
A Normative Organisation Programming Language for
Organisation Management Infrastructures

Jomi F. Hübner1,2,�, Olivier Boissier2, and Rafael H. Bordini3

1 Department of Automation and Systems Engineering
Federal University of Santa Catarina

Florianópolis, Brazil
jomi@das.ufsc.br

2 Ecole Nationale Supérieure des Mines
Saint Etienne, France

{hubner,boissier}@emse.fr
3 Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

R.Bordini@inf.ufrgs.br

Abstract. The Organisation Management Infrastructure (OMI) is an important
component to support and monitor the execution of large-scale open multi-agent
organisations whose functioning is described using high-level abstract modelling
languages. Their interpretation by the OMI leads to heavy-weight programs, hin-
dering flexibility and evolution. In this paper, we introduce a normative organ-
isation programming language, called NOPL, based on a simple and elegant
normative programming language. We show the suitability of these languages
for programming the OMI of theMOISE framework; in particular, we show how
MOISE’s Organisation Modelling Language can be translated into NOPL. We
also briefly describe how this all has been implemented on top of ORA4MAS,
the artifact-based OMI forMOISE.

1 Introduction

The use of organisational and normative concepts is widely accepted as a suitable ap-
proach for the design and implementation of Multi-Agent Systems (MAS) [1,5,4,13].
These concepts are useful for the design of MAS, so they are present in various dif-
ferent software engineering methodologies for MAS. However, they are also used at
runtime to make agents aware of the organisation in which they take part, on one hand,
and to support and monitor their activity to achieve the purpose of the organisation on
the other hand. The Organisation Management Infrastructure (OMI) plays an important
role in the realisation of the latter aspect. In this paper, we will focus on the OMI.

A recent trend in the development of OMIs is to provide languages that the MAS
designer (human or artificial in the case of self-organisation) uses to write a program
that will define the organisational functioning of the system, complementing agent pro-
gramming languages that defines the individual functioning within the system. The

� Supported by the ANR in the ForTrust project (ANR-06-SETI-006).

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 114–129, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Normative Organisation Programming Language for OMIs 115

former type of languages can focus on different aspects of the overall system, for ex-
ample: structural aspects (roles and groups) [7], dialogical aspects [5], coordination as-
pects [18], and normative aspects [21,9]. The OMI is then responsible for interpreting
such a language and providing corresponding services to the agents. For instance, in the
case of MOISE+ [13], the designer can program a norm such as “an agent playing the
role ‘seller’ is obliged to deliver some goods after being payed by the agent playing role
‘buyer”’. The OMI is responsible for identifying the activation of that obligation and to
enforce the compliance to that norm by the agents playing the corresponding roles.

We are particularly interested in a flexible and adaptable implementation of OMIs.
Such implementation is normally coded using an object-oriented programming lan-
guage (e.g. Java). However, the exploratory stage of current OMI languages often re-
quires changes in the implementation so that one can experiment with new features. The
refactoring of the OMI for such experiments is usually an expensive task that we would
like to simplify. Our work therefore addresses one of the main missing ingredients for
the practical development of sophisticated multi-agent systems where the macro-level
requires complex organisational and normative structures in the context of so many dif-
ferent views and approaches to such structures still being actively investigated by the
MAS research community.

This problem is particularly complex for organisation models that consider elements
with different natures such as groups, roles, common goals, and norms. These elements
have their own life cycle, are closely related to each other, and are constrained by a
set of properties (e.g. role compatibility and cardinality). Our proposal aims at express-
ing these different properties in a unified framework based on norms. The OMI is then
mainly concerned with providing a uniform mechanism to interpret and manage the
status of the normative expressions instead of specific mechanisms for each kind of
constraints. However, we do not want to force the MAS designer to program the organ-
isation using only norms. The designer should program their organisation using more
suitable constructs. For example, using a role cardinality constructor to state “a class-
room has one professor” instead of a norm like “it is prohibited that two agents play the
role professor in the same classroom”).

The solution presented in this paper is to translate a high-level language into another,
simpler language. The problem of implementing the OMI is thereby reduced to a trans-
lation problem, which is usually much simpler and less error prone. We start from an or-
ganisational modelling language which is then automatically translated into a normative
programming language. The language used by the MAS designer has more abstractions
available (such as groups, roles, and global plans) than normative languages. More pre-
cisely, our starting language is the MOISE Organisation Modelling Language (OML
— see Sec. 3) and our target language is the Normative Organisation Programming
Language (NOPL — Sec. 4). NOPL is a particular class of a normative programming
language presented and formalised in this paper (Sec. 2). All of this has been imple-
mented on top of our previous work on OMI where an artifact-based approach, called
ORA4MAS, was used (Sec. 5).

The main contributions of this paper are: (i) a normative programming language and
its formalisation using operational semantics; (ii) the translation from an organisational
language into the normative language; and (iii) an implemented artifact-based OMI that



116 J.F. Hübner, O. Boissier, and R.H. Bordini

interprets the target normative language. These contributions are better discussed and
placed in the context of the relevant literature in Sec. 6.

2 Normative Programming Language

Although several languages for norms are available (e.g. [21,23,9]), for this project we
need a language that handles obligations and regimentation. While agents can have un-
fulfilled obligations (and sanctions might take place later), regimentation is a preventive
strategy of enforcement: agents are not capable of violating a regimented norm [14].
Regimentation is important for an OMI to allow situations where the designer wants
to define norms that must always be followed because their violation represents a se-
rious risk to the organisation.1 Most existing languages consider either obligation or
regimentation as enforcement strategies, and do not allow the designers (or the agents)
to dynamically choose the best strategy for their application.

The language that we define is based on the following assumptions. (i) Permissions
are defined by omission, as in the work in [10]. (ii) Prohibitions are represented either
by regimentation or as an obligation for someone else to decide how to handle the
situation. For example, consider the norm “it is prohibited to submit a paper with more
than 6 pages”. In case of regimentation of this norm, attempts to submit a paper with
more than 6 pages will fail. In case this norm is not regimented, the designer has to
define a norm such as “when a paper with more than 6 pages is submitted, the chair
must decide whether to accept the submission or not”. (iii) Sanctions are considered
as an obligation (i.e. someone else is obliged to apply the sanction) and (iv) norms are
consistent (either the programmer or the program generator are supposed to handle this
issue). Thus, the language can be relatively simple, reduced to two main constructs:
obligation and regimentation.

2.1 Syntax

Given the above requirements and simplifications, we introduce below a new Norma-
tive Programming Language (NPL) (Fig. 1 contains the definition of its syntax).2 A
normative program np is composed of: (i) a set of facts and inference rules (following
the syntax used in Jason [2]); and (ii) a set of norms. A NPL norm has the general form
norm id : ϕ -> ψ, where id is a unique identifier of the norm; ϕ is a formula
that determines the activation condition for the norm; and ψ is the consequence of the
activation of the norm. Two types of norm consequences ψ are available:

– fail – fail(r): represents the case where the norm is regimented; argument r rep-
resents the reason for the failure;

1 The importance of regimentation is corroborated by relevant implementations of OMI, such
as Madkit [7], S-MOISE+ [12], and AMELI [6], which consider regimentation as a main
enforcement mechanism.

2 The non-terminals not included in the specification, atom, id, var, and number, correspond,
respectively, to predicates, identifiers, variables, and numbers as used in Prolog.



A Normative Organisation Programming Language for OMIs 117

np ::= “np” atom “{” ( rule | norm )* “}”
rule ::= atom [ “:-” formula ] “.”
norm ::= “norm” id “:” formula “->” ( fail | obl ) “.”

fail ::= “fail(” atom “)”
obl ::= “obligation(” (var | id) “,” atom “,” formula “,” time “)”

formula ::= atom | “not” formula | atom ( “&” | “|”) formula
time ::= “‘” ( “now” | number ( “second” | “minute” | ...)) “‘”

[ ( “+” | “-” ) time ]

Fig. 1. EBNF of the NPL

– obl – obligation(a, r, g, d): represents the case where an obligation for some
agent a is created. Argument r is the reason for the obligation (which has to include
the id of the norm from which the obligation has been created); g is the formula that
represents the obligation itself (a state of the world that the agent must try to bring
about, i.e. a goal it has to achieve); and d is the deadline to fulfil the obligation.

A simple example to illustrate the language is given below; we used source code com-
ments to explain the program.

np example {
a(1). a(2). // facts
ok(X) :- a(A) & b(B) & A>B & X = A*B. // rule

// note that b/1 is not defined in the program;
// it is a dynamic fact provided at run-time

// alice has 4 hours to achieve a value of X < 5
norm n1: ok(X) & X > 5
-> obligation(alice,n1,ok(X) & X<5,‘now‘+‘4 hours‘).

// bob is obliged to sanction alice in case X > 10
norm n2: ok(X) & X > 10
-> obligation(bob,n2,sanction(alice),‘now‘+‘1 day‘).

// example of regimented norm; X cannot be > 15
norm n3: ok(X) & X > 15 -> fail(n3(X)).
}

As in other approaches (e.g. [8,22]), we have a static/declarative aspect of the norm
(where norms are expressed in NPL resulting in a normative program) and a dynamic/
operational aspect (where obligations are created for existing agents). We call the first
aspect simply norm and the second obligation. An obligation has thus a run-time life-
cycle. It is created when the activation conditionϕ of some norm n holds. The activation
condition formula is used to instantiate the values of variables a, r, g, and d of the
obligation to be created. Once created, the initial state of an obligation is active (Fig. 2).
The state changes to fulfilled when agent a fulfils the norm’s obligation g before the



118 J.F. Hübner, O. Boissier, and R.H. Bordini

d > now
active

fulfilled

unfulfilled

inactive

g

¬ ø

ø

Fig. 2. State Transitions for Obligations

deadline d. The obligation state changes to unfulfilled when agent a does not fulfil
obligation g before deadline d. As soon as the activation condition (ϕ) of the norm that
created the obligation ceases to hold, the state changes to inactive. Note that a reference
to the norm that led to the creation of the obligation is kept as part of the obligation
itself (the r argument), and the activation condition of this norm must remain true for
the obligation to stay active; only an active obligation will become either fulfilled or
unfulfilled, eventually. Fig. 2 shows the obligation life-cycle.

2.2 Semantics

We now give semantics to NPL using the well known structural operational semantics
approach [17].

A program in NPL is essentially a set of norms where each norm is given according to
the grammar in Fig. 1; it can also contain a set of initial facts and inference rules specific
to the program’s domain (all according to the grammar of the NPL language). The
normative system operates in conjunction with an agent execution system; the former is
constantly fed by the latter with “facts” which, possibly together with the domain rules,
express the current state of the execution system. Any change in such facts leads to a
potential change in the state of the normative system, and the execution system checks
whether the normative system is still in a sound state before carrying out particular
execution steps; similarly, it can have access to current obligations generated by the
normative system. The overall system’s clock also causes potential changes in the state
of the transition system by changing the time component of its configuration.

As we use operational semantics to give semantics to the normative programming
language (i.e. the language used to program the normative system specifically), we first
need to define a configuration of the transition system that will be defined through
the semantic rules presented later. A configuration of our normative system, giving
semantics to NPL, is a tuple 〈F,N,�, OS, t〉 where:

– F is a set of facts received from the execution system and possibly rules expressing
domain knowledge. The former works as a form of input from the OMI to the
normative interpreter. Each formula f ∈ F is, as explained earlier, an atomic first
order formula or a Horn clause.



A Normative Organisation Programming Language for OMIs 119

– N is a set of norms, where each norm n ∈ N is a norm in the syntax defined for
norm in the grammar in Fig. 1.

– The state of the normative system is either a sound state denoted by � or a fail-
ure state denoted by ⊥; the latter is caused by regimentation through the fail( )
language construct within norms. This is accessible to the agent execution system
which prevents the execution of the action that would lead to the facts causing the
failure state, and rolls back the facts about the state of the execution system.

– OS is a set of obligations, each accompanied by its current state; each element
os ∈ OS is of the form 〈o, ost〉 where o is an obligation, again according to the
syntax for obligations given in Fig. 1, and ost ∈ {active, fulfilled, unfulfilled,
inactive} (the possible states of an obligation). This is also of interest to the agent
execution system and thus accessible to it.

– t is the current time which is automatically changed by the underlying execution
system, using a discrete, linear notion of time. For the sake of simplicity, it is as-
sumed that all rules that could apply at a given moment in time are actually applied
before the system changes the state to the next time.

Given a normative program P — which is, remember, a set of facts and rules (PF ) and
a set of norms (PN ) written in NPL — the initial configuration of the normative system
(before the system execution starts) is 〈PF , PN ,�, ∅, 0〉.

In the semantic rules, we use the notation Tc to denote the component c of tuple T .
The semantic rules are as follows.

Norms. The rule below formalises regimentation: when any norm n becomes active —
i.e. its condition component holds in the current state — and its consequence is fail( ),
we move to a configuration where the normative state is no longer sound but a failure
state (⊥). Note that we use nϕ to refer to the condition part of norm n (the formula
between “:” and “->” in NPL’s syntax) and nψ to refer to the consequence part of n
(the formula after “->”).

n ∈ N F |= nϕ nψ = fail( )
〈F,N,�, OS, t〉 −→ 〈F,N,⊥, OS, t〉 (Regim)

The underlying execution system, after realising a failure state caused by Rule Regim
above, needs to ensure the facts are rolled back to the previously consistent state, which
will make the following rule apply.

∀n ∈ N.(F |= nϕ ⇒ nψ �= fail( ))
〈F,N,⊥, OS, t〉 −→ 〈F,N,�, OS, t〉 (Consist)

The next rule is similar to Rule Regim but instead of failure, the consequence is the cre-
ation of an obligation. In the rule, m.g.u. means “most general unifier” as in Prolog-like
unification; the notation tθ means the application of the variable substitution function θ
to formula t. Note that we require that the deadlines of newly created obligations are not

yet past. The notation
obl= is used for equality of obligations, which ignores the deadline



120 J.F. Hübner, O. Boissier, and R.H. Bordini

in the comparison. That is, we define that an obligation obligation(a, r, g, d) is equals
to an obligation obligation(a′, r′, g′, d′) if and only if a = a′, r = r′, and g = g′.
Because of this, Rule Oblig does not allow the creation of the same obligation with two
different deadlines. Note however that if there already exists an equal obligation but it
has become inactive, this does not prevent the creation of the new obligation.

n ∈ N F |= nϕ nψ = o oθd > t

¬∃〈o′, ost〉 ∈ OS . (o′ obl= oθ ∧ ost �= inactive)
〈F,N,�, OS, t〉 −→ 〈F,N,�, OS ∪ 〈oθ, active〉, t〉

where θ is the m.g.u. such that F |= oθ

(Oblig)

Obligations. Recall that an NPL obligation has the general form obligation(a,
r, g, d). With a slight abuse of notation, we shall use oa to refer to the agent that has
the obligation o; or to refer to the reason for obligation o; og to refer to the state of the
world that agent oa is obliged to achieve (the goal the agent should adopt); and od to
refer to the deadline for the agent to do so. An important aspect of the obligation syntax
is that the NPL parser always ensures that the programmer used the norm’s id as predi-
cate symbol in or and so in the semantics, when we say or, we are actually referring to
the activation condition nϕ of the norm used to create the obligation.

Rule Fulfil says that the state of an active obligation o should be changed to fulfilled
if the state of the world og that the agent agent was obliged to achieve has already been
achieved (i.e. the domain rules and the facts from the underlying execution system
imply g). Note however that such state must have been achieved within the deadline.

os ∈ OS os = 〈o,active〉 F |= og od ≥ t

〈F,N,�, OS, t〉 −→ 〈F,N,�, (OS \ {os}) ∪ {〈o, fulfilled〉}, t〉 (Fulfil)

Rule Unfulfil says that the state of an active obligation o should be changed to
unfulfilled if the deadline is already past; note that the rule above would have changed
the status to fulfilled so the obligation would no longer be active if it had been achieved
in time.

os ∈ OS os = 〈o,active〉 od < t

〈F,N,�, OS, t〉 −→ 〈F,N,�, (OS \ {os}) ∪ {〈o,unfulfilled〉}, t〉 (Unfulfil)

Rule Inactive says that the state of an active obligation o should be changed to inactive
if the reason (i.e. motivation) for the obligation no longer holds in the current system
state reflected in F .

os ∈ OS os = 〈o,active〉 F �|= or

〈F,N,�, OS, t〉 −→ 〈F,N,�, (OS \ {os}) ∪ {〈o, inactive〉}, t〉 (Inactive)

Algorithm 1 shows an NPL interpreter, which makes it easier to understand the norma-
tive programming language for those not familiar with structural operational semantics.



A Normative Organisation Programming Language for OMIs 121

Algorithm 1. NPL Interpreting Algorithm
1: for all norms n in N do
2: if F |= nϕ then
3: if nψ = fail {regimentation} then
4: return fail
5: else
6: if nψ �∈ OS then
7: add nψθ to OS
8: where θ is the m.g.u. such that F |= nψθ
9: for all obligations 〈o, ost〉 ∈ OS do

10: if ost = active and F |= og and od ≥ t then
11: change ost to fulfilled
12: if ost = active and od < t then
13: change ost to unfulfilled
14: if ost = active and F �|= or then
15: change ost to inactive
16: if ost = inactive and F |= or then
17: change ost to active

3 MOISE Organisational Modelling Language

The MOISE framework includes an organisational modelling language (OML) that ex-
plicitly decomposes the specification of organisation into structural, functional, and nor-
mative dimensions [13]. The structural dimension specifies the roles, groups, and links
of the organisation. The definition of roles states that when an agent chooses to play
some role in a group, it is accepting some behavioural constraints and rights related
to this role. The functional dimension specifies how the global collective goals should
be achieved, i.e. how these goals are decomposed (within global plans), grouped in
coherent sets (through missions) to be distributed among the agents. The decomposi-
tion of global goals results in a goal tree, called scheme, where the leaf-goals can be
achieved individually by the agents. The normative dimension is added in order to bind
the structural dimension with the functional one by means of the specification of the
roles’ permissions and obligations within missions. When an agent chooses to play
some role in a group, it commits to these permissions and obligations.

As an illustrative and simple example of an organisation specified using MOISE+,
we consider agents that aim at writing a paper together and therefore there is an organ-
isational specification to help them collaborate. Due to lack of space, we will focus on
the functional and normative dimensions in the remainder of this paper. For the struc-
ture of the organisation, it is enough to know that there is only one group (wpgroup)
where two roles (editor and writer) can be played. To coordinate the achievement of
the goal of writing a paper, a scheme is defined in the functional specification of the or-
ganisation (Fig. 3(a)). In this scheme, a draft version of the paper has to be written first
(identified by the goal fdv in Fig. 3(a)). This goal is decomposed into three sub-goals:
writing a title, an abstract, and the section titles; the sub-goals have to be achieved in



122 J.F. Hübner, O. Boissier, and R.H. Bordini

this very sequence. Other goals, such as finish, have sub-goals that can be achieved
in parallel. The specification also includes a “time-to-fulfil” (TTF) attribute for goals
indicating how much time an agent has to achieve the goal. The goals of this scheme
are distributed in three missions which have specific cardinalities (see Fig. 3(c)): the
mission mMan is for the general management of the process (one and only one agent
must commit to it), missionmCol is for the collaboration in writing the paper’s content
(from one to five agents can commit to it), and mission mBib is for gathering the
references for the paper (one and only one agent must commit to it). A mission defines
all goals an agent commits to when participating in the execution of a scheme; for
example, a commitment to missionmMan is effectively a commitment to achieve four
goals of the scheme. Goals without an assigned mission (e.g. fdv) are satisfied by the
achievement of their sub-goals.

The normative specification relates roles to missions (see Table 1). For example,
norm n2 states that any agent playing the role writer has one day to commit to mis-
sion mCol. Designers can also define their own application-dependent conditions (as
in norms n4–n6). Norms n4 and n5 define sanction and reward strategies for confor-
mance and violation of norms n2 and n3 respectively. Norm n5 can be read as “the
agent playing role ‘editor’ has 3 hours to commit to mission mr when norm n3 is ful-
filled”. Once committed to mission mr, the editor has to achieve the goal reward. Note
that a norm in MOISE is always an obligation or permission to commit to a mission.
Goals are therefore indirectly linked to roles since a mission is a set of goals.

Table 1. Normative Specification for the Paper Writing Example

id condition role type mission TTF

n1 editor per mMan –
n2 writer obl mCol 1 day
n3 writer obl mBib 1 day
n4 violation(n2) editor obl ms 3 hours
n5 conformance(n3) editor obl mr 3 hours
n6 #mc editor obl ms 1 hour

#mc stands for the condition “more agents committed to a
mission than permitted by the mission cardinality”.

4 Normative Organisation Programming Language

The NOPL is a particular class of NPL programs applied to MOISE. The syntax and
semantics are the same as presented in Sec. 2, but the set of facts, rules, and norms are
specific to the MOISE model and the organisational artifacts presented in Sec. 5. The
main idea is that an Organisational Specification (OS) is translated into various different
programs in NOPL; such programs then define the management of norms for groups and
schemes. In this section we consider only the programs generated for schemes.



A Normative Organisation Programming Language for OMIs 123

(a) Paper Writing Scheme

(b) Monitoring Scheme

mission cardinality

mMan 1..1
mCol 1..5
mBib 1..1

mr 1..1
ms 1..1

(c) Mission Cardinalities

Fig. 3. Functional Specification for the Paper Writing Example

4.1 Facts

For scheme programs, the following facts, defined in the OS, are considered:

– scheme mission(m,min,max): is a fact that defines the cardinality of a mission
(e.g. scheme mission(mCol,1,5)).

– goal(m,g,pre-cond,‘ttf‘): is a fact that defines the arguments for a goal g: its
mission, pre-conditions, and TTF (e.g. goal(mMan,wsec,[wcon],‘2 days‘)).

The NOPL also defines some dynamic facts that represent the current state of the or-
ganisation and will be provided by the artifact that manages the scheme instance:

– plays(a,ρ,gr): agent a plays the role ρ in the group instance gr.



124 J.F. Hübner, O. Boissier, and R.H. Bordini

– responsible(gr,s): the group instance gr is responsible for the missions of
scheme instance s.

– committed(a,m,s): agent a is committed to mission m in scheme s.
– achieved(s,g,a): goal g in scheme s has been achieved by agent a.

4.2 Rules

Besides facts, we define some rules that are useful for the NOPL programs. The rules
are used to infer the state of the scheme (e.g. whether it is well-formed) and goals (e.g.
whether it is ready to be achieved or not). Note that the semantics of well-formed and
ready to be achieved are formally given by these rules. As an example, some such rules
are listed below. Although the rule well formed is specific for the paper writing
scheme, the others are generic.

// number of players of a mission M in scheme S
mplayers(M,S,V) :- .count(committed(_,M,S),V).

// status of a scheme S
well_formed(S) :-
mplayers(mBib,S,V1) & V1 >= 1 & V1 <= 1 &
mplayers(mCol,S,V2) & V2 >= 1 & V2 <= 5 &
mplayers(mMan,S,V3) & V3 >= 1 & V3 <= 1.

// ready goals: all pre-conditions have been achieved
ready(S,G) :- goal(_, G, PCG, _) & all_achieved(S,PCG).

all_achieved(_,[]).
all_achieved(S,[G|T]) :- achieved(S,G,_) & all_achieved(S,T).

4.3 Norms

We have three classes of norms in NOPL: norms for goals, norms for properties, and
domain norms (which are explicitly stated in the normative specification). For the first
class, we have only the following norm that handles obligations to achieve goals:

// agents are obliged to fulfil their ready goals
norm ngoal: committed(A,M,S) & goal(M,G,_,D) &

well_formed(S) & ready(S,G)
-> obligation(A,ngoal,achieved(S,G,A),‘now‘ + D).

This norm can be read as “when an agent A: (1) is committed to a mission M that (2)
includes a goal G, and (3) the mission’s scheme is well-formed, and (4) the goal is
ready, then agent A is obliged to achieve the goal G before the deadline for the goal”.
This norm gives precise semantics for the notion of commitment in MOISE framework.
It also illustrates the advantage of using a translation to implement the OMI instead of an
object oriented programming language. For example, if some application or experiment
requires a semantics of commitment where the agent is obliged to achieve the goal even
if the scheme is not well-formed, it is simply a matter of changing the translation to a



A Normative Organisation Programming Language for OMIs 125

norm that does not include the well formed(S) predicate in the activation condition
of the norm. One could even conceive an application using schemes being managed by
different NOPL programs (i.e. each scheme translated differently).

For the second class of norms, only the mission cardinality property is considered
in this paper since other properties are handled in a similar way. In the case of mission
cardinality, the norm has to define the consequences of a circumstance where there are
more agents committed to a mission than permitted in the scheme specification. As pre-
sented in Sec. 2, two kinds of consequences are possible, obligation and regimentation,
and the designer chooses one or the other when writing the OS. Regimentation is the
default consequence and it is used when there is no norm with condition #mc in the
normative specification. Otherwise, as in norm n6 of Table 1, the consequence will be
an obligation. The norm for mission cardinality regimentation is:

// norm for cardinality regimentation
norm mission_cardinality: scheme_mission(M,_,MMax) &

mplayers(M,S,MP) & MP > MMax
-> fail(mission_cardinality).

and the norm without regimentation is:

// norm for cardinality without regimentation
norm mission_cardinality: scheme_mission(M,_,MMax) &

mplayers(M,S,MP) & MP > MMax &
responsible(Gr,S) & plays(A,editor,Gr)

-> obligation(A,mission_cardinality,committed(A,ms,_),
‘now‘+‘1 hour‘).

where the agent playing editor is obliged to commit to the mission ms in one hour.
For the third class of norms, each norm in the normative specification of the OML has

a corresponding norm in NOPL. Whereas OML obligations refer to roles and missions,
NPL requires that obligations are for agents and towards a goal. The NOPL norm thus
identifies the agents playing the role in groups responsible for the scheme and, if the
number of current players still does not reach the maximum cardinality, the agent is
obliged to achieve a state where it is committed to the mission. For example, the NOPL
norm for norm n2 in Table 1 is:

norm n2: plays(A,writer,Gr) & responsible(Gr,S) &
mplayers(mCol,S,V) & V < 5

-> obligation(A,n2,committed(A,mCol,S),‘now‘+‘1 day‘).

5 Artifact-Based Architecture

The approach introduced in this paper has been implemented in an OMI that follows
the Agent & Artifact model [15,11]. In this approach, a set of organisational artifacts is
available in the MAS environment providing operations and observable properties for
the agents so that they can interact with the OMI. For example, each scheme instance is
managed by a “scheme artifact”. The scheme artifact provides operations like “commit
to mission” and “goal x is achieved” (with which agents can act upon the scheme)



126 J.F. Hübner, O. Boissier, and R.H. Bordini

and observable properties (that agents perceive as the current state of the scheme). We
can effortlessly distribute the OMI by deploying as many artifacts as necessary for the
application.

Each organisational artifact has an NPL interpreter loaded with (i) the NOPL pro-
gram automatically generated from the OS for the type of the artifact (e.g. the artifact
that will manage the writing paper scheme will be loaded with the NOPL program trans-
lated from the corresponding scheme specification); and (ii) dynamic facts representing
the current state of (part of) the organisation (e.g. the scheme artifact will produce dy-
namic facts related to the current state of the scheme instance). The interpreter is then
used to compute: (i) whether some operation will bring the organisation into an incon-
sistent state (where inconsistency is defined by means of regimentations), and (ii) the
current state of the obligations.

Algorithm 2, implemented on top of CArtAgO [19], shows the general pattern we
used to implement every operation (e.g. role adoption and commitment to mission) in
the organisational artifacts. Whenever an operation is triggered by an agent, the algo-
rithm first stores a ‘backup’ copy of the current state of the artifact (line 5). This backup
is restored (line 10) if the operation leads to a failure (e.g. when committing to a mission
that is not permitted). The overall functioning is that invalid operations do not change
the artifact state.3 A valid operation is thus an operation that changes the state of the
artifact to one where no fail is produced by the NPL interpreter. In case the operation
is valid, the algorithm simply updates the current state of the obligations (line 13). Al-
though the NPL handles states in the norm’s conditions, this pattern of integration has
allowed us to use NPL to manage agents’ actions, i.e. the regimentation of operation on
artifacts.

Algorithm 2. Artifact Integration with NOPL
1: let oe be the current state of the organisation managed by the artifact
2: let p be the current NOPL program
3: let npi be the NPL interpreter
4: when an operation o is triggered by agent a do
5: oe′ ← oe // creates a “backup” of current oe
6: execute operation o to change oe
7: f ← a list of predicates representing oe
8: r ← npi(p, f) // runs the interpreter for the new state
9: if r = fail then

10: oe← oe′ // restore the state backup
11: return fail operation o
12: else
13: update obligations in the observable properties
14: return succeed operation o

Notice that the NOPL program is not seen by the agents. They continue to perceive
and reason on the scheme specification as defined in the OML. The NOPL is used only
inside the artifact to simplify its development.

3 This functioning requires that operations are not executed in parallel, which can be easily
configured in CArtAgO.



A Normative Organisation Programming Language for OMIs 127

Given the general pattern of integration proposed in Algorithm 2, organisational ar-
tifacts are mostly programmed in NOPL. Only the management of changes in the or-
ganisational state remains coded in Java within the organisational artifact.

6 Related Work

This work is based on several approaches to organisation, institutions, and norms (cited
throughout the paper). In this section, we briefly relate and compare our main contribu-
tions to such work.

The first contribution of the paper, the NPL, should be considered specially for two
properties of the language: its simplicity and its formalisation (that led to an available
implementation). Similar work has been done by Tinnemeier et al. [21,20], where the
operational semantics for a normative language was also proposed. Their approach and
ours are similar on certain points. For instance, both consider norms as “declarative”
norms (i.e. “ought-to-be” norms) in the sense that obligations and regimentation bear
on goals. However our work differs in several aspects. In our approach, the NOPL is for
the OMI and not to be used by programmers. The programmer continues to use OML
to define both an organisation and the norms that have to be managed within such a
structure. Organisation primitives are much richer in the OML than in the normative
language. Another clear distinction is that we rely on a dedicated programming model
(the Agent & Artifact model) providing a clear connection of the organisation to the
environment and allowing us to implement regimentation on physical actions [16]. The
artifacts model also simplified the distribution of the management of the state of the
organisation with several instances and types of artifacts.

Regarding the second contribution, namely the automatic translation, we were in-
spired by work on ISLANDER [3,9]. The main difference here is the initial and target
languages. While they translate a normative specification into a rule-based language,
we start from an organisational language and the target is a normative language. It is
simpler to translate OML norms into NPL norms, since we have norms in both sides of
the translation, than translate organisational norms into rules.

Regarding the third contribution, the OMI, we started from ORA4MAS [11]. The
advantages of the approach presented here are twofold: (i) it is easier to change the
translation than the Java implementation of the OMI; and (ii) with the operational se-
mantics of NPL and the formal translation we are taking significant steps towards a
formal semantics for MOISE.

7 Conclusion

In this paper, we introduced an approach for translating an organisation specification
written in MOISE OML into a normative program that can be interpreted by an artifact-
based OMI. Focusing on the translation rather than Java coding, we have brought flex-
ibility to the development of the OMI. We also made the point that such a normative
language can be based on only two basic concepts: regimentation and obligation. Pro-
hibitions are considered either as regimentation or as an obligation for someone else to
apply sanction. As a consequence, the resulting NPL is elegant and simpler to formalise



128 J.F. Hübner, O. Boissier, and R.H. Bordini

(only 6 rules in the operational semantics) and implement. Future work will concern
the proof of correctness of the translation from OML into NOPL and the exploration of
NPL translations for other organisational and institutional languages in order to assess
its generality.

References

1. Boissier, O., Hübner, J.F., Sichman, J.S.: Organization oriented programming from closed to
open organizations. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW
2006. LNCS (LNAI), vol. 4457, pp. 86–105. Springer, Heidelberg (2007)

2. Bordini, R.H., Hübner, J.F., Wooldrige, M.: Programming Multi-Agent Systems in AgentS-
peak using Jason. John Wiley & Sons, Chichester (2007)

3. da Silva, V.T.: From the specification to the implementation of norms: an automatic approach
to generate rules from norm to govern the behaviour of agents. Journal of Autonomous
Agents and Multi-Agent Systems 17(1), 113–155 (2008)

4. Dignum, V., Vazquez-Salceda, J., Dignum, F.: OMNI: Introducing social structure, norms
and ontologies into agent organizations. In: Bordini, R.H., Dastani, M.M., Dix, J., El Fallah
Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 181–198. Springer,
Heidelberg (2005)

5. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic institutions. In: Castel-
franchi, C., Lewis Johnson, W. (eds.) Proceedings of the First International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS 2002). LNCS (LNAI), vol. 1191,
pp. 1045–1052. Springer, Heidelberg (2002)

6. Esteva, M., Rodrı́guez-Aguilar, J.A., Rosell, B., Arcos, J.L.: AMELI: An agent-based mid-
dleware for electronic institutions. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M.
(eds.) Proceedings of the Third International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’2004), pp. 236–243. ACM, New York (2004)

7. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-
agents systems. In: Demazeau, Y. (ed.) Proceedings of the 3rd International Conference on
Multi-Agent Systems (ICMAS’98), pp. 128–135. IEEE Press, Los Alamitos (1998)

8. Fornara, N., Colombetti, M.: Specifying and enforcing norms in artificial institutions. In:
Omicini, A., Dunin-Keplicz, B., Padget, J. (eds.) Proceedings of the 4th European Workshop
on Multi-Agent Systems, EUMAS’06 (2006)

9. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Constraining rule-
based programming norms for electronic institutions. Journal of Autonomous Agents and
Multi-Agent Systems 18(1), 186–217 (2009)

10. Grossi, D., Aldewered, H., Dignum, F.: Ubi Lex, Ibi Poena: Designing norm enforcement
in e-institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 101–114. Springer,
Heidelberg (2007)

11. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisations with
organisational artifacts and agents: “giving the organisational power back to the agents”.
Journal of Autonomous Agents and Multi-Agent Systems (2009)

12. Hübner, J.F., Sichman, J.S., Boissier, O.: S-MOISE+: A middleware for developing organised
multi-agent systems. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E.,
Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM 2005 and OOOP 2005.
LNCS (LNAI), vol. 3913, pp. 64–78. Springer, Heidelberg (2006)

13. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multi-agent systems using the
MOISE+ model: Programming issues at the system and agent levels. International Journal of
Agent-Oriented Software Engineering 1(3/4), 370–395 (2007)



A Normative Organisation Programming Language for OMIs 129

14. Jones, A.J.I., Sergot, M.: On the characterization of law and computer systems: the normative
systems perspective. In: Deontic logic in computer science: normative system specification,
pp. 275–307. John Wiley and Sons Ltd., Chichester (1993)

15. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems.
Journal of Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

16. Piunti, M., Ricci, A., Boissier, O., Hübner, J.F.: Embodying organisations in multi-agent
work environments. In: Proceedings of International Joint Conferences on Web Intelligence
and Intelligent Agent Technologies (WI-IAT 2009), pp. 511–518. IEEE/WIC/ACM (2009)

17. Plotkin, G.D.: A structural approach to operational semantics. Technical report, Computer
Science Department, Aarhus University, Aarhus, Denmark (1981)

18. Pynadath, D.V., Tambe, M.: An automated teamwork infrastructure for heterogeneous soft-
ware agents and humans. Autonomous Agents and Multi-Agent Systems 7(1-2), 71–100
(2003)

19. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in CArtAgO. In:
Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Program-
ming: Languages, Tools and Applications, ch. 8, pp. 259–288. Springer, Heidelberg (2009)

20. Tinnemeier, N.A.M., Dastani, M., Meyer, J.-J., van der Torre, L.: Programming normative
artifacts with declarative obligations and prohibitions. In: Yates, R.B. (ed.) Proceedings of
International Joint Conferences on Web Intelligence and Intelligent Agent Technologies (WI-
IAT 2009), pp. 145–152. IEEE/WIC/ACM (2009)

21. Tinnemeier, N., Dastani, M., Meyer, J.-J.: Roles and norms for programming agent organi-
zations. In: Sichman, J., Decker, K., Sierra, C., Castelfranchi, C. (eds.) Proc. of AAMAS’09,
pp. 121–128 (2009)

22. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Norms in multiagent
systems: some implementation guidelines. In: Proceedings of the Sec-
ond European Workshop on Multi-Agent Systems, EUMAS 2004 (2004),
http://people.cs.uu.nl/dignum/papers/eumas04.PDF

23. López, F., López, M.L., d’Inverno, M.: Constraining autonomy through norms. In: Proceed-
ings of the first international joint conference on Autonomous agents and multiagent systems,
pp. 674–681. ACM Press, New York (2002)

http://people.cs.uu.nl/dignum/papers/eumas04.PDF

	A Normative Organisation Programming Language for Organisation Management Infrastructures
	Introduction
	Normative Programming Language
	Syntax
	Semantics

	$MOISE$ Organisational Modelling Language
	Normative Organisation Programming Language
	Facts
	Rules
	Norms

	Artifact-Based Architecture
	Related Work
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




