
From Organisation Specification to Normative
Programming in Multi-Agent Organisations

Jomi F. Hübner1, Olivier Boissier2, and Rafael H. Bordini3

1 Dept Automation and Systems Engineering
Federal University of Santa Catarina

jomi@das.ufsc.br
2 Ecole Nationale Supérieure des Mines

Saint Etienne, France
boissier@emse.fr

3 Institute of Informatics
Federal University of Rio Grande do Sul

R.Bordini@inf.ufrgs.br

Abstract. In this paper, we show how we can automatically translate high-level
organisation modelling languages into simpler languages based on the idea of
normative programming. With this approach, while designers and agents still use
a highly abstract organisational modelling language to specify and reason about
the multi-agent organisation, the development of the organisation management
infrastructure is facilitated in the following manner. The high-level organisation
specification is automatically translated into a simple normative programming
language that we have recently introduced and for which we have given for-
mal semantics. The organisation management infrastructure can then be based
on an interpreter for the simpler normative language. We illustrate the approach
showing howMOISE’s organisation modelling language (with primitives such as
roles, groups, and goals) can be translated into our normative programming lan-
guage (with primitives such as norms and obligations). We briefly describe how
this all has been implemented on top of ORA4MAS, the distributed artifact-based
organisation management infrastructure forMOISE.

1 Introduction

The use of organisational and normative concepts is widely accepted as an appropriate
approach for the design and implementation of Multi-Agent Systems (MAS) [3]. They
are thus present in several languages and frameworks for intelligent multi-agent sys-
tems. They are also used at runtime to make the agents aware of the organisations in
which they take part and to support and monitor their activities. While the support aspect
is important for any large-scale system, the monitoring one is particularly relevant for
open MAS where the behaviour of the entering agents is unknown. A clear trend in the
development of such systems is to provide organisation-oriented modelling languages
that the MAS designer (human or agent, in the case of self-organisation) uses to write
a program that prescribes the organisational functioning of the system [5,4,3,15,17,7],
complementing agent programming languages that define the individual functioning

J. Dix et al. (Eds.): CLIMA XI, LNAI 6245, pp. 117–134, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

118 J.F. Hübner, O. Boissier, and R.H. Bordini

within such system. These languages are interpreted by an Organisation Management
Infrastructures (OMI) to realise the monitoring aspect of agent organisations.

In our work, we are particularly interested in flexible and adaptable development of
OMIs. The exploratory stage of current OMIs often requires changes in their imple-
mentations so that one can experiment with new features. The refactoring of the OMI
for such experiments, when the interpreter for the high-level modelling language has
ad hoc implementations, is usually an expensive task that we wish to simplify. Our ap-
proach aims at expressing the various different constructs of the high-level modelling
language into a unified framework by means of norms. The OMI is then realised by a
mechanism for interpreting and managing the status of such norms instead of specific
mechanisms for each of the constructs of the richer modelling language.

The solution proposed allows us to keep the language available to the designer and
agents with high-level concepts such as groups, roles, and global plans. That language
can be translated into (or compiled to) a simpler normative programming language that
is then interpreted by the OMI. The problem of implementing the OMI is thereby re-
duced to: (1) the development of an interpreter for the normative language and (2) a
translation problem (from the organisation modelling language to the normative pro-
gramming language). More precisely, our starting language is the MOISE Organisation
Modelling Language (OML — see Sec. 3) and our target language is the Normative Or-
ganisation Programming Language (NOPL — see Sec. 4). NOPL is a particular class
of a normative programming language that we introduced and formalised in [9], and
we summarise it in Sec. 2. The translation process from OML into NOPL is fully auto-
matic thanks to the contributions in this paper. All of this has been implemented on top
of ORA4MAS, a distributed artifact-based approach for OMI (Sec. 5). This paper also
gives an interesting contribution in elucidating the power of the norm abstraction in nor-
mative programming languages, which is enough to cover organisation specifications.
The longer organisation specification/program translated into a normative program-
ming language, although less readable for humans, is efficiently interpreted within OMI
implementations.

The main components of our approach are, therefore: (i) a normative organisa-
tion programming language; (ii) the translation from an organisational modelling lan-
guage into the normative organisation programming language; and (iii) an implemented
artifact-based OMI that interprets the target normative language. The contributions of
our approach are better discussed and placed in the context of the relevant literature
in Sec. 6.

2 Normative Programming Language

A normative language is usually based on three primitives (obligation, permission, and
prohibition) and two enforcement strategies (sanction and regimentation) [17,20,7].
While sanction is a reactive strategy applied after the event of a violation, regimentation
is a preventive strategy whereby agents are not capable of violation [12]. Regimenta-
tion is important for an OMI since it allows the designer to define norms that must be
followed because their violation present serious risks for the organisation.

The language we created is based on the following assumptions. (i) Permissions are
defined by omission, as in [8]. (ii) Prohibitions are represented either by regimentation

From Organisation Specification to Normative Programming 119

or as an obligation for someone else to decide how to handle the situation. For example,
consider the norm “it is prohibited to submit a paper with more than 16 pages”. In
case of regimentation of this norm, attempts to submit a paper with more than 16 pages
will fail (i.e. they will be prevented from taking place). In case this norm is not to be
regimented, the designer could define a norm such as “when a paper with more than
16 pages is submitted, the chair must decide whether to accept the submission or not”.
(iii) Sanctions are represented as obligations (i.e. someone else is obliged to apply
the sanction). (iv) Finally, norms are assumed to be consistent (either the programmer
or program generator are supposed to handle this issue). Thus, the language can be
relatively simple, reduced to two main constructs: obligation and regimentation.

Given the above requirements and simplifications, we can now introduce our Nor-
mative Programming Language (NPL). A normative program np is composed of: (i) a
set of facts and inference rules (following the syntax used in Jason [1]); and (ii) a set
of norms. A NPL norm has the general form

norm id : ϕ -> ψ

where id is a unique identifier of the norm;ϕ is a formula that determines the activation
condition for the norm; and ψ is the consequence of the activation of the norm. Two
types of norm consequences ψ are available:

– fail – fail(r): represents the case where the norm is regimented; argument r rep-
resents the reason for the failure;

– obl – obligation(a, r, g, d): represents the case where an obligation for some
agent a is created. Argument r is the reason for the obligation (which has to include
the id of the norm that originated the obligation); g is the formula that represents
the obligation itself (a state of the world that the agent must try to bring about, i.e.
a goal it has to achieve); and d is the deadline to fulfil the obligation.

A simple example to illustrate the language is given below; we use source code com-
ments to explain the program.

np example {
a(1). a(2). // facts
ok(X) :- a(A) & b(B) & A>B & X = A*B. // rule
// note that b/1 is not defined in the program;
// it is a dynamic fact provided at run-time

// alice has 4 hours to achieve a value of X < 5
norm n1: ok(X) & X > 5
-> obligation(alice,n1,ok(X) & X<5,‘now‘+‘4 hours‘).

// bob is obliged to sanction alice in case X > 10
norm n2: ok(X) & X > 10
-> obligation(bob,n2,sanction(alice),‘now‘+‘1 day‘).

// example of regimented norm; X cannot be > 15
norm n3: ok(X) & X > 15 -> fail(n3(X)).

}

120 J.F. Hübner, O. Boissier, and R.H. Bordini

d > now
active

fulfilled

unfulfilled

inactive

g

¬ ø

ø

Fig. 1. State Transitions for Obligations

As in other approaches (e.g. [6,19]), a normative program expresses both static and
declarative aspects of norms. The dynamic aspects result from the interpretation of
such programs and the consequent creation of obligations for participating agents. An
obligation has therefore a run-time life-cycle. It is created when the activation condition
ϕ of some norm n holds. The activation condition formula is used to instantiate the
values of variables a, r, g, and d of the obligation to be created. Once created, the initial
state of an obligation is active (Fig. 1). The state changes to fulfilled when agent a fulfils
the norm’s obligation g before the deadline d. The obligation state changes to unfulfilled
when agent a does not fulfil the norm’s obligation g before the deadline d. As soon as
the activation condition of the norm that created the obligation (ϕ) ceases to hold, the
state changes to inactive. Note that a reference to the norm that led to the creation of the
obligation is kept as part of the obligation itself (in the r argument), and the activation
condition of this norm must remain true for the obligation to stay active; only an active
obligation will become either fulfilled or unfulfilled, when the deadline is eventually
reached. Fig. 1 shows the obligation life-cycle.

The syntax and semantics of NPL was introduced in [9]. the semantics was given
using the well-known structural operational semantics approach.

3 MOISE

The MOISE framework includes an organisational modelling language (OML) that ex-
plicitly decomposes the specification of organisations into structural, functional, and
normative dimensions [11]. The structural dimension includes the roles, groups, and
links (e.g. communication) within the organisation. The definition of roles is such that
when an agent chooses to play some role in a group, it is accepting some behavioural
constraints and rights related to this role. The functional dimension determines how
the global collective goals should be achieved, i.e. how these goals are decomposed
(through global plans) and grouped into coherent sets of subgoals (through missions)
to be distributed among the agents. The decomposition of global goals results in a goal
tree, called scheme, where the leaf-goals can be achieved individually by the agents. The
normative dimension binds the structural dimension with the functional one by means

From Organisation Specification to Normative Programming 121

of the specification of permissions and obligations towards missions given to particular
roles. When an agent chooses to play some role in a group, it accepts these permissions
and obligations.

As an illustrative and simple example of an organisation specified using MOISE+,
we consider a scenario where agents aiming to write a paper together use an organ-
isational specification to help them collaborate. We will focus on the functional and
normative dimensions in the remainder of this paper. As for the structure of the or-
ganisation, it suffices to know that there is only one group (wpgroup) where two roles
(editor and writer) can be played.

To coordinate the achievement of the goal of writing a paper, a scheme is defined
in the functional specification of the organisation (Fig. 2(a)). In this scheme, a draft
version of the paper has to be written first (identified by the goal fdv in Fig. 2(a)). This

(a) Paper Writing Scheme

(b) Monitoring Scheme

mission cardinality

mMan 1..1
mCol 1..5
mBib 1..1

mr 1..1
ms 1..1

(c) Mission Cardinalities

Fig. 2. Functional Specification for the Paper Writing Example

122 J.F. Hübner, O. Boissier, and R.H. Bordini

goal is decomposed into three subgoals: writing a title, an abstract, and the section ti-
tles; the subgoals have to be achieved in this very sequence. Other goals, such as finish,
have subgoals that can be achieved in parallel. The specification also includes a “time-
to-fulfil” (TTF) attribute for goals indicating a deadline for the agent to achieve the
goal. The goals of this scheme are distributed into three missions which have specific
cardinalities (see Fig. 2(c)): the mission mMan is for the general management of the
process (one and only one agent must commit to it), mission mCol is for the collabo-
ration in writing the paper content (from one up to five agents can commit to it), and
missionmBib is for gathering the references for the paper (one and only one agent must
commit to it). A mission defines all the goals an agent commits to when participating in
the execution of a scheme; for example, a commitment to missionmMan is effectively
a commitment to achieve four goals of the scheme. Goals without an assigned mission
(e.g. fdv) are satisfied through the achievement of their subgoals.

Table 1. Normative Specification for the Paper Writing Example

id condition role type mission TTF

n1 editor per mMan –
n2 writer obl mCol 1 day
n3 writer obl mBib 1 day
n4 violation(n2) editor obl ms 3 hours
n5 conformance(n3) editor obl mr 3 hours
n6 #mc editor obl ms 1 hour

#mc stands for the condition “more agents committed to a mission than permitted by the mission
cardinality”

The normative specification relates roles and missions through norms (Table 1). For
example, the oml-norm1 n2 states that any agent playing the role writer has one day to
commit to missionmCol. Designers can also express application-dependent conditions
(as in oml-norms n4–n6). Oml-norms n4 and n5 define sanction and reward strategies
for violation and conformance of oml-norms n2 and n3 respectively. Oml-norm n5 can
be read as “the agent playing role ‘editor’ has 3 hours to commit to mission mr when
norm n3 is fulfilled”. Once committed to mission mr, the editor has to achieve the
goal reward. Note that an oml-norm in MOISE is always an obligation or permission
to commit to a mission. Goals are therefore indirectly linked to roles since a mission
is a set of goals. Prohibitions are assumed ‘by default’ with respect to the specified
missions: if the normative specification does not include a permission or obligation for
a role-mission pair, it is assumed that the role does not grant the right to commit to
the mission.

The OML is accompanied by a graphical language (see Fig. 2) and XML is used
to store the organisational specifications (OS). In Sec. 4, instead of considering all the
details of the graphical or the XML representation of an OS, we will consider the data

1 To make clear the distinction between norms at the OML level with the ones at the NPL level,
we will use the expression oml-norm when necessary.

From Organisation Specification to Normative Programming 123

structure produced by the OML parser. The data structure for an OS contains a set FS
of scheme specifications and a set NS of oml-norms (again, only the functional and
normative dimensions are being considered here).

When a scheme specification S is parsed, a tuple of the following type is produced:

〈id,M,maxmp,minmp,G, gm, gpc, ttf, gr〉
where

– id is a unique identification for S;
– M is a set of mission identifiers that agents can commit to within the scheme;
– maxmp : M → Z: is a function that maps each mission to the maximum number

of commitments of that mission in the scheme (upper bound of mission cardinality);
– minmp : M → Z: maps each mission to the minimum number of commitments of

that mission necessary for the scheme to be considered well-formed (lower bound
of mission cardinality);

– G is the set of goals within the scheme;
– gm : G → M maps each goal to its mission;
– gpc : G → 2G maps goals to their precondition goals;2

– ttf : G → Z maps goals to their TTF; and
– gr ∈ G is the root goal of the scheme.

For each oml-norm in the normative specification, the parser produces a tuple

〈id, c, ρ, t,m, ttf〉
where id is a unique identification for the oml-norm; c is the activation condition for
the oml-norm; ρ is the role; t is the type (obliged or permitted); m is the mission; and
ttf is the deadline. We can read that oml-norm as ‘when c holds, agents playing ρ are t
to commit to mission m by ttf ’.

4 From OML to NOPL

After the presentation of NPL (the generic target language of the translation) and OML
(the source for the translation), this section defines NOPL, a particular class of NPL
programs applied to the MOISE OML. The NOPL syntax and semantics are the same
as presented in Sec. 2. However, the set of facts, rules, and norms are specific to the
MOISE model and to the MOISE artifact-based OMI presented in Sec. 5. Benefiting
from the distributed nature of this OMI, our proposal consists of translating the OS
defined in MOISE OML into different NOPL programs. For each group type defined in
the OML, a separate NOPL program is produced by the translation. The same criteria
is used to translate schemes. Since the OMI has one artifact to manage each instance
of a group or scheme, the corresponding translated NOPL programs are used in the
deployment of the artifacts.

2 The precondition goals are deduced from the goal decomposition tree of the scheme (as pre-
sented in Fig. 2(a)). For example, the goal of “writing the paper conclusions” (wcon) can only
be achieved after the goal of “writing sections” (wsec) has been achieved.

124 J.F. Hübner, O. Boissier, and R.H. Bordini

The path from NPL to NOPL consists firstly in the definition of facts and rules to
express the different concepts and properties expressed in the OS. Dynamic facts are
also introduced to represent the current state of the organisation. Below, we describe
these rules and facts, step by step.

We use translation rules (briefly “t-rules”) to formalise how the OS is translated into
NOPL. Such rules have the following format:

condition
(ID)

<code>

where ID is the name of the t-rule, condition is a Boolean expression, and <code> is
an excerpt of code in NOPL that is produced in case the condition holds. Details of the
application of these rules are provided in the examples given later.

In this paper, we consider only the translation rules for producing scheme normative
programs, i.e. NOPL programs used to manage the corresponding scheme artifacts in
the OMI. The t-rule that generates the NOPL code for a scheme specification is:

〈id,M, maxmp,minmp,G, gm, gpc, ttf, gr〉 ∈ FS
(S)

np scheme(id) {
SM(S) SMR(S) SG(G) SR(S) SSP NS

}
The condition for this t-rule is simply that the scheme specification belongs to the func-
tional specification. The produced code (typeset in typewriter font) is a normative pro-
gram with an identification id and facts, rules, and norms that are produced by specific
t-rules (SM, SMR, SG, SR, SSP, and NS) defined below. Variables, typeset in italics (as
in id), are replaced by their values obtained from the condition of the t-rule.

Facts. For scheme normative programs, the following facts are produced by the
translation:

– mission cardinality(m,min,max): is a fact that defines the cardinality of a
mission (e.g. mission cardinality(mCol,1,5)).

– mission role(m,ρ): role ρ is permitted or obliged to commit to missionm (e.g.
mission role(mMan,editor)).

– goal(m,g,pre-cond,‘ttf‘): is a fact that defines the arguments for a goal g: its
mission, identification, preconditions, and TTF (e.g. goal(mMan,wsec, [wcon],

‘2 days‘)).

The t-rules SM, SMR, and SG generate these facts from the specification (all sets and
functions, such as MS and minmpS, used in the t-rule refer to the scheme S being
translated):

m ∈ MS maxmpS(m) > 0
(SM(S))

mission cardinality(m,minmpS(m),maxmpS(m)).

〈id, c, ρ, t, m, ttf〉 ∈ NS maxmpS(m) > 0
(SMR(S))

mission role(m,ρ).

From Organisation Specification to Normative Programming 125

g ∈ G
(SG(G))

goal(gm(g),g,gpc(g),ttf(g)).

The following dynamic facts will be provided at runtime by the artifact (cf. Sec. 5) that
manages the scheme instance:

– plays(a,ρ,gr): agent a plays the role ρ in the group instance identified by gr.
– responsible(gr,s): the group instance gr is responsible for the missions of

scheme instance s.
– committed(a,m,s): agent a is committed to mission m in scheme s.
– achieved(s,g,a): goal g in scheme s has been achieved by agent a.

Rules. Besides facts, we define some rules that are useful to infer the state of the scheme
(e.g. whether it is well-formed) and goals (e.g. whether it is ready to be adopted or not).
The rules produced by SR are general for all schemes and those produced by SRW are
specific to the scheme being translated.

(SR(S))
is finished(S) :- satisfied(S,gr).

mission accomplished(S,M) :-
.findall(Goal, goal(M,Goal, , ,), MissionGoals) &
all satisfied(S,MissionGoals).

all satisfied(,[]).
all satisfied(S,[G|T]) :- satisfied(S,G) & all satisfied(S,T).

// goal G of scheme S is ready to be adopted:
// all its preconditions have been achieved
ready(S,G) :-

goal(,G,PCG,) & all satisfied(S,PCG).

// number of players of a mission M in scheme S
mplayers(M,S,V) :- .count(committed(,M,S),V).

// .count(X) counts how many instances of X are known to the agent

well formed(S) :- SRW(S).

m ∈ M maxmpS(m) > 0
(SRW(S))

mission accomplished(S,m)
|
mplayers(m,S,Vm) & Vm >= minmpS(m) & Vm <= maxmpS(m)

Note that these rules implement the semantics of mission accomplishment, well-formed
and ready goal as intended in the MOISE model.

126 J.F. Hübner, O. Boissier, and R.H. Bordini

As an example, the output of the translation produced by SR for the paper writing
scheme is listed below.

is_finished(S) :- satisfied(S,wp). // wp is the root goal

mission_accomplished(S,M) :-
.findall(Goal, goal(M,Goal,_,_), MissionGoals) &
all_satisfied(S,MissionGoals).

all_satisfied(_,[]).
all_satisfied(S,[G|T]) :- satisfied(S,G) & all_satisfied(S,T).

ready(S,G) :- goal(_, G, PCG, _) & all_satisfied(S,PCG).

mplayers(M,S,V) :- .count(committed(_,M,S),V).
well_formed(S) :-

(mission_accomplished(S,mMan) |
mplayers(mMan,S,VmMan) & VmMan >= 1 & VmMan <= 1)
&
(mission_accomplished(S,mCol) |
mplayers(mCol,S,VmCol) & VmCol >= 1 & VmCol <= 5)
&
(mission_accomplished(S,mBib) |
mplayers(mBib,S,VmBib) & VmBib >= 1 & VmBib <= 1).

Norms. We have three classes of norms in NOPL for schemes: norms for goals, norms
for properties, and domain norms (which are explicitly stated in the normative speci-
fication as oml-norms). For the former class, we define the following generic norm to
express the MOISE semantics for commitment:

norm ngoal: committed(A,M,S) & goal(M,G,_,D) &
well_formed(S) & ready(S,G)

-> obligation(A,ngoal,achieved(S,G,A),‘now‘ + D).

This norm can be read as “when an agent A: (1) is committed to a mission M that (2)
includes a goal G, and (3) the mission’s scheme is well-formed, and (4) the goal is
ready, then agent A is obliged to achieve the goal G before its deadline D”. It also
illustrates the advantage of using a translation to implement the OMI instead of an
object-oriented programming language. For example, if some application or experiment
requires a semantics of commitment where the agent is obliged to achieve the goal even
if the scheme is not well-formed, it is simply a matter of changing the translation to a
norm that does not include the well formed(S) predicate in the activation condition
of the norm. One could even conceive an application using schemes being managed by
different NOPL programs (i.e. schemes translated differently).

For the second class of norms, only the mission cardinality property is introduced
in this paper since other properties are handled in a similar way. In the case of mission
cardinality, the norm has to define the consequences of situations where there are more
agents committed to a mission than permitted in the scheme specification. As presented
in Sec. 2, two kinds of consequences are possible, obligation and regimentation, and

From Organisation Specification to Normative Programming 127

the designer chooses one or the other when writing the OS. Regimentation is the default
consequence and it is used when there is no norm with condition #mc in the normative
specification. Otherwise, if there is a norm such as n6 in Table 1, the consequence will
be an obligation. The two t-rules below detail the produced norms for the regimentation
and obligation cases of mission cardinality.

¬∃ 〈id, c, ρ, t,m, ttf〉 ∈ NS . c = #mc
(SSP1)

norm mc:
mission cardinality(M, ,MMax) &
mplayers(M,S,MP) & MP > MMax

-> fail(mission cardinality).

〈id, c, ρ, t, m, ttf〉 ∈ NS c = #mc
(SSP2)

norm mc:
mission cardinality(M, ,MMax) &
mplayers(M,S,MP) & MP > MMax &
responsible(Gr,S) & plays(A,ρ,Gr)

-> obligation(A,mc,committed(A,m,),‘now‘+‘ttf‘).

In our running example, the norm produced by SSP1 to regiment mission cardinality is:

norm mc:
mission_cardinality(M,_,MMax) &
mplayers(M,S,MP) & MP > MMax

-> fail(mission_cardinality).

and the norm produced if SSP2 were used instead (for sanction rather than regimenta-
tion) would be:

norm mc:
mission_cardinality(M,_,MMax) &
mplayers(M,S,MP) & MP > MMax &
responsible(Gr,S) & plays(A,editor,Gr)

-> obligation(A,mc,committed(A,ms,_), ‘now‘+‘1 hour‘).

where the agent playing editor is obliged to commit to the mission ms within one hour
(corresponding to the oml-norm n6 in Table 1).

For the third class of norms, each oml-norm of type obligation in the normative
specification of the OS has a corresponding norm in the NOPL program. Whereas an
OML obligation refers to a role and a mission, NPL requires that obligations are for
agents and towards a goal. The NOPL norm thus identifies each agent playing the role
in groups responsible for the scheme and, if the number of current players still does not
reach the maximum cardinality, and the mission was not accomplished yet, the agent
is obliged to achieve a state where it is committed to the mission. The following t-rule
expresses just that:

128 J.F. Hübner, O. Boissier, and R.H. Bordini

〈id, c, ρ, t, m, ttf〉 ∈ NS m ∈M t = obl
(NS)

norm id:
c &
plays(A,ρ,Gr) & responsible(Gr,S) &
mplayers(m,S,V) & V < maxmp(m) &
not mission accomplished(S,m)

-> obligation(A,id,committed(A,m,S),‘now‘+‘ttf‘).

For instance, the NOPL norm resulting from the translation of oml-norm n2 in Table 1
with the t-rule above is:

norm n2: plays(A,writer,Gr) & responsible(Gr,S) &
mplayers(mCol,S,V) & V < 5 &
not mission_accomplished(S,mCol)

-> obligation(A,n2,committed(A,mCol,S),‘now‘+‘1 day‘).

Note that if some mission is already accomplished (as defined by the t-rule SR), there
is no obligation to commit to it (this interpretation of “obligation to commit” was orig-
inally proposed by [18]). An agent can thus commit to a mission, fulfil its goals, and
leave the scheme before it is finished. Without this last condition, the agent has to par-
ticipate in the scheme until it is removed from the multi-agent system. Note also that if
the scheme already has 5 engaged agents, there is no obligation for other players of role
writer to commit to mCol. In fact, if a sixth agent wanted to commit to mCol, norm
mc would produce a failure.

Besides the obligations defined in the OML, we also have permissions and (by de-
fault) prohibitions. Since everything is permitted by default in NPL, OML permissions
do not need to be translated. The OML prohibitions are handled in NOPL by a generic
norm that fails when an agent is committed to a mission not permitted by its roles (ac-
cording to the mission role relation):

norm mission_permission:
committed(Agt,M,S) &
not (plays(Agt,R,_) & mission_role(M,R))

-> fail(mission_permission(Agt,M,S)).

The norm above uses regimentation to prohibit an agent to commit to a mission if it is
not allowed to do so. Obligations could be used instead of regimentation, as illustrated
by the following norm:

norm mission_permission:
committed(Agt,M,S) &
not (plays(Agt,R,_) & mission_role(M,R)) &
plays(E,editor,_) // agent playing editor is obliged to

// to commit to a sanction mission
-> obligation(E,mp,committed(E,ms,_), ‘now‘+‘1 hour‘).

The type of the consequence for the mission permission norm, whether a fail or an
obligation, is defined by parameters passed on to the translator program.

From Organisation Specification to Normative Programming 129

Also regarding prohibitions, one could ask: Is an agent prohibited to leave its mis-
sions without fulfilling the mission’s goals? There are two answers depending whether
the following norm is included or not.

norm mission_leaved:
leaved_mission(Agt,M,S) &
not mission_accomplished(S,M)

-> fail(mission_leaved(Agt,M,S)).

If the above norm is included, the leave-mission action (which adds the fact
leaved mission) will fail. The action is regimented in this case. Otherwise, no er-
ror will be produced by the action. However, the norms generated from t-rule NS will
be activated again and the agent becomes again obliged to commit to the mission.

5 Artifact-Based Architecture

The ideas presented in this paper have been implemented as part of an OMI that follows
the Agent & Artifact model [13,10]3. In this approach, a set of organisational artifacts is
available in the MAS environment providing operations and observable properties for
the agents so that they can interact with the OMI. For example, each scheme instance is
managed by a “scheme artifact”. A scheme artifact, shown in Fig. 3, provides operations
such as “commit to mission” and “goal x has been achieved” (whereby agents can act
upon the scheme) and observable properties (whereby agents can perceive the current
state of the scheme). We can effortlessly distribute the OMI by deploying as many
artifacts as necessary for the application.

Following the ideas introduced in this paper, each organisational artifact has within
it an NPL interpreter that is given as input: (i) the NOPL program automatically gen-
erated from the OS for the type of the artifact (e.g. the artifact that will manage the
writing paper scheme will receive as input the NOPL program translated from that
scheme specification), and (ii) dynamic facts representing the current state of (part of)
the organisation (e.g. the scheme artifact itself will produce dynamic facts related to
the current state of the scheme instance). The interpreter is then used to compute: (i)
whether some operation will bring the organisation into an inconsistent state (where
inconsistency is defined by means of the specified regimentations), and (ii) the current
state of the obligations.

Algorithm 1, implemented on top of CArtAgO [16], shows the general pattern we
used to implement every operation (e.g. commitment to mission) in the organisational
artifacts. Whenever an operation is triggered by an agent, the algorithm first stores a
“backup” copy of the current state of the artifact (line 5). This backup is restored (line
10) if the operation leads to failure (e.g. committing to a mission not permitted). The
overall functioning is that invalid operations do not change the artifact state.4 A valid

3 An implementation of the translator and the OMI is available at
http://moise.sourceforge.net.

4 This functioning requires that operations are not executed concurrently, which can be easily
configured in CArtAgO.

http://moise.sourceforge.net

130 J.F. Hübner, O. Boissier, and R.H. Bordini

Scheme Artifact

commit to
mission

goal achieved

committed agents

goals' state

observable
properties

scheme specification

available
operation

NPL Interpreter

NOPL
Program

Scheme
State

NPL
Engine

Obligations
State

obligations' state

Fig. 3. General View of the Scheme Artifact

Algorithm 1. Artifact Integration with NOPL
1: oe is the state of the organisation managed by the artifact
2: p is the current NOPL program
3: npi is the NPL interpreter
4: when an operation o is triggered by agent a do
5: oe′ ← oe // creates a “backup” of the current oe
6: executes operation o to change oe
7: f ← a list of predicates representing oe
8: r ← npi(p, f) // runs the interpreter for the new state
9: if r = fail then

10: oe← oe′ // restore the backup state
11: return fail operation o
12: else
13: update obligations in the observable properties
14: return succeed operation o

operation is thus an operation that changes the state of the artifact to one where no fail
(i.e. regimentation) is produced by the NPL interpreter. In case the operation is valid,
the algorithm simply updates the current state of the obligations (line 13). Although the
NPL handles states in the norm conditions, this pattern of integration has allowed us to
use NPL to manage agent actions, i.e. the regimentation of operations on artifacts.

Notice that the NOPL program is not seen by the agents. They continue to perceive
and reason on the scheme specification as written in the OML. The NOPL is used only
within the artifact to simplify its development.

6 Related Work

This work is based on several approaches to organisation, institutions, and norms (cited
throughout the paper). In this section, we briefly relate and compare our main contribu-
tions to such work.

From Organisation Specification to Normative Programming 131

The first contribution of the proposal, the NPL, should be considered specially for
two properties of the language: its simplicity and its formal basis (that led to an available
implementation). Similar work has been done by Tinnemeier et al. [17], where the oper-
ational semantics for a normative language was also proposed. Their approach and ours
are similar on certain points. For instance, both consider norms as “declarative” norms
(i.e. “ought-to-be” norms) in the sense that obligations and regimentation bear on goals.
However, our work differs in several aspects. The NOPL class of NPL programs is for
the OMI and not for programmers to use. The designers/programmers continue to use
OML to define both an organisation and the norms that have to be managed within such
a structure. Organisation primitives of the OML are higher-level and tailored for organ-
isation modelling, therefore an OML specification is significantly more concise than its
translation into a normative language.

Another clear distinction is that we rely on a dedicated programming model (the
Agent & Artifact model) providing a clear connection of the organisation to the en-
vironment and allowing us to implement regimentation on physical actions [14]. The
artifacts model also simplified the distribution of the management of the state of the
organisation with several instances and kinds of artifacts, avoiding over-centralisation
in the management of organisational and normative aspects of multi-agent systems.

Going back to the issue of conciseness and expressiveness, we do not claim that
OML is more expressive than NPL. In fact, since the OML can be translated into NPL
and some NPL programs cannot be translated into OML (for instance the program in
the end of Sec. 2), NPL is strictly more expressive in theoretical terms. NOPL, on the
other hand, has the same expressiveness of OML, since we can translate NOPL back
into OML (this translation is not the focus of this paper but is feasible). However, we
are not looking for general purpose or more expressive programming languages, but
languages that help automating part of the OMI development. In this regard, the OML
was designed to be more concise and more abstract than NOPL. The OML allows the
designer to specify complex properties of the organisation with natural abstractions
and fewer lines of code, which are translated into several lines of NOPL code that is
interpreted by the NPL engine.

Regarding the second contribution, namely the automatic translation, we were in-
spired by work on ISLANDER [2,7]. The main difference here is the initial and target
languages. While they translate a normative specification into a rule-based language,
we start from a high-level organisation modelling language and the target is a simple
normative programming language. NOPL is more specific than rule-based languages,
being specifically tailored from our NPL for the MOISE OML.

Regarding the third contribution, the OMI, we started from ORA4MAS [10]. The
advantages of the approach presented here are twofold: (i) it is easier to change the
translation than the Java implementation of the OMI; and (ii) from the operational
semantics of NPL and the formal translation we are taking significant steps towards a
formal semantics for MOISE, which is a well-known organisational model that has not
yet been fully formalised.

MOISE shares some concepts with a variety of organisational models available in
the multi-agent systems literature, so we expect to be able to use our approach to

132 J.F. Hübner, O. Boissier, and R.H. Bordini

give concrete semantics and efficient implementations for a variety of other modelling
languages too.

7 Conclusions

In this paper, we introduced a translation from an organisation specification written in
MOISE OML into a normative program that can be interpreted by an artifact-based
OMI. Focusing on the translation, we can bring flexibility to the development of OMIs.
Our work also emphasises the point that a normative programming language can be
based on only two basic concepts: regimentation and obligation. Prohibitions are con-
sidered either as regimentation or as an obligation for someone else to sanction in case
of violation of the prohibitions. The resulting NPL is thus simpler to formalise and
implement.

Another result of this work is to show that an organisational language (OML) can be
translated (and reduced to) a normative programming language. Roughly, all manage-
ment within an OMI can be based on the management of norms and obligations. This
result emphasises the importance of norms as a fundamental concept for the develop-
ment of OMIs. Future work will explore that capacity of NPL for other organisational
and institutional languages.

We also plan to investigate further possible relationships among norms, for
instance when the activation of a norm triggers another. This form of chain trigger-
ing of norms is already possible in the language. The current state of an obligation is
one of the dynamic facts updated by the artifact and accessible to the NPL interpreter,
and it can be used in the condition of norms. For example, we can write: norm x:

active(obligation(....)) -> fail(....).. However, this feature of the lan-
guage requires further experimentation.

It also remains future work to evaluate how the reorganisation process available in
MOISE will impact on the normative-based artifacts. Changes in the organisation spec-
ification imply changes in the corresponding NOPL programs. We can simply change
these programs in the artifacts, but there are problems that require investigation. For
example, the problem of what to do with the active obligations, created from an organ-
isation that changed, and which might need to be dropped in some cases and prevented
from being dropped just because of a change in the NOPL program in other cases. The
revision of such obligations is one of the main issue we will consider in this area of
future work.

Acknowledgements

The authors are grateful for the supported given by CNPq, grants 307924/2009-2,
307350/2009-6, and 478780/2009-5.

References

1. Bordini, R.H., Hübner, J.F., Wooldrige, M.: Programming Multi-Agent Systems in AgentS-
peak using Jason. Wiley Series in Agent Technology. John Wiley & Sons, Chichester
(2007)

From Organisation Specification to Normative Programming 133

2. da Silva, V.T.: From the specification to the implementation of norms: an automatic approach
to generate rules from norm to govern the behaviour of agents. Journal of Autonomous
Agents and Multi-Agent Systems 17(1), 113–155 (2008)

3. Dignum, V. (ed.): Handbook of Research on Multi-agent Systems: Semantics and Dynamics
of Organizational Models. Information Science Reference (2009)

4. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic institutions editor. In:
Castelfranchi, C., Lewis Johnson, W. (eds.) Proceedings of the First International Joint Con-
ference on Autonomous Agents and MultiAgent Systems (AAMAS 2002). LNCS (LNAI),
vol. 1191, pp. 1045–1052. Springer, Heidelberg (2002)

5. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-
agents systems. In: Demazeau, Y. (ed.) Proceedings of the 3rd International Conference on
Multi-Agent Systems (ICMAS 1998), pp. 128–135. IEEE Press, Los Alamitos (1998)

6. Fornara, N., Colombetti, M.: Specifying and enforcing norms in artificial institutions. In:
Omicini, A., Dunin-Keplicz, B., Padget, J. (eds.) Proceedings of the 4th European Workshop
on Multi-Agent Systems (EUMAS 2006) (2006)

7. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Constraining rule-
based programming norms for electronic institutions. Journal of Autonomous Agents and
Multi-Agent Systems 18(1), 186–217 (2009)

8. Grossi, D., Aldewered, H., Dignum, F.: Ubi Lex, Ibi Poena: Designing norm enforcement
in e-institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 101–114. Springer,
Heidelberg (2007)

9. Hübner, J.F., Boissier, O., Bordini, R.H.: A normative organisation programming language
for organisation management infrastructures. In: Padget, J., et al. (eds.) COIN 2009. LNCS
(LNAI), vol. 6069, pp. 114–129. Springer, Heidelberg (2010)

10. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisations with
organisational artifacts and agents: “giving the organisational power back to the agents”.
Journal of Autonomous Agents and Multi-Agent Systems 20(3), 369–400 (2010)

11. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multi-agent systems using the
MOISE+ model: Programming issues at the system and agent levels. International Journal of
Agent-Oriented Software Engineering 1(3/4), 370–395 (2007)

12. Jones, A.J.I., Sergot, M.: On the characterization of law and computer systems: the normative
systems perspective. In: Deontic logic in computer science: normative system specification,
pp. 275–307. John Wiley and Sons Ltd., Chichester (1993)

13. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems.
Journal of Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

14. Piunti, M., Ricci, A., Boissier, O., Hübner, J.F.: Embodying organisations in multi-agent
work environments. In: Proceedings of International Joint Conferences on Web Intelligence
and Intelligent Agent Technologies (WI-IAT 2009), pp. 511–518. IEEE/WIC/ACM (2009)

15. Pynadath, D.V., Tambe, M.: An automated teamwork infrastructure for heterogeneous soft-
ware agents and humans. Autonomous Agents and Multi-Agent Systems 7(1-2), 71–100
(2003)

16. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in CArtAgO. In:
Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Program-
ming: Languages, Tools and Applications, ch. 8, pp. 259–288. Springer, Heidelberg (2009)

17. Tinnemeier, N., Dastani, M., Meyer, J.-J.: Roles and norms for programming agent organiza-
tions. In: Sichman, J., Decker, K., Sierra, C., Castelfranchi, C. (eds.) Proc. of AAMAS 2009,
pp. 121–128 (2009)

134 J.F. Hübner, O. Boissier, and R.H. Bordini

18. van Riemsdijk, B., Hindriks, K., Jonker, C.M., Sierhuis, M.: Formal organizational con-
straints: A semantic approach. In: Hoek, Kaminka, Lesperance, Luck, Sen (eds.) Proc. of 9th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010),
pp. 823–830 (2010)

19. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Norms in multiagent systems: some im-
plementation guidelines. In: Proceedings of the Second European Workshop on Multi-Agent
Systems, EUMAS 2004 (2004),
http://people.cs.uu.nl/dignum/papers/eumas04.PDF

20. López y López, F., Luck, M.: Constraining autonomy through norms. In: Luck, M.,
d’Inverno, M. (eds.) Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 674–681. ACM Press, New York (2002)

http://people.cs.uu.nl/dignum/papers/eumas04.PDF

	From Organisation Specification to Normative Programming in Multi-Agent Organisations
	Introduction
	Normative Programming Language
	Moise
	From OML to NOPL
	Artifact-Based Architecture
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

