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Preface

These are the proceedings of the 11th International Workshop on Computa-
tional Logic in Multi-Agent Systems (CLIMA-XI), held during August 16–17, in
Lisbon, collocated with the 19th European Conference on Artificial Intelligence
(ECAI-2010).

Multi-agent systems are communities of problem-solving entities that can per-
ceive and act upon their environment in order to achieve both their individual
goals and their joint goals. The work on such systems integrates many technolo-
gies and concepts from artificial intelligence and other areas of computing as well
as other disciplines. Over recent years, the agent paradigm gained popularity,
due to its applicability to a full spectrum of domains, such as search engines,
recommendation systems, educational support, e-procurement, simulation and
routing, electronic commerce and trade, etc. Computational logic provides a well-
defined, general, and rigorous framework for studying the syntax, semantics and
procedures for the various tasks in individual agents, as well as the interaction
between, and integration among, agents in multi-agent systems. It also provides
tools, techniques and standards for implementations and environments, for link-
ing specifications to implementations, and for the verification of properties of
individual agents, multi-agent systems and their implementations.

The purpose of the CLIMA workshops is to provide a forum for discussing
techniques, based on computational logic, for representing, programming and
reasoning about agents and multi-agent systems in a formal way.

Former CLIMA editions have been conducted in conjunction with other ma-
jor Computational Logic and AI events such as CL in 2000, ICLP in 2001 and
2007, FLoC in 2002, LPNMR and AI-Math in 2004, JELIA in 2004 and 2008
and MATES in 2009. In 2005 CLIMA was not associated with any major event.

The 11th edition of the CLIMA workshop featured some new elements. For
the first time, these are not post-workshop proceedings, but regular proceedings
published in time for the workshop. In addition, CLIMA featured two thematic
Special Sessions.

Norms and Normative Multi-Agent Systems: Norms are pervasive in every-
day life and influence the conduct of the entities subject to them. One of the
main functions of norms is to regulate the behavior and relationships of agents.
Accordingly, any agent or multi-agent system, if intended to operate in or model
a realistic environment has to take into account norm regulating. Norms have
been proposed in multi-agent systems and computer science to deal with coordi-
nation issues, to deal with security issues of multi-agent systems, to model legal
issues in electronic institutions and electronic commerce, to model multi-agent
organizations, etc.

Logics for Games and Strategic Reasoning: Strategic reasoning occurs in
many multi-agent systems. This is especially evident in game-theoretical and
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decision-theoretical models of MAS, but also in more informal settings using the
game metaphor (e.g., computer games or social network services). Mathematical
logic can contribute to this view in many ways by providing specifications, mod-
els, and/or algorithms for game-like scenarios. We invited papers that address
how logic can contribute to our understanding, modeling and analysis of games,
but also ones that investigate how the metaphor of games and strategies can
help in constructing and using logical formalisms.

We believe that emphasizing particular areas each year helps to attract at-
tention to these important research topics.

In line with the high standards of previous CLIMA editions, the review pro-
cess was very selective, the final acceptance rate being below 50%. From 31
submissions, a Program Committee of 54 top-level researchers from 18 countries
and 11 additional reviewers selected 14 papers for presentation, authored by 43
researchers worldwide.

These proceedings feature the 14 regular papers, as well as abstracts of four
invited talks, given by Toby Walsh (NICTA, Australia), Ron van der Meyden
(University of New South Wales, Australia), Thomas Ågotnes (University of
Bergen, Norway), and Stefan Woltran (TU Vienna, Austria).

Toby Walsh considered in his talk “Is Computational Complexity a Barrier
to Manipulation?” voting rules and whether they can be manipulated. While the
well-known Gibbard-Satterthwaite theorem (related to Arrow’s paradox) states
that most systems can be manipulated, a way out might be that manipulation
is computationally too expensive to carry out. He suggests studying this problem
empirically and investigates various interesting phase transitions (which prove
to be important in other areas).

Ron van der Meyden considers “Games and Strategic Notions in Information
Flow Security.” A computer system or a group of agents often do not want to
disclose confidential information. But adversaries might be able to deduce such
data. The talk was about giving precise definitions of information flow security
and their complexity from the viewpoint of epistemic logic.

Thomas Ågotnes talked about “Group Announcements: Logic and Games.”
He reviewed the classical results in dynamic epistemic logics where the problem
of changing knowledge of individual agents is modeled. Public announcement
logic emerged out of this research. Thomas extends this work by considering
group announcements, where a subgroup of agents announce truthfully their
knowledge. He discussed the logical and rational principles governing this kind
of behavior.

Stefan Woltran discussed “Strong Equivalence in Argumentation.” Equiva-
lence in classical monotonic logic is well understood. But equivalence in non-
monotonic theories (i.e., the same answer sets, default extensions, etc.) is quite
different. The talk presented the main results obtained in the last few years and
related them to argumentation frameworks.

The three contributions accepted for the Norms and Normative Multi-Agent
Systems session address the problem of verifying the compliance of business



Preface VII

processes against relevant regulations, the diagnosis of commitment violations,
and the modeling agent and multi-agent systems using institutions and norms.

The paper “What Happened to My Commitment? Exception Diagnosis Among
Misalignment and Misbehavior” by Özgür Kafali and Federico Chesani Torroni
discusses the issue of detecting violation of commitments in an e-Contracts sce-
nario. The authors argue that one of the possible reasons for misalignment of
commitment in contracts depends on temporal aspects. Accordingly a contract
and the commitments it contains are formalized in REC, a form of reactive event
calculus. They then propose an architecture and an algorithm for the diagnosis
of the possible types of misalignments (i.e., violations) of commitments.

Davide D’Aprile, Laura Giordano, Valentina Gliozzi, Alberto Martelli, Gian
Luca Pozzato and Daniele Theseider Dupré in their contribution on “Verifying
Business Process Compliance by Reasoning About Actions” propose the use of
temporal action theory as a common language to model business processes as
well as the norms governing the processes. Temporal action theory combines an-
swer set programming and dynamic linear time temporal logic. The combination
allows for the representation in the same language of the business processes and
the norms governing them (where obligations are represented as commitments).
In this way verifying compliance amounts to checking that no execution of the
process leaves some commitments unfulfilled. The verification can then be done
using bounded model checking.

The aim of Jomi F. Hübner, Olivier Boissier and Rafael H. Bordini in “From
Organisation Specification to Normative Programming in Multi-Agent Organisa-
tions” is to provide an automatic translation from a specification in a high-level
organization modeling language (Moise) to a program in a simpler normative
programming language (NOPL) that can be interpreted by an artifact-based
organization management structure (OMI) with the aim of bringing more flexi-
bility to developing an OMI. This is claimed to be the case since one can more
easily change the translation than a Java implementation of the OMI.

The special session on Logic for Games and Strategic Reasoning consisted of
four papers. In the paper titled “Exploring the Boundary of Half Positionality,”
Alessandro Bianco, Marco Faella, Fabio Mogavero and Aniello Murano consider
languages of infinite words that can be interpreted as winning conditions in
infinite games. Half positionality means that the proponent in the game can
restrict her search for a winning strategy to positional strategies only. As the
main result, the authors describe a novel sufficient condition for half positionality,
more general than what was previously known. The paper has a strong link to
work on application of games in logic – more precisely in verification techniques
for strategic and temporal logics, where restricting the search to a limited set of
simple possibilities is an important issue.

In “Playing Extensive Form Games in Parallel,” Sujata Ghosh, R. Ramanu-
jam and Sunil Easaw Simon consider a player playing simultaneously against
different opponents in two extensive games. For the analysis, the authors pro-
pose a variant of dynamic logic for EF games. They present a complete axioma-
tization of the logic and show that it is decidable. Thus, the focus of the paper is
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application of logical formalisms to analysis of a specific kind of agent interac-
tion, and characterizing general properties of such interactions.

“Finding Uniform Strategies for Multi-Agent Systems” by Jan Calta, Dmitry
Shkatov and Holger Schlingloff presents another study of game-like interactions.
An algorithm for finding uniform strategies in imperfect information games is
proposed, which finds all maximal uniform strategies for enforcing a property
expressible in alternating-time temporal logic (ATL). This can be seen as a
semantic study of an important variant of strategic logics, but also as a step
towards automated program synthesis for decentralized distributed systems of
agents.

Finally, Jonathan Zvesper and Krzysztof Apt present their “Proof-Theoretic
Analysis of Rationality for Strategic Games with Arbitrary Strategy Sets.” Here
the focus is again on characterization of general properties of games. More pre-
cisely, the authors provide an axiomatic proof of the statement “true common
belief of rationality implies that the players will choose only strategies that sur-
vive the iterated elimination of strictly dominated strategies,” where rationality
means playing only strategies one believes to be best responses. An appropriate
proof system is introduced, proved sound, and then shown capable of providing
a formal derivation for the statement.

The remaining CLIMA papers cover a variety of topics, such as logics, knowl-
edge representation, reasoning, agent programming languages, to name a few. A
short summary of each paper follows.

The contribution by Sara Miner More and Pavel Naumov on “Hypergraphs
of Multiparty Secrets” investigates the completeness of an axiomatization of a
logic of secrets. The aim of the logic of secrets is to study the interdependencies
between pieces of information, called secrets because they might be known by
some parties and unknown by others.

The paper “Combining Logics in Simple Type Theory” by Christoph
Benzmüller provides a good insight into the advances of the field on combin-
ing logics, in particular on the use of simple type theory (STT). Specifically,
the author presents an embedding of (normal) quantified multimodal logic, and
of other logics such as intuitionistic logics, access control logics, and logics for
spatial reasoning in STT, and illustrates how STT can be used to reason about
or within the combination of the logics embedded in SST. It also provides a set
of experiments on the use of STT automated reasoners for the solution of several
problems.

In “Speculative Abductive Reasoning for Hierarchical Agent Systems,” Jiefei
Ma, Krysia Broda, Randy Goebel, Hiroshi Hosobe, Alessandra Russo and Ken
Satoh introduce the concept of speculative reasoning. This framework allows
one to manage multiple revisable answers within the context of multi-agent sys-
tems, by introducing a novel abductive framework to hierarchical speculative
reasoning.

“Formal Semantics of a Dynamic Epistemic Logic for Describing Knowl-
edge Properties of Pi-Calculus Processes” by Pedro Arturo Gongora, Francisco
Hernandez-Quiroz and Eric Ufferman presents an embedding of the process
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algebra of π-calculus in a multi-agent framework, in particular the notions of
agency and knowledge. This is done through a variant of multi-agent dynamic
epistemic logic, where epistemic actions of agents are π-calculus processes. In
the semantics, these processes are translated to corresponding model updates.
Thus, the proposal allows one to model agent interaction by a collection of π-
calculus processes. Moreover, given a collection of such processes, we can derive
dynamics of knowledge that it entails.

“Model Checking Agent Programs by Using the Program Interpreter” by
Sung-Shik Jongmans, Koen Hindriks and M. Birna van Riemsdijk reports a new
approach to explicit-state, on-the-fly model checking for agent programs. The
idea is to reuse the program interpreter for generating the state space. The
model checking algorithm is built on top of it by implementing efficient transfor-
mations of temporal properties to Buchi automata and an efficient bookkeeping
mechanism that maintains track of the states that have already been visited.
The approach is evaluated experimentally, with very promising results.

The paper “An Agent Language with Destructive Assignment and Model-
Theoretic Semantics” by Robert Kowalski and Fariba Sadri presents an agent
language that combines agent functionality with model-theoretic semantics. The
underlying framework is that of abductive logic programming (ALP).

“A Dialogue Games Framework for the Operational Semantics of Logic Agent-
Oriented Languages,” by Stefania Costantini and Arianna Tocchio, introduces
an operational semantics based on dialogue games that have their roots in the
philosophy of argumentation. This allows for a uniform and modular way of
modeling all the components of the interpreter.

We thank all the authors of all the papers submitted to CLIMA-XI for sub-
mitting papers and for revising their contributions to be included in these pro-
ceedings. We are very grateful to the members of the CLIMA-XI Program Com-
mittee and the additional reviewers. Their service ensured the high quality of
the accepted papers.

A special thank you goes to Ulle Endriss, the ECAI-2010 Workshop Chair,
and to the local organizers in Lisbon for their help and support. We are very
grateful to them for handling the registration and for a very enjoyable social
program.

June 2010 Jürgen Dix
João Leite

Guido Governatori
Wojtek Jamroga
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Thomas Ågotnes University of Bergen, Norway
Natasha Alechina University of Nottingham, UK
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Is Computational Complexity a Barrier to
Manipulation?

Toby Walsh

NICTA and University of NSW, Sydney, Australia
toby.walsh@nicta.com.au

Abstract. When agents are acting together, they may need a simple mechanism
to decide on joint actions. One possibility is to have the agents express their
preferences in the form of a ballot and use a voting rule to decide the winning
action(s). Unfortunately, agents may try to manipulate such an election by mis-
reporting their preferences. Fortunately, it has been shown that it is NP-hard to
compute how to manipulate a number of different voting rules. However, NP-
hardness only bounds the worst-case complexity. Recent theoretical results sug-
gest that manipulation may often be easy in practice. To address this issue, I
suggest studying empirically if computational complexity is in practice a barrier
to manipulation. The basic tool used in my investigations is the identification of
computational “phase transitions”. Such an approach has been fruitful in identi-
fying hard instances of propositional satisfiability and other NP-hard problems.
I show that phase transition behaviour gives insight into the hardness of manip-
ulating voting rules, increasing concern that computational complexity is indeed
any sort of barrier. Finally, I look at the problem of computing manipulation of
other, related problems like stable marriage and tournament problems.

1 Introduction

The Gibbard Satterthwaite theorem proves that, under some simple assumptions, a vot-
ing rule can always be manipulated. In an influential paper [1], Bartholdi, Tovey and
Trick proposed an appealing escape: perhaps it is computationally so difficult to find
a successful manipulation that agents have little option but to report their true prefer-
ences? To illustrate this idea, they demonstrated that the second order Copeland rule
is NP-hard to manipulate. Shortly after, Bartholdi and Orlin proved that the more well
known Single Transferable Voting (STV) rule is NP-hard to manipulate [2]. Many other
voting rules have subsequently been proven to be NP-hard to manipulate [3]. There is,
however, increasing concern that worst-case results like these do not reflect the difficulty
of manipulation in practice. Indeed, several theoretical results suggest that manipulation
may often be easy (e.g. [4]).

2 Empirical Analysis

In addition to attacking this question theoretically, I have argued in a recent series
of papers that we may benefit from studying it empirically [5,6]. There are several

J. Dix et al. (Eds.): CLIMA XI, LNAI 6245, pp. 1–7, 2010.
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2 T. Walsh

reasons why empirical analysis is useful. First, theoretical analysis is often restricted to
particular distributions like uniform votes. Manipulation may be very different in prac-
tice due to correlations in the preferences of the agents. For instance, if all preferences
are single-peaked then there voting rules where it is in the best interests of all agents
to state their true preferences. Second, theoretical analysis is often asymptotic so does
not reveal the size of hidden constants. The size of such constants may be important
to the actual computational cost of computing a manipulation. In addition, elections
are typically bounded in size. Is asymptotic behaviour relevant to the size of elections
met in practice? An empirical study may quickly suggest if the result extends to more
candidates. Finally, empirical studies can suggest theorems to prove. For instance, our
experiments suggest a simple formula for the probability that a coalition is able to elect
a desired candidate. It would be interesting to derive this exactly.

3 Voting Rules

My empirical studies have focused on two voting rules: single transferable voting (STV)
and veto voting. STV is representative of voting rules that are NP-hard to manipulate
without weights on votes. Indeed, as I argue shortly, it is one of the few such rules.
Veto voting is, on the other hand, a simple representative of rules where manipulation
is NP-hard when votes are weighted or (equivalently) we have uncertainty about how
agents have voted. The two voting rules therefore cover the two different cases where
computational complexity has been proposed as a barrier to manipulation.

STV proceeds in a number of rounds. Each agent totally ranks the candidates on a
ballot. Until one candidate has a majority of first place votes, we eliminate the candidate
with the least number of first place votes Ballots placing the eliminated candidate in
first place are then re-assigned to the second place candidate. STV is used in a wide
variety of elections including for the Australian House of Representatives, the Academy
awards, and many organizations including the American Political Science Association,
and the International Olympic Committee. STV has played a central role in the study
of the computational complexity of manipulation. Bartholdi and Orlin argued that:

“STV is apparently unique among voting schemes in actual use today in that it
is computationally resistant to manipulation.” (page 341 of [2]).

By comparison, the veto rule is a much simpler scoring rule in which each agent gets
to cast a veto against one candidate. The candidate with the fewest vetoes wins. There
are several reasons why the veto rule is interesting to study. The veto rule is very simple
to reason about. This can be contrasted with other voting rules like STV. Part of the
complexity of manipulating the STV rule appears to come from reasoning about what
happens between the different rounds. The veto rule, on the other hand, has a single
round. The veto rule is also on the borderline of tractability since constructive manip-
ulation (that is, ensuring a particular candidate wins) of the veto rule by a coalition of
weighted agents is NP-hard but destructive manipulation (that is, ensuring a particular
candidate does not win) is polynomial [3].
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4 Voting Distributions

Empirical analysis requires collections of votes on which to compute manipulations.
My analysis starts with one of the simplest possible scenarios: elections in which each
vote is equally likely. We have one agent trying to manipulate an election of m candi-
dates in which n other agents vote. Votes are drawn uniformly at random from all m!
possible votes. This is the Impartial Culture (IC) model. In many real life situations,
however, votes are correlated with each other. I therefore also considered single-peaked
preferences, single-troughed preferences, and votes drawn from the Polya Eggenberger
urn model [7]. In an urn model, we have an urn containing all possible votes. We draw
votes out of the urn at random, and put them back into the urn with a additional votes
of the same type (where a is a parameter). This generalizes both the Impartial Cul-
ture model (a = 0) and the Impartial Anonymous Culture (a = 1) model. Real world
elections may differ from these ensembles. I therefore also sampled some real voting
records [8,9]. Finally, one agent on their own is often unable to manipulate the result. I
therefore also considered coalitions of agents who are trying to manipulate elections.

5 Results

My experiments suggest different behaviour occurs in the problem of computing manip-
ulations of voting rules than in other NP-hard problems like propositional satisfiability
and graph colouring [10,11]. For instance, we often did not see a rapid transition that
sharpens around a fixed point as in satisfiability [12]. Many transitions appear smooth
and do not sharpen towards a step function as problem size increases. Such smooth
phase transitions have been previously seen in polynomial problems [13]. In addition,
hard instances often did not occur around some critical parameter. Figures 1 to 3 repro-
duce some typical graphs from [6].

Similar phase transition studies have been used to identify hard instances of
NP-hard problems like propositional satisfiability [12,17,18], constraint satisfaction
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ber of candidatesm. The y-axis measures the probability that the manipulator can make a random
candidate win.
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and other percentiles are similar. 1.62m is the published worst-case bound for the recursive algo-
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Fig. 3. Search to compute if an agent can manipulate an election with correlated votes. The num-
ber of candidates m is fixed and we vary the number of agents n.

[19,20,21,22,23], number partitioning [24,25,26], Hamiltonian circuit [27,28], and the
traveling salesperson problem [29,30]. Phase transition studies have also been used to
study polynomial problems [31,32] as well as higher complexity classes [33,34] and op-
timization problems [35,36]. Finally, phase transition studies have been used to study
problem structure like small worldiness [37] and high degree nodes [38].

6 Other Manipulation Problems

Another multi-agent problem in which manipulation may be an issue is the stable mar-
riage problem. This is the well-known problem of matching men to women so that no
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man and woman who are not married to each other both prefer each other. It has a wide
variety of practical applications such as a matching doctors to hospitals. As with voting,
an important issue is whether agents can manipulate the result by mis-reporting their
preferences. Unfortunately, Roth [14] proved that all stable marriage procedures can
be manipulated. We might hope that computational complexity might also be a barrier
to manipulate stable marriage procedures. In joint work with Pini, Rossi and Venable,
I have proposed a new stable marriage procedures that is NP-hard to manipulate [15].
Another advantage of this new procedure is that, unlike the Gale-Shapley algorithm, it
does not favour one sex over the other. Our procedure picks the stable matching that
is most preferred by the most popular men and women. The most preferred men and
women are chosen using a voting rule. We prove that, if the voting rule used is STV
then the resulting stable matching procedure is also NP-hard to manipulate. We con-
jecture that other voting rules which are NP-hard to manipulate will give rise to stable
matching procedures which are also NP-hard to manipulate.

The final domain in which I have studied computational issues surrounding manip-
ulation is that of (sporting) tournaments (joint work with Russell) [16]. Manipulating a
tournament is slightly different to manipulating an election. In a sporting tournament,
the voters are also the candidates. Since it is hard (without bribery or similar mecha-
nisms) for a team to play better than it can, we consider just manipulations where the
manipulators can throw games. We show that we can decide how to manipulate round
robin and cup competitions, two of the most popular sporting competitions in polyno-
mial time. In addition, we show that finding the minimal number of games that need to
be thrown to manipulate the result can also be determined in polynomial time. Finally,
we give a polynomial time proceure to calculate the probability that a team wins a cup
competition under manipulation.

7 Conclusions

I have argued that empirical studies can provide insight into whether computational
complexity is a barrier to the manipulation. Somewhat surprisingly, almost every one
of the many millions of elections in the experiments in [5,6] was easy to manipulate or
to prove could not be manipulated. Such experimental results increase the concerns that
computational complexity is indeed a barrier to manipulation in practice. Many other
voting rules have been proposed which could be studied in the future. Two interesting
rules are maximin and ranked pairs. These two rules have only recently been shown to
be NP-hard to manipulate, and are members of the small set of voting rules which are
NP-hard to manipulate without weights or uncertainty [39]. These results demonstrate
that empirical studies can provide insight into the computational complexity of comput-
ing manipulations. It would be interesting to consider similar phase transition studies
for related problems like preference elicitation [40,41].

Acknowledgements. NICTA is funded by the Department of Broadband, Communi-
cations and the Digital Economy, and the Australian Research Council.
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Abstract. One of the concerns in the theory of computer security has
been the question of what information an adversary is able to deduce
about the secrets that a system is intended to maintain. Giving precise
definitions of information flow security has proved to be a subtle matter.
Some of the definitions that have been developed make explicit reference
to strategic behaviour of the adversary. We present a perspective on these
aspects of information security from epistemic logic and the theory of
synthesis from logical specifications, and describe some recent results on
the computational complexity of definitions of information flow security.
Results concerning several types of games are drawn upon in the proofs
of these complexity results. We also consider a normative aspect, viz, the
use in implementations of access control permission policies to enforce
an information flow security policy.

� Work supported by Australian Research Council Discovery Grant DP1097203.

J. Dix et al. (Eds.): CLIMA XI, LNAI 6245, p. 8, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Group Announcements: Logic and Games
(Abstract of Invited Talk)

Thomas Ågotnes�
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Abstract. The logic of truthful public announcements has been studied
as an extension of traditional epistemic logic. The topic of this talk is
group announcements, truthful public announcements made simultane-
ously by the members of a group of agents. I will discuss group announce-
ments from two sides. First, the logic of group announcements can be
studied by adding quantification over group announcements to the logi-
cal language. Second, the game theory of group announcements can be
studied by assuming that each agent has preferences over epistemic states
(here, represented as an epistemic goal formula).

1 Group Announcements

Epistemic logic, the logic of knowledge, has been around since the 1960s [11,21],
but has peaked in popularity recently – in particular in the fields of computer sci-
ence, AI andmulti-agent systems [7,14]. The key construct in (propositional,multi-
agent) epistemic logic is of the form Kiφ, expressing the fact that agent i knows φ.

One of the most prominent recent developments of epistemic logic is dynamic
epistemic logic (del, see [20] for a recent overview). del describes the possible
information-changing actions available to individual agents, and their knowledge
pre- and post conditions. The perhaps simplest dynamic epistemic logic is pub-
lic announcement logic (pal) [16,8], which makes epistemic logic dynamic by
adding modal operators 〈ψ〉, where ψ is a formula. The intended meaning of
〈ψ〉φ is that ψ is true and that after it is publicly announced, φ will be true.

The topic of this talk is group announcements ; announcements made by a
group of agents in the sense that each agent in the group truthfully and publically
announces one formula. An agent can only make a truthful announcement if she
knows the announcement to be true, and a group announcement for group G (a
set of agents) is thus of the form ∧

i∈G

Kiφi

where φi, i ∈ G, is a formula.
� The talk is based on joint work with Hans van Ditmarsch, Philippe Balbiani and

Pablo Seban.
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Two questions that we think are interesting are:

1. What are the logical principles of group announcements? E.g.: What is
the logical relationship between different statements about group announce-
ments? How complex is it to reason about group announcements? Etc.

2. What are the rational principles of group announcements? I.e., which group
announcements will rational agents actually make? This question naturally
leads to a game-theoretic scenario.

2 Group Announcement Logic

A recent research direction in dynamic epistemic logic is quantification over
formulae. Van Benthem [18] and Balbiani et al. [5] suggested adding the standard
diamond to public announcement logic, with the interpretation that ♦φ means
“there is an announcement after which φ”. Or formally: there is a formula1 ψ such
that 〈ψ〉φ holds. The resulting logic is called Arbitrary Public Announcement
Logic (apal) [5,6]. In the interpretation of ♦ in apal, however, there is no
assumption about who makes the announcement – or indeed that it can be
truthfully made by any agent in the system. Group announcements are exactly
the announcements that can be made by the agents in the system.

Group Announcement Logic (gal) [2,1] extends pal with an operator 〈G〉,
for every group of agents G, for quantifying over group announcements by G.
The formula

〈G〉φ
has the intended meaning that there is a group announcement α =

∧
i∈G Kiφi

for G such that 〈α〉φ holds2. The 〈G〉 operator can be seen as a “coalitional
ability” operator of the form known from Coalition Logic [15] and Alternating-
time Temporal Logic [4], in the sense that 〈G〉φ means that G has the ability
(here, by making a group announcement) to make φ come about. gal thus
bridges two active strands of research in logics for multi-agent systems, viz.
dynamic epistemic logics and logics of coalitional ability.

As an example, the pal formula

〈Kaφa〉〈Kbφb〉(Kaψ ∧ Kbψ ∧ ¬Kcψ)

expresses the fact that a can make the announcement φa after which b can make
the announcement φb after which both a and b will both know some formula ψ
but c will not. In gal, however, this can be weakened to

〈a〉〈b〉(Kaψ ∧ Kbψ ∧ ¬Kcψ)

expressing the fact that a and b can make some announcements (in the same
sequence) achieving the goal. We think that the gal formalism can be useful to
1 The quantification is restricted to the language without the ♦ operator to avoid

circularity.
2 Again, the quantification is restricted to the language without the 〈G〉 operators.
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model check security protocols, e.g., to answer questions of the type “does there
exist a protocol consisting of an announcement by a followed by an announce-
ment by b achieving the goal” (where “announcement” means communication
that is assumed to be intercepted).

I discuss how gal can be used to express potentially interesting properties
involving, e.g., sequences of group announcements and/or interaction properties
between knowledge and ability. For example, it turns out that the property
“there is a sequence, of arbitrary length, of group announcements by G, after
which φ will be true” can be expressed in gal.

By combining the knowledge and the ability operators, gal can be used to
express, e.g., Ka〈a〉φ (“a knows that she is able to make φ true by some an-
nouncement”) and 〈a〉Kaφ (“a can make some announcement after which she
will know φ”). There are many subtleties involved in the combination of knowl-
edge and (general, not necessarily announcement) ability operators [13,12]. One
of them is the de dicto/de re distinction: knowing (de dicto) that you have the
ability to achieve a goal (without necessarily knowing how) vs. knowing (de re)
how you can achieve the goal (knowing which action will achieve the goal). It is
not surprising that the former is expressed by Ka〈a〉φ; it is perhaps more sur-
prising that the latter is in fact expressed3 by 〈a〉Kaφ: a knows that a particular
announcement will make φ true if and only if she can make some announcement
that will make her learn φ.

Key meta-logical results include a complete axiomatisation, and a character-
isation of the complexity of the model checking problem (PSPACE-complete).
Further details can be found in [1].

3 Public Announcement Games

An agent can typically choose between several truthful announcements in a given
circumstance. Let us assume that each agent in a group choose announcements
simultaneously. Which announcement will each agent choose, assuming that she
is rational? And, thus, which group announcement will be made? In order to
answer such questions, preferences over epistemic states (possibly of several dif-
ferent agents) must be assumed. Since epistemic states after a group announce-
ment will depend on the announcements chosen by all the agents, we have a
game theoretic scenario.

A simple model of agents’ preferences is a (typically epistemic) goal formula
γi for each agent – a formula that agent wants to be true. For example, a’s goal
might be Kbψ ∧ ¬Kcψ – that b learns ψ without c learning it. Logical formulae
are used in the same way in Boolean games [9,10] to represent binary preferences.
A strategic form game can now be defined in a natural way: the strategies for an
agent is the set of announcements she can make (true formulae of the form Kiφ).
A strategy profile is then a group announcement α =

∧
i∈N Kiφi (where N is

the set of all agents) and an agent gets utility 1 if 〈α〉γi holds and 0 otherwise.

3 Assuming the S5 properties of knowledge.
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Such public announcement games are a particular type of strategic games with
imperfect information, where there is an intimate relationship between strategies,
knowledge, and utility.

I discuss properties of public announcement games, possible solution concepts,
and the relationship between epistemic properties and game theoretic properties.
An example of a simple interaction property is that if an agent’s goal formula
is in the positive fragment of the language [17,19] (essentially, only contains
negation immediately preceding atomic propositions), then that agent knows de
re that she has a weakly dominant strategy (there is a strategy she knows is
weakly dominant).

Further details about public announcement games can be found in [3].
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Abstract. The problem of equivalence has received substantial atten-
tion in the knowledge-representation (KR) community in the past sev-
eral years. This is due to the fact that the replacement theorem from
classical logic does not necessarily hold in typical (non-monotonic) KR
formalisms. In fact, the problem is as follows: Consider a theory S is re-
placed by another theory S′ within a larger knowledge base T . Naturally,
one wants to ensure that the resulting knowledge base (T \ S) ∪ S′ has
the same meaning as T . But this is not guaranteed by standard equiv-
alence between S and S′ under nonmonotonic semantics, and therefore,
stronger notions of equivalence are required. In particular, the follow-
ing definition of equivalence guarantees that a replacement as discussed
above is faithful: two theories S and S′ are called strongly equivalent,
if and only if S ∪ T and S′ ∪ T have the same same meaning for each
theory T .

In this, talk we first give a brief overview of seminal results on strong
equivalence from the areas of datalog and answer-set programming. Then,
we focus on argumentation and present recent characterisations for strong
equivalence between argumentation frameworks with respect to the most
important semantics proposed for such frameworks. We also discuss some
variants of strong equivalence, which are defined in terms of acceptance.
Since argumentation is an inherently dynamic process, it is of great im-
portance to understand the effect of incorporating new information into
given argumentation frameworks. By its definition, strong equivalence
gives some fundamental insight into this issue.
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Abstract. The paper considers interdependencies between secrets in a
multiparty system. Each secret is assumed to be known only to a certain
fixed set of parties. These sets can be viewed as edges of a hypergraph
whose vertices are the parties of the system. The main result is a complete
and decidable logical system that describes interdependencies that may
exist on a fixed hypergraph. The properties of interdependencies are
defined through a multi-argument relation called independence, which is
a generalization of a binary relation also known as nondeducibility.

1 Introduction

In this paper, we study properties of interdependencies between pieces of infor-
mation. We call these pieces secrets to emphasize the fact that they might be
known to some parties and unknown to others. Below, we first describe two re-
lations for expressing interdependencies between secrets. Next, we discuss these
relations in the context of collaboration networks which specify the available
communication channels for the parties establishing the secrets.

Relations on Secrets. One of the simplest relations between two secrets is
functional dependence, which we denote by a�b. It means that the value of secret
a reveals the value of secret b. This relation is reflexive and transitive. A more
general and less trivial form of functional dependence is functional dependence
between sets of secrets. If A and B are two sets of secrets, then A � B means
that, together, the values of all secrets in A reveal the values of all secrets in B.
Armstrong [1] presented a sound and complete set of axioms for this relation.

These axioms are known in database literature as Armstrong’s axioms [2,
p. 81]. Beeri, Fagin, and Howard [3] suggested a variation of Armstrong’s axioms
that describe properties of multi-valued dependency.

Not all dependencies between two secrets are functional. For example, if secret
a is a pair 〈x, y〉 and secret b is a pair 〈y, z〉, then there is an interdependence
between these secrets in the sense that not every value of secret a is compatible
with every value of secret b. However, neither a�b nor b�a is necessarily true. If
there is no interdependence at all between two secrets, then we will say that the
two secrets are independent. In other words, secrets a and b are independent if
any possible value of secret a is compatible with any possible value of secret b. We
denote this relation between two secrets by [a, b]. This relation was introduced by

J. Dix et al. (Eds.): CLIMA XI, LNAI 6245, pp. 15–32, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Sutherland [4] and is also known as nondeducibility in the study of information
flow. Halpern and O’Neill [5] proposed a closely related notion called f -secrecy.

Like functional dependence, independence also can be generalized to relate two
sets of secrets. If A and B are two such sets, then [A, B] means that any consistent
combination of values of the secrets in A is compatible with any consistent
combination of values of the secrets in B. Note that “consistent combination”
is an important condition here, since some interdependence may exist between
secrets in set A even while the entire set of secrets A is independent from the
secrets in set B. The following is an example of a non-trivial property expressible
in this language:

[A∪B , C] → ([A , B] → [A , B∪C]).

A sound and complete axiomatization of all such properties was given by More
and Naumov [6]. Essentially the same axioms were shown by Geiger, Paz, and
Pearl [7] to provide a complete axiomatization of the independence relation be-
tween sets of random variables in probability theory. A complete logical system
that combines independence and functional dependence predicates for single se-
crets was described by Kelvey, More, Naumov, and Sapp [8].

a

q

p

b

c
r s

d
t

u

Fig. 1. Collaboration network H0

Secrets in Networks. So
far, we have assumed that the
values of secrets are deter-
mined a priori. In the physical
world, however, secret values
are often generated, or at least
disseminated, via interaction
between several parties. Quite
often such interactions happen
over a network with fixed topology. For example, in social networks, interaction
between nodes happens along connections formed by friendship, kinship, finan-
cial relationship, etc. In distributed computer systems, interaction happens over
computer networks. Exchange of genetic information happens along the edges of
the genealogical tree. Corporate secrets normally flow over an organization chart.
In cryptographic protocols, it is often assumed that values are transmitted over
well-defined channels. On social networking websites, information is shared be-
tween “friends”. Messages between objects on an UML interaction diagram are
sent along connections defined by associations between the classes of the objects.

In this paper, we will use the notion of collaboration network to refer to the
topological structure that specifies which secrets are known to which parties.
An example of such network is given on Figure 1. In this network, parties p, q
and r share secret a; parties r and s share secrets b and c; and parties s, t and
u share secret d. If different secrets are established completely independently,
then possession of one or several of these secrets reveals no information about
the other secrets. Assume, however, that secrets are not picked completely in-
dependently. Instead, each party with access to multiple secrets may enforce
some desired interdependence between the values of these secrets. These “local”
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interdependencies between secrets known to a single party may result in a
“global” interdependence between several secrets, not all of which are known
to any single party. Given the fixed topology of the collaboration network, we
study what global interdependencies between secrets may exist in the system.

We will say that the local interdependencies define a protocol. For the col-
laboration network H0 depicted in Figure 1, for example, we can imagine the
following protocol. Parties p, q and r together pick a random value a from set
{0, 1}. Next, party r chooses values b and c from {0, 1} in such a way that
a = b + c mod 2 and sends both of these values to party s. Party s computes
d = b + c mod 2 and shares value d with parties t and u. In this protocol, it
is clear that the values of a and d will always match. Hence, for this specific
protocol, we can say that a � d and d � a, but at the same time, [a, b] and [a, c].

The functional dependence and independence examples above are for a single
protocol, subject to a particular set of local interdependencies between secrets. If
the network remains fixed, but the protocol is changed, then secrets which were
previously interdependent may no longer be so, and vice versa. For example,
for network H0 above, the claim a � d will no longer be true if, say, party s
switches from enforcing the local condition d = b + c mod 2 to enforcing the
local condition d = b. In this paper, we study properties of relations between
secrets that follow from the topological structure of the collaboration network, no
matter which specific protocol is used. Examples of such properties for network
H0 are a � d → b, c � d and [{a}, {b, c}] → [a, d].

A special case of the collaboration network is an undirected graph collabora-
tion network in which any secret is shared between at most two parties. In an
earlier work [9], we considered this special case and gave a complete axiomatic
system for the independence relation between single secrets in that setting. In
fact, we axiomatized a slightly more general relation [a1, a2, . . . , an] between mul-
tiple single secrets, which means that any possible values of secrets a1, . . . , an

can occur together.
In a more recent work, currently under review, we developed a complete log-

ical system that describes the properties of the functional dependence relation
A � B between sets of secrets over graph collaboration networks. This system
includes Armstrong’s axioms and a new Gateway axiom that captures properties
of functional dependence specific to the topology of the collaboration network.

In the current paper, we focus on independence and generalize our results
from collaboration networks defined by standard graphs to those defined by
hypergraphs. That is, we examine networks where, as in Figure 1, a secret can
be shared between more than two parties. In this setting, we give a complete
and decidable system of axioms for the relation [a1, a2, . . . , an]. In terms of the
proof of completeness, the most significant difference between the earlier work
[9] and this one is in the construction of the parity protocol in Section 7.1.

2 Hypergraphs

A collaboration network where a single secret can be shared between multiple
parties can be described mathematically as a hypergraph in which vertices are
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parties and (hyper)edges are secrets. In this section, we will introduce the hy-
pergraph terminology that is used later in the paper.

Definition 1. A hypergraph is pair H = 〈V, E〉, where

1. V is a finite set, whose elements are called “vertices”.
2. E is a finite multiset of non-empty subsets of V . Elements of E are called

“edges”. Elements of an edge are called the “ends” of the edge.

Note that we use “mulitisets” in the above definition to allow for multiple edges
between the same set of ends. Also note that, as is common in hypergraph
literature [10, p. 1], we exclude empty edges from consideration.

Definition 2. For any set of vertices V ′ of a hypergraph H, by Out(V ′) we mean
the set of edges in H that contain ends from both set V ′ and the complement of
V ′. By In(V ′) we mean the set of edges in H that contain only ends from V ′.

From the collaboration network perspective, V ′ is a group of parties, Out(V ′)
is the public interface of this group (secrets that the group members share with
non-members) and In(V ′) is the set of secrets only known within group V ′. For
example, for the collaboration network defined by hypergraph H0 on Figure 1,
if V ′ = {r, s}, then Out(V ′) = {a, d} and In(V ′) = {b, c}.

A path in a hypergraph is an alternating sequence of edges and vertices in
which adjacent elements are incident. It will be convenient to assume that paths
start and end with edges rather than with vertices. Paths will be assumed to
be simple, in the sense that no edge or vertex is repeated in the path, with the
exception that the last edge in the path may be the same as the first. In this
case, the path is called cyclic. For example, a, r, b, s, c is a path in H0 of Figure 1.

Definition 3. A gateway between sets of edges A and B is a set of edges G such
that every path from A to B contains at least one edge from G.

For instance, set {b, c} is a gateway between single-element sets {a} and {d} on
the hypergraph H0 from Figure 1. Note also that in the definition above, sets
A, B, and G are not necessarily disjoint. Thus, for example, for any set of edges
A, set A is a gateway between A and itself. Also, note that the empty set is a
gateway between any two components of the hypergraph that are not connected
one to another.

Definition 4. If X is an arbitrary set of vertices of a hypergraph H = 〈V, E〉,
then the truncation of set X from H is a hypergraph H ′ = 〈V \ X, E′〉, where

E′ = {e \ X | e ∈ E and e \ X �= ∅}.

Truncated hypergraph H ′ is also commonly [10, p. 3] referred to as the subhy-
pergraph of H induced by the set of vertices V \ X .
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3 Protocol: A Formal Definition

Definition 5. A semi-protocol over a hypergraph H = 〈V, E〉 is a pair P =
〈V al, Loc〉 such that

1. V al(e) is an arbitrary set of “values” for each edge e ∈ E,
2. Loc = {Locv}v∈V is a family of relations, indexed by vertices (parties) of

the hypergraph H, which we call “local conditions”. If e1, . . . ek is the list of
all edges incident with vertex v, then Locv ⊆ V al(e1) × · · · × V al(ek).

Definition 6. A run of a semi-protocol 〈V al, Loc〉 is a function r such that

1. r(e) ∈ V al(e) for any edge e ∈ E,
2. If e1, . . . ek is the list of all edges incident with vertex v ∈ V , then the state-

ment Locv(r(e1), . . . , r(ek)) is true.

Definition 7. A protocol is any semi-protocol that has at least one run.

The set of all runs of a protocol P is denoted by R(P).

Definition 8. A protocol P = 〈V al, Loc〉 is called finite if the set V al(e) is
finite for every edge e of the hypergraph.

The following definition of independence is identical to the one given earlier [9]
for standard graphs.

Definition 9. A set of edges Q = {q1, . . . , qk} is independent under protocol P
if for any runs r1, . . . , rk ∈ R(P) there is a run r ∈ R(P) such that r(qi) = ri(qi)
for any i ∈ {1, . . . , k}.

4 Language of Secrets

By Φ(H), we denote the set of all collaboration network properties specified by
hypergraph H that are expressible through the independence predicate. More
formally, Φ(H) is a minimal set of formulas defined recursively as follows: (i)
for any finite subset A of the set of edges of hypergraph H , formula [A] is in
Φ(H), (ii) the false constant ⊥ is in set Φ(H), and (iii) for any formulas φ
and ψ ∈ Φ(H), the implication φ → ψ is in Φ(H). As usual, we assume that
conjunction, disjunction, and negation are defined through → and ⊥.

Next, we define a relation � between a protocol and a formula from Φ(H).
Informally, P � φ means that formula φ is true under protocol P .

Definition 10. For any protocol P over a hypergraph H, and any formula φ ∈
Φ(H), we define the relation P � φ recursively as follows:

1. P � ⊥,
2. P � [A] if the set of edges A is independent under protocol P,
3. P � φ1 → φ2 if P � φ1 or P � φ2.
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In this paper, we study the formulas φ ∈ Φ(H) that are true under any protocol
P over a fixed hypergraph H . Below we describe a formal logical system for such
formulas. This system, like earlier systems defined by Armstrong [1], More and
Naumov [11,9] and by Kelvey, More, Naumov, and Sapp [8], belongs to the set
of deductive systems that capture properties of secrets. In general, we refer to
such systems as logics of secrets. Since this paper is focused on only one such
system, here we call it the logic of secrets of hypergraph H .

5 Logic of Secrets

In this section we will define a formal deductive system for the logic of secrets
and give examples of proofs in this system. The soundness, completeness, and
decidability of this system will be shown in the next two sections.

5.1 Formal System: Axioms and Rules

For any hypergraph H = 〈V, E〉, we will write H 
 φ to state that formula
φ ∈ Φ(H) is provable in the logic of secrets of hypergraph H . The deductive
system for this logic, in addition to propositional tautologies and Modus Ponens
inference rule, consists of the Small Set axiom, the Gateway axiom, and the
Truncation inference rule, defined below:
Small Set Axiom. H 
 [A], where A ⊆ E and |A| < 2.
Gateway Axiom. H 
 [A, G] → ([B] → [A, B]), where G is a gateway between
sets of edges A and B such that A ∩ G = ∅.
Truncation Rule. If H ′ 
 φ, then H 
 [Out(X)] → φ, where H ′ is obtained
from H by the truncation of set X .

The soundness of this system will be demonstrated in Section 6.

Theorem 1 (monotonicity). H 
 [A] → [B], for any hypergraph H and any
subset B of a set of edges A of hypergraph H.

Proof. Consider sets B and ∅. Since there are no paths connecting these sets, any
set of edges is a gateway between these sets. In particular A\B is such a gateway.
Taking into account that sets B and A \ B are disjoint, by the Gateway axiom,
H 
 [B, A \ B] → ([∅] → [B]). By the Small Set axiom, H 
 [B, A \ B] → [B].
By assumption B ⊆ A, we get H 
 [A] → [B]. �

5.2 Proof Examples

cba

qp

Fig. 2. Hypergraph H1

Our first example refers to hyper-
graph H1 in Figure 2. It shows par-
ties p and q that have secrets a and
c, respectively, that they do not share
with each other, and secret b that they
both know.
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Theorem 2. H1 
 [a, b] → [a, c].

Proof. Set {b} is a gateway between sets {a} and {c}. Thus, by the Gateway
axiom, H1 
 [a, b] → ([c] → [a, c]). At the same time, H1 
 [c], by the Small Set
axiom. Therefore, H1 
 [a, b] → [a, c]. �

d q

r

p

a b

c

Fig. 3. Hypergraph H2

Our second example deals with the collaboration
network defined by hypergraph H2 on Figure 3.
Here, parties p, q, and r have individual secrets
a, b, c, and together share secret d.

Theorem 3. H2 
 [a, d] → ([b, d] → [a, b, c]).

Proof. Note that set {d} is a gateway between sets
{a} and {b, d}. Thus, by the Gateway axiom,

H2 
 [a, d] → ([b, d] → [a, b, d]). (1)

Next, observe that set {d} is a gateway between sets {a, b} and {c}. Thus, by
the Gateway axiom, H2 
 [a, b, d] → ([c] → [a, b, c]). By the Small Set axiom,
H2 
 [c]. Hence,

H2 
 [a, b, d] → [a, b, c]. (2)

From statements (1) and (2), it follows that H2 
 [a, d] → ([b, d] → [a, b, c]). �

Our third and final example refers to hypergraph H3 depicted in Figure 4. In
the proof we will also refer to hypergraph H ′

3, shown in the same figure, which
is the result of the truncation of set {q, r, u, v} from hypergraph H3.
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g
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e

a f

Fig. 4. Hypergraphs H3 (left) and H ′
3 (right)

Theorem 4. H3 
 [b, d, g, e] → [a, f ].

Proof. Note that in the truncated hypergraph H ′
3, the empty set is a gateway

between the single element sets {a} and {f}. Thus, by the Gateway axiom,
H ′

3 
 [a] → ([f ] → [a, f ]). By the Small Set axiom, H ′
3 
 [a] and H ′

3 
 [f ].
Hence, H ′

3 
 [a, f ]. By the Truncation rule, H3 
 [Out(q, r, u, v)] → [a, f ]. Since
Out(q, r, u, v) = {b, d, g, e}, we get H3 
 [b, d, g, e] → [a, f ]. �
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6 Soundness

The proof of soundness, particularly for the Gateway axiom and Truncation rule,
is non-trivial. For each axiom and inference rule, we provide its justification as
a separate theorem.

Theorem 5 (Small Set). For any hypergraph H = 〈V, E〉 and any set of edges
A that has at most one element, if P is an arbitrary protocol over H, then
P � [A].

Proof. If A = ∅, then P � [A] follows from the existence of at least one run of
any protocol (see Definition 7). If A = {a1}, consider any run r1 ∈ R(P). Pick
r to be r1. This guarantees that r(a1) = r1(a1). �

Theorem 6 (Gateway). For any hypergraph H = 〈V, E〉, and any gateway G
between sets of edges A and B, if P � [A, G], P � [B], and A ∩ G = ∅, then
P � [A, B].

Proof. Assume P � [A, G], P � [B], and A ∩ G = ∅. Let A = {a1, . . . , an} and
B = {b1, . . . , bk}. Consider any r1, . . . , rn+k. It will be sufficient to show that
there is r ∈ R(P) such that r(ai) = ri(ai) for any i ≤ n and r(bi) = rn+i(bi) for
any i ≤ k. By the assumption P � [B], there is rb ∈ R(P) such that

rb(bi) = rn+i(bi) for any i ≤ k. (3)

By the assumptions P � [A, G] and A∩G = ∅, there must be a run ra such that

ra(c) =
{

ri(c) if c = ai for i ≤ n,
rb(c) if c ∈ G. (4)

Next, consider hypergraph H ′ = 〈V, E \ G〉. By the definition of a gateway, no
single connected component of hypergraph H ′ can contain edges from set A and
set B \ G at the same time. Let us divide all connected components of H ′ into
two subhypergraphs H ′

a and H ′
b such that H ′

a contains no edges from B \G and
H ′

b contains no edges from A. Components that do not contain edges from either
A or B \ G can be arbitrarily assigned to either H ′

a or H ′
b.

By definition (4), runs ra and rb agree on each edge of the gateway G. We
will now construct a combined run r by “sewing” together portions of ra and rb

with the “stitches” placed along gateway G. Formally,

r(c) =

⎧⎨
⎩

ra(c) if c ∈ Ha,
ra(c) = rb(c) if c ∈ G,
rb(c) if c ∈ Hb.

(5)

Let us first prove that r is a valid run of the protocol P . For this, we need to
prove that it satisfies local conditions Locv at every vertex v. Without loss of
generality, assume that v ∈ H ′

a. Hence, on all edges incident with v, run r agrees
with run ra. Thus, run r satisfies Locv simply because ra does.
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Next, we will show that r(ai) = ri(ai) for any i ≤ n. Indeed, by equations
(4) and (5), r(ai) = ra(ai) = ri(ai). Finally, we will need to show that r(bi) =
rn+i(bi) for any i ≤ k. This, however, trivially follows from equation (3) and
equation (5). �

Theorem 7 (Truncation). Assume that hypergraph H ′ is obtained from H by
the truncation of set X and that φ ∈ Φ(H ′). If P ′ � φ for any protocol P ′ over
hypergraph H ′, then P � [Out(X)] → φ for any protocol P over hypergraph H.

Proof. Suppose that there is a protocol P over H such that P � [Out(X)], but
P � φ. We will construct a protocol P ′ over H ′ such that P ′ � φ.

Let P = 〈V al, Loc〉. Note that, for any edge e, not all values from V al(e) may
actually be used in the runs of this protocol. Some values could be excluded by
the particular local conditions of P . To construct protocol P ′ = 〈V al′, Loc′〉 over
hypergraph H ′, for any edge e of H ′ we define V al′(e) as the set of values that
are actually used by at least one run of the protocol P :

V al′(e) = {r(e) | r ∈ R(P)}.

The local condition Loc′v at any vertex v of hypergraph H ′ is the same as under
protocol P . To show that protocol P ′ has at least one run, notice that the
restriction of any run of P to edges in H ′ constitutes a valid run of P ′.

Lemma 1. For any run r′ ∈ R(P ′) there is a run r ∈ R(P) such that r(e) =
r′(e) for each edge e in hypergraph H ′.

Proof. Consider any run r′ ∈ R(P ′). By definition of V al′, for any e ∈ Out(X)
there is a run re ∈ R(P) such that r′(e) = re(e). Since P � [Out(X)], there is a
run rX ∈ R(P) such that rX(e) = re(e) = r′(e) for any e ∈ Out(X).

We will now construct a combined run r ∈ R(P) by “sewing” together rX

and r′ with the “stitches” placed in set Out(X). Formally,

r(e) =

⎧⎨
⎩

rX(e) if e ∈ In(X),
rX(e) = r′(e) if e ∈ Out(X),
r′(e) otherwise.

We just need to show that r satisfies Locv at every vertex v of hypergraph H .
Indeed, if v ∈ X , then run r is equal to rX on all edges incident with v. Thus,
it satisfies the local condition because run rX does. Alternatively, if v /∈ X ,
then run r is equal to run r′ on all edges incident with v. Since r′ satisfies local
condition Loc′v and, by definition, Loc′v ≡ Locv, we can conclude that r again
satisfies condition Locv.

Lemma 2. P � [Q] if and only if P ′ � [Q], for any set of edges Q in H ′.

Proof. Assume first that P � [Q] and consider any runs r′1, . . . , r
′
n ∈ R(P ′). We

will construct a run r′ ∈ R(P ′) such that r′(qi) = r′i(qi) for every i ∈ {1, . . . , n}.
Indeed, by Lemma 1, there are runs r1, . . . , rn ∈ R(P) that match runs r′1, . . . , r

′
n
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on all edges in H ′. By the assumption that P � [Q], there must be a run r ∈ R(P)
such that r(qi) = ri(qi) for all i ∈ {1, . . . , n}. Hence, r(qi) = ri(qi) = r′i(qi) for
all i ∈ {1, . . . , n}. Let r′ be a restriction of run r to the edges in H ′. Since the
local conditions of protocols P and P ′ are the same, r′ ∈ R(P ′). Finally, we
notice that r′(qi) = r(qi) = r′i(qi) for any i ∈ {1, . . . , k}.

Next, assume that P ′ � [Q] and consider any runs r1, . . . , rn ∈ R(P). We will
show that there is a run r ∈ R(P) such that r(qi) = ri(qi) for all i ∈ {1, . . . , n}.
Indeed, let r′1, . . . , r

′
n be the restrictions of runs r1, . . . , rn to the edges in H ′.

Since the local conditions of these two protocols are the same, r′1, . . . , r
′
n ∈ R(P ′).

By the assumption that P ′ � [Q], there is a run r′ ∈ R(P ′) such that r′(qi) =
r′i(qi) = ri(qi) for all i ∈ {1, . . . , n}. By Lemma 1, there is a run r ∈ R(P)
that matches r′ everywhere in H ′. Therefore, r(qi) = r′(qi) = ri(qi) for all
i ∈ {1, . . . , n}.

Lemma 3. For any formula ψ ∈ Φ(H ′), P � ψ if and only if P ′ � ψ.

Proof. We use induction on the complexity of ψ. The base case follows from
Lemma 2, and the induction step is trivial.

The statement of Theorem 7 immediately follows from Lemma 3. �

7 Completeness

Our main result is the following completeness theorem for the logic of secrets:

Theorem 8. For any hypergraph H, if P � φ for all finite protocols P over H,
then H 
 φ.

We prove this theorem by contrapositive. At the core of this proof is the construc-
tion of a finite protocol. This protocol will be formed as a composition of several
simpler protocols, where each of the simpler protocols is defined recursively. The
base case of this recursive definition comes from the family of “parity” protocols
{PA}A defined below.

7.1 Parity Protocol PA
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Fig. 5. Parity protocol run on graph H3

Let H = 〈V, E〉 be a hypergraph and
A be a subset of E. We define the
“parity protocol” PA over H as fol-
lows. The set of values of any edge e in
hypergraph H is {0, 1}e, or the set of
boolean functions on e. Thus, a run r
of the protocol will be a function that
maps an edge into a function from the
ends of this edge into boolean values:
r(e)(v) ∈ {0, 1}, where e is an edge
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and v is an end of e. It will be more convenient, however, to think about a run
as a two-argument function r(e, v) ∈ {0, 1}. We will graphically represent this
function by placing boolean values at each end of each edge of the hypergraph.
See Figure 5 for an example.

Not all assignments of boolean values to the ends of an edge e will be permitted
in the parity protocol. Namely, if e /∈ A, then the sum of all values assigned to
the ends of e must be equal to zero modulo 2:∑

v∈e

r(e, v) = 0 mod 2. (6)

However, if e ∈ A, then no restriction on the assignment of boolean values to
the ends of e will be imposed. This defines the set of values V al(e) for each edge
e under the protocol PA.

The second restriction on the runs will require that the sum of all values
assigned to ends incident with any vertex v is also equal to zero modulo 2:∑

e∈E(v)

r(e, v) = 0 mod 2, (7)

where E(v) is the set of all edges incident with v. The latter restriction specifies
the local condition Locv for each vertex v. The protocol PA is now completely
defined. We just need to prove the existence of at least one run that satisfies all
local conditions. Indeed, consider the run r such that r(e, v) = 0 for any end v
of any edge e. This run clearly satisfies restrictions (6) and (7).

Theorem 9. For any run r of the parity protocol PA,∑
e∈A

∑
v∈e

r(e, v) = 0 mod 2.

Proof. Let H = 〈V, E〉. Using equations (7) and (6),

∑
e∈A

∑
v∈e

r(e, v) =
∑
e∈E

∑
v∈e

r(e, v) −
∑
e/∈A

∑
v∈e

r(e, v) =

=
∑
v∈V

∑
e∈E(v)

r(e, v) −
∑
e/∈A

0 =
∑
v∈V

0 − 0 = 0 mod 2. �

Recall that we defined a path to start and end with edges rather than vertices.

Definition 11. For any path π = e0, v1, e1, . . . , en in a hypergraph H and any
run r of the parity protocol PA, we define rπ as

rπ(e, v) =
{

1 − r(e, v) if e = ei, v = vi+1 or v = vi, e = ei+1 for some i < n,
r(e, v) otherwise.
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Fig. 6. Run rπ

Informally, rπ is obtained from
r by “flipping” the boolean value
at each end along path π. For
example, Figure 6 depicts the
“flipped” run rπ, where π is
a, t, g, u, c, v, e, w, f , and run r is
the run from Figure 5. The edges
along path π are indicated with
dashed lines in Figure 6.

Theorem 10. For any r ∈ PA

and any path π in a hypergraph H, if π is a cycle or starts and ends with edges
that belong to set A, then rπ ∈ R(PA).

Proof. Run rπ satisfies condition (6) because rπ is different from r at exactly
two ends of any non-terminal edge of path π. The same run rπ satisfies condition
(7) at every vertex v of the hypergraph, because path π includes either zero or
two ends of edges incident at vertex v. �

Theorem 11. If |A| > 1 and hypergraph H is connected, then for any e ∈ A
and any g ∈ {0, 1} there is a run r ∈ R(PA) such that

∑
v∈e r(e, v) = g mod 2.

Proof. Each protocol has at least one run. Let r be a run of the protocol PA.
Suppose that

∑
v∈e r(e, v) �= g mod 2. Since |A| > 1 and hypergraph H is

connected, there is a path π that connects edge e with an edge a ∈ A such that
a �= e. Notice that

∑
v∈e rπ(e, v) =

∑
v∈e r(e, v) + 1 = g mod 2. �

Theorem 12. If |A| > 1 and hypergraph H is connected, then PA � [A].

Proof. Let A = {a1, . . . , ak}. Pick any boolean values g1, . . . , gk such that g1 +
· · · + gk = 1 mod 2. By Theorem 11, there are runs r1, . . . , rk ∈ R(PA) such
that

∑
v∈ai

ri(ai, v) = gi mod 2 for any i ≤ k. If PA � [A], then there is a run
r ∈ R(PA) such that r(ai, v) = ri(ai, v) for any v ∈ ai and any i ≤ k. Therefore,∑

v∈a1
r(a1, v)+ · · ·+

∑
v∈ak

r(ak, v) =
∑

v∈a1
r1(a1, v)+ · · ·+

∑
v∈ak

rk(ak, v) =
g1 + · · · + gk = 1 mod 2. This contradicts Theorem 9. �

Theorem 13. If A and B are two sets of edges of a hypergraph H = 〈V, E〉,
such that each connected component of hypergraph 〈V, E \ B〉 contains at least
one edge from A, then PA � [B].

Proof. Let B = {b1, . . . , bk}. Consider any runs r1, . . . , rk ∈ R(PA). We will
prove that there is a run r ∈ R(PA) such that r(bi, v) = ri(bi, v) for any v ∈ bi

and any i ≤ k. Indeed, protocol PA has at least one run. Call it r̂. We will modify
run r̂ to satisfy the condition r̂(bi, v) = ri(bi, v) for any v ∈ bi and any i ≤ k.
Our modification will consist of repeating the following procedure for each i ≤ k
and each v ∈ bi such that r̂(bi, v) �= ri(bi, v):

1. If bi ∈ A, then, by the assumption of the theorem, there must be a path
e0, v1, e1, v2, e2 . . . , en in the hypergraph 〈V, E \ B〉 such that e0 ∈ A, and
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v ∈ en. Consider path π = e0, v1, e1, v2, e2 . . . , en, v, bi in hypergraph H . By
Theorem 10, r̂π ∈ R(PA). Note also that r̂π(bj , u) = r̂(bj , u) for all j and
all u ∈ bj with the exception of j = i and u = v. In the case that j = i and
u = v, we have r̂π(bj , u) = 1 − r̂(bj , u) = ri(bi, u). Pick r̂π to be the new r̂.

2. If bi /∈ A, then, by (6),∑
v∈bi

r̂(bi, v) = 0 =
∑
v∈bi

ri(bi, v) mod 2.

At the same time, by our assumption, r̂(bi, v) �= ri(bi, v). Thus there must
be u ∈ bi such that u �= v and r̂(bi, u) �= ri(bi, u). Note that vertices u and
v could belong either to the same connected component or to two different
connected components of hypergraph 〈V, E \ B〉. We will consider these two
subcases separately.
(a) Suppose u and v belong to the same connected component of hypergraph

〈V, E \ B〉. Thus, there must be a path π′ in that hypergraph which
connects an edge containing vertex u with an edge containing v. Consider
now a cyclic path in hypergraph H = 〈V, E〉 that starts at edge bi, via
vertex u get on the path π′, goes through the whole path π′, and via
vertex v gets back to bi. Call this cyclic path π.

(b) Suppose u and v belong to different connected components of hypergraph
〈V, E\B〉. Thus, by the assumption of the theorem, hypergraph 〈V, E\B〉
contains a path πu = au, . . . , eu that connects an edge au ∈ A with an
edge eu containing end u. By the same assumption, hypergraph 〈V, E\B〉
must also contain a path πv = ev, . . . , av that connects an edge ev,
containing end v, with an edge av ∈ A. Let π = πu, u, bi, v, πv.

By Theorem 10, r̂π ∈ R(PA). Note also that r̂π(bj , w) = r̂(bj , w) for all j
and all w ∈ bj with the exception of j = i and w ∈ {u, v}. In the case that
j = i and w ∈ {u, v}, we have r̂π(bj , w) = 1 − r̂(bj, w) = ri(bi, w). Pick r̂π

to be the new r̂.

Let r be r̂ with all the modifications described above. These modifications guar-
antee that r(bi) = r̂(bi, v) = ri(bi, v) for any v ∈ bi and any i ≤ k. �

7.2 Generalized Parity Protocol

In this section, we will generalize the parity protocol through a recursive con-
struction. First, however, we will need to establish the following technical result.

Theorem 14 (protocol extension). Let H = 〈V, E〉 be any hypergraph, X be
a set of vertices in H and H ′ = 〈V ′, E′〉 be the result of the truncation of X
from H. For any finite protocol P ′ on H ′, there is a finite protocol P on H such
that P � [Q] if and only if P ′ � [Q ∩ E′], for any set Q ⊆ E.

Proof. To define protocol P , we need to specify a set of values V al(c) for each
edge c ∈ E and the set of local conditions Locv for each vertex v in hypergraph H .
If c ∈ E′, then let V al(c) be the same as in protocol P ′. Otherwise, V al(c) = {ε},
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where ε is an arbitrary element. The local conditions for vertices in V \ X are
the same as in protocol P ′, and the local conditions for vertices not in X are
equal to the boolean constant True. This completes the definition of P . Clearly,
P has at least one run r0 since protocol P ′ has a run.

(⇒) : Suppose that Q ∩ E′ = {q1, . . . , qk}. Consider any r′1, . . . , r
′
k ∈ R(P ′).

Define runs r1, . . . , rk as follows, for any c ∈ E:

ri(c) =
{

r′i(c) if c ∈ E′,
ε if c /∈ E′.

Note that runs ri and r′i, by definition, are equal on any edge incident with
any vertex in hypergraph H ′. Thus, ri satisfies the local conditions at any such
vertex. Hence, ri ∈ R(P) for any i ∈ {1, . . . , k}. Since P � [Q], there is a run
r ∈ R(P) such that

ri(c) =
{

ri(c) if c ∈ Q ∩ E′,
r0(c) if c ∈ Q \ E′.

Define r′ to be a restriction of r on hypergraph H ′. Note that r′ satisfies all local
conditions of P ′. Thus, r′ ∈ R(P ′). At the same time, r′(qi) = ri(qi) = r′i(qi) for
each qi ∈ Q ∩ E′.

(⇐) : Suppose that Q = {q1, . . . , qk}. Consider any r1, . . . , rk ∈ R(P), and
let r′1, . . . , r

′
k be their respective restrictions to hypergraph H ′. Since, for any

i ∈ {1, . . . , k}, run r′i satisfies the local conditions of P ′ at any node of hypergraph
H ′, we can conclude that r′1, . . . , r

′
k ∈ R(P ′). By the assumption that P ′ �

[Q ∩ E′], there is a run r′ ∈ R(P ′) such that r′(q) = r′i(q) for any q ∈ Q ∩ E′.
In addition, r′(q) = ε = r′i(q) for any q ∈ Q\E′. Hence, r′(qi) = r′i(qi) for any
i ∈ {1, . . . , k}. Define run r as follows:

r(c) =
{

r′(c) if c ∈ E′,
ε if c /∈ E′.

Note that r satisfies the local conditions of P at all nodes. Thus, r ∈ R(P). In
addition, r(qi) = r′(qi) = r′i(qi) for all qi ∈ Q. �
We will now prove the key theorem in our construction. The proof of this theorem
recursively defines a generalization of the parity protocol.

Theorem 15. For any hypergraph H = 〈V, E〉 and any sets A, B1, . . . , Bn ⊆ E,
if H �

∧
1≤i≤n[Bi] → [A], then there is a finite protocol P over H such that

P � [A] and P � [Bi] for all i ≤ n.

Proof. Induction on the size of V .

Case 1. If |A| ≤ 1, then, by the Small Set axiom, H 
 [A]. Hence, H 
∧
1≤i≤n[Bi] → [A], which is a contradiction.

Case 2. Suppose that the edges of hypergraph H can be divided into two non-
trivial disconnected sets X and Y . Thus, the empty set is a gateway between
A ∩ X and A ∩ Y . By the Gateway axiom,

H 
 [A ∩ X ] → ([A ∩ Y ] → [A]).
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Thus, taking into account the assumption H �
∧

1≤i≤n[Bi] → [A], either

H �
∧

1≤i≤n

[Bi] → [A ∩ X ]

or
H �

∧
1≤i≤n

[Bi] → [A ∩ Y ].

Without loss of generality, we will assume the former. By Theorem 1,

H �
∧

1≤i≤n

[Bi ∩ X ] → [A ∩ X ].

By the Small Set axiom,

H � [∅] → (
∧

1≤i≤n

[Bi ∩ X ] → [A ∩ X ]).

Consider the set VY of all vertices in component Y . Let H ′ be the result of the
truncation of graph H that removes VY from H . Note that Out(VY ) = ∅, since
sets X and Y are disconnected. Thus, by the Truncation rule,

H ′ �
∧

1≤i≤n

[Bi ∩ X ] → [A ∩ X ].

By the Induction Hypothesis, there is a protocol P ′ on H ′ such that P ′ � [A∩X ]
and P ′ � [Bi ∩ X ], for any i ≤ n. Therefore, by Theorem 14, there is a protocol
P on H such that P � [A] and P � [Bi] for any i ≤ n.

Case 3. Suppose there is i0 ∈ {1, . . . , n} such that at least one connected com-
ponent of hypergraph 〈V, E \Bi0〉 does not contain an element of A. We will call
this connected component Y . Let VY be the set of all vertices in this component.
Note that Out(VY ) is a gateway between In(VY ) and the complement of In(VY ).
Hence, Out(VY ) is also a gateway between A∩In(VY ) and A\In(VY ). Therefore,
by the Gateway axiom, taking into account that In(VY ) ∩ Out(VY ) = ∅,

H 
 [A ∩ In(VY ), Out(VY )] → ([A \ In(VY ))] → [A]). (8)

Recall now that by the assumption of this case, component Y of graph 〈V, E\Bi0〉
does not contain any elements of A. Hence, A ∩ In(VY ) ⊆ Bi0 . At the same
time, Out(VY ) ⊆ Bi0 by the definition of set VY . Thus, from statement (8) and
Theorem 1,

H 
 [Bi0 ] → ([A \ In(VY ))] → [A]). (9)

By the assumption of the theorem,

H �
∧

1≤i≤n

[Bi] → [A]. (10)
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From statements (9) and (10),

H �
∧

1≤i≤n

[Bi] → [A \ In(VY )].

By the laws of propositional logic,

H � [Bi0 ] → (
∧

1≤i≤n

[Bi] → [A \ In(VY )]).

Since Out(VY ) ⊆ Bi0 , by Theorem 1,

H � [Out(VY )] → (
∧

1≤i≤n

[Bi] → [A \ In(VY )]).

Again by Theorem 1,

H � [Out(VY )] → (
∧

1≤i≤n

[Bi \ In(VY )] → [A \ In(VY )]).

Let H ′ be the result of the truncation of set VY from hypergraph H . By the
Truncation rule,

H ′ �
∧

1≤i≤n

[Bi \ In(VY )] → [A \ In(VY )].

By the Induction Hypothesis, there is a protocol P ′ on H ′ such that P ′ � [A \
In(VY )] and P ′ � [Bi \ In(VY )] for any i ≤ n. Therefore, by Theorem 14, there
is a protocol P on H such that P � [A] and P � [Bi] for any i ≤ n.

Case 4. Assume now that (i) |A| > 1, (ii) hypergraph H is connected, and (iii)
for any i ∈ {1, . . . , n}, each connected component of hypergraph 〈V, E \ Bi0〉
contains at least one element of A. Consider the parity protocol PA over H . By
Theorem 12, PA � [A]. By Theorem 13, PA � [Bi] for any i ∈ {1, . . . , n}. �

7.3 Completeness: Final Steps

Theorem 16. For any n ≥ 0 and any finite protocols P1, . . . , Pn over a hyper-
graph H there is a finite protocol P over H such that for any set of edges Q of
this hypergraph, P � [Q] if and only if Pi � [Q] for any i ≤ n.

Proof. First, consider the case where n = 0. Pick any symbol ε and define P to
be 〈V al, Loc〉 such that V al(c) = {ε} for any c ∈ E, and local condition Locv to
be the constant True at every vertex v. By Definition 9, P � [C] for any C ⊆ E.

We will now assume that n > 0 and define the composition of protocols
P1, . . . , Pn. Informally, composition is the result of several protocols run over
the same hypergraph without any interaction between the protocols. Formally,
suppose that P1 = 〈V al1, Loc1〉, . . . , Pn = 〈V aln, Locn〉 and define protocol
P = 〈V al, Loc〉 as follows:
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1. V al(c) = V al1(c) × · · · × V aln(c),
2. Locv(〈c1

1, . . . , c
n
1 〉, . . . , 〈c1

k, . . . , cn
k 〉) =

∧
1≤i≤n Loci

v(c
i
1, . . . , c

i
k),

To show that P is a protocol, we need to show that it has at least one run. Let
r1, . . . , rn be runs of P1, . . . , Pn. Define r(c) to be 〈r1(c), . . . , rn(c)〉. It is easy to
see that r satisfies the local conditions Locv for any vertex v of the hypergraph
H . Thus, r ∈ R(P).

We will use notation {r(c)}i to denote the ith component of the value of r(c).

Lemma 4. For any set of edges Q,

P � [Q] if and only if ∀i (Pi � [Q]).

Proof. Let Q = {q1, . . . , q�}.

(⇒) : Assume P � [Q] and pick any i0 ∈ {1, . . . , n}. We will show that Pi0 � [Q].
Pick any runs r′1, . . . , r

′
� ∈ R(Pi0 ). For each i ∈ {1, . . . , i0−1, i0+1, . . . , n}, select

an arbitrary run ri ∈ R(Pi). We then define a series of composed runs rj for
j ∈ {1, . . . , 
} by

rj(c) = 〈r1(c), . . . , ri0−1(c), r′j(c), r
i0+1(c), . . . , rn(c)〉,

for each edge c ∈ E. Since the component parts of each rj belong in their
respective sets R(Pi), the composed runs are themselves members of R(P). By
our assumption, P � [Q], thus there is r ∈ R(P) such that r(qi) = ri(qi) for
any i0 ∈ {1, . . . , 
}. Finally, we consider the run r∗, where r∗(c) = {r(c)}i0

for each c ∈ E. That is, we let the value of r∗ on c be the io-th component
of r(c). By definition of composition, r∗ ∈ R(Pi0 ), and it matches the original
r′1, . . . , r

′
� ∈ R(Pi0) on edges q1, . . . , q�, respectively. Hence, we have shown that

Pi0 � [Q].

(⇐) : Assume ∀i (Pi � [Q]). We will show that P � [Q]. Pick any runs r1, . . . , r� ∈
R(P). For each i ∈ {1, . . . , n}, each j ∈ {1, . . . , 
}, and each edge c, let ri

j(c) =
{rj(c)}i. That is, for each c, define a run ri

j whose value on edge c equals the ith
component of rj(c). Note that by the definition of composition, for each i and
each j, ri

j is a run in R(Pi). Next, for each i ∈ {1, . . . , n}, we use the fact that
Pi � [Q] to construct a run ri ∈ R(Pi) such that ri(qj) = ri

j(qj). Finally, we
compose these n runs r1, . . . , rn to get run r ∈ R(P). We note that the value of
each edge qj on r matches the the value of qj in run rj ∈ R(P), demonstrating
that P � [Q]. �

This concludes the proof of Theorem 16. �

We are now ready to prove Theorem 8.

Proof. We give a proof by contradiction. Let X be a maximal consistent set of
formulas from Φ(H) that contains ¬φ. Let {A1, . . . , An} = {A ⊆ E | [A] /∈ X}
and {B1, . . . , Bk} = {B ⊆ E | [B] ∈ X}. Thus, H �

∧
1≤j≤k[Bj ] → [Ai], for any

i ≤ n, due to the consistency of X . We will construct a protocol P such that
P � [Ai] for any i ≤ n and P � [Bj ] for any j ≤ k.
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By Theorem 15, there are finite protocols P1, . . . , Pn such that P i � [Ai] and
P i � [Bj ] for all i ≤ n and j ≤ k. By Theorem 16, there is a protocol P such
that P � [Ai] for any i ≤ n and P � [Bj ] for any j ≤ k.

By induction on structural complexity of any formula ψ ∈ Φ(H), one can
show now that P � ψ if and only if ψ ∈ X . Thus, P � ¬φ. Therefore, P � φ. �

Corollary 1. The set {(H, φ) | H 
 φ} is decidable.

Proof. The complement of this set is recursively enumerable due to the com-
pleteness of the system with respect to finite protocols. �
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Abstract. Simple type theory is suited as framework for combining
classical and non-classical logics. This claim is based on the observation
that various prominent logics, including (quantified) multimodal logics
and intuitionistic logics, can be elegantly embedded in simple type the-
ory. Furthermore, simple type theory is sufficiently expressive to model
combinations of embedded logics and it has a well understood seman-
tics. Off-the-shelf reasoning systems for simple type theory exist that
can be uniformly employed for reasoning within and about combinations
of logics. Combinations of modal logics and other logics are particularly
relevant for multi-agent systems.

1 Introduction

Church’s simple type theory ST T [18], also known as classical higher-order logic,
is suited as a framework for combining classical and non-classical logics. This is
what this paper illustrates.

Evidently, ST T has many prominent classical logic fragments, including
propositional and first-order logic, the guarded fragment, second-order logic,
monadic second-order logic, the basic fragment of ST T , etc. Interestingly, also
prominent non-classical logics – including quantified multi-modal logics and in-
tuitionistic logic – can be elegantly embedded in ST T . It is thus not surprising
that also combinations of such logics can be flexibly modeled within ST T . Our
claim is furthermore supported by the fact that the semantics of ST T is well
understood [1,2,8,26] and that powerful proof assistants and automated theorem
provers for ST T already exist. The automation of ST T currently experiences
a renaissance that has been fostered by the recent extension of the successful
TPTP infrastructure for first-order logic [33] to higher-order logic, called TPTP
THF [34,35,15]. Exploiting this new infrastructure we will demonstrate how
higher-order automated theorem provers and model generators can be employed
for reasoning within and about combinations of logics.

Our work is relevant for multi-agents systems in several ways. Most impor-
tantly, modal logics and combinations of modal logics are often employed for
modeling multi-agents systems and for reasoning about them.
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In this paper we present a fresh approach to the automation of logic combina-
tions and we in particular include quantified modal logics. For quantified modal
logics actually only very few theorem provers are available. In our approach
even challenge combinations of logics can be achieved: as an example we outline
a combination of spatial and epistemic reasoning. Moreover, our approach even
supports the automated analysis and verification of meta-properties of combined
logics. It can thus serve as a useful tool for engineers of logic combinations.

In Sect. 2 we outline our embedding of quantified multimodal logics in ST T .
Further logic embeddings in ST T are discussed in Sect. 3; our examples com-
prise intuitionistic logic, access control logics and the region connection calculus.
In Sect. 4 we illustrate how the reasoning about logics and their combinations is
facilitated in our approach, and in Sect. 5 we employ simple examples to demon-
strate the application of our approach for reasoning within combined logics. The
performance results of our experiments with off-the-shelf, TPTP THF compliant
higher-order automated reasoning systems are presented in Sect. 6.

2 (Normal) Quantified Multimodal Logics in ST T

ST T [18] is based on the simply typed λ-calculus. The set T of simple types
is usually freely generated from a set of basic types {o, ι} (where o is the type
of Booleans and ι is the type of individuals) using the right-associative function
type constructor �. Instead of {o, ι} we here consider a set of base types {o, ι, μ},
providing an additional base type μ (the type of possible worlds).

The simple type theory language ST T is defined by (where α, β, o ∈ T ):

s, t ::= pα | Xα | (λXα sβ)α�β | (sα�β tα)β | (¬o�o so)o |
(so ∨o�o�o to)o | (sα =α�α�o tα)o | (Π(α�o)�o sα�o)o

pα denotes typed constants and Xα typed variables (distinct from pα). Complex
typed terms are constructed via abstraction and application. Our logical con-
nectives of choice are ¬o�o, ∨o�o�o, =α�α�o and Π(α�o)�o (for each type α).1

From these connectives, other logical connectives can be defined in the usual way
(e.g., ∧ and ⇒). We often use binder notation ∀Xα s for Π(α�o)�o(λXα so). We
assume familiarity with α-conversion, β- and η-reduction, and the existence of
β- and βη-normal forms. Moreover, we obey the usual definitions of free variable
occurrences and substitutions.

The semantics of ST T is well understood and thoroughly documented in the
literature [1,2,8,26]. The semantics of choice for our work is Henkin semantics.

Quantified modal logics have been studied by Fitting [19] (further related
work is available by Blackburn and Marx [16] and Braüner [17]). In contrast to
Fitting we are here not interested only in S5 structures but in the more general
case of K from which more constrained structures (such as S5) can be easily
obtained. First-order quantification can be constant domain or varying domain.
1 This choice is not minimal (from =α�α�o all other logical constants can already be

defined [3]). It useful though in the context of resolution based theorem proving.
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Below we only consider the constant domain case: every possible world has the
same domain. Like Fitting, we keep our definitions simple by not having function
or constant symbols. While Fitting [19] studies quantified monomodal logic, we
are interested in quantified multimodal logic. Hence, we introduce multiple �r

operators for symbols r from an index set S. The grammar for our quantified
multimodal logic QML hence is

s, t ::= P | k(X1, . . . , Xn) | ¬ s | s ∨ t | ∀X s | ∀P s | �r s

where P ∈ PV denotes propositional variables, X, X i ∈ IV denote first-order
(individual) variables, and k ∈ SYM denotes predicate symbols of any arity.
Further connectives, quantifiers, and modal operators can be defined as usual.
We also obey the usual definitions of free variable occurrences and substitutions.

Fitting introduces three different notions of Kripke semantics for QML:
QS5π−, QS5π, and QS5π+. In our work [10] we study related notions QKπ−,
QKπ, and QKπ+ for a modal context K, and we support multiple modalities.

ST T is an expressive logic and it is thus not surprising that QML can be
elegantly modeled and even automated as a fragment of ST T . The idea of the en-
coding, called QMLSTT , is simple. Choose type ι to denote the (non-empty) set
of individuals and we choose the second base type μ to denote the (non-empty)
set of possible worlds. As usual, the type o denotes the set of truth values. Cer-
tain formulas of type μ � o then correspond to multimodal logic expressions. The
multimodal connectives ¬, ∨, and �, become λ-terms of types (μ � o) � (μ � o),
(μ � o) � (μ � o) � (μ � o), and (μ � μ � o) � (μ � o) � (μ � o) respectively.

Quantification is handled as in ST T by modeling ∀X p as Π(λX .p) for
a suitably chosen connective Π . Here we are interested in defining two par-
ticular modal Π-connectives: Π ι, for quantification over individual variables,
and Πμ�o, for quantification over modal propositional variables that depend on
worlds. They become terms of type (ι � (μ � o)) � (μ � o) and ((μ � o) �
(μ � o)) � (μ � o) respectively.

The QMLSTT modal operators ¬, ∨, �, Πι, and Πμ�o are now simply de-
fined as follows:

¬ (μ�o)�(μ�o) = λφμ�o λWμ ¬φW

∨ (μ�o)�(μ�o)�(μ�o) = λφμ�o λψμ�o λWμ φW ∨ ψ W

� (μ�μ�o)�(μ�o)�(μ�o) = λRμ�μ�o λφμ�o λWμ ∀Vμ ¬R W V ∨ φV

Πι
(ι�(μ�o))�(μ�o) = λφι�(μ�o) λWμ ∀Xι φX W

Πμ�o
((μ�o)�(μ�o))�(μ�o) = λφ(μ�o)�(μ�o) λWμ ∀Pμ�o φP W

Note that our encoding actually only employs the second-order fragment of ST T
enhanced with lambda-abstraction.

Further operators can be introduced as usual, for example, � = λWμ �, ⊥ =
¬�, ∧ = λφ, ψ ¬ (¬ φ ∨ ¬ψ), ⊃ = λφ, ψ ¬φ ∨ ψ, ⇔= λφ, ψ (φ ⊃ ψ) ∧
(ψ ⊃ φ), � = λR, φ ¬ (� R (¬φ)), Σι = λφ ¬Πι(λX ¬φX), Σμ�o =
λφ ¬ Πμ�o(λP ¬ φP ).
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For defining QMLSTT -propositions we fix a set IVSTT of individual variables of
type ι, a set PVSTT of propositional variables2 of type μ � o, and a set SYMSTT

of n-ary (curried) predicate symbols of types ι � . . . � ι︸ ︷︷ ︸
n

� (μ � o). Moreover, we

fix a set SSTT of accessibility relation constants of type μ � μ � o. QMLSTT -
propositions are now defined as the smallest set of ST T -terms for which the
following hold:

– if P ∈ PVSTT , then P ∈ QMLSTT

– if Xj ∈ IVSTT (j = 1, . . . , n) and k ∈ SYMSTT , then (k X1 . . . Xn) ∈
QMLSTT

– if φ, ψ ∈ QMLSTT , then ¬ φ ∈ QMLSTT and φ ∨ ψ ∈ QMLSTT

– if r ∈ SSTT and φ ∈ QMLSTT , then � r φ ∈ QMLSTT

– if X ∈ IVSTT and φ ∈ QMLSTT , then Π ι(λX φ) ∈ QMLSTT

– if P ∈ PVSTT and φ ∈ QMLSTT , then Πμ�o(λP φ) ∈ QMLSTT

We write �r φ for � r φ, ∀Xι φ for Π ι(λXι φ), and ∀Pμ�o φ for Πμ�o(λPμ�o φ).
Note that the defining equations for our QML modal operators are themselves

formulas in ST T . Hence, we can express QML formulas in a higher-order rea-
soner elegantly in the usual syntax. For example, �r ∃Pμ�o P is a QMLSTT

proposition; it has type μ � o.
Validity of QMLSTT propositions is defined in the obvious way: a QML-

proposition φμ�o is valid if and only if for all possible worlds wμ we have w ∈
φμ�o, that is, if and only if φμ�o wμ holds. Hence, the notion of validity is
modeled via the following equation (alternatively we could define valid simply
as Π(μ�o)�o):

valid = λφμ�o ∀Wμ φW

Now we can formulate proof problems in QMLSTT , e.g., valid �r ∃Pμ�o P . Us-
ing rewriting or definition expanding, we can reduce such proof problems to
corresponding statements containing only the basic connectives ¬, ∨, =, Πι,
and Πμ�o of ST T . In contrast to the many other approaches no external trans-
formation mechanism is required. For our example formula valid �r ∃Pμ�o P
unfolding and βη-reduction leads to ∀Wμ ∀Yμ ¬r W Y ∨ (¬∀Xμ�o ¬(X Y )). It
is easy to check that this formula is valid in Henkin semantics: put X = λYμ �.

We have proved soundness and completeness for this embedding [10], that is,
for s ∈ QML and the corresponding sμ�o ∈ QMLSTT ⊂ ST T we have:

Theorem 1. |=ST T (valid sμ�o) if and only if |=QKπ s.

This result also illustrates the correspondence between QKπ models and Henkin
models; for more details see [10].

Obviously, the reduction of our embedding to first-order multimodal log-
ics (which only allow quantification over individual variables), to propositional
quantified multimodal logics (which only allow quantification over propositional
variables) and to propositional multimodal logics (no quantifiers) is sound and

2 Note that the denotation of propositional variables depends on worlds.
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complete. Extending our embedding for hybrid logics is straightforward [27]; note
in particular that denomination of individual worlds using constant symbols of
type μ is easily possible.

In the remainder we will often omit type information. It is sufficient to re-
member that worlds are of type μ, multimodal propositions of type μ � o, and
accessibility relations of type μ � μ � o. Individuals are of type ι.

3 Embeddings of Other Logics in ST T

We have studied several other logic embeddings in ST T , some of which will be
mentioned in this section.

Intuitionistic Logics. Gödels interpretation of propositional intuitionistic logic
in propositional modal logic S4 [23] can be combined with our results from
the previous section in order to provide a sound and complete embedding of
propositional intuitionistic logic into ST T [10].

Gödel studies the propositional intuitionistic logic IPL defined by

s, t ::= p | ¬̇ s | s ⊃̇ t | s ∨̇ t | p ∧̇ t

He introduces the a mapping from IPL into propositional modal logic S4 which
maps ¬̇ s to ¬�r s, s ⊃̇ t to �r s ⊃ �r t, s ∨̇ t to �r s ∨ �r t, and s ∧̇ t to s ∧ t.3

By simply combining Gödel’s mapping with our mapping from before we obtain
the following embedding of IPL in ST T .

Let IPL be a propositional intuitionistic logic with atomic primitives p1,
. . . , pm (m ≥ 1) . We define the set IPLST T of corresponding propositional
intuitionistic logic propositions in ST T as follows.

1. For the atomic IPL primitives p1, . . . , pm we introduce corresponding
IPLST T predicate constants p1

μ�o, . . . , pm
μ�o. Moreover, we provide the sin-

gle accessibility relation constant rμ�μ�o.
2. Corresponding to Gödel’s mapping we introduce the logical connectives of

IPLST T as abbreviations for the following λ-terms (we omit the types here):

¬̇ = λφ λW ¬∀V ¬r W V ∨ φV

⊃̇ = λφ λψ λW ¬(∀V ¬r W V ∨ φV ) ∨ (∀V ¬r W V ∨ ψ V )
∨̇ = λφ λψ λW (∀V ¬r W V ∨ φV ) ∨ (∀V ¬r W V ∨ ψ V )
∧̇ = λφ λψ λW ¬(¬φW ∨ ¬ψ W )

3. We define the set of IPLST T -propositions as the smallest set of simply typed
λ-terms for which the following hold:
– p1

μ�o, . . . , pm
μ�o define the atomic IPLST T -propositions.

– If φ and ψ are IPLST T -propositions, then so are ¬̇ φ, φ ⊃̇ ψ, φ ∨̇ ψ, and
φ ∧̇ ψ.

3 Alternative mappings have been proposed and studied in the literature which we
could employ here equally as well.
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The notion of validity we adopt is the same as for QMLSTT . However, since
Gödel connects IPL with modal logic S4, we transform each proof problem
t ∈ IPL into a corresponding proof problem t′ in ST T of the following form

t′ := ((valid ∀φμ�o �r φ ⊃ φ)∧(valid ∀φμ�o �r φ ⊃ �r �r φ)) ⇒ (valid tμ�o)

where tμ�o is the IPLST T term for t according to our definition above. Alterna-
tively we may translate t into t′′ := ((reflexive r) ∧ (transitive r)) ⇒ (valid tμ�o).

Combining soundness [23] and completeness [28] of Gödel’s embedding with
Theorem 1 we obtain the following soundness and completeness result: Let
t ∈ IPL and let t′ ∈ ST T as constructed above. t is valid in propositional
intuitionistic logic if and only if t′ is valid in ST T .

Example problems in intuitionistic logic have been encoded in THF syntax
[15] and added to the TPTP THF library4 and are accessible under identifiers
SYO058̂ 4 – SYO074̂ 4.

Access Control Logics. Garg and Abadi recently translated several prominent
access control logics into modal logic S4 and proved these translations sound
and complete [21]. We have combined this work with our above results in order
to obtain a sound and complete embedding of these access control logics in
ST T and we have carried out experiments with the prover LEO-II [7]. Example
problems have been added to the TPTP THF library and are accessible under
identifiers SWV425̂ x – SWV436̂ x (for x ∈ {1, . . . , 4}).

Logics for Spatial Reasoning. Evidently, the region connection calculus [30] is a
fragment of ST T : choose a base type r (’region’) and a reflexive and symmetric
relation c (’connected’) of type r � r � o and define (where X, Y, and Z are
variables of type r):

disconnected : dc = λX, Y ¬(c X Y )
part of : p = λX, Y ∀Z ((c Z X) ⇒ (c Z Y ))

identical with : eq = λX, Y ((p X Y ) ∧ (p Y X))
overlaps : o = λX, Y ∃Z ((p Z X) ∧ (p Z Y ))

partially overlaps : po = λX, Y ((o X Y ) ∧ ¬(p X Y ) ∧ ¬(p Y X))
externally connected : ec = λX, Y ((c X Y ) ∧ ¬(o X Y ))

proper part : pp = λX, Y ((p X Y ) ∧ ¬(p Y X))
tangential proper part : tpp = λX, Y ((pp X Y ) ∧ ∃Z ((ec Z X) ∧ (ec Z Y )))
nontang. proper part : ntpp = λX, Y ((pp X Y ) ∧ ¬∃Z ((ec Z X) ∧ (ec Z Y )))

An example problem for the region connection calculus will be discussed below.

4 TPTP THF problems for various problem categories are available at
http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems; all prob-
lem identifiers with an ’̂ ’ in their name refer to higher-order THF problems. The
TPTP library meanwhile contains more than 2700 example problems in THF syntax.

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems
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4 Reasoning about Logics and Combinations of Logics

We illustrate how our approach supports reasoning about logics and their com-
binations. First, we focus on modal logics and their well known relationships
between properties of accessibility relations and corresponding modal axioms
(respectively axiom schemata) [25]. Such meta-theoretic insights can be elegantly
encoded (and, as we will later see, automatically proved) in our approach. First
we encode various accessibility relation properties in ST T :

reflexive = λR ∀S R S S (1)
symmetric = λR ∀S, T ((R S T ) ⇒ (R T S)) (2)

serial = λR ∀S ∃T (R S T ) (3)
transitive = λR ∀S, T, U ((R S T ) ∧ (R T U) ⇒ (R S U)) (4)
euclidean = λR ∀S, T, U ((R S T ) ∧ (R S U) ⇒ (R T U)) (5)

partially functional = λR ∀S, T, U ((R S T ) ∧ (R S U) ⇒ T = U) (6)
functional = λR ∀S ∃T ((R S T ) ∧ ∀U ((R S U) ⇒ T = U)) (7)

weakly dense = λR ∀S, T ((R S T ) ⇒ ∃U ((R S U) ∧ (R U T ))) (8)
weakly connected = λR ∀S, T, U (((R S T ) ∧ (R S U)) ⇒

((R T U) ∨ T = U ∨ (R U T ))) (9)
weakly directed = λR ∀S, T, U (((R S T ) ∧ (R S U)) ⇒

∃V ((R T V ) ∧ (R U V ))) (10)

Remember, that R is of type μ � μ � o and S, T, U are of type μ. The corre-
sponding axioms are given next.

M : ∀φ �r φ ⊃ φ (11)
B : ∀φ φ ⊃ �r �r φ (12)
D : ∀φ �r φ ⊃ �r φ (13)
4 : ∀φ �r φ ⊃ �r �r φ (14)
5 : ∀φ �r φ ⊃ �r �r φ (15)

∀φ �r φ ⊃ �r φ (16)
∀φ �r φ ⇔ �r φ (17)
∀φ �r �r φ ⊃ �r φ (18)
∀φ, ψ �r ((φ ∧ �r φ) ⊃ ψ) ∨

�r ((ψ ∧ �r ψ) ⊃ φ) (19)
∀φ �r �r φ ⊃ �r �r φ (20)

Example 1. For k (k = (1), . . . , (10)) we can now easily formulate the well known
correspondence theorems (k) ⇒ (k + 10) and (k) ⇐ (k + 10). For example,

(1) ⇒ (11) : ∀R (reflexive R) ⇒ (valid ∀φ �R φ ⊃ φ)

Example 2. There are well known relationships between different modal logics
and there exist alternatives for their axiomatization (cf. the relationship map
in [22]). For example, for modal logic S5 we may choose axioms M and 5 as
standard axioms. Respectively for logic KB5 we may choose B and 5. We may
then want to investigate the following conjectures (the only one that does not
hold is (31)):
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S5 = M5 ⇔ MB5 (21)
⇔ M4B5 (22)
⇔ M45 (23)
⇔ M4B (24)
⇔ D4B (25)
⇔ D4B5 (26)
⇔ DB5 (27)

KB5 ⇔ K4B5 (28)
⇔ K4B (29)

M5 ⇒ D45 (30)
D45 ⇒ M5 (31)

Exploiting the correlations (k) ⇔ (k + 10) from before these problems can be
formulated as follows; we give the case for M5 ⇔ D4B:

∀R (((reflexive R)∧(euclidean R))⇔((serial R)∧(transitive R)∧(symmetric R)))

Example 3. We can also encode the Barcan formula and its converse. (They are
theorems in our approach, which confirms that we are ’constant domain’.)

BF : valid ∀Xι �r (pι�(μ�o) X) ⊃ �r ∀Xι (pι�(μ�o) X) (32)

BF−1 : valid �r ∀Xι (pι�(μ�o) X) ⊃ ∀Xι �r (pι�(μ�o) X) (33)

Example 4. An interesting meta property for combined logics with modalities
�i, �j , �k, and �l is the correspondence between the following axiom and the
(i, j, k, l)-confluence property

(valid ∀φ (�i �j φ) ⊃ �k �l φ)
⇔ (∀A ∀B ∀C (((i AB) ∧ (k AC)) ⇒ ∃D ((j B D) ∧ (l C D)))) (34)

Example 5. Segerberg [31] discusses a 2-dimensional logic providing two S5
modalities �a and �b. He adds further axioms stating that these modalities
are commutative and orthogonal. It actually turns out that orthogonality is al-
ready implied in this context. This statement can be encoded in our framework
as follows:

(reflexive a), (transitive a), (euclid. a), (reflexive b), (transitive b), (euclid. b),
(valid ∀φ �a �b φ ⇔ �b �a φ)
|=ST T (valid ∀φ, ψ �a (�a φ ∨ �b ψ) ⊃ (�a φ ∨ �a ψ)) ∧

(valid ∀φ, ψ �b (�a φ ∨ �b ψ) ⊃ (�b φ ∨ �b ψ)) (35)

Example 6. Suppose we want to work with a 2-dimensional logic combining a
modality �k of knowledge with a modality �b of belief. Moreover, suppose we
model �k as an S5 modality and �b as an D45 modality and let us furthermore
add two axioms characterizing their relationship. We may then want to check
whether or not �k and �b coincide, i.e., whether �k includes �b:

(reflexive k), (transitive k), (euclid. k), (serial b), (transitive b), (euclid. b),
(valid ∀φ �k φ ⊃ �b φ), (valid ∀φ �b φ ⊃ �b �k φ)
|=ST T (valid ∀φ �b φ ⊃ �k φ) (36)
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5 Reasoning within Combined Logics

We illustrate how our approach supports reasoning within combined logics. First
we present two examples in epistemic reasoning. In this examples we model the
individual and common knowledge of different persons respectively agents by
combining different modalities. Our formulation in both cases adapts Baldoni’s
modeling [6].

Example 7 (Epistemic reasoning: The friends puzzle). (i) Peter is a friend of
John, so if Peter knows that John knows something then John knows that Peter
knows the same thing. (ii) Peter is married, so if Peter’s wife knows something,
then Peter knows the same thing. John and Peter have an appointment, let us
consider the following situation: (a) Peter knows the time of their appointment.
(b) Peter also knows that John knows the place of their appointment. Moreover,
(c) Peter’s wife knows that if Peter knows the time of their appointment, then
John knows that too (since John and Peter are friends). Finally, (d) Peter knows
that if John knows the place and the time of their appointment, then John knows
that he has an appointment. From this situation we want to prove (e) that each
of the two friends knows that the other one knows that he has an appointment.

For modeling the knowledge of Peter, Peter’s wife, and John we consider
a 3-dimensional logic combining the modalities �p, �(wp), and �j. Actually
modeling them as S4 modalities turns out to be sufficient for this example.
Hence, we introduce three corresponding accessibility relations j, p, and (w p).
The S4 axioms for x ∈ {j, p, (w p)} are

valid ∀φ �x φ ⊃ φ (37) valid ∀φ �x φ ⊃ �x �x φ (38)

As done before, we could alternatively postulate that the accessibility relations
are reflexive and transitive.

Next, we encode the facts from the puzzle. For (i) we provide a persistence
axiom and for (ii) an inclusion axiom:

valid ∀φ �p �j φ ⊃ �j �p φ (39) valid ∀φ �(wp) φ ⊃ �p φ (40)

Finally, the facts (a)-(d) and the conclusion (e) are encoded as follows (time,
place, and appointment are propositional constants, that is, constants of type
μ � o in our framework):

valid �p time (41)
valid �p �j place (42)
valid �(wp) (�p time ⊃ �j time) (43)
valid �p �j (place ∧ time ⊃ appointment) (44)
valid �j �p appointment ∧ �p �j appointment (45)

The combined proof problem for Example 8 is

(37), . . . , (44) |=ST T (45) (46)
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Example 8 (Wise men puzzle). Once upon a time, a king wanted to find the
wisest out of his three wisest men. He arranged them in a circle and told them
that he would put a white or a black spot on their foreheads and that one of
the three spots would certainly be white. The three wise men could see and hear
each other but, of course, they could not see their faces reflected anywhere. The
king, then, asked to each of them to find out the color of his own spot. After a
while, the wisest correctly answered that his spot was white.

We employ a 4-dimensional logic combining the modalities �a, �b, and �c,
for encoding the individual knowledge of the three wise men, and a box operator
�fool, for encoding the knowledge that is common to all of them. The entire
encoding consists now of the following axioms for X, Y, Z ∈ {a, b, c} and X �=
Y �= Z:

valid �fool ((ws a) ∨ (ws b) ∨ (ws c)) (47)
valid �fool ((ws X) ⊃ �Y (ws X)) (48)
valid �fool (¬ (ws X) ⊃ �Y ¬ (ws X)) (49)
valid ∀φ �fool φ ⊃ φ (50)
valid ∀φ �fool φ ⊃ �fool �fool φ (51)
valid ∀φ �fool φ ⊃ �a φ (52)
valid ∀φ �fool φ ⊃ �b φ (53)
valid ∀φ �fool φ ⊃ �c φ (54)
valid ∀φ ¬ �X φ ⊃ �Y ¬�X φ (55)
valid ∀φ �X φ ⊃ �Y �X φ (56)
valid ¬�a (ws a) (57)
valid ¬�b (ws b) (58)

From these assumptions we want to conclude that

valid �c (ws c) (59)

Axiom (47) says that a, b, or c must have a white spot and that this information
is known to everybody. Axioms (48) and (49) express that it is generally known
that if someone has a white spot (or not) then the others see and hence know
this. �fool is axiomatized as an S4 modality in axioms (50) and (51). For �a, �b,
and �c it is sufficient to consider K modalities. The relation between those and
common knowledge (�fool modality) is axiomatized in inclusion axioms (52)–
(55). Axioms (55) and (56) encode that whenever a wise man does (not) know
something the others know that he does (not) know this. Axioms (57) and (58)
say that a and b do not know whether they have a white spot. Finally, conjecture
(59) states that that c knows he has a white spot. The combined proof problem
for Example 7 is

(47), . . . , (58) |=ST T (59) (60)
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Example 9. A trivial example problem for the region connection calculus is
(adapted from [20], p. 80):

(tpp catalunya spain),
(ec spain france),
(ntpp paris france),
|=ST T (dc catalunya paris) ∧ (dc spain paris) (61)

The assumptions express that (i) Catalunya is a border region of Spain, (ii)
Spain and France are two different countries sharing a common border, and (iii)
Paris is a proper part of France. The conjecture is that (iv) Catalunya and Paris
are disconnected as well as Spain and Paris.

Example 10. Within our ST T framework we can easily put such spatial rea-
soning examples in an epistemic context, that is, we can model the individual
spatial knowledge of different agents. Similar to before we here distinguish be-
tween common knowledge (fool) and the knowledge of person bob:

valid ∀φ �fool φ ⊃ �bob φ,

valid �bob (λW (tpp catalunya spain)),
valid �fool (λW (ec spain france)),
valid �bob (λW (ntpp paris france))
|=ST T

valid �bob (λW ((dc catalunya paris) ∧ (dc spain paris))) (62)

We here express that (ii) from above is commonly known, while (i) and (iii) are
not. (i) and (iii) are known to the educated person bob though. In this situation,
conjecture (iv) still follows for bob. However, it does not follow when replacing
bob by common knowledge (hence, the following problem is not provable):

. . . |=ST T valid �fool (λW ((dc catalunya paris) ∧ (dc spain paris))) (63)

In order to facilitate the combination of logics we have here lifted the region
connection calculus propositions of type o to modal propositions of type μ � o
by λ-abstraction. Thus, the region connection calculus statements can now be
applied to possible worlds; they evaluate statically though for all possible worlds
since the λ-abstracted variable W is fresh for the encapsulated region connection
calculus proposition.

(tpp catalunya spain)︸ ︷︷ ︸
type o

−→ (λW (tpp catalunya spain))︸ ︷︷ ︸
type ι�o

6 Experiments

In our case studies, we have employed the ST T automated reasoners LEO-
II—v1.1 [12], TPS—3.080227G1d [4], IsabelleP—2009-1, IsabelleM—2009-1, and
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Table 1. Performance results of ST T provers for problems in paper

Problem TPTP id LEO-II TPS IsabelleP

Reasoning about Logics and Combined Logics
(1) ⇒ (11) LCL699ˆ1.p 0.0 0.3 3.6
(2) ⇒ (12) LCL700ˆ1.p 0.0 0.3 13.9
(3) ⇒ (13) LCL701ˆ1.p 0.0 0.3 4.0
(4) ⇒ (14) LCL702ˆ1.p 0.0 0.3 15.9
(5) ⇒ (15) LCL703ˆ1.p 0.1 0.3 16.0
(6) ⇒ (16) LCL704ˆ1.p 0.0 0.3 3.6
(7) ⇒ (17) LCL705ˆ1.p 0.1 51.2 3.9
(8) ⇒ (18) LCL706ˆ1.p 0.1 0.3 3.9
(9) ⇒ (19) LCL707ˆ1.p 0.1 0.3 3.6
(10) ⇒ (20) LCL708ˆ1.p 0.1 0.3 4.1
(1) ⇐ (11) LCL709ˆ1.p 0.0 0.3 3.7
(2) ⇐ (12) LCL710ˆ1.p — 0.3 53.8
(3) ⇐ (13) LCL711ˆ1.p 0.0 0.3 3.7
(4) ⇐ (14) LCL712ˆ1.p 0.0 0.3 3.8
(5) ⇐ (15) LCL713ˆ1.p — 0.8 67.0
(6) ⇐ (16) LCL714ˆ1.p 1.6 0.3 29.3
(7) ⇐ (17) LCL715ˆ1.p 37.9 — —
(8) ⇐ (18) LCL716ˆ1.p — 6.6 —
(9) ⇐ (19) LCL717ˆ1.p — — —
(10) ⇐ (20) LCL718ˆ1.p 0.1 0.4 8.1
(21) 0.1 0.4 4.3
(22) 0.2 27.4 4.0
(23) 0.1 8.9 4.0
(24) 0.1 1.2 3.7
(25) 0.1 1.7 4.2
(26) 0.2 14.8 5.4
(27) 0.1 0.6 3.7
(28) 0.2 2.3 4.0
(29) 0.1 0.9 3.9
(30) 0.1 12.8 16.5
(31)Countersatisfiable — — —
(32) 0.0 0.3 3.6
(33) 0.0 0.3 3.6
(34) 0.1 0.4 3.6
(35) 0.2 35.5 —
(36) 0.4 — —

Reasoning within Combined Logics
(46) PUZ086ˆ1.p 0.1 — 102.4
(60) PUZ087ˆ1.p 0.3 — —
(61) 2.3 — 112.7
(62) 20.4 — —
(63)Countersatisfiable — — —
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IsabelleN—2009-1.5 These systems are available online via the SystemOnTPTP
tool [32] and they support the new TPTP THF infrastructure for typed higher-
order logic [15]. Their reasoning power is currently improving rapidly.

The axiomatizations of QMLSTT and IPLST T are available as LCL013ˆ0.ax
and LCL010ˆ0.ax in the TPTP library.6 The example problems LCL698ˆ1.p and
LCL695ˆ1.p ask about the satisfiability of these axiomatizations. Both questions
are answered positively by the Satallax prover [5] in less than a second.

Table 1 presents the results of our experiments; the timeout was set to 120
seconds and the entries in the table are reported in seconds. Those examples
which have already entered the new higher-order TPTP library are presented
with their respective TPTP identifiers in the second column and the others have
meanwhile been submitted and will appear in a forthcoming TPTP release.

As expected, (31) and (63) cannot be proved by any prover and IsabelleN
reports a counterexample for (31) in 34.4 seconds and for (63) in 39.7 seconds.

In summary, all but one of our example problems can be solved effectively
by at least one of the reasoners. In fact, most of our example problems require
only milliseconds. LEO-II solves most problems and it is the fastest prover in
our experiment.

As mentioned before, we are not aware of any other running system that can
handle all of the above problems.

7 Conclusion

Our overall goal is to show that various interesting classical and non-classical
logics and their combinations can be elegantly mechanized and partly automated
in modern higher-order reasoning systems with the help of our logic embeddings.

Our experiments are encouraging and they provide first evidence for our claim
that ST T is suited as a framework for combining classical and non-classical log-
ics. It is obvious, however, that ST T reasoners should be significantly improved
for fruitful application to more challenge problems in practice. The author is
convinced that significant improvements — in particular for fragments of ST T
as illustrated in this paper — are possible and that they will be fostered by the
new TPTP infrastructure and the new yearly higher-order CASC competitions.

Note that when working with our reasoners from within a proof assistant such
as Isabelle/HOL the user may also provide interactive help if the reasoning tasks
are still to challenging, for example, by formulating some lemmas or by splitting
proof tasks in simpler subtasks.

An advantage of our approach also is that provers such as our LEO-II are
generally capable of producing verifiable proof output, though much further
5 IsabelleM and IsabelleN are model finder in the Isabelle proof assistant [29] that

have been made available in batch mode, while IsabelleP applies a series of Isabelle
proof tactics in batch mode.

6 Note that the types μ and ι are unfortunately switched in the encodings available in
the TPTP: the former is used for individuals and the latter for worlds. This syntactic
switch is completely unproblematic.
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work is needed to make these proof protocols exchangeable between systems or
to explain them to humans. Furthermore, it may be possible to formally verify
the entire theory of our embedding(s) within a proof assistant.

The work presented in this paper has its roots in the LEO-II project (in
2006/2007 at University of Cambridge, UK) in which we first studied and em-
ployed the presented embedding of quantified and propositional multimodal log-
ics in ST T [9,11]. This research, amongst others, is currently continued in the
DFG project ONTOLEO (BE 2501/6-1). In ONTOLEO we study whether our
approach can be applied to automate modalities in ontology reasoning [14,13].
However, our work is relevant also for other application directions, including
multi-agent systems. Studying the scalability of our approach for a range of
applications is thus important future work.

Acknowledgment. The author is indebted to Larry Paulson, Geoff Sutcliffe, and
Chad Brown. Larry Paulson, together with the author, initiated the LEO-II
project at Cambridge University (EPRSC grant LEO-II EP/D070511/1). Geoff
Sutcliffe, in collaboration with the author and supported by several further con-
tributors, developed the new higher-order TPTP THF infrastructure (EU FP7
grant THFTPTP PIIF-GA-2008-219982). Both projects had a significant impact
on the work presented in this article. Moreover, Chad Brown originally inspired
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Abstract. Answer sharing is a key element in multi-agent systems as it allows
agents to collaborate towards achieving a global goal. However exogenous knowl-
edge of the world can influence each agent’s local computation, and communica-
tion channels may introduce delays, creating multiple partial answers at different
times. Agent’s answers may, therefore, be incomplete and revisable, giving rise to
the concept of speculative reasoning, which provides a framework for managing
multiple revisable answers within the context of multi-agent systems. This paper
extends existing work on speculative reasoning by introducing a new abductive
framework to hierarchical speculative reasoning. This allows speculative reason-
ing in the presence of both negation and constraints, enables agents to receive
conditional answers and to continue their local reasoning using default answers,
thus increasing the parallelism of agents collaboration. The paper describes the
framework and its operational model, illustrates the main features with an exam-
ple and states soundness and completeness results.

1 Introduction

A Multi-agent System (MAS) is comprised of multiple intelligent agents, which col-
laborate in distributed problem solving. Each agent has local (and partial) knowledge
of the world and cannot solve a given problem alone. The restricted range of an agent’s
capability could be due to lack of computational power/resources, or to incomplete
knowledge. Hence, agents must be able to interact and exchange tasks or knowledge.
For example, during a reasoning task, when an agent has a goal for which it has no
knowledge, it may query another agent and attempt to use an answer to continue the
reasoning process. However, two important issues arise. First, physical communication
channels often introduce delays, and the queried agent may incur an unacceptable de-
lay to process the query (e.g., it may ask another agent too). So a timely query-answer
round trip cannot be guaranteed. Second, the queried agent may not return all the an-
swers at once (i.e., an answer is returned as soon as it is found), and the queried agent
may also revise previous replies. For example, when a change of the world is detected,
an agent needs to revise its local knowledge accordingly, which may subsequently af-
fect the answers already computed for its received query. Such belief revision must be
propagated to the querying agent through answer revision.

J. Dix et al. (Eds.): CLIMA XI, LNAI 6245, pp. 49–64, 2010.
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While awaiting answers, the querying agent may suspend and wait. Alternatively, if
the query has a finite number of possible answers, the agent may continue reasoning
in parallel with each of them. When the final answers are returned, the querying agent
can discard the computations that used uncorroborated answers. However, these two
extreme approaches have limitations. The former leaves CPU resources idle, whereas
the latter may expend CPU cycles doing unnecessary computations. Even worse, if the
answers are not returned concurrently, the latter is unable to determine which compu-
tation(s) to discard. But there is a compromise: if the agent has access to some default
answers (default in brief) of the query, e.g., the answers that are somehow most likely,
then it may continue the reasoning using only the defaults. When an answer (either new
or revised) is available, the agent will revise the current computations and begin new
computations entailed by the new answer beyond defaults. This compromise method is
known as speculative computation. The defaults can be obtained based on an agent’s
previous partial knowledge, and can be considered as heuristics used for prioritising
parallel computation by the querying agent, which has an impact on the performance of
speculative computation.

Speculative computation in MAS was first proposed in [14] for master-slave struc-
tured systems where an answer to a (ground) query is simply either yes or no. Since then
it has been extended for hierarchical MAS [15], and for constraint processing [12,2,7]
where the answers can be a set of constraints over the variables in the (non-ground)
query. The second extension allows a much wider range of problems to be modelled
and solved. For example, an agent can query another about available day(X) and re-
ceive answer X ∈ {sat, sun, wed}. However, in many real world applications, support
for conditional answers and negations is also desired. For example, an answer to the
above query could be sunny(X) ∧ ¬teaching(X) instead of a simple finite domain
constraint.

Abduction [9] is a powerful inference mechanism that enables the generation of con-
ditional proofs (answers). The conditions (i.e. assumptions) of a reasoning process, to-
gether with the given background knowledge, imply the conclusion of the proof (i.e. the
query). In this paper, we extend existing results by presenting a very general speculative
reasoning framework for hierarchical agent systems, where each agent can perform ab-
ductive reasoning and can accept revisable conditional answers from other agents. The
operational model of the framework is a non-trivial extension to the speculative con-
straint processing model [7] and the well-known abductive proof procedure [18], which
supports constructive negation [19].

The rest of the paper is organised as follows. Section 2 discusses related work. Sec-
tion 3 and Section 4 present the speculative abductive framework and its operational
model respectively, by using a planning example. Open issues, such as the requirement
for agent hierarchy and the usage of defaults, are discussed in Section 5. Finally, Sec-
tion 6 concludes the paper and describes future work.

2 Related Work

Speculative computation has originally been investigated in the context of parallel com-
puting to speed computation [1], and has been applied to areas such as optimistic transac-
tions in database and efficient execution mechanisms for parallel logic programming [4].
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Our work, although inspired by some of these techniques, provides a more general for-
malization of the computational process, appropriate for multi-agent systems.

Agent-based belief revision approaches have been proposed in the context of plan-
ning in dynamic environments (e.g. [16,5,6,13]). [16] and [5] do not consider specula-
tive computation – in [16] the reasoning restarts every time a new piece of information
leads to contradiction, and in [5] the Dynamic SLDNF procedure, which supports dy-
namic addition and deletion of rules, allows previous planning fragments to be reused,
but it does not support abduction and conditional answers. In [6], each plan has a pro-
tected condition as a set of “primitive fluents”. When a primitive fluent is added or
deleted, new valid plans are generated or invalid plans are removed. This is similar
to the idea proposed in [15]. [13] is the first work to apply speculative computation
in abduction. However, its operational model does not support constructive negation
(although it supports negation as failure [20]) and constraints processing, and is de-
signed for master-slave agent systems where only the master can perform speculative
reasoning. In contrast, our framework is very general. It can be used for hypothetical
multi-agent reasoning with exogenous knowledge, including but not limited to hier-
archical planning with constraints (e.g., cost or time) in a dynamic environment. Our
system differs from existing systems for decentralised abduction [3,11]. These systems
are concerned with finding consistent hypotheses among collaborative agents, where
the total knowledge is distributed (not necessarily in a hierarchical way). But, they do
not handle revisable answers, which is the case of our system.

3 Formulation

Here we present basic definitions using conventional concepts and notation from Logic
Programming [10]. Given a multi-agent system, we assume each agent has a unique
constant identifier, and the system of agents is organized in a hierarchical structure. An
atom is either p(t) (called non-askable atom or non-askable in brief) or p(t)@S (called
askable atom or askable in brief), where p is its predicate (name), t is a shorthand for
its arguments as a vector of terms t1, . . . , tn (t ≥ 0), and S is an agent identifier. A
literal can be an atom, the negation of an atom A (denoted with ¬A), or a constraint in
CLP [8] over finite domains. A clause is either a rule H ← L1 ∧ · · · ∧ Ln (n ≥ 0), or
a denial ← L1 ∧ · · · ∧ Ln (n > 0), where H (called the head) is an atom, and each
Li in L1 ∧ · · · ∧ Ln (called the body) is a literal. Any variable in a clause, unless stated
otherwise, is implicitly universally quantified with the scope the whole clause.

Definition 1. (Agent Hierarchy) An agent hierarchy H is a tree consisting of a set of
nodes, each of which is an agent. The set of all agents in H is denoted ags(H). The root
of H, denoted root(H), is called the root agent. A non-leaf agent is called an internal
agent, and a leaf agent is called an external agent. Let int(H) and ext(H) denote the
set of internal agents and the set of external agents respectively. Given an internal agent
M , chi(M, H) denotes the set of its children nodes, each of which is called a child agent
of M . Given a non-root agent S, par(S, H) denotes its parent node, called the parent
agent of S.
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Fig. 1. Agent Hierarchy

Intuitively, the hierarchical relationship amongst agents is such that a parent agent can
receive partial answers from children, and then consolidate partial or “local” answers
into a global answer. The speculative nature of computation arises because partial an-
swers can be delivered at different times with different “answers”, and the parent agent’s
job is to consolidate answers as required. In Figure 1, the idea is that external agents
at the leaves are working in an environment and passing information back up the tree,
and that parent agents exercise some kind of heuristic discretion about how to combine
answers to build the “best” answer.

Definition 2. (Agent Specification) Given an agent hierarchy H, the agent specifica-
tion of an internal agent i ∈ int(H) is Ti = 〈Fi, Di〉, where:

– Fi is an abductive framework 〈Πi, ABi, Ii〉, such that:
• ABi is a set of special non-askable predicates called abducible predicates. A

non-askable with abducible predicate is called an abducible atom (abducible
in brief). A non-askable without abducible predicate is called a non-abducible
atom (non-abducible in brief).

• Πi is called the background knowledge, and is a set of rules whose heads are
non-abducibles;

• Ii is called the integrity constraints, and is a set of denials, each of which must
contain at least one abducible as body literal.

– for every askable p(t)@S appearing in Fi, p must not be an abducible predicate
and S must be a child agent of i, i.e. p /∈ ABi and S ∈ chi(i, H).

– Di is a set of rules whose heads are askables and whose bodies do not contain
askables. Di is called the default answers for the askables in Fi.

Definition 3. (Speculative Framework) The speculative framework for a hierarchical
abductive agent system is a pair M = 〈H, T 〉, where H is an agent hierarchy, and T
is a set of internal agent specifications, i.e. T = {Ti|i ∈ int(H)}.

We use the following delivery problem as a running example:

Example 1. A logistics company (l) takes delivery orders from customers, and out-
sources the subtasks to its partners, e.g. a transport company (d), who has contracts
with flight pilots (e.g. a′) and lorry drivers (e.g., b′ and c′). The logistics company also
needs real-time information, such as the weather from a public service (e.g. s′), to help
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with planning. These entities can be abstracted as a hierarchy H of agents, where l (the
root) and d are internal agents, and a′, b′, c′, s′ are external agents, i.e.

H = {l � d, l � s′, d � a′, d � b′, d � c′}1

The agent specifications for l and d are as follows:

Πl =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

deliver(Src,Des,Cost,Mtd) ←
covers(Src,Des,Who),
quote(Src,Des, Cost,Mtd)@Who.

covers(Src,Des, d) ←
Src ∈ {1, 2, 3}, Des ∈ {1, 2, 3}.

safe weather(Area) ← ¬(storm(Area)@s′).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Dl =
{
storm(Area)@s′ ← Area = 3.
quote(Src,Des, 5, air)@d.

}

Πd =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

quote(Src,Des, T otalCost, air) ←
flight(Src,Des, Cost)@a′,
safe weather(Src), safe weather(Des),
T otalCost = Cost+ 1.

quote(Src,Des, T otalCost, land) ←
lorry(Src,Mid,Cost1)@b′,
lorry(Mid,Des,Cost2)@c′,
T otalCost = Cost1 + Cost2 + 2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Dd =

⎧⎪⎨
⎪⎩
flight(Src,Des, 3)@a′ ←

Src ∈ {1, 2, 3}, Des ∈ {1, 2, 3}.
lorry(Src,Des, 2)@b′ ← Src ∈ {1, 3}, Des ∈ {1, 3}.
lorry(Src,Des, 2)@c′ ← Src ∈ {2, 3}, Des ∈ {2, 3}.

⎫⎪⎬
⎪⎭

and ABd = {safe weather/1}, ABl = Il = Id = ∅.

Semantics

A global goal is a conjunction of literals G1 ∧ · · · ∧ Gn that can be issued to the root
agent. During hierarchical speculative computation, internal agents can send queries to
and receive replies from their children agents. A query is an askable Q@S, where S is
the recipient’s identifier. A reply for Q@S is “Q@S ← B” by S, where B is a (possibly
empty) conjunction of non-askable literals. A query/reply is internal if S is an internal
agent; otherwise it is external.

Definition 4. (Agent Belief State) Given a speculative framework M = 〈H, T 〉, let
TA = 〈F, D〉 be the specification of an internal agent A where F = 〈Π, AB, I〉, and
let R be the set of the latest replies received by A (called reply set), then the current
agent belief state of A w.r.t. R is 〈Πbel, AB, I〉, where

Πbel = Π ∪ R ∪ {“Q@S ← B”|
“Q@S ← B” ∈ D ∧ ¬∃B′.[“Q@S ← B′” ∈ R]}

and is denoted BEL(TA, R).
1 “Parent � Child” represents an arc of the tree.
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Upon receiving a query, the internal agent initiates a local abductive task to compute
local abductive answers for the query:

Definition 5. (Local Abductive Answer) Given an internal query Q@S, let
BEL(T, R) = 〈Πbel, AB, I〉 be the current belief state of agent S. A local abduc-
tive answer by S for Q w.r.t. BEL(T, R), is a pair 〈Δ, C〉 such that:

– Δ is a set of abducibles from AB, and C is a set of constraints;
– Πbel ∪ Δ |=sm Qθ, where θ is a set of variable substitutions induced by C;
– Πbel ∪ Δ |=sm I.

where |=sm is the logical entailment under a user selected semantics.

During the hierarchical computation by the agents, each abductive answer 〈Δ, C〉 com-
puted by agent S for the query Q@S is returned as an internal reply of the form
“Q@S ←

∧
C∈C C ∧

∧
A∈Δ A”. External replies, on the other hand, are not com-

puted (by the internal agents) and are the exogenous knowledge of the agent system,
which may be incomplete and are revisable at any time by external agents. Thus, given
an internal agent with specification 〈F , D〉, we separate its reply set R into two disjoint
sets Rint and Rext, which contain the received internal and external replies respec-
tively. The agent’s belief state is said to be stable if and only if Rint is the set of all the
answers for all the askables appearing in F . Finally, an agent system is stable if and
only if all of its internal agents are stable.

Definition 6. (Global Abductive Answer) Let M = 〈H, T 〉 be the speculative frame-
work of a stable agent system, and let BEL(T, R) be the belief state of the root agent
root(H). Given a global goal G, a global abductive answer for G is a local abductive
answer by root(H) w.r.t. BEL(T, R).

4 Operational Model

Given a query, an internal agent will compute all answers with a local inference pro-
cedure, which consists of two phases: the abductive reduction phase and the answer
arrival phase. The former is a process of reducing the set of local goals derived from
the query, during which abducibles and constraints are collected, and new queries are
sent out to children agents when askables are reduced. If no local goal is pending, an
answer (for the received query) is extracted from the set of collected abducibles and
constraints, and is returned to the querying parent. Whenever an answer (either new or
revised) arrives from a child agent, the abductive reduction phase is interrupted and the
answer arrival phase takes over, which revises the current computations accordingly.
Instead of simply discarding any completed but outdated computation (i.e., one using a
default answer or an old answer being revised), the revision process tries to reuse it as
much as possible by adding to it a set of revision goals. This potential reuse is a major
novelty of speculative reasoning and will be described in detail below.
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The inference procedure is best described as a state rewriting process with a set of
inference rules, where the current computations are represented as a set of states. Each
state has a unique ID and has six components 〈G, Δ, C, N , WA, AA〉, where G is a set
of local goals, Δ and C are the (collected) abducible and constraint stores respectively,
N is a set of dynamic denials, WA and AA are the set of waiting answers and the set
of assumed answers respectively. A local goal is either a literal, or a failure goal of the
form ∀X . ← L1 ∧ · · · ∧ Ln (n > 0), where each Li (0 < i ≤ n) is a literal and X
is the set of variables in L1 ∧ · · · ∧ Ln that are universally quantified with the scope
the whole failure goal. Each dynamic denial in N is a denial with the first body literal
being an abducible. Each element in WA or AA has the form (AID, G), where G is
either an askable Q@S or a failure goal ∀X. ← Q@S ∧ L1 ∧ · · · ∧ Ln (n ≥ 0), and
AID is the unique ID of an answer entry (described shortly) for Q@S. WA and AA
record what answers the current state is using for the askables it has reduced, so that it
can be revised when a relevant answer arrives. Any free variable appearing in the state
is considered to be existentially quantified with the scope the whole state.

There are three types of states: active state, choice state and finished state. At each
abductive reduction (phase) step, an active state, with G �= ∅ and WA = ∅, is replaced
by its child(ren) state(s) generated by an applicable inference rule on a local goal chosen
according to some goal selection strategy. When a finished state, with G = ∅ and WA =
∅, is generated, the answer extracted from its Δ and C is returned. Choice states, with
WA �= ∅, are generated when an askable is reduced or a new answer arrives.

To keep track of which state to revise and how, we need to maintain a store of answer
entries. Each answer entry has a unique ID and has three components 〈Type, Q@S,
Ans〉, where Type indicates the entry’s type, and Ans is an answer for the askable
Q@S associated with the entry. There are three answer entry types: default, returned
and status. Each default answer entry corresponds to a default in the agent’s specifi-
cation, and each returned answer entry corresponds to an answer which arrived from a
child agent. Each reduced askable has five status answer entries, all of which have empty
Ans (i.e. true): positive speculated original (PSO), positive non-speculated original
(PNO), negative original (NO), negative speculated (NS) and negative non-speculated
(NN). They are used for recording how a choice state is created after the associated
askable is reduced, or how an active state has reduced the askable. For example, PSO
and PNO are for the positive reduction of askable atoms; whereas NO, NS and NN
are for the negative reduction of askable atoms. The word “original” indicates that any
state using the answer entry (PSO, PNO or NO) is a choice state. Their usage will be
described in detail in Section 4.1.

4.1 State Rewriting

For any received query Q0@ag, internal agent ag creates an (active) initial state 〈{Q0},
Δ0, C0, N0, WA0, AA0〉, where Δ0 = C0 = N0 = WA0 = AA0 = ∅. Let the agent’s
specification be 〈〈Π, AB, I〉, D〉; the state rewriting process begins as follows. At each
step, an active state St = 〈G, Δ, C, WA, AA〉 is selected, and a local goal L is chosen
from G (let G− = G \ {L}, only the differences between St and its children states are
described):
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1. [Reduce Non-abducible] if L is a non-abducible p(t), St is replaced by states Sti
with new goals Bi[Xi/t]2 ∪ G− for each rule “p(Xi) ← Bi” ∈ Π ;

2. [Reduce Abducible] if L is an abducible a(t), St is replaced by:
– a state Sti with new goals G− and consistent constraints {t = vi} ∪ C (i.e.

reuse abducible) for each a(vi) ∈ Δ, and
– a state St′ with new goals E ∪ I ∪ N ∪ G− and new abducibles {a(t)} ∪ Δ

(i.e. collect new abducible), where E = {t �= vi|a(vi) ∈ Δ}, I = {“∀X. ←
t = vi ∧ B−

i ”|“ ← Bi” ∈ I and X = vars(Bi)3 and B−
i = Bi \ {a(vi)}},

and N = {“∀X. ← t = vi ∧ Bi”|“∀X. ← a(vi) ∧ Bi” ∈ N};
3. [Reduce Constraint] if L is a constraint, St is updated with new goals G− and new

constraints {L} ∪ C if they are consistent; otherwise, St is removed if they are
inconsistent;

4. [Rewrite Negation] if L is a negation ¬L′, St is updated with new goals {←L′}∪G−;
5. [Reduce Askable] if L is an askable Q@S where S is ground, see subsection han-

dling askable as a positive goal;
6. [Fail Non-abducible] if L = “∀X. ← p(t) ∧ B” where p(t) is a non-abducible,

then St is updated with new goals Gadd ∪ G−, where Gadd = {“∀X. ← t =
vi ∧ B′

i ∧ B”|“p(vi) ← B′
i” ∈ Π};

7. [Fail Abducible] if L = “∀X. ← a(t) ∧ B” where a(t) is an abducible and
vars(a(t)) ∩ X = ∅, then St is updated with new goals Gadd ∪ G− and new
dynamic denials {L} ∪ N , where Gadd = {“∀X. ← t = vi ∧ B”|a(vi) ∈ Δ};

8. [Fail Constraint] if L=“∀X.←C∧B” where C is a constraint and vars(C)∩X=∅:
– if C is a negated constraint4 of C and {C}∪C is consistent, St is updated with

new goals G− and new constraints {C} ∪ C;
– otherwise St is updated with new goals {“∀X. ← B”} ∪ G− and new con-

straints {C} ∪ C;
9. [Fail Negation] if L = “∀X. ← ¬L′ ∧ B”, where vars(L′) ∩ X = ∅, then St is

replaced by two states with new goals {L′}∪G− and new goals {“ ← L′”, “∀X. ←
B”} ∪ G− respectively;

10. [Fail Askable] if L = “∀X. ← Q@S ∧ B′′ where vars(Q) ∩ X = ∅ and S is
ground, see subsection handling askable in a failure goal;

In inference rules (7)-(10), if any variable appearing in the selected literal of a failure
goal is universally quantified, the selected literal is not safe and will cause floundering.
In this case, the inference aborts and reports an error. Inference rules (6)-(10) apply to
failure goals. If the selected failure goal has empty body, then none of the rules can be
applied and the inference fails.

Handling Askable as a Positive Goal. Here we describe how an askable as a positive
goal is reduced, and how its subsequent computations can be revised when a new or

2 B[X/t] is a formula obtained by substituting variables X in formula B with terms t.
3 vars(B) denotes the set of variables appearing in formula B.
4 The negation of a constraint C is ¬C, which can also be rewritten from C by switching the

operator, e.g. ¬(X > 5) is equivalent to X ≤ 5.
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revised answer arrives. We will use derivation trees to illustrate the steps. In a derivation
tree, each node represents a state and is labelled with its local goals. The children of
each node represent the new states generated from it after a reduction/revision step. Let
Q@S ← A be a default or returned answer, and “∀X. ← A” be its negated answer,
where X = vars(A) \ vars(Q).

Positive Reduction: Let Q@S (S is ground) be the positive goal selected from an active
state St = 〈{Q@S} ∪ G, Δ, C, N , WA, AA〉, Q@S is sent to agent S as a query if not
already sent, and then (see Figure 2):

1. If no answer has arrived yet, and there exist default answers, St is replaced by a set
of new states, each of which uses a default answer entry and hence has new goals
{Ad} ∪ G and new assumed answers {(AIDd, Q@S)} ∪ AA, where AIDd and
Ad are the answer entry ID and answer respectively. Otherwise, St is replaced by a
set of new states, each of which uses a returned answer entry with ID AIDrtn and
answer Artn in a similar way.

2. An original choice state with new goals G and waiting answers WA={(AID,
Q@S)} is created, where AID is the PSO answer entry ID for Q@S if defaults
are used (i.e. speculation exists), and is the PNO answer entry ID otherwise (i.e. no
speculation).

{Q@S} ∪ G

Ad ∪ G ⊗ G

Fig. 2. ReduceQ@S positively using defaults (assuming there is only one): letQ@S←Ad be the
default answer, and let ⊗ denote a choice state

First Answer and Alternative Answers. Suppose defaults are used at the reduction of
Q@S, and suppose the first answer Q@S ← Af has just arrived. One way of revising
the current computation is to create a new active state, which make use of Af , from
the original choice state, and then to discard all the states that are using a default of
Q@S. However, this means that all the computations completed after the reduction will
be lost. The advantage of speculative reasoning arises from the attempt to reuse the
previous computation as much as possible, as follows (see Figure 3):

1. [Answer Revision] for each state Std using a default answer entry of Q@S with ID
AIDd:
(a) a new state is created with Af added to the goals and with (AIDd, Q@S)

replaced by (AIDf , Q@S) in AA, where AIDf is the answer entry ID for the
first answer;

(b) Std is updated by moving (AIDd, Q@S) from AA to WA (i.e. it becomes a
choice state);

2. [Maintain Completeness] a new active state is created from the original choice
state, with (AIDf , Q@S) added to AA, and with {Af} ∪ Grev added to the goals,
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{Q@S} ∪ G

Ad ∪ G
· · ·G1

Af ∪ G1 ⊗

G1

Aa ∪ G1

Gn

Af ∪ Gn ⊗

Gn

Aa ∪ Gn

⊗ G

{“∀X .←Ad”}
∪Af ∪ G {“∀X .←Ad”}

∪Aa ∪ G

Fig. 3. New answers arrive: let Af and Aa be the first and second (i.e. alternative) returned
answer of Q@S respectively, G1, . . . ,Gn be the goals of n states derived from Ad ∪ G, and
X = vars(Ad)\vars(Q)

{Q@S} ∪ G

· · ·

Af ∪ G1

· · ·

Ar∪G
′

1 Ar∪G
′

m

⊗

G1

Af ∪ Gn

· · ·

Ar∪G
′′

1 Ar∪G
′′

k

⊗

Gn ⊗ G

{“∀X .←Ad”}
∪Af ∪ G {“∀Y .←Af”}

∪Ar ∪ G

Fig. 4. Revised answer arrives: let Ar be the revised answer for Af , and Y =
vars(Af)\vars(Q), let G′

1, . . . ,G′
m (and G′′

1 , . . . ,G′′
k ) be the goals of m (and k) states derived

from Af ∪ G1 (and Af ∪ Gn)

where Grev is the set of all the negated default answers (e.g. it is {“∀X. ← Ad”}
in Figure 3, assuming there is only one default).

For any subsequently arriving alternative answer, we repeat step 1(a) and (2) only (see
Figure 3). Note that if no default is used at the reduction, then in step (2) only Af (or
Aa) is added to the goals. If defaults are used at the reduction (i.e. default answers are
available but no returned answer at the time of reduction), then Grev is added to the
new state in the attempt to avoid the re-computation of the search space covered by the
states using defaults.

Revised Answer. Suppose a revised answer5 Q@S ← Ar arrives for the previous an-
swer Q@S ← Af . Instead of simply discarding the computations using Af , we do the
following (see Figure 4):

1. [Answer Revision] for each state using Af , we add Ar to its goals and update its
AA;

2. [Maintain Completeness] a new active state is created from the original choice
state, with (AIDr, Q@S) added to AA and with {Ar} ∪ Grev added to the goals,
where Grev is the negated previous answer (e.g. it is {“∀Y . ← Af”} in Figure 4).

5 Revised answers can be sent by an internal agent, e.g. a finished state is revised and succeeds
again.
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Handling Askable in a Failure Goal. An askable in a failure goal can be reduced if
none of its variables is universally quantified. Defaults can also be used at the reduction
step. However, the first answer, alternative answers, and revised answers must be han-
dled carefully. Figure 5 illustrates these important steps. Let F = ∀X. ← Q@S ∧ B
be a failure goal and Q@S ← A be an answer for Q@S, then ∀X ′. ← A ∧ B is the
resolvent of F with answer A, where X ′ = X ∪ vars(A).

{“∀X .←Q@S ∧ B”} ∪ G

{“∀X
′

d1.←Ad1∧B”,
“∀X

′

d2.←Ad2∧B”}∪G

add

{“∀X
′

f .←Af∧B”}

add

{“∀X
′

a.←Aa∧B”}

add

{“∀X
′

r.←Ar∧B”}

⊗
G

{“∀X
′

f .←Af∧B”,
Ad1, B} ∪ G

add

{“∀X
′

a.←Aa∧B”}

add

{“∀X
′

r.←Ar∧B”}

{“∀X
′

f .←Af∧B”,
Ad2, B} ∪ G

add

{“∀X
′

a.←Aa∧B”}

add

{“∀X
′

r.←Ar∧B”}

{“∀X
′

r.←Ar∧B”,
“∀X

′

a.←Aa∧B”,
Af , B} ∪ G

Fig. 5. Handle Q@S negatively using defaults (assuming there are two): let Ad1, Ad2, Af , and
Aa be the two default answers, the first answer and an alternative answer for Q@S, respectively,
and Ar revises Af .

Negative Reduction Let F = “∀X.←Q@S∧B” be the failure goal selected from state
St = 〈({F}∪G), Δ, C, N , WA, AA〉, Q@S is sent to agent S as a query if not already
sent, and then (see Figure 5):

1. a negative original state is created with new goals G and waiting answers {(AIDno,
F )}, where AIDno is the NO answer entry ID for Q@S;

2. St is replaced by a state with new goals Gadd ∪ G and with new assumed answers
{(AID, F )} ∪ AA, such that:

– if no answer has arrived yet and there exist default answers, then Gadd is the
set of resolvents of F with the defaults; otherwise Gadd is the set of resolvents
with returned answers.

– AID is the NS answer entry ID if defaults are used, and is the NN answer entry
ID otherwise.

First Answer, Alternative Answers, and Revised Answers. Suppose the first answer
Q@S ← Af arrives. Let Rf be the resolvent of the failure goal F with Af . We do
the following:
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1. [Maintain Completeness] for each default answer Ad, a new active state is cre-
ated from the negative original state, with (AIDnn, F ) added to AA and with
{Rf , Ad, B} added to the goals (e.g. {Rf , Adi , B} for the ith default Adi is
{“∀X′

f . ← Af ∧ B”, Adi , B} in Figure 5);
2. [Answer Revision] for each state assuming the NS answer for Q@S, it is updated

by having Rf added to the goals and replacing (AIDns, F ) with (AIDnn, F ) in
AA, where AIDns and AIDnn are the NS and NN answer entries, respectively.

Note that in Step 1 (Maintain Completeness), by letting each new active state contain
one default Ad, we avoid the re-computation of the search space covered by the existing
states that are using the defaults negatively.

For every alternative answer Q@S ← Aa arriving subsequently, we just add Ra to
the goals of every state that is assuming the NN answer, where Ra is the resolvent of F
with Aa.

Suppose a revised answer Q@S ← Ar arrives for the previous answer Q@S ← Af .
We (1) update the states like we do for Aa, and (2) create a new active state from the
negative original state, with (AIDnn, F ) added to AA and with R ∪ {Af , B} added
to the goals, where R is the set of the resolvents of F with all the returned answers
except Af .

4.2 Example Trace

Here we use a (simplified) execution trace of Example 1 to illustrate the answer revi-
sion process. Suppose that agent l initiated the computation with a global goal G0 =
{deliver(1, 2, Cost, Mtd)}:

1. agent l: the initial state withG0 was created. After a few local reduction steps (by Rules 1 and
3), the only pending goal was quote(1, 2, Cost,Mtd)@d. One default quote(Src,Des, 5,
air)@d was available and the askable was reduced positively – the goal was sent to agent
d and two states were created: a finished state assuming the default and with constraints
Cost = 5 ∧ Mtd = air (i.e. the final answer), and a PSO choice state waiting for the
askable’s PSO answer.

2. agent d: similarly, local inference was performed for query quote(1, 2, Cost,Mtd) (with
Rules 1–3,5). Two answers were returned: “quote(1, 2, Cost,Mtd)@d ← Cost=4,
Mtd=air, safe weather(1), safe weather(2)” and “quote(1, 2, Cost,Mtd)@d ←
Cost=6,Mtd=land”.

3. agent l: suppose that the two answers by agent d arrived in order,
– revisions for the first answer: (i) a new choice state was created from the finished state,

waiting for alternative answers; (ii) the first answer’s body literals were added as the
goals to the finished state (i.e. it became active). However, the new goal Cost = 4
is inconsistent with Cost = 5 (from the default), and hence the state was deleted (so
was the previous answer extracted from it); (iii) a new active state with the first an-
swer’s body literals as goals was created from the PSO choice state. Subsequently, two
askables storm(1)@s′ and storm(2)@s′ were derived and negatively reduced (also
sent to agent s′). The same default answer was used twice, with two NO choice states
created and two new goals {“∀Area. ← 1 = Area,Area = 3”, “∀Area. ← 2 =
Area,Area = 3”} derived. The failure goals trivially hold, and hence a new final
answer Cost = 4,Mtd = air was obtained.
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– for the second answer, two revisions similar to (ii) and (iii) took place, and another new
final answer Cost=6,Mtd=land was obtained.

4. suppose an answer storm(2)@s′ ← true arrived at agent l: (a) the finished state in (iii)
was revised with new goals {“∀Area. ← 1 = Area,Area = 2”, “∀Area. ← 2 =
Area,Area = 2”}. The second goal cannot hold, so the final state and its answer were
removed; (b) two new states created from the two NO choice states in (iii), one with new
goals {“∀Area. ← 1 = Area,Area = 2”, 1 = 3} and the other with {“∀Area. ← 2 =
Area,Area = 2”, 2 = 3}. Both of them had unsatisfiable goals and hence were removed
eventually.

Thus, the only final answer for deliver(1, 2, Cost, Mtd) is Cost = 6, Mtd = land.

4.3 Correctness

Our operational model is sound and complete with respect to the three-valued seman-
tics [17] only, mainly because the adopted top-down abductive proof procedure cannot
detect and handle loops occurring in an agent’s local specification. However, the re-
sults can be strengthen to the two-valued semantics, if the logic program formed from
the agent’s specification satisfies certain conditions, such as “overall consistent” and
“abductive acyclic”[18].

Theorem 1. (Soundness of Local Inference) Given a query Q@S for an internal
agent S with current belief state BEL(T, R) = 〈Πbel, AB, I〉, if there exists a fin-
ished state Stf computed by S for Q@S, and Ans = 〈Δ, C〉 is extracted from Stf ,
then Ans is a local abductive answer for Q@S, such that let the interpretation of AB
be IΔθ = {At|A ∈ Δθ ∧ A ∈ AB} ∪ {Af |A /∈ Δθ ∧ A ∈ AB} and θ be the variable
substitutions induced by C:

– Πbel ∪ IΔθ |=3comp Qθ, and
– Πbel ∪ IΔθ |=3comp I

where |=3comp is the logical entailment under the three-valued semantics for abductive
logic programs [17].

Theorem 2. (Completeness of Local Inference) Given a query Q@S for an internal
agent S with current belief state BEL(T, R). If the local inference finishes (i.e. no
more active state):

– if there exists no finished state, then there is no local abductive answer for Q@S
w.r.t. BEL(T, R);

– if there is a local abductive answer for Q@S w.r.t. BEL(T, R), then there must
exist a finished state, in which the answer can be extracted.

The proofs for Theorems 1 and 2 are based on the correctness (both soundness and
completeness) of each inference rule. The correctness for rules reducing non-askables
(i.e. Rule 1–4, 6–9) are proven in [18]. To show the correctness of Rule 5 and Rule 10,
we need to show that, after handling a returned answer, the search space (represented
by the active states and the finished states) for the query w.r.t. the agent’s old belief
state is transformed into the search space w.r.t. the agent’s new belief state, similar to
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the proofs in [2]. We omit proofs here in favour of a more detailed discussion of the
overall summary of the abductive speculative process.

Assuming that no query or answer is lost during communications, Theorem 2 guar-
antees that each internal agent eventually receives all the internal answers from its chil-
dren, and hence reaches a stable state. This further implies that the whole system will
become stable eventually. Then, applying Theorems 1 and 2 to the root agent’s local
inferences gives the correctness of global inference.

4.4 Implementation

A system prototype has been implemented in YAP Prolog 6. In the prototype, agents
run on different hosts of a local network and exchange queries/answers through TCP
messages. Each agent maintains its own answer entry store, and has a multi-threaded
reasoning engine executing the inference procedure: each active state is processed by a
worker thread, and the finished and choice states are managed by a persistent manager
thread, which revises the finished/choice states and notifies relevant worker threads
upon receiving an answer. We have run Example 1 with increased complexity (e.g.,
more agents and more rules), and details are available from the authors.

5 Discussion

Reuse of Computation: One of the main advantages of speculative computation is the
possibility of reusing parts of the computation already done when new answers arrive
and answer revision is required. If the new answer is consistent with the existing one
(or with the default in the case of the first answer), then all of the previous computation
can be reused. On the other hand, if the new answer is inconsistent with the existing
one (or with the default), then none of the existing computation can be reused. In this
case, however, the computation between the use of the defaults and the first new answer,
consumes CPU cycles of the agent only, which would be in idle if no defaults were used.
The computation between the use of a returned answer and its new revising answer is
unavoidable as the agent has no idea of whether or when the revising answer would
arrive. In either case, the main overhead is the extra computation required to decide,
during answer revision, whether the new and existing answers are consistent. A more
detailed study on the impact that reuse of computations has over computational time
will be subject of our future work.

Agent Hierarchy: The problem of cyclic answer dependency may arise if agents are
allowed to arbitrarily send queries to each other, e.g. the answer A1 computed by agent
a for a query Q1@a depends on an answer A2 computed by b for the query Q2@b, but
the computation of A2 assumes A1. This is usually caused by cycles in the union of
the agents’ background knowledge (as in normal logic programs). Enforcing an agent
hierarchy can eliminate such problem. This requirement can be removed if we record
and propagate the answer usages during agent collaboration, as in a variety of methods
sometimes called dependency-directed backtracking. However, in doing so, there is a
trade-off between efficiency and flexibility.

6 http://www.dcc.fc.up.pt/˜vsc/Yap/

http://www.dcc.fc.up.pt/~vsc/Yap/
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The Growth of States: Let an askable be reduced P times positively among all the
computations. The revision for each new answer creates P + Q new states and revises
Q existing states, where Q is the number of states using a default answer. The revision
for each revised answer creates P new states and revises O existing states, where O
is the number of states using the previous answer. On the other hand, let an askable
be reduced N times negatively among the computations. The revision for each new
answer creates N ×D new states and revises M existing states, where D is the number
of available default answers and M is the number of states using the defaults negatively.
The revision of each revised answer creates N new states and revises K states, where
K is the number of states using returned answers negatively. In practice, the actual
increase of total states is much smaller as the new states created and the existing states
revised often have complementary goals.

Usage of Default Answers: Similar to the situation with growth of states during answer
revision, the quality and the number of available defaults may impact the computational
performance: so the generation of quality defaults is important. In addition, in some
applications it may be better to ignore defaults even if they are available. For example,
if a travel booking system will charge a penalty fee for any plan being revised, then
the agent speculatively computing a plans should try to use as few defaults as possible.
Hence in practice, agents should be allowed to decide whether defaults are used during
local inference, using some application-dependent heuristics. Note that the notion of an
agent, or set of agents, using an application-dependent economic or utility model would
be appropriate here.

6 Conclusion

In practice, exogenous knowledge will exist and will influence multi-agent reasoning.
The speculative abductive reasoning framework presented here allows agents in a hi-
erarchical system to efficiently handle incomplete and revisable conditional answers
returned by others. Our operational model supports negation and constraints, and hence
can be applied to a wide range of real world applications.

Good default answers can increase the benefits provided by speculative computation,
such as more highly parallel reasoning among the agents. In addition, it is important
to have flexible control of default use. As future work, we intend to use the existing
prototype with more complex examples, in order to investigate the scalability of the
system, and try to find good heuristics for controlling the usage of defaults.
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Pedro Arturo Góngora1, Eric Ufferman2, and Francisco Hernández-Quiroz2

1 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
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pedro.gongora@gmail.com
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Abstract. The π-calculus process algebra describes the interaction of
concurrent and communicating processes. The π-calculus, however, has
neither explicit agency nor epistemic capabilities. In this paper, we present
the formal syntax and semantics of a multi-agent dynamic epistemic
logic. In this logic, the epistemic actions of agents are π-calculus
processes. A process of the language is translated to a class of model
updating functions reflecting the epistemic changes after the execution
of such processes. Our proposal combines the capabilities of two ap-
proaches: it is possible to model structured interaction among agents as
elaborated π-calculus programs, and it is also possible to describe the
dynamic knowledge implications of such programs. We show the utility
of our language by encoding the Dining Cryptographers protocol.

1 Introduction

On the one hand, multi-agent dynamic epistemic logic describes and reasons
about the epistemic dynamics in a multi-agent setting. On the other hand, π-
calculus process algebra describes and reasons about the dynamics of concurrent
and communicating systems. By using dynamic epistemic logic, we can repre-
sent communicating actions as instantaneous events, but without describing the
internal dynamics of such events. By contrast, with π-calculus we can finely de-
scribe the dynamics of concurrent and communicating systems. In this paper,
our goal is to combine both approaches into a single epistemic logic. Specifically,
we introduce the syntax and semantics for a multi-agent dynamic epistemic logic
that uses π-calculus processes as the actions of the language.

For the Action Model Logic of [1], the authors propose using relational struc-
tures for describing communication events. By using such relational structures,
it is possible to capture many forms of communication: public announcement,
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private communication, private communication with outsiders, etc. Nevertheless,
the internal dynamics of the communication cannot be described.

By contrast, with π-calculus we can finely describe the dynamics of concur-
rent and communicating processes, but not the epistemic updates within the
execution of such processes. The method we propose translates a π-calculus pro-
cess into a class of model updating functions. These functions are sequential
compositions of epistemic updates, reflecting the interactions of the concurrent
processes. We will build upon the semantic framework of [1] by using relational
structures for describing these epistemic updates, and the π-calculus abstract
machine of [8] for doing the translation.

The organization of the paper is as follows. Section 2 presents the syntax and
semantics for the dynamic epistemic logic of [1], and also introduces the semantic
framework that we will use in the rest of the paper. Section 3 surveys the formal
syntax and semantics of the π-calculus. Sections 4 and 5 contain our main con-
tribution. Section 4 is devoted to present the formal syntax and semantics of the
dynamic epistemic logic LEπ , that uses π-calculus for describing epistemic ac-
tions. In Sect. 5 we present a codification of the Dining Cryptographers protocol
[3] in LEπ as an example of its usefulness.

2 Logics for Epistemic Dynamics

In this section, we will briefly introduce the syntax and semantics of the dynamic
epistemic logic of [1]. The language presented here is one of the many approaches
to epistemic dynamics. For a more thorough introduction to this language, and
others as well, we direct the reader to [4].

We first introduce the syntax and semantics of basic multi-agent epistemic
logic. This logic is an instance of propositional multi-modal logic. In this partic-
ular instance, the modalities Ki are interpreted as “agent i knows”.

Definition 1 (Multi-Agent Epistemic Logic Syntax). Let P be a countable
set of atomic proposition symbols and A be a finite set of agents. The set LEL

of all formulas of Multi-Agent Epistemic Logic is the least set generated by the
grammar:

ϕ ::= p
∣∣ ¬ϕ

∣∣ (ϕ ∧ ϕ)
∣∣ Kiϕ

where p ∈ P and i ∈ A.

The models we will use for all the languages presented in this paper are the usual
Kripke or possible-world models. In such models, it is assumed that in addition
to the actual state of affairs (valuations of propositions), there are other possible
worlds that the agents may consider possible. Then, we say an agent i knows
some proposition p (viz. Kip), if such proposition holds on every world that i
considers possible from the actual world.

Definition 2 (Models and Satisfaction). A model M for the formulas in
LEL is the tuple:

M
def= 〈W, {Ri}i∈A, V 〉
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where W is a finite set of possible worlds, each Ri ⊆ (W × W ) is the accessi-
bility relation of agent i, and V : (W × P) → {T,F} is a valuation for atomic
propositions. A pointed model is a pair (M, w) where w is a possible world in M.
We denote as K the class of all models and as

−→
K the class of all pointed models.

The satisfaction relation |= between pointed models and formulas in LEL is the
least relation such that:

1. (M, w) |= p iff V (w, p) = T (p ∈ P);
2. (M, w) |= ¬ϕ iff (M, w) �|= ϕ;
3. (M, w) |= (ϕ ∧ ψ) iff (M, w) |= ϕ and also (M, w) |= ψ;
4. (M, w) |= Kiϕ iff for all w′ ∈ W , (w, w′) ∈ Ri, implies (M, w′) |= ϕ.

The logical connectives ¬ and ∧ preserve their intuitive meaning of negation
and conjunction, respectively. For any agent i and formula ϕ, the formula Kiϕ
(i knows that ϕ) holds only when ϕ is true at every world that i considers possible
(by Ri) from the actual world. Also, we can define the other logical connectives
(∨, ⇒ and ⇔) in terms of ¬ and ∧ with the usual definitions. Finally, for some
fixed p ∈ P , we define the true constant � def= (p ∨ ¬p) and the false constant
⊥ def= ¬�, such that (M, w) |= � and (M, w) �|= ⊥ for any pointed model (M, w).

For different purposes we may choose different axiomatizations. For example,
the S5 and KD45 systems are common choices for describing idealized forms
knowledge and belief, respectively (see [4]).

The basic epistemic language is expressive enough to describe higher order
knowledge. For example, KiKjϕ: “i knows that j knows”, or i’s introspection
Kiϕ ⇒ KiKiϕ: “i knows that she knows”. Also, it is desirable to describe
change in agents’ knowledge as a result of communication. For describing dy-
namic knowledge, we extend the language with dynamic-logic-like modalities.
The extended language has formulas like [α] ϕ, standing for “ϕ holds after the
communication event α took place”.

In this paper, we build upon the approach by Baltag, Moss and Solecki [1],
by using action models for describing communication events. An action model
is a relational structure, the possible worlds stand for the possible epistemic
updates, and the accessibility relations model the uncertainty of agents about
such epistemic updates. We first present the definitions of action models and
the model product. The model product is an operation for updating a model
according to the communication event described by an action model.

Definition 3 (Action Model and Model Product). Let A be a finite set of
agents. An action model A is the tuple:

A
def= 〈E, {→i}i∈A,Pre〉

where E is a finite set of events, there is a binary accessibility relation →i⊆ E×E
for each agent i ∈ A, and the total function Pre : E → LEL assigns precondition
formulas to events. A pointed action model is a pair (A, e), where e is an event
in A. Let M = 〈W, {Ri}i∈A, V 〉 be a model and A = 〈E, {→i}i∈A,Pre〉 be an
action model. The product ⊗ between the pointed models (M, w) and (A, e) is
defined as follows:
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(M, w) ⊗ (A, e) def= (M′, (w, e))

whenever (M, w) |= Pre(e), and where the model M′ def= 〈W ′, {R′
i}i∈A, V ′〉 con-

sist of:

– W ′ def= {(u, f) | u ∈ W , f ∈ E, and (M, u) |= Pre(f)};
– R′

i
def= {((u, f), (u′, f ′)) | (u, u′) ∈ Ri and (f, f ′) ∈→i};

– V ′((u, f), p) def= V (u, p) for all u ∈ W , f ∈ E, and p ∈ P.

We extend the basic epistemic language with a new construct [(A, e)]ϕ. This new
formula holds whenever the updated model, according to the product by (A, e),
satisfies ϕ. Next, we formally define the syntax and semantics of the extended
language.

Definition 4 (Action Model Logic Syntax and Satisfaction). Let P be a
countable set of atomic proposition symbols and A be a finite set of agents. The
set LAct of all formulas of Action Model Logic is the least set generated by the
grammar:

ϕ ::= p
∣∣ ¬ϕ

∣∣ (ϕ ∧ ϕ)
∣∣ Kiϕ

∣∣ [(A, e)]ϕ

where p ∈ P, i ∈ A, and (A, e) denotes a pointed action model. The satisfaction
relation |= between pointed models and formulas in LAct is the least relation
satisfying rules 1 to 4 of Def. 2 plus the following additional rule:

5. (M, w) |= [(A, e)]ϕ iff (M, w) |= Pre(e) implies ((M, w) ⊗ (A, e)) |= ϕ.

Note that (M, w)⊗(A, e) is defined only when w satisfies e’s precondition. Hence,
in the other case, w vacuously satisfies any formula [(A, e)]ϕ.

Finally, to finish this section, consider the two action models depicted in
Fig. 1. The action model in panel (a) models a public announcement. In this
public announcement, the only possible epistemic update for every agent is that
of ϕ being told. The action model in panel (b) models a private communication
between agents 1 and 2. The agents 1 and 2 consider ϕ the only possible update,
however, the other agents believe that no update occurred (or, equivalently, that
the trivial update � took place).

e0

Pre : ϕ

A

e0 e1

Pre : ϕ Pre : �

1, 2 A
A− {1, 2}

(a) (b)

Fig. 1. (a) public announcement, (b) private communication
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3 The π-Calculus

The π-calculus [10] is a process algebra for describing concurrent and commu-
nicating processes. In π-calculus processes, all communication is done through
channels or names. For example, any process listening on some channel is capa-
ble of receiving any message sent through the same channel. A distinctive feature
of π-calculus is that of mobility. Mobility refers to the processes capability to
exchange communication channels. In this section, we will introduce the syn-
chronous variant of the π-calculus. We refer the reader to [10] for more details
on the material presented here.

Definition 5 (π-Calculus Syntax). Let N = {x, y, . . .} be an infinitely count-
able set of name symbols. The set of all processes of the π-calculus is the least
set generated by the grammar:

P ::= 0
∣∣ π.P

∣∣ π.P + · · · + π.P
∣∣ P |P

∣∣ (νx) P
∣∣ !π.P

π ::= xy
∣∣ x(z)

∣∣ τ
∣∣ if x = y then π

where x, y, z ∈ N and τ, ν �∈ N .

We will refer to the elements of N both as names and as channels. The basic
entity of π-calculus is the process. The most elementary process is the nil process
0, standing for a finished computation. The guarded or prefixed process π.P
is capable of doing the action specified by π and then continuing as P . The
output prefix xy represents the capability of sending y through x. The input
prefix x(z) represents the capability of receiving z through x. The silent action τ
represents the capability of doing some internal computation. The match prefix
if x = y then · is a guard that performs the check of whether x and y are
the same name. The sum π.P + π′.Q stands for the non-deterministic choice
between prefixed processes π.P and π′.Q. The process P | Q stands for the
parallel composition of processes P and Q. The construct (νz) P is a name
restriction, indicating that every free occurrence of the name z in P (see Def. 6)
is different from other z outside the scope of such restriction. The construct !π.P
is the process replication, stating that there are as many parallel copies of π.P
as needed.

Input and output prefixes represent complementary actions, and may inter-
act when they are present in a parallel composition. For example, the parallel
processes:

xy.0 | x(z).wz.0

may interact, evolving to the new process:

0 | wy.0

Note that the output and input processes must use the same communication
channel to interact with each other. Also, observe that in the input process
x(z).wz.0 the name z is a placeholder. Hence, z has to be replaced with the
actual name y received.
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By using the sum operation we can model non-deterministic computations.
For example, the process:

(xa.P + xb.Q) | x(z).R

may evolve into one of the following two processes:

P | R{a/z} Q | R{b/z}

where R{a/z} is the syntactic substitution replacing all the free instances of z
by a in the process R.

With parallel composition we can also introduce non-deterministic behavior:

xa.P | xb.Q | x(z).R

this process may evolve into one of the following two processes:

P | xb.Q | R{a/z} xa.P | Q | R{b/z}

The name restrictions confine the use of a name to a given process. For example,
the following two parallel processes:

xa.P | ((νx) x(z).Q)

cannot interact. The restriction above indicates that the x in process x(z).Q is
not the same x in process xa.P .

With name restrictions we can also specify more complex interactions, as the
exchange of private communication channels. For example, consider the following
process:

((νa) xa.P ) | x(z).Q

In the previous processes, the restriction is on the message, not on the channel
the processes use for communicating. Because of this, if the name a does not
occur free in Q, then the processes can interact, and the scope of the restriction
is expanded :

(νa) (P | Q{a/z})

After this expansion, the name a may be used for further private communication.
We can use the process replication for describing repetitive computations. We

can regard replication as satisfying the equation !π.P = π.P | !π.P . For example,
the following processes interact infinitely often:

!xy.0 | !x(z).0

Formally, all of the above processes interactions are described by the notion of
reduction. A reduction is a transition P −→ P ′ stating that process P can be
reduced to process P ′. In order to define reductions, we need to formalize the
notions of free names and α-equivalence.
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Definition 6 (Free Names, α-Equivalence). We say that a name z occurs
free in a process P iff z occurs in P and it is not under the scope of an input
prefix x(z) or a name restriction (νz) . We denote as fn (P ) the set of all the
free names of process P . We say that two processes P and Q are α-equivalent
(P =α Q), if Q can be obtained from P through a finite number of bound-name
changes such that:

1. If a name w does not occur in P , then the process P{w/x} is obtained by
replacing with w each free occurrence of x in P .

2. A bound-name change is the exchange of a term x(z).P or a term (νz) P , with
terms x(w).(P{w/z}) or (νw) (P{w/z}), respectively, given that w �∈ fn (P ).

The α-equivalence indicates that, for example, the following two processes de-
scribe the same computation:

(νy) (x(z).uz.0 | u(s).sy.0) (νz) (x(a).ua.0 | u(b).bz.0)

Finally, we state the formal semantics of the π-calculus with the following
definition.

Definition 7 (Reductions). The reduction transition relation −→ between
processes is the least relation defined according to the following rules:

Reduct-Struct

P ≡ P ′, Q ≡ Q′, P −→ Q

P ′ −→ Q′

Reduct-Inter

(xy.P1 + Q1) | (x(z).P2 + Q2) −→ P1 | P2{y/z}
Reduct-Tau

τ.P + Q −→ P

Reduct-Par

P −→ P ′

P | Q −→ P ′ | Q

Reduct-Res

P −→ P ′

(νz) P −→ (νz) P ′

where the structural congruence relation ≡ between processes is the least sym-
metric relation satisfying:

1. P =α Q implies P ≡ Q;
2. P + 0 ≡ P , P + Q ≡ Q + P , and P + (Q + R) ≡ (P + Q) + R;
3. P | 0 ≡ P , P | Q ≡ Q | P , and P | (Q | R) ≡ (P | Q) | R;
4. (if x = x then P ) ≡ P ;
5. (νz) 0 ≡ 0, (νz) (νs) P ≡ (νs) (νz) P , (νz) (P | Q) ≡ P | ((νz) Q) if

z �∈ fn (P ), and (νz) if x = y then P ≡ if x = y then (νz) P if x, y �= z;
6. !P ≡ P | !P .

The π-calculus is a rich language for describing concurrent and communicating
computations. This language, however, is not able to express neither agent-based
communication nor the epistemic-state changes based in such communication. In
the next section we will propose a language for describing agency and epistemic
updates with π-calculus processes.
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4 Epistemic Dynamics with π-Calculus

In this section, we present a language that combines dynamic epistemic logic
and π-calculus. Syntactically, this language is a dynamic epistemic logic such
that the actions are π-calculus processes executed by agents. The processes of
this language explicitly state the agent responsible for each primitive action.

The semantics of our language is based on the action models of [1] and on
the π-calculus abstract machine of [8]. Briefly, the processes of this language are
translated to sequential compositions of model updating functions. This model
updating functions are applications of the model product by some predefined
action models. Such action models define the calculus communication nature. In
this case, the communication is the private and synchronous message exchanging
between a sender and a receiver. Also, because of the non-deterministic nature
of π-calculus, the meaning of a process is a class of this sequential compositions,
as each process may evolve with several possible executions.

Definition 8 (Dynamic Epistemic Logic with Processes Syntax). Let P
be a countable set of atomic proposition symbols, A be a finite set of agents, and
N be an infinitely countable set of name symbols. The set LEπ of all formulas
of Dynamic Epistemic Logic with Processes is the least set generated by the
grammar:

ϕ ::= p
∣∣ ¬ϕ

∣∣ (ϕ ∧ ϕ)
∣∣ Kiϕ

∣∣ [P ] ϕ

P ::= 0
∣∣ π.P

∣∣ π.P + · · · + π.P
∣∣ P |P

∣∣ (νx) P
∣∣ !π.P

π ::= xiy
∣∣ xiϕ

∣∣ xi(z)
∣∣ τ

∣∣ if ϕ then π

where p ∈ P, i ∈ A, x, y, z ∈ N and τ, ν �∈ N .

The basic structure of the language logical part is the same as the dynamic
epistemic logic presented in Sect. 2. Also, all of the process constructs preserve
their intuitive meaning, as described in the previous section.

There are, however, three main differences between the processes of this lan-
guage and the processes of the pure π-calculus. The first difference is the speci-
fication of the agent executing the action in the input and output prefixes. For
example, the process xi(z).P states that agent i is expecting to receive a mes-
sage z through channel x, and then, after receiving such a message, the execution
continues as process P . The second difference is the ability to send formulas as
well as names. With this addition, we preserve the mobility capabilities of the
calculus plus the ability for updating the agents’ epistemic state. Finally, the
last difference is that we parametrize the match prefix with arbitrary formulas.
This addition allows modeling richer guards for processes.

The semantics for the static part of this language is not different to that of
basic epistemic logic. For the dynamic part, the semantics is built upon three
main components: model updating functions, process environments and a process
interpretation relation.
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Definition 9 (Action Models for Processes and Model Updating Func-
tions). Given a formula ϕ ∈ LEπ and two agents, a sender s and a receiver r,
we define the action model Aϕ

s,r as the tuple:

Aϕ
s,r

def= 〈E, {→i}i∈A,Pre〉

where:

E
def= {e0, e1} →s

def= {(e0, e0), (e1, e1)}

Pre(e0)
def= Ksϕ →r

def= {(e0, e0), (e1, e1)}

Pre(e1)
def= � →i

def= {(e0, e1), (e1, e1)} (i ∈ A − {s, r})

A model updating function is a function f :
−→
K → −→

K. We define the model
updating functions id and com as the following λ-terms:

id
def= λM.M

com(s, r, η) def=
{

id if η ∈ N
λM.

(
M ⊗ (Aη

s,r, e)
)

otherwise

where η is either a name or a formula, and s and r are agents (a sender and a
receiver), and the variable M stands for any pointed model.

These model updating functions represent the primitive epistemic updates caused
by process reductions. The model updating function com describes a reduction
involving the exchange of a formula, and the function id describes the other cases
(where there are no epistemic updates). As we are using synchronous π-calculus,
the action model Aϕ

s,r represents the synchronous communication between sender
s and receiver r (cf. panel (b) in Fig. 1). Note that this communication is also
private. This is because communication occurs through a channel shared only
between the sender and the receiver at the time of the message exchange.

Definition 10 (Process Environments). We define a process environment
as a pair (ρ, X), where ρ is a multiset of (prefixed-) process summations and the
set X ⊆ N contains the free names of the processes in ρ. We define the insertion
operation ⊕ for inserting processes into process environments as follows:

0 ⊕ (ρ, X) def= (ρ, X)

(P1 + · · · + Pk) ⊕ (ρ, X) def= (ρ � {|P1 + · · · + Pk|} , X ∪ fn (P1 + · · · + Pk))

P | Q ⊕ (ρ, X) def= P ⊕ (Q ⊕ (ρ, X))

!π.P ⊕ (ρ, X) def= (ρ � {|π.(P | !π.P )|} , X ∪ fn (π.P ))

(νz) P ⊕ (ρ, X) def= P{zn/z} ⊕ (ρ, X)

where k ≥ 1, n = min {n | n ∈ IN ∧ zn �∈ X ∪ fn (P )} (assuming that z0, z1, . . .
is an enumeration of N ), and � is the standard multiset union operation.
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Our translation from processes into functions is based on the π-calculus ab-
stract machine of Phillips and Cardelli [8]. The translation procedure has two
main steps. The first step consist of creating a process environment contain-
ing all the processes running in parallel. In this step, we also eliminate name
restrictions by replacing the restricted names with new and unique names (we
use the set X in (ρ, X) for tracking the free names in ρ). Also, ⊕ operates in
such a way that the resulting environments contain only summations of one or
more prefixed processes. The summation of processes should be understood as
a list-type structure. This is important if, for instance, the semantics would be
implemented. With such environments, it is now possible to define the second
step of the translation procedure.

Definition 11 (Process Interpretation). Let (M, w) be a pointed model,
(ρ, X) a process environment, and f0 :

−→
K → −→

K a model updating function. We
define the process interpretation function [[(ρ, X)]](M,w) f0 ⊆ {f | f :

−→
K → −→

K}
as follows:

[[(ρ, X)]](M,w) f0
def=

{
I if I �= ∅
{f0} otherwise

where:

I
def=

⋃
Σ∈ρ

⋃
π.P of Σ

interleave(π.P, (ρ − {|Σ|} , X), (M, w), f0)

and we define the above interleaving function for each type of prefixed process as
follows:

interleave(τ.P, (ρ, X), (M, w), f0)
def= [[P ⊕ (ρ − {|τ.P |} , X)]](M,w) (id ◦ f0)

interleave(if ϕ then π′.P, (ρ, X), (M, w), f0)

def=
{

[[π′.P ⊕ (ρ − {|if ϕ then π′P |} , X)]](M,w) (id ◦ f0) if f0(M, w) |= ϕ

∅ otherwise

interleave(xsη.P, (ρ, X), (M, w), f0)
def=

⋃
Σ∈ρ

⋃
xr(z).Q of Σ

[[P ⊕ (Q{η/z} ⊕ (ρ − {|Σ|} , X))]](M,w) (com(s, r, η)◦f0)

interleave(xr(z).P, (ρ, X), (M, w), f0)
def=

⋃
Σ∈ρ

⋃
xsη.Q of Σ

[[P{η/z} ⊕ (Q ⊕ (ρ − {|Σ|} , X))]](M,w) (com(s, r, η)◦f0)

The second step consist of interpreting the result of combining every compatible
input/output prefixes as appropriate model updating functions. We use [[·]] to
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interpret a process environment (i.e., the parallel composition of some summa-
tions). The interpretation [[·]] has two additional parameters: the original model
(M, w) to be updated, and an initial model updating function f0 representing
the updates made so far.

In this second step, we need to resolve the non-deterministic choice for each
summation running in parallel, and [[·]] must contain all the possible updates.
Hence, we consider all the terms of a summation. For each term π.P , the function
interleave(π.P, (ρ, X), (M, w), f0) translates the interaction of π.P with the pro-
cesses in (ρ, X) into the appropriated model updating functions. The function
interleave operates according with the prefix of π.P . This function translates τ
prefixes as the model identity, performs the checking for the match prefixes, and
translates the compatible input and output prefixes interactions as com func-
tions. We sequentially compose the result of interleave with the initial function
f0 and recursively proceed until no further interpretations are possible.

Definition 12 (Satisfaction for LEπ). The satisfaction relation |= between
pointed models and formulas in LEπ is the least relation satisfying the rules 1 to
4 from Def. 2 plus the following rule:

5. (M, w) |= [P ]ϕ iff for every model updating function f ,

f ∈ [[(P ⊕ {||} , fn (P ))]](M,w) (id)

implies f(M, w) |= ϕ.

Recall that [[·]] receives as an argument an initial model updating function f0,
representing the epistemic updates made so far. Thus, for starting computations,
we initialize the interpretation with the identity function. Finally, we say that
a formula [P ]ϕ is true at some possible world w, only when ϕ holds in every
possible updated model by the finished computation of P .

For example, consider the following process:

P
def= (x1p.0 + x2q.0) | x3(z).0

We need to first insert the above process into an empty environment, obtaining
the the environment (ρ, X) such that:

ρ = {|x1p.0 + x2q.0, x3(z).0|} X = {x}

Then, we have to translate each summation in ρ. In this case, we obtain the same
results regardless of the summation we choose. Let choose the left summation,
then we apply interleave to both summation terms:

interleave(x1p.0, ({|x3(z).0|} , X), (M, w), id)
= [[({||} , X)]](M,w) (com(1, 3, p) ◦ id) = (com(1, 3, p) ◦ id)

interleave(x2q.0, ({|x3(z).0|} , X), (M, w), id)
= [[({||} , X)]](M,w) (com(2, 3, q) ◦ id) = (com(2, 3, q) ◦ id)
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Thus, for this example:

[[(P ⊕ {||} , fn (P ))]](M,w) (id) = {(com(1, 3, p) ◦ id), (com(2, 3, q) ◦ id)}

We say that (M, w) |= [P ]ϕ iff the following two statements hold:

(com(1, 3, p) ◦ id)(M, w) |= ϕ

(com(2, 3, q) ◦ id)(M, w) |= ϕ

We finish this section with two remarks. First, the function com(s, r, ϕ) is defined
only when Ksϕ (for ϕ a formula). This is because we only model truthful agents.
If an agent emits an untruthful message in a process P , then the translation f of
that execution will cause f(M, w) |= ψ to be vacuously satisfied for any ψ (being
consistent with Action Model Logic). Finally, observe that we can write a process
having an infinite chain of reductions. The translation f of such an infinite chain
is also an infinite sequential composition. Thus, f(M, w) is undefined, vacuously
satisfying any formula ψ (being consistent with the notion that “ψ holds after
the update f”).

5 The Dining Cryptographers Protocol

In this section we show the utility of our language by encoding Chaum’s Dinining
Cryptographers Protolcol [3]. Quoting Chaum’s paper:

Three cryptographers are sitting down to dinner at their favorite three-
star restaurant. Their waiter informs them that arrangements have been
made with the maitre d’hotel for the bill to be paid anonymously. One of
the cryptographers might be paying for the dinner, or it might have been
NSA (U.S. National Security Agency). The three cryptographers respect
each other’s right to make an anonymous payment, but they wonder if
NSA is paying. They resolve their uncertainty fairly by carrying out the
following protocol:

Each cryptographer flips an unbiased coin behind his menu, between
him and the cryptographer on his right, so that only the two of them can
see the outcome. Each cryptographer then states aloud whether the two
coins he can see–the one he flipped and the one his left-hand neighbor
flipped–fell on the same side or on different sides. If one of the cryp-
tographers is the payer, he states the opposite of what he sees. An odd
number of differences uttered at the table indicates that a cryptographer
is paying; an even number indicates that NSA is paying (assuming that
the dinner was paid for only once). Yet if a cryptographer is paying, nei-
ther of the other two learns anything from the utterances about which
cryptographer it is.

For capturing the Dining Cryptographers problem, we need to add a new fea-
ture to the language LEπ . We would like, for example, an agent A to receive
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information from agent B, and be able to act differently depending on what in-
formation is received. For this reason, we allow names to appear in the formulas
in the conditionals. We allow this feature under the assumption that if a name
has not been replaced in a formula by the time the conditional is checked, then
the formula is automatically false.

We represent the three cryptographers with the following set of agents:

A = {A, B, C}

We will use the following atomic propositions:

– atoms pi stand for “agent i paid”;
– atoms bij stand for the shared bit (coin toss) between i and j;
– atoms Ci represent the bits that the agents will exchange depending on the

results of the coin flips and whether or not they paid.

We will only consider the case when some agent is paying. We are after some
formula like:

precondition ⇒ [P ] postcondition

where P is a process modeling the protocol.
The postcondition is easiest to describe, we simply want it to say that all

agents know that some agent paid, but that no agent other than the payer
knows which agent paid:

postcondition def= KA(pA ∨ pB ∨ pC) ∧ KB(pA ∨ pB ∨ pC) ∧ KC(pA ∨ pB ∨ pC)

∧ ¬KApB ∧ ¬KApC ∧ ¬KBpA ∧ ¬KBpC ∧ ¬KCpA ∧ ¬KCpB

The formula precondition will say the following:

– One of the agents paid the bill;
– The agents who did not pay the bill don’t know who paid the bill (ie., they

consider it possible that either of the other two agents or the NSA paid);
– After acquiring information from the execution protocol, the agents can infer

that an agent had paid the bill, without knowing which agent.

precondition def= α ∧ β ∧ γ

α
def= (pA ∧ ¬pB ∧ ¬pC) ∨ (¬pA ∧ pB ∧ ¬pC) ∨ (¬pA ∧ ¬pB ∧ pC)

β
def= (¬pA ⇒ (¬KApB ∧ ¬KApC))

∧ (¬pB ⇒ (¬KBpA ∧ ¬KBpC))

∧ (¬pC ⇒ (¬KCpA ∧ ¬KCpB))

γ
def= KA((CA ⊕ CB ⊕ CC) ∧ ¬pA ⇒ (pB ∨ pC))

∧ KB((CA ⊕ CB ⊕ CC) ∧ ¬pB ⇒ (pA ∨ pC))

∧ KC((CA ⊕ CB ⊕ CC) ∧ ¬pC ⇒ (pA ∨ pB))
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The formula α says that someone paid; β says that non-payers do not know who
paid; γ says that after learning all Ci’s everyone knows that some agent has
paid. Also, observe that the ⊕ above stands for the XOR logical connective (not
the semantic operation defined in the previous section).

We now describe the protocol as a π-calculus process. The protocol will be
represented by the process P , which has three components acting in parallel:

P
def= PAB | PBC | PCA

Where:

PAB
def= xAbAB.0 | xB(z).QB

PBC
def= yBbBC .0 | yC(z).QC

PCA
def= wCbCA.0 | wA(z).QA

Process Pij dictates i to share her bit with the agent to her right, and wait
for the bit from the agent to her left. After this bit exchange, i continues the
execution with the process Qi.

We show Qi for agent A:

QA
def= if (pA ∧ (z ⊕ bAB)) then uA¬CA.0

+ if (pA ∧ ¬(z ⊕ bAB)) then uACA.0

+ if (¬pA ∧ (z ⊕ bAB)) then uACA.0

+ if (¬pA ∧ ¬(z ⊕ bAB)) then uA¬CA.0

After learning the shared bit z with the agent to her left, A announces (through
channel v) the result of computing the exclusive-or of her two known bits. If A
paid, then the opposite result is announced.

The Model

We now describe an appropriate Kripke model in which the formulas can be
interpreted, giving a correct result. We describe the states of the Kripke model
according to the propositions which hold in the states. First, at most one of the
propositions pA, pB, pC holds in any given state. Therefore we may label each
state with one of those propositions, or with a ∅ if it is the case that the NSA
paid the bill. For any given payer, any combination of coin-flips is possible, so we
have a state corresponding to each combination for each payer. However, given
the payer, and the coin-flip bits, the sent bits Ci are determined. So we are left
with 32 states in the model. A typical state may be described as:

w0
def= (pA, bAB, ¬bBC , bCA, CA, CB, CC)
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In this state, agent A has paid the bill, so he sends the message CA, despite the
XOR of the two bits available to him being false. Agents B and C send messages
CB and CC respectively, because each has seen exactly one positive coin-flip bit,
and neither has paid the bill.

Now, agent A knows he paid the bill, and furthermore knows the result of his
own coin-flip. So pA and bAB hold in any state that A considers possible from
w0. However, the results of the other coin-flips are not initially known to A, so
there are actually three other states that A considers accessible from w0, for
example:

w1
def= (pA, bAB, bBC , bCA, CA, ¬CB, ¬CC)

Things are more interesting from the perspective of a different agent. For exam-
ple, agent B considers it possible that any one of agent A, agent C or the NSA
paid the bill. Therefore there are are 11 other states accessible from state w0
from the perspective of agent B, including, for example:

w2
def= (pC , bAB, ¬bBC , ¬bCA, CA, CB , CC)

And:

w3
def= (∅, bAB, ¬bBC , bCA, ¬CA, CB, CC)

It is easy to check that the precondition is satisfied in any state of the model in
which an agent paid. After the execution of the process P , all the agents know
the valuations of the bits Ci, but the key observation is that any non-payer
considers two states – with two different payers – possible. For example, after
the execution of processes P in state w0, agent B considers the updated state
corresponding to w2 possible, showing that B does not know the identity of the
payer. Analogous remarks may be made about C, showing the A’s anonymity
has been preserved.

6 Related and Future Work

Related Work

One of the first approaches to epistemic dynamics was that of public announce-
ments [9]. The action models were introduced in [1]. With action models we can
describe several communication scenarios. There are other extensions to this ap-
proach. In [13] the authors augment action models with updates to the atomic
facts of the world, and use a different base epistemic language similar to proposi-
tional dynamic logic [5]. By combining temporal and epistemic logic [12] similar
approaches arise. In [12], the temporal component gives a similar interpretation:
the knowledge changes according to a sequence of model-product updates. An
important difference from our approach is that the sequences of action models
in [12] are given a priori. In [14], the authors present a codification of the Dining
Cryptographers protocol with action models. In this paper, we only emphasize
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the convenience of using π-calculus to codify the protocol. Then, by using the
semantics in Sect. 4, we can translate such a codification into action models.

There are also modal logics for reasoning about processes [7]. These logics,
sometimes called Hennessy-Milner logics, characterize several variants of process
bisimulation. In [6], the author extends a Hennessy-Milner logic for π-calculus
with an epistemic operator. In this endogenous logic, the processes are not syn-
tactically present in the language, and there is a unique agent: an external ob-
server. In [2], Chadha et al. propose an epistemic logic for the applied π-calculus
(a version of the π-calculus including other data than names). They use their
logic to verify properties of protocols. In this logic, the epistemic modal operator
is not relative to many possible agents, but to only one—the potential intruder
in private communications.

Future Work

In this paper, we presented a method for the interpretation and analysis of epis-
temic dynamics with π-calculus process communication in a multi-agent setting.
The dynamic epistemic logic that we propose, uses π-calculus processes as the
communicating actions of the agents. We translate these processes as classes of
sequential compositions of model updating functions. This functions describe
the epistemic updates caused by the interaction of the processes. We base our
translation in the π-calculus abstract machine of [8]. It is worth noting that, by
using an abstract machine, we obtain the benefit of a method for algorithmically
verifying satisfaction.

We propose some routes for further research. First, it is possible to extend
the notion of process bisimulation to our language. By making some simple
syntactic restrictions to the language, we can obtain modular processes that
preserve bisimulation. Secondly, in [11] the authors present a complete proof
system for a fragment of the language presented in this paper. Such a proof
system is restricted to finite processes. It is desirable to study a proof system
capable of describing infinite processes properties. Finally, the communication
in our language allows exchanging both formulas and names. In some contexts,
receiving a formula instead of a name may cause the process to be unable to
continue (e.g., the process xi(z).ziy.0 cannot continue if a formula is received).
It would be interesting to explore a type system to handle such situations.

References

1. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. Technical Report SEN-R9922, CWI (1999)

2. Chadha, R., Delaune, S., Kremer, S.: Epistemic logic for the applied pi calculus. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522,
pp. 182–197. Springer, Heidelberg (2009)

3. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)



Formal Semantics of a Dynamic Epistemic Logic 81

4. van Ditmarsch, H., var der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer,
Heidelberg (2007)

5. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
6. Mardare, R.: Observing distributed computation. a dynamic-epistemic approach.

In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS,
vol. 4624, pp. 379–393. Springer, Heidelberg (2007)

7. Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. Theoretical
Computer Science 114(1), 149–171 (1993)

8. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus.
In: Concurrent Models in Molecular Biology (Bioconcur 2004), London (2004)

9. Plaza, J.A.: Logics of public communications. In: Proceedings of the 4th Interna-
tional Symposium on Methodologies for Intelligent Systems, pp. 201–216 (1989)

10. Sangiorgi, D., Walker, D.: The Pi-Calculus — A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)
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Abstract. This paper studies misalignment of commitments associated with tem-
poral constraints. We propose a diagnosis algorithm where agents reason based
on the current states of their commitments. We also provide an alignment policy
that can be applied by an agent when the diagnosis algorithm identifies a mis-
alignment. We formalize a delivery process from e-commerce using REC, and
present a case study to demonstrate the workings of our approach.

1 Introduction

Agent contracts, on one hand, describe how agents should act given certain situations.
On the other hand, they provide clues on whom to blame when a violation occurs. A
contract is often represented by a commitment [7], which is formed between a debtor
and a creditor about a specific property. In a realistic environment, a commitment is
associated with a deadline [8], telling that its property has to be brought about within
that bound. If not, a violation occurs regarding that commitment. A violation of a com-
mitment means an exception for its creditor. In a distributed contract-based setting, each
agent keeps track of its own commitments. Thus, the cause of such an exception is of-
ten a misalignment between the debtor and the creditor’s individual copies of the same
commitment. Example 1 presents such a scenario from a real-life delivery process.

Example 1. The online purchase of a book. Let us consider a scenario with a customer
who wishes to buy a book from a store. The transaction needs two additional parties:
a bank and a deliverer. The customer selects the book she wishes to purchase from the
website of the store, and pays for it using a bank transfer on Monday. The contract
between the customer and the store tells that when the customer’s payment is verified
by the bank, then the book will be delivered within five business days. Assume that
the bank verifies the customer’s payment on Wednesday. Now, the customer expects
delivery until the following Wednesday. However, the bank does not notify the store
about the verification of the customer’s payment until Friday. When the store receives
the notification, he infers the deadline for delivery as the following Friday (two days
later than the customer has previously inferred). When the customer does not receive
the book on Wednesday, she asks the store about it. The store tells the customer that
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there are two more days until the deadline. At this point, the customer understands that
there is a misalignment of their commitments. She has to decide what to do next. One
such possibility is to update the violated contract and to wait for the new deadline.

There is one key point in Example 1 that provides the motivation for our diagnosis ap-
proach: the point where the customer becomes aware that the store has a similar com-
mitment about the delivery of the book, but with a different deadline. This is a typical
misalignment of commitments which is caused by different observations of the debtor
and the creditor [3]. Another possible cause of misalignment is simply a misbehavior
of the debtor (e.g., the store delegates its commitment to a deliverer without respecting
its deadline with the customer). Moreover, a misalignment may also be caused by mis-
understandings among agents (e.g., the customer receives another book instead of the
purchased one). Schroeder and Schweimeier [6] study such cases based on negotiation
and argumentation theory. However, in this work, we only consider misbehavior and
misalignment caused by different observations.

Among the few related work, Chopra and Singh [3] formalize commitment align-
ment in multiagent systems. They consider misalignment of commitments that arise
from different observations of the debtor and the creditor. In their solution, the creditor
informs the debtor when the condition of their conditional commitment is satisfied so
that debtor and creditor can infer the same base-level commitment. This approach re-
quires extra communication among the participants of the commitment. However, note
that exceptions are rare cases in process execution, and forcing extra communication to
ensure alignment would be an unnecessary overhead most of the times. We then choose
to verify alignment on demand, i.e., when an exception occurs. Another shortcoming
of Chopra and Singh’s formalization is the lack of deadlines for commitments. Without
them, it is hard to capture realistic e-commerce scenarios.

Accordingly, we propose a distributed collaborative process to diagnose exceptions
risen by conflicting deadlines of commitments, caused either by misalignment or by
misbehavior. When the creditor agent detects that one of its commitments is violated,
it initiates the diagnosis process by making a diagnosis request to the commitment’s
debtor. Diagnosis continues based on the exchange of commitments that are relevant to
(i.e., having the same property with) the violated commitment. If we follow Example
1, the customer makes a diagnosis request to the store about her violated commitment.
Based on the complexity of the exception, the diagnosis process may involve a set of
agents other than the store (e.g., the store may have delegated its commitment to a
further agent). In the end, the diagnosis results in one of the following:

1. a failure, where no conclusions can be drawn,
2. a misbehavior diagnosis, with a culprit agent identified as being responsible, or
3. a misalignment diagnosis, with a possible commitment to be aligned with.

In the case of misalignment, the agents can maintain alignment via an alignment pol-
icy described by a set of commitment update rules. This is often the case for real-life
delivery scenarios; the customer may accept to wait a bit longer in the case of a mis-
alignment over the deadlines. Alternatively, agents could start negotiating on what to
do next. That could solve both situations of misalignment and misbehavior. However
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we do not address negotiation in this paper, but only diagnosis and a simple form of
automatic realignment.

In order to evaluate our approach, we extend the scenario described in Example 1.
We formalize the agents’ interactions in REC [1], a reactive form of Event Calculus
[5]. Any tool could have been used, for this purpose, that provides run-time monitoring
of commitments. However, REC is the only tool we are aware of, that accommodates
commitments with temporal constraints.

Our diagnosis architecture includes coupled knowledge-bases, in which agents store
the protocol rules and contracts they agree upon. That is, a protocol rule is contained in
the knowledge-base shared between two agents if that rule concerns those two agents.
Similarly, a contract is contained in the knowledge-base shared between its participants.
In particular, these shared knowledge-bases contain commitment and protocol rules
in REC and the facts agreed upon by the interested parties. They do not contain an
extensional description of the commitments, e.g., the current states of the commitments.

Each agent has a separate trace of happened events according to what it observes.
Thus, an agent can only track down the status of its own commitments. We assume that
agents are always honest and collaborative during diagnosis. That is, when an agent is
requested to take part in the diagnosis process, it does so. Note that being identified as
a culprit for misbehavior does not necessarily make an agent dishonest or malicious.
The agent may have unintentionally caused an exception, but can still help identify the
cause of it.

The algorithm we propose always terminates, is sound and, if associated with suit-
able agent policies, is capable of removing misalignment whenever possible. We dis-
cuss these and other results. Eventually, we illustrate the approach by presenting three
different traces of events that lead to separate diagnosis results.

The rest of the paper is organized as follows. The next section reviews commitments.
Section 3 describes the delivery scenario to be used as our running example. Section 4
describes the similarity relation we propose to verify alignment of commitments. Then,
Section 5 describes our diagnosis process which makes use of the similarity relation
and an alignment policy to be used in the case of misalignment. Section 6 describes the
case study. Finally, Section 7 concludes the paper with further discussion.

2 Commitments in REC

We use commitments [7] to represent agent contracts. A commitment is formed between
a debtor and a creditor, in which the debtor is committed to the creditor for bringing
about a property. In this paper, we use REC [1,8] to model time-aware commitments
(i.e., commitments with temporal constraints). In REC we can express that an event
initiates (or terminates) a fluent or property of the system, by way of initiates(Event,
Fluent, Time) relations.

REC models two types of temporal constraints on commitments: (1) an existential
temporal constraint where the property of the commitment has to be brought about
inside a time interval, and (2) a universal temporal constraint where the property of the
commitment has to be maintained valid along a time interval. Here, we focus only on
base-level commitments with existential temporal constraints.
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We use the following syntax to represent an existential base-level commitment
throughout the paper:

s(c(x, y, property(e(t1, t2), p))),

where x and y are the debtor and the creditor of the commitment, respectively. The
existential temporal constraint e(t1, t2) on the property p means that the logic formula
p has to become true at a specific time t within t1 and t2 (t1 ≤ t ≤ t2). If so, the
commitment is satisfied. Otherwise, the commitment is violated. We use s to show the
current status of the commitment at a specific time point1. When the commitment is
first created by the create operation [9], the commitment’s state is active.

We use the following syntax to represent a happened event (e.g., as a tell message):

hap(event(tell(x, y, e(p1, ..., pn))), t),

where x and y are the sender and receiver of the message, respectively. The event de-
scription is represented by e(p1, ..., pn), where p1 through pn are the parameters asso-
ciated with e. The time of occurrence of the event is represented by t.

3 Running Example

Figure 1 shows the delivery process introduced in Example 1. We assume that the cus-
tomer has already placed the order, by direct or indirect interaction with the store, e.g.,
via an e-commerce Web site. We thus focus on the subsequent phases (payment &
delivery).

Customer

Bank

Store

Deliverer

pay

verify

notify verification

send

notify delivery

deliver

Fig. 1. Delivery Process

In a desired execution, first the customer sends the payment to the bank regarding
its purchase from the store (pay). Then, the bank verifies the payment of the customer
(verify), and informs the store about the verification (notify verification). Upon receiv-
ing the verification, the store requests the delivery of the book from the deliverer (send).
Finally, the deliverer delivers the book to the customer (deliver), and informs the store
about the delivery (notify delivery). Listings 1 through 5 show how this process is for-
malized using REC in coupled knowledge-bases.

Listing 1 shows the REC rules for the customer and the bank. We model the agents’
interactions as tell events from a sender towards a receiver. The first two rules (CB1 and

1 Note that here we use this notation for presentation purposes only. In REC, the status is also a
parameter of the commitment description.
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CB2) describe the effects of such events in terms of fluents paid and verified. The last
rule (CB3) corresponds to a create operation for commitments [9,8]. The semantics is
that when the customer sends the payment for an item of the store to the bank, then the
bank will be committed to verifying that payment in three time units (without loss of
generality, we use days as the time unit from now on). Note that lines starting with %
are comments.

� �

% CB1 : pay
initiates ( tell (Customer ,Bank ,pay ( Item ) ) , paid ( Item ) , ) .

% CB2 : v e r i f y payment
initiates ( tell (Bank ,Customer ,verify ( Item ) ) , verified (Item ) , ) .

% CB3 : pay−v e r i f y commitment
create ( tell (Customer ,Bank ,pay ( Item ) ) ,Bank ,

c (Bank ,Customer ,property (e (Ts ,Te ) , verified ( Item ) ) ) , Ts):−
Te is Ts+ 3 .

� �

Listing 1. Coupled knowledge-base of the customer and the bank

Listing 2 shows the REC rules for the bank and the store. Note that the only rule
BS1 is similar to the rule CB2, in which the only difference is the receiver. That is, the
bank notifies the store about the verification of the customer’s payment.2

� �

% BS1 : v e r i f y payment
initiates ( tell (Bank ,Store ,verify ( Item ) ) , verified ( Item ) , ) .

� �

Listing 2. Coupled knowledge-base of the bank and the store

Listing 3 shows the REC rules for the customer and the store. The only rule CS1
describes the commitment between them. The semantics is that when the bank sends the
payment verification, then the store will be committed to deliver the item in five days.

� �

% CS1 : v e r i f y −d e l i v e r commitment
create ( tell (Bank , ,verify (Item ) ) ,Store ,

c (Store ,Customer ,property (e (Ts ,Te ) ,delivered ( Item ) ) ) , Ts):−
Te is Ts+ 5 , holds at ( in stock ( Item ,Store ) ,Ts ) .

� �

Listing 3. Coupled knowledge-base of the customer and the store

Listing 4 shows the REC rules for the store and the deliverer. The first two rules
(SD1 and SD2) describe the events for the request of a delivery, and the delivery itself.
The last rule SD3 describes the commitment between the two agents. The semantics is

2 For the sake of simplicity, we do not indicate further conditions on Bank, Store, and Item,
which are free variables. A detailed implementation would require to express restrictions on
such variables, i.e., to define the “context” [2].
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that when the store requests the delivery of an item, then the deliverer will be committed
to deliver that item in three days.

� �

% SD1 : send f o r d e l i v e r y
initiates ( tell (Store ,Deliverer ,send (Item ) ) , sent ( Item ) , ) .

% SD2 : d e l i v e r
initiates ( tell (Deliverer ,Store ,deliver ( Item ) ) , delivered ( Item ) , ) .

% SD3 : send−d e l i v e r commitment
create ( tell (Store ,Deliverer ,send ( Item ) ) ,Deliverer ,

c (Deliverer ,Store ,property (e (Ts ,Te ) ,delivered ( Item ) ) ) , Ts):−
Te is Ts+ 3 .

� �

Listing 4. Coupled knowledge-base of the store and the deliverer

Listing 5 shows the REC rules for the deliverer and the customer. The only rule DC1
is similar to the rule SD2, in which the only difference is the receiver.

� �

% DC1 : d e l i v e r
initiates ( tell (Deliverer ,Customer ,deliver ( Item ) ) ,

delivered ( Item ) , ) .
� �

Listing 5. Coupled knowledge-base of the deliverer and the customer

4 Commitment Similarity

Chopra and Singh [3] propose a stronger-weaker relation for commitments using the
commitments’ conditions and propositions (i.e., properties). However, we do not focus
on the properties of the commitments. But, we make comparisons based on the temporal
constraints associated with their properties (i.e., deadlines), and the agents involved
(i.e., debtor and creditor). Accordingly, we propose the following similarity levels for
commitments.

Definition 1. Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1))) is relevant to
commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if property p1 is identical to
property p2.

Example 2. active(c(deliverer, store, property(e(7.0,10.0), delivered(book)))) is
relevant to violated(c(store, customer, property(e(3.0,8.0), delivered(book)))) since
their properties are identical.

Definition 2. Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1))) is a forward-shift
of commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if c1 is relevant to c2, x1 =
x2, y1 = y2, t1 > t3, and t2 > t4.
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Example 3. active(c(store, customer, property(e(5.0,10.0), delivered(book)))) is a
forward-shift of violated(c(store, customer, property(e(3.0,8.0), delivered(book))))
since they are relevant, and the deadline of the former is greater than that of the latter.

Note that the forward-shift of a commitment usually has a different status than the com-
mitment itself. But, we do not restrict the definition of forward-shift with constraints on
commitment status.

Definition 3. The debtor-creditor couple (x1, y1) is a delegatee of the debtor-creditor
couple (x2, y2) if (1) x1 �= x2 and y1 = y2, or (2) x1 �= y2 and x2 = y1.

Note that [9,3] propose a more restricted definition of delegation which is limited to
case (1). There, when a delegation occurs, only the debtor of the commitment changes.
Definition 3 extends the notion of delegation by case (2). This provides a way to trace a
set of delegated commitments when diagnosing an exception (e.g., identify the sequence
of delegations). The first case does not support this by just looking at the commitments
themselves. That is, if the commitment is delegated several times, it is not possible to
keep track of the delegation sequence.

Example 4. (deliverer , store) is a delegatee of (store , customer), and (driver ,
deliverer) is a delegatee of (deliverer , store). Thus, we have a sequence of two del-
egations: (1) from (store, customer) to (deliverer, store), and (2) from (deliverer,
store) to (driver, deliverer).

However, note that these delegatee relations only make sense when embedded in a com-
mitment as described next.

Definition 4. Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1))) is a delegation of
commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if c1 is relevant to c2, t1 ≥ t3,
t2 ≤ t4, and (x1, y1) is a delegatee of (x2, y2).

Note that the delegation of a commitment usually has the same status as the commitment
itself.

Example 5. active(c(deliverer, store, property(e(5.0,8.0), delivered(book)))) is a
delegation of active(c(store, customer, property(e(3.0,8.0), delivered(book)))) since
they are relevant, and the debtor-creditor couple of the former is a delegatee of that of
the latter.

Definition 5. Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1))) is a forward-shift
delegation of commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if c1 is relevant to
c2, t1 > t3, and t2 > t4, and (x1, y1) is a delegatee of (x2, y2).

Example 6. active(c(deliverer, store, property(e(7.0,10.0), delivered(book)))) is
a forward-shift delegation of violated (c (store, customer, property ( e (3.0, 8.0),
delivered (book)))) since they are relevant, the deadline of the former is greater than
that of the latter, and the debtor-creditor couple of the former is a delegatee of that of
the latter.



What Happened to My Commitment? 89

Remark 1. Relevance is an equivalence relation, i.e., it is reflexive, symmetric and tran-
sitive. Forward-shift instead is asymmetric and thus non reflexive, but it is transitive.
Delegation and forward-shift delegation are neither symmetric nor transitive.

Listing 6 shows the REC rules for the above definitions. Note the syntax for CLP con-
straints x �= y (\=(x, y)) and x > y (>(x, y)).

� �

% S1 : r e l e v a n t
r e l e v a n t ( c ( X1 , Y1 , property (e ( Ts1 , Te1 ) , P ) ) ,

c ( X2 , Y2 , property (e ( Ts2 , Te2 ) , P ) ) ) .

% S2 : f o rward−s h i f t
f s h i f t ( c (X1 , Y2 , property (e ( Ts1 , Te1 ) , P1 ) ) ,

c (X2 , Y2 , property (e ( Ts2 , Te2 ) , P2 ) ) ) : −
r e l e v a n t ( c ( X1 , Y1 , property (e ( Ts1 , Te1 ) , P1 ) ) ,

c ( X2 , Y2 , property (e ( Ts2 , Te2 ) , P2 ) ) ) ,
>(Ts1 , Ts2 ) , >(Te1 , Te2 ) .

% S3 : d e l e g a t e e
d e l e g a t e e ( ( X1 ,Y) , ( X2 ,Y)) : − \=(X1 , X2 ) .
d e l e g a t e e ( ( X1 ,Y) , ( Y, Y2)) : − \=(X1 , Y2 ) .

% S4 : f o rward−s h i f t d e l e g a t i o n
f s h i f t d e l e g a t i o n ( c (X1 , Y1 , property (e ( Ts1 , Te1 ) , P1 ) ) ,

c (X2 , Y2 , property (e ( Ts2 , Te2 ) , P2 ) ) ) : −
r e l e v a n t ( c ( X1 , Y1 , property (e ( Ts1 , Te1 ) , P1 ) ) ,

c ( X2 , Y2 , property (e ( Ts2 , Te2 ) , P2 ) ) ) ,
>(Ts1 , Ts2 ) , >(Te1 , Te2 ) ,
d e l e g a t e e ( ( X1 , Y1 ) , ( X2 , Y2 ) ) .

� �

Listing 6. Commitment similarity in REC

5 Diagnosis Process: Architecture, Algorithm, and Properties

The purpose of the diagnosis process is to investigate the status of commitments in the
system, and return a possible cause of violation. Let us now specify it more formally.
Table 1 summarizes our notation.

Definition 6. Given a set of agents A ⊆ A, and a violated commitment C ∈ C, we call
diagnosis of C by A an atom δ ∈ {failure, misbehavior(X), misalignment(C′)}, where
X ∈ A, C′ ∈ C.

A correct diagnosis describes the reason of C’s violation. It identifies one of the
following:

1. a failure, when no relevant commitment is found regarding a diagnosis request for
the violated commitment,
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Table 1. Notation used for diagnosis process

Symbol Description
C the domain of commitments
A the domain of agents
CA the set of commitments that agent A is aware of
CA the set of all commitments (CA =

⋃
A∈A CA)

CC
A the set of commitments in CA that are relevant to C

CC
A the set of commitments in CA that are relevant to C

CCf
A the set of commitments in CA that are a forward-shift of C

CCX
A the set of commitments in CA that are a delegation of C to X ∈ A

CCfX
A the set of commitments in CA that are a forward-shift delegation of C to X ∈ A

CCA
A CC

A \ (CCf
A ∪ CCX

A ) for all X ∈ A

2. a misbehavior, when the violated commitment is confirmed by its debtor, or
3. a misalignment, when an active commitment is identified that is relevant to the

violated commitment.

Definition 7. A correct diagnosis of C ∈ C by A ⊆ A is a diagnosis of C by A such
that:

– if δ = failure, then ∃x, y ∈ A, c1 = violated(c(x, y, property( e(t1, t2), p))) ∈ CC
A ,

such that c1 ∈ Cy, and CC
x = ∅.

– if δ = misbehavior(x), then ∃x, y ∈ A, c1 = violated(c(x, y, property( e(t1, t2),
p))) ∈ CC

A , such that c1 ∈ Cy , c1 ∈ Cx, and either Cc1Y
x = ∅ for all Y ∈ A, or

Cc1fY
x �= ∅ for some Y ∈ A.

– if δ = misalignment(c2), then ∃x, y ∈ A, c1 = violated(c(x, y, property( e(t1, t2),
p))), c2 = active(c(x, y, property( e(t3, t4), p))) ∈ CC

A , such that c1 ∈ Cy , c2 ∈ Cx,
and c2 is a forward shift of c1.

Let us now inspect each case described in Definition 7: (1) When the diagnosis iden-
tifies a failure, then there should be a commitment that is relevant to C, such that its
creditor infers the commitment but its debtor does not. (2) When the diagnosis identi-
fies a misbehavior, then there should be a violated commitment that is relevant to C,
such that its debtor infers the commitment, and the debtor either has not delegated the
commitment, or it has delegated the commitment without respecting its deadline (i.e.,
forward-shift delegation). (3) When the diagnosis identifies a misalignment, then there
should be a violated commitment that is relevant to C, such that its debtor infers that
the commitment is active (i.e., forward-shift).

Note that Definition 7 describes diagnosis considering the multiagent system as a
whole (e.g., all the commitments and the agents). Accordingly, we propose an algo-
rithm to achieve correct diagnosis in a distributed fashion. Figure 2 describes the ar-
chitecture used to perform such distributed diagnosis. Each agent has a separate REC
engine running in background. The REC engines are used for monitoring purposes only.
For example, the customer can run REC to monitor the status of its commitments dur-
ing process execution. When an agent detects that one of its commitments is violated,
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Fig. 2. Diagnosis Architecture

it will verify whether the violated commitment is aligned with other agents’ commit-
ments. Note that other agents may infer different (but relevant) commitments due to
their individual observations of happened events. In such a case, the creditor of the
violated commitment initiates a diagnosis process to find out what has happened.

Algorithm 1 implements this diagnosis process. The process continues as a series
of diagnosis requests among a set of agents until one of the outcomes in Definition 7
is reached. Each iteration in the process is a diagnosis request from the creditor of a
violated commitment to its debtor. We assume that agents are honest and collaborative
during the whole process. In addition, we do not allow multiple delegations of the same
commitment to several agents. Thus, an agent can delegate its commitment to a single
agent only.

Let us now trace the steps of the algorithm. There are two inputs to the algorithm:
(1) a violated commitment C and (2) the (initially empty) set of commitments Δ that
are diagnosed on so far. When an agent A is requested to diagnose on commitment C,
it proceeds according to the following five conditions:

1. No commitment found that is relevant to C. This means that the debtor does not
infer the creditor’s commitment at all (line 1) 3. Diagnosis fails (line 2).

2. An active commitment found that is a forward-shift of C. This means that there is a
misalignment between the creditor’s and the debtor’s copy of the same commitment
(line 3). Diagnosis returns the debtor’s copy as a candidate for alignment (line 4).

3. No active commitment found that is a forward-shift of C and no commitment found
that is a delegation of C. This means that the debtor also infers the creditor’s vio-
lated commitment (line 5). Diagnosis returns the debtor as a culprit (line 6).

3 Note that each check excludes Δ from CC
A .
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Algorithm 1. diagnoseA(C, Δ): Diagnosis request to agent A about C

Input: C ∈ C
Input: Δ ⊆ C
Output: δ ∈ {failure, misbehavior(X), misalignment(C′)}, X ∈ A, C′ ∈ C
if CC

A \Δ=∅ then1

δ=failure;2

else if ∃C′ ∈ CCf
A \Δ s.t. active(C′) then3

δ=misalignment(C′);4

else if ∀X.CCX
A \Δ = ∅ ∧ CCfX

A \Δ = ∅ then5

δ=misbehavior(A);6

else if ∃X s.t. C′ ∈ CCfX
A \Δ ∧ active(C′) then7

δ=misbehavior(A);8

else9

δ=diagnoseX (C′,Δ ∪ CCA
A ) s.t. C′ ∈ CCfX

A ∪ CCX
A ;10

return δ;11

4. An active commitment found that is a forward-shift delegation of C. This means
that the debtor has delegated its commitment without respecting its deadline (line
7). Diagnosis returns the debtor as a culprit (line 8).

5. A violated commitment found that is either a delegation or a forward-shift delega-
tion of C. This means that the debtor has delegated its commitment, and that the
delegated commitment is also violated (line 9). Diagnosis continues with the debtor
of the delegated commitment (line 10).

The following properties hold for Algorithm 1:

Property 1: Algorithm 1 terminates. We consider two cases for termination: (1) there
does not exist any circular chain of delegations, and (2) there exists a circular chain of
delegations. Termination for the former case is trivial since the number of iterations is
bounded with the number of agents in the system. For the latter case, consider the fol-
lowing circular chain of delegations among the commitments; c1 = c(x, y, ...), c2 = c(z,
x, ...), ..., cn−1 = c(w, u, ...), cn = c(y, w, ...). After each agent takes one diagnosis turn,
agent y is requested to diagnose on commitment cn. Now, y cannot request a further di-
agnosis from agent x on c1 since c1 is already contained in the set of commitments that
are previously diagnosed on.

Property 2: Algorithm 1 makes a correct diagnosis. If the algorithm returns a mis-
alignment, then a misalignment has occurred in the system. Similarly, if the algorithm
returns a misbehavior, then a misbehavior has occurred in the system. However, note
that the other direction is not always true. That is, if a misalignment has occurred in the
system, the algorithm may return a misbehavior if it is also the case that a misbehavior
has occurred prior to the misalignment. Similarly, if a misbehavior has occurred in the
system, the algorithm may return a misalignment if it is also the case that a misalign-
ment has occurred prior to the misbehavior. This is intuitive as we try to deal with the
first possible reason for the exception.
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Let us now discuss the outcomes of this diagnosis process in case of misbehavior or
misalignment.

Property 3: Algorithm 1 finds the “culprit”. This is true when a single misbehavior
has occurred in the system, and no misalignments have occurred. In that case, Algorithm
1 returns an answer δ(X), X ∈ A, such that there exists an alternative possible trace of
events in X’s execution which will lead to no violation.

In the case of a misalignment, Algorithm 1 returns a commitment C′ which is the rea-
son of the misalignment. If that is the only reason of violation in the system (i.e., if there
are no other misbehaviors nor misalignments), a simple way to achieve realignment is
the following Policy P1. Agents following P1 will align their violated commitments
with the one that is presented as the outcome of the diagnosis algorithm, by following
these commitment update rules:

– Alignment with forward-shift: If the agent has commitment c1, and the diagnosis
process has proposed a commitment c2 which is a forward-shift of c1, then the
agent will replace its commitment c1 with c2.

– Alignment with forward-shift delegation: If the agent has commitment c1 = s1(c(x1,
y1, property(e(t1, t2), p1))), and the diagnosis process has proposed a commitment
c2 = s2(c(x2, y2, property(e(t3, t4), p2))) which is a forward-shift delegation of c1,
then the agent will replace c1 with c3 = s2(c(x1, y1, property(e(t3, t4), p2))).

The adoption of Policy P1 amounts to an implicit acceptance of a delayed commitment
satisfaction.

Property 4: Algorithm 1 and Policy P1 provide a means of alignment. This is true
when a misalignment has occurred in the system, and no misbehaviors have occurred
prior to that misalignment. In that case, if all agents involved in the diagnosis process
adopt P1, once Algorithm 1 terminates and all applicable P1 rules have been applied,
there will be no more violated commitment in the system.

Example 7. Assume that the agent has violated(c(store, customer, property (e(3.0,
8.0), delivered(book)))), and it is presented with a forward-shift delegation of this com-
mitment, active(c(deliverer, store, property(e(7.0,10.0), delivered(book)))). Then,
the agent will update its commitment to active(c(store, customer, property
(e(7.0, 10.0), delivered(book)))) following the rule for alignment with forward-shift
delegation.

Example 7 describes a case where the store makes a delegation to the deliverer with-
out respecting the deadline of the customer’s commitment. In real life, in such cases,
the customer often chooses to adopt to the new deadline discovered. This is a sort of
compensation for the exception faced.

6 Case Study

Next, we present three separate traces of happened events from the delivery process,
each leading to a different outcome of diagnosis. We assume that all agents adopt P1.
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customer bank store deliverer

tell(customer,bank,pay(book))
1.0

tell(bank,customer,verify(book))
3.0

tell(bank,store,verify(book))
5.0

tell(store,deliverer,request(book))
7.0

tell(deliverer,customer,deliver(book))
10.0

tell(deliverer,store,deliver(book))
10.0

Fig. 3. Trace of events for Case I

Fig. 4. REC output for customer’s trace
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6.1 Case I: Misalignment

Figure 3 shows the trace of events for the first case. The customer sends the payment
to the bank at day 1, regarding its book purchase from the store. At day 3, the bank
verifies the customer’s payment. At day 5, the bank sends the notification to the store.
Then, the store requests the delivery of the customer’s book from the deliverer at day 7.
Finally, the deliverer delivers the book to the customer at day 10. At the same time, the
deliverer notifies the store about the delivery.

Let us track the commitments of the agents in time. At day 3, the customer infers
c1 = active (c(store, customer, property( e(3.0, 8.0), delivered (book)))). At day
5, the store infers c2 = active (c(store, customer, property( e(5.0, 10.0), delivered
(book)))). At day 7, both the store and the deliverer infer c3 = active (c(deliverer,
store, property( e(7.0, 10.0), delivered (book)))). At the end of day 8, the customer
detects that c1 is violated. Figure 4 shows the output of REC for the customer’s trace.
Now, the customer initiates the diagnosis process with diagnosestore(c1, ∅). Since the
store has c2, which is a forward-shift of c1, he will immediately inform the customer of
a misalignment (Lines 3-4 of Algorithm 1). The customer then updates its commitment,
and waits for the new deadline. At day 10, the updated commitment is satisfied since
the deliverer makes the delivery.

6.2 Case II: Misbehavior

Figure 5 shows the trace of events for the second case. Again, the customer sends the
payment to the bank at day 1, regarding her purchase of the book from the store. At day
3, the bank verifies the customer’s payment, and sends the notification to the store. The
store requests the delivery of the customer’s book from the deliverer at day 7. Finally,
the deliverer delivers the book to the customer at day 10. At the same time, the deliverer
notifies the store about the delivery.

Let us track the commitments of the agents in time. At day 3, both the customer
and the store infer c1 = active (c(store, customer, property( e(3.0, 8.0), delivered

customer bank store deliverer

tell(customer,bank,pay(book))
1.0

tell(bank,customer,verify(book))
3.0

tell(bank,store,verify(book))
3.0

tell(store,deliverer,request(book))
7.0

tell(deliverer,customer,deliver(book))
10.0

tell(deliverer,store,deliver(book))
10.0

Fig. 5. Trace of events for Case II
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customer bank store deliverer

tell(customer,bank,pay(book))
1.0

tell(bank,customer,verify(book))
3.0

tell(bank,store,verify(book))
10.0

tell(store,deliverer,request(book))
12.0

tell(deliverer,customer,deliver(book))
15.0

tell(deliverer,store,deliver(book))
15.0

Fig. 6. Trace of events for Case III

(book)))). At day 7, both the store and the deliverer infer c2 = active (c(deliverer,
store, property( e(7.0, 10.0), delivered (book)))). At the end of day 8, the customer
detects that c1 is violated. So, she initiates the diagnosis process with the diagnosis
request diagnosestore(c1, ∅). Since the store now has c2 (in addition c1), which is a
forward-shift delegation of c1, he will inform the customer of a misbehavior of himself
(Lines 7-8 of Algorithm 1).

6.3 Case III: Failure

Figure 6 shows the trace of events for the third case. The customer sends the payment
to the bank at day 1, regarding its book purchase from the store. At day 3, the bank
verifies the customer’s payment. At day 10, the bank sends the notification to the store.
Then, the store requests the delivery of the customer’s book from the deliverer at day
12. Finally, the deliverer delivers the book to the customer at day 15. At the same time,
the deliverer notifies the store about the delivery.

Let us track the commitments of the agents in time. At day 3, the customer infers c1
= active (c(store, customer, property( e(3.0, 8.0), delivered (book)))). At the end
of day 8, the customer detects that c1 is violated. So, she initiates the diagnosis process
with the diagnosis request diagnosestore(c1, ∅). Since the store has no commitments
that are relevant to c1, he will signal a failure (Lines 1-2 of Algorithm 1).

7 Discussion and Future Work

In this paper, we have mainly studied diagnosis of exceptions when the commitments
of agents are misaligned with each other. Among the set of possible causes for mis-
alignment [3,6], we are interested in the temporal aspects. That is, we aimed at fixing
misalignments that are caused by conflicts in the commitments’ deadlines. We have
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argued that a conflict of deadlines among two relevant commitments may be caused
either by individual observations of agents that are in conflict with each other (i.e.,
misalignment), or by a delegation that does not respect a previously established deadline
(i.e., misbehavior). We have proposed a commitment similarity relation that can be
used to verify if two commitments are aligned in time. In the case of misalignment, the
agents can update their commitments based on the alignment policy we have proposed.
Providing an update of contract deadlines is an effective way of compensation that
mimics real-life situations very closely. While this constitutes one step of diagnosis, we
also provide the culprit agent in the case of misbehavior.

The most similar work in commitment alignment to ours is that of Chopra and
Singh’s [3]. The key points regarding our formalization and theirs are:

– There are no temporal constraints on commitments in Chopra and Singh’s formal-
ization. However, without an explicit notion of time, it is hard to capture the sce-
narios that are presented in this paper.

– Chopra and Singh propose a strength relation for commitments based on their prop-
erties (conditions and propositions). Currently, we consider only base-level com-
mitments with single properties. However, we focus on the similarity relation for
commitments since it provides a basis for verifying alignment. On one hand, the
similarity relation takes into account the deadlines associated with commitments
when verifying alignment in time. On the other hand, it takes into account the
agents associated with commitments when tracing for delegations.

– Chopra and Singh propose a solution for misalignment by ensuring that the credi-
tor of a commitment informs the debtor when the condition of the commitment is
brought about. So, the debtor of the commitment will also infer the same base-level
commitment the creditor infers. We believe that this solution may not be feasible for
large-scale e-commerce applications. Most of the time, the execution will proceed
as desired, and the agents will infer the same commitments. Thus, it is more reason-
able to verify alignment if something goes wrong (i.e., in the case of an exception).
Moreover, when deadlines are involved, a delay in such a notification message will
also cause a similar misalignment between the debtor and the creditor’s individual
commitments.

In order to demonstrate how our approach works, we have extended a delivery pro-
cess description [4] by involving temporal constraints, and formalized it in REC [1,8].
We have designed and presented three different exception cases according to the three
possible outcomes of our diagnosis algorithm. For future work, we plan to extend our
commitment similarity relation to cover the strength relation of Chopra and Singh. We
also plan to investigate cases where multiple delegations are possible for the same com-
mitment. Another possible direction for future work is to decide what to do next with
the culprit agent identified (e.g., recovery). We are currently working on how to proceed
with such diagnosis via the exchange of happened events. That is, the agents should rea-
son both on the similarity among events and the relevance between commitments and
events in order to find a suitable recovery.
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Abstract. In this paper we address the problem of verifying business
process compliance with norms. To this end, we employ reasoning about
actions in a temporal action theory. The action theory is defined through
a combination of Answer Set Programming and Dynamic Linear Time
Temporal Logic (DLTL). The temporal action theory allows us to for-
malize a business process as a temporal domain description, possibly
including temporal constraints. Obligations in norms are captured by
the notion of commitment, which is borrowed from the social approach
to agent communication. Norms are represented using (possibly) non
monotonic causal laws which (possibly) enforce new obligations. In this
context, verifying compliance amounts to verify that no execution of the
business process leaves some commitment unfulfilled. Compliance verifi-
cation can be performed by Bounded Model Checking.

1 Introduction

Verifying the compliance of business processes towards normative regulations has
become an important issue to be addressed. Many organizations (banks, hospi-
tals, public administrations, etc.), whose activities are subject to regulations are
required to justify their behaviors with respect to the norms and to show that
the business procedures they adopt conform to such norms. In the financial do-
main, in particular, the Sarbanes-Oxley Act (commonly named SOX), enacted
in 2002 in the USA, describes mandates and requirements for financial reporting,
and was proposed in order to restore investor confidence in capital markets after
major accounting scandals. MiFID (Markets in Financial Instruments Directive)
is a EU law, effective from 2007, with similar goals, including transparency.

In this paper, in order to address the problem of business process compliance
verification, we introduce a language for reasoning about action which extends
Answer Set Programming. Temporal logic can be usefully exploited both in the
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specification of an action domain and in the verification of its properties (see,
e.g., [15]). In this paper, we provide a way to specify a business process as a
temporal action domain and then we reason about it in the temporal action
theory. The same formalism is used for the representation of both processes and
norms towards which the process has to be compliant. In particular, causal laws
of the action theory are well suited to model norms as directional rules, and
defeasible negation of ASP can be exploited to model exceptions to the norms,
by allowing norms to be defeasible. To represent the obligations which can be
enforced by the application of norms, we make use of a notion of commitment,
which is borrowed from the area of multi-agent communication [24,9,15].

For the specification and verification of business processes, we rely on a Tem-
poral Action Theory [13], which combines Answer Set Programming with Dy-
namic Linear Time Temporal Logic (DLTL) [20]. DLTL extends propositional
temporal logic of linear time with regular programs of propositional dynamic
logic, that are used for indexing temporal modalities. The action language al-
lows for general temporal constraints to be included in the domain description.
The definition of action theories based on ASP presents several advantages over
the approach in [14], which is based on a monotonic solution for the frame
problem. First, the adoption of a non-monotonic solution to the frame problem,
based on ASP default negation, allows to avoid the limitation of the completion
solution in [14], which requires action and causal laws to be stratified to avoid
unexpected extensions in case of cyclic dependencies. Second, ASP allows for
a simple definition of defeasible action laws and defeasible causal laws, using
default negation. Defeasibility of causal laws is needed if they are used to model
norms with exceptions. Finally, bounded model checking [4] can be used for the
verification of temporal properties of domain descriptions in temporal ASP. The
approach developed in [19] for bounded LTL model checking with Stable Models,
has been extended in [13] to deal with DLTL bounded model checking.

Given the specification of a business process as an action domain and the
specification of norms as a set of (defeasible) causal rules generating commit-
ments, the problem of compliance verification consists in verifying that there is
no execution of the business process which leaves some commitment unfulfilled.
This verification can be done using bounded model checking thechniques.

2 Running Example

As a running example we consider a fragment of the business process of an
investment firm, where the firm offers financial instruments to an investor. The
description of the business process in YAWL is given in Figure 1. We chose
YAWL (Yet Another Workflow Language) [25] as specification language for our
running business process example, since it provides a number of advantages with
respect to several available alternatives:

– YAWL has been implemented in an open source workflow system and can be
seen as a reference implementation of the workflow patterns (the outcome of
an analysis activity based on business process modeling practice) [26].
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Fig. 1. Example business process in YAWL

– It is the most powerful business process modeling language, with respect to
control-flow, data and resource perspectives, the three orthogonal views in
a business process specification.

– It has been defined free from commercial interests.
– It provides a graphical user interface, based on a few basic elements, for

business process specification needs; this implies a better learning curve.
– It is heavily XML-based, which facilitates interoperability.
– It comes with a formal foundation, which gives the possibility to perform

formal analysis for achieving validation and verification goals.

Let us consider a regulation containing the following norms:

(1) the firm shall provide to the investor adequate information on its services
and policies before any contract is signed;

(2) if the investor signs an order, the firm is obliged to provide him a copy of
the contract.

The execution of each task in the process has some preconditions and effects.
Due to the presence of norms, the execution of a task in the process above may
generate obligations to be fulfilled. For instance, according to the second norm,
signing an order generates for the firm the obligation to provide copy of the
contract to the investor.

Verifying the compliance of a business process to a regulation requires to check
that, in all the executions of the business process, the obligations triggered by
the norms are fulfilled.

In the following, we provide the specification of the business process and of
the related norms in an action theory. The problem of verifying compliance of
the business process to the norms is then defined as a reasoning problem in the
action theory. We first introduce the action language used, which is based on a
temporal extension of answer set programming.
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3 Action Theories in Temporal ASP

A domain description is defined as a set of laws describing the effects of actions
as well as their executability preconditions. Actions may have direct effects,
that are described by action laws, and indirect effects, that capture the causal
dependencies among fluents and are described by causal laws. The execution of
an action a in a state s leads to a new state s′ in which the effect of the action
holds. The properties (fluent) which hold in s and are not affected by the action
a, still hold in s′. Let us first describe the notions of fluent and fluent literal.

Let P be a set of atomic propositions, the fluent names. A simple fluent literal
l is a fluent name f or its negation ¬f . Given a fluent literal l, such that l = f
or l = ¬f , we define |l| = f . We will denote by Lit the set of all simple fluent
literals. In the language we also make use of temporal literal, that is literals that
are prefixed by temporal modalities, as [a]l and ©l. Their intended meaning is
the following: [a]l holds in a state when l holds in the state obtained after the
execution of action a; ©l holds in a state if l holds in the next state.

LitT is the set of (temporal) fluent literals: if l ∈ Lit, then l ∈ LitT ; if l ∈ Lit,
then [a]l, ©l ∈ LitT (for a ∈ Σ, the set of actions). Given a (temporal) fluent
literal l, not l represents the default negation of l. A (temporal) fluent literal
possibly preceded by a default negation, will be called an extended fluent literal.

A domain description D is defined as a tuple (Π, Frame, C), where Π contains
action laws, causal laws, precondition laws and the initial state, Init; Frame
provides a classification of fluents as frame fluents and non-frame fluents; C is a
set of temporal constraints.

The action laws in Π have the form:

�([a]l1 or . . . or [a]lk ← l′1 ∧ . . . ∧ l′m)

where l1, . . . , lm and l′1, . . . , l
′
k are simple fluent literals. Its meaning is that ex-

ecuting action a in a state in which the conditions l′1, . . . , l
′
m hold causes either

the effect l1 or . . . or the effect lk to hold. Consider, for instance, the nonde-
terministic action of order verification(T, C), which checks if the order of the
financial product T by customer C is correct or not. In the first case, the order
is accepted, otherwise it is not:

�([order verification(T, C)]confirmed(T, C) or
[order verification(T, C)]¬confirmed(T, C)

In case of deterministic actions, there is a single disjunct in the head of the
action law. For instance, the action of informing the investor has the effect that
the investor has acquired information:

�([inform(C)]informed(C)

Causal laws are intended to express “causal” dependencies among fluents.
Static Causal laws in Π have the form:

�(l ← l1 ∧ . . . ∧ lm ∧ not l′1 ∧ . . . ∧ not l′r)
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where l, l1, . . . , lm are simple fluent literals. Their meaning is that: if l1, . . . , lm
hold in a state, l is also caused to hold in that state. For instance,

�(¬order confirmed(T, C) ← order deleted(T, C))

where “confirmed” means “confirmed by the firm” and is a possible effect of
order verification, while “deleted” means “withdrawn by the customer”, models
the fact that the direct effect “deleted” of withdrawal has the indirect effect of
making the order no longer effective for the firm as well.

Dynamic causal laws in Π have the form:

�(©l ← l1, . . . , lm, ©lm+1, . . . , ©lk)

meaning that: if l1, . . . , lm hold in a state and lm+1, . . . , lk hold in the next state,
then l is caused to hold in the next state.

Precondition laws have the form:

�([a]⊥ ← l1, . . . , lm)

with a ∈ Σ and l1, . . . , lk are simple fluent literals. The meaning is that the
execution of an action a is not possible if l1, . . . , lk hold (that is, no state results
from the execution of a in a state in which l1, . . . , lk holds). An action for which
there is no precondition law is always executable. The precondition law

�([proposal evaluation(T, C)]⊥ ← ¬selected(T, C) ∨ ¬informed(C))

states that an investor can be requested to evaluate a proposed investment only
if the proposal has been selected and the investor has been already informed
of the firm policy. Similar preconditions can either be asserted in the model, or
verified to be true. The second option is suitable for the case where the process
explicitly includes, as in figure 1, activities that make the precondition true; the
first one is suitable for the case where such activities are abstracted away.

The initial state, Init, is a (possibly incomplete) set of simple fluent literals,
the fluent which are known to hold initially. For instance, Init = {investor,
¬informed,¬signed, etc.}.

The temporal constraints in C are arbitrary temporal formulas of DLTL. They
are used to restrict the space of the possible extensions. DLTL [20] extends LTL
by allowing the until operator Uπ to be indexed by a program π, an expression
of Propositional Dynamic Logic (PDL). The usual LTL modalities � (always),
� (eventually) and U (until) can be defined from Uπ as well as the new temporal
modalities [π] and 〈π〉. Informally, a formula [π]α is true in a world w of a linear
temporal model if α holds in all the worlds of the model which are reachable
from w through any execution of the program π. A formula 〈π〉α is true in a
world w of a linear temporal model if there exists a world of the model reachable
from w through an execution of the program π, in which α holds. A formula
αUπβ is true at τ if “α until β” is true on a finite stretch of behavior which is
in the linear time behavior of the program π. The program π can be any regular
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expression built from atomic actions using sequence (;), non-deterministic choice
(+) and finite iteration (∗).

As an example of temporal constraint, ¬sent contract U signed states that
the contract is not sent to the customer until it has been signed. A temporal
constraint can also require a complex behavior to be performed, through the
specification of a program. For instance (the complete version of the program
for the process in figure 1 will be given in Section 4), the program

π = inform(C); select financial instrument(T, C);
((sign order(T, C); send contract) + withdraw(T, C))

describes a process in which: the investor C is informed, a financial instrument
T is selected for C, C either signs the contract and a copy of the contract is set
to him, or C withdraws. The formula 〈π〉true requires that there is an execution
of the program π starting from the initial state.

As in [23,22] we call frame fluents those fluents to which the law of inertia
applies. We consider frame fluents as being dependent on the actions. Frame is
a set of pairs (p, a), where p ∈ P is a fluent and a ∈ Σ, meaning that p is a
frame fluent for action a, that is, p is a fluent to which persistency applies when
action a is executed. Instead, non-frame fluents with respect to a do non persist
and may change value in a non-deterministically, when a is executed.

Unlike [14], we adopt a non-monotonic solution to the frame problem, as usual
in the context of ASP. The persistency of frame fluents from a state to the next
one can be enforced by introducing persistency laws of the form:

�([a]l ← l, not [a]¬ l),

for each simple fluent literal l and action a ∈ Σ, such that (|l|, a) ∈ Frame.
Its meaning is that, if l holds in a state, then l holds in the state obtained by
executing action a, if it can be assumed that ¬l does not hold in the resulting
state.

For capturing the fact that a fluent literal l which is non-frame with respect
to a ∈ Σ may change its value non-deterministically when a is executed, we
introduce the axiom:

�([a]p or [a]¬p ← true)

for all p and a such that (p, a) �∈ Frame. When a is executed, either the non-
frame fluent literal p holds in the resulting state, or ¬p holds. We will call
FrameD the set of laws introduced above for dealing with frame and non-frame
fluents. They have the same structure as action laws, but frame axioms contain
default negation in their bodies. Indeed, both action laws and causal laws can
be extended for free by allowing default negation in their body. This extension
has been considered for instance in [8].

As concerns the initial state, we assume that its specification is, in general,
incomplete. However, we reason on complete initial states obtained by complet-
ing the initial state in all the possible ways. and we assume that, for each fluent
literal p, the domain description contains the law:

p or ¬p ← true
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meaning that either p is assumed to hold in the initial state, or ¬p is assumed
to hold. This approach is in accordance with our treatment of non-deterministic
actions and, as we will see, gives rise to extensions in which all states are com-
plete, where each extension represents a run, i.e. a possible evolution of the world
from the initial state. We will call InitD the set of laws introduced above for
completing the initial state in all the possibile ways.

4 Specifying a Business Process as an Action Domain

In the following, we provide the specification of a business process as an ac-
tion domain description. In the following, profiling stands for investor profiling,
inform stands for inform investor, fi selection stands for financial instrument
selection, p eval stands for proposal evaluation, order verif stands for order ver-
ification. The following action and causal laws describe the effect of the actions
in the process:

�([investor identification(C)]investor(C))
�([profiling(C)]investor classified(C, D))
�([profiling(C)](risk averse(C) or risk neutral(C) or risk seeking(C)))
�([inform(C)]informed(C))
�([fi selection(t1, C)]selected(t1, C) or . . .

. . . or [fi selection(tn, C)]selected(tn, C) ←
financial instr(t1)∧. . .∧financial instr(tn)∧risk averse(C))

. . .
�([p eval(T, C)]accepted(T, C) or [p eval(T, C)]¬accepted(T, C))
�([sign order(T, C)]order signed(T, C))
�([order verif ](T, C)]order confirmed(T, C) or

[order verif ](T, C)]¬order confirmed(T, C))
�([send contract(T, C)]sent contract(T, C))
�([withdraw(T, C)]order deleted(T, C))
�(¬order confirmed(T, C) ← order deleted(T, C))
�([end procedure]end)

The following precondition laws can either be asserted or verified (see sect. 3):

�([p eval(T, C)]⊥ ← ¬selected(T, C) ∨ ¬informed(C))
�([send contract(T, C)]⊥ ← ¬confirmed(T, C))

The meaning of the second one is that it is possible to send a contract to the
investor only if the contract has been confirmed.

In order to specify business processes as programs, we introduce test actions.
DLTL does not include test actions. We define test actions as atomic actions
with no effects. For example, accepted(T, C)? is an action testing the result of
proposal evaluation in figure 1. Preconditions of accepted(T, C)? are given by
the following precondition law:

�([accepted(T, C)?]⊥ ← ¬accepted(T, C)
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stating that accepted(T, C)? is not executable in a state in which the investor
has not accepted the proposal.

A loop repeat activity until test can then be written as follows:

activity;
(¬test?; activity; )∗

test?;

Note that a regular expression e∗ represents the infinite set of strings where
each string is formed by a finite number of occurrences of e. Therefore, only the
(infinite) set of finite executions of the loop is represented. This interpretation is
consistent with the combination of “classical soundness” and “strong fairness”
in Workflow Nets, the class of Petri Nets which form the basis for the seman-
tics of YAWL; see, e.g., the comments in [27] after Definition 8 (“without this
assumption, all nets allowing loops in their execution sequences would be called
unsound, which is clearly not desirable.”).

The control flow of the process in figure 1, which is defined quite rigidly, can
be modeled by the following program π:

investor identification(C);
profiling(C);
inform(C);
fi selection(T, C);
p eval(T, C);
(¬accepted(T, C)?; fi selection(T, C); p eval(T, C))∗;
accepted(T, C)?;
sign order(T, C);
order verif(T, C);
(¬order confirmed(T, C)?; modify order(T, C); order verif(T, C))∗;
order confirmed(T, C)?;
send contract(T, C);
(withdraw(T, C) + skip);
end procedure

where the action skip is defined as the empty action, with no effect.
Given the specification of the program π given above, we introduce the following
constraints in C:

〈π〉True

meaning that in each extension of the domain description, there exists a state
reachable from the initial one through the execution of the program π (in which
of course True holds). Namely, the sequence of the actions executed must start
with an execution of the program π.

The approach we adopt in this paper for reasoning about actions is well suited
for reasoning about infinite action sequences. To deal with finite computations
we introduce a dummy action, which can be repeated infinitely many times after
the termination of the process (thus giving rise to an infinite computation). We
introduce the following constraints:
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�〈dummy〉True
�[dummy]〈dummy〉True

stating that: the dummy action must eventually be executed and, from that
point on, the dummy action is executed repeatedly. The precondition law:

�[dummy]⊥ ← ¬end

states that the dummy action cannot be executed if the process has not reached
the end point.

Although the above specification of the process is very rigid, as it is given
through the program expression π, in general a more flexible specification can
be provided by encoding the control flow of the process through the specification
of action effects and preconditions (as done, for instance, for flexibly encoding
agent protocols in [15]). This is, in general, the approach for translating YAWL
processes into a domain description with action effects and preconditions, even
though in this paper we do not propose an approach to cover all the expressive-
ness of the YAWL language.

5 Normative Specification

As we have seen in the previous section, the action theory provides a specification
of the business process which allows the effect of atomic tasks in the process
to be made explicit. According to the normative specification, the execution
of each task in the business process can, in addition, trigger some normative
position (obligation, permission, prohibition). For instance, as said above, the
identification task in the business process in Figure 1, which introduces a new
investor C, also generates the obligation to inform the investor. This obligation
must be fulfilled during the course of execution of the business process, if the
process is compliant with the norm stating that the firm has the obligation to
inform customers.

In the following we make use of causal laws to represent norms in the action
theory, and we introduce a notion of commitment to model obligations. The use
of commitments has long been recognized as a “key notion” to allow coordination
and communication in multi-agent systems [21]. Their use in social approaches
to agent communication is essentially motivated by requirements of verifiability.
Among the most significant proposals to use commitments in the specification
of protocols (or more generally, in agent communication) are [24,18,9]. A notion
of commitment for reasoning about agent protocols in a temporal action logic
have been proposed in [15]. In [1] an alternative notion to commitment called
expectation is proposed. We refer to section 7 for a discussion of this approach.

Following [15], we introduce two kinds of commitments (which are regarded as
special fluent propositions): Base-level commitments having the form C(i, j, A)
and meaning that agent i is committed to agent j to bring about A (where
A is an arbitrary propositional formula not containing commitment fluents);
Conditional commitments having the form CC(i, j, B, A) and meaning that agent
i is committed to agent j to bring about A, if condition B is brought about.
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A base level commitment C(i, j, A) can be naturally regarded as an obligation
(namely, O A, ”A is obligatory”), in which the debtor and the creditor are made
explicit. The two kinds of base-level and conditional commitments we use here
are essentially those introduced in [29]. Our present choice is different from the
one in [18], where agents are committed to execute an action rather than to
achieve a condition.

The idea is that commitments (or obligations) are created as effects of the
execution of some basic task in the business process and they are “discharged”
when they have been fulfilled. A commitment C(i, j, A), created at a given state
of a run of the process, is regarded to be fulfilled in the run if there is a later
state of the run in which A holds. As soon as committment is fullfilled in a run,
it is considered to be satisfied and no longer active: it can be discharged.

Given the notion of commitment introduced above, norms can be modeled as
precondition and causal laws which trigger new commitments/obligations. For
instance, we can encode the norms in Section 2 by the following precondition
and causal laws:

�([sign order(T, C)]⊥ ← ¬informed(C))
�(C(firm, C, sent contract(T, C)) ← order signed(T, C))

The first one is a precondition for sign order(T, C), and it is quite obviously
true in the example process model, because informed(C) is the effect of the
action inform(C) which is always executed before sign order(T, C) is reached
(and there is no action making informed(C) false). Verifying preconditions may
be more interesting in more complex processes where the action may be reached
via several paths.

The second one, a causal law, states that when an order is signed by C, the
firm is committed to C to send her the information required. The commitment
remains active until some action is executed, which makes sent contract(T, C)
true. In the business process, the commitment is fulfilled by the execution of the
action send contract(T, C).

Causal laws are needed for modeling the interplay of commitments. In partic-
ular, for each commitment C(i, j, α), we introduce the following causal laws in
the domain description:

(i) �(©¬C(i, j, α) ← C(i, j, α) ∧ ©α)
(ii) �(©C(i, j, α) ← CC(i, j, β, α) ∧ ©β)
(iii) �(©¬CC(i, j, β, α) ← CC(i, j, β, α) ∧ ©β)

A commitment to bring about α is considered fulfilled and is discharged (i) as
soon as α holds. A conditional commitment CC(i, j, β, α) becomes a base-level
commitment C(i, j, α) when β has been brought about (ii) and, in that case, the
conditional commitment is discharged (iii).

One of the central issues in the representation of norms comes from the de-
feasible nature of norms. Norms may have exceptions: recent norms may cancel
older ones; more specific norms override more general norms; and in other cases,
explicit priority information (not necessarily related to recency or specificity) is
needed for disambiguation. Consider the following example from [17]:
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r1: C(S, M, O, discount) ← sells(S, M, O) ∧ premium customer(M)
r2: ¬C(S, M, O, discount) ← sells(S, M, O) ∧ special order(S, M, O)

Rule r1 says that a seller has the obligation to apply a discount to premium
customers. Rule r2 says that premium customer are not entitled for a discount
in case the order (O) is a special order. Suppose that rule r2 is explicitly given
priority over r1 (r2 > r1). The priority between the conflicting norms r1 and
r2, with r2 > r1, can be modeled using default negation. For instance, we can
transform the rules r1 and r2 as follows:

�(C(s, m, o, discount) ← sells(s, m, o) ∧ premium(m) ∧ not bl(r1))
�(¬C(s, m, o, discount) ← sells(s, m, o) ∧ special order(c) ∧ not bl(r2))
�(bl(r1) ← sells(s, m, o) ∧ special order(c) ∧ not bl(r2))
�(¬bl(r1) ← not bl(r1))
�(¬bl(r2) ← not bl(r2))

(where bl(ri) means that ri is blocked) so that rule r2, when applicable, blocks
the application of r1, but not vice-versa.

In the context of ASP, more general and complex encodings of prioritized
rules into standard rules with default negation have been studied in [7] and in
[5]. We expect that a similar approach can be exploited in this setting to model
defeasible norms as prioritized defeasible causal laws.

Another issue to be addressed when modeling norms is that of formalizing
violations and reparation obligations. When an obligation is violated, another
obligation can be generated as a reparation of that violation. In [17] this problem
is addressed through the definition of reparation chains OA ⊗ OB ⊗ OC, where
OB is the reparation of the violation of OA, and OC is the reparation of the vio-
lation of OB, so that the rules representing norms can have a reparation chain in
the conclusion. For instance, the norm OPay in time⊗OPay with Interest ←
Invoice says that, after the invoice has been received, the obligation to pay in
time is generated but, if this obligation is not fulfilled, the obligation to pay with
interest is generated. We can represent this norm with the following laws:

r1: C(i, j, Pay in time) ← Invoice(j, i)
r2: C(i, j, Pay with Interest) ←

Invoice(j, i) ∧ C(i, j, Pay in time) ∧ ¬Pay in time
r3: ¬C(i, j, Pay in time) ←

Invoice(j, i) ∧ C(i, j, Pay in time) ∧ ¬Pay in time

The first law states that after i receives the invoice from j, i is committed to j
to pay in time; r2 and r3 state that, if there is a commitment to pay in time and
it is violated, then this commitment is discharged and the commitment to pay
with interest is generated. Rule r3 has priority over r1.

6 Temporal Answer Sets and Compliance Verification

Once the specification of the business process has been given as a domain de-
scription in an action theory, the problem of verifying its compliance with some
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regulation can be modeled as the problem of verifying that all the executions
of the business process fulfill the obligations that are generated during the ex-
ecution of the process. In order to characterize the executions of the business
process and to check if they violate some obligation, we introduce the notion of
extension of a domain description.

A domain description D = (Π, Frame, C), is a general logic program extended
with a restricted use of temporal modalities. The action modalities [a] and ©
may occur in front of simple literals within rules and the � modality occurs
in front of all rules in Π . Following [13], we introduce a notion of temporal
answer set, extending the notion of answer set [10]. The extensions of a domain
description are then defined as the temporal answer sets of Π ∪FrameD ∪InitD
satisfying the integrity constraints C.

We define a partial temporal interpretation S as a set of literals of the form
[a1; . . . ; ak]l where a1, . . . , ak ∈ Σ, meaning that literal l holds in S in the state
obtained by executing the actions a1, . . . , ak in the order.

Definition 1. Let σ ∈ Σω. A partial temporal interpretation S over σ is a set
of temporal literals of the form [a1; . . . ; ak]l, where a1 . . . ak is a prefix of σ, and
it is not the case that both [a1; . . . ; ak]l and [a1; . . . ; ak]¬l belong to S (namely,
S is a consistent set of temporal literals).

We define a notion of satisfiability of a literal l in a temporal interpretation S in
the state a1 . . . ak as follows. A literal l is true in a partial temporal interpretation
S in the state a1 . . .ak (and we write S, a1 . . . ak |=t l), if [a1; . . . ; ak]l ∈ S;
a literal l is false in a partial temporal interpretation S in the state a1 . . . ak

(and we write S, a1 . . . ak |=f l), if [a1; . . . ; ak]l ∈ S; and, finally, a literal l is
unknown in a partial temporal interpretation S in the state a1 . . . ak (and we
write S, a1 . . . ak |=u l), otherwise.

The notion of satisfiability of a literal in a partial temporal interpretation in
a given state, can be extended to temporal literals and to rules in a natural way.

For temporal literals [a]l, we have: S, a1 . . . ak |=t [a]l if [a1; . . . ; ak; a]l ∈ S
or a1 . . .ak, a is not a prefix of σ; S, a1 . . .ak |=f [a]l if [a1; . . . ; ak; a]l̄ ∈ S or
a1 . . . ak, a is not a prefix of σ; and S, a1 . . . ak |=u [a]l, otherwise.

For temporal literals of the form ©l: S, a1 . . . ak |=t ©l if [a1; . . . ; ak; b]l ∈ S,
for some b with a1 . . . akb prefix of σ; S, a1 . . . ak |=f ©l if [a1; . . . ; ak; b]l̄ ∈ S,
for some b with a1 . . . akb prefix of σ; S, a1 . . . ak |=u ©l, otherwise.

For default negation, we have: S, a1 . . .ak |=t not l if S, a1 . . . ak |=f l or
S, a1 . . . ak |=u l; and S, a1 . . . ak |=f not l, otherwise.

The three valued evaluation of conjunctions and disjunctions of literals is
defined as usual in ASP (see, for instance, [10]). Finally, we say that a rule
�(H ← Body) is satisfied in a partial temporal interpretation S if, for all
action sequences a1 . . . ak (including the empty one), S, a1 . . .ak |=t Body im-
plies S, a1 . . .ak |=t H . We say that a rule [a1; . . . ; ah](H ← Body), is sat-
isfied in a partial temporal interpretation S if S, a1 . . .ah |=t Body implies
S, a1 . . . ah |=t H .
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We are now ready to define the notion of answer set for a set of P of rules that
do not contain default negation. Let P be a set of rules over an action alphabet
Σ, not containing default negation, and let σ ∈ Σω.

Definition 2. A partial temporal interpretation S over σ is a temporal answer
set of P if S is minimal (in the sense of set inclusion) among the partial inter-
pretations satisfying the rules in P .

We want to define answer sets of a program P possibly containing negation.
Given a partial temporal interpretation S over σ ∈ Σω, we define the reduct,
PS, of P relative to S extending the transformation in [10] to compute a different
reduct of P for each prefix a1, . . . , ah of σ.

Definition 3. The reduct, PS
a1,...,ah

, of P relative to S and to the prefix a1, . . . , ah

of σ , is the set of all the rules [a1; . . . ; ah](H ← l1 ∧ . . . ∧ lm), such that �(H ←
l1 ∧ . . . ∧ lm ∧ not lm+1 ∧ . . . ∧ not lk) is in P and, for all i = m + 1, . . . , k, either
S, a1, . . . , ah |=f li or S, a1, . . . , ah |=u li, (where l, l1, . . . , lk are simple or tem-
poral literals). The reduct PS of P relative to S over σ is the union of all reducts
PS

a1,...,ah
for all prefixes a1, . . . , ah of σ.

Definition 4. A partial temporal interpretation S over σ is an answer set of P
if S is an answer set of the reduct PS.

The definition above is a natural generalization of the usual notion of answer set
to programs with temporal rules. Observe that, σ has infinitely many prefixes, so
that the reduct PS is infinite and answer sets are infinite. This is in accordance
with the fact that temporal models are infinite. Given to the laws for completing
the initial state in InitD, we can prove the following:

Proposition 1. Given a domain description D over Σ and an infinite sequence
σ, any answer set of Π ∪ FrameD ∪ InitD over σ is a total answer set over σ.

It can be shown that, by persistency laws, the execution of an action in a com-
plete state produces a new complete state, which is only determined by the
action laws, causal laws and persistency laws executed in that state.

In the following, we define the notion of extension of a domain description
D = (Π, Frame, C) over Σ in two steps: first, we find the answer sets of Π ∪
FrameD ∪ InitD; second, we filter out all the answer sets which do not satisfy
the temporal constraints in C. For the second step, we need to define when a
temporal formula α is satisfied in a total temporal interpretation S. Observe that
a total answer set S over σ can be regarded as a linear temporal (DLTL) model
[20]. Given a total answer set S over σ we define the corresponding temporal
model as MS = (σ, VS), where p ∈ VS(a1, . . . , ah) if and only if [a1; . . . ; ah]p ∈ S,
for all atomic propositions p. We say that a total answer set S over σ satisfies a
DLTL formula α if MS, ε |= α.

Definition 5. An extension of a domain description D = (Π, Frame, C) over
Σ, is any (total) answer set S of Π ∪FrameD ∪InitD satisfying the constraints
in C.
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Notice that, in general, a domain description may have more than one extension
even for the same action sequence σ: the different extensions of D with the same
σ account for the different possible initial states (when the initial state is incom-
pletely specified) as well as for the different possible effects of nondeterministic
actions.

The extensions of the domain description define all the possible executions
of the business process. To check if there is an execution which violates some
obligation we model the need to fulfil a commitment C(i, j, α) as the temporal
formula:

�(C(i, j, α) → �α)

Such formulae, together with the precondition formulae corresponding to norms,
is the set of formulae to be verified in order to check compliance. We can then
introduce the following definition.

Definition 6. Let DB the domain description providing the specification of a
business process B and let PN and CN be, respectively, the set of precondition
laws and causal laws in a set N of norms. The business process B is compliant
with N if for each extension S of the domain description DB ∪ CN :

– for each precondition law P in PN , S satisfies P ;
– for each commitment C(i, j, α) occurring in CN , S satisfies the formula

�(C(i, j, α) → �α).

Consider the domain description DB ∪CN , including the specification DB of the
business problem example and the causal law

�(C(firm, C, sent contract(T, C)) ← order signed(T, C))

Each extension S of the domain description satisfies the temporal formulas

�(C(firm, C, sent contract(T, C)) → �sent contract(T, C))
�([sign order(T, C)]⊥ ← ¬informed(C))

Hence, the business process is compliant with the norms.
Observe that a weaker notion of compliance can be defined by weakening

the fulfilment condition to �(C(i, j, α) → �(α ∨ ¬C(i, j, α)), meaning that a
commitment occurring on a run is weakly fulfilled if there ia a later state in
which either α holds or the commitment has been discharged. This notion of
fulfillment can be used to deal with reparation chains [17].

In [13] we describe bounded model checking techniques for computing the ex-
tensions of a temporal domain description and for verifying temporal properties
of a domain description. More precisely, we describe a translation of a temporal
domain description into standard ASP, so that the temporal answer sets of the
domain description can then be computed as the standard answer sets of its
translation. Temporal constraints, which are part of the domain description, are
evaluated over temporal answer sets using bounded model checking techniques
[4]. The approach proposed for the verification of DLTL formulas extends the
one developed in [19] for bounded LTL model checking with Stable Models.
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7 Conclusions and Related Work

The paper deals with the problem of verifying the compliance of business pro-
cesses with norms. Our approach is based on a temporal extension of ASP for
reasoning about actions. Both the business process and the norms are given
a specification in a domain description. In particular, defeasible causal laws
are used for modeling norms and commitments are introduced for representing
obligations. The verification of compliance can be performed by using bounded
model checking techniques, which generalize LTL bounded model checking [19].

Temporal rule patterns for regulatory policies are introduced in [12], where
regulatory requirements are formalized as sets of compliance rules in a real-time
temporal object logic. The proposed REALM approach is based on three central
pillars: (1) the domain of discourse of a regulation is captured by a concept
model expressed as UML class diagrams (concept model); (2) the regulatory
requirements are formalized as a set of logical formulas expressed in a real-time
temporal object logic, namely a combination of Alur and Henzinger’s Timed
Propositional Temporal Logic and many-sorted first-order logic (compliance rule
set). (3) Information about the structure of the legal source as well as life-
cycle data are captured as separate metadata, which allow to annotate both the
concept model and the compliance rule set to ensure traceability from regulatory
requirements to model elements and vice versa. The approach is used essentially
for event monitoring.

[11] proposes an approach based on annotations of business process models.
In detail, the tasks of a business process model in BPMN are annotated with
their effects. A suitable mechanism to propagate and cumulate the effects of a
task to next ones is presented. Process compliance verification establishes that a
business process model is consistent with a set of compliance rules. This approach
does not introduce normative concepts.

[17] proposes an approach to the problem of business process compliance based
on the idea of annotating the business process. Process annotations and norma-
tive specifications are provided in the same logical language, namely, the Formal
Contract Language (FCL). FCL combines defeasible logic [3] and deontic logic of
violations [16] which allows to represent exceptions as well as to express reparation
chains, to reason with violations, and the obligations resulting from violations.
The notions of ideal, sub-ideal and non-ideal situations are defined to describe
two degrees of compliance between execution paths and FCL constraints. Com-
pliance is verified by traversing the graph describing the process and identifying
the effects of tasks and the obligations triggered by the task execution. Algorithms
for propagating obligations through the process graph are defined. Obligations are
discharged when they are fulfilled. In this paper we provide a characterization the
compliance problem as a problem of reasoning about actions, which provides busi-
ness process specification, normative specification, and compliance verification in
an integrated representation and reasoning framework.

In [28] process models are considered in which individual activities are an-
notated with logical preconditions and effects. A formal execution semantics
for annotated business processes is introduced and several verification tasks are
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defined to check whether the business process control flow interacts correctly
with the behaviour of the individual activities.

An approach to compliance based on a commitment semantics in the context
of multi-agent systems is proposed in [6]. In this work, the authors formalize
notions of conformance, coverage, and interoperability, proving that they are
orthogonal to each other. The basic idea of the authors is that for an agent to
be compliant with a protocol, it must be conformant with it, and conformance
can be checked at design time. Another approach to the verification of agents
compliance with protocols, based on a temporal action theory, has been proposed
in [15]. These papers do not address the problem of compliance with norms.

The notion of expectation, which is alternative to the notion of commitment,
has been proposed in [1] for the specification of agent protocols. Expectations are
used for modelling obligations and prohibitions in the abductive computational
framework SOCS [2]. Intuitively, obligations and prohibitions are mapped into
abducible predicates, expressing positive and negative expectations, respectively;
norms are formalized by abductive integrity constraints. The paper points out
that the abductive proof procedure SCIFF can be used for on-the-fly verification
of agents conformance to norms.
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Appendix

A Dynamic Linear Time Temporal Logic

The appendix describes shortly the syntax and semantics of linear time logic
DLTL [20].
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Let Σ be a finite non-empty alphabet. The members of Σ are actions. Let Σ∗

and Σω be the set of finite and infinite words on Σ, where ω = {0, 1, 2, . . .}. Let
Σ∞ =Σ∗ ∪ Σω. We denote by σ, σ′ the words over Σω and by τ, τ ′ the words
over Σ∗. Moreover, we denote by ≤ the usual prefix ordering over Σ∗ and, for
u ∈ Σ∞, we denote by prf(u) the set of finite prefixes of u.

We define the set of programs (regular expressions) Prg(Σ) generated by Σ
as follows:

Prg(Σ) ::= a | π1 + π2 | π1; π2 | π∗

where a ∈ Σ and π1, π2, π range over Prg(Σ). A set of finite words is associated
with each program by the mapping [[]] : Prg(Σ) → 2Σ∗

, which is defined in the
standard way.

Let P = {p1, p2, . . .} be a countable set of atomic propositions containing �
and ⊥.

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P and α, β range over DLTL(Σ).
A model of DLTL(Σ) is a pair M = (σ, V ) where σ ∈ Σω and V : prf(σ) → 2P

is a valuation function. Given a model M = (σ, V ), a finite word τ ∈ prf(σ) and
a formula α, the satisfiability of a formula α at τ in M , written M, τ |= α, is
defined as follows:

– M, τ |= p iff p ∈ V (τ);
– M, τ |= ¬α iff M, τ �|= α;
– M, τ |= α ∨ β iff M, τ |= α or M, τ |= β;
– M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈ prf(σ) and M, ττ ′ |=

β. Moreover, for every τ ′′ such that ε ≤ τ ′′ < τ ′1, M, ττ ′′ |= α.

A formula α is satisfiable iff there is a model M = (σ, V ) and a finite word
τ ∈ prf(σ) such that M, τ |= α.

The formula αUπβ is true at τ if “α until β” is true on a finite stretch of
behavior which is in the linear time behavior of the program π.

The derived modalities 〈π〉 and [π] can be defined as follows: 〈π〉α ≡ �Uπα
and [π]α ≡ ¬〈π〉¬α.

Furthermore, if we let Σ = {a1, . . . , an}, the U , O (next), � and � operators of
LTL can be defined as follows: ©α ≡

∨
a∈Σ〈a〉α, αUβ ≡ αUΣ∗

β, �α ≡ �Uα,
�α ≡ ¬�¬α, where, in UΣ∗

, Σ is taken to be a shorthand for the program
a1 + . . . + an. Hence both LTL(Σ) and PDL are fragments of DLTL(Σ). As
shown in [20], DLTL(Σ) is strictly more expressive than LTL(Σ). In fact, DLTL
has the full expressive power of the monadic second order theory of ω-sequences.

1 We define τ ≤ τ ′ iff ∃τ ′′ such that ττ ′′ = τ ′. Moreover, τ < τ ′ iff τ ≤ τ ′ and τ �= τ ′.



From Organisation Specification to Normative
Programming in Multi-Agent Organisations
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Abstract. In this paper, we show how we can automatically translate high-level
organisation modelling languages into simpler languages based on the idea of
normative programming. With this approach, while designers and agents still use
a highly abstract organisational modelling language to specify and reason about
the multi-agent organisation, the development of the organisation management
infrastructure is facilitated in the following manner. The high-level organisation
specification is automatically translated into a simple normative programming
language that we have recently introduced and for which we have given for-
mal semantics. The organisation management infrastructure can then be based
on an interpreter for the simpler normative language. We illustrate the approach
showing how MOISE’s organisation modelling language (with primitives such as
roles, groups, and goals) can be translated into our normative programming lan-
guage (with primitives such as norms and obligations). We briefly describe how
this all has been implemented on top of ORA4MAS, the distributed artifact-based
organisation management infrastructure for MOISE.

1 Introduction

The use of organisational and normative concepts is widely accepted as an appropriate
approach for the design and implementation of Multi-Agent Systems (MAS) [3]. They
are thus present in several languages and frameworks for intelligent multi-agent sys-
tems. They are also used at runtime to make the agents aware of the organisations in
which they take part and to support and monitor their activities. While the support aspect
is important for any large-scale system, the monitoring one is particularly relevant for
open MAS where the behaviour of the entering agents is unknown. A clear trend in the
development of such systems is to provide organisation-oriented modelling languages
that the MAS designer (human or agent, in the case of self-organisation) uses to write
a program that prescribes the organisational functioning of the system [5,4,3,15,17,7],
complementing agent programming languages that define the individual functioning
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within such system. These languages are interpreted by an Organisation Management
Infrastructures (OMI) to realise the monitoring aspect of agent organisations.

In our work, we are particularly interested in flexible and adaptable development of
OMIs. The exploratory stage of current OMIs often requires changes in their imple-
mentations so that one can experiment with new features. The refactoring of the OMI
for such experiments, when the interpreter for the high-level modelling language has
ad hoc implementations, is usually an expensive task that we wish to simplify. Our ap-
proach aims at expressing the various different constructs of the high-level modelling
language into a unified framework by means of norms. The OMI is then realised by a
mechanism for interpreting and managing the status of such norms instead of specific
mechanisms for each of the constructs of the richer modelling language.

The solution proposed allows us to keep the language available to the designer and
agents with high-level concepts such as groups, roles, and global plans. That language
can be translated into (or compiled to) a simpler normative programming language that
is then interpreted by the OMI. The problem of implementing the OMI is thereby re-
duced to: (1) the development of an interpreter for the normative language and (2) a
translation problem (from the organisation modelling language to the normative pro-
gramming language). More precisely, our starting language is the MOISE Organisation
Modelling Language (OML — see Sec. 3) and our target language is the Normative Or-
ganisation Programming Language (NOPL — see Sec. 4). NOPL is a particular class
of a normative programming language that we introduced and formalised in [9], and
we summarise it in Sec. 2. The translation process from OML into NOPL is fully auto-
matic thanks to the contributions in this paper. All of this has been implemented on top
of ORA4MAS, a distributed artifact-based approach for OMI (Sec. 5). This paper also
gives an interesting contribution in elucidating the power of the norm abstraction in nor-
mative programming languages, which is enough to cover organisation specifications.
The longer organisation specification/program translated into a normative program-
ming language, although less readable for humans, is efficiently interpreted within OMI
implementations.

The main components of our approach are, therefore: (i) a normative organisa-
tion programming language; (ii) the translation from an organisational modelling lan-
guage into the normative organisation programming language; and (iii) an implemented
artifact-based OMI that interprets the target normative language. The contributions of
our approach are better discussed and placed in the context of the relevant literature
in Sec. 6.

2 Normative Programming Language

A normative language is usually based on three primitives (obligation, permission, and
prohibition) and two enforcement strategies (sanction and regimentation) [17,20,7].
While sanction is a reactive strategy applied after the event of a violation, regimentation
is a preventive strategy whereby agents are not capable of violation [12]. Regimenta-
tion is important for an OMI since it allows the designer to define norms that must be
followed because their violation present serious risks for the organisation.

The language we created is based on the following assumptions. (i) Permissions are
defined by omission, as in [8]. (ii) Prohibitions are represented either by regimentation
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or as an obligation for someone else to decide how to handle the situation. For example,
consider the norm “it is prohibited to submit a paper with more than 16 pages”. In
case of regimentation of this norm, attempts to submit a paper with more than 16 pages
will fail (i.e. they will be prevented from taking place). In case this norm is not to be
regimented, the designer could define a norm such as “when a paper with more than
16 pages is submitted, the chair must decide whether to accept the submission or not”.
(iii) Sanctions are represented as obligations (i.e. someone else is obliged to apply
the sanction). (iv) Finally, norms are assumed to be consistent (either the programmer
or program generator are supposed to handle this issue). Thus, the language can be
relatively simple, reduced to two main constructs: obligation and regimentation.

Given the above requirements and simplifications, we can now introduce our Nor-
mative Programming Language (NPL). A normative program np is composed of: (i) a
set of facts and inference rules (following the syntax used in Jason [1]); and (ii) a set
of norms. A NPL norm has the general form

norm id : ϕ -> ψ

where id is a unique identifier of the norm; ϕ is a formula that determines the activation
condition for the norm; and ψ is the consequence of the activation of the norm. Two
types of norm consequences ψ are available:

– fail – fail(r): represents the case where the norm is regimented; argument r rep-
resents the reason for the failure;

– obl – obligation(a, r, g, d): represents the case where an obligation for some
agent a is created. Argument r is the reason for the obligation (which has to include
the id of the norm that originated the obligation); g is the formula that represents
the obligation itself (a state of the world that the agent must try to bring about, i.e.
a goal it has to achieve); and d is the deadline to fulfil the obligation.

A simple example to illustrate the language is given below; we use source code com-
ments to explain the program.

np example {
a(1). a(2). // facts
ok(X) :- a(A) & b(B) & A>B & X = A*B. // rule
// note that b/1 is not defined in the program;
// it is a dynamic fact provided at run-time

// alice has 4 hours to achieve a value of X < 5
norm n1: ok(X) & X > 5
-> obligation(alice,n1,ok(X) & X<5,‘now‘+‘4 hours‘).

// bob is obliged to sanction alice in case X > 10
norm n2: ok(X) & X > 10
-> obligation(bob,n2,sanction(alice),‘now‘+‘1 day‘).

// example of regimented norm; X cannot be > 15
norm n3: ok(X) & X > 15 -> fail(n3(X)).

}
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Fig. 1. State Transitions for Obligations

As in other approaches (e.g. [6,19]), a normative program expresses both static and
declarative aspects of norms. The dynamic aspects result from the interpretation of
such programs and the consequent creation of obligations for participating agents. An
obligation has therefore a run-time life-cycle. It is created when the activation condition
ϕ of some norm n holds. The activation condition formula is used to instantiate the
values of variables a, r, g, and d of the obligation to be created. Once created, the initial
state of an obligation is active (Fig. 1). The state changes to fulfilled when agent a fulfils
the norm’s obligation g before the deadline d. The obligation state changes to unfulfilled
when agent a does not fulfil the norm’s obligation g before the deadline d. As soon as
the activation condition of the norm that created the obligation (ϕ) ceases to hold, the
state changes to inactive. Note that a reference to the norm that led to the creation of the
obligation is kept as part of the obligation itself (in the r argument), and the activation
condition of this norm must remain true for the obligation to stay active; only an active
obligation will become either fulfilled or unfulfilled, when the deadline is eventually
reached. Fig. 1 shows the obligation life-cycle.

The syntax and semantics of NPL was introduced in [9]. the semantics was given
using the well-known structural operational semantics approach.

3 MOISE

The MOISE framework includes an organisational modelling language (OML) that ex-
plicitly decomposes the specification of organisations into structural, functional, and
normative dimensions [11]. The structural dimension includes the roles, groups, and
links (e.g. communication) within the organisation. The definition of roles is such that
when an agent chooses to play some role in a group, it is accepting some behavioural
constraints and rights related to this role. The functional dimension determines how
the global collective goals should be achieved, i.e. how these goals are decomposed
(through global plans) and grouped into coherent sets of subgoals (through missions)
to be distributed among the agents. The decomposition of global goals results in a goal
tree, called scheme, where the leaf-goals can be achieved individually by the agents. The
normative dimension binds the structural dimension with the functional one by means
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of the specification of permissions and obligations towards missions given to particular
roles. When an agent chooses to play some role in a group, it accepts these permissions
and obligations.

As an illustrative and simple example of an organisation specified using MOISE+,
we consider a scenario where agents aiming to write a paper together use an organ-
isational specification to help them collaborate. We will focus on the functional and
normative dimensions in the remainder of this paper. As for the structure of the or-
ganisation, it suffices to know that there is only one group (wpgroup) where two roles
(editor and writer) can be played.

To coordinate the achievement of the goal of writing a paper, a scheme is defined
in the functional specification of the organisation (Fig. 2(a)). In this scheme, a draft
version of the paper has to be written first (identified by the goal fdv in Fig. 2(a)). This

(a) Paper Writing Scheme

(b) Monitoring Scheme

mission cardinality

mMan 1..1
mCol 1..5
mBib 1..1

mr 1..1
ms 1..1

(c) Mission Cardinalities

Fig. 2. Functional Specification for the Paper Writing Example
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goal is decomposed into three subgoals: writing a title, an abstract, and the section ti-
tles; the subgoals have to be achieved in this very sequence. Other goals, such as finish,
have subgoals that can be achieved in parallel. The specification also includes a “time-
to-fulfil” (TTF) attribute for goals indicating a deadline for the agent to achieve the
goal. The goals of this scheme are distributed into three missions which have specific
cardinalities (see Fig. 2(c)): the mission mMan is for the general management of the
process (one and only one agent must commit to it), mission mCol is for the collabo-
ration in writing the paper content (from one up to five agents can commit to it), and
mission mBib is for gathering the references for the paper (one and only one agent must
commit to it). A mission defines all the goals an agent commits to when participating in
the execution of a scheme; for example, a commitment to mission mMan is effectively
a commitment to achieve four goals of the scheme. Goals without an assigned mission
(e.g. fdv) are satisfied through the achievement of their subgoals.

Table 1. Normative Specification for the Paper Writing Example

id condition role type mission TTF

n1 editor per mMan –
n2 writer obl mCol 1 day
n3 writer obl mBib 1 day
n4 violation(n2) editor obl ms 3 hours
n5 conformance(n3) editor obl mr 3 hours
n6 #mc editor obl ms 1 hour

#mc stands for the condition “more agents committed to a mission than permitted by the mission
cardinality”

The normative specification relates roles and missions through norms (Table 1). For
example, the oml-norm1 n2 states that any agent playing the role writer has one day to
commit to mission mCol. Designers can also express application-dependent conditions
(as in oml-norms n4–n6). Oml-norms n4 and n5 define sanction and reward strategies
for violation and conformance of oml-norms n2 and n3 respectively. Oml-norm n5 can
be read as “the agent playing role ‘editor’ has 3 hours to commit to mission mr when
norm n3 is fulfilled”. Once committed to mission mr, the editor has to achieve the
goal reward. Note that an oml-norm in MOISE is always an obligation or permission
to commit to a mission. Goals are therefore indirectly linked to roles since a mission
is a set of goals. Prohibitions are assumed ‘by default’ with respect to the specified
missions: if the normative specification does not include a permission or obligation for
a role-mission pair, it is assumed that the role does not grant the right to commit to
the mission.

The OML is accompanied by a graphical language (see Fig. 2) and XML is used
to store the organisational specifications (OS). In Sec. 4, instead of considering all the
details of the graphical or the XML representation of an OS, we will consider the data

1 To make clear the distinction between norms at the OML level with the ones at the NPL level,
we will use the expression oml-norm when necessary.
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structure produced by the OML parser. The data structure for an OS contains a set FS
of scheme specifications and a set NS of oml-norms (again, only the functional and
normative dimensions are being considered here).

When a scheme specification S is parsed, a tuple of the following type is produced:

〈id, M, maxmp, minmp,G, gm, gpc, ttf, gr〉

where

– id is a unique identification for S;
– M is a set of mission identifiers that agents can commit to within the scheme;
– maxmp : M → Z: is a function that maps each mission to the maximum number

of commitments of that mission in the scheme (upper bound of mission cardinality);
– minmp : M → Z: maps each mission to the minimum number of commitments of

that mission necessary for the scheme to be considered well-formed (lower bound
of mission cardinality);

– G is the set of goals within the scheme;
– gm : G → M maps each goal to its mission;
– gpc : G → 2G maps goals to their precondition goals;2

– ttf : G → Z maps goals to their TTF; and
– gr ∈ G is the root goal of the scheme.

For each oml-norm in the normative specification, the parser produces a tuple

〈id, c, ρ, t, m, ttf〉

where id is a unique identification for the oml-norm; c is the activation condition for
the oml-norm; ρ is the role; t is the type (obliged or permitted); m is the mission; and
ttf is the deadline. We can read that oml-norm as ‘when c holds, agents playing ρ are t
to commit to mission m by ttf ’.

4 From OML to NOPL

After the presentation of NPL (the generic target language of the translation) and OML
(the source for the translation), this section defines NOPL, a particular class of NPL
programs applied to the MOISE OML. The NOPL syntax and semantics are the same
as presented in Sec. 2. However, the set of facts, rules, and norms are specific to the
MOISE model and to the MOISE artifact-based OMI presented in Sec. 5. Benefiting
from the distributed nature of this OMI, our proposal consists of translating the OS
defined in MOISE OML into different NOPL programs. For each group type defined in
the OML, a separate NOPL program is produced by the translation. The same criteria
is used to translate schemes. Since the OMI has one artifact to manage each instance
of a group or scheme, the corresponding translated NOPL programs are used in the
deployment of the artifacts.

2 The precondition goals are deduced from the goal decomposition tree of the scheme (as pre-
sented in Fig. 2(a)). For example, the goal of “writing the paper conclusions” (wcon) can only
be achieved after the goal of “writing sections” (wsec) has been achieved.
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The path from NPL to NOPL consists firstly in the definition of facts and rules to
express the different concepts and properties expressed in the OS. Dynamic facts are
also introduced to represent the current state of the organisation. Below, we describe
these rules and facts, step by step.

We use translation rules (briefly “t-rules”) to formalise how the OS is translated into
NOPL. Such rules have the following format:

condition
(ID)

<code>

where ID is the name of the t-rule, condition is a Boolean expression, and <code> is
an excerpt of code in NOPL that is produced in case the condition holds. Details of the
application of these rules are provided in the examples given later.

In this paper, we consider only the translation rules for producing scheme normative
programs, i.e. NOPL programs used to manage the corresponding scheme artifacts in
the OMI. The t-rule that generates the NOPL code for a scheme specification is:

〈id,M,maxmp,minmp,G, gm, gpc, ttf, gr〉 ∈ FS
(S)

np scheme(id) {
SM(S) SMR(S) SG(G) SR(S) SSP NS

}

The condition for this t-rule is simply that the scheme specification belongs to the func-
tional specification. The produced code (typeset in typewriter font) is a normative pro-
gram with an identification id and facts, rules, and norms that are produced by specific
t-rules (SM, SMR, SG, SR, SSP, and NS) defined below. Variables, typeset in italics (as
in id), are replaced by their values obtained from the condition of the t-rule.

Facts. For scheme normative programs, the following facts are produced by the
translation:

– mission cardinality(m,min,max): is a fact that defines the cardinality of a
mission (e.g. mission cardinality(mCol,1,5)).

– mission role(m,ρ): role ρ is permitted or obliged to commit to mission m (e.g.
mission role(mMan,editor)).

– goal(m,g,pre-cond,‘ttf‘): is a fact that defines the arguments for a goal g: its
mission, identification, preconditions, and TTF (e.g. goal(mMan,wsec, [wcon],

‘2 days‘)).

The t-rules SM, SMR, and SG generate these facts from the specification (all sets and
functions, such as MS and minmpS, used in the t-rule refer to the scheme S being
translated):

m ∈ MS maxmpS(m) > 0
(SM(S))

mission cardinality(m,minmpS(m),maxmpS(m)).

〈id, c, ρ, t,m, ttf〉 ∈ NS maxmpS(m) > 0
(SMR(S))

mission role(m,ρ).
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g ∈ G
(SG(G))

goal(gm(g),g,gpc(g),ttf(g)).

The following dynamic facts will be provided at runtime by the artifact (cf. Sec. 5) that
manages the scheme instance:

– plays(a,ρ,gr): agent a plays the role ρ in the group instance identified by gr.
– responsible(gr,s): the group instance gr is responsible for the missions of

scheme instance s.
– committed(a,m,s): agent a is committed to mission m in scheme s.
– achieved(s,g,a): goal g in scheme s has been achieved by agent a.

Rules. Besides facts, we define some rules that are useful to infer the state of the scheme
(e.g. whether it is well-formed) and goals (e.g. whether it is ready to be adopted or not).
The rules produced by SR are general for all schemes and those produced by SRW are
specific to the scheme being translated.

(SR(S))
is finished(S) :- satisfied(S,gr).

mission accomplished(S,M) :-
.findall(Goal, goal(M,Goal, , ,), MissionGoals) &
all satisfied(S,MissionGoals).

all satisfied( ,[]).
all satisfied(S,[G|T]) :- satisfied(S,G) & all satisfied(S,T).

// goal G of scheme S is ready to be adopted:
// all its preconditions have been achieved
ready(S,G) :-

goal( ,G,PCG, ) & all satisfied(S,PCG).

// number of players of a mission M in scheme S
mplayers(M,S,V) :- .count(committed( ,M,S),V).

// .count(X) counts how many instances of X are known to the agent

well formed(S) :- SRW(S).

m ∈ M maxmpS(m) > 0
(SRW(S))

mission accomplished(S,m)
|
mplayers(m,S,Vm) & Vm >= minmpS(m) & Vm <= maxmpS(m)

Note that these rules implement the semantics of mission accomplishment, well-formed
and ready goal as intended in the MOISE model.



126 J.F. Hübner, O. Boissier, and R.H. Bordini

As an example, the output of the translation produced by SR for the paper writing
scheme is listed below.

is_finished(S) :- satisfied(S,wp). // wp is the root goal

mission_accomplished(S,M) :-
.findall(Goal, goal(M,Goal,_,_), MissionGoals) &
all_satisfied(S,MissionGoals).

all_satisfied(_,[]).
all_satisfied(S,[G|T]) :- satisfied(S,G) & all_satisfied(S,T).

ready(S,G) :- goal(_, G, PCG, _) & all_satisfied(S,PCG).

mplayers(M,S,V) :- .count(committed(_,M,S),V).
well_formed(S) :-

(mission_accomplished(S,mMan) |
mplayers(mMan,S,VmMan) & VmMan >= 1 & VmMan <= 1)
&
(mission_accomplished(S,mCol) |
mplayers(mCol,S,VmCol) & VmCol >= 1 & VmCol <= 5)
&
(mission_accomplished(S,mBib) |
mplayers(mBib,S,VmBib) & VmBib >= 1 & VmBib <= 1).

Norms. We have three classes of norms in NOPL for schemes: norms for goals, norms
for properties, and domain norms (which are explicitly stated in the normative speci-
fication as oml-norms). For the former class, we define the following generic norm to
express the MOISE semantics for commitment:

norm ngoal: committed(A,M,S) & goal(M,G,_,D) &
well_formed(S) & ready(S,G)

-> obligation(A,ngoal,achieved(S,G,A),‘now‘ + D).

This norm can be read as “when an agent A: (1) is committed to a mission M that (2)
includes a goal G, and (3) the mission’s scheme is well-formed, and (4) the goal is
ready, then agent A is obliged to achieve the goal G before its deadline D”. It also
illustrates the advantage of using a translation to implement the OMI instead of an
object-oriented programming language. For example, if some application or experiment
requires a semantics of commitment where the agent is obliged to achieve the goal even
if the scheme is not well-formed, it is simply a matter of changing the translation to a
norm that does not include the well formed(S) predicate in the activation condition
of the norm. One could even conceive an application using schemes being managed by
different NOPL programs (i.e. schemes translated differently).

For the second class of norms, only the mission cardinality property is introduced
in this paper since other properties are handled in a similar way. In the case of mission
cardinality, the norm has to define the consequences of situations where there are more
agents committed to a mission than permitted in the scheme specification. As presented
in Sec. 2, two kinds of consequences are possible, obligation and regimentation, and
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the designer chooses one or the other when writing the OS. Regimentation is the default
consequence and it is used when there is no norm with condition #mc in the normative
specification. Otherwise, if there is a norm such as n6 in Table 1, the consequence will
be an obligation. The two t-rules below detail the produced norms for the regimentation
and obligation cases of mission cardinality.

¬∃ 〈id, c, ρ, t,m, ttf〉 ∈ NS . c = #mc
(SSP1)

norm mc:
mission cardinality(M, ,MMax) &
mplayers(M,S,MP) & MP > MMax

-> fail(mission cardinality).

〈id, c, ρ, t,m, ttf〉 ∈ NS c = #mc
(SSP2)

norm mc:
mission cardinality(M, ,MMax) &
mplayers(M,S,MP) & MP > MMax &
responsible(Gr,S) & plays(A,ρ,Gr)

-> obligation(A,mc,committed(A,m, ),‘now‘+‘ttf‘).

In our running example, the norm produced by SSP1 to regiment mission cardinality is:

norm mc:
mission_cardinality(M,_,MMax) &
mplayers(M,S,MP) & MP > MMax

-> fail(mission_cardinality).

and the norm produced if SSP2 were used instead (for sanction rather than regimenta-
tion) would be:

norm mc:
mission_cardinality(M,_,MMax) &
mplayers(M,S,MP) & MP > MMax &
responsible(Gr,S) & plays(A,editor,Gr)

-> obligation(A,mc,committed(A,ms,_), ‘now‘+‘1 hour‘).

where the agent playing editor is obliged to commit to the mission ms within one hour
(corresponding to the oml-norm n6 in Table 1).

For the third class of norms, each oml-norm of type obligation in the normative
specification of the OS has a corresponding norm in the NOPL program. Whereas an
OML obligation refers to a role and a mission, NPL requires that obligations are for
agents and towards a goal. The NOPL norm thus identifies each agent playing the role
in groups responsible for the scheme and, if the number of current players still does not
reach the maximum cardinality, and the mission was not accomplished yet, the agent
is obliged to achieve a state where it is committed to the mission. The following t-rule
expresses just that:
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〈id, c, ρ, t,m, ttf〉 ∈ NS m ∈ M t = obl
(NS)

norm id:
c &
plays(A,ρ,Gr) & responsible(Gr,S) &
mplayers(m,S,V) & V < maxmp(m) &
not mission accomplished(S,m)

-> obligation(A,id,committed(A,m,S),‘now‘+‘ttf‘).

For instance, the NOPL norm resulting from the translation of oml-norm n2 in Table 1
with the t-rule above is:

norm n2: plays(A,writer,Gr) & responsible(Gr,S) &
mplayers(mCol,S,V) & V < 5 &
not mission_accomplished(S,mCol)

-> obligation(A,n2,committed(A,mCol,S),‘now‘+‘1 day‘).

Note that if some mission is already accomplished (as defined by the t-rule SR), there
is no obligation to commit to it (this interpretation of “obligation to commit” was orig-
inally proposed by [18]). An agent can thus commit to a mission, fulfil its goals, and
leave the scheme before it is finished. Without this last condition, the agent has to par-
ticipate in the scheme until it is removed from the multi-agent system. Note also that if
the scheme already has 5 engaged agents, there is no obligation for other players of role
writer to commit to mCol. In fact, if a sixth agent wanted to commit to mCol, norm
mc would produce a failure.

Besides the obligations defined in the OML, we also have permissions and (by de-
fault) prohibitions. Since everything is permitted by default in NPL, OML permissions
do not need to be translated. The OML prohibitions are handled in NOPL by a generic
norm that fails when an agent is committed to a mission not permitted by its roles (ac-
cording to the mission role relation):

norm mission_permission:
committed(Agt,M,S) &
not (plays(Agt,R,_) & mission_role(M,R))

-> fail(mission_permission(Agt,M,S)).

The norm above uses regimentation to prohibit an agent to commit to a mission if it is
not allowed to do so. Obligations could be used instead of regimentation, as illustrated
by the following norm:

norm mission_permission:
committed(Agt,M,S) &
not (plays(Agt,R,_) & mission_role(M,R)) &
plays(E,editor,_) // agent playing editor is obliged to

// to commit to a sanction mission
-> obligation(E,mp,committed(E,ms,_), ‘now‘+‘1 hour‘).

The type of the consequence for the mission permission norm, whether a fail or an
obligation, is defined by parameters passed on to the translator program.



From Organisation Specification to Normative Programming 129

Also regarding prohibitions, one could ask: Is an agent prohibited to leave its mis-
sions without fulfilling the mission’s goals? There are two answers depending whether
the following norm is included or not.

norm mission_leaved:
leaved_mission(Agt,M,S) &
not mission_accomplished(S,M)

-> fail(mission_leaved(Agt,M,S)).

If the above norm is included, the leave-mission action (which adds the fact
leaved mission) will fail. The action is regimented in this case. Otherwise, no er-
ror will be produced by the action. However, the norms generated from t-rule NS will
be activated again and the agent becomes again obliged to commit to the mission.

5 Artifact-Based Architecture

The ideas presented in this paper have been implemented as part of an OMI that follows
the Agent & Artifact model [13,10]3. In this approach, a set of organisational artifacts is
available in the MAS environment providing operations and observable properties for
the agents so that they can interact with the OMI. For example, each scheme instance is
managed by a “scheme artifact”. A scheme artifact, shown in Fig. 3, provides operations
such as “commit to mission” and “goal x has been achieved” (whereby agents can act
upon the scheme) and observable properties (whereby agents can perceive the current
state of the scheme). We can effortlessly distribute the OMI by deploying as many
artifacts as necessary for the application.

Following the ideas introduced in this paper, each organisational artifact has within
it an NPL interpreter that is given as input: (i) the NOPL program automatically gen-
erated from the OS for the type of the artifact (e.g. the artifact that will manage the
writing paper scheme will receive as input the NOPL program translated from that
scheme specification), and (ii) dynamic facts representing the current state of (part of)
the organisation (e.g. the scheme artifact itself will produce dynamic facts related to
the current state of the scheme instance). The interpreter is then used to compute: (i)
whether some operation will bring the organisation into an inconsistent state (where
inconsistency is defined by means of the specified regimentations), and (ii) the current
state of the obligations.

Algorithm 1, implemented on top of CArtAgO [16], shows the general pattern we
used to implement every operation (e.g. commitment to mission) in the organisational
artifacts. Whenever an operation is triggered by an agent, the algorithm first stores a
“backup” copy of the current state of the artifact (line 5). This backup is restored (line
10) if the operation leads to failure (e.g. committing to a mission not permitted). The
overall functioning is that invalid operations do not change the artifact state.4 A valid

3 An implementation of the translator and the OMI is available at
http://moise.sourceforge.net.

4 This functioning requires that operations are not executed concurrently, which can be easily
configured in CArtAgO.

http://moise.sourceforge.net
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Fig. 3. General View of the Scheme Artifact

Algorithm 1. Artifact Integration with NOPL
1: oe is the state of the organisation managed by the artifact
2: p is the current NOPL program
3: npi is the NPL interpreter
4: when an operation o is triggered by agent a do
5: oe′ ← oe // creates a “backup” of the current oe
6: executes operation o to change oe
7: f ← a list of predicates representing oe
8: r ← npi(p, f) // runs the interpreter for the new state
9: if r = fail then

10: oe← oe′ // restore the backup state
11: return fail operation o
12: else
13: update obligations in the observable properties
14: return succeed operation o

operation is thus an operation that changes the state of the artifact to one where no fail
(i.e. regimentation) is produced by the NPL interpreter. In case the operation is valid,
the algorithm simply updates the current state of the obligations (line 13). Although the
NPL handles states in the norm conditions, this pattern of integration has allowed us to
use NPL to manage agent actions, i.e. the regimentation of operations on artifacts.

Notice that the NOPL program is not seen by the agents. They continue to perceive
and reason on the scheme specification as written in the OML. The NOPL is used only
within the artifact to simplify its development.

6 Related Work

This work is based on several approaches to organisation, institutions, and norms (cited
throughout the paper). In this section, we briefly relate and compare our main contribu-
tions to such work.
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The first contribution of the proposal, the NPL, should be considered specially for
two properties of the language: its simplicity and its formal basis (that led to an available
implementation). Similar work has been done by Tinnemeier et al. [17], where the oper-
ational semantics for a normative language was also proposed. Their approach and ours
are similar on certain points. For instance, both consider norms as “declarative” norms
(i.e. “ought-to-be” norms) in the sense that obligations and regimentation bear on goals.
However, our work differs in several aspects. The NOPL class of NPL programs is for
the OMI and not for programmers to use. The designers/programmers continue to use
OML to define both an organisation and the norms that have to be managed within such
a structure. Organisation primitives of the OML are higher-level and tailored for organ-
isation modelling, therefore an OML specification is significantly more concise than its
translation into a normative language.

Another clear distinction is that we rely on a dedicated programming model (the
Agent & Artifact model) providing a clear connection of the organisation to the en-
vironment and allowing us to implement regimentation on physical actions [14]. The
artifacts model also simplified the distribution of the management of the state of the
organisation with several instances and kinds of artifacts, avoiding over-centralisation
in the management of organisational and normative aspects of multi-agent systems.

Going back to the issue of conciseness and expressiveness, we do not claim that
OML is more expressive than NPL. In fact, since the OML can be translated into NPL
and some NPL programs cannot be translated into OML (for instance the program in
the end of Sec. 2), NPL is strictly more expressive in theoretical terms. NOPL, on the
other hand, has the same expressiveness of OML, since we can translate NOPL back
into OML (this translation is not the focus of this paper but is feasible). However, we
are not looking for general purpose or more expressive programming languages, but
languages that help automating part of the OMI development. In this regard, the OML
was designed to be more concise and more abstract than NOPL. The OML allows the
designer to specify complex properties of the organisation with natural abstractions
and fewer lines of code, which are translated into several lines of NOPL code that is
interpreted by the NPL engine.

Regarding the second contribution, namely the automatic translation, we were in-
spired by work on ISLANDER [2,7]. The main difference here is the initial and target
languages. While they translate a normative specification into a rule-based language,
we start from a high-level organisation modelling language and the target is a simple
normative programming language. NOPL is more specific than rule-based languages,
being specifically tailored from our NPL for the MOISE OML.

Regarding the third contribution, the OMI, we started from ORA4MAS [10]. The
advantages of the approach presented here are twofold: (i) it is easier to change the
translation than the Java implementation of the OMI; and (ii) from the operational
semantics of NPL and the formal translation we are taking significant steps towards a
formal semantics for MOISE, which is a well-known organisational model that has not
yet been fully formalised.

MOISE shares some concepts with a variety of organisational models available in
the multi-agent systems literature, so we expect to be able to use our approach to



132 J.F. Hübner, O. Boissier, and R.H. Bordini

give concrete semantics and efficient implementations for a variety of other modelling
languages too.

7 Conclusions

In this paper, we introduced a translation from an organisation specification written in
MOISE OML into a normative program that can be interpreted by an artifact-based
OMI. Focusing on the translation, we can bring flexibility to the development of OMIs.
Our work also emphasises the point that a normative programming language can be
based on only two basic concepts: regimentation and obligation. Prohibitions are con-
sidered either as regimentation or as an obligation for someone else to sanction in case
of violation of the prohibitions. The resulting NPL is thus simpler to formalise and
implement.

Another result of this work is to show that an organisational language (OML) can be
translated (and reduced to) a normative programming language. Roughly, all manage-
ment within an OMI can be based on the management of norms and obligations. This
result emphasises the importance of norms as a fundamental concept for the develop-
ment of OMIs. Future work will explore that capacity of NPL for other organisational
and institutional languages.

We also plan to investigate further possible relationships among norms, for
instance when the activation of a norm triggers another. This form of chain trigger-
ing of norms is already possible in the language. The current state of an obligation is
one of the dynamic facts updated by the artifact and accessible to the NPL interpreter,
and it can be used in the condition of norms. For example, we can write: norm x:

active(obligation(....)) -> fail(....).. However, this feature of the lan-
guage requires further experimentation.

It also remains future work to evaluate how the reorganisation process available in
MOISE will impact on the normative-based artifacts. Changes in the organisation spec-
ification imply changes in the corresponding NOPL programs. We can simply change
these programs in the artifacts, but there are problems that require investigation. For
example, the problem of what to do with the active obligations, created from an organ-
isation that changed, and which might need to be dropped in some cases and prevented
from being dropped just because of a change in the NOPL program in other cases. The
revision of such obligations is one of the main issue we will consider in this area of
future work.

Acknowledgements

The authors are grateful for the supported given by CNPq, grants 307924/2009-2,
307350/2009-6, and 478780/2009-5.

References
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Abstract. We present an algorithm for finding uniform strategies in
multi-agent systems with incomplete information. The algorithm finds
all maximal uniform strategies for agents with incomplete information
for enforcing a property expressible in the language of Alternating-time
Temporal Logic ATL. The main application of the algorithm is auto-
mated program synthesis for systems that can be modeled as multi-agent
systems with incomplete information (e.g., decentralized distributed
systems).

1 Introduction

Over the last few years, the multi-agent systems paradigm has been deployed in
safety-critical applications, such as sensor networks for detection of earthquakes
(e.g., SOSEWIN network developed in the scope of the SAFER project [1]). For
such applications, it is crucially important to verify or design software control-
ling the system using a formal procedure, which guarantees with certainty that
the desired goal has been achieved. In this paper, we present an algorithm for
designing software for such systems conforming to required specifications.

As a formal model for multi-agent systems, we use Concurrent Epistemic
Game Structures (CEGS) introduced in [12]; as a modeling language, we use
the language of Alternating-time Temporal Logic ATL [2]. One of the most
important aspects of CEGS’s are strategies agents use to enforce properties ex-
pressible in a given modeling language. CEGS’s allow us to model systems in
which agents have incomplete information. As noted in [8], in such systems, not
all strategies are of interest, but only those in which every agent performs the
same action in the states indistinguishable to them; only such strategies, usually
referred to as uniform, can be viewed as formal models of algorithms. Another
distinction is usually made between strategies in CEGS’s: memory-based (agents
remember some, probably the whole, history of the computation) vs. memory-
less (the agents base their decisions on the current state of the computation);
in the present paper we only consider memoryless strategies. Given the choice
of CEGS’s as models for multi-agent systems, the problem of designing software
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conforming to a given specification turns into the problem of finding uniform
strategies enforcing a property. This property has to be expressible in the chosen
modeling language. For reasons that will become clearer later on, even though
we use the syntax of ATL, we define the semantics in terms of uniform strate-
gies; moreover, we evaluate formulas at sets of states rather than states. The
result is the logic which we call ATLu, which is thus our formalism of choice for
verification and program synthesis in the context of multi-agent systems with
incomplete information.

The main goal of the paper is to present an algorithm for finding uniform
strategies in CEGS’s with incomplete information. The paper is structured as
follows. In section 2, we define the logic ATLu as well as the concepts used in
the rest of the paper. In section 3, we present the algorithm for finding uniform
strategies and prove its correctness. In section 4, we present an example of run-
ning the algorithm on a simple multi-agent system. In section 5, we estimate the
complexity of the algorithm. Finally, in conclusion, we summarize our results
and point to directions for further research.

2 Preliminaries

We use concurrent epistemic game structures (CEGS), as defined in [5], as models
for reasoning about agents with incomplete information.1 A CEGS is a tuple

M = 〈Agt, St, Π, π, Act, d, o, ∼1, ..., ∼k〉,

where:

– Agt = {1, . . . , k} is a finite set of agents; a (possibly, empty) subset of Agt
is called a coalition; arbitrary agents will be denoted with a, b, . . .; arbitrary
coalitions with A, B, . . .;

– St is a nonempty, finite set of states;
– Π is a set of atomic propositions;
– π : Π → P(St) is a valuation function;
– Act is a nonempty, finite set of actions;
– d : Agt × St → P(Act) assigns to an agent and a state a nonempty subset

of Act, which we think of as actions available to the agent at that state.
For every q ∈ St, an action vector at q is a k-tuple 〈α1, . . . , αk〉 such that
αa ∈ d(a, q), for every 1 ≤ a ≤ k. The set of all action vectors at q is denoted
by D(q);

– o assigns to every q ∈ St and every v ∈ D(q) the outcome o(q, v) ∈ St;
– ∼1, . . . , ∼k⊆ St×St are indistinguishability relations for agents 1, . . . , k. We

assume that ∼a, for each a ∈ Agt, is an equivalence relation and, moreover,
that q ∼a q′ implies d(a, q) = d(a, q′) (i.e., an agent has the same choice of
actions at indistinguishable states).

1 The notion of agent, as used in the literature, is quite an abstract one. For the
purposes of this paper, however, the reader can think of agents as components of a
distributed system.
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One can use CEGS’s to synthesize software for distributed systems, or to
verify that such systems satisfy certain properties. To do this in a formal way,
we introduce logic ATLu, whose syntax is defined as follows2:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕU ϕ,

where p ∈ Π and A ⊆ Agt. The operator 〈〈 〉〉 is called coalitional operator,
while the operators X, G and U are temporal operators next, always and until,
respectively. We now introduce some notions necessary to define the semantics
of ATLu.

In what follows, given a tuple t of length at least i, we denote by t[i] the
ith element of t. The symbol � is a placeholder for a particular action of the
respective agent. Thus, if we have three agents, then the tuple < a1, a2, � >
represents the situation where agents 1 and 2 have chosen actions a1 and a2,
respectively, but the action of agent 3 is unspecified. We will use this “action
underspecification” in a number of ways further on in the paper. Note that the
meaning of � is the same as in [4].

Definition 1. Let q ∈ St and let A ⊆ {1, .., k} be a coalition of agents. An A-
move at state q is a pair 〈q, mA〉 where mA is a k-tuple such that mA[a] ∈ d(a, q),
for every a ∈ A, and mA[a] = � otherwise. For the reasons that will become clear
later on, we also count as an A-move for an arbitrary coalition A at q the pair
〈q, �k〉. The set of all A-moves at state q is denoted by DA(q).

Definition 2. Let q ∈ St and let mA ∈ DA(q) such that mA �= �k. The outcome
of 〈q, mA〉, denoted by out(q, mA), is the set of all states q′ such that there is an
action vector v ∈ D(q) with v[a] = mA[a], for all a ∈ A, such that o(q, v) = q′.
The outcome of 〈q, �k〉 is the set of states q′ such that o(q, v) = q′ for some
v ∈ D(q).

Definition 3. A (memoryless) strategy S of a coalition A, denoted by SA, is a
partial function assigning |A|-tuples of actions to states, such that if SA is defined
on q ∈ St then 〈q, SA(q)〉 is an A-move from DA(q). The domain of SA is denoted
by dom(SA). A strategy SA is uniform if q ∼a q′ implies SA(q)[a] = SA(q′)[a]
for every q, q′ ∈ dom(SA) and every a ∈ A.

We define strategies as a partial functions for technical reasons that will be
explained later on. Note that a strategy SA can be seen as a set of A-moves
〈q, mA〉 such that SA(q) = mA.

Given a sequence of states Λ, we denote by |Λ| the number of states in Λ; if
Λ is infinite, |Λ| = ω. The ith state of Λ is denoted by Λ[i].

Definition 4. A path Λ is a (possibly, infinite) sequence of states q1, q2, q3 . . .
that can be effected by subsequent transitions; that is, for every 1 ≤ i < |Λ|, if
qi ∈ Λ, then there exists an action vector v ∈ D(qi) such that qi+1 = o(qi, v).

2 The syntax of ATLu is identical to Alternating-Time Temporal Logic (ATL) [2].
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We now define outcomes of strategies. We use the notation SA to refer to a
strategy of coalition A.

Definition 5. Let q ∈ St and let SA be a strategy such that 〈q, mA〉 ∈ SA.
The outcome of SA at q, denoted by out(q, SA), is the set of paths {Λ | Λ[1] =
q and for each 1 ≤ i < |Λ| there is an A-move 〈Λ[i], mA〉 ∈ SA such that
Λ[i + 1] ∈ out(Λ[i], mA)}. If Λ ∈ out(q, SA) is finite, then we require that either
〈Λ[|Λ|], �k〉 ∈ SA or Λ[|Λ|] /∈ dom(SA).

Intuitively, 〈Λ[|Λ|], �k〉 ∈ SA means that it does not matter what the agents in
A do at the last state of a path that is an outcome of SA. This possibility of
giving the agents in A a ”free rein” at the end of carrying out a strategy is what
motivated us to count �k as an A-move, for every A ⊆ Agt.

Outcome out(q, SA) contains every path starting at q that may result from
coalition A performing A-moves assigned by SA to the states on the path. We
use notation out(Q, SA) as a shorthand for

⋃
q∈Q out(q, SA).

Example 1. Consider the CEGS, depicted in Fig. 1, with Agt = {1, 2} and Act =
{α1, β1, α2, β2}. Coalition A consists of agent 1 (A = {1}) and thus every A-move
is a tuple with an action for agent 1 and the placeholder � for agent 2. Only
one A-move is possible at state q, namely 〈α1, �〉, so that DA(q) = {〈α1, �〉};
analogously, DA(q′) = {〈α1, �〉, 〈β1, �〉} and DA(q′′) = {〈α1, �}. The outcome of
〈α1, �〉 at q is {q′, q′′}. SA = {〈q, 〈α1, �〉〉, 〈q′, 〈α1, �〉〉} is a uniform strategy of A.
The outcome of the SA at q is {q, q′′; q, q′, q′′}.

We now turn to defining the meaning of ATLu-formulas over CEGS. Taking our
cue from [5], we evaluate formulas at sets of states rather than states. Intuitively,
given a CEGS M and a set Q ⊆ St, we have M, Q |= 〈〈A〉〉ψ if there is a uniform
strategy SA such that ψ is satisfied by all paths in out(Q, SA). Notice that we
evaluate formulas at arbitrary states rather than at those states that happen to
be equivalence classes, as is done in [10] and [5]. Our reason for evaluating at
sets of states is pragmatic: given a formula 〈〈A〉〉ψ our algorithm return the set of
states at which the coalition A can enforce ψ. This, together with our treatment
of strategies as partial functions, immediately gives us all the states from with A
can enforce ψ, alongside with the actual strategies for doing so. We now formally
define the semantics of ATLu.

q q′

q′′

〈α1, β2〉
〈α1, α2〉

〈α1, β2〉
〈β1, β2〉

∼1

〈α1, α2〉

Fig. 1. An example of a CEGS
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M, Q |= p iff Q ⊆ π(p);
M, Q |= ¬ϕ iff M, Q �|= ϕ;
M, Q |= ϕ1 ∧ ϕ2 iff M, Q |= ϕ1 and M, Q |= ϕ2;
M, Q |= 〈〈A〉〉ψ iff there exists a uniform SA such that M, Λ � ψ, for every

Λ ∈ out(Q, SA);
M, Λ � X ϕ iff M, {Λ[2]} |= ϕ;
M, Λ � G ϕ iff Λ is infinite, and M, {Λ[i]} |= ϕ, for every i ≥ 1;
M, Λ � ϕ1Uϕ2 iff M, {Λ[j]} |= ϕ2, for some j ≥ 1, and M, {Λ[i]} |= ϕ1,

for every 1 ≤ i < j.

Notice that the expressions Xϕ, Gϕ, and ϕ1 U ϕ2 referred to in the last three
clauses of the above definition are not ATLu-formulas; they hold at paths rather
that being satisfied by sets of states, as in the case of ATLu-formulas.

For technical reasons, which will become clear later on, we want the meaning
of every ATLu-formula—rather than only formulas beginning with a coalitional
operator, also referred to as ”strategic formulas”—to be defined in terms of uni-
form strategies. To that end, we give an alternative semantics of ATLu-formulas,
where the meaning of ”non-strategic” formulas is defined in terms of the empty
coalition ∅ (which is equivalent to the universal quantifier of CTL). As the only
∅-move is m∅ = �k, every strategy of the empty coalition is uniform. Intuitively,
a strategy S∅ can be thought of as the domain of S∅, because it is not important
for us what particular actions the agents perform at the states in the domain
of S∅. We now redefine the meaning of non-strategic ATLu-formulas in terms of
uniform strategies. Thus,

M, Q |= p iff there exists S∅ such that Q = dom(S∅) ⊆ π(p);
M, Q |= ¬ϕ iff there exists S∅ such that Q = dom(S∅) and M, dom(S∅) �|= ϕ;
M, Q |= ϕ ∧ ψ iff there exists S∅ such that Q = dom(S∅) and M, dom(S∅) |=

ϕ and M, dom(S∅) |= ψ;

In what follows, if CEGS M is clear from the context, we write Q |= ϕ instead
of M, Q |= ϕ.

We now turn to the problem of finding uniform strategies enforcing a given
ATLu-formula in a given CEGS.

3 Finding Uniform Strategies in CEGSs

The main purpose of the present paper is to describe an algorithm for finding
uniform strategies in CEGSs. The problem of finding such strategies can be
viewed as a ”constructive” model-checking problem for ATLu; that is, given an
ATLu formula 〈〈A〉〉ψ and a CEGS M, we want to find all uniform strategies of
coalition A in M that enforce ψ. For each such strategy SA, we also get the set
of states from which SA can be effected and which, thus, satisfies the formula
〈〈A〉〉ψ. Therefore, the problem that is solved by our algorithm is an extension
of a model-checking problem for ATLu.
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Since uniform strategies can be viewed as programs, the extended algorithm
presented in this section allows us to synthesize distributed programs achieving
the outcomes that can be expressed using ATLu formulas.

Since the formula ϕ given as an input to our algorithm may contain a num-
ber of strategic subformulas, each requiring for its satisfaction the existence of
(possibly, more than one) uniform strategy, we have to find all uniform strate-
gies associated with each such subformula of ϕ, including ϕ itself. As with each
strategic subformula of ϕ there might be associated several uniform strategies,
some of which may contain others, we are only interested in finding maximal uni-
form strategies for each such subformula, i.e., the ones that can not be extended
to a bigger set of states.

Definition 6. Let S be a (not necessarily uniform) strategy, and let ϕ be an
ATLu-formula.

– If ϕ = 〈〈A〉〉ψ (i.e., ϕ is a strategic formula) then S is a strategy for ϕ if S
is a strategy of coalition A, and Λ � ψ for every Λ ∈ out(dom(S), S);

– otherwise, S is a strategy for ϕ if S is a strategy of the coalition ∅, and
dom(S) |= ϕ.

Definition 7

– A uniform strategy SA for an ATLu-formula ϕ = 〈〈A〉〉ψ is maximal if there
is no uniform strategy S′

A for ϕ such that SA ⊂ S′
A.

– Let M be a set of A-moves and let SA ⊆ M be a uniform strategy. SA is
maximal in M if there is no uniform strategy S′

A such that SA ⊂ S′
A ⊆ M .

We can now more precisely restate the problem our algorithm solves as follows:
given a CEGS M and an ATLu-formula ϕ, find all maximal uniform strategies
SA for every subformula of ϕ, including ϕ itself.

The control structure of our algorithm (Alg. 1) is based on the control struc-
ture of the model-checking algorithm for ATL from [2]. The major difference
between the two algorithms is that our algorithm returns, for each subformula
ψ of the input formula ϕ, the set of all maximal uniform strategies for ϕ, rather
then just a set of states at which ϕ holds.

The input of the algorithm is a CEGS M and an ATLu-formula ϕ. The given
CEGS M with |Agt| = k is used as a global variable accessible from any point
of the algorithm. We denote by [ψ] the set of all maximal uniform strategies
for an ATLu formula ψ. For every subformula ψ of ϕ, including ϕ itself, [ψ] is
available as a global variable from any point of the algorithm and is returned by
the algorithm.

Note that, if ψ is a subformula of ϕ and there exist more than one uniform
strategy for ψ, then the union of the domains of all those strategies is used to
compute the maximal uniform strategies for ϕ. We usually enumerate maximal
uniform strategies for a formula using upper indices, as in S1. The algorithm
uses the following functions:

– Subformulas(ϕ) returns the list of subformulas of ϕ in the following order:
if ψ is a subformula of τ then ψ precedes τ .
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– Dom(M) returns, for a given set M of A-moves, the set {q ∈ St | 〈q, mA〉 ∈
M}. (If M is a strategy then Dom(M) returns its domain.)

– Pre(A, Q) returns, for a coalition A and a set of states Q, the pre-image
of Q with respect to A, defined as the set {〈p, mA〉 | mA ∈ DA(p) and
out(p, mA) ⊆ Q }.

– Uniform(ϕ, S), where ϕ is a strategic ATLu formula and S is the union of
all (not necessarily uniform) strategies for ϕ, returns all maximal uniform
strategies for ϕ3.

We now explain the issues involved in computing the set of all maximal uniform
strategies for a formula ϕ = 〈〈A〉〉ψ.

Algorithm 1. Constructive model checking for ATLu

strategies := ∅;
foreach ϕ′ in Subformulas(ϕ) do

[ϕ′] := ∅;
case ϕ′ = p :

S1 := { 〈q, �k〉 | q ∈ π(p)}; [ϕ′] := {S1};
case ϕ′ = ¬ψ :

S1 := { 〈q, �k〉 | �S ∈ [ψ] : q ∈ Dom(S)}; [ϕ′] := {S1};
case ϕ′ = ψ1 ∧ ψ2 :

T 1 :=
⋃

Si∈[ψ1] S
i; T 2 :=

⋃
Si∈[ψ2] S

i;
S1 := {〈q, �k〉 | q ∈ Dom(T 1) ∩ Dom(T 2)}; [ϕ′] := {S1};

case ϕ′ = 〈〈A〉〉Xψ :
S :=

⋃
Si∈[ψ] S

i;
P := Pre(A, Dom(S));
[ϕ′] := Uniform(ϕ′, P );

case ϕ′ = 〈〈A〉〉Gψ :
S :=

⋃
Si∈[ψ] S

i;
T1 := {〈q, �k〉 | q ∈ Dom(S)}; T2 := {〈q, �k〉 | q ∈ St};
while Dom(T2) �⊆ Dom(T1) do

T2 := T1; T1 := Pre(A, Dom(T1));
T1 := T1 \ {〈q, m〉 ∈ T1 | q �∈ Dom(S)};

[ϕ′] := Uniform(ϕ′, T1);
case ϕ′ = 〈〈A〉〉ψ1U ψ2 :

S1 :=
⋃

Si∈[ψ1] S
i; S2 :=

⋃
Si∈[ψ2] S

i;
T1 := ∅; T2 := {〈q, �k〉 | q ∈ Dom(S2)};
while Dom(T2) �⊆ Dom(T1) do

T1 := T1 ∪ T2; T2 := Pre(A, Dom(T1));
T2 := T2 \ {〈q, m〉 ∈ T2 | q �∈ Dom(S1)};

[ϕ′] := Uniform(ϕ′, T1);
strategies := strategies ∪ {[ϕ′]} ;

return strategies;

3 We will describe this function in detail later on.
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Fig. 2. The union of all strategies of coalition A = {1, 2} for ϕ = 〈〈A〉〉p1U p2. Propo-
sition p1 holds at states q, r, s and t and p2 holds at states u and v. Agent 3, excluded
from A, has only one action available at each state in {q, r, s, t, u, v}; thus, the arrows
represent A-moves.

Consider the union S of all strategies for a formula ϕ = 〈〈A〉〉ψ that is given
as an input to Uniform. (An example for ϕ = 〈〈A〉〉p1U p2 is depicted in Fig. 2).
Note, that the union of two strategies is not necessarily a strategy itself but
merely a set of A-moves, as two strategies may assign two different A-moves to
the same state. Every maximal uniform strategy for ϕ must be a subset S′ of S.
To find every such subset, three issues must be resolved.

– First, two A-moves may assign different actions to an agent a ∈ A in two
states that are indistinguishable to a.

Definition 8. Let A ⊆ Agt, and let 〈q, mA〉 and 〈q′, m′
A〉 be A-moves. 〈q, mA〉

and 〈q′, m′
A〉 are blocking each other, symbolically 〈q, mA〉 � 〈q′, m′

A〉, if mA[a] �=
m′

A[a] and q ∼a q′, for some a ∈ A.

In Fig. 2, 〈q, 〈α1, α2, �〉〉 and 〈t, 〈β1, α2, �〉〉 are blocking each other; the same
holds true for 〈r, 〈β1, α2, �〉〉 and 〈s, 〈α1, β2, �〉〉. In general, if S′ is a uniform
strategy, only one A-move from a set of mutually blocking A-moves may be
included in S′.

– Second, consider a subset of the union of all strategies for ϕ that is a uniform
strategy (i.e., does not contain any pair of blocking A-moves). Not every such
subset is necessarily a uniform strategy for ϕ.

Assume that S is the union of all strategies for ϕ = 〈〈A〉〉ψ and 〈q, mA〉 ∈
M . Consider strategy S′ = S \ {〈q∗, m∗

A〉 | 〈q, mA〉 � 〈q∗, m∗
A〉}. Now, some

〈q′, m′
A〉 ∈ S′ may have become ”disconnected” in S′, i.e., for some state q′′ ∈

out(q′, m′
A), all A-moves assigned to q′′ have been removed from S′. Then, there

may be an outcome of S′ that is effected by 〈q′, m′
A〉 but does not satisfy ψ. We

now define the notion of disconnectedness.

Definition 9. Let M be a set of A-moves and let 〈q, mA〉 ∈ M . We say that
〈q, mA〉 is disconnected in M if there is q′ ∈ out(q, mA) such that there is no
A-move assigned to q′ by M .
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As an example, in Fig. 2, assume that all A-moves at q and r as well as A-
move 〈t, 〈β1, β2, �〉〉 are removed from S′ because they block either 〈s, 〈α1, β2, �〉〉
or 〈t, 〈β1, α2, �〉〉. Thus, S′ = {〈u, �3〉, 〈v, �3〉, 〈s, 〈α1, β2, �〉〉, 〈t, 〈β1, α2, �〉〉}. The
outcome of the A-move assigned to t is r, but the only A-move assigned to r is
in S \ S′. The A-move 〈t, 〈β1, α2, �〉〉 is then disconnected in S′. Thus, there is a
path Λ = t, r in out(dom(S′), S′) that does not satisfy p1U p2.

In any uniform strategy S′ for ϕ = 〈〈A〉〉ψ returned by Uniform(ϕ, S), every
A-move that is disconnected in S′ must immediately enforce ϕ (in such a case
the A-move is a singleton strategy for ϕ). Otherwise, there may be a path in
out(dom(S′), S′) that does not satisfy ϕ.

Moreover, a uniform strategy that is a subset of the union of all strategies
for ϕ = 〈〈A〉〉ψ1Uψ2 may contain A-moves that effect an infinite path that never
reaches a state where ψ2 holds and thus does not satisfy ψ1Uψ2. In Fig. 2, the
set S′ = {〈u, �3〉, 〈v, �3〉, 〈r, 〈α1, α2, �〉〉, 〈t, 〈β1, α2, �〉〉} is a uniform strategy with
one possible outcome Λ = r, t, r, t, . . . that does not satisfy p1U p2.

–Third, assume that A-moves that may effect a path that does not satisfy ψ
are removed from S′. In our example with S′ = {〈u, �3〉, 〈v, �3〉, 〈r, 〈α1, α2, �〉〉,
〈t, 〈β1, α2, �〉〉} the A-moves assigned to r and t are removed from S′. S′ is now
a uniform strategy for 〈〈A〉〉p1U p2, but it is not maximal. In Fig. 2, the set
T = S′ ∪ {〈q, 〈α1, α2, �〉〉, 〈s, 〈α1, β2, �〉〉} is a superset of S′ that is a uniform
strategy for 〈〈A〉〉p1U p2 (even a maximal one).

In our example, there are five maximal uniform strategies for ϕ = 〈〈A〉〉p1U p2:
S1 = {〈q, 〈α1, α2, �〉〉, 〈r, 〈β1, α2, �〉〉, 〈u, �3〉, 〈v, �3〉}, S2 = {〈q, 〈α1, α2, �〉〉,
〈s, 〈α1, β2, �〉〉, 〈u, �3〉, 〈v, �3〉}, S3 = {〈t, 〈β1, α2, �〉〉, 〈r, 〈β1, α2, �〉〉, 〈u, �3〉, 〈v, �3〉},
S4 = {〈t, 〈β1, β2, �〉〉, 〈r, 〈α1, α2, �〉〉, 〈u, �3〉, 〈v, �3〉} and S5 = {〈t, 〈β1, β2, �〉〉,
〈s, 〈α1, β2, �〉〉, 〈u, �3〉, 〈v, �3〉}.

Remark 1. A set of A-moves S is a uniform strategy iff there is no pair of blocking
A-moves in S.

Remark 2. Let ϕ = 〈〈A〉〉ψ be an ATLu-formula, let S be the union of all strate-
gies for ϕ and let S′ ⊆ S be a uniform strategy for ϕ. S′ is a maximal uniform
strategy for ϕ iff it is a uniform strategy for ϕ and there is no other uniform
strategy S′′ for ϕ such that S′ ⊂ S′′ ⊆ S.

Proposition 1. Let ϕ = 〈〈A〉〉ψ be an ATLu-formula and let S be the union of
all strategies for ϕ. A strategy S′ ⊆ S is a strategy for ϕ iff

1. every A-move disconnected in S′ is a singleton strategy for ϕ and
2. in case that ϕ = 〈〈A〉〉ψ1U ψ2, there is no infinite Λ ∈ out(dom(S′), S′) such

that {Λ[i]} �|= ψ2 for every i ≥ 1.

Proof. We have three cases to consider:

– ϕ = 〈〈A〉〉Xψ – A strategy S′ of coalition A is a strategy for 〈〈A〉〉Xψ iff
{Λ[2]} |= ψ for every Λ ∈ out(dom(S′), S′) iff out(q, mA) |= ψ, for every
〈q, mA〉 ∈ S′. Thus, every {〈q, mA〉} ⊆ S′, disconnected or not, is a singleton
strategy for 〈〈A〉〉Xψ. Since S is the union of all strategies for 〈〈A〉〉Xψ, it
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consists solely of A-moves that are singleton strategies for 〈〈A〉〉Xψ. The
outcome of every strategy that is a subset of S thus contains only such
paths Λ that {Λ[2]} |= ψ. Thus, every strategy S′ ⊆ S is a strategy for
〈〈A〉〉Xψ.

– ϕ = 〈〈A〉〉Gψ – (⇒) S′ is a strategy for 〈〈A〉〉Gψ iff (a) every Λ ∈ out(dom(S′),
S′) is infinite and (b) {Λ[i]} |= ψ for every i ≥ 1. It follows from (a) that no
A-move is disconnected in S′, as the latter would imply the existence of a
finite path in S′.
(⇐) We argue by contraposition. Since S′ is a subset of the union of all
strategies for 〈〈A〉〉Gψ, for every Λ ∈ out(dom(S′), S′) and every 1 ≤ i ≤ |Λ|,
we have {Λ[i]} |= ψ. Thus, if strategy S′ ⊆ S is not a strategy for 〈〈A〉〉Gψ,
this can only happen if some Λ ∈ out(dom(S′), S′) is finite. The last state
of every such Λ must be in the outcome of some A-move disconnected in S′.
Since a single A-move can only be a (singleton) strategy for 〈〈A〉〉Gψ if it
”loops back”, which is incompatible with being disconnected, none of these
A-moves can be a strategy for 〈〈A〉〉Gψ.

– ϕ = 〈〈A〉〉ψ1U ψ2 – (⇒) S′ is a strategy for 〈〈A〉〉ψ1U ψ2 iff, for every Λ ∈
out(dom(S′), S′), there is j ≥ 1 such that {Λ[j]} |= ψ2 and {Λ[i]} |= ψ1,
for every 1 ≤ i ≤ j. Thus, there is no infinite Λ ∈ out(dom(S′), S′) such
that {Λ[i]} �|= ψ2 for every i ≥ 1. If 〈q, mA〉 ∈ S′ is an A-move disconnected
in S′, then either {q} |= ψ2 must hold or {q′} |= ψ2 must hold for every
q′ ∈ out(q, mA) (otherwise there would be a path Λ ∈ out(q, S′) such that
{Λ[i]} |= ψ2 does not hold for any i ≥ 1). Thus, every A-move disconnected
in S′ is a singleton strategy for 〈〈A〉〉ψ1U ψ2.
(⇐) We argue by contraposition. Since S is the union of all strategies for
〈〈A〉〉ψ1U ψ2, for every A-move 〈q, mA〉 ∈ S we have that either {q} |= ψ2 or
{q} |= ψ1 and {q′} |= ψ1 or {q′} |= ψ2 for every q′ ∈ out(q, mA). Thus, if
strategy S′ ⊆ S is not a strategy for 〈〈A〉〉ψ1U ψ2, this can only happen if,
for some Λ ∈ out(dom(S′), S′), we have {Λ[i]} �|= ψ2, for every i ≥ 1. If such
Λ is infinite then condition 2 is not satisfied. If such Λ is finite, then the last
state q of Λ must be in the outcome of some A-move 〈q′, mA〉 disconnected
in S′. For this q ∈ out(q′, mA), we have {q} �|= ψ2; thus, {〈q′, mA〉} cannot
be a singleton strategy for 〈〈A〉〉ψ1U ψ2 and condition 1 is not satisfied. �

The function Uniform(ϕ, S), which returns all maximal uniform strategies for
ϕ, is described in Alg. 2. A strategic formula ϕ and the union S of all strategies
for ϕ is passed as the input parameter.

Uniform(ϕ, S) works as follows. First, the problem of avoiding blocking pairs
of A-moves in a resulting maximal uniform strategy for ϕ is solved via reduction
to the problem of listing all maximal cliques in the components of a graph
derived from the blocking relation between the A-moves. (The Bron-Kerbosh
algorithm [3] can be used for listing of all maximal cliques.) Afterwards, in case
that ϕ = 〈〈A〉〉Gψ, we remove from every uniform strategy S′ maximal in S all
disconnected assigned A-moves. In case that ϕ = 〈〈A〉〉ψ1U ψ2, we remove all
A-moves that can effect a path that never reaches a state from the domain of
any uniform strategy for ψ2. Thus, only uniform strategies for ϕ remain. Finally,
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Function. Uniform(ϕ, S)

Input: a strategic formula ϕ = 〈〈A〉〉ψ, the union S of all strategies for ϕ
Output: all maximal uniform strategies for ϕ
// find set S of all uniform strategies that are maximal in S
build a graph G = 〈S,B〉 where (〈q,mA〉, 〈q′,m′

A〉) ∈ B iff 〈q,mA〉 � 〈q′,m′
A〉 ;

find all components C1, .., Cm of G;
foreach component Ci of G do

/* find all maximal independent sets I1i , .., I
n
i in Ci */

build the complement graph Ci of Ci;

Ii := {all maximal cliques I1i , .., I
l
i of Ci} ; // Bron-Kerbosh algorithm

// generate all combinations of cliques, one clique per component

S := {∅};
foreach component Ci of G do

S′ := {∅};
foreach Sj ∈ S do

foreach clique Iki ∈ Ii do
S′ := S′ ∪ {Iki ∪ Sj};

S := S′;
if ϕ = 〈〈A〉〉Xψ then return S;
else if ϕ = 〈〈A〉〉Gψ then

// keep in each Si only A-moves that are not disconnected in Si

foreach Si ∈ S do
T := ∅;
while Si �= T do T := Si;Si := {〈q,mA〉 ∈ Si | out(q,mA) ⊆ Dom(Si)};

else if ϕ = 〈〈A〉〉ψ1Uψ2 then
// remove from each Si all A-moves that may effect a path never

reaching
⋃

Sj∈[ψ2]
dom(Sj)

D =
⋃

Sj∈[ψ2]
Dom(Sj);

foreach Si ∈ S do
T1 := ∅; T2 := {〈q,mA〉 ∈ Si | q ⊆ D};
while T2 �⊆ T1 do

T1 := T1 ∪ T2;T2 := {〈q,mA〉 ∈ Si | out(q,mA) ⊆ Dom(T1)};
Si := T1;

// remove all non-maximal strategies

foreach Si, Sj ∈ S do
if Si ⊆ Sj then S := S \ Si;

return S;

every strategy that is a subset of another strategy is removed. The remaining
strategies are maximal uniform strategies for ϕ.

Proposition 2. Let S be the union of all strategies for a strategic ATLu-formula
ϕ = 〈〈A〉〉ψ and let S be the set returned by Uniform(ϕ,S ). S′ is a maximal
uniform strategy for ϕ iff S′ ∈ S.
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Proof. First, we show that, as an intermediate step, (1) Uniform(ϕ, S) finds
all uniform strategies that are maximal in S. According to Remark 1, a set
of A-moves S′ is a uniform strategy iff for every 〈q, mA〉 ∈ S′ there is no
〈q′, m′

A〉 ∈ S′ such that 〈q, mA〉 � 〈q′, m′
A〉. Consider graph G = 〈S, B〉 where

(〈q, mA〉, 〈q′, m′
A〉) ∈ B iff 〈q, mA〉 � 〈q′, m′

A〉. There is no 〈q, mA〉, 〈q′, m′
A〉 ∈

S′ ⊆ S such that 〈q, mA〉 � 〈q′, m′
A〉 iff S′ is an independent set in G,

i.e., a clique (a complete subgraph) in the complement graph G. S′ is a uni-
form strategy maximal in S iff it is a maximal independent set in G. Let
C1, . . . , Cn be all disconnected components of G. For every 1 ≤ i ≤ n, 1 ≤
j ≤ n, i �= j there is no 〈q, mA〉 ∈ Ci and 〈q′, m′

A〉 ∈ Cj such that 〈q, mA〉 �
〈q′, m′

A〉. Thus, the set of all maximal independent sets in G is {
⋃

i=1,...,n Ii |
Ii is a maximal independent set of Ci}. Function Uniform finds all combinations
of the maximal independent sets from every disconnected component of G, one
set per component, thus producing (as an intermediate step) the set of all uni-
form strategies that are maximal in S.

Next, we show that (2) if a set of A-moves S′ is a uniform strategy for ϕ then
S′ ⊆ S′′ for some S′′ ∈ S. Since S′ is a strategy for ϕ, S′ ⊆ S. Since S′ ⊆ S is a
uniform strategy, there exists some uniform strategy M maximal in S such that
S′ ⊆ M . According to (1), every such M is found in Uniform(ϕ, S). We have
three cases to consider:

– ϕ = 〈〈A〉〉Xρ – Every uniform strategy maximal in S is directly returned in
S. Thus, M ∈ S and S′ ⊆ M .

– ϕ = 〈〈A〉〉Gρ – For every uniform strategy M maximal in S, Uniform(ϕ, S)
finds the greatest fixed point Pg of function F (X) = {〈q, mA〉 ∈ M |
out(q, mA) ⊆ Dom(X)} where the domain of F is the power set of M .
Assume that there exists 〈q, mA〉 ∈ S′ \ Pg. Then, out(q, mA) �⊆ S′ and thus
there exists a finite Λ ∈ out(q, S′). Hence, S′ is not a strategy for 〈〈A〉〉Gρ,
which is a contradiction. Thus, every 〈q, mA〉 ∈ S′ must be in Pg ⊆ M .
Pg �∈ S iff Pg ⊂ S′′ for some S′′ ∈ S. Hence, either Pg or some S′′ such that
Pg ⊂ S′′ is in S and S′ ⊆ Pg.

– ϕ = 〈〈A〉〉ρ1U ρ2 – For every uniform strategy M maximal in S, Uniform(ϕ, S)
finds the least fixed point Pl of function G(X) = {〈q, mA〉 ∈ M | {q} |=
ρ2} ∪ {〈q, mA〉 ∈ M | out(q, mA) ⊆ Dom(X)} where the domain of G is
the power set of M . Assume that there exists 〈q, mA〉 ∈ S′ \ Pl. Then, there
exists Λ ∈ out(q, S′) such that {Λ[i]} �|= ρ2 for every 1 ≤ i ≤ |Λ|. Hence,
S′ is not a strategy for 〈〈A〉〉ρ1U ρ2, which is a contradiction. Thus, every
〈q, mA〉 ∈ S′ must be in Pl ⊆ M . Pl �∈ S iff Pl ⊂ S′′ for some S′′ ∈ S. Hence,
either Pl or some S′′ such that Pl ⊂ S′′ is in S and S′ ⊆ Pl.

Next, we show that (3) every S′ ∈ S is a uniform strategy for ϕ. According to
(1), Uniform(ϕ, S) finds all uniform strategies that are maximal in S. Only such
strategies or their nonempty subsets are included in S. Since every nonempty
subset of a uniform strategy is a uniform strategy, every S′ ∈ S is uniform
strategy. We have three cases to consider:
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– ϕ = 〈〈A〉〉Xρ – Every S′ ∈ S is a subset of S and consists solely of A-moves
that are singleton strategies for 〈〈A〉〉Xρ. It follows from Proposition1 that
every such S′ is a strategy for 〈〈A〉〉Xρ.

– ϕ = 〈〈A〉〉Gρ – Every S′ ∈ S is a subset of S and the greatest fixed point of
function F (X) = {〈q, mA〉 ∈ M | out(q, mA) ⊆ Dom(X)} where the domain
of F is the power set of M and M is some uniform strategy maximal in S.
Since out(q, mA) ⊆ S′ for every 〈q, mA〉, there is no disconnected A-move in
S′ and according to Proposition1, S′ is a strategy for 〈〈A〉〉Gρ.

– ϕ = 〈〈A〉〉ρ1U ρ2 – Every S′ ∈ S is a subset of S and is the least fixed
point of function G(X) = {〈q, mA〉 ∈ M | {q} |= ρ2} ∪ {〈q, mA〉 ∈ M |
out(q, mA) ⊆ Dom(X)} where the domain of G is the power set of M and
M is some uniform strategy maximal in S. For every 〈q, mA〉 ∈ S′ either
{q} |= ρ2 and thus 〈q, mA〉 ∈ S′ is a singleton strategy for 〈〈A〉〉ρ1U ρ2 or
for every Λ ∈ out(q, S′) we have {Λ[i]} |= ρ2 for some i. Thus, according to
Proposition1, S′ is a strategy for 〈〈A〉〉ρ1U ρ2.

Next, we show that (4) if a set of A-moves S′ is a maximal uniform strategy for
ϕ then S′ ∈ S. It follows from (2) that for every maximal uniform strategy S′

for ϕ there exists S′′ ∈ S such that S′ ⊆ S′′. Since (3), S′′ is a uniform strategy
for ϕ. Since S′ is a maximal uniform strategy for ϕ, it is not a proper subset of
any other uniform strategy for ϕ. Thus, S′ = S′′ ∈ S.

Lastly, we show that (5) every S′ ∈ S is a maximal uniform strategy for ϕ.
According to (3), every S′ ∈ S is a uniform strategy for ϕ. If some uniform
strategy S′ ∈ S for ϕ is not maximal, then there must exist a maximal uniform
strategy S′′ for ϕ such that S′ ⊂ S′′. Since for every S′ ∈ S there is no S′′ ∈ S
such that S′ ⊂ S′′, we have that S′′ �∈ S. According to (4), S′′ ∈ S, which is a
contradiction and thus S′ must be a maximal uniform strategy for ϕ.

Since (4) and (5), S′ is a maximal uniform strategy iff S′ ∈ S. �

We now prove the correctness of the algorithm for finding uniform strategies:

Claim. Given an ATLu-formula ϕ, the algorithm 1 returns all maximal uniform
strategies for every subformula ψ of ϕ (including ϕ itself).

Proof. For the case that ψ is a non-strategic formula (i.e., either ψ is an atomic
proposition, or ψ = ¬ρ, or ψ = ρ1 ∧ ρ2 ), the strategy S∅ returned by the
algorithm assigns the ∅-move to every state that satisfies ψ. Thus, the domain
of S∅ is the set of states where ψ holds. As every strategy consisting of ∅-
moves is uniform, S∅ is uniform. Since there is no strategy S for ψ such that
dom(S∅) ⊂ dom(S), S∅ is the maximal uniform strategy for ψ.

For the case that ψ = 〈〈A〉〉τ , we show that the set of A-moves passed to
function Uniform is the union of all strategies for ψ:

– ψ = 〈〈A〉〉Xρ – The arguments for function Pre are coalition A and the set
Q =

⋃
Si∈[ρ] dom(Si). Function Pre returns a set P of all A-moves 〈q, mA〉

such that out(q, mA) ⊆ Q. A set of A-moves S is a strategy for 〈〈A〉〉Xρ
iff {Λ[2]} |= ρ for every Λ ∈ out(dom(S), S) iff out(q, mA) ⊆ Q for every
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〈q, mA〉 ∈ S. Thus, every strategy for 〈〈A〉〉Xρ is a subset of P . Every A-
move in P is a singleton strategy for 〈〈A〉〉Xρ. Thus, P is the union of all
strategies for 〈〈A〉〉Xρ.

– ψ = 〈〈A〉〉Gρ – The set T1 passed to Uniform is the greatest fixed point of
F (X) = {〈q, mA〉 ∈ Pre(A, Dom(X)) | {q} |= ρ}. For every strategy S �⊆ T1
there is 〈q, mA〉 ∈ S \ T1 such that there is Λ ∈ out(q, S) that is either finite
or {Λ[i]} �|= ρ for some i and hence, Λ �� Gρ. Thus, every strategy for 〈〈A〉〉Gρ
must be a subset of T1. For every 〈q, mA〉 ∈ T1 there exists a strategy S ⊆ T1
for 〈〈A〉〉Gρ such that 〈q, mA〉 ∈ S. Thus, T1 is the union of all strategies for
〈〈A〉〉Gρ.

– ψ = 〈〈A〉〉ρ1 U ρ2 – The set T1 passed to Uniform is the least fixed point of
G(X) = {〈q, �k〉 | {q} |= ρ2} ∪ {〈q, mA〉 ∈ Pre(A, Dom(X)) | {q} |= ρ1}.
For every strategy S �⊆ T1 there is 〈q, mA〉 ∈ S \ T1 such that {q} �|= ρ2 and
{q′} �|= ρ2 and {q′} �|= ρ1 for some q′ ∈ out(q, mA). Hence, Λ �� ρ1 U ρ2 for
some Λ ∈ out(q, S). Thus, every strategy for 〈〈A〉〉ρ1 U ρ2 must be a subset
of T1. For every 〈q, mA〉 ∈ T1 there exists a strategy S ⊆ T1 for 〈〈A〉〉ρ1 U ρ2
such that 〈q, mA〉 ∈ S. Thus, T1 is the union of all strategies for 〈〈A〉〉ρ1 U ρ2.

Thus, for every ψ = 〈〈A〉〉τ that is a subformula of ϕ, the union S of all strategies
for ψ is passed to function Uniform(ψ, S) and according to Proposition 2, the
set of all maximal uniform strategies for ψ is returned. �

The approach used in our algorithm is similar to model checking for Constructive
Strategic Logic [5] — first guess a uniform strategy and then verify with the CTL
model checking algorithm that it is a strategy for a given formula. However, our
algorithm provides a method for construction of the uniform strategies, performs
only necessary checks to avoid full-scale CTL model checking and returns all
maximal uniform strategies of a given formula, rather then just a set of all
states which satisfy the formula.

4 Example

To demonstrate the algorithm, we use the example of the SOSEWIN sensor net-
work for detection of earthquakes developed in the scope of the SAFER project
[1]. This network is partitioned into clusters of a fixed size. Every node is con-
nected to two other nodes in the cluster. A protocol for election of a leader is
necessary to fulfill the task of the network. The aim of the protocol is to establish
exactly one leader in the cluster. For the sake of simplicity, we fix the size of the
cluster to three nodes and further limit the information available to each node
by reducing the size of their neighborhood.

We represent the cluster of three nodes as a one-dimensional cellular automa-
ton – a row of three cells. Each cell may have one of two colors—black when the
cell is designated as the leader and white otherwise—and is connected to the cell
on its left and right side. The neighborhood of each cell consists of the cell on
its left, that is, each cell knows its own color and the color of the cell on its left.
The neighbor of the leftmost cell is the rightmost cell. In each step of the system
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each cell synchronously observes the colors in its neighborhood and decides to
either keep its current color or swap it, according to an applicable rule. Given
a cell and the colors of the cell’s neighborhood the rule defines the next cell’s
color. Thus, a set of rules for all cells can be seen as a uniform strategy of the
cellular automaton.

We want to find all maximal uniform strategies for the following property: In
one step a state of the cellular automaton is reached, where exactly one cell is
black and the other two are white. Moreover, if the cellular automaton is at such
state, the cells may not change their colors.

First, we specify a CEGS representing our system:

– Each cell is one agent. We denote the leftmost cell by c1, the middle cell by
c2 and the rightmost cell by c3. Thus, the set of agents is Agt = {c1, c2, c3}.
Since all cells are involved in enforcing the property, they are all included in
the coalition A.

– A state of the system is given by the colors of all three cells. We denote the
state where the cell c1 is black and the cell c2 and c3 is white by 	

. The
set of all states is St = {


, 

	, 
	
, 
		, 	

, 	
	, 		
,			}.

– There is a single atomic proposition p that holds in those states where exactly
one cell is black. That is, π(p) = {

	, 
	
, 	

}.

– Each cell can either keep its color (denoted by −) or swap it (denoted by s).
Thus, the set of actions is Act = {−, s}.

– Each cell has both actions available at all states except those where propo-
sition p holds. In states where p holds only action – is available to every cell
(this constraint is a part of the property that the system should enforce).
Thus, for every cell c ∈ Agt we have d(c, q) = {−} for every state q ∈ π(p)
and d(c, q′) = {−, s} for every state q′ �∈ π(p).

– The transition function o can be derived from the description of the action.
For example, o(	
	, 〈−, −, s〉) = 	

.

– Since each cell knows only its own color and the color of the cell on its left, the
two states that differ in the color of the cell on its right are indistinguishable
for the cell.

We can now express the desired property formally: ϕ = 〈〈A〉〉Xp. Algorithm 1
calls function Pre(A, π(p)) to find the union S of all strategies for ϕ. S consists
of A-moves represented by the nodes in Fig. 3. The domain of S consists of all
system states.

Function Uniform(ϕ, S) constructs the graph G for the blocking relation on S
(Fig. 3). There is only one component in G and one maximal independent set in
G is depicted in grey in the figure. In case of next operator every A-move in S is
a singleton strategy for ϕ. Thus, every maximal independent set in G represents
one maximal uniform strategy ϕ.

There are four maximal uniform strategies for ϕ. From these four strategies
only the one depicted on the figure consists of such A-moves that to every cell
the same action is prescribed for the same combination of its color and the color
of its left neighbor. From this strategy one set of rules can be derived that can be
performed by every cell, namely: swap the color if both colors are black, keep the
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Fig. 3. The union of all strategies S for ϕ = 〈〈A〉〉Xp: Each vertex is an A-move. An edge
connects A-moves that block each other and the label of the edge denotes the agent
to that the connected states are indistinguishable. � denotes all agents. Proposition p

is true at the states from the bold vertices. One maximal uniform strategy for ϕ (a
maximal independent set) consists of the grey vertices.

color otherwise. The system following this strategy reaches a state from π(p) in
one step from all states except 			 and 


 (while respecting the constraint
on the behavior at states from π(p)).

5 The Complexity of Finding Uniform Strategies

The input of the algorithm 1 is a CEGS M with m transitions and an ATLu

formula ϕ of length l.
For each subformula ψ of ϕ, the algorithm first finds the union S of all strate-

gies for ψ. In the worst case, this involves computing the least or the greatest
fixed point of Pre, which finds a pre-image for a given set of states and a coalition
of agents. Thus, every transition in M must be checked and finding the union S
of all strategies for ϕ takes O(m) steps.

Next, for each subformula ψ, Uniform(ψ, S) constructs the graph G = 〈S, B〉
for the blocking relation on the A-moves from S. The size of S is at most m. To
decide whether a pair of vertices is connected by an edge, the actions from the
A-moves are compared for each agent from A that cannot distinguish between
the states to that the A-moves are assigned. This involves at most k comparisons
for a pair of vertices, where k = |Agt|. As the presence of the edge is decided for
every pair of vertices, the construction of G takes O(m2) steps. The disconnected
components of G can be identified during the construction for no extra price.

Next, each disconnected component C of graph G is turned into its comple-
ment graph C. In the worst case, G consists of only one component and the
construction of G requires O(|S|2) ≤ O(m2) steps.
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Next, all maximal cliques are found in every complement graph C. The Bron-
Kerbosh algorithm solving this task has the worst-time complexity O(3v/3) for
a graph with v vertices [11] and is optimal since there are at most 3v/3 maximal
cliques in such graph [9]. If G consists of j disconnected components C1, . . . , Cj

with c1, . . . , cj vertices, respectively, then the task requires O(
∑j

i=1 3ci/3) ≤
O(3m/3) steps. Then, all combinations of maximal cliques – one for each discon-
nected complement component – are generated to provide all uniform strategies
maximal in S. Since there is at most 3ci/3 maximal cliques in Ci, we need up to
O(

∏j
i=1 3ci/3) ≤ O(3m/3) steps to produce all uniform strategies maximal in S.

Next, in some cases the least or greatest fixed point in the uniform strategy S′

maximal in S is computed. At worst case, every transition from out(dom(S′), S′)
must be checked for the presence in the fixed point and thus, O(m) steps are
necessary. Since there is up to O(3m/3) uniform strategies maximal in S, the
computation takes up to O(m · 3m/3) steps.

Lastly, every strategy that is a subset of another strategy is removed so that
only maximal uniform strategies for ψ remain. At worst case, every pair of strate-
gies must be compared (at most 32·m/3 comparisons) and each comparison may
involve checks for each pair of A-moves (at most m2 checks). Thus, removing
the non-maximal strategies may take at most O(m2 · 32·m/3) steps.

Since the same procedure is done for every strategic subformula of ϕ, the
worst-case complexity of finding all maximal uniform strategies for every sub-
formula of ϕ including ϕ itself is O(l · m2 · 32·m/3).

If filtering out non-maximal uniform strategies for ϕ is not required, the worst-
case complexity is O(l · m · 3m/3). This result is in line with the fact that model
checking complexity of ATLir is ΔP

2 -complete [7], i.e., the problem can be solved
in polynomial time with an oracle for some NP-complete problem. In our case,
finding all uniform strategies maximal in S is reduced to the problem if list-
ing all maximal cliques, which is NP-complete. With the routine for finding
such strategies replaced by the oracle for this problem, our algorithm would
work in polynomial time. Note, however, that our algorithm not only finds the
states where a formula holds, but also returns all maximal uniform strategies for
the formula.

6 Conclusion

We presented an algorithm for finding uniform strategies for multi-agent systems
with agents with incomplete information. Given a strategic formula ϕ = 〈〈A〉〉ψ,
we find all maximal uniform strategies that agents in A can use to enforce ψ,
rather then simply the set of states satisfying ϕ. The formulas we consider have
the syntax of ATL, but we define their semantics in terms of uniform strategies.
The algorithm has exponential worst-case complexity, since it uses, as a sub-
routine, a procedure for finding all maximal cliques in a graph—a problem that
is known to be NP-complete. Further research will be focused on reducing the
complexity of the algorithm by using a model with an implicit representation
of the incomplete information, e.g., modular interpreted systems [6] and with
symbolic representation of the system state space.
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Abstract. Consider a player playing against different opponents in two
extensive form games simultaneously. Can she then have a strategy in
one game using information from the other? The famous example of
playing chess against two grandmasters simultaneously illustrates such
reasoning. We consider a simple dynamic logic of extensive form games
with sequential and parallel composition in which such situations can
be expressed. We present a complete axiomatization and show that the
satisfiability problem for the logic is decidable.

1 Motivation

How can any one of us1 expect to win a game of chess against a Grandmaster
(GM)? The strategy is simple: play simultaneously against two Grandmasters! If
we play black against GM 1 playing white, and in the parallel game play white
against GM 2 playing black, we can do this simply. Watch what GM 1 plays,
play that move in the second game, get GM 2’s response, play that same move
as our response in game 1, and repeat this process. If one of the two GMs wins,
we are assured of a win in the other game. In the worst case, both games will
end in a draw.

Note that the strategy construction in this example critically depends on
several features:

– Both games need to be played in lock-step synchrony; if they are slightly out
of step with each other, or are sequentialized in some way, the strategy is
not applicable. So concurrency is critically exploited.
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1 By “us” we mean poor mortals who know how to play the game but lack expertise.
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– The strategy cannot be constructed a priori, as we do not know what moves
would be played by either of the GMs. Such reasoning is intrinsically differ-
ent from the discussion of the existence of winning strategies in determined
games. In particular, strategic reasoning as in normal form games is not
applicable.

– The common player in the two games acts as a conduit for transfer of infor-
mation from one game to the other; thus game composition is essential for
such reasoning. The example illustrates that playing several instances of the
same game may mean something very different from repeated games.

– The common player can be a resource bounded agent who cannot analyse the
entire game structure and compute the winning strategy (even if it exists).
The player thus mimics the moves of an “expert” in order to win one of the
constituent games.

In general, when extensive form games are played in parallel, with one player
participating in several games simultaneously, such an information transfer from
one game to the other is possible. In general, since strategies are structured in
extensive form games, they can make use of such information in a non-trivial
manner.

In the context of agent-based systems, agents are supposed to play several
interactive roles at the same time. Hence when interaction is modelled by games
(as in the case of negotiations, auctions, social dilemma games, market games,
etc.) such parallel games can assume a great deal of importance. Indeed, a promi-
nent feature of an agent in such a system is the ability to learn and transferring
strategic moves from one game to the other can be of importance as one form
of learning.

Indeed, sequential composition of games can already lead to interesting situa-
tions. Consider player A playing a game against B, and after the game is over,
playing another instance of the same game against player C. Now each of the
leaf nodes of the first game carries important historical information about play
in the game, and A can strategize differently from each of these nodes in the
second game, thus reflecting learning again. Negotiation games carry many such
instances of history-based strategizing.

What is needed is an algebra of game composition in which the addition of
a parallel operator can be studied in terms of how it interacts with the other
operators like choice and sequential composition. This is reminiscent of process
calculi, where equivalence of terms in such algebras is studied in depth.

In this paper, we follow the seminal work of Parikh ([12]) on propositional
game logic. We use dynamic logic for game expressions but extended with
parallel composition; since we wish to take into account game structure, we
work with extensive form games embedded in Kripke structures rather than with
effectivity functions. In this framework, we present a complete axiomatization
of the logic and show that the satisfiability problem for the logic is decidable.

The interleaving operator has been looked at in the context of program anal-
ysis in terms of dynamic logic [1]. The main technical difficulty addressed in the
paper is that parallel composition is not that of sequences (as typically done in
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process calculi) but that of trees. The main modality of the logic is an assertion
of the form 〈g, i〉α which asserts, at a state s, that a tree t in the “tree language”
associated with g is enabled at s, and that player i has a strategy (subtree) in
it to ensure α. Parallel composition is not compositional in the standard logical
sense: the semantics of g1||g2 is not given in terms of the semantics of g1 and
g2 considered as wholes, but by going into their structure. Therefore, defining
the enabled-ness of a strategy as above is complicated. Note that the branching
structure we consider is quite different from the intersection operator in dynamic
logic [8,6,11] and is closer to the paradigm of concurrent dynamic logic [14].

For ease of presentation, we first present the logic with only sequential and
parallel composition and discuss technicalities before considering iteration, which
adds a great deal of complication. Note that the dual operator, which is impor-
tant in Parikh’s game logic is not relevant here, since we wish to consider games
between several players played in parallel.

Related Work

Games have been extensively studied in temporal and dynamic logics. For con-
current games, this effort was pioneered by work on Alternating time temporal
logic (ATL) [3], which considers selective quantification over paths. Various ex-
tension of ATL was subsequently proposed, these include ones in which strategies
can be named and explicitly referred to in the formulas of the logic [18,2,19].
Parikh’s work on propositional game logics [12] initiated the study of game
structures in terms of algebraic properties. Pauly [13] has built on this to reason
about abilities of coalitions of players. Goranko draws parallels between Pauly’s
coalition logic and ATL [7]. Van Benthem uses dynamic logic to describe games
and strategies [16]. Strategic reasoning in terms of a detailed notion of agency
has been studied in the stit framework [10,4,5].

Somewhat closer in spirit is the work of [17] where van Benthem and co-
authors develop a logic to reason about simultaneous games in terms of a parallel
operator. The reasoning is based on powers of players in terms of the outcome
states that can be ensured. Our point of departure is in considering extensive
form game trees explicitly and looking at interleavings of moves of players in the
tree structure.

2 Preliminaries

2.1 Extensive Form Games

Let N = {1, . . . , n} denote the set of players, we use i to range over this set. For
i ∈ N , we often use the notation ı to denote the set N \{i}. Let Σ be a finite set
of action symbols representing moves of players, we let a, b range over Σ. For a
set X and a finite sequence ρ = x1x2 . . . xm ∈ X∗, let last(ρ) = xm denote the
last element in this sequence.
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Game trees: Let T = (S,⇒, s0) be a tree rooted at s0 on the set of vertices
S and ⇒ : (S × Σ) → S is a partial function specifying the edges of the tree.
The tree T is said to be finite if S is a finite set. For a node s ∈ S, let

→
s=

{s′ ∈ S | s
a⇒s′ for some a ∈ Σ}, moves(s) = {a ∈ Σ | ∃s′ ∈ S with s

a⇒s′} and
ET (s) = {(s, a, s′) | s

a⇒s′}. By ET (s) × x we denote the set {((s, x), a, (s′, x)) |
(s, a, s′) ∈ ET (s)}. The set x × ET (s) is defined similarly. A node s is called a
leaf node (or terminal node) if

→
s = ∅. The depth of a tree is the length of the

longest path in the tree.
An extensive form game tree is a pair T = (T, λ̂) where T = (S,⇒, s0) is a

tree. The set S denotes the set of game positions with s0 being the initial game
position. The edge function ⇒ specifies the moves enabled at a game position
and the turn function λ̂ : S → N associates each game position with a player.
Technically, we need player labelling only at the non-leaf nodes. However, for
the sake of uniform presentation, we do not distinguish between leaf nodes and
non-leaf nodes as far as player labelling is concerned. An extensive form game
tree T = (T, λ̂) is said to be finite if T is finite. For i ∈ N , let Si = {s | λ̂(s) = i}
and let frontier (T ) denote the set of all leaf nodes of T . Let SL

T = frontier (T )
and SNL

T = S \ SL
T . For a tree T = (S,⇒, s0, λ̂) we use head(T ) denote the

depth one tree generated by taking all the outgoing edges of s0.
A play in the game T starts by placing a token on s0 and proceeds as follows:

at any stage if the token is at a position s and λ̂(s) = i then player i picks an
action which is enabled for her at s, and the token is moved to s′ where s

a⇒s′.
Formally a play in T is simply a path ρ : s0a1s1 · · · in T such that for all j > 0,
sj−1

aj⇒sj . Let Plays(T ) denote the set of all plays in the game tree T .

2.2 Strategies

A strategy for player i ∈ N is a function μi which specifies a move at every game
position of the player, i.e. μi : Si → Σ. A strategy μi can also be viewed as a
subtree of T where for each player i node, there is a unique outgoing edge and
for nodes belonging to players in ı, every enabled move is included. Formally we
define the strategy tree as follows: For i ∈ N and a player i strategy μi : Si → Σ
the strategy tree Tμi = (Sμi ,⇒μi , s0, λ̂μi) associated with μ is the least subtree
of T satisfying the following property: s0 ∈ Sμi ,

– For any node s ∈ Sμi ,
• if λ̂(s) = i then there exists a unique s′ ∈ Sμi and action a such that

s
a⇒μis′.

• if λ̂(s) 	= i then for all s′ such that s
a⇒s′, we have s

a⇒μis′.

Let Ωi(T ) denote the set of all strategies for player i in the extensive form
game tree T . A play ρ : s0a0s1 · · · is said to be consistent with μi if for all j ≥ 0
we have sj ∈ Si implies μi(sj) = aj.
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2.3 Composing Game Trees

We consider sequential and parallel composition of game trees. In the case of
sequences, composing them amounts to concatenation and interleaving. Con-
catenating trees is less straightforward, since each leaf node of the first is now a
root of the second tree. Interleaving trees is not the same as a tree obtained by
interleaving paths from the two trees, since we wish to preserve choices made by
players.

Sequential composition: Suppose we are given two finite extensive form game
trees T1 = (S1,⇒1, s

0
1, λ̂1) and T2 = (S2,⇒2, s

0
2, λ̂2). The sequential composi-

tion of T1 and T2 (denoted T1;T2) gives rise to a game tree T = (S,⇒, s0, λ̂),
defined as follows: S = SNL

1 ∪ S2, s0 = s0
1,

– λ̂(s) = λ̂1(s) if s ∈ SNL
1 and λ̂(s) = λ̂2(s) if s ∈ S2.

– s
a⇒s′ iff:
• s, s′ ∈ SNL

1 and s
a⇒1s

′, or
• s, s′ ∈ S2 and s

a⇒2s
′, or

• s ∈ SNL
1 , s′ = s0

2 and there exists s′′ ∈ SL
1 such that s

a⇒1s
′′.

In other words, the game tree T1;T2 is generated by pasting the tree T2 at all
the leaf nodes of T1. The definition of sequential composition can be extended
to a set of trees T2 (denoted T1; T2) with the interpretation that at each leaf
node of T1, a tree T2 ∈ T2 is attached.

Parallel composition: The parallel composition of T1 and T2 (denoted T1||T2)
yields a set of trees. A tree t = (S,⇒, s0, λ̂) in the set of trees T1||T2 provided:
S ⊆ S1 × S2, s0 = (s0

1, s
0
2),

– For all (s, s′) ∈ S:
• ET ((s, s′)) = Et1(s) × s′ and λ̂(s, s′) = λ̂1(s), or
• ET ((s, s′)) = s × Et2(s

′) and λ̂(s, s′) = λ̂2(s′).
– For every edge s1

a⇒1s
′
1 in t1, there exists s2 ∈ S2 such that (s1, s2)

a⇒(s′1, s2)
in t.

– For every edge s2
a⇒2s

′
2 in t2, there exists s1 ∈ S1 such that (s1, s2)

a⇒(s1, s
′
2)

in t.

3 Examples

Consider the trees T1 and T2 given in Figure 1. The sequential composition of
T1 and T2 (denoted T1;T2) is shown in Figure 2. This is obtained by pasting
the tree T2 at all the leaf nodes of T1.

Now consider two finite extensive form game trees T4 and T5 given in figure 3.
Each game is played between two players, player 2 is common in both games.
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Fig. 2. T1;T2

Note that we are talking about different instances of the same game (as evident
from the similar game trees) played between different pairs of players with a
player in common. Consider the interleaving of T4 and T5 where player 1 moves
first in T4, followed by 2 and 3 in T5, and then again coming back to the game
T4, with the player 2-moves. This game constitutes a valid tree in the set of trees
defined by T4||T5 and is shown in Figure 4.

Due to space constraints, we have not provided the names for each of the
states in the parallel game tree, but they are quite clear from the context. The
game starts with player 1 moving from p1 in T4 to p2 or p3. Then the play
moves to the game T5, where player 2 moves to q2 or q3, followed by the moves
of player 3. After that, the play comes back to T4, where player 2 moves once
again.

These games clearly represent toy versions of “playing against two Grandmas-
ters simultaneously”. Players 1 and 3 can be considered as the Grandmasters,
and 2 as the poor mortal. Let us now describe the copycat strategy that can be
used by player 2, when the two games are played in parallel. The simultaneous
game (figure 4), starts with player 1 making the first move a, say in the game
tree T4 (from (p1, q1)) to move to (p2, q1). Player 2 then copies this move in
game T5, to move to (p2, q2). The game continues in T5, with player 3 moving
to (p2, q4), say. Player 2 then copies this move in T4 (playing action c) to move
to (p4, q4). This constitutes a play of the game, where player 2 copies the moves
of players 1 and 3, respectively.

Evidently, if player 1 has a strategy in T4 to achieve a certain objective,
whatever be the moves of player 2, following the same strategy, player 2 can
attain the same objective in T5.

Parallel composition can also be performed with respect to games structures
which are not the same. Consider the game trees T6 and T7 given in Figure 5.

An interleaved game where each game is played alternatively starting from
the game T6 can be represented by the game tree in Figure 6.
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4 The Logic

For a finite set of action symbols Σ, let T (Σ) be a countable set of finite extensive
form game trees over the action set Σ which is closed under subtree inclusion. That
is, if T ∈ T (Σ) and T ′ is a subtree of T then T ′ ∈ T (Σ). We also assume that
for each a ∈ Σ, the tree consisting of the single edge labelled with a is in T (Σ).
Let H be a countable set and h, h′ range over this set. Elements of H are referred
to in the formulas of the logic and the idea is to use them as names for extensive
form game trees in T (Σ). Formally we have a map ν : H → T (Σ) which given
any name h ∈ H associates a tree ν(h) ∈ T (Σ). We often abuse notation and use
h to also denote ν(h) where the meaning is clear from the context.

4.1 Syntax

Let P be a countable set of propositions, the syntax of the logic is given by:

Γ := h | g1; g2 | g1 ∪ g2 | g1||g2

Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈g, i〉α

where h ∈ H and g ∈ Γ .
In Γ , the atomic construct h specifies a finite extensive form game tree. Com-

posite games are then constructed using the standard dynamic logic operators
along with the parallel operator. g1∪g2 denotes playing g1 or g2. Sequential com-
position is denoted by g1; g2 and g1||g2 denotes the parallel composition of games.
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The main connective 〈g, i〉α asserts at state s that a tree in g is enabled at s
and that player i has a strategy subtree in it at whose leaves α holds.

4.2 Semantics

A model M = (W,→, λ̂, V ) where W is the set of states (or game positions),
→ ⊆ W × Σ × W is the move relation, V : W → 2P is a valuation function
and λ̂ : W → N is a player labelling function. These can be thought of as
standard Kripke structures whose states correspond to game positions along
with an additional player labelling function. An extensive form game tree can
be thought of as enabled at a certain state, say s of a Kripke structure, if we can
embed the tree structure in the tree unfolding of the Kripke structure rooted at
s. We make this notion more precise below.

Enabling of trees: For a game position u ∈ W , let Tu denote the tree unfolding
of M rooted at u. We say the game h is enabled at a state u if the structure ν(h)
can be embedded in Tu with respect to the enabled actions and player labelling.
Formally this can be defined as follows:

Given a state u and h ∈ H, let Tu = (Ss
M ,⇒M , λ̂M , s) and ν(h) = Th =

(Sh,⇒h, λ̂h, sh,0). The restriction of Tu with respect to the game tree h (denoted
Tu |\ h) is the subtree of Ts which is generated by the structure specified by Th.
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The restriction is defined inductively as follows: Tu |\ h = (S,⇒, λ̂, s0, f) where
f : S → Sh. Initially S = {s}, λ̂(s) = λ̂M (s), s0 = s and f(s0) = sh,0.

For any s ∈ S, let f(s) = t ∈ Sh. Let {a1, . . . , ak} be the outgoing edges of
t, i.e. for all j : 1 ≤ j ≤ k, t

aj⇒htj . For each aj , let {s1
j , . . . , s

m
j } be the nodes in

Ss
M such that s

aj⇒Msl
j for all l : 1 ≤ l ≤ m. Add nodes s1

j , . . . , s
m
j to S and the

edges s
aj⇒sl

j for all l : 1 ≤ l ≤ m. Also set λ̂(sl
j) = λ̂M (sl

j) and f(sl
j) = tj .

We say that a game h is enabled at u (denoted enabled(h, u)) if the tree
Tu |\ h = (S,⇒, λ̂, s0, f) satisfies the following properties: for all s ∈ S,

– moves(s) = moves(f(s)),
– if moves(s) 	= ∅ then λ̂(s) = λ̂h(f(s)).

Interpretation of atomic games: To formally define the semantics of the
logic, we need to first fix the interpretation of the compositional games con-
structs. In the dynamic logic approach, for each game construct g and player
i we would associate a relation Ri

g ⊆ (W × 2W ) which specifies the outcome
of a winning strategy for player i. However due to the ability of being able to
interleave game positions, in this setting we need to keep track of the actual tree
structure rather just the “input-output” relations, which is closer in spirit to
what is done in process logics [9] . Thus for a game g and player i we define the
relation Ri

g ⊆ 2(W×W )∗ . For a pair x = (u, w) ∈ W × W and a set of sequences
Y ∈ 2(W×W )∗ we define (u, w) · Y = {(u, w) · ρ | ρ ∈ Y }. For j ∈ {1, 2} we use
x[j] to denote the j-th component of x.

For each atomic game h and each state u ∈ W , we define Ri
h(u) in a bottom-

up manner in such a way that whenever h is enabled at u, Ri
h(u) encodes the

set of all available strategies (cf. Section 2.2) for player i in the game h enabled
at u. The collection of all such strategies that a player i can have, whenever the
game h is enabled at some state u ∈ W is given by Ri

h.
Let h = (S,⇒, s0, λ̂) be a depth 1 tree with moves(s0) = {a1, . . . , ak} and

for all s 	= s0, moves(s) = ∅. For i ∈ N and a state u ∈ W , we define Ri
h(u) ⊆

2(W×W )∗ as follows:

– If λ̂(s0) = i then Ri
h(u) = {Xj | enabled(h, u) and Xj = {(u, wj)} where

u
aj→wj}.

– if λ̂(s0) ∈ ı then Ri
h(u) = {{(u, wj) | enabled(h, u) and ∃aj ∈ moves(s0)

with u
aj→wj}}.

For g ∈ Γ , let Ri
g =

⋃
u∈W Ri

g(u).
For a tree h = (S,⇒, s0, λ̂) such that depth(h) > 1, we define Ri

h(u) as,

– if λ̂(s0) = i then Ri
h(u) = {{(u, w) · Y } | ∃X ∈ Ri

head(h) with (u, w) ∈
X, u

aj→w and Y ∈ Ri
haj

}
– if λ̂(s0) ∈ ı then Ri

h(u) = {{(u, w) ·Y | ∃X ∈ Ri
head(h) with (u, w) ∈ X, u

aj→w

and Y ∈ Ri
haj

}}.
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Remark: Note that a set X ∈ Ri
h can contain sequences such as (u, w)(v, x)

where w 	= v. Thus in general sequence of pairs of states in X need not represent
a subtree of Tu for some u ∈ W . We however need to include such sequences
since if h is interleaved with another game tree h′, a move enabled in h′ could
make the transition from w to v. A sequence 
 ∈ X is said to be legal if whenever
(u, w)(v, x) is a subsequence of 
 then w = v. A set X ⊆ 2(W×W )∗ is a valid
tree if for all sequence 
 ∈ X , 
 is legal and X is prefix closed. For X which is
a valid tree we have the property that for all 
, 
′ ∈ X , first(
)[1] = first(
′)[1].
We denote this state by root(X). We also use frontier (X) to denote the frontier
nodes, i.e. frontier (X) = {last(
)[2] | 
 ∈ X}.

For a game tree h, although every set X ∈ Ri
h need not be a valid tree,

we can associate a tree structure with X (denoted T(X)) where the edges are
labelled with pairs of the form (u, w) which appears in X . Conversely given
W × W edge labelled finite game tree T, we can construct a set X ⊆ 2(W×W )∗

by simply enumerating the paths and extracting the labels of each edge in the
path. We denote this translation by f(T). We use these two translations in what
follows:

Interpretation of composite games: For g ∈ Γ and i ∈ N , we define Ri
g ⊆

2(W×W )∗ as follows:

– Ri
g1∪g2

= Ri
g1

∪ Ri
g2

.
– Ri

g1;g2
= {f(T(X); T ) | X ∈ Ri

g1
and T = {T(X1), . . . , T(Xk)} where

{X1, . . . , Xk} ⊆ Ri
g2
}.

– Ri
g1||g2

= {f(T(X1)||T(X2)) | X1 ∈ Ri
g1

and X2 ∈ Ri
g2
}.

The truth of a formula α ∈ Φ in a model M and a position u (denoted M, u |= α)
is defined as follows:

– M, u |= p iff p ∈ V (u).
– M, u |= ¬α iff M, u 	|= α.
– M, u |= α1 ∨ α2 iff M, u |= α1 or M, u |= α2.
– M, u |= 〈g, i〉α iff ∃X ∈ Ri

g such that X constitutes a valid tree, root(X) = u
and for all w ∈ frontier(X), M, w |= α.

A formula α is satisfiable if there exists a model M and a state u such that
M, u |= α.

Let h1 and h2 be the game trees T4 and T5 given in Figure 3. The tree
in which the moves of players are interleaved in lock-step synchrony is one of
the trees in the semantics of h1||h2. This essentially means that at every other
stage if a depth one tree is enabled then after that the same tree structure is
enabled again, except for the player labelling. Given the (finite) atomic trees,
we can write a formula αLS which specifies this condition. If the tree h is a
minimal one, i.e. of depth one given by (S,⇒, s0, λ̂), αLSh

can be defined as,∧
aj∈moves(s0)(〈aj〉� ∧ [aj ](∧aj∈moves(s0)〈aj〉�).
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If player 1 has a strategy (playing a, say) to achieve certain objective φ in
the game h1, player 2 can play (copy) the same strategy in h2 to ensure φ.
This phenomenon can be adequately captured in the interleaved game structure,
where player 2 has a strategy (viz. playing a) to end in those states of the game
h1||h2, where player 1 can end in h1. So we have that, whenever h1 and h1||h2 are
enabled and players can move in lock-step synchrony with respect to the game
h1 (or, h2), 〈h1, 1〉φ → 〈h1||h2, 2〉φ holds.

5 Axiom System

The main technical contribution of this paper is a sound and complete axiom
system. Firstly, note that the logic extends standard PDL. For a ∈ Σ and i ∈ N ,
let T i

a be the tree defined as: T i
a = (S,⇒, s0, λ̂) where S = {s0, s1}, s0

a⇒s1,
λ̂(s0) = i and λ̂(s1) ∈ N . Let tia be the name denoting this tree, i.e. ν(tia) = T i

a.
For each a ∈ Σ we define,

– 〈a〉α =
∧

i∈N (turni ⊃ 〈tia, i〉α).

From the semantics it is easy to see that we get the standard interpretation for
〈a〉α, i.e. 〈a〉α holds at a state u iff there is a state w such that u

a→w and α
holds at w.

Enabling of trees: The crucial observation is that the property of whether a
game is enabled can be described by a formula of the logic. Formally, for h ∈ H
such that ν(h) = (S,⇒, s0, λ̂) and moves(s0) 	= ∅ and an action a ∈ moves(s0),
let ha be the subtree of T rooted at a node s′ with s0

a⇒s′. The formula h
√

(defined below) is used to express the fact that the tree structure ν(h) is enabled
and head

√

h to express that head(ν(h)) is enabled. This is defined as,

– If ν(h) is atomic then h
√

= � and head
√

h = �.
– If ν(h) is not atomic and λ̂(s0) = i then

• h
√

= turni ∧ (
∧

aj∈moves(s0)(〈aj〉� ∧ [aj ]h
√
aj

)).
• head

√

h = turni ∧ (
∧

aj∈moves(s0) 〈aj〉�).

Due to the ability to interleave choices of players, we also need to define for
a composite game expression g, the initial (atomic) game of g and the game
expression generated after playing the initial atomic game (or in other words
the residue). We make this notion precise below:

Definition of init

– init(h) = {h} for h ∈ G
– init(g1; g2) = init(g1) if g1 	= ε else init(g2).
– init(g1 ∪ g2) = init(g1) ∪ init(g2).
– init(g1||g2) = init(g1) ∪ init(g2).
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Definition of residue

– h\h = ε and ε\h = ε.

– (g1; g2)\h =
{

(g1\h); g2 if g1 	= ε.
(g2\h) otherwise.

– (g1 ∪ g2)\h =

⎧⎨
⎩

(g1\h) ∪ (g2\h) if h ∈ init(g1) and h ∈ init(g2).
g1\h if h ∈ init(g1) and h /∈ init(g2).
g2\h if h ∈ init(g2) and h /∈ init(g1).

– (g1||g2)\h =

⎧⎨
⎩

(g1\h||g2) ∪ (g1||g2\h) if h ∈ init(g1) and h ∈ init(g2).
(g1\h||g2) if h ∈ init(g1) and h /∈ init(g2).
(g1||g2\h) if h ∈ init(g2) and h /∈ init(g1).

The translation used to express the property of enabling of trees in terms of
standard PDL formulas also suggest that the techniques developed for proving
completeness of PDL can be applied in the current setting. We base our axiom-
atization of the logic on the “reduction axioms” methodology of dynamic logic.
The most interesting reduction axiom in our setting would naturally involve the
parallel composition operator. Intuitively, for game expressions g1, g2, a formula
α and a player i ∈ N the reduction axiom for 〈g1||g2, i〉α need to express the
following properties:

– There exists an atomic tree h ∈ init(g1||g2) such that head(ν(h)) is enabled.
– Player i has a strategy in head(ν(h)) which when composed with a strategy

in the residue ensures α. We use compi(h, g1, g2, α) to denote this property
and formally define it inductively as follows:

Suppose h = (S,⇒, s0, λ̂) where A = moves(s0) = {a1, . . . , ak}.

– If h ∈ init(g1), h ∈ init(g2) and
• λ̂(s0) = i then compi(h, g1, g2, α) =

∨
aj∈A(〈aj〉〈(haj ; (g1\h))||g2〉α ∨

〈aj〉〈g1||(haj ; (g2\h))〉α).
• λ̂(s0) ∈ ı then compi(h, g1, g2, α) =

∧
aj∈A([aj ]〈(haj ; (g1\h))||g2〉α ∨

[aj ]〈g1||(haj ; (g2\h))〉α).
– If h ∈ init(g1), h 	∈ init(g2) and

• λ̂(s0) = i then compi(h, g1, g2, α) =
∨

aj∈A(〈aj〉〈(haj ; (g1\h))||g2〉α).

• λ̂(s0) ∈ ı then compi(h, g1, g2, α) =
∧

aj∈A([aj ]〈(haj ; (g1\h))||g2〉α).
– if h ∈ init(g2), h 	∈ init(g1) and

• λ̂(s0) = i then compi(h, g1, g2, α) =
∨

aj∈A(〈aj〉〈g1||(haj ; (g2\h))〉α).

• λ̂(s0) ∈ ı then compi(h, g1, g2, α) =
∧

aj∈A([aj ]〈g1||(haj ; (g2\h))〉α).

Note that the semantics for parallel composition allows us to interleave subtrees
of g2 within g1 (and vice versa). Therefore in the definition of compi at each
stage after an action aj, it is important to perform the sequential composition
of the subtree haj with the residue of the game expression.
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The axiom schemes

(A1) Propositional axioms:
(a) All the substitutional instances of tautologies of PC.
(b) turni ≡

∧
j∈ı ¬turnj .

(A2) Axiom for single edge games:
(a) 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2.
(b) 〈a〉turni ⊃ [a]turni.

(A3) Dynamic logic axioms:
(a) 〈g1 ∪ g2, i〉α ≡ 〈g1, i〉α ∨ 〈g2, i〉α.
(b) 〈g1; g2, i〉α ≡ 〈g1, i〉〈g2, i〉α.
(c) 〈g1||g2, i〉α ≡

∨
h∈init(g1||g2)

head
√

h ∧ compi(h, g1, g2, α).

(A4) 〈h, i〉α ≡ h
√∧ ↓(h,i,α).

For h ∈ H with ν(h) = T = (S,⇒, s0, λ̂) we define ↓(h,i,α) as follow:

– ↓(h,i,α)=

⎧⎨
⎩

α if moves(s0) = ∅.∨
a∈Σ 〈a〉〈ha, i〉α if moves(s0) 	= ∅ and λ̂(s0) = i.∧
a∈Σ [a]〈ha, i〉α if moves(s0) 	= ∅ and λ̂(s0) ∈ ı.

Inference rules

(MP) α, α ⊃ β (NG) α
β [a]α

Axioms (A1) and (A2) are self explanatory. Axiom (A3) constitutes the reduction
axioms for the compositional operators. Note that unlike in PDL sequential
composition in our setting corresponds to composition over trees. The following
proposition shows that the usual reduction axiom for sequential composition
remains valid.

Proposition 5.1. The formula 〈g1; g2, i〉α ≡ 〈g1, i〉〈g2, i〉α is valid.

Proof. Suppose 〈g1; g2, i〉α ⊃ 〈g1, i〉〈g2, i〉α is not valid. This means there exists
a model M and a state u such that M, u |= 〈g1; g2, i〉α and M, u 	|= 〈g1, i〉〈g2, i〉α.
From semantics we get ∃X ∈ Ri

g1;g2
such that X is a valid tree, root(X) = u

and for all w ∈ frontier (X) we have M, u |= α. By definition, X is of the form
f(T(Y ); T ) where Y ∈ Ri

g1
and T = {T(X1), . . . , T(Xk)} with {X1, . . . , Xk} ⊆

Ri
g2
}. Since X is a valid tree we have Y, X1, . . . , Xk are valid trees. Thus we get

that for all j : 1 ≤ j ≤ k, M, root(Xj) |= 〈ξ2, i〉α and from semantics we have
M, u |= 〈g1, i〉〈g2, i〉α which gives the required contradiction.

A similar argument which makes use of the definition of Ri
g and the semantics

shows that 〈g1, i〉〈g2, i〉α ⊃ 〈g1; g2, i〉α is valid.
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5.1 Completeness

To show completeness, we prove that every consistent formula is satisfiable.
Let α0 be a consistent formula, and CL(α0) denote the subformula closure of
α0. In addition to the usual subformula closure we also require the following:
if 〈h, i〉α ∈ CL(α0) then g

√
, ↓(h,i,α)∈ CL(α0) and if 〈g1||g2, i〉α ∈ CL(α0) then∧

h∈init(g1||g2) head
√

h , compi(h, g1, g2, α) ∈ CL(α0).
Let AT(α0) be the set of all maximal consistent subsets of CL(α0), referred

to as atoms. We use u, w to range over the set of atoms. Each u ∈ AT(α0) is
a finite set of formulas, we denote the conjunction of all formulas in u by û.
For a nonempty subset X ⊆ AT (α0), we denote by X̃ the disjunction of all
û, u ∈ X . Define a transition relation on AT(α0) as follows: u

a−→ w iff û∧ 〈a〉ŵ
is consistent. Let the model M = (W,−→, V ) where W = AT (α0) and the
valuation function V is defined as V (w) = {p ∈ P | p ∈ w}. Once the model is
defined, the semantics (given earlier) specifies relation Ri

g. The following lemma
asserts the consistency condition on elements of Ri

g.

Lemma 5.1. For all i ∈ N , for all h ∈ H, for all X ⊆ (W × W )∗ with X =
frontier(X), for all u ∈ W the following holds:

1. if X is a valid tree with root(X) = u and X ∈ Ri
h then û ∧ 〈h, i〉X̃ is

consistent.
2. if û ∧ 〈h, i〉X̃ is consistent then there exists a X ′ which is a valid tree with

frontier (X ′) ⊆ X and root(X ′) = u such that X ′ ∈ Ri
h.

Proof. A detailed proof is given in the appendix. It essentially involves showing
that the game h is enabled at the state u and that there is a strategy for player i
in Tu |\h represented by the tree X whose frontier nodes are X . The strategy tree
X is constructed in stages starting at u. For any path of the partially constructed
strategy tree if the paths ends in a position of player i then the path is extended
by guessing a unique outgoing edge. If the position belongs to a player in ı then
all edges are taken into account.

Lemma 5.2. For all i ∈ N , for all g ∈ Γ , for all X ⊆ (W × W )∗ with X =
frontier(X) and u ∈ W , if û∧〈h, i〉X̃ is consistent then there exists X ′ which is
a valid tree with frontier(X ′) ⊆ X and root(X ′) = u such that X ′ ∈ Ri

h.

Proof is given in the appendix.

Lemma 5.3. For all 〈g, i〉α ∈ CL(α0), for all u ∈ W , û ∧ 〈g, i〉α is consistent
iff there exists X ∈ Ri

g which is a valid tree with root(X) = u such that ∀w ∈
frontier(X), α ∈ w.

Proof. (⇒) Follows from lemma 5.2.
(⇐) Suppose there exists X ∈ Ri

g which is a valid tree with root(X) = u such
that ∀w ∈ frontier (X), α ∈ w. We need to show that û ∧ 〈g, i〉α is consistent,
this is done by induction on the structure of g.
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– The case when g = h follows from lemma 5.1. For g = g1 ∪ g2 the result
follows from axiom (A3a).

– g = g1; g2: Since X ∈ Ri
g1;g2

, ∃Y with root(Y ) = u and frontier(Y ) =
{v2, . . . , vk}, there exist sets X1, . . . , Xk where for all j : 1 ≤ j ≤ k,
root(Xj) = vj ,

⋃
j=1,...,k frontier (Xj) = frontier(X), Xj ∈ Ri

g2
and Y ∈ Ri

g1
.

By induction hypothesis, for all j, v̂j∧〈g2〉α is consistent. Since vj is an atom
and 〈g2, i〉α ∈ CL(α0), we get 〈g2, i〉α ∈ vj . Again by induction hypothesis we
have û∧〈g1, i〉〈g2, i〉α is consistent. Hence from (A3b) we have û∧〈g1; g2, i〉α
is consistent.

– g = g1||g2: Let h ∈ init(g1||g2), and h = (S,⇒, s0, λ̂). We have three cases
depending on whether h is the initial constituent game in g1 and g2. We
look at the case when h ∈ init(g1) and h 	∈ init(g2), the arguments for
the remaining cases are similar. Let A = moves(s0) = {a1, . . . , ak}. By
semantics, since enabled(h, u) holds we have moves(u) = A. We also get
there exists Yj ∈ Ri

taj
;(g1\h)||g2

where
⋃

j=1,...,k frontier(Yj) = frontier (X).

Suppose λ̂(s0) = ı, by performing a second induction on the depth of X we
can argue that û ∧ (

∧
aj∈A([aj ]〈(taj ; (g1\h))||g2〉α) is consistent. Therefore

from axiom (A3c) we have û ∧ 〈g1||g2〉α is consistent.

This leads us to the following theorem from which we can deduce the complete-
ness of the axiom system.

Theorem 5.1. For all formulas α0, if α0 is consistent then α0 is satisfiable.

Dedidability: Given a formula α0, let H(α0) be the set of all atomic game terms
appearing in α0. Let T(α0) = {ν(h) | h ∈ H(α0)} and m = maxT∈T(α0) |T |.
For any finite tree T , we define |T | to be the number of vertices and edges
in T . It can be verified that |CL(α0)| is linear in |α0| and therefore we have
|AT (α0)| = O(2|α0|). The states of the model M constitutes atoms of α0 and
therefore we get that if α0 is satisfiable then there is a model whose size is at
most exponential in |α0|. The relation Ri

g can be explicitly constructed in time
O(2|M|m). Thus we get the following corollary.

Corollary 5.1. The satisfiability problem for the logic is decidable.

6 Discussion

Iteration

An obvious extension of the logic is to add an operator for (unbounded) iteration
of sequential composition. The semantics is slightly more complicated since we
are dealing with trees. One needs to define it in terms of a least fixed point
operator (as seen in [12]). Under this interpretation, the standard dynamic logic
axiom for iteration remains valid: 〈g∗, i〉α ≡ α ∨ 〈g, i〉〈g∗, i〉α.
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We also have the familiar induction rule for dynamic logic which asserts that
when α is invariant under g so it is with the iteration of g.

(IND) 〈g, i〉α ⊃ α

〈g∗, i〉α ⊃ α

Note that the completeness proof (in the presence of interleaving) gets consid-
erably more complicated now. Firstly, the complexity of g\h is no longer less
than that of g so we cannot apply induction directly for parallel composition.
In general when we consider g∗1 ||g∗2 , the interleaving critically depends on how
many iterations are chosen in each of the components. The technique is to con-
sider a graph for every g as follows: add an edge labelled h from g to g\h.
This is a finite graph, and we can show that the enabling of g at a state s
corresponds to the existence of an embedding of this graph at s. In effect, the
unfolding of the parallel composition axiom asserts the existence of this sub-
graph, and the rest of the proof uses the induction rule as in the completeness
proof for dynamic logic. We omit the detailed proof here since it is technical and
lengthy.

Strategy Specifications

Throughout the paper we have been talking of existence of strategies in com-
positional games. It would be more interesting to specify strategies explicitly in
terms of their properties as done in [15]. In the presence of parallel composition,
this adds more value to the analysis since apart from specifying structural condi-
tions which ensures the ability for players to copy moves, we can also specify the
exact sequence of moves which are copied across games. The basic techniques
used here can be extended to deal with strategy specification. However, it would
be more interesting to come up with compositional operators for strategy spec-
ifications which can naturally exploit the interleaving semantics.

Acknowledgements. We thank the anonymous referees for their valuable com-
ments and suggestions. The second author thanks the Netherlands Institute for
Advanced Study in the Humanities and Social Sciences for its support.

Appendix

Lemma 5.1. For all i ∈ N , for all h ∈ H, for all X ⊆ (W × W )∗ with X =
frontier(X), for all u ∈ W the following holds:

1. if X is a valid tree with root(X) = u and X ∈ Ri
h then û ∧ 〈h, i〉X̃ is

consistent.
2. if û ∧ 〈h, i〉X̃ is consistent then there exists a X ′ which is a valid tree with

frontier (X ′) ⊆ X and root(X ′) = u such that X ′ ∈ Ri
h.
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Proof. Let h = (S,⇒, s0, λ̂). If moves(s0) = ∅ then from axiom (A4) we get
〈h, i〉α ≡ β∧α and the lemma holds. Let moves(s0) = {a1, . . . , ak} and λ̂(s0) = i.

Suppose X ∈ Ri
h, since X is a valid tree and enabled(head(h), u) holds, there

exist sets Y1, . . . , Yk such that for all j : 1 ≤ j ≤ k, wj = root(Yj) and u
aj−→ wj .

Since u is an i node we have that the strategy should choose a wj such that
u

aj−→ wj and X ′ ∈ Ri
haj

where X = (u, wj) · X ′. By induction hypothesis we

have ŵj ∧〈haj , i〉X̃ is consistent. Hence from axiom (A4) we conclude û∧〈h, i〉X̃
is consistent.

Suppose û ∧ 〈h, i〉X̃ is consistent. From axiom (A4) it follows that there
exists w1, . . . , wk such that for all j : 1 ≤ j ≤ k, we have u

aj−→ wj and
hence enabled(h, u) holds. Let X = {v1, . . . , vm}, from axiom (A4) we have
û∧ (

∨
a∈Σ 〈a〉〈ha, i〉X̃ ) is consistent. Hence we get that there exists wj such that

u
aj−→ wj and ŵj ∧ 〈ha, i〉X̃ is consistent. By induction hypothesis there exists

X ′ which is a valid tree with frontier (X ′) ⊆ X , root(X ′) = wj and X ′ ∈ Ri
ha

.
By definition of Ri we get (u, wj) · X ′ ∈ Ri

h.
Let λ̂(s0) = ı and suppose X ∈ Ri

h. Since enabled(head(h), u) holds and X is a
valid tree, there exist sets Y1, . . . , Yk such that for all j : 1 ≤ j ≤ k, wj = root(Yj)
and u

aj−→ wj . Since u is an ı node, any strategy of i need to have all the branches
at u (by definition of strategy). Thus we get: for all wj with u

aj−→ wj , there
exists Xj with root(Xj) = wj such that Xj ∈ Ri

h and X =
⋃

j=1,...,k(u, wj) ·Xj .
By induction hypothesis and the fact that Xj = frontier (Xj) ⊆ X , we have
ŵj ∧〈h, i〉X̃ is consistent. Hence from axiom (A4) we get û∧〈h, i〉X̃ is consistent.

Likewise, using axiom (A4) we can show that if û∧ 〈h, i〉X̃ is consistent then
there exists a X ′ which is a valid tree with frontier (X ′) ⊆ X and root(X ′) = u
such that X ′ ∈ Ri

h.

Lemma 5.2. For all i ∈ N , for all g ∈ Γ , for all X ⊆ (W × W )∗ with X =
frontier(X) and u ∈ W , if û∧ 〈h, i〉X̃ is consistent then there exists X ′ which is
a valid tree with frontier (X ′) ⊆ X and root(X ′) = u such that X ′ ∈ Ri

h.

Proof. By induction on the structure of g.

– g = h: The claim follows from Lemma 5.1 item 2.
– g = g1 ∪ g2: By axiom (A3a) we get û ∧ 〈g1, i〉X̃ is consistent or û∧ 〈g2, i〉X̃

is consistent. By induction hypothesis there exists X1 which is a valid tree
with frontier(X1) ⊆ X and root(X1) = u such that (u, X1) ∈ Ri

h or there
exists X2 which is a valid tree with frontier (X2) ⊆ X and root(X2) = u such
that X2 ∈ Ri

h. Hence we have X1 ∈ Ri
g1∪g2

or X2 ∈ Ri
g1∪g2

.
– g = g1; g2: By axiom (A3b), û ∧ 〈g1, i〉〈g2, i〉X̃ is consistent. Hence û ∧

〈g1, i〉(
∨

(ŵ∧〈g2, i〉X̃ )) is consistent, where the join is taken over all w ∈ Y =
{w | w ∧ 〈g2, i〉X̃ is consistent }. So û ∧ 〈g1, i〉Ỹ is consistent. By induction
hypothesis, there exists Y ′ which is a valid tree with Y ′ = frontier(Y ′) ⊆ Y
and root(Y ′) = u such that (u, Y ′) ∈ Ri

g1
. We also have that for all w ∈ Y,

ŵ ∧ 〈g2, i〉X̃ is consistent. Therefore we get for all wj ∈ Y ′ = {w1, . . . , wk},
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ŵj ∧ 〈g2, i〉X̃ is consistent. By induction hypothesis, there exists Xj which
is a valid tree with Xj = frontier (Xj) ⊆ X and root(Xj) = wj such that
Xj ∈ Ri

g2
. Let X ′ be the tree in Y ′; {Xj | j = 1, . . . , k} obtained by pasting

Xj to the leaf node wj in Y ′. We get X ′ ∈ Ri
g1;g2

.
– g = g1||g2: Note that for all g ∈ Γ and h ∈ head(g), the complexity of g\h

is less than that of g. Therefore by making use of axiom (A3c) we can show
that there exists X ′ with frontier (X ′) ⊆ X ′ and root(X ′) = u such that
X ′ ∈ Ri

h.
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Abstract. Half positionality is the property of a language of infinite words to
admit positional winning strategies, when interpreted as the goal of a two-player
game on a graph. Such problem applies to the automatic synthesis of controllers,
where positional strategies represent efficient controllers. As our main result, we
describe a novel sufficient condition for half positionality, more general than what
was previously known. Moreover, we compare our proposed condition with sev-
eral others, proposed in the recent literature, outlining an intricate network of
relationships, where only few combinations are sufficient for half positionality.

1 Introduction

Games are widely used in computer science as models to describe multi-agent systems,
or the interaction between a system and its environment [KVW01, McN93, Tho95,
Zie98]. Usually, the system is a component that is under the control of its designer and
the environment represents all the components the designer has no direct control of. In
this context, a game allows the designer to easily check whether the system can force
some desired behavior (or avoid an undesired one), independently of the choices of the
other components. Further, game algorithms may automatically synthesize a design that
obtains the desired behavior.

We consider games played by two players on a finite graph, called arena. The arena
models the interaction between the entities involved: a node represents a state of the
interaction, and an edge represents progress in the interaction. We consider turn-based
games, i.e. games where each node is associated with only one player, who is responsi-
ble for choosing the next node. A sequence of edges in the graph represents a run of the
system. Player 0 wants to force the system to follow an infinite run with a desired prop-
erty, expressed as a language of infinite words called goal. The objective of player 1 is
the opposite. In this context, a strategy for a player is a predetermined decision that the
player makes on all possible finite paths ending with a node associated to that player. A
strategy is winning for a player if it allows him to force a desired path no matter what
strategy his opponent uses. A key property of strategies is the amount of memory that
they require, in order to choose their next move. The simplest strategies do not need to
remember the past history of the game, i.e., their choices only depend on the current
state in the game. Such strategies are called positional.

We are interested in determining the existence of a winning strategy for one of the
players, and possibly compute an effective representation of such a strategy. To this

� Work partially supported by MIUR PRIN Project n.2007-9E5KM8.

J. Dix et al. (Eds.): CLIMA XI, LNAI 6245, pp. 171–185, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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aim, suitable techniques have been developed when the desired behavior of a player
is specified in particular forms (see [KVW01] for temporal logic specifications, and
[EJ91, McN93, Mos91] for parity conditions). In synthesis problems, only positional
strategies may be suitable to concrete implementation, due to space constraints. In fact,
in principle even a positional strategy, which is a function from states to moves, needs
an amount of storage that is proportional to the size of the state-space of the system.
Symbolic representations can mitigate such issues [Cac02]. For this reason, it is useful
to know when a given goal guarantees that if player 0 (respectively, player 1) has a
winning strategy then he has a positional one. This property is called half positionality
(in the following, HP) for player 0 (resp., player 1). If a goal is HP for both players,
the goal is called full positional (FP). Notice that HP is more important than FP in
the synthesis applications we are referring to. In these applications, player 0 represents
the controller to be synthesized and player 1 the environment. Hence, we are only in-
terested in obtaining simple winning strategies for one of the two players, namely for
player 0.

Full positionality has been studied and characterized: in [EJ91, McN93, Mos91], it
was proved that the parity winning conditions are full positional and in [GZ05] Zielonka
and Gimbert defined a complete characterization for full positional determined goals on
finite arenas. In that paper, it is proven that a goal is FP if and only if both the goal and
its complement satisfy two properties called monotonicity and selectivity. On the other
hand, a goal (but not its complement) being monotone and selective is not sufficient
for HP. Moreover, HP has been specifically investigated by Kopczyński in [Kop07,
Kop06]. There, the author defines sufficient conditions for a goal to be HP on all finite
arenas. However, no characterization of half positional goals has been found so far.
Positionality of games with infinitely many moves has been studied in [CN06, Gra04].

In his work, Kopczyński proves that if a goal is concave and prefix-independent
then it is HP. In this paper, we investigate half positionality on finite arenas and we
provide a novel sufficient condition for a goal to be HP on all finite arenas. We prove
that if a goal is strongly monotone and strongly concave, then it is HP. As the names
suggest, strong monotonicity is derived by the notion of monotonicity in [GZ05] and
strong concavity refines the notion of concavity defined in [Kop06]. We prove that our
condition constitutes an improvement over that defined in [Kop06], because it allows
to classify as HP a broader set of goals. Several examples show that our condition is
somewhat robust, in the sense that it is not trivial to further strengthen the result.

Overview. The rest of the paper is organized as follows. In Section 2, we introduce some
preliminary notation. In Section 3, we introduce and define the new properties of goals
sufficient to ensure half positionality. We prove that such properties describe a wider
set of goals than the properties in [Kop06] and we show that some weaker conditions
are not sufficient. In Section 4, we prove that our conditions are not necessary to half-
positionality. In Section 5, we analyze the conditions of [GZ05], relating them to half
positionality. We show that natural stronger forms of such conditions are not sufficient,
and we conclude by defining a characterization for half-positionality on game graph
whose nodes belong all to one player only. Finally, we provide some conclusions is
Section 6.
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2 Preliminaries

Let X be a set and i be a positive integer. By Xi we denote the Cartesian product of
X with itself i times and by X∗ (resp., Xω) the set of finite (resp., infinite) sequences
of elements of X . The set X∗ also contains the empty word ε. A finite language (resp.
infinite language) on the alphabet X is a subset of X∗ (resp. Xω). A finite state automa-
ton is a tuple (X ,Q,δ,q0,F) where X is an alphabet, Q a set of states, q0 ∈ Q an initial
state, F ⊆ Q a set of final states and δ : Q×X → 2Q a transition function. A run of
the automaton on a sequence x1 . . .xk ∈ X∗, is a sequence q0 . . .qk ∈ Q∗ such that for
each i ∈ {1, . . . ,k} we have qi ∈ δ(qi−1,xi). A word x ∈ X∗ is said accepted by the au-
tomaton if there exists a run q0, . . . ,qk on x ending in a final state qk ∈ F . A language is
said regular iff there exists a finite state automaton that accepts all and only the words
belonging to it. Moreover, by N we denote the set of non-negative integers.

For a non-negative integer k, let [k] = {0,1, . . . ,k}. A word on the alphabet [k] is a
finite or infinite sequence of elements of [k], a language over the alphabet [k] is a set
of words over [k]. For each element i ∈ [k], we often use i to denote the language {i},
when the meaning is clear from the context.

Arenas. A k-colored arena is a tuple A = (V0,V1,vini,E), where V0 and V1 are a partition
of a finite set V of nodes, vini ∈ V is the initial node, and E ⊆ V × [k]×V is a set of
colored edges such that for each node v ∈V there is at least one edge exiting from v. A
colored edge e = (u,a,v) ∈ E represents a connection colored with a from the node u,
named source of e, to the node v, named destination of e. In the following, we simply
call a k-colored arena an arena, when k is clear from the context. For a node v ∈V , we
call vE = {(v,a,w) ∈ E} and Ev = {(w,a,v) ∈ E} the sets of edges exiting and entering
v, respectively.

For a color a ∈ [k], we denote by E(a) = {(v,a,w)∈ E} the set of edges colored with
a. A finite path ρ is a finite sequence of edges {(vi,ai,vi+1)}i∈{0,...,n−1}, and its length |ρ|
is the number of edges it contains. We use ρ(i) to indicate the i-th edge of ρ. Sometimes,
we write the path ρ as v0v1 . . .vn, when the colors are not important. An infinite path
is defined analogously, i.e., it is an infinite sequence of edges {(vi,ai,vi+1)}i∈N. For a
path (finite or infinite) ρ and an integer i, we denote by ρ≤i the prefix of ρ containing i
edges. The color sequence of a finite (resp. infinite) path ρ = {(vi,ci,vi+1)}i∈{0,...,n−1}
(resp. ρ = {(vi,ci,vi+1)}i∈N) is the sequence Col(ρ) = {ci}i∈{0,...,n−1} (resp. Col(ρ) =
{ci}i∈N) of the colors of the edges of ρ. For two color sequences x,y ∈ [k]ω, the shuffle
of x and y, denoted by x⊗ y is the language of all the words z1z2z3 . . . ∈ [k]ω, such
that z1z3 . . . z2h+1 . . . = x and z2z4 . . . z2h . . . = y, where zi ∈ [k]∗ for all i ∈ N. For two
languages M,N ⊆ [k]ω, the shuffle of M and N is the set M⊗N = ∪n∈N,m∈Mm⊗n.

Games. A k-colored game is a pair G = (A,W ), where A = (V0,V1,vini,E) is a k-colored
arena and W ⊆ [k]ω is a set of color sequences called goal. By W we denote the set
[k]ω \W . Informally, we assume that the game is played by two players, referred to as
player 0 and player 1. The players construct a path starting at vini on the arena A; such
a path is called play. Once the partial play reaches a node v ∈ V0, player 0 chooses an
edge exiting from v and extends the play with this edge; once the partial play reaches a
node v ∈ V1, player 1 makes a similar choice. Player 0’s aim is to make the play have
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color sequence in W , while player 1’s aim is to make the play have color sequence in W .
We now define some notation in order to formalize the previous intuitive description.
For h ∈ {0,1}, let Eh = {(v,c,w) ∈ E | w ∈ Vh} be the set of edges ending into nodes
of player h. Moreover, let ε be the empty word. A strategy for player h is a function
σh : ε∪ (E∗Eh) → E such that, if σh(e0 . . .en) = en+1, then the destination of en is the
source of en+1, and if σh(ε) = e, then the source of e is vini. Intuitively, σh fixes the
choices of player h for the entire game, based on the previous choices of both players.
The value σh(ε) is used to choose the first edge in the game. A strategy σh is positional
iff its choices depend only on the last node of the partial play, i.e., for all partial plays
ρ and ρ′ with the same last node, it holds that σh(ρ) = σh(ρ′). A play {ei}i∈N ∈ Eω is
consistent with a strategy σh iff (i) if vini ∈ Vh then e0 = σh(ε), and (ii) for all i ∈ N, if
ei ∈ Eh then ei+1 = σh(e0 . . .ei). An infinite play ρ is winning for player 0 (resp. player
1) iff Col(ρ) ∈ W (resp. Col(ρ) 	∈ W ). Note that, given two strategies, σ for player 0
and τ for player 1, there exists only one play consistent with both of them. This is due
to the fact that the two strategies univocally determine the next edge at every step of
the play. We call such a play PG(σ,τ). A strategy for player h is winning iff all plays
consistent with that strategy are winning for player h. A game is determined iff one of
the two players has a winning strategy. A goal is determined iff all games G = (A,W )
are determined.

Concavity and Prefix Independence. A goal is said prefix independent if the adding
or removing of a finite prefix on an infinite color sequence does not change the win-
ning value of the sequence itself. Formally, a goal W ⊆ [k]ω is prefix independent iff
for all color sequences x ∈ [k]ω, and all finite words z ∈ [k]∗, x ∈W iff zx ∈W . Follow-
ing [Kop06], a goal is concave if switching infinitely often between two infinite color
sequences, does not yield a better color sequence for player 0. Formally, a goal W is
concave iff, for all words x,y ∈ [k]ω and z ∈ x⊗ y, it holds that if z ∈ W then x ∈ W or
y ∈W . A goal W is half positional on an arena A iff, for all games G = (A,W ), if player
0 has a winning strategy then he has a positional winning strategy. A goal W is half
positional iff it is half positional on all arenas A. As proved by Kopczyński, concave
and prefix independence properties are sufficient conditions for half positionality.

Theorem 1 ([Kop06]). All concave and prefix-independent goals are determined and
half-positional.

In the following, for a goal W and a pair of sets M,N ∈ [k]ω we use the notation M ≤W N
to mean that if M contains a winning word then N contains a winning word too, and the
notation M <W N to mean that M contains only losing words and N contains at least a
winning word. For ease of reading, when the goal W is clear from the contest, we write
M < N and M ≤ N, respectively, for M <W N and M ≤W N. With the following two
lemmas, we reformulate the definition of concavity and prefix independence in terms
of languages, rather than of single words.

Lemma 1. A goal W ⊆ [k]ω is prefix-independent iff for all color sequences x ∈ [k]∗

and sets of color sequences M ⊆ [k]ω we have that xM ≤ M and M ≤ xM.

Proof. Suppose that W is prefix independent. If M contains a winning word m, then xM
contains the winning word xm, and we have both xM ≤ M and M ≤ xM. If M contains
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only losing words m, then xM contains only losing words xm and we have both xM ≤M
and M ≤ xM.

Suppose now that, for all languages M ⊆ [k]ω, we have xM ≤ M and M ≤ xM. More-
over, suppose by contradiction that W 	= xW . Then, there exists a word m such that
xm 	∈W . Hence, for the language M = {m} we do not have M ≤ xM. ��

Lemma 2. A goal W ⊆ [k]ω is concave iff for all languages M,N ⊆ [k]ω we have that
M⊗N ≤ M∪N.

Proof. Suppose that W is concave. For all M,N ⊆W , we have that M⊗N ⊆W . So, for
all languages M,N ∈ [k]ω, if M or N contains a winning word in W , we have in both
cases M⊗N ≤ M∪N; conversely, if M and N contain only losing words, by hypothesis,
so does M⊗N. Hence, we have that M⊗N ≤ M∪N.

Suppose now that for all languages M,N ⊆ [k]ω we have M ⊗N ≤ M ∪N. Then, if
M and N contain only losing words, M ⊗N must contain only losing words too. Thus,
for all M,N ∈W we have that M⊗N ⊆W . ��

3 Novel Properties of Goals

In this section, we present two properties of goals: strong monotonicity and strong con-
cavity. Their aim is to refine the properties of prefix-independence and concavity in
such a way they still imply half positionality for player 0. The property of monotonicity
was first defined in [GZ05]. It states that two color sequences with a common prefix
cannot exchange their winning value by switching to another prefix.

v 10

(a)

v u
0

1

1

0

(b)

v u
0

1

1

0

(c)

Fig. 1. Three game arenas

Definition 1. A goal W ⊆ [k]ω is monotone iff for all words x ∈ [k]∗ and all regular
languages M,N ⊆ [k]ω it holds that xM < xN implies that for all y ∈ [k]∗ it is yM ≤ yN.

Here, we define a stronger version of monotonicity, it asks that the above property
should hold even on non-regular languages.

Definition 2. A goal W ⊆ [k]ω is strongly monotone if, for all words x ∈ [k]∗, m,n ∈
[k]ω, such that xm 	∈ W and xn ∈ W, for all y ∈ [k]∗ it holds that either ym 	∈ W or
yn ∈W .

In the following we make use of an equivalent definition of strong monotonicity that
operates on languages.
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Lemma 3. A goal W ⊆ [k]ω is strongly monotone iff, for all words x ∈ [k]∗ and lan-
guages M,N ⊆ [k]ω, it holds that xM < xN implies that for all y ∈ [k]∗ it is yM ≤ yN.

Strong monotonicity represents a weakening of the property of prefix independence that
requires, instead, that the winning nature of a word does not change by changing a finite
prefix. Indeed, the following lemma holds.

Lemma 4. All prefix-independent goals are strongly monotone. Moreover, there is a
goal which is strongly monotone, but not prefix-independent.

Proof. For the first part, we have by hypothesis that, for all x ∈ [k]∗, and M ⊆ [k]ω, it
holds that M ≤ xM ≤ M. Now, take two languages M,N ⊆ [k]ω, and suppose that there
exists an x ∈ [k]∗ such that xM < xN, then for all y ∈ [k]∗ we have yM ≤ M ≤ xM ≤
xN ≤ N ≤ yN.

For the second part, let k = 1, a strongly monotone and prefix-dependent goal is
given by the language of all words containing at least one 0, i.e., W = [k]∗0[k]ω. It is
easy to see that the goal is not prefix-independent, because the word 1ω is losing while
the word 01ω is winning. We show that the goal is strongly monotone. Consider two
languages M,N ⊆ [k]∗, and suppose that there exists an x ∈ [k]∗ such that xM < xN,
then xN contains a winning word and xM contains only losing words. Observe first that
x cannot contain 0, or else all words in xM would be winning. So x ∈ 1∗, there exists
a word in N that contains 0, and all words in M contain only 1’s. So, for each y ∈ [k]∗,
there is always a word in yN containing 0. Since yN contains a winning word, we have
yM ≤ yN. ��

We investigate the usefulness of strong monotonicity. First, we show that strong mono-
tonicity cannot replace prefix-independence in the hypotheses of Theorem 1.

Lemma 5. There is a strongly monotone and concave goal which is not half-positional.

Proof. For k = 1, the strongly monotone and concave goal is W = [k]∗01ω. We prove
first that the goal is strongly monotone and concave. A word is losing if and only if it
is either 1ω or it does not have 1ω as a suffix. Let x ∈ [k]∗, n,m ∈ [k]ω with xn,xm 	∈W .
There are two situations to discuss. First, assume that x does not contain 0. Then, n and
m may be both 1ω in which case x(m⊗n) = 1ω or at least one between n and m contains
0 infinitely often, thus the shuffle of n and m contains only words that pick colors from
both the sequences infinitely often and thus only words that contain 0 infinitely often.
So, x(m⊗n) contains losing word even in this case. Instead, assume that x contains 0.
Then, n and m contain 0 infinitely often and the same reasoning above applies. So the
goal is concave. Let x ∈ [k]∗, n,m ∈ [k]ω such that xm 	∈W and xn ∈W . We prove strong
monotonicity by showing that for all y ∈ [k]∗ it holds that ym 	∈W or yn ∈W . We again
distinguish two cases. First, assume that x does not contain a 0. Then, n contains 0 and
a suffix 1ω thus for every y ∈ [k]∗, we have yn ∈ W since it contains 0 and a suffix 1ω.
Instead, assume that x contains a 0. Then, m contains 0 infinitely often, thus for every
y ∈ [k]∗ the word ym 	∈ W since it contains 0 infinitely often. The above goal is not
half-positional in the following arena ({v}, /0,v,{(v,0,v),(v,1,v)}) (Fig. 1(a)), in such
a game graph player 0 wins by choosing at least once the edge with color 0 and then
always the edge with color 1. ��
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Observe that, in the previous counterexample, the key element that does not allow half
positionality is the fact that player 0 prefers switching between two different behaviors
finitely often and then progressing indefinitely along one of them. However, concav-
ity just requires that player 0 prefers following a fixed behavior rather than switching
between two different ones infinitely often. Thus, we introduce a modification to the
property of concavity, requiring not only that alternating infinitely often between two
losing words yields a losing word, but also that alternating finitely often between two
losing words and then progressing along one of them yields a losing word.

Definition 3. For two color sequences x,y ∈ [k]ω, the strong shuffle of x and y, denoted
by x⊗s y is the language containing

1. the set x⊗ y;
2. the words z1z2 . . . zlz′ ∈ [k]ω, for odd l, zi ∈ [k]∗ and z′ ∈ [k]ω, such that it holds

x = z1z3 . . . zlz′ and y = z2z4 . . .zl−1y′, for some y′ ∈ [k]ω;
3. the words z1z2 . . .zlz′ ∈ [k]ω, for even l, zi ∈ [k]∗ and z′ ∈ [k]ω, such that it holds

x = z1z3 . . . zl−1x′ and y = z2z4 . . . zlz′, for some x′ ∈ [k]ω.

For two languages M,N ⊆ [k]ω, the strong shuffle of M and N is the set M ⊗s N =
∪n∈N,m∈M(m⊗s n).

Definition 4. A goal W ⊆ [k]ω is strongly concave iff, for all words x ∈ [k]∗, n,m ∈ [k]ω,
and z ∈ x(m⊗s n), it holds that if z ∈W then either xn ∈W or xm ∈W .

It is immediate to see that a strongly concave goal is concave too. In the following, we
make use of an equivalent definition of strong concavity that operates on languages.

Lemma 6. A goal W ⊆ [k]ω is strongly concave iff, for all words x∈ [k]∗ and languages
M,N ⊆ [k]ω, it holds that x(M⊗s N) ≤ xM∪ xN.

Even the property of strong concavity is not sufficient to ensure half positionality.

Lemma 7. There is a strongly concave goal which is not half-positional.

Proof. For k = 1 the strongly concave goal is W = 0ω ∪ 1ω. Two losing words n and
m contain at least an occurrence of the color 1 and an occurrence of the color 0,
thus every word in their strong shuffle will contain at least an occurrence of color
1 and an occurrence of color 0 and it will be losing. So the strong concavity of the
goal is proved. The above goal is not half-positional in the following 2-colored arena
({u},{v},v,{(v,0,u),(v,1,u),(u,0,u),(u,1,u)}), showed in Figure 1(b). In this arena
player 0 wins the game by choosing forever the edge (u,0,u) or the edge (u,1,u) de-
pending on what color was chosen by player 1 to reach u from v. ��

In the previous counterexample, by choosing a different prefix, player 1 can exchange
the winning nature of the following choices of player 0. That is why strong monotonic-
ity is essential since it somehow allows player 0 to operate while forgetting the past
decisions taken by player 1.

We argue now that the two introduced properties of strong monotonicity and strong
concavity are strictly less restrictive than the properties of prefix independence and
concavity.
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Lemma 8. Concave and prefix-independent goals are strongly monotone and strongly
concave.

Proof. By Lemma 4 we already have that a prefix-independent goal is strongly mono-
tone. It remains to show that a concave and prefix-independent goal is strongly concave.

For a language M ⊆ [k]ω, let suff (M) and pref (M) be the sets of suffixes and prefixes
of words in M, respectively. By concavity, for all M,N ⊆ [k]ω we have M⊗N ≤ M∪N
and by prefix independence we have for all M ∈ [k]ω and for all x ∈ [k]∗ M ≤ xM ≤ M.
Take any word x ∈ [k]∗, and any two languages M,N ⊆ [k]ω. Then we have x(M ⊗s

N) = x(M ⊗N)∪ x · pref (M ⊗N) · suff (N)∪ x · pref (M ⊗N) · suff (M). First, by prefix
independence and then by concavity we have x(M⊗N)≤M⊗N ≤M∪N ≤ x(M∪N) =
xM∪xN. Then, x ·pref (M⊗N) ·suff (T )≤ suff (T )≤ xT ≤ xM∪xN, where T ∈ {M,N}.
So, we have x(M ⊗s N) ≤ xM∪ xN. ��

Lemma 9. There exists a strongly monotone and strongly concave goal which is not
prefix independent.

Proof. Let k = 1, the goal is given by the set of words that either start with 1, or start
with 0 and contain infinitely many 0’s, i.e., W = 0(1∗0)ω ∪ 1[k]∗. It is easy to see that
the goal is not prefix-independent: indeed, for M = 1ω we have that 0M ≤ M, but not
M ≤ 0M since M contains only winning words and 0M only losing ones.

Next, we prove that the goal is strongly monotone. Consider M,N ⊆ [k]∗ and x ∈ [k]∗

and suppose that xM < xN, so xN contains a winning word and xM contains only losing
ones. Observe that x does not start with 1, otherwise all words in xM would be winning.
So, there are two situations to discuss: x = ε or x starts with 0. If x = ε then all words in
M starts with 0 and have a suffix equal to 1ω. Now for all y ∈ 1[k]∗ we have yM ≤ yN
since all the words in all languages are winning; for all y ∈ 0∗[k]∗ we have yM ≤ yN
because all the words in yM are losing since they start with 0 and have a suffix 1ω. If
instead x starts with 0 then there exists a word n ∈ N that contains infinitely many 0, for
every y ∈ [k]∗ the word yn will contain infinitely many 0 and it will be winning, thus for
all y ∈ [k]∗ we will have yM ≤ yN.

Now we prove that the goal is strongly concave. Consider x ∈ [k]∗, M,N ⊆ [k]ω and
K ⊆ [k]∗. We want to prove that x(M ⊗s N) ≤ xM ∪ xN. If the r.h.s. of the inequality
contains a winning word, the inequality trivially holds. So, suppose that the r.h.s. does
not contain a winning word, so it cannot be x ∈ 1[k]∗ but it must be x ∈ 0[k]∗ ∪{ε}. If x
starts with 0, every word in M,N contains a suffix 1ω and all words in M⊗s N contain a
suffix 1ω. So, M⊗s N contains only losing words. If x = ε, every word in M,N contains
a suffix 1ω and starts with 0, so all words in M ⊗s N contain a suffix 1ω and start with
0, and therefore they are losing. ��

4 A Sufficient Condition for Half Positionality

In this section, we prove that determinacy, strong monotonicity and strong concavity
are sufficient but not necessary conditions to half positionality for player 0.

Theorem 2. All determined, strongly monotone and strongly concave goals are half-
positional.
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Proof. The proof proceeds by induction on the number of edges exiting from the nodes
controlled by player 0 in the game arena. As a base case in the graph G for each node
controlled by player 0 there exists only one exiting edge. In such a graph player 0 has
only one possible strategy which is positional. So, the result is trivially true. Suppose
that in the arena there are n edges exiting from nodes of player 0 and that, for all graphs
with at most n− 1 edges exiting from nodes of player 0, if player 0 has a winning
strategy he has a positional one. Let t be a node of player 0 in G such that there is more
than one edge exiting from t. We can partition the set of edges exiting from t in two
disjoint non-empty sets Eα and Eβ. Let Gα and Gβ be the two subgraphs obtained from
G by removing the edges of Eβ and Eα, respectively. There are two cases to discuss.

First, suppose that in Gα or Gβ player 0 has a winning strategy. Then, by inductive
hypothesis he has a positional winning strategy. It is easy to see that such a strategy is
winning in G too. Indeed, since player 0 controls the node t, he is able to force the play
to stay always in Gα or Gβ. Suppose now that player 0 has no winning strategy in Gα
and in Gβ. We prove the thesis by showing that player 0 has no winning strategy in G.
By determinacy, there exist two strategies τα and τβ winning for player 1 in Gα and Gβ,
respectively.

Let σ be a strategy of player 0 in G, we show that there exists a strategy of player
1 in G winning in G against σ. If one of the plays P(σ,τα) or P(σ,τβ) does not pass
through t then that play is in Gα and Gβ and so it is winning for player 1 who is using
his winning strategy on one of the graphs.

Suppose now that both of the above plays pass through t. Let xα and xβ be respec-
tively the color sequences of the prefixes of P(σ,τα) and P(σ,τβ), up to the first oc-
currence of t. Let Mα and Mβ be the sets of color sequences of suffixes after respec-
tively a prefix xα and xβ of plays consistent respectively with τα and τβ. Observe that
xαMα and xβMβ contain plays consistent respectively with τα in Gα and τβ in Gβ, and
such plays are losing for player 0. We prove now that either xαMβ or xβMα contains
only losing words for player 0. Indeed, if xαMβ contains a winning word, we have
that xαMα < xαMβ, since xαMα contains only plays losing for player 0. Then, by strong
monotonicity we have that, for all y∈C∗, it holds yMα ≤ yMβ and hence xβMα ≤ xβMβ.
Since xβMβ contains only losing words, so does xβMα.

Suppose without loss of generality that xβMα contains only losing words. Then, we
construct the strategy τ′α, which behaves like τα on all partial plays which do not have
a prefix xβ. When the partial play has a prefix xβ, it behaves like τα when it sees xα in
place of xβ. More formally τ′α(xβπ) = τα(xαπ), and in the other cases τ′α(π) = τα(π).
Let τ′β = τβ. We construct a strategy τ in G: at the beginning the strategy behaves like
τβ; when the play passes through t, depending on what subgraph the last edge from t
chosen by player 0 belongs to, the strategy τ behaves like τ′α or τ′β when they are applied
only to the initial prefix up to t and all the loops from t to t, where the first edge belongs
to Gα or Gβ, respectively.

Formally, for all prefixes π that do not pass through t, we have τ(π) = τβ(π); if πi,γi

is a loop from t to t with first edge in Gγi , for all prefixes π = xπ1,γ1 , . . . ,πn,γnπγ, we
have τ′(π) = τ′γ(x(∏γi=γ πi,γiπγ)). The play P(σ,τ) coincides with P(σ,τβ) up to t, so
it has a prefix with color sequence xβ. After that prefix, the play develops in parallel
and alternates pieces of two plays: one in Gβ consistent with τβ, and the other in Gα
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consistent with τ′α. So, the color sequence of the two suffixes are respectively in Mβ and
in Mα.1 Hence, the color sequence of the suffix after xβ of the play P(σ,τ) lies in the
shuffle of Mα and Mβ. By strong concavity we have that Col(P(σ,τ))∈ xβ(Mα⊗s Mβ)≤
xβMα ∪ xβMβ. Since both xβMα and xβMβ contain only losing words, we have that
Col(P(σ,τ)) is a losing word for player 0. Hence, for all strategies σ of player 0 there
exists a strategy τ of player 1 winning over 0. We conclude that player 0 has no winning
strategy. ��

Since strongly concavity implies concavity, the following result states that the condi-
tions appearing as the hypothesis of the previous theorem and of Theorem 1 are not a
complete characterizations for half positional goals.

Lemma 10. There exists a goal that is half positional but not concave.

Proof. The half positional goal is W = [k]∗1[k]∗1[k]ω. The goal states that player 0
tries to make color 1 occur at least twice. It is half positional because in every point
in a play player 0 does not need to look at the past, but just tries to form a path that
passes through as many edges colored with 1 as possible. For a more formal proof, see
Lemma 14.

We show that the goal is not concave: let x = ε, n,m = 10ω, then we have xn,xm 	∈W ,
but t = 110ω ∈ m⊗n with xt ∈W , hence the goal is not concave. ��

5 Selectivity

Here, we discuss how the properties presented in [GZ05] as a characterization of full
positionality relate to half positionality. We already presented monotonicity in the pre-
vious section. The second property introduced in [GZ05] is similar to the property of
strong concavity with the exception that in the shuffle the interleaving of words is al-
lowed only at certain points.

Definition 5. Let M ⊆ [k]∗. Then, with the notation 〈M〉 we define the set of all words
m ∈ [k]ω such that every prefix of m is a prefix of a word in M.

Definition 6. A goal W is selective iff for all x ∈ [k]∗ and for all regular languages
M,N,K ⊆ [k]∗ we have that x〈(M∪N)∗K〉 ≤ x〈M∗〉∪ x〈N∗〉∪ x〈K〉.

The two conditions of selectivity and monotonicity provide a complete characterization
of full positionality. Precisely, a goal W is full positional iff both W and W are selective
and monotone [GZ05]. The proof makes use of the fact that, assuming that player 1 uses
a positional strategy, player 0 can play on the graph induced by that strategy, and hence
construct paths whose prefixes are recognizable by the automaton described by the
game graph. We investigated the hypothesis that monotonicity and selectivity of W were
sufficient to half positionality. However, the two conditions are not directly applicable,
since they operate on regular languages. Indeed, when player 1 can use a non-positional
strategy, the path constructed by player 0 is taken from a simple graph no more and it

1 Note that it is possible that one of the two suffixes does not progress indefinitely.
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does not belong to a language recognized by an automaton. Hence, we strengthened the
conditions of monotonicity and selectivity in order to take into account all possible paths
that could be formed by player 0 together with a non-positional strategy of player 1.

Definition 7. A goal W is strongly selective iff for all x ∈ [k]∗ and for all languages
M,N,K ⊆ [k]∗ we have that x〈(M∪N)∗K〉 ≤ x〈M∗〉∪ x〈N∗〉∪ x〈K〉.

Selectivity and strong selectivity represent two weaker properties than strong concavity.

Lemma 11. Every strongly concave goal is strongly selective.

Proof. For all words x ∈ [k]∗, for all languages M,N,K ⊆ [k]∗, we have that x〈(M ∪
N)∗K〉 ⊆ x((〈M∗〉⊗s 〈N∗〉)⊗s 〈K〉) ≤ x〈M∗〉∪ x〈N∗〉∪ x〈K〉.

Unfortunately, the strong versions of selectivity and concavity proved not to be suffi-
cient conditions to half positionality2.

Lemma 12. There is a strongly monotone and strongly selective goal which is not half-
positional.

Proof. Let k ∈ N, for all colors i ∈ [k] and finite paths π, let |π|i be the number of edges
colored by i on π, and let |π| be the number of edges in π. Moreover for all n ∈ N
let π≤n be the prefix of length n of π. The strongly monotone and strongly selective
goal is the set W of all the infinite words m such that, for all colors i ∈ [k], the limit

limn→+∞
|m≤n|i
|m≤n| exists and is finite. The goal is prefix independent. Indeed, let π = xπ′

then for all i ∈ [k]∗ we have limn→+∞
|π′≤n|i
|π′≤n| = limn→+∞

|π≤n+|x||i−|x|i
|π≤n+|x||−|x| = limm→+∞

|π≤m|i
|π≤m| .

The goal is also strongly selective. Indeed, suppose by contradiction that there exist a
sequence x ∈ [k]∗, and three languages M,N,K ⊆ [k]∗ such that x〈(M ∪N)∗K〉 contains
one winning word and x〈M∗〉∪ x〈N∗〉∪ x〈K〉 contains only losing words. In this case,
M and N must be empty else any periodic word π = mω ∈ M∗ ∪N∗ with m ∈ M ∪N

has a finite limit limn→+∞
|π≤n|i
|π≤n| = |m|i

|m| , for all colors i. So, the set 〈x(M∪N)∗K〉 = x〈K〉
and contains only losing words which is a contradiction. The above goal is not half-
positional in the following arena ({u},{v},u,{(v,0,u),(v,1,u),(u,0,v),(u,1,v)}) with
k = 1 (Fig 1(c)). Player 0 can win with a strategy with memory by choosing from V ′ to
V the opposite of the color that player 1 chose from V to V ′ right before, thus yielding
a path in [k]∗(10)ω which has limit 1

2 for both colors. However if player 0 uses a posi-
tional strategy, it will only choose one color from V ′ to V , let suppose without loss of
generality that he chooses color 0. The player 1 can force a path π = ∏+∞

i=0(00)2i
(10)2i

.

Then we have |∏l
i=0(00)2i

(10)2i | = ∑l
i=0 4 ·2i = 4(2l+1 −1), and |(∏l−1

i=0(00)2i
(10)2i

) ·
(00)2l | = 4(2l + 2l−1 −1). Moreover, |∏l

i=0(00)2i
(10)2i |1 = ∑l

i=0 ·2i = (2l+1 −1), and

|(∏l−1
i=0(00)2i

(10)2i
) · (00)2l |1 = ∑l−1

i=0 ·2i = 2l − 1. So we have
|∏l

i=0(00)2i
(10)2i |1

|∏l
i=0(00)2i(10)2i |

= 1
4 ,

moreover
|(∏l−1

i=0(00)2i
(10)2i

)·(00)2l |1
|(∏l−1

i=0(00)2i(10)2i)·(00)2l |
= 2l−1

3(2l−1)+2(2l) = 2l−1
5(2l)−3

= 2l− 3
5

5(2l)−3
−

2
5

5(2l)−3
< 1

5 . This

shows that in the limit |π≤n|1
|π≤n| oscillates between 1

4 and something less than 1
5 . ��

2 We thank Zielonka and Gimbert for pointing out the counterexample.
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Although the following theorem is obtained easily from the techniques developed
in [GZ05], we think that it is worth mentioning that half positionality on arenas con-
trolled only by player 0 is equivalent to the selectivity of the goal. Since the selectivity is
similar in a way to strong concavity, we show that strong concavity is a condition useful
to assert that, on decisions independent from player 1, player 0 prefers a fixed behav-
ior rather than switching between two different ones. We prove the above statement by
making use of the following lemma proved in [GZ05].

Lemma 13 ([GZ05]). Let A be a finite co-accessible3 automaton recognizing a lan-
guage L⊂ [k]∗ and having starting state q. Then, 〈L〉 is the set of infinite color sequences
on the graph of A starting in q.

Theorem 3. A goal is selective iff it is half-positional on all arenas controlled by
player 0.

Proof. [only if] Suppose that a goal W is half-positional on all game graph controlled
by player 0 but non-selective. Let x ∈ [k]∗ and M,N,K ⊆ [k]∗ be three recognizable
languages such that x〈(M ∪N)∗K〉 	≤ x〈M∗〉∪ x〈N∗〉∪ x〈K〉. This means that there is a
winning word in x〈(M ∪N)∗K〉 and x〈M∗〉∪ x〈N∗〉∪ x〈K〉 contains only losing words.
Let Gx,GM,GN be the minimized finite automata recognizing the languages {x},M,N,
respectively, and having only one starting state with no transition returning to it and one
final state with no transition exiting from it. Let GK be the minimized finite automaton
recognizing the language K, having only one starting state with no transition returning
to it. We construct the game graph G by combining together the graphs Gx,GM,GN ,GK .
Precisely we glue together the final state of Gx, the initial and final states of GM and
GN and the initial state of GK in a new node t. Observe that, by gluing together the
initial and final states, the automata GM,GN recognize M∗ and N∗, respectively. The
initial state of G is the starting state of Gx. Thus the graph G recognizes the language
x(M∪N)∗K. Hence by Lemma 13, every infinite path in G is in 〈x(M∪N)∗K〉= x〈(M∪
N)∗K〉. Since this set contains a winning word, there is a winning strategy for player 0.
However, if player 0 uses a positional strategy he cannot win. Indeed, player 0 reaches
first the node t by constructing the color sequence x on Gx. In the node t player 0
chooses once and for all which of the subgraphs GM,GN ,GK he will use, so the infinite
play will be of the form xm where m is an infinite path in GM ,GN or GK . By Lemma
13, xm ∈ x〈M∗〉∪ x〈N∗〉∪ x〈K〉. But this set contains only losing words. Hence, xm is
losing.

[if] Suppose that a goal W is selective, we prove by induction on the number of edges
exiting from the nodes of the arena G controlled by player 0 that if there exists a win-
ning strategy for player 0 then there exists a positional one. As base case there exists
only one edge exiting from the nodes of G, hence player 0 has only one strategy, which
is trivially positional. Suppose that in the arena there are n edges exiting from nodes of
player 0 and that for all graphs with at most n−1 edges exiting from nodes of player
0, if player 0 has a winning strategy he has a positional one. Let t be a node of player
0 in G such that there is more than one edge exiting from t. We can partition the set

3 An automaton is co-accessible iff from every state there is a path reaching an accepting state.
It’s easy to see that a minimized automaton is co-accessible.
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of edges exiting from t in two disjoint non-empty sets Eα and Eβ. Let Gα and Gβ be
the two subgraphs obtained from G by removing the edges of Eβ and Eα, respectively.
There are two cases to discuss. First, suppose that either in Gα or Gβ player 0 has a
winning strategy. Then, by inductive hypothesis he has a positional winning strategy. It
is easy to see that such a strategy is winning in G too, indeed player 0 is able to play
always in Gα or Gβ since he controls every node.

Suppose now that player 0 has no winning strategy in Gα and in Gβ. We prove the
thesis by showing that player 0 has no winning strategy in G. Let Mα and Mβ be the
sets of all finite color sequences from t to t and Kα and Kβ be the sets of all finite color
sequences starting from t, in Gα and Gβ, respectively. Such sets are regular languages:
Mα and Mβ are recognized by the automata having respectively Gα and Gβ as state
graphs, with starting node t and accepting set {t}. The sets Kα and Kβ are the languages
accepted by the automata with state graphs Gα and Gβ, respectively, with starting node
t and accepting set given by all the states.

Suppose now by contradiction that there exists a winning strategy for player 0 in
G. Then this strategy will form a winning path π. Such a path cannot be in Gα or Gβ,
or else player 0 has a winning strategy in one of those subgraphs. So the path is in G
and passes through t. Let x be the shortest prefix of π ending in t, then π belongs to
the set x〈(Mα ∪Mβ)∗(Kα ∪Kβ)〉, since it starts with x, then either loops forever from
t to t in Gα and Gβ, or possibly ends with an infinite path that never comes back to
t. However, for γ ∈ {α,β}, the sets x〈M∗

γ 〉 and x〈Kγ〉 contain only paths in Gγ, so they
are losing. Thus, we have x〈(M ∪N)∗K〉 	≤ x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉, which contradicts
selectivity.

��

After discussing monotonicity and selectivity we can formally complete the proof of
Lemma 10.

Lemma 14. Let k = 1, the goal W = [k]∗1[k]∗1[k]ω is full positional.

Concavity

Prefix Independence

Strong Concavity

Strong Monotonicity Strong Selectivity

Half Positionality

L. 4

L. 11
L. 8

L. 9

T. 1 T. 2

L. 12

L. 10 L. 10

Fig. 2. Summary of results. Continuous arrows represent a holding implication and dashed ones
a false one. Arrows are labeled with the corresponding lemma or theorem. Moreover, a gray box
represents a conjunction of conditions.
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Proof. Using the characterization of [GZ05], we prove the statement by showing that
the goals W and W are selective and monotone. Observe that W is the set of all the
words having at least two 1’s and W is the set of all the words contain at most one 1.

1. W is selective. Suppose by contradiction that W is not selective. Then, there exist
x ∈ [k]∗ and M,N,K ⊆ [k]∗ such that x〈(M∪N)∗K〉= x〈(M∪N)∗〉∪x(M∪N)∗〈K〉
contains a winning word and x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉 contains only losing words.
Observe that no word in M or N contains 1, or else if m ∈ M ∪N contains a 1,
xmω ∈ x〈M∗〉∪x〈N∗〉 contains infinitely many 1’s and it is a winning word. So, the
words in the set x〈(M ∪N)∗〉 do not contain 1 and they are losing. Moreover, since
x〈K〉 does not contain more than one 1, the words in x(M ∪N)∗〈K〉 do not contain
more than one 1 and they are all losing too. So, the set x〈(M∪N)∗K〉 contains only
losing words, hence a contradiction.

2. W is monotone. Suppose by contradiction that W is not monotone. Then there exist
x,y ∈ [k]∗ and M,N ⊆ [k]∗ such that xM < xN and yN < yM. So, xM and yN contain
only losing words, xN and yM contain a winning word. If x contains more than one
1, all words in the first two sets are losing, hence a contradiction. If x contains one
1, then no word in M contains 1. However, there is a winning word in yM, so y
contains two 1’s. Hence, yN contain only winning words, which is a contradiction.
If x does not contain a 1, there is a word in N with two 1’s. Hence, yN contains at
least a winning word, which is again a contradiction.

3. W is selective. Suppose by contradiction that W is not selective. Then, there exist
x ∈ [k]∗ and M,N,K ⊆ [k]∗ such that x〈(M∪N)∗K〉= x〈(M∪N)∗〉∪x(M∪N)∗〈K〉
contains a winning word and x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉 contains only losing words.
Observe that no word in M or N does not contain 1, else if m ∈ M ∪N does not
contain a 1, xmω ∈ x〈M∗〉 ∪ x〈N∗〉 does not contain 1’s and it is a winning word.
So the words in the set x〈(M∪N)∗〉 contain infinitely many 1’s and they are losing.
Moreover, since x〈K〉 contains more than one 1, the words in x(M∪N)∗〈K〉 contain
more than one 1 and they are all losing. So, the set x〈(M ∪N)∗K〉 contains only
losing words, hence a contradiction.

4. W is monotone. Suppose by contradiction that W is not monotone. Then there exist
x,y ∈ [k]∗ and M,N ⊆ [k]∗ such that xM < xN and yN < yM. So, xM and yN contain
only losing words, xN and yM contain a winning word. If x contains more than one
1, all words in the first two sets are winning, hence a contradiction. If x contains
one 1, then there is a word in N that does not contain 1’s. Since yN contains only
losing words, y contains more than one 1. So, all words in yM are losing, hence a
contradiction. If x does not contain 1, then all words in M contain more than one 1,
so all words in yM are losing, hence a contradiction. ��

6 Conclusions

In this paper, we defined a new sufficient condition for half-positionality on finite are-
nas, which turns out to be strictly weaker (i.e., broader) than that defined by Kopczyński
in [Kop06], as long as determined goals are considered. We discussed the conditions
presented in [GZ05] for full-positionality and we proved that a stronger partial form of
them does not ensure half positionality.
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The main open problem left by this research is the formulation of a complete char-
acterization of half-positionality. Another interesting question for further research is
whether or not the properties of strong monotonicity and strong concavity imply de-
terminacy. The answer to this question may simplify the statement of Theorem 2 by
removing the hypothesis of determinacy. Finally, another open problem consists in de-
veloping algorithms for checking whether a goal, given in input in some effective way
such as an automaton or a temporal logic formula, satisfies the conditions outlined in
this paper and is therefore HP. Such an algorithm may be used as a preliminary step in
controller synthesis tools, in order to estimate the amount of memory that the synthe-
sized controller will need.
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Abstract. In the context of strategic games, we provide an axiomatic
proof of the statement
(Imp) Common knowledge of rationality implies that the players will

choose only strategies that survive the iterated elimination of strictly
dominated strategies.

Rationality here means playing only strategies one believes to be best
responses. This involves looking at two formal languages. One, LO, is
first-order, and is used to formalise optimality conditions, like avoiding
strictly dominated strategies, or playing a best response. The other, Lν ,
is a modal fixpoint language with expressions for optimality, rationality
and belief. Fixpoints are used to form expressions for common belief and
for iterated elimination of non-optimal strategies.

Keywords: epistemic analysis, logic, fixpoints, rationalizability.

1 Introduction

There are two main sorts of solution concepts for strategic games: equilibrium
concepts and what might be called “effective” concepts. One interpretation of
the equilibrium concepts, for example Nash equilibrium, tacitly presupposes that
a game is played repeatedly (see, e.g. [13, page 14]). Thus the standard condition
for Nash equilibrium in terms of the knowledge or beliefs of the players [3] – the
so-called “epistemic analysis” of Nash equilibrium – includes a requirement that
players know the other players’ strategy choices.

Consider the left-hand game in Figure 1, in which each player has two choices
L and R and both players get payoff of 1 if they coordinate, and 0 otherwise.
Then there are two Nash equilibria1: both play L or both play R. But this does
not translate by itself into an effective strategy for either player reasoning in
isolation, without some exogenous information.

In contrast, effective solution concepts, for example the iterated elimination
of strictly dominated strategies, are compatible with such a “one-shot” interpre-
tation of the game. Thus the epistemic analysis of the iterated elimination of
1 A Nash equilibrium in a two-player game is a pair (s1, s2) of strategies, one for each

player such that s1 is a best response to s2 and vice-versa.
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L R
L 1, 1 0, 0
R 0, 0 1, 1

L R
U 1, 1 1, 0
D 0, 0 0, 1

Fig. 1. Two strategic games

strictly dominated strategies does not require that the players know each other’s
strategy choice.

A strategy si is strictly dominated if there is an alternative strategy ti such
that no matter what the opponent does, ti is (strictly) better for i than si.
Say that a player is sd-rational if he never plays a strategy that he believes
to be strictly dominated. What the iterated elimination of strictly dominated
strategies does in general require, see [4], is then that players have common true
belief that each other is rational, that is: they are rational, believe that all are
rational, believe that all believe that all are rational, etc.

In the right-hand game in Figure 1, the column player, on first looking at
her choices L or R is, superficially, in the same situation as before: choose L
and risk the opponent playing D or choice R and risk the opponent playing U .
However, this time the row player can immediately dismiss playing D on the
grounds that U will always be better, no matter what the column player does.
So if the column player knows (or believes) this, then he cannot rationally play
R, and so must play L.

In this paper we study the logical form of epistemic characterisation results
of this second kind, so we give formal proof-theoretic principles to justify some
given effective or algorithmic process in terms of common belief of some form
of rationality. We will introduce two formal languages. One, LO, is a first-order
language, that can be used to define ‘optimality conditions’. Avoiding playing a
strictly dominated strategy is an example of an ‘optimality condition’. Another
one is choosing a best response.

However, as observed in [2] for all such notions there are two versions: ‘local’
and ‘global’. Notice that in our informal description of when si is strictly domi-
nated by ti we did not specify where i is allowed to choose alternative strategies
from. In particular, since we are thinking of an iterated procedure, if ti has been
eliminated already then it would seem unreasonable to say that i should con-
sider it. That intuition yields the local definition; the global definition states the
opposite: that player i should always consider his original strategy set from the
full game when looking to see if a strategy is dominated.

A motivation for looking at global versions of optimality notions is that they
are often mathematically better behaved. On finite games the iterations for var-
ious local and global versions coincide [1], but on infinite games they can differ.
In a nutshell: an optimality condition φi for player i is global if i does not ‘forget’,
during the iterated elimination process, what strategies he has available in the
whole game. The distinction is clarified in the respective definitions in LO.

An optimality condition φ induces an optimality operator Oφ on the com-
plete lattice of restrictions (roughly: the subgames) of a given game. Eliminating
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non-φ-optimal strategies can be seen as the calculation of a fixpoint of the corre-
sponding operator Oφ. Furthermore, common belief is characterised as a fixpoint
(cf. Note 3 below). Viewed from the appropriate level of abstraction, in terms of
fixpoints of operators, this connection between common belief of rationality and
the iterated elimination of non-optimal strategies becomes clear.

We define a language Lν that describes things from this higher level of ab-
straction. Each optimality condition defines a corresponding notion of rational-
ity, which means playing a strategy that one believes to be φ-optimal. Lν is a
modal fixpoint language with modalities for belief and optimality, and so can
express connections between optimality, rationality and (common) belief.

We say that an operator O on an arbitrary lattice (D,⊆) is monotonic when
for all A, B ∈ D, if A ⊆ B then O(A) ⊆ O(B). The global versions of relevant
optimality operators, in particular of the operators corresponding to the best
response and strict dominance, are monotonic. This is immediately verifiable in
LO by observing that the relevant definition is positive.

Our first result is a syntactic proof of the following result, where φ is a mono-
tonic optimality condition:2

Theorem 1. Common true belief of φ-rationality entails all played strategies
survive the iterated elimination of non-φ-optimal strategies.

Although this theorem relies on a rule for fixpoint calculi that is only sound for
monotonic operators, the semantics of the language Lν allows also for arbitrary
contracting operators, i.e. such that for all A, O(A) ⊆ A. We are therefore able
to look at what more is needed in order to justify the following statement (cf. [4,
Proposition 3.10]), where gbr-rationality means avoiding avoiding strategies one
believes to be never best responses in the global sense:

Theorem 2. (Imp) Common true belief of gbr-rationality implies that the play-
ers will choose only strategies that survive the iterated elimination of strictly
dominated strategies.

This theorem connects a global notion of gbr-rationality with a local one, re-
ferred to in the iterated elimination operator. Our language allows for arbitrary
contracting operators, and their fixpoints to be formed, and we exhibit one sound
rule connecting the resulting fixpoints with monotonic fixpoints.

Our theorems hold for arbitrary games, and the resulting potentially trans-
finite iterations of the elimination process. The syntactic approach clarifies the
logical underpinnings of the epistemic analysis. It shows that the use of trans-
finite iterations can be naturally captured in Lν , at least when the relevant
operators are monotonic, by a single inference rule that involves greatest
fixpoints.

The relevance of monotonicity in the context of epistemic analysis of finite
strategic games has already been pointed out in [5], where the connection is

2 By “common true belief” we mean a common belief that is correct. In particular,
common knowledge entails common true belief.
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also noted between the iterated elimination of non-optimal strategies and the
calculation of the fixpoint of the corresponding operator.

To our knowledge, although several languages have been suggested for rea-
soning about strategic games (e.g. [7]), none use explicit fixpoints (except, as
we mentioned, for some suggestions in [5]) and none use arbitrary optimality
operators.

Therefore they are not appropriate for reasoning at the level of abstraction
that we suggest when studying the epistemic foundations of these “effective”
solution concepts. For example while [7, Section 13] does provide some analysis
of the logical form of the argument that common knowledge of one kind of
rationality implies not playing strategies that are strictly dominated, the fixpoint
reasoning is done at the meta-level. What [7] provides is a proof schema, that
shows how, for any finite game, and any natural number n, to give a proof
that common knowledge of rationality entails not playing strategies that are
eliminated in n rounds of elimination of non-optimal strategies.

The more general and elegant reasoning principle is captured by using fix-
point operators and optimality operators. Another important advantage to our
approach is that we are not restricted in our analysis to finite games. This means
in particular that our logical analysis covers the mixed extension of any finite
game.

Our use of transfinite iterations is motivated by the original finding of [12],
where a two-player game is constructed for which the ω0 (the first infinite ordinal)
and ω0 + 1 iterations of the rationalizability operator of [6] differ.

2 Games and the Language LO

A strategic game is a tuple (T1, . . . , Tn, <1, . . . , <n), where {1, . . . , n} are the
players and each Ti is player i’s set of strategies, and <i is player i’s prefer-
ence relation, which is a total linear order over the set of strategy profiles
T =

∏n
i=1 Ti. Note that we assume arbitrary games, rather than restricting to

games in which T is finite. To depict games it is sometimes easier, as we did
in Figure 1, to write down a number for the players’ “payoffs”, rather than
just a preference ordering. We use some standard notation from game the-
ory, writing s−i for (s1, . . . si−1, si+1, . . . sn) and (si, t−i) for the strategy profile
(t1, . . . ti−1, si, ti+1, . . . sn), as well as S−i for

∏
j 	=i Sj . A restriction of the game

(T1, . . . , Tn, <1, . . . , <n) is a sequence S = (S1, . . . , Sn) with Si ⊆ Ti for all play-
ers i, i.e. a (possibly empty) subgame in which the payoff information is left
out.

The language we use for specifying optimality conditions is a first-order lan-
guage, with variables V = {x, y, z, . . .}, a monadic predicate C, a constant o and
a family of n ternary relation symbols · ≥i

· ·, where i ∈ [1..n]. So LO is given by
the following inductive definition:

φ ::= C(a) | a ≥i
c b | ¬φ | φ ∧ φ | ∃xφ,

where i ∈ [1..n] and {a, b, c} ⊆ V ∪ {o}.
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We use the standard abbreviations → and ∨, further abbreviate ¬ a ≥i
c b to

b >i
c a, ∀xφ to ¬∃x¬φ, ∃x(C(x)∧φ) to ∃x ∈ Cφ, and ∀x(C(x) → φ) to ∀x ∈ Cφ.

An optimality model (G, G′, s) is a triple consisting of a strategic game G =
(T1, . . . , Tn, <1, . . . , <n), a restriction G′ of G, and a strategy profile s ∈ T . G
will be used to interpret the predicate C, and s will be the interpretation of o.
An assignment for (G, G′, s) is a function α assigning a strategy profile in T to
each variable, and s to o. The ternary satisfaction relation � between optimality
models, assignments and formulas of LO is defined inductively as follows, where
α is an assignment for (G, G′, s), and � the complement of �:

(G, G′, s) �α C(x) ⇔ ∀i ∈ {1, . . . , n}, (α(x))i ∈ G′
i

(G, G′, s) �α x ≥i
z y ⇔ (α(x)i, α(z)−i) ≥i (α(y)i, α(z)−i)

(G, G′, s) �α ¬φ ⇔ (G, G′, s) �α φ
(G, G′, s) �α φ1 ∧ φ2 ⇔ (G, G′, s) �α φ1 and (G, G′, s) �α φ2
(G, G′, s) �α ∃xφ ⇔ there is α′ : (G, G′, s) �α′ φ and

∀y ∈ V with x 	= y, α(y) = α′(y)

If for any assignment α for G we have (G, G′, s) �α φ then we write (G, G′, s) � φ.
A variable x occurs free in φ if it is not under the scope of a quantifier ∃x; a
formula is closed if it has no free variables.

An optimality condition for player i is a closed LO-formula in which all
the occurrences of the atomic formulas a ≥j

c b are with j equal to i. Intuitively,
an optimality condition φi for player i is a way of specifying what it means for
i’s strategy in o to be an ‘OK’ choice for i given that i’s opponents will play
according to C−i and that i’s alternatives are Ci.

In particular, we are interested in the following optimality conditions:

– lsdi := ∀y ∈ C ∃z ∈ C o ≥i
z y,

– gsdi := ∀y ∃z ∈ C o ≥i
z y,

– gbri := ∃z ∈ C ∀y o ≥i
z y.

The optimality conditions listed define some fundamental notions from game
theory: lsdi says that oi is not locally strictly dominated in the context of C;
gsdi says that oi is not globally strictly dominated in the context of C; and gbri

says that oi is globally a best response in the context of C.
The distinction between local and global properties, studied further in [2], is

clarified below. It important for us here because the global versions, in contrast
to the local ones, satisfy a syntactic property to be defined shortly.

First, as an illustration of the difference between gbri and gsdi, consider the
game in Figure 2. Call that game H , with the row player 1 and the column
player 2. Then we have

(H, (T1, T2), (D, R)) � gsd1,

but
(H, (T1, T2), (D, R)) � ¬gbr1.
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L R
U 2, 1 0, 0
M 0, 1 2, 0
D 1, 0 1, 2

Fig. 2. An illustration of the difference between strict dominance and best response

The local notions are such that when the ‘context’ restriction C consists of a
singleton strategy for a player i, then that strategy is locally optimal. So for
example

(H, ({U, M}, {R}), (U, R)) � lsd2,

whereas
(H, ({U, M}, {R}), (U, R)) � ¬gsd2.

We say that an optimality condition φi is positive when any sub-formula of
the form C(z), with z any variable, occurs under the scope of an even number
of negation signs (¬). Note that both gbri and gsdi are positive, while lsdi is
not. As we will see in a moment, positive optimality conditions induce mono-
tonic optimality operators, and monotonicity will be the condition required of
optimality operators in Theorem 1 relating common knowledge of φ-rationality
with the iterated elimination of non-φ strategies.

3 Optimality Operators

Henceforth let G = (T1, . . . , Tn, <1, . . . , <n) be a fixed strategic game. Recall
that a restriction of the game G is a sequence S = (S1, . . . , Sn) with Si ⊆ Ti for
all players i. We will interpret optimality conditions as operators on the lattice
of the restrictions of a game ordered by component-wise set inclusion:

(S1, . . . , Sn) ⊆ (S′
1, . . . , S

′
n) iff Si ⊆ S′

i for all i ∈ [1..n].

Given a sequence φ giving an optimality condition φi for each player i, we in-
troduce an optimality operator Oφ defined by

Oφ(S) =
n∏

i=1

{si ∈ Si | φi(si, S).}

Consider now an operator O on an arbitrary complete lattice (D,⊆) with largest
element �. We say that an element S ∈ D is a fixpoint of O if S = O(S) and
a post-fixpoint of O if S ⊆ O(S).

We define by transfinite induction a sequence of elements Oα of D, for all
ordinals α:

– O0 := �,
– Oα+1 := O(Oα),
– for limit ordinals β, Oβ :=

⋂
α<β Oα.
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We call the least α such that Oα+1 = Oα the closure ordinal of O and denote it
by αO. We call then OαO the outcome of (iterating) O and write it alternatively
as O∞.

Not all operators have fixpoints, but the monotonic and contracting ones
(already defined in the introduction) do:

Note 1. Consider an operator O on (D,⊆).

(i) If O is contracting or monotonic, then it has an outcome, i.e., O∞ is well-
defined.

(ii) The operator O defined by O(X) := O(X) ∩ X is contracting.
(iii) If O is monotonic, then the outcomes of O and O coincide.

Proof. For (i), it is enough to know that for every set D there is an ordinal α
such that there is no injective function from α to D.

Note that the operators Oφ are by definition contracting, and hence all have
outcomes. Furthermore, it is straightforward to verify that if φi is positive for
all players i, then Oφ is monotonic.

The following classic result due to [14] also forms the basis of the soundness
of some part of the proof systems we consider.3

Tarski’s Fixpoint Theorem. For every monotonic operator O on (D,⊆)

O∞ = νO = ∪{S ∈ D | S ⊆ O(S)},
where νO is the largest fixpoint of O.

We shall need the following lemma, which is crucial in connecting iterations
of arbitrary contracting operators with those of monotonic operators. It also
ensures the soundness of one of the proof rules we will introduce.

Lemma 1. Consider two operators O1 and O2 on (D,⊆) such that

– for all S ∈ D, O1(S) ⊆ O2(S),
– O1 is monotonic.

Then O∞
1 ⊆ O2

∞
.

Proof. By Note 1(i) the outcomes of O1 and O2 exist.
We prove now by transfinite induction that for all α

O1
α ⊆ O2

α

from which the claim follows, since by Note 1(iii) we have O∞
1 = O2

∞
.

By the definition of the iterations we only need to consider the induction step
for a successor ordinal. So suppose the claim holds for some α.

The second assumption implies that O1 is monotonic. We have the following
string of inclusions and equalities, where the first inclusion holds by the induction
hypothesis and monotonicity of O1 and the second one by the first assumption

O1
α+1

= O1(O1
α
) ⊆ O1(O2

α
) = O1(O2

α
) ∩ O2

α ⊆ O2(O2
α
) ∩ O2

α
= O2

α+1
.

3 We use here its ‘dual’ version in which the iterations start at the largest and not at
the least element of a complete lattice.
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4 Beliefs and the Modal Fixpoint Language Lν

Recall that G is a game (T1, . . . , Tn, P1, . . . , Pn). A belief model for G is a tuple
(Ω, s1, . . . , sn, P1, . . . , Pn), with Ω a non-empty set of ‘states’, and for each player
i, si : Ω → Ti and Pi : Ω → 2Ω. The Pi’s are possibility correspondences cf. [4].
The idea of a possibility correspondence Pi is that if the actual state is ω then
Pi(ω) is the set of states that i considers possible: those that i considers might
be the actual state.

Subsets of Ω are called events. A player i believes an event E if that event
holds in every state that i considers possible. Thus at the state ω, player i
believes E iff Pi(ω) ⊆ E.

Given some event E we write GE to denote the restriction of G determined
by E:

(GE)i = {si ∈ Ti | ∃u ∈ E : si(u) = si}.

In the rest of this section we present a formal languageLν that will be interpreted
over belief models. To begin, we consider the simpler language L, the formulas
of which are defined inductively as follows, where i ∈ [1..n]:

ψ ::= ratφi | ψ ∧ ψ | ¬ψ | �iψ | Oφiψ,

with φi an optimality condition for player i. We abbreviate the formula∧
i∈[1..n] ratφi to ratφ,

∧
i∈[1..n] �iψ to �ψ and

∧
i∈[1..n] Oφiψ to Oφψ.

Formulas of L are interpreted as events in (i.e. as subsets of the domain of)
belief models. Given a belief model (Ω, s1, . . . , sn, P1, . . . , Pn) for G, we define
the interpretation function �·� : L → P(Ω) as follows:

– �ratφi� = {ω ∈ Ω | φi(si(ω), GPi(ω))},
– �φ ∧ ψ� = �φ� ∩ �ψ�,
– �¬ψ� = Ω − �ψ�,
– ��iψ� = {ω ∈ Ω | Pi(ω) ⊆ �ψ�},
– �Oφiψ� = {ω ∈ Ω | (G, G�ψ�, si(ω)) � φi}.

Pi(ω) gives the set of states that i considers possible at ω, so �ratφi� is the
event that player i is φi-rational, since it means that i’s strategy is optimal
according to φi in the context that the player considers it possible that he is
in. The semantic clause for �i was mentioned at the begin of this section and
is familiar from epistemic logic: ��iψ� is the event that player i believes the
event �ψ�. �Oφiψ� is the event that player i’s strategy is optimal according to
the optimality condition φi, in the context of the restriction G�ψ�.

Then clearly �ratφ� is the event that every player i is φi-rational; �Oφψ� is the
event that every player’s strategy is φi-optimal in the context of the restriction
G�ψ�; and ��ψ� is the event that every player believes the event �ψ� to hold.

Although L can express some connections between our formal definitions of
optimality rationality and beliefs, it could be made more expressive. The lan-
guage could be extended with, for example, atoms si expressing the event that
the strategy si is chosen. This choice is made for example in [7], where modal
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languages for reasoning about games are defined. The language we introduce is
not parametrised by the game, and consequently can unproblematically be used
to reason about games with arbitrary strategy sets.

We will use our language to talk about fixpoint notions: common belief and
iterated elimination of non-optimal strategies. Let us therefore explain what is
meant by common belief . Common belief of an event E is the event that all
players believe E, all players believe that they believe E, all players believe that
they believe that. . . , and so on. Formally, we define CB(E), the event that E is
commonly believed, inductively:

B1(E) = {ω ∈ Ω | ∀i ∈ [1..n], Pi(ω) ⊆ E}
Bm+1(E) = B1(Bm(E))

CB(E) =
⋂

m>0

Bm(E)

Notice that B1(E) is the event that everybody believes that E (indeed, we have
B1�ψ� = ��ψ�), B2(E) is the event that everybody believes that everybody
believes that E, etc.

‘Common belief’ is called ‘common knowledge’ when for all players i and all
states ω ∈ Ω, we have ω ∈ Pi(ω). In such a case the players have never ruled out
the current state, and so it is legitimate to interpret �iψ as ‘i knows that ψ’.

Both common knowledge and common belief are known to have equivalent
characterisations as fixpoints, and we will exploit this below in defining them in
the modal fixpoint language which we now specify.

We extend the vocabulary of L with a single set variable denoted by X and
the contracting fixpoint operator νX . (The corresponding extension of first-
order logic by the dual, inflationary fixpoint operator μX was first studied in
[8].) Modulo one caveat the resulting language Lν is defined as follows:

ψ ::= ratφi | (ψ ∧ ψ) | ¬ψ | �iψ | Oφiψ | νX.ψ

The caveat is the following:

– φ must be ν-free, which means that it does not contain any occurrences of
the νX operator.

This restriction is not necessary but simplifies matters and is sufficient for our
considerations.

To extend the interpretation function �·� to Lν , we must keep track of the
variable X . Therefore we first extend the function �·� : L → P(Ω) to a function
�· | ·� : Lν ×P(Ω) → P(Ω) by padding it with a dummy argument. We give one
clause as an example:

– ��iψ | E� = {ω ∈ Ω | Pi(ω) ⊆ �ψ | E�}.

We use this extra argument in the semantic clause for the variable X :

– �X | E� = E.
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Those formulas whose semantics we have so far given define operators. More
specifically, for each of them �ψ | ·� is an operator on the powerset P(Ω) of Ω.
We use this to define the clause for νX :

– �νX.ψ | E� = (�ψ ∧ X | ·�)∞.

When X does not occur free in ψ, we have �ψ | E� = �ψ | F � for any events
E and F , so in these cases we can write simply �ψ�. Note that �νX.ψ� is well-
defined since for all E we have �ψ ∧ X | E� = �ψ | E� ∩ �X | E� ⊆ E, so the
operator �ψ ∧ X | ·� is contracting.

We say that a formula ψ of Lν is positive in X when each occurrence of X
in ψ is under the scope of an even number of negation signs (¬), and under the
scope of an optimality operator Oφi only if φi is positive.

Note 2. When ψ is positive, the operator �ψ | ·� is monotonic.

Then by Tarski’s Fixpoint Theorem and Note 1(iii) we can use the following
alternative definition of �νX.ψ� in terms of post-fixpoints:

�νX.ψ� =
⋃

{E ⊆ Ω | E ⊆ �ψ | E�}.

Let us mention some properties the language Lν can express. First notice that
common belief is definable in Lν using the νX operator. An analogous charac-
terization of common knowledge is in [9, Section 11.5].

Note 3. Let ψ be a formula of L. Then �νX.�(X ∧ ψ)� is the event that the
event �ψ� is common belief.

From now on we abbreviate the formula νX.�(X ∧ψ) with ψ a formula of L to
�∗ψ. So Lν can define common belief. Moreover, as the following observation
shows, it can also define the iterated elimination of non-optimal strategies.

Note 4. In the game determined by the event �νX.OφX�, every player selects a
strategy which survives the iterated elimination of non-φ-optimal strategies.

Proof. It follows immediately from the following equivalence, which is obtained
by unpacking the relevant definitions:

G�OφX∧X|E� = Oφ(GE).

5 Proof Systems

Consider the following formula:

(ratφ ∧ �∗ratφ) → νX.OφX. (1)

By Notes 3 and 4, we see that (1) states that: true common belief that the
players are φ-rational entails that each player selects a strategy that survives
the iterated elimination of non-φ-optimal strategies.
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In the rest of this section we will discuss a simple proof system in which we can
derive (1). We will use an axiom and rule of inference for the fixpoint operator
taken from [11] and one axiom for rationality analogous to the one called in [7]
an “implicit definition” of rationality. We give these in Figure 3, where, crucially,
ψ is positive in X, and all the φi’s are positive. We denote here by ψ[X �→ χ]
the formula obtained from ψ by substituting each occurrence of the variable X
with the formula χ. Assuming given some standard proof rules for propositional
reasoning, we add the axioms and rule given in Figure 3 to obtain the system P.

Axiom schemata

ratφ → (�χ→ Oφχ) ratDis

νX.ψ → ψ[X �→ νX.ψ] νDis

Rule of inference

χ→ ψ[X �→ χ]
χ→ νX.ψ

νInd

Fig. 3. Proof system P

A formula is a theorem of a proof system if it is derivable from the axioms
and rules of inference. An Lν -formula ψ is valid if for every belief model (Ω, . . .)
for G we have �ψ� = Ω. We now establish the soundness of the proof system P,
that is, that its theorems are valid.

Lemma 2. The proof system P is sound.

Proof. We show the validity of the axiom ratDis:
Let (Ω, s1, . . . , sn, Pi, . . . , Pn) be a belief model for G. We must show that

�ratφ → (�χ → Oφχ)� = Ω. That is, that for any χ the inclusion �ratφ� ∩
��χ� ⊆ �Oφχ� holds. So take some ω ∈ �ratφ�∩ ��χ�. Then for every i ∈ [1..n],
φi(si(ω), GPi(ω)), and Pi(ω) ⊆ �χ�. So by monotonicity of φi, φi(si(ω), G�χ�),
i.e. ω ∈ �Oφiχ� as required.

The axioms νDis and the rule νInd were introduced in [11]; they formalise,
respectively, the following two consequences of Tarski’s Fixpoint Theorem con-
cerning a monotonic operator F :

– νF is a post-fixpoint of F , i.e., νF ⊆ F (νF ) holds,
– if Y is a post-fixpoint of F , i.e., Y ⊆ F (Y ), then Y ⊆ νF .

Next, we establish the already announced claim.

Theorem 1. The formula (1) is a theorem of the proof system P.
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Proof. The following formulas are instances of the axioms ratDis (with ψ :=
�∗ratφ ∧ ratφ) and νDis (with ψ := �(X ∧ ratφ)) respectively:

ratφ → (�(�∗ratφ ∧ ratφ) → Oφ(�∗ratφ ∧ ratφ)), (2)
�∗ratφ → �((�∗ratφ) ∧ ratφ). (3)

Putting these two together via some propositional logic, we obtain

((�∗ratφ) ∧ ratφ) → Oφ((�∗ratφ) ∧ ratφ),

which is of the right shape to apply the rule νInd (with χ := �∗ratφ ∧ ratφ and
ψ := OφX). We then obtain

(�∗ratφ ∧ ratφ) → νX.OφX,

which is precisely the formula (1).

Corollary 1. The formula (1) is valid.

It is interesting to note that no axioms or rules for the modalities � or O were
needed in order to derive (1), other than those connecting them with rationality.
In particular, no introspection is required on the part of the players, nor indeed
is the K axiom �(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ) needed.

In the language Lν , the ratφi are in effect propositional constants. We might
instead define them in terms of the �i and Oφi modalities but to this end
we would need to extend the language Lν . One way to do this is to use a
quantified modal language, allowing quantifiers over set variables, so extending
Lν by allowing formulas of the form ∀Xϕ. Such quantified modal logics are
studied in [10]. It is straightforward to extend the semantics to this larger class
of formulas:

�∀Xϕ | E� = {ω ∈ Ω | ∀F ⊆ Ω, ω ∈ �ϕ | F �}.

In the resulting language each ratφi constant is definable by a formula of this
second-order language:

ratφi ≡ ∀X(�iX → OφiX). (4)

The following observation then shows correctness of this definition.

Note 5. For all i ∈ [1..n] the formula (4) is valid in the semantics sketched.

To complete our proof-theoretic analysis we augment the proof system P with
the following proof rule where we assume that χ is positive in X , but where ψ
is an arbitrary ν-free Lν-formula:

χ → ψ

νX.χ → νX.ψ
Incl

The soundness of this rule is a direct consequence of Lemma 1.
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To formalize the statement Imp we need two optimality conditions, gbri and
lsdi.

To link the proof systems for the languages LO and Lν we add the following
proof rule, where each φi and ψi is an optimality condition in LO, and OφX →
OψX is a formula of Lν .

φi → ψi, i ∈ [1..n]
OφX → OψX

Link

The soundness of this rule is a direct consequence of the semantics of the formulas
OφX and OψX .

We denote the system obtained from P by adding to it the above two proof
rules and standard first-order logic rules concerning the formulas in the language
LO, like

∃y ∀xφ

∀x ∃yφ

by R. We can now formalize the statement Imp as follows:

(ratgbr ∧ �∗ratgbr) → νx.Olsdx. (5)

The following result then shows that this formula can be formally derived in the
considered proof system.

Theorem 2. The formula (5) is a theorem of the proof system R.

Proof. The properties gbri are monotonic, so the following implication is an
instance of (1):

(ratgbr ∧ �∗ratgbr) → νx.Ogbrx.

Further, since the implication gbri → lsdi holds, we get by the Link rule

νx.Ogbrx → νx.Olsdx,

from which (5) follows.

Corollary 2. The formula (5) is valid.

6 Summary

We have studied the logical form of epistemic characterisation results, for ar-
bitrary (including infinite) strategic games, of the form “common knowledge
of φ-rationality entails playing according to the iterated elimination of non-φ′

properties”. A main contribution of this work is in revealing, by giving syntactic
proofs, the reasoning principles involved in two cases: firstly when φ = φ′ (Theo-
rem 1), and secondly when φ entails φ′ (Theorem 2). In each case the result holds
when φ is monotonic. The language Lν that we used to formalise this reasoning is
to our knowledge novel in combining optimality operators with fixpoint notions.
Such a combination is natural when studying such characterisation results, since
common knowledge and iterated elimination are both fixpoint notions.

The language Lν is parametric in the optimality conditions used by play-
ers. It is therefore built on the top of a first-order language LO used to define
syntactically optimality conditions relevant for our analysis.
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Abstract. In this paper we present an agent language that combines agent func-
tionality with an action theory and model-theoretic semantics. The language is 
based on abductive logic programming (ALP), but employs a simplified state-
free syntax, with an operational semantics that uses destructive assignment to 
manipulate a database, which represents the current state of the environment. 
The language builds upon the ALP combination of logic programs, to represent 
an agent’s beliefs, and integrity constraints, to represent the agent’s goals. 
Logic programs are used to define macro-actions, intensional predicates, and 
plans to reduce goals to sub-goals including actions. Integrity constraints are 
used to represent reactive rules, which are triggered by the current state of the 
database and recent agent actions and external events. The execution of actions 
and the assimilation of observations generate a sequence of database states. In 
the case of the successful solution of all goals, this sequence, taken as a whole, 
determines a model that makes the agent’s goals and beliefs all true. 

Keywords: abductive logic programming, agent languages, model-theoretic 
semantics. 

1   Introduction 

Practical agent languages, many of which were originally inspired by the use of mo-
dal logic specifications of an agent’s Beliefs, Desires and Intentions, have largely 
abandoned their original model-theoretic semantics in favour of operational seman-
tics. They employ procedural representations and perform destructive assignment on 
“beliefs” that represent the current state of the agent’s environment. 

ALP (abductive logic programming) agents [12] have both an operational seman-
tics and a model-theoretic semantics. However, they represent the agent’s observa-
tions in a non-destructive database and explicitly represent and reason about time or 
state, using a formal action theory such as the event calculus, with the consequent 
inefficiencies of reasoning with explicit frame axioms. 

In this paper we present a language, LPS, that combines a declarative semantics 
based on ALP with the features of practical agent languages, including the use of de-
structive assignment and a syntax that does not refer to time or state. The semantics of 
LPS can be viewed in terms of Kripke possible world structures, as in Transaction 
(TR) Logic [2]. However in TR Logic, the truth of sentences is defined along paths of 
possible worlds. In LPS, the possible worlds are combined into a single model with 
state arguments in the spirit of the situation calculus and Golog [14]. 
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The database is structured as a deductive database, with extensional predicates that 
are represented explicitly and with intentional predicates that are defined by logic 
programs. Actions and observations are structured by means of an action theory that 
defines the preconditions of actions and the effects of actions and external events on 
the extensional predicates of the database. Intentional predicates are modified as rami-
fications of changes to the extensional predicates.  

The frame problem is avoided by employing destructive change of state, without 
the use of frame axioms. The inefficiencies of planning from first principles are 
avoided, by using plan libraries to achieve intended consequences of actions, and by 
using the action theory only to transform one state of the database to the next, imple-
menting consequences of the agent’s actions and external observations.  

In contrast with many agent languages, TR Logic and Golog, but as in ALP agents, 
LPS highlights the distinction between maintenance goals (or reactive rules), repre-
sented as integrity constraints, and beliefs, represented as logic programs. The ap-
proach is based upon our earlier attempt to combine similar features of production 
systems with the model-theory of ALP [12]. We retain the name LPS, introduced in 
an earlier paper [13], and which stands for Logic-based Production System language, 
because we treat production rules and agent plans in the same way.  

In the remainder of the paper, we present motivating examples and background, 
and then the syntax, operational semantics and model-theoretic semantics of LPS. We 
assume the reader is familiar with logic programs, SLD resolution and the minimal 
model semantics of Horn clauses. 

1. 1   Motivating Examples 

The vocabulary of LPS includes both ordinary stateless predicates, as well as fluents, 
which are extensional and intensional predicates, and actions, which are atomic ac-
tions, macro-actions, and external events, which are observable by the agent. The se-
mantics (or internal syntax) of a fluent P has an additional argument P(T), indicating 
that P holds in the state T (or at the time T). Atomic and macro actions A have two 
additional arguments A(T1, T2), indicating that the action A  takes place from T1  to T2. 
The semantics of atomic actions and events A happening in the transition from state T 
to T+1 is given by A(T, T+1).  

The surface syntax of LPS does not have explicit state arguments. Instead, as well 
as the ordinary conjunction ∧, it has two other conjunctions whose meaning is defined 
in terms of states.  The formal syntax and semantics will be given in Section 3. But, in 
the meanwhile, the semantics of the two conjunctions in the following examples can 
be understood as follows: 

P : Q, where both P and Q are fluents, means P(T) ∧ Q(T). 
P : A, where P is a fluent and A is an action means P(T1) ∧ A(T1, T2). 
A : P, where A is an action and P is a fluent means A(T1, T2) ∧ P(T2). 
P ; Q, where both P and Q are fluents, means P(T1) ∧ Q(T2) ∧ T1 ≤ T2. 
P ; A, where P is a fluent and A is an action means P(T1)∧ A(T2, T3) ∧T1≤T2. 
A ; B, where both A and B are actions, means A(T1, T2) ∧ B(T3, T4) ∧ T2 ≤ T3. 
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Below we illustrate our approach by giving examples formalized in the LPS  
language. 

Example 1: We consider an online shopping scenario, similar to the running example 
produced by the W3C RIF Working Group on rule interchange1. Reactive rules are 
used to welcome a customer when she logs in, and to take payment and issue confir-
mation when she checks out: 

login(X) : customer(X) → welcome(X). 
checkout(X): customer(X): shop-cart(X, ID, Value) → 
take-payment(X, ID, Value) ;  confirm(X, ID, Value). 

The goals generated by the reactive rules are solved by macro-actions, in which a cus-
tomer is welcomed with an appropriate offer. A new customer is welcomed by an of-
fer of a promotional item. A gold customer is welcomed by an offer of a promotional 
item that is similar to an item recommended by her profile: 

welcome(X) ← status(X, new): promotional-item(Y): offer(X, Y). 
welcome(X) ← status(X, gold): promotional-item(Y): profile(X, Z): 

similar(Y, Z): offer(X, Y). 

The semantics (i.e. the state-based translation) of the first reactive rule and the first 
macro-action definition are: 

login(X, T-1, T) ∧ customer(X, T)  → welcome(X, T1, T2) ∧ T≤T1. 
welcome(X, T, T1) ← status(X, new, T) ∧ promotional-item(Y, T) ∧ 

offer(X, Y, T, T1). 

Example 2: The following is a reformulation in LPS of an example given in [4]. 
Reactive Rule: If a room is dirty clean it  

is-dirty(Room) → clean(Room). 
Macro-actions definitions:  

 clean(Room) ← goto(Room); vacuum(Room). 
  goto(Y) ← pos(Y). 
goto(Y) ← pos(X) : different(X, Y) : adjacent(X, Z): step(X, Z); goto(Y).  

Here is-dirty and pos are extensional predicates, adjacent and different are state-
independent predicates, vacuum and step are atomic actions, and clean and goto are 
macro-actions. The action step(X,Y) causes a change in location and the action vac-
uum(Room) causes a change in the status of the Room via the action theory: 

 terminates(step(X,Y), pos(X)) and   initiates(step(X,Y),  pos(Y)), 
 terminates(vacuum(Room), is-dirty(Room))  and  
 initiates(vacuum(Room), is-clean(Room)). 

The semantics of the last macro-action definition is: 

goto(Y, T1, T3) ← pos(X, T1) ∧ different(X, Y) ∧  adjacent(X,Z) ∧ step(X, Z, 
T1, T1+1) ∧ goto(Y, T2, T3) ∧ T1+1≤T2.  

                                                           
1 http://www.w3.org/2005/rules/wiki/RIF_Working_Group visited in July 2009. 
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The LPS operational semantics (the LPS cycle) works as follows: The condition is-
dirty(Room) of the reactive rule is checked against a database that represents the cur-
rent state of the environment. For all instantiations σ for which the condition is true, 
the goal clean(Room)σ is added to the agent’s goals. Each goal is then planned for by 
planning rules or macro-actions, the resulting atomic actions are executed, and each 
such execution (destructively) updates the database. In general, the planning and ac-
tion executions can be interleaved, provided any ordering dictated by the connectives 
is respected. The predicate pos acts as a guard in the last two macro-action clauses, 
checking the agent’s current location and directing the agent towards the next action. 
If all the goals are successfully planned for and the atomic actions are successfully 
executed the agent would have traversed a sequence of states the totality of which 
corresponds to a (minimum) model in which the reactive rule is true.  

Example 3: The following is a reformulation in LPS of another example in [4], which 
involves buying a gift. According to the scenario in [4], first the agent checks what 
gifts are available in Harrods, and forms a plan to go to Harrods and purchase the gift. 
Then for some reason this plan does not succeed and a special plan revision rule 
changes the plan to purchasing that same gift from Dell. In LPS the beliefs required 
for this scenario can be formalized without plan revision rules, as follows: 

Planning rule: have(Gift) ← sells(harrods, Gift): buy(Gift).      
Macro-action definitions: 

buy(Gift) ← goto(harrods); purchase(Gift, harrods). 
buy(Gift)←online(Store):sells(Store,Gift):goOnline(Store);purchase(Gift, Store). 

The database contains the fact:   online(dell).  

The LPS operational semantics is neutral with respect to the search strategy used to 
explore the search space, and the “conflict resolution strategy” used to select an action 
to execute. To obtain the behavior of the scenario described in [4], these strategies 
would need to try the macro-action rules in the order in which they are written, try the 
first action (goto(harrods)), and if it fails, either re-attempt the action later or execute 
the alternative action (goOnline(dell)). 

Here is an alternative, more flexible formalization using only planning rules: 
have(Gift)←is-Store(Store): sells(Gift, Store): goto(Store); purchase(Gift,Store).  
have(Gift)←online(Store):sells(Gift,Store):goOnline(Store);  

purchase(Gift,Store). 

2   Background 

2.1   Informal Comparison of Agent Languages and LPS 

Practical agent languages can be regarded as an extension of production systems, in 
which condition-action rules are generalised to condition-action-and-goal rules. Both 
production systems and agent languages manipulate a database of facts or beliefs, 
which represents the current state of the environment. The database is updated de-
structively both by the agent’s observations and by the agent’s actions. The agent’s  
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goals are represented either as goal facts in the database, or in a separate stack of 
goals and actions, which represents the agent’s intentions.  

Like condition-action rules in production systems, condition-action-and-goal rules, 
called plans in agent languages, provide two main functions. Arguably their primary 
function is as reactive rules, to react to changes in the database, verifying that the 
condition holds and adding the corresponding goals and actions either to the database 
or the stack of goals. However, in practice they often function as goal-reduction rules, 
to match a current goal with one of the conditions of a plan, verify the other condi-
tions of the plan, and add the corresponding goals and actions to the database or stack 
of intentions.  

LPS borrows from production systems and agent languages their state-free syntax 
and their destructively changing database. It uses the database to represent the current 
state of the environment, and represents goals (or alternative candidate intentions) as a 
set of goal clauses, executing them as in SLD resolution. The search strategy and se-
lection function can treat the set as a stack in the same way that Prolog implements a 
restricted version of SLD resolution. Alternatively, it can use the selection function 
more freely to interleave planning with plan execution. 

The main difference between LPS and more conventional agent languages is that 
LPS interprets and represents reactive plans and goal-reduction plans differently, and 
this difference is exploited to provide LPS with a model-theoretic semantics. It inter-
prets goal-reduction plans as beliefs and represents them as logic programs. It pro-
vides them with a backward reasoning operational semantics and a minimal model 
declarative semantics. It interprets reactive plans as (maintenance) goals (or policies) 
and represents them as integrity constraints (as in abductive logic programming). It 
provides them with a forward reasoning operational semantics and the model-
theoretic semantics of integrity constraints.  

Production systems and agent languages typically represent actions performed on 
the internal database as additions or deletions of facts in the database. LPS employs a 
more structured representation of actions in the tradition of the situation calculus and 
event calculus. Additions and deletions are not explicit actions, but are consequences 
of an action theory. It uses destructive change of state to deal with the computational 
aspects of the frame problem. 

In production systems and agent languages, when the conditions of more than one 
condition-conclusion rule hold, a choice needs to be made between the different con-
clusions. In production systems, this is made by means of a conflict resolution strat-
egy. In agent languages, it is made by selecting one of the conclusions as an intention, 
and possibly repairing the resulting plan if it fails. In ALP and LPS, when the rules 
are interpreted as beliefs represented as logic programming clauses, the choice is dealt 
with by the selection function and search strategy. When the rules are interpeted as 
maintenance goals represented by integrity constraints, all maintence goals must be 
made true, by making their conclusions true whenever their conditions are true.  

However in LPS, an analogue of conflict resolution is performed when the agent 
decides which action to execute. In ALP agents, we have explored the use of Decision 
Theory for this purpose. However, in LPS we assume that the choice is made by the 
selection and search strategies, subject to the constraint that no action is selected if 
there are other actions that need to be executed earlier. 
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2.2   Abductive Logic Programming   

LPS is based on abductive logic programming (ALP) [9] and abductive logic pro-
gramming agents (ALP agents) [12]. ALP extends logic programming (LP) by allow-
ing some predicates, Ab, the abducibles, to be undefined, in the sense that they do not 
occur in the conclusions of clauses. Instead, they can be assumed, but are constrained 
directly or indirectly by a set  IC of integrity constraints.  

Thus an ALP framework <L, Ab, IC> consists of a logic program L, a set of ab-
ducibles Ab, and a set of integrity constraints IC. The predicates in the conclusions of 
clauses in L are disjoint from the predicates in Ab. An atom whose predicate is in Ab 
is called abducible. In LPS, the abducible atoms represent actions and events, and the 
integrity constraints represent reactive rules (or policies). 

In LPS, we use integrity constraints for reactive rules and restrict them to the form 
condition → conclusion, where condition and conclusion are conjunctions of atoms, 
and all the variables occurring in condition are universally quantified over the impli-
cation, and all variables occurring only in the conclusion are existentially quantified 
over the conclusion. For simplicitly, we restrict logic programs to Horn clauses [11]. 
This restriction has the advantage that Horn clauses have a unique minimal model [5]. 
The restriction can be relaxed in various ways, as we will discuss later. 

Definition 1. Given an ALP framework <L, Ab, IC> and a conjunction of atoms C 
(which can be the empty clause), a solution is a set of atomic sentences Δ in the predi-
cates Ab, such that both C and IC are true in the minimal model of L ∪ Δ.        

This semantics is one of several that have been proposed for ALP and for integrity 
constraints more generally. It has the advantage that it provides a natural semantics for 
LPS. In LPS, the analogue of the minimal model of L ∪ Δ  is the sequence of database 
states extended by the logic programming component of LPS. The analogue of C and 
IC being true in the minimal model is the truth of the initial goals and reactive rules. 

The ALP agent model [12] embeds the IFF [8] proof procedure for ALP in an ob-
servation-thought-decision-action cycle, in which abducible atoms Ab represent an 
agent’s observations and actions, logic programs L  represent the agent’s beliefs, and 
integrity constraints IC represent the agent’s goals. Logic programs give the pro-
active behaviour of goal-reduction procedures, and integrity constraints give the reac-
tive behaviour of condition-action-and-goal rules. However, goals and beliefs also 
have a declarative reading, inherited from the semantics of ALP. The ALP agent cycle 
generates a sequence of actions in the attempt to make an initial goal and the integrity 
constraints true in the agent’s environment.  

In ALP agents, the agent’s environment is an external, destructively changing se-
mantic structure. The set Δ, on the other hand, is the agent’s internal representation of 
its interactions with the environment. This internal representation is monotonic in 
ALP, in the sense that observations and actions are time-stamped and state representa-
tions are derived by an action theory, such as the situation or event calculus. In con-
trast, in production systems, in many agent systems and in LPS, the environment is 
simulated by an internal, destructively changing database. In LPS, this database can 
be viewed as a Kripke-like model, transformed into a single situation-calculus-like 
model. 
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3   LPS Language – Informal Description 

In this section we give an informal description of the LPS language, and in the next 
section we define the language and its internal, state-based representation. 

3.1   The Database 

The LPS semantics is defined in terms of a minimal model associated with a sequence 
of databases state transitions W0, Ob0, a0, …, Wi, Obi, ai…where the Wi represent the 
successive states of the database, the Obi represent a set of observations, and the ai 
represent the agent’s actions. 

The databases Wi represent the agent’s beliefs about the current state of the envi-
ronment. These correspond to the extensional predicates of a deductive database, e.g.  
customer(john-smith), spent-to-date(john-smith, 500). Because the transition from Wi 
to Wi+1 is implemented by destructive assignment, the facts in Wi are written without 
state arguments. This means that the facts that are not affected by the transformation 
persist without being copied explicitly from one state to the next.  

In addition to extensional predicates, which represent database states explicitly, 
there are intentional predicates defined by clauses Lram. For example: 

status(X, gold) ← spent-to-date (X, V): 500≤V. 
status(X, new) ← spent-to-date (X, V): V <500. 

Here spent-to-date is an extensional predicate, which changes directly as the result of 
actions, such as take-payment, and status is an intensional predicate, which changes as 
a ramification of changes to the predicate spent-to-date.  

The state-independent predicates are defined by ordinary logic programming 
clauses in Lstateless. For example: similar(X, Y) ← cd(X) ∧ dvd(Y).   

3.2   The Action Theory 

State transitions are defined by a set of action clauses A. The clauses in A are divided 
into clauses Apre defining the preconditions and Apost defining the post-conditions of 
atomic actions. These have the form: 

  initiates(a, p) ← init-conditions 
terminates(a, p) ← term-conditions 
precondition(a, q) ← pre-conditions 

where a represents an atomic action, p represents an extensional predicate and q 
represents an intensional, extensional or state-independent predicate. The first two 
types of clauses are in Apost, and the last type of clause is in Apre. The conditions init-
conditions and term-conditions are qualifying conditions, and together with pre-
conditions are formulas that are checked in the current state. For example: 

initiates(take-payment(X, ID, Value), spent-to-date(X, New)) ←  
spent-to- date(X, Old) ∧  New = Old + Value. 
terminates(take-payment(X, ID, Value), spent-to-date(X, Old)) ←  
spent-to-date(X, Old). 
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An action a can be executed in state Wi provided that all of its precondions hold. This 
is determined by using the action theory to identify all the predicates q that should 
hold, and then checking that all such q do indeed hold in the current state Wi extended 
by means of the intensional and stateless predicates, as determined by Lram and  
Lstateless. Not every action needs to initiate or terminate database facts. In particular, 
the LPS agent can execute external actions, which have no impact on the database.  

For simplicity and uniformity, we treat observations as external events that initiate 
and terminate fluents. Their postconditions are included in Apost. For example: 

initiates(login(X), logged-on(X))             terminates(logout(X), logged-on(X)). 

Because observations only happen if they can happen, there is no need to include their 
preconditions in Apre. It is important to note that action theories are not used for plan-
ning, but only to perform the state transitions associated with the agent’s actions and 
external events. We use planning clauses for planning. 

3.3   Goals 

In addition to the changing state of the database, the LPS operational semantics main-
tains an associated changing set of goal clauses Gi, each of which can be regarded as a 
partial plan for achieving the initial goals G0 and the additional goals generated by the 
LPS cycle. These additional goals come from the conclusions of reactive rules. Both 
the initial goals and the additional goals are reduced to sub-goals by the logic pro-
grams used to define intensional predicates, macro-actions, stateless predicates and 
planning rules. Goals coming from different reactive rules can be solved independ-
ently and concurrently. 

The intended semantics of goals is that, for every Gi, one of the goal clauses in Gi 
should be true in the model that is generated by the LPS cycle. G0 may contain only 
the empty clause, as is typical of production systems. Informally speaking, the cycle 
succeeds in state n, if Gn contains the empty clause.  However, the cycle does not 
terminate when it succeeds, because future observations may trigger future goals.    

Initial goal clauses can contain actions, fluents, stateless predicates, and any of the 
logical connectives in the language, but not events. For example the goal clause 

 promotional-offer(Item): discount(Item, 20%, NewPrice); advertise(Item, NewPrice)  

requires that a promotional item is determined and discounted by 20%, and then the 
item and its new price are advertised.  

3.4   Reactive Rules 

The set P of reactive rules has the same form condition→ conclusion and the same 
implicit quantification as ALP integrity constraints, where condition is a conjunction 
of atoms and conclusion has the same form as a goal clause. Reactive rules are exe-
cuted by checking whether the condition holds in the current state of the database Wi, 
and if it does, then the conclusion is added to every goal clause in Gi. The condition 
can also include a single atom representing an atomic action executed in the last cycle 
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and any number of atoms representing the last set of observations. Thus P can include 
the event-condition-action rules of active databases. For example: 

 take-payment(X, ID, Value) : Value≥50 →issue-sport-voucher(X, ID). 

3.5   Macro-actions 

It would be possible to write agent programs using reactive rules alone, restricting the 
conclusions of reactive rules to atomic actions, and to extensional and intensional 
predicates that are checked in the current state as implicit consequences of the agent’s 
actions or as serendipitous consequences of external events. Such reactive rules would 
be sufficient for implementing purely reactive agents. However, macro-actions and 
planning rules in LPS make it possible to implement agents with more delibera-
tive/proactive capabilities. 

Macro-actions are complex actions defined in terms of simpler (atomic and macro-) 
actions and fluents. Macro-actions, defined by the set of clauses Lmacro, are like transac-
tions in TR Logic and complex actions in Golog. Examples were given in section 1.1. 

3.6   Planning Clauses 

Agent programs written using only reactive rules and definitions of macro-actions 
achieve fluent goals only emergently and implicitly. Planning clauses allow programs 
to be written to achieve extensional fluent goals explicitly. To ensure that the agent’s 
beliefs are true with respect to the action theory that maintains the database, we im-
pose the restriction that the last condition in a planning clause is an atomic action that 
initiates the conclusion fluent, as determined by the action theory. Lplan represents 
such plans for achieving future states of the database. For example: 

have(Gift)←is-Store(Store): sells(Gift,Store): goto(Store); purchase(Gift, Store). 

Note that that the conclusions of plans represent the motivations of the agent’s ac-
tions, in contrast with the action theory, which represents all the consequences of the 
agent’s actions. For example, here the action theory may include clauses specifying 
other consequences of purchase(Gift, Store), for example that the agent’s financial 
resources will be reduced by the amount of the Gift.  

Thus the planning clauses, together with the macro-action definitions implement 
planning from second principles, using pre-compiled plan schemata. However, plan-
ning clauses can also be used to implement planning from first principles, by includ-
ing a planning clause of the form:  

   p ←init-conditions: pre-conditions1: q1: ….: pre-conditionsn: qn: a 
for every set of clauses  

  initiates(a, p) ← init-conditions 
   precondition(a, q1) ← pre-conditions1 
   …. 
   precondition(a, qn) ← pre-conditionsn 

where the qi are all the preconditions of a.  
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Whether the planning clauses are used for planning from first principles or plan-
ning from second principles, they share with classical planning the repeated reduction 
of fluent goals to fluent and action sub-goals. Because LPS is neutral with respect to 
search and action selection strategies, different strategies for interleaving planning 
and execution can be implemented. At one extreme, as in classical planning, plans can 
be fully generated before they are executed. At the other extreme, actions can be exe-
cuted as soon as they are generated in a partial plan. 

We now define the LPS language formally. 

4   LPS Language – Formal Description 

The vocabulary of LPS is divided into fluent, action, and auxiliary predicates. The 
fluent predicates consist of extensional and intentional predicates. The action predi-
cates consist of atomic, macro-actions, and observations of external events, in the sets 
A, M and Ob respectively. The auxiliary predicates consist of “ordinary” stateless 
predicates and the predicates initiates, terminates, precondition in the action theory. 
All these sets of predicates are mutually exclusive. 

The LPS framework presented in this paper employs a stateless surface syntax, 
which is syntactic sugar for an underlying internal syntax with explicit state argu-
ments (which specify the semantics of the surface syntax). We use the internal syntax 
when describing the operational and the model-theoretic semantics later in the paper. 
Now we describe both the surface syntax and its semantics.   

The surface syntax of all LPS components is defined in terms of sequences of 
predicates, where consecutive predicates are linked by : or ;. The syntax of sequences 
is defined recursively. We take the base case to be the empty sequence, which is also 
the empty clause, and we write it as true. If P is a predicate and S is a sequence, then 
P:S and P;S are sequences. 

Below, where it is clear from the context, we use the terminology (fluent, stateless, 
atomic action, macro-action, event, extensional, intentional) predicate to mean an 
atom with such a predicate. The initial goal G0 is a set of goal clauses, each of which 
is a sequence with no events. Other goals Gi, derived in the LPS cycle are sets of 
clauses expressed in the internal syntax with state arguments. They do not appear in 
the surface syntax.  

In the internal syntax, goal clauses are conjunctions of atoms, and the goals Gi rep-
resent disjunctions of goal clauses. These goals have a search tree structure, which is 
not apparent in the set representation. As in normal logic programming, other repre-
sentations, including search tree and and-or tree representations are possible. For sim-
plicity, we do not explore these other representations in this paper. 

 

 Lstateless clauses have the form:    P ← P1:P2:… :Pn, 0≤n, where P and each Pi are 
stateless predicates.  

 Lram clauses have the form:    P ← P1:P2:… :Pn, 1≤n,  where P is an intensional 
predicate, each Pi is a fluent or stateless predicate and at least one Pi is a fluent.  

 Lmacro  clauses have the form: M ← S, where M is a macro-action predicate and S is 
a sequence containing at least one fluent or action predicate, and no event.  

 Lplan clauses have the form: P ← S where P is an extensional predicate, and S is a 
sequence containing no event, and ending in an atomic action. 
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 P reactive rules have the form: [Evt1∧ Evt2∧ …∧ Evtn∧ A]: Q1:Q2:… :Qm → S  
where S is a non-empty sequence, containing no event, and each Qi is a fluent, or 
stateless predicate, A is an atomic action, and each Evti is an event. All Evti and A may 
be absent, in which case 1 ≤ m, otherwise 0 ≤ m.  

 A clauses have the forms : initiates(a, p) ← P1:P2:… :Pn  
   terminates(a, p) ← P1:P2:… :Pn  
   precondition(a, q) ← P1:P2:… :Pn  

where each Pi is a fluent or stateless predicate, and 0≤n. 
The semantics of each formula F of LPS, including predicates, goals, rules, clauses 

and sequences, is denoted by F*. Either F is a stateless predicate, or F* can be written 
in the form F*(T1, T2), where T1 and T2 are as explained below. The semantics of an 
atomic formula P is given by: 

true is a stateless predicate, true* is true. 
If P is a stateless predicate, then P* also written P*(T)  is P. 
If P is a fluent, then P* also written P*(T, T) is P(T). 
If P is an atomic action or an event  
then P* also written P*(T, T+1) is P(T, T+1). 
If P is a macro-action, then P* also written P*(T1, T2) is P(T1, T2). 

Sequences have a similar semantics to predicates, either as stateless sequences or with 
two state arguments, which can be identical. The semantics of sequences is defined 
recursively, with the empty sequence having the semantics true. 

Let P be a predicate and S a sequence, with semantics P* and S* respectively. 
  Let F be P:S, where neither P nor S is stateless. 

Then F*(T1, S2) is P*(T1, T2) ∧ S*(S1, S2) ∧ T2 = S1. 
Let F be P;S where neither P nor S is stateless. 
Then F*(T1, S2) is P*(T1, T2) ∧ S*(S1, S2) ∧ T2 ≤ S1. 
Let F be P:S or P;S. Then: 
If both P and S are stateless, then  F* is P*∧ S* and stateless.  
If P is stateless and S is not, then F*(T1, T2) is P* ∧ S*(T1, T2). 
If S is stateless and P is not, then F*(T1, T2) is P*(T1, T2) ∧ S*. 

The semantics of the initial goal G0 is the semantics of its sequences. All the variables 
in G0 (and subsequent Gi) are existentially quantified. 

The semantics of Lram clauses    P ← P1:P2:… :Pn is   P(T) ← P1(T)∧P2(T)∧…∧Pn(T). 
The semantics of Lmacro  clauses M ← S is    M(T1, T2) ← S*(T1, T2). 
The semantics of Lplan clauses   P ← S is  P(T2) ← S*(T1, T2). 

Note that these clauses do not contain any analogue of the frame axiom(s) in the situa-
tion calculus. Persistence (or inertia), which is formalised by frame axioms, is ob-
tained in LPS implicitly through the maintenance of the current state of the database, 
without the computational overheads of reasoning with frame axioms.  

 
 



 An Agent Language with Destructive Assignment and Model-Theoretic Semantics 211 

 

The semantics of reactive rules [Evt1∧ Ev2∧ …∧ Evtn∧ A]: Q1:Q2:… :Qm → S is 

 [Evt1(T-1, T) ∧... ∧ Evtn(T-1, T) ∧ A(T-1, T)] ∧ Q1(T) ∧ Q2(T) ∧…∧ Qm(T) → S*  
if S is stateless, and [Evt1(T-1, T) ∧... ∧ Evtn(T-1, T) ∧ A(T-1, T)] ∧ Q1(T) ∧ Q2(T) 
∧…∧ Qm(T) → S*(T1, T2) ∧ T ≤ T1 otherwise. 

The conditions of reactive rules do not contain macro-actions, because the sequence 
of states from T1 to T2 associated with the semantics M(T1, T2) of a macro-action M is 
generally not accessible in the current state T of the database. 

The semantics of A clauses: 

initiates(a, p) ← P1: P2: …: Pn is initiates(a, p, T) ← P1(T) ∧ P2(T) ∧…∧ Pn(T) 
terminates(a, p) ← P1: P2: …: Pn is terminates(a, p, T) ← P1(T) ∧ P2(T) ∧…∧ Pn(T) 
precondition(a, q) ← P1: P2: …: Pn is precondition(a, q, T)←P1(T) ∧ P2(T) ∧...∧ Pn(T) 

Finally if S is a set of formulas then S* is the set of all F* for F in S. 
Note that these syntax and semantics impose the restriction that no two actions 

(whether from A or M) have the same pair of state arguments. This is because, for 
simplicity, the LPS operational semantics executes at most a single action in each 
cycle/state. Because the operational and model-theoretic semantics of LPS are both 
defined for the internal semantics, it is possible to define other surface syntaxes and to 
mix state-based and stateless syntaxes. The syntax chosen for this paper can be ex-
tended in several ways, but has the advantage of simplicity.  

5    The Operational Semantics 

The operational semantics manipulates the database by adding and deleting exten-
sional predicates. However, the model-theoretic semantics interprets the facts in state 
Wi as containing the implicit state argument i. We use the notation W*i  when we need 
to refer to facts containing explicit state arguments:     W*i = {p(i) : p ∈ Wi}.    

Actions and events update the database from one state to the next, as specified in 
the LPS cycle below. However, for the execution of an action a to be attempted all of 
its preconditions must hold in the current state of the database Wi.  

Definition 2. An action a is executable in state Wi if and only if for every precondi-
tion(a, q, i) that holds in W*i ∪  A* ∪  Lram* ∪  Lstateless ,   

q holds in W*i ∪ Lram* ∪  Lstateless .                                                                            

In the LPS cycle, when an action is chosen for execution, all of its arguments (other 
than state arguments) need to be variable-free (a safety requirement). In addition, the 
selection function and search strategy need to be timely, as defined below.                  

Definition 3. A selection function is safe if and only if, when it selects an action, the 
action is ground (except possibly for state variables). A selection function is timely if 
and only if, when it selects an action a(t, t+1) in a goal clause C, then C contains no 
other atom which is earlier in the same sequence in C. A search strategy is timely if 
and only if, when it resolves an extensional atom in a goal clause C with the database, 
then C contains no other atom which is earlier in the same sequence in C.                   
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Note that the selection function is not restricted to selecting predicates in the sequence 
in which they are written. Predicates can be selected and resolved, so that planning 
and execution are interleaved. However, to ensure the existence of safe selection 
functions, LPS frameworks need to be range-restricted. We define range-restriction 
after the LPS cycle.  

The operational semantics is a potentially non-terminating cycle in which the agent 
repeatedly observes events in the environment, updates the database to reflect the 
changes brought about by those events, performs a bounded number of inferences, 
and selects an action to execute. If there is no such action that can be executed within 
the bound or if the action is attempted and fails, then an empty action is generated. 
Similarly, if there is no observation available at the beginning of a cycle then the set 
of observations is empty.  

The internal syntax of LPS clauses and rules includes inequalities (≤) between 
states. For the model-theoretic semantics we need a theory Ltemp that defines the ine-
quality relation. However, this theory is not needed for the operational semantics, 
because timeliness and range-restriction ensure that if all other goals in a goal clause 
succeed, then all the inequalities in the goal clause are also true. So for implementa-
tion purposes we can assume the inequalities are deleted from the clauses and  
rules. This is equivalent to resolving inequalities with clauses in Ltemp, which always 
succeeds. 

Definition 4. LPS cycle: Let Max be a bound on the number of resolution steps to be 
performed in each iteration of cycle. Given a range-restricted LPS framework <W0 , 
G0,  A,  P, Lram, Lstateless, Lmacro , Lplan >, a safe and timely selection function s, a timely 
search strategy ∑, and a sequence of sets of observations Ob0, Ob1,…., the LPS cycle 
determines a sequence of state transitions <W0, G0>, (Ob0, a0), …, <Wi, Gi>, (Obi, 
ai)…where for all i,  0 ≤ i , Obi,  ai  and <Wi+1, Gi+1> are obtained from Obi-1, ai-1  and 
<Wi, Gi> by the following steps: 

 
LPS0. Let Obi be the set of observations made in this round of cycle. Wi is updated to 

WOi as follows:  WOi = (Wi  – {p: a∈ Obi and  terminates(a, p, i) holds in W*i ∪  
A* ∪  Lram* ∪  Lstateless }) ∪ {p: a∈ Obi and  initiates(a, p, i)  holds in W*i ∪  A* ∪  
Lram* ∪  Lstateless}.     
 

LPS1. For every instance condition σ→ conclusion σ of a rule in P* such that condi-
tion σ holds in WOi*  ∪ {ai-1*} ∪ Obi-1

* ∪Lram* ∪  Lstateless, add conclusion σ to 
every clause in Gi. Let GPi

  be the resulting set of goal clauses.     
 
LPS2. Using the selection function s and search strategy ∑, let GPLi  be a set of goal 

clauses, starting from GPi, derivable by SLD-resolution using the clauses in 
WOi*∪  Lram* ∪ Lplan* ∪ Lmacro* ∪ Lstateless  such that one of the following holds: 

   
 LPS2.1 No goal clause containing an executable action is generated within the 

maximum number, Max, of resolution steps. This includes the case of an empty 
clause being generated. Then Gi+1 = GPLi , Wi+1  = WOi, and ai is the empty action 
φ (an action that will always succeed, but has no effect on the database). Cycle will 
proceed into further rounds because further observations are possible. (An agent 
cycle must be perpetual; it never stops, because there can always be observations.) 
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 LPS2.2  At least one goal clause whose selected literal is an executable action is 
generated within the maximum number, Max,  of resolution steps.  

 

LPS2.2.1 Then one such action a(T,T+1) in a goal clause C in GPLi  is chosen for 
execution by the search strategy ∑. Note that a(T, T+1)  might have been gener-
ated and selected in an earlier cycle, but not have been executable before. More-
over, even if it was selected and executable before, the search strategy might have 
chosen some other action. Moreover, it might have been executed and failed. It 
might even have been executed before and succeeded, but might need to be exe-
cuted again, because later goals, dependent upon it, have failed. Note T can be a 
constant = i or a variable. 

 

LPS2.2.2 The action a(T,T+1) is executed. If the action fails, then Gi+1 = GPLi , 
Wi+1  = WOi, and ai is the empty action φ. If the action succeeds, then ai is a(i, i+1). 
Gi+1 = GPLi ∪  C’, where C’ is the resolvent of C with a(i, i+1).  
Wi+1 = (WOi  – delete(a)) ∪ add(a) where 
delete(a) = {p: terminates(a, p, i) holds in WO*i ∪  A* ∪  Lram* ∪  Lstateless }  
add(a)    = {p: initiates(a, p, i)    holds in   WO*i ∪  A* ∪  Lram* ∪  Lstateless }.        

 
The LPS cycle is an operational semantics, not an efficient proof procedure. However, 
there are many refinements that would make it more efficient. These include the dele-
tion of subsumed clauses (including all other goal clauses, once the empty goal clause 
has been generated), as well as the deletion of clauses containing fluents or actions 
whose state argument is instantiated to a state earlier than the current state. 

Definition 5. The cycle succeeds in state n if and only if Gn contains an empty clause 
and  GPn

 =Gn.                                                                                                                    

Definition 6. An LPS framework <W0, G0,  A,  P, Lram, Lstateless, Lmacro, Lplan> is 
range-restricted if and only if all rules in P and all clauses in A, Lram, Lstateless, Lmacro, 
Lplan and G0 are range-restricted, where: 

A sequence S is range-restricted if and only if every variable in an atomic action in 
S occurs earlier in the sequence. 

A clause conclusion ← conditions in Lram, Lstateless, Lmacro , Lplan is range-restricted 
if and only if conditions is range-restricted and every variable in conclusion occurs in 
conditions. 

A clause conclusion ← conditions in A, where conclusion is initiates(a, p), termi-
nates(a, p), or precondition(a, p), is range-restricted if and only if every variable in p 
occurs either in conditions or in a. 

A rule condition → conclusion in P is range-restricted if and only if every variable 
occurring in an atomic action a in conclusion, occurs either in the condition or in an 
atom earlier than a in the conclusion.                                                                               

6   Model-Theoretic Semantics 

The model-theoretic semantics requires a Horn clause definition Ltemp of the inequal-
ity relations. Any correct definition will serve the purpose including, for example: 

0 ≤ T  S +1 ≤  T +1 ← S ≤  T.  
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Every set Sn of sentences W0* ∪ …∪ Wn* ∪ {a0*, …, an-1*}∪ Ob0
* ∪…∪ Obn-1

* ∪ 
Lstateless ∪  Lram* ∪ Ltemp ∪ Lmacro*  is a Horn clause logic program. Therefore, Sn has a 
unique minimal model Mn. This model is like a Kripke structure of possible worlds 
Mi

 = Wi ∪ Lstateless ∪  Lram embedded in a single model Mn, where the actions and 
observations {(Ob0, a0), …, (Obn-1, an-1)} determine the transition relation from one 
possible world to another. 

6.1   Soundness 

To prove the soundness of the LPS cycle, Lplan needs to be compatible with the action 
theory A. Compatibility ensures that the clauses in Lplan* are true in all Mn. 
 
Definition 7. Lplan is compatible with A if for every clause in Lplan of the form  p ← S 
there exists an instance of a clause in A of the form initiates(a, p) ← P1: P2: …: Pn 

such that S* ∪ Lstateless ∪  Lram* ∪ Ltemp    entails    (P1: P2: …: Pn)*.                                  
                        

It is easy to satisfy this condition, and all the examples in this paper, if done in full 
will have this property. Note that we can plan to achieve intentional atoms by combin-
ing such clauses in Lplan with clauses in Lram  and Lmacro. 

Theorem. Given a range-restricted LPS framework <W0 , G0,  A,  P, Lram, Lstateless, 
Lmacro, Lplan>, a safe and timely selection function s, a timely search strategy ∑, and a 
sequence of sets of observations Ob0, Ob1,…., Obn-1, if Lplan is compatible with A and 
the cycle succeeds in state n, then some clause C0 in G0* is true in Mn and all the rules 
in P* are true in Mn.   

Sketch of proof: If the cycle succeeds in state n, then Gn contains the empty clause. 
The proof of this empty clause can be traced backwards to a sequence of clauses, 
starting with some C0 in G0* : C0 ,…,Ci, ….,Cm = true, where Ci+1 is obtained from Ci 

in one of two ways: 

1. In LPS1, Ci+1 is Ci conjoined with conclusion σ for every instance  
condition σ→ conclusion σ of a rule in P* such that condition σ holds in 
WOi*  ∪ {ai-1*} ∪ Obi-1

* ∪ Lram* ∪  Lstateless. 
2. Ci+1 is obtained by SLD-resolution between Ci  and some clause C  in 

WOi*∪  Lram* ∪ Lplan* ∪ Lmacro* ∪ Lstateless  in LPS2, by resolution with aj* 
in LPS2.2.2, or by implicit resolution of inequalities with clauses in  Ltemp.   

It suffices to prove the lemma: All the Ci are true in Mn. The lemma implies that C0 is 
true in Mn. Together with the condition GPn

 =Gn, the lemma also implies that all the 
rules in P* are true in Mn.  

 
Proof of lemma: The lemma follows by induction, by showing the base case Cm = 
true is true in Mn and the induction step if Ci+1 is true in Mn, then Ci is true in Mn. The 
base case is trivial. For the induction step, there are two cases: In case 1 above, if Ci+1 
is true in Mn, then Ci is true in Mn, because if a conjunction is true then so are all of its 
conjuncts. 
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In case 2 above, the clauses Ci+1 and Ci are actually the negations of clauses in or-
dinary resolution. So, according to the soundness of ordinary resolution, ¬Ci+1 is a 
logical consequence of ¬Ci and C. Therefore, if both C and Ci+1 are true in Mn, then 
Ci is true in M. But any clause C in WOi*  ∪ {ai-1*} ∪  Lram* ∪ Lmacro* ∪ Lstateless ∪  
Ltemp is true in Mn by the definition of Mn. It suffices to show that all clauses in Lplan* 
are also true in Mn. But this follows from the compatibility of Lplan with A.         

   
This theorem is restrictive in two ways. First, it considers only the first n sets of ob-
servations. Second, it considers only the case in which the actions needed to solve all 
the goals in G0 and introduced by the reaction rules are successfully executed by state 
n. Both of these restrictions can be liberalised, mainly at the expense of complicating 
the statement of the theorem, but the proofs are similar. We omit the theorems and 
their proofs for lack of space. However, it is worth noting that to deal with potentially 
non-terminating sets of observations, we need minimal models M∞ determined by the 
potentially infinite Horn clause program W0* ∪ …∪ Wn* ∪ …{a0*, …, an*,…}∪ Ob0

* 
∪…∪ Obn

*∪… Lstateless ∪  Lram* ∪ Ltemp ∪ Lmacro*. 
Note also that LPS can be extended to include negation in both the conditions and 

conclusions of reaction rules and in the conditions of clauses. The most obvious such 
extension is to the case of locally stratified programs with their perfect models. 

6.2   Completeness 

Because of the completeness result for the IFF proof procedure [8] for ALP, it might 
be expected that a similar completeness result would hold for LPS: Given a minimal 
model M of some clause C0 in G0 and of all the rules in P, it might be hoped that there 
would exist some search strategy ∑ that together with the LPS cycle could generate 
some related model M’, possibly determined by a subsequence of the actions of M. 
Unfortunately this is not always possible. The LPS cycle will not generate models that 
make rules true by making their conditions false. For example: 

 P: q → a  A: terminates(b, q) W0 : {q} 

Here a and b are actions. There is a minimal model corresponding to the sequence  
of actions b, a, but the LPS cycle can only generate the non-terminating sequence  
a, a, …  

This problem can be dealt with in the manner of the IFF proof procedure, by re-
placing every reactive rule of the form p : q → a with  rules of the form  p: q → a ∨ 
b∨ c, where b and c are atomic actions such that terminates(b, q) and terminates(c, p). 
We do not consider completeness further here for lack of space.  

6.3   Relationship with the Situation Calculus and Event Calculus 

The minimal model M generated by LPS is both like a modal possible worlds seman-
tic structure and like a minimal model of the situation calculus represented as a logic 
program. Ignoring observations and simplifying the situation calculus representation, 
the frame axioms have the form: 

 
  P(T+1) ← P(T) ∧ A(T, T+1) ∧ ¬ terminates(A, P, T) 
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for every extensional predicate P. In LPS, these axioms are true in M, but are not used 
to generate M. Instead of reasoning explicitly that most fluents P that hold in state T 
continue to hold in T+1, destructive assignment is used to update only those fluents 
explicitly affected by A. 

The use of destructive assignment, as in LPS, to implement the frame axiom, can 
be exploited for other applications, such as planning, provided only one state is ex-
plored at a time. In particular, for classical planning applications, the LPS approach 
can be generalised to store the complete history of actions and events leading up to a 
current database state. The database can be rolled back to reproduce previous states, 
and rolled forward to generate alternative databases states. However, these possibili-
ties are topics of research for the future. 

7   Related and Future Work 

LPS provides an agent framework that combines a model-theoretic semantics with a 
state-free syntax and a database maintained by destructive assignment. To the best of 
our knowledge, this combination is novel. Most agent frameworks have an opera-
tional semantics, but no declarative semantics. Some logic-based frameworks like 
Golog, ALP agents and KGP [10] have a model-theoretic semantics, but represent the 
environment using time or state and manipulate the representation using the situation 
or event calculus. Metatem [6], on the other hand, is a logic-based agent language 
with a Kripke semantics for modal logic sentences resembling production rules. Be-
cause of the Kripke-like semantics of LPS, it would be interesting to explore a similar 
modal syntax for LPS. 

Costantini and Tocchio [3] also employ a logic programming approach with a simi-
lar model-theoretic semantics, in which external and internal events transform an  
initial agent program into a sequence of agent programs. The semantics of this evolu-
tionary sequence is given by the associated sequence of models of the sequence of 
programs. In LPS, this sequence is represented by a single model. 

FLUX [15] is a logic programming agent language with several features similar to 
LPS, including the use of destructive assignment to update states. In FLUX, these 
states are not stored in a database as in LPS, but in a reified, list-like structure. FLUX 
employs a sensing and acting cycle, which it uses to plan and execute plans for 
achievement goals.  

Thielscher [17] provides a declarative semantics for AgentSpeak by defining its 
cycle and procedures by means of a meta-interpreter represented as a logic program. 
Like LPS, the resulting agent language incorporates a formal action theory. However, 
unlike LPS, the language does not distinguish between different kinds of procedures, 
according to their different functionalities. LPS, in contrast, distinguishes between 
reactive rules, planning rules, macro-actions and ramifications, representing different 
kinds of AgentSpeak-like procedures in different ways. On the other hand, the agent 
architecture of Hayashi et al. [18] separates the representation of reactive rules and 
planning rules, as in LPS. 

There is also related work, combining destructive assignment and model-theoretic 
semantics in other fields, not directly associated with agent programming languages. 
EVOLP [1], in particular, gives a model-theoretic semantics to evolving logic pro-
grams that change state destructively over the course of their execution. Several other 
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authors, including [7, 16] obtain a model-theoretic semantics for event-condition-
action rules in active database systems, by translating such rules into logic programs 
with their associated model theory.  

Perhaps the system closest to LPS is Transaction Logic [2], which gives a Kripke-
like semantics for transactions (which are similar to macro-actions), represented in a 
state-free syntax. TR Logic also gives a semantics to reactive rules, which involves 
translating them into transactions. In LPS, the Kripke-like semantics is transformed 
into a single situation-calculus-like model, in the spirit of Golog. This transformation 
makes it possible to apply the general-purpose semantics of ALP to the resulting 
minimal model. In contrast, the semantics of TR Logic and Golog are defined specifi-
cally for those languages. 

Because LPS is based on the ALP agent model and the ALP model is more power-
ful than LPS, it would be interesting to extend LPS with some additional ALP agent 
features. These features include: partially ordered plans, more complex constraints on 
when actions should be performed and when fluent goals should be achieved, concur-
rent actions, conditionals in the conditions of clauses, active observations, a historical 
database of past actions and observations, abduction to explain observations that are 
fluents rather than events, and integrity constraints that prohibit actions rather than 
generate actions. 

It would also be useful to study more closely the relationship between LPS and 
other agent models with a view to using the LPS approach to provide those languages 
with model-theoretic semantics. In addition, because the LPS cycle can be viewed as 
a model generator, which makes the reactive rules true, it would be valuable to ex-
plore the relationship with model checking and model generation in other branches of 
computing.  

In this paper we have focused on the theoretical framework of LPS. However,  
the ultimate test of the framework is its value as a practical agent language. For  
this purpose, we are developing further enhancements and are experimenting with an 
implementation. 
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Model Checking Agent Programs
by Using the Program Interpreter
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Abstract. Model checking agent programs is a challenge and it is still
a question which approaches can suitably be applied to effectively model
check such programs. We present a new approach to explicit-state, on-
the-fly model checking for agent programs. In this approach we use the
agent program interpreter for generating the state space. A model checker
is built on top of this interpreter by implementing efficient transforma-
tions of temporal properties to Büchi automata and an efficient book-
keeping mechanism that maintains track of states that have been visited.
The proposed approach is generic and can be applied to different agent
programming frameworks. We evaluate this approach to model checking
by comparing it empirically with an approach based on the Maude model
checker, and one based on the Agent Infrastructure Layer (AIL) interme-
diate language in combination with JPF. It turns out that although our
approach does not use state-space reduction techniques, it shows signif-
icantly improved performance over these approaches. To the best of our
knowledge, no such comparisons of approaches to model checking agent
programs have been done before.

1 Introduction

Various approaches have been used for model checking agent systems (see, e.g.,
[1,2,3,4,5,6,7,8]). In this paper, we focus on explicit-state on-the-fly model check-
ing for agent programming languages. Current state-of-the-art approaches for
model checking agent programs are based on the use of existing model checkers.
In particular, in [8] and [1] agent programs written in Mable and AgentSpeak(F),
respectively, are translated to Promela and verified with SPIN [9]. In the Agent
Infrastructure Layer (AIL) project [10] a Java-based framework to which various
APLs can be translated is used, in combination with the Java model checker Java
Path Finder (JPF) [11]; the model checker is called AJPF. The definition of this
translation needs to be specified only once for each AIL interpreted language.
Moreover, in [7], an implementation of (a simplified version of) 3APL is pre-
sented in the Maude term rewriting language [12]. This enables model checking
of 3APL programs with the Maude model checker (MMC) [13]. A possible advan-
tage of such approaches is that built-in optimizations and state space reduction
techniques of the existing model checker may be reused for the verification of
agent programs.
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In this paper, we propose a new approach in which a model checker is built
from scratch on top of the interpreter of an agent programming language. Al-
though any model checker needs to rely on an implementation of the semantics
of agent programs, our approach differs from others in the sense that it relies
on an explicit but abstract interface to an agent program interpreter and evalu-
ation of agent specific conditions are delegated to a standard interpreter for the
language whereas temporal properties are handled by well-known techniques for
LTL model checking (see also the architecture in Figure 1 below).1 We have
chosen the agent programming language Goal [14] as our target language. One
reason for choosing Goal is that the operational semantics of Goal has been
implented in Maude, enabling the use of the MMC for Goal, and a transla-
tion has been defined to AIL. This facilitates comparison between our approach
and other approaches. To the best of our knowledge, no such comparisons of ap-
proaches to model checking agent programs have been done before. In this paper,
we present an empirical evaluation of these approaches. It turns out that even
though our approach does not use state-space reduction techniques, it shows
significantly improved performance over these other approaches.

The contribution of this paper is thus twofold: we provide a new approach
to model checking agent programs, and a comparison that provides insight into
aspects that influence performance when using existing model checkers to model
check agent programs.

The rest of the paper is organized as follows. Section 2 introduces some pre-
liminaries. In Section 3, we introduce a new approach to model checking that is
based on using the interpreter for an agent programming language itself during
the verification of an agent program. We have implemented an interpreter-based
model checker for the language Goal, and briefly discuss the associated language
for specifying properties. Section 4 presents a number of experiments and the
results of a comparison between available approaches for model checking Goal

agents. Section 5 discusses our findings. The paper is concluded in Section 6.

2 Preliminaries

In this section, we briefly explain model checking, the Goal language, and its
property specification language.

Given a model of a system, model checking tests automatically whether this
model satisfies a given property (see, for example, [15]). Properties are often
specified in a temporal logic such as LTL [16], as we do in this work. A model
of a program (consisting of all its possible computations) satisfies an LTL prop-
erty ϕ if all computations satisfy the property. The model checking algorithm

1 The model checker JPF used in an alternative model checking approach discussed
in this paper is not built on top of the standard JVM in this sense but relies on a
dedicated JVM developed for JPF. Most other model checking approaches require a
translation to a specific language supported by the model checker (such as Maude).
Our approach does not require such a translation.



Model Checking Agent Programs by Using the Program Interpreter 221

searches for a counterexample, i.e. a computation on which ¬ϕ is true; if such a
computation cannot be found, the model satisfies the property ϕ.

A Goal agent decides which action to perform next based on its beliefs and
goals. The beliefs (collectively called the belief base) typically represent the cur-
rent state of the agent’s environment. The Goal interpreter also offers the pos-
sibility to specify knowledge, which is general knowledge about the environment
that is typically static. In the interpreter for Goal, both knowledge base and
belief base are Prolog programs. A decision to act will usually also depend on the
goals of the agent. Goals of an agent are stored in a goal base. The goal base con-
sists of conjunctions of Prolog atoms. Together, the beliefs and goals make up an
agent’s mental state. To make decisions, a Goal agent uses so-called action rules
which consist of a mental state condition used to inspect the agent’s beliefs and
goals, and an action that may be executed if the mental state condition holds.
Actions include constructs for changing the agents’ beliefs as well as goals; as
we focus here on single agents communication primitives are not allowed. Action
rules can be combined into so-called modules to provide additional structure to
an agent program. To be precise, mental state conditions φ are built from mental
atoms Bψ and Gψ as follows:

χ ::= first-order atoms
ψ ::= χ | ¬χ | χ ∧ χ
φ ::= Bψ | Gψ | ¬φ | φ ∧ φ

Informally, Bψ is true if ψ follows from the belief base of the agent, and Gψ
is true if ψ follows from the goal base. For example, we have G(p) in a mental
state with goal base Γ = {p ∧ q}; due to space limitations, we cannot provide
all the details here but refer the reader to [17] and remark that G refers to
the primitive goal operator discussed in detail in [17]. A Goal computation
t = m0, a0, m1, a1, · · · is an infinite sequence of mental states mi and actions ai

such that execution of ai in mi brings about mi+1, and m0 is the initial mental
state. The meaning of a Goal program is defined as the set of all its possible
computations. More details about the program constructs the Goal language
supports and are supported by the model checker as well can be found in [17].

Although the model checking approach presented in this paper is able to
handle programs with all features mentioned above, not all of these features could
be used in the comparative experiments presented in this paper since various of
these features are not supported by the translation of Goal to AIL, nor by the
implementation of the Goal semantics in Maude. We recognize that in principle
it is possible to extend the model checking approaches based on AIL and Maude
to include these features. In this paper, however, we focus in particular on the
performance of these approaches for the core subset of Goal that is supported
by all three of approaches discussed here. The basic assumption here is that if
for a subset of the Goal language we can already show significant performance
differences, then it is unlikely that extensions to the full Goal language will
perform much better.

A simple Goal program for solving a blocks world [18] tower building problem
is given in Table 1. Blocks are represented using the predicate block(X), the fact
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that a block X is stacked on another block Y is represented as on(X,Y), and the
fact that there is no block on top of a block X is represented as clear(X). This
program assumes a single tower of blocks labelled as aa,ab,ac etc. and stacked
in this order where aa is the bottom block. The agent moves all blocks to the
table, i.e., when block ab is moved to the table, the tower has been unstacked.
For this reason, the agent has the goal of having ab on the table.2

main: agent {
beliefs {

block(aa). block(ab). block(ac). block(ad). block(ae).
on(aa,table). on(ab,aa). on(ac,ab). on(ad,ac). clear(ad).
on(ae,table). clear(ae).

}
goals { on(ab,table). }
program {

if goal(on(ab,table)), bel(on(X,Y)), bel(clear(X))
then moveXfromYtoTable(X,Y) .

}
action-spec {

moveXfromYtoTable(X,Y) {
pre { block(X) }
post { not(on(X,Y)), on(X,table), clear(Y) }

}
}

}

Table 1. Simple Goal program for the blocks world

The language used here to specify properties of a Goal program is LTL,
where the propositional atoms are mental atoms defined above.

3 An Interpreter-Based Model Checker

Figure 1 provides a graphical representation of an architecture for an interpreter-
based model checker (IMC). The IMC architecture consists of two main com-
ponents. The first component translates the negation of an LTL formula from
the property language to a Büchi automaton, thus representing the property
state space. (Recall that mental atoms are treated as propositional atoms in
this component.) The formula translator that has been implemented is based on
the LTL2AUT algorithm of [19]. The second component evaluates the property
by means of a search of the product state space. The product state space is
the product of the property state space and the program state space. The com-
ponent implements the generalized nested depth-first search algorithm of [20],
an on-the-fly exploration algorithm. This means that only parts of the product
state space that are needed are actually generated. The program state space is
obtained by means of the agent program interpreter which explains why we have
labeled our approach interpreter-based.
2 In Goal, a conjunctive goal may be used to express that a set of blocks should be

on the table, but the AIL translation does not allow the use of conjunctive goals.
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Fig. 1. Architecture of an Interpreter-Based Model Checker

We have created a model checker for the agent language Goal by plugging in
the interpreter of Goal and using the mental atoms of the Goal language as
atoms in the property language. This means that the mental state condition eval-
uation is delegated to the interpreter for the agent language itself and handled
by the query evaluator that is part of the agent interpreter whereas temporal
properties are represented by a Büchi automaton (see also Figure 1). In a similar
way IMCs for other agent languages can be obtained by plugging in an inter-
preter for those languages and instantiating the atoms of the property language
accordingly. For example, as Jason uses the construct ? for inspecting an agent’s
beliefs and ! for inspecting an agent’s event base, these operators could be used
instead of the B and G operators that are part of Goal (or similar mappings as
those proposed in [1] as long as the interpreter provides support to evaluate such
conditions). So, even though the main IMC components have been built from
scratch, this effort is not dedicated to a single agent programming language.

To be able to support various agent languages a well-defined interface is
needed from the IMC to the interpreter of a specific agent language. The in-
terface for any IMC needs to provide support for two types of requests from
the exploration component: requests for supplying successors states (given the
current state and the agent program that is being checked), and requests for eval-
uating mental atoms in the mental state that is currently being examined. Both
requests are handled by invoking existing methods of the interpreter. One advan-
tage of the IMC approach is that the full support offered by the interpreter can
be reused. Existing model checkers for APLs sometimes limit the expressiveness
of the property language: the logic of [3], for example, only allows ground atomic
formulas inside mental literals. In contrast, because the query mechanism of the
Goal interpreter is used, any mental atoms that this interpreter can handle can
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be used as “atoms” in the property language, including conditions that contain
free variables, the use of conjunctions and negations in mental atoms, and the
use of knowledge rules. Another benefit of using an interface as described is that
it only requires support for generating successor states and handling queries, and
the approach abstracts from more specific differences between agent languages
related to the precise set of built-in actions that is supported. The point is that
although specific and concrete actions are needed in agent languages to com-
pute successor states, the model checking approach presented here only needs
to know the successor states but not the manner in which these were generated.
The latter is delegated to the agent interpreter itself.

In addition, it is always possible to refine the IMC interpreter and add specific
optimizations to make the interpreter more efficient. In our current implemen-
tation for Goal we have implemented a translation of mental states to binary
representations in order to more efficiently use memory resources. This represen-
tation of Goal mental states increases the performance of the model checker.
It is more costly to perform frequently used operations such as checking for
equality of states and computing hash codes for states when the mental state
representation that the interpreter manipulates is used instead of the binary
representation. These operations need to be performed to check whether states
have already been visited and to check for cycles in the search. We briefly ex-
plain the details of this representation for Goal. Informally, every bit (having
a unique index) in the binary representation of a mental state corresponds to
a belief or a goal: 1-bits indicate that the corresponding belief or goal is part
of the mental state, whereas 0-bits indicate the opposite. To translate binary
representations of mental states back and forth, we need a bookkeeping mech-
anism that associates each indexed bit with a unique belief or goal. Since it is
infeasible to compute beforehand which beliefs and goals an agent might have
in a computation, assigning indices to beliefs and goals is done during model
checking. This is achieved by dynamically identifying beliefs and goals that have
not occurred so far, and assigning indices incrementally, starting from 0. This
means that at runtime any beliefs or goals that have not occurred so far during
execution are added to a list of beliefs and goals that have occurred so far and
associated with an integer index (the position in the bit string); there thus is no
need to know beforehand which beliefs or goals will occur. The benefit is that
instead of using the explicit representation of beliefs and goals we can now use
bit strings instead to represent mental states in the state space that needs to
be searched. Using bit strings provides two benefits: it reduces memory (space)
requirements but most importantly it reduces time needed to compare states (in
order to check whether a state has already been visited).3

Due to space limitations we are not able to provide all the details here. In
essence, the bit string representation of a mental state is a conversion of a mental
state to a “canonical representation” of that state. The main point here is that

3 Note that as knowledge (rules) are assumed to be static we do not need to represent
these as part of the state space because they never change. Most, if not all, agent
programming languages similar to Goal assume rules to be static.
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if e.g. a belief or goal formula occurs in a mental state the presence of that
formula can be checked at a unique index of the bit string. This means that
whenever the state space exploration algorithm needs to verify that a mental
state has already been visited it does not need to transform visited states into
such a canonical representation first (e.g. by sorting the formulas in that state) in
order to compare it with the new state to be checked. This involves a significant
reduction of time needed to check the visited lists during state space exploration
(which yields a time reduction approximately in the order of N × |m| × log(|m|)
where N denotes the length of the visited list and |m| the average size of a
mental state for each time that a visited check needs to be performed). To give an
indication of the space reduction, we briefly discuss the more specific issue related
to storing ground belief atoms only. Suppose that for explicit representation
of such atoms we would use a string representation. A reasonable measure of
size needed in that case would be the length of that representation, i.e. string
length (in terms of bytes). For the sake of argument, let us assume that we
can approximate space requirements by the average length of such strings and
on average we would need L bytes to store a belief (this is an underestimate
of what is really needed). Moreover, suppose we have N different belief atoms
which may or may not occur in a belief base. This yields 2N possible belief
bases. The average number of beliefs in these belief bases is ΣN

0 k ×
(
N
k

)
divided

by 2N , which equals N/2. Explicit state space representation (using only belief
bases) would thus require N × 2N−1 ×L bytes, or N × 2N × 4×L bits. Instead
the bit string representation would require N × L bytes to represent the list of
belief atoms and N ×2N bits to represent the state space. This is a conservative
estimate of the space reduction, which shows that minimally space requirements
are reduced with a factor 4 × L.

4 Experiments and Results

As we view our approach as only one alternative to others, it is important to
evaluate our approach and compare it with existing alternatives. The key mea-
sure for comparison is performance as model checking of reasonably complex
agent programs is only possible if performance is adequate. Our implementation
of an IMC for Goal enables a comparison between three approaches. The IMC
for Goal can be compared with AJPF (the AIL project model checker) and
the MMC (based on Maude) that both provide a tool to model check Goal

agents. In order to gain a better understanding of the differences between these
approaches we present a number of experiments and corresponding results.

4.1 Experimental Evaluation

Before introducing the experiments that we performed, we first discuss a number
of issues related to evaluating the results of our experiments. One issue concerns
the input that is provided to the model checkers to obtain a fair comparison. A
second issue concerns what it means to say that a model checker scales well. We
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use regression analysis to obtain resource consumption functions (time, space)
that fit the data. A third issue concerns the interpretation of the data obtained
from the experiments.

Semantic Equality of Agents. The experiments are designed to enable a
fair comparison as much as possible. The most important condition for a fair
comparison is that semantically equivalent Goal programs are provided as in-
put to the three different model checkers. Unfortunately, as AJPF and MMC
implement different subsets of Goal, it turned out to be rather complex task to
design experiments. For example, in AJPF, goals must be (negations of) single
terms. As a result, the experimental agents used in the experiments are simple
and are artificial in various respects. IMC is based on Goal’s interpreter and
as such does not pose any restrictions, which illustrates another advantage of
the interpreter-based approach introduced here; although there is no principled
reason to assume other approaches cannot be extended to cover additional lan-
guage features, the approach presented here provides an alternative that is able
to support checking agent programs that use almost any feature supported by
the agent interpreter (see also the discussion of the IMC interface above).

Apart from language support considerations there is a second reason for keep-
ing the experiments simple. We first need to evaluate the performance of the
model checkers for simple cases before providing more complex programs to
check. This has also motivated us to use deterministic agents, i.e. agents that
have only one possible computation, in our experiments. The relevant literature
provides indications that it is already hard to model check simple programs due
to performance reasons and these findings are confirmed by our experiments. We
found that even simple non-deterministic agents were beyond the capabilities of
MMC, and to a lesser extent this also is the case for AJPF. Another reason
for our choices in this regard are that by only considering deterministic agents,
it is easier to draw conclusions about resource consumption during the model
checking of agents.

Scalability. In order to be able to model check reasonably sized agent programs
a model checker needs to be scalable. To avoid confusion, it is important to more
precisely define when a model checker is said to scale well. Though improving
scalability has been an important factor in research on software verification, to
the best of our knowledge, no standards or metrics regarding scalability have
been proposed for model checkers. In order to clarify this notion we introduce
the following definition.

Definition 1 (Scalability and Unscalability). A model checker is said to be
scalable or scale well with regard to certain conditions, if the relation between
those conditions and resource consumption of the model checker can be described
by one of the following functions:

Logarithmic : y = b · log(x) + a
Polynomial (d < 1) : y = b · xd

Linear : y = b · x + a
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A model checker is said to be not scalable or scale poor with regard to certain
conditions, if the relation between those conditions and resource consumption of
the model checker can be described by one of the following functions:

Polynomial (d > 1) : y = b · xd

Exponential : y = b · rx

In these functions, x and y represents, respectively, the conditions and the re-
source consumption, a is called the intercept, b is called the coefficient, d is called
the degree of the polynomial, and r is called the radix..

The intuition behind Definition 1 is that a model checker scales well if the relation
between conditions and consumption is at most linear. The reason for regarding
polynomial relations in degree d > 1 as not scalable is that x is, in general, very
large for real-world model checking problems. In such cases, a quadratic relation
versus a cubic relation can already make the difference between (in)tractability
of a problem. Note that our definition differs from complexity theory, where all
problems that can be solved in polynomial time are deemed tractable.

Regression analysis. To determine the type of relation between experimental
conditions and resource consumption, we will apply regression analysis to analyze
the experimental data. That is, we will fit the functions given in Definition 1
to the measurements using least-squares regression, and assess how good the
fits found are by comparing their R2 values. The fitted function that yields
the highest (i.e. closest to 1) R2 is deemed the relation between conditions and
consumption. The resource consumption of the model checkers is obtained by
measuring two dependent variables: verification time and memory consumption.

The conditions under investigation, in statistics called independent variables,
are the size of the belief base and the size of the state space. The size of the state
space is defined as the total number of mental states that can be encountered on all
computations of the Goal agent. The size of a belief base is defined as the number
of elements it contains (i.e. ground atoms). In the experiments reported on below,
we simply used the model checkers to report the number of states visited.

To study the different effects of both independent variables, the experiments
are organized as follows. In the first experiment, the size of the belief base is
varied, while the size of the state space is kept constant. In the second experi-
ment, the size of the belief base is kept constant, while the size of the state space
is varied. Finally, in the third experiment, both the size of the belief base and
state space are varied.

4.2 Experiments

We now present the three experiments that we have performed (together with
the experimental results).

Experiment 1 (Size of Belief Base). In this first experiment, we investigate
the scalability of the model checkers in the size of the belief base; the size of the
state space is kept constant.
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(a) Experiment 1.

(b) Experiment 2.

(c) Experiment 3.

Fig. 2. Verification times of IMC (continuous line, measurements as �), AJPF (dashed
line, measurements as �), and MMC (dashed-dotted line, measurements as �) in Ex-
periments 1, 2, and 3. Plotted lines are best-fit regression lines. Left figures have a
linear scale on the y-axis, whereas the scale on the y-axis of right figures is logarithmic.
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For this experiment, we have used variants of the agent program of Table 1
with n ∈ {10, 20, 30, 45, 60, 80, 100, 200} blocks, rather than n = 5 as used in
the agent program. Four of the n blocks are initially stacked on each other,
whereas the remaining n − 4 blocks are on the table. For all n, the stacked
blocks are aa, ab, ac, and ad: aa is on the table, ab is on aa, ac is on ab, and
ad is on ac. In the target configuration, all the blocks are on the table. The
property ϕ under investigation is whether the agent eventually brings about the
target configuration. For all values of n, the program state space contains only
four mental states. In contrast, the belief base grows as n increases: it becomes
filled with redundant beliefs. That is, removing these beliefs would not affect the
behaviour of the agent.

The verification times are displayed in Fig. 2a, and the calculated relations are
given in the first column of Table 2a. These results suggest that IMC scales well
to larger belief bases, in contrast to AJPF and MMC. Though the verification
times of the latter two both grow polynomially in the size of the belief base,
the degrees of the fitted functions (shown in Table 2a between brackets) show
that the increase in verification time of MMC is more than cubic, whereas AJPF
remains under quadratic. This difference can also be observed in Fig. 2a, and
supports our decision to classify polynomial relations in degree d > 1 as not
scalable. For n = 200, the absolute difference in performance is the largest: IMC
took 1 second, AJPF took 40 minutes, while MMC took 44 hours.

The memory consumption is displayed in Fig. 3a, and the calculated relations
are given in the first column of Table 2b. One might notice that although the
degrees of the fitted polynomial functions for IMC and AJPF are the same, the
memory requirements of the former are much lower. The reason for this is that
the coefficient b (see Definition 1) for IMC is roughly 2, whereas for AJPF it
is roughly 22. According to Definition 1, all three model checkers scale well to
larger belief bases with respect to memory consumption. Nevertheless, AJPF is
substantially more memory demanding than IMC and MMC.

Experiment 2 (Size of State Space). In this second experiment, we inves-
tigate the scalability of the model checkers in the size of the state space; the
size of the belief base is kept constant. To reduce the effect of the size of the
belief base on the experimental results (the previous experiment showed that
such an effect is definitely present), it should be as small as possible. As these
requirements (small belief base, growing state space) are not easily satisfied by
a Blocks World scenario, we use the following setting.

In this experiment, the agent is a simple counter: it starts at 0, and counts un-
til infinity. There are various ways to implement this behaviour, and we chose an
implementation in which: the belief base is used as little as possible (for reasons
outlined above), and goals are issued very frequently. The reason for issuing
many goals is that goal creation is a relatively slow operation in the current
Goal interpreter. Thus, by issuing many goals, not only do we challenge the
interpreter, but the interpreter-based model checker as well. Note that because
the agent can count until infinity, the state space of the agent is not finite. To
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ensure that the model checking procedure is decidable, the property ϕ must be
verifiable in a finite number of interpretation cycles. One such property is that
the agent eventually believes that its current number is some natural number
n. Hence, the size of the state space is controlled by the value of n in ϕ; in this
experiment, we chose n ∈ {10, 20, 30, 45, 60, 80, 100, 200}.

The verification times are displayed in Fig. 2b, and the calculated relations
are given in the second column of Table 2a. Though we expected MMC to be
the slowest of the three (based on its performance in Experiment 1), AJPF is
in fact ten times slower: the slope of the linear function fitted on the AJPF
measurements is roughly 330, whereas the slope of MMC’s linear fit is only 33.
For n = 200, the difference is the largest: IMC took 3 seconds, AJPF took 72
seconds, and MMC took 7 seconds.

The memory consumption is displayed in Fig. 3b, and the calculated rela-
tions are given in the second column of Table 2b. Similar to Experiment 1, all
reported relations are scalable according to Definition 1, but again, AJPF de-
mands substantially more memory. Also, the relations for IMC and MMC imply
that MMC’s memory consumption grows faster in the size of the state space
than that of IMC. Hence, it is to be expected that for some n > 200, IMC will
consume less memory than MMC. This is not obvious from Fig. 3b.

Experiment 3 (Size of State Space and Belief Base). In the third exper-
iment, we investigate the scalability of the model checkers with respect to both
the size of the belief base and the state space.

To satisfy the desired experimental conditions (growing belief base and state-
space), we adapt the agent of Experiment 2 in such a way that it remembers
all counted numbers. As a consequence, the size of the belief base will increase
linearly in the size of the state space. These beliefs are, like the superfluous
blocks in Experiment 1, redundant. The property under investigation is the same
as in Experiment 2 for the same values of n such that all three model checkers
terminate eventually.

The verification times are displayed in Fig. 2c, and the calculated relations are
given in the third column of Table 2a. IMC is again the fastest of the three model
checkers, and still shows to scale well. In contrast, scalability of AJPF and MMC
drops from linear to exponential and polynomial in degree 2.7, respectively. For
n = 200, the absolute difference in performance is the largest: IMC took 3
seconds, AJPF took 5 minutes, while MMC took over an hours.

The memory consumption is displayed in Fig. 3c, and the calculated relations
are given in the third column of Table 2b. The memory demands are similar
to those in Experiments 2: AJPF performs, though depending linearly on the
experimental conditions (thus, scalable in terms of Definition 1), the least well of
the three model checkers, whereas IMC and MMC perform roughly equal. It is
interesting to see that the intersection point of IMC and MMC for some n > 200,
mentioned when treating the memory consumption of the model checkers in
Experiment 2, is almost within the range of the values of n in Experiment 3.
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(a) Experiment 1.

(b) Experiment 2. (c) Experiment 3.

Fig. 3. Memory consumption of IMC (continuous line, measurements as �), AJPF
(dashed line, measurements as �), and MMC (dashed-dotted line, measurements as �)
in Experiments 1, 2, and 3. Plotted lines are best-fit regression lines.

Summary. Table 2a summarizes the results with respect to verification time.
IMC is the only model checker that scaled well in all three experiments. The
other two model checkers clearly have problems when the size of the belief base
increases. Table 2b summarizes the results with respect to memory consumption.
With only polynomial relations in degree d < 1, IMC has performed best with
regard to memory consumption. Though the measurement for AJPF and MMC
imply scalability as well, Fig. 3 shows that there still are clear differences between
IMC and MMC on the one hand, and AJPF on the other.

Comparison with Normal Execution. In order to distinguish between over-
head caused by the model checker and possible inefficiency caused by the un-
derlying execution mechanism, we have measured resource consumption during
execution (rather than verification) of the agents by the three underlying plat-
forms as well. This can be done because the programs are deterministic, and
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Table 2. Relations between resource consumption and experimental conditions

(a) Verification time. Boldface shows scalability.

Experiment 1 Experiment 2 Experiment 3
Relation R2 Relation R2 Relation R2

IMC Linear 0.9329 Linear 0.9974 Poly (0.75) 0.9722
AJPF Poly (1.7) 0.9706 Linear 0.9829 Exponential 0.9925
MMC Poly (3.3) 0.9958 Linear 0.9985 Poly (2.7) 0.9936

(b) Memory consumption. Boldface shows scalability.

Experiment 1 Experiment 2 Experiment 3
Relation R2 Relation R2 Relation R2

IMC Poly (0.40) 0.8266 Poly (0.59) 0.9109 Poly (0.60) 0.9113
AJPF Poly (0.40) 0.9663 Linear 0.9860 Linear 0.9966
MMC Linear 0.9664 Linear 0.9982 Linear 0.9491

therefore the trace that is model checked coincides with the trace generated by
executing the programs.

In case of the program of Experiment 1, we observed that both AJPF and
MMC introduce substantial overhead with respect to run-time: the largest differ-
ence between execution and verification times, measured for n = 200, amounted
to roughly 37 minutes for AJPF, and over 41 hours for MMC. In contrast, the
difference measured for IMC was only 50 milliseconds. With respect to memory
consumption, less extreme differences were measured: for n = 200, IMC, AJPF
and MMC required, respectively, 10 MB, 125 MB, and 2 MB less than when
model checking.

In case of the program of Experiment 2, we observed that the overhead of
MMC during verification is a lot smaller than in Experiment 1: the largest dif-
ference, measured for n = 200, is only 2 seconds (compared to 41 hours in
Experiment 1). For AJPF, the difference is again large: roughly 70 minutes.
For IMC, the largest difference is still negligible: approximately half a second.
With respect to memory consumption, larger differences were measured than for
Experiment 1: for n = 200, executing the agent took IMC, AJPF, and MMC,
respectively, 24MB, 172MB, and 6MB less than when model checking the agent.

In case of the program of Experiment 3, we observed that the overhead of
AJPF with respect to run-time is, as in the previous experiments, substantial.
For MMC, in contrast to Experiment 2, the overhead is significant as well. For
n = 200, the difference between execution and verification times for IMC, AJPF,
and MMC are 1 second, over 5 minutes, and 24 minutes, respectively. With
respect to memory consumption, again larger differences were measured: for
n = 200, executing the agent took IMC, AJPF, and MMC, respectively, 22 MB,
203 MB, and 16 MB less than when model checking the agent.
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4.3 Wumpus Scenario

In order to illustrate that IMC is able to model check larger agent programs
which give rise to much larger state spaces, we present results about model
checking an agent for the well-known Wumpus World scenario [21]. The primary
motivation for presenting this domain is to show IMC is able to handle more
realistic scenarios. We are not able to present results for this domain for AJPF or
MMC. The main reason is that even for small instances of this domain the state
space already is significantly bigger than those used in the previous experiments,
and by extrapolating the results obtained above it is unlikely to obtain results
for either AJPF or Maude within reasonable time.

Fig. 4. Wumpus World

In the Wumpus World, a single agent is located in a cave that contains pits
which need to be avoided, walls that prevent movement, and a beast called the
Wumpus that as pits will kill the agent if it steps onto it. The cave is a grid
world and locations can be identified by x and y coordinates. Figure 4 illustrates
the environment; A denotes the agent, G represents gold, and W represents the
Wumpus (the grids around the Wumpus are marked so the agent can smell it
is next to the Wumpus; similarly pits are marked by ’breezes’). The goal of the
agent is to locate gold that resides somewhere (at a position initially unknown
to the agent, the environment is partially observable) and after getting the gold
leaving the cave. We can model check this environment as it is a single agent
and deterministic environment which ensures we can always determine a unique
set of successor states for each action that is performed by the agent; for more
details see [21].

The first agent that we verified moves through the cave completely non-
deterministically. It bumps into a wall if a wall blocks its way, and returns
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to a previously visited position if it encounters a stench (indicating that the
Wumpus is close by). We checked a property that specifies that, given this
Wumpus-avoidance-policy of the agent, it can never be at the same position
as the Wumpus: �¬Bposition(33,-11). As the position of the Wumpus is
fixed (at (33,-11)), satisfaction of this property means that at least the agent
will never die. The model checker reports after exploring 57355 states in 6:30
minutes and using 97 MB of memory that the property is true. Another prop-
erty that we would like the agent to satisfy is that it eventually obtains the gold:
♦Bhas(gold). Unfortunately, the model checker reports a (non-minimal) coun-
terexample after exploring 89 states in 2 seconds and using 42 MB of memory: at
some point, the agent enters a loop of turning left, moving forward three steps,
turning left twice, moving forward three steps again, and turning left again. We
can, however, establish that there exists at least one computation on which the
agent does obtain the gold by verifying the property �¬Bhas(gold). The model
checker reports a counterexample in 2:19 minutes and uses 36 MB of memory;
this counterexample corresponds to the computation on which the agent obtains
the gold.

The second agent that we verified is a lot smarter than the first: it maintains a
mental map of the cave by remembering the positions it visited, including a “trail
of breadcrumbs” to find its way outside efficiently, and systematically explores
unknown grounds. This implementation removes the non-determinism from the
agent (making the state space smaller), but because a lot of information must
be stored, the belief base is much larger: it grows linearly as the agent explores
the cave, which has over 1600 different positions. The Wumpus-avoidance-policy
of this agent is the same as that of the first, and the model checker re-confirms
its effectiveness after exploration of 8225 states in 55 seconds using 37 MB of
memory. As a result the agent satisfies ♦Bhas(gold): verification required ex-
ploration of 3877 states, took 48 seconds and required 30 MB of memory.

5 Discussion

The experimental results clearly show that IMC outperforms the other two model
checkers. Also, the results show that especially MMC is unable to deal with the
simple toy examples that were under investigation, particularly with regard to
verification time; to a lesser extent, this is also true for AJPF. With regard
to AJPF, we believe that for a large part, the overhead of JPF is responsible
for the slow verification (as well as for higher memory consumption), because
executing (rather than verifying) the agent is substantially faster: the agent of
Experiment 3 easily counts to 200 within a few seconds, whereas verifying with
AJPF whether this agent actually can count to 200 takes over 5 minutes. Similar
differences were observed in all three experiments. With regard to MMC, the slow
verification is partly ascribed to the rate at which the Maude Goal interpreter
can generate the state space: the agent of Experiment 3 already takes 45 minutes
to count to 200 (when executed). Note, however, that the overhead of Maude’s
built-in model checker can be substantial as well: verifying whether the agent
can actually count to 200 takes 24 more minutes.
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Earlier, we mentioned that model checking non-deterministic agents is infea-
sible with AJPF and MMC: we carried out an additional experiment with IMC
featuring a non-deterministic agent to illustrate this. Consider a Blocks World
agent as in Experiment 1 with an initial belief base containing 200 blocks di-
vided over 2 towers of 100 blocks each, and a property specifying that the target
configuration (all blocks on the table) is reached. This non-deterministic agent
has a state space of size 10,000. Nevertheless, verification with IMC takes only
2150 seconds, i.e. 35 minutes. In contrast, AJPF and MMC required already
more time (40 minutes and 44 hours, respectively) to complete verification for
n = 200 in Experiment 1: a comparable setting with only 4 states instead of
10,000. Given that the size of the belief base is constant, and assuming that
AJPF and MMC scale linearly in the size of the state space (as suggested by the
results of Experiment 2), it would take AJPF 100,000 minutes, i.e. 70 days, and
MMC 110,000 hours, i.e. 12.5 years, to terminate.

Another observation concerns the size of the belief base: it turns out this has a
large impact on the verification times associated with AJPF and MMC. It follows
that the performance of these model checkers is not only dependent on the size
of the state space, but also on the way that beliefs are dealt with. We speculate
that two important aspects need to be optimized to increase performance. First,
the mechanism for querying the belief base should be implemented as efficiently
as possible. For MMC, this seems a problem as normal execution of the agents
already took a long time in Experiments 1 and 3 (in Experiment 2, belief base
queries were only performed on a belief base with at most two beliefs). Second,
the model checker should not introduce overhead on this querying, which seems
to be the case for AJPF.

6 Conclusion

We have distinguished three different approaches to model checking agent pro-
grams: two approaches that reuse existing model checkers in quite different ways,
including for example [1] and the AIL approach [10], and the interpreter-based
approach that we introduced in this paper. An architecture for this new approach
has been introduced and we discussed how the approach can be applied to various
agent programming languages. An implementation for the Goal agent language
has also been provided. One advantage of the interpreter-based approach is that
in practice it supports a more expressive property language than that supported
by currently existing alternatives.

In order to compare these approaches we performed various experiments to
gain insight into the performance of these approaches. As far as we know, such
performance comparisons have not been made before and providing such re-
sults is one of the contributions of this paper. Our main finding is that the
interpreter-based approach outperforms the other two approaches. In addition,
the computed relations with respect to resource consumption show that model
checking non-deterministic agents (or, in general, any agent with a state space
that is orders of magnitudes larger than, for example, the simple Blocks World
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examples we used) is currently beyond the capabilities of AJPF and MMC. In
contrast, IMC handles those state spaces with relative ease.

We plan on further developing the interpreter-based Goal model checker, in
particular by extending it with state space reduction techniques. As we have full
control over de code of the model checker, we expect that implementing such
techniques is, from a programming point of view, less complex than when such
language-specific optimizations would need be incorporated in an existing model
checker.
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Abstract. We propose an approach to the operational semantics aimed at de-
scribing the behavior of an interpreter (or, anyway, of an implementation) of
agent-oriented logic programming languages. We define a formal dialogue game
framework that focuses on rules of dialogue that the players of the game, i.e., the
components of the language interpreter, can be assumed to adopt in playing an
“innocent” game that finalized to creating the interpreter behavior. The approach
leads to a natural, uniform and modular way of modeling all the components of
an interpreter, including the communication component and the communication
protocol, and allows several properties to be formally proved.

1 Introduction

Logic Programming languages have been since the very beginning characterized by
a rigorous definition of their declarative and procedural semantics [25] [2], formally
linked to the operational semantics [14], [6]. As agents and multi-agent systems have
become an emerging paradigm for programming distributed applications, several agent-
oriented languages, formalisms and frameworks based on logic programming and com-
putational logic have been proposed, among which [3], [21], [10], [34], [24], [11]. All of
them have been developed with attention to the formal semantics, and to the compliance
of the implementation w.r.t. the semantics.

Nevertheless, D’Inverno and Luck in [17] observe that implementations have typi-
cally involved simplifying assumptions that have resulted in the loss of a strong theo-
retical foundation for them, while logics have had small relation to practical problems.
Though this fragmentation into theoretical and practical aspects has been noted, and
several efforts made in attempting to address this fragmentation in related areas of
agent-oriented systems (for example, [16], [19], [26], [41]), there remains much to
be done in bringing together the two strands of work. An effort in this direction has
been made via the formalization of operational semantics in an agent language. This
has resulted for instance in the definition of AgentSpeak(L), which can be viewed as
an abstraction of the implemented Procedural Reasoning System (PRS) [18] and the
Distributed Multi-Agent Reasoning System(dMARS) [15], and which allows agent pro-
grams to be defined and interpreted [34].

The effort of providing an abstract formalization of agent behavior is aimed at the ap-
plication of formal methods in a rigorous definition and analysis of agents functionalities.
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This may allow one to demonstrate interesting properties related to system correctness.
Bracciali et al. in [9] synthesize the need of being able to prove agent behavior correctness
as follows: the ever-growing use of agents and multi-agent systems in practical appli-
cations poses the problem of formally verifying their properties; the idea being that by
verifying properties of the overall system we can make informed judgements about the
suitability of agents and multi-agent systems in solving problems posed within applica-
tion domains..

We can find a similar consideration in [7], where the authors explain the motivations
that have persuaded them to describe the AgentSpeak(L) behavior in view of applying
Model-Checking techniques: ...tools should be usable by a general computing audi-
ence, there should also be strong theoretical foundations for such tools, so that formal
methods can be used in the design and implementation processes. In particular, the
verification of multi-agent systems showing that a system is correct with respect to its
stated requirements is an increasingly important issue, especially as agent.

Formal properties of agent systems should refer in general to multi-agent contexts,
where the correctness of agent interactions assumes a relevant role. In [5] and [4], some
interesting properties are demonstrated via AUML. Wooldridge and Lomuscio in [42]
present the VSK logic, a family of multi-modal logics for reasoning about the infor-
mation properties of computational agents situated in some environment. Viroli and
Omicini in [40] study the impact of thinking about agents and multi-agent systems in
terms of their observable behavior. Bracciali et al. in [9] define the semantics of a multi-
agent system via a definition of stability on the set of all actions performed by all agents
in the system and specify properties of individual success of agents, overall success of a
multi-agent system, robustness and world-dependence of a multi-agent system, as well
as a number of properties of agents within systems. The work by Bordini and Moreira
reported in [8] exploits an operational semantics in order to investigate properties of
AgentSpeak(L) agents. The approaches of Alechina et al. [1] and Hindriks at al. [20]
propose the adoption of transition systems in order to define the operational semantics
of Agent-Oriented programming Languages (in the following for short AOL’s).

McBurney, Parsons, et al., in [28] [30] [32] [31], study argumentation-based dia-
logues between agents. They propose dialogue games as a formal framework for dia-
logues between autonomous agents, The authors discuss how to prove some properties
of dialogues under a given protocol, in particular termination, dialogue outcomes, and
complexity. Dialogue games are formal interactions between two or more participants,
in which participants “move” by uttering statements according to pre-defined rules.

In this paper, we propose dialogue games as the foundation of a general methodology
for the definition of the operational semantics of agent-oriented logic programming lan-
guages. However, our aim is not that of providing the operational semantics of an AOL,
where this operational semantics will have to be implemented by means of some kind
of computational device (interpreter, abstract machine, etc.). Instead, given an AOL, we
intend to provide the operational definition of its implementation. This definition is a
formal specification of the implementation, and allows one to prove properties, first of
all the correctness of the implementation w.r.t. the programming language semantics.
Therefore, our approach is not in contrast with previous ones, but rather complementary
and potentially synergic.
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We have applied the approach to the DALI language [11] [12]. In particular, in [39]
the behavior of the DALI interpreter has been fully defined as a dialogue game whose
players are the various modules composing the interpreter itself. I.e., the players are the
components of the interpreter, considered as black boxes, that play an innocent game
one towards the other.

A first advantage of the approach is that of being able to describe in a uniform way all
aspects involved in processing an agent-oriented language, including communication.
A second advantage is modularity: as a language interpreter is seen as composed of
modules which are the players of a game, these modules can be composed, added,
removed, replaced in flexible ways provided that they respect the “rules” of the game.
A further advantage is that one can take profit of game theory for proving properties of
the interpreter, among which various properties of correctness. In [39], correctness of
the DALI interpreter w.r.t. the declarative and procedural definition of DALI extended
resolution is formally proved.

The proposed approach is elaboration-tolerant w.r.t. the adopted communication pro-
tocol, that can be specified via a separate set of definitions. To illustrate this point, we
show how to define compliance of the DALI interpreter w.r.t. a protocol and in par-
ticular we demonstrate compliance w.r.t. a simple protocol introduced by Sadri et al.
[36]. Therefore, we claim that our proposal can be the basis of a general methodology
for providing an account of the procedural behavior of AOL’s, that enables interesting
properties to be proved, also in synergy with other semantic definitions.

This paper is organized as follows. In Section 2 we introduce dialogue games. In
Section 3 we propose formal dialogue games as a tool for defining the operational se-
mantics of agent-oriented logic programming languages, and introduce to this aim a
specific dialogue game framework. In Section 4 we illustrate some examples of laws
and rules of the proposed dialogue game, taken from the operational description of
the DALI language but general enough to be quite directly applicable to other lan-
guages/formalisms. In Section 5 we show how we can abstract aspects of the opera-
tional behavior from given laws and rules, so as to define and prove useful properties.
Finally, we conclude in Section 6.

2 Dialogue Games as a Formal Framework for Dialogues between
Autonomous Agents

Formal dialogue games have been studied in philosophy since at least the time of
Aristotle. For a review of their history and applications the reader may refer to [28]
[29] and to the references therein. Recently, they have been applied in various con-
texts in computer science and artificial intelligence, particularly as the basis for in-
teraction between autonomous software agents. Dialogue game protocols have been
proposed for agent team formation, persuasion, negotiation over scarce resources, con-
sumer purchase interactions and joint deliberation over a course of action is some situ-
ation ([23],[27],[37],[38]).

In particular, formal dialogue games are interactions between two or more players,
where each player “moves” by making utterances, according to a defined set of rules.

In this section, we present a model of a generic formal dialogue game as reported in
[28]. We assume that the topics of discussion between the players can be represented
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in some logical language. A dialogue game specification then consists of the following
elements:

– Commencement Rules: Rules which define the circumstances under which a dia-
logue commences.

– Locutions: Rules which indicate what utterances are permitted.
– Combination Rules: Rules which define the dialogical contexts under which par-

ticular locutions are permitted or not, or obligatory or not.
– Commitments: Rules which define the circumstances under which participants

express commitment to a proposition.
– Termination Rules: Rules that define the circumstances under which a dialogue

ends.

For locutions, we will basically adopt (and illustrate in the following sections) the form
proposed in [31]. The definition of a dialogue game is completed by the specification
of a state transition system composed of transition rules that define how the state of
the system (composed of the set of players) changes as a result of a certain locution
having been uttered (or, also, as a result of a certain locution having not being uttered).
Transition rules provide a formal linkage between locutions and their possible usages
and effect, and make automated dialogues possible.

Dialogue games differ from the games of economic game theory in that payoffs for
winning or losing a game are not considered, and, indeed, the notions of winning and
losing are not always applicable to dialogue games.

3 Operational Semantics as a Dialogue Game

We propose formal dialogue games and related transition systems as a tool for defining
the operational semantics of agent-oriented logic programming languages.

A state transition system is an abstract machine used in the study of computation. The
machine consists of a set of states (or “configurations”) and transitions between states,
which may be labeled with labels chosen from a set, where the same label may appear
on more than one transition. In the operational semantics of programming languages
[33], a transition system is a deductive system which allows one to derive the transitions
of a program. This kind of transition system consists of a set of transition rules that
specify the meaning of each programming construct in the language. Transition rules
transform configurations.

In the agent framework, transition systems have been adopted, e.g., in [1] and [20],
to provide the operational semantics of Agent-Oriented Languages (AOL’s) with partic-
ular attention to those based upon the BDI (Belief, Desires, Intention) paradigm, where
agents are supposed to have mental states that evolve according to their interaction with
the environment. In their setting, a configuration is the encoding of a ”mental state”.
Thus, a transition rule maprepresents the evolution of a mental state into another one,
by, e.g., executing a goal or matching the head of a practical reasoning rule with a goal.
A single transition models the execution of a simple “instruction” (where an instruc-
tion can be, e.g., assignment in the case of imperative programming, basic actions and
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tests in the agent case). The resulting operational semantics allows one to prove prop-
erties of an agent program at hand, or more generally properties of the programming
language.

Our approach is different from those mentioned above. In fact, our aim is not that
of providing an operational semantics for the programming language at hand, that will
have to be implemented by some kind of computational device (interpreter, abstract
machine, etc.). Instead, given an AOL, we intend to provide the operational definition of
such a computational device. This means, we intend to describe what such a device, (in
the following, “the interpreter”), does when elaborating an agent program. The resulting
operational semantics allows one to prove properties of the interpreter, first of all its
correctness w.r.t. the programming language semantics. Other properties that can be
proved, as we will show in the following, are for instance that the interpreter correctly
implements a certain communication protocol when adopted by the agent. One can
also prove properties of a certain program (including termination) when running on the
interpreter that has been described. The proposed approach is therefore not in contrast
to those, like the above-mentioned ones, aimed at describing the operational semantics
of agent-oriented languages: rather, it is complementary and potentially synergic as it
allows correctness of the implementation to be formally proved.

Then, in our setting we have a transition system associated to the dialogue game de-
scribing the operation of the interpreter of a given AOL. The dialogue game will consist
of a set of Laws, each one describing an item of the activity of the interpreter. The de-
scription is in term of a locution (or utterance) stating the fragment of an agent activity
(in terms of the given AOL) that the interpreter is going to process. Locutions will de-
pend upon both the AOL at hand and the structure of the interpreter. A possible locution
can be, e.g., receive message. The law also prescribes the preconditions for that item
to be processed, and the post-conditions, i.e., how subsequent interpreter activities are
affected. Configurations of this transition system will be states of the interpreter. Labels
in this case are laws of the dialogue game. With utterances, the interpreter “declares”
to itself what it is going to do. The pre- and post-conditions are related to the semantics
and pragmatics of the programming language at hand. Then, each transition rule will
describe a change that occurs in the interpreter state when processing a sequence of
laws, or, symmetrically, a change that occurs when the interpreter is not able to process
a certain law because its preconditions are not fulfilled.

We propose to describe the interpreter behavior not simply in terms of a dialogue
game that the interpreter plays with itself, but rather as a dialogue game that the inter-
preter components play with each other. The motivation of this proposal relies in the
nature of AOL’s, that in affects in general the structure of the interpreter, which can be
seen as composed of components (or modules) representing the AOL features. Despite
the differences, all agent-oriented languages have (at least) the following basic features:

– A logical “core”, that for instance in both KGP and DALI is resolution-based.
– Reactivity, i.e., the capability of managing external stimuli.
– Proactivity, i.e., the capability of managing internal “initiatives”.
– The capability of performing actions.
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– The capability of recording what has happened and has been done in the past.
– The capability of managing communication with other agents. This can be seen as

a composition of sub-capabilities: managing both out-coming and incoming mes-
sages according to a given protocol, and possibly applying ontologies to understand
message contents.

– A basic cycle that interleaves the application of formerly specified capabilities.
E.g., in DALI the basic cycle is integrated with the logical core into an extended
resolution, while in KGP the basic cycle has a meta-level definition and thus can be
varied.

All these components can be seen as “players” that play together and make “moves”,
so as to coordinate themselves to generate the overall interpreter behavior. This means,
our players participate in an “innocent” game where their objective is not to win, but
rather is that of respecting the rules of the game itself. Thus, we expect each player to
faithfully follow the laws and rules so as to produce a set of admissible moves. These
moves will influence the other players and will determine the global game.

Advantages of the approach are the following:

– Each component can be seen as a “black-box”. I.e., the corresponding locutions
and transition rules can be defined independently from the rest. Then, capabilities
can be easily added/removed, at the expense of modifying only the description of
the basic cycle, which should be however by its very nature quite modular.

– There need to be no different formalism for the communication capability: one can
give the full description of the language interpreter in one and the same formal-
ism. Thus, properties that are not just related to communications, but rather involve
communication in combination to other capabilities can be more easily proved.

We have experimented the proposed approach for defining the full operational seman-
tics of the interpreter of the DALI language [39]. DALI [11] [12] is a Horn-clause agent
oriented language, with a declarative and procedural semantics that have been obtained
as an extension of the standard one. The operational semantics that we have defined
has allowed us to prove some relevant properties. In particular, we have proved cor-
rectness of the interpreter w.r.t. DALI extended resolution, and compliance w.r.t. some
communication protocols.

Motivated by this successful experiment, we here propose the adoption of dialogue
games (with the associated transition systems) as a general methodology for describ-
ing the interpreters of AOL’s, where an interpreter is seen as divided into “players”
corresponding to the agent capabilities it implements.

Below we propose how to define such a dialogue game. Notice that many aspects of
our formalization are meant to be pretty general so that they can be “customized” to the
various approaches and languages to which the methodology can be applied.

Below we define in a very basic way the state of an agent.

Definition 1 (State of an agent). Let Agx be the name of the agent. We define the
internal state ISAgx as the tuple < E, A, G > composed by the current sets of events
perceived, actions to be performed and goals to be achieved.
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Then, we define what is a law for the particular kind of dialogue game that we are
introducing.

Definition 2 (Law). We define a law Lx as a tuple composed of the following elements:

– Name: the name of law.
– Locution: The utterance, that expresses the purpose of the application of the law.
– Preconditions: The preconditions for the application the law.
– Meaning: The informal meaning of the law. This element is aimed at documenta-

tion.
– Response (Post-conditions): The effects of the application of the law, i.e., its post-

conditions, that may involve expected utterances from other parties.

Consider that, being the game innocent, the other players (and, ultimately, the overall
interpreter) are expected to behave as specified by a law whenever it is applied. In
particular, a law is applied with respect to the current state of the interpreter, which is
defined as follows.

Definition 3. A state of the interpreter is a pair < Agx, SAgx > where Agx is the name
of the agent and the operational state SAgx is a triple < PAgx , ISAgx , ModeAgx >.
The first element is the logic program defining the agent, the second one is the agent
current internal state, the third one is a particular attribute, that we call modality,
which describes what the interpreter is doing.

The application of laws is regulated by transition rules that specify how the state of the
interpreter changes when the laws are applied.

Definition 4 (Transition rule). A transition rule has the following form:

< Agx, < P, IS, Mode >>
Li,...,Lj−→ < Agx, < NewP, NewIS, NewMode >>

where Li, ..., Lj are the laws which are applied in the given state of the interpreter thus
obtaining a new state where some elements have possibly changed. Namely, NewP ,
NewIS and NewMode indicate, respectively, P , IS and Mode updated after apply-
ing the laws.

A transition rule can also describe how an agent can influence an other one. In this case,
we will have:

Definition 5 (Inter-Agent Transition rule). A transition rule involving two agents
has the following form:

< Agx, < PAgx , ISAgx , ModeAgx >>
Li,...,Lj−→ < Agy, < PAgy , ISAgy , ModeAgy >>

where x 	= y

About the general features of the game, we may notice that:

– Commencement Rules here define the activation of an agent, and imply as precon-
ditions the acquisition of a syntactically correct logic program and of the possible
initialization parameters. The response consists in the creation of the initial state
and in the activation of the basic interpreter cycle.
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– Combination Rules define in which order the transition rules should be applied if
more than one is applicable (i.e., the preconditions of the corresponding laws are
verified). In our case, the only rule is that the component corresponding to the basic
interpreter cycle must regain the control after a predefined quantum of time. The
basic cycle will then utter locutions that activate the other components according to
its policy.

– Commitments are taken for granted, i.e., the players (components of the inter-
preter) always accept to give the needed responses and thus make the expected
effects of transitions actual.

– Termination Rules should define under which circumstances an agent stops its
activity. They may be missing if the agent is supposed to stay alive forever (or, in
practice, as long as possible).

4 Examples of Laws and Transition Rules

In this Section we show some laws and rules that are taken from the operational seman-
tics of DALI, but that are general enough to be easily adapted to other languages and
formalisms. It is may be interesting to notice that the full DALI interpreter is described
by 90 laws and 141 transition rules (fully reported in [39]).

4.1 Message Reception Player

We now present one of the players that belong to the DALI interpreter. Its function is
that of receiving the incoming messages, and thus we may say that it is fairly general
rather than specific of DALI. The only specific feature is that a DALI logic program
includes a set of meta-rules that define the distinguished predicate told in order to spec-
ify constraints on the incoming messages. A message consists in general (at least) of:
a sender, a primitive, a content, the language in which it is expressed and the adopted
communication protocol. In DALI, if the message elements satisfy the constraints spec-
ified in the told rules, then the message is accepted; otherwise, it is discarded. The com-
ponent of the DALI interpreter which implements message reception including the told
filter on incoming messages is called TOLD player. Often, an agent may need some rea-
soning (e.g., ontological reasoning) in order to understand message contents: the DALI
communication architecture [13] includes to this aim the distinguished predicate meta
which has a predefined part, and can be also be customized by the programmer. The
processing of this stage by the DALI interpreter corresponds to the META player.

Below are the laws and rules for the TOLD player. Laws and rules are reported with
the numbers occurring in [39]. The first law connects the agent to the input message
space. Each agent checks, from time to time, if in the space of incoming message (that,
in the case of DALI, is the Linda tuple space) there a message for it. In this case, it takes
the message and starts to inspect it.

The first law describes this process and extracts from the whole message the pa-
rameters which are relevant for TOLD rules: the sender agent and the content of the
message.
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L12: The L12 receive message(.) law:
Locution: receive message(Agx, Agy, P rotocol, Ontology, Language, Primitive)
Preconditions: this law can be applied when agent Agx finds a new message in input
message space.
Meaning: the agent Agx receives a message from Agy (environment, other agents,...).
For the sake of simplicity, we consider the environment as an agent.
Response: The player considers the information about language and ontology and
extracts the name of sender agent and the primitive contained in the message.

Law L13 verifies protocol compatibility. If the sender agent protocol is different from
that of the receiver agent, then the message is discarded “a priori”.

L13: The L13 receive message(.) law:
Locution: receive message(Agx, Agy, P rotocol, Ontology, Language, Primitive)
Preconditions: The Protocol is compatible with the one of the receiver agent.
Meaning: This law discards all messages that the agent could not understand correctly
considered the different protocols adopted. If the protocols coincide, then the message
goes through.
Response: Accepted messages enters into the TOLD level.

L14 verifies whether the told constraints for the received message are all satisfied and,
if so, it allows the message to move forward.

L14: The L14 TOLD check true(.) law:
Locution: TOLD check true(Agy, P rotocol, P rimitive)
Preconditions: The constraints of TOLD rules applicable to the name of the sender
agent Agy and to the primitive and content must be true.
Meaning: The communication primitive is submitted to the check represented by
TOLD rules.
Response: The primitive can be processed by the next step.

The TOLD player plays the game not only with itself and with other internal players but
also with the environment. With itself, because it has an “its own opinion” (derived by
means of the told rules) about the sender, primitive and content of the message (is the
sender reliable? is the content compatible with its role and its knowledge base?) With
the others, because it interplays moves with the META and interpreter (basic cycle)
players, where the META player will apply ontologies for “understanding” the mes-
sage contents. Finally, with the environment because the message contains information
influencing its reception or elimination. For example, a non correct syntax of the mes-
sage can determine its elimination independently of the “opinion” of the component.

The transition rules below specify how the laws affect the state of the interpreter.
Of particular importance here is the third element of the configuration, i.e., the modal-
ity, which specifies the stage where the player (which is a component of the overall
interpreter) is currently situated. For instance, the transition rule below specifies that if
the TOLD player is in modality manage perceptions and finds an incoming message, it
will go into the received message modality. The transition may occur if law L12 can
be applied. This law incorporates the precondition that an agent can receive a message
only if a physical communication act has taken place in the server. We can see that the
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state of the interpreter does not change. This because law L12 extracts the parameters
from the message but does not involve internal processes of the agent.

R45 :
< Ag1, < P, IS, manage incoming messagesAg1 >>

L12−→
< Ag1, < P, IS, received message(Message)Ag1 >>

The R46 transition rule verifies the message protocol compatibility and only in the
positive case allows the communicative act to go through. This basic filter is relevant
because protocol incompatibility can generate serious damages in the receiver agent. In
fact, also if the primitive names are the same, the arguments can be different and this
may result in a misleading interpretation.

R46
< Ag1, < P, IS, received message(Message)Ag1 >>

L13−→
< Ag1, < P, IS, protocol compatible(Protocol, Message)Ag1 >>

Rule R47 forces the agent to eliminate a message with an incompatible protocol. The
specification not(L13) means that this transition takes place only in case law L13 cannot
be applied.

R47

< Ag1, < P, IS, received message(Message)Ag1 >>
not(L13)−→

< Ag1, < P, IS, end manage incoming messagesAg1 >>

The R48 transition rule specifies that, whenever parameters Sender and Content have
been extracted and the protocol control has been successfully performed, the player must
invoke the corresponding TOLD rules. L14 is in fact applicable in the situation where
all constraints are verified and the message can be accepted by the agent. This step does
not involve the logic program or the events queues, thus only the modality is affected.

R48 :
< Ag1, < P, IS, protocol compatible(Message)Ag1 >>

L14−→
< Ag1, < P, IS, TOLD(Sender, Content)Ag1 >>

If instead at least one constraint is not fulfilled, the precondition of L14 law becomes
false and the above transition cannot be applied. This means that the message contains
some item of information which is considered by the receiver agent to be either unin-
teresting or harmful.

The move of the TOLD player that influences the behavior of the META player is
represented by the modality TOLD(Sender, Content). In the DALI actual architec-
ture, this move corresponds to the message overcoming of the TOLD filter level. Only
in this case the message reaches the META component where the agent will try to “un-
derstand” the contents by possibly resorting to an ontology.

4.2 Communication Protocols

In [39] we have defined by means of suitable laws and transition rules two communi-
cation protocols: the first one is the FIPA/DALI protocol. The second one, called the
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“Four-acts protocol”, is inspired by the work Sadri, Toni and Torroni reported in [36].
We have described this protocol and we discuss its description here because its simplic-
ity allows us to show all the related laws and rules. We notice however that the proposed
semantics framework is in principle able to accommodate any other protocol.

In the Four-act protocol we have two agents, say Ag1 and Ag2, each of which defined
by a set of rules that determine its role in the dialogue. The dialogue subject is the request
of a resource R by Ag1 to Ag2. Agent Ag1 has the following rules, stating that as soon as
it decides (by performing the action init(Ag1) to initiate a conversation with agent Ag2
(which is not explicitly named, as Ag1 and Ag2 are the only agents which are supposed
to exist in this setting) it starts asking for a certain Resource. Either Ag2 accepts to give
it, and then Ag1 goes into an ok state, or Ag2 refuses and then Ag1 asks again.

Ag1 protocol rules
ask(give(Resource), Ag1) ⇐ init(Ag1) (p1)
ok(give(Resource)Ag1) ⇐ accept(give(Resource), Ag2) (p2)
ask(give(Resource), Ag1) ⇐ refuse(give(Resource), Ag2) (p3)

Ag2 is the agent that receives the request and must decide whether to give the required
resource. The choice depends upon its internal condition C, according to the following
rules:

Ag2 protocol rules
accept(give(Resource), Ag2) ⇐ ask(give(Resource), Ag1) ∧ C (p4)
refuse(give(Resource), Ag2) ⇐ ask(give(Resource), Ag1) ∧ ¬C (p5)

The requesting process goes on indefinitely if Ag1 does not obtain the resource: there-
fore, the above definition makes sense as an example, as in “real world” the agents
would presumably somehow put an end to the interaction. We now present the laws
and transition rules that operationally formalize this protocol. These laws and rules rely
upon general laws and rules managing message exchange (reported [39]), and this is
why in transition rules below one may notice the occurrence of laws not shown here.

The first law makes the interpreter able to adopt this protocol (among the available
ones), while the subsequent laws introduce the corresponding communication acts.

L1: adopt four-acts protocol(.) law:
Locution: adopt four act protocol()
Preconditions: No precondition.
Meaning: This law allows an agent to adopt Four-act protocol.
Response: Subsequent communication acts will be processed according to the Four-
acts protocol.

The following transition rule leads the interpreter of any agent Ag to understand the
communication primitives of forthcoming messages according to the Four-acts protocol:

R1 :
< Ag, < P, IS, choose protocol >>

L1−→
< Ag, < P, IS, process communication(Four − act) >>

The following laws and rules formalize both roles, the one of the former agent Ag1, here
called the Sender, and the one of the latter agent Ag2. Law L2 processes the initiative
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that the former agent, here called Sender, to start the dialogue with the latter agent, here
called “opponent”, which is supposed to be active in the environment. L3 copes with
the dispatch of a request. The subsequent laws pertain to the opponent agent. L4 copes
with reception of a request, L7 checks whether the agent is able to give the resource or
not, while L5 and L6 are respectively responsible for acceptance and refusal. Finally,
in the Sender agent L8 terminates the dialogue in case it has obtained the resource.

L2: process(Four-acts, init(.)) law:
Locution: process(Four − Acts, init(Sender))
Preconditions: No precondition.
Meaning: This law sets the interpreter of the Sender agent to a state where the agent
has initiated a dialogue.
Response: A dialogue is started.

L3: process(Four-acts, out ask(.)) law:
Locution: process(Four − Acts, send(ask(Resource, Sender)))
Preconditions: The dialogue has been started through the init primitive or a refusal has
been received.
Meaning: This law sets the interpreter to a state where a request has been sent.
Response: The request is delivered to the opponent agent.

L4: process(Four-acts, in ask(.)) law:
Locution: process(Four − acts, receive(ask(Resource, Sender)))
Preconditions: The dialogue has been started through the init primitive and a request
has been received.
Meaning: This law sets the interpreter of the opponent agent to a state that allows the
agent to evaluate a request.
Response: The opponent agent evaluates the incoming request.

L5: process(Four-acts, out accept(.)) law:
Locution: process(Four − acts, send(accept(Resource, Sender)))
Preconditions: An incoming request has been positively evaluated.
Meaning: The answer to a request by the Sender agent is acceptance.
Response: The requester agent is enabled to obtain the Resource.

L6: process(Four-acts, out refuse(.)) law:
Locution: process(Four − acts, refuse(Resource, Sender))
Preconditions: An incoming request has been negatively evaluated.
Meaning: The answer to a request by the Sender agent is refusal.
Response: The requester agent is not enabled to obtain the Resource.

L7: verify request(.) law:
Locution: verify request(Resource, Sender)
Preconditions: A request has been received.
Meaning: The opponent agent evaluates an incoming request by checking condition C.
Response: If condition C is fulfilled, the answer will be positive.
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L8: process(Four-acts, in accept(.)) law:
Locution: process(Four − acts, receive(accept(Resource, Sender)))
Preconditions: A request has been issued.
Meaning: The answer to a former request is acceptance.
Response: The requester agent is enabled to reach an ok state.

L9: process(Four-acts, in refuse(.)) law:
Locution: process(Four − acts, receive(refuse(Resource, Sender)))
Preconditions: A request has been issued.
Meaning: The answer to a former request is refusal.
Response: The requester agent will try again.

L10: process(Four-acts, ok(.)) law:
Locution: process(Four − acts, ok(Resource, Sender))
Preconditions: The agent has obtained the resource.
Meaning: This law allows an agent to conclude the dialogue having obtained the de-
sired resource.
Response: The dialogue terminates.

The following state transition rules modify the states of the interpreters of the participat-
ing agents, according to the application of the above laws. As we have not discussed the
general laws and rules for message exchange, we cannot go in depth into the change of
state. We just indicate that a state IS is transformed into a new state NIS. The change
in the modality instead is clearly visible, showing a shift from what the interpreter was
about to do before to what the interpreter is expected to do next.

R2 :

< Ag, < P, IS, process communication(Four − acts) >>
L2,L23−→

< Ag, < P, NIS, sent(Four − acts, ask(Resource, Sender)) >>

The agent receiving a resource request, accepts the proposal if law L7 permits this:

R3 :

< Ag,< P, IS, received request(Four − acts, ask(Resource, Sender) >>
L4,L7,L5,L23−→

< Ag,< P,NIS, sent(Four − acts, accept(Resource, Sender)) >>

If the internal state does not authorize the resource transfer, the agent sends a refuse
message. Notice that the transition is determined by the inapplicability of a law (because
condition C is not fulfilled).

R4 :

< Ag, < P, IS, received request(Four − acts, ask(Resource, Sender) >>
L4,not(L7),L6,L23−→

< Ag, < P, NIS, sent(Four − acts, refuse(Resource, Sender)) >>

A positive response to the assignment problem concludes the process and the interpreter
goes into the ok modality.

R5 :

< Ag, < P, IS, sent(Four − acts, ask(Resource, Sender) >>
L8,L10,L23−→

< Ag, < P, NIS, have resource(Four − acts, ok(Resource, Sender)) >>
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An agent that receives a refusal, persists stubbornly in its intent by returning to the
ask modality:

R6 :

< Ag, < P, IS, sent(Four − acts, ask(Resource, Sender) >>
L9,L4,L23−→

< Ag, < P, NIS, sent(Four − acts, ask(Resource, Sender)) >>

5 Abstracting Agent Properties

We now propose some abstractions over the operational semantics behavior, that can
be useful in order to define and prove properties. As a basic step, we define a function
describing the agent behavior as the composition of the application of a given set of
transition rules, starting from a specific agent operational state SAgx . This abstraction
process consists in formalizing the Operational Semantics Call:

Definition 6 (Operational Semantic Call). Given a list of transition rules
(R1, ..., Rn) and an initial operational state S0

Agx
of an agent Agx, we define the

Operational Semantics Call Ψ[k,...,n](Agx, S0
Agx

, (R1, ..., Rn)) as follows:

Ψ[R1,...,Rn](Agx, S0
Agx

, (R1, ..., Rn)) = 〈Agx, Sf
Agx

〉
such that
〈Agx, S0

Agx
〉 R1−→ 〈Agx, S1

Agx
〉 R2−→ ...

Rn−→ 〈Agx, Sf
Agx

〉 where Sf
Agx

is the final op-
erational state determined by the subsequent application of the given transition rules.

We then introduce a semantic function Behavior, that allows us to explore agent coher-
ence by relating the perceptions that an agent receives in input to the actions that the
agent performs, which constitute its observable output behavior. We consider the agent
as a “black box” whose evolution is completely determined by the Operational Seman-
tics Call Ψ computed on a given a list of transition rules and a given set of perceptions.
Notice that perceptions are partly recorded in the “events” component of the initial state,
and partly related to the laws which are applied by the given transition rules: as we have
seen, there are laws that are applicable if there is an incoming perception, for instance
an incoming message. Perceptions can take different forms and can be described in
different ways depending upon the specific agent-oriented language/formalism and the
application context at hand. Thus, we will not commit to any specific description. We
only notice that in general: (i) A particular kind of perception consists in the reception
of a message. (ii) A perception will be annotated with a time-stamp that indicates when
the agent has become aware of it; then, perceptions are assumed to be totally ordered
w.r.t. the time-stamp and can be compared on this basis.

The function Behavior operates an abstraction process that considers only the per-
ceptions in input and the actions in output. As a preliminary step, we define the Action
Semantic function that returns all operational states SfAgx

whose modality indicates that
an action has been performed. A particular kind of action consists in sending a message.

Definition 7 (Action Semantic function). Given the Operational Semantics Call Ψ
computed on a list (R1, ..., Rn) of transition rules, we define the Action Semantic func-
tion ΞAgx as a function that, given Ψ[R1,...,Rn], returns all SfAgx

’s related to performing
an action:
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ΞAgx(p, Ψ[R1,...,Rn]) =
{SfAgx

|
modality(SfAgx

) = made(Action) ∨
modality(SfAgx

) = sent(Message/Action)}
where function “modality” extracts the modality from SfAgx

.

We now consider the set of actions that an agent performs in response to a certain
perception p present in the initial state. It is obtained as the set of actions contained in
the states specified by the above Action Semantic Function when the agent receives the
perception p as input.

Definition 8 (Semantic Behavior with respect to the perception p). Let ΞAgx(p, ΨL)
be the Action Semantic Function applied to a list L of transition rules and let the agent
initial state contain only perception p. We define the Semantic Behavior
Behp

Agx
(p, L) with respect the perception p as the set of actions belonging to the

SfAgx

′s selected by Ξ:
Behp

Agx
(p, L) =

{A| A is an action where ∃ SfAgx
∈ ΞAgx(p, ΨL) such that A ∈ SfAgx

}

Below we extend the definition to consider a set P of perceptions.

Definition 9 (Semantic Behavior). Let Behp
Agx

(X, L) be the Semantic Behavior of
the agent with respect to the single perception, let L be a list of transition rules, let
P = {p1, ..., pn} be the set of perceptions contained in the agent initial state. We define
the Semantic Behavior BehAgx(P, L) with respect to P as

BehAgx(P, L) =
⋃

k=1,...,n Behp
Agx

(pk, L)

The definition of the agent behavior through the operational semantics allows us to
consider properties of our agents. An important property is conformance of an agent
actual behavior with respect to the expected behavior (however defined, we do not enter
into details here). We can say that an agent is coherent if it performs in response to a
set of perceptions the set of actions that the designer expects from it.

Definition 10 (Coherent agent). Let BehAgx(P, L) be the behavior (set of actions)
of the agent Agx with respect to a set of perceptions P and a list L of transi-
tion rules. The agent Agx is coherent with respect to the expected behavior βAgx if
βAgx ⊆ BehAgx(P, L).

Definition 11 (Strongly Coherent agent). A coherent agent Agx is strongly coherent
with respect to the expected behavior βAgx if βAgx = BehAgx(P, L).

Let us restrict the set of perception that we consider to the incoming messages, and
the expected behavior βAgx to the out-coming message. Then, these two elements to-
gether may be assumes to describe the communication protocol PrtAgx that the agent
is expected to follow by an external observer. Than, strong coherence coincides with
compliance w.r.t. the protocol.
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Definition 12 (Protocol Compliance). Consider a protocol PrtAgx = 〈P, βAgx〉
where let P be a the set of incoming messages and βAgx the corresponding expected set
of out-coming messages. Agx is compliant w.r.t. PrtAgx if it is strongly coherent w.r.t.
P and βAgx .

As a simple example of protocol compliance, it is easy to see that, if we let OP be the
set of laws and rules for the Four-act protocol as defined in the previous section, we
have:

Theorem 1. Agent Agx whose semantic behavior BehAgx is defined according to the
transition rules in OP is compliant w.r.t. the Four-act protocol.

Intuitively, this is the case as laws L2-L10 correspond to the nine actions which are
present in the protocol definition, and each transition rule corresponds to a rule of the
protocol itself (plus the commencement rules R1 and R2).

6 Conclusions

We have proposed a new approach to the operational description of the interpreter (or,
more generally, of a computational device) underlying a logic agent-oriented language.
This description can be used to prove properties of the interpreter, e.g., correctness w.r.t.
the language semantics or compliance to a communication protocol, and, indirectly, also
properties of programs or classes of programs.

The formalism chosen for providing this description is that of dialogue games, com-
posed of laws with an associated state transition system. The “added value” of adopting
a dialogue game is manifold: laws have pre- and post-conditions, therefore conditioning
state transitions; it is possible to specify how the state changes if a rule is applicable,
but also when it is not applicable; the various components of the interpreter can be for-
malized in a modular and elaboration-tolerant way as different “players” that play an
innocent game in order to contribute to the overall interpreter behavior; the interaction
with other agents is coped with in a uniform way; game theory can be exploited for
proving properties.

We have experimented the approach in the formalization of the DALI languages. We
mean to consider other languages/formalisms and other less simple formal properties
of single agents or of multi-agent systems.
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