de-

scriptors based on a two-dimensional causal auto-regressive model, have

the highest correlation with the psychophysical results, and so can be

used for automatic detection of subtle changes in rendered textured sur-

faces in accordance with human vision.

Keywords: texture, degradation, statistical features, BTF, eye-tracking,

visual psychophysics.

1 Introduction

Advanced graphics applications such as virtual interior design, cultural heritage
ditization, etc. require considerable effort to render the appearance of real-world
accurately. When it comes to photo-realistic appearance of materials there is
no other way than to use view- and illumination-dependent measurements of
real materials. Such measurements can be represented by means of bidirectional
texture functions (BTF) [1]. Seven-dimensional BTFs represent challenging data
due to theirs massive size and thus have high processing and rendering expenses.
A number of approaches to BTF compression and modelling have been published
in the past as shown in survey [2]. Although BTF generative statistical mod-
els exist that are capable to reach huge compression ratios themselves, they
can profit from data measurement compression as well, as it can improve their
learning and modelling efficiency.

The main disadvantage of most of the compression methods is that they have
fixed parameters regardless of the type of sample being compressed. There have
been attempts to use data on visual perception for improvement of texture data
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compression. Filip et al. [3] applied a psychophysical study to obtain percep-
tually important subset of view- and illumination-dependent images and thus
consequently reduced the amount the data to be processed. On the other hand,
Guthe et al. [4] used standard contrast sensitivity in cone response space to-
gether with a psychometric difference for improvement of the data compression.
Interactions of human gaze fixation with different surface textures have also been
analysed [5]. Although these approaches provide pioneering introductions of per-
ceptual methods for improvement of texture compression, they are not suitable
for evaluation of subtle visual compression effects.

Contribution of the paper: The main motivation of our research is to find a
computational texture descriptor having responses highly correlated with human
vision. Such a descriptor could then be used for comparison of rendered images
resulting from original data and data parameterized by compression methods.
Based on the responses from the descriptor the methods could iteratively adapt
their parameters to automatically achieve an optimal visual performance. In this
paper we test a set of descriptors motivated by standard texture features used in
texture retrieval and recognition application. The descriptors we tested are based
on a structure similarity, visual difference predictor, local binary patterns, Gabor
features, and a causal auto-regressive wide-sense type of Markov random field
model. The performance of the descriptors was evaluated by a psychophysical
experiment on a group of twelve subjects.

Paper organization: The experimental data are introduced in Section 2, while
the tested descriptors are explained in Section 3. Section 4 describes the exper-
imental setup and discusses the results obtained, while Section 5 evaluates the
performance of the descriptors with respect to the experimental data. Section 6
summarizes the paper.

2 Test Data Design

To test robustness of the descriptors we designed a set of testing images. Each
image features a cube whose three visible faces were rendered using textured
materials. We used five different samples (Fig. 1) of view and illumination-
dependent textures represented by Bidirectional Texture Functions (BTF) [6]
(each sample comprise 81 illumination × 81 view directions, i.e. 6561 texture
images of resolution 256 × 256 pixels).

alu fabric leather wood wool

Fig. 1. Examples of five tested material samples shown on a region of one test image
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The cube faces were modified in a way to feature different geometry on all
three visible faces (top, left, right). To test a range of shapes that occur in the
real-world we used different shapes for each cube face: I-wide indent, R-random
bumps, B-wide bump, F-flat face, H-horizontal waves, V-vertical waves.

For illumination we used directional light from left and right directions par-
allel with the upper edge of the cubes. This configuration guaranteed the same
illumination of the cubes in all stimuli and similar distribution of light across the
top and left/right faces in single cubes. Not all combinations of test cube orien-
tations were used in the experiment as this would result in too high a number of
test images. We used only eleven different orientations selected in a way to allow
us to compare the most interesting combinations of faces geometry. Additionally,
not all orientations were illuminated from both directions as shown in Fig. 2.
The figure also shows orientation number (first row) and shapes of left, right,
top faces (third row). To simulate possible effects of texture compression we used
three filters introducing artificial degradation to the original data modification:

A - illumination/view directions downsampling to 50%
B - spatial filtering (averaging by kernel 3×3)
C - spatial filtering (averaging by kernel 5×5).

1-L 1-R 2-L 2-R 3-L 4-L 5-R 6-L 7-L 8-R 9-R 10-L 11-L

FIB FIB BFI BFI IBF IRB RBI VFH HRV FVH RVH BIR RHB

Fig. 2. Tested combinations of cube orientation and illumination direction

The proposed filters introduce only very subtle differences (Fig. 3) between
the original and the modified data and force subjects to perform extensive visual
search, which allows us to collect detailed gaze data. Finally, for 13 combinations
of cube orientation & illuminations and 5 material samples, we obtained 65
test images for each degradation. These images were used for testing of texture
descriptors proposed in the following section and also to generate stimuli in the
validation experiment in Section 5.

orig. A B C

Fig. 3. Performance of the applied filters on sample alu
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3 Texture Degradation Descriptors

The 65 images for each degradation were compared with their original counter-
parts. This means that we always compared images featuring the same sample,
cube orientation and illumination direction. The only differences were faint degra-
dation artifacts. Therefore, we do not require the texture descriptors to be view
or illumination invariant. The descriptors tested in this paper can be principally
divided into those which are translation invariant and those which are not.

3.1 Translation Non-invariant Features

These descriptors are based on perceptually motivated measures of image quality
assessment measures computed in pixel-wise manner in a local neighborhood.

The first was visual difference predictor (VDP) [7], which simulates low
level human perception for known viewing conditions (in our case: display size
37×30 cm, resolution 1280×1024 pixels, observer’s distance 0.7 m) and thus
is sufficient for our task of perceptually plausible detection of subtle texture
degradation artifacts. The VDP provides percentage of pixels that differ with
probability p>75% or p>95% from all pixels in the compared images. To ensure
consistency with other descriptors, we set the VDP output to (1− p), i.e. giving
interval (0,1), where for an output 1 the images are the same.

The structure similarity index metric (SSIM) [8] is an empirical measure,
which compares in power to VDP. SSIM measures the local structure similarity
in a local neighborhood of an R×R window in an image (we used 11×11 pixels).
The basic idea of SSIM is to separate the task of similarity measurement into
comparisons of luminance, contrast, and structure. These independent compo-
nents are then combined into one similarity function. The valid range of SSIM
for a single pixel is [−1, 1], with higher values indicating higher similarity. When
the local neighborhood is evaluated for each pixel we obtain the SSIM difference
of two images as a mean value of SSIM values across all pixels.

3.2 Translation Invariant Features

Markovian features are derived from the multiscale representation assuming a
causal auto-regressive model (CAR) for each of the K factorisation pyra-
mid levels. The spatial factorization is done using either the Gaussian (GP)
or Gaussian-Laplacian (GLP) pyramid. Single model parameters are estimated
and the texture features from all pyramid levels are concatenated into a common
feature vector.

Let us assume that each multispectral texture is composed of C = 3 spec-
tral planes. Yr = [Yr,1, . . . , Yr,C ]T is multispectral pixel at location r = [x, y] .
The spectral planes are either modelled by 3-dimensional (3D) CAR model or
by means of a set of C 2-dimensional (2D) CAR models. The CAR representa-
tion assumes that the multispectral texture pixel Yr can be modelled as linear
combination of its neighbors:

Yr = γZr + εr , Zr = [Y T
r−s : ∀s ∈ Ir]T (1)
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where Zr is the Cη × 1 data vector with multiindices r, s, t representing a
causal or unilateral neighbourhood, γ = [A1, . . . , Aη] is the C×C η unknown
parameter matrix with square submatrices As. Some selected contextual index
shift set is denoted Ir and η = cardinality(Ir) . The white noise vector εr
has normal density with zero mean and unknown constant covariance matrix,
same for each pixel. Given the known CAR process history, estimation of the
parameters γ̂ can be accomplished using fast, numerically robust and recursive
statistics [9]. Five colour invariants were derived from CAR parameter estimates
[10]. The texture features are these illumination invariants, which are easily
evaluated during the process of estimating CAR parameters. Because the CAR
models analyse a texture in some fixed movement direction, additional directions
are employed to capture supplementary texture properties. The distance between
two feature vectors was computed using L1, L0.2 norms, and by a fuzzy contrast
FC3 [11]. Although the CAR models theoretically assume texture homogenity,
they can be still used as statistical descriptors of textured surfaces, and so we
expect their ability to detect the degradation artifacts.

The Gabor features (GF) [12] are computed from responses of Gabor filters
[13], which can be considered as orientation and scale tuneable edge and line
detectors. A two dimensional Gabor function g(r) : R2 → C can be specified as

g(r) =
1

2πσxσy
exp
[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πiV x

]
, (2)

where σx, σy, V are filter parameters. The convolution of the Gabor filter and
a texture image extracts edges of given frequency and orientation range. The
whole filter set was obtained by four dilatations and six rotations of the function
g(r), and the filter set is designed so that Fourier transformations of filters
cover most of the image spectrum, see [12] for details. The Gabor features [12]
are defined as the mean μj and the standard deviation σj of the magnitude
of filter responses computed separately for each spectral plane and concatenated
into the feature vector. These feature vectors are compared in the L1σ norm
[12]. The other tested Opponent Gabor features (OGF) [14] are extension to
colour textures, which analyses also relations between spectral channels. As our
implementation involves FFT the Gabor features were computed only in the
square cuts in each cube face.

The Local Binary Patterns (LBPP,R) [15] are histograms of texture micro
patterns, which are thresholded values sampled at each pixel neighbourhood.
For each pixel, a circular neighbourhood around the pixel is sampled, P is the
number of samples and R is the radius of the circle. Sampled points values
are thresholded by a central pixel value and the pattern number is formed as
follows:

LBPP,R =
P−1∑
s=0

sgn (Ys − Yc) 2s, (3)

where sgn is the signum function, Ys is a grey value of the sampled pixel,
and Yc is a grey value of the central pixel. Subsequently, the histogram of
patterns is computed. Because of thresholding, the features are invariant to any



428 J. Filip et al.

monotonic grey scale change. The multiresolution analysis is done by growing
the circular neighbourhood size. All LBP histograms were normalised to have
a unit L1 norm. The similarity between the histograms is computed using
Kullback-Leibler divergence as authors suggested. We have tested combination
of LBP8,1 and LBP8,3 features, and they were computed either on grey-scale
images (grey) or on each spectral plane separately (RGB) and concatenated to
form the feature vector.

All descriptors compute difference between sets of original images and images
obtained for each degradation method, and their responses are averaged across
different cube orientations, and illumination directions. It is important to note
that the previous textural features are not invariant to texture deformation,
which is cased by different shapes. Therefore, the features are always compared
between the same surface shapes only.

4 Psychophysical Experiment

We performed a visual search experiment in order to investigate subjects’ ability
to identify individual introduced visual degradations. We also recorded their gaze
fixations in order to analyse relations between their decisions and their fixations
statistics.

Experimental Stimuli. For experimental stimuli we have used static images of
size 1000×1000 pixels, featuring four cubes, described in Section 2, in individual
quadrants (see Fig. 4-middle). We used this layout of stimuli to avoid the central
bias in fixations reported in [16], i.e. observers have a tendency to fixate the
central area of the screen. In each quadruple, three cubes showed the original
data rendering and the remaining one showed a slightly modified rendering. The
position of the modified cubes was random. Examples of stimuli are shown in
Fig. 4. The edges of the cubes were set to black to mask potentially salient
texture seams. The background and the remaining space on the screen were set
to dark gray. Fig. 2 shows the 13 conditions of cube orientation and illumination
direction that were used. Together with five BTF texture samples, and three
different filters, the total number of stimuli was 195 (13×5×3).

Participants. Twelve paid observers (three females, nine males) participated
in the experiments. All were students or university employees, were less than 35
years of age, and had normal or corrected to normal vision. All were naive with
respect to the purpose and design of the experiment.

Experimental Procedure. The participants were shown the 195 stimuli in
the same randomly generated order, and asked to identify which of the cubes
had a surface texture slightly different from the remaining three cubes. A stim-
ulus was shown until one of four response keys, identifying the different cube,
was pressed. There was a pause of one second between stimulus presentations,
and participants took on average around 90 minutes to perform the whole ex-
periment, which was split into four sessions. All stimuli were presented on a
calibrated 20.1” NEC2090UXi LCD display (60Hz, resolution 1600×1200, color
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Fig. 4. Setup of the experiment with the eye-tracker highlighted, presentation of stim-

ulus image from subject’s view, and a typical gaze fixation pattern

temperature 6500K, gamma 2.2, luminance 120 cd/m2). The experiment was per-
formed in a dark room. Participants viewed the screen at a distance of 0.7m, so
that each sphere in a pair subtended approximately 9o of visual angle. Subjects’
gaze data was recorded during the experiment using a Tobii x50 infrared-based
binocular eye-tracking device as shown in Fig. 4. The device was calibrated for
each subject individually and provided the locations and durations of fixations
at a rate of 50 samples/s. The shortest fixation duration to be recorded was set
to 100 ms.

Results – Responses accuracy. On average, the subjects were able to find
the modified cube in 67% of the stimuli, which was surprisingly high in relation
to the chance level 25%, given the subtle changes introduced by filters used (see
Fig. 3). Informal interviews after the experiment revealed that the subjects were
certain in less than 50% of stimuli and for the rest they believed that they were
only guessing the right answer. The obtained rates suggest that in the difficult
cases they often successfully relied on low level visual perception. The responses
accuracy of individual filters is shown in Fig. 5-a and reveals that modifications
introduced by the filter A are the hardest to spot while the smoothing by filter
C is the most apparent; this was expected, since smoothing effect is uniform
and generally more apparent that the slight illumination and view direction
dependent changes in reflectance caused by reduction of directions reduction
(filter A). While success rates across textures were quite similar for smoothing
filters B and C, their values for filter A varied much more.

Results – Fixations. Twelve subjects performed 62 916 fixations longer than
100 ms. Average fixation duration was 242 ms. Each stimulus was on average
fixated for 11 s by means of 26 fixations. Figures Fig. 5-b,c,d show subjects’ gaze
fixation statistics as (b) average number of fixations per stimuli, (c) average time
spent fixating stimuli , and (d) average fixation time. The first two statistics are
highly inversely correlated with subjects’ response accuracies Fig. 5-a, with cor-
relation coefficients R(b) = −0.904 and R(c) = −0.930, respectively. The figures
also reveal apparent differences between the tested samples. For samples leather
and wood, the subjects were less successful in identification of the modified cube,
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a) b)

c) d)

Fig. 5. Subjects’ average (a) recognition success rate, (b) number of fixations per stim-

uli, (c) time spend on stimuli, (d) fixation duration for individual degradations and

tested samples. Error-bars represent twice the standard error across subjects, different

cube orientations and illuminations.

they fixated the stimuli for longer, and made significantly more fixations, which
were shorter those on the other materials. We suspect that a lower local texture
contrast in these samples makes detection of degradation artifacts more difficult.

5 Perceptual Evaluation and Discussion

In this section we evaluate performance of the proposed descriptors by com-
parison with subjects’ responses obtained from the psychophysical experiment.
The evaluation was based on computation of correlation coefficient RX,Y =
E[(X−μX)(Y −μY )]

σXσY
, where X,Y are compared data vectors, i.e. subjects responses

and descriptor responses, and μ and σ are their means and variances.
The overall comparison of descriptors is shown in Tab. 1. From the results we

observe low performance of SSIM and VDP descriptors. This can be caused 1) by
their translation non-invariance, so that they give high responses even to a slight,
perceptually insignificant, planar shift of texture caused by the filter A (this is
most apparent for sample alu Fig. 3, and 2) by their lower sensitivity to the very
subtle degradations that were tested. The Tab. 1 shows also the approximate
speed of computation of differences between two textures, and the sizes of feature
vectors �FV . We observe that although the CAR 3D has a slightly shorter feature
vector than its 2D variant, it does not achieve the same performance. The table
also shows for the CAR model comparison of different feature vector distances.
While for 2D CAR the best performance was achieved for L0.2 norm, for 3D CAR
the best results were for L1 norm. A high correlation with the psychophysical
results was achieved by descriptors based on CAR model and LBP features.
Fig. 6 shows performance of the best combination of parameters for each type
of descriptor, i.e. (a) SSIM, (b) VDP (p>75%), (c) 2D CAR (GP 1), (d) 2D
CAR (GLP 2), (e) Gabor (GF RGB), and (f) LBP (RGB). Generally, the best
results were obtained for 2D CAR model without any pyramid (GL 1), where
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Table 1. Correlation of the tested degradation descriptors with data obtained from

the psychophysical experiment. The best variant of each descriptor type is highlighted.

SSIM R (11×11)

(speed: ∼ 2 s) 0.125
VDP R(p>75%) R(p>95%)

(speed: ∼ 10 s) 0.107 0.097

CAR (speed: ∼ 4 s)

pyramid model R

type levels dimens. �F V FC3 L0.2 L1

GP 1 2D 195 0.777 0.787 0.677

3D 177 0.550 0.542 0.581

2 2D 390 0.710 0.752 0.644

3D 354 0.517 0.552 0.573

GLP 2 2D 390 0.654 0.714 0.638

3D 354 0.360 0.362 0.573

3 2D 585 0.648 0.677 0.620

3D 531 0.422 0.439 0.475

LBP (speed: ∼ 1 s)

data �F V R

grey 512 0.610

RGB 1536 0.712

Gabor (speed: ∼ 8 s)

data method �F V R

grey GF 48 0.569

RGB GF 144 0.578
OGF 252 0.322

a) b)

c) d)

e) f)

Fig. 6. Best performance of the tested descriptors (a) SSIM, (b) VDP (p>75%), (c)

2D CAR (GP 1), (d) 2D CAR (GLP 2), (e) Gabor (GF RGB), (f) LBP (RGB)

the difference of the feature vectors was evaluated using L0.2 norm. Additionally,
the CAR model enable to adjust pyramid type and size with regards to the type
and intensity of degradation. Although the LBP features (f) are fast and have
also quite high correlation with the human judgments, their responses clearly do
not follow the trend of values across the samples present in Fig. 5-a. We tested
also other variants of LBP features such as LBP riu2

24,3+8,1 and LBPu2
16,2, however

their descriptive abilities were clearly worse than of those shown in Tab. 1.
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6 Conclusions

Our results show that the statistical texture descriptors based on the causal
auto-regressive model have the best performance in detection of subtle texture
differences with respect to human judgments obtained in a psychophysical study.
We conclude that these descriptors are the best, out of the tested features, for
the automatic prediction of subtle perceptual differences in rendered view- and
illumination-dependent surface textures in accordance with human perception.
This highly demanded property can be used as automatic feedback for optimiza-
tion the visual performance of texture compression and rendering methods.
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15. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation

invariant texture classification with local binary patterns. IEEE Trans. Pattern

Anal. Mach. Intell. 24(7), 971–987 (2002)

16. Tatler, B.W.: The central fixation bias in scene viewing: Selecting an optimal view-

ing position independently of motor biases and image feature distributions. Journal

of Vision 7(14), 1–17 (2007)



Content-Based Tile Retrieval System
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Abstract. A content-based tile retrieval system based on the under-

lying multispectral Markov random field representation is introduced.

Single tiles are represented by our approved textural features derived

from especially efficient Markovian statistics and supplemented with

Local Binary Patterns (LBP) features representing occasional tile inho-

mogeneities. Markovian features are on top of that also invariant to illu-

mination colour and robust to illumination direction variations, therefore

an arbitrary illuminated tiles do not negatively influence the retrieval re-

sult. The presented computer-aided tile consulting system retrieves tiles

from recent tile production digital catalogues, so that the retrieved tiles

have as similar pattern and/or colours to a query tile as possible. The

system is verified on a large commercial tile database in a psychovisual

experiment.

Keywords: content based image retrieval, textural features, colour, tile

classification.

1 Introduction

Ceramic tile is a decoration material, which is widely used in the construction
industry. Tiled lining is relatively long-lived and labour intensive, hence a com-
mon problem to face is how to replace damaged tiles long after they are out of
production. Obvious alternative to costly and laborious complete wall retiling
is finding of the tile replacement from recent production which is as similar to
the target tiles as possible. Tiles can differ in size, colours or patterns. We are
interested in automatic retrieval of tiles as the alternative to usual slow manual
browsing through digital tile catalogues and the subsequent subjective sampling.
Manual browsing suffers from tiredness and lack of concentration problems, lead-
ing to errors in grading tiles. Additionally, gradual changes and changing shades
due to variable light conditions are difficult to detect for humans. The presented
computer-aided tile consulting system retrieves tiles from a tile digital database
so that the retrieved tiles are maximally visually similar to the query tile. A user
can demand either similar patterns, colours or a combination of both. Although
the paper is concerned with the problem of automatic computer-aided content-
based retrieval of ceramic tiles, the modification for defect detection or product
quality control is straightforward.
� Corresponding author.
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Textures are important clues to specify surface materials as well as design
patterns. Thus their accurate descriptive representation can beneficial for sort-
ing and retrieval of ceramic tiles. Without textural description the recognition
is limited to different modifications of colour histograms only and it produces
unacceptably poor retrieval results. Image retrieval systems (e.g.[4,13]) benefit
from combination of various textural and colour features. Frequented features
are colour invariant SIFT [3], Local Binary Patterns (LBP) [10], Gabor features
[8], etc. A tile classifier [6] uses veins, spots, and swirls resulting from the Gabor
filtering to classify marble tiles. The verification is done using manual measure-
ment from a group of human experts. The method neglects spectral information
and assumes oversimplified normalized and controlled illumination in a scanner.
Similar features were used for tile defect detection [9]. A promising method for
object/image recognition based on textural features was recently introduced [12].

Unfortunately, the appearance of natural materials is highly illumination and
view angle dependent. As a consequence, most texture based classification or
segmentation applications require multiple training images [18] captured under
all available illumination and viewing conditions for each material class. Such
learning is obviously clumsy and very often even impossible if the required mea-
surements are not available. Popular illumination invariant features include LBP
variants [10], however, they are very noise sensitive. This vulnerability was ad-
dressed [7], but used patterns are specifically selected according to the training
set. Recently proposed LBP-HF [1] additionally studies relations between ro-
tated patterns. Finally, the MR8 texton representation [18] was extended to be
colour and illumination invariant [2].

We introduce a tile retrieval system, which takes advantage of a separate
representation of colours and texture. The texture is represented by efficient
colour invariant features based on Markov Random Fields (MRF), which are
additionally robust to illumination direction and Gaussian noise degradation
[16]. The performance is evaluated in a psychovisual experiment.

The paper is organised as follows: the tile analysis algorithm is introduced in
Section 2, Section 3 describes a psychovisual evaluation and discusses its results.
Section 4 summarises the paper.

2 Tile Analysis

The tile image analysis is separated into two independent parts: colour analysis
and texture analysis. Advantage of this separation is ability to search for tiles
with similar colours, texture, or both — according to user preference. Colours
are represented by histograms, which discard any spatial relations. On the other
hand, the texture analysis is based on spatial relation modelling by means of
MRF type of model, which is followed by computation of colour invariants.
Colour invariants are employed instead of texture analysis of grey-scale images,
because colour invariants are able to distinguish among structures with same
luminance.

The texture representation with MRF colour invariants was chosen, because
this representation is invariant to changes of illumination colour and brightness
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[15], robust to variation of illumination direction [16] and combinations of pre-
vious conditions [17]. Moreover the MRF colour invariants are robust to degra-
dation with an additive Gaussian noise [15] and they outperformed alternative
textural features such as Gabor features or LBP in texture recognition experi-
ments [15,16,17], especially, with variations of illumination conditions. Such il-
lumination variations are inevitable, unless all images are acquired in a strictly
controlled environment.

2.1 Colour Histograms

Colour information is represented by means of cumulative histograms [14], which
we compute for each spectral plane separately. The cumulative histogram is
defined as the distribution function of the image histogram, the i-th bin Hi is
computed as

Hi =
∑
�≤i

h� , (1)

where h� is the �-th ordinary histogram bin. The distance between two cumula-
tive histograms is computed in L1 metric.

2.2 CAR Textural Features

The texture analysis is based on the underlying MRF type of representation, we
use efficient Causal Autoregressive Random (CAR) model. The model param-
eters are estimated and subsequently transformed into colour invariants, which
characterize the texture.

Let us assume that multispectral texture image is composed of C spec-
tral planes (usually C = 3). Yr = [Yr,1, . . . , Yr,C ]T is the multispectral pixel at
location r , which is a multiindex r = [r1, r2] composed of r1 row and r2
column index, respectively. The spectral planes are mutually decorrelated by
the Karhunen-Loeve transformation (Principal Component Analysis) and sub-
sequently modelled using a set of C 2-dimensional CAR models.

The CAR representation assumes that the multispectral texture pixel Yr can
be modelled as linear combination of its neighbours:

Yr = γZr + εr , Zr = [Y T
r−s : ∀s ∈ Ir]T (2)

where Zr is the Cη × 1 data vector with multiindices r, s, t, γ = [A1, . . . , Aη]
is the C × C η unknown parameter matrix with square submatrices As . In
our case, C 2D CAR models are stacked into the model equation (2) and the
parameter matrices As are therefore diagonal. Some selected contextual causal
or unilateral neighbour index shift set is denoted Ir and η = cardinality(Ir) .
The white noise vector εr has normal density with zero mean and unknown
diagonal covariance matrix, same for each pixel.

The texture is analysed in a chosen direction, where multiindex t changes ac-
cording to the movement on the image lattice. Given the known history of CAR



Content-Based Tile Retrieval System 437

process Y (t−1) = {Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} the parameter estima-
tion γ̂ can be accomplished using fast and numerically robust statistics [5]:

γ̂T
t−1 = V −1

zz(t−1) Vzy(t−1) ,

Vt−1 =
(∑t−1

u=1 YuYu
T ∑t−1

u=1 YuZu
T∑t−1

u=1 ZuYu
T ∑t−1

u=1 ZuZu
T

)
+ V0 =

(
Vyy(t−1) V

T
zy(t−1)

Vzy(t−1) Vzz(t−1)

)
,

λt−1 = Vyy(t−1) − V T
zy(t−1)V

−1
zz(t−1)Vzy(t−1) ,

where the positive definite matrix V0 represents prior knowledge.
Colour invariants are computed from the CAR parameter estimates to make

them independent on colours. The following colour invariants were derived [15]:

1. trace: trAs, ∀s ∈ Ir ,
2. diagonal: νs = diag(As), ∀s ∈ Ir ,
3. α1: 1 + ZT

r V −1
zz Zr ,

4. α2:
√∑

r (Yr − γ̂Zr)
T
λ−1 (Yr − γ̂Zr) ,

5. α3:
√∑

r (Yr − μ)T
λ−1 (Yr − μ) , μ is the mean value of vector Yr ,

Feature vectors are formed from these illumination invariants, which are easily
evaluated during the CAR parameters estimation process. The invariants α1 –
α3 are computed for each spectral plane separately.

2.3 CAR-Based Tile Analysis

At the beginning, a tile image is factorised into K levels of the Gaussian-
downsampled pyramid and subsequently each pyramid level is modelled by the
previously described CAR model. The pyramid is used, because it enables mod-
els to captures larger spatial relations. Moreover, the CAR models analyse a
texture in some fixed movement direction, therefore additional directions are
employed to capture supplementary texture properties. More precisely, we used
K = 4 levels of Gaussian-downsampled pyramid and the CAR models with
the 6-th order hierarchical neighbourhood (cardinality η = 14). The texture was
analysed in three orthogonal directions: row-wise, column-wise top-down and
column-wise bottom-up. Finally, the estimated parameters for all pyramid levels
and directions are transformed into colour invariants and concatenated into a
common feature vector.

The dissimilarity between two feature vectors of two tiles T, S is computed
using fuzzy contrast [11] in its symmetrical form FC3:

FCp (T, S) = M −
{

M∑
i=1

min
{
τ(f (T )

i ), τ(f (S)
i )
}
− p

M∑
i=1

∣∣∣τ(f (T )
i ) − τ(f (S)

i )
∣∣∣} ,

τ(fi) =
(

1 + exp
(
−fi − μ(fi)

σ(fi)

))−1

,
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Fig. 1. Partition of tile image into five regions. The texture is analysed in the whole

image and separately in these regions.

where M is the feature vector size and μ(fi) and σ(fi) are average and standard
deviation of the feature fi computed over all database, respectively. The sigmoid
function τ models the truth value of fuzzy predicate.

The textural representation is based on the homogeneity assumption, which
is an inherent property of all textures. Unfortunately, some tiles contain insets
or other violations of the homogeneity assumption. Therefore the CAR models
are additionally estimated on each of five tile regions depicted in Fig. 1. The
dissimilarities of corresponding image regions and whole images are combined
to finally produce the dissimilarity of tiles D(T, S):

D(T, S) = Norm

(
5∑

�=1

FC3 (T�, S�)

)
+ Norm (FC3 (T, S)) , (3)

Norm(FC3 (T, S)) =
FC3 (T, S) − μ(FC3)

σ(FC3)
, (4)

where T� , S� are the �-th regions of images T, S, respectively. Norm is dis-
similarity normalisation, where μ(FC3) and σ(FC3) are mean and standard
deviation of distances of all images. In practice, μ(FC3) and σ(FC3) could be
estimated on a subset of dataset, since the precise estimation is not necessary.
This textural tile representation is denoted as “2D CAR 3x” in the results.

2.4 Local Binary Patterns

Local Binary Patterns (LBP) [10] are histograms of texture micro patterns. For
each pixel, a circular neighbourhood around the pixel is sampled, P is the
number of samples and R is the radius of circle. The sampled points values are
thresholded by the central pixel value and the pattern number is formed:

LBPP,R =
P−1∑
s=0

sgn (Ys − Yc) 2s, (5)

where sgn is the sign function, Ys is the grey value of the sampled pixel,
and Yc is the grey value of the central pixel. Subsequently, the histogram of
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patterns is computed. Because of thresholding, the features are invariant to any
monotonic grey-scale change. The multiresolution analysis is done by growing
of the circular neighbourhood size. All LBP histograms were normalised to have
unit L1 norm. The similarity between LBP feature vectors is measured by
means of Kullback-Leibler divergence as the authors suggested. We have tested
features LBP8,1+8,3 , which are combination of features with radii 1 and 3 and
which were computed on grey-scale images.

3 Experiments

Performance of two alternative textural retrieval methods (CAR, LBP) was eval-
uated in a psychovisual experiment, where the quality of retrieved images was
evaluated by volunteers. The experiment was conducted on the dataset of 3301
tile images downloaded from an internet tile shop.1 All images were resampled
to the common size 300×400 pixels, the aspect ratio of rectangular images were
maintained and the bigger side was resized to match the size. Thirty-four volun-
teers (26 males, 8 females) participated in our test. Age of participants ranged
from nineteen to sixty, but majority was below forty. About one half of partici-
pants were specialist in the field of image processing. The test was administered
over the Internet using a web application, so that each participant used its own
computer in their environment. This setup is plausible, because we focused on
significant, first glance differences, which are unlikely to be influenced by test
conditions.

The test was composed of subsequent steps, where each step consisted of
a query image and four test images. These four test images composed of two
images retrieved by CAR method and two retrieved by LBP as the most sim-
ilar to the query image, they were presented in a random order. Participants
were instructed to evaluate quality of the retrieved images according to struc-
tural/textural similarity with the query image, regardless of colours. There were
four ranks available: similar = 3, quite similar = 2, little similar = 1, dissimilar
= 0. Subjects were also instructed that they should spend no more than one or
two seconds per one test image. Because our system is intended to be a real-life
application, we did not provide any examples of similar or dissimilar images,
but we let people to judge the similarity in their own subjective opinion. The
query images were once randomly selected and remained same for all participant
in one run. They were presented in a fixed order so that the results were not
influenced by different knowledge of previous images. Moreover, the first three
query images were selected manually and were not counted in the results. The
reason was to allow subjects to adjust and stabilise their evaluation scale.

The test was performed in two runs, where a single run consisted of the the
same query and test images evaluated with different subjects. The first run
consisted of 66 valid steps evaluated with 23 subjects, while the second one
contained 67 valid steps ranked by 11 subjects. The evaluation of one subject was
removed due to significant inconsistency with the others (correlation coefficient
1 http://sanita.cz
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Table 1. Subject evaluated quality of texture retrieval methods. The table contains

average ranks (0 = dissimilar – 3 = similar) and corresponding standard deviations.

2D CAR 3x LBP8,1+8,3

run 1 2.21 ± 0.64 2.22 ± 0.65
run 2 2.23 ± 0.62 2.21 ± 0.57

run 1

run 2

Fig. 2. Histogram of ranks (0 = dissimilar – 3 = similar) given by subjects. The first

row shows histograms for the first test run, while the second row for the second run.

Fig. 3. Distribution of average ranks given by participants in the first and the second

test run

= 0.4). Average correlation coefficients of subject evaluation were 0.64 and 0.73
for the first and the second run, respectively, which implies certain consistency
in subject similarity judgements.

3.1 Discussion

The experimental results are presented in Tab. 1, which shows average ranks and
standard deviations of retrieved images for CAR and LBP methods. The distri-
bution of given ranks is displayed in Fig. 2. It can be seen that the performance
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query similar colours similar texture

Fig. 4. Examples of similar tile retrieved by our system, which is available online at

http://cbir.utia.cas.cz/tiles/. Query image, on the left, is followed by two images

with similar colours and texture (CAR features). Images are from the internet tile shop

http://sanita.cz
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of both methods is comparable and successful. About 76% of retrieved images
were considered to be similar or quite similar and only 12% were marked as
dissimilar. More than two thirds of the participants ranked the retrieved tiles as
quite similar or better in average, as can be seen in Fig. 3, which shows average
ranks of participants. Different subject means in Fig. 3 show that the level of
perceived similarity is subjective and a personal adaptation would be beneficial.
Unfortunately, such an adaptation is not always possible since it requires user
feedback.

As expected, the experiment revealed that LBP and CAR methods prefer
different aspects of structural similarity. The LBP method is better with regular
images that contain several distinct orientations of edges, while the CAR model
excels in modelling of stochastic patterns. Moreover, LBP describes any texture
irregularities in contrast to CAR model, which enforces homogeneity and small
irregularities are ignored as errors or noise. Both approaches are plausible and
it depends on a subjective view, which approach should be preferred. Moreover,
according to previous experiments, the CAR features are more robust to changes
of illumination direction [16] and noise degradation [15].

Based on these experiments, we decided to benefit from both these textural
representations and include them into our retrieval system. The final retrieval re-
sult is consequently composed of images with colour similarity, texture similarity
according to CAR, and texture according to LBP.

4 Conclusions

We designed and implemented a tile retrieval system based on two orthogonal
components of visual similarity: colours and texture. The performance of the
textural component was successfully evaluated in a psychovisual experiment.
Example results from our interactive demonstration are shown in Fig. 4.

Our retrieval system is not limited to tile images, it can be used with other
kinds of images, where the structure is important property, e.g. textiles/cloths
and wallpapers.
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Performance Improvement in Multiple-Model Speech 
Recognizer under Noisy Environments 
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Abstract. Multiple-model speech recognizer has been shown to be quite suc-
cessful in noisy speech recognition. However, its performance has usually been 
tested using the general speech front-ends which do not incorporate any noise 
adaptive algorithms. For the accurate evaluation of the effectiveness of the mul-
tiple-model frame in noisy speech recognition, we used the state-of-the-art 
front-ends and compared its performance with the well-known multi-style train-
ing method. In addition, we improved the multiple-model speech recognizer by 
employing N-best reference HMMs for interpolation and using multiple SNR 
levels for training each of the reference HMM.  

Keywords: speech recognition, multiple-model frame, noise robustness, MTR, 
DSR, Aurora database. 

1   Introduction 

Various research efforts have been done for the noise-robust speech recognition like 
speech feature extraction, speech enhancement and model parameter compensation 
[1][2][3]. These approaches are used independently or combined with each other to 
improve the performance of the speech recognizer under noisy environments. 

As a different approach to those conventional methods, the multiple-model based 
speech recognizer has been proposed recently and shown quite successful results [4]. 
In the method, multiple acoustic models corresponding to various noise types and 
SNR levels are obtained during the training and the trained acoustic models are used 
altogether in the testing. This approach is contrary to the conventional methods where 
a single acoustic model corresponding to clean speech is used. 

The real situation where the speech recognizer operates include various noisy envi-
ronments and the distributed speech recognition (DSR) is thought to be one of the 
most representative noisy conditions. European Telecommunications Standards Insti-
tute (ETSI) has developed two standards for the DSR front-ends. The first standard is 
called FE. It a basic version and specifies a feature extraction scheme based on the 
widely used mel frequency cepstral coefficients (MFCC) [5]. As the FE standard did 
not show successful results in noisy environments, the ETSI has proposed the second 
standard called AFE which include some noise adaptive algorithms [6]. 

In the previous research [4], the multiple-model based speech recognizer has shown 
superior performance compared with the popular the MTR (Multi-style TRaining) 
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approach. However, the evaluation was done using the FE front-end instead of the 
more noise-robust front end, AFE. In this paper, we will evaluate the effectiveness of 
the multiple-model framework using the AFE front-end and compare its performance 
with the MTR method. We also propose methods to improve the performance of the 
multiple-model based speech recognizer. In the previous work, only one acoustic 
model which is most similar to the input noisy speech is selected for recognition but 
there are always some errors in this process due to the inaccurate SNR estimation and 
even the most similar acoustic model will not exactly match to the input noisy speech 
due to the noise signal variability. To overcome this problem with the multiple-model 
based recognizer, we propose to select N most similar acoustic models and use them all 
together in recognition. Also, the SNR range for each acoustic model is extended to 
generate more robust acoustic models during training. 

2   Multiple-Model Based Speech Recognizer 

2.1   Improved Multiple-Model Based Speech Recognizer 

In the multiple-model based speech recognizer, multiple reference HMMs are trained 
using noisy speech corresponding to various noise types and SNR levels and one 
reference HMM which is most similar to the testing noisy speech is chosen as the 
acoustic model for recognition. This approach is advantageous over the conventional 
method using a single reference HMM because it can improve robustness against 
various noise characteristics.  

In this paper, we modified the structure of the multiple-model based speech recog-
nizer and its architecture is shown in Fig.1. First, the noise signal extracted from the 
testing noisy speech is used to measure the similarity of the testing noisy speech to the 
reference HMMs and the most similar N reference HMMs are selected and they are 
interpolated for improved recognition performance. The interpolation can compensate 
for the errors in the selection process and the robustness of the recognizer is generally 
improved by using multiple acoustic models. When the probability density functions 

(PDFs) of the N most similar reference HMMs are given by NiOfi ,,1),( = , the 

interpolated PDF )(Ofiter  is defined as follows. 

∑
=

=
N

i
iiiter OfOf

1

)()( α                                                (1) 

where O  is the observation and  Nii ,,1, =α  are the interpolation weights. 

In this paper, ,,,1,
1

Ni
Ni ==α  are used to equally weight all the PDFs of 

the N reference HMMs. We experimented with assigning a distinct weight to each 
reference HMM but no significant performance improvement was observed.  

Single mode Gaussian models (SGMs) are estimated for each noise type and SNR 
level during the training. The estimated SGMs are used in selecting the N most simi-
lar reference HMMs. The SGM for the D-dimensional noise vector n with mean vec-
tor μ  and covariance matrix Σ  is given as follows. 
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Fig. 1. The architecture of the modified multiple-model based speech recognizer 
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Given the noise vectors, we can estimate the mean vector μ  and covariance matrix 

Σ  by the expectation-maximization (EM) algorithm.  
In recognition, the Kullback-Leibler (KL) distances between the Gaussian PDF of 

the testing noise signal and the SGMs are calculated and those N SGMs with the 
smallest KL distances are determined and their corresponding N reference HMMs are 
chosen as the acoustic models for recognition in the multiple-model based speech 
recognizer.  

The KL distance (KLD) between two Gaussian PDFs ),,( 111 ΣμN  ),( 222 ΣμN  
is defined as follows [8].  
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where ii,1Σ  and ii,2Σ  are the i-th diagonal components of the covariance matrices and 

i,1μ  and i,2μ  are the i-th components of the mean vectors.  
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As a second approach for the performance improvement of the multiple-model 
based speech recognizer, we used multiple SNR levels for training each of the  
reference HMM. Although a single SNR level is usually assigned to each reference 
HMM for more discriminative acoustic models, but we improved robustness against 
the selection errors and noise variability by employing multiple SNR levels in the 
training. 

2.2   Standards for the DSR Front-Ends 

ETSI proposed two standard front-ends for the DSR speech recognition. The first 
standard ES 201 108 which was published in 2000 consists of two separate parts, 
feature extraction and encoding [5]. The widely used MFCC is generated in the fea-
ture extraction part while channel encoding for transmission is done in the encoding 
part. In this paper, we implemented only the feature extraction part as our concern is 
on the noise robustness of the front-ends. We call the first standard as FE and its 
block diagram is shown in Fig. 2. 

The feature extraction part includes the compensation of the constant level offset, 
the pre-emphasis of high frequency components, the calculation of the spectrum mag-
nitude, the bank of mel-scale filters, the logarithmic transform and finally the calcula-
tion of the discrete cosine transform. For every frame, a 14 dimensional feature vector 
consisting of 13 cepstral coefficients and a log energy is generated. 

The FE front-end is known to perform inadequately under noisy conditions. Thus, 
a noise robust version of the front-end was proposed in 2002 [6]. This version called 
Advanced Front-End (AFE) is known to provide a 53(%) reduction in error rates on 
the connected digits recognition task compared to the FE standard [7]. 
 

 

Fig. 2. Block diagram of the FE 

Fig. 3 shows a block diagram of the AFE front-end. Wiener filter based noise re-
duction, voice activity detection (VAD), waveform processing improving the overall 
SNR and blind equalization for compensating the convolutional distortion are added 
in order to improve the recognition rates. 

The multiple-model based speech recognizer has shown improved results compared 
with the previous noise-robust methods like the MTR when they use the FE. However, 
for the accurate comparison, it is necessary to compare the recognition rates when they 
use the AFE as the basic front-end because the AFE generally performs better than the 
FE in noisy conditions. Thus, in this paper, we evaluated the performance of the multi-
ple-model speech recognizer using the AFE and proposed some methods to improve 
the recognition rates of the multiple-model based speech recognizer.  
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Fig. 3. Block diagram of the AFE 

3   Experiments and Results 

3.1   Databases and Recognition System 

We used the Aurora 2 database for the experiments. There are two kinds of training 
approaches for the Aurora 2 database. The first one called CLEAN uses only clean 
speech not contaminated with any kinds of noises to train the HMM models. The 
second training method called MTR uses both clean and noisy speech signals which 
are contaminated by various kinds (subway, car, exhibition, babble) of noises at sev-
eral SNR levels. The recognition experiments were conducted for Set A (including 4 
known types of additive noise: subway, car, exhibition, babble), set B (including 4 
unknown types of additive noise: restaurant, street, airport, train) and set C (including 
one known and one unknown type of noises with convolutional noises). 

The AFE was used for the feature extraction. 13-th order feature vectors which 
consist of 12-th order MFCCs without 0-th cepstral component and the log energy are 
used as the basic feature vectors and their delta and acceleration coefficients are 
added to construct a 39-dimensional feature vector for each frame. 

The HMM for each digit consists of 16 states with 3 Gaussian mixtures for each 
state. Silence is also modeled by a 3 state HMM with 6 Gaussian mixtures in  
each state. The approximate Baum-Welch algorithm was used to obtain the acoustic 
models. 

3.2   Results 

To compare the performance of the FE and AFE in noisy speech recognition, we 
show the word error rates (WERs) when the acoustic models are trained by CLEAN 
and MTR method. 
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Table 1. Performance comparison between the AFE and FE (WER(%)) 

Front-end 
Training 

  
FE 

 
AFE 

Set A 37.43 13.67 
Set B 42.94 14.58 
Set C 33.08 15.36 

 
CLEAN 
 
 Average 38.78 14.37 

Set A 12.55 8.51 
Set B 13.71 8.94 
Set C 17.03 9.83 

 
MTR 

Average 13.91 8.95 

 
As we can see in Table 1, the average word error rate (WER) with the FE was 

38.78(%) in CLEAN training mode while the WER with the AFE was 14.37(%), 
which means that the AFE reduces the WER by 63(%) in CLEAN training mode. For 
the case of MTR training, we can also see that the AFE reduces the WER by about 
35(%) compared with the FE. From these results, we can conclude that the AFE  
performs much better both in the CLEAN and MTR training mode on the Aurora 2 
database. This also means that the previous research which demonstrated the superior-
ity of the multiple-model based recognizer using the FE should be re-evaluated using 
the AFE. 

In Table 2, we show the WERs of the multiple-model based recognizer using the 
AFE as the number of interpolated PDFs in (1) varies. The conventional multiple-
model based recognizer corresponds to the case of N=1. As we increase the number of 
interpolated PDFs, some performance improvement is observed. We could obtain the 
best performance when N=4 with the WER of 10.71(%) reducing the WER of the 
conventional method by about 3(%).The decrease in the WER mainly comes from Set 
C where a 10(%) error rate reduction is achieved. The improvement may have come 
from reducing the negative effect of errors in finding the most similar reference HMM 
using the KL distance. Also, the variability of the noise signal in the testing noisy 
speech may have been more efficiently compensated by using multiple acoustic mod-
els in recognition. 

In addition to the interpolation approach, we also tried to improve the performance 
of the multiple-model based speech recognizer by using multiple SNR levels for train-
ing each of the reference HMM. In Table 3, we show the two cases of merging SNR 
levels called SNRMERG, SNRMER2. 

Table 2. The performance of the multiple-model based recognizer using the AFE (WER(%)) 

The number of 
Interpolated HMMs 

Set A Set B Set C Average 

N=1 9.28 13.24 9.95 11.00 
N=2 9.16 13.21 9.49 10.85 
N=4 9.17 13.15 8.92 10.71 
N=6 9.18 13.32 8.8 10.76 
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Table 3. The SNR levels for each noise type and the resulting number of reference HMMs for 
each noise type 

 Conventional 
Method 

SNRMERG SNRMERG2 

SNR Levels (dB) {0},{5},{10}, 
{15},{20},{25}, 
{30} 

{0,5},{10,15}, 
{20,25},{30} 

{0,5},{5,10}, 
{10,15},{15,20}, 
{20,25},{25,30}, 
{30} 

Number of reference 
HMMs 

7 4 7 

Table 4. Performance comparison of the SNRMERG and SNRMER2 method (WER(%)) 

 Number of 
HMMs 

Set A Set B Set C Average 

N=1 9.01 13.12 9.75 10.80 
N=2 8.60 13.04 9.02 10.46 
N=4 8.94 13.01 8.49 10.48 

SNRMERG 

N=6 9.17 13.07 8.49 10.59 
N=1 8.8 12.72 9.66 10.54 
N=2 8.63 13.02 9.38 10.54 
N=4 8.70 13.17 9.10 10.57 

SNRMERG2 

N=6 8.93 13.28 8.66 10.62 

 
In the conventional method, the reference HMM was constructed for each SNR 

level (0, 5, 10, 15, 20, 25, 30 dB) independently while the SNRMERG method 
merged 0 and 5, 10 and 15, 20 and 25 to construct the reference HMMs reducing the 
number of reference HMMs for each noise type from 7 to 4. While SNRMERG2 
method is similar to SNRMERG, it allows overlap in SNR levels among different 
reference HMMs. 

In Table 4, we compared the performance of the proposed SNRMERG and 
SNRMERG2 method. 

As we can see in Table 4, the overall recognition rates of the SNRMERG and 
SNRMERG2 are better than the conventional method. In Table2, the conventional 
method had the WER of 11.0(%) when N=1 while the SNRMERG and SNMERG2 
had the WERs of 10.80(%) and 10.54(%) respectively. Also, the recognition rates of 
the SNRMERG and SNRMERG2 improve by increasing the number of interpolated 
HMMs as we have seen in Table 2. Although the difference in lowest WERs between 
the SNRMERG and SNRMERG2 is small, the SNRMERG2 has a merit that it does 
not need the interpolation to obtain the lowest WER. 

We compared the improved multiple-model based speech recognizer with the MTR 
method which is a very popular approach in noisy speech recognition and the com-
parison results are shown in Table 5. 
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In Table 5, SNRMERG(N=4) and SNRMERG2(N=1) showed lower WERs than 
the conventional multiple-model based speech recognizer but they were worse than 
the MTR. This is contrary to the previous research result where the multiple-model 
based recognizer outperformed the MTR when the FE was used as the basic front-end 
[4]. The noise reduction algorithm in the AFE may have diminished the relative merit 
of noise robustness of the multiple-model based speech recognizer. 

To increase the recognition rates of the proposed multiple-model based recognizer, 
we interpolated the PDF of the SNRMER2(N=1) with that of the MTR to take the 
advantage of the MTR. Although the average recognition rate of the interpolated 
acoustic model still falls behind that of the MTR, it shows better recognition rates for 
Set A and C. The quite inferior results for Set B contributed to the overall perform-
ance degradation. As the Set B consists of noisy speech with unknown noise types, 
the recognition rates for Set B may be increased by applying model parameter com-
pensation approaches for the multiple-model based speech recognizer, which is the 
topic of our further study. 

Table 5. Performance comparison of the multiple-model based speech recognizer with the 
MTR method (WER(%)) 

 Set A Set B Set C Average 
Conventional Method 9.28 13.24 9.95 11.00 
SNRMERG(N=4) 8.94 13.01 8.49 10.48 
SNRMERG2(N=1) 8.80 12.72 9.66 10.54 
MTR 8.51 8.94 9.83 8.95 
SNRMERG2(N=1)+ MTR 8.21 10.66 8.46 9.24 

4   Conclusions 

As compared to the conventional method where one single reference HMM is chosen 
as the acoustic model for recognition, we improved the performance of the multiple-
model based speech recognizer by selecting N most similar reference HMMs based 
on the KL distance between the SGM of the training noise signal and the PDF of the 
noise in the testing noisy speech. We could also increase the recognition rates of the 
multiple-model based recognizer by using multiple SNR levels for training each of 
the reference HMM. To further improve the performance of the multiple-model based 
recognizer, the PDFs of the reference HMMs are interpolated with that of the MTR. 
The interpolated acoustic model performed better than MTR for the Set A and Set C 
in the Aurora 2 database. We think that the performance of the multiple-model based 
recognizer could be further improved by applying model parameter compensation 
approaches. 
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Abstract. We address the problem of combining different types of audio

features for music classification. Several feature-level and decision-level

combination methods have been studied, including kernel methods based

on multiple kernel learning, decision level fusion rules and stacked gener-

alization. Eight widely used audio features were examined in the experi-

ments on multi-feature based music classification. Results on benchmark

data set have demonstrated the effectiveness of using multiple types of

features for music classification and identified the most effective combi-

nation method for improving classification performance.

1 Introduction

Combining multiple features from diverse sources is an effective way to enhance
the performance of real-world classification systems. Image classification is one
such example that benefited much from feature combination techniques. In re-
cent years, substantial performance gains on challenging benchmark datasets
have been reported in the literature [1] by combining multiple features based on
different aspects like shape, appearance and texture.

In this paper, we address the problem of using multiple types of features for
music classification, which has not yet been adequately investigated in previous
studies. Specifically, we have studied a number of candidate schemes for using
multiple features, including feature level combination methods such as Multiple
Kernel Learning (MKL) for the Support Vector Machine (SVM) classifier [2],
and the more general decision level fusion rules such as majority voting, the sum
rule [3] and a principled approach to decision fusion called stacked generalization
[4,5]. We have adopted the SVM classifier [6] for both individual feature learning
and stacked generalization due to its good classification performance for music
classification [7]. Moreover, SVM underlies the inherent formulation of MKL, the
feature-level combination method discussed in this paper. Hence, it is best to
use SVM for all classification tasks involved to make fair comparison of different
combination schemes.

The purpose of this paper is to answer the following three questions regard-
ing feature combination for music classification. Firstly, we are interested in the
performance of common individual features for music classification. More impor-
tantly, we want to know whether combining multiple features is an effective way
to enhance the performance of current music classification systems. Finally, we

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 453–462, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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want to identify what is the best feature combination method for the applica-
tion we study. The answers will be revealed through the empirical evaluation of
various feature combination approaches on a benchmark data set.

2 Audio Features for Music Classification

Music classification is an emerging area in multimedia and information retrieval.
A key problem in music classification is how to efficiently and effectively extract
audio features for high level classification. Many types of features have been
used in previous study on music classification [8,9,7,10,11], including low-level
features such as timbre and temporal features, and mid-level features such as
beats and chords.

Low-level features are normally extracted via spectral analysis, and have been
used predominantly in music classification systems due to the simple proce-
dures to obtain them and their good performance. There are two types of local
features - timbre and temporal features. Both of them are obtained based on
spectral analysis of the audio signal. The basic procedures for timbre and tem-
poral feature extraction are quite similar. First, a song is split into small local
windows. The truncated signal segment within each local window is assumed
to be stationary, a pre-requisite for the application of various spectral analysis
techniques. Standard spectral coefficients are then extracted from each local win-
dow, include Fast Fourier Transform Coefficients [10], Mel-Frequency Cepstral
Coefficients (MFCC) [9,10,11], Amplitude Spectrum Envelop (ASE) [12,11], and
Octave based Spectral Contrast (OSC) [13,11]. Then the coefficients from neigh-
boring local windows are aggregated to produce a single song-level feature. The
main difference between timbre and temporal features is in the way local spec-
tral coefficients are aggregated. Timbre features model the distributions of the
coefficients, whereas temporal feature modeling treats the coefficients as time
series data and concerns their temporal evolution.

Most music classification systems are based on the use of low-level features
alone [8,7,10,11]. Alternatively, mid-level features like beats [9] and chords [14]
have also been used in some systems to supplement or substitute low-level fea-
tures. Compared to low-level features, mid-level features can be better inter-
preted and have more to do with human perception of music. Nevertheless,
whether mid-level features are better than low-level features for music classifi-
cation tasks are still an open question.

Here, our focus is on the combination of different features obtained at differ-
ent levels to enhance the performance of music classification systems. Each type
of feature described above captures some information of music from a different
perspective. Hence, they should complement each other for music classification.
It is expected that by combining them better classification performance can be
achieved. For this purpose, we have used 8 types of individual features in this pa-
per, including three timbre features based on three different spectral coefficients
(SMFCC, SASE and SOSC), three temporal features based on the fluctuation
pattern [8] of the same three coefficients (TMFCC, TASE and TOSC), as well as
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two mid-level features of beat (B) [9] and chord (C) [14]. These features, either
individually or in combination, have been widely used in music classification and
provided good empirical classification performance.

It has been shown in [10] and [11] that combining multiple features can im-
prove over the performance of classification using a single feature type. However,
both works are limited in the types of features being investigated. Only low-level
features were used in [10], and [11] explored the combination of temporal features
alone. It is still unclear whether mid-level features are useful for classification or
not. Also, as mentioned earlier, we explore the use of multiple different features
under the SVM classification framework, which provides quite strong classifica-
tion at individual feature level. It is thus not evident whether combination yields
any further performance improvement. On the other hand, AdaBoost with de-
cision stumps was used in [10] to combine attributes of features. Many weak
classifiers were generated in the process and combined by the AdaBoost frame-
work. Later we can see that the performances of [10] and [11] are inferior to ours
on feature combination. It is also worth stressing that our problem is different
from feature selection. In feature selection, a subset of attributes is selected from
all feature attributes that improves over classification based on the full-length
feature vector. In the feature combination problem discussed in this paper, we
are given multiple feature vectors for each example. The purpose is to find a
way to combine the feature vectors to improve the performance over any single
feature vector.

3 Methods for Feature Combination

We begin with a definition of the feature combination problem. Given a la-
beled data set {

(
[x1

i , . . . , x
M
i ], yi

)
}i=1,...,N of size N , where xm

i ∈ Rdm is the
mth feature vector with feature dimension dm for the ith training instance and
yi ∈ {1, . . . ,K} is its class label. The purpose of feature combination is to
learn a classification rule f : X → {1, . . . ,K} from the M feature vectors with
X ⊂ Rd1 × · · · ×Rdm . Depending on the level feature combination is performed,
feature combination methods can be categorized into two categories. Decision-
level methods learn a classifier for each individual feature type and combine
the output of individual classifiers for label prediction without modifying the
feature vectors. Feature-level methods combine the individual feature vectors
to form a new feature vector for classification. Next, we discuss various feature
combination methods in each of the above two categories. Notice that our dis-
cussion is far from comprehensive and has omitted many combination methods
proposed in the literature. We have only selected a few typical ones that were
well represented and most widely used.

3.1 Decision-Level Fusion Methods

In decision level fusion, each individual classifier can return either a single label,
a ranking or real-valued output. We assume the latter case that the classifier
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trained on the mth feature outputs an vector F(xm) = [f1(xm), . . . , fK(xm)] ∈
RK for a testing instance x. Each entry fk(xm) in the vector indicates the
confidence value for the kth class. The larger the value of fk(xm) relative to the
other entries, the more likely that x belongs to class k based on the mth classifier
alone. This also includes output labels (fk(xm) = 1 if x belongs to class k and
fk(xm) = 0 otherwise) and rankings (Fi is a permutation of {1, . . . ,K} with
K being the top rank and 1 the lowest rank) as special cases. With the above
notations, we now present the fusion schemes in below

Majority Voting is the simplest and most widely used decision level fusion
rule. The label of testing instance x is given by

arg max
k=1,...,K

∑
m=1,...,M

δk,m

where δk,m is a hard decision function which equals 1 if and only if the mth
classifier votes for class k, that is, fk(xm) is larger than other f j(xm)’s for
j 	= k. Despite its simplicity, majority voting ignores the values of classifier
output which encode confidence levels on prediction. To fix it, an alternative
fusion rule like the sum rule can be used.

Sum Rule uses decision values fk(xm)’s directly in aggregation

arg max
k=1,...,K

∑
m=1,...,M

fk(xm) (1)

Hence the larger fk(xm) is, the more it contributes to the final score for class k.
Besides majority voting and sum rules, a number of alternative rules can be

used with simple algebra operations. The discussion can be found in the overview
paper [3]. A probabilistic framework is also developed in [3] that incorporates all
fusion rules as special cases. In the probabilistic framework, fk(xm)’s become
the posterior probabilities. However, to use the above two fusion rules, we only
have to assume that classifier output fk(xm)’s are proportional to the posterior
probabilities, instead of requiring them to be probabilistic output. This is a
reasonable assumption since larger value of fk(xm) indicates a higher likelihood
of class k. Thus we can generalize these rules to take real-valued scores.

Stacked Generalization
The above fusion rules are defined in an unsupervised fashion without using the
label information in the training data. Stacked generalization [4] provides a prin-
cipled framework for learning supervised decision rules. It treats the output values
fk(xm)’s returned by individual classifiers as new features that can be used for clas-
sification. Specifically, it creates the following feature map for training instance xi

Fi = [f1(x1
i ), . . . , f

K(x1
i ), . . . , f

1(xM
i ), . . . , fK(xM

i )] ∈ RKM (2)

where the first K feature elements are taken from decision values returned by
the first classifier, the next K feature elements are values returned by the second
classifier, and so on. The total feature dimension is KM for K-class classification
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with M features. A new training set can then be constructed {(Fi, yi)}i=1,...,N

on top of which a new classifier is learned. Any forms of classifier can be used
for stacked generalization but linear classifiers are preferred due to its efficiency
and performance [5].

Here, we adopted the linear SVM classifier which, in the binary case, can be
learned by solving the following optimization problem

min
w,b

1
2
||w||2 + λ

N∑
i=1

max (0, 1 − yi(〈w,Fi〉 + b)) (3)

where yi ∈ {1,−1} denotes the binary class label for the ith instance, w and b are
the weight and bias of the linear discriminant function. In the above equation,
the first term is the regularization term, whereas the second term specifies a
Hinge loss on misclassification. λ controls the trade-off between the two terms.

The SVM is best solved in its dual form in the following

max
0≤α≤λ

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiyiαjyjK(Fi,Fj) s.t.
∑

i

αiyi = 0 (4)

where αi’s are dual variables and K(Fi,Fj) = 〈Fi,Fj〉 is the kernel function
defined as the inner product between two feature vectors. Multi-class classifica-
tion problems are tackled with a one-vs-all strategy by training K classifiers to
differentiate between class k and non-class k for k = 1, . . . ,K. A testing instance
is assigned to the class with the largest output value.

3.2 Feature-Level Combination Methods

Feature-level combination methods are usually developed under specific classi-
fication framework. Here we focus on feature-level combination with the SVM
classifier. Despite the simplicity of linear SVM, it can not handle nonlinear data.
The nonlinear SVM classifier is usually used instead for real-world classification
problems. This is achieved by utilizing the kernel trick. Specifically, let φ define
a nonlinear feature mapping for feature vector Fi. The explicit form of φ(Fi) is
unknown, but the inner product between two nonlinear features is well defined
by the kernel function K(Fi,Fj) = 〈φ(Fi), φ(Fj)〉. In this case, we can solve
the dual formulation in Equation 4 by plugging into a different kernel function.
Common nonlinear kernels include Gaussian, polynomial and sigmoid kernels.

Feature Concatenation is the most straightforward feature-level operation to
form a composite feature by concatenating all individual features. The composite
feature is a long feature vector given by x = [x1, . . . ,xM ], which can be used
for feature classification. In the case of SVM, it is used for computing the new
kernel K(xi,xj).

Kernel Averaging
Alternatively, we can do feature concatenation in the implicit feature space given
by the mapping function φ. This is equivalent to averaging the kernels induced
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by the individual feature maps. Specifically, the concatenated nonlinear feature

is given by φ(x) =
1√
M

[φ(x1), . . . , φ(xM )]. This is equivalent to defining a

composite kernel function

K(xi,xj) = 〈φ(xi), φ(xj)〉 =
1
M

M∑
m=1

〈φ(xm
i ), φ(xm

j )〉 =
1
M

M∑
m=1

K(xm
i ,xm

j ) (5)

The composite kernel is the average of all individual kernels. We can solve the
SVM dual formulation using the composite kernel.

Multiple Kernel Learning (MKL)
Instead of using uniform weights for the composite kernel in Equation 5, a more
general formulation is introduced in [2] for learning kernel weights based on the
SVM dual formulation,

min
β≥0

max
0≤α≤λ

N∑
i=1

αi −
N∑

i=1

N∑
j=1

αiyiαjyjKβ(xi,xj) (6)

with Kβ(xi,xj) =
M∑

m=1

βmK(xm
i ,xm

j )

s.t.
∑

i

αiyi = 0 and
∑
m

βm = 1

The above problem is generally referred to as multiple kernel learning [2]. The
objective function is still convex and hence can be minimized effectively. The
solution provides both a set of feature kernel weights as well as the dual variables
used to define the nonlinear decision function f(x) =

∑
i αiyiKβ(xi,x) + b. For

multiclass classification, we learn kernel weights jointly for all classes by taking
the sum of objective functions for each class and fixing β values in Equation 6.

3.3 Recursive Feature Elimination

Inspired by the idea of [15], we develop a procedure for recursively eliminating
redundant features based on stacked generalization. Let wj

k,m be the weight of
the jth linear SVM for decision value fk(xm), we then define the relevance of the

mth feature by the measure
∑K

j=1

∑K
k=1

(
wj

k,m

)2

. The larger the relevance, the
more useful the feature is for classification. Starting with the full set of features,
we can then take the following steps for recursive feature elimination

1. Learn the feature combination model with the remaining features
2. Eliminate the feature with the lowest relevance
3. Repeat the above two steps until the desired number of features is reached

Through the recursive feature elimination procedure, we can determine the im-
portance of each individual feature for classification and retain a subset of fea-
tures for combination. It also produces a ranking for the individual features
based on the order they are eliminated. From the ranking, we can determine the
relative importance of individual features.
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4 Experimental Results

In this section, we perform feature combination experiments on a benchmark
data set for music genre classification. We used the GTZAN data set [9], which
contains 1000 song segments in 30 seconds of duration uniformly distributed
from 10 genres. For each song, we have extracted eight individual features as
described in Section 2. Each classification experiment was repeated 20 times
with different random partitioning of training and testing data. For each round,
half of the examples in the data set were randomly selected for training and
the remaining for testing. All features were examined on the same training and
testing set in each round. The LibSVM package1 and the Gaussian kernel was
used for SVM training. To reduce the scaling effect, each feature attribute has
been scaled to zero mean and unit standard deviation for kernel computation.
We have also normalized the kernel matrix to unit mean so as to reduce the
scaling effect at kernel level. SVM and kernel parameters were chosen via 3 fold
cross validation on the training data.

First, we examine the effectiveness of each individual feature set for music
genre classification using the SVM classifier. Table 1 shows the average accuracy
rates over 20 rounds achieved by individual features for i) each genre class by
treating the target genre as the positive class and the other genres as the negative
class; and ii) the 10-class problem by classifying each song into one of the 10
genre classes. Accuracy rates for the top performing features are highlighted in
bold for each genre and the 10-class problem. These include the feature type
with the highest average accuracy and other features with close performances.
That is, the differences in accuracy rates between those features and the top
feature are not statistically significant based on the outcomes of paired t-tests
within 95% of confidence interval. From the results in Table 1, we can see that
chord feature is the best individual feature type for genre classification achieving
top performances for 6 out of 10 genres as well as the 10-class problem. Most
of the other features obtain similar classification performance except the beat
feature, which has significantly lower accuracy rates. However, although being
ineffective in overall, beat is best in identifying the disco. This is consistent with
our perception of the disco, which is distinguished by its faster rhythm and more
frequent beats compared to other music genres.

We now turn our attention to feature combination. We compare the various
feature combination schemes discussed in Section 3, including three feature-level
combination methods (“FC” for feature concatenation, “AvgK” for kernel aver-
age and “MKL” for multiple kernel learning) and three decision-level schemes
(“Vote” for majority vote, “Sum” for sum rule, “SG” for stacked generaliza-
tion). The same setup was adopted from the previous experiment with the same
training and testing set partitions and tools for SVM training. The output val-
ues of SVM classifiers over individual features were directly used by Vote, Sum
and SG with optimal parameters selected from cross validation. The regulariza-
tion parameter for SG was also chosen from cross validation. Table 2 shows the

1 http://www.csie.ntu.edu.tw/�cjlin/libsvm/
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Table 1. Accuracy rates in percentage for individual feature sets

SMFCC SASE SOSC TMFCC TASE TOSC Beat Chord

Blues 75.90 64.40 76.90 73.20 72.00 78.80 18.60 83.20

Classical 93.00 91.50 94.80 95.80 92.10 94.30 29.40 90.20

Country 68.20 72.20 76.10 72.70 71.20 75.50 17.70 69.90

Disco 63.30 56.60 63.00 63.20 69.10 66.20 71.60 54.10

Hiphop 68.90 65.20 72.40 73.80 77.50 74.90 27.10 96.60

Jazz 82.40 82.50 83.40 87.80 80.10 80.00 16.00 98.70

Pop 90.00 87.90 86.70 89.40 87.20 85.40 19.40 65.00

Metal 77.10 75.60 71.40 66.10 71.80 74.80 17.90 77.90

Reggae 63.80 60.40 65.90 67.60 65.90 67.60 18.10 81.30

Rock 52.90 23.70 40.40 48.50 45.10 52.50 10.80 72.30

10-class 73.55 68.00 73.10 73.81 73.20 75.00 24.66 78.92

Table 2. Accuracy rates in percentage for various feature combination methods

Best Vote FC AvgK Sum MKL SG

Blues 83.20 86.30 89.60 94.20 91.70 93.70 95.70

Classical 95.80 96.80 97.00 97.20 96.60 97.50 97.00

Country 76.10 82.90 83.60 88.50 85.50 89.40 89.40

Disco 71.60 77.60 83.00 83.70 86.10 86.30 86.60

Hiphop 96.60 85.90 86.60 91.90 93.40 93.00 93.30

Jazz 98.70 92.00 91.10 96.30 98.60 97.90 98.40

Pop 90.00 91.10 90.40 92.50 92.30 93.80 96.30

Metal 77.90 78.60 80.60 88.00 87.80 89.70 87.80

Reggae 81.30 82.90 75.10 84.60 87.50 86.50 85.10

Rock 72.30 68.80 70.50 73.90 78.50 76.00 78.90

10-class 78.92 84.29 84.75 89.08 89.80 90.38 90.85

average accuracy rates achieved by different feature combination methods over
20 rounds for each music genre. For comparison purpose, we have also included
the best results returned by the optimal individual feature in the table.

We have highlighted in bold the accuracy rates for combination schemes that
outperform the best individual feature in each row of Table 2. This is again
determined by comparing the differences in their accuracy rates using paired
t-tests. It can be seen from Table 2 that feature combination can much improve
the performance of music classification, regardless of the specific combination
method being used. Even simple fusion rule like majority voting performs signif-
icantly better than the top individual feature for the 10-class problem. Feature
combination is effective for 7 out of 10 genres with improved accuracy rates, and
the improvement is more evident for those genres that no individual feature can
do very well, like disco and country music. The columns of Table 2 are ranked
by classification performances for the 10-class problem, with increasing aver-
age accuracy rates from left to right. Among the top four combination schemes,



On Feature Combination for Music Classification 461

Fig. 1. Results of recursive feature elimination for classification

which achieve significantly better performances than others, decision level fusion
schemes (SG and sum rule) perform slightly better than feature level schemes
(MKL and average kernel) in overall. Supervised combination schemes (SG and
MKL) also outperform their unsupervised counterparts (sum rule and average
kernel). Significance tests on the 10-class accuracy rates further corroborates our
findings, showing that the differences in accuracy rates obtained by any pair of
methods are statistically significant, except for SG versus MKL and MKL versus
sum rule.

It is worth mentioning that the best 10-class accuracy rate of 90.9% achieved
by SG outperforms the state-of-the-art genre classification results reported in
[10] (83%) and [11] (79.6%2), while both of them adopted a multiple feature
approach albeit with weaker learners on individual features. This empirically
justifies the strength of feature combination with a strong classifier like SVM.

Finally, we examine the relative importance of individual features by applying
the recursive feature elimination procedure to the eight audio features using
stacked generalization. Figure 1 shows the bar plot of accuracy rates varied
against the number of features retained. The error bars in the plot represent
the standard deviation over 20 rounds. It can be clearly seen that the accuracy
rates are quite consistent with the elimination of the least relevant features. The
feature elimination scheme also provides feature ranking results. Ranks returned
by different testing rounds are different, but an overall ranking can be determined

2 The accuracy rate of 91% reported in [11] is based on 10-fold cross validation. The

result here is based on our implementation of the algorithm and tested for 50%-50%

split of training/testing data.
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by sorting the average rank order. From the overall ranking, we find that beat is
the weakest individual feature and always the first one to be eliminated, whereas
chord is the strongest feature and usually the last one to remain.

5 Conclusions

We have studied the problem of multiple feature combination for music classifi-
cation. Empirical validation showed that the classification performance is much
improved by using multiple features at different levels regardless of the combina-
tion schemes adopted. Moreover, we have also identified chord as the single best
feature for music genre classification and stacked generalization as the optimal
combination scheme for multiple feature combination.
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Abstract. Many approaches to learning classifiers for structured objects

(e.g., shapes) use generative models in a Bayesian framework. However,

state-of-the-art classifiers for vectorial data (e.g., support vector ma-

chines) are learned discriminatively. A generative embedding is a map-

ping from the object space into a fixed dimensional feature space, induced

by a generative model which is usually learned from data. The fixed di-

mensionality of these feature spaces permits the use of state of the art

discriminative machines based on vectorial representations, thus bringing

together the best of the discriminative and generative paradigms.

Using a generative embedding involves two steps: (i) defining and

learning the generative model used to build the embedding; (ii) discrimi-

natively learning a (maybe kernel) classifier on the adopted feature space.

The literature on generative embeddings is essentially focused on step (i),

usually adopting some standard off-the-shelf tool (e.g., an SVM with a

linear or RBF kernel) for step (ii). In this paper, we follow a different

route, by combining several Hidden Markov Models-based generative em-

beddings (including the classical Fisher score) with the recently proposed

non-extensive information theoretic kernels. We test this methodology

on a 2D shape recognition task, showing that the proposed method is

competitive with the state-of-art.

1 Introduction

Many approaches to the statistical learning of classifiers belong to one of two
paradigms: generative and discriminative [24,20]. Generative approaches are
built upon probabilistic class models and a priori class probabilities, which are
learnt from training data and combined via Bayes law to yield posterior probabil-
ities. Discriminative methods aim at learning class boundaries, or posterior class
probabilities, directly from data, without resorting to generative class models.

In generative approaches for data sequence, hidden Markov models (HMMs)
[23] are widely used and their usefulness has been shown in different applications.
Nevertheless, generative approaches can yield poor results for a variety of pos-
sible reasons, such as model mismatch due to the lack of prior knowledge, poor
model estimates due to insufficient training data, for instance. To face this issue,

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 463–472, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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several efforts have been recently made to enrich the generative paradigm with
discriminative information. This may be achieved via discriminative training of
HMMs using, for example, the maximum mutual information (MMI) [2] or the
minimum Bayes risk (MBR) [15] criteria (see also [11]). Alternatively, there ex-
ist generalizations of HMMs towards probabilistic discriminative models, such as
conditional random fields (CRFs) [16], in which conditional maximum likelihood
is used to estimate the model parameters. The so-called generative embeddings
methods (or generative score spaces) are another recently explored approach:
the basic idea is to use the HMM (or some other generative model) to map the
objects to be classified into a feature space, where discriminative techniques,
possibly kernel-based, can be used.

The seminal work on generative embedding introduced the so-called Fisher
score [13]. In that work, the features of a given object are the derivatives of
the log-likelihood function under the assumed generative model, with respect to
the model parameters, computed for that object. Other examples of generative
embeddings can be found in [4,7,22,5], some of which are general while others
are specifically tailored to a particular generative model.

Using a generative embedding involves two steps: (i) defining and learning the
generative model and using it to build the embedding; (ii) discriminatively learning
a (maybe kernel) classifier on the adopted score space. The literature on generative
embeddings is essentially focused on step (i), usually using some standard off-the-
shelf tool for step (ii) – e.g., some kernel-based classifier, namely, a support vector
machine (SVM) using classical linear or radial basis function (RBF) kernels.

In this paper, we adopt a different approach, by focusing also on the discrimi-
native learning step. In particular, we combine some HMM-based generative em-
beddings with the recently introduced information theoretic kernels [17]. These
new kernels, which are based on a non-extensive generalization of the classical
Shannon information theory, are defined on (possibly unnormalized) probabil-
ity measures. In [17], they were successfully used in text categorization tasks,
based on multinomial (bag-of-words type) text representations. Here, the idea is
to consider the points of the generative embedding as multinomial probability
distributions, thus valid arguments for the information theoretic kernels.

The proposed approach is instantiated with four different HMM-based gen-
erative embeddings into feature spaces (the Fisher score embedding [13], the
marginalized kernel space [27], the state space and the transition space [5]) and
four information theoretic kernels [17] (the Jensen-Shannon kernel, the Jensen-
Tsallis kernel, and two versions of the weighted Jensen-Tsallis kernel). The
experimental evaluation is performed using a 2D shape classification problem,
obtaining results confirming the validity of the proposed approach.

2 HMM-Based Generative Embeddings

2.1 Hidden Markov Models

In this subsection, we briefly summarize the basic concepts of HMMs, mainly to
set up the notation.
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A discrete-time first order HMM [23] is a probabilistic model that describes
a stochastic sequence1 O = (O1, O2, . . . , OT ) as being an indirect observation of
a hidden Markovian random sequence of states Q = (Q1, Q2, . . . , QT ), where,
for t = 1, ..., T , Qt ∈ {1, 2, . . . , N} (the set of states). Each state has an as-
sociated probability function that specifies the probability of observing each
possible symbol, given the state. An HMM is thus fully specified by a set
of parameters λ = {A,B,π} where A = (aij) is the transition matrix, i.e.,
aij = P (Qt = j |Qt−1 = i), π = (πi) is the initial state probability distribution,
i.e., πi = P (Q1 = i), and B = (bi), is the set of emission probability functions. If
the observations are continuous, each bi is a probability density function, e.g.,
a Gaussian or a mixture of Gaussians. If the observations belong to a finite set
{v1, v2..., vS}, each bi = (bi(v1), bi(v2), ..., bi(vS)) is a probability mass function
with bi(vs) = P (Ot = vs |Qt = i) being the probability of emitting symbol vs in
state i.

2.2 The Embeddings

The generative embedding can be defined as a function Φ which maps an ob-
served sequence o = (o1, ..., oT ) into a vector, by employing a set of HMMs
λ1, ...,λC . Different approaches have been proposed to determine the set of mod-
els used to build the embedding [3]. Here, we adopt the following method: given a
C-ary classification problem, we train one HMM for each class, and concatenate
the vectors obtained by the embedding of each model, i.e.,

Φ(o) = [φ(o,λ1), · · · , φ(o,λC)] . (1)

Below, we describe how φ(o,λc) is defined in the four cases considered in this
paper. All the quantities needed to compute the different embeddings can be
easily obtained using the forward-backward procedure [23].

The Fisher Score Embedding (FSE). In the FSE, each sequence is rep-
resented by a feature vector containing derivatives of the log-likelihood of the
generative model with respect to each of its parameters. Formally,

φFSE(o,λ) =
[
∂ log(P (O = o|λ)

∂λ1
, · · · , ∂ log(P (O = o|λ)

∂λL

]�
∈ RL, (2)

where λi represents one of the L parameters of the model λ (elements of the
transition matrices, emission and initial probabilities). For more details, see [9].

The Marginalized Kernel Embedding (MKE). The marginalized kernel
(MK) for discrete HMMs is defined as

MK(o,o′,λ) =
S∑

s=1

N∑
i=1

msi (o,λ)msi (o′,λ) , (3)

1 We adopt the common convention of writing stochastic variables with upper case

and realizations thereof in lower case.
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with

msi (o,λ) =
1
T

∑
q∈{1,...,N}T

P (Q = q|O = o,λ)
T∑

t=1

I (ot = s ∧ qt = i) , (4)

where the indicator function I(A) is 1 if A is true and 0 otherwise [27].
Let us collect all the msi (o,λ) values, for s = 1, ..., S and i = 1, ..., N , into

an (SN)-dimensional vector m(o,λ) ∈ RSN . Then, it is clear that

MK (o,o′,λ) = 〈m(o,λ),m(o′,λ)〉 (5)

showing that the MK is nothing but a linear kernel. The MKE is thus simply
given by

φMKE(o,λ) = m(o,λ) ∈ RSN . (6)

The State Space Embedding (SSE). The SSE is a recently introduced
generative embedding [5], in which the i-th component of the feature vector
mesures, for an observed sequence o, the sum (over time) of the probabilities of
finding the HMM specified by λ in state i. Formally,

φSSE(o,λ) =

[
T∑

t=1

P (Qt = 1|o,λ), · · · ,
T∑

t=1

P (Qt = N |o,λ)

]�
∈ RN (7)

Each component can be interpreted as the expected number of transitions from
the corresponding state, given the observed sequence [23].

The Transition Embedding (TE). This embedding is similar to the SSE
but it considers probabilities of transitions rather than states. Naturally, it is
defined as

φTE(O,λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T−1∑
t=1

P (Qt = 1, Qt+1 = 1|o,λ)

T−1∑
t=1

P (Qt = 1, Qt+1 = 2|o,λ)

...
T−1∑
t=1

P (Qt = N,Qt+1 = N |o,λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RN2

(8)

Each of the N2 components of the vector can be interpreted as the expected
number of transitions from a given state to another state, given the observed
sequence [23].
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3 Information Theoretic Kernels

Kernels on probability measures have been shown very effective in classifica-
tion problems involving text, images, and other types of data [10,12,14]. Given
two probability measures p1 and p2, representing two objects, several informa-
tion theoretic kernels (ITKs) can be defined [17]. The Jensen-Shannon kernel is
defined as

k JS(p1, p2) = ln(2) − JS(p1, p2), (9)

with JS(p1, p2) being the Jensen-Shannon divergence

JS(p1, p2) = H

(
p1 + p2

2

)
− H(p1) + H(p2)

2
, (10)

where H(p) is the usual Shannon entropy.
The Jensen-Tsallis (JT) kernel is given by

k JT
q (p1, p2) = lnq(2) − Tq(p1, p2), (11)

where lnq(x) = (x1−q − 1)/(1 − q) is the q-logarithm,

Tq(p1, p2) = Sq

(
p1 + p2

2

)
− Sq(p1) + Sq(p2)

2q
(12)

is the Jensen-Tsallis q-difference, and Sq(r) is the Jensen-Tsallis entropy, defined,
for a multinomial r = (r1, ..., rL), with ri ≥ 0 and

∑
i ri = 1, as

Sq(r1, ..., rL) =
1

q − 1

(
1 −

L∑
i=1

rq
i

)
.

In [17], versions of these kernels applicable to unnormalized measures were also
defined. Let μ1 = ω1p1 and μ2 = ω2p2 be two unnormalized measures, where
p1 and p2 are the normalized counterparts (probability measures), and ω1 and
ω2 arbitrary positive real numbers (weights). The weighted versions of the JT
kernels are defined as follows:

– The weighted JT kernel (version A) is given by

kA
q (μ1, μ2) = Sq(π) − T π

q (p1, p2), (13)

where π = (π1, π2) =
(

ω1
ω1+ω2

, ω2
ω1+ω2

)
and

T π
q (p1, p2) = Sq (π1p1 + π2p2) − (πq

1Sq(p1) + πq
2Sq(p2)) .

– The weighted JT kernel (version B) is defined as

kB
q (μ1, μ2) =

(
Sq(π) − T π

q (p1, p2)
)
(ω1 + ω2)q. (14)
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4 Proposed Approach

The approach proposed in this paper consists in defining a kernel between two
observed sequences o and o′ as the composition of one of generative embeddings
with one of the ITKs presented above. Formally,

k(o,o′) = ki
q (Φ(o), Φ(o′)) , (15)

where i ∈ {JT, A, B} indexes one of the Jensen-Tsallis kernels (11), (13), or (14),
and Φ is as given in (1), where φ is one the embeddings reviewed in Section 2.2.
Notice that this kernel is well defined because all the components of Φ(o) are
non-negative, for any o; see (4), (7), and (8). In the case of the FSE, positivity is
guaranteed by adding a positive offset to all the components of φFSE. The family
of kernels k JT

q requires the arguments to be proper probability mass functions,
which can be easily achieved by normalization. For the kernels kA

q and kB
q , this

normalization is not required, so we also consider un-normalized arguments.
We use this kernel with support vector machine (SVM) classifiers. Recall

that positive definiteness is a key condition for the applicability of a kernel in
SVM learning. It was shown in [17] that kA

q is a positive definite kernel for
q ∈ [0, 1], while kB

q is a positive definite kernel for q ∈ [0, 2]. Standard results
from kernel theory [25, Proposition 3.22] guarantee that the kernel k defined
in (15) inherits the positive definiteness of ki

q, thus can be safely used in SVM
learning algorithms.

5 Experimental Evaluation

We tested the proposed approach on a 2D shape recognition task. For each shape,
a sequence of curvature values is extracted from the corresponding contour, as
in [19]. The sequences of curvatures are subsequently modeled by continuous
3-state HMMs with Gaussian emission densities.

We use the Chicken Pieces Database, denoted also as Chicken data2 [1]. This
dataset contains 446 binary images (silhouettes) of chicken pieces, each belong-
ing to one of five classes representing specific chicken parts: wings (117 samples),
backs (76), drumsticks (96), thighs and backs (61), and breasts (96). Some ex-
amples of this dataset are shown in Fig. 1. This constitutes a challenging clas-
sification task, which has been recently used as a benchmark by several authors
[3,6,8,18,19,21,22].

The original set is split randomly into training and test sets (of equal size).
The classification accuracy values reported in Table 1 are averages over 10 experi-
ments. The constant C of SVMs and the parameter q of the information theoretic
kernels was optimized by 10-fold cross validation (CV). The embeddings have
been used with or without a space standardization (moving and scaling every
feature). Actually, it has shown that, depending on the embedding, adequate
standardization may often be crucial in obtaining high accuracy values [5,26].
2 http://algoval.essex.ac.uk:8080/data/sequence/chicken/
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Wing

Back

Drumstick

Thigh and back

Breast

Fig. 1. Examples of Chicken data

Table 1. Classification accuracies obtained with the several embeddings and informa-

tion theoretic kernels described in the text on the 2D shape recognition experiment.

The rows with the indication “standardized” refer to experiments where the embed-

dings were standardized.

Embedding Linear k JS = k JT
1 k JT

q kA
q kB

q

States 0.7387 0.7230 0.7095 0.7995 0.8221

States (standardized) 0.7342 0.7230 0.7005 0.8086 0.7950

Transitions 0.7703 0.7545 0.7545 0.8243 0.8356

Transitions (standardized) 0.8311 0.7995 0.7973 0.8176 0.8198

Fisher 0.6171 0.6194 0.6261 0.7568 0.6689

Fisher (standardized) 0.8108 0.8243 0.8243 0.8311 0.8243

Marginalized 0.6712 0.7095 0.7455 0.8243 0.8063

Marginalized (standardized) 0.7477 0.6937 0.7162 0.7995 0.8063

The results in Table 1 show that, except in one case, the best Jensen-Tsallis
kernel for each embedding always outperforms the linear kernel, although not
by much.

Figure 2 plots the SVM accuracies, for different kernels, as a function of
parameter q, for the transitions embedding (TE). In line with the results from
[17], the best performances are obtained for q < 1. Although we do not have, at
this moment, a formal justification for this fact, it may be due to the following
behavior of the JT kernels. For q < 1, the maximizer of k JT

q (p, v) (or of k B
q (p, v))

with respect to p is not v, but another distribution closer to uniform. This is
not the case for the Jensen-Shannon kernel k JS (which coincides with k JT

1 ), for
which the minimizer of k JS(p, v) with respect to p is precisely v. This behavior
of k JT

q plays the role of a smoothing regularizer, by favoring more uniform
distributions.

Finally, Table 2 reports some recent state-of-the-art results on the Chicken
Pieces dataset. The experimental procedures are not the same in all the
references listed in the table (different shape representations, different numbers
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Fig. 2. SVM accuracies with several kernels for the transitions embedding, as a function

of q. Notice that the maximum accuracy in this plot is higher than that reported in

Table 1, since that value was obtained with q adjusted by cross validation.

Table 2. Comparative Results on the Chicken data

Methodology Accuracy (%) Reference

1-NN + Levenshtein edit distance ≈ 0.67 [18]

1-NN + approximated cyclic distance ≈ 0.78 [18]

KNN + cyclic string edit distance 0.743 [19]

SVM + Edit distance-based kernel 0.811 [19]

1-NN + mBm-based features 0.765 [6]

1-NN + HMM-based distance 0.737 [6]

SVM + HMM-based entropic features 0.812 [21]

SVM + HMM-based Top Kernel 0.808 [22]

SVM + HMM-based FESS embedding + rbf 0.830 [22]

SVM + HMM-based non linear Marginalized Kernel 0.855 [8]

SVM + HMM-based clustered Fisher kernel 0.858 [3]

of HMM states, different accuracy assessment protocol), so the results should
not be interpreted too strictly. However, we can observe that the best result
from Table 1 (0.836) would be in third place (2.2% behind the best) in the rank-
ing of methods shown in Table 2, thus we can conclude that this preliminary
experimental assessment shows that the proposed approach is competitive with
the state-of-the-art.
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6 Conclusions

In this paper, we have studied the combination of several HMM-based gener-
ative embeddings with the recently introduced non-extensive information the-
oretic kernels. We have tested these combinations on SVM-based classification
of 2D shapes, with the generative embeddings obtained via HMM modeling of
the sequence of curvatures of the shape’s contour. Experiments on a benchmark
dataset allow concluding that the classifiers thus obtained are competitive with
the state-of-the-art methods. Current work includes a more thorough experi-
mental evaluation of the method on other data sets of different nature.
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Abstract. In two-class problems, the linear combination of the outputs

(scores) of an ensemble of classifiers is widely used to attain high perfor-

mance. In this paper we investigate some techniques aimed at dynami-
cally estimate the coefficients of the linear combination on a pattern per

pattern basis. We will show that such a technique allows providing better

performance than those of static combination techniques, whose parame-

ters are computed beforehand. The coefficients of the linear combination

are dynamically computed according to the Wilcoxon-Mann-Whitney

statistic. Reported results on a multi-modal biometric dataset show that

the proposed dynamic mechanism allows attaining very low error rates

when high level of precision are required.

Keywords: Classifier ensembles, two-class classification, biometric

systems.

1 Introduction

Many applications, such as anomaly detection, biometric authentication, etc.,
require the design of classifiers that discriminate one class of objects (a.k.a. the
positive class) from all other objects (a.k.a. the negative class). This is usually
attained by measuring how similar the sample is with respect to the positive
class, and classifying the pattern as positive if the similarity score is above some
predefined threshold. The performance of this kind of classifiers is evaluated by
the trade-off between misclassification errors at some significant threshold values,
or by resorting to threshold-independent measures such as the Area Under the
ROC Curve (AUC) [1]. However, in security applications, the performances are
usually evaluated for a limited range of threshold values, corresponding to very
low error rates. Unfortunately, the required performance for security applications
are hardly met by any individual classifiers.

To improve the overall performance with respect to the selection of the “best”
single classifier , the approaches based on ensemble of classifiers are widely used
[6,7]. On one hand, the selection of the “best” classifier is not a trivial task, and is
highly dependent on the criteria used to rank the classifiers. On the other hand,
the use of an ensemble of classifiers allows exploiting the complementary dis-
criminatory information that all the ensemble members may encapsulate. When

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 473–482, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the classifiers produce similarity scores, the combination is generally performed
at the score level by producing a new score according to some “fusion” rule (e.g.,
by a linear combination) [7,12]. So far, most of the solutions presented in the
literature adopts a “static” approach, in the sense that the parameters of the
combination rule do not depend on the sample to be classified. It is easy to see
that further improvements are expected if the combination rule makes use of
sample-specific parameters [16,2,9,10]. For instance, a larger degree of separa-
tion between the distributions of positive and negative samples can be attained
by dynamically tuning the combination parameters according to an estimation
of the probability that the sample belongs to the positive class [13].

In this paper, we propose a novel dynamic combination strategy. For each
pattern, and for each classifier, we propose the computation of an index called
Score Decidability Index (SDI) that is based on the Wilcoxon-Mann-Whitney
statistic (WMW). Then, the coefficients of the linear combination are computed
as a function of these indexes. This index measures, for each classifier, and
for each pattern, the confidence in classifying the pattern either as positive or
negative, according to the score assigned to that pattern, and to the scores
assigned to a reference set made up of positive and negative.

The SDI can also be seen as a different representation of the original score
assigned by each classifier to a given pattern, as it represents the likelihood with
which the original score is drawn from either the positive or negative distributions
of scores. A new fused score can then be computed by averaging the SDI values.
Finally, the SDI values produced by the ensemble of classifiers for a given pattern
can be further used to compute the coefficients of a simplified combination rule,
where only two of the scores produced by the ensemble are used, namely the
maximum and the minimum score.

Section 2 presents the Score Decidability Index (SDI), while its use to com-
pute the coefficients of the dynamic linear combination is presented in Section
3. Section 4 illustrates other uses of the SDI to produce a new transformed
score, and the coefficients of simplified dynamic combination. Section 5 shows
the experimental results on a multi-modal dataset, where the effectiveness of the
proposed techniques are outlined.

2 Score Decidability Index

Usually, the parameters (weights) for a linear combination of outputs produced
by an ensemble of two-class classifiers are computed through some estimations
or measurements performed on the data. One way to compute these parameters
is to exploit one (or more) performance measure or statistic. In this paper we
propose the use of a measure called Score Decidability Index to estimate the
parameters of a dynamic linear combination. This index will be derived from
the Wilcoxon-Mann-Whitney (WMW) statistic [4].

Let us consider a two-class problem, where the two classes are denoted as
positive (ω+) and negative (ω−). For each pattern xi to be classified, a two-class
classifier Ck usually produce an output score sik = fk (xi). Then, a decision
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threshold th is set, and patterns whose score is greater than the threshold are
assigned to the positive class, otherwise they are assigned to the negative class.

Let now us consider a set of patterns whose class is known for a generic
classifier Ck, and let:

S+
k =
{
s+

ik = fk (xi) | xi ∈ ω+

}
, ∀i

S−
k =
{
s−ik = fk (xi) | xi ∈ ω−

}
, ∀i

The performance of two-class classifiers Ck for all possible values of the decision
threshold th can be summarized by the AUC, whose value can be computed by
resorting to the WMW statistic [5]:

AUCk =

∑n+
i=0

∑n−
j=0 I(s

+
ik, s

−
jk)

n+ · n−
(1)

where n+ and n− represent the number of positive and negative patterns, and the
function I(a, b) is equal to 1 if a > b, otherwise it is equal to 0. This formulation
of the AUC can be also seen as a measure of the probability that the classifier
ranks a randomly chosen positive sample higher than a randomly chosen negative
sample, i.e. P (S+ > S−) [4].

Let us define

r−(s) =
∑n+

i=0 I(s
+
i , s)

n+
� P (S+ > s) (2)

r+(s) =

∑n−
j=0 I(s, s

−
j )

n−
� P (s > S−) (3)

Hence r−(s) represents the probability that the score s is lesser than a score
coming from the positive distribution, and r+(s) represents the probability that
the score s is larger than a score coming from the negative distribution.

It can be easily seen that the WMW statistic in Eq.(1) can be written in
either of the two following formulations:

∑n+
i=0

∑n−
j=0 I(s

+
ik, s

−
jk)

n+ · n−
→

⎧⎪⎪⎨⎪⎪⎩
∑n−

j=0 r−(s−jk)
n−∑n+

i=0 r+(s+
ik)

n+

(4)

Thus, r+(s) and r−(s) represent an estimation of the contribution of the score s
to the value of the AUC in the case it belongs either to the positive or negative
class, respectively. Given the sets of scores S+

k and S−
k produced by a two-class

classifier Ck on a training set, for each score sik related to a test pattern xi, the
Score Decidability Index (SDI) can be defined as

Δ(sik) = r+(sik) − r−(sik) (5)

that is related to the likelihood the pattern xi is drawn either from the positive
or negative distributions of scores. If Δ(sik) = 1 (i.e., P (sik > S−

k ) = 1 and
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P (S+
k > sik) = 0), the score sik is larger than any other score in the training

set S+
k

⋃
S−

k . As a consequence, it is more likely that pattern xi comes from the
positive rather than from the negative distribution. Similarly, if Δ(sik) = −1
(i.e., P (sik > S−

k ) = 0 and P (S+
k > sik) = 1), the score sik is lesser than any

other score in the training set, so that it is more likely that the sample comes
from the negative distribution. The other values of Δ(sik) in the range [−1, 1]
accounts for the uncertainty in the classification of the sample whose score is
sik, the larger the value of |Δ(sik)|, the more confident is the class decision.

3 Dynamic Linear Combination

As stated in the Introduction, the linear combination of scores is one of the most
widely used way to fuse outputs from different classifiers.

slc
i =

N∑
k=1

αk · sik (6)

Usually, some constraints are introduced to simplify the parameters estimation.
For example, affine combinations are obtained if

∑
k αk = 1, conical combina-

tions are those combinations for which αk ≥ 0, and convex or weighted combi-
nations require that αk ≥ 0, and

∑
k αk = 1.

One of the simplest form of linear combination is obtained by averaging the
outputs of the classifiers (a.k.a. the Mean-rule). This rule implicitly assume
that all the classifiers are assigned the same weight [14]. However, it has been
pointed out that a weighted combination outperforms the Mean-rule when the
classification problem is made up of imbalanced classes [3]. The weights of the
combination are usually computed by maximizing a measure of performance on
a training set. It is worth noting that usually each classifier is assigned a unique
weight that does not depend on the sample to be classified. In other words,
typically the weighted combination aims at improving the average performance
of the classification system. Moreover, the optimization algorithm may exhibit
a high computational cost, depending on the heuristic used to maximize the
selected performance measure or statistic [8,15]. On the other hand, it is easy to
see that an optimal linear combination rule should require weights that depends
both on each individual classifier, and on the pattern to be classified.

s∗i =
N∑

k=1

αik · sik (7)

Such techniques are usually called “dynamic” combination techniques. However,
if it is difficult and computational costly to estimate the optimal set of weights
for each individual classifier, the estimation of dynamic weights may result in
a more complex problem [7]. Usually this problem is solved by estimating the
behavior of each classifier in the region containing the test sample. Different
heuristics have been proposed that are based on different definitions of classifier
behavior, and different definition of regions.
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In this paper, we propose to exploit the SDI formulated in Section 2 to derive
the weights of the combination so that the distributions of the combined output
for the two classes allows effective separation. One way to achieve this goal is
to provide large weights for each score related to positive samples, so that the
combined score is as high as possible, and to provide small weights for each
score related to negative samples, so that the combined score is as small as
possible. Actually, each classifier in the ensemble can provide the information
on the most likely class a test pattern belongs to. If a set of reference patterns
related to the positive and negative classes are available, the distribution of the
outputs on such a set can be representative of the behavior of that classifier for
the two classes. Thus, if we compare the output s produced by each classifier in
the ensemble with the outputs of the same classifier on the reference set, that
classifier supports the following conclusions

if s > sik, ∀sik ∈ S−
k , then the pattern is likely to be positive

if s < sik, ∀sik ∈ S+
k , then the pattern is likely to be negative

For any other intermediate case, the classifier may support one decision or the
other with different strength, depending on the fractions of the reference set
which support the two above propositions.

Actually the value of SDI can be used to compute the weights of the linear
combination, as for each classifier and for each score it can provide the informa-
tion on the most likely class, and the strength of the decision. It can be easily
seen that the sign of Δ indicates the most likely class, while the modulus of |Δ|
is a measure of the “strength” of the class prediction. Thus we propose to use
the SDI to compute the weights of a dynamic linear combination as:

αik =
Δ(sik) + 1

2
(8)

where the value of αik is in the range [0, 1] in agreement with the normalization
used for the outputs of the classifier. We will refer to this technique as DLC.

4 Other Dynamic Rules Based on Score Decidability
Index

The rationale behind the computation of the weights for the linear combination
shown in the previous section may give rise to other combination rules.

4.1 The Score Decidability Index as a normalized Score

In the previous section we claimed that for each pattern and for each classifier,
the sign of Δ indicates the most likely class, while the modulus of |Δ| is a measure
of the “strength” of the class prediction. If we normalize Δ in the range [0, 1], the
resulting value can be used as a new normalized score for each classifier. Then,
these new values can be combined by any combination mechanism. In order to
keep the system simple, and in account of the meaning of these new normalized
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scores, we propose to average these new values. We will refer to this technique
as SDI mean:

s∗i =
1
N

N∑
k=1

Δik + 1
2

(9)

4.2 Simplified Score Combination

The Score Decidability Index can be also used in the framework of a simplified
combination scheme called Dynamic Score Combination (DSC) [13]. Two similar
formulations of the DSC have been proposed:

s∗i = β1i · max
k

(sik) + β2i · min
k

(sik) (10)

s∗i = βi · max
k

(sik) + (1 − βi) · min
k

(sik) (11)

In Eq.(10) the two parameters β1i, and β2i “estimate” the likelihood of xi being a
positive or a negative pattern. Eq.(11) is similar to Eq.(10), where the constraints
β2i = (1−β1i) and βi ∈ [0, 1] are added. DSC basically combines only two values
among all the scores produced by the ensemble of classifiers, namely the smallest
and the biggest values. On the other hand, the behavior of the ensemble (i.e., all
the scores produced by the ensemble) is used to compute the values of the βs. In
the following we propose two different methods to embed the SDI into Eq.s(10),
and (11).

Dynamic Score Combination by Δ voting. Let us consider the formulation
of DSC in Eq.(10) where the values of β are continuous. By taking into account
that the decidability of the class of the sample is critical if the value of Δ is close
to zero, we can fuse the SDI of the ensemble of classifiers by a Voting mechanism.
In particular, we evaluate the “likelihood” of the sample belonging either to the
positive or the negative class, by counting the fraction of the classifiers that
exhibit a decidability index larger than an offset α:

β1i =
1
N

∑N
k=1 I(Δ(sik), α) (12)

β2i =
1
N

∑N
k=1 I(−Δ(sik), α) (13)

Typical values of α are 0.05, 0.1, 0.15, and 0.2. The reported experimental results
are related to α = 0.05.

Dynamic Score Combination byΔmean. In this case, we take into account
the formulation of the DSC reported in Eq.(11). In this case, the values of Δ can
be used to compute the parameter βi by taking into account the average and
the standard deviation of Δ among all the classifiers as follows:

Δ∗(si) =

1
N

∑N
k=1 Δ(sik)

σΔ(sik)
(14)

βi =
1

1 + e−γ·Δ∗(si)
(15)
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where the sigmoid in the Eq (14) is used to normalize the value of Δ∗(si) in the
range [0, 1]. Typical values of γ in the normalization process are from 1 to 6.
The reported experimental results are related to γ = 3.

5 Experimental Results

The experiments have been performed on the Biometric Authentication Fu-
sion Benchmark Database (BA-Fusion), a multi-modal database of similarity
scores artificially created from experiments carried out on the XM2VTS face
and speaker verification database [11]. This dataset contains similarity scores
from 8 classifiers, and the scores have been normalized by the Tanh rule [12].

Reported experiments aim at assessing the performance of the proposed tech-
niques in terms of different performance measures. In particular, the AUC, the
EER, have been used, as well as error measures at four operating points that
are generally used to test security systems, namely FPR 1%, FPR 0%, FNR 1%
and FNR 0%. Thus, the FNR (FPR) attained when the FPR (FNR) is equal to
1% or 0% are measured, respectively.

Experiments have been carried out by creating ensembles where the number of
classifier in the ensemble ranges from 2 to 8. In this way, we create ensembles that
contain all possible subsets of classifiers from the original pool of 8 classifiers. In
order to get unbiased results, a 4-fold cross-validation technique has been used.
The dataset has been subdivided into 4 subsets, so that one subset at a time
was used for training, while the other three have been used for testing. Results
are reported in terms of average and standard deviation over the four trials, and
over all the possible ensemble of classifiers for a given ensemble size.

The performance of the proposed algorithms have been compared to those of
the Mean-rule, as this is a simple and effective way of combining multiple scores.
Very often experimental results show that the Mean-rule provides significant
performance improvements not only with respect to individual classifiers, but
also with respect to other combination rules. Performance are also compared
to the best performance provided by the individual classifiers included in the
ensemble. It is worth noting that for each measure of performance, the best
value can be related to a different classifier in the ensemble.

Results reported in Fig.1 show that the average performance improve as the
size of the ensemble increases. This results shows that the proposed combination
mechanisms allow exploiting the complementary information that the individ-
ual classifiers may exhibit. In particular, the combination of classifiers always
allows outperforming the best classifier, and provide very low error rates. By
inspecting the figure, an ensemble size equal to five can be a good compromise
between performance and ensemble complexity. For this reason, Table 1 shows
the detailed numerical results in terms of the average and standard deviation for
an ensemble size equal to five.

Fig. 1(a) shows the results in terms of the AUC. It is easy to see that all the
combination methods provide very high AUC values, very close to each other.
Fig.s 1(b)-(d) show the performance in terms of EER and FPR 1%, respectively.
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Fig. 1. Average performance for each ensemble size



Dynamic Linear Combination of Two-Class Classifiers 481

Table 1. Performance in terms of average and standard deviation (between brackets)

for all the ensembles of 5 classifiers. Results with a ◦ indicate that the difference

in performance from those achieved by the Mean-rule are not statistically significant

according to the t-test with a 95% confidence. The best performance are in italics.

AUC EER

Mean-rule 0.9998(±0.0002) 0.0058(±0.0019)

Best classifier 0.9984(±0.0014) 0.0125(±0.0046)

DLC 0.9998(±0.0002) 0.0045(±0.0017)
SDI mean 0.9998(±0.0002) 0.0049(±0.0023)

Δ Voting 0.9997(±0.0005) 0.0045(±0.0021)

Δ mean ◦ 0.9998(±0.0003) 0.0047(±0.0019)

FPR-0% FPR-1% FNR-1% FNR-0%

Mean-rule 0.0941(±0.0342) 0.0040(±0.0026) 0.0023(±0.0017) 0.0719(±0.0827)

Best classifier 0.3518(±0.1148) 0.0135(±0.0092) 0.0192(±0.0181) 0.1237(±0.1120)

DLC 0.0886(±0.0469) 0.0028(±0.0024) 0.0008(±0.0010) 0.0532(±0.0599)
SDI mean ◦ 0.0931(±0.0455) ◦ 0.0038(±0.0029) 0.0011(±0.0020) 0.0598(±0.0619)

Δ Voting 0.2017(±0.1622) 0.0026(±0.0024) 0.0014(±0.0013) 0.1250(±0.1981)

Δ mean ◦ 0.1015(±0.0723) 0.0029(±0.0025) 0.0010(±0.0013) 0.0895(±0.1150)

Regardless the ensemble size, all the proposed methods outperform those of
the mean rule. However, when the EER is considered, the DLC outperform all
other measures for ensemble sizes smaller than or equal to five, while Δ-voting
provides the best performance for sizes greater than five. On the other hand,
when the FPR 1% is considered, the DLC provides the best performance for
small ensemble sizes, while differences among the proposed mechanisms tends to
be negligible as the ensemble size is greater than 5. A similar behavior can be
also seen in Fig. 1(f) where the performance for FNR 1% are shown. A different
behavior can be seen in Fig.s 1(c)-(e), where the working point is set to 0% FPR
or FNR respectively. In these cases, Δ-voting provides the worst performance,
while the DLC and SDI-mean outperform the Mean-rule for any ensemble size
in the case of FNR 0%, while in the case of FPR 0% performance improvements
are shown for ensemble sizes greater than or equal to 5. Thus, we can conclude
that the proposed mechanisms allows exploiting the complementarity of different
classifiers, especially in the case of large ensemble size.

In particular, in the case of the dataset at hand, we observed that the DLC
and SDI-mean outperform all other techniques in any performance measure for
ensembles size greater than or equal to 5. The inspection of the values in the Ta-
ble 1 clearly shows that the AUC does not allow to see any significant difference
among the considered combination mechanisms. On the other hand, the values
related to the operating point related to very low error rates, show the effective-
ness of the proposed mechanism. This effectiveness has been also validated by
performing the t-test with a 95% confidence on the difference in performance
with the Mean-rule. All the differences, except those marked with a circle, are
statistically significant. In addition, it is worth noting that in security applica-
tions even small differences in performances are of great value.
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The reported results allow to conclude that the proposed DLC and SDI-mean
techniques based on the Score Decidability Index allows exploiting effectively
the complementarity among different classifiers. In addition, depending on the
performance measure of interest, the other two techniques based on a simplified
combination can also provide good performances. In conclusion, it can be pointed
out that the proposed Index provide an useful measure for the estimation of the
parameters for combining an ensemble of two-class classifiers.
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Large-Scale Text to Image Retrieval Using a Bayesian
K-Neighborhood Model�

Roberto Paredes

ITI-UPV
Camino de Vera S/N, 46022 Valencia (Spain)

Abstract. In this paper we introduce a new approach aimed at solving the
problem of image retrieval from text queries. We propose to estimate the word
relevance of an image using a neighborhood-based estimator. This estimation
is obtained by counting the number of word-relevant images among the
K-neighborhood of the image. To this end a Bayesian approach is adopted to
define such a neighborhood. The local estimations of all the words that form a
query are naively combined in order to score the images according to that query.
The experiments show that the results are better and faster than the state-of-the-
art techniques. A special consideration is done for the computational behaviour
and scalability of the proposed approach.

1 Introduction

This paper addresses the problem of image retrieval from text queries. This problem is
commonly treated and it is a fundamental part of web search engines and photographic
databases. Image retrieval from text is a particular example of an information retrieval
system where the user uses text queries in order to search for the requested information.
Therefore the methodology proposed here could be easily applied to other scenarios
such as video and audio retrieval. The precision of the image retrieval systems has been
improved during the last years due to the introduction of new image descriptors and
methodologies. In the case of web search engines the current image retrieval technol-
ogy is mainly based on the text that appears around the images in the web pages. On the
other hand, in online photographic databases like Flicker or Picasa, the textual informa-
tion related to the images is extracted from the tags with which the user described the
pictures during the uploading process. Despite of the straightforward implementation
and relatively good results of such an approach, it can not be extended to other sce-
narios where that textual information is not available. The problem of image retrieval
from text queries is usually solved by means of ranking the images according to their
relevance to the query meaning. The images are sorted with regard to the scores that
they obtain for a particular query and the images with the highest scores are presented
to the user. Therefore the retrieval problem is reduced to the computation of the scores
for any pair query-image.

� Work supported by the UPV project PAID09015 and Spanish projects: TIN2008-04571 and
Consolider Ingenio 2010 MIPRCV (CSD2007- 00018).

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 483–492, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



484 R. Paredes

Recently different approaches for solving this problem using a neighborhood model
have been proposed [13,9]. In [13] the authors proposed two different ways of linearly
combining different distances that define the image neighborhood. In [9] the authors
propose two different approaches, weighted nearest neighbor for tag prediction and
word-specific logistic discriminant models. These methods show the capabilities of the
neighborhood-based estimators to solve the image annotation problem, but these meth-
ods scale poorly and can not be applied to large scale problems with a huge number of
images (millions) and large size of the vocabulary (thousands).

For large scale problems a linear discriminative model (PAMIR) has been proposed
in order to rank images from text queries [8]. This method outperforms other tech-
niques like Cross-Media Relevance Model (CMRM) [11], Cross-Media Translation
Table (CMTT) [17], Probabilistic Latent, Semantic Analysis (PLSA) [15] and Support
Vector Machines (SVM) [16],[19]. This approach has demonstrated good performance
and a good scalability behaviour following an online learning approach. This method
can be considered the state-of-the-art for large scale image retrieval from text queries.
The current paper proposes a new approach based on a local word relevance estima-
tion. This local estimation is accomplished by considering the K-neighborhood of the
images but the present work aims at guaranteeing the scalability capabilities.

The paper is organized as follows. The new approach is presented in section 2. Com-
putational issues are considered in section 3. Experiments with two different datasets
are carried out in section 4. Finally, some conclusions are drawn in section 5.

2 Approach

In this section the new approach based on a K-neighborhood word relevance estima-
tion is presented. The new method will be denoted as KNIR (K-Neighborhood Image
Retrieval).

In order to retrieve images given a text query, a score for any image given this text
query is needed. This score should be high when the image content is relevant to the
text query and should be low when the image content is not relevant to the text query.

Given an image p and a text query q represented by a bag of words q = {w1, w2, . . . ,
wn}. We propose the following score

sc(q, p) = p(q | p) (1)

A linearly smoothed naive Bayes decomposition of p(q | p) yields:

p(q | p) =
n∏

i=1

p(wi | p) =
n∏

i=1

(
β p̂(wi | p) + (1 − β)

1
| d |

)
(2)

where d is the size of the text vocabulary.
The expression to estimate is p̂(wi | p), an estimation of the conditional probability

of the word wi given the image p. To estimate this conditional distribution we define
the set P+

i . This set is the set of pictures that are relevant to queries where the word wi

appears.
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The following K-neighborhood estimator is proposed:

p̂(wi | p) =
CKi

K
(3)

where CKi is the number of pictures that belong to P+
i among the K-nearest of p.

2.1 Parameter Selection

To compute the proposed score we have to define two parameters K and β. In the ex-
periments the parameter β was found not to be critical. On the other hand, the parameter
K has an important impact since this parameter defines the image neighborhood con-
sidered. Here we are going to focus on this parameter and how to estimate it adequately.
Instead of trying different values of this parameter and selecting the best one using a
validation set, a Bayesian approach is proposed:

p(wi | p) =
∑
∀K

p(wi | p,K)p(K | p) (4)

The term p(wi | p,K) is what we are estimating in equation 3 for a particular value of
K . Therefore applying this Bayesian approach to our problem and limiting the values
of K to some maximum value Kmax, equation 4 can be expressed as:

p̂(wi | p) ≈
Kmax∑
K=1

CKi

K
p(K | p) (5)

Here, usually, a Markov chain Monte Carlo (MCMC) procedure is used in order to
draw parameters from the p(K | p) distribution, selecting those parameters with the
highest likelihood, see for instance [6] and [14]. In this work a more simple, yet effec-
tive approach is proposed by assuming an uniform distribution of the parameter space:
p(K | p) ∼ U(1,Kmax). Therefore equation 5 becomes:

p̂(wi | p) ≈ 1
Kmax

Kmax∑
K=1

CKi

K
(6)

and finally equation 2 can be rewritten as:

p(wi | p) ≈ β
1

Kmax

Kmax∑
K=1

CKi

K
+ (1 − β)

1
| d | (7)

The parameter Kmax is indeed a parameter to be tuned but, as the experiments will
show, this parameter leads to better results than the parameter of the conventional K-
neighborhood in a wide range of values. It is important to note that the Bayesian ap-
proach does not entail more computations than the standard one. The Bayesian approach
only requires to define the Kmax-neighborhood. Only one search is needed, and then
the votes of each image among the Kmax-nearest are adequately weighted depending
on the rank obtained. That is, nearest images have higher weight while farther images
have lower weight.
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The Bayesian approach and the naive Bayes decomposition of the query lead to the
following expression of the required score:

sc(q, p) =
n∏

i=1

β
1

Kmax

Kmax∑
K=1

CKi

K
+ (1 − β)

1
| d | (8)

3 Computational Issues

In this section we discuss the computational issue to be considered in order to achieve
a good computational behaviour and scalability properties.

First of all it is important to distinguish between training and test images. The dif-
ference between training and test images is that for the training images we know the
relevance judgment for a set of training queries while for the test images we do not
have such judgment. This is an important issue to take into account because in a prac-
tice scenario the number of images whose description is known uses to be very reduced
in comparison with the total number of images available. However we aim at perform-
ing the image retrieval process over all the images instead of over the annotated set only.
Moreover in order to evaluate the generalization capabilities of the approaches, training
images used to be discarded and the image retrieval used to be performed over non-
annotated images. Therefore the training images are used to define the sets P+

i while
for the test images, p, we have to estimate the conditional probability p(wi | p) for
any word of the vocabulary. This conditional probability is estimated in training time
and it is stored in a table for each pair (wi, p). The computation of the score sc(q, p)
is reduced to the product of the values that appear in this table in the positions corre-
sponding to the words that belong to that query and that particular image. This process
is performed in test time for a given query.

An efficient implementation of the computation of the term p(wi | p) is required in
order to achieve a fast training time and scalability. Two important components affect
this computational behaviour. First, to obtain the set P+

i for every wordwi of the vocab-
ulary. Second, to compute the K-neighborhood of any image p. Clearly the most costly
part is the computation of the neighborhood where the distances between p and all the
training images must be obtained. To this end fast search algorithms can be used in order
to alleviate such task. Although different techniques have been tested, here only the best
one are described. Furthermore, since only vectorial representation of the images have
been considered, only vectorial approaches have been tested. Two different approaches
have been finally used depending on the dataset, Visual Word Hashing (VWH) and Lo-
cal Sensitive Hashing (LSH)[7]. The approach that uses fast search algorithm will be
denote as FKNIR (Fast KNIR).

Visual Word Hashing

The first dataset used in the experiments is the same dataset that was used in [8]. In
this dataset the image representation is very sparse and the well known LSH does not
provide the best computational performance. Due to the sparsity of the image repre-
sentation VWH has been proposed. VWH is a very simple method, the idea is to store
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each image in several buckets. The maximum number of buckets is D2 being D the
number of visual words of the image representation, so p ∈ �D. Therefore each bucket
stores the indexes of the images with a particular pair of visual words. The buckets usu-
ally form a sparse matrix and standard hashing is used to deal with such data structure.
Higher order visual word correlations could be used but the second order leads to good
enough results.

Local Sensitive Hashing

The image representation used on the second experiments does not lead to an important
sparsity of the data. In this case the well known LSH [7] lead to the best performance. To
this end r 2-stable-random projections of the image p are computed [10]. The projection
value then is binarized depending on its sign. These r binary numbers are randomly
selected forming w different words of b bits, clearly b < r must be fulfilled, b � r is
advisable. Finally the index of the image p is stored in the buckets associated to the w
words. So it is expected that this method split the image representation space into 2b

buckets but each image can appear in up to w different buckets.
In both methods the search of the K-neighbors for a test image is performed com-

puting the original distance (usually Lp family) between the image and all the images
that fall into the same buckets.

4 Experiments

The experiments have been carried out with two different datasets, Corel and Image-
Clef. Both data sets are split into development and test set. The development set is
further split into training and evaluation. Each partition contains pictures, text queries
and the relevance judgment for any pair picture-query. The evaluation set is used for
tuning the model parameters and the test set is finally used to evaluate the different
models. This test set evaluation is performed by means of two measures: average preci-
sion (AvgP) and precision at top 10 (P10) both in percentage. The training time of the
different methods is also measured.

In general in all the experiments the validation set was used to tune the parameters
of the different methods. The parameter C of PAMIR was varied from 0.001 to 1.0 and
the number of iterations from 105 to 108. The parameter Kmax of the KNIR method
was varied from 10 to 1000.

The results obtained with our implementation of PAMIR are almost identical to the
results reported in [8].

4.1 Corel Dataset

These experiments were carried out using the same dataset used in [8]. In fact prepro-
cesed version of this dataset was provided by the authors of [8] so an exact comparison
can be made. This data is composed by two different partitions, Corel-small and Corel-
large. Both sets originate from the Corel stock photography collection, which offers a
large variety of pictures, ranging from wilderness scenes to architectural building pic-
tures or sport photographs.
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Fig. 1. Comparison between conventional K- neighborhood and Bayesian K-Neighborhood per-
formance on the Corel-small validation dataset

One common issue in both partitions is that the images are represented using a very
high dimensional vectorial representation; namely, 10,000 components that come from
the concatenation of two different sets of image features: Local Binary Patterns and
Color histograms. This high dimensional representation is not a casual selection but
this high dimensional representation is somewhat required by the PAMIR approach.
This approach relies on the linear separation of the image representation space for a
given word. That is, the image representation space should be linearly split into the
relevant and not-relevant images for a given word. This linear separation is not fully ac-
complished when the image representation selected has not such very high dimension-
ality. In this sense, PAMIR requires that the practitioners use such high dimensionality
representation reducing in some situations the practitioners choices.

Corel-small dataset. Corel-small corresponds to the 5,000-picture set presented in
[4]. This set, along with the provided split between development and test data, has been
used extensively in the query-by-text literature, e.g. [1], [12],[15]. The development set
is composed by 4,500 pictures that are further split into 4,000 pictures for training and
500 pictures for evaluation. The test set is composed by 500 pictures. The number of
queries are 7,221, 1,962 and 2,241 for training, validation and test respectively.

Figure 1 shows the precision of the retrieval system comparing the Bayesian and
the conventional neighborhood for different values of Kmax and K respectively. The
Bayesian approach shows a better behaviour and the selection of parameter Kmax is
less critical than the selection of parameter K for the conventional approach.

Table 1 shows the results obtained for the small dataset. The precision, average pre-
cision and training time are compared for PAMIR, KNIR and FKNIR. As commented
before, FKNIR uses a VWH method, similar but slower results were obtained using
LSH. It is important to note that the sparsity of the image representation is a very
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Table 1. Results on Corel-small test set

Method P@10(%) AvgP (%) Training (ms)

PAMIR 9.97 25.8 2937
KNIR 9.9 26.7 524
FKNIR 10.0 27.1 1571

Table 2. Results on Corel-large test dataset

Method P@10(%) AvgP (%) Training (secs)

PAMIR 2.69 4.98 63.7
KNIR 2.73 4.78 26.9
FKNIR 2.84 4.92 18.2

important factor in the computational cost of the algorithms. Thus, depending on the
sparsity of the dataset the selection of the fast search algorithm could be reconsider.

The results obtained for the KNIR methods and PAMIR are almost identical. Only
the average precision results of KNIR methods show some small improvements. The
computation time of KNIR is clearly better than the PAMIR. In these experiments
FKNIR has an important overhead, to obtain the buckets of the training images, and
the time results showed in table 1 are not better than the standard KNIR, but a slight
average precision improvement is obtained.

Corel-large dataset. Corel-large was proposed in [8] and contains 35,379 images and
corresponds to a more challenging retrieval problem than Corel-small. This dataset is
split into development and test partitions. The development set is composed by 25,120
pictures that are further split into 14,861 training pictures and 10,259 evaluation pic-
tures. The test set is composed of 10,259 pictures. The number of queries are 55,442,
39,690 and 39,613 for training, validation and test respectively.

Table 2 shows the results obtained for the large dataset. The precision, average pre-
cision and training time are compared for PAMIR, KNIR and FKNIR.

The results obtained for the KNIR methods and PAMIR are again almost identical.
The computation time of KNIR is clearly better than the PAMIR while the FKNIR is
now faster than KNIR.

These two experiments do not show a significant improvement on the precision of the
here proposed approaches. On the other hand, the faster computation has been demon-
strated. It seems that the Corel dataset, more concretely the image representation used
in [8] has some properties that fulfill the PAMIR restrictions, that is, to be able to define
an hyperplane to split the image representation space into two different regions, relevant
an no relevant for a given word. Then, the K-neighborhood model proposed here does
not have anything to add and any further improvement can be achieved in this sense.

The following experiments are conducted to show that in some circumstances the
linear separation of the image representation space is not completely fulfilled and the
here proposed approach can provide improvements.
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4.2 ImageCLEF Dataset

This experiment was conducted using the ImageClef photo annotation dataset [5]. The
total of 20,000 images were split into 18,000 training images, 1,000 validation images
and 1,000 test images. A small vocabulary of 124 words was extracted from the image
annotations. A total number of 10,647, 1,572 and 1,610 queries were generated for the
training, validation and test sets respectively. The validation set was used to adjust the
parameters as in the previous experiments.

The images were represented using two different features: Local image descriptors
and color histograms. In this work the local image descriptors are patches that are ex-
tracted from the images at regular grid positions and dimensionality reduced using PCA
transformation [3]. These local descriptors are finally represented using an histogram
of visual words [2],[18]. On the other hand, color histograms are among the most basic
approaches, widely used in image retrieval and it gives reasonably good results. The
color space is partitioned and for each partition the pixels with a color within its range
are counted, resulting in a histogram representation.

As mentioned before, PAMIR works better as the dimensionality of the image repre-
sentation grows. To this end we have selected two different images representation. The
first, small one, is composed of 512 visual words and 512 color histogram bins, leading
to a total of 1024 dimensions. The second, large one, is composed of 4092 visual words
and 512 color histogram bins, leading to a total of 4604 dimensions.

In this experiment LSH was used for the FKNIR approach. The LSH parameters
were tuned using the validation dataset, selecting those parameters that show a good
balance between speed and precision. The parameters were set to r = 100, w = 100
and b = 14. One more experiment is carried out tuning the parameters of LSH in order
to measure the time needed to obtain similar precision results as with PAMIR. This
approach is referred as FKNIR*.

Table 3 and 4 show the results obtained for the small and large datasets respectively.
In both experiments the KNIR methods clearly outperform PAMIR in both precision
and speed. As expected, the results of PAMIR are better for higher dimensions but still
the precision at top 10 is far from the KNIR method which represents a 30% of rela-
tive improvement over PAMIR. Moreover the computational time of PAMIR is clearly
higher than in the here proposed methods. The difference between PAMIR and FKNIR*
training time is remarkable. It is important to note that the results of KNIR are almost
identical in both image representations, so small (and fast) image representations are
enough in order to obtain good results using the here proposed model.

Table 3. ImageCLEF results for the 512-512 representation

Method P@10(%) AvgP (%) Training (secs)

PAMIR 3.0 9.33 96
KNIR 4.1 11.93 35
FKNIR 3.8 11.27 8
FKNIR* 3.3 9.0 4
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Table 4. ImageCLEF results for the 4096-512 representation

Method P@10(%) AvgP (%) Training (secs)

PAMIR 3.1 10.3 196
KNIR 4.0 11.62 45
FKNIR 3.9 11.78 16
FKNIR* 3.7 10.5 9

Comparing these results with the results obtained in Corel-large, the PAMIR be-
haviour is slower due to the sparsity of the image representation. In Corel the images
have 40 non-zero visual words in average while in ImageClef-large the images have
more than 300 non-zero visual words in average. Another important computational is-
sue that affects PAMIR is the number of iterations of the online learning approach.
However the computational cost of the here proposed approach is fixed and does not
depend on an iterative procedure at all.

5 Conclusions

The here proposed approach has shown to be effective for the problem of image retrieval
from text queries. The results obtained show that KNIR outperform the state-of-the-
art techniques while preserving a very good computational behaviour. The Bayesian
approach adopted has shown to be very appropriate for this particular problem and does
not entail any complex learning stage neither more computations on the test phase. The
fast implementation of KNIR, FKNIR, obtains further computational benefits while
keeping the precision performance on similar values than KNIR. On the other hand,
KNIR can be used in applications where the image representation has to keep some
structural information. In this sense the proposed approach only requires to be able to
compute distances between the objects represented. Moreover KNIR do not require any
particular high dimensional representation of the images to be effective.
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Abstract. We propose a new approach for classification problem based

on the maximum a posteriori (MAP) estimation. The necessary and suf-

ficient condition for the cost function to estimate a posteriori probability

was obtained. It was clarified by the condition that a posteriori proba-

bility cannot be estimated by using linear programming. In this paper, a

kernelized function of which result is the same as that of the MAP classi-

fier is estimated. By relieving the problem from to estimate a posteriori

probability to such a function, the freedom of cost function becomes

wider. We propose a new cost function for such a function that can be

solved by using linear programming. We conducted binary classification

experiment by using 13 datasets from the UCI repository and compared

the results to the well known methods. The proposed method outper-

forms the other methods for several datasets. We also explain the rela-

tion and the similarity between the proposed method and the support

vector machine (SVM). Furthermore, the proposed method has other

advantages for classification. Besides it can be solved by linear program-

ming which has many excellent solvers, it does not have regularization

parameter such as C in the cost function in SVM and its cost function

is so simple that we can consider its various extensions for future work.

Keywords: Maximum a posteriori, Kernel Function, Linear Program-

ming, Cost Function.

1 Introduction

In statistics, the method of maximum a posteriori (MAP) estimation can be
used to obtain a point estimate of an unobserved quantity on the basis of empir-
ical data. The MAP based method is adopted and studied in machine learning
and pattern recognition. Many methods are then developed and implemented
based on this method for the purpose of classification, detection, decision, and
also estimation. We can explore some of them in references [1], [2], [3], [4], [5].
Many patterns (data sets) such as speech recognition [14], DNA sequences clas-
sification [18], image watermark identification [6], face image recognition [1],
breast-cancer detection [15] have been used on the methods and achieve promis-
ing performance.
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It is important to note that designing a classifier based on MAP depends on
the available information about a posteriori probabilities. Otherwise, based on
Bayes’ theorem, the information about a prior probabilities and the likelihood
are imperative. In fact, a posteriori probabilities is difficult to be determined
directly from data, as well as the likelihood is. Even some MAP based method
needs other parameters such as a mean vector and covariance matrix for each
class [1]. However, the methods to estimate a posteriori probability are available
and in particular neural network can be used to estimate a posteriori probabil-
ities [7], [8], [10], [19].

The papers [7], [8] adress their discussion on the problem of designing cost
functions to estimate a posteriori probabilities. Any cost function which provides
a posteriori class probabilities is called Strict Sense Bayesian (SSB)[7]. General
conditions for the SSB cost function can be found in [7], [9].

In this paper we propose a new approach for the classification problem. It is
based on the maximum a posteriori (MAP) estimation. A kernelized function
w(x, y) that provides the same result as the MAP classifier is estimated. We do
not estimate directly a posteriori probability P (y|x). By relieving the problem
from to estimate a posteriori probability to such a function, the freedom to
choose the cost functions becomes wider. In other words, we do not need to
consider if the cost function is SSB or not.

Beside that, the SSB cost function in [7] is nonlinear, then it can be solved
by nonlinear optimization. We can not use linear programming to solve the
optimization problem if the cost function is nonlinear function [15], [16]. In this
paper we provide a cost function that can be solved by linear programming,
which has many excellent solvers.

In order to evaluate the perpormance of our proposed method we conducted
binary classification experiment by using 13 datasets. Based on the results we
compare the performance of the proposed method to widely known methods.
The conclusion is that our proposed method is competitive to the others. We
also discuss the relation and the similarity between the proposed method and
SVM. Finally, we explain that the cost function of our proposed method is so
simple and there will be much room to explore its extension.

2 Maximum a Posteriori (MAP) Estimation

In this section we start explaining some important probability formulas and also
the definition of maximum a posteriori classification, then reviewing a former
method to estimate a posteriori probability and finally proposing our new ap-
proach.

Let y be the category to be estimated from a data x. P (x), P (y), P (x|y), and
P (y|x) denote respectively as a prior probability density function (p.d.f) of x,
a prior probability of y, a conditional p.d.f of x given y, and a posteriori of y.
Bayes theorem can be derived from the joint probability of x and y (i.e. P (x, y))
as follows:

P (x, y) = P (x|y)P (y) = P (y|x)P (x) . (1)



MAP Based Kernel Classifier Trained by Linear Programming 495

The expectation value of a function f(x) in a data x is written as:

Ex{f(x)} =
∫

f(x)P (x)dx . (2)

Then the MAP estimates category ŷ that is defined as the mode of the posterior
probability as follows:

ŷ = arg max
y

P (y|x) . (3)

A classifier system is designed to estimate category ŷ for an unlearned pattern x.
As shown in eq.(3) we need information about P (y|x), even in neural networks
the estimation of P (y|x) is imperative in making decision.

For instance, in [7] Suerri et al. proposed a cost function C(h, d) to estimate
a posteriori probabilities. We substitute a vector of functions that should be a
posteriori into h and a vector that expresses a category into d. We describe the
criterion using C(h, d) for a binary classification problem as follows:

∑
y∈{+1,−1}

ExP (y|x)C
(

(h(x),
(
δy,+1

δy,−1

))

where h(x) is a 2-dimensional vector of functions of x to be optimized and δ
is the Kronecker delta. If C(h, d) is SSB, the criterion above, the function h
becomes a posteriori probability, i.e.

h(x) =
(
P (+1|x)
P (−1|x)

)
.

They also found the necessary and sufficient condition for a symmetric and
separable SSB cost function, that is C(h, d) is expressed in the following form

C(h, d) =
2∑

i=1

∫ hi

di

gi(α)(α − di) dα + r(d)

where gi(α) is any positive function (gi(α) > 0, 0 ≤ α ≤ 1) which does not
depend on di and r(d) is an arbitrary function which does not depend on h. We
can see that

∫ hi

di
gi(α)(α − di) dα + r(d) is a nonlinear function, then it is to be

solved by nonlinear optimization.
In this research we do not estimate P (y|x) directly for classification, but

estimating a function w(x, y). We could use w(x, y) if it satisfies:

argmax
y

w(x, y) = arg max
y

P (y|x) . (4)

Furthermore in the next section we will explain the advantage of our new ap-
proach that the cost function can be directly optimized with linear programming.
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3 Model Formalization

Now we consider a set of pattern samples {(xi, yi)}N
i=1 and we restrict a problem

to binary classification, i.e. y ∈ {−1,+1}. We need a criterion to choose the
function w(x, y) in order to satisfies (4). The criterion of w(x, y) proposed in
this paper is written as follows:

maximize ∑
y∈{−1,+1}

ExP (y|x) min(w(x, y), 1) . (5)

subject to: ∑
y∈{−1,+1}

Exw(x, y) = 1 , (6)

w(x, y) ≥ 0 . (7)

To achieve optimum w(x, y) we maximize the expectation function of P (y|x)
times min(w(x, y), 1). In this cost function we evaluate the value of w(x, y) up
to one. Beside that the constraint (6) and (7) are also consistent with probabil-
ity laws.

It is clear that the solution of eqs.(5), (6), and (7) is given as

w(x,+1) =

⎧⎨⎩1 if P (+1|x) > P (−1|x)
0 if P (+1|x) < P (−1|x)
βx if P (+1|x) = P (−1|x)

w(x,−1) =

⎧⎨⎩
0 if P (+1|x) > P (−1|x)
1 if P (+1|x) < P (−1|x)
1 − βx if P (+1|x) = P (−1|x)

(8)

where βx is an arbitrary number (0 ≤ βx ≤ 1). We can see w(x, y) provides the
same results of the MAP classifier.

We define w(x, y) by using a kernel function k(x, z), that can be written in
the form

w(x, y) =
N∑

j=1

αy,jk(x, xj) (9)

and we use Gaussian kernel function which can be expressed by

k (x, z) = exp
(
−γ ‖x− z‖2

)
. (10)

The parammeter γ determines the width of the Gaussian kernel and in the
training mode we adjust it for each pattern samples.

By exchanging the ensemble mean by sample mean and subtituting eq.(9) to
eq.(5), we have a cost function in the form

∑
y∈{−1,+1}

ExP (y|x) min(w(x, y), 1) � 1
N

N∑
i=1

min

⎛⎝ N∑
j=1

αyi,jk(xi, xj), 1

⎞⎠ .

(11)
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The constraints (6) and (7) respectively become:

∑
y∈{−1,+1}

Exw(x, y) � 1
N

∑
y∈{−1,+1}

N∑
i=1

N∑
j=1

αy,jk(xi, xj) = 1 . (12)

w(xi, y) =
N∑

j=1

αy,jk(xi, xj) ≥ 0 , ∀i . (13)

Now, we have an optimization problem to be solved. It consist of a cost function
(11), of which the maximum value we want to find, along with a set of constraints
(12) and (13). To simplify the calculation in linear programming problem, the
condition (13) could be changed with

αy,j ≥ 0 , (14)

if k(x, y) ≥ 0. However, even if we use condition (13), the optimization problem
still could be solved by linear programming. In many cases if k(x, y) ≥ 0, the
adoption (14) allows us to reduce the number of variables in a linear program-
ming problem and the experiment shows better results.

In order to realize eq.(11), we introduce a slack variables ξi ≥ 0, then we write
it in the form

min

⎛⎝ N∑
j=1

αyi,jk(xi, xj), 1

⎞⎠ =
N∑

j=1

αyi,jk(xi, xj) − ξi.

By introducing the above form to eq.(11), we have a linear programming prob-
lem of 3N variables αy,j and ξi (y ∈ {−1,+1}, i, j = 1, 2, ..., N) that can be
expressed in the form as follows:

maximize ∑
y∈{−1,+1}

N∑
j=1

(
N∑

i=1

δy,yik(xi, xj)

)
αy,j −

N∑
i=1

ξi ,

In other word w(x, y) is a surrogate function that behaves in as similar way to
a posteriori probability. subject to:

∑
y∈{−1,+1}

N∑
i=1

N∑
j=1

αy,jk(xi, xj) = N,

αy,j ≥ 0 (y ∈ {−1,+1}, j = 1, 2, ..., N),
N∑

j=1

αyi,jk(xi, xj) − ξi ≤ 1 (i = 1, 2, ..., N),

ξi ≥ 0 (i = 1, 2, ..., N).

Now we have a cost function that can be solved by using a linear programming.
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4 Experiment

In the experiment we used an open source package GNU Linear Programming Kit
(GLPK) to carry out optimization problem. The GLPK is a set of routines de-
signed to solve large-scale linear programming (LP), mixed integer programming
(MIP), and other related problems. Then, in order to evaluate the performance
of our proposed method we conducted experiment with two-class classification
problem, using 13 data sets from the UCI repository. The properties of the data
sets we used are shown in Table 1.

Table 1. Overview of the 13 data sets used in the experiment

Data set # training samples # test samples # realization Dimension

Banana 400 4900 100 2

Breast cancer 200 77 100 9

Diabetis 468 300 100 8

Flare-Solar 666 400 100 9

German 700 300 100 20

Heart 170 100 100 13

Image 1300 1010 20 18

Ringnorm 400 7000 100 20

Splice 1000 2175 20 60

Thyroid 140 75 100 5

Titanic 150 2051 100 3

Twonorm 400 7000 100 20

Waveform 400 4600 100 21

In order to have a more sophisticated model selection we considered the gen-
eralization performance of the model. For this purpose we ran 5-fold cross val-
idation to estimate the parameter γ. We treated each pattern (from banana to
waveform) separately by the cross validation. Our goal is to have an appropriate
parameter for each pattern. We used the first 5 realizations of train data for
validation. For each realization we performed a cross validation in the following
manner: We split a training sample set into 5 equally sized and disjoint subsam-
ples. Of the 5 subsamples, a single subsample was retained as test data and the
remaining 4 subsamples were combined to form a training data for cross valida-
tion. We performed validation with the new train and test data then calculated
the error. The cross validation process was repeated 5 times and each of the 5
subsamples was used exactly once as the test data. The 5 results of the folds then
was averaged to produce a single estimation error. Since we used 5 realizations,
then we chose a median of the best values of parameter (with minimum error).

Based on the parameter γ we performed experiment by using test data sets
as shown in Table 1. The result of experiment is summarized in Table 2.
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Table 2. Result of Experiment. Comparison with other methods. The best result is in

bold face.

Data set γ Proposed SVM RBF AB ABR KFD

Banana 4.217 10.7 ± 0.6 11.5 ± 0.7 10.8 ± 0.6 12.3±0.7 10.9±0.4 10.8±0.5

B.Cancer 0.316 25.8 ± 4.0 26.0 ± 4.7 27.6 ± 4.7 30.4±4.7 26.5 ± 4.5 25.8 ± 4.6

Diabetis 0.649 25.0 ± 1.9 23.5 ± 1.7 24.3 ± 1.9 26.5±2.3 23.8±1.8 23.2±1.6

F.Solar 1.778 33.0 ± 7.8 32.4 ± 1.8 34.4± 2.0 35.7±1.8 34.2±2.2 33.2±1.7

German 0.270 25.3 ± 2.3 23.6 ± 2.1 24.7±2.4 27.5±2.5 24.33±2.1 23.7±2.2

Heart 0.237 17.8 ± 3.2 16.0 ± 3.3 17.6±3.3 20.3±3.4 16.5±3.5 16.1±3.4

Image 17.783 4.0 ± 2.7 3.0 ± 0.6 3.3±0.6 2.7±0.7 2.7±0.6 4.8±0.6

Ringnorm 0.090 2.5 ± 1.0 1.7 ± 0.1 1.7±0.2 1.9±0.3 1.6±0.1 1.5±0.1

Splice 0.129 24.2 ± 2.4 10.9 ± 0.7 10.0±1.0 10.1±0.5 9.5±0.7 10.5±0.6

Thyroid 1.685 5.00 ± 2.3 4.8 ± 2.2 4.5±2.1 4.4±2.2 4.6 ±2.2 4.2±2.1

Titanic 0.562 21.6 ± 5.0 22.4 ± 1.0 23.3±1.3 22.6±1.2 22.6±1.2 23.2 ±2.0

Twonorm 0.140 2.5 ± 0.2 3.0 ± 0.2 2.9±0.3 3.0±0.3 2.7 ±0.2 2.6 ±0.2

Waveform 0.225 11.0 ± 1.8 9.9 ± 0.4 10.7±1.1 10.8 ±0.6 9.8±0.8 9.9±0.4

Table 3. Computational time of learning and classification process for all realizations

Data set # realization Proposed (in seconds) SVM (in seconds)

Banana 100 135.3 4.030

B.Cancer 100 20.6 0.700

Diabetis 100 216 2.332

F.Solar 100 498.2 4.536

German 100 765.7 5.734

Heart 100 19.9 0.596

Image 20 1.252x104 1.938

Ringnorm 100 164.6 14.104

Splice 20 365.4 8.402

Thyroid 100 13.9 0.308

Titanic 100 13.4 1.170

Twonorm 100 181.4 9.800

Waveform 100 200.9 10.444

In the experiment we also measure the computational time which is needed
in learning and classification process for all realizations of each data set. Table 3
shows the computational time.

5 Discussion

To evaluate the performance of our proposed method we compare our exper-
iment result to other state-of-the-art methods, as shown in Table 2. Here we
choose Support Vector Machine (SVM), a single RBF classifier, AdaBoost (AB),
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regularized AdaBoost (ABR), and Kernel Fisher Discriminant (KFD) as com-
parators. The experiment data in [11] is used for comparison. We are interested
in comparing our new approach to the other methods because we know that
the SVM and the boosting (in general the margin-based classifiers) have demon-
strated their excellent performances in binary classification. Meanwhile, KFD
is very competitive and in some cases even superior to the other algorithms on
almost all data sets [11].

The result in Table 2 shows that our proposed method has promising perfor-
mance. We can say that it is competitive to the others and superior on some
data sets (banana, breast cancer, titanic and twonorm).

Regarding with the computational complexity we can see in Table 3 that
the proposed method is slower than LIBSVM (library for support vector ma-
chines) [20]. However, LIBSVM is a specialized program for SVM. On the other
hand we used GLPK that is a general purpose library. Therefore, it is difficult
to compare the computational complexity from these results. Furthermore, the
computational time of the proposed method is enough fast to apply it to many
problems.

The next part of this section we discuss in particular relation and similar-
ity between our proposed method and SVM. Maximization of eq.(11) can be
translated to minimization of a loss function. Many loss functions are proposed
such as the hinge loss and the fisher consistent loss [12]. Originally the SVM is
designed for the binary classification problem and its paradigm has a nice geo-
metrical interpretation of discriminating one class from another by a hyperplane
with the maximum margin [13]. The cost function of SVM to obtain the optimal
separating hyperplane is written as

min
1
2

N∑
i=1

N∑
j=1

αiαjyiyjk(xi, xj) + C

N∑
i=1

ζi , (15)

where αi is Lagrange multiplier which is optimized, C is the tuning parameter,
ζi is the non negative slack variables. In the SVM the extra term C

∑N
i=1 ζi in

the cost function is to accommodate some data which is not linearly separable by
the hyperplane. Then the slack variables ζi express the hinge loss. If we neglect
the treshold, the ζi can be expressed as follows:

ζi = max

⎛⎝0, 1 −
N∑

j=1

αjyjk(xi, xj)

⎞⎠ .

The parameter C is also called as the margin parameter that determines the
tradeoff between the maximization of the margin and the minimization of the
classification error. This term is to balance the goals of maximum margin sepa-
ration and the correctness of training set classification.

The concept of hinge loss in SVM is quite similar to our criterion (11). We
have the following arithmetic relation:

min(a, 1) = 1 − max(0, (1 − a)).
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In both criteria, the classification functions are substituted into a. Therefore
eq.(11) is considered as a hinge loss. Instead of the regularization term (the
first term in eq.(15)), the eq.(12) is introduced. The advantage of our proposed
method is that we do not have a regularization parameter such as C in the cost
function of SVM. We only need one parameter, that is γ.

6 Conclusion

In this paper we proposed a new approach for classification problem based on
maximum a posteriori probability. We do not estimate directly P (y|x), but we
use a kernelized function w(x, y) that can be regarded as a surrogate function
that behaves in a similar way to MAP Classifier. The advantage of this approach
is the cost function can be directly optimized with linear programming. The
experiment using 13 data sets from the UCI repository shows that our proposed
method has promising performance and it is competitive enough to the other
state-of-the-art classification methods. We also explained the relation between
the proposed method and the support vector machine (SVM). The similarity
between the hinge loss and the proposed criterion was discussed. Furthermore,
we can consider its various extensions, similar to the extensions of SVM, to
improve the classifier performance in the future work. It is very possible because
our proposed cost function is so simple.
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Abstract. The authors propose an improvement of a recent region-based shape 
descriptor inspired by the 3D spherical harmonics: the Disk Harmonic Moments 
Descriptor (DHMD). The binary image is weighted by an exponentially decay-
ing distance transform (EDDT) before applying the disc harmonic transform 
(DHT) introduced recently as a good shape representation. The performance of 
the improved DHMD is compared to other recent methods from the same  
category. Set B of the MPEG-7 CE-1-Shape database is used for experimental 
validation. To benchmark the performance of the compared descriptors preci-
sion-recall pair is employed. The proposed approach seems be more efficient 
and effective if compared to its competitors.   

Keywords: Spherical harmonics, Legendre polynomials, Distance transform, 
Salience Distance Transform, region-based shape descriptor, Content-based im-
age retrieval. 

1   Introduction 

Content-based image retrieval (CBIR) has become one of the most important applica-
tions in computer vision. The demand for higher retrieval quality delivered at a short 
time has brought on a vast amount of research activity to improve the underlying 
techniques of CBIR. The main task in CBIR resides in highlighting stable information 
which should allow the similarity measurement between images. Shape descriptors 
have interesting properties. This kind of image descriptors is suitable to rather repre-
sent an object on an image than the whole image itself. 

Two categories of shape descriptors exist: region-based and contour-based. We can 
cite the Fourier Descriptor FD [1] and the well-known CSSD, namely the Curvature 
Scale-Space [2][3], as contour-based descriptors. The Angular Radial Transformation 
[4], the geometrical moments [5], the Legendre moments [6][7], the Zernike moments 
[6][7][8], the pseudo-Zernike moments [6][7][9] and the Generic Fourier Descriptor 
[10] are some occurrences of region-based descriptors. Many comparative studies 
have been proposed in the literature [1] [11]. 

 Funkhouser & al. [12] propose a 2D analog version of their three dimensional 
spherical harmonics based descriptor, noted (2DSHT), where the process consists in 
the following steps: (1) the shape boundary undergoes the distance transform. (2) 



504 N. Ennahnahi, M. Oumsis, and M. Meknassi 

Then the authors sample a collection of circular functions by restricting to different 
radii. (3) Each circular function is expanded as a sum of trigonometric functions. (4) 
Using the fact that rotations do not change the amplitude within a frequency, the sig-
nature of each circular function is a list of the amplitudes of its trigonometrics. (5) 
Finally, they combine these different signatures to obtain a 2D feature vector for the 
boundary contour. 

 An alternative work was proposed by Pu & al. in [13] and based on an analog 
strategy 2.5D Spherical Harmonic Transform (2.5DSHT): (1) a bounding sphere for a 
given 2D drawing is calculated, (2) rays are cast in different directions from the center 
of mass. The intersection points of the rays with the edges of the drawing are repre-
sented in a 3-dimensional coordinate system where the z-value is the distance from 
the centroïd. (3) An angular mapping of the 2D view is generated. (4) Finally, to they 
use the fast spherical harmonics transformation method in order to obtain the rota-
tional invariant descriptor. 

Sajjanhar & al. in [14] exploit the spherical harmonics to design a 2D shape de-
scriptor, namely (DT_3DSHT). The 2D image undergoes firstly the distance trans-
form. A 3D points cloud is built so that each image pixel is relocated in direction OZ 
proportionally with its distance to the nearest feature. Then the authors pass to the 
construction of a 3D model, which requires a triangulation of the points cloud. Then, 
the spherical harmonics are obtained for the 3D model. This is an approach which 
requires an intricate preparation of the 2D data to enable, finally, the application of 
Funkhouser’s 3D method. Sajjanhar & al. have proposed in a previous work [15] a 
similar strategy based on the connectivity information. We retain in this paper the 
work cited in [14] because it is the most recent.   

In [16][17] Ennahnahi et al. propose a disc-sphere mapping method, which has al-
lowed the authors to formulate a novel set of orthogonal basis functions, namely the 
Disc Harmonic functions DHF. These basis functions, noted in polar coordinates for 
any point of the unit disc as Hl,m(r,θ) are written in formula (1): 
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where m
lP denotes the normalized associated Legendre polynomial: 
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Pm
l  designates the associated Legendre polynomial, N m

l  a normalization factor, θ 

and φ denote the usual spherical coordinates. More details concerning spherical har-
monics should be found in [18].  

Ennahnahi et al. have designed, helped by these orthogonal harmonic functions, a 
robust region-based shape descriptor in [16][17]: the Disc Harmonic Moments De-
scriptor (DHMD). 
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In this paper, we propose an improvement of the DHMD descriptor by introducing 
the Exponentially Decaying Distance Transform EDDT as image function in order to 
weight pixels within the shape by more expressive information with no significant 
decrease in contrast of the computation efficiency.   

The paper is set out as follows. First, the proposed method is detailed in the two 
first sections. Second, Experimental results are presented in section 4. Finally, a con-
clusion and perspectives are underlined in section 5.  

2   Our Method 

2.1   Choice of the Image Function 

The algorithm for computing the Disc Harmonic transformation (DHT) takes an im-
age function as its input. In [16][17], Ennahnahi et al. have used a binary grid and the 
results were sufficiently promising. To improve the retrieval quality of DHMD, we 
propose in the present work the use of an image function that describes not only 
where the points on the shape are, but also how far an arbitrary point is from the 
boundary. Furthermore, the values of the input grid should fall off to zero for pixels 
further from the boundary, allowing us to treat correctly the information encapsulated 
in the shape. To address these issues we define the input grid as the result of an expo-
nentially decaying Euclidean Distance Transform (EDDT). In particular, given a pixel 
P on a binary image B we define the implicit function )(Pf by:  
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Where V(P) is the binary value  at the pixel P , and )(PEDDTB  designates the expo-

nentially decaying Euclidean Distance Transform: 
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Where DB(P) is the Euclidean Distance Transform [19], giving the distance from P to  
the nearest point on the shape boundary, and (DMB) is the average distance from a 
point on  (B) to the center of mass. 

The use of the famous Distance transform deserves the following suggestions: 
Generally, distance transforms are not robust for some kinds of binary images where 
false edges are detected and some true edges are missed. The basic distance transform 
is sensitive to local distortions. So we retain the Salient Distance Transform (SDT) 
which is more stable: we weight the distance from the edges by the salience of the 
edges [20]. 
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2.2   Overview of the Disc Harmonic Transform 

The harmonic moments m
lC  based on the basis functions Hl,m are obtained by the 

following integration formula: 

( ) ( ) ϕϕϕ
π
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Numerically this formula can be calculated as a weighted summation over all the 
pixels sampled on the unit disc. We retain a stratified sampling with uniform weights.  

 

Fig. 1. Steps to extract the feature vector of  DHMD descriptor 

2.3   DHMD Extraction Algorithm 

In [16][17] Ennahnahi et al. expect initially a preprocessing phase which consists of 
the following steps: 

(a) They first delimit the enclosing shape rectangle (the smallest rectangle contain-
ing the shape). The object centroïd and the dimension of this area are calcu-
lated. Dimension is the double distance from the center of mass to the most 
distant pixel of the object.  

(b) Then they resize the enclosing rectangle to a standard scale. Once these stages 
are achieved, they ensure translation and scaling invariance, as well as the 
convenience of the Disc Harmonic Transformation (DHT) using the harmonic 
basis functions.   

(c) They apply, to the preprocessed image, the EDDT transform. 
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(d) And they convert pixels coordinates so that they hold on a unit disc: by center-
ing and normalizing by half-dimension. 

The feature vector is constructed as a triangular matrix, see (Table.1). 

Table 1. The DHMD feature vector construction 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
The harmonic coefficients are calculated up to a preferred range of l:  The resulting 

image function undergoes the Disk Harmonic Transformation (DHT) formulated in 
formula (5). In practice, the values of the harmonic basis functions should be initially 
pre-calculated over the unit disc and stored for reuse.  

3   Experiments Results 

We validate the performances of the modified version of DHMD through the MPEG7 
CE-1 Part B shape dataset [21]. This database gathers 1400 shapes, classified in 70 
classes. Each class gathers 20 similar shapes. Part B of MPEG-7 CE-1 is intended for 
evaluating the performance regarding similarity-based retrieval. Each shape in the test 
database is indexed by these shape descriptors (2DSHT, 2.5DSHT, DT_3DSHT, and 
this improved DHMD) and is used as a query. The feature vector of a query image is 
extracted then compared to the feature vectors of all the images contained in the  
database. The measurement of similarity between two shapes is performed using the 
L1-Norm.  

To evaluate the performances of these descriptors, the commonly employed Preci-
sion-Recall pair measurement was generated. 
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Fig. 2. DHMD with binary function versus DHMD with EDDT 

 

Fig. 3. Recall-precision: DHMD+EDDT and 2.5DSHT use feature vectors with dimension 
equal to 65 coefficients, whereas the two others descriptors use 512 coefficients 



 Improvement of the Disc Harmonic Moments Descriptor by an EDDT 509 

In (Fig.2), it is clear that the use of a function image based on the EDDT transform 
has improved the performances of the DHMD descriptor. In (Fig.3) we demonstrate 
that the proposed version of DHMD outperforms (DT_3DSHT) even if Zhang et al. 
use in [14] 512 components. Compared to (2.5DSHT), one can see that with the same 
feature vector size the improved DHMD performs sufficiently better. The 
DT_3DSHT performances are better than the 2.5DSHT, this may be due to the fact 
that the quality of a descriptor increases with the feature vector size, generally speak-
ing. A visible superiority in performances must be underlined between the improved 
DHMD descriptor and the 2DSHT. 

The results obtained by the older version of the descriptor DHMD can be seen in 
the previous papers proposed by Ennahnahi and al. in [16][17]. 

We propose also a comparative study regarding computational efficiency in (Fig.4) 
where one can see clearly that introducing the EDDT transform in the extraction 
process of DHMD features hasn’t introduced any increase in computational cost. We 
have tested these descriptors on a Celeron D 1.8 GHz PC with 256 Mo of Memory. 
The new version of DHMD performs better retrieval results than 2.5DSHT and fea-
tures also a comparable timing in the extraction stage. The handicap of DT_3DSHT 
method resides in its processing steps which consume a remarkable computational 
time.  We have obtained these performances because we pre-calculate all the Legen-
dre polynomials required for the DHT. Whereas, 2.5DSHT is faster because they 
exploit the Fast Sperical Harmonic Transform implemented in the well-known 
spahrmonickit tool [22].  

 

Fig. 4. Comparison of the computational efficiency 
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4   Conclusion and Perspective 

We presented an improvement of a novel region-based 2D shape descriptor easy to 
implement, inspired by the 3D spherical harmonics. It can describe complex objects 
consisting of multiple disconnected regions as well as simple objects with or without 
holes. The salience distance transform has dressed some weak behaviors of the classi-
cal distance transform algorithms.  

The introduction of the exponentially decaying distance transform to the process of 
extracting the feature vector sounds benefic in terms of retrieval performances with 
no significant increase regarding the computational complexity.  

In a succeeding work, we will propose a faster version of our descriptor DHMD, 
with no need to store the pre-calculated Legendre polynomials, in order to have better 
ratio Quality/time. 
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Abstract. This paper presents a feature level fusion of face and palmprint bio-
metrics. It uses the improved K-medoids clustering algorithm and isomorphic 
graph. The performance of the system has been verified by two distance metrics 
namely, K-NN and normalized correlation metrics. It uses two multibiometrics 
databases of face and palmprint images for testing. The experimental results re-
veal that the feature level fusion with the improved K-medoids partitioning al-
gorithm exhibits robust performance and increases its performance with utmost 
level of accuracy.  

Keywords: Biometrics, Feature Level Fusion, Face, Palmprint, Isomorphic 
Graph, K-Medoids Partitioning Algorithm. 

1   Introduction 

Feature level fusion fuses feature sets of different biometric traits under different 
fusion rules. Since feature level fusion integrates richer and most relevant information 
of biometric evidences and it is expected to provide more accurate authentication 
results. It is found to be effective compared to fusion based on match scores, decision, 
ranks, etc. But fusion of incompatible biometric evidences at feature level is a very 
hard task. Moreover, the feature spaces for different biometric evidences may be 
unknown and this may lead to the problem of curse of dimensionality [1]. Also, poor 
feature representation may degrade the performance of recognition. 

Unibiometric identifiers are often affected by problems like lack of invariant repre-
sentation, non-universality, noisy sensor data and lack of individuality of the biomet-
ric trait and susceptibility to circumvention. These problems can be minimized by 
using multibiometric systems that consolidate evidences obtained from multiple bio-
metric sources. Multibiometrics fusion at match score level, decision level and rank 
level have extensively been studied while there exists a few feature level fusion ap-
proaches. There is enough scope to design an efficient feature level fusion approach. 
The feature level fusion of face and palmprint biometrics proposed in [3] uses single 
sample of each trait. Discriminant features using graph-based approach and principal 
component analysis techniques are used to extract features from face and palmprint. 
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Further, a distance separability weighing strategy is used to fuse two sets at feature 
extraction level. Another approach consisting of face and hand biometrics has been 
proposed in [4]. In [5], a feature level fusion has been studied where phase congru-
ency features are extracted from face and Gabor transformation is used to extract 
features from palmprint. These two feature spaces are then fused using user specific 
weighting scheme. Another approach of face and palmprint biometrics is given in [6]. 
It makes use of correlation filter bank with class-dependence feature analysis method 
for feature fusion. 

This paper proposes a feature level fusion of face [7] and palmprint [8] biometrics 
using isomorphic graph [9] and K-medoids [10]. SIFT feature points [11] are ex-
tracted from face and palmprint images. The partitioning around medoids (PAM) 
algorithm [12] is used to partition the face and palmprint images of a set of n invariant 
feature points into k number of clusters. For each cluster, an isomorphic graph is 
drawn on SIFT points belonging to the clusters. Graphs are drawn on each cluster by 
searching the most probable isomorphic graphs using iterative relaxation algorithm 
[13] from all possible isomorphic graphs while the graphs are compared between face 
and palmprint templates. Each pair of clustered graphs are then fused by concatenat-
ing the invariant SIFT points and all pairs of isomorphic graphs of clustered regions 
are further fused to make a single concatenated feature vector. The similar feature 
vector is also constructed from query pair of face and palmprint. Finally, matching 
between these two vectors is done by computing the distance using K-Nearest 
Neighbor [14] and normalized correlation [15] distance. Two multimodal databases 
are used for testing the proposed technique. 

The paper is organized as follows. Next section discusses SIFT features extraction 
from face and palmprint images. Section 3 presents K-Medoids partitioning of SIFT 
features into a number of clusters. The method of obtaining isomorphic graphs on the 
sets of the SIFT points which belong to the clusters is also discussed. Next section 
presents feature level fusion of clustered SIFT points by pairing two graphs of a pair 
of clustered regions drawn on face and palmprint images. Experimental results and a 
comparative study are presented in Section 5 while conclusion is made in the last 
section. 

2   SIFT Keypoints Extraction 

David Lowe [11] has proposed a technique to extract features from images which are 
called Scale Invariant Feature Transform (SIFT). These features are invariant to scale, 
rotation, partial illumination and 3D projective transform. SIFT provide a set of fea-
tures of an object that are not affected by occlusion, clutter and unwanted noise in the 
image. In addition, the SIFT features are highly distinctive in nature which have ac-
complished correct matching on several pair of feature points with high probability 
between a large database and a test sample.  Initially, the face and palmprint images 
are normalized by adaptive histogram equalization [1]. Localization of face is done by 
the face detection algorithm proposed in [16] while the algorithm in [17] is used to 
localize palmprint. SIFT features [11] are extracted from the face and palmprint im-
ages. Each feature point is composed of four types of information – spatial location 
(x, y), scale (S), orientation (θ) and Keypoint descriptor (K). It uses only keypoint 
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descriptor which consists of a vector of 128 elements showing change in neighbor-
hood intensity of each keypoint. Local image gradients are measured at the selected 
scale in the region around each keypoint. These gradients are then transformed into a 
vector that contains 128 elements. These vectors represent local shape distortions and 
illumination changes.  

3   Feature Partitioning and Isomorphic Graph Representation 

Lack of well feature representation often degrades the performance. A well represen-
tation of feature space and template in terms of invariant feature points may help to 
increase the overall performance of the system. Clustering of all SIFT feature points 
into a number of clusters with limited number of invariant points can be an efficient 
approach of feature space representation. Clustering approach [18] gathers together 
the keypoints found to be more relevant members of a particular cluster. 

3.1   SIFT Keypoints Partitioning 

K-medoids clusters is an adaptive version of K-means clustering approach and is used 
to partition the dataset into a number of groups which minimizes the squared error 
between the points that belong to a cluster and a point designated as the center of the 
cluster. The generalization of K-medoids algorithm is the Partitioning around  
Medoids (PAM) algorithm [12] which is applied to the SIFT keypoints of face and 
palmprint images to obtain the partitioned of features which can provide more dis-
criminative and meaningful clusters of invariant features.  
     After applying the PAM clustering technique [12] to the sets of SIFT keypoints for 
face and palmprint images, each cluster can be verified by Silhouette technique. For 
each keypoint, let i, x(i) be the average distance of i with all the keypoints in cluster 
cm. Consider x(i+1) is an average distance next to x(i). These two successive distances 
x(i) and x(i+1) are considered to verify the matching of these keypoints i and (i+1) to 
the cluster where these points are assigned. Then the average distances of i and (i+1) 
with the keypoints of another single cluster are found. Repeat this process for every 
cluster in which i and (i+1) are not a member. If the cluster with lowest average dis-
tances to i and (i+1) are y(i) and y(i+1), (y(i+1) is the next lowest average distance to 
y(i)), the cluster is known to be the neighboring cluster of the former cluster in which 
i and (i+1) are assigned. It can be defined by  

From Equation (1) it can be written that -1 ≤ S(i) ≤1. When x(i)+x(i+1) << 
y(i)+y(i+1), S(i) would be close to 1. Distances x(i) and x(i+1) are the measures of 
dissimilarity of i and (i+1) to its own cluster. If y(i)+y(i+1) is small, then it is well 
matched; otherwise when the value of y(i)+y(i+1) is large then match is bad. Key-
point is well clustered when S(i) is closer to 1 and when S(i) is negative then it be-
longs to another cluster. S(i) is zero for the keypoint on the border of any two clusters. 
The existing algorithm has been extended by taking average distances between x(i+1) 
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and y(i+1) for a pair of clusters and a better approximation could be found while 
PAM algorithm is used to  partition the keypoints. The precision of each cluster is 
increased by this approximation where more relevant keypoints instead of restricted 
number of keypoints for fusion are taken.  

3.2   Establishing Correspondence 

To establish correspondence between any two clusters of face and palmprint images, 
it is observed that more than one keypoint on face image may correspond to single 
keypoint on the palmprint image. To eliminate false matches and to consider only 
minimum pair distance from a set of pair distances for making correspondences, it 
needs to verify the number of feature points available in the cluster of face and that in 
the palmprint cluster. When the number of feature points in the cluster for face is less 
than that of the palmprint cluster, many points of interest from the palmprint cluster 
need to be discarded. If the number of points of interest on the face cluster is more 
than that of the palmprint cluster, then a single interest point on the palmprint cluster 
may act as a match point for many points of interest of face cluster. Also, many points 
of interest on the face cluster may have correspondences to a single point of interest 
on the palmprint cluster. From all such making correspondences, minimum distance 
pair is paired. Isomorphic graph for each cluster has been formed by removing few 
more keypoints from the paired clusters. Iterative relaxation algorithm [13] is used for 
searching the best possible pair of isomorphic graphs from all possible graphs.  

3.3   Isomorphic Graph Representations      

To interpret each pair of clusters for face and palmprint, isomorphic graph representa-
tion has been used. Each cluster contains a set of SIFT keypoints [11] and each  
keypoint is considered as a vertex of the proposed isomorphic graph. A one-to-one 
mapping function is used to map the keypoints of the isomorphic graph constructed 
on a face cluster to a palmprint cluster while these two clusters have been made corre-
spondence to each other. When two isomorphic graphs are constructed on a pair of 
face and palmprint clusters with equal number of keypoints, two feature vectors of 
keypoints are found for fusion. Let FG and PG be two graphs and also let f be a map-
ping function from the vertex set of FG to vertex set of PG. So when f is one-to-one 
and f(vk) is adjacent to f(wk) in PG if and only if vk is adjacent to wk in FG, the function f 
is known as an isomorphism and two graphs FG and PG are isomorphic.  

4   Fusion of Keypoints and Matching 

4.1   Fusion of Keypoints 

To fuse the SIFT keypoint descriptors obtained from each isomorphic pair of graphs 
for face and for palmprint images, two different fusion rules are applied serially, viz. 
sum [2] and concatenation [1] rules. Let FG (vk) = (vk1, vk2, .., vkn) and PG(wk) = (wk1, 
wk2, …, wkn) be the two sets of keypoints obtained from two isomorphic graphs for a 
pair of face and palmprint clusters. Suppose there are m numbers of clusters in each of 
face and palmprint images. These two sets of clusters are fused using sum rule and the 
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concatenation rule is further applied to form an integrated feature vector. Suppose, 
FG1, FG2, …, FGm sets of keypoints are obtained from a face image after clustering and 
isomorphism and PG1, PG2, …, PGm are the sets of keypoints obtained from a palm-
print image. The sum rule for the fusion of keypoints is as follows 
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where vkj (j = 1,2,…,n) and wkj (j = 1,2,…,n) of SFPj (i = 1,2,..,m) refer to a keypoint of 
a face graph and a keypoint of a palm graph respectively. In the next step, concatena-
tion rule is applied to the sets of keypoints to form a single feature vector. 

4.2   Matching Criterion and Verification 

The K-Nearest Neighbor (K-NN) distance [14] and correlation distance [15] ap-
proaches are used to compute distances from the concatenated feature sets. In K-NN 
approach, Euclidean distance metric is used to get K best matches. Let di be the 
Euclidian distance of the concatenated feature set of subject Si, i = 1, 2, .... K, which 
belong to the K best matches against a query subject. Then St is verified against the 
query if dt ≤ Th where dt is the minimum of d1, d2, ..., dK and Th is the threshold.  

On the other hand, the correlation distance metric is used for computing distance 
between a pair of reference set and probe set. Similarity between two concatenated 
feature vectors f1 and f2 can be computed as follows 
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Equation (3) denotes the normalized correlation between feature vectors f1 and f2. Let 
di be the similarity of the concatenated feature set of subject Si, i = 1, 2, … K, with 
respect to that of a query subject. Then the subject St is verified against the query 
subject if dt ≥ Th where dt is the maximum of d1, d2, ..., dK and Th is the threshold.  

5   Experimental Evaluation and Databases 

5.1   Databases 

The proposed approach has been tested on IIT Kanpur and chimeric multimodal data-
bases. Chimeric database contains face images of ORL face database [20] and palm-
print images of Hong Kong Polytechnic University (PolyU) database [21]. IIT Kanpur 
multibiometrics database consists of 800 face and 800 palmprint images and each 
subject contributes 2 face and 2 palmprint images. ORL face database contains 400 
face images of 40 subjects while PolyU database contains 7,752 palmprint images of 
193 subjects (386 palm impressions). From 400 face images of ORL database [20], 
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only 160 face images are taken and 4 face images are taken for each subject. From 
PolyU database [21], only 160 palm images of 40 subjects having 2 right and 2 left 
palm images per subject are taken.  

In IIT Kanpur face database, images are in controlled environment with maximum 
tilt of head by 20º from the origin. For evaluation, frontal view faces are used with 
uniform lighting and minor change in facial expression. These images are acquired in 
two different sessions. Among the two face images, one image is used as a reference 
face and the other one is used as a probe face. After preprocessing of face images, it 
uses the face detection algorithm [16] to get face portion only. On the other hand, face 
images in ORL database [20] are taken at different sessions with varying the lighting 
conditions, facial expressions (open/closed eyes, smiling/not smiling) and different 
facial details (glasses / no glasses). The face images are taken against a dark homoge-
neous background with the subjects in an upright, frontal position. For the experi-
ment, only frontal view faces are taken with neutral facial expressions and uniform 
changes in lighting. Among the 4 face images, 2 images are used for reference and 
remaining two are used for probe face images. Since it contains cropped images, one 
does not require getting the face portion. 

Palmprint images in IIT Kanpur database are also taken in controlled environment 
with a flat bed scanner having spatial resolution of 200 dpi. Impressions are taken on 
the scanner with rotation of at most ±350 to each user. There are 800 palmprint images 
of 400 subjects and each subject is contributed 2 images. An image enhancement 
technique is used to achieve uniform spatial resolution. Finally, palm portion is de-
tected with the help of the technique proposed in [17]. In PolyU palmprint database 
[21], images are captured at two different sessions and these images are taken under 
different lighting conditions and by changing the focus of CCD camera. Change in 
focus is regarded as different palm capturing devices. The images which are of two 
different sizes, viz. 384×284 and 768×568, are resized to 160×160 and palm portion is 
detected by the algorithm presented in [17].  

5.2   Experimental Results 

The performance of the proposed approach is determined using one-to-one matching 
strategy. Experimental results are obtained with the help of two distance approaches 
namely, K-Nearest Neighbor (K-NN) distance [14] and normalized correlation [15]. 
We have also determined the performance of face and palmprint independently. 
Fused feature set which is obtained from reference face and palmprint images is 
matched with the feature set obtained from probe pair of face and palmprint images 
by computing the distance between these two sets. Experiments are for the six dis-
tinct cases: (i) face modality using K-NN, (ii) face modality using normalized  
correlation, (iii) palmprint modality using K-NN, (iv) palmprint modality using nor-
malized correlation, (v) feature fusion using K-NN and (vi) feature fusion using 
normalized correlation. 

False Accept Rate (FAR), False Reject Rate (FRR) and recognition rate are  
determined from the IIT Kanpur database of 800 face and palmprint images of 400 
subjects. Feature level fusion method using normalized correlation outperforms other 
proposed methods including individual matching of face and palmprint modalities. 
The correlation metric based feature level fusion has 98.75% recognition rate with 0% 
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FAR while K-NN based method has the recognition rate of 97.5% with 2% FAR. It 
can be noted that FAR of all the proposed methods are found to be less than its corre-
sponding FRR. On the other hand, palmprint modality performs better than face mo-
dality while K-NN and correlation metrics are used. The distance metrics play an 
important role irrespective of use of invariant features and isomorphic graphs repre-
sentations. However, the robust representation of face and palmprint images using 
isomorphic graphs with use of invariant SIFT keypoints and PAM characterized K-
Medoids algorithm makes the proposed fusion method more efficient. In single mo-
dality, the same approach has been used. Therefore, the error rates obtained from the 
single modalities and fusion method are determined under a uniform framework. 
However, the methodology used for feature level fusion found to be not only superior 
to other methods and also shows significant improvements in terms of recognition 
rate and FAR. Table 1 shows different error rates determined on IIT Kanpur database 
for the methods 

Table 1. Different Error Rates on IIT Kanpur Database 

METHOD FAR (%) RECOGNITION 
RATE (%) 

Face Recognition (K-NN) 7.0 92.50 
Face Recognition (Correlation) 6.0 93.75 
Palmprint Verification (K-NN) 4.5 94.75 
Palmprint Verification (Correlation) 2.5 96.00 
Feature Level Fusion (K-NN) 2.0 97.50 
Feature Level Fusion (Correlation) 0.0 98.75 

 
In the second phase, when the proposed fusion is applied with both the correlation 

based and K-NN based distance metrics for the chimeric multibiometric database, the 
FAR is found to be much lesser than that of FRR. The correlation based distance 
metric has 99.5% recognition rate with 0% FAR while the K-NN distance metric has 
99.25% recognition rate with 1.5% FAR. It is found that the palmprint modality per-
forms better than face modality under both the distance metrics. The combination of 
SIFT features and isomorphic graph representation is found to be robust for the pro-
posed feature level fusion approach while the IIT Kanpur and chimeric multibiometric 
databases are evaluated. However, the recognition rates determined from chimeric 
database is found to be more than that of IIT Kanpur database. This is because of the 
small size compared to IIT Kanpur database. Table 2 shows the error rates and recog-
nition rates for the proposed techniques on chimeric database.  

Table 2. Error and Recognition Rates Determined on Chimeric Database 

METHOD FAR (%) RECOGNITION 
RATE (%) 

Face Recognition (K-NN) 5.5 93.75 
Face Recognition (Correlation) 5 94.5 
Palmprint Verification (K-NN) 4 95 
Palmprint Verification (Correlation) 2.25 96.75 
Feature Level Fusion (K-NN) 1.5 99.25 
Feature Level Fusion (Correlation) 0.0 99.5 
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Sub-graph isomorphism is robust and optimal routing representation where most of 
the feature points construct good representative graph for the other biometric sample 
on which the feature points of the first graph is mapped. This characteristic of sub-
graph isomorphism makes the feature level fusion more robust.  

Table 3. Best Recognition Accuracies for Proposed Fusion and for Fusion Approach in [19] 

METHOD DATABASE NUMBER OF 
FEATURE POINTS 

     RR (%) 

Feature level fusion 
[Experiment I] [19] 

Local database (480 faces, 
120 hand geometry, 30 
individuals)  

21 points (8 points 
from eyes, 4 points 
from nose and 9 
points from hand)  

99.23 

Feature level fusion 
[Experiment I] [19] 

Local database (480 faces, 
120 hand geometry, 30 
individuals) 

25 points (16 points 
from eyes, and 9 
points from hand) 

99.22 

Feature level fusion 
[Experiment II] [19] 

Local database (480 faces, 
120 hand geometry, 30 
individuals) 

21 points (8 points 
from eyes, 4 points 
from nose and 9 
points from hand) 

99.43 

Feature level fusion 
[Experiment II] [19] 

Local database (480 faces, 
120 hand geometry, 30 
individuals) 

21 points (8 points 
from eyes, 4 points 
from nose and 9 
points from hand) 

99.31 

Feature Level  
Fusion (K-NN) 

IIT Kanpur (800 faces, 
800 palms, 400  
individuals) 

Feature points are 
not fixed 

97.5 

Feature Level  
Fusion (Correlation) 

IIT Kanpur (800 faces, 
800 palms, 400  
individuals) 

Feature points are 
not fixed 

98.75 

Feature Level  
Fusion (K-NN) 

Chimeric (160 faces, 160 
palms, 40 individuals) 

Feature points are 
not fixed 

99.25 

Feature Level  
Fusion (Correlation) 

Chimeric (160 faces, 160 
palms, 40 individuals) 

Feature points are 
not fixed 

99.5 

5.3   Comparison with Other Technique 

The proposed fusion of face and palmprint is compared with a multibiometrics system 
[19] where the features of face and hand evidences are fused. In the proposed fusion, 
SIFT features are extracted from face and palmprint and on these feature points, iso-
morphic graphs are drawn. These isomorphic representations are fused in terms of 
matched points found on isomorphic subgraphs. On the other hand, in [19] local facial 
features, such as eyes, mouth and nose features are localized using point distribution 
model and active shape models. Similarly, same methodology is applied to find some 
distinctive points on hand geometry. Gabor filter is applied to face image and feature 
vector is constructed by extracting the key points using active shape models. Similarly 
the hand feature vector is constructed. To verify the identity of users, Support Vector 
Machine is used. The technique presented in [19] is tested on a multibiometrics data-
base which contains 480 face images and 120 hand images of 30 peoples. 16 faces 
and 4 hand images are taken from each person. Two experiments are conducted on the 
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entire database. In the first experiment, features of 12 faces and 2 hands are fused for 
training and for testing, feature of 4 faces and remaining 2 hands are fused. The sys-
tem is trained on 12 feature vectors which contain information about face and hand 
geometry of each individual. One SVM is trained on each individual. In this experi-
ment numbers of hand features are fixed to every combination of features, where the 
number of features for eyes, nose and mouth are changing in every combination. The 
best recognition accuracy obtained from the first experiment is 99.23%. In the second 
experiment features of 12 faces and 3 hands are fused. This combination achieves best 
average accuracy while the system is trained with SVM. The best average accuracy 
obtained by the feature vector which contains Gabor features of 8 eye points, 4 nose 
points and 9 hand geometry. Table 3 shows the best average accuracy of different 
combinations of feature points. The best average recognition accuracy obtained from 
the second experiment is 99.43%. 

The proposed approach shows the best recognition accuracies (RR) on IIT Kanpur 
and chimeric databases. Test on IIT Kanpur reveals 98.75% and 97.5% accuracies 
under normalized correlation and K-NN distance metrics respectively. In case of the 
chimeric database, they are 99.5% and 99.25%. The accuracies of the proposed ap-
proach are better than that of the approach in [19]. Since, the number of invariant 
features on both the face and palmprint images is not fixed, the performance shows 
outmost level of robust system. However, the fusion approach in [19] takes fixed 
number of features obtained from eyes, mouth and nose. And some distinctive fea-
tures are determined from hand geometry. Number of SIFT feature points in the pro-
posed fusion is changed dynamically and the combination of subgraph isomorphism 
and SIFT descriptor exhibits robustness of the fusion system. The system in [19] 
shows certain variations in selection of local feature points and it also shows good 
accuracies. However, due to fixed number of feature points and number of less feature 
points exhibit robustness to some extent. In the proposed fusion the whole face is used 
for feature extraction while the fusion approach in [19] uses the local features only.  

6   Conclusion 

This paper has proposed a feature level fusion approach of face and palmprint biomet-
rics using invariant SIFT descriptor and isomorphic graph representation. The per-
formance of feature level fusion has verified by two distance metrics namely, K-NN 
and normalized correlation metrics. Normalized correlation metric is found to be 
superior to K-NN metric for all the proposed methods. The proposed feature fusion 
has evaluated with two different multibiometrics databases and a comparative study 
has been presented with another fusion approach of different paradigm.                        
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Abstract. We present a method for detecting and describing features

in vector flow fields. Our method models flow fields locally using a linear

combination of complex monomials. These monomials form an orthog-

onal basis for analytic flows with respect to a correlation-based inner-

product. We investigate the invariance properties of the coefficients of

the approximation polynomials under both rotation and scaling opera-

tors. We then propose a descriptor for local flow patterns, and developed

a method for comparing them invariantly against rigid transformations.

Additionally, we propose a SIFT-like detector that can automatically de-

tect singular flow patterns at different scales and orientations. Promising

detection results are obtained on different fluid flow data.

1 Introduction

Detecting patterns in vector flow fields is key to many computer vision and
engineering applications including texture analysis [16], fingerprint classifica-
tion [6,14], and fluid dynamics [4,17]. In principle, singular flow-pattern detection
is similar to the interest point detection problem in scalar images [13]. However,
the number of flow-field descriptor approaches in the computer vision literature
is relatively limited. In this paper, we introduce a novel scale-rotation invariant
framework for detecting singular patterns in vector flow data.

Vector field data usually originate from continuous physical processes such as
motion and dynamic textures. As a result, model-based approaches for singular
pattern detection are common in the literature. For example, template-matching
approaches using correlation [17] or filtering operations [14] are generally robust.
However, pattern detected by these approaches are often restricted to the tem-
plate’s size and shape. Another class of singular-pattern detection methods are
based on locally-affine flow-field models [16]. An extension to a nonlinear flow
model was proposed by Ford et al. [8], and most recently Kihl et al. [11] improved
it further to detect multi-scale singular points. Finally, flow fields can also be
represented using complex functions. For instance, Fan et al. [6] used the com-
plex zero-pole model to detect singular points in fingerprint images. An earlier
work by Nogawa et al. [15] modeled singular patterns based on Cauchy’s residue

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 522–531, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Detecting and Describing Singular Points in Vector Flow Fields 523

theorem. Nevertheless, residue calculation can be sensitive to noise. Corpetti
et al. [4] detected singular-flow patterns as the maxima of complex potential
and streamline functions that were obtained from flow fields’ irrotational and
solenoidal components. Corpetti’s detected singular patterns were quite general
as they did not need to contain a center vanishing point.

In this paper, we propose a novel framework for the detection and description
of singular patterns in vector fields under rigid transformations (i.e., rotation
and scale invariant). We commence by approximating the flow field locally using
a linear combination of complex analytic basis functions (Section 2). We use
the approximation coefficients as a flow descriptor. Our selected set of complex
basis functions can be shown to be eigenfunctions of the rotation operator. This
observation allows us to define a concept equivalent to a flow pattern’s principle
orientations by aligning it to the analytic bases. We will show that scaling a flow
field corresponds to scaling our descriptor. By aligning descriptors using the es-
timated principle orientations, and normalizing them in scale, flow patterns can
be directly compared (Section 3). Finally, we introduce a multi-scale singular
pattern detector (Section 4). As in [4], we are able to detect singular patterns
in a broader sense than the commonly used vanishing singular points. Our ex-
perimental results (Section 5) demonstrate the effectiveness of our descriptor by
both detecting and clustering singular patterns on various flow field sequences.

2 Higher-Order Model of Flow Field

We begin by representing a 2-D vector-flow field as a complex-valued function
F (z) defined on a finite domain Ω ⊂ C. Locally, a flow field can be represented
by an analytic function centered at z0 ∈ C, i.e., f(z) ≈ F (z + z0).1 The Taylor
expansion of f(z) about the origin (i.e., z0 = 0) can be written as a linear
combination of complex (orthogonal) basis functions φk(z) as follows:

f (z) =
N∑

k=0

akφk(z) + RN (z), (1)

where ak = f(k)(0)
k! are the coefficients, and RN (z) is the residue. Here, f (k)(0)

is the k-th derivative of f evaluated at z0 = 0. There are number of choices of
polynomial bases φk(z) that are equivalent from both the functional analysis and
approximation theory viewpoints, e.g., complex-domain Zernike polynomials [10]
and real-domain Legendre polynomials [11]. Our goal is to approximate flow
fields locally. While this goal can be accomplished using linear models based
on real-domain basis functions [11,16], we believe that complex functions are
valuable bases to model smooth natural motions [10,15,4]. Additionally, complex
bases are usually more compact than their real orthogonal counterparts.

1 The analytic assumption was also used in [15,4]. While theoretically some linear flow

fields are not analytic, they can be considered less physically relevant [4].
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It is worth pointing out that both the orthogonality condition and basis-
function projection depend on the choice of inner product in the analytic func-
tions space A(Ω) on Ω. Using the standard inner product defined for complex
functions in L2 [5] results in complex numbers, making projection calculations
difficult. Instead, we adopt the following alternative inner product:

〈f(z), g(z)〉 =
∫

C

f(z) · g(z) dz, (2)

where · is the standard inner product on C (i.e., dot product between two com-
plex numbers). Equation 2 satisfies the three inner product axioms [5]: symmetry,
linearity, and positive-definiteness, and it can be used to project flow field f(z)
onto the basis function φk(z), with real-domain projection coefficients given by
ak = 〈f(z),φk(z)〉

〈φk(z),φk(z)〉 . Furthermore, we can re-write Equation 2 as:

〈f(z), g(z)〉 = (F ⊗ g)(z0) =
∫

C

F (z + z0) · g(z) dz, (3)

which is similar to the cross-correlation operator used in [17], and can be imple-
mented efficiently using the Fast Fourier Transform (FFT).

In this paper, we use the complex-domain monomials {zk}N
k=1 as basis func-

tions φk(z). We can show that izk belongs to the same basis formed by zk, and
that the basis is complete. Intuitively, izk can be thought as a counterclockwise
90-degree rotation of the vectors in zk. Without affecting the orthogonality of
zk and izk, we control the basis’ local support size by weighting the basis with
a zero-mean Gaussian function wσ(y). Our basis flows can then be written as:

φk,1(z) =
zkwσ(z)

‖zkwσ(z)‖ and φk,2(z) =
izkwσ(z)

‖izkwσ(z)‖ , (4)

(a) φ0,1 (b) φ1,1 (c) φ2,1 (d) φ3,1

(e) φ0,2 (f) φ1,2 (g) φ2,2 (h) φ3,2

Fig. 1. Basis flows φk,i, k = 0, . . . , 3 and i = 1, 2. Row 1: polynomials derived from zk.

Row 2: polynomials derived from izk. Increasing k produce higher-order fluctuations.
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Fig. 2. Cross-correlation between the flow field and the first four bases φk,1(z). Map

A1,1 indicates a divergence-free flow field. Peaks in A1,2 indicate vortices. Blue: match-

ing orientation between filter and flow data. Red: reverse orientation.

where ‖φ‖2 = 〈φ, φ〉. The orthonormal basis φk,i for k = 0, 1, 2, 3 are shown in
Figure 1. Using (1), the N -th order flow field approximation at p ∈ Ω ⊂ C is:

F (z + z0) ≈ f(z) =
N∑

k=0

[ak,1φk,1(z) + ak,2φk,2(z)] , (5)

where ak,i = 〈f(z), φk,i(z)〉, for k = 1, . . . , N , and i = 1, 2. The approximation
produces 2(N + 1) real coefficients ap = ap

0,1, a
p
0,2, . . . , a

p
N,1, a

p
N,2 for location p.

According to (3), the coefficients are local values of the cross-correlation between
F (z) and φk,i(z). Figure 2 shows the correlation of the first two basis pairs with
a turbulent flow, i.e., Ak,1 = F (z)⊗ φk,1(z) and Ak,2 = F (z)⊗φk,2(z), k = 0, 1.

3 Flow Field Descriptor

In the previous section, a local approximation of local flow fields was presented.
We will now show how the projection coefficients can be used to derive descrip-
tors that are invariant to both rotation and scaling transformations.

The rotation operator. Let us consider the flow-field expansion given by (5).
The rotation operator Γθ(·) rotates the flow f(z) by an angle θ as follows:

Γθ (f(z)) = e−θif(zeθi) = e−θi
N∑

k=0

[
ak,1φk,1(zeθi) + ak,2φk,2(zeθi)

]
=

N∑
k=0

[ak,1Γθ (φk,1(z)) + ak,2Γθ (φk,2(z))] . (6)
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Here, e−θi is the contravariant factor to ensure coordinate invariance of the
vector field [1]. Γθ is linear on the analytic function space An. Furthermore, our
choice of basis monomials, zk and izk, are eigenfunctions for Γθ, i.e.,

Γθ(zk) = e(k−1)θi zk and Γθ(izk) = e(k−1)θi izk, (7)

with eigenvalues equal to e(k−1)θi. The bases’ Gaussian weighting and the nor-
malizing constant in (4) are rotation invariant so they were dropped. By plugging
(7) into (6) and re-arranging the basis monomial terms, we obtain:

a′k,1 (θ) = cos [(k − 1)θ] ak,1 − sin [(k − 1)θ] ak,2

a′k,2 (θ) = sin [(k − 1)θ] ak,1 + cos [(k − 1)θ] ak,2, (8)

where ak,i and a′k,i are the coefficients for the original and rotated flow fields,
respectively. Equation 8 shows that rotating a flow field also rotates their pro-
jection coefficients. Our goal is to compare flows by rotating the coefficients to
a standard orientation. However, the rotation angle is unknown. We solve this
problem by finding the angle that maximizes the alignment between the local
flow and a subset of our eigenfunctions that are not rotationally symmetric (i.e.,
except z and iz), and calculate θ that maximizes the inner-product projection:

θ̃ = arg max
θ

∑
a′k,1 (θ) . (9)

The above maximization of a trigonometric polynomial function can be solved
using standard optimization algorithms (e.g., Gauss-Newton method). Compu-
tationally, rotating the coefficients is far more efficient than rotating the flow
field itself. We call the values of θ at these local maxima the Principle Orienta-
tions. Once these directions are at hand, we can compare two flow fields, fp(z)
and fq(z), by defining a distance between them. We use the minimum Euclidean
distance between their rotated coefficients defined as follows:

d(fp, fq) = min
i,j

‖Γθiap − Γθjaq‖. (10)

Vector fields’ directional nature generate multiple principle orientations, and
Equation 9 has at most 2N roots [9]. Rather than finding the “best” orien-
tation, we accept all principle orientations for which this equation exceeds a
threshold.

The scaling operator. Let us now consider the scaling operator Ψs(.), s > 0
applied on the weighted basis flow defined in (4). This operator is also linear,
and scaling effects are fully defined on the basis functions φk,i as follows:

Ψs(φk,1(z)) = s φk,1(s−1z) = s
(s−k)
|(s−k)|

zkwσ(s−1z)
‖zkwσ(s−1z)‖

= s
zkwσ(s−1z)
‖zkwσ(s−1z)‖ = s

zkwsσ(z)
‖zkwsσ(z)‖ . (11)



Detecting and Describing Singular Points in Vector Flow Fields 527

Therefore, scaled bases can be obtained by scaling the variance of the Gaussian
weighting function, and then multiplying them by s. The relationship holds for
both zk and izk bases. Next, we use these ideas to develop a method for detecting
interest flow patterns under scaling and rotation transformations.

4 Detection of Singular Patterns

Singular points (or critical points) in vector fields can be defined as locations
where the flow field vanishes [11,16,7], i.e., F (z) = 0. If we consider the expansion
in Equation 5, then F (z) = 0 implies a0,1 = a0,2 = 0. As a result, a local flow
pattern containing a singular point at the center can be linearly approximated
by φk,i with k ≥ 1. We will name φk,i, k ≥ 1 the singular basis, and will assume
that the flow field’s linear expansion can be separated into two components:
the background constant flow expanded by φ0,1, φ0,2, and a singular component
expanded by the singular basis. The constant flow is similar to the laminar
component mentioned in [4]. We define a singular point as maxima of the flow
field energy projected onto the singular basis. The singular energy function is
defined as the squared sum of projection coefficients on the singular basis, i.e.,
Esig(z) =

∑N
k=1

(
‖ak,1‖2 + ‖ak,2‖2

)
. As in [4], the separation of background

constant flow makes our definition of singular patterns more general than the
singular points defined in [11,16,7], since a flow field may not have any vanishing
points when a background constant flow or a laminar flow exists.

Comparing flows of similar sizes can be achieved by using Equation 10. We
now look into the case of detecting singular patterns at multiple scales. Here, we
will approach the multiple-scale problem in a similar way as done in scale-space
theory for scalar images. We begin by applying a Gaussian smoothing to the
vector field followed by a down-sampling operation [13]. In the case of vector
fields, the Gaussian smoothing step might actually destroy singular points [7].
Using the properties described in Section 3, we keep the flow field unchanged,

Algorithm 1. Scale-Rotation Invariant Singular Flow Pattern Detection
Given an input flow F (z), create octaves of F o(z), o = 0, 1, . . . , N by1

down-sampling F (z) by half, i.e., F o+1(z) ← ↓2 F o(z).

Create multiscale bases φs
k,i, s = 0, 1, . . . , M by increasing their variance by2

a step Δσ (e.g., Δσ = 21/M ). As in SIFT [13], we generate M + 3 images to

cover a complete octave, with starting scale σ0 = 1.6.
Calculate the coefficients in each octave using cross-correlation, i.e.,3

Ao,s
k,1 ← F o(z) ⊗ φs

k,1(z) and Ao,s
k,2 ← F o(z) ⊗ φs

k,2(z), k = 0, 1.

Calculate the singular energy Eo
sig(z, s) at each octave.4

Eo
sig(z, s) ←

∑N
k=1

(
‖as

k,1(z)‖2 + ‖as
k,2(z)‖2

)
.

Detect the singular points at spatial position (x, y) and scale s that locally5

maximize the singular energy Eo
sig(z, s).

Calculate descriptor and principle orientations (Equation 9)6

at detected positions.
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and instead vary the scale of the basis function. Scaling the basis function only
involves changing the variance parameter of the Gaussian weighting function,
and it does not destroy the singular points. However, increasing the basis flow
size increases the computation due to the correlation operation in Equation 3.

To address these problems, we adopt a hybrid method for multiscale singular-
pattern detection. Similarly to the SIFT descriptor [13], we divide the scale space
into octaves using Gaussian smoothing and down-sampling. However, scaling is
applied to the basis flows within each octave. Singular pattern candidate scales
are selected as extrema of singular energy Esig along both the scale and spatial
dimensions. Algorithm 1 summarizes the detection process.

5 Experiments

We tested our detector on sequences from European FLUID Project [3], and
satellite imagery obtained from the SSEC Data Center2. Additionally, we tested
the flow descriptor by automatically clustering singular patterns of varying scale
and orientation that were extracted from the JHU Turbulence dataset [12].

Detail View Multiple Detections 

Fig. 3. Right: detected patterns. Color indicates the relative log magnitude of singular

energy. Vortices are the strongest patterns; Left: detail view of detected patterns.

Detection on FLUID sequences. Detected singular patterns from a FLUID
sequence are shown in Figure 3. The patterns’ singular energy was color-mapped
for visualization clarity. This dataset contains sourceless vector fields, and most
singular patterns resemble vortices appearing at multiple scales. Our method
detected all vortices. Elongated-shaped vortices were detected in pairs. In these
cases, some detections could have been discarded based on their singular energy.

Detection on satellite images. In this experiment, we extracted velocity
field data from SSEC satellite image sequences using the CLG optical-flow algo-
rithm [2]. CLG produced fairly good estimation results considering that accurate

2 http://www.ssec.wisc.edu/data/us_comp/

http://www.ssec.wisc.edu/data/us_comp/
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1 6

7 8

9 11

Fig. 4. Singular pattern detection in satellite image sequence. Estimated flow field is

downsampled for visualization. Strong patterns to the north-east (9,10,11) corresponds

to vortices. South-east singular pattern (8) corresponds to sudden clouds divergence.

fluid-motion estimation is not our method’s main focus. Detection results pro-
duced by our detector on motion clouds are shown in Figure 4. The figure shows
a satellite image of a U.S. weather system on February 20th, 2010. For better
visualization, singular patterns smaller than 20 pixels in diameter were removed.
On the northeast corner, large vortices were detected. On the southeast corner,
a strong singular pattern corresponds to clouds disappearance and divergence.
Most detected patterns are consistent with cloud motion changes.

Detecting and Clustering. In this experiment, we clustered singular patterns
detected on the JHU 3-D Turbulence dataset. Here, we selected 2-D slices that
were perpendicular to the flow’s convecting direction. For better visualization, we
created two groups of detected patterns according to their similarity to vortices
and sources (or sinks). We did that by examining whether the singular energy
was concentrated on the basis functions φ1,1, φ1,2. If ‖a1,1‖2+‖a2,2‖2 consisted of
more than 60% of the total singular energy, then we labeled the singular pattern
as symmetric, otherwise, we call it asymmetric.

We then scaled and aligned the features. For patterns having multiple princi-
ple orientations, we generated multiple aligned copies, and created four groups
using k-means. Clusters for symmetric features are shown in Figure 5 (top), while
clusters of asymmetric features are shown in Figure 5 (bottom). Symmetric pat-
terns mostly corresponded to vortices in both directions, sources, and swirls.
Due to the flow’s divergent nature, few sinks were detected, and no sink clusters
were obtained. Asymmetric patterns mostly correspond to vortices skewed by
a background laminar. Clusters were distinguished by their rotation direction,
and their divergence or convergence. Most patterns in this group did not have
a center vanishing point, yet they still exhibited interesting sudden flow field
changes. This suggests the generality of our singular pattern definition.
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mean flow Sample flows from each cluster

SYMMETRIC SINGULAR PATTERNS 

mean flow Sample flows from each cluster

NON-SYMMETRIC SINGULAR PATTERNS 

HSV vector 

field code 

Fig. 5. Clusters of symmetric and asymmetric singular patterns detected on the JHU

3-D Turbulence dataset. Each row displays cluster means and sample flows.
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6 Conclusion

We proposed a flow-field descriptor based on coefficients of a local flow field
approximation. Based on this descriptor, we designed a SIFT-like detector for
singular patterns that is invariant to rigid transformations. The detector was
tested on both synthetic and real fluid flows. Future work includes an extension
to 3-D flow fields and exploring new applications.
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Abstract. Support Vector Machines (SVM) can perform very well on noise free 
data sets and can usually achieve good classification accuracies when the data is 
noisy. However, because of the overfitting problem, the accuracy decreases if 
the SVM is modeled improperly or if the data is excessively noisy or nonlinear. 
For SVM, most of the misclassification occurs when the test data lies closer to 
the decision boundary. Therefore in this paper, we investigate the effect of Sup-
port Vectors found by SVM, and their effect on the decision when used with the 
Gaussian kernel. Based on the discussion results we also propose a new tech-
nique to improve the performance of SVM by creating smaller clusters along 
the decision boundary in the higher dimensional space. In this way we reduce 
the overfitting problem that occurs because of the model selection or the noise 
effect. As an alternative SVM tuning method, we also propose using only K 
highest Lagrange multipliers to summarize the decision boundary instead of the 
whole support vectors and compare the performances. Thus with test results, we 
show that the number of Support Vectors can be decreased further by using 
only a fraction of the support vectors found at the training step as a post-
processing method.  

Keywords: Support Vector Machine, KNN SVM, Post-processing, Support 
Vector Reduction. 

1   Introduction 

Support Vector Machine (SVM) is a well known learning algorithm that has been 
widely used in many applications including classification, estimation and tracking as 
in [1], [2], [3] and [4]. SVM finds the closest data vectors called support vectors (SV), 
to the decision boundary in the training set and it classifies a given new test vector by 
using only these closest data vectors [5],[6].  

In order to find the optimal nonlinear decision boundary, SVM uses kernel func-
tions, along the optimization step to find the optimal hyperparameters, [5]. However, 
in practice, the iterative techniques used at the optimization step, can also affect the 
classification accuracy of SVM within the margin. 
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Besides the SVM algorithm, the K nearest neighbor (KNN) technique is another 
well known learning technique and being used in several pattern recognition applica-
tions as in [7]. There have been some previous studies where KNN technique was 
combined with SVM as in [8], [9] and [10].  

The combination of these two techniques by switching between them could per-
form better only for certain cases in which the new data is close to the decision 
boundary. In [8], the KNN algorithm is applied directly onto those data vectors which 
are within the margin. However, in [8], it is claimed that previously proposed KSVM 
cannot reduce the generalization error.  

Also, in studies such as in [9] and in [10], KNN idea is used in a different way 
combined with SVs. In [9], authors study the effects of using K nearest SVs by focus-
ing on query time rather than improving the accuracy. They propose using a varying 
K value for each test data till they reach to a certain threshold. Thus they search for an 
appropriate K value for each given test data. In [10], instead of training the SVM only 
once, the authors propose using the K nearest data values to train SVM separately for 
each given test data. 

Both of the papers [9] and [10] uses the KNN idea in a different way, while [9] re-
quires to search for an appropriate K value for each single test data, the authors of 
[10] require to train SVM for each given new test data. Moreover, although these 
papers do not clearly indicate in them, they can perform better when used with Gaus-
sian kernel because of the Gaussian kernel function’s shape. 

In this study, we propose more naive yet efficient way of using KNN SVs when 
used with Gaussian kernels for a given dataset. We train the SVM only once and after 
that we require only one K value to be found. Our approach is applicable to all new 
data points regardless of their distance to the decision boundary. In this approach, we 
use the entire training data to find the SVs. However after this point, instead of using 
the all SVs that have been found on the training step, we propose to use only the K 
nearest SVs. Since the Gaussian kernel is also using the Euclidian distance, there is 
not much computational cost to find distances to each SVs.  

The classification with SVM, besides its high accuracy, also provides sparseness 
which is another advantage of SVM, thus we do not need to save all the training data. 
Therefore, in this study, we also propose using only the K highest Lagrange multipliers 
(α) instead of all the nonzero Lagrange multipliers found at the training step of SVM. 
Section 4 tests and investigates if all the SVs found by the classifier, are necessary to 
classify the new data. Experimental results show that, even if the non-zero α values has 
closer value to each other, there can be some redundancy where we can reduce the SV 
number by choosing only the K highest SVs and corresponding α values.  

Consequently, the SV number can be reduced by using the method presented on 
this paper for a similar performance. Besides, we also show that it is possible to in-
crease the efficiency of the SVM by using only a fraction of SV numbers. Preliminary 
test results provide us interesting results about SVs which we discuss at the Section 5. 

2   Support Vector Machine 

SVM searches for the optimal decision boundary between two classes [5], [6]. Al-
though SVM is mainly designed as a linear binary classifier, it is widely being used 
for nonlinear data efficiently as well, by the use of kernel functions [5].   
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SVM uses the following formula for the classification, for a given new data vector x: 
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where α is the Lagrange multiplier for each SV that needs to be found in the training 
step, m the support vector number, b the biasing term, y the class labels, K(x,xi) the 
kernel function, and xi are the support vectors. The parameters b and αi need to be 
found in the training step. The Lagrange multipliers, αi, can be found by maximizing 
the following equation: 
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Thus the xi input vectors with nonzero αi values, are called support vectors (SV). 
Although several kernel functions have been proposed to be used with SVMs, as in 
[5], [11] and [12], the kernel function used in this study is the Gaussian kernel which 
is defined as: 
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where σ is the kernel parameter that needs to be found for a satisfactory classification 
performance. 

3   The Proposed Method 

K-NN SVM: If the Gaussian kernel is being used, then SVM can be considered as a 
binary clustering algorithm. However, in contrast to the other clustering algorithms, 
instead of finding the centroids of the clusters, SVM uses the edge information of the 
clusters where the two clusters are the closest to each other. 

Our assumption in this study is that for a given new data vector, we do not need to 
use all the support vectors as in the traditional SVM. That is because the hyperplane 
can be more linear in some regions of the whole data space, and can be highly nonlin-
ear in other regions. Therefore using only the K nearest support vectors within the 
same local region can increase the performance. Let us re-arrange the equation (1) as  
follows: 
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where h is the number of support vectors for the (+1) zone and similarly g is the num-
ber of the support vectors for the  (-1) zone.  
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When the Gaussian kernel is being used for SVM, the Equation (4) simply be-
comes a weighted subtraction of α values with a biasing term b, treating the K(x,xi) 
values as weights. Here the weights K(x,xi) are mapped to a value based on the 
Euclidian distance between the new data and the support vector. 
 

               

Fig. 1. Distances to all Support Vectors for a given new data 

As shown in Equation (5), the Gaussian kernel maps the distance values between 0 
and 1, where the closer distance is mapped to a higher value. Here, the kernel 
parameter σ decides after which value the mapping decays to 0 more faster. Thus, for 
a given test data vector, some of the α values in Equation (4) can vanish because of 
their weights goes to zero, then only the b value and the closest α values decide for 
the sign of the new test data. That means all SVs have some local effect on the whole 
decision boundary. 
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As illustrated in Figure 1, for a given new data the distances to all support vectors are 
shown as D1, D2, D3, D4, D5, D6. For the classification of the new data point, D2 and 
D3 will be more effective than D5 and D6, as these distance values are smaller. This 
may yield an incorrect classification of the data. This situation can be more important 
as the test data gets closer to the decision boundary. 

This can reduce the effect of the noise on forming the decision boundary. As the 
overfitting problem yields a complicated nonlinear decision surface, and usually re-
quires more support vectors. 

As a result, the classifier for a given new test data can be constructed as: 
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where k is the nearest support vector number and k ≤ m for an improved accuracy of 
SVM. 
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4   Experimental Results 

In this section we perform experiments to illustrate the performance of the proposed 
method.  

For the experiments, we use the image segmentation dataset which has 7 different 
classes of certain images. Each instant is a 3 by 3 region and randomly chosen from a 
database of 7 outdoor images. Each image is hand segmented for classification pur-
pose. The dataset is available at [13]. 

We use one against all rule for each 7 classes. The first 210 data are used as train-
ing dataset and the remaining 2100 data are used for testing. Each vector has 18  
features. We calculate the highest performance values by finding the appropriate 
Gaussian kernel parameters. Before the training the SVM, we first normalized all the 
data between the range [-1,1]. For each class, we first find the best kernel parameter 
that gives the lowest generalization error, and then by using this kernel parameter, we 
find the support vectors and corresponding Lagrange multipliers. For the experiments, 
we used and modified the code available at [14]. 

Table 1 shows best classification results for the test data with the corresponding 
Gaussian kernel parameters and support vector numbers for each class. Then by keep-
ing the same support vectors and the corresponding α values, we applied K nearest 
SVM technique on the same dataset and the results are shown on Table 2. The best 
classification percentages are obtained by using the lowest K nearest support vectors, 
and are shown on Table 2 where K is the nearest Support vector numbers.  

On Table 3 we first sorted the α values in descending order and then have chosen 
the K highest α values with the corresponding support vectors. The remaining α val-
ues are set to zero. Therefore the number of SVs is reduced in each test.  

 

Table 1. The SVM training and best kernel parameters with SV numbers for the best classifica-
tion results 

Traditional SVM Test Results 

Class name: cement brickface Grass foliage sky path window 

Best %: 96.95 99.48 99.86 96.71 100 99.71 94.57 

Parameter: 0.53 0.44 0.5 1.43 1.45 0.43 0.40 

SV Number 84 93 94 28 18 106 122 
 

Table 2. K nearest SVM classification results for the image segmentation dataset 

K Nearest SVM Test Results 

 

Class name: cement brickface Grass foliage Sky Path Window 

Best %: 97 99.52 99.86 96.71 100 99.95 94.62 

σ  value: 0.53 0.44 0.5 1.43 1.45 0.43 0.4 

K 37 29 7 28 3 9 25 
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Table 3. Using only the highest K number of α values and its results for different classes 

Using only the K highest α values for SVM 
 
 
 

 
               
 

 
 

Table 4. Showing the maximum and minimum α values that are used and discarded in the “K 
highest α values for SVM” experiment 

The Maximum and Minimum α values used in Table 3 

Class name: cement brickface Grass foliage Sky Path Window 

Used max α 12.16 15.31 1.42 464.3 1.27 1.61 14.02 

Used min α  0.36 0.38 0.57 1.13 1.17 0.28 0.21 

Nonused max 0.34 0.21 0.38 0 0.99 0.28 0.21 

Nonused min 0.002 0.001 0.001 0 0.02 0 0.004 
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Fig. 2. For the Path class the K nearest SV number vs test classification percentage plot 

Class name: cement brickface Grass foliage Sky Path Window 

Best %: 97 99.52 99.86 96.71 100 99.86 94.57 

σ value: 0.53 0.44 0.5 1.43 1.45 0.43 0.4 

SV Number 41 23 8 28 3 23 51 
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The classification percentage with the same kernel parameters are shown on Table 
3 for each class separately with the best K values. The maximum and minimum α 
values that are used and discarded for each class are shown on Table 4. 

In Figure 2, we plotted the change on classification percentage versus the nearest 
support vector numbers used in Equation (7) when the kernel parameter is kept as 
0.43. It can clearly be seen that the best classification result is not obtained by using 
all the support vectors. The peak value for the plot is obtained when the K is chosen 
as 9 as it is shown on the plot. 

Comparing Table 1, Table 2 and Table 3, we can see that K nearest SVM gives the 
best results for Path and Window classes when the same kernel parameters are used. 
Cement and Brickface classes show the same improved performance on Table 2 and 
Table 3. For Foliage, Grass and Sky classes we find the same results as in the regular 
SVM case. However for the Grass and Sky classes the same percentage values are 
obtained by using lower support vector numbers on experiments. 

5   Conclusion and Discussion 

In this paper, as an alternative SVM tuning method, we propose using the KNN idea 
to decrease generalization error, when the optimum kernel parameter is used with the 
Gaussian kernel. Moreover, we also show that the SV number can be reduced gradu-
ally by using only the highest K number of α values for the same or an increased 
performance for many applications.  

Based on the experimental results on Table 1, and Table 2 we can conclude that, on 
SVM generalization, learning with the lowest Support vector numbers is not always 
the best way of learning the training data when the accuracy is the main concern. 
Although SVM is called a “sparse learning algorithm”, it is better to keep sparseness 
at an optimum value (which is not the minimum value always) so that, it does not 
reduce the generalization ability of the SVM. Especially for highly nonlinear data 
structures, it is safer and better to learn with more support vectors. And then by using 
K nearest SVM technique, the generalization error can be decreased. 

As shown on Table 1 and Table 2, the preliminary experimental results indicate us 
that, if the training step is completed with a small number of support vectors, then the 
generalization error may not be decreased with K nearest SVM as the support vectors 
are not close enough to form a proper smaller clusters to smoothen the decision 
boundary, thus we may not capture the nonlinearity of the space in a better way by 
using less support vectors.  

Table 3 shows that, there may be some redundancy on support vector number 
which can be further reduced for SVM classification with the Gaussian kernel. Even 
the α values may have similar values (not closer to zero), by choosing only the K 
highest α values, and setting all the remaining ones to zero, we can obtain the same 
generalization performance. Finding this K value is an important step and it can be 
found heuristically. This result can be quite useful where the SV number is more 
important such as in feature selection and feature extraction applications. Less support 
vector also means less computation time for a given test data. 

The information we obtain from this study when combined with previous similar 
works, shows us that there are interesting properties with the Gaussian kernel, and 
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there is a relation between the decision boundary and the kernel parameter as well as 
the K value. We will use these preliminary results in our next study to obtain a novel 
method that finds its own parameters automatically during the training step. 
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Abstract. In this paper, we present an automatic speech segmentation

system based on acoustical clustering plus dynamic time warping. Our

system operates at three stages, the first one obtains a coarse segmenta-

tion as a starting point to the second one. The second stage fixes phoneme

boundaries in an iterative process of progressive refinement. The third

stage makes a finer adjustment by considering some acoustic parame-

ters estimated at a higher subsampling rate around the boundary to be

adjusted. No manually segmented utterances are used in any stage.

The results presented here demonstrate a good learning capability of

the system, which only uses the phonetic transcription of each utterance.

Our approach obtains similar results than the ones reported by previous

related works on TIMIT database.

Keywords: automatic speech segmentation, phoneme boundaries detec-

tion, phoneme alignment.

1 Introduction

It is well known the usefulness of phonetically segmented speech corpora for
several purposes. Lately, there is a special attention in the selection of phonetic
units for Text-To-Speech (TTS) systems. However, the availability of segmented
speech databases for training acoustic models continues being of interest in the
construction of Automatic Speech Recognition (ASR) systems.

The manual segmentation of speech corpora is a hard work which implies
many hours of human phonetic experts, and it does not avoid some deviations
due to different human expert criteria. Some researchers have given the same
speech database to different human experts to segment it. Then, they evaluated
the difference between the manual segmentations obtained. In [1], 97% of the
boundaries within a tolerance interval of 20 ms were found, and 93% in [2].

Our method does not need any subset of manually segmented sentences for
bootstrapping. The input to our system are both the speech signal and the
known phonetic sequence of each utterance. It fixes correctly 88% of boundaries
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within a 20 ms tolerance interval compared to a manual segmentation. There-
fore, their output is suitable for training acoustic models in ASR systems, such
as those based on Hidden Markov Models (HMM), Neural Networks or hybrid
systems. This method was used on selecting phonetic units for TTS as part of
a comparative study. It obtained better results than HMM in an objective test,
but worse in a perceptual one [3].

A work for speech/music discrimination of radio recordings that uses similar
techniques was presented in [4]. Their goal is to segment audio streams by classi-
fying each segment as either speech or music, while our goal is the adjustment of
phonetic boundaries. Both our and their system operate on three stages and use
dynamic programming for optimal segmentation. Nevertheless, their dynamic
programming algorithm discriminates speech against music using posterior class
probabilities estimated by means of Bayesian Networks. Our dynamic time warp-
ing algorithm uses posterior phonetic probabilities computed as described below
in Section 2.2.

Next section describes our automatic segmentation system. Section 3 explains
the measures used for evaluating segmentation accuracy. Section 4 presents ex-
perimental results and discuses them, and Section 5 concludes.

2 The Speech Segmentation System

Our automatic speech segmentation system attempts to solve the problem in
three stages. The first stage estimates a coarse segmentation which is used as a
starting point to the second one. The second stage does a progressive refinement
of phoneme boundaries by means of a dynamic time warping (DTW) algorithm
which uses phonetic probabilities estimated at each frame. The third stage ad-
justs the boundaries in a more precise manner.

A previous version of our system was presented [5] and it worked in two
stages. The coarse segmentation module fixed phoneme boundaries following
a knowledge-based approach by using a set of language-dependent acoustic-
phonetic rules. New coarse segmentation is language-independent and positions
phoneme boundaries based on statistical analysis of acoustic parameters. The
whole system has been adapted to be language-independent. Results for both
English and Spanish languages are presented in Section 4.

2.1 Coarse Segmentation

Initial phoneme boundaries are positioned using classification techniques at dif-
ferent levels and doing four consecutive steps. First and second steps are applied
to each sentence individually. In the first step, time marks are placed where
acoustic changes are considered relevant. Every two consecutive time marks de-
fine an acoustic segment. In the second step, acoustic segments are associated
with phonetic units following simple acoustic-phonetic rules. In the third step,
the previous association is used to estimate a Gaussian Mixture Model (GMM)
with several Gaussians per phonetic unit. A new association of acoustic segments
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with phonetic units is performed based on phonetic probabilities from the GMM,
then, an iterative process refines the GMM until no changes in association are
found. In the fourth step, time marks from step 1 are not used as reference, so
phoneme boundaries are fixed by using only the phonetic probabilities. The first
iteration of this step uses the phonetic probabilities provided by the GMM com-
puted in the last iteration of previous step. The iteration stops when no changes
on boundary positions are found. The algorithm follows:

1) Location of time marks in relevant acoustic changes. Time marks are
placed between two consecutive frames which are classified in different classes.
This strategy gives us a sequence of time marks where a phoneme boundary is
located with high probability. Here, time marks are established in three levels.
The first level does clustering with two Gaussian distributions using two pa-
rameters: energy (E) and the first cepstral coefficient (CC1). Then, frames are
classified into one of the two classes, and a time mark is fixed when frame class
changes. The next level performs clustering with three Gaussian distributions,
using again E and CC1, and new time marks are obtained, most of them on the
same location than the previous marks. With these clustering processes, bound-
aries between fricatives and no fricatives are found by the first level, the second
level confirms them and find new boundaries between silence and no silence. The
third clustering process works inside the acoustic segments delimited by existing
time marks. They are clustered in 2, 3 and 4 classes, and the number of classes
with the lower entropy is selected. New time marks are obtained. This step is
repeated until no acoustic segments larger than 60 ms remains.

2) Association of acoustic segments with phonetic units. A DTW algo-
rithm which takes into account the following acoustic-phonetic rules is used to
associate acoustic segments with phonetic units:

Rule (a). The association of an acoustic segment with a silence is penalized
proportionally to the value of E. The association of an acoustic segment
with a fricative or stop plosive phoneme is penalized with low values of E
and high values of CC1. Finally, the association of an acoustic segment with
other phonemes is penalized with low values of E and with low values of
CC1.

Rule (b). The length of one or more consecutive acoustic segments associated
with a phoneme is used to penalize the association if it is too short, except
for stop plosive consonants and silences.

Rule (c). The length of an acoustic segment associated with a stop plosive
consonant is used to penalize the association if it is larger than 30 ms.

3) Association of segments with phonetic units using phonetic prob-
abilities. The output of the previous association of acoustic segments with
phonetic units is a primary segmentation used to estimate a GMM with several
Gaussians per unit, typically 16. A DTW algorithm is also followed, but rule
(a) is substituted by the use of phonetic probabilities from the GMM. Rules
(b) and (c) are also used here with the same purpose. A new segmentation is
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obtained and a new GMM is estimated. This step is repeated until no changes
in associations are found.

4) Forced alignment of phonetic units using phonetic probabilities. We
follow the same strategy as before, but association of phonetic units with acoustic
frames is not restricted by time marks. Rules (b) and (c) continue being applied.
Actually, this step does the same alignment described in next subsection, but
the phonetic probabilities used here are not as precise as the ones used in the
progressive refinement.

2.2 Progressive Refinement

This is the core of our segmentation technique: Acoustical Clustering-Dynamic
Time Warping (AC-DTW). It is based on unsupervised learning of acoustic
classes and its association to phonemes by means of conditional probabilities.
Each acoustic class represents a particular kind of acoustical manifestation and
is modelled by a Gaussian distribution.

Phonetic boundaries are established by a DTW algorithm that uses the a
posteriori probability of each phonetic unit given an acoustic frame. These a
posteriori probabilities of phonemes are calculated by combining probabilities of
acoustic classes, which are obtained from a clustering procedure on the acoustic
feature space, and the conditional probabilities of each acoustic class with respect
to each phonetic unit [5].

In the clustering procedure, it is assumed that acoustic classes can be modelled
by means of Gaussian distributions. Parameters of each Gaussian distribution
are estimated by using the unsupervised version of the Maximum Likelihood
Estimation (MLE) procedure [6]. Thus, it is possible to estimate Pr(a|xt), that
is, the probability of each acoustic class a from the set A of acoustic classes, given
an acoustic frame x at time t, xt, from the GMM. Nevertheless, as we need the
probability of each phonetic unit u from the set U of phonetic units, given an
acoustic vector xt, Pr(u|xt), a set of conditional probabilities are estimated in
order to calculate the phonetic probabilities from the acoustic ones.

The use of conditional probabilities allows us to compute the phonetic-
conditional probability density p(xt|u) as follows [5]:

p(xt|u) =
∑
a∈A

p(xt|a) · Pr(a|u) (1)

for each u ∈ U , where p(xt|a) is the acoustic class-conditional probability den-
sity, computed as a Gaussian probability density function, and Pr(a|u) is the
conditional probability that acoustic class a has been manifested when phonetic
unit u has been uttered. Then, applying the Bayes formulation, we obtain the
phonetic probabilities as:

Pr(u|xt) =

∑
a∈A

p(xt|a) · Pr(a|u)∑
v∈U

( ∑
a∈A

p(xt|a) · Pr(a|v)
) (2)
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for each u ∈ U . The DTW algorithm uses these a posteriori phonetic probabilities
to align the frame sequence with the phonetic transcription.

The set of conditional probabilities Pr(a|u) for all a ∈ A is initially computed
from the coarse segmentation described in previous subsection. An iterative pro-
cess updates the conditional probabilities until no improvements on segmentation
are found.

2.3 Boundary Adjustment

A boundary adjustment is made from the segmentation previously obtained.
This adjustment takes into account the values of several acoustic parameters
to move phonetic boundaries. The parameters used at this stage are dE, the
absolute value of first time derivative of Energy, dZ, the absolute value of first
time derivative of zero crossing rate (Z), and dEdZ = dE ∗ dZ. Energy and Z
are computed every 2 ms using a 10 ms window.

Each phoneme boundary is adjusted using the gravity center formula with
respect to a function inside a window centered in it. Both the function used
and the window length depend on which phonetic units are related with the
boundary:

– A stop plosive consonant followed by any other phoneme, gravity center of
dE calculated within a 20 ms window.

– A fricative consonant followed or preceded by any other phoneme, gravity
center of dEdZ calculated within a 60 ms window.

– Silence followed or preceded by any other phoneme, gravity center of dE
calculated within a 40 ms window.

– Vowel followed by other vowel, considered as a special case.
– Any other pair of consecutive phonetic units, gravity center of dE plus dEdZ

calculated within a 40 ms window.

Boundaries between consecutive vowels are adjusted by dividing the sequence
of frames from concatenating the two vowel segments into three subsegments
with same length. Then it begins an iterative process which reduces the central
segment as follows: if the first frame of the central segment is closer to the left
segment than the central one, then that frame belongs to the left segment; by the
other hand, if the last frame of the central segment is closer to the right segment
than the central one, then that frame belongs to the right segment. When the
central segment disappears or becomes unchanged, loop ends. In this last case,
the adjusted boundary is fixed as the mean of the central segment boundaries.

3 Segmentation Evaluation

The evaluation criteria most widely used in the literature is to measure agree-
ment of the obtained segmentation with respect to a manual segmentation. Usu-
ally the percentage of boundaries whose error is within a tolerance is calculated
for a range of tolerances [1,2,7].
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As discussed in the introduction, some researchers have wondered whether
or not a manual segmentation is a valid reference [1,2]. To evaluate it, they
gave the same speech database to different human experts to segment it, and
they evaluated the difference between them. In the study presented in [1], 97%
of the boundaries within a tolerance of 20 ms were found and in [2] 93%. We
interpret this agreement as the maximum accuracy for a segmentation system,
since a system that reaches 100% compared with a manual segmentation will at
least differ around 95% with another manual segmentation for the same speech
database.

4 Experimental Results

4.1 Corpora

In order to carry out experiments for both Spanish and English, we used two
speech databases: Albayzin [8] and TIMIT [9], respectively.

The phonetic subcorpus from Albayzin database was used for the Spanish
experiments: 6,800 utterances (around six hours of speech) obtained by making
groups from a set of 700 distinct sentences uttered by 40 different speakers. 1,200
sentences manually segmented and labelled were used for testing, the remaining
5,600 sentences were used for training. No intersection speakers between training
and testing subcorpora exist.

The TIMIT database was used for the English experiments: 6,300 utterances
(approximately five hours of speech) by making groups of 10 sentences spoken by
630 speakers from 8 different dialect divisions of the United States. Two sentences
were uttered by all speakers, the other eight sentences were selected from two
phonetically rich sets. We used the suggested training/test subdivision [9].

The same acoustic parameters were used on both databases. Each acoustic
frame was formed by a 39-dimensional vector composed by the normalized en-
ergy, the first 12 Mel frequency cepstral coefficients, and their first and second
time derivatives. An acoustic frame is obtained using a 20 ms Hamming window
at two different subsampling rates: 100 Hz (one frame every 10 ms) and 200 Hz
(one frame every 5 ms) in order to study the influence of subsampling rate on
segmentation accuracy.

4.2 Coarse Segmentation

As explained in subsection 2.1, the coarse segmentation is done in several steps.
First, time marks are fixed where relevant acoustic changes are detected by
means of statistical analysis of some acoustic parameters. Following, time marks
are used to define acoustic segments which must be associated with phonemes in
the phonetic transcription of each sentence. This association is refined until no
changes are found. Then, the alignment of the frame sequence with the phonetic
transcription begins. This alignment also repeats until no boundaries changes are
detected. Table 1 shows the percentage of correctly fixed phonetic boundaries
for the coarse segmentation. A set of tolerance intervals are considered.
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Table 1. Coarse segmentation. Percentage of correct phonetic boundaries within a set

of tolerance intervals for the coarse segmentation.

Database <5 ms <10 ms <15 ms <20 ms <30 ms

Albayzin 35.7 % 59.0 % 70.0 % 76.2 % 83.3 %

TIMIT 37.5 % 61.4 % 71.8 % 77.0 % 83.8 %

4.3 Boundary Adjustment

The progressive refinement estimates a set of conditionals probabilities in an
iterative process. The conditional probabilities are combined with the acoustical
ones to obtain the a posteriori phonetic probabilities (see subsection 2.2). These
phonetic probabilities are used by a DTW algorithm to align the acoustic frame
sequence with the phonetic transcription. A phoneme segmentation is obtained
as output, then a final boundary adjustment is done in order to improve the lo-
cation of phoneme boundaries with respect to speech signal (see subsection 2.3).

Table 2 shows the percentage of correctly fixed phonetic boundaries obtained
before and after applying the boundary adjustment when 100 Hz subsampling
rate was used. Table 3 shows the same results when 200 Hz subsampling rate
was used. It can be observed a significant improvement when the boundary
adjustment is applied, specially for shorter tolerance intervals. In contrast, im-
provement when using higher subsampling rates is not as significant, even, there
is no appreciable differences when using Albayzin database.

Another aspect to point out is the difference between both databases. This
difference could reveal that our system is biased in favour of Spanish language.
However, our results working on TIMIT database are similar to the ones re-
ported in [7]. Their segmentation accuracy within a tolerance interval of 20ms
is 83.6%, our segmentation accuracy is 84.7%.

We made additional experiments using a set of manually segmented and la-
belled sentences as a starting point to the refinement process. Thus, we calculate
the a posteriori probabilities using the best conditional probabilities we can ob-
tain. Table 4 shows these segmentation results, which represent an upper bound
of our segmentation technique, confirming that our system can learn without
manually segmented and labelled sentences.

Table 2. Percentage of correct boundaries within a set of tolerances before and after

the boundary adjustment. Subsampling rate 100 Hz.

Database <5 ms <10 ms <15 ms <20 ms <30 ms

Albayzin (before) 41.0 % 67.2 % 80.4 % 87.3 % 94.0 %

Albayzin (after) 47.0 % 72.0 % 83.0 % 88.8 % 94.3 %

TIMIT (before) 35.3 % 60.5 % 74.4 % 81.6 % 90.1 %

TIMIT (after) 40.6 % 65.9 % 77.1 % 82.9 % 89.9 %
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Table 3. Percentage of correct boundaries within a set of tolerances before and after

the boundary adjustment. Subsampling rate 200 Hz.

Database <5 ms <10 ms <15 ms <20 ms <30 ms

Albayzin (before) 40.5 % 65.5 % 79.7 % 87.6 % 94.2 %

Albayzin (after) 46.2 % 71.2 % 82.8 % 88.5 % 94.2 %

TIMIT (before) 37.9 % 62.7 % 76.0 % 83.3 % 91.6 %

TIMIT (after) 42.4 % 67.9 % 79.0 % 84.7 % 91.2 %

Table 4. Percentage of correct boundaries within a set of tolerances before and after

the boundary adjustment when manually segmented and labelled sentences were used

to estimate the conditional probabilities. Subsampling rate 200 Hz.

Database <5 ms <10 ms <15 ms <20 ms <30 ms

Albayzin (before) 44.9 % 70.5 % 83.5 % 89.8 % 95.4 %

Albayzin (after) 50.2 % 74.8 % 85.6 % 90.7 % 95.5 %

TIMIT (before) 41.1 % 65.9 % 79.3 % 85.9 % 92.9 %

TIMIT (after) 46.1 % 71.2 % 81.7 % 86.8 % 92.6 %
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Fig. 1. Percentage of correct phonetic boundaries versus the number of acoustic classes

using Albayzin database and 100 Hz subsampling rate. Tolerance intervals of 10, 20

and 30 ms are presented.

In order to study the influence of the number of acoustic classes an exploratory
experiment was performed. The progressive refinement, explained in Section 2.2,
was repeated for a set of GMM with different number of mixture components.
Each GMM with a particular number of Gaussian distributions is the prod-
uct of each intermediate step in the hiearchical clustering procedure applied to
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estimate the “natural” acoustic classes. Figure 1 shows the segmentation accu-
racy obtained for different values of the number of acoustic classes. There is no
significant improvement from 200 acoustic classes.

5 Conclusions

In this work, we have presented a fully automatic system to segment speech
databases without the need for a manually segmented subset. This task is impor-
tant in order to obtain segmented databases for training phoneme-based speech
recognizers or selecting phonetic units in TTS systems.

The improvement in coarse segmentation stage has impact in the final seg-
mentation. The results obtained using the conditional probabilities estimated
from a set of manually segmented and labelled sentences represent an upper
bound of our technique. The small difference with respect to the automatic sys-
tem validates our technique, which no uses manually segmented and labelled
sentences at all. The segmentation accuracy obtained here for TIMIT database
is similar to the results presented in other works with the same database using
more complex methods for the final adjustment.
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Abstract. Eye features are one of the most important clues for many computer 
vision applications. In this paper, an efficient method to automatically extract 
eye features is presented. The extraction is highly based on the usage of the 
common knowledge about face and eye structure. With the assumption of fron-
tal face images, firstly coarse eye regions are extracted by removing skin pixels 
in the upper part of the face. Then, iris circle position and radius are detected by 
using Hough transform in a coarse-to-fine fashion. In the final step, edges cre-
ated by upper and lower eyelids are detected and polynomials are fitted to those 
edges so that their intersection points are labeled as eye corners. The algorithm 
is experimented on the Bosphorus database and the obtained results demon-
strate that it can locate eye features very accurately. The strength of the pro-
posed method stems from its reproducibility due to the utilization of simple and 
efficient image processing methods while achieving remarkable results without 
any need of training.  

Keywords: Eye features extraction, iris, eye corners and eyelids. 

1   Introduction 

Facial features have a crucial role in many computer vision applications such as face 
normalization, facial expression recognition or model-based human face coding. For 
this reason, automation of their extraction has a wide range of usage. Among those 
features, eyes have the highest importance with their higher prominence and stability 
compared to other facial features. In [1], it is proven that the eyes can improve the 
recognition performance as compared to the nose and mouth. The eyes features in-
clude iris center (or pupil center) and radius, eyelid contours and eye corners which 
are located at the intersection of the upper and lower eyelids. 

In most cases, firstly the eye region is extracted. Many different methods have 
been proposed for this task, such as extracting contrasted components by morphologi-
cal operations [4], using eye filters to detect eye candidates [5] or by projecting the 
facial edge map vertically and horizontally, where the maximum points of the projec-
tion curves are associated to the eye positions [6]. 

For iris, there are numerous approaches where the center and the radius are 
searched separately [2] or together [3]. In [2], the physiological property of the pupil 
is used to detect the center. Due to the pupil’s response to the light, it is the brightest 
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region in H channel of the HSV color space. After the detection of the center, iris 
radius is estimated so that the mean gray level of the pixels in the circle is the lowest. 
On the other hand in [3] circular Hough transform is used to detect the iris border 
where both center and radius are estimated simultaneously. In some approaches, the 
iris radius is supposed to be known [8] or limited to a set of expected values [7]. 

In order to locate eye corners, one general approach is projection functions [9]. The 
weakness of Integral Projection Function (IPF) to reflect well the variation in the 
image Variance Projection Function (VPF) is proposed [10]. Later this approach is 
diversified as General Projection Function (GPF) and Hybrid Projection Function 
(HBF) which combine IPF and VPF and Weighted Variance Projection function 
(WVPF) [11] in which pixels are assigned weights according to their Harris corner 
response. Utilization of deformable templates [7] is another common approach to 
detect eye corner positions which often requires a good initialization in order to avoid 
incorrect results. Additionally, in [2] eye-corner filter using Gabor feature space is 
proposed for eye-corner detection and in [12], two semantic features for eye corners 
are introduced which are further fused by logistic regression classifier to determine 
their accurate locations. 

Lastly, for eyelids the proposed methods can be classified under two groups: using 
deformable contour models [13], curve fitting [7, 14]. As mentioned before, for de-
formable contour models initialization is crucial. Additionally, the energy term should 
be formulated carefully to reach an accurate result. In curve fitting approach, usually 
the eyelid contours are extracted after the detection of the eye corners. In [7, 14], 
parabolic sections with parameters controlling its curvature, position and rotation is 
fitted to a set of points including the corner points and the detected edges in the eye 
region whereas in [15] edges are replaced by four control points where iris border and 
the eyelids intersect. 

In this paper, the facial region in the image is assumed to be known and the eye re-
gion is taken to be the non-skin region in the upper half of the facial image with the 
assumption of frontal face with the nose being vertical. Firstly, a coarse localization 
of the irises is performed in the estimated eye region by circle detection using Hough 
transform. The detected circles are subjected to elimination with the help of a priori 
knowledge about relative size and position of irises. Afterwards, the color images of 
the eye regions (window around the coarsely detected iris centers) are further proc-
essed to refine the iris radius and location. Finally, the cropped eye images are seg-
mented into three color regions and contrary to previous works, the eyelid contours 
are estimated first to obtain the eye corners on their intersection points. 

The rest of this paper is organized as follows: In section 2, the method for detection 
of the eye regions by extracting the non-skin part of the face is presented in detail. 
The coarse estimation of the iris centers and radiuses and afterwards the refining of 
these results are explained in section 3. Section 4 is on eye corners detection method. 
Finally, section 5 is where the conducted tests and their results are represented, fol-
lowed by the conclusions in section 6.  

2   Eye Region Extraction 

The eye region in the facial image is extracted under the assumptions that the face is 
frontal with the line connecting the eye centers close to horizontal. Hence, the upper 
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half of the face is taken to be analyzed. The non-skin region is found by removing the 
pixels with the most frequent (Cb, Cr) values present in the image, using YCbCr space. 
For this purpose, firstly the histogram is calculated for distribution analysis. Even 
though the face image is cropped into its upper half where the eyes are located, still 
the skin pixels constitute the majority. Taking the histogram into account, a threshold 
is set according to the maximum count and the image size. Afterwards, the pixels with 
higher value than this threshold is eliminated as skin pixels. Lastly, the small islands 
in the obtained binary mask are removed. In Fig. 1, an example set of images is given 
to demonstrate the process (in which the forehead is not shown to have better view of 
the eye region).  

     

Fig. 1. A (Cb, Cr) histogram and the resulting mask after thresholding. As you can see, the non-
skin region which includes eyes is clearly separated from the rest. 

Since the algorithm proposed in this paper is stepwise, the iris detection results af-
fect the rest. Hence, this part is added to the system as a supportive module to improve 
the iris extraction by removing other possible circular edges as much as possible. The 
improvement due to this addition can be seen in “Tests and Results” section. 

3   Iris Extraction 

After obtaining the eye regions, firstly edge maps are constructed by Canny edge 
detector. The drawback of this edge detection method is that it requires a good ad-
justment of the threshold. In order to overcome this issue, we propose to use the edge 
detector iteratively, by tuning the threshold parameter until a descriptive edge map is 
obtained. Afterwards, Hough transform is applied to the edge map to detect circles. 
For each detected circle, an overlapping score is calculated by the ratio of the detected 
portion of the circle to the whole circle parameter. Here, we define the “descriptive-
ness” of an edge map by the number of the edge pixels in the image and the number 
of circles that can be detected using these edges. For circle detection, minimal and 
maximal radius values are defined to speed up the process. 
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Subsequently, the detected circles (iris candidates) are grouped into two classes ac-
cording to their position: right side and left side. Then, for all possible pairs of right 
and left circles, those criteria are applied: 

• Vertical distance of the centers 
• Horizontal distance of the centers 
• Difference between radiuses 

Among the compatible pairs, the one with maximum total overlapping score is chosen 
to be the two irises. In Fig. 2, the procedure to roughly obtain the iris positions and 
dimensions is depicted with examples. 

 

Fig. 2. From left to right, top to bottom: a. Input image b. Masked image after skin region 
removal c. Detected edges d. Detected circles e. New eye region window f. Refining of the iris 
position and radius after detecting best circle to detect vertical edges 

 

Fig. 3. The positive effect of using vertical edges only can be observed when the two detected 
iris circles are compared 
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Once the approximate positions of the irises are obtained, rectangular windows 
centered at the detected iris centers are extracted and analyzed separately. Firstly, an 
averaging filter is applied with a rectangular kernel, where the noise and horizontal 
edges are suppressed and vertical edges are preserved to some point. Then, the verti-
cal edges are detected by using the Sobel operator. As also explained in [7], the upper 
and the lower parts of the iris border are mostly occluded by eyelids. This leads to 
incorrect hints for circle detection (Fig. 3). Therefore, only the vertical edges are 
detected. Then, the obtained edge map is cleaned with the help of morphological 
operations where only the connected components which are larger than a threshold, 
are preserved. Since edges detected by the Sobel operator are often broken, vertical 
dilation is applied before the removal of small islands.  

Using this edge image, similar to the previous approach, circles are again detected 
by using the Hough transform method. The circle with the maximum score provides 
us the center and the radius of the iris. 

4   Eye Corners Extraction 

For this part, the eye images are further cropped since now the accurate iris centers 
and radiuses are known. In this approach, firstly the eyelids contours are aimed to be 
detected which can be used to determine the eye corners. For this purpose, the edges 
created by the eyelids are searched for. The edge detection is done in two ways: 

• On the color segmented image 
• On the grayscale image 

The details are given in the following sections: 

4.1   Eyelid Detection on the Color Segmented Eye Images 

Firstly, the color eye image is segmented into 3 regions: dark regions like iris and eye 
lashes, skin regions and sclera (white part of the eye ball). In this segmentation, at the 
beginning the input eye image is coarsely represented using 10 bins. For this coarse 
representation, spatial information from a Histogram based windowing process is 
used [16]. Next, k-means is used to cluster the coarse image data. The cluster centroid 
locations are initialized with the mean value of the 70 manually collected colors for 
each region. 

After clustering, the resulting segmented image is convolved with horizontal and 
vertical Sobel operators to detect the corresponding edges and for each edge its angle 
is calculated. In view of the fact that eyelids are mostly closer to horizontal, only the 
edges with less than 45 degrees are taken into account. Additionally, similar to the 
processing in section 3 for iris extraction, horizontal dilation is applied to connect 
broken edges and then small sections are removed. 

4.2   Eyelid Detection on the Grayscale Eye Images 

In a similar manner to the segmented ones, in this part grayscale eye images are proc-
essed to detect the eyelids. Horizontal edges are detected again using Sobel operators. 
Since the edges are not as well-defined, small parts of the iris border are also detected 
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as horizontal. In order to solve this, the edges detected in the close neighborhood of 
the previously detected iris contour are removed. Lastly, morphological thinning 
operation is applied on the resulting edge map. 

4.3   Final Edge Map and Eye Corners Detection 

After the two detected edge maps are superimposed, the following method is applied 
to remove outliers: 

Observing that the eye corners are mostly located lower than the iris center, two 
lines are created, which are imagined to be approximately connecting the iris center 
and the corners. The slope of both lines is empirically chosen to be 1/3. Afterwards, 
only the closest edges that are below and above these lines are labeled as upper and 
lower eyelids. This method is illustrated in Fig. 4. 

  

Fig. 4. Two example edge maps before and after the method is applied  

In the final step, 2nd and 3rd degree polynomials are fitted for lower and upper 
eyelids edges respectively, in a least squares sense. The fitting is repeated once more 
with only the edges close to the first estimation, to further remove the outliers that 
still exist. The inner (near the nose bridge) and outer eye corners are determined as 
the intersection points of the two fitted polynomial. In Fig. 5, a set of sample images 
is given to illustrate each step of this section.  

  

Fig. 5. Each column from left to right: a. Edge detection using grayscale image and removal of 
the edges close to the iris contour b. Detection of edges with less than 45° using segmented 
image and removal of small sections c. Fusing the two edge maps and curve fitting after elimi-
nating edges that are not related to eyelids 
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5   Tests and Results 

The method proposed in this paper is tested on the Bosphorus Database [17] which is 
actually a database of 3D faces but also supplies 2D high resolution color images 
which are cropped for face regions. The presented eye features extraction approach is 
applied to the neutral and frontal images of 105 subjects in the database. The image 
sizes are not fixed and they change between (936-1404) × (1218-1740) pixels. The 
computational time in Pentium(R) Dual-Core CPU 2.49GHz, using MATLAB is less 
than 13 seconds for a single face. 

For the evaluation of the iris center position and its radius, it is not very easy to de-
termine the ground truth because first of all, even for a simple perfect circle it is not 
easy to find the accurate center manually. Measuring the “width” of the iris to find the 
radius is also defective since the diameter should be measured through the exact cen-
ter. Hence, manual marking or measurement of these features can yield to incorrect 
evaluations. For this reasons, the results are examined visually for iris extraction 
which are given in Table 1. 

Table 1. Success rates for iris localization 

Method Threshold Success rates 

[6] - 94.82% 
[7] - 94% 

Our method –without the eye region extraction module 5 pixels 95.23% 
Our method –with the eye region extraction module 5 pixels 100% 

 

Fig. 6. Eye corner detection rates for different thresholds – Approach #1 

On the other hand, since the eye corners are not very well defined, visual inspec-
tion is not an option. Hence, the corners are marked manually to constitute the ground 
truth. The error for the eye corners are calculated in two different manners. Firstly, the 
error is taken to be the Euclidean distance between the detected and the manually 
labeled corner. Secondly, as suggested in [11], the error is defined as this distance 
divided by the standard Euclidean distance between two inner eye corners. But since 
this “standard” distance is not revealed in [11], it is taken to be: 
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• the distance between two inner eye corners in that image 
• the mean distance between two inner eye corners of all images 

For the first error definition, the results are given in Fig. 6, where the threshold con-
sidered for accurate detection is defined from 1 to 10 pixels. This error is calculated 
after the images are scaled according to the distance between two iris centers, to be 
comparable with [12], in which this distance is fixed to 60 pixels. In Table 2, the 
results are listed. 

For the second one, both approaches are evaluated. According to these results, it is 
revealed that using a constant to scale the error can be misleading. As can be seen in 
Fig. 7, the success rates are seemed to be higher when the mean distance between two 
inner eye corners is used instead of the real distance for each image itself. The second 
approach is much more informative and hence presented here to be used in further 
comparisons. In the graph, the error threshold is scaled from 1% to 15%. 

Table 2. Success rates – Approach #1 

Method Threshold 
Success rates for 

inner corners 
Success rates for 

outer corners 
[12] 4 pixels 96.89% 94.89% 

Our method 4 pixels 96.67% 93.33% 

  

Fig. 7. Eye corner detection rates for different thresholds – Approach #2 

Table 3. Success rates – Approach #2 

Method Threshold 
Success rates for 

inner corners 
Success rates for 

outer corners 
[11] 5% 95.7% 93% 

Our method (using mean) 5% 91.43% 68.57% 
Our method (using real) 5% 81.90% 52.86% 

Our method (using mean) 10% 97.14% 96.67% 
Our method (using real) 10% 95.24$ 90.95% 
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In both ways, it is shown that the algorithm performs better for the inner eye 
corners. This is because closer to the inner eye corners, the eyelid contours are more 
prominent than the ones around the outer eye corners. 

6   Conclusion 

In this paper, an accurate method for automatic detection of eye features is presented. 
Firstly, the iris position and radius is extracted by using the edges in the non-skin 
region in the upper half of the face and then, refined by using vertical edges only in a 
smaller window. Afterwards, also with the help of the previously extracted iris, edges 
which are formed by the eyelids are detected and two curves for upper and lower 
eyelids are fitted. Finally, the intersections of these two curves are labeled as the eye 
corners. Experimental results demonstrated that high accuracy can be achieved with 
the proposed algorithm. In Fig. 8, some extraction results are illustrated. 

 

Fig. 8. Some extraction results for iris center and border, eyelid contours and eye corners 
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Abstract. The aim of this paper is to find an answer to the question: What is the
difference between dissimilarity-based classifications(DBCs) and other kernel-
based classifications(KBCs)? In DBCs [11], classifiers are defined among classes;
they are not based on the feature measurements of individual objects, but rather
on a suitable dissimilarity measure among them. In KBCs [15], on the other hand,
classifiers are designed in a high-dimensional feature space transformed from the
original input feature space through kernels, such as a Mercer kernel. Thus, the
difference that exists between the two approaches can be summarized as follows:
The distance kernel of DBCs represents the discriminative information in a rel-
ative manner, i.e. through pairwise dissimilarity relations between two objects,
while the mapping kernel of KBCs represents the discriminative information uni-
formly in a fixed way for all objects. In this paper, we report on an empirical
evaluation of some classifiers built in the two different representation spaces:
the dissimilarity space and the kernel space. Our experimental results, obtained
with well-known benchmark databases, demonstrate that when the kernel param-
eters have not been appropriately chosen, DBCs always achieve better results than
KBCs in terms of classification accuracies.

Keywords: kernel-based classifications (KBCs), dissimilarity-based classifica-
tions (DBCs), representation spaces, classification accuracies.

1 Introduction

Various kernel methods have been successfully used in the last decade to tackle com-
plicated classification problems by a nonlinear mapping from the original input space
to a kernel feature space [15]. Every learning algorithm that only makes use of inner
products between data vectors can be transformed into a kernel method by means of
replacing the inner product with an arbitrary kernel function [6]. The kernel function
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is typically viewed as providing an implicit mapping of sample points into a high-
dimensional space, with the ability to gain much of the power of that space without
paying the computational penalty1. Formally, let X denote the original pattern space
and k : X × X → R be a function mapping pairs of patterns to real numbers. If the
function k satisfies the condition of positive definiteness, there exists a vector space F
and a mapping from X to F , such that k acts as a dot product in F [15]. Such functions,
k, are commonly called kernel functions.

The most popular representatives of kernel methods are support vector machines
(SVMs) for classification problems [15]. SVMs are hyperplane classifiers in implicitly
defined Euclidean feature spaces. A large number of applications reported in the lit-
erature indicate that SVMs are able to generalize well from unseen data and are not
prone to overfitting. Other kernel methods for solving feature extraction and classi-
fication include principal component analysis [13], Fisher discriminant analysis [3],
CLAFIC (CLAss Featuring Information Compression) [1], Gaussian mixture modeling
[17], canonical correlation analysis [7], subspace discriminant analysis [4], locally lin-
ear embedding [16], and many others [15]. In the interest of brevity, the details of these
kernel methods are omitted here, but can be found in the corresponding literature.

On the other hand, Duin and his co-authors [11], [12] proposed an alternative ob-
ject representation system based on dissimilarities between objects using a generalized
kernel approach. The concept of dissimilarity-based classifications is a way of defin-
ing classifiers between the classes, which are not based on the feature measurements
of the individual patterns, but rather on a suitable dissimilarity measure between them.
Here, the dissimilarity measure can be defined for not only vectorial inputs, but also
arbitrary non-vectorial patterns, such as strings, graphs, shapes, probabilistic models,
etc. [9] Thus, this methodology can be considered a unified approach to statistical and
structural pattern recognition [5], [9]. Furthermore, the advantage of such a paradigm
is that it does not have to confront the problems associated with feature spaces, such as
the curse of dimensionality and the issue of estimating a number of parameters [8].

In general, the kernels are understood as symmetric, positive definite functions of
two variables, and, thereby, they express similarity between two objects represented in
a feature space [15]. From this perspective, it is possible to regard a kernel as defining a
similarity measure between the two variables. On the other hand, in [11], the kernels are
addressed in a more general way, i.e., as a proximity measure. The important difference
between these two types of kernels is summarized as follows: The distance dissimilar-
ity kernel represents the information in a relative manner, i.e., through pairwise dissim-
ilarity relations between the two objects; the mapping similarity kernel represents the
information uniformly in a fixed way for all of the available objects.

Although classifications based on similarity kernels (which are referred to as ker-
nel based classifications or KBCs) and classifications based on dissimilarity kernels
(dissimilarity based classifications or DBCs) have been explored separately by many
researchers, not much analysis has been done comparing the two. Therefore, the aim of
this paper is to find an answer to the question: What is the difference between KBCs

1 In the contrary of mapping objects into a high-dimensional space, a kernel function can also
be viewed as a mapping to a low-dimensional space. The details of this kind of kernel method
are omitted here, but can be found in [2].
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and DBCs? or, more specifically, How different are these systems in their classification
accuracies?

In this paper, we report an empirical comparison of KBCs and DBCs, which are built
in two different representation feature spaces, respectively: dissimilarity-based feature
spaces and kernel-based feature spaces2. Although it is hard quantitatively to evaluate
the various KBC and DBC schemes, we have attempted to do exactly this. To achieve
this goal, we have done a number of experiments with different methods to render
this comparative study more complete. In KBCs, all samples are mapped to a higher-
dimensional feature space using a kernel function; traditional classifications are then
performed in the transformed feature space. In DBCs, on the other hand, dissimilarity-
based feature spaces are directly obtained from all of the available objects; the same
classifications are then done in the transformed feature space. Our experimental results
obtained with well-known benchmark databases demonstrate that the classification per-
formances obtained with KBCs and DBCs are almost the same. However, when the
kernel parameters have not been appropriately chosen, it seems that DBCs are better
than KBCs in terms of classification accuracy.

The main contribution of this paper is to demonstrate that the discriminative infor-
mation of the dissimilarity-based feature space is less sensitive than that of the kernel-
based feature space in choosing function parameters. This realization has been gained
by executing classifications in the two feature spaces obtained with the training data sets
and by comparing their strengths in terms of classification accuracy. Although many re-
searchers have investigated the fact that SVMs are vulnerable to function parameters,
to the best of our knowledge there is currently no reported empirical comparison of
kernel-based and dissimilarity-based feature spaces.

2 Related Work

Kernel-Based Classifications (KBCs): In the implementation of kernel methods, the
data is processed using a kernel to create a kernel matrix, which in turn is processed by
a learning algorithm to produce a pattern function. This function is used to recognize
unseen examples. Here, it is interesting to note that the resulting systems are modular:
any kernel can be combined with any learning algorithm and vice versa [15].

Consider an embedding map φ : x ∈ Rd �−→ φ(x) ∈ F , where the choice of the
map, φ, aims to convert the nonlinear relations into linear ones. Given a kernel and a
training set, we can form a matrix known as a kernel matrix or Gram matrix, a matrix
containing the evaluation of the kernel function on all pairs of data points [15]. To put
it concretely, given a set of vectors T = {xi}n

i=1 , xi ∈ Rd, the kernel matrix, K , is
defined as the n × n matrix whose entries are Kij =< xi, xj >. If we are using a
kernel function, k, to evaluate the inner products in a feature space, F , with a feature
map, φ, the associated Gram matrix has entries: Kij =< φ(xi), φ(xj) >= k(xi, xj).
Here, the Gram matrix, which is defined as a kernel-based feature space, is positive
semi-definite (for details, see Proposition (3.7) of [15]).

2 In this paper, we use the term ‘feature space’ for what we have called a vector space in pattern
recognition unless otherwise mentioned.
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The overall procedure for KBCs is summarized as follows:
1. Compute a kernel matrix, K , using a given training data set, T = {xi}n

i=1, and a
kernel function, k(·, ·);

2. Compute the normalized eigenvectors of K ∈ Rn×n in F , and select a subspace
dimension, q, to generate a transformation matrix, A ∈ Rn×q;

3. For a testing object, we compute a projection of the object onto the subspace using
the transformation matrix A;

4. Achieve the classification through invoking a classifier built in the transformed
subspace obtained with A and operating on the projected vector.

In the above algorithm, the kernel functions, k(xi, xj), for example, such as Poly-
nomial, Radial basis, or Minkowski function, can be defined as follows: (xT

i xj + 1)p,

exp
(
−||xi − xj ||2)/p2

)
, or (
∑

|xi − xj |p)1/p. Here, p’s are the function parameters,
such as function degree (d), standard deviation (σ), and degree order (p ≥ 1), respec-
tively. Among these kernels, the Radial basis function is the most widely used and has
been extensively studied in this field. The parameter σ controls the flexibility of the
kernel in a way similar to that of the degree d in the Polynomial kernel.

Dissimilarity-Based Classifications (DBCs): A dissimilarity representation of a set of
samples, T = {xi}n

i=1 ∈ Rd×n, is based on pairwise comparisons and is expressed, for
example, as an n×m dissimilarity matrix DT,Y [·, ·], where Y = {yj}m

j=1 ∈ Rd×m, a
prototype set, is extracted from T , and the subscripts of D represent the set of elements
on which the dissimilarities are evaluated. Thus, each entry, DT,Y [i, j], corresponds to
the dissimilarity between the pairs of objects, 〈xi, yj〉, where xi ∈ T and yj ∈ Y .

Here, the dissimilarity matrix, DT,Y [·, ·] ∈ Rn×m, is defined as a dissimilarity-
based feature space, on which the d-dimensional object, x, given in the feature space,
is represented as an m-dimensional vector δ(x, Y ), where if x = xi, δ(xi, Y ) is the
i-th row of DT,Y [·, ·]. In this paper, the dissimilarity matrix DT,Y [·, ·] and the column
vector δ(x, Y ) are simply denoted by D(T, Y ) and δY (x) (or D(x, Y )), respectively.
Here δY (x) is an m-dimensional vector, while x is d-dimensional.

A conventional algorithm for DBCs is summarized in the following:
1. Select the representative set Y from the training set T by resorting to a selection

method, such as Random, RandomC, or KCentres algorithm, as described in [11];
2. Compute the matrix D(T, Y ), using T , by employing a measuring system, such

as the Euclidean distance, dE = ((x − y)T (x− y))1/2, for all x ∈ T and y ∈ Y ;
3. For a testing sample z, compute a dissimilarity column vector, δY (z), by using the

same measure used in Step 2;
4. Achieve the classification through invoking a classifier built in the dissimilarity

space and operating on the dissimilarity vector δY (z).
In the above two algorithms, the dimensions of the two classification spaces can be

reduced with the cardinality of the representation set and the number of the chosen
eigenvectors, respectively. However, to reduce the computational complexity of this
experiment, we first construct the dissimilarity matrix D and the kernel matrix K with
respect to all the training samples. Then, we reduce the dimensionality of the spaces by
performing a principal component analysis (PCA).
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Kernel Matrix Versus Dissimilarity Matrix: Assume a training set T of n samples, a
prototype set Y of m samples, and a nonnegative dissimilarity measure d. Then, an ob-
ject, x, is represented as a dissimilarity vector of D(x, Y ) = [d(x, y1), · · · , d(x, ym)]T .
If a similarity measure k is used instead, we will get a similarity representation defined
by similarity vectors of K(x, Y ) = [k(x, y1), · · · , k(x, ym)]T . Here, if |T | = |Y | and
k is positive semi-definite, then K is a kernel matrix [12].

If the dissimilarity d is designed first, then k is defined as follows: k(xi, yj) =
1
2

(
d2(xi, 0) + d2(0, yj) − d2(xi, yj)

)
, where 0 represents a specific element that acts

as a reference. On the other hand, if the similarity k is defined first, then d is computed as
follows: d2(xi, yj) = k(xi, xi)+k(yj , yj)−2k(xi, yj). In the interest of compactness,
the details of the derivation are omitted here, but can be found in the literature [6],[15].

Kernel methods are powerful, but often cannot handle arbitrary proximities with-
out incorporating necessary corrections, such as Euclidean corrections [12]. For ex-
ample, a symmetric dissimilarity matrix D(T, T ) ∈ Rn×n can be embedded in a
pseudo-Euclidean space by an isometric mapping [12]. The pseudo Euclidean space
E(= R(p,q) = R(p) ⊕ R(q)) is denoted with signature (p, q), where the bilinear, but
not necessarily positive definite, inner product is defined as < z, z′ >pE := zTMpqz

′,
where Mpq is diag(1p,−1q) and 1n is an n-element vector of 1’s. Also, the squared
dissimilarity distance, ‖z− z′‖2

pE , may not define a metric, as it can violate the triangle
inequality. That is, the squared norm and the squared distance can be negative in con-
trast to the Euclidean case. The details of determining the pseudo-Euclidean space to
refine the dissimilarity representation are omitted here, but can be found in the litera-
ture, including [11] and [12].

3 Experimental Results

Experimental Data: The two classifying approaches, DBCs and KBCs, have been im-
plemented and compared. This was done by performing experiments on three well-
known benchmark image databases, namely Nist38, RoadSign, and Kimia2. The data
set captioned “Nist38”, chosen from the NIST database [18], consists of two kinds of
digits, 3 and 8, for a total of 1000 binary images. The size of each image is 32 × 32
pixels, for a total dimensionality of 1024 pixels. The data set described as “RoadSign”
consists of gray-level images of circular road signs: Three hundred road signs and the
same number of outlier images [10], in which each image is 32 × 32 pixels, for a total
dimensionality of 1024 pixels. The data set named “Kimia2” consists of two groups of
images, each of 9 categories of 12 objects, obtained from the Kimia database [14]. The
size of each image is 64 × 64 pixels, for a total dimensionality of 4096 pixels.

Experimental Method: In this experiment, first, data sets are split into training sets and
test sets in the ratio of 75 : 25. Then, the training and testing procedures are repeated 30
times and the results obtained are averaged. Also, in contrast with many other papers
on dissimilarities, we start by a feature representation and not with given dissimilarities
between raw objects. That is because we want to make a comparison with kernels that
also start in the feature space.

To evaluate DBCs and KBCs, different classifiers, such as k-nearest neighbor clas-
sifiers, linear Bayes normal classifier, quadratic Bayes normal classifier, and support
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vector classifier, are employed and implemented with PRTools3, and will be denoted as
knnc, ldc, qdc, and svc, respectively, in subsequent sections.

In DBCs, the Euclidean distance between two samples is computed to measure
their dissimilarity. Also, in KBCs, three mapping functions, Polynomial, Radial ba-
sis, and Minkowski, are employed as kernel functions. However, it is well known that
selecting a proper kernel parameter with good class separability plays a significant
role in kernel-based algorithms. In this experiment, therefore, to find optimal or near-
optimal kernel parameters, in the case of the polynomial function, five function degrees,
p = {s|s = 1, 2, · · · , 5}, are tested. Then, in the case of the Minkowski function, five
lp distances, p =

{
2(s−1)|s = 1, 2, · · · , 5

}
, are examined. Finally, for the radial basis

function, five deviation values, p = {σo(1.2 − 0.2s)|s = 1, 2, · · · , 5}, are investigated.
Here σo is determined after estimating the performance of the classifiers through cross-
validation.

Experimental Results: The run-time characteristics of the DBC and KBC schemes for
the experimental databases are reported below. First, the experimental results obtained
with qdc and ldc trained in the dissimilarity space (shortly D) and the polynomial kernel
space (shortly K) were probed into. Fig. 1 shows a 3-dimensional comparison of the
error rates of qdc trained in the D and K spaces for Nist38. Here, x, y, and z axes are
those of dimensions (which are obtained with PCA), kernel parameters (the degrees of
the polynomial function), and the estimated error rates, respectively.

Fig. 1. A 3D comparison of the error rates of qdc for Nist38: (a) left and (b)right; (a) and (b) are
obtained in D and K spaces, respectively, with different degrees of the polynomial function

From the figure, it can be observed that the two error rates obtained in D and K
spaces are different, which implies that selecting an appropriate kernel parameter is es-
sential for KBCs. This characteristic can be observed again in a subsequent experiment.

In principle, the quadratic Bayesian classifier could be better than the linear Bayesian
classifier, but it requires far more training samples for estimation of the class covariance
matrices. It is also well known that for 2-class problems with equally distributed sam-
ples, the quadratic classifier is equivalent to the linear one. Fig. 2 shows a comparison
of the error rates of qdc and ldc trained in D and K spaces for Nist38.

3 PRTools is a Matlab toolbox for pattern recognition(refer to http://prtools.org/).
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Fig. 2. A comparison of the error rates of ldc and qdc for Nist38: (a) top left, (b) top right,
(c) bottom left, and (d) bottom right; (a) - (d) are obtained in D and K spaces with the four
polynomial kernel parameters (degrees) of s = 1, 2, 3, and 4, respectively

In the figure, it should be pointed out that the difference in the estimated error rates
between qdc and ldc for Nist38 increases as the value of the parameter increases. This is
clearly shown in the error rates represented with two red lines (dashed and solid) in the
four pictures of Fig. 2. This comparison shows that the classification accuracy of qdc
is marginally higher than that of ldc when the appropriate parameter is present (refer to
Fig. 2 (a) and (b)). However, the situation changes when an inappropriate parameter is
chosen (refer to Fig. 2 (d)). From this consideration, the reader should again observe that
choosing an appropriate kernel parameter plays an important role in KBCs. The same
characteristic could also be seen in the other databases, such as RoadSign and Kimia2.
The details for the results of these databases are omitted here to avoid repetition.

Second, as the main result, to investigate the difference of DBCs and KBCs further,
the experiment (of estimating error rates) was repeated in other kernel spaces, such
as Polynomial, Radial basis, and Minkowski spaces (which are shortly referred to as
Kp, Kr, and Km, respectively). Graphical comparisons of the error rates of the four
classifiers trained in the dissimilarity based and the kernel based feature spaces are
continually presented. Fig. 3 shows a comparison of the error rates of knnc, ldc, qdc,
and svc, respectively, for Nist38.

The observations obtained from the figures are the following: (1) In general, the
error rates of the classifiers trained in D space decrease constantly as the dimension
increases, while those of the classifiers trained in 3K’s spaces strongly depend on the
kernel parameters. (2) As can be observed in the pictures in the left column of Fig. 3,
when choosing an appropriate function parameter, all of the classifiers built in D and
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Fig. 3. A comparison of the error rates of knnc, ldc, qdc, and svc built in D and 3K’s spaces with
the kernel parameters of 1 and 4 for Nist38: (a) top left, (b) top right, · · ·, (g) bottom left, and (h)
bottom right; (a) - (b) are of knnc, (c) - (d) are of ldc, (e) - (f) are of qdc, and (g) - (h) are of svc

3K’s have almost the same classification accuracies. (3) Specifically, the classification
accuracy of svc is the best one obtained in Kr space. However, the classifier does not
work satisfactorily in the kernel-based feature space with a wrong parameter, i.e., s = 4.
(4) When the chosen parameters are far from optimal, the ranking of the discriminative
power of the kernel-based feature space is Km, Kp, and Kr. That is, the best discrimi-
native power is that of Km, while the worst one is that of Kr. The same characteristic
could also be observed in the other databases, such as RoadSign and Kimia2. The details
for the results of these databases are omitted here again in the interest of compactness.

Finally, it is an interesting issue to observe how robust to noise the classifiers trained
in D and 3K’s spaces are. To find reason for this phenomenon, we assume that the
sample xi is obtained by a noisy perturbation on the sample. This perturbation can be
perceived as the inclusion of some additional noise θ4, and, thus, we write: xi ← xi+θ.

4 θ(·) refers to the noise generation random variables.
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Fig. 4. A comparison of the error rates of knnc, ldc, qdc, and svc for the noisy Nist38: (a) top left,
(b) top right, (c) bottom left, and (d) bottom right; (a) - (d) are obtained in D and 3K’s spaces
with kernel parameter “4”

For example, the noisy data can be obtained as: xi ← xi ∗ (1 + ε ∗ rand); Here, the
function rand is to generate an array of random numbers whose elements are normally
distributed with mean 0 and variance 1; ε is an experimental constant. Fig. 4 shows a
comparison of the error rates of knnc, ldc, qdc, and svc trained in D and 3K’s for the
noisy Nist38. Here, ε = 0.3.

From the figure, it should be observed that the differences in the estimated error
rates of DBCs and KBCs obtained from the originally transformed feature space and
their noisy perturbation spaces are different. This is clearly shown in the error rates of
qdc represented with two red lines (dashed and solid lines of  marker) and two blue
lines (dashed and solid lines of  marker) in Fig. 2(c). From this consideration, the
reader should observe that the robustness of DBCs is higher than that of KBCs when
there is a badly chosen parameter.

4 Conclusions

In this paper, we performed an empirical comparison of kernel-based classifications
(KBCs) and dissimilarity-based classifications (DBCs). A number of classifiers de-
signed in the two feature spaces were tested on well-known benchmark databases, and
the classification accuracies obtained were compared. Our experimental results demon-
strated that the classification accuracies obtained with KBCs and DBCs were almost the
same when there was an appropriate kernel parameter. However, when the parameter
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was not chosen appropriately, it seemed that the accuracies of DBCs were better than
those of the KBCs. Especially, the results demonstrated that support vector classifiers of
KBCs were vulnerable to function parameters. Despite this success, problems remain
to be addressed. First, in this comparison we employed only three real life databases,
in which each feature component of all objects was uniformly distributed in a fixed
manner. Thus, evaluating the dissimilarity relations represented in a relative way is an
avenue for future work. Next, to improve the internal consistency of the representation
matrices, we could correct the matrices using pseudo-Euclidean embedding algorithms.
Therefore, the problem of investigating the embedding algorithms developed for KBCs
and DBCs remains to be done. Future research will address these concerns.
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Abstract. The dissimilarity representation has demonstrated advan-

tages in the solution of classification problems. Meanwhile, the repre-

sentation of objects by multi-dimensional arrays is necessary in many

research areas. However, the development of proper classification tools

that take the multi-way structure into account is incipient. This paper

introduces the use of the dissimilarity representation as a tool for classi-

fying three-way data, as dissimilarities allow the representation of multi-

dimensional objects in a natural way. As an example, the classification of

three-way seismic volcanic data is used. A comparison is made between

dissimilarity measures used in different representations of the three-way

data. 2D dissimilarity measures for three-way data can be useful.

Keywords: Object representation, classification,multi-dimensional data,

dissimilarity representation.

1 Introduction

In many research areas e.g. chemometrics, image analysis, signal analysis, objects
obtained from measurement equipments are represented by multi-dimensional
arrays instead of a vector of features. Consequently, the variables from one di-
mension of the array can be related and analyzed together with the variables of
the other dimensions. The structure in which a set of objects with this represen-
tation is organized is called multi-way data.

Multi-way data analysis [1, 2] is the extension of multivariate analysis when
the analyzed data is arranged in this multi-way structure. However, the most
common is the three-dimensional array. The analysis of such data is often used
for extracting specific information and exploring the interrelations in the data.
It has been shown that this data may not be analyzed optimally by two-way
analysis, because it does not respect the multi-way design. Nevertheless, most
of the applications and methods for multi-way analysis are for exploratory and
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regression purposes. Classification has been studied much less. This might be
caused by the lack of classification tools able to operate on multi-dimensional
spaces and taking all the information available into account.

In recent studies [3, 4, 5], the advantage of learning from dissimilarities be-
tween the objects instead of traditional features has been shown, in what is
known as the Dissimilarity Representation (DR) [3]. This representation was
mainly designed for classification. It is based on the important role that pairwise
dissimilarities between objects play. Classifiers may be built in the dissimilarity
space generated by a representation set. In this way, the geometry and the struc-
ture of a class are determined by the user defined dissimilarity measure, in which
application background information may be expressed. It is important to remark
that, any traditional classifier that operates in feature spaces can also be used
in the dissimilarity space.

In this paper, we introduce the use of the DR as a tool for classifying three-
way data in such a way that, objects are analyzed in their 2D representation.
Thus, the relations between the objects are analyzed in the dissimilarity space.
Moreover, the relationship between the dimensions can be included if the proper
dissimilarity measure is selected. The key in this process is to find the dissimi-
larity measure that takes into account the information embedded in the data.
Information about the data that is missing in the actual representation e.g. shape
and connectivity, can also be taken into account in the dissimilarity measure.

Traditionally, signals are analyzed in the time domain or by their spectrum
in terms of energy spread over its frequency components (Fourier transform) [6].
Recent studies have also shown that training the classifiers in the dissimilarity
space is a feasible and more reliable alternative for automatic classification of
seismic signals than the frequency-based one [4]. Nevertheless, these representa-
tions alone may not be optimal for seismic signal analysis, since the changes of
spectral energy in time are not considered. Due to this limitation, the use of a
time-frequency representation like spectrograms or scalograms, may be advanta-
geous. Although these types of 2D object representations are raising popularity
for the analysis of seismic signals [7], they have not intensively been exploited
as such in automatic classification systems [8].

Hence, although the proposed approach can be applied to any three-way data
in the form (objects× variables× variables), we will based the demonstration
of its feasibility on a problem of classifying three-way seismic volcanic signals.
With the purpose of comparing how it works for three-way data with different
characteristics and some suitable dissimilarity measures, two three-way seismic
volcanic data will be generated from the spectrogram and scalogram techniques.
A 2D dissimilarity measure is also proposed. Additionally, results are compared
with 1D feature representation using the time integrated spectra to show the
advantages of the proposed approach in this case.

2 Three-Way Volcanic Data

In several research areas, different multi-way array configurations can be found
e.g. several sets of variables measured on different objects. These data would be
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appropriately represented by higher order generalization of vectors and matrices.
However, the most common design would be defined as Y ∈ Rn×m×l. Each
horizontal slice (m × l) of the block represents the data of one object; each
vertical slice (n × l) holds for the data of a specific type of variable and the front
to back slices (n × m), variables of other type.

The two three-way data to be used in this paper correspond to seismic signals
from the ice-capped Nevado del Ruiz volcano in the Colombian Andes. This vol-
cano is currently studied by the Volcanological and Seismological Observatory
at Manizales. Signals from the Olleta crater station were selected for the experi-
ments. Signals were digitized at 100.16 Hz sampling frequency by using a 12 bit
analog-to-digital converter. The a-priori classification of the signals is done by vi-
sual inspection. The dataset is composed of 12032-point signals of two classes of
volcanic activities: 235 of Long-Period (LP) earthquakes, and 235 of Volcano- Tec-
tonic (VT) earthquakes.

The differences in 1D spectral content of these signals allow the discrimination
between the events [9]. That is why spectral-based classification is often used for
this type of data. However, with this representation we are not able to analyze
how the frequency content changes in time. An intuitive way to represent this
time-frequency relationship for all the signals would be in a three-way array Y as
defined above. In the seismic volcanic three-way array configuration (signals×
time × frequency), the signals are organized in the vertical axis, time in the
horizontal and frequency in the depth axis.

To obtain the 2D time-frequency representation of each signal we used two
techniques. The first one is the Short-Time Fourier Transform (STFT) by which
the spectrograms are obtained [6]. With this technique, the time localization
can be obtained by windowing the data at different times and computing the
Fourier transform on that part of the signal. Consequently, it can be known
what frequency intervals are present in a time interval of the signal, but not
with much precision. The narrower it is, the better the time resolution will be
and the poorer frequency resolution.

Another way to obtain the time-frequency representation of the signals is by the
ContinuousWaveletTransforms (CWT),withwhich the scalograms are computed.
This technique is based on the computation of continuous wavelet transforms over
the entire signal for different scales [6]. It was originally introduced as a time-scale
representation, but it can also be interpreted as a time-frequency representation as
scales and frequencies are inversely proportional. In the scalograms we have better
time resolution and poorer frequency resolution at high frequencies, and better
frequency resolution and poorer time resolution at low frequencies. Consequently,
this technique could lead to a more accurate time-frequency description of signals
with low and high frequencies, as is the case of the treated data.

3 Dissimilarity Representation from Three-Way Data: A
2D Measure

The Dissimilarity Representation (DR) [3], was proposed as a more flexible rep-
resentation of the objects than the feature representation, with the purpose of
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having more information about the structure of the objects. It is seen as a link
between the statistical and structural approaches, as both types of patterns can
be described by the (dis)similarity measure. The DR is also based on the role that
(dis)similarities play in a class composition, where objects from the same class
should be similar and objects from different classes should be different (com-
pactness property). Hence, it should be easier for the classifiers to discriminate
between them.

Using the DR, classifiers are trained in the space of the proximities between
objects, instead of the traditional feature space. Thus, in place of the feature
matrix X ∈ Rn×q, where n runs over the objects and q over the variables, the
set of objects is represented by the matrix D(X,R). This matrix contains the
dissimilarity values d(xi, rj) between each object xi of X and the objects rj of
the representation set R(r1, ..., rh). We build from this matrix a dissimilarity
space. Objects are represented in this space by the column vectors of the dissi-
milarity matrix. Each dimension corresponds to the dissimilarities with one of
the representation objects.

For a t-dimensional array Y ∈ RI1×I2×...×It , the theory of the DR is the same.
In fact, one of the advantages of the DR is that it can be generated from any
representation of the objects e.g. vectors of numbers, graphs, as long as we have a
proper dissimilarity measure. This applies also to the multi-way data. Originally,
each object is represented by a (t-1)-dimensional array of numerical values and
all the objects together conform the t-dimensional array. Hence, to obtain the
dissimilarity space, a mapping φ(·, R) : RI1×I2×...×It−1 → Rh is defined, such
that for every object y, φ(y,R) = [d(y, r1), d(y, r2), ..., d(y, rh)]. Classifiers are
then built in this space, as in any feature space.

The elements of R are called prototypes, and have preferably to be selected
by a prototype selection method [3]. These prototypes are usually the most
representative objects of each class, R ⊆ X or X itself, resulting in a square
dissimilarity D(X,X). R and X can also be chosen as different sets. As dissimi-
larities are computed to R, a dimensionality reduction is reached if a good, small
set can be found, resulting in less computationally expensive classifiers.

The issue to be addressed in this problem is how to obtain the dissimilarities
from the multi-way representation. Many ideas can arise to do this transforma-
tion. Focusing in three-way data we propose as a first approach, to take each
object matrix y of Y, and compute the dissimilarities between them by a 2D
dissimilarity measure. Some 2D measures have been proposed in [10] for face
and palm-print recognition. However, the selection of the suitable measure for
the problem at hand is a very important aspect in the DR approach. To deepen
in this task we will focus in our case of study on three-way representation of
seismic volcanic signals by spectrograms and on scalograms. Thus, each object
is represented by a matrix (2D). A comparison is made about the characteris-
tics of each data and the dissimilarity measure to be used. A 2D dissimilarity
measure is also proposed.

In many types of data e.g. spectral data, it is necessary to take into account the
shape information and connectivity between the measure points. Such is the case
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of the time-frequency three-way representation where shape changes are present
in the spectral (frequency) direction and connectivity in the time direction. When
this representation is obtained by scalograms, the CWT already retrieves these
functional characteristics from the data. The observations in the signal can be
seen as continuous single entities, instead of sets of different variables. Based on
the results obtained with the 2D assembled matrix distance (AMD) (See Eq. 1)
proposed in [10], it seems to be a good option for this case. As the information
to be included about the data can be already found in its representation by
wavelets, it might be enough to use this measure.

dAMD(ya, yb) =

⎛⎜⎝ l∑
k=1

⎛⎝ m∑
j=1

(ya,j,k − yb,j,k)2

⎞⎠p/2
⎞⎟⎠

1/p

(1)

The weight p is used to emphasize either small or large differences between the
elements, in dependence of the problem at hand. If p < 1, all the differences will
be reduced, thus the larger ones will not interfere much in the measure. On the
other hand, if p > 1, the larger differences will be more pronounced, resulting in
a heavy influence on the measure. However, when the information is not taken
into account in the representation of the data, the dissimilarity measure has to
take care of it. Thus, considering the results obtained with the Shape measure
(manhattan distance on the first Gaussian derivatives) for simple spectra [5], we
propose to make use of the derivatives into the AMD measure. In such a way, we
can take the ordering information into account as well as the shape of the spectra.
A principle of the DR approach is that instead of a single representation of a
problem, one may also consider either a complex representation, built from many
dissimilarity representations, where different aspects of the data are described in
various ways [3]. Based on this and the previously stated, we define the 2DShape
dissimilarity measure as follows:

1. Compute the matrix D1

D1
a,b =

⎛⎜⎝ l∑
k=1

⎛⎝ m∑
j=1

(yσ
a,j,k − yσ

b,j,k)2

⎞⎠p/2
⎞⎟⎠

1/p

, yσ
i,j,· =

d
dj

G(j, σ) ∗ yi,j,·

2. Compute the matrix D2

D2
a,b =

⎛⎝ m∑
j=1

(
l∑

k=1

(yσ
a,j,k − yσ

b,j,k)2
)p/2
⎞⎠1/p

, yσ
i,·,k =

d
dk

G(k, σ) ∗ yi,·,k

3. Combine both dissimilarities matrices D = 1
ω1

D1 + 1
ω2

D2

The variables yi,j,· and yi,·,k, stand for the k-th columns and the j-th rows of the
i-th matrix (object); ∀i = 1, 2, ..., n. Their expression correspond to the compu-
tation of the first Gaussian derivatives of spectra, where ∗ denotes convolution
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and σ stands for a smoothing parameter [5]. The dissimilarities in step 1 and
step 2 correspond to the first and second directions respectively, as indicated
by the notation e.g. spectra and time. In the combination step, we included a
weight for scaling. We defined ωc = var(Dc), to scale each dissimilarity matrix
by its columns (prototypes) variance. This measure can also be used in three-
way data where there are no variations in shape in one of the directions. In this
case, it is enough to use the AMD measure in step 1 or step 2, such that only
the differences in area are compared.

A good example where the proposed measure can be applied is in the time-
frequency representation obtained by spectrograms. The connectivity in the time
direction is not taken into account as the Fourier transform is computed sepa-
rately in the different parts of the windowed signal. Besides, instead of having
continuous points in time, we have time intervals.

4 Experimental Results and Discussion

To show how the proposed approach works, we selected a data of seismic volcanic
signals. We make a comparison between the results with the three-way data
obtained by the spectrograms and scalograms. This comparison is not only made
in terms of the dissimilarity measures, but in the information we get from the
three-way representation. A comparison is also made between the classification
on the dissimilarity spaces derived from 2D and the 1D spectral representation of
the data. This way, we show the advantages of using the 2D representation over
the 1D e.g. time-frequency (spectral) based classification over the spectral-based.
The Average Classification Errors (ACE) for the DR on both spectral and three-
way data from spectrograms and scalograms are shown, using different sizes of
the representation set.

For the experiments, a dataset with 235 objects per class (VT and LP) is con-
sidered. For the 1D (spectral) representation we have computed the spectrum
by using a 12032-point Fast Fourier Transform (FFT). Thus, the whole signal
is analyzed in both 1D and 2D representations. To compute the spectrograms,
trying to make a trade-off between time and frequency resolution, a 256-point
(windows size) short time Fourier transform was calculated with 50% of over-
lap. The values for these parameters were selected empirically. However, it is
important to determine the best combination for these parameters as they can
influence the results. Further research studies should be done in optimizing these
parameters and its influence in the solution of the problem. From this technique,
we get a 470 × 129 × 93 three-way data.

For the scalograms computation we used the Morlet wavelet, based on the
literature [7, 8] and an interactive Matlab tooolbox for the analysis of seis-
mic volcanic data [11]. Taking into account the inversely proportional relation
frequency-scales, we selected the scale values related to the major frequency
components in the signals. In a previous study on signals of the same volcano
and station (although they are not the same samples)[12], the authors concluded
that most of the discriminative information is contained between 7.5 Hz and 25
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Hz approximately. A narrow band around 40 Hz, associated to an always present
peak, was also selected.

However, a 10-component PCA was also made on the spectral representation
of the signals and analyzed the modeling power of all the frequencies present.
From this analysis we arrived to the same range of frequency values selected in
the reference. Nevertheless, some important peaks were also detected from 0.1
Hz to 7 Hz. Hence, range of scales=[1/(0.1:02:2,3:0.4:25,39:0.3:42)] was used to
analyze those frequencies. A 470 × 72 × 12032 three-way array was obtained.
Before computing the three representations, the raw signals were normalized to
zero-mean and unit-variance.

A Fisher Linear classifier was computed in the dissimilarity space. Experi-
ments were repeated 10 times. Training and test objects were randomly chosen
from the total data set, in a 10-fold cross-validation process. Different sizes of the
representation set [10, 20, 50, 75, 100, 125, 200, 250, 300] were randomly selected.
For the generation of the dissimilarity space, the Manhattan (MD), Euclidean
(ED) and Shape measures were computed on the spectral representation. These
measures have performed well for spectral data [4, 5]. In a 5-times 10-fold cross-
validation from a range of values [1 − 50], the best results were achieved with
σ = 15. For the two measures analyzed in Sec. 3, we used values of p = [0.5, 1, 2]
so we can investigate the effect of parameter p (small or big differences) in our
classification problem. For the spectral direction in the 2DShape measure, we
selected σ = 3 and for the time direction σ = 2.

It can be observed in Fig. 1 that, the ACE on the dissimilarity space gener-
ated from the spectral data is around 25% and 30%. The error values for the
Manhattan measure are slightly better than those of the Euclidean and Shape
measures. Nevertheless, if the standard deviation is taken into account, the val-
ues for the three measures are very similar. The results with the Shape measure
(derivative-based) are not as expected (based in previous works). Hence, these
results could suggest that there is not more information to be captured from
this representation. It is also possible that these measures are not robust enough
for this problem, which somehow contradicts the previous studies [4, 5]. Further
studies may be done to find a more proper measure for this type of data.
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Fig. 1. ACE on the 1D representation for different numbers of prototypes
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Fig. 2. ACE on the three-way data from spectrograms (2D) for different numbers of
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Fig. 3. ACE on the three-way data from scalograms (2D) for different numbers of

prototypes

However, when we analyze the error of the DR from the three-way data we
see a significant improvement in both Fig. 2 and Fig. 3. This ratifies the fact
that the time-frequency relation is more discriminative than the spectra. In the
case of the data obtained from the spectrogram, the ACE ranges from 15% to
20%. This also suggests that the proposed 2D measure is capable of capturing
the information needed. Nevertheless, if we analyze the ACE of the three-way
data obtained from the scalogram, it is slightly better. We can notice that it is
also in a range of 13% to 20%, taking into account all the values of p. However,
if we analyze only p = 1, the largest ACE value is around 15%. These results
might be supported by the advantages of the CWT for analyzing this type of
seismic volcanic signals. It is also evident that the AMD measure works well for
this data, given that the shape and continuity information is already taken into
account in the representation by wavelets. It might be possible to obtain better
results if more precise scale values are chosen.

The selection of a dissimilarity measure for a representation depends on what
we are looking for. In the case of the scalograms, the dissimilarity measure is very
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simple. However, the computation of the scalogram is really expensive in cases
like this, where there are too many important frequency components and the
signals are so large. Nevertheless, we cannot forget the advantages of using this
technique for the analysis of frequencies in exact moments in time. On the other
hand, if we analyze the computation of the spectrograms, it is less expensive
than of the scalograms. But, due to the lack of some information in it, a more
complex dissimilarity measure is required to include this information. Besides,
for the signal analysis it is less precise than the scalograms, as we can only know
what intervals of frequencies are present in an interval of time. Thus, it is up to
the specialists to decide which of them to use in dependence of their priority.

If we analyze the ACE on the DR from the spectral data and three-way data
from scalograms, we can see that from 50 or more prototypes it is approximately
stable. The explanation we give to this phenomenon, is that there is no more
discriminating information to be found in more prototypes. On the other hand, if
we analyze the ACE on the DR from the three-way data from spectrograms, we
can see that the behavior is different. While increasing the number of prototypes,
the ACE decreases. The more prototypes we add, the more information we have
to discriminate between the classes. Nevertheless, due to the so-called peaking
phenomenon, when the number of prototypes starts reaching the size of the
training set, the errors will increase.

5 Conclusions

We introduced the use of the Dissimilarity Representation as a tool for classifying
three-way data. In this approach, objects are analyzed with a 2D representation.
The relationship between the different dimensions is analyzed in the 2D dissimi-
larity measure. Besides, information about the data that is missing in the original
representation e.g. shape, can be considered in it. The good performance of clas-
sifiers on the 2D representation of the objects, compared with the traditional
1D, shows that this approach can be a good solution for the classification of
data with a three-way structure.

Two 2D dissimilarity measures were analyzed for three-way seismic volcanic
data to evidence the importance of the selection of a suitable dissimilarity mea-
sure for the problem at hand. We developed a new 2D dissimilarity measure
that allows taking into account the shape and continuity information in the di-
rections of the three-way array. This measure demonstrated to work well in cases
like the three-way seismic volcanic data generated by the spectrograms. In this
data, the shape and continuity variation is not represented itself. Consequently,
this type of measure is needed to make use of that information. Nevertheless, in
cases where there is not discriminative information in both directions, we can-
not ensure that this measure is effective. The combination of the matrices from
both directions could be influenced if one of them is not good. Further investiga-
tions should be done on this issue. In cases like the three-way data obtained by
scalograms, more simple dissimilarity measures can be used e.g. AMD. The dis-
criminative information is already embedded in the representation by wavelets.
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Although this paper was more focused on the solution for three-way data, it can
be extended to multi-way. Further studies will be done on this aspect.

Acknowledgment

We acknowledge financial support from the FET programme within the EU
FP7, under the project ”Similarity-based Pattern Analysis and Recognition -
SIMBAD” (contract 213250). We would also like to thank to the project Cálculo
cient́ıfico para catacterización e identificación en problemas dinámicos (code Her-
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Abstract. This paper concerns the analysis of patterns that are specified in terms
of non-Euclidean dissimilarity or proximity rather than ordinal values. In prior
work we have reported a means of correcting or rectifying the similarities so
that the non-Euclidean artifacts are minimized. This is achieved by representing
the data using a graph, and evolving the manifold embedding of the graph using
Ricci flow. Although the method provides encouraging results, it can prove to be
unstable. In this paper we explore how this problem can be overcome using a
graph regularisation technique. Specifically, by regularising the curvature of the
manifold on which the graph is embedded, then we can improve both the stability
and performance of the method. We demonstrate the utility of our method on
the standard “Chicken pieces” dataset and show that we can transform the non-
Euclidean distances into Euclidean space.

1 Introduction

Dissimilarity representations [1] provide a powerful and natural way of capturing the
relationships between objects that are not characterised by ordinal measurements or
feature vectors. The idea is to use a pairwise dissimilarity (or proximity) measure [2,3]
to describe the properties of objects in terms of their attribute differences. Examples
of such representations are provided by weighted proximity graphs. The advantages of
such a representation are that if characterised in terms of a dissimilarity matrix, then
pattern matching can be effected without the need for explicit alignment. However, the
dissimilarities are quite frequently non-Euclidean and this prevents the use of many
geometrically based learning techniques.

One way to overcome these problems is to represent the dissimilarity data using a
weighted graph, and to embed the graph on a manifold. This produces a vectorial rep-
resentation of the data by projecting dissimilarity data into a fixed-dimensional vector
space. Examples of this approach include multidimensional scaling (MDS) [4], Isomap
[5], locally linear embedding [6] and the Laplacian eigenmap embedding [7]. The com-
mon aim is to locate a low-dimensional representation. In order to apply non-Euclidean
dissimilarity data with traditional geometric learning techniques, we must attempt to
rectify the data so as to minimize the non-Euclidean artifacts. One route is to con-
sider the positive definite subspace of the distances [8]. An alternative route adopted
by Pekalska et al. [9] is to add a suitable constant to the squared off-diagonal elements
of the dissimilarity matrix. It is equivalent to adding a certain constant to all eigenval-
ues of the related Gram matrix, and thus compensating for the effect of the negative
eigenvalues, while maintaining the same eigenvector structure.
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In prior work [10] we have shown how to correct the dissimilarity data, giving a
set of new Euclidean distances. The method uses Ricci flow on a constant curvature
Riemannian manifold to evolve the distance measures. This is effected by updating the
curvatures on the edges of the graph representing the data. Unfortunately, the method
can prove unstable due to local fluctuations in edge curvature. To overcome this prob-
lem, in this paper we show how to stabilise the method by regularising the curvatures
of the embedded graph. To do this we use the heat kernel to smooth the curvatures on
the edges. The result shows both improved numerical stability and lower classification
error in the embedded space.

2 Embedding Non-Euclidean Data

In this paper we are concerned with embedded data represented in terms of pairwise
dissimilarities or distances, and in particular the case where the data is non-Euclidean.
Our overall aim is to rectify a given set of non-Euclidean dissimilarity data so as to make
them more Euclidean. One way to gauge the degree to which a pairwise distance matrix
contains non-Euclidean artefacts is to analyse the properties of its centralised Gram
matrix. For an N × N symmetric pairwise dissimilarity matrix D with the pairwise
distance as elements, the centered Gram matrix G = − 1

2JD
2J ,where D2 is element-

wise squaring of elements in D, J = I − 1
N 11T is the centering matrix and 1 is the

all-ones vector of length N . The degree to which the distance matrix departs from
being Euclidean can be measured by using the relative mass of negative eigenvalues or
“negative eigenfraction ” FeigS =

∑
λi<0 |λi|/

∑N
i=1 |λi| [11]. This measure is zero for

Euclidean distances and increases as the distance becomes increasingly non-Euclidean.
The kernel embedding is obtained from the centered Gram matrix using the factori-

sation G = Y Y T , where Y is the N × N matrix with the embedded co-ordinates
of the data as columns. To determine whether the Gram matrix is positive semi defi-
nite [11], we perform the eigendecomposition G = ΦΛΦT on the Gram matrix, where
Λ = diag(λ1, ..., λN ) is the diagonal matrix with the ordered eigenvalues as elements
and Φ = (φ1|...|φN ) is the eigenvector matrix with the ordered eigenvectors φ1, ...,
φN as columns. In terms of the eigenvalues and eigenvectors, the matrix of embedded
co-ordinates is given by Y = Φ

√
Λ where the eigenvalues Λ are positive. In Isomap

embedding, the dimension and the number of nearest neighbors are estimated to be the
optimal values by looking at the residue variances[5].

3 Ricci Flow

Our aim is to develop a method that can be used to rectify the non-Euclidean artefacts in
such a dissimilarity matrix. The approach is as follows. Firstly, we consider the objects
of interest to be represented by points on a manifold, and the given dissimilarities to be
the geodesic distances on the manifold between these points (geodesic distances). For
an arbitrary set of non-Euclidean similarities the manifold will be curved. By contrast, a
Euclidean space will be flat and the geodesic and Euclidean distances will be identical.
Our task is then to remove the curvature from the manifold to create a corrected set of
Euclidean distances. We achieve this by evolving the manifold using Ricci flow.
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The Ricci flow [12] evolves a manifold so that the rate of change of the metric ten-
sor is controlled by the Ricci curvature. Essentially, this is an analogue of a diffusion
process for a manifold. The geometric evolution equation is:

dgij

dt
= −2Rij (1)

where gij is the metric tensor of the manifold and Rij is the Ricci curvature.
We model the embedding manifold as consisting of a set of local patches with indi-

vidual constant Ricci curvatures. These patches can be either elliptic (of positive sec-
tional curvature) or hyperbolic (of negative sectional curvature). It is straightforward to
re-express the Ricci flow in terms of the sectional curvature K:

dK

dt
=
{
−2K2 elliptic hypersphere,
2K2 hyperbolic space.

(2)

Under this evolution, the curvature moves towards zero for both types of patch, flat-
tening the manifold. The solution of the differential equation is straightforward. Com-
mencing with the initial conditions K = K0 at time t = 0, then at time t we have

K =
K0

1 ± 2K0t
(3)

with the positive sign for the elliptic space.

4 Curvature Computation

Our aim is to evolve a non-Euclidean dissimilarity measure into a Euclidean one using
the Ricci flow described in the previous section. We commence by representing the dis-
similarity data using a weighted graph G = (V,E,D), where the node set V represents
the set of objects and the edges E are weighted with the pairwise dissimilarities. We
embed the graph onto a manifold so that the geodesic distance dg(u, v), (u, v) ∈ E
between the positions of the nodes u and v is equal to the dissimilarity on the edges.
Let yu be the embedded co-ordinates of the node u ∈ V and Y = (y1|...|y|V |) be the
matrix with the embedded co-ordinates as columns. Under this embedding the edges ac-
quire a curvature determined by the difference between geodesic distance (dissimilarity)
dG(u, v) and Euclidean distance dE(u, v) =

√
(yu − yv)T (yu − yv). The Ricci flow,

modifies the Gaussian curvatures on the edges, so as to flatten the manifold. Adopted
from [13] we use a Euclidean embedding of the points and use the difference between
the geodesic distance dG on the manifold (from the similarity or dissimilarity matrix)
and the Euclidean distance in the embedded space dE to compute the curvature. We
compare experimental results for embeddings obtained with both Isomap [5] and the
kernel embedding in Section 7. Lindman and Caelli [14] give the relationship between
the two distances on elliptic, hyperbolic and Euclidean constant curvature manifolds as

dE =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

K
1
2

sin(K
1
2

2 dG) Elliptic,

2

|K|
1
2

sinh( |K|
1
2

2 dG) Hyperbolic,

dG Euclidean.
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However, the adopted curvature approximations used only hold for small curvatures.
In the data under study here, we find that the curvatures are too large for these ap-
proximations to hold. We therefore use it as the initialization and estimate curvature
from Equation 4 using Newton’s method. Taking the curvature in an elliptic space as an
example, the Newton iteration is

K
1
2
n+1 = K

1
2
n −

K
1
2
n dE − 2 sin K

1
2

n

2 dG

dE − dG cos K
1
2

n

2 dG

(4)

Finally, we can compute new geodesic distances for the points based on the updated
curvature. We keep the Euclidean distance between the points fixed, while updating
the curvature.The updated geodesic distance under the new Gaussian curvature can be
represented in terms of the old geodesic distance at the previous iteration. The update
equation for the geodesic distance is

dGn+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

K
1
2

n+1

arcsin

(
K

1
2

n+1

K
1
2
n

sin(K
1
2

n

2 dGn)

)
elliptic hypersphere

2

|Kn+1|
1
2

arcsinh

(
|Kn+1|

1
2

|Kn|
1
2

sinh( |Kn|
1
2

2 dGn)
)

hyperbolic space

(5)

This equation can be applied to each element of the dissimilarity matrix in turn.

5 The Algorithm

Given a set X = {x1, · · · , xN} of N objects and a dissimilarity measure d, a dissimi-
larity representation is an N × N matrix DG. The following algorithm can be used to
rectify the distance matrix from being non-Euclidean to Euclidean.

Begin with a pairwise distance matrix D
(0)
G ,

1. Embed the objects in a Euclidean space using either Isomap or the kernel embed-
ding. In the embedded space compute the Euclidean distances dE .

2. From the geodesic distance dG and Euclidean distance dE , compute the constant
curvature space with curvature K for a pair of objects using Equation 4.

3. Update the Gaussian curvature with a small time step using Equation 3.
4. Obtain the new geodesic distance dGn+1 from the previously available geodesic

distance matrix together with the curvatures under a fixed Euclidean distance using
Equation 5.

5. Obtain the updated distance matrix D
(1)
G containing rectified geodesic distances

between objects, and repeat from step 1 until DG is Euclidean, that is its centered
Gram matrix has no negative eigenvalues.

6 Regularizing Curvature

As posed above, the Ricci flow embedding updates the Gaussian curvature separately
for each individual edge. This is because we use piecewise constant curvature manifolds
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for each edge. This places no constraint on the smoothness of the manifold, and this can
lead to numerical instability in the embedding. Graph regularization provides a way to
smooth data samples over a graph and overcome the numerical stability problems. One
such regularization process is a graph diffusion. A diffusion process is analogous to
the flow of heat, which flows from high to low concentrations, and over time creates a
smooth distribution of heat. In a similar way, a diffusion of a function on the graph will
create a smoother function. The diffusion is defined in terms of a random walk on the
edges of the graph[15], and is represented by the diffusion (or heat) kernel:

H = exp(−Lt) (6)

The evolution of a function under this kernel is simply

f(t) = H(t)f(0) (7)

The evolution is ‘mass-preserving’ in the sense that the sum of the values of the function
over vertices is preserved.

We can use this process for smoothing curvatures before the application of the Ricci
flow, to remove extreme values. However, our curvatures are defined pairs of objects and
we therefore need to construct a graph which has vertices corresponding to object-pairs
and edges describing a neighbourhood structure of these pairs. We construct this graph
as follows. Firstly, we build the nearest-neighbours graph of the objects G = {V,E}.
Each vertex represents an object u and an undirected edge Euv exists if u is in the n
nearest neighbours of v or v is in the n nearest neighbours of u. We then construct
the dual of this graph GD = {VD, ED}; each edge of the original graph becomes a
vertex Vuv and an edge exist between two vertices if they share a common vertex from
the original graph. In the dual graph, each vertex represents a pair of objects and the
edges reflect the neighbourhood structure of the pairs. We can then define the curvature
between object pairs as a function over the vertices of this graph and apply the diffusion
kernel.

We therefore add an additional step in which we smooth the Gaussian curvatures
over the dual of the nearest neighbor graph prior to performing the Ricci flow updating
of the curvatures. All of the remaining steps of the algorithm remain as above. The
following steps shows how to smooth Gaussian curvatures over the nearest neighbour
edges.

Commence with initial Gaussian curvatures K from step 2 above,

1. Construct the n nearest neighbour graph over the available dissimilarity data. Node
u and v are connected by an edge if u is among n nearest dissimilarity neighbors
of v or v is among n nearest dissimilarity neighbors of u.

2. Construct the dual graph of the nearest neighbour graph. Each edge in the nearest
neighbour graph is a vertex of the dual graph. If two edges in the nearest neighbour
graph share a one common vertex, then the corresponding two vertices in the dual
graph are connected by an edge.

3. Obtain the updated and regularised curvature K . Suppose that L̂ is the normalized
Laplacian of the dual nearest neighbour graph, then the heat-kernel of the dual
graph is exp[−L̂t]. If VD is the node-set of the dual graph, then we construct a
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vectorK of Gaussian curvaturesK = (K1, ....,K|VD|)T . The vector of regularised

Gaussian curvatures after heat kernel smoothing isKreg = exp[−L̂t]K .

In summary, the above approach commences from a nearest neighbor graph over the
dissimilarity matrix, and then constructs the dual graph where a node corresponds to an
edge in the original graph. The heat kernel on the dual graph smooths the curvatures on
the original nearest neighbour graph.

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

Iteration number

Ma
ss

 co
ntr

ibu
tio

n o
f n

eg
ati

ve
 ei

ge
nv

alu
es

: J
eig

S

(a) JeigS

0 50 100 150 200 250 300 350 400 450 500
110

120

130

140

150

160

170

180

190

Iteration number
Nu

mb
er

 of
 ne

ga
tiv

e e
ige

nv
alu

es

(b) number of negative eigenvalues

Fig. 1. (a) is the negative eigenfraction during iteration. (b) is the number of negative eigenvalues
during iteration.

7 Experiments

We use the well known “Chicken pieces” dataset [8] for experimentation. The data-set
concerns classifying binary images of a different types of chicken joint into shape-
classes. It contains 446 binary images falling into five shape classes, namely a) breast
(96 examples), b) back (76 examples), c) thigh and back (61 examples), d) wing (117
examples) and e) drumstick (96 examples). The data exists in the form of a set of non-
Euclidean shape dissimilarity matrices, generated using different settings for the param-
eters in which, L is the length of straight line segments of chicken contours and C is the
insertion and deletion costs for computing edit distances between boundary segments.
Our experimental results are for the dissimilarity data with C = 45 and L = 5, 10, 15,
20, 25 and 30.

The negative eigenfraction for the Chicken Pieces data with L = 5.0, C = 45 is
shown in Figure 1 as the manifold evolves with iteration number. As the curvatures are
updated both the negative eigenfraction and the negative eigenvalues decrease, indicat-
ing that the dissimilarity measure becomes increasingly Euclidean. Figure 2 shows the
curvatures as a function of distances obtained using the kernel embedding and Isomap
embedding. It demonstrates how the Ricci flow process affects distances commenc-
ing from the two embedding methods with and without regularization. It indicates that
the embedding method affects the magnitude of curvatures. The figure also shows
that the Kernel embedding preserves the global distances. Here, the larger the distances,
the smaller the curvatures. On the other hand, the Isomap embedding preserves some
of the local distances. This maybe the due to the fact that the chicken pieces data does
not reside on simple manifold such as Swiss roll. The embedding method determines
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(d) Isomap embedding
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(e) Kernel embedding curvature
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(f) Isomap embedding
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Fig. 2. (a) and (b) are initial edge curvatures for the kernel and Isomap embeddings. (c) and (d)
are edge curvatures after Ricci Flow for the kernel and Isomap embeddings.(e) and (f) are initial
regularised edge curvatures for the kernel and Isomap embeddings. (g) and (h) are edge curvatures
after Ricci Flow for the kernel and Isomap embeddings.

the magnitude of curvatures. From our Ricci flow curvature updating process, the larger
the magnitude of the original curvatures, the larger the curvature reduction in the up-
date process. As a result in the case of the kernel embedding, those locations associated
with large curvature expand more rapidly than those associated with small curvatures.
In other words, the initial smaller distances expand more rapidly than larger distances.
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This effect can be observed from Figure 2(a) and Figure 2(c). As a result. it disrupts the
local pattern of distances without influencing the larger ones.

During the regularization step, the curvatures are smoothed over nearest neighbour
edges. The result is to reduce local curvature fluctuations, and this may reduce some
locally large curvature values. Figure 2(e) shows that when regularisation is used, the
curvatures are smoothed over local distance scales compared to the initial curvatures in
Figure 2(a). Hence the local distance structure is preserved under the embedding, and
this is demonstrated in Figure 2(g). As a result the regularization step preserves local
distances and stabilizes the local structure.
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Fig. 3. (a) is the 1NN error rate with and without the regularization step using the kernel em-
bedding during iteration. (b)is the negative eigenfraction with and without the regularization step
using the kernel embedding during iteration. (c) is the 1NN error rate with and without the regu-
larization step using the Isomap embedding during iteration. (d)is the negative eigenfraction with
and without the regularization step using the Isomap embedding during iteration.

Next, we turn our attention to the effect of regularisation and the choice of embed-
ding on the results of classification. The classification results were obtained with the
1-NN classifier and 10-fold cross validation. In Figure 3 we compare the 1-NN error
rates and the negative eigenfaction obtained with regularised and unregularised versions
of Ricci flow on the two embedding schemes. The first point to note is that for both the
kernel embedding and Isomap, we obtain better classification results when heat kernel
regularisation is used. However, in each case the application of the Ricci flow scheme
causes the classification error to increase with iteration number. However, in the case
of the regularised kernel embedding, the effect is smallest. Finally, the choice of em-
bedding scheme strongly affects the rate of decrease of the negative eigenfraction, with
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Isomap giving a faster rate of decrease with iteration number than the kernel embed-
ding. However, for both embedding schemes the use of regularisation has little effect
on the rate of decrease.

Finally, we have compared our results with the known manifold embedding tech-
nique Isomap and those obtained using some alternative non-Euclidean distance rec-
tification procedures. The methods explored were a) using the original distances, b)
projecting onto the positive subspace and taking the distance here, unregularised Ricci
flow on c) the kernel embedding and d) the Isomap embedding, regularised Ricci flow
on e) the kernel embedding and f) the Isomap embedding. Figure 4 shows the 1-NN
error rate as function of the shape parameter L (the segment length). The best results
are obtained with Ricci flow on the regularised kernel embedding. All of the remaining
methods give poorer results than applying the classifier to the original distance data.

8 Conclusion

In this paper we have explored how to evolve a non-Euclidean dissimilarity measure
into a Euclidean one using Ricci flow. We commence by representing the dissimi-
larity data using a weighted graph, where the nodes represent objects and the edge
weights dissimilarities between objects. We embed the graph onto a manifold so that
the geodesic distance between nodes is equal to the dissimilarity on the edges. Un-
der the embedding the edges acquire a curvature determined by the difference between
geodesic distance (dissimilarity) and Euclidean distance. The Ricci flow, modifies the
Gaussian curvatures on the edges, so as to flatten the manifold. We explore in depth
the effect of stabilising this process by using heat-kernel regularisation to smooth the
Gaussian curvatures prior to evolving the manifold.

We apply our method to the Chicken Pieces data. When applied without regularisa-
tion, although the distance measures can be transformed into a Euclidean space there
is some loss of discriminating power and the classifier performance degrades. The loss
of information is attributable to the effect of the Ricci evolution process which acts in-
dependently on each edge and ignores the local structure of the manifold. When heat
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kernel regularization is used the ranking of distance measures is preserved, and bet-
ter performance is achieved. Although the method degraded the error obtained with a
1NN classifier, it does deliver data in a form where geometric classification methods
can be applied to the data. The Ricci flow evolution minimise the curvatures, when the
curvatures reach zero, then the geodesic and the Euclidean distances are equal and the
negative eigenfraction is zero.

As the embedding methods affects the magnitude of curvatures a lot, one way to
develop our work is to reduce the reliance on the embedding methods by using spherical
embedding and tangent space projection. Another direction is to develop incremental
learning, in which new points can be mapped on the manifold, as our current method is
performed in a batch mode, i.e., all training points are processed simultaneously.
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Abstract. Most problems in pattern recognition can be posed in terms

of using the dissimilarities between the set of objects of interest. A

vector-space representation of the objects can be obtained by embedding

them as points in Euclidean space. However many dissimilarities are non-

Euclidean and cannot be represented accurately in Euclidean space. This

can lead to a loss of information and poor performance. In this paper,

we approach this problem by embedding the points in a non-Euclidean

curved space, the hypersphere. This is a metric but non-Euclidean space

which allows us to define a geometry and therefore construct geometric

classifiers. We develop a optimisation-based procedure for embedding ob-

jects on hyperspherical manifolds from a given set of dissimilarities. We

use the Lie group representation of the hypersphere and its associated

Lie algebra to define the exponential map between the manifold and its

local tangent space. We can then solve the optimisation problem locally

in Euclidean space. This process is efficient enough to allow us to embed

large datasets. We also define the nearest mean classifier on the manifold

and give results for the embedding accuracy, the nearest mean classifier

and the nearest-neighbor classifier on a variety of indefinite datasets.

1 Introduction

Many pattern recognition problems can be posed in terms of measuring the dis-
similarities between a set of objects. This is a very general approach, as it is a
superset of the classic feature-based approach. Nearly all approaches to recogni-
tion involve measuring a dissimilarity or distance and classifying on this basis.
One approach to this problem is to embed objects into a vector-space using tech-
niques such as multidimensional scaling or IsoMap[1]. Once embedded in such
a space then the objects can be characterised by their embedding co-ordinate
vectors, and analysed in a conventional manner using Euclidean distance.

There are however some limits to this paradigm; Euclidean distances are al-
ways definite and are intrinsically unable to represent dissimilarities which are
indefinite. We discuss the issue of indefinite dissimilarities in more detail in the
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next section. In practice, many dissimilarity measures are indefinite; examples
include shape-similarities, and distance measures used in gesture interpretation
and graph comparison, but there are many more. Any method of comparison
which relies on local alignment or variable local control parameters has the po-
tential to produce indefinite (non-Euclidean) dissimilarities.

One alternative is to ‘correct’ the data to remove the indefinite part. How-
ever, previous work[2] has shown that there is potentially useful information
in the non-Euclidean part of the dissimilarities, and removing this can result
in worse performance. Another alternative is to embed the data in a pseudo-
Euclidean space, i.e. one where certain dimensions are characterised by negative
eigenvalues and the squared-distance between objects has positive and negative
components which sum together to give the total distance. A pseudo-Euclidean
space is however non-metric, which makes it difficult to correctly compute the
geometric quantities required by many classifiers. This is because locality is not
preserved in this space; two points which are far apart can both be close to a
third point.

A third alternative, which we explore here, is to use a non-Euclidean, but
metric, embedding space. A Riemannian manifold is curved, and the geodesic
distances are metric. However they can also be indefinite and so can represent
indefinite dissimilarities. In this paper, we explore the embedding of objects onto
the hypersphere with its associated spherical geometry. Non-Euclidean embed-
dings have been reported elsewhere in the literature. For example, Lindman and
Caelli have studied both spherical and hyperbolic embeddings in the context
of interpreting psychological data[3]. Cox and Cox[4] describe multidimensional
scaling constrained to a spherical space and optimise the stress to find a good em-
bedding. Shavitt and Tankel have used the hyperbolic embedding as a model of
internet connectivity[5]. Hubert et al have investigated the use of unidimensional
embeddings on circles[6]. Robles-Kelly and Hancock[7] preprocess the available
similarity data so that it conforms either to elliptic or hyperbolic geometry. In
practice the former corresponds to a scaling of the distance using a sine function,
and the latter scaling the data using a hyperbolic sine function.

In this paper, we propose a optimisation-based procedure for embedding ob-
jects on hyperspherical manifolds. The purpose of this embedding is to faithfully
represent the dissimilarities between objects in a metric space. A metric space
is important because is allows us to compute statistics and define geometric
constructs such as boundaries, in contrast to a non-metric space where non-
locality is a problem. We also define the nearest mean classifier on the manifold
and give results for the embedding accuracy, the nearest mean classifier and the
nearest-neighbor classifier on a variety of indefinite datasets. The optimisation
approach we use employs the Lie group representation of the hypersphere and its
associated Lie algebra to define the exponential map between the manifold and
its local tangent space. We can then solve the optimisation problem locally in
Euclidean space. This process is efficient enough to allow us to embed datasets
of several thousand objects.
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2 Indefinite Spaces

We begin with the assumption that we have a set of objects of interest and have
measured a set of dissimilarities or distances between all pairs of objects in our
problem. This is denoted by the matrix D, where Dij is the distance between
objects i and j. We can define an equivalent set of similarities by using the matrix
of squared distances D′, where D′

ij = D2
ij . This is achieved by identifying the

similarities as − 1
2D

′ and centering the resulting matrix:

S = −1
2
(I − 1

n
J)D′(I − 1

n
J) (1)

Here J is the matrix of all-ones, and n is the number of objects. In Euclidean
space, this procedure gives exactly the inner-product or kernel matrix for the
points.

If S is positive semi-definite, then the original distances are Euclidean and we
can use the kernel embedding to locate positions xi for the points in Euclidean
space as follows

S = USΛSUT
S = XXT (2)

X = USΛ
1
2
S (3)

where US and ΛS are the eigenvector and eigenvalue matrices of S, respectively.
The position-vector xi of the ith point corresponds to the ith row of X.

If S is indefinite, which is often the case, then the objects cannot exist in
Euclidean space with the given distances. This does not necessarily mean the
the distances are non-metric; metricity is a separate issue. One measure of the
deviation from definiteness which has proved useful is the negative eigenfraction
(NEF) which measures the fractional weight of eigenvalues which are negative[8]:

NEF =

∑
λi<0 |λi|∑

i |λi|
(4)

If NEF=0, then the data is definite and can be represented by points in Euclidean
space. We can measure the non-metricity of the data by counting the number
of violations of metric properties. It is very rare to have an initial distance
measure which gives negative distance, so we will assume than the distances are
all positive. The two measures of interest are then the fraction of triples which
violate the triangle inequality (TV) and the degree of asymmetry of the distances
(γ)[2]:

γ =
∑
i�=j

|d̃(i, j) − d̃(j, i)|
|d̃(i, j) + d̃(j, i)|

(5)

where d̃(., .) is the dissimilarity scaled so that the average dissimilarity is one.
If the data is metric (or, in practice, close to metric) but indefinite then we

must use a curved space to embed the points.
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3 Spherical Space

A spherical space is an example of a Riemannian manifold. On the manifold,
distances are measured by geodesics (the shortest curve between points), and
geodesic distances are metric. Spherical space is curved however, and so the
distances are fundamentally non-Euclidean and in general the similarity matrix
of points in spherical space will be indefinite. This makes it a potential choice
for representing non-Euclidean datasets.

A manifold embedding is important because it allows the use of geometric
and statistical tools on the embedded points. On a Riemannian manifold, dis-
tances are defined between any pair of points in the manifold in a consistent
way (not just between the sample data-points). Geodesic distance is defined as
the length of the shortest curve which joins two points (the curve is known as
a geodesic), and is a metric. Geodesics are the equivalent of straight lines in
Euclidean space, and allow us to construct a geometry in curved space. We can
also compute statistics such as the mean in a way consistent with the normal
Euclidean definition. This means that all the standard classifiers can be ap-
plied (at least in theory) to the data, but the exact formulation will differ from
vector-space classifiers.

The spherical manifold in 2D is isomorphic to the 2D surface of a sphere
embedding in 3D space, which has a well-known parametric form. Here r is the
radius of the sphere, u is the azimuth angle and v is the zenith angle.

x = (r sinu sin v, r cosu sin v, r cos v)T (6)

This geometry generalises to an n− 1 dimensional hypersphere embedded in an
n-dimensional Euclidean space. The surface can be defined implicitly using the
constraint ∑

i

x2
i = r2 (7)

where r is the radius of the hypersphere. This surface is curved and has a constant
sectional curvature of K = 1/r2 everywhere.

The geodesic distance between two points in curved space is the length of the
shortest curve lying in the space and joining the two points. On the hypersphere,
the geodesic is a great circle. The distance is the length of the arc of the great
circle which joins the two points. If the angle subtended by two points at the
centre of the hypersphere is θij , then the distance between them is

dij = rθij (8)

With the coordinate origin at the centre of the hypersphere, we can represent a
point by a position vector xi of length r. Since the inner product is 〈xi,xj〉 =
r2 cos θij we can also write

dij = r cos−1 〈xi,xj〉
r2

(9)
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4 The Exponential Map

Our procedure for embedding points on a sphere requires one important tool of
Riemannian geometry, which is the exponential map. The exponential map is a
map from points on the manifold to points on a tangent space of the manifold. As
the tangent space is flat (i.e. Euclidean), we can calculate quantities in a straight-
forward way. The map has an origin, which defines the point at which we
construct the tangent space of the manifold. The formal definition of the Expo-
nential map is the map which connects the Lie algebra on the tangent space to
the Lie group which defines the manifold. We will not concern ourselves with the
technical details here, but the map has an important property which simplifies
geometric computations; the geodesic distance between the origin of the map and
a point on the manifold is the same as the Euclidean distance between the images
of the two points on the tangent space. Formally, the definition of these properties
as follows: Let TM be the tangent space at some point M on the manifold, P be a
point on the manifold and X a point on the tangent space. We have

X = LogMP (10)
P = ExpMX (11)

dg(P,M) = de(X,M) (12)

The Log and Exp notation defines a log-map from the manifold to the tangent
space and an exp-map from the tangent space to the manifold. This is a formal
notation and does not imply the normal log and exp functions - although they
do co-incide for some types of data, they are not the same for the spherical
space. M is the origin of the map and is mapped onto the origin of the tangent
space. The distance dg(., .) is the geodesic distance on the manifold and de(., .)
the Euclidean distance on the tangent space.

For the spherical manifold, the exponential map is as follows. We define a
point P on our manifold as a position vector p with length r (the origin is at the
centre of the hypersphere). Similarly, the point M is represented by the vector
m, and M is the origin of the map. The maps are then

x =
θ

sin θ
(p − m cos θ) (13)

p = m cos θ +
sin θ

θ
x (14)

dg(P,M) = de(X,M) = |x| = rθ (15)

where θ = cos−1 〈p,m〉 /r2. The vector x is the image of P in the tangent space,
and the image of M is at the origin of the tangent space.

5 Spherical Embedding

Given a dissimilarity matrix D, we want to find the embedding of a set of points
on the surface of a hypersphere of radius r, such that the geodesic distances are
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as similar as possible to D. Unfortunately, this appears to be a hard problem
and therefore we use an approximate optimisation-based approach. We simplify
the problem by considering just the distances to a single point at a time. Let the
point of interest be pi; we then want to find a new position for this point on the
hypersphere such that the geodesic distance to point j is d∗ij where ∗ denotes
that this is the target distance. We formulate the estimation of position as a
least-squares problem which minimises

E =
∑
j �=i

(d2
ij − d∗2ij )2 (16)

where dij is the actual distance between the points. This is a similar formulation
to Cox and Cox[4] and other approaches to non-Euclidean multidimensional
scaling, who seek to minimise the ‘stress’. Direct optimisation on the sphere is
complicated by the need to restrict points to the manifold. However, as we are
considering a single point at a time, we can construct a linear embedding using
the log-map and optimise in the Euclidean space. This is a different approach
to that of Cox and Cox[4]. If the current point-positions on the hypersphere are
pj , ∀j, we can use the log-map to obtain point-positions for each object in the
tangent space of xj∀j as follows:

xj = Logpi
pj =

θij

sin θij
(pj − pi cos θij) (17)

with xi = 0.
We have found standard optimisation schemes to be infeasible on larger

datasets, so here we propose a gradient descent scheme with optimal step-size.
In this iterative scheme, we update the position of the point xi in the tangent
space to obtain a better fit to the given distances. At iteration k, the point is at
position x(k)

i . Initially, the point is at the origin, so x(0)
i = 0. Since the points

lie in tangent space, which is Euclidean, we then have d2
ij = (xj − xi)T (xj − xi)

and gradient of the error is

∇E = 4
∑
j �=i

(d2
ij − d∗2ij )(xi − xj) (18)

and our iterative update procedure is

x(k+1)
i = x(k)

i + η∇E (19)

Finally, we can determine the optimal step size as follows: let Δj = d2
ij − d∗2ij and

αj = ∇ET (xi − xj), then the optimal step size is the smallest root of the cubic

n|∇E|2η3 + 3|∇E|2(
∑

j

αj)η2 + (2
∑

j

α2
j + |∇E|2

∑
j

Δj)η +
∑

j

αjΔj (20)

This step-size is optimal in the sense that it minimises the error in the direction
of the gradient.
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After finding a new point position xi, we apply the exp-map to locate the new
point position on the spherical manifold

p′
i = pi cos θ +

sin θ

θ
xi (21)

5.1 Classifiers in the Manifold

As well as embedding distances on the spherical manifold, it is important to be
able to perform operations such as classification in the manifold. Some classi-
fiers are trivially implemented on a spherical manifold, for example the nearest-
neighbors(NN). Others which utilise geometry must be modified to incorporate
the non-Euclidean geometry of curved space. Here we discuss the nearest mean
classifier(NMC) in a non-flat manifold.

The intrinsic mean of a set of points on the manifold may be computed via
the generalised mean[9]

P̄ = arg min
P

∑
i

dg(P, Pi) (22)

We can solve for the mean of a set of points in a manifold using the following
iterative procedure involving the exponential map[9]:

m(k+1) = Expm(i)
1
n

∑
i

Logm(i)pi (23)

While the convergence of this process is not guaranteed in a general manifold,
it is well behaved on the hypersphere[9]. As a result, we can compute the means
of each class m1, . . .mC and implement the NMC:

c∗ = argmin
c

[
r cos−1 〈x,mc〉

r2

]
(24)

6 Experimental Results

We have applied our embedding method to a number of indefinite datasets.
These are summarised in the table below, along with their degree of indefi-
niteness, as measured by the negative eigenfraction (Eqn. 4). These datasets
are produced by dissimilarity measures applied to a variety of real world prob-
lems. The Coil datasets are produced by graph-matching algorithms applied
to corner-graphs of some of the objects in the COIL database[10], using grad-
uated assignment[11](CoilYork) and the JoEig approach[12](CoilDelftDiff and
CoilDelftSame). The CatCortex data gives the similarity between different cor-
tical regions in terms of connectivity[13]. The DelftGestures dataset consists of
the dissimilarities computed from a set of gestures in a sign-language using a
dynamic time warping procedure[14]. The FlowCyto series of datasets is based
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Table 1. Properties of datasets used

Dataset Size NEF Triangle violations Asymmetry

CoilYork 288 0.258 1/23639616 0.009

DelftGestures 1500 0.308 14798/3368253000 0

FlowCyto-1 612 0.275 272052/228098520 0

FlowCyto-2 612 0.268 161517/228098520 0

FlowCyto-3 612 0.275 272879/228098520 0

FlowCyto-4 612 0.272 268991/228098520 0

Newsgroups 600 0.202 4643/214921200 0

Chickenpieces-5 446 0.216 0/88120680 0.044

Chickenpieces-10 446 0.257 1/88120680 0.046

Chickenpieces-15 446 0.286 74/88120680 0.051

Chickenpieces-20 446 0.307 695/88120680 0.057

Chickenpieces-25 446 0.320 1375/88120680 0.063

Chickenpieces-30 446 0.331 3188/88120680 0.067

Chickenpieces-35 446 0.339 4834/88120680 0.073

Chickenpieces-40 446 0.345 7549/88120680 0.076

CatCortex 65 0.272 286/262080 0

CoilDelftDiff 288 0.128 1/23639616 0

CoilDelftSame 288 0.027 0/23639616 0

WoodyPlants50 791 0.229 115253/493038210 0

ProDom 2604 0.043 136/17636907624 0

Zongker 2000 0.419 6583656/7988004000 0.051

on the L1-norm dissimilarities between flowcytometer histograms of breast can-
cer tissues. The data were acquired by M. Nap and N. van Rodijnen of the
Atrium Medical Center in Heerlen, The Netherlands, during 2000-2004. News-
groups is a small subset of the 20Newsgroups data of Roweis. The ProDom
dataset is a set of dissimilarities derived from the structural matching of pro-
tein domain sequences[15]. WoodyPlants50 is a dataset of shape dissimilarities
between plant leaves[16]. The Zongker dissimilarities are based on deformable
template matching between 2000 handwritten digits in 10 classes[17]. Finally,
the Chickenpiece dataset is another set of shape dissimilarities derived from
string-edit distance on the contours of chicken piece silhouettes[2]. This data has
a number of controllable parameters which influence the indefinite nature of the
dissimilarities. Here we use and edit cost of 45 and a variety of contour lengths
(5,10,15,20,25,30,35,40).

We characterise the accuracy of our embeddings in two different ways. Firstly
we measure the RMS fractional error of the embedded distances:

RMS Error =

⎛⎝ 1
n

∑
ij

Dij −D∗
ij

D̄

⎞⎠ (25)

where D̄ is the average dissimilarity between objects in the original data. Sec-
ondly, we measure the 1NN classifier error, both before and after embedding.
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Table 2. Embedding results for the datasets (in order of increasing error)

Dataset Size 1NN (orig) Error Radius 1NN (emb) NMC

Newsgroups 600 0.269 ± 0.015 0.022 0.6298 0.279 ± 0.012 0.208 ± 0.015
CoilDelftDiff 288 0.487 ± 0.033 0.030 0.0277 0.479 ± 0.022 0.467 ± 0.034
Chickenpieces-5 446 0.350 ± 0.022 0.030 66.9 0.417 ± 0.022 0.407 ± 0.02
WoodyPlants50 791 0.101 ± 0.008 0.034 0.4362 0.147 ± 0.015 0.197 ± 0.016
Chickenpieces-10 446 0.170 ± 0.016 0.039 33.4 0.249 ± 0.018 0.338 ± 0.022
DelftGestures 1500 0.042 ± 0.0048 0.039 3.9826 0.135 ± 0.009 0.104 ± 0.004
Chickenpieces-15 446 0.079 ± 0.011 0.049 20.73 0.116 ± 0.018 0.249 ± 0.028
Chickenpieces-20 446 0.069 ± 0.012 0.052 17 0.109 ± 0.011 0.202 ± 0.022
Chickenpieces-25 446 0.048 ± 0.01 0.057 13.1 0.086 ± 0.013 0.21 ± 0.025
FlowCyto-2 612 0.366 ± 0.019 0.059 12132 0.378 ± 0.017 0.389 ± 0.028
Chickenpieces-30 446 0.048 ± 0.009 0.062 11.01 0.091 ± 0.013 0.197 ± 0.015
CoilYork 288 0.278 ± 0.025 0.063 177.8 0.307 ± 0.024 0.471 ± 0.029
FlowCyto-3 612 0.413 ± 0.013 0.072 13078 0.421 ± 0.021 0.4 ± 0.015
Chickenpieces-35 446 0.065 ± 0.011 0.073 10.12 0.069 ± 0.007 0.178 ± 0.023
Chickenpieces-40 446 0.087 ± 0.014 0.078 8.14 0.099 ± 0.012 0.2 ± 0.015
FlowCyto-1 612 0.369 ± 0.013 0.078 12794 0.425 ± 0.008 0.385 ± 0.02
CatCortex 65 0.095 ± 0.034 0.084 2.33 0.111 ± 0.04 0.047 ± 0.025
FlowCyto-4 612 0.425 ± 0.023 0.090 11761 0.413 ± 0.018 0.436 ± 0.026
ProDom 2604 0.002 ± 0.001 0.122 471.1 0.038 ± 0.003 0.21 ± 0.011
CoilDelftSame 288 0.636 ± 0.031 0.134 0.0577 0.674 ± 0.040 0.433 ± 0.038
Zongker 2000 0.372 ± 0.016 0.233 0.2887 0.043 ± 0.005 0.109 ± 0.009

This demonstrates whether the embedding preserves the local structure of the
classes adequately. In the final column we show the performance of the NMC
classifier on the hypersphere.

The results show that we obtain an accuracy spherical embedding for nearly
all the data. Of the 21 datasets, only three have more than 10% RMS error
on the embedding. This demonstrates the effectiveness of our embedding tech-
nique at locating optimal embeddings. For ten of the datasets, we see virtually
identical 1NN performance both before and after embedding, and for one a large
improvement(Zongker). We do not know the cause of this unexpected behaviour,
but it seems to be a feature of this particular dataset. For the other ten sets,
we see deterioration in the 1NN classification, indicating that the local structure
has been changed somewhat. This is particularly evident in the Chickenpieces
data, for which six of the eight examples give worse 1NN scores. It seems that
this data series is unsuitable for spherical embedding.

The NMC classifier shows a far wider range of permformance. The Chick-
enpieces data series, CoilYork, WoodyPlants50 and ProDom show a substan-
tially worse performance with the NMC than with the original 1NN classifier,
whereas Newsgroups, CatCortex, CoilDelftSame and Zongker show a substantial
improvement.
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7 Conclusions

In this paper we used spherical embedding as a solution to the problem of in-
definite, non-Euclidean dissimilarities. This embedding preserves some of the
non-Euclidean nature of the dissimilarities which may be important in other
tasks such as classification. We developed an optimisation-based procedure for
embedding objects on hyperspherical manifolds which uses the Lie group repre-
sentation of the hypersphere and its associated Lie algebra to define the expo-
nential map between the manifold and its local tangent space. The optimisation
is then solved locally in Euclidean space. This process is efficient enough to allow
us to embed datasets of several thousand objects. We also defined the nearest
mean classifier on the manifold.

Experiments on a variety of non-Euclidean datasets show that we can ob-
tain accurate embeddings representing the dissimilarities on the hypersphere.
The classification results show that the embedding of some datasets is very use-
ful (for example the Newsgroups data), and for others not effective (the Chick-
enpieces data).
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Abstract. This paper deals with the extremely complicated problem

of language detection and tracking in real-life electronic (for example, in

Word-of-Mouth (WoM)) applications, where various segments of the text

are written in different languages. The difficulties in solving the problem

are many-fold. First of all, the analyst has no knowledge of when one

language stops and when the next starts. Further, the features which

one uses for any one language (for example, the n-grams) will not be

valid to recognize another. Finally, and most importantly, in most real-
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using traditional estimation methods almost meaningless. Earlier, the
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sub-optimal. In this vein, we propose to solve the current problem using

novel estimators that are pertinent for non-stationary environments. The

classification results which involve as many as 8 languages demonstrates

that our proposed methodology is both powerful and efficient.
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1 Introduction

In this paper, we consider the fascinating problem of language detection and
tracking in real-life electronic (for example, in Word-of-Mouth (WoM)) applica-
tions. Unlike more traditional Pattern Recognition (PR) problems, in this case
we encounter the scenario where the various segments of the text are written in
different languages, and are both short and “chatty”. We know that every PR
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problem essentially involves two issues, namely the training and the classifica-
tion of the patterns. In the training phase, the class-conditional distribution of
the features is estimated, based on the given training samples. Generally speak-
ing, traditional PR systems assume that the class-conditional distributions are
stationary, and thus that they do not change with time. However, in the case of
the problem we study, as we shall see, the training data possesses non-stationary
class-conditional distributions. All of these issues render the problem being stud-
ied both difficult and non-trivial.

The traditional strategy to deal with non-stationary environments has been
one of using a sliding window [6]. The problem with this is that if the size of the
window is too small, the corresponding estimates tend to be poor. If one chooses
a too-large window size, the estimates prior to the change of the parameter
have too much influence on the new estimates. Also, the observations during
the entire window width must be maintained and updated during the process of
estimation.

There are numerous problems which have been recently reported, where strong
estimators pose a real-life concern. Recently Oommen and his co-authors pre-
sented a strategy by which the parameters of a binomial/multinomial distribu-
tion can be estimated when the distribution is non-stationary [10]. The method
is referred to as the Stochastic Learning Weak Estimator (SLWE), and is a novel
estimation method based on the principles of stochastic learning. We propose to
use the SLWE in our particular PR problem.

1.1 Topic Detection and Tracking and Word of Mouth

The non-stationary phenomenon described above occurs in the PR problems
related to Topic Detection and Tracking (TDT) in online discussions, where the
content of the discussions represents the opinions of users from all over the world.
This kind of information has high value for market-oriented or consumer-focused
companies.

The phenomenon of consumers providing information to other consumers is
often referred to as Word of Mouth (WoM). It turns out that the nature of
these discussions, consisting of multiple opinions, different topics, and a variety
of languages, presents us with a problem of designing training and classification
strategies when the class-conditional distributions are non-stationary.

The main difference between classification of news articles or journal papers
and WoM discussions, is that these discussions generally contain the opinions of
several different authors. Considering a discussion where several authors write
parts of it means that we have a document with continuous content changes.

Treating the whole discussion as one contiguous document, the task at hand
is thus to segment the discussion and to classify each segment according to the
pre-defined classes, whether it be topics, sentiment or language.

Another important aspect of text classification of such WoM discussions is
that the postings often are composed on the fly by the different users, without
any form of spell checking. Thus, when performing text classification on such
data, one must tolerate the presence of different kinds of textual errors, such as
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spelling and grammatical errors. Abbreviations and Internet “slang” may also
be present. The classification process must work reliably on all input, and must
tolerate these kind of errors to some extent. The complexity of the problem being
studied should thus be obvious to the reader !

1.2 Contributions of This Paper

The present work develops an efficient and accurate methodology for the training
and testing of topic detection and tracking in multilingual online discussions.
In contrast to the state-of-the-art, we introduce a novel approach to language
classification in multilingual documents where the classification is done without
any prior segmentation of the sample document, and where we do not require
the class-conditional distributions of the “features” to be stationary. The method
utilizes the principles of the SLWE proposed by Oommen et al. to update the
probabilities of the input samples, combined with mixed-order n-grams as the
discriminatory features, based on an n-gram language model [4]. In the light of
the above, we believe that our work is both novel and of a pioneering sort.

2 Language Classification in Mono/Multilingual
Documents

A crucial problem that has received little attention in the literature is that
of classifying documents containing several languages, or so-called multilingual
documents. The task of language classification has been widely studied, but most
of the approaches focus on classifying documents written in a single language,
often referred to as monolingual documents.

There are several different approaches to selecting features for language iden-
tification. These include, for instance, the presence of particular characters as
discriminators [13] or the presence of particular character n-grams [12]. Cav-
nar and Trenkle approached the task of language classification in monolingual
documents in [1], by using n-gram analysis.

Other frequently used approaches to language classification are the dictionary
approach or use of words that commonly appear in the language of interest[5].
Such non-linguistically motivated features generally perform well for documents
of moderate length, but their performance is significantly decreased when the
length of the sample text gets shorter. Other approaches to language classifica-
tion using linguistic factors that differ among languages are also found in the
literature. One such approach is based on the use of morphological features pre-
sented by Creutz in [3] and [2]. The problem with these approaches is that the
construction of a morphological lexicon for a given language requires a large
amount of work by trained experts.

With respect to multilingual documents, Ozbek et al. presented an approach
in [11], where they make use of the Creutz algorithm. Their approach demon-
strated good results for the Turkish language, but the results were discourag-
ing for the English language, with a worst case accuracy of 40%. Ludovik and
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Zacharski proposed an algorithm for classifying multilingual documents that is
based on mixed-order n-grams, Markov chains, maximum likelihood and dy-
namic programming in [7]. Language classification in multilingual documents
using a word-window approach was studied in [8] by Mandl et al. Their results
demonstrated a high accuracy for detecting the languages, but they pointed out
that determining the location of the language shift was the hardest challenge,
reporting a cumulative precision of 81% for locating the change point with at
most 2 words off the real change point.

Our proposed method is distinct from all of the above. We are interested
in classification tasks that involve the non-stationarity found in such multilin-
gual documents, in which moreover, we do not require the scheme to know the
boundaries of the different language segments in the document.

3 Weak Estimators: The SLWE

The fundamental estimation strategy that we advocate for the problem being
studied is the SLWE alluded to earlier. We shall explain it, in some detail, here.

When dealing with an alphabet of r symbols, whose probabilities have to
be estimated “on the fly”, the best model is to assume that the input symbol
is drawn from a multinomial random variable. The multinomial distribution is
characterized by two parameters, namely, the number of trials, and a probability
vector which determines the probability of a specific event (from a pre-specified
set of events) occurring. In this regard, we assume that the number of obser-
vations is the number of trials. Therefore, the problem is to estimate the latter
probability vector associated with the set of possible outcomes or trials.

Specifically, let X be a multinomially distributed random variable, which takes
on the values from the set {‘1’, . . . , ‘r’}. We assume that X is governed by the
distribution S = [s1, . . . , sr]T as X = ‘i’ with probability si, where

∑r
i=1 si = 1.

Also, let x(n) be a concrete realization of X at time ‘n’. The intention of the
exercise is to estimate S, i.e., si for i = 1, . . . , r. We achieve this by maintaining
a running estimate P (n) = [p1(n), . . . , pr(n)]T of S, where pi(n) is the estimate
of si at time ‘n’, for i = 1, . . . , r, with

∑r
i=1 pi(n) = 1. Then, the value of p1(n)

is updated as per the following simple rule (the rules for other values of pj(n)
are similar):

p1(n + 1) ← p1 + (1 − λ)
∑
j �=1

pj when x(n) = 1 (1)

p1(n + 1) ← λp1 when x(n) 	= 1 (2)

The vector P (n) = [p1(n), p2(n), . . . , pr(n)]T refers to the estimate of S =
[s1, s2, . . . , sr]T at time ‘n’, and we will omit the reference to time ‘n’ in P (n)
whenever there is no confusion. The above updating rules, with λ ∈ [0, 1] being
the learning rate, lead to asymptotic values of P whose mean converges exactly
to S. The proof of this property and the properties concerning the variance and
convergence of the limiting distribution are found in [9].
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4 SLWE Solution to Language Detection and Tracking

By combining the SLWE with mixed-order n-gram models, we present a novel
approach to the task of language classification in multilingual WoM documents.

One important issue in all PR systems is that of selecting the feature space
of the classifier. The approach we advocate is akin to the ideas of Cavnar and
Trenkle, which uses mixed-order n-gram models, and builds n-gram profiles for
each language that is being classified. The nature of WoM discussions were also
a key motivating factor in choosing n-grams as features, due to their robustness
with regard to noise in the input text and that the segments may be too short
for word-based features to encapsulate sufficient information.

By utilizing n-grams, there is no need for preprocessing in the sense of spell
checking or stemming since n-grams essentially gives us the information-bearing
content of a word without performing such costly procedures. In addition, stem-
ming requires sophisticated knowledge about the language, and is thus useless
for our task since we do not know the language of the input text. The SLWE
also possesses better scalability than, for instance, the MLE, which is used by
Ludovik et al. [7] in their approach, with regard to a large number of features.
Another important motivation for using the SLWE for this task is that there
is no need for a separate segmentation process by using complex methods such
as dynamic programming used by Ludovik and his co-authors [7]. Instead, the
SLWE is able to adapt to changes quickly if the environment switches its proba-
bility vector, which in our case is the distribution of top n-grams for the possible
languages being classified.

4.1 The Basic Algorithm

The PR system presented here for classification of language in multilingual doc-
uments, consisted of two phases. The first phase involved training mixed-order
n-gram profiles for each language that the system should support. Only the most
frequent n-grams of order n = 1 to 4 for a given language were kept in the pro-
file. The second phase of the PR system consisted of the actual classification,
or testing phase. In this phase, the estimate of the SLWE was initialized at the
beginning of each document, with a feature vector consisting of all unique n-
grams from each of the different language profiles. Each document in the testing
corpus was processed, and for each document, each word was processed and clas-
sified according to a distance measure between the estimated probability vector
and each of the language probability distributions. The running estimate of the
SLWE was updated after every word was processed.

Training Language Profiles. The training set consisted of monolingual doc-
uments, pre-labeled with the language they were written in. Each document in
this training set was subjected to a tokenization process. We also removed all
non alphanumerical characters from the text. After the tokenization process was
done, each word in the document was expanded to their mixed-order n-grams.
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After all the n-grams were read, the frequencies were converted into probabil-
ities by dividing each frequency by the total number of observed n-grams. By
doing so, we were able to obtain an n-gram probability distribution for the given
language.

Classification and Testing. The second phase consisted of classifying each
document in the testing corpus, using the SLWE and the probability distribu-
tions for each language.

The test documents were generated by our system, by concatenating segments
from monolingual documents. This approach made it possible for us to pre-label
each segment of the multilingual sample document, allowing us to validate the
classification results for each segment.

Each document to be classified was read into the system and was subjected to
the same tokenization process as described for the training phase. The feature
vector of the SLWE consisted of all the unique n-grams from all the language
profiles defined for the system. The SLWE kept a running estimate of this fea-
ture vector, where each n-gram was associated with a given probability. These
probabilities were initialized evenly.

After the SLWE was initialized, and the document was tokenized into a list
of words, the system was ready to perform the actual classification procedure.
The formal algorithm is included in the unabridged paper and omitted here due
to space limitations.

For each of the words that the sample document contains, the system ex-
panded the word into mixed-order n-grams. Then, for each of these n-grams,
the probabilities of the running estimate was updated as per the multinomial
updating scheme of the SLWE. If the n-gram is found in the estimate proba-
bility vector, its probability was increased according to the updating rules. The
probability of all other n-grams were then accordingly reduced. If the n-gram
were not in the estimate vector, it was merely ignored.

After all the n-grams for the given word were processed, the system measured
a distance between the estimated probability vector and each of the language
probability distributions. The word was then classified as being written in the
language represented by the language profile that measured the shortest distance
from the estimate (using the distance measure alluded to earlier). With the
assumption that a sentence is monolingual, we counted the number of words in
a sentence and classified the sentence as being written in the language that had
the highest word classification count. The validation results are maintained in a
so-called confusion matrix.

5 Experimental Results

The motivation for these experiments was to investigate how well our algorithm
was suited for language classification in multilingual documents, and by testing
several different languages we sought to investigate the ability to classify docu-
ments written in different languages and how well the classifier would scale with
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regard to the number of supported languages. We use different values for the
cut-off threshold to examine how well the classifier scaled with regard to the
number of features, and we experimented with different values for the learning
parameter of the SLWE to evaluate the impact of slow versus fast convergence
when dealing with language classification. We also measured the accuracy of our
classifier operating with different sentence lengths to see how well it is able to
deal with short or long sentences.

5.1 Experimental Setup

The classifier was tested on three different sets of languages, generated by con-
catenating sentences from monolingual documents. The languages used for our
testing are English, French, and German for Experiment Set 1, and English
English, French, German, Norwegian, Italian, Spanish, Dutch and Swedish for
Experiment Set 3. Details of Experiment Set 2 can be found in the unabridged
version of this paper. For each of these sets we generated different variants us-
ing different sentence lengths. All test sets had a corpus size of 100 documents,
except for test set V I which had 200 documents. Test set I, II and III, for
experiment set 1, consisted of respectively 10, 15 and 20 words per sentence.
The final test set, V I, for experiment set 3, contained 20 words per sentence.

With these test sets we tested our classifier on four different test cases, using
different values for the learning parameter, λ, and different cut-off thresholds.
Test case A and B used a cut-off threshold of 400, whereas test case C and D

Fig. 1. Plot of the Euclidean distance from the estimated probability vector to each

of the language profiles. The document being classified was monolingual, written in

French, containing 300 words.
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used 500 as the cut-off threshold. For the learning parameter, λ, test case A and
C used a value of 0.98. Test case B and D used 0.99 as the learning parameter.
Figure 1 shows a plot of the Euclidean distance between the estimate P (n) and
three possible language profiles for a document that is monolingual. Despite the
document being monolingual, the system assumes that the document is multi-
lingual. The sample being classified contains 300 words written in French and
in this example, the classifier operates on word-level, disregarding any sentence
boundaries. We observe that the SLWE converges rapidly to the true language
profile, which for this sample was French. Even though the variance of the esti-
mate is rather high, we observe that the distance to the other language profiles
is far greater than the distance to the correct language profile. We used λ = 0.99
and 300 as the cut-off threshold in this experiment.

5.2 Results

Language Set 1. The classification accuracy for our first language set is re-
ported for each of the test cases in Table 1.

Table 1. Reported classifier accuracy for each of our test cases for the first language

set

Test Set Test Case λ Cut-off Accuracy (Eng) Accuracy (Fre) Accuracy (Ger)
I. A 0.98 400 0.968 0.962 0.949
I. B 0.99 400 0.941 0.891 0.920
I. C 0.98 500 0.970 0.960 0.949
I. D 0.99 500 0.945 0.905 0.925
II. A 0.98 400 0.973 0.990 0.987
II. B 0.99 400 0.951 0.963 0.966
II. C 0.98 500 0.971 0.992 0.987
II. D 0.99 500 0.961 0.965 0.974
III. A 0.98 400 0.996 0.990 0.983
III. B 0.99 400 0,987 0.986 0.974
III. C 0.98 500 0.994 0.990 0.983
III. D 0.99 500 0.988 0.986 0.974

We observe that best accuracy for all the test sets is achieved with the learning
parameter λ set to 0.98. Higher values of λ yields slower, but more accurate
convergence. When classifying short sentences, it is important that the SLWE is
able to converge rather quickly so that as few words as possible in the sentences
are misclassified. We also observe that the different cut-off thresholds only to a
small extend affects the classifier accuracy.

Table 2 shows the confusion matrix for test case A on test set III, which
demonstrated an averaged classifier accuracy of 0.9896. In this experiment, the
test set consisted of 520 sentences in English, 515 sentences in French and 465
sentences in German. Each sentence consists of 20 words. By looking at the
accuracies listed in Table 2, we observe that only two of the 520 sentences in
English were misclassified. One of these as French and the other as German.



608 A. Stensby, B.J. Oommen, and O.-C. Granmo

Table 2. Confusion matrix for test case A, using test set III

Eng Fre Ger
Eng 0.996 0.002 0.002
Fre 0.010 0.990 0.000
Ger 0.013 0.004 0.983

Language Set 3. For the last language set we tested our classifier using all
eight languages that we had generated language profiles for. For this case we
generated the test samples using a sentence length of 20 words. This testing
corpus consisted of 200 documents, and the results are listed in Table 3.

Table 3. Reported classifier accuracy for each of our test cases for the third language

set with eight different languages

Test Set Test Case λ Cut-off Averaged Acc. Best Acc. Worst Acc.)
VI. A 0.98 400 0.9695 0.988 (Fre) 0.928 (Nor)
VI. B 0.99 400 0.9701 0.986 (Ita) 0.928 (Nor)
VI. C 0.98 500 0.9690 0.988 (Fre) 0.916 (Nor)
VI. D 0.99 500 0.9717 0.986 (Ita) 0.931 (Nor)

5.3 Discussion and Summary of Results

We have observed that our classifier is able to classify multilingual documents
with high overall accuracy. Our experiments demonstrates that the classifier
performs extremely well for moderate-sized segments, and that it performs ade-
quately for shorter sentences with 10 words per sentence.

For the first language set, we obtained a classification accuracy for the English
language as high as 0.996 using λ = 0.98 and the cut-off threshold set to 400.
This accuracy was achieved with sentences consisting of 20 words. For shorter
segments, with 10 words per sentence, we achieved an accuracy of 0.97. This is
still a fairly good accuracy considering the length of the segments. We observe
that using a cut-off threshold around 400 yields satisfying results, which is in
accordance to the suggested cut-off thresholds used by Cavnar and Trenkle in
their experiments. This also shows us that by reducing or increasing the feature
space, the classifier scales well and is not notably handicapped by working with
a limited feature set compared to a larger one.

For the last language set, using eight different languages, we observed through
our experiments that our classifier is able to scale well with regard to the number
of supported languages. The averaged accuracy reported for our experiments was
slightly lower than for the case when dealing with only five languages, but the
classifier still performs well with an error rate of only 0.0283 for eight languages,
compared to an error rate of 0.0186 in the case of five languages.
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6 Conclusion and Future Work

In this paper we have studied the problems of topic detection and tracking in
multilingual online discussions, which is particularly difficult because the content
involve the brief and “chatty” opinions of users in multiple languages. Unlike the
traditional PR problem, in this scenario, the class-conditional distributions are
non-stationary. By using the estimation philosophy recommended in [10], we
have proposed a solution to the current problem using novel estimators that are
pertinent for non-stationary environments. The classification results obtained
for various data sets which involve as many as 8 languages demonstrates that
our proposed methodology is both powerful and efficient.
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Abstract. In this paper, we present a novel clustering approach based

on the use of kernels as similarity functions and the C-means algorithm.

Several word-sequence kernels are defined and extended to verify the

properties of similarity functions. Afterwards, these monolingual word-

sequence kernels are extended to bilingual word-sequence kernels, and

applied to the task of monolingual and bilingual sentence clustering. The

motivation of this proposal is to group similar sentences into clusters so

that specialised models can be trained for each cluster, with the purpose

of reducing in this way both the size and complexity of the initial task. We

provide empirical evidence for proving that the use of bilingual kernels

can lead to better clusters, in terms of intra-cluster perplexities.

1 Introduction

Text categorisation [1] is the task of finding the class to which a given document
belongs to. The categories or classes in which a document can be classified are
known beforehand, and, usually, a database of documents with their correspond-
ing category is enough for training an automatic categorisation system. Several
approaches have been applied to text categorisation, ranging from naive Bayes
classifiers [1] to support vector machines (SVM) [2,3].

A variant of text categorisation is the text clustering task. Unlike text categori-
sation, in text clustering we do not know the classes into which the documents
should be classified, which means that the only data available is a database of
documents without class information. Therefore, text clustering is entailed as a
more difficult task than text categorisation. Several attempts have been made
in text clustering. For instance, in [4] several kernel-based text categorisation
techniques are adapted to text clustering by using the C-means algorithm.

An especially appealing problem in document clustering is sentence clustering,
in which each document is made up of only one single sentence. This problem
has been receiving special attention in the natural language processing (NLP)
community since it allows for training specific models for each of the obtained
clusters, leading to more task-focused models [5,6]. Moreover, sentence clustering
can also be of interest for kernel-based methods when applied to NLP tasks,
such as done for text recognition [7] or statistical machine translation [8,9]. In
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these scenarios, kernel methods often suffer scalability problems, and sentence
clustering is a natural way in which the training data can be divided so as to
obtain smaller (but more specific) models.

Throughout literature, the “sum-of-squares” cost for a given data set, forms
the basis for a number of clustering methods [10]. The aim of such clustering
algorithms is to partition a data set of N samples, x1, ...,xN , into C clusters,
so as to minimise the intra-cluster mean squared error. The standard algorithm,
also known as Lloyd’s algorithm or C-means [11], relies on assigning each data
point xn to the cluster with the closest mean. Once all the data points have
been assigned, the means of each cluster are updated according to the samples
contained within it. Then, the data points are reassigned to the cluster with
the closest mean, and this procedure is repeated iteratively until no data points
are changed. The C-means algorithm is considered a fast clustering method be-
cause it is a sub-optimal algorithm that does not require the computation of the
distance matrix between all samples. One of the disadvantages of C-means is
that it is unable to find suitable clusters whenever the given data are not lin-
early separable, leading to degenerated solutions in which the number of clusters
computed exceeds the desirable amount. In order to circumvent this problem,
M. Girolami proposed in [12] an extension of C-means that relies on a transfor-
mation of the original sample x into a higher-dimensionality feature space φ(x).
Although such proposal is based on the computation of Mercer kernels [13], it
still relies on the distance metric of the original C-means algorithm.

Kernel methods have attracted much interest since they were introduced by
V. Vapnik [14]. Traditionally being applied to classification problems in the form
of Support Vector Machines (SVM) [15,16], kernel methods rely on the idea of
establishing a mapping from the current feature space to a higher-dimensionality
feature space, with the purpose of achieving linear separability among classes
which are non-separable in the current feature space. Under this perspective, a
kernel function between two data points is defined as

k(x,x′) = φ(x)Tφ(x′), (1)

where x and x′ are the data points considered and φ(x) is the mapping function
to a higher-dimensionality feature space. From the definition above, it is clear
that a kernel is a symmetric function, i.e., k(x,x′) = k(x′,x).

Given that kernels are implemented as a dot product in a metric space, some
kernels can also be used to measure the similarity (or distance) between the data
points considered and are appropriate for direct application within distance-
based clustering algorithms.

In this paper, we present a new approach for using similarity Mercer kernels
for clustering based on the C-means algorithm. This new approach is evaluated in
practise under the scope of sentence clustering and bilingual sentence clustering.

This paper is structured as follows: in the next Section, we extend the C-
means algorithm for using kernel methods. In Section 3 word-sequence kernels
are introduced, and they are extended to bilingual word-sequence kernels in the
following Section. The empirical results are gathered in Section 5, and concluding
remarks are discussed in Section 6.
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2 Kernel-Based C-Means Clustering

The C-means algorithm [11] seeks to minimise the sum-of-squares distance from
each sample to the centre of the cluster it belongs to. Given a number of cate-
gories C, the algorithm finds a local optimum for for the following minimisation

ẑ = arg min
z

{
1
N

C∑
c=1

N∑
n=1

znc d(xn,mc)

}
, (2)

where znc = 1 if xn belongs to the c-th cluster and 0 otherwise, and with mc

being the centre of the c-th cluster, mc = N−1
c

∑N
n=1 zncxnc, where Nc stands

for the number of samples in the c-th cluster, i.e., Nc =
∑N

n=1 znc. The function
d(xn,mc) is a distance function between the sample xn and the centre mc,
usually the euclidean distance

d(xn,mc) = (xn −mc)T (xn −mc). (3)

The distance used by the C-means algorithm can either be a semi-metric or a
metric, depending on whether the triangle inequality is verified or not.

In [12], C-means was extended with the help of Mercer kernels by changing
the distance and the centres of the standard algorithm, so that it can better
handle non linearly-separable data. The distance proposed in [12] is given by

d(xn,mc) = (φ(xn) −mc)T (φ(xn) −mc), (4)

with mc = N−1
c

∑N
n=1 zncφ(xnc).

Since kernel functions are symmetric, they only need to verify two more condi-
tions to be a semi-metric distance. Therefore, the kernel itself can be used as the
distance inside the C-means algorithm. Moreover, if a given kernel also verifies
the triangle inequality, then the kernel itself can be used as a metric distance.
However, many kernels are more naturally redefined as similarity functions in-
stead of distances. Given a distance, a similarity can be defined and vice-versa.
In such case, C-means can be re-defined in terms of similarities as follows

ẑ = argmax
z

{
1
N

C∑
c=1

N∑
n=1

znc s(xn,mc)

}
, (5)

with mc = N−1
c

∑N
n=1 zncφ(xnc), and where s(xn,mc) = φ(xnc)Tmc is as-

sumed to be a (semi-)metric kernel, i.e., a kernel that measures the similarity
generated by a (semi-)metric distance. In this work, several (semi-)metric kernels
are proposed so that they can be used within the similarity version of C-means.
However, the approaches in Eqs. (2) and (5) could be related in some way.

3 Word-Sequence Kernels

Recently, Word-sequence Kernels (WSK) were introduced in [17]. The main
purpose of WSK is to compute document similarity based on matching non-
consecutive sequences of words. WSK are defined as a mapping Σn → R|Σ|n ,
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where n stands for the maximum length of the segment to be considered. For a
given order n and document pair (x,x′), we define the following kernel

Kn(x,x′) =
∑

u∈Σn

|x|u|x′|u, (6)

where |x|u stands for the number of occurrences of u in document x. In their
work, [17] reported interesting improvements by using WSK when applied to
text categorisation tasks. However, the best results were achieved using a small
order, n = 2.

Although the kernel defined in Eq. (6), is intuitively correct, it does not verify
some of the requirements to be a semi-metric similarity. Hence, we also define
the kernel K1

n as follows:

K1
n(x,x′) =

∑
u∈Σn

1u(x)1u(x′), (7)

where 1u(x) = 1 if u appears in x, and 0 otherwise.
The intuitive justification for defining this last kernel can be explained with

a small example. We start by defining the following strings:

s1 = {abcb} s2 = {abab}
s3 = {abeb} s4 = {abcbab}

One would state that s1 is as similar to s2 as to s3, under the prior assumption
of a Levenshtein distance. However, K2(s1, s2) = 2 and K2(s1, s3) = 1. This is
exactly the reason why we introduce kernel K1

2 , since K1
2(s1, s2) = K1

2 (s1, s3) =
1. On the other hand, the similarity of s1 with itself is K1

2 (s1, s1) = 3, which is
the same than that of s1 with s4, K1

2 (s1, s4) = 3. This is because the kernel K1
2

is a pseudo-metric similarity. It is worth noting that Kn is not a pseudo-metric,
which implies that a given element, as in the example s4, may be more similar
to a given element, such as s1, than the element itself, i.e. K2(s1, s4) = 4 >
K2(s1, s1) = 3. Such problem cannot be underestimated, since it can imply that
C-means will fail to converge.

To solve this undesirable property, K1
n is redefined using a normalisation score

depending on the different number of n-grams of the sample, i.e.,

K̂1
n =

∑
u∈Σn

1u(x)√∑
v∈Σn 1v(x)

1u(x′)√∑
v∈Σn 1v(x′)

(8)

The kernel defined in Eq. (8) solves the previously outlined problem, i.e. the
similarity of s1 with itself is K̂1

2 (s1, s1) = 1, which is larger than the similarity
of s1 with s4, K̂1

2 (s1, s4) = 0.866. With this last kernel, we achieve a very
desirable property for its use within C-means, i.e., a given element achieves
maximum similarity only when it is compared with itself.

Similarly, we also redefine the kernel Kn,

K̂n(x,x′) =
∑

u∈Σn

|x|u√∑
v∈Σn |x|v

|x′|u√∑
v∈Σn |x′|v

(9)



614 J. Andrés-Ferrer, G. Sanchis-Trilles, and F. Casacuberta

However, the re-normalised version of Kn, K̂n, only reduces the cases in which
the problem of not being a semi-metric can appear, but it does not solve it.

Given the definition in Eq. (9), a WSK K̄n is defined as

K̄n(x,x′) =
n∑

i=1

K̂i(x,x′). (10)

Analogously as done above, the kernel defined in Eq. (8) is extended to K̄1
n.

4 Bilingual Word-Sequence Kernels

In [17], cross-lingual WSK were also defined, by first defining a soft matching
WSK and assuming that the samples being considered (i.e. x and x′) belonged
to different languages. In this context, soft matching refers to a probabilistic
matching, i.e. a matching that does not require both samples to have exactly
identical parts. By doing so, they were able to find similarities between docu-
ments written in different languages.

Our purpose, however, is not to perform cross-lingual classification (or clus-
tering). Our case is different, since we assume that we have a sentence-aligned
bilingual corpus and we intend to cluster the data by taking into account such
bilingual information. Hence, we need to define a bilingual WSK (BWSK), which
can be easily extended from the one defined in Eq. (10) by taking into account
two different vocabularies, namely Σ for the source language and Δ for the target
language. Let be w = {x,y} a bilingual sentence pair, where x is the sentence
belonging to the source language and y is the sentence belonging to the target
language. Then, a BWSK can be defined as

Bn(w,w′) = Kn(x,x′) + Kn(y,y′) =
∑

u∈Σn

|x|u|x′|u +
∑

v∈Δn

|y|v|y′|v (11)

Note that Bn(w,w′) is a kernel because it can be expressed as the sum of two
kernels, which is a valid kernel composition rule.

As done for the monolingual case, we can also define B1
n(w,w′); and all its

extensions: B̂1
n(w,w′),B̄1

n(w,w′); and B̂n(w,w′),B̄n(w,w′).

5 Experiments

We ran most of our clustering experiments on the BTEC (Basic Travel Expres-
sion Corpus), which is the corpus provided for the IWSLT1 statistical machine
translation campaign. The BTEC corpus includes several bilingual, sentence-
aligned sub-corpora, among which we selected the Chinese-English one. The
figures of this corpus are summarised in Table 1. Prior to performing clustering
on the data, all English words were lowercased. This was not necessary on the
Chinese side since Chinese has no case information.
1 http://mastarpj.nict.go.jp/IWSLT2009/
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The problem of automatically measuring the quality of the produced clusters
was addressed by means of the perplexity concept. In natural language procesing
(NLP) the perplexity of a test set (w = w1, . . . , wL) is defined as follows:

ppl(w) = 2
1
L log2 p(w), (12)

where p(w) is the probability of the test set accordingly to a language model.
The intuitive meaning of perplexity is the average number of words that can
follow a given word, according to a given language model. For instance, if the
perplexity for a given data set is 28, it means that in order to predict the word
which follows a given prefix, a total average of 28 different words should be taken
into account. Hence, the perplexity for a given data set according to the language
model trained on that same data is a measure of how compact (i.e. not sparse)
the data is. We will be assessing the quality of the clusters using the intra-cluster
perplexity (IC-PPL) average, measured on the English data, given by

pplavg = 2
∑C

c=1
1
C

1
Wc

log2 p(c), (13)

where p(c) is the probability of the samples of cluster c according to the language
model estimated on that same cluster; Wc is the total number of words in the
sentences belonging to the cluster c; and C is the total number of clusters. Since
we will be computing clusters using the kernels proposed in Secs. 3 and 4 with the
order n ranging from 1 up to 4; we decided to compute IC-PPL based on a 5-gram
language model computed using SRILM toolkit [18]. Furthermore, since cluster
sizes dropped to less than 1 000 sentences in some cases, we decided to smooth
these models with the interpolated version of Knesser-Ney smoothing [19]. For
consistency purposes, the perplexities listed in Table 1 are also smoothed with
the same smoothing.

Table 1. Statistics of the BTEC corpus. K stands for thousands of elements

Language N. Sentences Running words Vocabulary Perplexity

Chinese 20K 172K 8428 24.3

English 20K 183K 7298 20.8

In preliminary investigation, we also researched the use of average edit dis-
tance from each sentence of a cluster to all other sentences in the same cluster
as quality metric, but the differences reported were similar to those reported by
IC-PPL, which is much faster to compute.

One way to reduce the computational requirements of our clustering algorithm
without any loss of information was to remove all singletons, since their effect on
the calculation of the kernels is minimum, if any. For a similar reasons, we also
decided to remove stop words, since if a word appears in almost every sentence,
then its discriminative capacity should not be very high either.

We computed 2 to 20 clusters of the training data, with steps of two, for
all kernels described in Sections 3 and 4. Since the C-means algorithm needs a
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Fig. 1. Clusterings for the BTEC corpus. Left: IC-PPL for random, K̂1
2 (monolingual)

and B̂1
2 (bilingual). Right: IC-PPL for B̄1

1 ,B̄1
2 ,B̄1

3 and B̄1
4 (right).

random initialisation, we performed 20 repetitions of each experiment and report
the average and the confidence interval at 95%.

Let us now analyse the results in detail. First, we show in Figure 1 the per-
formance of the K̄1

2 and B̄1
2 kernels when used in C-means, as compared to a

random clustering. Other proposed kernels, such as e.g. K̄1
1 or B̄3, present a sim-

ilar behaviour, and are not shown here for the sake of simplicity. The first thing
to be noted is that IC-PPL stays almost unchanged for every number of clusters
considered in the case of random clustering, whereas for the kernel-clusterings
IC-PPL drops logarithmically when increasing the number of clusters. This fact
was actually expected: if we consider 20K clusters (as many as sentences in the
corpus), IC-PPL will eventually drop to 1. However, since we are only consid-
ering up to 20 clusters and an average of 1000 sentences are included into each
cluster, perplexity will only drop when such grouping is done in an informed
way. It seems that considering bilingual information has beneficial effects since
BWSK lead to smaller IC-PPL than regular WSK.

As for the effect of considering different n orders, in Figure 1 we show the result
of comparing B̄1

1 ,B̄1
2 ,B̄1

3 and B̄1
4 . Again, other kernels such as the monolingual

ones, perform similarly and are omitted for clarity. We can see that the best
performance is given by B̄1

2 , and that increasing the order of n above 2 does
not provide further improvements, but rather has a degrading effect on IC-PPL.
This fact is consistent with what [17] reported for document classification tasks.

In order to check the scalability of the results reported on the BTEC corpus
to other larger corpora, we also performed some experiments on a reduced ver-
sion of the Spanish–English Europarl corpus [20]. Such version was restricted to
maximum sentence length of 20 (Euro<20), for both English and Spanish. The
statistics of this corpus are summarised in Table 2. As for the BTEC corpus, we
will measure cluster quality with IC-PPL measured on the English side.

The first thing that we notice when observing Figure 2 is that the monolin-
gual and the bilingual kernel clusterings behave similarly, as with the BTEC
corpus. This is probably due to the fact that, once the monolingual information
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Fig. 2. Clusterings for Europarl with maximum sentence length of 20 (Euro<20). Left:

IC-PPL for random, K̄1
2 and B̄1

2 . Right: IC-PPL for B̄1
1 ,B̄1

2 ,B̄1
3 and B̄1

4 .

Table 2. Statistics of the Spanish–English Europarl corpus, when restricted to maxi-

mum sentence length of 20. K stands for thousands of elements.

Language N. Sentences Running words Vocabulary perplexity

Spanish 312K 4.0M 58K 28.2

English 312K 3.9M 37K 26.7

is added to the cluster, the bilingual information is not able to produce a fur-
ther refinement over the initial clusters. Nevertheless, thought not statistically
significant, it can be observed that for small number of clusters, the bilingual in-
formation does seem to help, but as the number of clusters increase the bilingual
information tends to confuse the clustering algorithm. These results, which are
similar to the results observed with BTEC, suggest that bilingual information
only helps when there is a large amount of samples within a cluster. This can be
due to the fact that the smaller the clusters, the more focused they become in
specific word-sequences, and the more easily extra-cluster information can dis-
tort them. When dealing with large cluster sizes, however, introducing bilingual
information may help to group word-sequences which are not so similar in the
English side, but appear more similar in their bilingual counterpart.

As for increasing the order of n in the Euro<20 corpus, a similar behaviour
as for BTEC is be observed in Figure 2. Similarly to the results shown above,
B̄1

2 seems to be the best performing kernel in terms of IC-PPL. In order to
understand the reason why n = 2 is the best performing kernel-family, let us have
a closer look at some statistics of the corpora considered. Looking at Table 3,
it is quite obvious why increasing the order of n above 2 does not provide any
improvements: only 10% of the trigrams and 5% of the 4-grams appear more
than twice. This means that such features, when introduced into the clustering
algorithm via WSK or BWSK will most likely only introduce noise.

As for the difference between the families of kernels defined by |x|u and 1u(x),
our experiments show that they are indistinguishable according to IC-PPL. This
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Table 3. Statistics of the IWSLT and Euro<20 in terms of singletons and doubletons.

Single stands for singletons and double for doubletons. All data are in %.

1-grams 2-grams 3-grams 4-grams

Corpus single double single double single double single double

BTEC 43.8 14.0 65.3 13.6 79.0 10.5 87.5 7.5

Euro<20 36.7 13.3 62.7 13.3 78.9 9.8 88.4 6.2

is due to the fact that, although the theoretical motivation is clear as seen in
Section 3, in practise it is not very often the case that a given n-gram occurs
more than once within a single sentence – not for unigrams and even less for
bigrams. In fact, nearly no bigram happens twice in a single sentence once stop-
words have been removed. This implies that Kn is practically equivalent to K1

n

(and all the variations thereof).

6 Conclusions and Future Work

In this work, we have proposed the direct use of kernels as similarity measure,
and applied it to the specific case of sentence clustering via C-means. Specifically,
we have described several families of kernels suitable for this task, and shown
that the B̄2 and B̄1

2 kernels are the ones which perform the best. Although for
other corpora it might be beneficial to increase the order of n, such corpora
should be less sparse if improvements are to be expected. It is also observed
that, in order to take full advantage of bilingual information, cluster sizes need
to be larger.

As most of the cluster quality measures, such as cluster sparseness, IC-PPL
does not provide any insight towards deciding the optimal number of clusters,
C. For finding the optimal number of cluster, a possiblity is to use the bayesian
scheme proposed in [12].

Given the generality provided by using kernels as similarity measure, the C-
means algorithm used in this paper can be easily extended by just adding more
components while sticking to the kernel composing rules. In this way, we plan
to introduce other features inherent to NLP tasks, such as part-of-speech tags,
automatic word classes, n-gram probability, or even bilingual lexicon probability
for the case of bilingual kernels. We plan to address these issues in future works.
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Abstract. In many pattern recognition problems, learning from train-

ing samples is a process that requires important amounts of training data

and a high computational effort. Sometimes, only limited training data

and/or limited computational resources are available, but there is also

available a previous system trained for a closely related task and with

enough training material. This scenario is very frequent in statistical

machine translation and adaptation can be a solution to deal with this

problem. In this paper, we present an adaptation technique for (state-of-

the-art) log-linear modelling based on the well-known Bayesian learning

paradigm. This technique has been applied to statistical machine trans-

lation and can be easily extended to other pattern recognition areas in

which log-linear models are used. We show empirical results in which a

small amount of adaptation data is able to improve both the non-adapted

system and a system that optimises the above-mentioned weights only

on the adaptation set.

1 Introduction

Adaptation in pattern recognition is the task of porting a system trained on a
specific task or domain so that it can be used in a different environment. This
problem is particularly challenging in natural language processing and other
fields where the process of acquiring labelled training samples from a specific
domain or task is very costly, but a large collection of labelled data from a
similar task is already available. Hence, the challenge consists in being able to
modify the original models in such a way, that we are able to take advantage
of such large amounts of data available while having at our disposal only very
limited amounts of adaptation data.

The adaptation problem is a very common problem in statistical machine
translation (SMT), where it is very common to have very large collections of
bilingual data belonging to e.g. proceeedings from international entities such
as the European Parliament, the Canadian Parliament or the United Nations.
However, if we are currently interested in translating e.g. printer manuals, we
will need to find a way in which we can take advantage of such data.

The grounds of modern SMT, a pattern recognition approach to machine
translation, were established in [1], where the problem of machine translation

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 620–629, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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was defined as follows: given a sentence x from a certain source language, an
equivalent sentence ŷ in a given target language that maximises the posterior
probability is to be found. Such a statement can be specified, according to the
Bayes decision rule, as follows:

ŷ = argmax
y

Pr(y|x) (1)

Recently, a direct modelling of the posterior probability Pr(y|x) has been widely
adopted, and, to this purpose, different authors [2,3] proposed the use of the so-
called log-linear models, where

Pr(y|x) =
exp
∑K

k=1 λkhk(x,y)∑
y′ exp

∑K
k=1 λkhk(x,y′)

(2)

and the decision rule is given by the expression

ŷ = argmax
y

K∑
k=1

λkhk(x,y) (3)

where hk(x,y) is a score function representing an important feature for the
translation of x into y, as for example the language model of the target language,
a reordering model or several translation models. K is the number of models (or
features) and λk are the weights of the log-linear combination. Typically, the
weights Λ = λ1 . . . λK are optimised with the use of a development set.

Log-linear models implied an important break-through in SMT, allowing for
a significant increase in translation quality. In addition, log-linear models have
also been applied successfully in other pattern recognition tasks, such as text
recognition [4] and speech recognition [5]. In this work, we present a Bayesian
technique for adapting the weights of such log-linear models according to a small
set of adaptation data. Such technique, although applied to SMT in the current
paper, is easily extensible to other fields were log-linear models are used.

The rest of this paper is structured as follows. In the next Section, we perform
a brief review of current approaches to adaptation and Bayesian learning in SMT.
Section 3 describes the typical procedure for weight optimisation in SMT. In
Section 4, we present the way in which we apply Bayesian adaptation (BA) to log-
linear models in SMT. In Section 5, experimental design and experimental results
are detailed. Finally, conclusions and future work are explained in Section 6.

2 Related Work

Adaptation in SMT is a research field that is receiving an increasing amount of
attention. One of the first approaches to this task was performed by [6], in which
the translation model (TM) is implemented as an unsupervised multinomial mix-
ture of TMs, where each one was supposed to concentrate most of its probability
mass in a certain topic. Later, [7] applied other adaptation techniques to inter-
active machine translation, following the ideas by [8] and adding cache language
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models (LM) and TMs to their system. In [9], different ways to combine available
data belonging to two different sources was explored; in [10] similar experiments
were performed, but considering only additional source data. In [11], alignment
model mixtures were explored as a way of performing topic-specific adaptation,
the alignments being used only to extract phrases. Finally, other authors [12,13],
have proposed the use of clustering in order to extract the sub-domains of a large
parallel corpus and build more specific LMs and TMs, which are re-combined in
test time.

With respect to BA in SMT, the authors are not aware of any work up to
the date that follows such paradigm. Nevertheless, there have been some re-
cent approaches towards dealing with SMT from the Bayesian learning point of
view, such as [14], in which Bayesian learning is applied in order to estimate
appropriate word-alignments within a synchronous grammar.

3 Weight Optimisation in SMT

One of the most popular instantiations of log-linear models in SMT are phrase-
based models [15,16]. Phrase-based models allow to capture contextual informa-
tion to learn translations for whole phrases instead of single words. The basic
idea of phrase-based translation is to segment the source sentence into phrases,
then to translate each source phrase into a target phrase, and finally to reorder
the translated target phrases in order to compose the target sentence. For this
purpose, phrase-tables are produced, in which a source phrase is listed together
with several target phrases and the probability of translating the former into the
latter. Phrase-based models were employed throughout this work.

Typically, the weights Λ of the log-linear combination in Equation 3 Λ are
optimised by means of Minimum Error Rate Training (MERT) [17]: first, n-best
hypotheses are extracted for each one of the sentences of a given development
set. Next, the optimum Λ is computed so that the best hypotheses in the n-best
list, according to a reference translation and a given metric, are the ones that the
search algorithm would produce. These two steps are repeated until convergence,
where the weight vector Λ remains unchanged.

This approach has two main problems. On the one hand, it heavily relies on
having a fair amount of data available as development set. On the other hand,
it only relies on the data in the development set. These two problems have as
consequence that, if the development set made available to the system is not
big enough, MERT will most likely become unstable and fail in obtaining an
appropriate weight vector Λ. In addition, running MERT in systems where the
user is waiting actively for the translation to be produced may not be acceptable.

However, it is quite common to have a great amount of data available in a
given domain, but only a small amount of data available from the domain we
are interested in translating. Precisely this scenario is appropriate for BA: under
this paradigm, the weight vector Λ is biased towards the optimal one according
to the adaptation set. However, over-training towards such set is avoided by not
forgetting the generality provided by the training set.
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4 Bayesian Adaptation for SMT

The main idea behind Bayesian learning is that parameters are viewed as random
variables which have some kind of a priori distribution. In such case, observing
these random variables leads to a posterior density, which typically peaks at the
optimal values of these parameters. Following the notation in 1, the previous
statement can be specified as

p(y|x;T ) =
∫

p(y, θ|x;T )dθ (4)

where T represents the complete training set and θ are the model parameters.
Since in this case we are interested in Bayesian adaptation, we need to consider

one training set T and one adaptation set A, leading to

p(y|x;T,A) =
∫

p(y, θ|x;T,A)dθ

=
∫

p(θ|T,A)p(y|x, θ)dθ (5)

In Equation 5, the integral over the complete parametric space forces the model
to take into account all possible values of the model parameters, although the
prior over the parameters implies that our model will prefer parameter values
which are closer to our prior knowledge. Two assumptions have been made:
first, that the output sentence y only depends on the model parameters (not on
the complete training and adaptation data), and second, that model parameters
do not depend on the actual input sentence x. Such simplifications lead to a
decomposition of the integral into two parts: the first one, p(θ|T,A) will assess
how good the current model parameters are, and the second one, p(y|x, θ), will
account for the quality of the translation y given the current model parameters.

Operating with the probability of the model parameters, we obtain:

p(θ|T,A) =
p(A|θ;T ) p(θ|T )∫
p(A|θ) p(θ|T ) dθ

(6)

p(A|θ;T ) = p(A|θ) =
∏

∀a∈A

p(xa|θ) p(ya|xa, θ) (7)

where the probability of the adaptation data has been assumed to be independent
of the training data and has been modelled as the probability of each bilingual
sample (xa,ya) ∈ A being generated by our translation model.

Assuming that the model parameters follow a normal distribution, we obtain

p(θ|T ) =
1

(2π)−σT /2|σT |−1/2
exp
{
−1

2
(θ − θT )Tσ−1

T (θ − θT )
}

(8)

where θT is the set of parameters estimated on the training set and σT is the
variance, which has been assumed to be bounded for all parameters.
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Lastly, assuming that our translation model is a log-linear model (Equation 3)
and that the only parameters we want to adapt are the log-linear weights:

p(y|x, θ) =
exp
∑

k θk fk(x,y)∑
y′ exp

∑
k θk fk(x,y′)

(9)

Finally, combining Equations 7, 8 and 9, yields:

p(y|x;T,A) =
∫

p(A|θ;T ) p(θ|T )∫
p(A|θ) p(θ|T ) dθ

p(y|x, θ) dθ

= Z
∫ ∏

∀a∈A

p(xa|θ) p(ya|xa, θ) N (θ; θT , σT )p(y|x, θ) dθ (10)

= Z ′
∫ ∏

∀a∈A

exp
∑

k θk fk(xa,ya)∑
y′ exp

∑
k θk fk(xa,y′)

(11)

exp
{
−1

2
(θ − θT )Tσ−1

T (θ − θT )
}

exp
∑

k θk fk(x,y)∑
y′ exp

∑
k θk fk(x,y′)

dθ

where, in Equation 10, Z is the denominator present in the previous equation
and may be out-factored because it does not depend on the integration variable.
In Equation 11, it has been assumed that the probability of the input sentence
does not depend on the model parameters, and hence it can also be out-factored.

5 Experiments

In this section we will detail the experiments carried out. We will first train a
SMT system on training data, and then we will analyse the performance of such
system when used for translating data which does not belong to the same domain
as the training data. We will follow two adaptation procedures. On the one hand,
log-linear model weights are estimated on the adaptation data, forgetting about
the estimates obtained in training time. On the other hand, we will perform
experiments with our BA technique, and finally compare both approaches.

5.1 Experimental Setup

In this work, we will be assessing translation quality by means of two standard
scoring metrics in SMT, namely BLEU and TER scores. BLEU measures the
precision of n-grams [18] with a penalty for too short sentences, whereas TER [19]
is an error metric that computes the minimum number of edits required to modify
the system hypotheses so that they match the references. Possible edits include
insertion, deletion, substitution of single words and shifts of word sequences.

To train the baseline system, we used the Europarl corpus [20], with the
partition established for the Workshop of SMT of NAACL 2006 [21]. Specifically,
we performed experiments on Spanish–English translation. The corpus Europarl
corpus is divided into three separate sets: one for training, one for development
and one for test. The figures of the Europarl corpus are shown in Table 1.
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Table 1. Main figures of the Europarl corpus. OoV stands for Out of Vocabulary.

Spanish English

Training

Sentences 731K

Run. words 15.7M 15.2M

Vocabulary 103K 64K

Development

Sentences 2000

Run. words 61K 59K

OoV words 208 127

Test

Sentences 2000

Run. words 60K 58K

OOV words 207 125

Table 2. Main figures of the Xerox and EU corpora. OoV stands for Out of Vocabulary.

Xerox EU

Spanish English Spanish English

Training

Sentences 55K 164K

Run. words 712K 631K 3.4M 3.1M

Vocabulary 11K 8K 45M 34M

Test

Sentences 1120 800

Run. words 10K 8K 23K 20K

OoV words 42 27 97 81

OoV w.r.t. Europarl 131 139 156 178

ppl w.r.t. Europarl 2555 9595 130 194

Since we will be performing adaptation, we also used two other corpora,
namely the Xerox corpus [22] and the EU corpus [23]. The Xerox corpus is
a compendium of user manuals for Xerox printers and photocopiers and was
translated from English into other languages by Xerox’s language services. The
EU corpus was built from the Bulletin of the European Union and is publicly
available on the Internet. In this paper, we will focus on the Spanish–English
sub-corpora. These two corpora are divided into two separate subsets, one for
training and one for test. Their characteristics can be seen in Table 2. It must be
noted that EU and Europarl corpora belong to very similar domains, whereas
Xerox belongs to a very different domain. This fact is the reason why the Xerox
corpus reports such high perplexity (ppl) rates with respect to a language model
estimated on the Europarl corpus. Intuitively, perplexity measures how “sur-
prised” the language model is when provided a given test set, i.e. how different
such set is with respect to the data it was trained on.

We conducted our experiments by means of the Moses toolkit [24], which
implements a statistical log-linear model including five translation scores, a lan-
guage model, a distortion model, and word and phrase penalties. The five trans-
lation scores included provide standard direct and inverted frequency-based and
lexical-based probabilities for each phrase pair in the phrase-table.
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The initial weights for the log-linear model were estimated by means of MERT
on the Europarl development set, as is typically done in SMT. The score to be
optimised in this case was BLEU.

5.2 Practical Approximations

In order to find the best scoring sentence according to Equation 11, we asked the
decoder to output a list of 500-best for each one of the translated sentences. Such
n-best list was then re-ranked according to the score provided by Equation 11
after dropping the normalisation factor Z ′, since such factor is constant when
choosing the maximum scoring output sentence.

Since a true integral over all possible weights is not feasible for computa-
tional reasons, we discretised the integral to consider only a set of sample weight
vectors. Here, such sampling was performed by taking into account the weights
considered by MERT for the in-domain development set. The idea behind such
sampling is to perform a Monte Carlo-like sampling of the model parameters.

A last consideration when attempting to implement the Equation 11 is that
the first part of the integral, the product over all samples in the adaptation set,
cannot be computed with typical state-of-the-art phrase-based SMT systems,
since e.g. out-of-vocabulary words may imply that the SMT model is unable to
explain a certain bilingual sentence completely. Hence, instead of computing∏

∀a∈A

exp
∑

k θk fk(xa,ya)∑
y′ exp

∑
k θk fk(xa,y′)

(12)

we will need to compute∏
∀a∈A

exp
∑

k θk fk(xa,y
∗
a)∑

y′ exp
∑

k θk fk(xa,y′)
(13)

where y∗ represents the best hypothesis the search algorithm is able to produce,
according to a given translation quality measure. Since BLEU is not well defined
at the level of sentence because it implements a geometrical average which can
be zero, we will be using TER for this purpose.

5.3 Experimental Results

We conducted adaptation experiments by using the SMT system trained on
Europarl as a baseline system and translated the Xerox and EU test sets. Then,
increasing the number of adaptation samplesmade available to the systemwas con-
sidered, starting from 10 up to 140.These adaptation samples were drawn from the
respective training corpus, i.e. when translating the Xerox test set, the adaptation
samples were drawn from the Xerox training corpus. In order to provide robustness
to the results presented here, 15 random samplings for each size of the adaptation
subset were drawn. These adaptation data were used either for weight estimation
via MERT, or as adaptation set for our BA technique. Results can be seen in Fig-
ures 1and2. It is important to remember that the higher theBLEUscore thebetter,
as opposed to TER, where lower scores imply better translation quality.
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Fig. 1. Performance of baseline and both adaptation techniques when increasing the

number of adaptation samples. Translation quality is measured with BLEU and TER

for the Xerox test data. 95% confidence intervals are shown.
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Fig. 2. Performance of baseline and both adaptation techniques when increasing the

number of adaptation samples. Translation quality is measured with BLEU and TER

for the EU test data. 95% confidence intervals are shown.

As the figures show, the translation quality produced by the system with Λ
adjusted by means of MERT turns very unstable, and the confidence intervals get
very big. In average, such system is able to improve the baseline, but at the risk of
producing very bad quality translations. This is not an acceptable behaviour for
a system that is set on-line for translating. Furthermore, the computational cost
of running the MERT algorithm, even for small amounts of adaptation data, is
prohibitive whenever the system is required to produce translations in real-time
environments, in which the user awaits for a translation to be produced almost
immediately. In contrast, the BA technique is able to yield improvements over the
baseline translation quality even when very small amounts of adaptation data are
available, with a much more predictable behaviour: while the confidence intervals
have a range of about 7 points for BLEU and even 23 points for TER, BA is able
to reduce the intervals to less than a single point in almost every case. Although
estimating Λ only on the adaptation set seems to perform on average better than
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BA, this comes at the risk of producing much worse translations. Moreover, the
formula described in 11 can easily be incorporated into the decoder, without any
significant increase in computational complexity.

6 Conclusions and Future Work

The results presented in the previous section show that the BA technique imple-
mented is able to provide consistent improvements over the baseline, although
these are not very big, even when a very small amount of adaptation data is
available. Precisely in this scenario is in which a true adaptation technique is to
be applied: if enough adaptation data is available, then the best “adapted” sys-
tem is the system trained only on the adaptation data. Hence, when the amount
of adaptation data available increases, MERT is able to yield better results. How-
ever, it must also be noted that MERT heavily depends on the data provided,
as the confidence intervals show, and this can lead to unexpectedly high or low
translation quality without being able to know the behaviour in advance.

Nevertheless, there are several details that must still be taken care of, and
that we plan to address in future work. First, if we look at Equation 11, it seems
very obvious that the first and the second component of the integral, i.e. the
probability of the adaptation data and the prior over the model parameters, are
clearly in very different numeric ranges. This has as effect that the probability
of the adaptation sample may have less discriminative power than the prior, and
this, in turn, may be the reason why the results presented are so stable, but
do not yield very big improvements. We plan to address this in future work by
introducing weighting coefficients to compensate for this. Such coefficients might
need to be trained, but most likely only once, independently of the corpus used.

The way in which the weight sampling is done is also bound to have an
important impact on the final results. We also plan to address it in future work.

The derivation presented here can be quite easily extended in order to adapt
the feature functions of the log-linear model (i.e. not the weights). This is bound
to have a more important impact on the quality of the translations produced,
since the amount of parameters to be adapted is much higher.
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Abstract. The analysis of human conversations under a social signalling

perspective recently raised the joint attention of pattern recognition and

psychology researchers. In particular, the dialog classification represents

an appealing recent application whose aim is to go beyond the mean-

ing of the spoken words, focusing instead on the way the sentences are

pronounced by capturing natural (or hidden) characteristics, such the

mood of the conversation. An effective strategy to face this issue is to

encode the turn-taking dynamics in a generative model, whose structure

is composed by conditional dependencies among first-order Markov pro-

cesses. In this paper, we follow this strategy, investigating how to boost

the classification performances of this model and of the related higher-

order Markov extensions, through the definition of a novel generative

score space. Generative score spaces are employed to increase generative

classification in a discriminative way, also allowing a deep understanding

of the processed data through the use of standard pattern recognition

strategies. Experiments on real data certify the goodness of our intuition.

Keywords: social signalling, dialogue analysis, observed influencemodel.

1 Introduction

Social signal processing (SSP) aims at developing theories and algorithms that
codify how human beings behave while involved in social interactions, putting to-
gether perspectives from sociology, psychology and computer science [1,2]. Here,
the main entities to analyse are the social signals [2], i.e., temporal co-occurences
of social cues [3], that can be basically defined as a set of temporally sequenced
changes in neuromuscular, neurocognitive and neurophysiological activity. So-
cial cues are organized into five categories that are heterogeneous, multimodal
aspects of a social interplay [2]: 1) physical appearance, 2) gesture and posture,
3) face and eyes behavior, 4) vocal behavior, and 5) space and environment.

The analysis of the social cues in the vocal behavior category is one of the is-
sues most related to pattern recognition and machine learning themes. In general,
this analysis consists in evaluating all the spoken cues that surround the verbal
message and influence its actual meaning, characterizing, for example, particular
social roles (e.g., dominance, [4,5,6], mirroring, [7] and others [8]). A more recent
challenge is to consider a conversation in its entirety, as a sample in a multidimen-
sional space, in order to perform un/supervised clustering, indexing, retrieval and
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other novel applications. For example, in [9], the goal was to predict the outcome
of a specific conversational exchange finding and exploiting short meaningful por-
tions of interaction. Another issue is that of the dialog classification (or chrac-
terization), aimed at capturing general aspects or characteristics of a dialog. For
example, in [10], the main “atmosphere”(e.g., flat, aggressive, etc.) for a indefi-
nitely long piece of dialogic exchange was classified, together with the capability
of recognizing the presence in the dialog of a particular class of speakers, such as
adults or children. It is worth noting that all these tasks usually do not involve
speech recognition: actually, it happens very often that the meaning of the spo-
ken sentences and the vocal behavior of a subject are completely in discordance.

In all the approaches above, generative models seem to be the main technique
for exploiting vocal behavior cues for social signalling. Usually, they are employed
for the analysis of the turn taking, i.e., the sequence of turns in which a dialog
participant can be in one of two states: silent or talking. Turn-taking dynamics
may be effectively modelled as conditional dependencies among stochastic pro-
cesses, where each process models the behavior of a single speaker. In particular,
dynamic Bayesian networks were employed as efficient and expressive tools, espe-
cially, hidden Markov models (HMMs) and extensions [11], and influence model
and extensions [12,7] (a.k.a. mixed memory Markov processes [13]). The common
idea is to sample a dialog at fixed time intervals, to learn a representative model,
and infer over the model parameters for detecting social aspects of that dialog.
In [11], a two-layer HMM was employed to model individual and group action. In
[12,7], the purpose was to detect the dominant interlocutor through social cues
of mimicking. The authors employ an Observed Influence Model (OIM), i.e., an
aggregate of first-order Markov processes, each one addressing an interlocutor.
OIM’s main feature is the capability of translating complex conditional depen-
dencies among random variables with pairwise dependencies by means of weights
called influence factors. Recently, in [10] a generative framework has been pro-
posed, aimed at classifying a piece of conversation of variable length (from few
minutes to hour), considering the nature of the people involved within (children,
adults) and the main mood (flat, arguing). The framework is basically an OIM, fed
by low-level auditory social signals, dubbed steady conversational periods (SCPs).
They are built on duration of continuous slots of silence or speech, and, in addi-
tion, they take into account conversational turn-taking. In practice, SCPs allow to
capture the attitude of self selecting for turn-taking even though the interlocutor
has not yet completed his own turn. Further, they also indirectly model speech
planning by characterizing the tendency to utter short sentences instead of longer
propositions. We name here this generative framework as SCP model for brevity.

Employing generative machines for modelling dialog data is advantageous:
the parameters of the model are intelligible, permitting inferences that highlight
intuitively the nature of the data. For example, in [10], the coefficients of the
transition matrices of the Markov model utilised suggest the dynamics of a pro-
cess in a straightforward way, by identifying, for instance, highly probable or
rare transitions.
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In this paper, we focus on the dialog classification, considering the SCP model
and proposing a principled way to boost its classification performances, also
permitting, at the same time, a more informative analysis of the model.

To this end, we exploit a set of SCP models in an unconventional way, i.e.,
not as classifiers, but as feature ensembles: the idea is to build a novel generative
score space [14], where the parameters of the SCP models are treated as features.
More in detail, each sample (a dialog) of a given dialog class is used to learn
an SCP model, and the model parameters can be considered as features in a
joint multidimensional space. This embedding is repeated for all the classes of
dialogs considered. Then, classical feature selection and ranking strategies are
carried out, individuating the more discriminant features (i.e., parameters) for
distinguishing the different dialog classes. Finally, discriminative classifiers are
employed to perform the classification.

The concept of generative score space has recently raised the attention of
the researchers, being a principled way to boost the classification performances
of generative classifiers. In the majority of the approaches, discriminative tech-
niques, like Support Vector Machines (SVMs), are fed with the (generative)
features derived from the learned generative models, providing state-of-the-art
performances [14,15,16,17]. The problem of such a formulation is that the dis-
criminative part of the system hides one of the advantages brought from the
generative modeling, i.e., we lose the intelligibility of the extracted features and,
then, of the entire process.

In our framework, pre-processing feature selection and ranking strategies are
carried out on the generative score space, allowing a full control and under-
standing of the collected features. In particular, we can observe what are the
most useful features for classification, i.e., the most important parameters of the
model that, in turn, means to highlight which transitions are more characteristic
for a certain dialog class. In addition, we augment the complexity of the original
generative framework, by embedding higher-order OIMs in the SCP model (i.e.,
considering Markov processes of higher order). This because another nice feature
of the generative score space based approaches for classification is their ability
to deal with overfitted models or with a small training sample size.

Summarizing, in this paper we reach three goals for dialog characterization:
first, we perform classification in a very effective way; second, we employ more
structured models for the dialog analysis, investigating whether higher order can
encode a finer characterization of the turn taking; third, we understand the most
important differences among different SCP models due to the embedding in the
generative score space, realizing in a very intuitive way what are the behavioral
patterns that characterize the different classes of dialogs.

The rest of the paper is organized as follows: in Sec. 2, mathematical recaps
are given together with a brief description of the SCP model. Sec. 3 details our
generative score space, and Sec. 4 reports the experimental results on a public
dataset. Finally, Sec. 5 concludes the paper, summarising final observations on
the turn-taking dynamics modelling and future perspectives of the work.
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2 Mathematical Background

2.1 The Observed Influence Model

The observed influence model (OIM) is a simplified version of the influence
model [12], that in practice operates on Markov processes instead of hidden
Markov processes. Inheriting the notation of [10], the state variable of a Markov
process is St ∈ {1, . . . , N}, and P (St|St−1,..., St−k) is the transition probability
for a Markov model of order k. OIM factorizes the multi-process conditional
relations among C Markov chains by means of a weighted linear combination of
pairwise inter-chain and intra-chain transition probabilities. Considering first-
order Markov chains with N states, the (full) factorization of the multi-process
transition probability is

P (cSt|1St−1, . . . ,
CSt−1) =

C∑
d=1

(c,d)θP (cSt|dSt−1) (1)

with 1 ≤ c, d ≤ C, (c,d)θ ≥ 0,
∑C

d=1
(c,d)θ = 1. The value P (cSt|dSt−1) repre-

sents the probability of going from state St−1 of the chain d to state St of the
chain c. The weight (c,d)θ represents the influence that chain d exerts on chain
c. A sketch of the model is depicted in Fig.1 a. A first-order influence model
is thus defined as λ = {{A(c,d)}, Θ, π}, where A(c,d) is the intra-chain transi-
tion matrix when c = d, and represents the dynamics of a single process per se.
When c 	= d, we consider the inter-chain matrices, modeling how much a state
of a chain conditions the next state of the other chain. The C×C matrix Θ con-
tains the influence weights, and π contains the (independent) initial probability
distributions for all processes, i.e., π(c) = {π(c)

i } where π
(c)
i = P (S(c)

1 = i).
The OIM transition factorization has space complexity O(C2N2 +C2), where

C2N2 is due to the transition tables parameters, and C2 to the influence coeffi-
cients.OIM learning of the {θ} coefficients is performed by standard constrained
gradient descent [7,18], while the {{A(c,d)}, π} parameters are estimated by sim-
ple state counting.

2.2 The SCP Model

In their original framework [10], the authors focused on two-person conversa-
tions, where subjects 1 and 2 were captured in an appropriate environment,
obtaining two synchronized separated audio sources. From the raw signals, a
speech/silence thresholding was performed, obtaining a signal D, formed by two
binary arrays D(1) and D(2), of length T .

Under this setting, a dialogue can be represented by an OIM, but the lack of
synchronization between the start/end instants of the periods leads to problems
in evaluating inter-chain conditional dependencies (see Fig.1 b).

Therefore, the authors propose the use of a turn taking-based feature, called
steady conversational period (SCP), that is built on duration of continuous slots
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Fig. 1. The generative framework: a) State factorization exploited in an Observed In-

fluence Model. The area named Θ indicates the influence factors that apply to the

state transitions, depicted as directed arrows. b) Synchronization through Steady Con-

versational Periods. We have two audio processes, D(1) and D(2), sampled at a given

frequency, where audio samples are shown as speech (black dots) and silence (white

dots) values. Continuous periods of speech or silence are not synchronized, so it is not

possible to evaluate a first-order statistical transition probability among the periods.

The global transitions (dashed red lines) define the SCPs so permitting to calculate

first-order transition probabilities (black arrows).

of silence or speech. The extraction process of the SCPs assumes that when-
ever a process changes its state, it causes a global transition that affects also
the opposite process, inserting a novel auto-transition state (see Fig.1 b). The
fragmentation caused by global transitions synchronizes the processes, creating
T̃ < T different SCPs cOt̃, where the apex c ∈ 1, 2 indexes the speaker and
t̃ = 1, . . . , T̃ enumerates the different SCPs.

The introduction of SCPs in the model makes it feasible to evaluate first-order
intra- and inter-chain conditional probabilities (red dashed line in Fig.1 b). In
order to take into account the different durations of each silence and speech
segment, all SCPs related to the speech and to the silence are labelled into
〈short, long〉, after a Gaussian clustering over a training dataset.

More formally, given the clustering, each SCP cOt̃ takes one label among
1, 2, 3, 4, where 1,2 address short and long continuous periods of speech, respec-
tively, and the same applies with 3,4 for the silence periods.

After that, an observed influence model λ = {{A(c,d)}, Θ, π} is fitted to the
SCP labels.

The parameters of the model intuitively indicate the conversational trend of
each subject considered separately. The inter-chain transition parameters encode
first-order state dependencies among processes, and influence factors mirror the
influence that a process exerts on the other.

3 The Generative Score Space

In order to increase the classification accuracy of the generative framework, and,
at the same time, to allow a discriminative analysis of the model parameters,



A Generative Score Space for Statistical Dialog Characterization 635

we build a generative score space I. Following [19], such spaces can be built
from the data available by considering each observed SCP sequence composed
by the two synchronized SCP streams coming from the process 1 and 2 O =
(O1, . . . , Ot̃, . . . , OT̃ ), and a family of generative models P = {P (O|Ψi)} param-
eterized by Ψi.

The observed dialog O is mapped into a fixed-length score vector ϕf

F̂
(O),

ϕf

F̂
(O) = ϕF̂ f({Pi (O|Ψi))}), (2)

where f is a function of the set of probability densities under the different models,
and F̂ is some operator applied to it. For instance, in case of the Fisher score [14],
f is the log likelihood, and the operator F̂ produces the first-order derivatives
with respect to the parameters. Another example is the TOP kernel [15] for which
the function f is the posterior log-odds and F̂ is still the gradient operator.

In these cases, the generative score-space approaches help to distill the rela-
tionship between a model parameter θi and the particular data sample. After the
mapping, a score-space metric must be defined in order to employ discriminative
approaches.

In our case, f is the parameter extractor function (i.e., the function that
estimates the parameters of a statistical distribution), and F is the identity
operator. In practice, f extracts the transition parameters (by simple counting)
and the influence coefficients (by gradient descent).

Given a set of M classes of dialogs, each formed by W sequences, the space
I, equipped with the traditional norm and Euclidean metric, could be seen
thus formed by a set of multidimensional class-labeled samples; actually, on
each sequence, a model is trained, that furnishes a set of features/parameters.
Therefore, standard tools of data analysis can be applied. In our case, we want to
highlight the discriminative power of the features in a classification context, and
therefore we apply a feature selection (or ranking) strategy, and, subsequently,
we apply different discriminative classifiers on the features subset. The feature
selection/ranking strategies together with the discriminative classifiers employed
will be detailed in the next section. Discriminative classifiers are preferred here,
because they directly focus on estimating class posterior probabilities instead of
modeling class distributions. Such classifiers should also be less affected by the
curse of dimensionality problem.

In order to stress this aspect, and to assess how strong the improvement in
the classification can be, when dealing with more structured models, we augment
the order of the OIM embedded in the SCP-based generative framework. This
is based on the following factorization:

P (cSt|1St−1,...,
CSt−1,...,

1St−k,...,
CSt−k) =

C∑
d=1

(c,d)θP (cSt|dSt−1,...,
dSt−k)(3)

Encapsulating higher-order OIMs in the SCP-based generative framework is
straightforward. The embedding in I leads to having the ensemble of features
ϕf

F̂
(x) = {{A(c,d)}, Θ, π}, for each model (note that in this case, A(c,d) contains
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Nk+1 values). Considering in particular the number of parameters, we have
C2Nk+1 + C2. For example, fixing N = 4 and C = 2 brings to 132 elements in
the case of second order OIMs.

The rationale under the choice of this score space is that, employing param-
eters as discriminative features, we can understand what portions of a model
differs from the other models at hand. For example, capturing the fact that a
particular state transition is strongly discriminant for a certain class, means that
such transition is peculiar for that model. This property cannot be mimicked by
Fisher score based approaches, where the basic tool is the differentiation with
respect to particular quantities (i.e., the log-likelihood in the Fisher score), that
can suffer of the so-called “wrap-around” problem, where very different data
points may map to the same derivative (see [17] for an example).

4 Experiments

In the experimental section, we employ the same database used for [10]1, adopt-
ing the results reported in their paper as comparison. The code was written in
MATLAB, and the classifier adopted, together with the feature selection strate-
gies considered, were instantiated employing the PRTOOLS [20].

The corpus contains 41 dialogic conversations played by 30 subjects that can
be grouped by age and mood in order to recognize three dialogue classes:

C1: 13 flat semi-structured plus 5 flat unstructured dialogues between two
adults ranging from 22 to 40 years.

C2: 14 flat semi-structured dialogues between a child, ranging from 4 to 6 years,
and an adult.

C3: 9 arguing unstructured dialogues between two adults, ranging from 22 to
40 years

Each sample is approximately 10 min. long. In semi-structured conversation the
moderator, a research-trained female psychologist who did not know the aim
of the experiment, introduced in sequence 5 predetermined topics with fixed
questions in a given order (school time, hobbies, friends, food, family). The class
C3 was extracted by a corpus of phone office conversations driven by an operator
who was aware of the experimental goal, and other subjects (Computer Science
department employees) which were only warned about the possibility that an
arguing issue might arise.

The classification task is performed into four different scenarios:
(A) flat vs dispute - (cat.1 vs cat.3);
(B) flat vs dispute, general - ((cat.1 ∪ cat.2) vs cat.3);
(C) with vs without child - (cat.2 vs cat.1);
(D) all vs all;

For the sake of clarity, let us suppose of having for each class L samples. In
[10], the classification was performed in a generative way, using a Maximum Like-
lihood scenario, and cross-validating via leave-one-out (LOO). In other words, a

1 The database is downloadable by contacting the authors.
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class model was learned with L-1 samples, and testing was performed consider-
ing the last sample. In our case, we also employ LOO cross-validation, but we
learn L-1 models for each class, one for each sample, projecting their scores into
the generative score space, using the last sample as test. After that, we follow
two different directions. First, we perform classification adopting all the features
for each model, selecting different classifiers:

– kernelc [18]: a classifier based on a kernel or dissimilarity representation
defined by Fisher approach;

– knnc [21]: a classifier based on k-nearest neighbor rule;
– parzenc [22]: a parzen classifier, using the best smoothing parameter of the

kernel;

The best performances were reached by the kernelc classifier, and we report only
these results in Fig.2 for brevity.
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Fig. 2. Classification results. In each table, the second column reports the results ob-

tained by the generative approach, the third column shows the use of the kernelc
classifier on all the features in the score space, the fourth column reports the results

obtained after feature selection (H is the number of features considered).

Through the generative score space embedding, the classification performances
augmented, except for the scenario D (all vs all) in the second order case. In-
vestigating the feature space, we found that several parameters where shared
among classes. Therefore, we employ forward feature selection (ffs) based on the
1-nearest-neighbor classification criterion. In this case, the capability of our score
space to explain the data is evident. In all the cases, the generative performances
were outperformed. Please note that each scenario required a different number
of features for reaching the best performance. In particular, the scenario A and
B were the simplest, and required a small set of features. Scenario C and D were
more difficult, and a bigger number of feature were evaluated. It is worth noting
how the second order model produced both a pure generative modeling and a
score space that are less informative than those of order 1 (this considering the
scenario C and D, which are more challenging wrt the first two). In this case, we
can assume that the first order reasoning works better in this kind of scenario.
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In order to understand the importance of all the selected features, we rank
them, employing the featrank 1-nearest-neighbor feature ranking strategy, which
evaluates the performances of each single feature taken separately. In this way,
we highlight the parameters more discriminative for classification. For example,
in the scenario A, in the first-order case, the transition probability between long
speech state (SCP value = 4) of speaker 1 and long silence state of speaker 2
(SCP value = 2) was present as important feature (rank 1). This information
serves to address a quantitative analysis about the nature of the models learned.
In specific, the value of the above transition probability was high for the flat
conversations (0.8), very low (0.1) for the arguing discussion. This mirrors the
fact that a turn taking dynamics of a calm dialog implies that, especially after
a long period of speech of a speaker, the other takes a while for thinking and
elaborating its turn. In the arguing conversation, this dynamics is not present.
Another important feature/parameter we found (rank 2) is that of a short speech
of a subject (SCP value = 3) after a short speech of the other person. This
transition has high probability for the arguing conversation, low for the flat, and
witnesses the fact that in a fight, periods are usually shorter, and the speakers
talk on each other.

5 Conclusions

In this paper, we propose a novel generative score space that operates directly
on the parameters of a generative model, for increasing the classification per-
formance on a social signal application. The peculiarity of our approach is to
extract directly the parameters of the model, instead of relying on differentiating
over the log-likelihood. This allows to highlight better the importance of the pa-
rameters, by means of feature selection/ranking strategies. This leads to higher
classification performance thanks to discriminative reasoning on the selected fea-
tures, and to understand better the data modeled. The future perspective is to
better characterize theoretically such space, reasoning on expected classification
bounds that can be achieved with it.
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Abstract. Building on the ideas of Viola-Jones [1] we present a frame-

work for training cascades of boosted ensembles (CoBE) which intro-

duces further modularity and tractability to the training process. It

addresses the challenges faced by CoBE frameworks such as protracted

runtimes, slow layer convergences and classifier optimization. The frame-

work possesses the ability to bootstrap positive samples and may in turn

be extended into the domain of incremental learning. This paper aims

to address our framework’s susceptibility to overfitting with possible so-

lutions. Experiments are conducted on face detectors using the boot-

strapping of large positive datasets and their accuracy, with respect to

overfitting, is examined.

Keywords: cascades of boosted ensembles, AdaBoost, classification,

classifier training, face detection.

1 Introduction

Face detection has received much attention in recent years in the field of com-
puter vision. Though a number of notable face detectors with accurate and fast
execution runtimes in controlled environments have been developed, the problem
of developing robust face detectors that operate in variable environments is still
an open problem.

The most successful methods so far have been extensions of the seminal work
by Viola-Jones [1], which combined AdaBoost as the learning algorithm together
with Haar-like features that can be computed rapidly through integral images.
The key feature of this detector was the decomposition of a monolithic ensemble
of boosted weak classifiers into cascades.

Despite the successes achieved using cascades of boosted ensembles in both
accuracy and real-time performance, one of the greatest obstacles to their wider
proliferation when deployed in face detection or similarly computationally in-
tensive domains, lies in their protracted training runtimes [2]. Though massive
feature spaces are an obvious contributing factor, particularly as dataset sizes
increase [3], other factors are slow training convergences [1] and limited classifier
optimization capabilities [4]. Additionally, the lack of positive sample boostrap-
ping capabilities of CoBEs has meant that all positive samples needed to be

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 640–649, 2010.
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learned simultaneously, thus prohibiting the usage of massive positive datasets.
Lastly, the limited abilities of the CoBE frameworks to learn incrementally also
leads to significant total training runtime overheads in instances where it is not
feasible, requiring the re-training of entire classifiers each time new and relevant
datasets become available.

[3] minimize the problem of massive feature spaces by applying statistical
methods and assumptions to it regarding its distribution and achieve a dramatic
reduction in the amount of time required to train each weak classifier while [5]
employs feature filtering. [6] attempted to accelerate the cascade layer conver-
gence speed by strengthening the discriminatory ability of the feature types.
Alternatively, [7] and others have modified the AdaBoost learning algorithm
to produce variants with same intentions, however none have significantly con-
tributed to a training runtime reduction in respect to faster layer convergences.
Automating the optimization of cascade parameters remains an unsolved prob-
lem though [4] provided significant contributions.

Only recently has research [8,9] surfaced with methods to enable positive
sample bootstrapping. While, [10] introduces on-line incremental learning using
AdaBoost implemented using neural networks rather than CoBEs.

The PSL (Parallel Strong classifier within the same Layer) training framework
introduced by Barczak et al [11] originally sought to address the convergence
bottleneck during the training of cascade layers. However, the modularity of
the approach also simplified cascade optimization. Moreover, it provided the
basis for addressing the issue of bootstrapping positive samples, seen in initial
experiments on the Bootstrapped Dual-Cascaded framework (BDC) [12], as well
as for further extensions that enable incremental learning.

The shortcomings of the PSL-based frameworks, have been an elevation in
false detection rates due to a tendency to overfit. This characteristic has been
more evident in rare-event domains like face detection where exceptionally low
false positive rates are needed in order to produce practical detectors.

The purpose of this paper is to explore the causes of overfitting in PSL-
based frameworks and to present modifications to them which preserve their
ability to rapidly train real-time execution-capable classifiers. In order to provide
a thorough analysis of the overfitting issue, this paper will make use of the
face detection classifiers from [12], which were created using the positive sample
bootstrapping method (BDC) and will compare them with classifiers trained
using the modified BDC framework designed to address the overfitting.

The structure for this paper is as follows: Section 2 sets forth the fundamen-
tal ideas of modularizing CoBE training using the PSL-based method. Section
3 discusses extensions to PSL which led to the development of the BDC frame-
work that enabled positive sample bootstrapping. The same section explores
the framework’s ability to implement incremental learning. Following sections
present the analysis of the occurrence of overfitting in these frameworks and
propose a solution to it. Subsequent sections explain the implementation of the
experiments followed by their analysis and a conclusion.
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2 PSL Training Framework

The architecture of the PSL framework can be seen in Figure 1b and is con-
trasted with the standard cascading approach of Viola-Jones in Figure 1a. The
PSL architecture extends the standard cascading structure by introducing an
additional nested cascade within each layer of a strong classifier, thus creat-
ing a quasi two dimensional cascade structure. While the Viola-Jones approach
executes an independent round of AdaBoost training for each layer, the PSL
framework executes multiple independent rounds of AdaBoost within each layer
and in the process constructs a complementing cascade with an alternate goal.
We refer to each layer of an internal cascade as an intra-layer stage.

Fig. 1. a) The standard cascade structure of Viola-Jones. b) the PSL structure [11].

Whereas the cascading of the Viola-Jones method focuses on rejecting neg-
ative training samples, the intra-layer cascading of the PSL framework focuses
on correctly predicting positive samples. Thus, the underlying principle found in
the Viola-Jones method with respect to its approach to handling more difficult
negative samples with each succeeding layer, is replicated to the positive sam-
ples in the internal stage-to-stage propagation. The propagation of the positive
training samples of the PSL framework is seen in Figure 2a. As the intra-layer
cascade of stages is constructed, correctly predicted positive samples are removed
from succeeding stages while the misclassified positives are retained until all the
positive samples have been correctly predicted. By removing correctly predicted
positives, faster layer convergences are realized, while 100% hit rates are attained
without artificial threshold adjustments, thus ultimately resulting in accelerated
overall training runtimes.
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Fig. 2. a) The propagation of positive training samples within the cascade of PSL

stages inside a layer. 1 b) The usage of negative training samples within the cascade

of PSL stages inside a layer.

During training, all negative training samples propagate to each stage irre-
spective of how successfully previous stages have learned to predict them as seen
in Figure 2b. Each stage is assigned a target to learn to reject 50% of the negative
samples and to achieve a 100% hit rate. However, a key constraint in the form
of a maximum number of weak classifiers is added to each stage which not only
accelerates layer convergences but also simplifies classifier optimization through
the variation in size of this constraint at different layers.

At detection time, the classification process also becomes modularized and
more efficient. A candidate sample is predicted as a negative by a layer only if
all nested stages within it classify it as a negative. A sample is predicted as a
positive once any nested stage predicts it as a positive thereby not requiring the
computation of the remaining internal stages.

3 Positive Sample Bootstrapping

The BDC framework builds upon the concepts of the PSL structure and ex-
tends it in order to implement a positive sample bootstrap capability. Unlike the
positive sample bootstrapping approaches of [8,9], the BDC training framework
utilizes the modularity offered by the PSL’s nested cascade-of-stages to achieve
further malleability. Through a strategy of divide and conquer, massive positive
datasets can be employed while only a fraction of its samples undergo training
at each stage.

The whole negative dataset and a subset of the entire positive dataset consti-
tute the training sets used for each stage of a BDC nested cascade. The positive
sample subset which the learning algorithm sees and trains on explicitly we call
the base set. The entire positive dataset from which new positive samples are
bootstrapped is referred to as the reserve set.

The procedure for intra-layer cascade training can be seen in Algorithm 1. The
training of an intra-layer cascade initiates with randomly selecting a comparably
small subset of positive samples from the reserve set in order to construct the
base set. The base set is then trained against the negative dataset to produce
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Given:

Cn = nth inter-layer layer sub-classifier

Si = ith intra-layer stage sub-classifier

PBi = positive base set used on Si

PR = positive reserve set

fmin = minimum false acceptance rate

dmin = minimum required hit rate set at 100%

WKmax = max number of weak classifiers

randomly select positive samples from PR to create PBi1

train CnSi against PBi until fmin and dmin or WKmax2

validate PR using CnSi and remove from it correctly classified samples3

if all samples in PR have been correctly predicted then start a new layer4

Cn+1 otherwise start new stage Si+1 repeat step 1

Algorithm 1. BDC bootstrapping method for each cascade layer

individual stages. Each stage of this nested cascade is trained with a target
hit rate of 100% and a high rejection rate. As in PSL, the size of each nested
stage is restricted by the maximum number of weak classifiers that can comprise
it. Once this maximum number has been reached, the training for that stage
ceases and a new intra-layer stage begins. The positive bootstrapping procedure
is then initiated. The positive samples in the reserve set are validated against the
resulting stage classifier and all correctly predicted samples are removed from
training subsequent nested stages. The remaining positive samples are randomly
selected to comprise the new base set for the next intra-layer stage together with
all the incorrectly predicted positive samples from the previous stage’s base set.

3.1 Incremental Learning with PSL

The modular nature of the PSL framework, combined with the ideas from BDC
leads to the possibility of implementing effective incremental learning in a novel
approach. Incremental learning can be achieved in this scenario by constructing
additional intra-layer stages trained on new positive samples which are incor-
rectly predicted at each layer. The new stages can then either be appended to
the existing cascade-of-stages or a strategy can be devised to replace less accu-
rate existing stages with new ones. The incremental training would be initiated
on batches of incorrectly predicted positive samples once they reach the min-
imum required number for each base set. The composition of the negative set
is less trivial and has to consist of similar patterns which previous stages in a
layer have learned to predict otherwise false detection rates for a layer would
increase. It is proposed that the negative set comprises of those images which
have up until that cascade layer been misclassified and that a substantially larger
negative dataset be used for incremental learning than that of the initial off-line
training phase.
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3.2 PSL Framework and Overfitting

Experiments in [12] have demonstrated the capability of the BDC framework
to potentially train classifiers on massive positive datasets with relatively small
increases in training runtimes whilst maintaining 100% layer hit rates on the
training data. The face detectors trained in those experiments showed that the
training runtimes using the BDC bootstrapping method result in a fraction of
the runtimes required by standard training structures without bootstrapping.
However, the framework also exhibited a susceptibility to elevate false acceptance
rates which makes it less suitable for rare-event operating domains like face
detection.

Further analysis of the classifiers obtained in [12] has identified varying degrees
of overfitting occurring in final intra-layer stages. The nature of the BDC training
approach delays training most difficult positive samples until the last stages.
These stages often tend to be trained on positive datasets that comprise of a
small number of samples which mostly contain highly unrepresentative patterns
in respect to the overall positive dataset. Figure 3 shows examples of images
trained by first intra-layer stages and contrasted with those learned in latter
stages. The figures point to large concentrations of positive images in final stages
which exhibit extensive variations in illumination and also occlusions of vital
facial features.

Fig. 3. Examples of positive images learned at different points within the cascade-of-

stages on a 15000 sample BDC classifier. Cluster a) stage 1 layer 30 b) last stage layer

30 c) stage 1 layer 42 d) last stage layer 42.

The accuracy of training that takes place in the trailing stages is further
compromised by high weights assigned to the positive samples initially before
each round of boosting. This occurs since an even 50%-50% distribution of total
weights is shared between the positive and negative training sets irrespective
of their sizes. Consequently, as the number of stages in each layer grows, fewer
positive samples remain. This leads to a proportional increase in their weights,
while at the same time, their patterns also become less representative of the
whole dataset.

In order to demonstrate the effects of the final stages on classifiers’ accuracy,
we compared the generalization patterns of classifiers, with and without their
last stages, using receiver operating curves (ROC) in Figures 4a-c. The data
shows improved generalization of truncated classifiers particularly for segments
of the ROC graphs which portray the lower end of false acceptance rates.
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The ROC graphs in Figures 5a-b go a step further and demonstrate the effects
of excluding the last two stages of each cascade. In both instances, an improve-
ment in the generalization of the truncated classifiers is observed indicating that
a degree of overfitting is occurring.

It can be concluded that the effectiveness of each cascade layer is only as
strong as the accuracy of its weakest stage. Overall, the generalization ability
of a BDC classifier can be summarized as being only as strong as the combined
accuracy of all its weakest stages from each layer.

3.3 Anti-overfitting Modifications

Our proposed solution to the problem of overfitting found in the underlying
foundation of the BDC structure, is based on incorporating additional positive
samples into the datasets of the trailing stages of each layer. With this strategy,
our intent is to offset the overfitting brought on by a high concentration of less
representative positives. We propose augmenting the trailing stages of each layer
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with positive samples which have already been correctly predicted by previous
stages. By including these samples into the dataset a degree of protection against
overfitting is expected to be achieved and thus the likelihood of producing more
generalizable intra-layer stages.

The inclusion of redundant positive samples is also expected to have negative
effects. The learning process will become more complicated since the conver-
gence speed of layer targets towards required 100% hit rates will decrease and
a degree of weak classifier redundancy is likely to be introduced. In order to
assist rapid layer convergences, greater weights are initially assigned to rele-
vant positive samples at the beginning of each boosting round. Additionally,
to counterbalance the generation of an exceeding number of intra-layer stages,
the requirement to maintain fixed stage sizes is removed. Instead, the maximum
number of weak classifiers is increased as the number of the misclassified posi-
tive samples, in respect to the size of the base set, decreases. Since generating a
greater number of weak classifiers on a small base set can itself result in overfit-
ting, we also increased the base sets from 500 in prior experiments [12] to 2000
positive samples.

4 Method

The experiments consisted of training face detection classifiers using the modified
BDC structure and comparing it to the classifiers trained by the original naive
BDC structure in [12]. The datasets used on all training were identical as were the
parameters. The total of 15000 facial images were collected from various publicly
available datasets; FERET, Yale Face Database B [13] and the face database
from the Vision Group of Essex University. Three main groups of classifiers were
trained which were divided into 5000, 10000 and 15000 sample datasets. For each
dataset, a classifier was trained with a flexible stage size of 10 weak classifiers.
All classifiers were trained with a base set size of 2000 positives against 2000
negatives extracted from a total of 2500 images which generated millions of
negative sub-windows. An additional set of classifiers using the naive BDC were
trained on base sets of 2000 positive samples in order to isolate the proposed
increase in base sets as the determining factor in addressing overfitting. Finally,
classifiers were trained to attain a 0% training error in a maximum of 100 layers,
using no more than 50 stages per layer.

Testing was performed on the CMU MIT image dataset containing 130 images
which contain 506 positive face images.

5 Results

The BDC classifiers with overfitting adjustments generated training runtimes
that were 15%-20% longer than those of the naive BDC, however they were still
significantly lower than those of the PSL and Viola-Jones. Classifiers trained
on naive BDC with base sets of 2000 produced shortest training runtimes, thus
highlighting a modest additional cost involved in our approach.
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Additionally, the size of the modified BDC classifiers increased over the naive
implementation by 15%-20% extra weak classifiers which is likely to incur a
larger detection runtime cost too. Both structures generated similar numbers
of stages per layer, which ranged from three in earlier layers, through to six as
training became more difficult.

Figures 6a-b show the generalization patterns of the classifiers. In both figures,
it is evident that the modified BDC classifiers have achieved a superior general-
ization over all other classifiers on the CMU MIT test dataset. It is worth noting
that the weakest accuracy was exhibited by the naive BDC classifiers trained on
base sets of 2000 positive samples. This eliminates the possibility of attributing
improvements in accuracy of the modified BDC to solely its increase in base set
sizes, but instead demonstrates that the solution to overfitting was the result of
a combined new strategy.

6 Conclusion

In this paper we demonstrated how classifier training using CoBEs can be modu-
larized using the PSL framework, thereby addressing issues of slow convergence
rates and protracted training runtimes, while eliminating many of the post-
training classifier optimization overheads. The framework’s ability to implement
positive sample bootstrapping on large datasets was put forward and its poten-
tial to enable incremental learning was also introduced. A thorough analysis of
the framework’s susceptibility to overfit data was presented, to which an effective
solution was proposed.

Future research will focus on extending PSL to enable incremental learning.
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Abstract. The method we present aims at building a weighted linear combi-
nation of already trained dichotomizers, where the weights are determined to
maximize the minimum rank margin of the resulting ranking system. This is par-
ticularly suited for real applications where it is difficult to exactly determine key
parameters such as costs and priors. In such cases ranking is needed rather than
classification. A ranker can be seen as a more basic system than a classifier since
it ranks the samples according to the value assigned by the classifier to each of
them. Experiments on popular benchmarks along with a comparison with other
typical rankers are proposed to show how effective can be the approach.

Keywords: Margin, Ranking, Combination of Classifiers.

1 Introduction

Many effective classification systems adopted in a variety of real applications make a
proficient use of combining techniques to solve two class problems. As a matter of fact
the combination of classifiers is a reliable technique to improve the overall performance,
since it exploits the strength of the classifiers to be combined while reduces the effects of
their weaknesses. Moreover the fusion of already available classifiers gives the user the
opportunity to obtain simply and quickly an optimized system using them as building
blocks, thus avoiding to restart from the beginning the design of a new classification
system.

Several methods have been proposed to combine classifiers [11] and, among them,
one of the most common technique is certainly the linear combination of the outputs of
the classifiers. Extended studies have been conducted on this issue [8], and in particular
have considered the weighted averaging strategies which are the basis of some popular
algorithms like Bagging [2] or Boosting [7]. Boosting techniques build a classifier as
a convex combination of several weak classifiers; each of them is in turn generated by
dynamically reweighing training samples on the basis of previous classification results
provided by the weak classifiers already constructed.

Such approach revealed to be really effective in obtaining classifiers with good gener-
alization characteristics. To this regard, the work of Schapire et al. [13] has analyzed the
boosting approach in terms of margin maximization, where the margin is a measure for
the accuracy confidence of a classifier which can be considered as an important indica-
tor of its generalization capacity. They calculated an upper bound on the generalization
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error of resulting classifier and showed how the increase of the margin corresponded to
an improvement of such bound. However, it is worth noting that this framework is ap-
plicable only in the cases where the accuracy is the most suitable index to evaluate the
performance of the classification system, i.e. when the values of the classification costs
and of the priors are known and fixed. For applications for which these parameters are
not precisely known or are changing over time (imprecise environments), the accuracy
becomes useless and other indices should be preferred such as the Area under the ROC
curve (AUC). To understand the reason for this preference, we have to recall that, when
the accuracy is used, we assume that a threshold is fixed on the classifier output on the
basis of given costs and priors; accordingly, the accuracy measures the probability that
the samples to be classified are correctly ordered with respect to the threshold. On the
other side, the AUC measures the probability that a classifier correctly ranks two sam-
ples belonging to opposite classes and does not take into account any threshold; in other
words, AUC provides an evaluation of the classifier quality independent of a particular
setting of costs/priors.

In this framework, the concept of margin cannot be used and the rank margin should
be employed instead, which gives a measure of the ranking confidence of the classifier.
On this basis, Rudin et al. [12] have studied the generalization capability of RankBoost
[6], a learning algorithm expressly designed to build systems for ranking preferences,
and defined some bounds related to the rank margin value reached during the training
phase. However these papers focus exclusively on how to build a new classifier from
the scratch.

The aim of this paper is different from [12] and [6] since it presents a method to build
a linear combination of already trained dichotomizers. The weights are determined in
such a way to maximize the rank margin of the resulting system and thus to optimize
its performance in terms of AUC. Several experiments performed on publicly available
data sets have shown that this method is particularly effective.

The paper has been organized as follows: in section 2 the concepts of margin and
rank margin are briefly explained together with their characteristics, while section 3
presents the method for calculating the weights of the linear combination based on the
rank margin maximization. In section 4 experiments on some popular benchmark data
are illustrated. Finally, in section 5 we draw some conclusions and propose some future
developments.

2 Margins and Ranking

Let us consider a two class problem defined on a training set S = (X,Y ) containing
N samples X = {xi} associated to N labels Y = {yi} with yi ∈ {−1,+1} where
i = 1, · · · , N . A classifier f can be described as a mapping from X to the interval
[−1,+1] such that a sample x ∈ X is assigned to one of the classes according to
sgn (f (x)). If we assume that yi is the correct label of xi, the sample margin (or hard
margin) associated to xi is given by yif(xi). As a consequence, f provides a wrong
prediction for xi if the sample margin is negative.

Generally the margin of a classifier (or minimum margin) f can be defined as the
minimum margin value over the training set: μ(f) = mini(yif(xi)). The classifier
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margin has a straightforward interpretation [4]: it is the distance that the classifier can
travel in the feature space without changing the way it labels any of the sample points
and thus, it represents one of the most relevant factor for improving generalization.

However, the concept of margin can not be used when we are in an imprecise envi-
ronment where priors and costs are not known. In such a case a ranker becomes more
useful than a classifier. The notion of ranking is germane to that of classification. In
particular, ranking can be seen as an action on data more basic than classification: if
no threshold is imposed on the output of the classifier (i.e. we are evaluating its perfor-
mance independently of class priors and costs), the only possible operation is to rank
the samples according to the value assigned by the classifier to each of them. Thus, the
margin of a classifier should be replaced by the margin of the ranking function. To illus-
trate this point, let us define crucial pair and indicate with the concise notation (i, k) a
pair of samples xi ∈ X and xk ∈ X associated respectively to a positive and a negative
label yi = +1 and yk = −1. The term crucial is due to the fact that, for this kind of
pairs, the classifier should guarantee that f(xi) > f(xk), while this is not required for
two samples belonging to the same class. On this basis, the crucial pair margin can be
defined as the difference f(xi)−f(xk); it is evident that a negative value for the margin
indicates that the corresponding pair is erroneously ranked. Analogously to the sample
margin, it is possible to define the margin of the ranking function or rank margin as the
minimum value of the margin over all the existing crucial pairs:

ρ(f) = min
(i,k):

i = 1, . . . , N+

k = 1, . . . , N−

(
f(xi) − f(xk)

)
. (1)

As for classification, the rank margin theory has been used as a tool to analyze the
generalization ability of learning algorithm for rankers based on boosting techniques.
An algorithm belonging to this category is RankBoost [6] where the redistribution of
the weights on the crucial pairs is done after the weak learners have been employed for
ranking the pairs. As for AdaBoost [13], it has been proved that there is a strict relation
between the generalization capability of RankBoost and its rank margin maximization.
It is worth noting, however, that this method does not rely on a global optimization of
the rank margin, but works locally. In fact, at each iteration of Rankboost, the crucial
pairs with the minimum rank margin receive the highest weights and thus affect the
construction of the whole ranker. Notwithstanding, this process converges towards the
maximization of the rank margin [12].

Another issue to be pointed out is that this algorithm only constructs from the scratch
an ensemble of classifiers as different instances of a same base learning algorithm.
Instead, as far as we know, the potential effectiveness of such a combination has not
yet been examined when the classifiers of the ensemble are built independently and not
according to a boosting approach.

3 Rank Margin Maximization via Linear Programming

In this section we extend the concept of rank margin to the combination of K already
trained classifiers fj (x) → [−1,+1] with j = 1, . . . ,K . Let us consider the N+ and
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N− samples of the training set X. The rank margin provided by the j-th classifier over
the crucial pair (i, k) is defined as:

ρ(i,k)(fj) = fj (xi) − fj (xk) , i = 1, 2, . . . , N+, k = 1, 2, . . . , N− (2)

i.e., fj correctly ranks xi iff ρ(i,k)(fj) > 0. Let us now consider the linear combination
of the K classifiers:

fc (x) =
K∑

j=1

wjfj(x) (3)

with wj ≥ 0 and
K∑

j=1

wj = 1. The rank margin provided by fc over the crucial pair

(i, k) is thus

ρ(i,k)(fc) =
K∑

j=1

wjfj(xi) −
K∑

j=1

wjfj(xk) =
K∑

j=1

wjρ(i,k)(fj) (4)

while the margin of fc is ρ = min
(i,k)

ρ(i,k)(fc). Actually the margin ρ depends on the

weights w = {w1, w2, · · · , wK} and thus such weights can be chosen to make the
margin as large as possible. In this way we have a max-min problem which can be
written as:

maximize

(
min

i

K∑
j=1

wjρ(i,k)(fj)

)

subject to
K∑

j=1

wj = 1

wj ≥ 0 j = 1, 2, . . . ,K

The problem can be recast as a linear problem [15] if we introduce the margin ρ as a
new variable:

maximize ρ

subject to
K∑

j=1

wjρ(i,k)(fj) ≥ ρ i = 1, 2, . . . , N+, k = 1, 2, . . . , N−

K∑
j=1

wj = 1

wj ≥ 0 j = 1, 2, . . . ,K

If we collect the margins in a N+N− ×K matrix R = {ρ(i,k)(fj)}, the weights in a
vector w and define et the column vector consisting of t ones and zt the column vector
consisting of t zeros, the problem can be written in block-matrix form:
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maximize
[
zT

K 1
] [w

μ

]
subject to [

−R eN

eT
N 0

] [
w
ρ

]
≤
=

[
zN

1

]
w ≥ zK

As a final remark, it is worth noting that to solve this problem we could use any one of
the numerous linear programming methods available. However, it should be taken into
account that the number of constraints could be very large since it equals the number of
crucial pairs in the training set.

4 Experiments

Ten publicly available two class data sets were chosen from the UCI machine learning
repository [1] to evaluate the performance of our approach. A summary of the employed
data sets is reported in table 1. The features were previously scaled in order to have zero
mean and unitary standard deviation. To avoid any bias in the comparison, 10 runs of a
multiple hold out procedure have been performed on all the data sets. Each data set has
been divided in three parts: a training set for the dicothomizers, a tuning set to train the
combiner in order to have the optimal weights and a test set to evaluate the performance.

Modest AdaBoost [16] has been chosen as base classifier. Its algorithm adopts a
CART decision tree with a maximum depth equal to 3 and decision stumps as nodes
functions and a number of boosting steps equal to 10. To have a lower correlation be-
tween the built classifiers a random, but uniformly distributed, weight initialization has
been done.

In order to compare the combining rules we considered the AUC as a performance
measure. AUC values are unitary when all the instances are correctly interpreted by
the learner, i.e. what is called a separable case. In terms of ranking it means that the
algorithm is consistent with all the crucial pairs: all the positive instances are ranked

Table 1. Summary of the used data sets

Name Samples Features % N+ % N−

Australian 690 14 44.49 55.51
Balance 625 4 54.01 45.99
Breast 699 16 65.01 34.99

Cleveland 303 13 54.13 45.87
Contraceptive 1473 9 42.70 57.30

Hayes 132 4 50.39 49.61
Housing 506 12 49.21 50.79

Ionosphere 351 34 64.10 35.90
Liver 345 6 57.97 42.03
Sonar 260 60 53.37 46.63
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Table 2. AUCs obtained using 5 classifiers

Data Sets RankMargin RankBoost SVM
Australian 0.935(0.008) 0.920(0.008) 0.929(0.009)

Balance 0.984(0.001) 0.959(0.016) 0.986(0.004)
Breast 0.991(0.001) 0.979(0.003) 0.979(0.010)

Cleveland 0.885(0.010) 0.840(0.026) 0.858(0.025)
Contraceptive 0.751(0.024) 0.752(0.013) 0.762(0.012)

Hayes 0.885(0.014) 0.865(0.030) 0.893(0.039)
Housing 0.942(0.007) 0.924(0.012) 0.940(0.012)

Ionosphere 0.962(0.003) 0.927(0.011) 0.944(0.019)
Liver 0.737(0.033) 0.707(0.035) 0.721(0.032)
Sonar 0.892(0.016) 0.837(0.033) 0.875(0.036)

Table 3. AUCs obtained using 7 classifiers

Data Sets RankMargin RankBoost SVM
Australian 0.932(0.007) 0.920(0.008) 0.921(0.010)

Balance 0.984(0.001) 0.959(0.016) 0.985(0.004)
Breast 0.991(0.001) 0.979(0.003) 0.972(0.010)

Cleveland 0.884(0.007) 0.840(0.026) 0.847(0.022)
Contraceptive 0.753(0.015) 0.751(0.012) 0.758(0.011)

Hayes 0.888(0.010) 0.864(0.030) 0.878(0.025)
Housing 0.942(0.005) 0.924(0.012) 0.932(0.014)

Ionosphere 0.962(0.002) 0.927(0.011) 0.931(0.020)
Liver 0.737(0.021) 0.707(0.035) 0.702(0.034)
Sonar 0.891(0.012) 0.837(0.033) 0.863(0.037)

above the negative. Indeed an higher measure of the AUC is a quality factor for our
combining rules.

Two classifiers notable for their ranking capacity have been adopted for a comparison
with our RankMargin technique: RankBoost and Support Vector Machines (SVMs).
The first one has been implemented by setting T = 100 iterations using a Matlab
toolbox publicly available [3], the other one has been implemented by using SVMlight

[10] with a linear kernel and default parameters.
To assess the performance of our method in comparison with the other considered

combination rules, we have employed the Friedman Two-Way Analysis of Variance by
Ranks test [14,5], a statistical non-parametric test which evaluates if in a set of L sam-
ples, at least two of the samples represent populations with different median value1. In
this case, the null hypothesis corresponds to a not statistically significant difference in
performance among the combination rules. When the null hypothesis is rejected, the
Holm’s step-down procedure [9,5] is applied as a post− hoc test to identify which rule

1 We chose this test since its parametric counterpart, i.e. ANOVA, requires that the samples are
drawn from normal distributions and the distributions have equal variance [14] and this is not
assured in our test bed.
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Fig. 1. Rank margin distributions graphs for the employed combination rules on the Contraceptive
data set when combining 5 (a) and 7 (b) classifiers. The scale on y-axis is logarithmic.
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Fig. 2. Rank margin distributions graphs for the employed combination rules on the Liver data
set when combining 5 (a) and 7 (b) classifiers. The scale on y-axis is logarithmic.
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performs significantly better or worse than the proposed method. Both the tests have
been performed with α = 0.01.

Results in terms of mean AUC (and standard deviation) are shown in tables 2 and 3
which differs for the number of combined classifiers (respectively 5 and 7). A bolded
value means that the corresponding ranker has a statistically better performance on such
data set.

Performance of our algorithm proved to be better for the majority of examined data
sets. In particular in only 3 cases SVMs gave better performance when combining 5
classifiers, while there was a tie for the Housing data set. When combining 7 classifiers
the results are even better: 8 out of 10 data sets. It is worth noting that RankBoost never
outperforms our method. Some final considerations could be made about the compar-
ison with RankBoost that never outperforms our method. Since RankBoost algorithm
is not conceived to maximize the margin of the rank function at each iteration, such
result is an empirical proof of how RankMargin gives an improvement of the overall
performance of a ranker.

A second experiment has been done to show the behavior of the rank margin based
combination rule on the training set. Accordingly we plotted the cumulative distribu-
tions of rank margins on the training set provided by RankMargin and the other em-
ployed fusion rules. In fig. 1 and 2 we report the margin cdfs for the proposed approach
in comparison with the other rules respectively for the Contraceptive and Liver data sets
when using 5 and 7 Modest AdaBoost as base classifiers.

The first graphs, both (a) and (b), show that the SVM gives better results on Con-
traceptive data set. This is perfectly coherent with the test results shown in tables 2
and 3. It can be observed how SVM maintains the same trend observed for training set
when predicting test results, thus SVM keeps performing better of RankMargin in this
case. RankBoost instead performs worse of both approaches even if the minimum rank
margin on the training set is comparable with the other two techniques.

On the other hand in the second graphs it is possible to note that RankBoost exhibits
clearly higher performance than the other approaches in terms of minimum rank mar-
gin. This is probably due to the fact that the boosting approach focuses on the most
difficult samples of the training set to be classified giving almost perfect results on
them. Another possible reason is given by the non linear nature of the combination built
by RankBoost which could increase the minimum rank margin much more than SVM
and RankMargin. Nevertheless, the higher complexity of the RankBoost combination
reveals on the test set a worse generalization capability with respect to both SVM and
RankMargin. These latter methods construct both a linear combination and thus the dis-
tribution of the margins are quite similar. However, SVM provide an optimal separating
hyperplane with equal margins from the two classes, while RankMargin has not such a
constraint of symmetrical margins and this reflects in a better generalization capability.

5 Conclusions and Future Works

In this paper we have studied a new algorithm to combine scores of base classifiers.
Such algorithm aims at the maximization of the margin for the ranking function in
order to accomplish a better performance in terms of AUC for the linear combination
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of already trained dichotomizers. Results on the UCI data sets proved that our approach
is reasonable and could be extended to plenty of applications.

Future developments will focus on the application of such technique to highly un-
balanced data sets where AUC, which is independent from prior probabilities and costs,
is a good performance measure, e.g. biometrics data. Another development can be in
the relaxation of the constraint in the rank margin maximization by introducing slack
variables that could be useful to face with noisy data.
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DAEIMI - Università degli Studi di Cassino

via G. Di Biasio 43, 03043 Cassino, Italy

{mt.ricamato,tortorella}@unicas.it

Abstract. In recent years, classifier combination has been of great in-

terest for the pattern recognition community as a method to improve

classification performance. The most part of combination rules are based

on maximizing the accuracy and, only recently, the Area under the ROC

curve (AUC) has been proposed as an alternative measure. However,

there are several applications which focus only on particular regions of

the ROC curve, i.e. the most relevant for the problem. In these cases,

looking on a partial section of the AUC is the most suitable approach to

adopt. In this paper we propose a new algorithm able to maximize only

a part of the AUC by means of a linear combination of dichotomizers.

Moreover, we empirically show that algorithms that maximize the AUC

do not maximize the partial AUC, i.e., the two kinds of maximization

are independent.

Keywords: Classifiers combination, ROC curve, partial AUC.

1 Introduction

Classifier combination has received considerable attention in the last years be-
coming an established technique for improving classification performance. In a
classifier combination system, the output information of all the individual clas-
sifiers are combined in order to improve their performance. It has been proved
that a successful combination rule exploits variations between individual classi-
fiers, using their strengths to take advantages and to decrease their weaknesses.
Among the various classifier combination methods previously proposed, linear
classifier combination has been used mainly for its simplicity and good compre-
hensibility. In particular, there are some methods designed to increase the Area
under the ROC curve (AUC), a more suitable performance measure than the
classification accuracy [1], specially for those applications characterized by im-
precise environment or imbalanced class priors [2]. AUC reduces an entire ROC
curve to a single quantitative index showing classifier performance over all the
false positive rate (FPR) values. However, there are many applications that are
interested only to a particular range of FPRs. For example, in a biometric au-
thentication system used to identify people, or to verify the claimed identity of
registered users when entering in a protected area, a false positive is considered

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 660–669, 2010.
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the most serious error, since it gives unauthorized users access to the systems
that expressly are trying to keep them out. Another example is given by medical
screening tests, where a false positive involves more expensive and sophisticated
exams in order to be sorted out. In both cases, the FPR values considered are
the ones that correspond to lower values, and the partial AUC [3] is the most
indicate index to use, since it allows us to focus on particular regions of the
ROC space. The partial AUC (pAUC) has already been used as a performance
measure in applications for screening research [4] [5], but it has been given little
attention to it as a performance measure in machine learning in order to build
classification systems and to evaluate learning algorithms.

Our main purpose is to introduce the partial AUC measure and use it in
the particular context of classifiers combination. Specifically, we propose a new
algorithm able to find the weight vector in a linear combination of K ≥ 2
dichotomizers, such that the pAUC is maximized.

The paper is organized as follow. The next section presents the pAUC index
and its main properties. The proposed algorithm is analyzed in section 3 for a
combination of two dichotomizers, and in section 4 for a combination of more
than two dichotomizers. The performed experiments and obtained results are
shown in section 5, while section 6 concludes the paper.

2 ROC Analysis and Partial Area under the ROC Curve

Receiver Operating Characteristics (ROC) graphs are useful for visualizing, or-
ganizing and selecting classifiers based on their performance. Given a two-class
classification model, the ROC curve describes the trade-off between the fraction
of correctly classified actually-positive cases (True Positive Rate, TPR) and the
fraction of wrongly classified actually-negative cases (False Positive Rate, FPR),
giving a description of the performance of the decision rule at different operating
points.

In some cases, it is preferable to use the Area under the ROC Curve (AUC) [6]
[7], a single metric able to summarize the performance of the classifiers system:

AUC =
∫ 1

0

ROC(t)dt (1)

Remembering that some applications do not use all the range of false positive
rates, it is worth to introduce another summary index that considers only those
FPRs between t0 and t1, called partial AUC (pAUC), and defined as:

pAUC =
∫ t1

t0

ROC(t)dt (2)

where the interval (t0, t1) denotes the false positive rates of interest. Its choice
depends on the particular application, and it is related to the involved cost of a
false positive diagnosis.
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Moreover, the pAUC can be also defined as the probability that a classifier
will rank a randomly chosen positive instance higher than a randomly chosen
negative one, such that this latter belongs to the 1−tk quantiles1 range

(
qt1
y , qt0

y

)
:

pAUC = P
{
xi > yj , yj ∈

(
qt1
y , qt0

y

)}
(3)

where xi = f(pi) and yj = f(nj) are the outcomes of the dichotomizer f on a
positive sample pi and a negative sample nj .

In order to evaluate the pAUC of a dichotomizer avoiding to perform a nu-
merical integration on the ROC curve, we use the non-parametric estimator [3],
which is defined as:

pAUC =
1

mPmN

mP∑
i

mN∑
j

V
qt0

y ,qt1
y

ij (4)

where mP and mN are the cardinalities of the positive and negative subsets,
respectively, and

V
qt0

y ,qt1
y

ij = I{xi > yj , yj ∈
(
qt1
y , qt0

y

)
} =

⎧⎨⎩
1 if xi > yj

∧
yj ∈

(
qt1
y , qt0

y

)
;

0.5 if xi = yj

∧
yj ∈

(
qt1
y , qt0

y

)
;

0 if xi < yj

∧
yj ∈

(
qt1
y , qt0

y

)
.

(5)

Since the most part of biometric and medical applications [8] work on false
positive rate close to the zero value, for the following analysis we consider t0 = 0.

In this case, equation 5 can be rewritten as V
qt1

y

ij = I{xi > yj , yj > qt1
y }2.

3 Linear Combination of Two Dichotomizers

Let us consider a set T of samples, and define the outputs of two generic di-
chotomizers fh and fk on two positive and negative samples pi and nj :

xh
i = fh(pi), xk

i = fk(pi), yh
j = fh(nj), yk

j = fk(nj).

The pAUCs for the two dichotomizers, considering the FPR interval (0, t1), are:

pAUCh =

mP∑
i=1

mN∑
j=1

I
(
xh

i > yh
j , yh

j > qt1
yh

)
mP mN

, pAUCk =

mP∑
i=1

mN∑
j=1

I
(
xk

i > yk
j , yk

j > qt1
yk

)
mP mN

(6)

It is worth to note that finding the linear combination of two generic dichotomiz-
ers flc = αhfh + αkfk such that maximizes the pAUC, is equivalent to find
the weight α = αk

αh
∈ (−∞,+∞) which maximizes the pAUC for flc = fh + αfk.

Therefore, considering the linear combination, the outcomes on pi and nj are:

ξi = flc(pi) = xh
i + αxk

i , ηj = flc(nj) = yh
j + αyk

j . (7)

1 The quantile function returns the value below which random draws from the negative

population would fall, (1 − tk) × 100 percent of the time.
2 If t0 = 0, then the 1 − t0 quantile qt0

y is equal to +∞.
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and the pAUC is:

pAUClc =
1

mPmN

⎛⎝mP∑
i=1

mN∑
j=1

I
(
ξi > ηj ,

(
ηj > qt1

η (α)
))⎞⎠ (8)

In order to find the value αopt which maximizes pAUClc, let us analyze the term
I(ξi > ηj) without considering the constraint on the quantile. In particular, let
us remind from [9] how it depends on the values of I(xh

i , y
h
j ) and I(xk

i , y
k
j ):

– I(xh
i , y

h
j ) = 1 and I(xk

i , y
k
j ) = 1. In this case the two samples are correctly

ranked by the two dichotomizers, and I(ξi > ηj) = 1.
– I(xh

i , y
h
j ) = 0 and I(xk

i , y
k
j ) = 0. In this case neither dichotomizer ranks cor-

rectly the samples and thus the contribution for the pAUC is 0.
– I(xh

i , y
h
j ) xor I(xk

i , y
k
j ) = 1. Only one dichotomizer ranks correctly the sam-

ples while the other one is wrong. In this case the value of I(ξi > ηj) depends
on the weight α.

The subset T can be divided into four subsets: Thk, Thk̄, Th̄k and Th̄k̄ defined as:

Thk = {(pi,nj)|I(xh
i , y

h
j ) = 1 and I(xk

i , y
k
j ) = 1},

Th̄k = {(pi,nj)|I(xh
i , y

h
j ) = 0 and I(xk

i , y
k
j ) = 1},

Thk̄ = {(pi,nj)|I(xh
i , y

h
j ) = 1 and I(xk

i , y
k
j ) = 0},

Th̄k̄ = {(pi,nj)|I(xh
i , y

h
j ) = 0 and I(xk

i , y
k
j ) = 0}

Now, let us consider the constraint on the negative samples related to the quan-
tile, and define the following set:

Γα = {(pi,nj) ∈ P ×N |yh
j + αyk

j > qt1
η } (9)

where qt1
η is the 1− t1 of η, which depends on the weight α. If we define the sets

T ′
hk, T

′
h̄k
, T ′

hk̄
, T ′

h̄k̄
as:

T ′
hk = Thk ∩ Γα, T ′

h̄k = Th̄k ∩ Γα,

T ′
hk̄ = Thk̄ ∩ Γα, T ′

h̄k̄ = Th̄k̄ ∩ Γα,

the expression for pAUClc in equation 8 can be written as:

pAUClc =
1

mPmN

( ∑
(pi,nj)∈T ′̄

hk̄

I(ξi > ηj) +
∑

(pi,nj)∈T ′
hk

I(ξi > ηj)

+
∑

(pi,nj)∈T ′
hk̄

∪T ′̄
hk

I(ξi > ηj)

)
=

0 + γ(α) + ν(α)
mPmN

.

and the optimal weight is given by:

αopt = argmax
α

(γ(α) + ν(α)) . (10)
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In order to find αopt, let us recall that I(ξi > ηj) = 1 only if:(
xh

i − yh
j

)
+ α
(
xk

i − yk
j

)
> 0 (11)

such that: yh
j + αyk

j > qt1
η (α). If we define Δh

ij = xh
i − yh

j and Δk
ij = xk

i − yk
j and

considering the three subsets T ′
hk, T

′
hk̄
, T ′

h̄k
, we obtain three different constraints:

α <−
Δh

ij

Δk
ij

if (pi,nj)∈ T ′
hk̄, α >−

Δh
ij

Δk
ij

if (pi,nj) ∈ T ′
h̄k, α >−

Δh
ij

Δk
ij

if (pi,nj) ∈ T ′
hk.

The pAUC is maximized when the number of pairs satisfying the previous con-
straints is maximized. Introducing the cumulative functions as follow:

F ′
hk̄(α) = card

(
(pi,nj) ∈ T ′

hk̄

∣∣− Δh
ij

Δk
ij

> α

)

F ′
h̄k(α) = card

(
(pi,nj) ∈ T ′

h̄k

∣∣− Δh
ij

Δk
ij

< α

)

F ′
hk(α) = card

(
(pi,nj) ∈ T ′

hk

∣∣− Δh
ij

Δk
ij

< α

)

then, the function to be maximized is defined as:

γ(α) + ν(α) = F ′
hk̄(α) + F ′

h̄k(α) + F ′
hk(α) (12)

It is worth to note, from the previous analysis, that F ′
hk̄

and F ′
h̄k

depend on the
interaction between the pair values and α, while F ′

hk only depends on α, due to
the quantile values.

The optimal values can be easily found by means of linear search:

αopt = arg max
α

(
F ′

hk̄(α) + F ′
h̄k(α) + F ′

hk(α)
)

(13)

4 Linear Combination of K > 2 Dichotomizers

The linear combination of K > 2 dichotomizers is defined as:

flc(x) = α1f1(x) + α2f2(x) + ... + αKfK(x) =
K∑

i=1

αifi(x) (14)

In order to find the optimal weight vector αopt = (α1, ..., αK) that maximizes the
pAUC associated to flc(x), the method described in the previous section cannot
be generalized in a computational feasible algorithm. Therefore, the proposed
algorithm is based on the approximation of the solution by dividing the whole
K-combination problem into a series of feasible pairwise combination problems
using the greedy approach.
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Fig. 1. Example of greedy approach steps

Table 1. XM2VTS database properties

# Sample # Positive # Negative

Validation Set 40600 600 40000

Test Set 112200 400 111800

Table 2. pAUC of each classifier, calculated in step 1 and step 2 in fig. 1

(a) Step 1

f1 f2 f3 f4

pAUC 0.093 0.095 0.094 0.096

(b) Step 2

flc1 f1 f3

pAUC 0.097 0.093 0.094

The greedy approach is a suboptimal method which uses K − 1 steps of a
simpler algorithm, obtaining the optimum weights only after the K − 1 steps.
In particular, in each step two dichotomizers are combined using the algorithm
described in section 3, finding the optimal weight for that combination. After
the first weight is computed, the number of dichotomizers decreases from K to
K − 1. After that, there is the choice of the two dichotomizers for the next step.
This procedure is repeated until all the dichotomizers have been combined.

Using the greedy approach is equivalent to find a suboptimal solution by
making a locally optimal choice. Therefore, in each iteration, the choice of two
dichotomizers that should be combined, plays an important role. In fact it is a
fundamental issue that can affect the performance of the algorithm.

In the proposed method, we consider an approach based on the best perfor-
mance of the individual dichotomizer in terms of pAUC. Therefore, at each step,
the algorithm chooses the two dichotomizers with the maximum pAUC values.

Figure 1 and table 2 show the steps of the algorithm considering the interval
FPR = (0, 0.1), and assuming the linear combination of 4 classifiers. First of all,
for each classifier the pAUC value is computed (tab. 2(a)). Then, the pair that
corresponds to the two classifiers with higher pAUCs, in the example f2 and f4,
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is used to find the αlc1 for the first linear combination. The vector of pAUCs
is updated (tab. 2(b)), considering the new classifier flc1. Then, these steps are
repeated until there are no more classifiers to be combined.

In order to recover the weight for each of the classifiers, a combination tree is
built during the evaluation of the αopt (fig. 1). The original classifiers constitute
the leaves of the tree and, each time a pair of classifiers is combined, a parent
node is added associated to the two combined classifiers. The edges are labeled
with the weights assigned to each classifier. At the end of the computation,
the weight of each classifier can be easily recovered by traversing the tree from
the leaf up to the root and multiplying all the values found on the edges. In the
example shown in figure 1, the final combination of classifiers is:

flc3 = f1 + αlc3flc2 =f1 + αlc3(flc1 + αlc2f3)
= f1 + αlc3(f2 + αlc1f4 + αlc2f3) =f1 + αlc3f2 + αlc3αlc1f4 + αlc3αlc2f3

and the final weight vector is given by: αopt = (1 αlc3 αlc2αlc3 αlc1αlc3).

5 Experimental Results

In order to evaluate the performance of the pROC algorithm proposed, the ex-
periments are performed on the public-domain biometric dataset XM2VTS [10],
characterized by 8 matchers, using the partition of the scores into training and
test set proposed in [10] and showed in table 1. The XM2VTS is a multimodal
database containing video sequences and speech data of 295 subjects recorded in
four sessions in a period of 1 month. In order to assess its performance the Lau-
sanne protocol has been used to randomly divide all the subjects into positive
and negative classes: 200 positive, 25 evaluation negatives and 70 test negatives.
All the details about the procedure used to obtain the final dichotomizers are
described in [10].

The combination rule proposed (pROC) is compared with other algorithms:
a method proposed by Su and Liu in [11], that provides a linear combination
to maximize the AUC assuming a normal distribution for both positive and
negative samples, and the DROC method proposed in [9] that maximizes the
AUC considering the pairs of positive and negative samples that contribute to the
AUC values without any assumption on their distribution. It is worth to note
that both of the algorithms considered for the comparison evaluate a weight
vector such that the combination maximizes the AUC. Furthermore, another
considered combination rule is the average of the outcomes of the dichotomizers
which is independent from any direct maximization of the metric and from any
distribution.

For each considered method the vector α of coefficients for the linear combi-
nation is evaluated on the validation set, and then applied to the test set. The
results are analyzed in term of partial AUC, considering the false positive ranges:
FPR0.1 = (0, 0.1), FPR0.05 = (0, 0.05) and FPR0.01 = (0, 0.01).
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(a) (b)

Fig. 2. Mean of rank on validation set (a) and test set (b), with FPR0.1. Note that in

both figures the y-axis is reversed.

The number of combined dichotomizers varies from 2 to 7. For each of those
experiments we obtain different number of possible combinations that are in-
dependent from each other. Therefore, we use an approach based on giving a
rank to each method compared to the others, for each independent experiment.
Let us consider the pAUC values {pAUCij}M×L, for i = 1, . . . ,M with M the
number of combinations, and for j = 1, . . . , L with L number of combination
rules that are compared. For each row we assign a rank value ri

j from 1 to L to
each column depending on the pAUC values: the highest pAUC gets rank 1, the
second highest the rank 2, and so on until L (in our case L = 4). If there are
tied pAUCs, the average of the ranks involved is assigned to all pAUCs tied for
a given rank. Only in this case it is appropriate to average the obtained ranks
on the number of combinations:

r̄j =
1
M

M∑
i=1

ri
j (15)

Figures 2(a)-4(a) and figures 2(b)-4(b) show the results on the validation set
and test set, respectively, varying the FPR ranges. The higher the curve, i.e. the
lower the value, the better the related method.

Analyzing the results, we can observe a very good generalization of the algo-
rithm pROC except for FPR0.1, where its behavior is comparable with the one
of the other methods. Notwithstanding that, the algorithm performs well on the
most part of the experiments. Decreasing the FPR range, pROC performance
are much better since the algorithm is more adapt to the problem.

Moreover, it is shown the difference between the two kinds of maximization:
AUC-based and pAUC-based. In particular, it is worth to note that methods
designed to maximize the AUC (DROC and SuLiu) do not maximize the pAUC.
In fact, DROC and SuLiu maximize the performance measure considering all
the range of FPR, while pROC considers only a particular range of it.

Furthermore, assuming a normal distribution of negative and positive sam-
ples in SuLiu, does not perform as good as the average rule, and as DROC
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(a) (b)

Fig. 3. Mean of rank on validation set (a) and test set (b), with FPR0.05

(a) (b)

Fig. 4. Mean of rank on validation set (a) and test set (b), with FPR0.01

method which is independent from any distributions. Such difference is due to
the fact that the computation of the weight is affected more when the assumed
distribution model is not close to the real one. In addition to the fact that the
AUC-based method SuLiu does not maximize the pAUC, it has also less perfor-
mance than a method that is independent from any kind of maximization (the
average method).

6 Conclusions

In this paper, we have proposed a new linear combination method aims to im-
prove the partial Area under the ROC curve (pAUC) in a two-class classification
problem, since little attention has been given to the use of pAUC in machine
learning and specifically as a performance measure in combining classifiers.

The algorithm designed to maximize the pAUC is based on the dependence
of the metric on the coefficients vector α used for the linear combination of
dichotomizers. The algorithm has been implemented for a two dichotomizers
combination, then extended to the combination of K > 2 dichotomizers.
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The results obtained have shown good performance of pROC method com-
pared with other algorithms. In particular, it has been noticed that maximizing
the total AUC is not so effective for the maximization of the partial AUC, in fact
maximizing the metric on all the range of FPR is not equivalent to maximize the
metric in a portion on that range. Moreover, methods that assume a particular
distribution model for negative and positive samples, are not able to perform as
good as method that do not have any assumption.

Future work regards an analysis on the possible rules that can be used in the
greedy approach in order to choose the dichotomizers to combine at each step.
It will be interesting to note if the performance will change and how.
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Peng Ren1, Tatjana Aleksić2, Richard C. Wilson1, and Edwin R. Hancock1

1 Department of Computer Science, The University of York,
York, YO10 5DD, UK

{pengren,wilson,erh}@cs.york.ac.uk
2 University of Kragujevac, Faculty of Science, 34000 Kragujevac, Serbia

taleksic@kg.ac.rs

Abstract. The aim of this paper is to seek a compact characterization of irregular
unweighted hypergraphs for the purposes of clustering. To this end, we propose a
novel hypergraph characterization method by using the Ihara coefficients, i.e. the
characteristic polynomial coefficients extracted from the Ihara zeta function. We
investigate the flexibility of the Ihara coefficients for learning relational structures
with different relational orders. Furthermore, we introduce an efficient method for
computing the coefficients. Our representation for hypergraphs takes into account
not only the vertex connections but also the hyperedge cardinalities, and thus
can distinguish different relational orders, which is prone to ambiguity in the
hypergraph Laplacian. In experiments we demonstrate the effectiveness of the
proposed characterization for clustering irregular unweighted hypergraphs and
its advantages over the spectral characterization of the hypergraph Laplacian.

1 Introduction

Hypergraph-based methods have recently been widely used for representing and
processing relational structures where the relations present are not simply pairwise.
Specific applications of hypergraph related methods in visual processing include the
algorithms described in [3][6]. One common feature of these methods is that they ex-
ploit domain specific and goal directed representations, and do not lend themselves to
generalization. The reason for this lies in the difficulty in formulating a hypergraph in
a mathematically uniform way for computation. However, to be easily manipulated,
hypergraphs must be represented in a mathematically consistent way, using structures
such as matrices or vectors. One possible method for establishing hypergraph matrix
representations is to transform a hypergraph into a graph and then use the associated
graph adjacency matrix or Laplacian matrix as the matrix representation of the hyper-
graph. Agarwal et al. [1] have made a review of the possible graph representations for a
hypergraph and revealed their relationships with each other in machine learning. Each
of these methods assume that there is a weight attached to each hyperedge. The edges in
the graph representation are weighted in a manner determined by the corresponding hy-
peredge weights. As far as unweighted hypergraphs are concerned, the literature mainly
focuses on using tensor representations [7][9]. The tensor representations consider all
possible permutations of a subset of vertices and establish hyperedges with cardinality
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consistent with the relational order. Therefore, tensors can only represent regular hy-
pergraphs, and are not suited for irregular hypergraphs. Ren et al. [5] have proposed an
improved hypergraph Laplacian based on developments of Zhou et al.’s method [10]
and apply it to clustering hypergraphs. Although this method is suitable for unweighted
irregular hypergraphs, it is based on a relatively impoverished spectral characterization
and overlooks much of the detail of hypergraph-structure. Recently, Ren et al. [4] have
attempted to represent hypergraphs using characteristics from the Ihara zeta function.
However, this work does not indicate in which cases the characteristics are superior to
spectral methods, neither does it investigate the flexibility of these features.

In this paper, we characterize irregular unweighted hypergraphs using Ihara coeffi-
cients. The proposed hypergraph representation proves to be a flexible tool in learning
the structure of irregular unweighted hypergraphs with different relational orders. Our
contributions are two-fold. First, we propose a vectorial representation, which natu-
rally avoids the ambiguity induced by the matrix representations such as the hyper-
graph Laplacian, for irregular unweighted hypergraphs. We construct pattern vectors
using the Ihara coefficients, i.e. the characteristic polynomial coefficients extracted from
Ihara zeta function for hypergraphs. Second and more importantly, we propose an effi-
cient method for computing the Ihara coefficient set, which renders the computation of
the coefficients tractable. We use the pattern vectors consisting of Ihara coefficients for
clustering hypergraphs extracted from images of different object views and demonstrate
their effectiveness in hypergraph characterization.

2 Hypergraph Laplacian

A hypergraph is a generalization of a graph. Unlike the edge of a graph, which can
connect only two vertices, the hyperedge in a hypergraph can connect any number of
vertices. A hypergraph is normally defined as a pair H(V,EH) where V is a set of
elements, called nodes or vertices, and EH is a set of non-empty subsets of V called
hyperedges. The representation of a hypergraph in the form of sets, concretely captures
the relationship between vertices and hyperedges. However, it is difficult to manipulate
this form in a computationally uniform way. Thus one alternative representation of a
hypergraph is in the form of a matrix. For a hypergraph H(V,EH) with I vertices and
J hyperedges, we establish an I × J matrix H which is referred to as the incidence
matrix of the hypergraph. H has element hi,j 1 if vi ∈ ej and 0 otherwise.

The incidence matrix can be more easily manipulated than its equivalent set represen-
tation. To obtain a vertex-to-vertex representation, we need to establish the adjacency
matrix and Laplacian matrix for a hypergraph. To this end, a graph representation for
the hypergraph is required. Agarwal et al. [1] have classified the graph representations
for a hypergraph into two categories, namely a) the clique expansion and b) the star ex-
pansion. The clique expansion represents a hypergraph by constructing a graph with all
the pairs of vertices within a hyperedge connecting each other. The star expansion rep-
resents a hypergraph by introducing a new vertex to every hyperedge and constructing
a graph with all vertices within a hyperedge connecting the newly introduced vertex.
The common feature of these methods is that each edge in a graph representation is
weighted in terms of the corresponding hyperedge weight subject to certain conditions.
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For example, the normalized Laplacian matrix L̂H = I − D−1/2
v HDeHT D−1/2

v intro-
duced in [10] is obtained from the star expansion of a hypergraph, and its individual
edges are weighted by the quotient of the corresponding hyperedge weight and cardi-
nality. Here Dv is the diagonal vertex degree matrix whose diagonal element d(vi) is
the summation of the ith row of H, De is the diagonal vertex degree matrix whose di-
agonal element d(ej) is the summation of the jth column of H, and I is a |V | × |V |
identity matrix. In this case, even edges derived from an unweighted hyperedge are
assigned a nonunit weight. On the other hand, rather than attaching a weight to each
edge in the graph representation, the adjacency matrix and the associated Laplacian
matrix for an irregular unweighted hypergraph can be defined as AH = HHT −Dv and
LH = Dv − AH = 2Dv − HHT respectively [5]. In practice, these two definitions are
obtained in terms of the clique expansion without attaching a weight to a graph edge.
The eigenvalues of LH are referred to as the hypergraph Laplacian spectrum and can be
used in a straightforward way as hypergraph characteristics.

Although the vertex-to-vertex matrix representations for hypergraphs described
above naturally reduce to those for graphs when the relational order is two, there are
deficiencies for these representations in distinguishing relational structures. When rela-
tional structures have the same vertex cardinality but different relational orders, these
vertex-to-vertex matrix representations become ambiguous. For example, for the graph
in Fig. 1(a) and the hypergraph in Fig. 1(b), the adjacency matrices of the two hyper-
graphs are identical, and so are the associated Laplacian matrices. The adjacency matrix
and Laplacian matrix are as follows:

AH =

⎛⎝0 1 1
1 0 1
1 1 0

⎞⎠ LH =

⎛⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞⎠
It is clear that the unweighted adjacency matrix and Laplacian matrix can not distin-
guish these two hypergraphs. The reason for this deficiency is that the adjacency ma-
trix and the Laplacian matrix only record the adjacency relationships between pairs of
nodes and neglect the cardinalities of the hyperedges. In this regard they induce certain
information loss in representing relational structures and can not always distinguish be-
tween pairwise relationships and high order relationships for the same set of vertices.
The normalized Laplacian matrix for Fig. 1(a) and 1(b) are L̂H1 and L̂H2 respectively.

L̂H1 =

⎛⎝ 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

⎞⎠ L̂H2 =

⎛⎝ 1/2 −1/4 −1/4
−1/4 1/2 −1/4
−1/4 −1/4 1/2

⎞⎠
Since L̂H2 = 3

4 L̂H1, the eigenvalues of L̂H2 are found by scaling those of L̂H1 by a
factor 3/4, and both matrices have the same eigenvectors. Thus the normalized Lapla-
cian matrices for different hypergraphs may yield spectra that are just scaled relative
to each other. This hinders the hypergraph characterization when the eigenvectors are
used. One important reason for the limited usefulness of the above hypergraph matrix
representations is that they result in information loss when relational orders of varying
degree are present. To overcome this deficiency, we use characteristic polynomials ex-
tracted from the Ihara zeta function as a means of representing hypergraphs. In the next
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(a) Graph. (b) Hypergraph. (c) BG of (a). (d) BG of (b).

(e) Digraph of (a). (f) Digraph of (b). (g) OLG of (a). (h) OLG of (b ).

Fig. 1. Hypergraph examples and their graph representations

section, we commence by showing that the Ihara zeta function can be used to represent
this type of relational structure in hypergraphs. We use the Ihara coefficients, i.e. the
characteristic polynomial coefficients extracted from the Ihara zeta function, as hyper-
graph characteristics. We show that the Ihara coefficients not only encode the relational
structural in a consistent way but also overcome the deficiencies listed above.

3 Ihara Zeta Function from Graphs to Hypergraphs

The rational expression of the Ihara zeta function for a graph is as follows [2]:

ZG(u) =
(
1 − u2

)χ(G)
det
(
I|V (G)| − uA + u2Q

)−1
, (1)

where χ(G) = |V | − |E|, A is the adjacency matrix of the graph, and Q = D − I|V (G)|
where I|V (G)| is the identity matrix and D is the degree matrix, which can be generated
by placing the column sums as the diagonal elements while setting the off-diagonal
elements to zero.

To formulate the Ihara zeta function for a hypergraph in a similar form with (1),
the bipartite graph representation of the hypergraph is needed. To this end, we use a
dual representation in which each hyperedge is represented by a new vertex. The new
vertex is incident to each of the original vertices in the corresponding hyperedge. The
union of the new vertex set and the original vertex set constitute the vertex set of the
associated bipartite graph. The new vertices corresponding to hyperedges are on one
side and the original hypergraph vertices on the other side. Thus the bipartite graph
and star expansion for a hypergraph share the same form, although they are defined
for different purposes. For instance, the bipartite graphs associated with the example
hypergraphs in Figs. 1(a) and 1(b) are shown in Figs. 1(c) and 1(d) respectively (BG
stands for bipartite graph).
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The Ihara zeta function of the hypergraph H(V,EH) can be expressed in a rational
form as follows:

ζH(u) = (1 − u)χ(BG)det
(
I|V (H)|+|EH(H)| −

√
uABG + uQBG

)−1
, (2)

where χ(BG)is the Euler number of the associated bipartite graph, ABG is the adja-
cency matrix of the associated bipartite graph, and QBG = DBG − I|V (H)|+|EH(H)|.
Further details on the arguments leading from (1) to (2) can be found in [8].

The adjacency matrix of the associated bipartite graph can be formulated using the
incidence matrix H of H(V,EH):

ABG =
[

0|EH(H)|×|EH(H)| HT

H 0|V (H)|×|V (H)|

]
. (3)

The hypergraph Ihara zeta function in the form of (2) provides an alternative method for
the function value computation, as well as an efficient method of computing the Ihara
coefficients, which will be discussed later on in Section 5.

4 Determinant Expression for Hypergraph Zeta Function

Although the Ihara zeta function can be evaluated efficiently using (2), the task of enu-
merating the coefficients of the polynomial appearing in the denominator of the Ihara
zeta function is difficult, except by resorting to software for symbolic calculation. To
efficiently compute these coefficients, a different strategy is adopted. The hypergraph
is first transformed into an oriented line graph. The Ihara zeta function is then the re-
ciprocal of the characteristic polynomial for the adjacency matrix of the oriented line
graph. Our novel contribution here is to use the existing ideas from hypergraph theory
to develop a new hypergraph representation, which can be used in machine learning to
distinguishing hypergraphs with the same vertex set but different relational orders.

4.1 Oriented Line Graph

To establish the oriented line graph associated with the hypergraphH(V,EH), we com-
mence by constructing a |ei|-clique, i.e. clique expansion, by connecting each pair of
vertices in the hyperedge ei ∈ EH through an edge. The resulting clique expansion
graph is denoted by GH(V,EG). For GH(V,EG), the associated symmetric digraph
DGH(V,Ed) can be obtained by replacing each edge of GH(V,EG) by an arc (ori-
ented edge) pair in which the two arcs are inverse to each other. For the example hy-
pergraphs in Figs. 1(a) and 1(b), their DGH(V,Ed) are shown in Figs. 1(e) and 1(f)
respectively, where the oriented edges derived from the same hyperedge are colored the
same while from different hyperedges are colored differently. Finally, the oriented line
graph of the hypergraph can be established based on the symmetric digraph. The vertex
set Vol and edge set Eol of the the oriented line graph are defined as follows [8]:

Vol = Ed(DGH); Eol = {(ed(u, v), ed(v, w)) ∈ Ed × Ed ; u,w 	⊂ EH}. (4)
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One observation that needs to be made here is that the adjacency matrix AH and Lapla-
cian matrix LH for a hypergraph introduced in Section 2 are actually those of the graph
established on the clique expansion, but without an edge-weight attachment. These ma-
trix representations can induce ambiguity when representing relational structures with
different relational orders. This point is illustrated by the two example hypergraphs in
Figs. 1(a) and 1(b) which have the same clique graph and thus the same adjacency ma-
trix and Laplacian matrix. The reason for this is that the clique expansion only records
adjacency relationships between pairs of nodes and can not distinguish whether or not
two edges in the clique are derived from the same hyperedge. Thus the clique graph
representations for hypergraph result in loss of information concerning relational order.
However, the Ihara zeta function overcomes this deficiency by avoiding the interaction
between two edges derived from the same hyperedge. This is due to the constraint in
(4) that the connecting oriented edge pair in the same clique of DGH can not establish
an oriented edge in the oriented line graph. According to these properties, the example
hypergraphs with the same adjacency matrix and Laplacian matrix in Figs. 1(a) and
1(b) produce oriented line graphs with totally different structures as shown in Figs. 1(g)
and 1(h) respectively (OLG stands for oriented line graph), where the constraint in (4)
prevents connections between any nodes with the same color in Figs. 1(g) and 1(h).
The adjacency matrix TH of the oriented line graph is the Perron-Frobenius operator
of the original hypergraph. For the (i, j)th entry of TH , TH(i, j) is 1 if there is one
edge directed from the vertex with label i to the vertex with label j in the oriented line
graph, otherwise it is 0. Unlike the adjacency matrix of an undirected graph, the Perron-
Frobenius operator for a hypergraph is not a symmetric matrix. This is because of the
constraint described above that arises in the construction of oriented edges. Specifically,
it is the fact that the arc pair with two arcs that are derived from the same hyperedge in
the original hypergraph is not allowed to establish an oriented edge in the oriented line
graph that causes the asymmetry of TH .

4.2 Characteristic Polynomial

With the oriented line graph to hand, the Ihara zeta function for a hypergraph can be
written in the form of a determinant using the Perron-Frobenius operator [8]:

ζH(u) = det(IH − uTH)−1 = (c0 + c1u + · · · + cM−1u
M−1 + cMuM )−1, (5)

whereM is the highest order of the polynomial. The polynomial coefficients c0, c2, . . . ,
cM are referred to as the Ihara coefficients. From (5) we can see that M is the di-
mensionality of the square matrix TH . To establish pattern vectors from the hyper-
graph Ihara zeta function for the purposes of characterizing hypergraphs in machine
learning, it is natural to consider taking function samples as the elements. Although
the function values at most of the sampling points will perform well in distinguishing
hypergraphs, there is the possibility of sampling at poles giving rise to meaningless
infinities. Hence, the pattern vectors consisting of function samples are potentially un-
stable representations of hypergraphs, since the distribution of poles is unknown be-
forehand. The characteristic polynomial coefficients, i.e. the Ihara coefficients, do not
give rise to infinities. From (5), it is clear that each coefficient can be derived from the
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elementary symmetric polynomials of the eigenvalue set {λ1, λ2, λ3 . . . } of TH as
cr = (−1)r

∑
k1<k2< ... <kr

λk1λk2 ... λkr .
Furthermore, the Ihara coefficients relate strongly to the hypergraph-structure since

the Ihara zeta function records information about prime cycles in the hypergraphs. We
can construct pattern vectors using a dominant subset of the Ihara coefficients v =
[cr1 cr2 . . . crN ]T for a hypergraph and then apply them to clustering hypergraphs.

5 Numerical Computation

The formation of TH and its eigen-decomposition tend to be computationally expensive
for practical problems, because the matrix TH are usually of big size. To overcome the
deficiency of computing the Ihara coefficients using (5), we develop a straightforward
yet efficient method which starts from the associated bipartite graph. Instead of con-
structing the oriented line graph for a hypergraph, we establish the oriented line graph
for the bipartite graph. Considering the rational expression (2) based on the associated
bipartite graph, we have:

ζ−1
H (u) = Z−1

BG(
√
u) = det(IBG −

√
uTBG), (6)

where TBG is the Perron-Frobenius operator of the associated bipartite graph, of which
the Ihara zeta function (according to its original definition [2]) is represented as:

Z−1
BG(u) =

∏
p∈PBG

(
1 − u|p|

)
=
(
1 − u|p1|

)(
1 − u|p2|

)(
1 − u|p3|

)
· · · . (7)

where pi is the ith prime cycle in the set PBG of prime cycle equivalence classes of the
bipartite graph. Note that every cycle in a bipartite graph has an even length, i.e. |pi|
is always an even number for a bipartite graph. Let {c̃0, c̃1, c̃2, c̃3, c̃4, c̃5, c̃6 . . .} denote
the Ihara coefficient set of the bipartite graph. It is clear that Z−1

BG(u) is a polynomial
with the odd coefficients equal to zeros:

Z−1
BG(u)= det(IBG − uTBG)= c̃0+ c̃1u + c̃2u

2 + c̃3u
3 + c̃4u

4 + c̃5u
5 + c̃6u

6 + · · ·
= c̃0 + c̃2u

2 + c̃4u
4 + c̃6u

6 + · · · . (8)

Taking
√
u as the argument of the bipartite graph Ihara zeta function instead of u:

ζ−1
H (u) = Z−1

BG(
√
u) = det(IBG −

√
uTBG) =

(
1 − (

√
u)|p1|

)(
1 − (

√
u)|p2|

)
· · ·

= c̃0 + 0
√
u + c̃2(

√
u)2 + 0(

√
u)3 + c̃4(

√
u)4 + 0(

√
u)5 + c̃6(

√
u)6 + · · ·

= c̃0 + c̃2u + c̃4u
2 + c̃6u

3 + · · · = c0 + c1u + c2u
2 + c3u

3 + · · · . (9)

As we can see in (9), the Ihara coefficients of a hypergraph can be efficiently obtained
by selecting just the even-indexed Ihara coefficients of the associated bipartite graph.
This is much more efficient than the computation based on the oriented line graph of the
hypergraph, because TBG is much smaller in size than TH , especially for large hyper-
graphs. The size of the Perron-Frobenius operator of an irregular hypergraph tends to be
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difficult to enumerate. Here we thus use the K-regular hypergraph, i.e. hypergraph with
every hyperedge containing K vertices, for analyzing the computational complexity of
the Perron-Frobenius operators TH and TBG. Suppose there are in total N hyperedges
in the K-regular hypergraph. To obtain TH , the clique expansion and its digraph of the
K-regular hypergraph need to be established according to the transform introduced in
Section 4.1. This procedure produces an oriented line graph with K(K − 1)N vertices
and a Perron-Frobenius operator of size (K−1)KN×(K−1)KN . To obtain TBG, the
bipartite graph and its digraph of the K-regular hypergraph need to be established. This
procedure produces an oriented line graph with 2KN vertices and a Perron-Frobenius
operator of size 2KN × 2KN . For regular hypergraphs K is not less than 2, and the
relation always holds for 2KN < (K − 1)KN . As a result, the size of TBG is smaller
than that of TH . The computational complexity of obtaining the Ihara coefficients is
governed by the eigen-decomposition of the Perron-Frobenius operator. This requires
O(n3) operations where n is the size of the Perron-Frobenius operator. Therefore, the
computational overheads of eigen-decomposition on TBG are lower than those of TH .

6 Experimental Evaluation

To establish hypergraphs on the visual objects, we first extract feature points using the
Harris detector as the vertices of hypergraphs. Let c(vi) denote the spatial coordinate of
the feature point vi in an image, and I(vi) denote the intensity of vi. For each image, we
construct the hypergraph using the method introduced in [5], where the element H(i, j)
of incidence matrix is 1 if ‖c(vi)− c(vj)‖ ≤ Thj1 and | I(vi)− I(vj) |≤ Thj2, and 0
otherwise. Here Thj1 is the neighborhood threshold set to 1/4 the size of the image and
Thj2 is the similarity threshold determined by the standard deviation of the intensities
of neighboring feature points.

We first test the Ihara coefficient pattern vector in the form of vH = [c3, c4,
ln(|cM−3|), ln(|cM−2|), ln(|cM−1|), ln(|cM |)]T in characterizing within-class hyper-
graphs. We establish hypergraphs on ten images of a model house in the Chalet data set
[5]. The images are taken consecutively as the camera pans around the model house in
regular angular increments. Fig. 2 shows the PCA projections of the hypergraphs based
on the truncated Laplacian spectrum, i.e. the leading six nonzero Laplacian eigenval-
ues, and the Ihara coefficients. The Laplacian spectra produce an erratic trajectory. The
Ihara coefficients produce a much smoother trajectory and the neighboring images in
the sequence are generally Euclidean neighbors in the eigenspace.

We then illustrate the largest Laplacian eigenvalue and the final Ihara coefficient for
hypergraphs extracted from four objects in the COIL dataset [5]. The Ihara coefficients
give clearer class separability than the Laplacian eigenvalues.

Finally we test the Ihara coefficients for clustering both unweighted graphs and un-
weighted hypergraphs. The graphs and hypergraphs are extracted from the images in the
COIL dataset. We establish a Delaunay graph on the feature points of each image, and
construct the pattern vectors in the form of vGs = [c3, c4, ln(|c2M |)]T for graphs. We
evaluate the clustering performance obtained with different numbers of object classes.
After performing PCA on the pattern vectors both for graphs and hypergraphs, we lo-
cate the clusters using the K-means method and calculate the Rand index, which is
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Fig. 2. Within-class trajectory
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Fig. 3. Ihara coefficient plot
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plotted as a function of class number in Fig. 4. We use Laplacian spectra for graphs and
hypergraphs for comparison. From this set of experiments it is clarified that for both
graphs and hypergraphs, the Ihara coefficients outperform the Laplacian spectra.

7 Conclusion

We have pointed out the deficiency of the vertex-to-vertex matrix representations for
learning hypergraph-structure and applied the Ihara coefficients to hypergraph charac-
terization to overcome these problems. The Ihara coefficients are a flexible tool which
can be computed in a consistent manner for both graphs and hypergraphs. They can
effectively overcome the ambiguity in distinguishing high order relational structures
when matrix representations fail to work. Furthermore, we have proposed an efficient
method for computing the Ihara coefficient set. Experimental results show that the Ihara
coefficients are superior to spectral methods, both for graphs and hypergraphs.
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Abstract. Many computer vision and patter recognition problems are

intimately related to the maximum clique problem. Due to the intractabil-

ity of this problem, besides the development of heuristics, a research di-

rection consists in trying to find good bounds on the clique number of

graphs. This paper introduces a new spectral upper bound on the clique

number of graphs, which is obtained by exploiting an invariance of a

continuous characterization of the clique number of graphs introduced

by Motzkin and Straus. Experimental results on random graphs show

the superiority of our bounds over the standard literature.

1 Introduction

Many problems in computer vision and pattern recognition can be formulated in
terms of finding a completely connected subgraph (i.e. a clique) of a given graph,
having largest cardinality. This is called the maximum clique problem (MCP).
One popular approach to object recognition, for example, involves matching an
input scene against a stored model, each being abstracted in terms of a relational
structure [1,2,3,4], and this problem, in turn, can be conveniently transformed
into the equivalent problem of finding a maximum clique of the corresponding
association graph. This idea was pioneered by Ambler et. al. [5] and was later
developed by Bolles and Cain [6] as part of their local-feature-focus method. Now,
it has become a standard technique in computer vision, and has been employing
in such diverse applications as stereo correspondence [7], point pattern matching
[8], image sequence analysis [9]. Other interesting applications of the maximum
clique problem arise in the context of cluster analysis, where graph-theoretical
methods have long proven to be especially effective [10,11,12], and in the context
of category learning and knowledge discovery [13,14]. Furthermore, clique finding
is also linked with the learning of graphical structure by the Hammersley-Clifford
theorem [15].

From a computational point of view, the maximum clique problem (MCP) be-
longs to the class of NP-Complete problems, whose intractability forces us to fall
back on approximation methods. Unfortunately, even approximating the MCP
is intractable [16]. Due to this pessimistic state of affairs, much attention has
gone into developing efficient heuristics for the MCP, for which no formal guar-
antee of performance may be provided, but are nevertheless useful in practical

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 680–689, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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applications. We refer to Bomze et al. [17] for a survey concerning algorithms,
applications, and complexity issues of this important problem.

Another interesting direction of research consists in trying to bound the clique
number of a graph. In the literature we find both upper and lower bounds [18].
The former however are in general more interesting because any heuristics for
the MCP can be used to generate lower bounds. In this paper we propose a new
spectral upper bound by exploiting an invariance of a continuous characterization
of the clique number of graphs introduced by Motzkin and Straus [19], and we
present an algoritm for efficiently computing the bound. Experiments on random
graphs demonstrate the effectiveness of our result. The bound proposed here can
be used in the bounding phase of branch-and-bound style algorithms for finding
maximal cliques, with applications in such problems as graph matching [1,20] and
clustering [12] (see also [21] for the use of bounds in graph matching problems).

2 Bounds on the Clique Number of Graphs

Let G = (V,E) be a (undirected) graph, where V = {1, . . . , n} is the vertex set
and E ⊆

(
V
2

)
is the edge set, with

(
V
k

)
denoting the set of all k-element subsets of

V . A clique of G is a subset of mutually adjacent vertices in V . A clique is called
maximal if it is not contained in any other clique. A clique is called maximum
if it has maximum cardinality. The maximum size of a clique in G is called the
clique number of G and is denoted by ω(G).

Several spectral bounds on the clique number of graphs have been inspired
by a theorem due to Motzkin and Straus [19]. This result establishes a link
between the problem of finding the clique number of a graph G and the problem
of optimizing the Lagrangian of G over the simplex Δ, where the Lagrangian of
a graph G = (V,E) is the function LG : �n → � defined as

LG(x) =
∑

{i,j}∈E

xixj ,

and the standard simplex Δ is the set of nonnegative n-dimensional real vectors
that sum up to 1, i.e., Δ = {x ∈ �

n
+ :
∑n

i=1 xi = 1}.
Theorem 1 (Motzkin-Straus). Let G be a graph with clique number ω(G),
and x∗ a maximizer of LG over Δ then

LG(x∗) =
1
2

[
1 − 1

ω(G)

]
.

Assuming S a maximum clique of G, Motzkin and Straus additionally proved
that the characteristic vector xS of S defined as

xS
i =

{
1
|S| i ∈ S

0 i /∈ S

is a global maximizer of LG over Δ.
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Before reviewing some existing bounds on ω, we briefly introduce some con-
cepts from spectral graph theory. The spectral radius ρ(G) of a graph G is the
largest eigenvalue of the adjacency matrix of G. An eigenvector of unit length
having ρ(G) as eigenvalue will be called Perron eigenvector of G. The Perron
eigenvector is always nonnegative and it may not be unique unless the multi-
plicity of the largest eigenvalue is exactly 1. By definition, the spectral radius
ρ and an associated Perron eigenvector xP of a graph G satisfy the eigenvalue
equation

AGxP = ρxP ,

which can be equivalently expressed in terms of the graph Lagrangian LG as
follows

∇LG(xP ) = ρxP ,

where ∇ is the standard gradient operator. Since G is undirected and hence, AG

is symmetric, a useful variational characterization of ρ and xP is given by the
following constrained program,

ρ = max
x∈S2

xTAGx = 2 max
x∈S2

LG(x) , (1)

where Sk = {x ∈ �
n : ‖x‖k

k = 1}. Note that the eigenvectors of AG are the crit-
ical points of this maximization problem. A further alternative characterization
of the spectral radius and Perron eigenvector, that will be useful in the sequel,
consists in maximizing the Rayleigh quotient, i.e.,

ρ = max
x∈�n

xTAGx
xT x

= 2 max
x∈�n

LG(x)
xT x

. (2)

Note that every eigenvector associated to ρ is a maximizer in (2), whereas in (1)
only a Perron eigenvector is a global maximizer.

We present now two upper bounds for ω that turned out to be the tightest
ones in a paper of Budinich [18], where different bounds have been compared on
random graphs. For a review of further spectral bounds we refer to [18,22].

The fist upper bound can be obtained by exploiting both the Motzkin-Straus
theorem and (2).

Theorem 2. Let G be an undirected graph with clique number ω(G) and spectral
radius ρ. Then

ω(G) ≤ ρ + 1 . (B1)

Proof. Let xω be the characteristic vector of a maximum clique of G, then
xT

ωxω = 1/ω(G) and by the Motzkin-Straus theorem xT
ωAGxω = 1 − 1/ω(G).

By (2) we have that

xT
ωAGxω

xT
ωxω

=
1 − 1

ω(G)

1
ω(G)

= ω(G) − 1 ≤ ρ ,

from which the property derives.
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This bound can also be derived as a straightforward implication of the result of
Wilf [23]. The second bound is due to Amin and Hakimi [24]:

Theorem 3. Let G be an undirected graph with adjacency matrix AG and clique
number ω(G). Moreover, let N−1 be the number of eigenvalues of AG that are
less or equal to −1. Then

ω(G) ≤ N−1 + 1 . (B2)

3 The η-Bound

We will introduce a new class of upper bounds generalizing (B1), where we
exploit the fact that the maximizers of the Motzkin-Straus formulation are in-
variant with respect to shifts of the adjacency matrix of a graph G, whereas the
maxima and the spectrum of the shifted matrix are not. Our intuition is that
we can tighten (B1) by opportunely shifting the adjacency matrix of G.

We define
φG(t,x) = xT

[
AG + (t− 1)11�]x ,

where 1 is an opportunely sized column vector of all 1’s. Then by the Motzkin-
Straus theorem we have

max
x∈Δ

φG(t,x) = xT
[
AG + (t− 1)11�]x = t− 1

ω(G)
.

We will denote with φG(t) the leading eigenvalue of AG + (t− 1)11�, i.e.,

φG(t) = max
x∈S2

φG(t,x) ,

and with ΦG(t) the set of eigenvectors associated to φG(t), i.e.,

ΦG(t) = arg max
x∈S2

φG(t,x) .

Theorem 4 (t-bound). Let G be a graph with adjacency matrix AG and clique
number ω(G). Then for any t > 0

ω(G) ≤ φG(t) + 1
t

Proof. Let xω be the characteristic vector of a maximum clique of G. Then

φG(t) ≥ φG

(
t,

xω

‖xω‖2

)
=

φG(t,xω)
xT

ωxω
=

t− 1
ω(G)

1
ω(G)

= ω(G)t− 1 , (3)

from which the result follows.
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Theorem 4 introduces a class of upper bounds that contains (B1) as the special
case t = 1. Let us define the t-bound as

ηG(t) =
φG(t) + 1

t
.

Of course the more interesting t-bound is the tightest one, which will be called
η-bound and denoted by η(G), i.e.,

η(G) = inf
t>0

ηG(t).

Note that η(G) is well defined, because by Theorem 4 it is lower bounded by the
clique number of G.

4 Computation of the η-Bound

This section is dedicated to showing that the computation of η(G) is not difficult,
although not obvious at first glance, and we will provide an efficient algorithm
for its computation.

Proposition 1. Let s > t > 0. For any x(s) ∈ ΦG(s) and x(t) ∈ ΦG(t) we have

(s− t)x(t)T 11�x(t) ≤ φG(s) − φG(t) ≤ (s− t)x(s)T 11�x(s) .

Proof

φG(s) − φG(t) = φG(s,x(s)) − φG(t)

= φG(t,x(s)) + (s− t)x(s)T 11�x(s) − φG(t)

≤ φG(t,x(t)) + (s− t)x(s)T 11�x(s) − φG(t)

= φG(t) + (s− t)x(s)T 11�x(s) − φG(t)

= (s− t)x(s)T 11�x(s)

φG(s) − φG(t) = φG(s,x(s)) − φG(t)
≥ φG(s,x(t)) − φG(t)

= φG(t,x(t)) + (s− t)x(t)T 11�x(t) − φG(t)

= φG(t) + (s− t)x(t)T 11�x(t) − φG(t)

= (s− t)x(t)T 11�x(t)

Proposition 2. Let s > t > 0. For any x(s) ∈ ΦG(s) and x(t) ∈ ΦG(t) the
following propositions hold

1. if φG(0,x(s)) ≥ −1 then ηG(s) ≤ ηG(t),
2. if φG(0,x(t)) ≤ −1 then ηG(s) ≥ ηG(t).
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Proof. If φG(0,x(s)) ≥ −1 then

ηG(s) − ηG(t) =
φG(s) + 1

s
− φG(t) + 1

t

≤ φG(t) + (s− t)x(s)T 11�x(s) + 1
s

− φG(t) + 1
t

(by Prop. 1)

=
(s− t)

[
−φG(t) − 1 + tx(s)T 11�x(s)

]
ts

≤
(s− t)

{
−φG(t,x(s)) − 1 + tx(s)T 11�x(s)

}
ts

=
(s− t) [−φG(0,x(s)) − 1]

ts
≤ 0 .

While if φG(0,x(t)) ≤ −1 then

ηG(s) − ηG(t) =
φG(s) + 1

s
− φG(t) + 1

t

≥ φG(t) + (s− t)x(t)T 11�x(t) + 1
s

− φG(t) + 1
t

(by Prop. 1)

=
(s− t)

[
−φG(t) − 1 + tx(t)T 11�x(t)

]
ts

=
(s− t) [−φG(0,x(t)) − 1]

ts
≥ 0 .

Theorem 5. Let s > t > 0. For any x(s) ∈ ΦG(s) and x(t) ∈ ΦG(t) if

φG(0,x(s)) ≤ −1 ≤ φG(0,x(t)) ,

then there exists t ≤ q ≤ s such that η(G) = ηG(q).
Moreover, if for any q > 0 and x(q) ∈ ΦG(q) we have φG(0,x(q)) = −1 then

η(G) = ηG(q).

Proof. By Proposition 2 it follows that

– for any r < t we have η(G) ≤ ηG(t) ≤ ηG(r);
– for any r > s we have η(G) ≤ ηG(s) ≤ ηG(r),

from which the first part of the result follows.
For the second part note that for any r < q we have η(G) ≤ ηG(q) ≤ ηG(r),

while for any r > q we have η(G) ≤ ηG(q) ≤ ηG(r). Hence, ηG(q) = η(G).

Proposition 3. Let x(1) ∈ ΦG(1) be a Perron eigenvector of AG. For any
x(0) ∈ ΦG(0) we have

φG(0,x(1)) ≤ −1 ≤ φG(0,x(0)) .
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Algorithm 1. Bisection search for computing η(G)
1: function η-bound(G,ε)
2: l = 0

3: p = 0

4: r = 1

5: Take any x(l) ∈ ΦG(l)
6: x(r) ← normalized Perron vector of AG

7: while r − l > ε do
8: p = (l + r)/2 � or any other selection mechanism

9: Take any x(p) ∈ ΦG(p)

10: if φG(0,x(p)) < −1 then
11: r ← p
12: x(r) ← x(p)

13: else if φG(0,x(p)) > −1 then
14: l ← p
15: x(l) ← x(p)

16: else
17: return ηG(p)

18: end if
19: end while
20: return ηG(p)

21: end function

Proof. It follows from (3) that φG(0) = φG(0,x(0)) ≥ −1.
Because of the nonnegativity of the Perron vector, trivially x(1)TAGx(1) ≤

x(1)T (11� − I)x(1), from which it follows that

φG(0,x(1)) + 1 =

= x(1)T
[
AG − 11�]x(1) + 1 ≤ x(1)T

[
(11� − I) − 11�]x(1) + 1 = 0.

Theorem 5 and Proposition 3 suggest an effective way of computing η(G)
by performing a section search (like the bisection search) in the interval (0,1].
Indeed, Theorem 5 allows us to bisect an interval having sign-discording values
of f(t) = φG(0,x(t)) + 1 at the endpoints, and restrict the attention to the
subinterval that preserves this property. Proposition 3, instead, entitles us to
start the search procedure from the interval [0, 1]. Note that we can stop the
search if we encounter an endpoint t, where f(t) = 0, as in this case ηG(t) is our
η-bound. Otherwise, the size of the interval is an indicator of the precision of the
solution and we can stop as soon as this is small enough. Algorithm 1 reports an
implementation that can be used for the computation of η(G) with an arbitrary
precision ε.

5 Experiments on Random Graphs

In this section, we evaluate the performance of our η-bound. We compare our
bound against other spectral bounds, which were the best performing approaches
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Table 1. Experiments on random graphs. The columns n, δ and ω are the order,

density and average clique number of the random graphs, respectively. The results,

expecting the last row, are expressed in terms of relative error.

Random graphs Bound errors

n δ ω (B1) (B2) η

100 0.05 3.12 1.25 10.58 0.79
0.10 3.96 1.99 9.26 0.87
0.20 5.00 3.33 7.84 1.07
0.30 6.13 4.17 6.52 1.11
0.40 7.51 4.49 5.24 1.08
0.50 9.11 4.58 4.19 1.02
0.60 11.51 4.28 3.16 0.91
0.70 14.55 3.85 2.33 0.84
0.80 19.99 3.03 1.45 0.64
0.90 30.69 1.94 0.61 0.42
0.95 43.50 1.19 0.16 0.27

200 0.10 4.17 4.25 19.97 1.45
0.50 11.00 8.19 7.71 1.47
0.90 ? 180.10 99.08 68.45

reviewed in the work of Budinich [18]. Specifically, we compare against bounds
(B1) and (B2), which have been previously introduced.

Table 1 reports the results obtained on random graphs, where η is the column
relative to our η-bound. The columns n, δ and ω are the order, density and
average clique number of the random graphs, respectively. The results, except
the last row, are expressed in terms of relative error, i.e. if ω is the value of the
bound then the relative error for the upper and lower bounds are (ω − ω)/ω
and (ω − ω)/ω, respectively. In the last row, where the average clique number
could not be computed, we reported the absolute value of the bounds. It is clear
that, as expected, our η-bound improves (B1). Moreover, our bound outperforms
also Amin’s one on all instances excepting very dense graphs. Interestingly, it
exhibits on average a remarkable improvement over the competitors by keeping
an overall small relative error.

6 Conclusions

In this paper, we introduced a new spectral bounds on the clique number of
graphs, called η-bound, which has been obtained by combining spectral graph
theory with a result due to Motzkin and Straus. Specifically, we exploit an in-
variance of the Motzkin-Sraus formulation with respect to shifts of the adjacency
matrix of graphs in order to tighten a well-known bound.
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Finally, we tested our bounds on random graphs comparing them against
state-of-the-art spectral approaches. The results outlined a marked improvement
over the competitors.
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Abstract. One challenge in bridging the gap between structural and

statistical pattern recognition consists in studying combinatorial struc-

tures like graphs using probabilistic methods. This contribution presents

the structural counterparts of the first and second fundamental theorem

in probability, (1) the law of large numbers and (2) the central limit the-

orem. In addition, we derive characterizations and uniqueness conditions

for the mean of graphs. As a special case, we investigate the weighted

mean of two graphs. The proposed results establish a sound statistical

foundation for unsupervised structural pattern recognition methods.

1 Introduction

Central points such as the median and mean of a finite set of graphs find their ap-
plications in central clustering of graphs [5,9,10,11,19], graph quantization [13],
frequent substructure mining [18] and multiple alignment of protein structures
[14]. Because of their elementary importance, a thorough understanding of cen-
tral points for a distribution of graphs is necessary in order to statistically justify
and algorithmically improve existing unsupervised structural pattern recognition
methods. For this reason, first theoretical results on central points in the domain
of graphs have been established [4,6,12,15,17]. Compared to vector spaces, how-
ever, a fundamental understanding of the graph mean is still missing.

This paper aims at providing new insight to basic properties in large sample
statistics of attributed graphs. We restate the strong law of large numbers for
distributions on graphs presented in [15]. As novel results, we (1) propose a
central limit theorem for distributions on graphs, (2) characterize the mean of
graphs, (3) propose sufficient conditions for uniqueness of the mean of graphs,
and (4) present properties of the weighted mean of two graphs. In order to
derive these results an appropriate approach to represent graphs is necessary.
The approach we suggest is to represent graphs as points in some Riemannian
orbifold. An orbifold is a quotient of a manifold by a finite group action and
therefore generalizes the notion of manifold. Using orbifolds we can derive an
intrinsic metric that enables us to adopt integration locally to a Euclidean space.

The proposed approach has the following properties: First, it can be applied
to finite combinatorial structures other than graphs like, for example, point pat-
terns, sequences, trees, and hypergraphs can all be embedded isometrically into
a Riemannian orbifold. For the sake of concreteness, we restrict our attention
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exclusively to the domain of graphs. Second, for graphs consisting of a single ver-
tex with feature vectors as attributes, the proposed learning graph quantization
(LGQ) coincides with LVQ.

This paper is organized as follows: Section 2 represents attributed graphs as
points in an orbifold. Section 3 derives properties of the graph mean and Section
4 concludes.

2 Representation of Attributed Graphs

In order to do statistical data analysis, we need an appropriate representation of
attributed graphs. We suggest to represent graphs as points in some Riemannian
orbifold, since orbifolds allow us to apply useful concepts and techniques from
differential geometry.

Let E be a d-dimensional Euclidean space. An attributed graph is a triple
X = (V,E, α) consisting of a set V of vertices, a set E ⊆ V × V of edges, and
an attribute function α : V × V → E, such that α(i, j) 	= 0 for each edge and
α(i, j) = 0 for each non-edge. Attributes α(i, i) of vertices i may take any value
from E.

For simplifying the mathematical treatment, we assume that all graphs are of
order n, where n is chosen to be sufficiently large. Graphs of order less than n, say
m < n, can be extended to order n by including isolated vertices with attribute
zero. For practical issues, it is important to note that limiting the maximum order
to some arbitrarily large number n and extending smaller graphs to graphs of
order n are purely technical assumptions to simplify mathematics. For pattern
recognition problems, these limitations should have no practical impact, because
neither the bound n needs to be specified explicitly nor an extension of all graphs
to an identical order needs to be performed. When applying the theory, all we
actually require is that the graphs are finite.

A graph X is completely specified by its matrix representation X = (xij)
with elements xij = α(i, j) for all 1 ≤ i, j ≤ n. Let X = En×n be the Euclidean
space of all (n× n)-matrices with elements from E and let Γ denote a subgroup
of all (n × n)-permutation matrices. Two matrices X,X ′ ∈ X are said to be
equivalent, if there is a permutation matrix P ∈ Γ such that P TXP =X′. By

X/Γ = {[X] : X ∈ X}

we denote the quotient set consisting of all equivalence classes [X].
For notational convenience, we identify X with EN , where N = n2 and con-

sider vector- rather than matrix representations of graphs. By concatenating
the columns of a matrix representation X of a graph X , we obtain a vector
representation x of X .

Now we are in the position to take the final step towards representing graphs
as points in a Riemannian orbifold. A Riemannian orbifold of graphs is a triple
Q = (X , Γ, π) consisting of an Euclidean space X with norm ‖·‖, a permutation
group Γ acting on X , and an orbifold chart

π : X → XQ = X/Γ, x �→ [x]
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that projects each vector x to its orbit [x]. We use capital letters X,Y, Z to
denote graphs from XQ and write x ∈ X if π(x) = X . Each vector x ∈ X is a
vector representation of structure X and the set X of all vector representations
is the representation space of XQ.

The intrinsic metric of an orbifold Q = (X , Γ, π) of graphs is of the form

d(X,X ′) = min {‖x− x′‖ : x ∈ X,x′ ∈ X ′} .

We call a pair (x,x′) ∈ X ×X ′ with ‖x− x′‖ = d(X,X ′) an optimal alignment
of X and X ′. By A(X,X ′) we denote the set of all optimal alignments of X and
X ′. Note that the intrinsic metric is not a artificial construction for analytical
purposes but rather appears in different guises as a common choice of proximity
measure for graphs [2,3,8,20].

3 The Frechet Mean

In this section, we focus on the mean of a distribution on graphs. Unless otherwise
stated, proofs of all results are delegated to [16].

3.1 The Frechet Mean Set of Graphs

Since it is unclear how to define the mean of graphs using a weighted sum or an
integral of graphs, we present a definition based on the properties of the usual
mean as suggested by Frechet [7]. The basic idea of Frechet to define central
points in a metric space is essentially the same as for the concept of graph mean
and median proposed by [4,6,12,15,17].

Suppose that (Q, d) is a metric orbifold of graphs with Q = (X , Γ, π). We
define the Frechet function as

F (Y ) = EX

[
d(X,Y )2

]
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
CQ

d(X,Y )2 dPQ(X) : X is continuos∑
X∈CQ

d(X,Y )2 PQ(X) : X is discrete
,

where PQ is a probability measure on the Borel sigma-field of XQ with support on
a measurable subset CQ in the continuous case and a probability mass function
in the discrete case. A Frechet mean is any element M ∈ CQ satisfying

F (M) = inf
Y ∈CQ

F (Y ) < ∞.

The Frechet mean set F is the set of all Frechet means.

3.2 Characterization of Frechet Means

For characterizing a Frechet mean, we need the notion of Dirichlet fundamental
domain. A fundamental domain of Γ in X is a closed subset D ⊂ X with

X =
⋃

γ∈Γ

γ(D)
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and int(γ(D))∩ int(γ′(D)) = ∅ for all γ, γ′ ∈ Γ . Thus, the interior of a fundamen-
tal domain projects to the entire domain of graphs, where interior points of the
fundamental domain are unique vector representations. A Dirichlet fundamental
domain of x ∈ X is a fundamental domain satisfying

x′ ∈ D(x) ⇒ ‖x− x′‖ ≤ ‖x− γ(x′)‖ ∀ γ ∈ Γ.

Each Dirichlet fundamental domain D(x) is a convex polyhedral cone containing
at least one vector representation of each graph. Two vector representations in
D(x) projecting to the same graph always lie on the boundary of D(x). Since
the boundary is of Lebesgue measure zero, we can regard the domain of graphs
as being geometrically a polyhedral cone.

Theorem 1 shows that any vector representation m of a Frechet mean M is
a population mean of the lifted probability distribution on its Dirichlet funda-
mental domain D(m).

Theorem 1 (Representation of a Frechet Mean). Let Q = (X , Γ, π) be
an orbifold of graphs with intrinsic metric d and let (XQ, ΣQ, PQ) be a prob-
ability space. Suppose that M ∈ F is a Frechet mean of PQ. Then any vector
representation m ∈ X that projects to M is of the form

m =
∫
D(m)

x dP (x),

where P (x) = PQ(π(x)) on D(m).

From the definition of the Dirichlet fundamental domain follows that a vector
representationm of a Frechet mean M is the population mean of the distribution
on all vector representations x of X optimally aligned with m.

3.3 Uniqueness of Frechet Mean

Next, we show under which assumptions the Frechet mean of graphs consists of
a singleton. For this, we define the injectivity radius of a structure X ∈ XQ by

rX = min {‖x− x′‖ : x′ ∈ bd(D(x))},

where x ∈ X is a vector representation. The injectivity radius rX measures the
shortest distance from x to the boundary of its Dirichlet fundamental region
D(x). The injectivity radius rX is independent of the choice of vector represen-
tation ([16], Prop. 5). Thus, rX is well-defined. The injectivity angle of X is

αX = arcsin
rX

l(X)
.

The injectivity angle is the smallest angle between a fixed vector representation
x of X and a vector lying on a boundary of D(x). By definition, the injectivity
angle is independent of the choice o vector representation of X .

The Frechet mean consists of a singleton, if the graphs are distributed within
a circular right cone with sufficient narrow opening angle.
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Theorem 2 (Uniqueness of Frechet Mean). Let Q = (X , Γ, π) be an orb-
ifold of graphs with intrinsic metric d and let (XQ, ΣQ, PQ) be a probability space.
Suppose there is a structure Z ∈ XQ such that the support of PQ is a measurable
subset of the open circular cone

CΓ

(
Z,

αZ

3

)
=
{
X ∈ XQ : �(Z,X) <

αZ

3

}
with cone axis in direction of Z. Then the Frechet mean of PQ is unique.

Suppose that z projects to Z and C ⊆ D(z) projects to CΓ (Z,αZ/3). Then from
the proof of Theorem 2 follows that the elements of C are pairwise optimally
aligned. Hence, we may identify open sets of CΓ with open set of C and apply
any mathematical result that holds locally in a Euclidean space. In particular,
we directly obtain as a Corollary the Law of Large Numbers and the Central
Limit Theorem.

3.4 A Strong Law of Large Numbers

Since the distribution PQ is usually unknown and the underlying metric space
often lacks sufficient mathematical structure, the Frechet function F (Y ) can
neither be computed nor be minimized directly. Instead, we estimate a Frechet
mean from empirical data. Suppose that X1, X2, . . . , XN ∈ XT is an independent
and identically distributed random sample. We replace the Frechet function by
the empirical Frechet function

F̂N (Y ) =
1
N

N∑
i=1

d(Xi, Y )2

and approximate a Frechet mean by a global minimum of the empirical Frechet
function. By F̂N we denote the set of Frechet sample means consisting of all
global minima of F̂N (Y ).

As shown in [15], the strong law of large numbers for a distribution on graphs
can be directly derived from [1].

Theorem 3. Let Q = (X , Γ, π) an orbifold of graphs with intrinsic metric d
and let (XQ, ΣQ, PQ) be a probability space. Suppose that the Frechet function F
of PQ is finite. Then for any ε > 0, there is a random variable n(ω, ε) ∈ N and
a PQ-null set N (ω, ε) such that

F̂N ⊆ Fε =
{
X ∈ XT : min

M∈F
d (X,M)2 < ε

}
outside of N (ω, ε) for all N ≥ n(ω, ε). In particular, if the set F = {μ} of
Frechet means consists of a singleton μ, then every measurable selection, μ̂N

from F̂N is a strongly consistent estimator of μ.
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3.5 A Central Limit Theorem

Next, we want to derive a version of the central limit theorem for graphs. For
this we introduce the following notations. The expression XN = o(YN ) means

that XN/YN
PQ→ 0. In particular XN = o(YN ) means that XN

PQ→ 0.

Theorem 4. Let Q = (X , Γ, π) an orbifold of graphs with intrinsic metric d
and let (XQ, ΣQ, PQ) be a probability space. If

F̂N (M̂N ) ≤ inf
Y ∈XQ

F (Y ) + oPQ

(
1
N

)
and

M̂N
PQ→ M ∈ F ,

where M is nonsingular. Then

√
N
(
M̂N −M

)
=

1√
N

N∑
i=1

(xi −m) − oPQ (1),

where m projects to M and (xi,m) ∈ A(Xi,M) are optimal alignments. In
particular, the sequence is

√
N
(
M̂N −M

)
is asymptotically normal with mean

zero and covariance matrix

Σ =
∫
D(m)

(x−m)(x−m)TdP (x).

3.6 The Frechet Mean of Two Structures

As a special case, we consider the Frechet function of the form

F (Y ) = p · d(X,Y )2 + (1 − p) · d(X ′, Y )2,

where p = PQ(X) and 1 − p = PQ(X ′) are the probabilities of the structures X
and X ′, respectively. Regarding p and 1−p as weights rather than probabilities,
the Frechet mean set of F (Y ) is an elementary component of competitive learning
methods for central clustering and graph quantization [13].

Theorem 5. Let Q = (X , Γ, π) be an orbifold of graphs with intrinsic metric
d(·|·). Consider the Frechet function

F (Y ) = p · d(X,Y )2 + (1 − p) · d(X ′, Y )2,

where X,X ′ ∈ XQ and p ∈ [0, 1]. Then the following holds:

(P1) Any vector representation m of a Frechet mean M ∈ F is of the form

m = p · x+ (1 − p) · x′,

where (x,m) ∈ A(X,M) and (x′,m) ∈ A(X ′,M) are optimal alignments.
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(P2) M ∈ F is a Frechet mean if and only if any vector representation m ∈ M
is of the form

m = p · x+ (1 − p) · x′,

where (x,x′) ∈ A(X,X ′) is an optimal alignment.
(P3) A Frechet mean M ∈ F satisfies

d(X,M) = p · d(X,X ′)
d(X ′,M) = (1 − p) · d(X,X ′).

(P4) |F| = 1 with probability one.

Property (P1) is a direct consequence of Theorem 1 and restated for sake of
completeness. Property (P2) states that the problem of determining an element of
the Frechet mean of two structures is equivalent to finding an optimal alignment
of X and X ′. Properties (P1) and (P2) tell us how to construct a weighted
mean. Property (P3) shows that a Frechet mean of two structures is a weighted
mean and therefore justifies, for example, the stochastic update rule of central
clustering. The last property asserts that the Frechet mean consists of a singleton
almost surely. At first this result may seem a useful achievement for a practical
setting. A closer look at the proof, however, reveals that for most application
problems, the given graphs lie in the set of Lebesgue measure zero for which no
statement about uniqueness and non-uniqueness is given.

4 Conclusion

This contribution focused on large sample statistics for distribution on graphs.
We derived structural versions of the two key results from probability theory,
the law of large numbers and the central limit theory. In addition, we presented
a characterization of Frechet means, sufficient conditions for uniqueness of the
Frechet mean, and properties of the weighted Frechet mean of two graphs. The
key idea to derive the proposed results is based on identifying graphs as points
in some Riemannian orbifold. The results generalize corresponding results in
Euclidean spaces. In addition, this work establishes a sound statistical basis for
unsupervised structural pattern recognition methods such as PCA for structures,
central clustering, and graph quantization. Furthermore, we gain new insight into
the geometry of the graph domain, which in turn guides us to derive results for
statistical and structural pattern analysis of graphs.
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Abstract. A new approach for multi-dimensional Scale Saliency (MDSS)

was lately introduced. In this approach, the Scale Saliency algorithm

by Kadir and Brady is extended to the multi-dimensional domain. The

MDSS algorithm is based on alternative entropy and divergence esti-

mation methods whose complexity does not increase exponentially with

data dimensionality. However, MDSS has not been applied to any prac-

tical problem yet. In this paper we apply the MDSS algorithm to the

texture categorization problem, and we provide further experiments in

order to assess the suitability of different estimators to the algorithm.

We also propose a new divergence measure based on the k-d partition

algorithm.

1 Introduction

High level vision tasks usually rely on the results provided by image process-
ing or feature extraction algorithms. The interest regions detected by feature
extraction methods should satisfy several properties: they must be informative,
distinguishable and invariant to a wide range of transformations1. The work in
this paper is focused on the Scale Saliency algorithm by Kadir and Brady [1].
This algorithm is theoretically sound, due to the fact that it uses Information
Theory in order to search the most informative regions on the image. Although
its poor performance for matching problems [2], it has been shown to perform
well in image categorization tasks [3]. Furthermore, it has been successfully ap-
plied before to this kind of problems [4,5].

The Scale Saliency algorithm [1] detects salient or unpredictable regions on
an image. Shannon’s entropy is used to measure the saliency of an image region.
Given a pixel x, its entropy at scale s is computed from the grayscale intensity
pdf of the circular region Rx of radius s, centered over x. The intensity pdf is
approximated by means of an intensity histogram where Pd,s,x is the probability
that the intensity value d ∈ D is found in Rx (in the case of a grayscale image,
D = {0, . . . , 255}).
1 Several authors prefer the term covariant, referring to image features that adapt to

the transformation applied to the image.
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The algorithm works as follows: firstly, entropy is estimated for all pixels x in
the image, using all scales s in a range of scales between smin and smax (Eq. 1).
Next, entropy peaks (local maxima in scale space) are selected (Eq. 2). Then,
entropy peaks are weighted by means of a self-dissimilarity metric between scales
(Eq. 3). Finally, a subset of the salient features is selected, in order of weighted
entropy (Eq. 4). These selected features are the most salient features of the
image.

H(s, x) =
∑
d∈D

Pd,s,x log2 Pd,s,x (1)

S = {s : H(s− 1, x) < H(s, x) > H(s + 1, x)} (2)

W (s, x) =
s2

2s− 1

∑
d∈D

|Pd,s,x − Pd,s−1,x| (3)

Y (s, x) = H(s, x)W (s, x) . (4)

The application of the algorithm summarized above to higher dimensional data is
straightforward. For instance, in RGB color images, where each pixel is assigned
three different intensity values (corresponding to the three RGB channels), the
local intensity pdf may be estimated from a 3D histogram. In general, for nD
data, the same algorithm can be applied if entropy and self-dissimilarity are
computed from nD histograms. Two problems arise from this extension to the
multi-dimensional domain, due to the curse of dimensionality. Firstly, the com-
plexity order of the algorithm increases exponentially with data dimensionality.
And secondly, higher dimensional data yields sparser histograms, that are less
informative. These issues make the use of the original Scale Saliency algorithm
unfeasible in the case of n ≥ 4 dimensions.

We previously introduced two extensions of the Scale Saliency algorithm to the
multi-dimensional domain, based on entropy and self-dissimilarity (divergence
between scales) estimation from entropic graphs [6] and from k-d partitions [7].
Our experiments show that up to 31 dimensions can be processed with MDSS,
but i) apart from a repeatability test, we do not provide additional evidence
of the suitability of the applied estimators to the Scale Saliency task, ii) the
theoretical background of our k-d partition based divergence is not discussed, and
iii) no practical application of the MDSS is reported. In this paper we address
these three points. Firstly, in Sects. 2 and 3 we summarize the two different
MDSS approaches (entropic graphs and k-d partition based), introducing a new
k-d partition divergence estimation method. Then, in Sect. 4 we assess these
approaches. Finally, in Sect. 5, we apply the MDSS algorithm to the texture
categorization problem.

2 MDSS Based on k-Nearest Neighbour Graphs

In this approach, each pixel xi ∈ X is represented as a d-dimensional vector. The
neighbourhood Rx of a pixel is represented by an undirected and fully connected
graph G = (V,E), being the nodes vi ∈ V the d-dimensional vectors representing
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xi ∈ Rx and E the set of edges connecting each pair of nodes. The weight of each
edge is the Euclidean distance in Rd between its two incident nodes. Entropy
and divergence are estimated from the K-Nearest Neighbour Graph (KNNG), a
subset of the fully connected graph, that connects each node to its k neighbours.
From the KNNG, entropy is estimated by means of the measure defined by
Kozachenko and Leonenko [8]

ĤN,k =
1
N

N∑
i=1

log
(
(N − 1)e−ψ(k)Bd(ρ

(i)
k,N−1)

d
)

, (5)

where |V | = N , Bd is the volume of the d-dimensional unit ball, ρ(i)
k,N−1 is the

distance to the k-nearest neighbour of i when taking the rest of N − 1 samples,
and ψ(z) is the digamma function.

In the case of self-dissimilarity between scales, the Friedman-Rafsky test is
applied [6]. Let s be the scale in which an entropy peak was found. In order to
weight that entropy value, we must calculate the dissimilarity with respect to
scale s − 1. Let Xs and Xs−1 be the set of nodes of Rx at scales s and s − 1,
respectively. Since Xs−1 ⊂ Xs (new pixels are added to the previous ones as we
increase the scale), the test only requires to build the KNNG from Xs and to
count the amount of edges in this KNNG that connect a node from Xs/Xs−1 to
a node from Xs−1. One minus this number of edges is a consistent estimator of
the Henze and Penrose divergence.

3 MDSS Based on the k-d Partition Algorithm

The second MDSS approach is based on the k-d partition algorithm by Stowell
et al. [9]. As in the approach presented above, each pixel in Rx is represented as
a d-dimensional vector. The d-dimensional feature space is recursively spit into
cells following the data splitting method of the k-d tree algorithm. At each level,
the data is spit by their sample median along one axis. Then, data splitting is
applied to each subspace until an uniformity stop criterion is reached. The aim
of this stop criterion is to produce cells with uniform empirical distribution, in
order to best approximate the underlying pdf. The data partition yields a set
A = {Aj} of p cells, and then entropy estimation is given by

Ĥ =
p∑

j=1

nj

n
log
(

n

nj
μ(Aj)

)
, (6)

where μ(Aj) is the volume of the cell Aj , nj is the number of samples in Aj and
n is the the total number of samples in Rx.

Regarding the self-dissimilarity between scales, we propose a new divergence
metric inspired by the k-d partition algorithm. Our k-d partition based diver-
gence metric follows the spirit of the total variation distance [10], but may also
be interpreted as a L1-norm distance. The total variation distance between two
probability measures P and Q in the case of a finite alphabet is given by
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δ(P,Q) =
1
2

∑
x

|P (x) −Q(x)| . (7)

Let f(x) and g(x) be two distributions, from which we gather a set X of nx

samples and a set O of no samples, respectively. If we apply the partition scheme
of the k-d partition algorithm to the set of samples X

⋃
O, the result is a partition

A of X
⋃
O, being A = {Aj |j = 1, . . . , p}. In the case of f(x), the probability of

any cell Aj is given by p(Aj) = nx,j

nx
= pj where nx,j is the number of samples

from X in cell Aj . Conversely, in the case of g(x) the probability of each cell Aj

is given by q(Aj) = no,j

no
= qj where no,j is the number of samples from X in

the cell Aj . Since both sample sets share the same partition A, and considering
the set of cells Aj a finite alphabet, we can compute the total variation distance
between f(x) and g(x) as

D(O||X) =
1
2

p∑
j=1

|pj − qj | . (8)

The latter distance metric can be used as a self-dissimilarity measure in Scale
Saliency algorithm, since it satisfies 0 ≤ D(O||X) ≤ 1. The minimum value
D(O||X) = 0 is obtained when all the cells Aj contain the same proportion of
samples from X and O. By the other hand, the maximum value D(O||X) = 1
is obtained when all the samples in any cell Aj were gathered from a single
distribution.

4 Experimental Results

In this section we introduce additional experiments to those shown in [7]. These
experiments in [7] were aimed to compare the computational time of both MDSS
approaches and the quality of the extracted features. We demonstrated that the
computational order decreased from exponential with respect to data dimension-
ality (due to the use of histograms in the original Kadir and Brady algorithm) to
linear. The computational efficiency of the k-d partition approach is remarkably
higher when compared to the rest of algorithms; it can process a 31-dimensional
256 × 256 image in less than four minutes. In the case of the quality of the ex-
tracted features, we applied a repeatability test in order to assess the stability
of the extracted features over a wide range of transformations, using the image
dataset proposed by Mikolajczyk et al. [2]. Colour information was used not only
in the case of MDSS, but also in the case of the Kadir and Brady Scale Saliency.
The results showed that none of the MDSS approaches performs better than
the other one in all circumstances. Furthermore, both MDSS algorithms showed
lower repeatability that the original Scale Saliency algorithm.

4.1 Entropy Estimation Bias

Firstly we assess the estimation bias of the two entropy estimation methods
summarized above, using two types of distributions: Gaussian and uniform. The
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normal distribution N(μ, σ2) has maximum entropy among all real-valued dis-
tributions with specified mean μ and standard deviation σ [11]. By the other
hand, the uniform distribution on the interval [a, b] is the maximum entropy dis-
tribution among all continuous distributions which are supported in the interval
[a, b] [11]. In both cases we measured the mean deviation (after 100 runs) from
the theoretical entropy of the Gaussian and uniform distributions for increasing
data dimensionality and a number of samples corresponding to the number of
pixels taken by the MDSS algorithm between scales smin = 3 and smax = 30.
The results are shown in Fig. 1. As one may expect, in general the estimation
asymptotically improves when increasing the number of samples. Also, in all
cases, increasing data dimensionality degrades the entropy estimation. None of
the tested estimators performs better in all circumstances. The Leonenko et al.
estimator approximates better the theoretical entropy of the Gaussian distri-
bution, while the k-d partition estimation approximates better the theoretical
entropy of the uniform distribution. It must be also noted that the Leonenko
estimator does not require a high value of the parameter k; on the contrary, it
yields better results for k = 2.

Despite these results, the Scale Saliency algorithm does not require an exact
estimation of entropy, as long as the saliency estimator used follows the trend of
Shannon’s entropy as saliency increases. We performed an additional experiment
in order to test the trend of the entropy estimation given by the k-d partition al-
gorithm and the Leonenko et al. estimator. The experiment consisted in gathering
N samples x ∈ [0, 255]d from a Gaussian and an uniform distribution, being N
the number of pixels processed at smax = 30 during the Scale Saliency algorithm.
Then we computed the estimated entropy as we decreased the amount of samples,
removing in each iteration the sample which is the furthest from the samples’ cen-
ter of mass and taking the mean after 100 runs. The experiment was repeated for
different data dimensionalities. Although the results of the experiment are not
shown here due to the lack of space, we summarize them here.

For Gaussian data, the k-d partition algorithm approximates better the
trend of histogram based entropy estimation, even in the case of higher data

Fig. 1. K-d partition (KDP) and Leonenko et al. method (for k = 2 . . . 5) estimation

bias for an uniform distribution in the range [−3, 3]d (left) and a Gaussian distribution

with zero mean and Σ = I (right)
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Fig. 2. Divergence estimation results using Friedman-Rafsky test (red) and k-d parti-

tion divergence (blue), for different data dimensionalities (d)

dimensionality. From d = 3, the Leonenko based estimation soon converges as
N increases and, as a consequence, it has less discriminative power. For uniform
data both estimators soon reach an asymptote; however, the k-d partition curve
still approximates better to the shape of the histogram based curve.

4.2 Divergence Comparison

Now we compare the estimation results of our k-d partition based divergence
with those of the Friedman-Rafsky test. Both methods were used to estimate the
divergence of two sample sets gathered from two Gaussian distributions, starting
with the same mean and variance, as we increased the distance between Gaussian
centers until the probability that the samples overlap is low. The experiment was
repeated for different data dimensionalities. The results are shown in Fig 2. In
both cases, the divergence (y axis) increases with the distance between Gaussian
centers (x axis). The values or Friedman-Rafsky test lie in the range [0.5, 1]. The
range of values in the case of our k-d partition divergence is generally wider,
but its results degrade for higher dimensionalities. However, even in the case
of d = 30, the width of the range of values yielded by the k-d partition based
divergence is similar to the one yielded by the Friedman-Rafsky test.

4.3 Number of Features

The amount of detected salient regions may have an effect on the quality and the
repeatability of a feature extraction algorithm [2]. In the MDSS and the Kadir
and Brady Scale Saliency algorithms we can set the percentage of most salient
features to select, but not its final number due to the non-maximum suppression
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Fig. 3. Mean number of detected entropy peaks during Leonenko based MDSS

(KNNG), k-d partition based MDSS (KDP) and Kadir and Brady Scale Saliency (KB)

for increasing data dimensionality

step [1]. Thus, rather than performing a comparison of the two MDSS approaches
based on the final number of detected features, our comparison was based on
the number of entropic peaks found during the algorithm.

In Fig. 3 (left) we show the mean number of entropic peaks found during
Leonenko and k-d partition based MDSS algorithms, using the images of the
Bristol dataset, as we increased the number of dimensions (the number of layers
used for entropy estimation). For a detailed description of the Bristol dataset
see [7]. When data dimensionality is low, the results of the k-d partition based
MDSS outperform those of the Leonenko based MDSS, providing a higher num-
ber of entropic peaks. For d > 4, although the number of detected entropic peaks
is slightly higher in the case of the k-d partition based MDSS, the results are
similar to those of the Leonenko based MDSS. Thus, both estimators may be
considered equivalent in terms of number of detected features, and any of them
could be applied to MDSS, if only this factor is relevant. In Fig. 3 (right) we
compare the results of the MDSS and the Kadir and Brady Scale Saliency algo-
rithms. It is unfeasible to apply the histogram based estimation for d > 4 due
to the extremely high required computation time; thus, in Fig. 3 we are only
showing partial comparison results. As can be seen, the Kadir and Brady Scale
Saliency algorithm detects a higher amount of salient features in this range of
data dimensions. This fact could be the cause of the better performance of this
algorithm in the repeatability experiment in [7].

It must be noted that as the number of dimensions increase, the amount of
entropy peaks decrease. This fact imposes a bound on the number of dimensions
to which the MDSS can be applied. We tried, for instance, to apply the MDSS
algorithm to 128D data images, in which a SIFT descriptor [12] was extracted
for each image pixel, using a fixed scale. In most cases, the MDSS did not detect
any entropy peak.
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4.4 Choosing a MDSS Approach

Given the conclusions extracted during our experiments, and those in [7], the k-d
partition entropy estimation algorithm should be preferred over the Leonenko
estimator for MDSS implementation. Its computation time is remarkably lower,
and it approximates better the trend of the Shannon’s entropy for increasing
saliency, even for high data dimensionality. Our new k-d partition based diver-
gence also provides better estimation results than the KNNG based approach.
The main drawback of both MDSS approaches is the low number of detected
salient regions, that can decrease their performance in terms of repeatability.
And although MDSS can cope with remarkably higher data dimensionality than
the Kadir and Brady Scale Saliency algorithm, a bound on data dimensionality
still exits, due to the fact that the number of features decrease as the number of
dimensions increase.

5 A MDSS Application: Texture Categorization

In this section we show how the MDSS algorithm can be applied, in conjunc-
tion with the Lazebnik et al. [13] texture representation, to the to the texture
categorization problem. In this problem, each image is showing one texture. We
represent each texture image by a signature S = {(t1, w1), . . . , (tn, wn)}, where ti
is a texton and wi is its relative weight. The steps required to build the signature
following the Lazebnik method are: i) firstly, image features are extracted from
grayscale intensities of the image, and a descriptor is computed for each feature,
ii) agglomerative clustering is applied to all the descriptors of an individual im-
age, and iii) the textons are the center of these clusters, and their relative weight
is computed as the number of descriptors in the clusters divided by the total
number of descriptors in the image. The obtained signatures can be compared
by means of the Earth Mover’s Distance (see [13] for more detail). In our case
we apply MDSS to build a signature for each texture image from 15D data: all
the pixels in the image are processed by means of a Gabor filter bank, consisting
of 15 Gabor filters with different orientations and wavelengths. The Kadir and
Brady Scale Saliency algorithm can not cope with this high dimensional data.

In Fig. 4 we show the results of our texture retrieval experiment (along with
the output of the MDSS and the Scale Saliency algorithms for two example tex-
ture images). In this experiment, that shows the performance of a given texture
representation, all images in the Brodatz dataset2 are used as query image once.
For each image query, we select images from the database in increasing order
of EMD. The result is a plot that shows the average recall of all query images
(being recall the number of images from the class of the query image retrieved
so far divided by the total number of images in that class) versus the num-
ber of closest images retrieved. In Fig. 4 we compared the performance of the
grayscale Scale Saliency and k-d partition based MDSS for the case of different
descriptors: using only RIFT (kadirrift and kdpeerift, respectively), only spin

2 http://www.ux.uis.no/∼tranden/brodatz.html
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Fig. 4. Left: results of the texture categorization experiment. Right: output of the

MDSS algorithm from 15D data (left) and the Scale Saliency algorithm from grayscale

intensities (right), for two example texture images. In both cases the 150 most salient

features (after non maximum suppression) were selected.

images (kadirspin and kdpeespin), and combining RIFT and spin images (kadir
and kdpee). For a complete description of the RIFT and spin image descriptors,
see [13]. In order to combine RIFT and spin images in the retrieval task, the
total distance between two images is computed adding the normalized EMDs
estimated for each individual descriptor.

Multi-dimensional data increased the performance of the texture retrieval
task for each tested descriptor. However, its impact is not as noticeable as the
impact of choosing an adequate descriptor. As can be seen in Fig. 4, the average
retrieval is strongly affected by this last factor. The worst results are obtained
for the case of spin images. RIFT increases the average recall, but the most
significative improvement is achieved when combining both.

6 Conclusions and Future Work

The Scale Saliency algorithm by Kadir and Brady can be easily extended to pro-
cess multi-dimensional data. However, its computational efficiency remarkably
decreases with data dimensionality. We assess two approaches of MDSS based
on different entropy and divergence metrics which computational order is linear
with respect to data dimensionality. Our analysis shows that the k-d partition
approach should be preferred over the graph based approach. We introduced a
new divergence estimation method based on the k-d partition algorithm and the
total variation distance, and we experimentally demonstrated its suitability. Fi-
nally, we showed a practical application of our approach in the context of texture
categorization.
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Our future work is addressed to evaluate the application of multi-dimensional
data in other computer vision problems, like video processing or image retrieval.
In the texture categorization context, we should also study the impact of using
different Gabor filter banks, or even different input data. This is a combinato-
rial problem that may be treated with Machine Learning methods like feature
selection.
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Departament d’Informàtica, Universitat de València,
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Abstract. Relevance feedback has been adopted by most recent Con-

tent Based Image Retrieval systems to reduce the semantic gap that

exists between the subjective similarity among images and the similarity

measures computed in a given feature space. Distance-based relevance

feedback using nearest neighbors has been recently presented as a good

tradeoff between simplicity and performance. In this paper, we analyse

some shortages of this technique and propose alternatives that help im-

proving the efficiency of the method in terms of the retrieval precision

achieved. The resulting method has been evaluated on several reposito-

ries which use different feature sets. The results have been compared to

those obtained by the nearest neighbor approach in its standard form,

suggesting a better performance.

Keywords: CBIR, image retrieval framework, relevance feedback.

1 Introduction

Content based image retrieval (CBIR) embraces a set of techniques which aim
to recover pictures from large image repositories according to the interests of the
user. Usually, a CBIR system represents each image in the repository as a set of
features (usually related to color, texture and shape), and uses a set of distance
functions defined over this feature space to estimate similarity between pictures.
In this context, a query is usually composed of one or more sample pictures, and
the task of the CBIR system is to retrieve the set of images which best matches
this query. Indeed, the performance of such a system depends on both the feature
space and the distance function used to estimate the similarity between pictures.
In this direction, a large number of features and distance functions have been
proposed in the past [1,2,3].

The assumption that subjective or semantic similarity is related to the sim-
ilarity between low level features is implicit to this way of posing the retrieval
problem. But since this does not hold true, the goal of most CBIR techniques
is to reduce the existing gap between the semantics induced from the low level
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features and the real high level meaningful semantics of the image. Relevance
feedback has been adopted by most recent CBIR systems to reduce the so-called
semantic gap [4]. When relevance feedback is used, the search is considered an
iterative process in which the original query is refined interactively, to progres-
sively obtain a more accurate result. At each iteration, the system retrieves a
series of images according to a pre-defined similarity measure, and requires user
interaction to mark the relevant and non relevant retrievals. This data is used
to modify some system parameters and produce a new set of results, repeating
the process until a satisfying enough result is obtained. In this context, the re-
lationship between any image in the database and the user’s desire is usually
expressed in terms of a relevance value, which is aimed at directly reflecting the
interest the user may have in the image and is to be refined at each iteration.

A large amount of relevance feedback algorithms use the user’s selection to
search for global properties which are shared by the relevant samples available
at each iteration [4]. From a Pattern Recognition viewpoint, this can be seen as
obtaining an appropriate estimate of the probability of (subjective) relevance.
Many different approaches exist to model and progressively refine these esti-
mates. But taking into account that this constitutes a small sample problem
whose models cannot be reliably established because of the semantic gap, non-
parametric distance-based methods using neighbors are particularly appealing
in this context and may constitute an appropriate trade off [5,6,7]. The main
idea in these methods is to assess relevance using distances to relevant and non-
relevant neighbors of a given image. In this paper, we consider several already
proposed algorithms and analyse their behavior to identify some major pitfalls
and motivatedly arrive at several improvements to the original algorithms.

The remainder of the paper is organized as follows. The next section presents
the model used, outlines the assumptions made, and presents the name con-
ventions used throughout the article. Then, the nearest neighbor approach is
outlined. After, some problems related to the application of this technique in
the field of CBIR are analysed. Later, some improvements that tackle these
problems are introduced, proposing an alternative formulation of the approach.
Finally, the resulting algorithm is compared to the original one [5,6] and some
final conclusions are drawn.

2 Relevance-Guided Interactive Image Retrieval

Let us assume we have a repository of images X = {x1, · · · , xm} conveniently
represented in a metric feature space, F , whose associate distance measure is
d : F × F −→ R≥0. Usually, in the image retrieval context, the representation
space is assumed to be the D−dimensional space RD, which may embrace mul-
tiple low level descriptors (e.g. color, texture or shape) and the distance d is
constructed by combination from simple distance measures over each descrip-
tor [1].

Let us assume that a particular user is interested in retrieving images from X
related to a particular semantic concept. The user’s interest can be modelled in
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the feature space as a probability function, p(relevant|x), which carries in fact
a hidden dependence on the given repository, X .

Single point query approaches assume that this probability function can be
appropriately represented by a single (ideal) point c ∈ F possibly along with
a convenient axis or feature reweighting [8]. This approach can be extended to
use a set of representative points C = {c1 · · · c�} as in typical multipoint query
setups [9].

The goal of the retrieval system at each relevance feedback iteration is to find
a set of images from X that contains as much relevant images as possible using
the available information. Single point methods use a distance measure to rank
images while multiple point methods usually (linearly) combine rankings to each
representative in C.

The available information or user feedback is given by the set of images from
Q ⊂ X already seen by the user and marked either as relevant (positive), Q+ or
as non-relevant (negative), Q−. Both disjoint subsets, Q+ and Q−, can be seen as
samples corresponding to the distribution functions that determine p(relevant|x)
as in a typical two-class classification setting. The problem is that these samples
are far from being truly representative both because of the small sample size
case and the strong dependences introduced by the way in which new evidence
is progressively taken into account.

3 Nearest Neighbor (NN) Approach

Nearest neighbors methods have been extensively used in the context of learning,
vision and pattern recognition due to their well-known, convenient and well
studied practical and asymptotic behavior [10,11].

In particular, the ratio of fraction of neighbors of a certain kind to the volume
of the hypersphere containing them is known to be a good estimate of the corre-
sponding probability distributions [12]. This fact has been used in the context of
image retrieval [7] in the particular case of a single nearest neighbor to obtain es-
timates for the relevant and non-relevant classes as inversely proportional to the
volume of the corresponding 1-Neighborhoods, VR(dR(x)) and VN (dN (x)), where
the subscripts refer to the nearest relevant (R) and non-relevant (N) neighbors,
respectively; and dR and dN are the corresponding distances to each neighbor
from x.

From the separate estimates and obviating the exponent D and some constant
terms in the volume formulae, the following expression can be arrived at [7]:

p(relevant|x) =
dN (x)

dR(x) + dN (x)
A simplified version of this estimate already used in this context [5] is given by:

p(relevant|x) ∝ dN (x)
dR(x)

(1)

where the symbol ∝ indicates that a convenient nondecreasing mapping is to be
used. On the other hand, it is worth noting that in the image retrieval context
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what is in fact important is the ranking these estimates induce and not their
absolute values. For convenience, normalized relevance scores are used in practice

as e.g. R(x) = 1 − e
dN (x)
dR(x) [5]. Note that all estimates above whether normalized

or not, give rise to the same ranking and consequently are equivalent from the
point of view of relevance feedback.

4 Considerations about NN Estimates in CBIR

Several problems arise when applying NN estimates in the context image retrieval
with relevance feedback. A first problem already reported in [7] comes from the
relative sizes of the Q+ and Q− sets. In general, the number of relevant items is
by far smaller than the number of non-relevant ones, even in the surroundings of
the elements in C. This causes that typically the number of elements in Q+ be
also lower than in Q−. When a relevant selection is surrounded by non-relevant
ones, the above rankings produce high values in a very small closed region around
it. But from the images outside this region, the top ranked ones are those which
are far from both relevant and non-relevant samples. This undesirable effect is
illustrated in Figure 1 using the simplest ratio. The chances of this type of
situation increase with the relevance feedback iterations, as areas around positive
selections tend to be explored more in depth.

Very coupled with the first problem and already identified in [7] is the fact
that NN density estimates become very unreliable under the small sample size
case. The use of distances to k-th neighbors instead of using k = 1 has already
been proposed to obtain (slightly) more stable estimates.
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Fig. 1. Plus signs represent samples that the user has marked as relevant and minus

signs those which have been marked as non relevant. Circles represent other exist-

ing images. (a) only the pictures within the frontier depicted would yield values of

dN(xi)/dR(xi) above 1. Since there are no images in this area, the most relevant sam-

ples may be the farthest from positive and negative samples. (b) When images in the

repository (circles) are unevenly populated, some regions may dominate rankings. Top

ranked images will be all in the close neighborhood of just one of the relevant sample

(the one at the top right corner).
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Another important problem not described in previous works is caused by
differently populated regions in the feature space. As the ratio of distances is
defined in a global way, densely populated regions with high relevance values will
tend to dominate the ranking which may result in an undesirable effect in the
general case of multipoint query. This problem is caused both by the possibly
uneven distribution of images in the repository, X (as illustrated in Figure 1),
and also because of the complex relationship between perceptual similarity and
the distance used to find neighbors which may in turn be different in different
regions of the feature space. That is, the probability of relevance may scale
differently with distance in different regions.

5 Local Searching Using Smoothed NN Estimates

Even with the above mentioned problems, NN-based relevance feedback gives
surprisingly good results in practice comparable to other state-of-the-art
techniques in most practical cases [7]. Nevertheless and apart from other im-
provements related to more meaningful or robust representations (e.g. using
dissimilarity spaces) or using hybridization techniques (e.g. with Bayesian rel-
evance feedback), there is still room for improvement in the NN approach to
relevance feedback itself.

First, a conveniently smoothed NN estimate can be defined by increasing the
importance of Q+. As all previously defined ratios of distances are equivalent
with regard to the ranking they induce, we will consider the simple one in Eq. 1.
This unnormalized ratio has the advantage of having a simple interpretation in
terms of the error rate of the 1-NN classifier [13] and it has also been previously
used to derive NN classification rules for imbalanced problems [14].

Using the unnormalized ratio and assuming that the distance to the closest
element in C was available for every picture stored in the repository X , a feasible
strategy to smoother estimates would be to introduce a Moderating Term (MT)
in Eq. 1 directly related to this distance. As these are not available (the elements
in C are the unknowns of the problem that ideally represent the user’s desire),
a reasonable approximation is to consider the relevant selections in Q+ instead.
To this end, the ratio in Eq. 1 is multiplied by the inverse of the distance to the
closest relevant sample. In this simple and parameterless way, those points which
are close to any of the elements in Q+ are rewarded against others which lay
farther from them in the feature space. In particular, the following expression is
used to compute the relevance scores:

R(x) = 1 − e
− dN (x)

dR(x)2 (2)

This expression gives more importance to positive than to negative selections, a
consistent approach to deal with the significant differences in the cardinality of
the sets of relevant and non relevant selections. The effect of using this smoothed
estimate is illustrated in Figure 2.

To deal with the problem of differently populated areas, instead of considering
the relevance score, R(x), to produce a global ranking, a set of r local searches
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Fig. 2. Effect of using smoothed and non smoothed estimates. Dots represent images

in the repository. Plus and minus signs represent relevant and non relevant selections

respectively. The lines are contours of equal score. These have been numbered in de-

creasing order of relevance. (a) shows these contours using non smoothed estimates;

and (b) using smoothed estimates (Eq. 2). In (a), the picture pointed by the arrow

would be the closest. In (b) this would be the farthest image of all.

(one per relevant selection q+
i in the set Q+) will be carried out. Each of these

searches is performed using equation 2, but considering the picture q+
i as the only

relevant sample. This results in a set of r independent rankings R = {R1 · · ·Rr},
one for each local search. Finally, each picture is assigned a score which is in-
versely proportional to its best ranking position in the set of rankings R. This
technique makes the approach robust against different density areas.

6 Empirical Evaluation

In order to evaluate the impact of the improvements introduced in this work,
a comparative analysis of the results obtained with and without them in the
original NN approach [5] without any other independent extensions is consid-
ered. To evaluate the independent effect of each of the mechanisms proposed we
have compared the proposed smoothed NN estimate with local search to those
obtained with: (a) the basic NN technique [5]; (b) the NN approach incorpo-
rating the local searches (LS) approach; (c) the NN approach adding only the
moderation term (MT) technique to handle the surrounding problem. We will
refer to these algorithms as the original, the original+LS and the original+MT
respectively.

Exhaustive experimentation has been carried out using three well distinct
repositories:

– The commercial collection “Art Explosion”, distributed by the company
Nova Development. The 10 x 3 HS color histogram and six texture fea-
tures have been computed for each picture in this database, namely Gabor
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Convolution Energies, Gray Level Co-occurrence Matrix, Gaussian Random
Markov Fields, the coefficients of fitting the granulometry distribution with
a B-spline basis, and two versions of the Spatial Size distribution, one using
a horizontal segment and another with a vertical segment [15].

– The subset of the Corel database used in [5]. This is composed of 30 000
images which were manually classified into 71 categories. The descriptors
used are those provided in the KDD-UCI1 repository, namely: A nine com-
ponent vector with the mean, standard deviation and skewness for each hue,
saturation and value in the HSV color space; a 16 component vector with
the co-ocurrence in horizontal, vertical and the two diagonal directions; a 32
component vector with the 4×2 color HS histograms for each of the resulting
sub-images after one horizontal and one vertical split; and a 32 component
vector with the HS histogram for the entire image.

– A small repository which was intentionally assembled for testing, using some
images obtained from the Web and others taken by the authors. The 1508
pictures it contains are classified as belonging to 29 different themes such
as flowers, horses, paintings, skies, textures, ceramic tiles, buildings, clouds,
trees, etc. In this case, the descriptors include a 10 x 3 HS color histogram and
texture information in the form of two granulometric cumulative distribution
functions [15].

The distances between features have been estimated using the histogram inter-
section [16] on the color histogram vectors and the Euclidean distance for the
other descriptors, and they have been combined as specified in the original pub-
lication [5]. In particular, a relevance value is computed for each descriptor and
the final score is calculated as a weighted linear combination.

For experimental purposes, a similar setup to that used in [5,7] has been em-
ployed. The available categories have been used as concepts, and user judgments
about similarity have been simulated considering that only pictures under the
same category represent the same concept. To simulate a search, a category is
initially chosen at random. At each iteration, automatic judgments are made on
the first 50 images, and submitted to the system. Then, the algorithm processes
the selection and returns a new image ranking which is judged again as part of
an iterative procedure.

To obtain more reliable data, each technique has been evaluated with 500
searches on each repository, using the same categories and initial picture order
for all algorithms. In all cases, we have forced the situation that there is at least
one relevant sample in between the first 50 images in the initial order in which
pictures are presented.

Results have been measured in terms of precision at a cutoff value of 50 (the
proportion of relevant picture amongst the top 50 ranked). These results are
graphically shown in figure 3.

The results show a significant improvement in retrieval precision when using
the proposed technique, incorporating both the moderation term and the local

1 Available in http://kdd.ics.uci.edu/databases/CorelFeatures
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Fig. 3. Averaged retrieval precision measured on the first 50 retrieved images using a)

Web, b) Corel, and c) Art databases

Fig. 4. When a local search strategy is adopted, the surrounded problem becomes more

critical. Plus and minus signs represent samples that the user has marked as relevant

and non relevant respectively, and each circle a picture in the database. The frontier

delimits the area in which the expression dN (xi)/dR(xi) yields a value greater than

one, when a local search with respect to the relevant selection at the top right corner

is performed.

searches approaches. Surprisingly enough, when these are used in isolation, worse
results are obtained in some cases.

This is mainly due to the tight relation between the solutions to the two prob-
lems that we aim to solve. When only the local search strategy is adopted, the
surrounding problem becomes more critical. This can easily be understood by
considering the case illustrated in Figure 4. In this example, the original algo-
rithm would not retrieve any of the pictures surrounding the positive selection at
the top right corner (except the selection itself). However, if two local searches
are performed and their results combined, half of the images retrieved (the ones
which correspond to the relevant selection at the top right corner) will be those
which yield a value of dN (xi)/dR(xi) just below 1 (the farthest from positive
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and negative samples), very unlikely to be of any interest. Intuitively, neither
option is correct. It is only when the moderation term is also introduced that
pictures around the two positive selection are retrieved.

Similarly, if only the moderation term is introduced, the problem about dif-
ferently populated areas becomes more noticeable. In the original technique, the
larger effect of negative selections usually limits the amount of pictures with a
large score around a single selection, helping diversity and playing a regulating
effect with respect to density. In this sense, the reduction of the importance
of non relevant selections caused by the moderating term may have a negative
impact on the performance of the algorithm.

It is worth noting that the original NN approach may give even better results
at the first and second iterations, e.g. on the Corel database. It is as the relevance
feedback iterations progress that the improvements introduced become more
and more important in all cases. The proposed method obtains the best results
consistently and by a significant difference from the 4th iteration on. The only
not significant difference is on Corel database and between the proposed method
and the basic NN approach with local searches.

7 Concluding Remarks

We have presented an improved nearest neighbor based algorithm for CBIR.
In particular, we have re-formulated the algorithm presented in [5] to make it
more robust to differences in the densities of pictures in the feature space and
the cardinality of the sets of relevant and non relevant selections. It has been
observed that this new formulation allows for a significant increase in retrieval
precision with respect to the original approach.

Note that in the formulation of the approach we have made no assumption on
the feature space, the distance functions used for retrieval and the method used
to combine these functions. Although a simple linear combination of the scores
obtained for each descriptor has been used in the experimentation (as in [5]) and
the use of a dissimilarity space has been suggested in [7], other strategies are
also possible. In particular, combination methods which allow one to construct
a single similarity measure from several distance functions (e.g. [17]) have been
proposed. The integration of the nearest neighbor method with such approaches
would make it possible to compute a single relevance score for each image by
direct application of equation 2.
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Abstract. A multiple kernel fusion method combining two multireso-

lution histogram face descriptors is proposed to create a powerful rep-

resentation method for face recognition. The multi resolution histogram

descriptors are based on local binary patterns and local phase coding

to achieve invariance to various types of image degradation. The multi-

kernel fusion is based on the computationally efficient spectral regression

KDA. The proposed face recognition method is evaluated on FRGC 2.0

database yielding very impressive results.

Keywords: Local Binary Pattern, Local Phase Quantization, Kernel,

Fusion, Linear Discriminant Analysis.

1 Introduction

Recognising faces under uncontrolled lighting conditions and blur either due to
misfocus or motion is one of the most important challenges for practical face
recognition systems. The problem is aggravated by a high dimensionality of the
face data and a small sample size.

Most previous works on face recognition make use of raw image data as input
to a linear transformation which maps the image to a point in a space, called face
subspace. This point is defined by the coefficients of the face image projection
into the associated bases, exemplified by [1][2], Eigenface [3] and Fisherface [4].
However, the performance of such methods degrades when the cropped face
image is acquired in changing illumination or is degraded by blur.

In contrast, histogram-based features, such as the Local binary pattern his-
togram (LBPH)[5], Local Phase Quantisation histogram (LPQH)[6] and the his-
togram of Gabor Phase Patterns (HGPP) [7], have gained reputation as powerful
and attractive texture descriptors showing excellent results in terms of accuracy
and computational complexity in face recognition, as these features, which cap-
ture the information about the spatial relation of facial regions, are partially
invariant to these degradation. In these methods, the face image is first par-
titioned into a large number of small regions from which pattern histograms,
representing the local texture of face images, are extracted. The recognition is
performed using the nearest-neighbour classifier. Chan et al. have extended the
LBP histogram[8] and LPQ histogram[9] methods to provide a multiresolution

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 718–727, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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representation which further exhibits robustness to face misalignment. These ex-
tensions have been demonstrated to achieve excellent results in Feret, XM2VTS
and BANCA databases. It is well known that multiple cues enrich the represen-
tation of any object. This has been demonstrated also for faces. Face representa-
tions derived from the complementary sources of information presented in Table
1 have been shown to achieve better performance than single best representation.
It is evident from Table 1 that with the exception of [10] the reviewed fusion
studies always involve integrating information emanating from different image
domains rather than using different face representations which are derived from
a single domain. Moreover, most systems in Table 1 apply either a score fusion
or a feature level fusion method. It is therefore of interest to investigate a novel
mechanism -multiple kernel fusion- for combining different face representations
computed from an intensity image. We focus on the an intensity domain, as it is
more robust to changes in image acquisition conditions (camera, illumination).

Table 1. Summary of the fusion methods in different face recognition systems

Ref. Image Domain Face representation Fusion Method

[11] Infrared and Visible Images Wavelet Feature fusion

[12] 2.5D, Curvature, Visible Images Gabor Kernel fusion

[13] Color Image LBPH Feature and Score fusions

[10] Intensity Image Gabor, LBPH Score fusion

[14] Color Image Frequency feature Score fusion

[15] Color Image Gabor, MLBPH, Frequency Feature Score fusion

[16] Global, intrinsic faces Frequency Feature Score fusion

[17] Global, intrinsic faces Gabor, Frequency Feature Score fusion

This paper presents a computational and statistical framework for integrating
two different descriptors, Multiscale LBPH and Multiscale LPQH for face recog-
nition in 2D grey-scale image domain. These descriptors are selected because
of their invariance to monotonic illumination changes and blur. The framework
relies on the use of kernel-based statistical learning methods. These methods
represent the data by means of a kernel function which is the non-linear func-
tion of similarities between pairs of face descriptors. One of the reason for the
success of kernel methods is that the kernel function measures the similarity be-
tween query face image descriptors and those derived from the training set in an
implicitly infinitely dimensional space. Each kernel therefore extracts a specific
type of information from the training set, thus providing a partial description or
view of the query image. A unique combined kernel obtained from the individual
kernels formed by the two descriptors is then projected into the Fisher space for
face recognition. Paper is organised as follows. In Section 2 we introduce the
image descriptors adopted, as well as a computationally efficient kernel match-
ing method. The problem of fusion is discussed in Section 3. The experimental
results are presented in Section 4, leading to conclusions in Section 5.
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2 Histogram Features

Local Binary Pattern

The LBP operator, shown in Equation 1, extracts information which is invariant
to local monotonic grey-scale variations of the image. During the LBP operation,
the value of current pixel, fc, is applied as a threshold to each of the neighbours,
fp(p = 0, · · · , P − 1) to obtain a binary number. A local binary pattern is ob-
tained by first concatenating these binary bits and then converting the sequence
into the decimal number. Using circular neighbourhoods and linearly interpolat-
ing the pixel values allows the choice of any radius, R, and number of pixels in
the neighbourhood, P, to form an operator

LBPP,R(x) =
P−1∑
p=0

s(fp − fc)2P | s(v) =

{
1 v ≥ 0
0 v < 0

(1)

Local Phase Quantisation Pattern

The local phase quantisation(LPQ)[6] pattern is robust to blur effects. The
phase information of LPQ can be extracted using the two dimensional windowed
Fourier transform (2DWFT).

Fu(x) =
∑

m∈Nx

w(m − x)f(m)e−j2πuT m = ET
u fx (2)

where Eu, size = 1 × z2, is a basis vector of 2DWFT with frequency u, and fx,
size= z2×N , is a vector containing image pixel values in Nx at each x location.
The window function, w(x) is a rectangular function in this work. The transform
is computed at four frequency points, u = [u0,u1,u2,u3] where u0 = [a, 0]T ,
u1 = [0, a]T ,u2 = [a, a]T and u3 = [a,−a]T . a is a highest scalar frequency for
which Wui > 0. Thus, only four exponential complex functions are needed as a
filter bank to yield eight resultant complex images consisting of 4 filtered images
of the real part and 4 images of the imaginary part of the transform. A whitening
transform[6] is applied to decorrelate Fu(x) to improve the system performance.
Each pixel of the resultant complex image can be encoded into a binary value
shown in Equation (3) by applying the quadrant bit coding.

BRe
ui

(x) =

{
1 if FRe

ui
(x) > 0

0 if FRe
ui

(x) ≤ 0

BIm
ui

(x) =

{
1 if FIm

ui
(x) > 0

0 if FIm
ui

(x) ≤ 0

(3)

This coding method assigns 2 bits for every pixel to represent the quadrant in
which the phase angle lies. In fact, it also provides the quantisation of the Fourier
phase feature. LPQ is a binary string obtained, for each pixel, by concatenating
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the real and imaginary quadrant-bit codes of the eight Fourier coefficients of ui.
The binary string is then converted to the decimal number by Equation (4) to
produce a LPQ pattern

LPQ(x) = BRe
u0

(x) + BIm
u0

(x) × 21 + · · ·
+BRe

u3
(x) × 2k−1 + BIm

u3
(x) × 2k (4)

In digital image processing, blur effects can be modelled by a discrete linear
relationship defined by a convolution between the image intensity and a point
spread function (PSF). In the Fourier transform, the phase of each harmonic of
the blurred image is the sum of the phase of the original image and phase of the
PSF. If the PSF of blur is a positive even function, it will act as a zero-phase
low-pass filter. In other words, the LPQ representation is invariant to blur if the
cut-off frequency of blur (PSF) is greater than that of the LPQ filter.

Multiscale Pattern Histogram

A multiresolution representation can be obtained by varying the filter size, z×z,
and combining the resulting pattern images. Such a representation [9][8] has been
suggested for face recognition and the results reported for this application show
that the accuracy is better than that of a single scale pattern method. As a
multiresolution representation defined by a set of pattern operators of different
filter size may give an unstable result because of noise, this problem can be
minimised by using aggregate statistics, exemplified by histogram. There are
several advantages in summarising the patterns in the form of histogram. First,
the statistical summary can reduce the feature dimension from the image size
to the number of histogram bins. Secondly, using histogram as a set of features
is robust to image translation and rotation to a certain extent and therefore the
sensitivity to mis-registration is reduced. Finally, although the effect of unstable
pattern responses due to noise is attenuated by histogramming, it can further
be reduced by controlling the number of histogram bins and /or projecting the
histogram to other spaces.

In our approach, pattern operators defined on a neighbourhood Q, for an
instance LBP or LPQ, at R scales, are first applied to a face image. This generates
a grey level code for each pixel at every resolution. The resulting Pattern images
are cropped to the same size and divided into non-overlapping sub-regions, M0,
M1,..MJ−1. The regional pattern histogram for each scale is computed as

hr,j(i) =
∑

x∈Mj

E(Qr(x) = i)

| i ∈ [0, L− 1], j ∈ [0, J − 1],
r ∈ [1, R], z = r × 2 + 1

E(v) =

{
1 when v is true
0 otherwise

(5)
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E(v) is a Boolean indicator. r is the scale index and z is the width or height
of the pattern filter. The set of histograms computed at different scales for each
region Mj provides regional information. L is the number of histogram bins. By
concatenating these histograms into a single vector, we obtain the final multires-
olution regional face descriptor.

kj = [h1,j ,h2,j , · · · ,hR,j ] (6)

KDA Using Spectral Regression (SR-KDA)

Kernel Discriminant Analysis is a non-linear extension of LDA which maps the
original measurements into a higher dimensional space using the ”kernel trick”.
If ν denotes a projective function into the kernel feature space, then the objective
function for KDA is

max
ν

J (ν) = νT Cbν
νT Ctν

(7)

where Cb and Ct denote the between-class and total scatter matrices in the fea-
ture space respectively. A solution to Equation 7 leads to the eigenvalue analysis
problem Cb = λCt. It is proved in [18] that equation 7 is equivalent to

max
α

J (w) = wT KAKw
wT KKw (8)

where w = [α1, α2, · · · , αm]T is the eigen-vector satisfying KAKw = λKKw.
A = (Al)l=1,··· ,n is a (m×m) block diagonal matrix of labels arranged such that
the upper block corresponds to positive examples and the lower one to negative
examples of the class. K is an m × m kernel matrix such that K(ks1 ,ks2) =
〈Φ(ks1 ), Φ(ks2 )〉, where Φ(ks1 ) and Φ(ks2 ) are the embeddings of data items ks1

and ks2 . Each eigenvector w gives a projection function ν into the feature space.
It is shown in [19] that instead of solving the eigen-problem in KDA, the KDA

projections can be obtained by the following two linear equations

Aφ = λφ

(K + δI)w = φ (9)

where φ is an eigenvector of A, I is the identity matrix and δ > 0 is a reg-
ularisation parameter. Eigen-vectors φ are obtained directly from the Gram-
Schmidt method. Since (K+δI) is positive definite, the Cholesky decomposition,
(K + δI) = RTR is used to solve the linear equations in Equation 9 and the
obtained result, R is a upper triangular matrix. Thus, the solution of the linear
system becomes

(K + δI)w = φ ⇔
{

RT θ = φ
Rw = θ

(10)

i.e., first solve the system to find vector θ and then vector w. In summary,
SRKDA, Wkda = [w1,w2, · · · ,wc−1], only needs to solve a set of regularised re-
gression problems and there is no eigenvector computation involved. This results
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in great improvement of computational cost and allows to handle large kernel
matrices.

Complexity Analysis. The computation of SR-KDA involves two steps: (i)
response generation which is the cost of the Gram-Schmidt method, and (ii)
regularised regression which involves solving (c − 1) linear equations using the
Cholesky decomposition where c is the number of classes. As in [20], we use the
term flam, a compound operation consisting of one addition and one multipli-
cation, to measure the operation counts. The cost of the Gram-Schmidt method
requires (mc2− 1

3c
3) flams. The Cholesky decomposition requires 1

6m
3 flams and

the c−1 linear equations can be solved with m2c flams. Thus, the computational
cost of SRKDA excluding the cost of Kernel Matrix K is 1

6m
3 +m2c+mc2− 1

3c
3

which can be approximated as 1
6m

3 + m2c. Comparing to the cost of ordinary
KDA (9

2m
3+m2c), SR-KDA significantly reduces the dominant part and achieves

an order of magnitude (27 times) speed-up.

3 System Fusion

We investigate two frameworks for information fusion: Score level fusion and
Kernel level fusion as shown in Figure 1.

Score level fusion: In the case of score-level fusion, for each representation the
face recognition system is trained individually using SR-KDA. The output from
each classifier is then combined using the sum rule.

Kernel level fusion: Given multiple features (MLPQ, MLBP), each kernel
function produces a square matrix in which each entry encodes a particular
notion of similarity of one face to another. This kernel formalism also allows these
multiple features to be combined. Basic algebraic operations such as addition
maintain the key property of positive semi-definiteness and thus allow a simple
but powerful algebra of kernels. For example, it is possible to combine kernels
computed from MLPQ and MLBP such that kernel K = KMLPQH +KMLBPH .
Once the kernels are combined, SR-KDA is then applied for feature extraction.
It should be noted that this Kernel-level fusion has a speed advantage over the
score-level fusion as only one classifier is required. In contrast, for score-level
fusion, separate classifiers are required for the individual face representations.

4 Experimental Result

The Face Recognition Grand Challenge version 2 data set is used to evaluate
the proposed framework. The faces of this database collected in controlled and
uncontrolled environments are divided into training and test sets. The training
set contains 12,775 images from 222 subjects, while the test set data contains
24,042 images from 466 in which 222 subjects are common to the training set
but their image are not shared with the training set. We focus on experiments,
EXP 1 and 4, in this work. EXP 1 is designed to measure the performance
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(a) Kernel

(b) Score

Fig. 1. Block diagrams of Kernel fusion and score fusion methods

of face verification from frontal images taken under controlled illumination. In
EXP 1, 16,028 images from 466 subjects are used to establish 16, 028 × 16, 028
similarity confusion matrix. EXP 4 is designed to measure the performance on
controlled versus uncontrolled frontal face still images. The target set consists
of 16,028 controlled images and the query set contains 8,014 uncontrolled still
images. The ROC curve plotting the Face Verification rate (FVR) versus the
False Acceptance Rate (FAR) is generated using the Biometric Experimentation
Environment (BEE) evaluation tool. It produces three ROC curves (ROC I, II &
III) corresponding to the images acquired within semesters, within a year, and
between semesters, respectively.

Face images are extracted with the ground-truth annotated eye positions and
scaled to a size of 142 × 120 (rows × columns). The cropped faces are photo-
metrically normalised by the Preprocessing sequence approach(PS) [10]. This
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Table 2. The verification rate in % at 0.1% FAR for different methods on FRGC 2.0

Experiment 1 and 5

System EXP 1 EXP 4

ROC I ROC II ROC III ROC I ROC II ROC III

PS MLBP+LDA 97.11 96.31 95.40 67.32 68.92 70.51

PS MLBP+KDA(ED) 98.37 97.91 97.42 77.85 79.68 81.53

PS MLBP+KDA(X2) 98.48 98.03 97.55 75.45 77.67 79.81

PS MLPQ+LDA 97.30 96.51 95.67 67.32 68.86 70.50

PS MLPQ+KDA(ED) 98.76 98.39 97.98 81.05 82.44 83.80

PS MLPQ+KDA(X2) 98.76 98.37 97.94 78.27 79.98 81.54

PS MLPQ+LDA+PS MLBP+LDA 97.45 96.69 95.89 69.73 71.59 73.43

PS MLPQ+KDA(ED)+PS MLBP+KDA(ED) 98.70 98.31 97.88 81.17 82.84 84.42

PS MLPQ+KDA(X2)+PS MLBP+KDA(X2) 98.77 98.38 97.95 79.15 81.04 82.87

PS MLPQ+PS MLBP+KDA(ED) 98.84 98.50 98.13 82.92 84.34 85.72

PS MLPQ+PS MLBP+KDA(X2) 98.88 98.54 98.16 80.50 82.19 83.78

CVPR06’[16] 95.01 93.29 91.51 75.70 75.06 74.33

ICCV07’[17] 98.00 86.00

AMFG07’[22] 83.60

INNS09’[13] 83.4

TIP08’ [14] 79.40 79.90 80.30

ICB09’ [15] 92.40

CVPR05’LBP+KLDA(X2) [23] 97.40

CVPR05’LBP [23] 79.90

CVPR05’KLDA [23] 82.90

PCA Baseline 74.76 70.53 66.05 12.00

photometric normalisation method is designed to reduce the effects of illumina-
tion variation, local shadowing and highlights, while still keeping the essential
visual appearance information for the use in recognition. Our objective is to eval-
uate the MLPQH and MLBPH descriptors and their combination. For MLBPH,
ten LBP operators from r = 1 to 10 with P = 8 are employed to represent the
face image, while eight LPQ operators from z = 3 to 17 for MLPQ. The coded
images are then divided into 9 non-overlapping regions and the kernel vectors
based on the local histograms are generated in the testing stage. In this work,
we have used RBF kernel with Chi-squared (X2) and Euclidean distance (ED)
metrics: K(ks1,ks2) = e−

1
A dist(ks1,ks2) where A is a scalar which normalises

the distances. Following [21], A is set to the average Chi-squared or Euclidean
distance between all elements of the kernel matrix. The default value of regular-
isation parameter δ = 0.01 is used in all experiments.

In kernel fusion (MLBPH+MLPQH KDA), the kernel vectors of MLBPH and
MLPQH in each region are fused together and projected into SRKDA space
to represent the regional discriminative facial descriptors. The final similar-
ity score is obtained by summing the similarity, i.e. normalized correlation, of
regional discriminative descriptors. On the other hand, in Score level fusion
(MLBPH KDA+MLPQH KDA), SRKDA is applied to each of histogram de-
scriptors and then the similarity score is fused by averaging the similarity scores.
For the benchmark systems, the score level fusion of LDA version of MLBPH and
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MLPQH (MLBPH LDA+MLPQH LDA), MLPQH LDA and MLBPH LDA are
evaluated and the state of art methods are also reported in Table 2.

Compared to Linear Discriminant analysis-based systems, the Kernel Discrim-
inant analysis performs significantly better in EXP 1. However, there is no sig-
nificant difference between the performance of the RBF kernel with Chi-squared
(X2) and Euclidean distance (ED) metrics. As expected, the performance ob-
tained when combining two different face representations is better than the per-
formance of the individual representation, except for PS MLPQ+KDA(ED) +
PS MLBP+KDA(ED) in EXP 1. Kernel fusion always outperforms score level
fusion. Our proposed frameworks using kernel fusion to combine two different
face representations achieves slightly better performance than the system com-
bining the scores from global and intrinsic face images[17]. However, the result
of our proposed method is not better than the method in ICB2009 [15] where
this complicated method integrating different face representations, such as LBP,
Gabor and Fourier features in colour domain achieves better performance. Nev-
ertheless, we argue that any system using colour may not be robust in the real
environment and also has a heavy computational cost.

5 Conclusions

We have presented a kernel fusion method for integrating two new robust de-
scriptors for face recognition under uncontrolled lighting conditions and blur.
Tested on the challenging FRGC 2.0 database, our proposed framework achieves
better performance than the score level fusion. It also outperforms all state of
the art method in comparable conditions. The proposed method provides an
alternative solution for integrating the descriptors together to achieve robust
performance.

Acknowledgements. This work is supported by the EU-funded Mobio project
grant IST-214324,(www.mobioproject.org).
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1. Wiskott, L., Fellous, J.M., Krüger, N., von der Malsburg, C.: Face recognition by

elastic bunch graph matching. PAMI 19(7), 775–779 (1997)

2. Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local gabor binary pattern

histogram sequence (lgbphs): A novel non-statistical model for face representation

and recognition. In: ICCV, pp. 786–791 (2005)

3. Turk, M.A., Pentland, A.: Face recognition using eigenfaces. In: CVPR,

pp. 586–591 (1991)

4. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition

using class specific linear projection. PAMI 19(7), 711–720 (1997)
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Abstract. In this paper, an OCR post-processing method that com-

bines a language model, OCR hypothesis information and an error model

is proposed. The approach can be seen as a flexible and efficient way to

perform Stochastic Error-Correcting Language Modeling. We use

Weighted Finite-State Transducers (WFSTs) to represent the language

model, the complete set of OCR hypotheses interpreted as a sequence

of vectors of a posteriori class probabilities, and an error model with

symbol substitutions, insertions and deletions. This approach combines

the practical advantages of a de-coupled (OCR + post-processor) model

with the error-recovery power of a integrated model.

1 Introduction

Any method of optical recognition of printed or handwritten text is subject to
variable amounts of error and uncertainty in the output. The application of a cor-
rection algorithm is therefore very important. The excelent performance shown
by humans when we read a handwritten text is mostly due to our extraordinary
error-recovery ability, thanks to the lexical, syntactic, semantic, pragmatic and
discursive language constraints we routinely apply.

The goal of an OCR post-processing method is to optimize the likelihood
that the strings generated as OCR hypotheses are correct, in the sense that
they are compatible with the constraints imposed by the task. These constraints
conform the Language Model and can be as simple as a small set of valid words
(e.g. the possible values of the “country” field in a form) or as complex as an
unconstrained sentence in a natural language.

In practice, the simplest method to handle OCR output correction is to use
a lexicon to validate the known words and ask the operator to verify or in-
put manually the unknown words. Specific techniques can be used to carry out
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approximate search in the lexicon. In [10] an excellent survey of string search
methods is presented.

Other methods are based on n-grams or on finite-state machines [9,12,3],
where a candidate string is parsed and the set of transitions with the lowest cost
(highest probability) defines the output string. The classical algorithm, widely
used in different fields, to find the maximum likelihood path on a finite-state
machine and to perform error-correcting parsing on a regular grammar is the
Viterbi Algorithm [7,8].

All these approaches use a string provided by the OCR as input, apply a
Language Model and often optimize a transformation cost using an Error Model,
but, in general, they do not take into account another valuable knowledge source
that we call the Hypothesis Model. Depending on the OCR classifier used, this can
include the a posteriori class probabilities of the output hypothesis or another
reliability index for the most likely classes. Another element to take into account
is the classifier’s confusion matrix., that should be efficiently and adequately
included into the Error Model.

2 Weighted Finite-State Transducers

Weighted Finite-State Transducers (WFST) have been widely used in speech
recognition, machine translation and pattern recognition, among other disci-
plines. In this paper we propose the use of WFSTs in Stochastic Error-Correcting
Language Modeling for OCR post-processing.

A WFST can be seen as a generalization of a Finite-State Automata (FSA)
[1,4]. An FSA can be seen as a finite directed graph with nodes representing
states and arcs representing transitions. Each transition is labeled with a symbol
from an alphabet Σ. Formally, an FSA is defined as a five-tuple (Q, q0, F , Σ,
δ) where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the
subset of final states, Σ is a finite set of symbols and δ : Q×Σ → Q is the set of
transitions between states. Each transition t is labeled with a symbol s(t) ∈ Σ.
FSAs are used to accept or reject sets of strings over Σ: given a string w ∈ Σ∗,
w is accepted if there is a path from the initial state to a final state of the graph
whose transition labels form the string w when concatenated.

However, in Finite State Transducers (FSTs) each transition is labeled with
an input symbol ∈ Σ and an output symbol ∈ Δ. Therefore, the function δ is
defined as δ : Q× Σ → Q×Δ. FSTs are used to transduce strings of an input
language over Σ into strings of an output language over Δ. The weighted version
of an FST (WFST) include a weight in their transitions, used to represent the
cost of taking a particular path. Furthermore, each state q has an initial weight
wi(q) and a final weight wf (q). A state q is initial if wi(q) 	= 0̄ and final if
wf (q) 	= 0̄.

An FSA and its weighted counterpart WFSA can be seen as an FST or WFST
respectively, with same input and output symbols in each transition. This is
called the identity transducer.
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The FSTs (and WFSTs) are considered specially flexible and powerful due
to some fundamental properties. In particular, the approach presented in this
paper relies on the composition operation [6]. Given two transducers T1 and T2,
if T1 transduces the string x ∈ Σ to y ∈ Δ with weight w1 and T2 transduces
y ∈ Δ to z ∈ Γ with weight w2, then their composition T3 = T1 %T2 transduces
x to z with weight w1 ⊗ w2.

3 Description of the Method

The proposed approach entails building and composing WFSTs that encode
different informations and represent distinct models, extending the idea of OCR
language modeling through Stochastic Error Correcting Parsing proposed in [3].

We identify three sources of information in the OCR post-processing task:
a) the OCR output (including all the hypotheses for each character and their
class probabilities), b) a model of the expected errors and their probabilities,
and c) the language the strings of the task belong to. Each of these sources of
information can be represented by a Stochastic Finite-State Machine that we call
the Hypothesis Model (HM), the Error Model (EM) and the Language Model
(LM) respectively.

3.1 The Language Model (LM)

We propose the use of a grammatical inference algorithm to build a stochastic
finite-state machine that accepts the smallest k-Testable Language in the Strict
Sense (k-TS language) [5] consistent with a task-representative language sample.
The set of strings accepted by such an automaton is equivalent to the language
model obtained using n-grams, for n = k.

A major advantage of the chosen setting resides in its flexibility. The language
sample can be a simple lexicon (with each word appearing only once), a list of
words extracted from a real instance of the task (with each word appearing as
many times as in the sample), a list of sentences with characters, words or word
categories as the symbols of the grammar, etc. Only in the first case, when using
a classical lexicon, the automaton is not required to be stochastic, since a lexicon
is not a representative language sample. In the other cases, the model will take
advantage of the probabilistic information present in the data.

The value of k can also be used to define the behavior of the model. In a
lexical model, if k is made equal to the length of the longest word in the sample,
a post-processing method is obtained where only words that exist in the sample
are valid, but if k is set to a lower value, a classical n-gram model will result,
where the corrected words may not be in the reference sample.

Figure 1 shows the probabilistic identity transducer associated with the sam-
ple S={aba, abb, ba, bac} and k = 3. In this description, for convenience,
we have used a transducer with input and output symbols equal in each tran-
sition, i.e., the identity transducer, which can be seen as an acceptor of the
language L(S).
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0

1a:a/0.5

2

b:b/0.5

3b:b/1

6/0.5
a:a/1

4/1
a:a/0.5

5/1
b:b/0.5

7/1
c:c/0.5

Fig. 1. Example of an identity transducer representing a language model

3.2 The Hypothesis Model (HM)

The output of a recognizer, in our case, an OCR classifier can be seen, in its
most general form, as a sequence of n-dimensional vectors v̄1 . . . v̄m, where n
is the number of possible hypotheses for each character, m the length of the
output string and vi,j the a posteriori probability of the jth hypothesis of the ith

character. We propose to represent this sequence using a WFSA (or an identity
WFST) with m+1 states and n transitions between each pair of states. Figure 2
shows an example of a WFST with alphabet [a, b, c] that represents the OCR
output [0.8, 0.2, 0.0], [0.1, 0.7, 0.2], [0.0, 0.6, 0.4]. This means that the first symbol
of the OCR output is a with probability 0.8 or b with probability 0.2, the second
symbol is a, b or c with probabilities 0.1, 0.7 and 0.2 respectively, and so on.
Transitions with zero-probability are not shown in the graph.

Instead of working exclusively with the most probable output (abb in the
example) this transducer models the uncertainty of the OCR classifier.

0 1
a:a/0.8

b:b/0.2
2

a:a/0.1

b:b/0.7

c:c/0.2
3/1

b:b/0.6

c:c/0.4

Fig. 2. Example of an identity transducer representing a hypothesis model. The a
posteriori probabilities from the OCR classifier are shown as the arc weights.

3.3 The Error Model (EM)

In some cases, none of the character sequences included in the OCR hypothesis
is compatible with the language model or a similar variant is more probable
than any of the original alternatives. In a classical n-gram model, this effect
is accounted for by a smoothing procedure. In our case, the possible variations
allowed and their probabilities are represented by an Error Model.

Typically, the three usual edit operations will be defined: substitutions (includ-
ing the substitution of a symbol by itself), insertions and deletions. Given two
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0

a:a/0.3
a:b/0.1
b:b/0.3
b:a/0.1

c-  :a/0.05
c-  :b/0.05
a:c-  /0.05
b:c-  /0.05

0

c-  :a/0.05
c-  :b/0.05

1

a:a/0.3

a:b/0.1

b:b/0.3

b:a/0.1

a:c- /0.05

b:c- /0.05

b:b/0.3
b:a/0.1

a:c- /0.05
b:c- /0.05

a:a/0.3
a:b/0.1

Fig. 3. Examples of two error model transducers, with all possible insertions, deletions

and substitutions (left) and with insertions only at the begining of the string (right)

symbols s1, s2 and the empty symbol ε, substitutions, insertions and deletions
are transductions of type s1/s2, ε/s2 and s1/ε respectively.

Each of these operations can be assigned a probability. The probability of
substitutions is derived from the confusion matrix of the OCR classifier. This
matrix is a table containing the confusion probability of each pair of symbols es-
timated using a representative corpus. It can be interpreted as a “static” model
of the uncertainty of the OCR classifier, complementing the “dynamic” estima-
tion provided by the a posteriori probabilities. The likelihoods of insertions and
deletions are task-dependent and can be empirically estimated. Figure 3 shows
an example of a WFST representing an error model with symbols in {a,b}.

3.4 Composing LM, EM and HM

The combination of the different models is performed through the composition
operation between transducers:

Let L1 be the set of strings that a given HM can produce, and L2 the set of
strings accepted by a given LM. Our goal is to find the most likely transduction
of a string in L1 into a string in L2 by means of the intermediate transduction
defined in an EM. This process is equivalent to finding the most probable path
in the transducer HM % EM % LM.

The transducer T1 = HM % EM transduces any string from L1 by applying
the operations of the error model EM. Figure 4 shows the composition of the
transducers HM and EM shown in Figures 2 and 3 respectively. This automaton
transduces the strings accepted by HM to any string in Σ∗.

Therefore, the transducer T2 = T1 % LM accepts only strings belonging to
L2, and the result of the transduction with the most probable path is the final
corrected string. If several alternatives are needed, the n-best paths can also
easily be obtained.
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0

c-  :a
c-  :b
c-  :c

1

a:a

a:b

b:c-

a:c

b:a

b:b

b:c

a:c-

c-  :a
c-  :b
c-  :c

2

a:a

a:b

a:c

b:a

b:b

b:c

c:a

c:b

c:c

a:c-

b:c-

c:c-

c-  :a
c-  :b
c-  :c

3

b:a

b:b

b:c

c:a

c:b

c:c

b:c-

c:c-

c-  :a
c-  :b
c-  :c

Fig. 4. Composition of the HM shown in Fig. 2 with an EM with all possible substi-

tutions, insertions and deletions

3.5 Cost Definition and Parameter Optimization

The computation of the best path is obviously a key element in the process. A
path is a sequence of transitions in the composed transducer and each transi-
tion t has an associated probability, which is computed as the product of the
probabilities of the corresponding transitions in HM, LM and EM. Assuming in-
dependence and an equal influence from all models, we can define the probablity
of a transition as:

P (t) = P (LM,EM,HM|t) = P (LM|t)P (EM|t)P (HM|t)

The probability of the output string can therefore be computed as the product
of the probabilities of the transitions along the most probable path in the com-
posed transducer. Given x ∈ L1 and y ∈ L2, the probability of the transduction
x, y is P (x, y) =

∏n
i=1 P (ti), where t1 . . . tn is the sequence of transitions that

transduces x into y.
To avoid underflow problems, instead of working with probabilities we have

used tropical semiring WFSTs (K,⊕,⊗, 0̄, 1̄) where K are negative log probabil-
ities, ⊕ is the min operation, ⊗ is +, 0̄ is +∞ and 1̄ is 0. Therefore, the most
probable path will be found using a lowest cost path search.

Since the optimum influence of each model is generally not known, two pa-
rameters λe and λh are defined to obtain a log-linear parametric combination of
the models with different weights:



734 R. Llobet et al.

P (t) = P (LM|t)P (EM|t)λeP (HM|t)λh

We consider a fixed weight 1 for the LM, therefore its influence is controlled by
the absolute values of the other parameters. The values of λe and λh, along with
the cost of insertions and deletions, mentioned in Section 3.3, can be empirically
estimated using a supervised training set.

In a typical form-processing task in the data entry industry, it is very im-
portant to obtain a consistent confidence value (in our case, the probability
associated to the shortest path in the combined transducer) allowing the user
to define a threshold and a reliable reject strategy. Consequently, we have opti-
mized the aforementioned parameters using a criterion function that maximizes
the recognition rate, defined as the percentage (with respect to the total test
set) of strings that were accepted and successfully corrected, for a given error
rate (percentage, also in the total test set, of the strings that were accepted and
generated wrong corrections). With this strategy, only rejected strings have to
be reviewed by human operators, meaning that –for a commercially acceptable
error rate– the economic savings yielded by the system are roughly equivalent
to the number of accepted strings.

3.6 Pruning

WFST composition of very large transducers can incur in large computational
costs. For a LM of 64000 states and 140000 transitions (like the one used in our
experiments), a standard EM with all possible insertions, deletions and substi-
tutions and an average-sized HM with 8 states and 5 transitions (hypotheses)
per state, the resulting composed transducer can have up to 450000 states and
more than two million transitions.

To avoid this problem, lazy composition together with a pruning scheme have
been used. Lazy operations delay the computation of the result until it is required
by another operation. This is useful when a large intermediate transducer must
be constructed but only a small part of it needs to be visited [1]. In our approach,
the composition is delayed until the search of the shortest path (the lowest cost
path) in the resulting transducer is performed. In principle, it is necessary to
completely compose the transducers to compute the shortest path, but we have
used a simple pruning search optimization to provide an approximate solution
that allows not to explore (and therefore compose) the whole transducer.

To deal with the shortest path search, a best-first algorithm which explores
the automaton by expanding the lowest cost path at each state is used. A vector
with the minimum cost found at each stage (path length) is maintained. During
the search, a pruning is performed based on a parameter δ. If the cost of a partial
solution of length n exceeds δ times the cost of the best path of length n found
so far (v[n]), then the path of the partial solution is pruned.

Obviously, this heuristic leads to an approximate search, since the lowest cost
path could be pruned. This can happen when δ is too low or when the best
path contains high-cost transitions in its first stages. To avoid pruning a partial
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solution that could lead to the best path too early, a parameter ρ is used, so that
the pruning scheme is not applied to partial solutions shorter than ρ states.

4 Experiments

The following experiments compare the system working with and without multi-
ple hypotheses and a posteriori probabilities in HM. We used a sample of 14000
handwritten surnames from forms scanned in a real industrial task, with a ref-
erence language model of 4.5 million Spanish surnames (99157 of which were
unique). A k equal to the largest surname was used in the LM, so only known
surnames were accepted as corrected output. The OpenFST library was used for
the experiments [1,2].

The corpus was divided into a training (15%) and a test (85%). The training
set was used to estimate the parameters of the error model (insertion and deletion
probabilities) and of the WFSTs composition (λh and λe) using the criterion
function defined in Section 3.5. Since the influence of each individual model
can vary depending on the selected approach –using multiple hypotheses and
a posteriori probabilities (WFST-PP) or using only the most probable OCR
output (WFST)– independent optimizations were performed for each approach.

Table 1 shows the best parameters found for WFST and WFST-PP. It can
be noted that the optimal working point in the WFST approach is achieved
when all the models have similar weights (note that LM has a fixed weight of
1), whereas the WFST-PP approach achieves better performance when the HM
has a higher weight than the other two models. Also the insertion and deletion
probabilities are lower in the WFST-PP approach, since more strings can be
corrected with a lower cost by choosing one of the symbols proposed by the HM
rather than by deletion and insertion operations.

Table 1. Optimal parameters found with and without a posteriori probabilities

λe λh pi pd

WFST-PP 1.17 2.38 0.005 0.004

WFST 1.05 1.04 0.007 0.008

Figure 5 shows the recognition and error rates of the proposed method using
a) multiple hypotheses and a posteriori probabilities in HM (WFST-PP), b)
the same approach using only the OCR strings (WFST), and c) the original,
uncorrected OCR output.

The computational cost is another important issue in this task, where the size
of the models can be very large in practice, and the typical operations involve
large batchs of documents to recognize. A set of experiments were carried out to
test the influence of the pruning method presented in Section 3.6. Figure 6 shows
the average correction time (ms.) obtained in an Intel Xeon 2.5 GHz with 2 GB
of memory, Linux OS and gcc 4.4, and the accuracy (percentage of well corrected
words) achieved for different values of δ and ρ. These results were obtained for a
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language model built from 99157 unique words. For larger language models, the
computational cost grows sub-linearly. Figure 7 plots the average computational
cost for δ = 1.5 and ρ = 3, against the length of the input OCR hypothesis.
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5 Conclusions

A post-processing method for OCR using WFSTs to encode the set of classifier
hypotheses, an error model and a language model implementing a k-Testable
Language has been proposed. The lowest cost path in the composed transducer
gives the most probable string compatible with the language, the hypothesis
and the error models. According to the tests conducted with handwritten data,
significant improvements over previous approaches can be obtained efficiently.

Finally, in our view, using independent error, language and OCR models that
can be modified without affecting the other parts of the system offers important
practical advantages over other more closely coupled paradigms.
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Abstract. In an OCR post-processing task, a language model is used

to find the best transformation of the OCR hypothesis into a string com-

patible with the language. The cost of this transformation is used as a

confidence value to reject the strings that are less likely to be correct,

and the error rate of the accepted strings should be strictly controlled by

the user. In this work, the expected error rate distribution of an unknown

language model is estimated from a training set composed of known lan-

guage models. This means that after building a new language model, the

user should be able to automatically “fix” the expected error rate at an

acceptable level instead of having to deal with an arbitrary threshold.

Keywords: Error rate, rejection threshold, language model, error-

correcting parsing, OCR post-processing, regression model.

1 Introduction

Optical recognition of printed or handwritten text is often followed by a post-
processing phase that can significantly improve the final performance if some
constraints are imposed on the contents of the text. The set of constraints can
be formally represented as a language model (be it a natural language or a
subset of a natural language, a closed list of words or expressions, a code follow-
ing some pattern, etc.). Forms with fields that are filled-in by hand are typical
documents where different models can be defined for each field. Frequent field
types are “Name”, “Age”, “Date”, “Country”, “Street”, “Symptoms”, “Incident
description”, “Id. Number”, “Phone Number”, etc. The language models asso-
ciated with each of these fields are widely different in many regards (alphabet,
size, complexity, perplexity...) and, unlike the OCR classifier for example, that
is often kept unchanged for a reasonable amount of time, new language models
appear routinely in the normal form-processing large-scale industrial activity.
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Very different techniques have been employed to post-process the OCR hy-
potheses according to a required model (see section 2) and most of them provide
or can be easily modified to provide a reliability index (directly related to the
correction confidence and inversely related to the transformation cost).

Applying a threshold to these costs or confidence values allows the system
to reject those strings that are less likely to be correct (those involving a high
cost or “effort” to convert the OCR hypothesis to a correct output). Usually, the
rejected sequences are submitted to a manual data-entry process and therefore
the threshold selection has a high impact in the practical performance and eco-
nomic benefit of the system. The maximum acceptable error rate in the accepted
strings (which could be regarded as false positives) depends on the particular
task at hand, and the number of rejections must be minimized due to the cost,
in terms of time and money, of the human data-entry process.

In this paper, a technique to estimate the expected error rate distribution
of a new, unknown, language model, is proposed. That distribution is used to
estimate the rejection threshold of a test sample in order to obtain a given
expected error rate. Experiments are presented comparing the accuracy of the
estimations in different conditions.

The rest of the paper is organized as follows: section 2 contains an overview of
the related work. Section 3 describes how the error rate distribution as a function
of the transformation costs can be learned, predicted, and used to compute the
rejection threshold. In section 4, experiments and results on error rate estimation
for different languages are reported, and, finally, the conclusions are presented
in section 5.

2 Related Work

Many works on language modeling have been carried out in the field of continu-
ous speech recognition [10]. Although the requirements are very different, many
basic techniques used in that discipline can be applied to OCR tasks with little
modification. Word and sentence level models typically apply dictionary search
methods, n-grams, Hidden Markov Models, Edit Distance-based techniques, and
other character or word category transition models. In [6], an excellent survey of
approximate string search methods is presented. There are several works of us-
ing language modeling techniques for error correcting applied to OCR and text
recognition tasks, either on constrained or unconstrained environments. Some
examples can be found in [9], [18], [15], [12].

In this work, the error-correcting parsing (ECP) technique has been used to
post-process the OCR hypotheses is as described in [15]. It consists of building
a finite-state machine from a formal grammar, that accepts (or generates with
a certain probability) the strings in the lexicon or language sample. When the
model is applied to a candidate word the smallest set of transitions that could
not be traversed shows which is the most similar string in the model, and the
minimal cost of the selected path is provided as a transformation cost of the
input. The classical algorithm, widely used, to find the maximum likelihood path
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on a Markov model, and to perform ECP, on a regular grammar, is the Viterbi
Algorithm, based on the Dynamic Programming paradigm. The extension of the
Viterbi algorithm used in this work is described in [1].

The construction of the finite-state machine has been performed using a gram-
matical inference algorithm that accepts the smallest k-Testable Language in the
Strict Sense (k-TS language) [19] consistent with a task-representative language
sample. The set of strings accepted by such an automaton is equivalent to the
language model obtained using n-grams, for n=k. The stochastic extension of the
basic k-TS language is performed through a maximum likelihood estimation of
the probabilities associated to the grammar rules, evaluated according to their
frequency of utilization by the input strings. This computation is carried out
incrementally and simultaneously with the inference process.

Given the impact of the quality of the confidence estimation on the practical
use of an OCR system, many recent works exist that deal with this problem.
The work of Landgrebe [13] proposes a modified version of the ROC curve,
where a factor to tune the number of expected false positives is introduced in
order to tackle with imprecise environments. Other works directly related to
post-processing in OCR and text recognition tasks, propose rejection strategies
oriented to yield reliable confidence measures [3], [5], [16]. The use of confidence
measures has also been specially and traditionally studied in the Speech Recog-
nition and Natural Language Processing areas.

The particular problem of automatic rejection threshold estimation has also
applications in economics, medicine, network management, signal processing,
and others. A statistical approach often used in many different areas is based
on the conventional Monte Carlo techniques, where the thresholds are set ac-
cording to the distribution percentiles of the measures (or cost functions). These
approaches demand very large number of samples to be useful.

Also, statistical methods have been developed, like in [7], where threshold es-
timation is studied in the context of regression. In sensor systems, where large
amounts of data are usually available, the target detection is seriously affected
by false positives, and a special effort has been made to improve their behavior.
Thus, Ozturk et al. [14] used the generalized Pareto distribution to approximate
the extreme tail of the distributions of radar measures, and propose the ordered
sample least squares method for estimating the parameters of the distributions.
Recently, Broadwater and Chellappa [4] proposed an algorithm using extreme
value theory through the use of the generalized Pareto distribution, too, and a
Kolmogorov-Smirnov statistical test, and propose a way to adaptively maintain
low false positive rates and to overcome differences between the model assump-
tions and the real data.

In other Pattern Recognition tasks, the problem of rejection threshold estima-
tion has also been studied. For instance, in [2], several methods for estimating
speaker-independent and speaker-dependent decision thresholds for automatic
speaker verification were compared using only relevant parameters estimated
from training data.
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In handwritten numeral recognition, He et al [8] used Linear Discriminant
Analysis to determine the rejection threshold by taking into account the con-
fidence values of the classifier outputs and the relations between them. In text
correction, Kae and Huang [11] used a technique for identifying a set of correct
words by bounding the probability that any given word from an OCR output is
incorrect using an approximate worst case analysis.

In the context of many real tasks, specifically estimating an automatic re-
jection threshold from an user-defined expected error rate would alleviate the
problem of dealing with arbitrary (in practice) confidence measures. In this sense,
a closer goal to the one presented in this work has been proposed by Serrano et
al in the context of error supervision in interactive-predictive handwriting recog-
nition [17]. The objective was to assist the user in locating possible transcription
errors: the user decides on a maximum tolerance threshold for the recognition
error (after supervision), and the system adjusts the required supervision effort
on the basis of an estimate for this error.

3 Approach

If we take a representative sample of strings consisting of OCR hypotheses,
and compute the transformation costs using a post-processing algorithm (in our
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case, ECP on a k-TS language [15]), the distribution obtained varies widely for
different language models, as can be seen in Figure 1. This means that choosing a
consistent rejection threshold is nothing but trivial, since the number of accepted
and rejected strings for a given threshold will be very different depending on the
characteristics of the language model. Also, moving the threshold value slightly
can lead to unpredictable changes on the ratio of accepted/rejected strings.

Therefore, a more predictable confidence index is needed. A technique to
estimate the error rate distribution of a test sample as a function of the trans-
formation costs is proposed, consisting on the following steps:

– Given a set of transformation costs obtained from a representative sample of
manually labeled OCR hypotheses strings from a language, the error rates
associated to each cost (error rate distribution) are learned, and then used
to find the rejection threshold for new samples of the same language. As
described in the next section, the error rate distribution can be used to
estimate the rejection threshold for a given expected error rate.

– When a new language model is defined in the system, an automatic way
to estimate its error rate distribution that uses exclusively characteristics
measured directly on the language model by means of regression techniques
is proposed. This way, the time-consuming process of acquisition, OCR and
manual validation of a significant amount of strings is avoided. This is spe-
cially important if new language models are needed frequently, even if they
are subsets or special variants of known models. In section 3.2, the details
of the approach are explained.

3.1 Modeling the Error Rate Distribution of a Language Model

Given a language model and a set of transformation costs obtained using a post-
processing algorithm with a representative sample of OCR hypothesis strings
(for which the ground-truth transcriptions have been manually obtained), a
smoothed histogram HE(c) of error rates for different costs c can be computed
using the expression,

HE(c, w) =
|S−

c,w|
|Sc,w|

(1)

where w is a smoothing window size parameter, |S−
c | is the number of strings

“erroneously corrected” into an incorrect string having a cost between c−w and
c+w, and |Sc| is the total number of strings having a cost also in that interval.
The window size can also be defined dynamically to enclose a given number
of costs around c instead of a fixed cost interval. In Figure 2, a histogram HE

obtained using the post-processing algorithm of [15] on different language models
is shown.

We can easily find the rejection threshold Tc required to obtain a given error
rate ε on a test sample S′ by accumulating averaged values of HE according to
increasing values of c,
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Fig. 2. Error rate histogram HE, for the sample of language models plotted in Figure

1 using w = 0.5 (Equation 1)

E(i) =
ci∑

c=c1

He(c, w)
i

, c ∈ S′

where the value of E(i) at each point is the average error rate of the strings
with costs smaller or equal than ci. Then, the Tc value we seek is the largest
one where the curve reaches ε (since the curve can decrease at some points, we
should choose the last value of c to maximize the number of accepted strings for
a given ε).

E can be seen as a cumulative averaged version of HE for a given test sample
and it can be used to approximate the appropriate cost threshold to use when
we want to fix the expected error rate. In practice, different test samples will
require different rejection thresholds for a given user-defined error rate.

3.2 Estimating the Error Rate Distribution of New Language
Models

Let HC be the histogram of the transformation costs of the strings that belong to
a language (positive sample). HC can be easily obtained from the list of positive
strings because it does not depend on the OCR process. Figure 3 shows the
histogram HC of the same four language models shown in Figure 1.

Both figures 1 and 3 suggest that there is a correlation between the distribu-
tions of the costs of OCR hypothesis strings (many of them having errors), and
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positive samples of the same language model (without errors). And, as already
mentioned, the cost distributions of different languages clearly differ.

Assuming the above statement, we propose that a training set composed by
features extracted from the histograms HC and HE of a set of known languages
models is used to build a regression model able to predict the expected error rate
distribution ĤE (target output) of a new language based on features extracted
from its HC histogram (inputs).

Several regression methods have been tested. The results obtained and the de-
tails on these methods and their parametrization are described in the next section.

4 Experiments

The goal of the experiments has been to measure the capability of the regression
techniques to learn a function that approximates the error rate distribution ĤE

of new language models from a model built using features extracted from known
language models as described in the former section.

The four different language models shown in the figures of the previous sec-
tions have been used to perform a leaving-one-out estimation. They are the names
and surnames in the last census of Spain: 66363 names and 97157 surnames with
probabilities derived from their frequencies in the census, all Spanish municipali-
ties (8201 towns without frequencies, and 35 municipalities, without frequencies,
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from a local region: Comarca de “La Ribera Alta”). These languages have been
chosen since they are representative of real tasks and span a wide range of sizes.

For each experiment, a single regression model has been built using 2000
OCR hypothesis strings chosen randomly from each language model. To train
the model, a number of features of each language including transformation cost
and error rate to describe the distributions of HE , and statistics like mean,
median variance, percentiles, coefficient of variation and frequencies of the bins
describing the distribution of HC have been combined. The target output vari-
able for the regression is the error rate, measured applying the language model,
for each cost.

Several regression models have been tested (Support Vector Machines for
Regression, Radial Basis Functions and a Multilayer Perceptron, with similar
results). The results are provided in terms of estimation deviation, i.e., the dif-
ference between the estimated error –computed as explained in section 3.1, but
on the error rate distribution ĤE estimated by the regression model– and the
real error measured in the test set.

In Figure 4, the estimation deviation is plotted against the estimated error,
for the four language models. For the test of each language model, the regression
model has been built using the other three language models.

We can see that the estimation can be useful in all cases, but it is more
accurate in the case of Names and Spain Municipalities. In practice, the typically
acceptable error rates are in the range of 1% or 2% (between 0.01 and 0.02 in



746 J. Arlandis et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

E
rr

or
-r

at
e

Transformation cost

True error-rate
Estimated error-rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

E
rr

or
-r

at
e

Transformation cost

True error-rate
Estimated error-rate

Fig. 5. Error rate histograms, HE, and estimated error rate histograms ĤE, for the
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the figures). In that useful range, the error deviations are small enough to be
directly usable in the two best languages, and a good starting point for a slight
empirical adjustment in the case of the two worst languages. With a larger set
of language models to train the regression model, we think these results can be
significantly improved.

In Figure 5, the error rate histogram of the test sample, HE , along with the
estimated error rate histogram, ĤE , are plotted for two of the language models
studied.

5 Conclusions

We have presented a method for the estimation of the expected error rate dis-
tribution of an unknown language model, so that a user can establish the error
rate at an acceptable level and the system estimates the rejection threshold
automatically.

Experiments where a regression model is built using OCR hypotheses from a
set of known languages have been performed, and the model is tested against
a new language. The results show a useful behavior, with reasonably accurate
estimations of the rejection threshold in the typically practical range of error
rates. As a future work, we plan to train the regression model with a larger set
of language models.
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2 Dpto Lenguajes y Sistemas Informáticos, Universidad de Alicante, Spain
juanra@dlsi.ua.es

Abstract. This paper presents a new fast algorithm to compute an approximation
to the median between two strings of characters representing a 2D shape and its
application to a new classification scheme to decrease its error rate. The median
string results from the application of certain edit operations from the minimum
cost edit sequence to one of the original strings. The new dataset editing scheme
relaxes the criterion to delete instances proposed by the Wilson Editing Proce-
dure. In practice, not all instances misclassified by its near neighbors are pruned.
Instead, an artificial instance is added to the dataset expecting to successfully
classify the instance on the future. The new artificial instance is the median from
the misclassified sample and its same-class nearest neighbor. The experiments
over two widely used datasets of handwritten characters show this preprocessing
scheme can reduce the classification error in about 78% of trials.

1 Introduction

Dataset editing has received considerable attention from the seminal works of Wilson
[17] about the edited near neighbor rule (ENN) because this technique can be useful
to improve nearest neighbor classifiers response. Mainly, these algorithms focus on
deleting wrong tagged instances from a set, which will be used as training set for a given
classifier. Several modifications have been proposed such as [2][4][13] and [15][18]
more recently, facing with some problems of basic Wilson procedure as statistically
dependence of estimations over each instance [10]. Another group of algorithms also
changes some instances tag while editing, such [6] and [14].

In many problems, patterns do not have a vectorial representation, instead another
syntactic coding such strings and trees are commonly used. Methods cited before mainly
concern with these vectorial representations and distances. Therefore, when dealing
with strings a suitable distance has be selected. In our case, the widely used Leven-
shtein edit distance [7] is choosen. In addition, some approaches find representatives
instances as centroids [12] or prototypes, so this concepts need to be extended to the
new coding schemes.

Several authors [1] [3] [5] have described algorithms to get a prototype representing
a set of strings, as the centroid, the median string or an approximation. Most of this
works build the desired string by successive refinements of a initial string or by some
ad-hoc procedure.

E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 748–756, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This work proposes new Wilson based approach to edit a dataset of instances that
have been encoded by some string representation. The inclusion of a prototype repre-
senting both, an instance and its same-class nearest neighbor inside a k-neighborhood
if exist, when the instance is misclassified, is the main difference from others described
in the literature. Besides, this paper presents a fast algorithm to compute the proto-
type representing two strings suitable for requirements of described editing procedure.
Section 2 provides a detailed explanation of the algorithm to build the prototype and
some useful concepts. Section 3 describes the proposed editing procedure and several
considerations related to the computational complexity of proposed algorithms. Finally,
section 4 illustrates with different experiments the behavior of proposed methods.

2 Prototype Construction

To compute the prototype representing two strings, this case defined as the median
string, the proposed approach focus on information gathered from calculation of the
distance between those strings. This section contains a glance of the selected distance
measure, the Levenshtein [7] edit distance. Latter a procedure to compute the median
string is covered.

2.1 Edit Distance

Let Σ be an alphabet and S1 = {S11, S12..S1m}, S2 = {S21, S22..S2n} two strings
over Σ where m,n ≥ 0, the edit distance between S1 and S2, D(S1, S2), is defined in
terms of elementary edit operations which are required to transform S1 into S2. Usually
three edit operations are considered:

– substitution of a symbol a ∈ S1 by a symbol b ∈ S2, denoted as w(a, b)
– insertion of a symbol b ∈ S2 in S1, denoted as w(ε, b)
– deletion of a symbol a ∈ S1, denoted as w(a, ε).

where ε denotes an empty string. Let QSj
Si = {q1, q2, ..., qk} be a sequence of edit

operations transforming Si into Sj , if each operation has cost e(qi) the cost of QS1
S2 is

EQS1
S2

=
∑k

i=1 e(qi) and the edit distance D(S1, S2) is defined as:

D(S1, S2) = argmin{ EQS1
S2
} .

Strings involved in this work are Freeman Chaincodes, for that reason substitution costs
are computed as follows:

e(w(a, b)) = argmin{|a− b|, 8 − |a− b|}

In the case of the insertions and deletions the cost 2 was chosen which is half of the
maximum cost of the substitution operation; this same fixed number is used in [11]. The
dynamic programming algorithm exposed by Wagner [16] allows to computeD(S1, S2)
in O(LS1 × LS2) time, where LS denotes the length of string S.
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2.2 Fast Median String Computation

The median of a set T of strings can be briefly defined as the string R which realizes:

argminR{
∑

D(R,Si)|Si ∈ T } (1)

As explained above, the proposed approach computes the median R of two strings S1

and S2 by applying a subset of edit operations from the minimum cost edit sequence
QS1

S2 to S1. To choose those editions that will be applied, each element at QS1
S2 is tested

to estimate how it will affect D(S1, R) and D(S2, R), since the algorithm seeks for a
string R satisfying (1) and (2). This additional requirement means that an R near of the
halfway between S1 and S2 will be preferred.

argminR{|D(R,S1) −D(R,S2)|} (2)

The idea behind the algorithm is that each operation qi in QS1
S2 affects the future

D(R,S1) and D(R,S2) since can be guessed that a rejected operation keeps R similar
to S1 while accepted editions makes R resembles to S2. A close examination of each
possible operation help to explain this conjecture.

For insertions, let bk
S2 be the k-esime symbol from S2. An operation qi = w(ε, bk

S2)
from QS2

S1
indicates the insertion of this symbol into S1 to obtain R. Suppose qi is

accepted, thus can be expected that QS2
R does not involves an insertion of a symbol

in R to be matched with bk
S2 in S2 since it was done before. A similar reasoning led

to guess this symbol is market to deletion from R when D(R,S1) is computed. In
turn, a symbol bk

S1
deleted from S1 to get R will be pointed to be inserted again while

computing distance from R to S1.
Substitutions w(bS1 , bS2) will always applied, but whenever possible a symbol m

will be placed in R instead bS1 or bS2 . The choice of m tries to make R similar to both
S1 and S2, thus must satisfies:

e(w(bS1 , bS2)) = e(w(bS1 ,m)) + e(w(m, bS2)). (3)

argminm{|e(w(m, bS1)) − e(w(m, bS2))|}. (4)

Previous assumptions allow estimating how applying or not an operation qi will af-
fect distances from R to S1 and S2. Chosen insertions of bS2 into S1 contributes with
e(w(bS2, ε)) to D(R,S1) since the inserted symbol need to be deleted, now qi has not
an effect on D(R,S2). If the insertion is rejected implies D(R,S1) does not change,
but D(R,S2) will grow by e(w(ε, bS2)). Unlike the insertion occurs in the case of the
deletion operation. If a deletion is discarded D(R,S2) increases by e(w(bS1, ε)) or
D(R,S1) by e(w(ε, bS1), if operation is accepted. Substitutions make both D(R,S1)
and D(R,S2) grow by e(w(bS1,m)) and e(w(m, bS2)) respectively.

For example, let S1 = {a, b}, S2 = {d, e} and e(w(·, ε)) = e(w(ε, ·)) = 1. Table 1
shows the substitution cost between symbols, thus QS2

S1 = {w(a, ε), w(b, d), w(ε, e)}.
Possible options to select or not an operation yields the tree at Figure 1 where each leaf
node shows a candidate R. Inside brackets, an estimation of the cumulative contribution
of each operation up from the node to D(R,S1) and D(R,S2) respectively. Procedures



A New Editing Scheme Based on a Fast Two-String Median Computation 751

FMSC and FindOp outlined below allow searching through the tree for those edit oper-
ations which yields an R satisfying established requirements.

Let:
QS2

S1:minimum cost edit sequence to transform S1 into S2.

d: difference between cumulative S1 and S2.

r: the better consecutive symbols corresponding to d difference.

function FindOp(opi,aS1,aS2) : (d, r)

/* opi: index of the operation op ∈ QS2
S1 to analyze if is applied or not */

/* aS1 = 0: cumulative distance of applied editions over D(R, S1) */

/* aS2 = 0: cumulative distance of applied editions over D(R, S2) */

/* better = (∞, ∅): local better result */

if (opi == 0) then

better = (aS1 − aS2, ∅)

else

case QS2
S1[opi] :

- w(bS1, ε, ): /* Deletion */

/* Rejected */

(dno, rno) = FindOp(opi − 1,aS1,aS2 + e(w(bS1, ε)))
/* Accepted */

(dyes, ryes) = FindOp(opi − 1,aS1 + e(w(ε, bS1)),aS2)
if (|dyes| < |dno|) then

better = (dyes, ryes ∪ {bS1})
else

better = (dno, rno)
end if

- w(ε, bS2): /* Insertion */

/* Rejected */

(dno, rno) = FindOp(opi − 1,aS1,aS2 + e(w(ε, bS2)))
/* Accepted */

(dyes, ryes) = FindOp(opi − 1,aS1 + e(w(bS2, ε)),aS2)
if (|dyes| < |dno|) then

better = (dyes, ryes ∪ {bS2})
else

better = (dno, rno)
end if

- w(bS1, bS2): /* Substitution */

foreach symbol m satisfying (3) and (4)
(d, r) = FindOp(opi−1,aS1+e(w(m, bS1)),aS2+e(w(m, bS2)))
if (|d| < |better|) then

better = (d, r ∪ {m})
end if

end foreach
end case
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end if
return better
end function

procedure FMSC(S1,S2)
/* S1 and S2: strings to compute its median R

- compute D(S1, S2) to get QS2
S1

- (d, r) = FindOp(LQS2
S1
,0,0)

- return r

end procedure

Table 1. Substitution cost between two symbols. e(w(·, ·))

a b c d e
a 0 1 2 3 4
b 1 0 1 2 3
c 2 1 0 1 2
d 3 2 1 0 1
e 4 3 2 1 0

Fig. 1. Each branch represents a possible set of operations to get R from S1

3 Editing Algorithm

Let T a set of instances. Wilson [17] based editing procedures such [4][13] remove
all misclassified instances, ti, by its k-nearest neighbors (K-NN). This kind of edit-
ing cleans interclass overlapping regions while the boundaries between classes are
smoothed. A K-NN classifier that uses the edited set as training set could be improved
its classification results respect the classification through the original dataset.

As point Wilson [18], in some cases editing has be done carefully because the al-
gorithm may remove a lot of instances, while spoiling the generalization capabilities.
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When k ≥ 1, a wrong classification of ti does not mean that no one k-nearest neighbors
belongs to the same class of ti. Thus, it is reasonable to think that ti does not need to
be an outlier, but can be a boundary instance useful for next classifications.

The proposed approach aims to face successfully this problem by adding to T an
artificial instance R computed from ti and its same-class nearest neighbor, tj , if it be-
longs to k-nearest neighbors. If R, tagged as ti, satisfies D(R, ti) ≤ D(ti, tj) and (2).
Its inclusion boosts the chance ti will be correctly reclassified since by definition R lies
in the ti k-neighborhood. Moreover, this can be viewed as some space regions poorly
covered from the original instances become better represented. From these assumptions
can be guessed this editing scheme leads to lower classification errors versus the origi-
nal dataset. Artificial instance R will be computed by the procedure Fast Median String
Computation, FMSC for short, described at section 2.2, as R = FMSC(ti, tj). The
algorithm sketched below allows compute the edited set.

Let:
T:instance set to edit.
K:number of near neighbors.
foreach instance ti in T

- classify ti by its k-near neighbors in T − ti.
if wrong classified then
- find tj, the k-near same-class neighbor of ti.

if exist tj then
- build R = FMSC(ti, tj).
- make T = T ∪R.

else
- mark ti to deletion.

end if
end if

end foreach
- delete from T all market instances.

3.1 Computational Cost Analysis

Computing the median R from strings S1 and S2 involves the calculation of D(S1, S2),
which can be accomplished in O(LS1 × LS2) as was pointed at subsection 2.1. From
definition of this distance LQS2

S1
= LS1 + LS2 for the worst case, i.e when there are no

substitutions.
Searching through the tree with FindOp can be viewed as evaluating all possibili-

ties to assigning {accepted/rejected} to every qi in QS2
S1, so there are 2

L
QS2

S1 chances,
this is, the number of branches on the tree. Denoting a rejected operation by ∼ qi, let
Op = {q1,∼ q2,∼ q3, ..., qn} be a possible assignation and qi, i < n, an arbitrary oper-
ation. Clearly, the estimate aS1 to D(R,S1) associated with Op can be decomposed as
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aS1 = a0..i
S1

+ ai+1..n
S1

where ak..h
S1

denotes the cumulative contribution of those opera-
tions qk, .., qh to aS1, this holds also for aS2.

Be Op′ a new assignment derived from Op by changing the {accepted/rejected}
tag to some operations {q0, .., qi} while {qi+1, .., qn} gets unchanged. Consequently
the value a′S1 related to Op′ is a′S1 = a′

0..i
S1

+ ai+1..n
S1

, an expression which is partially
calculated before, similarly can be computed a′S2. Moreover, if those assignations to
{qi+1, .., qn} minimizes |ai+1..n

S1
− ai+1..n

S2
| thus, the optimal sequence of assignations

is one which have {qi+1, .., qn} as subsequence.
Considerations above allows to speed up computation of FindOp procedure by ap-

plying a dynamic programming approach leading a O(max{LS1×LS2, LQS2
S1

×Ds}),
where Ds = D(S1, S2) .

The editing procedure needs to classify every instance at T , which requires an
O(|T |2) time. A second steps involves computing FMSC for every wrong classified
instance having a same-class k-near neighbor. The worst case, all |T | instances will
need to be processed, so this step entails O(|T | × FindOp) time.

4 Experimental Results

The behavior of the proposed algorithms was analyzed using two sets of strings (Free-
man Chaincodes). Digits and character contours from the NIST 3 DATABASE with 26
and 10 classes respectively.

To evaluate the editing algorithm a sample of 80 instances per class was drawn and
each set splits in 4-fold to use a crossvalidation technique. At a first stage, for a fixed
value of K , all training sets were edited by the Wilson procedure and each test set
classified by the K-NN rule using the respective edited set. Latter, each original training
set was edited but this time by our proposed approach classifying again the test sets. As

Table 2. Average error rate (4-folds) as percent for classification with different edited sets.
(Characters set).

K on Edition
K=3 K=5 K=7 K=9 K=11 K=13 K=15 K=17
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n
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W

ils
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W
il
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n
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W

ils
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W
il
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n
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W
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n
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W
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n
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W

ils
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W
il
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n

JJ
W

ils
on

W
il

so
n

JJ
W

ils
on

W
il

so
n

JJ
W

ils
on

1 13.7 16.5 14.6 15.8 13.8 16.3 13.8 16.8 13.8 17.1 13.4 17.1 13.4 17.5 13.2 17.8 13.1
3 14.7 17.6 15.3 17.6 14.6 17.5 14.4 17.8 14.2 18.8 14.0 18.9 13.9 19.6 13.8 19.9 13.3
5 15.4 17.6 15.2 17.9 14.4 17.9 14.1 18.5 14.1 18.9 14.2 19.5 14.1 19.8 13.8 20.2 13.7
7 16.0 19.4 16.2 19.6 15.1 19.9 15.2 19.8 14.7 20.2 14.2 20.7 14.0 20.8 14.0 21.3 14.1
9 17.1 19.5 16.3 20.1 15.5 20.3 15.3 20.5 14.8 21.0 14.8 21.6 14.5 21.8 14.6 22.2 14.6
11 17.7 20.0 17.7 20.8 16.5 20.8 16.1 21.3 15.4 21.6 15.0 22.3 15.0 22.3 15.2 23.1 15.0
13 18.3 21.0 18.2 21.2 17.1 21.7 16.4 22.1 16.5 22.5 15.8 22.8 15.5 23.3 15.5 23.7 15.7
15 18.6 22.0 18.9 21.6 18.0 22.3 17.1 22.6 16.7 23.3 16.2 23.5 16.3 23.7 16.0 24.2 16.0
17 19.6 22.1 18.8 22.7 18.0 23.0 17.5 23.8 17.4 24.0 16.9 24.0 16.5 24.6 16.5 24.8 16.4
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Table 3. Average error rate (4-folds) as percent for classification with different edited sets. (Digits
set).

K on Edition
K=3 K=5 K=7 K=9 K=11 K=13 K=15 K=17

K
on

C
la

ss
if

.

N
ot

E
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te
d

W
il

so
n

JJ
W

ils
on

W
il
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n

JJ
W

ils
on

W
il
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n

JJ
W
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W
il
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n

JJ
W

ils
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W
il
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n
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W

ils
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W
il

so
n

JJ
W

ils
on

W
il

so
n

JJ
W

ils
on

W
il

so
n

JJ
W

ils
on

1 1.8 2.8 1.9 2.6 1.8 2.5 1.8 2.9 1.6 2.8 1.6 2.8 1.6 2.8 1.5 2.8 1.5
3 2.0 3.1 2.3 2.9 2.3 3.0 2.0 3.3 1.9 3.4 2.0 3.4 2.0 3.8 1.9 3.9 1.8
5 3.0 3.6 2.9 3.6 2.8 3.8 2.8 4.3 2.6 4.3 2.6 4.1 2.5 4.3 2.3 4.4 2.5
7 3.5 4.3 3.5 4.3 2.9 4.3 2.9 4.5 2.6 4.6 2.6 4.8 2.6 5.0 2.5 5.1 2.4
9 3.6 4.3 3.5 4.1 3.3 4.3 3.0 4.6 2.9 4.9 2.8 4.9 2.8 5.1 2.8 5.4 2.8
11 4.1 4.5 2.9 4.5 2.9 4.6 2.9 4.6 3.0 4.6 3.6 4.8 3.5 4.9 3.5 5.3 3.4
13 4.4 4.8 3.1 4.8 3.3 5.0 3.1 5.0 3.3 5.3 4.0 5.6 3.5 5.9 3.5 5.9 3.4
15 4.8 5.1 3.8 5.1 3.8 5.4 3.6 5.5 3.8 5.5 4.5 6.1 4.3 6.3 4.1 6.3 3.9
17 4.9 5.1 4.1 5.1 4.0 5.4 3.8 5.5 3.9 5.5 4.6 6.1 4.2 6.0 4.3 6.1 4.3

a baseline, the original training sets classficantion is used. At each fold, editing was
repeated for odds values of K from 3 to 17, while in the classification stage, the range
was from 1 to 17. Remaining a total of 288 trials on each dataset. As distance, the
Levenshtein distance was chosen which is described in the section 2.1.

Tables 2 and 3 show some results for the 4-fold experiments when the test set uses:
the original training set, different edited sets for the characters and the digits datasets,
respectively. Through these experiments, Wilson procedure never reduces the baseline
error rate (classification with original tranining sets), while our proposed approach,
labeled as JJWilson, is to able to improve by 79.1% of the trials in the case of characters
dataset and by 77.7% in the case of digits dataset. These improvements are highlighted
in bold type in the tables of results. So, the experiments in both datasets show that the
proposed algorithm for editing outperforms the Wilson approach, with respect to the
error rate reduction.

5 Conclusions and Future Work

A novelty method was presented to edit a dataset of contours encoded by Freeman
Chaincodes. In addition, a new fast procedure to compute the median between two
strings based on a string edit distance is explained. Experiments show that the edit
scheme behaves well on the studied datasets. Further investigations can be addressed to
revise the method to identify the misclassified instance, and consider other near neigbor
belonging to the same class instead the nearest one to build the new prototype. Also,
others datasets could be studied and compared with additional edit methods. Moreover,
our fast median string algorithm between two examples could be extended to compute
the average of N examples.
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