6 Reliability and Availability
of Repairable Systems

Reliability and availability analysis of repairable systems is generally performed
using stochastic processes, including Markov, semi-Markov, and semi-regenerative
processes. The mathematical foundation of these processes is in Appendix A7.
Equations used to investigate Markov and semi-Markov models are summarized in
Table 6.2. This chapter investigates systematically most of the reliability models
encountered in practical applications. Reliability figures at system level have indi-
ces Si (e.g. MTTFy;), where S stands for system and i is the state entered at t=0
(Table 6.2). After Section 6.1 (introduction, assumptions, conclusions), Section 6.2
investigates the one-item structure under general conditions. Sections 6.3-6.6 deal
extensively with series, parallel, and series-parallel structures. To unify models and
simplify calculations, it is assumed that the system has only one repair crew and no
Sfurther failures occur at system down. Starting from constant failure and repair
rates between successive states (Markov processes), generalization is performed
step by step (beginning with the repair rates) up to the case in which the process
involved is regenerative with a minimum number of regeneration states. Approxi-
mate expressions for large series - parallel structures are investigated in Section 6.7.
Sections 6.8 considers systems with complex structure for which a reliability block
diagram often does not exist. On the basis of practical examples, preventive main-
tenance, imperfect switching, incomplete coverage, elements with more than two
states, phased-mission systems, common cause failures, and general reconfigurable
fault tolerant systems with reward & frequency / duration aspects are investigated.
Basic considerations on network reliability are given in Section 6.8.8 and a general
procedure for complex structures is in Section 6.8.9. Sections 6.9 introduces
alternative investigation methods (dynamic FTA, BDD, event trees, Petri nets,
computer-aided analysis), and gives a Monte Carlo approach useful for rare events.
Asymptotic & steady-state is used as a synonym for stationary (pp. 490 & 501).
Results are summarized in tables. Selected examples illustrate the practical aspects.

6.1 Introduction, General Assumptions, Conclusions

Investigation of the time behavior of repairable systems spans a very large class of
stochastic processes, from simple Poisson process through Markov and semi-
Markov processes up to sophisticated regenerative processes with only one or just
a few regeneration states. Nonregenerative processes are rarely considered because
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168 6 Reliability and Availability of Repairable Systems

of mathematical difficulties. Important for the choice of the class of processes to be
used are the distribution functions for the failure-free and repair times involved. If
failure and repair rates of all elements in the system are constant (time independent)
during the stay time in each state (not necessarily at a state change, e.g. because of
load sharing), the process involved is a (time-homogeneous) Markov process with a
finite number of states, for which stay time in each state is exponentially distributed.
The same holds if Erlang distributions occurs (supplementary states, Section 6.3.3).
The possibility to transform a given stochastic process into a Markov process by
introducing supplementary variables is not considered here. Generalization of the
distribution functions for repair times leads to semi-regenerative processes, i.€., to
processes with an embedded semi-Markov process. This holds in particular if the
system has only one repair crew, since each termination of a repair is a renewal
point (because of the constant failure rates). Arbitrary distributions of repair and
failure-free times lead in general to nonregenerative stochastic processes.

Table 6.1 shows the processes used in reliability investigations of repairable
systems, with their possibilities and limits. Appendix A7 introduces these processes
with particular emphasis on reliability applications. All equations necessary for the
reliability and availability calculation of systems described by (time-homogeneous)
Markov processes and semi-Markov processes are summarized in Table 6.2.

Besides the assumption about the involved distribution functions for failure-free
and repair times, reliability and availability calculation is largely influenced by the
maintenance strategy, logistic support, type of redundancy, and dependence between
elements. Existence of a reliability block diagram is assumed in Sections 6.2- 6.7,
not necessarily in Sections 6.8 and 6.9. Results are expressed as functions of time
by solving appropriate systems of differential (or integral) equations, or given by the
mean time to failure or the steady-state point availability at system level (MTTFg; or
PAg) by solving appropriate systems of algebraic equations. If the system has no
redundancy, the reliability function is the same as in the nonrepairable case. In the
presence of redundancy, it is generally assumed that redundant elements will be
repaired without operational interruption at system level. Reliability investigations
thus aim to find the occurrence of the first system down, whereas the point
availability is the probability to find the system in an up state at a time f,
independently of whether down states at system level have occurred before ¢.

In order to unify models and simplify calculations, the following assumptions
are made for analyses in Sections 6.2-6.6 (partly also in Sections 6.7-6.9).

1. Continuous operation: Each element of the system is in operating or
reserve state, when not under repair or waiting for repair. 6.1)
2. No further failures at system down (no FF): At system down the system is
repaired (restored) according to a given maintenance strategy to an up
state at system level from which operation is continued, failures during a
repair at system down are not considered. (6.2)
3. Only one repair crew: At system level only one repair crew is available,
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repair is performed according to a stated strategy, e. g. first-in/first-out.
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(6.3)

4. Redundancy: Redundant elements are repaired without interruption of oper-

ation at system level; failure of redundant parts is immediately detected.

6.4)

5. States: Each element in the reliability block diagram has only two states
(good or failed); after repair (restoration) it is as-good-as-new.
6. Independence: Failure-free and repair times of each element are stochas-
tically independent, >0, and continuous random variables with finite mean
(MTTF, MTTR) and variance (failure-free time is used as a synonym for
failure-free operating time and repair as a synonym for restoration).
7. Support: Preventive maintenance is neglected; fault coverage, switching,

and logistic support are ideal (repair time = restoration time = down time).

(6.5)

(6.6)

(6.7)

The above assumptions holds for Sections 6.2-6.6, and apply in many practical situ-
ations. However, assumption (6.5) must be critically verified, in particular for the
aspect as-good-as-new, when repaired elements contain parts with time dependent
failure rate which have not been replaced by new ones. This assumption is valid if
nonreplaced parts have constant (time independent) failure rates, and applies in
this case at system level. At system level, reliability figures have indices Si
(e.g. MTTFg;), where S stands for system and i is the state entered at =0 (Table 6.2).
Assuming irreducible processes, asymptotic & steady-state is used for stationary.

Table 6.1 Stochastic processes used in reliability and availability analysis of repairable systems

Stochastic process Can be used in modeling Background  |Difficulty
Spare parts provisioning in the case of arbi- Renewal
Renewal process trary failure rates and negligible replacement theory Medium
or repair time (Poisson process for const. A)
Alternating renewal One-item repairable (renewable ) structure Renewal Medium
process with arbitrary failure and repair rates theory
Systems of arbitrary structure whose elements| Differential
Markov process (MP) | have constant failure and repair rates (A;,l;) | equations
(finite state space, time- | during the stay time (sojourn time) in every or Low
homogeneous) state (not necessarily at a state change, e.g. | Integral
because of load sharing) equations
Semi-Markov process Some systems whose elements have constant Integral
5 i istri A Medium
(SMP) or.Erlanglan 'fallure rates (_Erlang dlS'tl‘lbLlled equations
failure-free times) and arbitrary repair rates
Semi-regenerative proc. | Systems with only one repair crew, arbitrary Integral )
(process with an embedded | structure, and whose elements have constant equations High
SMP, i.e. =2 reg. states) | failure rates and arbitrary repair rates
Nonregenerative Systems of arbitrary structure whose elements Pa:,u?l differ- | Highto
process have arbitrary failure and repair rates ential egs. (case | very
by case soluttion)| high
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Table 6.2 Relationships for the reliability, point availability & interval reliability of systems described

by (time-homogeneous) Markov processes & semi-Markov processes (Appendices A7.5-A7.6)
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6.1 Introduction and General Assumptions

Table 6.2 (cont.)
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172 6 Reliability and Availability of Repairable Systems

Section 6.2 considers the one-item repairable structure under general assump-
tions, allowing a careful investigation of the asymptotic and stationary behavior.
For the basic reliability structures encountered in practical applications (series,
parallel, and series-parallel), investigations in Sections 6.3 - 6.6 begin by assuming
constant failure and repair rates for every element in the reliability block diagram.
Distributions of the repair times, and as far as possible of the failure-free times, are
then generalized step by step up to the case in which the process involved remains
regenerative with a minimum number of regeneration states. This, also to show
capability & limits of the models involved. For large series-parallel structures,
approximate expressions are developed in deep in Section 6.7. Procedures for
investigating repairable systems with complex structure (for which a reliability
block diagram often does not exist) are given in Section 6.8 on the basis of practical
examples, including, among others, imperfect switching, incomplete coverage,
more than two states, phased-mission systems, common cause failures, and fault
tolerant reconfigurable systems with reward & frequency/duration aspects. It is
shown that the tools developed in Appendix A7 (summarized in Tab. 6.2) can be
used to solve many of the problems occurring in practical applications, on a case-
by-case basis working with the diagram of transition rates or a time schedule.
Alternative investigation methods, as well as computer-aided analysis is discussed
in Section 6.9 and a Monte Carlo approach useful for rare events is given.

From the results of Sections 6.2 - 6.9, the following conclusions can be drawn:

1. As long as for each element in the reliability block diagram the condition
MTTR << MTTF holds, the shape of the distribution function of the repair time
has small influence on the mean time to failure and on the steady-state
availability at system level (see for instance Examples 6.8, 6.9, 6.10).

2. As a consequence of Point 1, it is preferable to start investigations by assuming
Markov models (constant failure and repair rates for all elements, Table 6.2); in
a second step, more appropriate distribution functions can be considered.

3. The assumption (6.2) of no further failure at system down has no influence on
the reliability function; it allows a reduction of the state space and simplifies
calculation of the availability and interval reliability (yielding good approxi-
mate values for the cases in which this assumption does not apply).

4. Already for moderately large systems, use of Markov models can become time-
consuming (up to e-n! states for a reliability block diagram with n elements);
approximate expressions are important, and the macro-structures introduced in
Section 6.7 (Table 6.10) adheres well to many practical applications.

5. For large systems or complex structures, following possibilities are available:
¢ work directly with the diagram of transition rates (Section 6.8),

* calculation of the mean time to failure and of the steady-state availability at
system level only (Table 6.2, Egs. (A7.126), (A7.173), (A7.131), (A7.178)),

* use of approximate expressions (Sections 6.7 and 6.9.7),

» use of alternative methods or Monte-Carlo simulation (Section 6.9).
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6.2 One-Item Structure

A one-item structure is an unit of arbitrary complexity, generally considered as an
entity for investigations. Its reliability block diagram is a single element (Fig. 6.1).
Considering that in practical applications a repairable one-item structure can have
the complexity of a system, and also to use the same notation as in the follow-
ing sections of this chapter, reliability figures are given with the indices § or S0
(e.g. PAg, Rgq(t), MTTFg( ), where S stands for system and 0 specifying item new
at t=0 (S alone is used for arbitrary conditions at 7=0 or for steady-state).

Under the assumptions (6.1) to (6.3) and (6.5) to (6.7), the repairable one-item
structure is completely characterized by the distribution function of the failure-free
times Ty, Ty,...

Fa(x) =Pr{tg<x} and F(x)="Pr{t; <x}, ;:(2)} 2_’;’(0;?00’ (6.8)
A - = U,

with densities
dF(x)

AR g g = B (6.9)

f
A(x) o PR

the distribution function of the repair times T, t{,...

i=1,2,.., x>0

= L < = v <
Ga(x) =Pr{ty<x} and G(x)=Pr{t; <x}, G0)=G 4 0)=0, (6.10)
with densities
dG 4(x) dG(x)
= 272A d = ) 6.11
gax) . and  g(x) pm (6.11)
and the probability p that the one-item structure is up at t =0
p=Pr{up atr =0} (6.12)

or
1— p = Pr{down (i.e. under repair) at ¢ = 0},

respectively (7; & T; are interarrival times, and x is used instead of ¢). The time
behavior of the one-item structure can be investigated in this case with help of the
alternating renewal process introduced in Appendix A7.3.

»— E —»

Figure 6.1 Reliability block diagram for a one-item structure
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up B ) Y Y
0 Sduu 1 - Sduu 2 - Sduu 3
Tz T3

down T'l

Figure 6.2 Possible time behavior for a repairable one-item structure new at t =0 (repair times
greatly exaggerated, alternating renewal process with renewal points 0, Sgyu7, Squu2..-- for a
transition from down state to up state given that the item is up at # =0 (marked by e))

Section 6.2.1 considers the one-item structure new at ¢ =0, i.e., the case p =1
and F,(x) = F(x), with arbitrary F(x) and G(x). Generalization of the initial
conditions at =0 (Sections 6.2.3) allows in Sections 6.2.4 and 6.2.5 a depth
investigation of the asymptotic and steady-state behavior.

6.2.1 One-Item Structure New at Timez=0

Figure 6.2 shows the time behavior of a one-item structure new at t =0. T;, Ty,...
are the failure-free times. They are statistically independent and distributed
according to F(x) as per Eq. (6.8). Similarly, 7;,T5,... are the repair times,
distributed according to G(x) as per Eq. (6.10). Considering assumption (6.5), the
time points 0, Sy,,,... are renewal points and constitute an ordinary renewal
process embedded in the original alternating renewal process. Investigations of this
Section are based on this property (S, means a transition from down (repair) to
up (operating) starting up at ¢ =0).

6.2.1.1 Reliability Function

The reliability function Rgo(t) gives the probability that the item operates failure
free in (0, ¢] given item new at t =0

Rgo(r) =Pr{upin (0,r] | new at # =0}. (6.13)
Considering Eqs. (2.7) and (6.8) it holds that
Rgo(f) = Pr{t; > 1} =1-F(1), (6.14)

yielding Rgq(1) = e~M for the case of constant failure rate A. The mean time to
failure given item new at t = 0 follows from Eq. (A6.38)

MTTFgg= [Rso(r)dt, (6.15)
0
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with upper limit of the integral T; should the useful life of the item be limited to 7,
(Rgo(#) jumps to O at t=T7;). In the following, T; =< is assumed, yielding
MTTF, = 1/ ) for the case of constant failure rate A.

6.2.1.2 Point Availability

The point availability PA (1) gives the probability of finding the item operating at
time ¢ given item new at t =0

PAgo(t) =Pr{upat ¢ | new at ¢t =0}. (6.16)

For PAq(#) it holds that

t
PA 5o() =1=F() + [ h g, (x) (1 = F(t = x)) dix.. (6.17)
0

A(t) is often used instead of PAgy(#). Equation (6.17) is derived in Appendix
A7.3 (Eq. (A7.56)) using the theorem of total probability. 1- F(#) is the probability
of no failure in (0, ¢, h4,,(x)dx gives the probability that any one of the renewal
points S g5 S guuzs --- lies in (x, x + dx], and 1-F(¢ ~x) is the probability that no
further failure occurs in (x, t]. Using Laplace transform (Appendix A9.7) and
considering Eq. (A7.50) with F4(x) = F(x), Eq. (6.17) yields

1-1(s)
s(1-f(s)8(s)

f(s) and §(s) are the Laplace transforms of the failure-free time and repair time
densities, respectively (given by Egs. (6.9) and (6.11)).

PA 5o(s) = (6.18)

Example 6.1

a) Give the Laplace transform of the point availability PAg (¢) for the case of a constant
failure rate A (A(x) = A).

b) Give the Laplace transform and the corresponding time function of the point availability for
the case of constant failure and repair rates A and . (A(x) = A and p(x) = ).

Solution
a) With () =1—e ™" or f(x) = Ae™**, Eq. (6.18) yields
PAgy(s)= 1/ (s+A(l= &) (6.19)
Supplementary results: g(x)=0.(0 x)B_1 e "MIT(B) (Eq. (A6.98)) yields
(s+0)f
G+M(E+a)f -hab .

PAgy(s) =
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b) With £(x) = Ae ™ and g(x) =pe ™, Eq. (6.18) yields

s+U

PAso() = vy

and thus (Table A9.7b)

kA et A -t
PAg,(t) = ?»+u+7»+ue = (1 A/u)+ue . (6.20)

PAg(t) converges rapidly, exponentially with a time constant
1/(A+ W) =1/u = MTIR,

to the asymptotic value /(A +W) = 1 — A/, see Section 6.2.4 for an extensive discussion.

PAgo(?) can also be obtained using renewal process arguments (Appendices A7.2,
A7.3, A7.6). After the first repair the item is as-good-as-new. S,,, is a renewal
point and from this time point the process restarts anew as at t = 0. Therefore

Pr{upat t | Sgu1 =x}=PAgg(t—x). (6.21)
Considering that the event

{up atr}
occurs with exactly one of the following two mutually exclusive events

{ no failure in (0, ] }

or

{Sgua <t Nupat t}

it follows that

t
PA go(t) = 1= F(1) + [ (f(x) 5g(x)) PA so(r — x) dx, (6.22)
0

where f(x) * g(x) is the density of the sum T; + Tl' (see Fig 6.2 and Eq. (A6.75)).
The Laplace transform of PA () as per Eq. (6.22) is that given by Eq. (6.18).
6.2.1.3 Average Availability

The average availability AAgq(t) is defined as the expected proportion of time in
which the item is operating in (0, ¢] given item new at t =0

1
AAgo(t) = 7 E[total up time in (0, ¢] | new at t =0]. (6.23)



6.2 One-Item Structure 177

Considering PA g((x) from Eq. (6.17), it holds that
L
AAso(n) = j PAgo(x)dx. (6.24)
0

Eq. (6.24) has a great intuitive appeal. It can be proved by considering that the time
behavior of the repairable item can be described by a binary random function {(¢)
taking values 1 for up and 0 for down, From this, E[{(#)] = 0- (1— PAgy(2))+
1. PA go(2)=PA((#) and, taking care of r {(x)dx = total up time in (0, 7], it follows
that (by Fubini's theorem [A6.6 (Vol.1I)] and assuming existence of the integrals)

t t t
AAso(0) = + B [E@dx] = 1 [EILTdr = 1 [PAgo(x) d.
0 0 0

6.2.1.4 Interval Reliability

The interval reliability IRgo(¢, 1+ 0) gives the probability that the item operates
failure free during an interval [z, f + 0] given item new at t =0

IRgo(t, 7 +6) =Pr{upin [¢,1+0] | new at # =0}. (6.25)
The same method used to obtain Eq. (6.17) leads to
t
IRgo(t,t+6) =1-F(+ +6) + Ihduu(x)(l -F(t+0-x))dx. (6.26)
0
Example 6.2

Give the interval reliability IRgq (¢, ¢ +6) for the case of a constant failure rate . (A(x) = X).

Solution
With F(x) = 1 — e ¥ it follows that

t t
Ryt +8) = O [h 4 (1)e ™ 0 e = ™ [ g (00 iy 7,
0 0
Comparison with Eq. (6.17) for F(x) =1- e}‘x yields

Rgo(t,t +0) = PAgy () e . (6.27)

It must be pointed out that the product rule in Eq. 6.27, expressing Pr{up in [¢, ¢ + 6]
| new at r = 0} = Pr{up att | new at ¢ =0} - Pr{no failure in (¢, ¢ + 6] | up at t}, is valid
only because of the constant failure rate A (imemoryless property, Eq.(2.14)); in the
general case, the second term is Pr{no failure in (¢,  + 6] | (up at tnnew att = 0)},
which differs from Pr{no failure in (¢, ¢ + 6] | up at ¢} (see also Example A7.2).
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6.2.1.5 Special Kinds of Availability

In addition to the point and average availability (Sections 6.2.1.2 and 6.2.1.3), there
are several other kinds of availability useful for practical applications [6.5 (1973)]:

1. Mission Availability: The mission availability MAy(T,,t,) gives the
probability that in a mission of total operating time (total up time) T, each
failure can be repaired within a time span ¢,, given item new at t =0

MA 5o(7T,,t,) = Pr{each individual failure occuring in a mission with
total operating time T, can be repaired in a time < ¢, I new at r=0}. (6.28)

Mission availability is important in applications where interruptions of length
<t, can be accepted. Its computation considers all cases with n=0,1, ...
failures, taking care that at the end of the mission the item is operating
(to reach the given (fixed) operating time 7;,)." Thus, for given T,> 0 and ¢,

MA 5(T,, 1,) = 1=F(T,) + D, (Fy(To) = Fup (T,)) (G(z, )" (6.29)

n=1
holds. E,(T,)-F,,;(T,) is the probability for n failures during the total
operating time 7, (Eq. (A7.14)); (G(,)" is the probability that all »
repair times will be shorter than t,. For constant failure rate ) it holds that
F,(T,)~F, . (T,)=(AT,)"e *To /n! and thus

MA 5o(T,.t,) = e 0 0=GCo)), (6.30)

2. Work-Mission Availability: The work-mission availability WMA ¢ (T, x) gives
the probability that the sum of the repair times for all failures occurring in a
mission of total operating time (total up time) T, is <x, given item new at t=0

WMA (T,,x) =Pr{sum of the repair times for all failures occurring
in a mission of total operating time T, is <x I newat r=0}. (6.31)

Similarly as for Eq. (6.29) it follows that for given (fixed) T,>0 and x> 0%
WMA so(T,, x) =1-F(T,) + 2 F(T,) = F 1 (T,)) Gu(x), (6.32)
n=1

where G,(x) is the distribution function of the sum of » repair times with dis-
tribution G(x) (Eq. (A7.13)). As for the mission availability, the item is up at
the end of the mission (to reach the given (fixed) operating time T,). For con-
stant failure and repair rates (A, p), Eq. (6.32) yields (see also Eq. (A7.219))

+) An unlimited number n of repair is assumed here, see e. g. Section 4.6 (p. 140) for n limited.
++) See e.g. p. 514 for a possible application of Eq. (6.32) to a cumulative damage model.
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b n p-1 k
1 _,~(Tp+ux) (ATy) (px) T, >0 given, x>0,
WMA go(T,, x)=1—¢ ;[T kgo 00 WA (T, 0=

(6.33)

Defining DT as total down time and UT =t — DT as total up time in (0,#], one
can recognize that for given fixed ¢, WMAg (¢ -x, x) = Pr {DT in (0,7] < x}
holds for an item described by Fig. 6.2 (7>0, 0<x < ). However, the item
can now be up or down at ¢, and the situation differs from that defined by
Eq.(6.31). The function WMA ¢ (¢ - x, x) has been investigated in [A7.29(57)].
In particular, a closed analytical expression for WMA(f-x,x) is given for
constant failure and repair rates (A, W), and it is shown that the distribution of
DT converges for - to a normal distribution with mean ¢ A/(A+u)=tA/u
and variance £2Ap/(A+p)*=22A/u?. It can be noted, that for the interpre-
tation described by Eq. (6.32), mean and variance of the total repair time are
given exactly by TyA/u and Ty2 A/ w? respectively (Eq. (A7.220)).

3. Joint Availability: The joint availability JAgq(?, ¢ +0) gives the probability of
finding the item operating at the time points ¢ and 7+ 0, given item new at
t=0 (0 is given (fixed), see e.g. [6.15(1999), 6.28] for stochastic demand)

JAgo(t,t+0) =Pr{(upat t N upatt+0) | new at t =0}. (6.34)
For the case of constant failure rate Mx) = A, Eq. (6.27) yields
JAgo(t,t+0) =PAg(t) - PAgo(0). (6.35)

For arbitrary failure rate, one has to consider that {up at 7~ up at £+ 6| new at =0}
occurs with one of the following 2 mutually exclusive events (Appendix A7.3)

{upin[t,t+6] | new att =0}
or
{(up at t M next failure occurs before t +0 M up at t +0) | new at ¢ =0}.

The probability for the first event is the interval reliability IRgq(z,¢+ 0) given
by Eq. (6.26). For the second event, it is necessary to consider the distribution
function of the forward recurrence time in the up state Tg,(¢t). As shown in
Fig. 6.3, Tg,(t) can only be defined if the item is up at time ¢, hence

Pr{tg () > x I new att =0} = Pr{up in (¢, t+x] | (up at t " new at ¢t =0)}
and thus, as for Example A7.2 and considering Egs. (6.16) and (6.25),

Pr{up in [#,t+ x] Inew att =0} _IRgo(t,t+ x)

Pr{up at ¢ | new at ¢ = 0} - PA go(2)
=1-F; (1) (636)

Pr{t g (1)>x I new at t=0}=
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For constant failure rate A(x) = A one has 1-F; Ru x)= e_}‘“‘E

Considering Eq. (6.36) it follows that

,as per Eq.(6.27).

0
TAgo(1,1+ 8) = IR (1,2 + 0) + PAgo (1) | fe (IPAG (8- x)dx
0

0
dIRso (2,1 + x)
= IRso(t,[+ 9) —J. % PAsl(e_x)dx ’ (637)
0

where PAg (1) = Pr{upat? I a repair begins at t = 0} is given by

t
PA (1) = [ hyuq(x)(1=F(t = x))dx, (6.38)
0
with h g, (1)=g(1)+g(2)  f(2)* g(t)+g(t) * £(£) * g(£) * £(£)* g(£)+... (Eq. (A7.50)).
JAg((2,t + 0) can also be obtained in a similar way to PA¢q(¢) in Eq. (6.17),
by considering the alternating renewal process starting up at the time ¢ with
Tg,(¢) distributed according to FTR (x) as per Eq. (6.36). This leads to
_ 0
JAgo(t,t+0) =IRgo (1,1 + )+ .[h;uu ®)(1-F(0 - x))dx, (6.39)
0
with h;iw ) :fT'R(x)*g(x)+fT'R(x) * g(x) * f(x) * g(x)+ ..., see Eq. (A7.50), and
£y () =PAgo(1)fy (x)=PAgo(1)dFy (x)/dv==3IRso(1,t +x)/dx, s € e
Eqs. (6.36) and (6.37). Similarly as for Tg,(?), the distribution function for
the forward recurrence time in the down state Tg,(t) is given by (Fig. 6.3)

t
Pr{tp4(2) le new at t=0} =1 —Ihudu(y)(l = G(t+x-y))dy [ (1-PAgp(2), (6.40)
0

with h,;, () = f(¢) + f(z) * g(¢) * f(¢) + ... (Eq. (A7.50)). For constant failure
rate A(x)=A, Eq.(6.37) or (6.39) leads to Eq. (6.35), by considering Eq.(6.19).

Other kinds of availability are possible. For instance, availability by omitting down
times for repair shorter than a given fixed or random time A has been investigated

recently in [6.48), yielding for the case of fixed A to th_r)n PA,(1)=1- ﬁ(l +pA) e M

Trd®

r=l \ »!

- ¢ ()

Figure 6.3 Forward recurrence times Ty, (f) and Tg;(¢) in an alternating renewal process
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6.2.2 One-Item Structure New at Time 7 =0 and with
Constant Failure Rate A

In many practical applications, a constant failure rate A can be assumed. In this
case, the expressions of Section 6.2.1 can be simplified making use of the
memoryless property given by the constant failure rate. Table 6.3 summarizes
the results for the cases of constant failure rate (A) and constant or arbitrary
repair rate (p or u(x) = g(x)/(1-G(x))). Approximations in Table 6.3 are valid
for A <<p and #>10/pu=10MTTR. For points 3 in Table 6.3 it can be noted that
AAgp(0)=1, as for PAgy(0), and that the convergence of AAg((¢) toward
AAg = PAy is slower than that of PA gq(#). The product rule for IRg((z, £ + 0) and
JAgo(2, t +0) is valid because of the constant failure rate A.

Table 6.3 Results for a repairable one-item structure new at ¢ = 0 and with constant failure rate A

Repair rate Remarks, Assumptions

arbitrary ((x)) constant (1)*
1. Reliability func- oM oM Rg o (t)="Pr{upin (0, 1] |
tion Rg(2) new at? = 0}
. - M n A
2. Point , e T+ . e T PAC (1) = Pr{upat 1 |
availability J'hduu(x)e—x(t—x )dx Atu A+ p newatt = 0}, hy, =
PAgo (1) 0 sl p) =1-aip | fretfegefeg+ ..
3. Average L L A -e MW )
availability - _[ PAgo(x)dx | A+p Ot ) AAg (t)=E[total up time
LI in (0,t]|newatt=0}/t
AAg( (@) ~ /At p) +AI1p?
iabili -1 0 - -A8 .
4. Interval reliabili- PASO(t)e_}"e ne ae drme IRg (1,7 + ) = Pr{upin
ty IRgo (7,7 +0) P At p [t, t+6]| newats = 0}
5. Joint availability JAg @t 1+ O)=Pr{upatrn
PA . (t)PA.,(0) PA ., (t)PA.,(©) upatt+ 6 | newatz=0},
S0 S0 S0 S0
JAgy(t,t +0) PA ,(x)as in point 2
50 point
6. Mission MASO(TO,tf)=Pr{each fail -
availability e AT, (-G ¢)) e_}” 7MY ure in a mission with total op-

MAso(T;ytf)

erating time 7, can be repaired
inatime<? | newatt = 0}

*+) Markov process; up=operating state; approximations valid for A << u and ¢ >10/p = 10 MTTR
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6.2.3 One-Item Structure with Arbitrary Conditions at ¢ =0

Generalization of the initial conditions at time ¢ =0, i.e., the introduction of p,
F,(x) and G ,(x)as defined by Eqgs. (6.12), (6.8), and (6.10), leads to a time
behavior of the one-item repairable structure described by Fig. A7.3 and to the
following results:

1. Reliability function Rg(t)
Rg(#) =Pr(upin (0,1] | upatt =0} =1-F,(s). (6.41)

Equation (6.41) follows from Pr{up in [0,7]} =Pr{up att =0 N Pr{up in(0,7]}
= Pr{up att = 0} - Pr{up in (0, ] I upatt=0}=p-(1-F,(#) = p-Rg(?).

2. Point availability PAg(t)

t
PA (1) = Pr{up att} = p[1-F (1) + [ hg,, (x) 1 =F(t - x)) dx]

0
t

+ (1= p) [ hgua(x)A=F(t - x)) dx, (6.42)
0
with h g, (£)=f4(2) % g(£) +4(2) # g(2) % f(2) * g(£) + ... and h 4, ,(2) = g4 () +
ga(t) = f(2)* g(t)+ g4(2) * (1) * g(2) = £(2) * g(¢) + ... (see also Eq. (A7.50)).

3. Average availability AAg(t)

1
AAg(t) = . E [total up time in (0, ¢]] = PA g(x)dx . (6.43)

~ | =
O

4. Interval reliability IR¢(t, t + 0)

IR4(z,t+0) =Pr{upin [z, + 0]}

t
= pl1-F4(t +e)+jhduu(x)(1—r«(t +0 —x))dx]
0
t
+(1= p) [ hguq(x)(1-F(t +6 —x))dx . (6.44)
0
5. Joint availability JA(t, t+ 0)

JAg(t,t+0) =Pr{up att N up at ¢t +0}

?BIRS(t,t+ x)

=IRg(¢,2+6) - PA51(0 —x) dx, (6.45)

0
with IRg(t, ¢ + 6) from Eq. (6.44) and PA(¢) from Eq. (6.38).
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6. Forward recurrence times (Tg,(t) and Tg,(t) as in Fig. 6.3)
Pr{tg,(t) £x}=1-IRg(t,t +x) / PAg(r), (6.46)
with IRg(z, ¢ + x) according to Eq. (6.44) and PA ¢(¢) from Eq. (6.42), and

Pr{down in [t, t + x]}
P <x}=1- .
t{Try (1) < x} - PAL (1) , (6.47)

where

t
Pr{down in [1, 1+ x]} = p[ 1, (y)(1 = G(t + x = y))dy
0 t
+(1—p)[1—GA(t+x)+Jhudd(y)(l—G(t+x—y))dy],
0
with h g, (1) =f,(8)+£4(£) % g(£) * £(£) + £, (1) * g(2) * (1) * g(t) * £(¢) + ... and
hga(?) = ga(@) #1(2) + g4 (1) * £(2) * g(£) * f(2) + ...

Expressions for mission availability and work-mission availability are generally
only used for items new at time =0 (see [6.5 (1973)] for a generalization.

6.2.4 Asymptotic Behavior

As t — oo expressions for the point availability, average availability, interval relia-
bility, joint availability, and distribution function of the forward recurrence time
(Eqgs. (6.42)-(6.47)) converge to quantities which are independent of ¢ and initial
conditions at r=0. Using the key renewal theorem (Eq. (A7.29)) it follows that

MTTF
lim PAg(r) = PAg = ——————, (6.48)
f—>c0 MTTF + MTTR
MTTF
lim AAg(7) = Alg = —————— = PAg;, (6.49)
t—>o0 MTTF + MTTR
1 oo
lim IR (1, 1+ 0) = IRg(0) = ————— [(1-F(y))dy, (6.50)
t—o0 MTTF + MTTR B
MTTF
lim JAg(f, 1+ 6) = JA g(8) = —————— PAg,,(0), 6.51
Jim TAs V=IO = s vrrr ©s0e(9) ©31)
1 X
lim Pr{tp,(N< x} = —— [(1-F()dy, (6.52)
t—>o00 MTTF 0
1 pe
lim P n<x)=—— [(1-GO))dy, 6.53
lim Pr(tgy(n<x) = o [a-Gonay (6.53)

0
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where MTTF = E[t;], MTTR=E[1;], i =12,..., and PA,(0) is the point avail-
ability according to Eq. (6.42) with p=1 and F,(¢) from Eq. (6.57) or Eq. (6.52).
In practical applications, PA and AA (or PAgand AAg for system oriented values)
are often referred as availability and denoted by A. The use of PAg=AAg=
(MTBF - MTTR) /| MTBF is to avoid, because it implies MTBF = MTTF + MTTR.

Example 6.3

Show that for a repairable one-item structure in continuous operation, the limit

. MTTF
limPAg(t) = PAg = ———————
o MTTF + MTTR

is valid for any distribution function F(x) of the failure-free time and G(x) of the repair time,
if MTTF <oo, MTTR < <, and the densities f(x) and g(x) goto0as x — oo.

Solution

Using the renewal density theorem Eq. (A7.31) it follows that

limh, ()= limh, ,(¢t)=———""
d dud
oo o0 MTTF + MTTR

Furthermore, applying the key renewal theorem Eq.(A.7.29)to PAg (t) given by Eq.(6.42) yields

[ a-Fayax [ a-Fayax
limPAg (1) = p(l -1+ 2——) 4+ 1 - ) >—
1—>00 MTTF + MTIR MTTF + MTTR

MTTF MTTF MTTF

a-p

= + = .
b MTTF + MTTR MTTF + MTTR  MTTF + MTTR

The limit MTTF / (MTTF + MTTR) can also be obtained from the final value theorem of the
Laplace transform (Table A9.7), considering for s — 0
f(s)=1-s MTTF +0o(s) ~1- 5 MTTF

and
8(s)=1-s MTTR + o(s)=1—-s MTTR. (6.54)

with o(s) as per Eq. (A7.89). When considering g(A) for availability calculations, the
approximation given by Eq. (6.54) often leads to PAg =1, already by simple redundancy
structures. In these cases, Eq. (6.113) has to be used.

In the case of constant failure & repair rates A(x) = A and w(x) = u, Eq. (6.42) yields

PAG(1) = —o— 4 (p— —H—y e~ @01 (6.55)
A+l

A+l

Thus, for this important case, the convergence of PA () toward PAg =p/(A+ W)
is exponential with a time constant 1/(A+u)<1/u=MTTR. In particular, for
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p=1,1.e. for PAg(0) =1and PAg(¢) = PAgq(2), it follows that

PAg(1)— PAg = )»i:u e~ A0 o %e‘”’ = AMTTR ¢~ '"MTTR (6.56)
Generalizing the distribution function G(x) of the repair time and/or F(x) of the
failure-free time, PAgy(¢#) can oscillate damped (as in general for the renewal
density h(z) given by Eq. (A7.18)). However, for constant failure rate ). and
providing A MTTR sufficiently small and some rather weak conditions on the
density g(x), lower and upper bounds for PA () can be found [6.25]

AMTIR o~ OFUMTTR) 1

PA¢o(t) 2 - C t20
S0 1+ AMTTR  * 1+ AMTTR
and
AMTTR — _
PAgo(1) < t ¢, e~ WHUMITRYE 5 g,
1+ AMTIR 1+ AMTIR

¢;=1 holds for many practical applications (A MTTR << 0.1). Sufficient conditions
for ¢, =1 are given in [6.25]. However, conditions on ¢, are less important as on
¢;, since PAgq(t)<1is always true. The case of a gamma distribution with density
g(x) =P xP1 ey I(B), mean B /o, and shape parameter § > 3, leads for instance
to | PAgq(1) - PAg |< AMTTR ¢~ ""MTTR gt least for ¢ > 3MTTR = 3B /c.

6.2.5 Steady-State Behavior

For

MTTF 1 % 1 *
p=————  Fy()=——[(-F)dy, Gux)=——[1-GO)dy (6.57)
MTTF + MTTR MTTF 0 MTTR 0

the alternating renewal process describing the time behavior of a one-item
repairable structure is stationary (in steady-state), see Appendix A7.3. With p,
F, (1), and G4(¢) as per Eq. (6.57), the expressions for the point availability (6.42),
average availability (6.43), interval reliability (6.44), joint availability (6.45), and
the distribution functions of the forward recurrence time (6.46) and (6.47) take the
values given by Eqs. (6.48) — (6.53) for all 7> 0, see Example 6.4 for the point
availability PAg. This relationship between asymptotic & steady-state (stationary)
behavior is important in practical applications because it allows the following
interpretation (see also the remark on pp. 464 & 469):

A one-item repairable structure is in a steady-state (stationary behavior) if it
began operating at the time t = — and will be considered only for t= 0, the
time t =0 being an arbitrary time point.
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Table 6.4 Results for a repairable one-item in asymptotic & steady-state (stationary) behavior

Failure and repair rates Remarks, assumptions
Arbitrary Constant®
1. Priupatz=0} MTTF H MTTF = E[1,], i21
(P) MTTF + MTIR A+ MTTR = E[T;']’ i>1
2. Distribution of 70 1 t F, (x) is also the distribution
—At . -
(FA (x)= Pr{‘co <x))| wrtr I {1 - F(x))dx l1-¢ function of T, (+) as in Fig. 6.3
Y (Ey(x) = Pr{tp, (1)< x})
3. Distribution of T'O L ! G, ().r) is also the distri.buli'on
(GA (x)= Pr{16 <x)) ﬁf (- Gx))dx 1— e~ Mt function of Ty, (#) as in Fig. 6.3
0 (G, () = Pr{t, (1) < x})
4. Renewal densities 1 An hy, @®)=ph,, @)+ (1-p)h,, @),
hg,(t) and h,;(2) MTTF + MTTR At n h,,(®)=ph_, @)+ 0-p)h 4, @),
pasinpoint 1 — h,(t)=h ()
5. Point availabili [
v _MITE PAg = Pr{upatt}, 120
(PAg) MTTF + MTTR Atp
0. Average availability MTTF n AAS - _;_ Eltotal up time in (0, 711,
(AAg) MTTF + MTTR At >0
7. Interval reliability | 1 = F@))dx B g |IRg®=Pr{upin [z, r + 0]},
(IRg (0)) o 0 it 120
MTTF + MTTR
u Hu —
) o ( JAg (0) = Pr(upatt nupatt + 6},
8. Joint availability MTTF -PAg ), (6) A+p A+p PAg,,(6) = PAg (0) as per
(JAs©) MTTF + MTTR re ® M0 | Eq (6.42) with p =1 and F, (1)
A+ 1) as in point 2

*) Markov process; A, =failure, repair rate; up=operating state; h (1), hy, () =failure, repair frequency

For constant failure rate ). and repair rate |, the convergence of PAgy(?) to PAg
is exponential with time constant =1/u= MTTR as per Egs. (6.55). Extrapolating
the results of Section 6.2.4, one can assume that for practical applications, the func-
tion PAg(?) is captured at least for some ¢ > t;> 0 in the band |PASO(t) -PAg | =

AMTIR e~ ""MTTR when generalizing the distribution function of repair times. Thus,

for practical purposes one can assume that after a time t =10 MTTR, the point
availability PA ¢((t) has reached its steady-state (stationary)value PAg=AAg

(this, considering e 0~5.10and A/ u< 1072, see Tab. 6.3). Important results for
the steady-state behavior of a repairable one-item structure are given in Table 6.4.
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Example 6.4

Show that for a repairable one-item structure in steady-state, i.e. with p, F, (x), and G4 (x) as
per Eq. (6.57), the point availability is PAg (t) = PAg = MTTF/ (MTTF + MTIR) for all ¢ > 0.

Solution
Applying the Laplace transform to Eq. (6.42) and using Eqs. (A7.50) and (6.57) yields

1-1(s)
. &(s) .
- MTTF 1 1-1(s) sMTTF 1-1(s)

PAg(s) = -5 —_

MTTF + MTTR S ¢* mqr7F 1 = 1(5)8(5) $
1—§(s)
MTTR SMTTR  1-T1(s)
+ )

MTTF + MTTR 1- Nf(s)g(s)' s
and finally

- 1 1-f% 1-T)EEG) - T(s)E@E) +1 - &
PAg ()= MTTF & () )+[ $)]1[86s)— 1)) + g(s)],

MTTF + MTTR s §* MTTF s> (MTTF + MTTR)[L - T(5)8(s)]

from which
~ MTTF 1
PAg(s) = ————>
MTTF + MTIR s

and thus PA (t) = PAg forall 120.

6.3 Systems without Redundancy

The reliability block diagram of a system without redundancy consists of the series
connection of all its elements E; to E,, see Fig. 6.4. Each element E; in Fig. 6.4 is
characterized by the distribution functions F;(x) for the failure-free time and G;(x)
for the repair time.

6.3.1 Series Structure with Constant Failure and Repair
Rates for Each Element

In this section, constant failure and repair rates are assumed, i. e.

Fi(x)=1-e M¥, x>0, E©0)=0, (6.58)
and

Gi(x)=1-e Wi~ x>0, G;(0)=0, (6.59)



188 6 Reliability and Availability of Repairable Systems

- E E, E, —>

Figure 6.4 Reliability block diagram for a system without redundancy (series structure)

holds for i =1, ..., n. Because of Eqgs. (6.58) and (6.59), the stochastic behavior of
the system is described by a (time-homogeneous) Markov process. Let Z, be the
system up state and Z; the state in which element E; is down. Taking assump-
tion (6.2) into account, i. e., neglecting further failures during a repair at system
level (in short: no further failures at system down), the corresponding diagram
of transition probabilities in (¢, t + 8] is given in Fig. 6.5. Equations of Table 6.2
can be used to obtain the expressions for the reliability function, point availa-
bility and interval reliability. With U = (Z,)}, U = {Z,, ..., Z,} and the transition
rates according to Fig. 6.5, the reliability function (see Table 6.2 for notation)
follows from

Rgo(r) = s7, with  Ag= A, (6.60)

1-p, 8

Figure 6.5 Diagram of the transition probabilities in (¢, #+3¢] for a repairable series structure
(constant failure & repair rates A, W;, ideal failure detection & switch, one repair crew, no further
failures at system down, Z, down state, arbitrary 7, §7 40, Markov process)
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and thus, for the mean time to failure,

1

MTTFgy = —- (6.61)
As
The point availability is given by
PASO )= Poo(t), (6.62)
with Pyy(¢) from (Table 6.2)
n t
Poo() =e ST+ Y [ A e ¥ Pyp(r —x) dx
i=1 0
t
Pio(t) = [ mie M ¥ Pyt —x)dx,  i=1,..,n. (6.63)

The solution Eq. (6.63) leads to the following Laplace transform (Table A9.7) for
PAgo(1)

PAgy(s) = ——1— : (6.64)

s(1+z

+ul

From Eq. (6.64) there follows the asymprotic & steady-state value of the point and
average availability PAg = AAg = }1_% sPAg(s)

n
,1, - i (6.65)
_l =1 ~i
2 l

i=1

PAS :AAS =

Because of the constant failure rate of all elements, the interval reliability can be
directly obtained from Eq. (6.27) by

IRgo(t,¢ +6) = PAgo(t) eS8, (6.66)
with the asymptotic & steady-state value

IRg(0) = PAge™s9, (6.67)

where
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6.3.2 Series Structure with Constant Failure Rate and
Arbitrary Repair Rate for Each Element

Generalization of the repair time distribution functions G;(x), with densities g;(x)
and G;(0) =0, leads to a semi-Markov process with state space Z, ..., Z,, as in
Fig. 6.5 (this because of Assumption (6.2) of no further failures at system down).
The reliability function and the mean time to failure are still given by Egs. (6.60)
and (6.61). For the point availability let us first calculate the semi-Markov

transition probabilities Q;; (x) using Table 6.2

Qol'(x) = PI‘{‘EOi SxNTor > Tgi, k# i}

X

Y - Ai -

=[he T e dy = Sh(1-e7s7)
0 k#i As

Qjo(x) =G;(x), i=1..n. (6.68)

The system of integral Equations for the transition probabilities (conditional state
probabilities) Py (1) follows then from Table 6.2

n X
Poo() =S + 3 [ e ™S ¥ Pyg(r ~x)dx,
i=l 0

t
Pio() = [gi(x)Poo(t —x)dx,  i=1,...n (6.69)
0

For the Laplace transform of the point availability PA go(t) = Pyo(¢) one obtains
finally from Eq. (6.69)

PAgo(s) = ! = ! . (6.70)

S+Ag— DAE(s) s+ DA (1-F(s)
i=1

i=1

from which, the asymptotic & steady-statevalue of the point and average availability

PAg = Adg=—— 6.71)
1+ Y A; MTTR,

i=1

with linb(l — 8(s))=sMTTR, as per Eq. (6.54), and (Eq. (A6.38))
s

MTTR; = f (=G, () dr. 6.72)
0

The interval reliability can be calculated either from Eq. (6.66) with PA¢q(¢) from
Eq. (6.70) or from Eq. (6.67) with PAg from Eq. (6.71).
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Example 6.5

A system consists of elements Ej to E4 which are necessary for the fulfillment of the required
function (series structure). Let the failure rates A; = 1073n-1, Ay = 0.5-1073n"1,
Ay = 1074h~1, A 4=2" 10~-3h~! be constant and assume that for all elements the repair time is
lognormally distributed with parameters A = 0.5 h~! and 6=0.6. The system has only one
repair crew and no further failure can occur at system down (failures during repair are neglected).
Give the reliability function for a mission of duration ¢#=168h, the mean time to failure, the
asymptotic & steady-state values of the point and average availability, and he asymptotic &
steady-state values of the interval reliability for 6 =12h.

Solution

The system failure rate is Ag = A +Ay + A3 +Ay = 36- 10787, according to Eg. (6.60).
The reliability function follows as Rgq(r) = e~0-0036¢ from which Rgq(168h)=0.55. The
mean time to failure is MTTF;( =1/Ag =~ 278h. The mean time to repair is obtained from
Table A6.2 as E[T ]= (e(’2 /2y/ )\ = MTTR =~ 2.4h. For the asymptotic & steady-state values
of the point and average availability as well as for the interval reliability for 8 =12h it
follows from Eqs. (6.71) and (6.67) that PAg=AAg=1/(1+ 36-1074-.2.4)~ 0991 and
IR g(12) = 0.991- 0003612 - 9 95,

6.3.3 Series Structure with Arbitrary Failure and Repair
Rates for Each Element

Generalization of repair and failure-free time distribution functions leads to a
nonregenerative stochastic process. This model can be investigated using
supplementary variables, or by approximating the distribution functions of the
failure-free time in such a way that the involved stochastic process can be reduced
to a regenerative process. Using for the approximation an Erlang distribution
Sfunction leads to a semi-Markov process. As an example, let us consider the case of
a two-element series structure (E;, E,) and assume that the repair times are
arbitrary, with densities g;(x) and g,(x), and the failure-free times have densities

fi(x) = A xe M¥, x20, (6.73)
and
fo(x) =Aye 2%, x20. (6.74)

Equation (6.73) is the density of the sum of two exponentially distributed random
time intervals with density A, ¢™M¥_ Under these assumptions, the two-element
series structure corresponds to a I-out-of-2 standby redundancy with constant
failure rate A;, in series with an element with constant failure rate A,. Figure 6.6
gives the equivalent reliability block diagram and the corresponding state transition
diagram. This diagram only visualizes the possible transitions and can not be
considered as a diagram of the transition probabilities in (#, ¢ +8t]. Z, is the
system up state, Z;. and Z,. are supplementary states necessary for calculation only.
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For the semi-Markov transition probabilities Q;; (x) one obtains (Table 6.2)

Qor(x) = Q%) = M (1- ¢~ P1+A2)x,
At Ay

Qu2(x) = Qpa(x) = Ay (1— e~ P1+A2)x
AL+ Ay

Qao(x) = Qop(x) = [2a(y)dy
0

X
Quo(x) = [g1(»)dy. (6.75)
0
From Eq. (6.75) it follows that (Table 6.2 and Eq. (6.54))
Rgo(f) =(1+ Ay 1) e~ P1722)1 (6.76)
20 + A
MTTFgy = —12%2_ 6.77)
(M +2y)

[S +}\41 + )\.2(1—22(5))]—}' }\'1

PAso(s) =Poo(9) +Por(s)= , (6.78)
[s + A + Ag (1= Bo(sD1P- 2T B (s)
2
PAg = AAg = : 6.79
§ 57242, MTTR, + A| MTTR, ©79)
24+ %00 —()\,1+7\.2)9
IR¢(6) = — ot 1€ (6.80)

2+ 2\, MTTRy + A MTTR,

El'

1-out-of-2
standby
(E,=E)

Figure 6.6 Equivalent reliability block diagram and state transition diagram for a two series
element system ( Ej and E,) with arbitrarily distributed repair times, constant failure rate for E,,
and Erlangian (n =2) distributed failure-free time for E; (ideal failure detection & switch, one
repair crew, no further failures at system down, Z,:Z,» Z,. down states, semi-Markov process)
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The interval reliability IRg(t, t + 8) can be obtained from
IRSO(t’ t+ 9) = Poo(t)Rso(e) + POI' (t)RSl' ),

with R g1(0) =e"M*22)9  because of the constant failure rates Ajand A,.
Important results for repairable series structures are summarized in Table 6.5.
Asymptotic results for the case of arbitrary failure and repair rates are investigated
e.g. in [2.34(1975)] yielding AAg=PAg=1/(1 +E':: MTTR, | MTTF, ) for the asymptotic
& steady-state value of the point and average availability (Point 4 of Table 6.5).
AAg=PAg=1/(1 +E::1MTTR,- /MTTF,; ) follows also in a way similar to the develop-

ment of Eq. (4.6).

Table 6.5 Results for a repairable system without redundancy (elements E, ..., E, in series),
ideal failure detection & switch, one repair crew, no further failures at system down
Quantity Expression Remarks, assumptions
1. Reliability function l—n[ R;(1) Independent elements
(Rgo®)) 117 (up to system failure)
i=1
-t —Agt
. Ll R. (1) = o Ry (D) = s
2. Mean time to system .[R i ,d( )=e _—; k )Sf)( ). he
failure (MTTFgq) S0 and - MTTFg,= s wit
0 Ag=Ai+... +A,
1 n
3. System failure 1."ate 3 ) Independent elements
up to system failure il (up to system failure)
(Ag@))
At system down, no further failures
1 L can occur:
a) =1-y —
n }H =1 M a) Constant failure rate A ; and
4. Asymptotic & 1+ 2 ? constant repair rate p; for element
steady-state value of i=1 Tt E, (i=l,..,n)
the point availability | b) ' N
& average availabilit b) Constant failure rate A; and
(PA =%1A ) Y - =1-3 A; MTTR; arbitrary repair rate p; (t) with
s S 1+ E A. MTTR. = MTTR ; = mean time to repair for
o ' element E; (i=1,...,n)
) 1 c) 2-clement seriezs structure with
¢ failure rates A7 ¢/ (1L + A, ) for
1 +A, MTTR, + A | MTTR, /2 E, and 1, for E,
> Asymptlotlc ?Lﬂite?dty- A -As © Each element has constant failure
state V'a u.e.o € 1nter- P. se rate }‘i' }‘S'_')"l+ A,
val reliability (IR (8))

*) Supplementary results: If n repair crews were available, PAg =TT, (1/(1+A; /) =1-Z, A, /p;
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6.4 1-out-of-2 Redundancy

The 1-out-of-2 redundancy, also known as I-out-of-2: G, is the simplest redundant
structure arising in practical applications. It consists of two elements E; and E,,
one of which is in the operating state and the other in reserve. When a failure
occurs, one element is repaired while the other continues operation. The system is
down when an element fails while the other one is being repaired. Assuming ideal
switching and failure detection, the reliability block diagram is a parallel
connection of elements E; and Ej,, see Fig. 6.7.

Investigations are based on assumptions (6.1)- (6.7). This implies in particular,
that the repair of a redundant element begins at failure occurrence and is performed
without interruption of operation at system level. The distribution functions of the
repair times, and of the failure-free times are generalized step by step, beginning
with exponential distribution, up to the case in which the process involved has only
one regeneration state (Section 6.4.3). Influence of preventive maintenance, swit-
ching, incomplete coverage, common cause failures are considered in Sections 6.8.

6.4.1 1-out-of-2 Redundancy with Constant Failure and
Repair Rates for Each Element

Because of the constant failure and repair rates, the time behavior of the 1-out-of-2
redundancy can be described by a (time-homogeneous) Markov process. The
number of states is 3 if elements E; and E; are identical (Figs. 6.8 or A7.4) and 5
if they are different (Fig. 6.9, see footnote on p. 479), the diagrams of transition
probabilities in (¢, ¢ + &f] are given in Figs. 6.8 or A7.4 and 6.9, respectively.

Let us consider the case of identical elements E; and E, (see Example 6.6 for
different elements) and assume as distribution function of the failure-free time

F(x) =1—e~hx, x>0, F0)=0, (6.81)
in the operating state and
F.(x)=1-e~M %, x>0, E (0)=0, (6.82)

in the reserve state. This includes active (parallel) redundancy for A, = A, warm re-
dundancy for A, < A, and standby redundancy for A, =0. Repair times are assumed

E,

1-out-of-2
(E,=E,=E)

Figure 6.7 1-out-of-2 redundancy reliability block diagram (ideal failure detection and switch)
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1-A+2)8  1-(A+u)dr 1 p 8t 1-(A+A)dt  1-(A+p)dr 1

F5 e

a) e uor b) ude
p01=90=l+?‘-,—, p][)mpglngzl"', plzzl, pJ:A-'*'PL Pg]=Pg=?\-+?\-,. p][):Hv P]2=7\u pj =A+ M, pl=1

Figure 6.8 Diagrams of the transition probabilities in (¢, #+387] for a repairable 1-out-of-2
warm redundancy (2 identical elements, constant failure & repair rates (A,A,,u), ideal
failure detection & switch, one repair crew, Z, down state, arbitrary ¢, 8140, Markov process):
a) For the point availability; b) For the reliability function

to be independent of failure-free times and distributed according to
G(x) =1-e™H¥, x>0, G0)=0. (6.83)

Refinements are in Examples 6.6 (different elements) and 6.7 (travel time). For
more general situations (particular load sharing, more repair crews, failure and/ or
repair rates changing at a state transition, etc.), birth and death processes (Appendix
A7.5.5) can often be used. For all these cases, investigations are generally perfor-
med using the method of differential equations (Table 6.2 and Appendix A7.5.3.1).
Figure 6.8 gives the diagram of transition probabilities in (¢, t + 8¢] for the point
availability (Fig. 6.8a) and the reliability function (Fig. 6.8b), respectively.
Considering the memoryless property of exponential distributions (Eq. (A6.87)),
the system behavior at times ¢ and ¢ + 8¢ can be described by following difference
equations for the state probabilities P,(t) = Pr{process in Z; at t}, i=0,1, 2 (Fig. 6.8a)

Py(t+8t) = Py(£)(1 = (A + A,)dt) + P(£)ude
P (7 +8t) = P(6)(1— (A + p)dr) + Po(£)(A + A, )t + Py(£)udt
Py (1 + 8t) = Po(£)(1—uder) + P(£)Adt.

For 3¢1 0, it follows that

Po(r) = —(A+ A, ) Py(1) + WP, (1)
P () ==(A+ WP () + (A + A )Py(£)+uPy(t)
Pz(t)=“‘ul)2(t)+ }\/PI(t) (684)

The system of differential equations (6.84) can also be obtained directly from Table
6.2 and Fig. 6.8a. Its solution leads to the state probabilities P;(¢), i=0,1, 2.
Assuming as initial conditions at t =0, Py(0) =1 and P;(0) = P,(0) = 0, the above
state probabilities are identical to the transition probabilities Py; (), i =0,1, 2, i.e.,
Poo(?) = Py(t), Pyi(2) = P(¢), and Py,(1) = Py(2). The point availability PAgy(1)
is then given by (see Table 6.2 for notation)

PAS()(t) = Poo(t) + P()l(t) . (6.85)
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PAg;(2) or PAg,(#) could have been determined for suitable initial conditions.
From Eq. (6.85) it follows for the Laplace transform of PA g (¢) that

(s + W2+ sA) + (s + WA+ A,)

PA = Pyo(s)+ Pyi(s) = » (6.86
50(9) = Poo(9)+ Por() SIs+ A+ A, )(s + A+ W)+ (s + W] (6.:86)
and thus for ¢ — oo
2
HmPAgo(r) = PAg =Py P = —H P BH )  MAEA) 6 ey

100 A+ A ) +w+p®

with P.= lim Py(#) = lim Pi(2), i,j=0,1,2 (Eq. (A7.129)). If PAgy(#)=PAg for all
t 20, then PAg is also the point and average availability (AAg) in steady-state.
Obviously, P,=1~ PAg. Investigation of PAgy(¢) for A=A leads to (Eq. (6.86))

PAgy(1) = PAg + 202 (aye™’ — a e®') | ayay(ay—ay),
with
ay, ==L+ 3A720 F pV A /p+ (A 72w)? = - p(1F vV A/p),

and PAg from Eq.(6.87). It can be noted that a1a2=u2+2)»pt+27»2 yielding
PAgo(0)=1, dPAgy(#)/dt=0 at r=0 and thus PAgy(#)=1 for some ¢,* and
aj,~-n for A-0. From these results, and considering A <<u, following
approximation can be used for practical applications (e™'=e®'~e™ q,a,~u?)

PA (1) = PAg+(1-PAg e~ %, " >0, PAgy(0)=1. (6.88)

Equation (6.88) is similar to Eq. (6.20). It holds also for 0<A,< A and is an impor-
tant result in developing, together with Eq. (6.94), approximate expressions for
large series-parallel systems, based on macro-structures (Section 6.7, Table 6.10).
To calculate the reliability function it is necessary to consider that the 1-out-of-2
redundancy will operate failure free in (0, #] only if in this time interval the down
state at system level (state Z,) will not be visited. To recognize if Z, has been en-
tered before ¢ it is sufficient to make Z, absorbing (Fig. 6.8b). In this case, if Z, is
entered the process remains there indefinitely. Thus the probability of being in Z,
at t is the probability of having entered Z, before the time t, i. e. the unreliability
1-Rg(#). To avoid ambiguities, the state probabilities in Fig. 6.8b are marked by
an apostrophe (prime). The procedure is similar to that for Eq. (6.84) and leads to

PY(1) = —(A+ A, )Py(8) + WP{(r)
Pi(1) = =(A+WP(5)+ (A+ A,)Py(1)
Py(1) = AP(), (6.89)

and to the corresponding state probabilities Py(z), P;(¢), and P,(¢). With the initial

# More precisely, for 700 it holds that PAgy (r) = 1= X'r” (using e* = 1+x+x/2).
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conditions at t=0, P(')(O)zl and P;(0)=P5(0)=0, the state probabilities Py(¢), Py(2)
and P,(t) are identical to the transition probabilities Pyy(t)=Py(t), Py,(t)=P;()
and Py, (#)=P,(#). The reliability function is then given by (Table 6.2 for notation)

R go(£) = Pgo(1) + Pgy(1). (6.90)
Equation (6.90) yields following Laplace transform for Rgq(?)

~ (s+A+pw)+(A+2,)

Rgo(s) = - (6.91)

(S+A+A)(s+A)+sp ’
from which the mean time to failure ( MTTFg, = Rgo(0), Eq. (2.61)) follows as

2A+ A+ U n

MTTFqo = . 6.92
SO7 A+ ) A (6.92)
Investigation of R¢q(#) for A, =2 leads to (Eq. (6.91))
t t
RS()(I) = (l‘2€r1 -n er2 ) / (r2 —rl) ,
with
ria == [(3A+ 1) /2] £ [ ((BA+m1)/2)2-2A%.
For A <<, it follows that , = 0 and r, = —p, yielding
+)
Rgo() = et (6.93)

Using 1—¢ =1-2/2 for 2r;=— B3A+p) A—1-83% GA+u?) leads to r, =—=2)%/ GA+p).
Rgo(#) can thus be approximated by a decreasing exponential function with time
constant MTTFyo=(3A+p)/2A% * Considering A <<, extension to a warm re-
dundancy 0<A,.< A leads to

hg t L AR+2) AR+

>0, Rg(O)=1, Ag TMTTFy 2A+A+p M (6.94)

RSO(Z) =e

Similarly as for PA¢((#), dRgo(#)/dt=0 at =0 and thus Rgq(#)=1 for some ¢.¥
Concluding the above investigations, also validated by numerical computation,
results of Egs. (6.88) & (6.94) show that:

For A, A,.<<W, a repairable I-out-of-2 warm redundancy with constant failure
rates A,\,, constant repair rate |, and one repair crew behaves approxi-
mately like a one-item structure with constant failure rate Ag=MAA+ A,)/1
and repair rate Wg =W, result on which the macro structures method (Tab. 6.10)
can be based (ng =2 for two repair crews (Table 6.9)).

*) More precisely, for #10 it holds that R¢, (#)~ 1 - 1y r2t2/2 =1- 2= PAg, ).
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Using Eqs.(A7.141),(A7.142),(6.86), the system mean up time MUTfollows as

PAs  R+B u2+p(?»+)\.,) _ptA+A,

MUTg = = =
fuas  O-Fy+AR AW(A+A,) AA+A,)

~ MTTFgq. (6.95)

Because of the memoryless property of the(time-homogeneous) Markov process,
the interval reliability follows directly from the fransition probabilities Py (t) and
the reliability functions Rg;(#), see Table 6.2. Assuming Py(0) = 1 yields

IRSO(t’ t+0)= Poo(t)RS()(e) + POl(t)RSI(G),
with Pyg(#), Py1(¢) as in Eq. (6.85). The asymptotic & steady-state value follows as

12 Rgo(8) + WA + A, )Rgy(6)
(A+ A )M+ p) +p?

IR(6) =PyR 50(6)+P R 5,(6) = ~R((6). (6.96)

Further results for a 1-out-of-2 redundancy are in Sections 6.8.3 (imperfect
switching), 6.8.4 (incomplete coverage), and 6.8.7 (common cause failures).
To compare the effectiveness of calculation methods, let us now express the
reliability function, point availability, and interval reliability using the method of
integral equations (Appendix A7.5.3.2). Using Eq. (A7.102) and Fig. 6.8a yields

Qo1(%) = Pr{tg; S x} =1-Pr{tg; > x} =1—e M e A =1— = (A+2,)x

X
Qio(x) =Pr{tjg <x N 112 > 70} = J.Me_”ye_}‘ydy = Kt_u(l — ")
0

X
Qu2(x) = Pr{tyy S x N Tyg > Tpp) = [Ae ™M Way = %(1 — ")
+H
0
Q21(X) = PI‘{’C21 < X} =1—-e KX,

From Table 6.2 it follows then that

t
Rso(t) = e_(}"-"}"r)t +J(}L + )\,r)e_(}“"')"r)x RSl(t —Xx)dx
0

t
R (1) = e~ + [pe= xRy (¢ - x) dx, (6.97)
0
for the reliability functions Rgo(t) and Rg(#), as well as

t t
Poo()=e PP [ s d ) PRI Py (1-x)dx,  Pog(r)=[pe ™ “Pg(r - x)dx,
0 0

t !
Pio(t) = [ e ®W¥ Bt - xydx + [ Ae” AT Py (s - x)dx.
0 0
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Table 6.6 Reliability function Rgy(z), mean time to failure MTTFy, steady-state availability
PAg = AAg, and interval reliability IR (0) for a repairable 1-out-of-2 redundancy with identical ele-
ideal failure detection & switch, one

ements (Fig. 6.7, constant failure & repair rates A, A, 1,

repair crew, Markov process; approximations valid for (A+2A,)<<p)

Standby (A, =0) Warm (A, <A) Active (A, =1)
_ At _ AQ+ADE _ 2X2 ¢t
R (1) ~e 2Mu ~e 2AAHL ~ e 3AHL
. 2A+Uu 2A+A 0 n 3}»+u:_u_
M50 22 A +A,)  A+A,) 232 22
wh _BOAA AW _HCA+W
PAg=AAg" | A +m)+p? A +1) A+ +p? 20 A+ +u?
=1-(A/w)? =1-A+A,)/p2 ~1-2(A/ )2
PAso@™ | = pag + (- PAg)e ! | = PAg + (- PAg)e M | = PAg +(1- PAg)e ™M
IRg(6)™ = Rg0(©0) = Rg(©) = Rg0(0)

"newattr=0; **

asymptotic & steady-state value (for practical applications, convergence of PAg(#) to PAg

and of IRg(7+0) to IR¢(0) is good after ¢ ~10/u =10 MTTR, see also pp. 196 - 198)

Supplementary results:

and

Poy(1) = [ (&, )e=O+2,0% By (1 - x)d,

Pll(t) =e‘(7‘+”)’+J.ue"0‘+”)x POl(t —x)dx +I}»€_(A+M)XP21(I —x)dx.

See Example 6.6 for two different elements and Table 6.9 for two different elements

and two repair crews (active redundancy); assummg in Fig. 6.8a Z, > Z, with Mg
instead of Z, - Z with p yields PAg=AA¢=1- 222 /p.ug (active redundancy)

0
t

0

t

0

P21(t) = Iue‘”x P“(t—x)dx,
0

(6.98)

for the transition probabilities. The solution of Egs. (6.97) yields, in particular, Eq.
(6.91) and the solution of Egs. (6.98) yields, in particular, Eq. (6.86). Equations
(6.97) and (6.98) show how the use of integral equations leads to a quicker solution
than differential equations for arbitrary initial conditions at ¢ = 0.

Table 6.6 summarizes the main results of Section 6.4.1. It gives approximate
expressions valid for A <<p and distinguishes between the cases of active (A, =2),
warm (A, <A), and standby redundancy (2, =0).
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From Table 6.6, the improvement in MTTF, through repair, without interruption
of operation at system level (by repair of a redundant element), is given as lower
and upper bounds by

active standby
N MTTFer ~ '8 MTBF W  MTBF
S0~ v =
2\ 2MTIR A MTTR

Investigation of the unavailability in steady-state 1— PAg leads to

active standby
A MTTR A MTTR
I=PAs =1-Ads =~ 2()?=2(—)2  ()P=(——2)°
u MTBF % MTBF

The above results can easily be extended to cover situations in which failure
or repair rates are modified at state changes (e.g. because of load sharing,
differences within the element, repair priority, etc.). These cases, simply modify
the transition rates on the diagram of transition probabilities in (z, ¢ + 8¢], see
for instance Figs. 2.12 and A7.4-A7.6.

Example 6.6

Give the mean time to failure MTTFg, and the asymptotic & steady-state value of the point
availability PAg for a 1-out-of-2 active redundancy with two different elements E; and E,,
constant failure rates Aj, Ao, and constant repair rates [y, [y (one repair crew).

Solution
Figure 6.9 gives the reliability block diagram and the diagram of transition probabilities in
(t, t+8t]. MTTFg( and PAg can be calculated from appropriate systems of algebraic equations.
According to Table 6.2 and considering Fig. 6.9 it follows for the mean time to failure that

MTTFg ) =+ A MTTFg | + A, MTTF ) / (A} + Ay)

MTTFg | =+ p, MTTFg o) / (A, + 1y), MTTFg, = (L+ py MTTFg o) 1 (Ay + 1y),
which leads to

Gy +p))Qy+u)+ A Qg+ +h Ay +py)

MTTFgq = , (6.99)
AAy A+ A+ 1 +1,)

and in particular for A; <<y and A, << ,,
MTTFg o = Uy Wy /(g Ay (Uy +10)). (6.100)
As for Eq. (6.93), the reliability function can be expressed by

1 A Ay (1 + 1y)
At ith Ag = MUty
MTTFg (3R]

- 1 1
Rgo()~e =yt (610D

For the asymptotic & steady-state value of the point availability and average availability
PAg = AAg = Fy + B + P, holds with Ry, B, and P, as solution of (Table 6.2)
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1- (A +py) 6t

Apiy

E

A

)

1-out-of-2
active
(E] # Ez)

L= (A +pp) bt

Pp1=P2s = A1 Pog = P13 = Aai 1o = Pap = ys Pog=Pay =Ky
(for Rg(¥) set p3p =pyy =0)

Figure 6.9 Reliability block diagram and diagram of transition probabilities in (?, #+8 ¢] for a repair-
able 1-out-of-2 active redundancy with different elements (const. failure & repair rates (A, A5, 11,15 ),
ideal failure detection & switch, one repair crew, Z3,Z, down states, arbitr. ¢, 8 t10, Markov proc.)

M +2) By =W B+l B, Qo +w)R =0 B+ By,

MHu) B =k Rty By WB=MA, B =ME.
One (arbitrarily chosen) of the five equations must be dropped and replaced by
By+ R + P, + P+ P, =1. The solution yields Fy through P, from which

1
PAg = AAg = — , (6.102)
A Ay [y +py + Gy +20) (W +1y)]

My H [y By + (g +A5) (g + Ay + g +1y)]

1+

yielding, for A; <<y, and A, <<u,,

—=y. (6.103)
My Ko

With A; =X, =A and p; =p, =p, Eqs. (6.99) & (6.103) become Egs. (6.92) & (6.88) with A=A,

Example 6.7

As a refinement of the case investigated with Fig. 6.8 assume that to the repair time, distributed
according to G (x)=1-e " Mr¥, await time for travel distributed according to W(x)=1—e Hw*
has to be added to the repair time for a failure occurred when both units are up (one operating,
the other in reserve state). Repairs for failures occurred during the travel time or a repair do not
need to wait for a further travel time. As before, the system has only one repair crew.
Investigate the mean time to failure MTTFy, and the steady sate availability PAg = AAg.
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Solution
The system behavior can be described by a 5 states Markov process (graph). MTTF, follows as
solution of (Table 6.2, M;=MTTFg;): M;=(+Wy M)/ +uy), Mp=0+ppMy) [ (L +1g),
My=M;+1/ (A+},); yielding

1 Qi) Atiy) 1/ (Upetl/py)

MITfgo=5+ AOFA )OI HL)  AAHA,)

(6.103)

PAg=AAg follows as solution of (Table 6.2):

y By = 2P, e ARy =Ug Py, otliy)B =+ 2,)R,

(A+pg)R=by P+ g By Pyt B+ P+ Pyt Py.=1,yielding
) 1

PA¢=AAc= Pyt B+ Bi=
5 s=forr A MAHA I+ g+ IR oy ]
B[ AAA L) At hy +RR)+HA+ iy I Ug]

2
—@mﬁih—”&’ix (6.104)
Mg W uw
For yy = and up =U, Egs. (6.103) & (6.104) yield Egs. (6.92) & (6.87).
Supplementary results: Addition of a travel time to each repair has no practical significance.
Generalization of distribution functions for repair and travel time lead
to a 4 states semi-regenerative process with 3 reg. states (Fig. A7.12).

6.4.2 1-out-of-2 Redundancy with Constant Failure Rate and
Arbitrary Repair Rate

Consider now a 1-out-of-2 warm redundancy with 2 identical elements E; and E,,
failure-free times distributed according to Eqgs. (6.81) and (6.82), and repair time
with mean MTTR <<, distributed according to an arbitrary distribution function
G(x) with G(0) = 0 and density g(x). The time behavior of this system can be
described by a process with states Z,, Z;, and Z,. Because of the arbitrary repair
rate, only states Z, and Z; are regeneration states. These states constitute a semi-
Markov process embedded in the original semi-regenerative process (Fig. A.7.11).
The semi-Markov transition probabilities Q;(x) are given by Eq. (A7.183).
Setting these quantities in the equations of Table 6.2 (SMP), by considering
Qo(x) = Qgy(x) and Q(x)=Qu(x)+ Qiz(x) with Qiz(x) as per Eq. (A7.184), it
follows for the reliability functions Rg;(1)

t
Ryo(r) = e=O+h)0 + [(A+ 4,) e~ O ) ¥ Rigy (1 - x) dx
0

t
Rsy(1) = e (1-G(0) + [ g(x) e *Ryo(t =x) dx, (6.105)
0
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and for the transition probabilities P (1) of the embedded semi-Markov process
t
Poo(1) = AR (s d e A%y (r - x)ax
0

t t
Pio(1) = [ g(x)e ™ Poo(r — x)dx + [ g(x)(1~e ™ *)Pyo(r — x)dx
0 0

t
P (1) = [ (A + A, )e” A% B (1 - x)dx
0

Py (1) = (1- G()e "

t t
+ [ g(x)e ™ Poy(1 = x)dx + [ g(x)(1-e ™ )Py (£ - x)dx.
0 0 (6.106)
The solution of Eq. (6.105) leads to

SHA+A+A,)A-8(s+A))

Rgo(s) = = (6.107)
SO T M+ A+ A= E(s +A)]
and (with MTTFg = Rgo(0), Eq. (2.61))
MTTFy, = A+ +A)A-8) 1 (6.108)

AR +A)A-3R)  A+A)A-EN)

The Laplace transform of the point availability PAgq(t) = Pyo(t) + Py (¢) follows
as a solution of Eq. (6.106)

(s+M)A-8sN+A,(A-B(s+ AN+ A+ 5s8(s+A)
(s+)\,)[(s+}»+kr)(l—g(s))+sg(s+)»)] ’

PA go(s) = (6.109)

and leads to the asymptotic & steady-state value of the point availability PAg and
average availability AAg (with sll_f)T}) (1-8(s)) = s-MTTR +o(s) as per Eq.(6.54))

PAg = AAg = (A + A (1=§(N) / (M(A+ X,.) MTTR + AE(N), (6.110)
where - -
MTTR = dx = | (1- G(x))dx
joxg(x) X jo( (x)) (6.111)

and g(A) is the Laplace transform of the density g(¢) for s =A, see Examples 6.8 &
6.9 for the approximation of g(A). Calculation of the interval reliability is difficult
because state Z; is regenerative only at its occurrence point (Fig. A7.11). However,
for L MTTR << 1. §(\)—1 and the asymptotic value of the state probability for Z
(Plztli)rg Py;(2)) becomes very small with respect to that for Z, (PO:,li,r{L Pyo(£)).
For the asymptotic & steady-state value of the interval reliability it holds then that

IRg(6) = PyRgo(0) = AE(WRg((6) / (A(A + A, ) MTTR + LE(A)). (6.112)

In practical applications, A MTTR < 0.01 and Eq. (6.112) yields IR g(8)=Rgy(6).
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Example 6.8

Let the density g(x) of the repair time T' of a system with constant failure rate A > O be
continuous and assume furthermore that AE[t' ]=A MTTR <<1 and ), Var[t'] << 1.
Investigate the quantity §(A) for A — 0.

Solution

For A— 0, A MTTR<<1, )m/Var[t'] <<1, the 3 first terms of the series expansion of e_)‘t lead to

g(x)zjg(t)e‘“dtzjg(t)(l—xu( ))dt—l AE[T]+E[T?]122/2.

0 0
From this, follows the approximate expression
g8(A) =~ 1~ AMTTR + }* (MTTR? + Var[t'])/ 2. (6.113)
In many practical applications,

§(\)~1-A MTTR (6.114)

is a sufficiently good approximation, however not in calculating steady-state availability
(Eq. (6.114) would give for Eq. (6.110) PAg =1, thus Eq. (6.113) has to be used).
. _ 2
Supplementary results: g(x)=pe " leadsto g(\)= ﬁ =]- X + (&) , which agree with Eq.
(6.113) considering MTTR=1/p and Var[t']=1/p2

Example 6.9

In a 1-out-of-2 warm redundancy with identical elements Ej and E, let the failure rates A in the
operating state and A, in the reserve state be constant. For the repair time let us assume that
it is distributed according to G(x)=1-e ¥ %) for x>y and G()=0 for x<y, with
MTIR =1/p > y. Assuming Ay <<1, investigate the influence of Y on the mean time to
failure MTTRg, and on the asymptotic & steady-state value of the point availability PAg.

Solution
With -
5 Ry )-Ae Koy
= = — 1-—
gA) Iue dt 7»+M'e 7»+H( AY)
(- 1 1
and considering MTTR = J.tg(t)dt J tu'e i ‘")dt—\u+ﬁz w ie,u'=pu/l-py)

and thus gA) = p(l - Ay) / A+ud- X\y ), Eq. (6.108) (left-hand equality) and Eq. (6.110)
lead to the approximate expressions

2A+ A, +pd-Avy)

M0 w0 = = 00

and

R +A, +ud-Ay)) ol AA+A)A-py)
OAA)O+RA-2y)+p’ A=Ay) RO+, +pd=Ay)
On the other hand, y = 0 leads to 1 - g(A) = A/ (A + ) and thus (Egs. (6.92) and (6.87))

PAS, v>0 =

2+ A, +p RO +A +1)
MTTF, =— and PA =
, ¥ = S, =0
SOW=0" HAa+1,) MR T ey W R

Assuming [ >> A, A, yields (considering Ay < A/p<<1)

MTTF, PA A+ A

— 3020 gy ad 20y 2o, (6.115)

MTTFs4 o PAg o 0
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Equation (6.115) allows the conclusion to be made that:

For A MTTR << 1, the shape of the distribution function of the repair time has
(as long as MTTR is unchanged) a small influence on results at system level,
in particular on the mean time to failure MTTFg, and on the asymptotic &
steady-state value of the point availability PAg of a 1-out-of-2 redundancy.

Example 6.10 shows a numerical comparison. This result can be extended to
complex structures.

Example 6.10

A 1-out-of-2 parallel redundancy with identical elements Ey and E, has failure rate A= 10 !
and lognormally distributed repair tlmes with mean MTTR = 2.4h and variance 0.6h> (Eqgs.
(A6.112), (A6.113) with A = =0.438h~" , 0=0.315). Compute the mean time to failure MTTFg
and the asymptotic & steady-state point and average availability PAg with approximate
expressions: (i) §(A) from Eq. (6.114); (ii) &(A) from Eq. (6.113); (iii) g(¢) =pe * V),
t2y, y=13h, 1/W=1.1h, 1/u=2.4h (Eq (4.2)); (v) g¢)=pe™ and 1/p=24h.
Solution

(i) With g(A)=0.976 it follows (Eq. (6.108)) that MTTF;,=~2183h and (Eq. (6.110))
PAg =1. (ii)) With g(A)=0.9763 it follows (Eq. (6.108)) that MTTF;, = 2211h and (Eq.
(6.110)) PAg =0.9994. (iii) Example 6.9 yields MTTFso0,y=) 3 =2206h and PAs y=13h =~
0.9995. (iv) From Egs. (6.92) and (6.87) it follows that MTTFg, = 2233h and PAg = 0.9989.

Supplementary results: Numerical computanon with the lognormal distribution (MTTR=2.4h,
Var[t']= 0.6h? ) yxelds MTTF 3=~ 2186h and PAg =0.9995. For a
failure rate A=10"h" N ! results were: 209" 333h, 1; 209'611h, 0.999997;
209'563h, 0.999995; 209'833, 0.999989; 209'513h, 0.999994.

6.4.3 1-out-of-2 Redundancy with Constant Failure Rate only
in the Reserve State and Arbitrary Repair Rates

Generalization of repair and failure rates for a 1-out-of-2 redundancy leads to a
nonregenerative stochastic process. However, in many practical applications it can
be assumed that the failure rate in reserve state is constant. If this holds, and the
1-out-of-2 redundancy has only one repair crew, then the process involved is
regenerative with exactly one regeneration state [6.5 (1975)].

To see this, consider a 1-out-of-2 warm redundancy, satisfying assumptions
(6.1) - (6.7), with failure-free times distributed according to F(x) in operating state
and V(x)=1- ¢~ % in reserve state, and repair times distributed according to G(x)
for repair of failures in operating state and W(x) for repair of failures in reserve
state ( F(0)=V(0)=G(0)=W(0)= 0, densities f(x), v(x), g(x),w(x)— 0 forx — o,
means and variances < o). Figure 6.10a shows a possible time schedule and
Fig. 6.10b gives the state transition diagram of the involved stochastic process.
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z, 20| Zo| 2y 1212, 122, 12 Z0 Z ZO 2220 Zl Z4 21 2,
a)
operating
reserve
JUUUTTT ) repair
[ ] renewal point

Figure 6.10 Repairable 1-out-of-2 warm redundancy with constant failure rate A, in reserve state,
arbitrary failure rate in operating state, arbitrary repair rates, ideal failure detection & switch, one
repair crew, Z3 & Z, down states): a) Possible time schedule (repair times greatly exaggerated);
b) state transition diagram to visualize state transitions (only Z is a regeneration state)

States Zy, Z; , Z, are up states. State Z; is the only regeneration state present here.
At its occurrence, a failure-free time of the operating element and a repair time for
a failure in the operating state are started (Fig.6.10a). The occurrence of Z; is
arenewal (regeneration) point and brings the process to a situation of total
independence from the previous development. It is therefore sufficient to
investigate the time behavior from #=0 up to the first regeneration point and
between two consecutive regeneration points (Appendix A7.7).

Let us consider first the case in which the regeneration state Z; is entered at
t=0 (Sgpo) and let Spp; be the first renewal point after ¢t =0. The reliability
function Rg(¢) is given by (see Table 6.2 for notations)

t
Rsi() = 1-F(r) + [uj(x) Rgy (¢ = x) dix, (6.116)
i 0
with
1— F(#) = Pr{failure -free operating time of the operating element
(newatr=0) >¢ | Z; entered at ¢ = 0}

and
t

ful(x)RSI(t—x)dx = Pr{(Sgp; £t N system not failed in (0, Sgp;]

0 M upin (Sgpr, 1) I Z, entered at £ =0}.
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LN

a) b)

¢) d)

Figure 6.11 Possible time schedules for the 1-out-of-2 redundancy according to Fig. 6.10 for the
cases in which state Z; (a, b) or state Z, with both elements new (c, d) isentered at t =0

The first renewal point Sgp; occurs at the time x (i.e. within the interval (x, x+dx])
only if at this time the operating element fails and the reserve element is ready to
enter the operating state. The quantity u; (x), defined as (Eq. (A6.12))

1 o

u(x) = lim —Pr{(x < Sgp; < x + &x M system not failed in (0, x])
sxlo dx

| Z; entered at t =0},

follows from (Fig. 6.11a)

uy (x) = f(x)PA ; (x), (6.117)
with
PA ;(x) = Pr{reserve element up at time x | Z; entered at z = 0}
x
= [ Blguq (e~*- =)y (6.118)
0
and

h g () = g(¥) + g(¥) * v(y) * w(y) + g(¥) * v(y) * w(y) * v(y) * w(y) + ...

(6.119)
The point availability is given by
! t
PA (1) =1-F(t) + Iul(x)PASI(t —Xx)dx + Juz(x) PA g (¢t —x)dx, (6.120)
0 0

with 1 —F(¢) as for Eq. (6.116),
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t
_[ul(x)PASI(t—x)dx =Pr{(Sgp1< t M system notfailed in (0, Spp;]

0
N upat t I Z entered at t =0},

and
t

[ ua(x)PAg (2-x)dx = Pr{(Sgp; < t N system failed in (0, S gp;]

0
N upatt | Z; entered at ¢ =0}.

The quantity u,(x), defined as

1
U, (x) = lim — Pr{(x < Sgp; £ x + dx M system failed in (0, x])
sxlo Ox

l Z, entered at 7 = 0},
follows from (Fig. 6.11b)

X

u, (x) = g(x)F(x)+ Ih'udd(y)w(x - y)(Fx)-FQy))dy (6.121)
0
with
W0 (0) = g(3) #v(¥) + g(¥) * v(y) = w(y) * v(y) + ... . (6.122)

One can recognizes that u;(x)+u,(x) is the density of the interval times
separating consecutive renewal points 0= Sgpg, Sgp1> Sgp2»--- » 1. €., successive
occurrence times of state Z; of the embedded renewal process.

Consider now the case in which at ¢ =0 the state Z, with both elements new
is entered. The reliability function Rg(t) is given by

!
Rgo(t)=1-F() + [u3(x)Rgy (¢ — x)dx, (6.123)
0

with (Fig. 6.11c)
uj(x) = lim L Pr{(x < Sgp1 < x + 8x N system not failed in (0, x])
sxlo Ox

| Z o with both elements new is enteredat t=0} = f(x)PAy(x), (6.124)
where

PA o(x)=Pr{reserve element up at time x | Z, with both elem. new is entered at t =0}
X
= e M g [ e Mgy, (6.125)
0
with

B (¥) = V() * W) + v(¥) * W(y) * v(y) * w(y) + ... . (6.126)
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The point availability PAg () is given by

t t
PA 5o(t) = 1= F(r) + [u3(x) PAgy(r = x) dx + [ug(x) PA g (1 - x)dx, (6.127)
0 0

with (Fig. 6.11d)

1
uy (x) = lim — Pr{(x < Sgp; £ x+8x N system failed in (0, x]) | Zy with both
sxl0 Ox

elements new is entered at r =0} :I g ) W(x - y) (F(x) -F(y))dy (6.128)

0
and

By () = V) + V() * W) * V() +V(y) * W() * () * () * v(y) +... . (6.129)

One can recognizes that uj (x) +uy (x) is the density of the random time from ¢=0,
when Z is entered with both elements new, to the first renewal point Sgp; (first
occurrence of Z;) of the embedded renewal process with density u; (x)+u, (x) for
the time intervals separating successive renewal points (Sgpi+1) = Sgpis i =1 2,..)-

Equations (6.116), (6.120), (6.123), (6.127) can be solved using Laplace trans-
forms (LT). However, analytical difficulties can arise when calculating LT for
F(x), G(x), W(x), u; (), up ), uz(), uy () or at the inversion of final
equations. Easier is the calculation of the mean time to failure MTTFgq = R s0(0)
(Egs. (2.59), (2.61)) and of the asymptotic & steady-state point and average
availability PAg = AAg = }11)1}) sPAg(s), for which the following expressions can
be found using LT (see Eqs. (6.123) & (6.116) for MTTFs, and Egs. (6.120) &
(6.127) for PAg, and consider }ig})(l —(s5))/ s = MTTF)

fu3(x)dx
MTTFgy = MTTF [1 + — 1, (6.130)
l—f uy(x)dx
0
and
MTTF
lim PA go(r) = lim PA g (1) = PAg = AAg = — . (6.131)
t—yoo t—oo
[xuy(x) + up(x)dx
0
with
MTTF = | (1 - F(x))dx. (6.132)

0
Eq. (6.131) considers that PAg exists and that u; (x) +u, (x) is the density of a
random variable with finite mean, and thus Jo (u1(x) +up(x))dx = 1; similarly for
uj (x)+uy(x).
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It must be pointed out that Rg (¢) and PAg (¢) apply only to the case in which
at t =0 both elements are new (Fig. 6.11 ¢ & d). Situations with arbitrary initial
conditions at ¢ =0 (e.g. entering state Z, with the operating element not new or
entering state Z,) are not considered here because their computation requires the
knowledge of the time spent in the operating state before ¢ = 0.

The model investigated in this section has as special cases that of Section 6.4.2
(F(x) = 1-e hx , W(x) = G(x)) and the 1-out-of-2 standby redundancy with identi-
cal elements and arbitrarily distributed failure-free and repair times (Example 6.11).

Table 6.7 summarizes the results for the 1-out-of-2 redundancy with arbitrary
repair rates, and failure rates as general as possible within a regenerative process.

Example 6.11

Using the results of Section 6.4.3, give the expressions for the reliability function Rgq(¢) and the
point availability PAgy(f) for a l-out-of-2 standby redundancy with 2 identical elements,
failure-free time distributed according to F(x), with density f(x), and repair time distributed
according to G(x)with density g(x).

Solution

For a standby redundancy, u;(x) = f(x)G(x), uy(x) = g(x)F(x), uz(x)=1(x), and uy(x)=0
(Egs. (6.117), (6.121), (6.124), and (6.128)). From this, the expressions for Rgg(#), Rg(?),
PAgg(#), and PAg)(#) can be given. The Laplace transforms of Rgqg(#) and PA gq(¢) are

1-1(s) . f(s)(1 - £(5))

R - 6.133
50) s s(1—-1(s)) ( )
B 1-f ) -*
Py () = D OO (6.134)
s s[l= (T )+, ()]
with

i) =] ()GE)e ™ dr  and  dy0)=[ gE)FE)e dt
0 0

The mean time to failure MTTFgq follows from Eq. (6.133) as MTTFg, = ﬁ s0(0), or directly
from Eq. (6.130),

MTTF
MTTFyy = MTTF + ————— - (6.135)

1-[ f(x)G(x)dx
0

The asymptotic & steady-state value of the point and average availability PAg = AAg follows
from Eq. (6.134) as PAg =AAg= }i_I)I(I)sPAS (s) , or directly form Eq. (6.131),

MTTF
PAg = Adg = ———. (6.136)

[ xd F)GG)
0
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Table 6.7 Mean time to failure MTTFg , asymptotic & steady-state point and average availability

PAg =AAg, and interval reliability IR ¢(0) for a repairable 1-out-of-2 redundancy with two identical
elements (Fig. 6.10, arbitrary repair rates, failure rates as general as possible within a semi-rege-
nerative process, ideal failure detection & switch, one repair crew)

Standby (KrEO) Warm(?»r <A) Active(}\.rzk)
Distribution “Ax “Ax
of the os F&) 1-e F(x) 1-e
failure-free _ = ]
times RS - 1= | 1-e™*
Distribution
' of the repair | 95 G) G) G(x) G(x)
times
"% RS - G(x) W(x) G(x)
- MTTF =
§ | Mean of the o . . . )
E | failure-free L 1 MTTF RE 1
% times ,[ (1 - F(x))dx N or , or %, .
0
MTIR =
Mean of the < MTTR or
repair times J- 1 - G(x))ax MTTR MTTR,, MTTR
0
MTTF +
MTTF + 1 1 - 1 1
S U —— —_—y—
Mean time to MTTF A (A+A )0 -g(A) MTTFI uy()dx | A 200 - E))
failure — 0
2| (MTTFgy) 7 1 1 T 1 1
5 t-fiwem e =zoe i T | T3 i
g 0 (At h) 1 A 20*MTTR
= 0
e
a3
S | Point & average MTTF - MTTF -
£ | availability | _AM AR o 2-80).
— (PAS=AAS)¥ de(F(x)G(x)) K(K+K,)MTFR+?»g(7») Jx(ul(x)i-uz(x))dx 27»M77R+g()\.)
0 0
Interval reliability ~Ren(0 =Ry (0) ~Ren (0 ~Re(6)
(IRg(8))* 50® 50 50(® 50

up(x), up(x), uz(x) as per Eqs. (6.117), (6.121), and (6.124); OS = operating state, RS = reserve state
* asymptotic & steady-state value

6.5 k-out-of-n Redundancy

A k-out-of-n redundancy, also known as k-out-of-n: G, consists of n often identical
elements, of which k are necessary for the required function and n - k are in reserve
state (or repair). Assuming ideal failure detection and switching, the reliability
block diagram is as given in Fig. 6.12. Investigations in this Section assume
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Ll E |

n

k-out-of-n
(E] = E2= . En= E)

Figure 6.12 k-out-of-n redundancy reliability block diagram (ideal failure detection & switch)

identical elements Ej, ..., E,, only one repair crew, and no further failures at system
down (failures during repair at system level are neglected, as per assumption (6.2)).
Section 6.5.1 considers the case of warm redundancy with constant failure rate A in
the operation state and A,< A in the reserve state as well as constant repair rate .
This case includes active redundancy (A,.=\) and standby redundancy (A, = 0).
An extension to cover other situations in which the failure rate is modified at state
changes (e. g. for load sharing) is possible using the equations for the birth and
death process developed in Appendix A7.5.5 (see also Section 2.3.5). Section 6.5.2
investigates a k-out-of-n active redundancy with constant failure rate and arbitrary
repair rate. The influence of series elements (including switching elements) is
considered in Sections 6.6 - 6.7. Imperfect switching, incomplete coverage, and
common cause failures are investigated in Section 6.8.

6.5.1 k-out-of-n Warm Redundancy with Identical Elements
and Constant Failure and Repair Rates

Assuming constant failure and repair rates, the time behavior of the k-out-of-n
redundancy with identical elements can be investigated using a birth and death
process (Appendix A7.5.5). Figure 6.13 gives the corresponding diagram of
transition probabilities in (z, 7 + 8¢]. From Fig. 6.13 and Table 6.2, the following
system of differential equations can be established for the state probabilities P;(1) =
Pr{instate Z ; att} of a k-out-of-n warm redundancy with one repair crew and no
further failures at system down (constant failure rates A & A, and repair rate )

Py (£) = —vo Py (£) + WP, (2)
1.)] = Vj—l Pj_l(t)— (V] + M)P](t) + HPj+](t)9 j=1..,n-k,
Pruk41 ()= Vg By O) =W By 41 (®), (6.137)
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1-vydt L=(vi+W) 8 1-(vy+p) ot

L St w e &t &t W or

Figure 6.13 Diagram of transition probabilities in (¢, ¢+ 8] for a repairable k-out-of-n warm redun-
dancy (n identical elements, const. failure & repair rates, ideal failure detection & switch, one repair
crew, no further failures at system down (Z,_; ,; down state, arbitrary , 5 #40, birth & death proc.)

with
Vi=kA+(n—k= A, j=0,..,n—k. (6.138)

For the investigation of more general situations (arbitrary load sharing, more
than one repair crew, or other cases in which failure and/ or repair rates change at a
state transition) one can use the birth and death process introduced in Appendix
A7.5.5. The solution of the system (6.137) with the initial conditions at t =0,
P,(0)=1 and P;(0)=0 for j =i, yields the point availability (see Table 6.2 for
notations)

n—k

PAg;(1) = Y, Py(1), (6.139)
j=0

with P;(t)=P;(1) from Eq. (6.137) with P;(0) = 1. In many practical applications,
only the asymptotic & steady-state value of the point availability PAg is required.
This can be obtained by setting P,(n=0 and Pi(1)=PF (j=0,....,n-k+l) in
Eq. (6.137). The solution is (Appendix A7.5.5)

n—k .
Vg...V;i_
PAS:Z Pj=1-P, 4, with Pj=———, m;=-2 ~ L, m,=1 (6.140)
=0 2 T "
i=0

PAg is also the asymptotic & steady-state value of the average availability AAjs.
As shown in Example A 7.11 (Eq. (A7.157)), for 2v i <u it holds that

n—k+1
PJZ 2 Pi’ j=(),...,n—k.
i=j+1
From this, the following bounds for PAg can be used in many practical applications
(assuming 2vj <, j=0,....n-k)to obtain an approximate expression for PAg

i i
Y. Pj<PAg<Pi+ ) Pj, i=0,..,n-k. (6.141)
j=0 j=0
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The reliability function follows from Table 6.2 and Fig. 6.13

t
Rgo(r) =€ "0 + [vye 0% Ry (1 - x)dx

0
=(vj+u)t ‘ —(vj+u)x
st(t):e + J[VJ st+1(t—x)+uRSj_1(t—x)]e N
0 j=1,...,n-k-1,
t
Ry p() = Cnk 04 [URg (1= x)e™ Vb T3 gy, (6.142)

0

with v; as in Eq. (6.138). Similar results hold for the mean time to failure
MTTFgy = MTTFg +1/vq
MTTFg; = (14 V j MTTFgj,q +WMTTFg; 1)/ (V j + L), j=1,..,n-k-1,
MTTFgy_j =1+ UMTTFgp 1)/ (Vy—g T W). (6.143)

The solution of Eqgs. (6.142) and (6.143), shows that Rg;(#) and MTTFg; depend
on n—k only. This leads for n—k=1to

s+Vo+ Vv +i MTFFSOl:vO+v1+uz w , (6.144)

(s+Vo)(s+ v +sp Vo vy VoV

Rso, (5) =

and for n—-k=2to

(s+Vvg+Vvi+tW(s+Vvy+u)+vi(vy— W)

Ry, (5) =
S(S+V0 +Vl +u)(S+V2 +M)+VOV1V2 +SV1(V0 —M)
2
+ + 0+ + W)+
M]TFSOZ - \) (VO Vi l‘l‘) H‘(VO “’) Vo Vi ~ 2 . (6145)
Vo ViV Vo V1 V2

This property holds for the point availability PAg as well, see Table 6.8 for results.
Because of the constant failure rate, the interval reliability follows directly from
n—k
IRg;(t,t +6) = X, Pi(nRg;(0), i=0,..,n—k (6.146)
j=0
with P;(1) as in Eq. (6.139) and Rgi(0) from Eq. (6.142) with t=0. The
asymptotic & steady-state value is then given by
n—k
IRg(0) = Y, P;Rg;(6), (6.147)
j=0
with P; from Eq. (6.140). Table 6.8 summarizes the main results for a k-out-of-n
warm redundancy with constant failure and repair rates.
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Table 6.8 Mean time to failure M7TFg), asymptotic & steady-state point and average availability
PAg = AAg  and interval reliability IR g(0) for a repairable k-out-of-n warm redundancy with n
identical elements (constant failure & repair rates A, A,., W (A, <A reserve state, A, =0 standby),
ideal failure detection & switch, one repair crew, no further failures at system down, Markov proc.)

Mean t A — Asymptotic & steady-state point and average I?te;};f’tl
. e reiiabiln
ean time to failure ( 50) availability ( PAg = AAg) (IRS(G);'*
Vo + vy + 2
gen. otVith B VolU+p _1_YoVi =Rgo(0)
case Vo Vi Vo Vi Vo vy +Vou+pl u?
Lln=2| 2A+A 40 p po*A 4w A+ ~Rg(0)
g K= AR+ AR A+ A, ) +p)+u? u? ¥
n=3| 4hth, n RCA+A, +W) 2AQA+A,) ~Ry(®)
k=21 20QA+A,) 2AQA+A,) (2A+x,)(2)»+u)+u2 W
Vo (Vo +Vy W) N
gen. VO vl V2 Vo Vi L+ V p_2+u3 VoV V Ry (0)
o1 0 0V1V2 | =Rg
e T A .5 T ’
VoV v, VoV, Y, VoViVa +Vg Vi U+Vg Ui+l W
(]
i 2
Llaa| " L MarA G2, ~Rgo®
Lle=1 AQH+A )R +22,) w3
2
n=s| _ u . 3MBA+A,)BA+2A,) Ryy(0)
k=3 3AGBA+A)GBA+2A,) 3
n-k Vo .oV, _ 1/ MTTR
n._k o ~1--2 kn1k -1 —E =1- : =Rgo(0)
arbitrary Vg o Vg TR MITE MTTFg,

v, =kA+(n-k-0iA,, i=0,..,n=k; A,A =failurerates (A,=A— active red.:)VO"'Vn_k=7»"_k+ln!/
& -1, }”r = 0— standby redundancy =V, Vv, ;= (k?»)"'k“); W = repair rate (W =1/ MTTRg be-

cause of only one repair crew); R so(e) from Eq. (6.142); * see [6.5 (1985)] for exact solutions

Assuming, for comparative investigations with results of Table 6.8, n repair
crews (one for each element), following approximate expressions can be found for
active redundancy (totally independent elements, Table 6.9 or e.g. [6.27, 6.44])

1 -
MTTFgq = o0 /"

k n repair crews, activered.,, A/pu<<1 (6.148)
1

k_(n —k+1
PAg=1-—— )M/ =,
$ n—k +1(k) # (n—k+1)u MTTFg



216 6 Reliability and Availability of Repairable Systems

and for standby redundancy (see e.g. [6.44])

— ! n—-k
(k)\)n—k+l .
n repair crews, standby red., A/pu<<1 (6.149)
o/ n—k+1 1
PAg =1 -2 :
-k +1)! (n =k +1) p MTTFg

As for Eq. (A7.189), PAg in Eq. (6.148) and Eq. (6.149) can be expressed as
PAg = 1—- MTTRg /| MTTF; with MTTRg =1/(n-k+1)pu and MTTF; = MTTF
(see also Table 6.8, row n—k arbitrary). Comparing results of Eq. (6.148) with those
of Table 6.8 for A=A, one recognizes that MTTFso,. / MTTF, . =(n-k)! and
PAg, I PAg, = 1/(n-k+1)!, with PAg=1-PAg; where IE stands for independent
elements (Eq. (6.148) or Table 6.9) and MS for macro-structure (Tables 6.8 or 6.10).

6.5.2 k-out-of-n Active Redundancy with Identical Elements,
Constant Failure Rate, and Arbitrary Repair Rate

Generalization of the repair rate (by conserving constant failure rates (4,4,), only
one repair crew, and no further failure at system down), leads to stochastic processes
with basically n —k + 1 regeneration and n— k not regeneration states (Zy,Z, & Z,
in Fig. A7.11 for n-k =1 and Zy,Z,,Z, & Z,,Z3 in Fig. A7.13 for n—k =2).
As an example let us consider a 2-out-of-3 active redundancy, i.e. a majority redun-
dancy, with 3 identical elements, failure rate A and repair time distributed according
to G(x) with G(0)=0 and density g(x). Because of the assumption of no
further failure at system down, results of Section 6.4.2 for the 1-out-of-2 warm
redundancy can be used for n—k =1 by setting kA instead of A (see Tab. 6.8 as
well as Eq. (A7.183) for n—k =1 and Eqgs. (A7.186) for n-k=2). For the 2-out-of-3
active redundancy one has to set 2\ instead of A and A instead of A, in Egs.
(6.108) & (6.110) to obtain Egs. (6.152) & (6.155). However, in order to show the
utility of representative time schedules, an alternative derivation is given below.

Using Fig. 6.14a, the following integral equation can be established for the
reliability function Rgo(t) (see Table 6.2 for notations)

t
Rgo(1) = e >H 4 [30e 24520701 _ G(1 - x))dx
0

ty
+ [[ 302 g(y ~x)e 2P0 IR (1 - y))dxdy.  (6.150)
00

The Laplace transform of Rg(#) follows as
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s+5A=3AE(s+2A)

Rgo(s) = . 6.151
s0(5) (s+20)(s+30) —3A(s + 2A)B(s + 2 1) @.151)
and the mean time to failure as
5-3§@2A)
TTFp = ———— ,
MITFso = = (6.152)
For the point availability, Fig. 6.14b yields
t
PAgo(1) = e M + [3he M PAG (1 - x)dx
0 t t
PA s (1)=¢ M(1-G(1)) +[ g(x)e M PAgo(1=x)dx +[ g(x)(1-¢ M) PA g (1-x)dx
0 0 (6.153)
from which,
5 20)[1+ & -3 -3
P go() = L H 2L B + 20) = B(s)]+ 3A(1—B(s + 2 1)) 6.154

S(s+2A)1+ 8(s +2A)—8(s)]+ 3A(s +2A)(1-B(s)) '
Asymptotic & steady-state value of the point and average availability follows from

3-82A)

PAc = AAc = ,
§ TS T 95020) + 64 MTTR

(6.155)

by considering gg}% (1-8(s)) =s- MTTR + o(s) as per Eq. (6.54). For the approxima-
tion of §(21), Eq. (6.113) must be used. For the asymptotic & steady-state value of
the interval reliability, Eq. (6.112) can be used in most applications. Generalization
of failure and repair rates leads to nonregenerative stochastic processes.

0 ' 0 !
2A

n I

3A . , 0 X t

0 X 2A

» t

0 7
2A i 2 ,

t

0 X y t 0 X t
24 p

®, A renewal points 0 X t

a) Calculation of Rgq(?) b) Calculation of PA g (2)

Figure 6.14 Possible time schedule for a repairable 2-out-of-3 active redundancy (const. failure rate,
arbitrary repair rate, ideal failure detection & switch, only one repair crew, no further failures at
system down, repair times exaggerated)



218 6 Reliability and Availability of Repairable Systems

6.6  Simple Series - Parallel Structures

A series-parallel structure is an arbitrary combination of series and parallel models,
see Table 2.1 for some examples. Such a structure is generally investigated on a
case-by-case basis using the methods of Sections 6.3 — 6.5. If the time behavior can
be described by a Markov or semi-Markov process, Table 6.2 can be used to
establish equations for the reliability function, point availability, and interval
reliability (inclusive mean time to failure and asymptotic & steady-state values).

As a first example, let us consider a repairable -out-of-2 active redundancy with
elements E; = E, = E in series with a switching element E,,. The failure rates A and
A, as well as the repair rates U and p,, are constant (time independent). The system
has only one repair crew, repair priority on E,, (arepair on E; or E, is stopped as
soon as a failure of E,, occurs, see Example 6.12 for the case of no priority), and no
further failures at system down (failures during a repair at system level are
neglected). Figure 6.15 gives the reliability block diagram and the diagram of
transition probabilities in (¢, ¢ + 8¢]. The reliability function can be calculated using
Table 6.2, or directly by considering that for a series structure the reliability at
system level is still the product of the reliability of the elements

Ri0(f) = Ry, op, (D €07 (6.156)

Because of the term e~*v?, the Laplace transform of Rg(¢) follows directly from
the Laplace transform of the reliability function for the 1-out-of-2 parallel
redundancy Rgo 0 oo by replacing s with s + A,, (Table A9.7)

i 3
Rgo(s) = sT3ht A R : (6.157)
(S+2A+A )+ A+A)+(s+A,)u
The mean time to failure MTTFg follows from MTTFg, = Rgo(0)
3h+ A 1 1
MTTFgo = e = 5 < —- (6.158)
QA+ A+ X))+ RA, A +2A7/(BA+A, ) Ay

The last part of Eq. (6.158) clearly shows the effect of the series element E,,.
The asymptotic & steady-state value of the point and average availability
PAg = AAy is obtained as solution of following system of algebraic equations, see
Fig. 6.15 and Table 6.2,

B B
PO=M’ PIZQR)’ p3=.}\’_VP2,
2)\.+7\,v Hy My
A
Pp=—— (W, P +uP +2\B), P ==PB. 6.159
) 7~+7&v+u(”” .l 27 0) 4=3h ( )
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1-out-of-2 active
repair priority on E,,
(E\=E,=E)

1= (A+Ay+u) Bt

Po1 =P23 =Avi POz =2A; Pro =P3z =Hyvi P20 =Paz SKi P =A;
(for Rglt) set pjp=p3z = paz=0)

Figure 6.15 Reliability block diagram and diagram of transition probabilities in (¢, #+3¢] for a
repairable 1-out-of-2 active redundancy with a switch element ( E; = E, = E, constant failure and
repair rates (A, A, i, 1, ), ideal failure detection & switch, one repair crew, repair priority on E,,,
no further failures at system down, Z,,Z5,Z, down states, arbitrary ¢, & 110, Markov process)

Note: The diagram of transition probabilities would have 8 states for the case of totally independent
elements ( E|# E,, 3 repair crews), 9 states for the case as in Fig. A7.6¢, and 16 states (p. 224)
for E# E,, one repair crew and repair as per first-in first-out (see also the footnote on p. 479)

For the solution of the system given by Eq. (6.159), one (arbitrarily chosen)
equation must be dropped and replaced by Py+ P+ P,+ Py + Py=1. The solution
yields Py through P, from which (assuming 24 < u for the last inequality)

2
KU, +2A00,

PAS:AAS =P0+P2=
W, + 20, + 2A, + A, W+ pPA,

A
=1/ 014 Ay  py+2 (A /)% (1420 /)] = 1—M—V—2(%)2(1—%). (6.160)
A%
As for the mean time to failure (Eq. (6.158)), the last part of Eq. (6.160) shows the
influence of the series element E,. For the asymptotic & steady-state value of the
interval reliability one obtains (Table 6.2)

IRs(e) = PO Rso(e)+ P2 Rsz(e) = PO Rso(e) = Rso(e) (6.161)

Example 6.12

Give the reliability function and the asymptotic & steady-state value of the point and average
availability for a 1-out-of-2 active redundancy in series with a switching element, as in Fig. 6.15,
but without repair priority on the switching element.
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E

2-out-of-3 active
(f:1 = }:2 = ES =E)

Figure 6.16 Reliability block diagram and state transition diagram for a 2-out-of-3 majority redun-
dancy (constant failure rates A for E and A, for E,,, repair time distributed according to G(x) with
density g(x), ideal failure detection & switch, one repair crew, no repair priority, no further failures
at system down, Z,,Z5,Z, down states, Z,Z;,Z, constitute an embedded semi-Markov process)

Solution

The diagram of transition probabilities in (z, #+8¢] of Fig. 6.15 can be used by changing the
transition from state Z3 to state Z, to one from Z3 to Zj and W, in p. The reliability function
is still given by Eq. (6.156), then states Z,, Z3, and Z, are absorbing states for reliability
calculations. For the asymptotic & steady-state value of the point and average availability
PAg = AAg, Eq. (6.159) is modified to

(4, P+ 1P) A, u . WP, +2 AP, A
p=———*, BR=—P+—P, P=—P, P,=—"—"- P=—0F,
24+ A4, u, H, H A+A,+ 4 u
and the solution yields (considering P, +...+ P;=1 and assuming (3A+A,,)<u for the inequality)
2
1 A 2A A+ A/
PAg = AAg = - iy ZAORAVITR
Ay 2A AR By 1+QA+2Ay)/p
R NS —
Ry 1+QA+A)/ 1
Ay 2 2 2Ah,  3A+A A
S WA A A B S g B AL (6.162)
By n? U u? i My

Comparison of Eq. (6.160) with Eq. (6.162) shows the advantage (= 2AA4,/ ,u2) of
the repair priority on E,, on the availability PAg = AAg.

As a second example let us consider a 2-out-of-3 majority redundancy (2-out-of-
3 active redundancy in series with a voter E,) with arbitrary repair rate
Assumptions (6.1) - (6.7) also hold here, in particular (6.2), i.e. no further failures at
system down. The system has constant failure rates, A for the three redundant
elements and A, for the series element E,, and repair time distributed according to
G(x) with G(0)=0 and density g(x). Figure 6.16 shows the corresponding
reliability diagram and the state transition diagram. Z, and Z; are up states. Z,, Z;
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and Z, are regeneration states and constitute a semi-Markov process embedded in
the original process. This property will be used for the investigations. From Fig.
6.16 and Table 6.2 there follows for the semi-Markov transition probabilities
Qo1(x), Qio(x), Qoalx), Quo(x), Qpa1(x), Qq34(x) (similar as for Figs. A7.11-A7.13)

31— e~ GMAV

X
Qo1(x)=Pr{tg1 SxN1TQ4 >T01} = '[37\.6‘3}‘))6—}»" Ydy =

0 3+ Ay
X
Qlo(x) = PI’{TIO <xN (1712 >T10M7T13 > ‘Clo)} = J.g(y)e_a)ﬁ-xv)ydy
0
X
= G(x)e CMMIF L Tan+0,)e” P G(y) dy

0
Q121(x) =Pr{ty21 < x}

Tt x 2 _
= [g)f20e” MM 2azay = [o(y) (1- e @MYy gy
0 0 0 2)\,-{‘;\.‘,

X y _ }\'
Qu34(x) = Prizyaq S x=[g(y) [Ay e P2 gr gy = Qi)
0 0

X
Qo4 (x)=Pr{tg4 SxN 191 >T4} = J}\.ve_()\v+3k)ydy = :)):—;\'QOI()C)
0
Q4o(x)=Pr{t4g <x} = G(x). (6.163)

Qp21(x) is used to calculate the point availability. It accounts for the process
returning from state Z, to state Z; and that Z, is not a regeneration state
(probability for the transition Z; — Z, — Z;, see also Fig. A7.11a), similarly for
Qq34(x). Q'lz(x) and Q'B(x) as given in Fig 6.16 are not semi-Markov transition
probabilities (Z, and Z; are not regeneration states). However,

X
Q12(x) = Pr{Tyy S XM (T3 > Tp N Ty0 > Tp2)} = [ 2he 2MYe™ Y (1- G(y)) dy
0

. A, o
Q 13(X) = PI'{TI3 <xN (le > T13 NTyo > ’513)} = ﬁQ 12()&')

yields an equivalent Ql(x)=Q10(x)+Q'12(x)+Q'13(x) useful for the calculation of the
reliability function. Considering that Z, and Z; are up states and regeneration
states, as well as the above expressions, the following system of integral equations
can be established for the reliability functions Rgy(t) & Ry (?), as per Eq.(A7.172),

t
Ryq(t) = eGP 4 [37 7 CAMINR 01 (1~ x) dx
0

t
Rg (1) = e @M1 G + [gx) e @M R - dx.  (6.164)
0
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The system of equations (6.164) for Rgo() & Rg;(¢) has a great intuitive appeal
and could have been written without the use of Q;j (x). Its solution yields

S+5A+A, —3A8(s+2A+A,)

R =
s0) =% + A5+ A, +3A(1 = B(s + 24 +A,)]

(6.165)

and
SA+A, —3A82A+A,)

MTTFg = .
SOT @A), +301 - E2A +A,))]

(6.166)

Rgo(s) and MTTFy, could have been obtained as for Eq. (6.157) by setting
s =5+ A, in Eq (6.151). For the point availability, calculation of the transition
probabilities P (1) with Table 6.2 (or Eq. (A7.169) and Eq. (6.163) leads to

! 13
Poo (1) = ¢ CA AL (33 CMMIXp (a4 [, eGP — xydx
0 0

t
Pio() = [ g(x)e @M T By (- x)dx
0

L2 _
=2 (1= My o ()P (2 = x)

02A+A,
+j~§"—~(1 — e @MRIX () Py (0 — x)dx
02A+A,
t
Py (1) = [ g(x) Py (t — x)dx, (6.167)
0
and

! t
Poy (1) = [3he CMMI¥p(r— xydx + [, eGP, (2 - x)ax

0 0
t
Py(0) = PP -G + [ gye™ @M T By (1 - x)de
0
t
+[—1———(1 — e @RIy (Y RAP (¢ x) + A, Byt — x)]dx
0 2A+A,
t
Py (1) = [g(x)Py(t - x)dx. (6.168)
0

From Egs. (6.167) and (6.168) it follows the point availability PAgq(t) = Py(t) +
Py;(#)and from this (using Laplace transform) the asymptotic & steady-state value
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_ 2A+A, +A1-82A+A,) ,
@A+ A +(3A+A, )YMITR] + MM, MTTR -2)(1- g2 A + 1))
(6.169)
with MTTR as per Eq. (6.111). For the asymptotic & steady-state value of the

interval reliability, the following approximate expression can be used for practical
applications (Eq. (6.112))

PAS = AAS

IRS(G) = Po Rso(e) =
[CA+A,)-2A(1-8C2A+A,)]Rg0(6)
Q@A+A ) +(3A +A,) MTTR] + A(A, MTTR =2)(1-8Q2 A + A,))

. (6.170)

In Eq. (6.170) it holds that P0=lti_)n1°P00(t),with Pyo(t) from Egs. (6.167). For
g2 A+ Ay) =1, IRg(8)=Rgp(0) can be used.

Example 6.13

(i) Give using Egs. (6.166) and (6.169) the mean time to failure MTTFgq and the asymptotic &
steady-state point and average availability PAg = AAg for the case of a constant repair rate W.
(ii) Compare for the case of constant repair rate the true value of the interval reliability IR g(6)
with the approximate expression given by Eq. (6.170).

Solution

(i) With G(x)=1-¢*” it follows that g2A+A,)=n/Q2A+A, +n) and thus from Eq. (6.166)

SA+A,+p 1 1

1
MTTFgq = = 5 = < (6.171)
GA+A)CA+A)FMA, A +6M/ GA+A, +1) A, +6A70 Ay

and from Eq. (6.169)
3A+A, + 1
PAg = A = B y T _
GA+A, + W, + W +3AQ2A+A,) 1+h+ 3M2A+A)
Ay 3AQA+A) Ko BG+3A+R)
= _T_—u_z_—' (6.172)

(ii) With Pyq(z) and Py () from Egs. (6.167) & (6.168) it follows for the asymptotic & steady-
state value of the interval reliability (Table 6.2) that
U()‘v + N)Rso(e)"' 3}"HR5 1(9)

IR (0) = . (6.173)
GA+A,+W)A, + W +3AQ2A+A,)

The approximate expression according to Eq. (6.170) yields

NO",,"' WRg ((6)
GA+A, +W)A, +W)+3ACA+A,)

IR, (0) =

i.e., the same value as per Eq. (6.173) for 34 << p and considering R g;(8) £ R g4(8).
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To give a better feeling for the mutual influence of the different parameters
involved, Figs. 6.17 and 6.18 compare the mean time to failure MTTF;, and the
asymptotic & steady-state unavailability 1- PAg of some basic series - parallel
structures. The equations are taken from Table 6.10 which summarizes results of
Sections 6.2 to 6.6 for constant failure and repair rates. Comparison with Figs. 2.8
& 2.9 (nonrepairable case) confirms that the most important gain is obtained by the
first step (structure b), and shows that the influence of series elements is much
greater in the repairable than in the nonrepairable case. Referring to the structures
a), b), and c) of Figs. 6.17 and 6.18 the following design rule can be formulated:

The failure rate of the series element in a repairable 1-out-of-2 active
redundancy should not be greater than 1% (0.2% for n/ Ay >500) of the
failure rate of the redundant elements, i.e., with respect to Fig. 6.17,

Ay <0.01A; in general, and A, <0.002A; for p/A;> 500. (6.174)

6.7 Approximate Expressions for Large
Series - Parallel Structures

6.7.1 Introduction

Reliability and availability calculation of large series - parallel structures rapidly
becomes time-consuming, even if constant failure rate A; and repair rate \; is
assumed for each element E; of the reliability block diagram and only mean time to
failure MTTFg or steady-state availability PAg=AAg is required. This is because
of the large number of states involved, which for a reliability block diagram with n
elements can reach 1+ Z:;l HZ_k_.J: n! 2;;01/ il=e-n! by n different elements and
repair as per first-in first-out (ség e. g. Notes to Figs. 6.15 and 6.20). 2" states holds
for nonrepairable systems or for repairable system with totally independent elements
(Point 1 below). Use of approximate expressions becomes thus important. Besides
the assumption of one repair crew and no further failure at system down (Sections
6.2 - 6.6, partly 6.7 & 6.8), given below as Point 3, further assumptions yielding
approximate expressions for system reliability and availability are possible for the
case of constant failure rate A; and constant repair rate u;>>A; for each element E;.
Here some examples:

1. Totally independent elements: If each element of the reliability block diagram
operates independently from every other (active redundancy, independent
elements, one repair crew for each element), series - parallel structures can be
reduced to one-item structures, which are themselves successively integrated
into further series - parallel structures up to the system level. To each of the
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Figure 6.17 Comparison between a one-item structure and a 1-out-of-2 active redundancy with a
series element (constant failure & repair rates (A, ,A, 1), ideal failure detection & switch, one repair
crew, repair priority on E,, no further failure at system down, Markov process; Aj remains the
same in both structures; Eqs. according Table 6.10; on the right, MTTFg,. /MTTFg,, and
(1 - PAg. )/ (1 - PAg,) with MTTFg, and 1- PAg, from Fig. 6.18; see also Fig. 2.8)
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L Ay 200 /)
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Figure 6.18 Comparison between basic series - parallel structures (active redundancy, constant
failure & repair rates (?»1 ,?»2,)‘.3 ,1), ideal failure detection & switch, one repair crew, repair
priority on Ej3, no further failure at system down, Markov process; A; and A, remain the same in
both structures; equations according to Table 6.10; see also Fig. 6.17 and Fig. 2.9)
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one-item structure obtained, the mean time to failure M7TFy, and steady-state
availability PAg, calculated for the underlying series - parallel structure, are
used to calculate an equivalent MTTRg from PAg= MTTFy / (MTTFg + MTTRg)
using MTTFg = MTTFyy. To simplify calculations, and considering the com-
ment given to Eq. (6.94), p. 197, constant failure rate Ag =1/ MTTFy and con-
stant repair rate \g =1/ MTTRg are assumed for each of the one-item struc-
tures obtained. Table 6.9 (p. 230) summarizes basic series- parallel structures
based on totally independent elements (see Section 6.7.2 for an example). +)

2. Macro-structures. A macro-structure is a series, parallel, or simple series -
parallel structure which is considered as a one-item structure for calculations
at higher levels (integrated into further macro-structures up to system level)
[6.5 (1991)]. It satisfies Assumptions (6.1) - (6.7), in particular one repair crew
for each macro-structure and no further failures during a repair at the macro-
structure level. The procedure is similar to that of point 1 above (see also the
remarks to Eqs. (4.37) and (6.94)). Table 6.10 (p. 231) summarizes basic
macro-structures (investigated in Sections 6.2 - 6.6) useful for practical appli-
cations, see Section 6.7.2 for an example. ¥

3. One repair crew and no further failures at system down: Assumptions (6.3)
and (6.2), valid for all models investigated in Sections 6.3 - 6.6, applies in
many practical applications. No further failures at system down means that
failures during a repair at system level are neglected. This assumption has no
influence on the reliability function at system level and its influence on the
availability is limited if A;<<; can be assumed for each element E;.

4. Cutting states: Removing the states with more than k failures from the dia-
gram of transition probabilities in (#, ¢+ &¢] (or the state transition diagram)
produces in general an important reduction of the state diagram. The choice of
k (often k =2) is based on the required precision. An upper bound of the error
for the asymptotic & steady-state value of the point and average availability
PAg=AAg (based on the mapping of states with k failures at the system level
in state Z, of a birth & death process and using Eq. (A7.157) (B 2 X' ., P)
has been introduced in [2.50 (1992)].

5. Clustering of states: Grouping of elements in the reliability block diagram or
of states in the diagram of transition probabilities in (z, ¢ + 8¢] produces in
general an important reduction of the number of states in the state diagram.

Combination of the above methods is possible. In any case, series elements must be

grouped before every analysis (see Section 6.3 and the second row of Table 6.10).
Considering that the steady-state probability for states with more than one failure

decreases rapidly as the number of failures increases (~ A/p for each failure, sece. g.

+) Methods 1 & 2 apply in particular for const. failure & repair rates for each element, yielding ap-
proximately constant failure & repair rates (A s kg ) for the reduced structure (Egs. (6.88), (6.94)).
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2
‘ By —
E

2

1-out-of-2 active
(Ey =E,)

Figure 6.19 Basic reliability block diagram for an uninterruptible electrical power supply (UPS)

pp. 235 and 265 and the corresponding Figs. 6.20 and 6.34), all methods given
above yield good approximate expressions for MITFsg and PAg in practical
applications. However, referring to the unavailability 1- PAg, method 1 above can
deliver lower values, for instance a factor 2 with an order of magnitude (A/ u)z fora
1-out-of-2 active redundancy (compare Tables 6.9 & 6.10). Analytical comparison
of the above methods is difficult, in general. Numerical investigations show a close
convergence of the results given by the different methods, as illustrated for instance
in Section 6.7.2 (p. 235) for a practical example with very low values for u/A.

6.7.2 Application to a Practical Example

To illustrate how methods 1 to 3 of Section 6.7.1 work, let us consider the
system with a reliability block diagram as in Fig. 6.19, and assume system new at
t =0, active redundancy, constant failure rates A; to A3, constant repair rates
u; to u3, repair priority E;, E3, E, [6.5 (1988)]. Except for some series elements
(to be considered separately in a final step), the reliability block diagram of Fig.6.19
describes an uninterruptible power supply (UPS) used for instance to buffer electrical
power network failures in computer systems (E; being the power network).*)
Although limited to 4 elements, the stochastic process describing the system of Fig.
6.19 would contain up to 65 states (pp. 224, 233) if the assumption of ro further
failure at system down were dropped. Assuming no further failure at system down,
the state space is reduced to 12 states (Fig. 6.20, p.233). In the following, the mean
time to failure ( MTTFsq) and the asymptotic & steady-state point and average avail-
ability (PAg = AAg) of the system given by Fig. 6.19 is investigated using method 1
(Table 6.9), method 2 (Table 6.10), and method 3 (Table 6.2) of Section 6.7.1. For a
numerical comparison, results are given on p. 235 (also for method 4 and for the
exact solution obtained by dropping the assumption of no further failure at system
down), showing that all methods used deliver good approximate expressions.

+) A refinement to include the battery discharge has been investigated recently [6.47 (2002)].
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Method 1 of Section 6.7.1 yields, using Table 6.9,

Aoy

System

}\.5 +}\,3

hg=A3ths, pg=—— 03
6 3 5 ULe }"5/”5"'}‘3/”3

AgoBg A Ag (U +He)
Ag= ’ Mg =HU] tUHg-

From Eqgs. (6.175) — (6.177) it follows that

Ay 205 A Mg
1/ MTTFqq = Aq = A [ 24 ——2 4 23, (22
50 5 l[ul MU M3 (Mz)]
and
Ao A A
pag =1-28 g Myt Ay
Mg W M3 Uy

Method 2 of Section 6.7.1 yields, using Table 6.10,

System

229

(6.175)

(6.176)

(6.177)

(6.178)

(6.179)
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Table 6.9 Basic structures for the investigation of large series-parallel systems by assuming fotally
independent elements (each element operates and is repaired independently from every other element),
constant failure & repair rates (A, ), active redundancy, ideal failure detection & switch, n repair
crews (one for each element), Markov processes (for rows 1 to 5 see Egs. (6.48), (2.48) & (6.60),
(2.48) & (6.99), (2.48) & (6.171) with A,,=0, and (2.48) & (6.148), respectively; Ag=1/MTTF,
and pg=1/MTTRg = Ag/(1- PAg) are used to simplify the notation; approximations valid for
A;<< Wj; PAg = AA; =asymptotic & steady-state point and average availability, often denoted by A)

1
A, Ag=A, Hg=m, PA=————=1-)Ag /Mg
n N N N L+ hg g N
b E —> Ag PA;  Ag
= ug= =
1-PAg  1-PA
ALl AL a8 K, A Ay
1l ntn PA, = PA, ... PA = = -+ ...+
S ! L T W T (u. u,,)
> E1 —e— E,
A A+ +A
Ag=A+..+A, = pg= S ! L
s—H " ST 1-PAg M lpp A, IR,
AL By My U Ay + Uy Ay © A A
1M _ Mt Ayt A 142
PAg = PAy + PAy = PA PAy = — = Pmmih = 1=
E, 1HADRy T4, 112
1 A+ A+ U DA A+ 1) = A A, Y [T
My by L o wrTE, = tAgt )Ryt Apt o) = M2y ™ 1H2
Ag Mihy Qg+ dy+ Uy + 1y) Ay g+ 1y)
EZ
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. = Mg = =Rty +) Same result using
1-out-of-2 (active) 1 - PAg Fig. A74D right hand
Au
2
3/ A2
E PAg = 3PA’= 2PA = 1 - ——— = 1-3 (%
! s 1+3A /4 &)
E Shtp u
2 L/hg = MITFgy = ——— = ——
6N 6N
E. A
3
. = pg=——— =2
2-out-of-3 active 1- PAg
(El=E2=E3=E)
A
k Ay n-k+l
E ~1 - (M (A
! Pas = 1= = (1) (2)
= 1/Ag = MTTF, ! (”)"_k
s = s0= " 7 A\%
e ()
E A
1 = Ug= 5 =m-k+Hu
k-out-of-n active 1- PAg
(E,=..=E, =F)
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Table 6.10 Basic macro-structures for the investigation of large series-parallel systems by successive
building of macro-structures bottom up to system level, const. failure & repair rates (A,l), active red.,
ideal failure detection & switch, one repair crew for each macro-structure, repair priority on E,,, no
further failure at system down, Markov proc. (for rows 1-6 see Egs. (6.48), (6.65) & (6.60), (6.103)
& (6.99), (6.160) & (6.158), (6.65) & (6.60) & Tab. 6.8, and as for row 5, resp.; Ag =1/MTTF;, and
Ws=1/MTTRg ~ A ¢/(1- PAg) are used to simplify the notation; approximations valid for A;<<p;)

AR Ag=A, ug=H, PAg=1/(1+Ag/pug)=1-Ag/pg
Ag PA A
»p— E |——p = us= S S ~ S
1-PA;  1- PAg
A iy ;\”Y“n PAg =1-\ /01 + .. +A, Tuy),; Ag=A;+...+A,
A A+t A
» El e E o - S . 1 n (=p f ==p =
= = =W for y=...=p =n)
. I BT W W W=t
AL p A A
rH
PAg = 1- =2l + )
El p’] ”2
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A [T
E2 S Mg sy (SR for ky=ky)
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i A PAg =1 by 2000
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1 vy $ By 1+207H
Ey 2 2
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}"S
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o ke A, 60/
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E E, —p
2 J v 1/hg = MITFgy =1/ (v, + 637 /)
A A, +6A2/p
E S v
3 = = = = for =
Hg 1- PAg By 6 /n n (=, Ky=K)
2-out-of-3 active (E,=E_=E_.=E) 4o—— Y
Lol T2 v 1+3A/p W
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A
Ay n! A n—k+1
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- Ay By
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}\.7 z7\.3'|‘2)\.22 /Mz,

3 3 (225 + 1y M) (1422, /1y)

i = , (6.180)
MpAsy +2Ah5 A3 +22A5 U3 /Uy
Aol
A Ay +Hg) By +p
4, }“S = _1_.7__1__._7_’ Ug = Uy ly ; ; . (6181)
My by Uy +u5

From Eqgs. (6.180) and (6.181) it follows that

L MTTFyg = hg = 2 ( 205 +iiy Ay L Hahs + 20903 + 21, 2 Ity ) (6.182)
W Ko Mo My (L+225 /1y)
and
pag = ks 203 1y Ay A P ds + 2 g + 203 23 Iy )
Hs Ha 0@ iy Ay ) A+ 20 ) 1S
ok Luﬁ By | oy #2090 2305 )’ 1y My (6.183)

K K3 Holz® (27»22 +Hy Ag )2 A+2A, Iy, Y

Method 3 of Section 6.7.1 yields, using Table 6.2 and Fig. 6.20, the following
system of algebraic equations for the mean time to failure (M; = MTTFyg;)

PoMy =1+A M +20) My + A3 M5,
Py My =1+ Wy My + A3 My + Ay Mg + A My,
PaMy =1+p3 My + Ay Mg,

PYMy =1+p My +2hy My,
P3My =1+ My +2h, My,
PsMs = 1+u3 Mg,

P Mg =1+ 1y My + A3 M5, P7 My =1+ My, (6.184)
where

Pg = Ay +2h,y +As, Pr = Wy +2A, +Ag, Py = Uy +Ap +A, +2As,

P3 = K3 +2A +4y, Py = M3+ Ay +Ag, Ps = M3+ A,

Ps = Uy + A3 +Ap, P7 =My +Az+Ay, Pg = Hp»

Pg = HUp» P1o= Mg» P11= Mq- (6.185)
From Eqgs. (6.184) and (6.185) it follows that

as+ag(ag +agay)+aya
1/hg = MITRyy = ———0-8 971077 7710, (6.186)

1"06(112 ——a”(a7 + (16(19)
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with
1 2 As+ps Ao g g )
=—+ (+p , =—2273 .5,
“ P4 P4Ps 305%‘%“3 “ P4PsPg ~Azlz) Ps
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a3 03 24 4 03 ) as Do — a3 /05
B M 20 thsgy 1422, /pq
% Po —A3by /o3 @ Do —Aahis /p3 %= Py ’

2 4 _1+2d3a +(hg A3 Ay ps5)/ (P5Ps —A3H3) + M/ Py
/2 0= ,
P P7 P2 =A3a — Ay s/ (PsPs ~A3lz) = A g/ g

n n
ay = 2 a12=é~ (6.187)

P2 =A3a = Ay Ps / (PsPg ~A3a) = Al /pg

1-out-of-2 active
(Ey =E3)
Repair priority: E| , 3, Ey

Por=hs Poy=2hy s By=hyt D= Iy Pp=2hy 5 By =Ryl Py =By

Pyy=hyi Pog=hyi Pp=hpi Py=lai Pgy=2hy i by g=hy iy, =Hys
Bus=hot Pag=hii Pag=Hai Pog=hii Pu=Hyi Pg=hyi Pgy=hy

Pra=Hy5 Prg=hys Py =Ry iPy = Pyg=Hps Prgg =R Py o =hy

Figure 6.20 Reliability block diagram and diagram of transition probabilities in (¢, ¢ + 8¢ ] for the
system described by Fig. 6.19 (active redundancy, const. failure & repair rates (A .1, ), ideal failure
detection & switch, one repair crew, repair priority in the sequence E;, E,, E3, no further failures
atsystem down, Zg,Zg,Zy,Z;, down states, arbitrary ¢, § t1 0, Markov process, p; = 2,- P )
Note: The diagram of transition probabilities would have 14 states for E, # E, ., 16 states for totally in-
dependent elements, and 65 states for E, # E, ., one repair crew & repair as per first-in first-out
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Similarly, for the asymptotic & steady-state value of the point and average avail-
ability PAg = AAg the following system of algebraic equations, can be obtained using
Table 6.2 and Fig. 6.20

PoFy =W A+ B +u3 B, p1H =M Ry,

P2 By = 2My By + U3 By + iy Fs + 14 Pr, P3 B = A3 By + 11 Ko,

PaBy =3Py +20) B+ W K, Ps P =hy Py +A3 R+ W Ry,

P Fs = Ay P + 13 Ps + 14y Ay, PP =20 R+ B,

PRy =AM By + A3 Py, Pg By = Ay Ps,

ProAo =A3 R+ B, PriB1=AF+Ay P (6.188)

with p; as in Eq. (6.185). One (arbitrarily chosen) of the Eqs. (6.188) must be
dropped and replaced by By+ A + ...+ B; =1. The solution yields Py to A,
from which

PAS=P0(1+b1+b2+b3+b4+b5+b6+b7), (6189)
with
11
Po=1/(1+Y b) (6.190)
i=1
and
M bzzpﬂ_}‘ll“'l/pl M dth ey
Py 1) (M3 +22;) 1,
AU+ dpy) y Al Uk 107) 420y by +24 Dy Dy 193 Py
M3 +22y ’ Ps =M
A b, ekl (By (P7 +A)+ 220 Ay /p))
(b (p p
. 2 (a2 T2 Pty by
> Ps —A —M3 A3/ (Hpt+23) ’ PLP7 - P
A 24 Ay A A A
by = —= i L B AR < IS by =t b+ b,
Hy + Ay PP Pg Ay Hy Hy
M MM M M Ay
by = “L b, by = +Lp,, by = Lo +2p . (6.191)
T 0 =20 T =y et

An analytical'comparison of Eqgs. (6.186) with Egs. (6.178) and (6.182) or of
Eq. (6.189) with Egs. (6.179) and (6.183) is time consuming. Numerical evaluation
yields (A and pin h™!, MTTF in h)
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M 1/100 1/100 1/1,000 1/1,000

Ay 1/1,000 1/1,000 1/10,000 1/10,000
A3 1/10,000 1/10,000 1/100,000  1/100,000
My 1 1/5 1 /5

o 1/5 1/5 1/5 /5

H3 1/5 /5 /5 /s
MTTFg, (Eq. (6.178), totally IE)  1.575:10%5  9.302:10*  1.657-10+7  9.926:10*6
MTTFy,, (Eq. (6.182), MS) 1.528-10%5  9.136-10*%  1.652:10%7  9.906-10*0

MTTFy (Eq. (6.186), no FF) 1.589-10%  9.332:10"*  1.658-10*7  9.927-10*6
MTTFg,, (Method 4, Cutting) 14871045 9.294-10+%  1.645-10%7  9.917-10*0
MTTFg (only one repair crew) ~ 1.596-10%5  9.327-10%*  1.657-10%7  9.922:10*9
1- PAg (Eq. (6.179), totally [E)  5.250-1070  2.625-1075  5.025-108  2.513-1077

1- PAg (Eq. (6.183), MS) 2.806-107  5.446-107°  2.621°1077  5.045-1077
1- PAg (Eq. (6.189), no FF) 6.574-107 55981075  6.060-1078  5.062-10~7
1- PAg (Method 4, Cutting) 29951075 55561075  2.647-107  5.059-107

L - PAg (only one repair crew) ~ 6.574-1070  5.627-1075  6.061-1078  5.062-10~7

Also given in the above numerical comparison are the results obtained by method 4
of Section 6.7.1 (for a given precision of 1078 on the unavailability 1- PAg) and
by dropping the assumption of no further failures at system down in method 3.
These results confirm that for A; << p; good approximate expressions for practical
applications can be obtained from all the methods presented in Section 6.7.1.
The influence of A;/p; appears when comparing column 1 with column 2 and
column 3 with column 4. The results obtained with method 1 of Section 6.7.1
(Eqgs. (6.178) and (6.179)) give higher values for M7TTF;, and PAg than those
obtained with method 2 (Eqs. (6.182) and (6.183)), because of the assumption that
each element has its own repair crew (totally independent elements). Comparing the
results form Eqs. (6.186) and (6.189) with those for the case in which the
assumption of no further failures at system down is dropped (only one repair crew),
shows (for this example) the small influence of this assumption on final results.

For indicative purpose and to support the validity of approximate expressions,
the following are the state probabilities for the numerical example according to the
first column above, obtained by solving (Eq. (6.188), i.e., with the assumption of
one repair crew and no further failure at system down as per Fig. 6.20 [6.21]:

Py=098, R =098107 P=09910% P;=049-10", P,=09810°, P;=0.7410",
P =05010" P=0.12:10" B=0.1110" PB=0.7410" By=0.5910"> R,=0.6210"°

(more exactly: Fy=0.976499684018, Fy+ ...+ P;=0.9999933933087, Fy+ ... + P;=0.0000066066913).
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6.8 Systems with Complex Structure

Structures and models investigated in the previous sections of this chapter were
based on the existence of a reliability block diagram and on some simplifying as-
sumptions ((6.1) - (6.7)). In particular, elements with only two states (good/ failed)
and ideal fault coverage & switching. This was, so far, good to understand basic
investigation methods and tools, see e.g. Figs. 6.9 & 6.10, Examples 6.8 & 6.9,
Section 6.7.2, Table 6.2. However, in practical applications more complex situa-
tions can arise. This section uses tools developed in Appendix A7 (summarized in
Table 6.2 for Markov & semi-Markov processes) to investigate complex fault toler-
ant repairable systems for cases in which a reliability block diagram does not exist
or can not easily be found. Constant failure and, in general, also constant repair
rates are assumed. On the basis of practical examples it is shown that working with
the diagram of transition probabilities or a time schedule, problems occurring in
practical applications can be solved on a case-by-case basis. To improve reada-
bility, the diagram of transition probabilities in (t,t+ 8] will be replaced in Sections
6.8 & 6.9 by the diagram of transition rates, which considers transition rates p;;
only, by omitting 8¢ and 1-p,8¢. Of course, new systems can provide a starting
point for new models, and a large number of papers is known on this subject too.
After some general considerations, Section 6.8.2 deals with aspects of preventive
maintenance. Sections 6.8.3 & 6.8.4 consider imperfect switching & incomplete
coverage. Elements with more than two states or one failure mode are discussed in
Section 6.8.5. Section 6.8.6 investigates fault tolerant reconfigurable systems by
considering reconfiguration because of mission profile (phased-mission systems) or
failure. For this last case, reward and frequency/ duration aspects are involved in
the analysis. Section 6.8 7 considers systems with common cause failures. Section
6.8.8 presents some basic considerations on network reliability, and Section 6.8.9
summarizes the procedure for modeling systems with complex structure.
Alternative investigation methods (dynamic FTA, BDD, ETA, Petri nets, computer-
aided analysis) are introduced in Section 6.9 and a Monte Carlo procedure, useful
for rare events is given. As a general rule, modeling complex systems is a task
which must be solved in close cooperation between project and reliability engineers.

6.8.1 General Considerations

In the context of this book, a structure is complex when the reliability block diagram
either does not exist or cannot be reduced to a series-parallel structure with inde-
pendent elements (p. 52). If the reliability block diagram exists, but not as series-
parallel structure, reliability and availability analysis can be performed using one or
more of the following assumptions (as in previous sections, failure-free time is used
as a synonym for failure-free operating time, repair as a synonym for restoration):
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1. For each element in the reliability block diagram, failure-free times and
repair times are statistically independent.

Failure and repair rates of each element are constant (time independent).
Each element in the reliability block diagram has constant failure rate.

The flow of failures is a Poisson process (homogeneous or nonhomogeneous).
No further failures are considered (can occur) at system down (no FF).
Redundant elements are repaired on-line (no interruptions at system level).
After each repair, the repaired element is as-good-as-new.

After each repair, the entire system is as-good-as-new.

O XN R LD

Only one repair crew is available, repair is started as soon as the repair crew

is free (first-in first-out) or according to a given repair priority.

Totally independent elements, i.e., each element operates and is repaired

independently of every other element (n repair crews for n elements).

11. Ideal failure detection (in particular no hidden failures or false alarms).

12. Failure-free & repair times are > 0 and continuous with finite mean & variance.

13. For each element, the mean time to repair is much lower than the mean time
to failure (MTTR; << MTTF;).

14. Switches and switching operations are 100% reliable and have no influence

on the reliability of the system.

H
e

15. Preventive maintenance is not considered.

A clear formulation of the assumptions stated is important to fix the validity of the
results obtained. Often it is tacitly assumed that each element has only 2 states
(good/failed), one failure mode (e.g. shorts or opens), and a time invariant required
function (e.g. continuous operation of all elements). Elements with more than two
states or one failure mode are discussed in Section 6.8.5 (see also Section 2.3.6 for
the nonrepairable case). A time dependent operation and/or required function can be
investigated when constant failure rate is assumed (Section 6.8.6.2).

The following is a brief discussion of the above assumptions. With assumptions
1 and 2, the time behavior of the system can be described by a (time-homogeneous)
Markov process with a finite number of states. Equations can be established using
the diagram of transition probabilities in (t,t+ 8f] and Table 6.2. Difficulties can
arise because of the large number of states involved. In such cases, a first possibility
is to limit investigation to the calculation of the mean time to failure MTTFg, and
the asymptotic & steady-state value of the point and average availability PAg=AAg,
i.e., to the solution of algebraic equations. A second possibility is to use approxi-
mate expressions (Section 6.7) or special software tools (Section 6.9.6). Assumption
3 assures existence of a regenerative process. Assumption 4 often applies to
systems with a large number of elements. As shown in Sections 6.3- 6.6, assump-
tion 5 simplifies calculation of the point availability and interval reliability. It has
no influence on the reliability function and MTTFg, and can be used for approxi-
mate expressions when assumption 13 applies (see Section 6.7.2 for an example).
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Assumption 6 must be met during the system design. If not satisfied, improvements
given by redundancy are questionable; in such cases, at least fault detection and
localization should be required and implemented (see Section 6.8.4). Assumptions
7 and 8 are satisfied if either assumption 2 or 3 holds. Assumption 7 is frequently
used, its validity must be checked. Assumption 8 is rarely used (only with 2 or 3).
Assumption 9 simplifies calculation and is useful for deriving approximate
expressions (especially if assumption 13 holds; together with assumption 3, the
system behavior can be described by a semi-regenerative process (embedded semi-
Markov proc.). Assumption 3 alone assures that the involved process is regenerative.
With assumption 10, point availability can be computed using the reliability
equation for the nonrepairable case (Eqs. (2.47) & (2.48)). This assumption rarely
applies in practical applications. However, it allows a simple calculation of an
upper bound for the point availability. Assumption 13 is generally met. It leads to
approximate expressions, as illustrated e.g. in Section 6.7 or by using asymptotic
expansions, see e.g. [6.19, A7.26]. As shown in Examples 6.8-6.10, the shape of the
distribution function of the repair time has small influence on the results at system
level (MTTFs, PAg,IRg(0)), if assumption 13 holds. Assumptions 14 and 15
simplify investigations, they are valid for all models discussed in Sections 6.2-6.7.

Investigation of large series - parallel structures or of complex structures is in
general time-consuming and can become mathematically intractable. As a first step
it is useful to operate with Markov models, refinements can then be considered on a
case-by-case basis (see Section 6.8.9, pp. 273-275).

If the reliability block diagram does not exists, stochastic processes and tools
introduced in Appendix A7 can be used to investigate reliability and availability of
fault tolerant systems, on the basis of the diagram of transition rates or a time
schedule, see Sections 6.8.3 - 6.8.7 for some examples on systems with imperfect
switching, incomplete coverage, more than two states or one failure mode, reconfi-
gurable structure, and common cause failures. A general procedure for investigating
complex fault tolerant systems is given in Section 6.8.9. Alternative investigation
methods (dynamic FTA, BDD, ETA, Petri nets, computer-aided analysis) are intro-
duced in Section 6.9 and a Monte Carlo procedure, useful for rare events is given.

6.8.2 Preventive Maintenance

Preventive maintenance is necessary to avoid wearout failures and to identify and
repair hidden (undetected, latent) failures, i.e., failures of redundant elements which
cannot be detected during normal operation. This section investigates a one-item
repairable structure with preventive maintenance at Tpys,2Tpys,... . Results are
basic for the investigation of more complex structures and will be useful in the
following sections to investigate fault tolerant repairable systems (Section 6.8.6).
Further models/strategies for preventive maintenance are possible (see Section 4.6).
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Figure 6.21 Reliability functions for a one-item structure with preventive maintenance (of negli-
gible duration) at times Tpys, 2Tpys, ... for two distribution functions F(t) =1—-Rgq () of the
failure-free times (item new at ¢ =0, Tpyy, 2Tpyy, ...; left strictly increasing, right constant failure rate)

The item considered is new at ¢ =0 and has failure-free & repair times distribu-
ted according to F(x) & G(x) with densities f(x) & g(x) (F(0)=G(0)=0). Preven-
tive maintenance is of negligible time duration (specialized personnel, no logistic
delays) and restores the item to as-good-as-new. If a preventive maintenance is due
at a time in which the item is under repair, one of the following cases will apply:

1. Preventive maintenance will not be performed (included in the running
repair, considering that after each repair the item is as-good-as-new).

2. Preventive maintenance is performed, i.e., a running repair is terminated
with the preventive maintenance in a negligible time span (this maintenance
strategy is known as block replacement policy (Section 4.6)).

Both situations can occur in practical applications. In case 2, times 0,7p,2Tpy;, ...
are renewal points. Case 2 will be considered in the following.
The reliability function Rg,, () for case 2 above can be calculated from

Rsopy (1) =Rgo(2) =1-F(2), for 0<t < Ty, Ry, (0)=Rg,(0)=0,

SO0ppp

R0, () =Rio(Tpar) Rso(t =nTpy),  for nTpy <t €@+ Ty, n21, (6.192)

with Rgq(x) =1-F(x) (Eq. (6.14)). Figure 6.21 shows the shape of Rgy(#) and
R S0py (#) for an item with strictly increasing (left) and constant (right) failure rate.
Because of the memoryless property of the exponential distribution function,

Rso,,, () =Rso(t) = e holds for F(x)=1-¢ "% (6.193)

From Eq. (6.192), the mean time to failure with preventive maintenance MTTFg,,,

is Toy

MTTFy,, = IORSOPM(t)dt = [1+n§=‘,1 R (Tppp)] _[)Rso(t)dt
Tpyy Tpm
= J(')Rso(t)dt/[l—RSO(TPM)={)(I—F(x))dx/FPM(T). (6.194)
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Figure 6.22 Point availability for a repairable one-item structure with preventive maintenance (of ne-
gligible duration) at times Tpys, 2Tppy, ... (itemnew at £ =0, Tpys, 2Tppy, ... and after each repair)

For F(x)= l—e_}‘x, Eq. (6.194) yields MTTFgp,, = 1/A =E[7]. For a strictly increas-
ing failure rate A(x) it holds that MTTFSOPM > E[1]; the contrary is for strictly
decreasing A(x). To see this, consider that
Tpuy o o
fORso(t)dt = JORSO(z)dt- jTRSO(t)dz = E[1] -Rgo(Tpp)ELT =Tpys | T>Tpy 1,
PM
with 7 as failure-free time of the item considered and E [t -Tpy, | T>Tpy] as per
Eq. (A6.28); the rest of the proof follows from remark 2 to Eq. (A6.28). Optimiza-
tion of preventive maintenance period must consider Eq. (6.194) as well as cost, lo-
gistic support, and other relevant aspects ( MTTFs g py, — o for Tpy,— 0 and £(+0)=0).
Calculation of the point availability PAso,, (1) for case 2 above leads to

PA 50p, (1) =PAg0(1), for 0<1<Tpy,

PASOPM(I)=PAS()(I—I1TPM), for nTpy <t <+ 1)Tpy, n21, (6.195)

with PA g(¢) from Eq. (6.17). Figure 6.22 shows a typical shape of PAg0py, (1)

If the time duration for the preventive maintenance is not negligible, it is useful
to define, in addition to the availability introduced in Section 6.2.1, the overall
(or operational) availability OAg, defined for ¢ — <o as the ratio of the total up time
in (0, #] to the sum of total up and down time in (0, #]. Defining MTTF = mean time
to failure and MDT = mean down time (with MTTR = mean time to repair (restore),
MTTPM = mean time to carry out preventive maintenance, MLD = mean logistic
delay, and Tpy, = preventive maintenance period) it follows that (see e.g. p. 122)

__ MITF __ _ MTTF . (6.196)
MTTF + MDT ~ MTTF + MTTR + MLD + MTTPM (MITF | Tpy;) '

OAg

For MLD =0, the overall availability is often called technical availability. Other
availability measures are possible, e.g. as in [6.12] for railway applications.

Further maintenance strategies are investigated in Section 4.6. Distribution and
mean of the undetected (latent) fault time Typr is considered by Eq. (A6.30).
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Example 6.14

Assume a nonrepairable (up to system failure) 1-out-of-2 active redundancy with two identical
elements with constant failure rate A. Give the mean time to failure MTTFg 0pas by assuming a
preventive maintenance with period Tpy, <<1/A. The preventive maintenance is performed in a
negligible time span and restores the 1-out-of-2 active redundancy to as-good-as-new.

Solution

For a nonrepairable (up to system failure) 1-out-of-2 active redundancy with two identical
elements with constant failure rate A, the reliability function is given by Eq. (2.21)

Rgo )= 2e~M — 201

The mean time to failure with preventive maintenance follows from Eq. (6.194) as

Tpy Tpu
At _ o2 Mt 2 1
_|. Rg o (t)dr j (e e )dt L= e Mo Yo — (= 2Ty )
MTTE. __0 __0 _A 2\
SOppy— 1 - R (Tpy) 1= 2e= Aoy + ¢=2ATp 1=2eMps + ¢2AT,y,

Using e *=1— x+ x°/2 it follows that

2Tpy ~Tpy _ 1

KTy KTy

MTTFgp, = (=MTBF- MTBF | Tpy, for MTBF=1/1). (6.197)

Without preventive maintenance, Eq. (2.21) yields MTTFg,=3/2A. Equation (6.197) clearly
shows the gain given by the preventive maintenance.

6.8.3 Imperfect Switching

In practical applications, switching is necessary for powering down failed elements
and powering up repaired elements. In some cases it is sufficient to locate the
switching element in series with the redundancy on the reliability block diagram,
yielding series - parallel structures as investigated in Section 6.6. However, such an
approach is often too simple to cover real situations. This section shows this on the
basis of practical examples. Further considerations are given in Section 6.8.4
dealing with incomplete coverage.

As a first example, Fig. 6.23 shows a situation in which measurement points M;
and M,, switches S; and S,, as well as a control unit C must be considered.
To simplify, let us consider only the reliability function in the nonrepairable case
(up to system failure). From a reliability point of view, switch §;, element E;, and
measurement point M; in Fig. 6.23 are in series (i =1, 2). Let T, and 7T, be the
corresponding failure-free times with distribution function F;(x) and density f;,(x).
T, is the failure-free time of the control device with distribution function F (x) and
density f .(x). Consider first the case of standby redundancy and assume that at =0
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Figure 6.23 Functional block diagram for a 1-out-of-2 redundancy with switches §; and S,
measurement points M and M, and control device C

element E; is switched on. A system failure in the interval (0, #] occurs with one of
the following mutually exclusive events

{TC >"Cb1ﬁ(’fb1 +"Cb2)Sl} or {TC < Tp1 <t}.

It is implicitly assumed here that a failure of the control device has no influence on
the operating element, and does not lead to a commutation to E,. A verification of
these conditions by an FMEA (Section 2.6) is necessary. With these assumptions,
the reliability function Rgy(r) of the system described by Fig. 6.23 is given by
(nonrepairable case, system new at ¢ =0)

t 13
Rso(r) = 1=[ [ £(0) (1 = Fo(x)) Fy( = x) dx + [ f,(x) Fo(x) dx]. (6.198)
0 0

Assuming further f,(x) =2, e and f.(x) = A, e heX, Eq. (6.198) yields

_ Dotk -
Rgo() =e ™! + (1-e xc’)x—be Ayt (6.199)
c
and
MTTFgy = bt he (6.200)
Ay (A + Ao

A, =0 leads to the results of Section 2.3.5 for the 1-out-of-2 standby redundancy
(Egs. (2.63), (2.64)). Assuming now an active redundancy (at t =0, E; is put into
operation and E, into the reserve state), a system failure occurs in the interval (0, ¢]
with one of the following mutually exclusive events

{TbISIﬁTC>’CbIﬁ‘Eb2$I} or {TC<Tb1$I}.
The reliability function is then given by (nonrepairable case, system new at ¢ =0)

t t
Rso() = 1~ [Fy() [ ,(x) (1 = Fo(x)) dx + [ £(x) F(x) dx] . (6.201)
0 0
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From Eq.(6.201) and assuming f,(x) = A, e~ % and f.(x) =2, e~M¢¥ it follows that

2A,+ A, _ A _
Rgo(t) =Le kb’_—be QAp+Are)t (6.202)
Ap+ A, Ap+ A,
and
2, + A
MITFgy = ——bF e Ay (6.203)

Ap(Ap+An) (Ap+A)QAy+A.)

A, =0 leads to the results of Section 2.2.6.3 for the 1-out-of-2 active redundancy
(Eq. (2.22)). From Egs. (6.200) and (6.203) one recognizes that for A, >> A,

MTTFgy =~1/Ap, for Ay >> Ay , (6.204)

for both standby and active redundancy, i.e., to a situation as where no redundancy.
As a second example consider a I-out-of-2 warm redundancy with constant
failure rate A, A, and repair rate u. The switching element can fail with constant
failure rate Ay and failure mode stuck at the state occupied just before failure. At
first, let us consider the case in which the failure of the switch can be immediately
detected and repaired with constant repair rate ns. Furthermore, assume only one
repair crew, repair priority on the switch, and no further failure at system down.
Asked are the mean time to system failure MTTFg, for system new (state Z;) at
¢t =0 and the asymptotic & steady-state (stationary) point and average availability
PAg = AAg. The involved process is a (time-homogeneous) Markov process. Figure
6.24 give the diagrams of transition rates for reliability and availability calculation,
respectively (down states Z,, Z,:, Z,+). From Fig. 6.24a & Table 6.2 or Eq. (A7.126)
it follows that MTTFyg is given as solution of the following system ( M;= MTTFy;)

p0M0=1+ }\‘O'MO'+(}\‘+}"I’)M1’ polMO':1+ }\.erv‘l'uGMo,
Pp Ml =1+ 7\,0 Ml' +IJ.M0, pllev =1+ Ho Ml N (6205)
yielding

_ ©1Py = AP Py + A (P + AL+ (P + Ag A Al + A +A) Popy ]

MTTFgy=
P1P1 = AgHa)PoPo P = PrrAg ) —UPp [A Ag g +PoPp (A +2,)]
LG ARG s + QA+ ) u (6.206)
Arg/ug+A (A+A,) /1 AA+A +Ag/g)

The approximation assumes A, Ay << u,pig. From this approximate expression it
follows that the effect of imperfect switching with failure mode stuck at the state
occupied just before failure, immediately detected and repaired, is minor and
becomes negligible for (see Eqgs. (6.212) and (6.239) for more severe conditions)

A /g << A+ Ay, ie. Ag<<h+A, for p=pg>>A, A, Ag. (6.207)

The case Ay;=0 implies pu;=0 and must be investigated using the exact ex-
pression for MTTFg,, yielding MTTFgq=(u+2A+Ai,)/A(+1,) as per Table 6.6.
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Figure 6.24 Diagram of transition rates for a repairable 1-out-of-2 warm redundancy with constant
failure & repair rates (A, A,., ), imperfect switching (failure rate A, repair rate iy, failure mode
stuck at the state occupied), ideal failure detection, one repair crew, switch repaired with repair
priority, no further failure at system down, (Z,, Z,., Z,. down states, Markov process)

From Fig. 6.24b and Table 6.2 or Eq. (A7.127) it follows that PAg = AAg is given
as solution of the following system of algebraic equations

Pofo=Wo fy+ WA, Pofy=Ao o prR=(A+ A )Ryt At KB+ UG B
prB=A Ry +Ag R, P2B=AR+UGP, PyB=AR:, pyBe=AFRy. (6.208)

One of the Eq. (6.208), arbitrarily chosen, must be replaced by X P =1. The
asymptotic & steady-state point and average availability follows then from

PAg = AAg =Ry+ By + A+ R =
1

| PO+ AP G ) 1+ O /14 Ao Yk R +00Pg ho = Kghia) +Py Mot g
HPg Py + A (P42, ) + (PgPo —AgHg ) Prr +Ag)
AMA+ A +A5)

~1- , for petig >> A Ay Ag . 6.209
R(uadtdthg) L et ©209

The approximation assumes pugs=4 & A,4,,A5<<p and Eq. (6.209) allows same con-
clusions as for Eq. (6.206). A, =0 implies u, =0 and yields results for ideal switch.

Further models for imperfect switching are conceivable. For instance, by assum-
ing that for the model of Fig. 6.24 failure of the switch (with stuck at the state
occupied just before failure and failure rate A ;) can only be detected and repaired at
system down together with failed elements (one or both) at a repair rate pg. This
situation occurs e. g. in power systems (refuse to start). Figure 6.25 gives the corre-
sponding diagrams of transition rates for reliability and availability calculation, re-
spectively (down state Z,). Results are given in Example 6.15. A further possibility
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Figure 6.25 Diagram of transition rates for a repairable 1-out-of-2 warm redundancy with const.
failure & repair rates (A, A, W), imperfect switching (failure rate A, failure mode stuck at the
state occupied), ideal failure detection, failure of the switch repaired only at system down with failed
elements at a repair rate g» Mo further failure at system down (Z, down state, Markov process)

is to assume no connection as failure mode (Fig. 6.31) or a constant probability ¢ that
the switch will perform correctly when called to operate (Figs. 6.27,6.28).

Example 6.15
Compute the mean time to system failure MTTFj  for system new (in Z;) at t=0 and the steady-
state point and average availability PAg=AAg of the 1-out-of-2 warm redundancy as per Fig. 6.25.

Solution
From Fig. 6.25a and Table 6.2, MTTFy,, is given as solution of (with M;= MTTF;)
Po Mg=1+As My +(A+A )M, , Py My =1+pM,, Py My-=1,  (6.210)
yielding
Oyt Ag ot A+A)py  AQA+A+ u)+ AL A+ )
MTTFSO=p0pl o P rPy rtH o 2

PPy Py = (A+A,) 1Py A +A)+ Mg A+ p) (6:211)

Because of the not detected failure of the switch, the condition on A to yield results for ideal
switching (Table 6.6) is more severe as Eq. (6.207) and is given by (see also Eqs. (6.207), (6.239))
Ag<< AMA+A, )/, (for u, ug>>)»,7»r,)»c). (6.212)

From Fig. 6.25b and Table 6.2 or Eq. (A7.127) it follows that PA; = AA; is given as solution of
PoPo=MP +UgPy, Po:Py=AgPy, PpRA=QG+A)Py, pyPy=AP+LAPy. (6.213)
One of the Eq. (6.213), arbitrarily chosen, must be replaced by Py+ Fy:+ P, + Py=1. The
asymptotic & steady-state point and average availability follows then from
1 Mg
PAg=AAg=F+F+H = 7»2(7u+7»r + hg)+ phhg zl—ug(}ﬁ'}»‘})’ (6.214)
e ug(k + WA+ Ag)+ ugk()» +,)

Equation (6.214) allows (before the approximation) same conclusions for A5 as for Eq. (6.211).
If Eq. (6.212) is not satisfied, and in particular for uis;>>2A(A+4,), Eq. (6.211) yields
MTTF;o=1/A5+1/A (nonrepairable 1-out-of-2 standby redundancy with A4 & A); and, for
Ag>> A, MTTFg, =1/A and PAg=AAg=1-A /ug (repairable one-item).
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6.8.4 Incomplete Coverage

Incomplete fault (failure) coverage occurs because of lack or failure in the diagnosis.
Fault coverage is defined as the proportion of faults of an item that can be detected
under given conditions. A fault coverage greater as 0.9 is often required for
complex equipment and systems (see e. g. [A2.5 (61508)]). Lacks in the diagnosis
lead to hidden (undetected, latent) failures, i.e., failures which are not covered by
diagnosis and can be detected only during a repair or a preventive maintenance.
Hidden or latent failures can cause serious reduction of the advantage offered by a
redundancy (see e.g. Eqs. (6.221) & (6.223)). Failure modes of a diagnosis have to
be investigated on a case-by-case basis, starting often from following two modes

e false alarm,.
* no alarm emitted (alarm defection).

Basically, incomplete coverage acts on the switching operation and is often investi-
gated as part of imperfect switching (Section 6.8.3). Following an illustrative exam-
ple, this section discusses some possibilities to investigate incomplete coverage.
Because of practical difficulties in implementing some models, the use of a majority
redundancy (e.g. a 2-out-of-3 instead of a 1-out-of-2 redundancy) remains often the
best way to compensate incomplete coverage. In a 2-out-of-3 red., the first failure is
captured on line, irrespective of coverage, and no switch is necessary (Example 2.5 ).

Consider first a 1-out-of-2 active redundancy with 2 different elements E, & E, ,
and assume that failures of E; can be detected only at the end of a repair of E, or
at a preventive maintenance (hidden failures in E;). Elements E; and E, have
constant failure rates (A, A,), the repair time of E, is distributed according to G(x)
(G(0)=0,density g(x)), and preventive maintenance as well as repair of E; takes a
negligible time (see Example 6.17 for constant repair rate). *) If no preventive
maintenance is performed, Fig. 6.26a shows a possible time schedule of the system
(new at 7=0), yielding for the reliability function

¢ t
Rgo(t) = e~ P+ha)t .|.7‘1 eMX Mt gy +j7»2 e M2 XM "1-G(r -x))dx
0 0

ty
+[ [ 2?2 7MY gy~ x)R (1~ y)dxdy. (6.215)
00
The Laplace transform of Rg(¢) follows as
SHADE+HA +Ay)+ Ay (s+Ay)A =B+ X))
E+ADE+A)E+A +Ap) = (S + A +Ag)Ay Bls+ A1)

*+ This situation arises, for instance, when for the repair of E, a travel time is involved (see e. g. pp.
202, 504). Also, it is tacitly assumed that at each renewal point (=0, end of a repair of E, or of
a preventive maintenance (Fig. 6.26b)), E, is put in operation and E, in reserve state; further-
more, failure detection in E, and switch to E; are ideal (Fig. 6.26 and graph in Example 6.17).
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Figure 6.26 Possible time schedules for a repairable 1-out-of-2 parallel redundancy with hidden
(latent) failures in element Ej (reliability investigation, new at =0, repair times greatly exaggerated)

and the mean time to failure becomes

AL O +200) + 05 (1= 5(A) '

MTTFSO = 2 .
MAy (A +2o) =2 A5 8(A)

(6.217)

Example 6.16 gives a discussion of Eq. (6.217). The point availability PAgo(t) is
investigated in Example 6.17 for the case of constant repair rate i (g(x)=pe *¥).
If preventive maintenance is performed at times 0,Tpy, , 2Tpys ... (independently of
the state of element E,) and after each preventive maintenance (assumed of negli-
gible duration, also considering a possible repair of E, and/or E;) the system is as-
good-as-new, then the times 0, Tpy;, 2Tpyy, ... are renewal points for the system.
The reliability function R0, (1) is given by Eq. (6.192) with Rgq(¢) as per Eq.
(6.215); similarly for MTTFy,,, (Eq.(6.194)). For Tpy,>> MTTR, the approximation
PAgq,, (1)=PAg((t)= PAg = AAg can often be used (Example 6.17). Optimization
of Tpy must consider cost and logistic aspects too (MTTFgq, — oo for Tpy—0).

Example 6.16

Give approximate expressions for the mean time to failure MTTFy given by Eq. (6.217).
Solution

For g(A{) — L, it follows from Eq. (6.217) that

MTTF;q = A\ +Ap) Ay Ay =1/ A +11A,. (6.218)
A better approximation using g(A;) =1-A; MTTR yields (with MTTR as per Eq. (6.111))

MTTFgq =~ (A + Ay + 35 MTTR)/ (4 hy (L+ Ay MTTR)). (6.219)
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Equation (6.218) shows that a repairable 1-out-of-2 active redundancy
with hidden failures in one element behaves like a nonrepairable 1-out-of-2
standby redundancy; this result bears out, how important it is in the
presence of redundancy to investigate failure detection and failure modes.

Example 6.17

Investigate Rgq(#) per Eq. (6.216), MTTFg per Eq. (6.217), MTTF:SOPM per Eq. (6.194), and
the asymptotic & steady-state point and average availability PAg =AAg and PAg,, = AASPM
for the case of constant repair rate i (i.e. for g(x)=pe *¥).
Solution

With g(s+A;) =u/(s+A; +u) it follows from Eq. (6.216) that

H+A +A)(S+A + W+ Ay (s+Ay)

Rgo(s) =
and thus

Ry () = Ae M+ Be Mt 4 ComMHAy+)E
with

(6.220)
(S+AD+ANG+A + A, + 1)

Ay (hy =R, + 1) A, S TR YT B W -2 Ay
A= = » B= = » C= =0,
Ay =A )R+ 1) (A,=R) Ay =A))(A+ ) (A=A A+ )R+ 1)

The mean time to failure MTTFygq follows from Eq. (6.220) as

At AR+ W+ A+h,

~ 1
MTTF;, = Rg,0) = =
50 =Rs0© Ay Ay A+ Agt ) MAy A

6.221)

One recognizes, that A; + A, << W yields directly to
Rgo)= Gpehi=Aye™) /(g -X) and MITF =1/A +1/%,.  (6.222)

R¢ () as well as the point availability PA ¢, (¢) can be obtained using
a 4 states Markov process with up states Z,Z,, Z;. and down state
Z, (Z, absorbing for R gq(¢)), see graph and the model discussion on
p. 246). The asymptotic & steady-state point and average availability
PAg = AAg is obtained by solving (Tab. 6.2) (A\+A,)Fy=pH+uUpP,,
Ay Ppr=APy, A+ =A, Ry, Py+P+Pp+ P, =1, yielding

PAg =AAg =P+ P +P ! 1 hits
= = =+ + o= = | — .
s sThoTATA Mhy (bt Ay + 1) B(A +Ay)
N
BLCA+ (A + 20+ 2] (6.223)

Investigation of PA g (¢) (Table 6.2 and above graph) shows that PA ¢, (¢) converges rapidly to
PAg = AAg given by Eq. (6.223) and for A, A,<<u the approximation given by Eq. (6.88),
with PAg and u per Eq. (6.223), can often be used.

In the case of preventive maintenance at Tpy, 2Tpy,, ... (renewal points at t=0, Tpy,
2Tpys» ---)» Eq. (6.194) with R g (7) as per Eq. (6.222) yields

@ =e Ty —a a=e 2Ty 2

MTTF; (6.224)

opy = _ _ .
M Ay (=e1 Ty oo -2 Ty Ay Ay Ty
The last part of Eq. (6.224) follows with e M =1-Ax+(x)2/2. For Tpp >> 1/u= MTIR

PASOPM(t) = PAg, (1) = PAg=AAg with PAg=AA; per Eq. (6.223) can often be used.
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Figure 6.27 State transition diagram for a repairable 1-out-of-2 active redundancy with const. failure
& repair rates (A, W), incomplete coverage (detection of the failed element with probability c), one
repair crew ( Z, down state (absorbing for rel. calculation), semi-Markov process; see also Fig. 6.28)

A basic possibility to consider incomplete coverage is to assume that a failure
will be detected (internal BIT) only with a probability ¢ .This will be considered in
the following for the case of identical elements in a 1-out-of-2 active redundancy.
At a failure, outputs of both elements differ and with probability 1- ¢ the failed ele-
ment can not be detected and disconnected, yielding a system failure. This case is
similar to that of imperfect switching mentioned at the end of Section 6.8.3 and is
known in the literature [6.47 (2001)]. Figure 6.27 gives the state transition diagram
of the involved semi-Markov process. The transition from state Z;. occurs instanta-
neously to Z; with probability ¢,, = ¢ or to Z, with #;., =1-c¢. Assuming con-
stant failure and repair rates, the model of Fig. 6.27 can be investigated using a
Markov process with the diagram of transition rates given in Fig 6.28 (known in
power systems as redundancy with no start at call, see e. g. [6.34]). Examples 6.18
and 6.19 investigate the models of Figs. 6.27 and 6.28, showing their equivalence.

Example 6.18

Give the mean time to system failure MTTF, (system new, enters Z, at ¢=0) and the asymptot-
ic & steady-state point and average availability PAg=AAs of the 1-out-of-2 warm red. as per Fig.
6.27.

Solution

From Fig. 6.27 and Table 6.2 or Eq. (A7.173), MTTFg is given as solution of M.= Ty+c M,
My=Ty+ M., M =T W/ A+ )My, with M;=MITF,;, T,= I (- Q)dr, Qx)=Y,; Qi ()
(Eqgs.(A7.166) and (A7.165)). Consxdermg Fig. 6.27 it follows that T;=1/2A, Tl =0,
B=1/(\+w), and Tp=1/p, yielding

_ T+ Tp+cly A+ p+2ie n
MITESo = Tep7 o) ~ 2+ pwo) ~ 20+ 2m(i-c) (6.225)
From Fig. 6.27 and Table 6.2 or Eq. (A7.178), PAg = AAg= Fy+ R.+ B is given as
PAg=AAg = (g, + oy T, + 2 T) [ (2 Ty + 2Ty + 2Ty + 2, 1). (6.226)

Thereby, @; are the state probabilities of the embedded Markov chain, obtained as solution of
Po=P U A+W), Pp=py, P=P.C+d, B=0.(1-c)+pAlA+n) (Table 6.2), yielding
(considering pp+ p+ @+ 2y =1) p=(+p)/ QA+2p) - pc), P=RA+p- uc)/ 2+ 2p)— pc)
=P =1/ 2(A+2p)-uc). From Eq. (6.226) it follows then

PAg =AAg = (W2+2M) / (02+ 20 + 20 (A + - ue)) = 1 - 2AA+ p—pc) / (w2 2Ap). (6.227)
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m Por=2Ac; P =2A0—-c)  pp=H;
OEEEONEC) e e oo Grnt o
Pg=2A; Pr=A+U; py=M (p,=0 for reliability)
K M
Figure 6.28 State transition diagram for a repairable 1-out-of-2 active redundancy with constant
failure & repair rates (A, ), incomplete coverage (detection of failed element with probability c, i.e.,

with probability 1—c the system goes down because the outputs of both elements differ), one repair
crew (Z, down state (absorbing for reliability calculation), Markov process; see also Fig. 6.27)

Example 6.19
Give the mean time to system failure MTTFg, (system new, in Zy, at #=0) and the asymptotic &
steady-state point and average availability PAg=AAg of the 1-out-of-2 warm red. as per Fig. 6.28.

Solution

From Fig. 6.28 & Table 6.2 or Eq. (A7.126), MTTFg is given as solution of (with M; = MTTF; )
2AMy=1+2AcM; and A+w)M; =1+uM, , yielding
A+ p+2he n

A +p-pc) 22+ 2pd-c)

From Fig. 6.28 and Table 6.2 or Eq. (A7.127), PA; =AA; is given as solution of
2APy=pF, A+W) P =2AcFy+WUPy and Fy+H+P =1, yielding

MTTF,, = (6.228)

2 2

2\ 207 +2ApQ -

PAg = AAg = By + P =——E =% - 200,
R+ 22+ 20 A+ pu—pc) U+ 2

(6.229)

Comparison of Egs. (6.225) with (6.228) and (6.227) with (6.229) shows the
equivalence of the models given by Figs. 6.27 and 6.28 (for constant failure and
repair rates). For c¢=1, Egs. (6.228) & (6.229) yield results of Table 6.6 for a 1-out-
of-2 active redundancy. For ¢=0, Eqgs. (6.228) and (6.229) yield results for a one-
item with failure rate 2 A and repair rate p (u >> 24 for PAg =AAg); most unfavorable
case, because at the first failure it is not possible to identify the failed element,
yielding to a system down. Comparison of Egs. (6.92) with (6.228) and (6.87) with
(6.229) shows that the effect of incomplete coverage is negligible for

2au(l-0 << 207, e.g Pl-c)< 01X — ¢>1-01A/p. (6.230)

Condition (6.230) applies to MTTFgy (Eq. (6.228)) and to 1-PAg (Eq. (6.229)).
It can be hard to realize for complex systems and remains practically the same even
if in the model of Fig. 6.28, repair of a hidden (latent) failure brings the system to
state Z, instead of Z;, (Example 6.20). A further possibility is investigated in
Example 6.21 by assuming that at the occurrence of a hidden failure, one of the two
elements is selected with probability p to continue operation. However, majority
redundancy should be preferred for critical applications.
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Example 6.20

Investigate MTTFgq and PAg =AAg for the model given by Fig. 6.28 by assuming that a repair
for a hidden (latent) failure (transition Z;—> Z,) brings the system to state Z, and not toZ, .

Solution

MTTFgq is given by Eq. (6. 228). The point availability

PAg () can be obtained using a 4 states Markov process 9
with up states Z, and Z; and down states Z;.and Z,, see 1

graph. The asymptotic & steady-state point and average
availability PAg = AA is obtained by solving (Table 6.2) @‘0
2APRy=uR +uf, A+W)R =2\ cPy+pB), uB.=2A(1-c)F,

and Fy+R+R.+ P =1, yielding 2hc

1 2A[Ac+ud -c)] . 6.231)

e+ pld - o) u2
2 + 2Apc

PAg=AAg = R+ B =

Example 6.21
Investigate MTTFg( and PAg = AAg for the model considered in Example 6.20 by assuming
that at the occurrence of a hidden (latent) failure (outputs of both elements differ and failed
element can not be detected), one of the two elements is instantaneously selected to continue
operation and the selected element is with probability p failure-free (safety is not relevant).
Solution

Rg(t) and PAg,(r) can be obtained usinga 5 states
Markov process with up states Z,,Z;,Z; and down states
Zy,Zy (Zy,Z,. absorbing for Rgq(¢)), see graph.
MTTFg is given as solution of (with M;= MTTF;),
2AMy=1+2Ac M{+2A(1-C)p My, (A+p)M=1+uM,,
A +wM=1+puM,, yielding

}.+u+2)»(c+(1—c)p)~ n

MTTFy = ’
0 w2 iapa-a0-p W eapa-on-p)

(6.232)

The asymptotic & steady-state point and average availability PAg = AAg is obtained by solving
(Table 6.2) 2AP=pn(B+R +P), (A+W)R=2AcR+uP;, (A+WPR.=2A(1-c)ph,
WPk =A(R+PH:), Rp+R+F+ P + P =1, yielding

1 2A[A+pd =) - p)l
PAg=AAg= Ry+R+H = =1- '

s s=fTaTA [ 2R @ =20 -0 - p) u?
uZ+2xp[pd-c)+cl (6.233)

Comparison of Eq. (6.232) with (6.228) and Eq. (6.233) with (6.231) shows that

MTTFs0p=05 2% 2 -c)
MTTFgg,.0 2% p-o)

(A-PAs)p=0 Actpd-c)

) ~
(- PAg)pcps A+ RA-0)72

<2. (6.234)

Both ratios are 1 for a coverage probability c=1and =2 for ¢=0. One recognizes
also that results of Example 6.20 are those of Example 6.21 for p=0 and that for
p=1, Eq. (6.233) yields Eq. (6.87) and Eq. (6.232) yields Eq. (6.92), as for c=1.



252 6 Reliability and Availability of Repairable Systems

Por= App i Pos= e Pos= Ancs Pos= ApFs
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C = covered, NC =not covered

DF = false alarm, DD = alarm defection

Figure 6.29 Diagram of transition rates for a one-item structure with incomplete coverage and 2
failures modes for the diagnosis (constant failure and repair rates kc,k NC» }‘DF JA pp M, ideal

failure detection, Z,,Z4,Z,,Z5 down states (absorbing for rel. calculation), Markov process)

Influence of preventive maintenance at Tpy,, 2Tpyy,... (renewal points at ¢=0,
Tppr»2Tpyy - --.) can be investigated as discussed Section 6.8.2, on p. 247, and in
Example 6.17, often using

Rgo(r) = e~#/MTTFso  and  |PAgg(r)—PAg|=(1-PAg)e M,  (6.235)

or PAgo(#) = PAg=AAg, see Eqgs. (6.94) & (6.88) for a deeper investigation (the
two sided bound can be necessary if PA((7) oscillate, as often for systems with
many states).

Other possibilities to consider for incomplete coverage are conceivable.
Assuming, for instance, that in a 1-out-of-2 active redundancy at a failure of one
element (outputs of both elements differ and failed element can not be detected),
one element is instantaneously selected to continue operation at system level and the
selected element is failure-free with probability p, leads to the model considered in
Example 6.20 with ¢= p. p=0 yields results for a one-item structure with failure
rate 2 A and repair rate [.

A more elaborated model which considers 2 failure modes for the diagnosis,
false alarm with failure rate A, and alarm defection with failure rate A, has
been proposed in [6.43]. Figure 6.29 shows this model by considering a repair rate
u for all failure modes. Investigation of this model using Fig. 6.29 and Table 6.2
leads to

A+ A+ a A4+ A
MTTFgy =200 and pAg=Ang=—#P¥ %) | A+ Ap)

= (6.236)
AA+ Ap) HA+ App )+ AA+ Ap) UA+ App)

App=MApr=hp=0 yields results for a one-item structure with failure rate A
and repair rate u. A possible diagram of transition rates for a l-out-of-2
active redundancy with 2 repair crews on the basis of Fig. 6.29 is Fig. 3 of [6.43].
A further example for a duplex system is Fig. 1 of [1.13].
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6.8.5 Elements with more than two States or one Failure Mode

Elements with more than two states (good /failed for instance) or one failure mode
(e.g. open or short) often arise in practical applications. Some considerations have
been given in Sections 2.3.6 and 6.8.4. This section shows, on the basis of practical
examples, that items with more than two states or one failure mode can often be
investigated using the diagram of transition rates, see also pp. 262-265.

As a first example consider an item with the three states good, waiting for repair,
repair [6.14]. Figure 6.30 shows this model. From Fig. 6.30 & Table 6.2 it holds that

MTTFy, :% and  PAg= AAg = ;;T;—(——*wz 1-x(ﬁ+ﬁ). (6.237)
The item in Fig. 6.30 behaves like a one-item structure with failure rate A and repair
time Erlang distributed (n=2, Eq. (A6.102)) with mean MTTR,,, =1/u+1/pn'. More
complex structures can also be investigated, see e. g.[6.14].

As a second example consider a I-out-of-2 warm redundancy with constant
failure rate A, A, and repair rate p. The switching element can fail with constant
failure rate A5 for failure mode stuck at the state occupied just before failure or A
for failure mode no connection. Failure of the switch can be immediately detected
and repaired with constant repair rate pus or W,. Furthermore, assume only one
repair crew, repair priority on the switch, and no further failure at system down
(also for the switch, no further failure is possible after a failure with one of the two
possible failure modes). Asked is the mean time to system failure MTTFy, for
system new (in state Zy) at ¢+ =0. The involved process is a (time-homogeneous)
Markov process. Figure 6.31 gives the diagrams of transition rates for reliability
calculation (see Example 6.22 for availability). Comparing Fig.6.31 with Fig.6.24a,
one recognizes that MTTFg, is given by Eq. (6.206) with pg=A+A,+As+A, and
pp=A+Ay+Ag+u (i.e. adding A to py and p;). From this,

T+ GA+A, +Ag)  ug+A+A, +A,)/n
g 14 GA+A ) g+ Ot A A AR + Mg lihg + A A, 4+ Vi ]

MTTFg, - (6.238)

The approximation assumes A, g, Ay <<W,ls. The failure mode no connection (Ay)
acts similarly as the failure mode stuck at the state occupied just before failure (A )
in Example 6.15 (Eq (6.212)), and the effect of imperfect switching is negligible for

Ao<< AA+A )/ and  Ag <<A+ )., (=pg>> A A AgAg).  (6.239)

s Ny

Po1=Po=A; P =Pi=K'5 Ppo=Pp =K
@ @ e A = failure rate, | = repair rate,

p'= failure detection rate (including possible travel time)

Figure 6.30 Diagram of transition rates for a one-item with 3 states good, waiting for repair, repair
(constant failure, failure detection & repair rates (A, u'&W), Z;, Z;» down states, Markov process)
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Poy =Hoi Pt =AtA po =l
Poz = 2o PO'X-=7~,; pP.o=A; P =i

Py =t Prz=hthoi P =loi Py =k

®m9 Po=rth, +hgthor po=hth, +ig

P =A+A +A +p; p]. =A+pg; Pp=0

Figure 6.31 Diagram of transition rates for reliability calculation of a repairable 1-out-of-2 warm
redundancy with const. failure & repair rates 4, A,., u, switch with failure modes stuck at the state
occupied and no connection with constant failure & repair rates Ag, Wg and A, , K, , respectively
(ideal failure detection, 1 repair crew, repair priority on switch, Z, down state, Markov process)

Condition given by Eq. (6.239) is for A, similar to that given by Eq. (6.212) for A
Example 6.22 investigates the asymptotic & steady-state point and average availabi-
lity PAg=AA; for the system described by Fig. 6.31 by assuming a repair rate pu, for
failure mode no connection and p for failure mode stuck at the state occupied just
before failure, one repair crew, and repair priority for switch failures (for the switch
only a failure mode is possible at a time). From Eq. (6.240) one recognizes that
imperfect switching acts for PAg = AAs in a similar way as for MTTFg, (Eq. (6.239)).
A more complex system is considered in Section 6.8.6.3 (pp. 262- 65). Further
models for systems with more than two states or one failure mode are conceivable.

Example 6.22
Investigates the asymptotic & steady-state point and average availability PAg = AA; for the
model considered in Fig. 6.31 by assuming no further failures at system down.

Solution

PAg = AAg (as well as PAg (7)) can be obtained using a
9 states Markov process with up states Zy, Zy.» Z;> Z; and
down states Z»,Z;w,Z,,Z,.,Zy~ (absorbing for
reliability calculation), see graph, by solving (Table 6.2)
A+ A+ Ag+Ag) By =g By + LB+ P, WoB = Ay Fy,
(M +1g) By=h Ry (htig) Be= Py kR, MoPy
=AoB, BB =AR+UgPy, WoPy=AR, UgPy=AFy, and
Fy+ Py +R+HR+Ru+ Rut Py+ Py + Py =1, yielding

PAg =AAg = Ry+F +B+H. =
1
N aA+A)(ath,+ Ag) g oA +HAG) + R Ag I+ ap[ppgho@+ A, )+ poAdg A+ p)]
WHolg A+Ag+UG) [(A+A,+p0g) A+ A+ W)+ Ag A+ )]

Aot Adg+ A+A Aot Boh A
o1 pw? Ho u Mo MG( r) (A G oA) < “_0, a=(htpg). (6.240)
w? uouo N

Investigation of Eq. (6.240) leads to a condition similar (same for (L,=U5=W) to Eq. (6.239).
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6.8.6 Fault Tolerant reconfigurable Systems

Fault tolerant structures are able to detect and localize faults (failures & defects) and
reconfigure themselves to continue operation with minimum loss of performance
and/or safety (graceful degradation). Such a characteristic must be built in during
design & development. Typical examples of fault tolerant systems are safety
circuits as well as power and telecommunication networks. Following a short
discussion on ideal reconfiguration, this section deals with reconfiguration occurring
at given fixed times or at failure by considering also non ideal conditions, for
instance imperfect switching in Section 6.8.6.3. Investigation is based on tools
introduced in Appendix A7 and summarized in Table 6.2. Constant failure and
repair rates are assumed, yielding to (time-homogeneous) Markov processes.
Procedures are illustrated on a case-by-case basis using diagrams of transition rates.

6.8.6.1 Ideal case

Each redundant structure belongs to a fault tolerant reconfigurable structure and
must be validated for this purpose during design & development, for instance with
an FMEA (Section 2.6). For the redundant structures investigated in Sections 2.2,
2.3.1-2.3.5, 6.4- 6.7 and Appendix A7, independent elements (p.52), ideal fault
coverage, ideal switching, and no reduction of system performance at failure of a
redundant element was assumed. Because of these assumptions, investigations
often lead to series - parallel structures (Sections 6.6 & 6.7). Imperfect switching,
incomplete coverage, and items (systems) with more than two states or failure
modes are considered in Sections 2.3.6, 6.8.3-6.8.5, 6.8.6.3. Sections 6.8.6.2 and
6.8.6.3 investigate time and failure censored reconfiguration, and Section 6.8.6.4
considers reward & frequency/duration aspects. In addition, Sections 6.8.7-6.8.9
deal with common cause failures, basic considerations on reliability networks and a
general procedure for complex repairable systems, and Section 6.9 introduces
alternative investigation methods for complex systems.

6.8.6.2 Time Censored Reconfiguration (Phased-Mission Systems)

In some practical applications, systems are used for different required functions.
If each required function can be considered separately from one another, inves-
tigation is performed by considering a reliability block diagram (if it exist) for each
required function (p.29). Otherwise, if mission phases follow each other, investiga-
tion must consider the system reconfiguration at the end of each phase and one
define this as a phased-mission system. Investigation of phased-mission systems can
be more time consuming as stated e.g. in [2.7,2.18, 6.24, 6.33, 6.41], dealing with
binary state assignment (basically limited to totally independent elements (p. 52)),
considering time dependent failure or repair rates (breaking the Markov property),
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using semi-Markov processes (of limited validity), or missing Assumption 4 below
(important when transferring state probabilities at the end of phase & to initial
probabilities for phase k+1). A lower bound Ry, for the mission reliability Rgq is
obtained by connecting the reliability block diagrams for each phase in series for the
whole mission duration (Example 2.5). An upper bound for Rgq is given by the
smaller of the reliability for each phase taken separately by assuming that all
elements involved are as-good-as-new at begin of the phase considered; thus,

RSO[ SRgo=< min(Rk,SO) k =1,...,n (for n phases). (6.241)

Examples 6.23 - 6.25 illustrate some general considerations and Example 6.26 gives
a numerical application of Eq. (6.241). For availability, Eq. (6.246) applies.

The following practice oriented procedure (Point (ii) below) for reliability and
availability analysis of repairable phased-mission systems allows, in particular,
consideration of standby redundancy and arbitrary repair strategy.

(1) General assumptions:

1. Failure and repair rates (A; and p;) of all elements are constant during the
sojourn time in any state within each phase, but can change (stepwise) at a
state (or phase) change because of change in configuration, component use,
stress, repair strategy or other; for all elements it holds that A; << ;.

2. At the begin of the mission (phased-mission) all elements are as-good-as-new.

3. Phase duration Tj,...,T,, are given (fixed) values, each of them so large that
asymptotic & steady-state values for availability can be assumed for every
phase (73, ...,T,, >> 1/p; for all elements, see Section 6.2.5 and Table 6.6).

4. For availability investigation, not used elements in a phase are either as-good-
as-new and put in standby (failure rate A =0) at begin of the phase or repaired
(Assumption 3) and then put in standby (repair priority on elements used);
for reliability investigation, down states at system level are absorbing states
and the above rule holds for elements which have not caused system down.

5. The system has only one repair crew and no further failures can occur at sys-
tem down; system down is an absorbing state for reliability; for availability,
the system is restored to an operating state according to a given repair strategy.

6. Fault coverage, switch, and logistic support are ideal.
7. For each phase, a reliability block diagram exists.

Example 6.23

A one-item is used in a mission with phase 1 (duration T, const. failure rate 1)), followed by

phase 2 (duration T, const. failure rate A,). Compute the reliability function for item new at £ =0.

Solution

For the reliability function of the whole mission it holds that (7}, T, given (fixed))

R, =Pr {phasel failure free N phase 2 failure free} = Pr { phase1 failure free} - Pr {phase 2

failure free | phase 1 failure free} = M ghaly Tt MaTy) (6.242)

The product rule in Eq. (6.242) holds only because of constant failure rates (see also Eq. (6.27)).
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Figure 6.32 Diagrams of transition rates for a one-item used in a mission with phase 1 of duration

T, and constant failure rate A, followed by phase 2 of duration 7, and constant failure rate A,
(Zy 1, Z,, down states, Markov process)

Example 6.24

Show that Eq. (6.242) can be obtained using a Markov approach, i.e., working with two separate
transition rate diagrams for phase 1 and for phase 2, and setting final state probabilities from
phase 1 as initial-state probabilities for phase 2.

Solution

Figure 6.32 gives the diagrams of transition rates for phase 1 and 2 (separately). For phase 1,
the state probability P, 0 (t) follows from Pi,o(t) = _}”lp'l,o(t) (Table 6.2, Eq. (A7.115), yield-
ing P/ o(1)=e™M", for P,  (0)=1. Thus,

-MT -MA

Rgo () =P o(T)=e and P, (F)=1-¢

P | (1) follows from P, () +Py (r)=1 or by solving 1.?'1'1 (t)= A Py () With Pl"l 0)=0.
Similarly, for phase 2 with ¢ starting at t=Tj,

B} o(t=T)==AsP} o(-T)), with P; o(F)=P| o(f)=e 1"
yielding

Py o (-1 )= M7, T, <1< T +T,,
and thus,

Rgo (G +T) =P o (G + ) = e T2 = iTivhale) _ g (6.243)
Example 6.25

A one-item system with reliability function Rg (#) is used for a mission of random duration
T > 0 distributed according to E, (¢)=Pr{t,, <t} with F, (0)=0 and density f,(¢). Give
the reliability, first for the general case and then by assuming constant failure rate A and
exponentially distributed mission duration (fj, ()= Se_& ).

Solution

As mission duration can take any time between (0, o), reliability takes a constant value given by

Rg =] £, ORg O dr, (6.244)
0

(see also Eq. (2.76)). For fy,(1)= Be_& and constant failure rate A, Eq. (6.244) yields
Rgo=8/(8+A)=1 for §>>A or =&/A for 8 <<A. (6.245)

Supplementary results: In practical application, mission duration is limited to T}, and T, >0 is
a truncated random variable with Pr{t, =T, }=1-E, (T, -0); for this
case, Eq. (6.245) becomes Rg=8/(5+A)+e ™M/ (542).
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(i) Procedure for reliability & availability computation of repairable phased-mission
systems with fixed phase duration Ty,...,T,, satisfying the general assumptions (i):

1.

2.

Group series elements used in all phases (power supply, cooling, etc.) in one
elementto be consideredinfinalresults (Table 6.10,2ndrow, Egs.(6.257), (6.258)).

Draw the diagram of transition rates for reliability evaluation, separately for
each phase (1,...,n), beginning by phase 1 with Z; (1 referring to phase 1
and 0 being the state in which all elements are as-good-as-new); down states
at system level are absorbing states; use the same state numbering for the
same state appearing in successive phases; however, state Z; ; correspond-
ing to a state Z_ ; in a phase ¢ preceding phase k can also contain as-good-as-
new elements appearing in phase & but not in a pervious phase, or standby
elements (not used in phase k) with failure rate A =0; for k>1, state Z .0
contains all as-good-as-new elements used in phase k and (as necessary)
elements not used in phase k which are standby with failure rate A=0 (as-
good-as-new is same as operating or ready to operate, because of A; const.).

For availability investigation, use results of Table 6.10 (or extend diagrams of
transition rates, allowing a return to an operating state after system down
according to a given repair strategy) to compute the asymptotic & steady-state
availability for each phase separately (PAy = AA; g for phase k), taking care
of elements which are not used in the phase considered and can act as standby
redundancy (A = 0) for working elements; for the whole mission it holds then

PAS = AAS > min (PA](,S = AAk’ S), k=1,...,n (for nphases). (6.246)

For reliability investigation, compute the reliability function Ry go(7}) at the
end of phase 1 starting in state Z; ¢ at £=0 in the same way as for a one
mission system (Table 6.2), as well as states probabilities P j (Ty) for all up
states Z ;; if Z; ; (possibly with further as-good-as-new elements used in
phase 2) is an up state in phase 2, Py ; (7}) becomes the probability P, ; (0)
to start phase 2 in Z, ;; if Z; ; is a down state in phase 2, Py ; (7}) adds to
the initial probability of starting phase 2 in the down state; if Z; ; does not
appear in phase 2, P; j (T1) adds to the initial probability in state Z; o to
give P, ((0) (from rule 2 above and verifying that for each phase the sum of
all states probabilities is 1); reliability calculation must take care of elements
which are not used in the phase considered and can act as standby redun-
dancy (A=0) for working elements; continuing in this way, following
equation can be found for the mission reliability Rg starting phase 1in Z;

Rgo= 2 P,;’j(Tn) , U, = set of up states in phase n. (6.247)
Zj GU"

To simplify the notation used in Example 6.24, the variable x starting by x =0 at the
begin of each phase is used in Rule 4 instead of ¢ (starting by z=0 with phase 1).
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Figure 6.33 Reliability block diagrams and diagram of transition rates for reliability calculation of a
phased-mission system with 3 phases (the diagram of transition rates for phase 2 takes care that one
element E, is put in standby with A, =0 as soon as available from phase 1); dashed are indicated to
which states the final state probabilities of phase 1 and phase 2 are transferred as initial probabilities
for phase 2 and phase 3, respectively (constant failure and repair rates (A, 1;), ideal failure detection
& switch, one repair crew, repair as per first-in first-out, Z Li» VA 210 Z 3,1 down states, Markov proc.)

As an example let us consider the phased-mission system with 3 phases of given
(fixed) duration Tj, T, and T3, described by the 3 reliability block diagrams and the
corresponding diagrams of transition rates for reliability investigation given in
Fig. 6.33. The diagram of transition rates for phase 2 considers that in phase 2 only
one element E, is used and assumes that the second element E, is put in standby
redundancy with failure rate A, =0 (either from state Z; ( or as soon as repaired if
from state Z; ,). Dashed is given to which states the final state probabilities at time
T, for phase 1 and T, (7;+ T, with respect to time #) for phase 2 are transferred as
initial probabilities for the successive phase. Let us first consider the asymptotic &
steady-state mission availability PA = AA ¢. From Tables 6.10 and 6.6, it follows
for the 3 phases (taken separately) that

PAI,S =AAl g =1-Q /u)-20, /pz)2 =1=( /1),

PAy g =AAy s =1-(, Iyl =200 s ),

PA3s = M35 =1~ Oy /)= 20 11p)" =20k /i3 )’ =10y /). (6.248)
The 2nd equation considers that in phase 2 one of the elements E, acts as

standby redundancy with failure rate A, =0, combining thus results from Table 6.6
(1-(A, /uz)z) and Table 6.10 (2nd row). Equation (6.246) yields then

PAS=AASZmin(PAk,S=AAk75)z1—7»1/u1, k=1,2,3. (6249)



260 6 Reliability and Availability of Repairable Systems

For the mission reliability Ry, starting in state Z,  (all elements are as-good-as-
new) at ¢ =0, the diagrams of transition rates of Fig. 6.33 yield for phases 1, 2, 3 to
following coupled system of differential equations for state probabilities (Table 6.2)

Pi,oz_(}‘1+2;‘2)P;,0+H2P1',2v Pi,f‘(ll+}‘2+”2)P;,2+27‘2P;,0v
Pl = APl g+ A+ AP 5, with Py (0)=1, P} (0)=P],(0)=0;

i’é,o= =y t2h3)Py g+ UyPyo + HyPy g, i’é,4= —(g Ayt y)Py+ 2h3Py 5,

i’é,f =y + 203+ 1y)Py o+ APy o+ WP, i’éj: =y + Ay + U3)Py s+ AgPY g,

i’é,az —Qytha+ u3)Pz'.3 + 2>‘3P2',0 + ”2P2‘,4v i)'z,l= }‘zpz',z + 7‘3P2',3 +g+ )»3)(P'2_4+P'2,5),
with By o(0)= P{ ((T)), Py,(0)=P|,(T}), Py (=P (T}), P,3(0)=P,,(0)=P,5(0)=0;

i’.a,o= =0y + 20y + 20 3)P] o+ ByP o+ 1gPy 5, if“= =0y +2hy + Ay + 3Py 3+ 2hsP; 0+ WoPY 4,
Py= —(hy +hg + 20y + 1p)P) 5+ 20,P) o4 WyPy s, Pis= = (g +hy + Ay +115)P) 5+ 2A,P) 5,
P} 4= = hgt Aty )Py 4 203P) 50 Py =h Py ot (b #h )P o+ (A APy s+ (b it A (P 4+P5 5),
with P3(0)=P, o(Ty), Py p0)=P5(Ty), Py3@)=Py3(Ty), P3,(0)=Py4(Ty),

P;5(0)=P, 5(T,), P;,(0)=P, (T}). (6.250)

In Eq. (6.250), P; ; is used instead of P; ;(x). From Eq. (6.247) it follows then
Rgo=P3 0(T3)+P3 5(T3) +P3 3(T3) +P3 4(T3) +P3 5(T3). (6.251)

Analytical solution of the system given by Eq. (6.250) is possible, but time con-
suming. Numerical solution can be quickly obtained (Example 6.26). A lower
bound Ry, for the mission reliability Rg is obtained by connecting the reliability
block diagrams for each phase in series. For Fig. 6.33, this corresponds (practically)
to consider phase 3 for a time span T} + T,+T 3 (in phase 2, for element E, a second
element E, is available in standby redundancy). A good approximation for Rg, . is

Example 6.26

Give the numerical solution of Egs. (6.250) and (6.251) for A, = 10407, A, =100

A3=107h"", =, =u3 =0.5h", T, =168h, T, = 336 h, and Ty = 672 h.

Solution

Numerical solution of the 3 coupled systems of differential equations given by Eq. (6.250) yields
P} o (T3) = 0.598655, Py, (T3)= 0.023493, P} 5 (T3 )= 0.002388,

P} 4 (T;)= 0.000092, P} 5 (T3)=0.000094, P} (Ty)=0.375278 (6:252)
(with 6 digits because of P'3,4 (73) and P'3,5 (13)). Ry follows then from Eq. (6.251)
Rgo=1-P3(T3) = 0.625. (6.253)

Supplementary results: Computing lower and upper bound for Rg as per Egs. (6.241) and
(6.254), yields for the above numerical example 0.55 £ Ry, <0.71.
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quickly obtained by computing MTTFg, using Table 6.10 and setting this in

Rgo, = e" N+ BIMITFso . from this, MITF;y =1/0y +203 In, +2)3 /ps) and

—({+Ty+T3) (x1+2x22/u2+2)€3/u3).

RSO >R 50, = e (6.254)

Eq. (6.241) allows computation of an upper bound for Rgo (Example 6.26).

If the second element E, were not available in phase 2 as standby redundancy,
PAy s=AAg g =1-X,/u, and, from Eq. (6.249), PAg=AAg=1-A,/,, since
A1/py <Ay /p, can be assumed when considering the reliability block diagram for
phase 1. Assuming furthermore that the second element E, would be repaired
before the end of phase 2, if in a failed state at the end of phase 1 (Z,,), the
diagram of transition rates for phase 2 would be equal to that for phase 1, with
}\.1—-)7\,2, }\,2—)}»3 s Wp— U3, and ZI,O._) 22,0 s Zl,l - ZZ,] 5 Zl,2 - 22’3 with

P, o(0) =P/ o(T7) + P 5(T}), Py 1(0)=P/(7}), P;3(0)=0. (6.255)
The corresponding initial probabilities for phase 3 would be

P3 0(0)=P, o(T2), P31(0)=P,(T3), P33(0)=P; 3(T3),
P3 5(0)=P; 4(0)=P; 5(0)=0. (6.256)

If an element E,,,. where common to all 3 phases in Fig. 6.33 (i.e. in series with
all 3 reliability block diagrams), Table 6.10 (2nd row) can be used to find

PAg, = AAg, = 1= Mger I ger =2y /1Yy (6.257)
(considering Eq. (6.249)) and, with Ry from Eq. 6.251,

Rsowt = Rgo- e_}‘se’ @ +T2+T3). (6.258)

The above procedure can be extended to consider more than one repair crew
at system level or any kind of repair (restore) strategy. Other procedures (models)
are conceivable. For instance, for nonrepairable systems (up to system failure) of
complex structure, and with independent elements (parallel redundancy), it can be
useful to number the states using binary considerations.

For randomly distributed phase duration, Eq. (6.246) can be used for availa-
bility. Reliability can be obtained by expanding results in Examples 6.23 -6.25.

An alternative approach for phased-mission systems is to assume that at the
begin of each mission phase, the system is as-good-as-new with respect to the
elements used in the mission phase considered (required elements are repaired
in a negligible time at the begin of the mission phase, if they are in a failed state,
and not required elements can be repaired during a phase in which they are not
used). This assumption can be reasonable for some repairable systems and highly
simplifies investigation. For this case, results developed in Section 6.8.2 for
preventive maintenance lead to (for phases 1,2,...)
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Ro(t)= Rg; (1), for 0St<71*
=Rs1(G)Rs,t =T, for '<t<T,
=Rs1 () Rsy (T, =T IRs3 ¢ =T5),  for T <t<Ty
: (6.259)
for the reliability function, and
PAg (t) = PAg (1), for 0St<7i*
= PAg,(t - T, for h,°<t<7y
= PAg,(t ~Ty), for T, <1<y
: (6.260)

for the point availability. S; is the state from which the ith mission phase starts;
0, Ty, T5, ... are the time points on the time axis at which the mission phase 1, 2, 3, ...
begin (the mission duration of phase i being here T;-T;"; with 7= 0).

6.8.6.3 Failure Censored Reconfiguration

In most applications, reconfiguration occurs at the failure of a redundant element.
Besides cases with ideal fault coverage, ideal switching, and no system performance
reduction at failure (Sections 2.2, 2.3, and 6.4-6.7), more complex structures often
arise in practical applications (see Sections 6.8.3-6.8.5 for some examples).
Such structures must be investigated on a case-by-case basis, and an FMEA /FMECA
(Section 2.6) is mandatory to validate investigations. Often it is necessary to
consider that after a reconfiguration, the system performance is reduced, i.e.,
reward and frequency/duration aspects have to be involved in the analysis.

A reasonably simple and comprehensive example is a power system substation.
Figure 6.34 gives the functional block diagram and the diagram of transition rates
for availability calculation, W, = 0 for reliability investigation. Z, is the down state:
The substation is powered by a reliable network and consists of:

» Two branch designated by A, & A, and capable of performing 100% load,
each with HV switch, HV circuit breaker and control elements, transformer,
measurement & control elements, and LV switch.

e Two busbars designated by C; & C, and capable of performing 100% load
(failure rate basically given by double contingency of faults on control elements).

* A coupler between the busbars, designated by B and capable of performing
100% load,, failure modes stuck at the state occupied just before failure(does not
open), failure rate A g, and no connection (does not close), failure rate A g,.

Load is distributed between C; and C, at 50% rate each. The diagram of transition
rates is based on an extensive FMEA/FMECA [6.20 (2002)] showing in particular the
key position of the coupler B in the reconfiguration strategy. Coupler B is normally
open. A failure of B is recognized only at a failure of A or C. From state Z,, B can
fail only with failure mode no connection, from Z; or Z, only with failure mode
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(100% load)

(50% load) (50% load)

Por=h 413 Poa= A a2i Pos= Aot Pog=hers Por=heai Pro=Has Pi3=hygt Prg=heps Py p=h gy thcys
Po=H 3 Po=hpos Pu=Rcys Pyip =h gt Acys P3p=Has Py =R Ayt Aoy Py p=d g therthey s
Pyg=H 43 Pss=hoyi Psy=dcad Psip=h 405 Ps =R gt Py=les Pes= a3 Py =R ga thens Prp=ies
Pro=Rai 07 o= A a A Py=hei Py p=h g Fheni Poy=Hei Py p=h g thepi Prgo=hyi Pgg=heys

Plo2=tazt 2’ Puo=has Prio=hee Pun=harther Pro™ Mg pi=zj Pij

Figure 6.34 Functional block diagram and diagram of transition rates for availability calculation of
a power system substation (active redundancy, constant failure and repair rates A Al> A A2 A Bo» A Bo>
Actshoa s Bysbe s Mg, imperfect switching of B with failure modes does not open (A pg, from
Z, and Z,) or no connection ( A Bo- from Z)), failure of B recognized only at failure of A or C,
ideal failure detection for A and C, one repair crew, repair priority on C, no further failure at system
down, Z, down state, Markov process, e =0 for reliability calculation)

stuck at the state occupied just before failure. Constant failure rates A 41, A 49, Mg,
Apo> hc1s Ao and constant repair rates py,lc,lg are assumed. pyandpe remain
the same also if a repair of B is necessary; Ug is larger than u 4 and po. From the
down state (Z;,) the system returns to state Z,. Furthermore, only one repair crew,
repair priority on C (followed by C+B, A, A+B), and no further failure at system
down (50% load is an up state with reduced performance) are assumed. Sought are
mean time to system failure MTTFg, for system new (in state Z;) at ¢ =0 and
asymptotic & steady-state point and average availability PAg=AAg. The involved
process is a (time-homogeneous) Markov process. If results are required for 100%
load, Z4 - Z;, are down states (see Section 6.8.6.4 for reward considerations). To
simplify investigation, A 4;=A 4,=A, and Aoy=Ac, =A, are assumed. To increase
readability, the number of states inFig. 6.34 has been reduced asperPoint2 on p.273.

From Fig. 6.34 and Table 6.2 or Eq. (A7.126) it follows that MTTFg is given
as solution of the following system of algebraic equations (with M;=MTTFyg;)
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PoMo=1+A g Ms+h o (M +My)+ Ao (Mg+My), psMg=1+A o (M o+ M )+ Mg+ M),
PIM =1+ Mo+d Mg +d g My, poMo=1+Rg M+ A Mo+ ApoM,,  p3My=1+U 4, M,
M =140 My, PMo=1+A Mo+l My, pMo=1+A Mo+H M, pgMg =1+p .M,

PoMo=1+1 My, PioM =1+ ;M+A Mg, Py M =144, Mo+hc Mg . (6.261)

Because of A=A 4,=A4, Ac=Aey =A and the symmetry in Fig. 6.34 it follows that
P2=P1> P4=P3, P7=Pg> P9=Pg> P11=P1o aNd Mp=My, My=My, M7=Mg, Mg=Mg, My1=M),.
This has been considered in solving the system of algebraic equations (6.261).
From Eq. (6.261) it follows that

MTTFy, =

ayay +2aa3) s +2a) A cPspio(PgtAy) T 20304 cPsPrg + A po (3284 T a3ag)

430024 41 APg (D5t A 5 )@+ el cP3P10) =22k cl ePsPeP10 ~A p (3295 T g 1 4PP3 ) ’
with (6.262)

a4=psPePsPlo> %=P1P3Ps P3AcHC & =PePsP10+ 24P (PgtAC)+2h 1o Pgtha),

a3=pg(P3+hpg)+P3he, as=2hAUAPePg +2AcicPsPI0r d5=2hgAche (PetPyo)  (6.263)
and

Po=2A4+2Ah Ay, P1=Pp=AAR2h oAty s P3=P4=A4F2A 0y, Ps=2(h4FA0),

Pe=P7=2Ap+hcthc, Pg=Po=ApgtActhc, Po=Pr1=ha+2hctiy, Ppa=Kg. (6.264)

MTTFy per Eq.(6.262) can be approximated by

Py + S5+ Ao )H @Ay +5he )y T e + Apg +Apa (Mg +Apg) 2G4+ M)
@Ay +20c +Apo) Ay + Aoy 1)

MTTFg( =
(6.265)

yielding MTTFq~p/2(+rc)? for Agg =gy =0 and py=pc=p (1-out-of-2 active
redundancy with A and C in series, as per Table 6.10, 2nd & 3rd row).

From Fig. 6.34 and Table 6.2 or Eq. (A7.127) it follows that the asymptotic &
steady-state point and average availability PAg=AAg is given as solution of

Po Fo =pa (A+P+Py+ P+ o+ R+ (Fs+ )+ By, oy R=2y Ry+ic K,
Py Py =hy By +hc By, P3P =2pgs B, Py By =Aps B, s Ps=Ap Ry,

Ps Fs =hc (B +Ps), PP =hc(Ry+PF5), pgFR=hy F+Ac (R +Hp),
Po By =Xy By +Ac (B +Ry), Pio o = A4 Bs, P By =2y B,
P12 By = (g +Ao)(B+Py+ P+ P+ B+ By + B+ By )+ g+ 200 ) (Py+By). (6.266)

One of the Eq. (6.266) must be dropped and replaced by 3, P,=1. The solution yields

P=P)=b Py, Ps=P=bPydgs | p3, Ps=Pyhpy | ps, RR=Ry=b P,
Po=P;=Pyhc (Ps+igo) / PsPg Ro=FR1=Porarpo IPsPig> B =b3F, (6.267)
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with
P 1
O 1 42by +2B (1 + Ay /P3) +hg, /D5 + 2h o (05 +Ah o) /P56 + 2A s hgo / P3PI0 + B3
and (6.268)
- PsPePsP10Ma P10 AaAchcPs +Ago ) +Pshale Apolic
P1PsP6P3P10 ~PsPeP10r cHe
Ao Mhrc@s+hgy)  Ayhcdgy
by=b—+ + ’
Pg PePgPs PsPgP10
20‘.4 +}‘C) }‘C (95+}“Bo) )‘A}‘B }‘Bc
= ————[b +b, + + 0]+2>\,+2}\. e
P12 hth PsPg PsP1o ®a C)p3p12 (6.269)
From Egs. (6.267) - (6.269) it follows that
11
PAg=AAg=) B =1-R,=1-bi R
i=0
_ 1
1+ b3
1+2by +2bj(1+Aps/p3) +Agy I Ps +2h (P +Apgy) / PsPg +2A4A go/ PsPyg
6.270)

PAg = AAg per Eq. (6.270) can be approximated by

20 pthe JOchatie oy +hpo Nthpo Pabicthe Watierps Ihpo)) (6 971)

PAg=AAg =1-
g [halc +2( e +Achy YA+ A,/ (A g +Ac N+2A 4 Apsiie Tly ]

yielding PAg=AAg=1-2((\4+hc)/p) for hpg =Apy=0 and p, = pc = Hg=p (l-out-
of-2 active redundancy with A and C in series, as per Table 6.10). Equations (6.265)
and (6.271) show the small influence of the coupler B. A numerical evaluation with

Ag1=App=h, =4 1078 p! (= 0.035 expected failures per year)
Aci=Aco=Ac=0.12- 10%h™ (= 0.001 expected failures per year)
Apg=0.08- 100 n! (= 0.0007 expected failures per year)
Apo=0.6- 10 h! (= 0.005 expected failures per year)

Mg =i =1/4h, p,=1/12h
yields
MTTFgy=73610°h  and PAg=AAg~1-1.63-107°

from Eqs.(6.262) & (6.270), as well as MTTFgo~7.3-10°h and PAg=AAg ~1-0.9-10""
from Egs. (6.265) & (6.271), respectively; moreover,
Py =0.932096, B =P=1491-107", P =P,=477-100"2,  P;=0.067871,

P =P,=4.80-107, Pg=Py=153-10""", B,=P;=1.09-10%, P,=163-10".

Considering the substation as a macro-structure (first row in Table 6.10), it holds
that PAg=AAg=1-Ag /g and Rg(2) = e*st, with Ms=Hg and Ag=1/MTTFg.



266 6 Reliability and Availability of Repairable Systems

6.8.6.4 Reward and Frequency/Duration Aspects

For some applications, e.g. in power and communication systems, it is of impor-
tance to consider system performance also in the presence of failures. Reward
and frequency/duration aspects are of interest to evaluate system performability.
For constant failure and repair rates (Markov processes), asymptotic & steady-state
system failure frequency f,;¢ and system mean down time MDTy (mean repair
(restoration) duration at system level) are given as (Egs. (A7.143) & (A7.144))

fuas = 2 B Pji= 2 P (X P 6.272)
Z,eU,Z,eU Z,eU  ZeU
and
MDTg = (1= Y, P;) / fuas=(1=PAg) I fuqs, (6.273)
ZjeU

respectively (Eq. (6.273) can be heuristically explained, considering that for T— eo,.
(1-PA)T is the mean down time in (0,T] and T/ f, 5 the mean number of repairs
(and failures) in (0,7]. Similar results hold for semi-Markov processes. U is the
set of states considered as up states for f,;¢ and MDTg calculation, U is the
complement to the totality of states considered. P; is the asymptotic & steady-state
probability of state Z; and p;; the transition rate from_Z ; to Z;. InEq. (6.272), all
transition rates P;ji leaving state Z] € U toward Z;€ U are considered (cumulated
states). Example 6.27 gives an application to the substation investigated in Fig.
6.34. Considering f,45 = faus (Eq. (A7.145)), f,4s can be replaced by fq.

Example 6.27
Give the failure frequency f,4s and the mean failure duration MDTyg in steady-state for the
substation of Fig. 6.34 for failures referred to a load loss of 100% and 50%, respectively.

Solution
For loss of 100% load, Fig. 6.34 with U={Z,,...,Z,}, U= {Z,) yields (P as per Eq. (6.267))

Suds 10ss100% =2(B + Pg+ Py + Bg)Ay+Ac)+2P3 (A g +2A().
For loss of 50% load, Fig. 6.34 with U=(Z, - Zs} and U={ Zg - Z,,) yields

Suds 10ss 50% = Fo2he +2B (Mg + 200 )+ 2P3 (Mg + 200 )+ P52+ M)
From Eq. (6.273) it follows that

MDTg1065100% = B2 ! fuds 10ss100% -
and
MDTy 5509 =1~ Fo + 2P + 2Py + B) [ f 45 1085 509% *

The numerical example on p. 265 yields fyus 1ss100% = 136° 10?1 (= 107 expected failures

per year), fous 1oss 50% ~783-10°h ™" (= 8-1073 expected failures per year), MDTy 1665 100%
~12h, ad MDTg o509 = 4h.
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Example 6.28

Give the expected instantaneous reward rate in steady-state for the substation of Fig. 6.34.
Solution

Considering Fig. 6.34 and the numerical example on p. 265 it follows that

MIRg =1-(By +2B +2P; + P;) + 0.5- 2P + 2P, +2B;) ~ 0.9999984.

The reward rate 1 takes care of the performance reduction in the state
considered, (r;= 0 for down states, 0<r;<1 for partially down states, and r;=1 for
up states with 100% performance). From this, the expected instantaneous reward
rate in steady-state or for ¢ — oo, MIRy, is given as (Eq. (A7.147))

m
MIRg =3, 1;P;, (6.274)

i=0
The expected accumulated reward in steady-state (or for t— o) follows as
MARg(t) = MIRg - t, see Example 6.28 for an application. F; in Eq. (6.274) is the
asymptotic & steady-state probability of state Z;, giving also the expected percent-
age of time the system stays at the performance level specified by Z; (Eq. (A7.132)).

6.8.7 Systems with Common Cause Failures

In some practical applications it is necessary to consider that common cause failures
can occur. Common cause failures (C) are multiple failures resulting from a single
cause. They must be distinguished from common mode failures, which are multiple
failures showing the same symptom. Common cause failures can occur in hardware
as well as in software. Their causes can be quite different. Some possible causes
for common cause failures in hardware are:

¢ overload (electrical, thermal, mechanical),

» technological weakness (material, design, production),

* misuse (caused e.g. by operating or maintenance personnel),
* external event.

Similar causes can be found for software.

In the following, a 1-out-of-2 active redundancy is used as a basic example for
investigating effects of common cause failures. Results (Eqs. (6.276) & (6.280))
show that common cause failure acts (in general) as a series element in the system's
reliability structure, with failure rate equal the occurrence rate 8, of the common
cause failure and repair (restoration) rate equal the remove rate p of the common
cause failure. Graphs given by Figs. 2.8 & 6.17 and rules (2.28) & (6.174) can be
used to limit effects of common cause failures.



268 6 Reliability and Availability of Repairable Systems

a) C only on working elements, repair for C b) C only on working elements, repair priority
includes that for a failure for C does not include other failures

¢) C on elements in working or repair state, d) Con elements in working or repair state,
repair for C includes that for a failure repair as for case b)

Figure 6.35 Diagram of transition rates of the 1-out-of-2 active redundancy of Fig. 6.36 with
common cause failures (C) for 4 different basic possibilities (constant failure and repair rates
(AW, Ue, Bey), constant occurrence rates for C (8¢, 8 ¢; often with 8 =8 ), ideal failure detection
and switch, one repair crew, repair priority on C, no further failures at system down (except for
Sc41-0¢as5 ) Z1.2Z5, Z4,Z5 down states (absorbing for reliability calculation), Markov processes)

Figure 6.35 gives the diagrams of transition rates for the repairable 1-out-of-2
active redundancy of Fig. 6.36 with common cause failures for 4 different basic
possibilities (C refers to common cause failures, repair priority for C, one repair
crew, no further failures at system down except for 841,845 ). To clarify results,
occurrence rates §¢; and repair rates ue; for common cause failures are assumed to
be each other different when moving from one state to the other (for simplicity in
the final Egs. (6.276) & (6.280), 8¢cg1=0¢c and pcig =i ). The 4 possibilities of
Fig. 6.35 are resumed in Fig. 6.36 for investigation. From Fig. 6.36 and Table 6.2,
MTTFy, is given as solution of the following system of algebraic equations
(all down states (Z;, Z3, Zy, Zs) are absorbing for reliability investigation)

@A +8,)MTTFg =1 +2AMTTFg,, * +8co1 +8co3 tWMTTFg, =1+ U MTTF -
(6.275)
From Eq. (6.275), MTTFy, follows as (for §o=8,¢;<A),
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1-out-of-2
- acgve £
t \=E= )

Po1=8¢c s Poa=2A (A+A, for warm redundancy); Py =A; Py=8ca
P =8c23t Py1=8ca1i Pas=8cast Po=Hes Pp=Mca: Po=Pa=H;
p54=ucs4; P; =Epff 5 fDl‘RS (1) set P~ p32=p4l= Py =Pys=0

Figure 6.36 Reliability block diagram and diagram of transition rates for availability calculation of a
1-out-of-2 active redundancy with common cause failures (C) for different possibilities as per Fig.6.35

3A+80p +00p3 tU B
QRA+8)(A+3 0y +80p3) +ud
1 < 1
Se+2MA+80y +8003=80) / BA+8 ¢y +8 03 +l) O

MTTFg, =

(6.276)

Furthermore, from Fig. 6.36 and Table 6.2, the asymptotic & steady-state point and
average availability PAg = AAg is given as solution of the following system of
algebraic equations

PoRy=Hc R +uPy; PR =8¢cFy+3ca B +0cai Py PsPs=8cus By
P3Py =8cp3 By PaPy=APy +Ucss Ps; PPy =2AF) +Uc3 B +0F, . (6.277)

One of the Eq.(6.277) must be dropped and replaced by Ry+..+Ps=1 (the first
equation because of the particular cases investigated below). The solution yields

1+
PAg = AAg =P+ Py= = (6.278)
azy+ Ao /pit+ajashgy /pp+aghy /py
with
@ =APs5 [ (P4P5 —8cashcsa)s @ =2AP3/ P2P3-8c23 Mo 32 — 4 HP3),
a3 =1+ay(1+8¢co3/P3)+aay(L+8c45 /P5), (6.279)

and pg=24+3¢, Pr=Kc, Pa=A+8co+ Ay +is P3=lesas Pa=Scar+Scarts Ps=Hesy
(Fig. 6.36, Eq. (A7.103)). Considering A <<y, 8 <<pe, 8¢;<<U¢; it follows that

S CH (6.280)

PAg = AAg S ———
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Equations (6.276) & (6.278) can be used to investigate Fig. 6.35, yielding (for § < 1)

1 1 1 1
MTTF,, = <= MTTF.. = <=
so +27»(>»+5C2,—5C) 3¢ S0 2A (M Bops-0c) | Oc
c+———F Lt 277 %23 T’
3ht 8oyt B c 3+ 8.t
PA =1 i:_ 22 &+ dca ﬁ_c_ PA ~ 1 8_c 2 A _k+ 8c23 3¢
ST THe T 2w, tn KT Be B STITHC T2np v Bey  We

a) Common cause failures (C) only on working
elements, repair for C includes that for failure

b) C only on working elements, repair priority
for C does not include other failures

! 1 1 1

MTTF,, = <— - <

50 20 (At 8¢ =8¢) 8C MTTEso 2M(A+38053-3) 6(:

Ct 3 hts.. +n ct—/——
3At eyt H 3+ 8yt

3 27 A d 8¢ AS 3 2 A S F A8
PAg =1 € A Sca 3¢ Adca Ag =1 —C- x Ben B Mcss
Re 2a+§. +0 B Ko Heo  HHC Be "20+ 0 B By,  He o Bl

c21

¢) Con elements in working or repair state, repair

d) C on elements in working or repair state,

for C includes that for failure (8., << n) repair as for case b)

Often 8 ¢91=08 23 =8 c41=8¢c45 =0 ¢ and/or U c3o=Ucs4=l ¢ can be assumed. Case b)
corresponds to a 1-out-of-2 active redundancy in series with a switch (Egs. (6.158),
(6.160)). Further approximations are possible, e.g. using 1-PAg=PA = P,+P,+P,+F,.

Equations (6.276) & (6.280) clearly show the effect (consequence) of a common
cause failure on a 1-out-of-2 active redundancy:

The common cause failure acts as a series element with failure rate equal
the occurrence rate 3. of the common cause failure and repair
(restoration) rate ¢ equal the remove rate of the common cause failure;
results given by Figs. 6.17 & 6.18 and rule (6.174)) apply.

The above rule holds quite general if the common cause failure acts at the same time
on all redundant elements of a redundant structure. From this:

Good protection against common cause failures can only be given if each
element of a redundant structure is realized with different technology
(materials & tools), electrically, mechanically and thermally separated,
and not designed by the same designer (true also for software).

Concrete protection against common cause failures must be worked out on a case-
by-case basis, see Example 2.3 for a simple practical situation. In verifying such a
protection, an FMEA/FMECA (Section 2.6) is mandatory for hardware and software.
In some applications, common cause failures can occur with a time delay on
elements of a redundant structure (e.g. because of the drop of a cooling ventilator);
in this cases, automatic fault detection can avoid multiple failures. Some practical
considerations on failure rates for common cause failures in electronic equipment
are in [A2.5 (61508-6)], giving 8. /A = 0.005 as achievable value (see rule (6.174)).
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6.8.8 Basic Considerations on Network Reliability

A network (telecommunication, power, neuronal, or other) can often be regarded,
for modeling purposes, as a graph with N nodes and up to (g’) edges (or links).
Edges can be directed or bi-directional. Nodes and/or edges can fail, have 2 or more
states, and for reliability investigations distinction is made between 2-terminal
and k-terminal (2<k< N) connections. Networks can thus have very complex
reliability structures, some of which have been investigated since the 1950s, with
increasing interest in the last years, seee. g.[2.37, 6.61-6.80].

For the case of only two states for nodes and edges, small networks can be
investigated with methods introduced in Sections 2.3.1 -2.3.3 (nonrepairabe) or 6.2 -
6.8.7 (repairable). For large networks, solutions using minimal path or cut sets
(i.e. based on Boolean functions, Section 2.3.4) are possible, manually (for instance
using binary decision diagrams, Section 6.9.3) or with help of dedicated computer
programs, see e.g. [6.63(2007, 2009), 6.66, 6.68, 6.69, 6.74]. Multi-states for nodes
and/or edges have to be considered when dealing with capacity problems, and some
results for 2-terminal networks are known, see €. g. [6.63 (2009), 6.66-6.70, 6.74].

In the following, two basic network structures are investigated using the key item
method given in Section 2.3.1 (see also Points 7 & 8 of Table 2.1 for further examples).

Figure 6.37a shows a network with 3 nodes N, N,, N5 and 3 bi-directional edges
E1p, E13, Ep3. The reliability block diagram (RBD) for connection Ny, N, is given
in Fig. 6.37b if only edges can fail and in Fig. 6.37c if nodes and edges can fail. The
reliability function (nonrepairable) related to Fig. 6.37c follows as for Eq. (2.26)

RSONl,NZ,zRN]RNZ [RE12+ RE13RE23RN3_ RElzRE13RE23RN3] 3 (6.281)

with RSONl,N2=RSON1,N2( 1), R;=R;(t), R,(0) =1. Figure 6.37d gives the RBD for
all-terminal. For this case, all nodes appear in series and the connection N,,Nj is
included in the connections N{,N, and (") Ny,N3. The reliability function (nonre-
pairable) can be computed using the key item method (Eq. (2.29), on Ej;), yielding

Nl
Ep Ei3 N, H
b)
NTTE, N
E
AN, A‘V AP
Aix (Y

..H% @Q

Figure 6.37 a) Network with 3 nodes & bi-directional connection from each node to each other node;
b) 2-terminal RBD for nodes N;& N,, 100% reliable nodes; c) 2-terminal RBD for nodes Ny & N,,
edges and nodes can fail; d) RBD for all-terminal reliability, edges and nodes can fail



272 6 Reliability and Availability of Repairable Systems

Rs0. = RN R, RNy [ R (Rg 3+ Ry~ R Rp,) + Rg Rp Rp 1, (6.282)

with ﬁiz 1-R;, R =Rso, (1) Ri=R; (1), R;(0) =1. Substituting in Eqgs. (6.281) &
(6.282) R;(¢) with PA,(r) one obtains the point availability PAgq(¢) for the case of
totally independent elements Ni,N,,N3,E9,E13,E53 (p.52). To compute the relia-
bility for the repairable case or the point availability for non totally independent
elements, the states space method introduced above in this chapter can be used.
Figure 6.38a shows a network with 4 nodes N;,N,,N3,N, and 6 bi-directional
edges E|g, E3, E{4,E 23, Eg, E34.  Assuming that nodes and edges can fail, the relia-
bility block diagram is given in Fig. 6.37b for connection N;,N, and Fig. 6.38c for
all-terminal. Successively use of the key item method (on Ej,, E34, N3, N4) yields

Rson, v, = By Ry, [R512+ RE]Z{REM [ Ry, {Ry, (REG REQREUREM)(REngREz_ztREzzREn)

Ry Rp 11§E 23} +Ry 3RN4RE 15524] *Rpy, (RyRe §52; Ry,Rg 1{352; Ry 3RE 1§E2§N 4RE 1{35 2 )}] ’
(6.283)

and R =R% [R+2R*Ry - 2R*Ry (1- Ry )~ RA (TR*- TR+ 2R®)] for Ry =Ry, Ry =R
son vo= By [R+ N N N)- Ry +2R7)] N, =Ry Rg=R.

Similarly, Fig. 6.38c leads to (key item method on E,,, Ey3, E14,Eo4)

Rgo, = Ry lRNZRN:;RN“[ Rip {Ri3[1- (0= Rig)(U=Ryg )~ R3g )]+ Ry3[Rig (Ryg+ Ryg~Roz Ray)

+ Ry Ry} + Rip {Ri3 [Rig (Ry+ Ryy=Roy Ryg )+ Ry Ry 1+ Ry Ry Ry}],  (6.284)

with R,=Ry,(Ryy+ Ry~R,.R, ) +R, R R,,; from this, R, =Ry [16R-33R*24R*-6R®]
for Ry =Ry, Rg =R (see also remarks to Eq.(6.282)).

Besides deterministic networks, some kinds of stochastic and evolving networks
have been investigated, for instance by assuming that for bi-directional edges, every
pair of nodes has a probability p to be connected (Erdds-Renyi) or there is a proba-
bility p(k) that a randomly selected node has k edges ( p(k) can be a Poisson dis-
tribution (Erdds-Renyi) or a given power law), see e. g. [6.61-6.65] for greater details.
However, because of their complexity, investigation of networks is still in progress.

N N
1 3
L
Ep E34
) By
a
Ny Ey Ny
(£
NG
7Ex E,,

Figure 6.38 a) Network with 4 nodes & bi-directional connection from each node to each other node;

b) 2-terminal RBD for nodes N;& N,, edges and nodes can fail; ¢) RBD for all-terminal reliability,
edges and nodes can fail (RBD =reliability block diagram)
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6.8.9 General Procedure for Modeling Complex Systems

On the basis of the tools introduced in Appendix A7 and results in Sections 6.8.1 -
6.8.8, following procedure can be given for reliability and availability investi-
gation of complex systems, both when a reliability block diagram exists or not
(for series-parallel structures, Section 6.7 applies, in particular Table 6.10, p. 231).

1. As a first step operate with (time-homogeneous) Markov processes, i. e.,
assume that failure and repair rates of all elements are constant during the
stay time in every state, and can change (stepwise) only at state changes, €. g.
because of change in configuration, component use, stress, repair strategy or
other (dropping this assumption leads to non markovian processes, as shown
e.g. in Section 6.4.2, pp. 202-205). In a further step, refinements can be con-
sidered on a case-by-case basis using semi-regenerative processes.

2. Group series elements and assign to each macro-structure Ej, ..., E, a failure
rate Ag=A;+...+A, and repair (restoration) rate pg=Ag/(A;/p+..+A, /1)
(Table 6.10). A further reduction of a diagram of transition rates is possible
in some cases (see e.g. [6.32, 6.40], p. 227, Figs. 6.27 & 6.28, 6.30, 6.39).

3. Perform an FMEA (Section 2.6) to fix all relevant failure modes and to verify
actual system capability for detection, localization, reconfiguration, graceful
degradation at failure, and protection against common cause/mode failures.

4. Draw the diagram of transition rates and verify its correctness (see Fig. 6.20,
p. 233 & Fig. 6.34, p. 263 for two comprehensive examples); important is the
identification of up states which have a direct transition to a down state at
system level (e.g. Z;, Z3 - Z; in Fig. 6.20), i.e. of critical operating states.

5. Identify the transition rates between each state (combination of failure and
repair rates), by considering assumed repair (restoration) priorities, retained
failure modes, and particularities specific to the system considered
(dependence between elements, sequence of failure or failure modes, etc.).

6. For reliability calculation, the mean time to system failure MTTFy; for system
entering state Z; at ¢ =0 is obtained by solving (Eq. (A7.126))

m
PiMTTFg; =1+ Y, Pjj MTTF;, Z,eU, pi=2 Pjij. (6.285)
ZjeU,j#i =0, j=i

hy+
YIS
> (@—@

Figure 6.39 Example for a reduction of a diagram of transition rates for MTTFg, calculation
(note that Ao+ Ay) /@ +Ag/A )= Q+Ay/hg)/ (A/Ag+11 A1)
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Thereby, U is the set of up states, U the set of down states U ulU=
{Zy,....Z,}), p; the transition rate from state Z;eU to state Z;eU, and p;
the sum of all transition rates leaving state Z; (Table 6.2). The system of
algebraic equations (6.285) delivers all MTTFg; for any Z;e U entered at =0
(note that for Markov processes, the condition " Z; is entered at #=0" can be
replaced by "system in Z; at £=0"). At system level,

Rg(t) = e~ 1/ MITEs, (6.286)

can often be used (in Z; all elements are operating or ready to operate, i.e.,
as-good-as-new because of the memoryless Markov property).

7. The asymptotic (t — ) & steady-state (stationary) point and average
availability PAg=AAg is given as (Eq. (A7.134))
PAg= AAg =% P (6.287)
ZjeU
with P, as solution of (Eq. (A7.127, for irreducible embedded Markov chain)

m m m

p]P] =2Pipl'j’ with Pj>0’ 2Pj=l, pj= Epﬁ, j=0, ...,m (6.288)
i=0, i#j j=0 i=0, i#j

One equation for P;, arbitrarily chosen, must be replaced by XP;=1. Equa-

tion (6.288) states that in steady-state, the probability to live Z; is equal to

the probability to come to Z;. For further availability figures see pp. 178-180.

8. Considering the constant failure rate for all elements, the asymptotic & steady-
state interval reliability follows as (Eq. (6.27))
IRg(7,1 +6) =~ PAg ¢ 9/MTTFs0 = (5 P,y ¢~ 8/MTTEs0, (6.289)
ZjeU
9. The asymptotic & steady-state system failure frequency f,4s and system
mean up time MUT are given as (Eqs.(A7.141) & (A7.142))

fuas = X PiPji= X Pj (X 0ji) (6.290)
Z;e, Ziel_i ZeU Ze U
and
MUTS = PAS/fudS’ (6291)

respectively. U is the set of states considered as up states for f,, 5 and MUTg
calculation, U the complement to the totality of states considered. The
same is for the system repair (restoration) frequency f,,s and the system
mean down time MDTs, given as (Eqs.(A7.143) & (A7.144))

faus= 2 Pipij = X P (Z Py) (6.292)
Z;eU,Z;eU Z;eU  zeu
and
MDTg = (1= PAg)/ faus» (6.293)
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10.

respectively. MUTy is the mean of the time in which the system is moving in
the set of up states Z €U (Z,~Z; in Fig. 6.20) before a transition in the set of
down states Z;€ U ((Zs 7, in Fig. 6.20) occurs, in steady-state or for 71— co.
MDTy is the mean repair (restoration) duration at system level. f, ;¢ is the
system failure intensity Zg(t)=Zg, as defined by Eq. (A7.230), in steady-
state or for t — oo. It is not difficult to recognize that one has

Juas = faus =2s =1/ (MUTg + MDTy), (6.294)

see example 6.29 for a practical application. Equations (6.291), (6.2.93),
(6.294) lead to the following important relation

MDTg = MUTg (1- PAg) / PAg i.e. PAg=MUTg/(MUTg +MDTy). (6.295)

Considering that the asymptotic & steady-state probability F, is much greater
than all other P;, the approximation MUTg = MTTFgq can often be used
ZP MTTFg; for MUT is basically not allowed, see example 6.29).

ZJ eU

The asymptotic & steady-state expected instantaneous reward rate MIRg is
given by (Eq. (A7.147))

m

MIRg = Y, 1;P;. (6.296)
i=0

Thereby, r;=0 for down states, 0<r;<1 for partially down states, and r;=1
for up states with 100% performance. The asymptotic & steady-state
expected accumulated reward MARg follows as (Eq. (A7.148))

MAR(t)= MIRg 1. (6.297)

In some cases it can be useful to operate with a time schedule (e. g. Fig. A7.11).
Alternative investigation methods are introduced in Section 6.9. Failure-free time
means failure-free operating time and repair is used as a synonym for restoration.

Example 6.29
Investigate MUTg, MDTg, f, 45, and fy, s for the 1-out-of-2 redundancy of Fig. 6.8a.

Solution
The solution of Eq. (6.84) with P; (¢) = 0 yields (Eq. (6.87))

Po= 02/ [0 +A)A+w+u’]  and P =p(+))/ [0 +A,)0+w+p’].
From Fig. 6.8a and Eqgs. (6.290)-(6.294) it follows that
A+A, +U PAQL+A,)
——=——: MDTg=1/W, and fc=fc=2s=—"T—"""7"
A+ 1) § uds =~ Jdus O+ A0+ )+’
For this example it holds that MUTg = MTTFg; (with MTTFg; as solution of Eq. (6.89) with
P (0)=1 or Eq. (6.285), see also Example A7.9), this because the system enters state Z; after
each system failure; furthermore, MDTg =1/ because only one repair crew is available.

MUTg =
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6.9 Alternative Investigation Methods

The methods given in sections 6.1 to 6.8 are based on Markov, semi-Markov and
semi-regenerative processes, according to the involved distributions for failure-free
and repair times. They have the advantage of great flexibility (arbitrary redundancy
and repair strategy, incomplete coverage or switch, common cause failures, etc.) and
transparency. Further tools are known to model repairable systems, e.g. based on
dynamic fault trees or Petri nets. For very large or complex systems, numerical
solution or Monte Carlo simulation can become necessary. Many of these tools are
similar in performance and versatility (Petri nets are equivalent to Markov models),
other have limitations (fault tree analyses are basically limited to totally independent
elements and Monte Carlo simulations delivers only numerical solutions), so that
choice of the tool is often related to the personal experience of the analyst (see e. g.
[A2.5 (61165, 60300-3-1), 6.30, 6.39 (2005)] for comparisons). However, modeling
large complex systems requires a close cooperation between project and reliability
engineers. After a recall for systems with totally independent elements, Sections
6.9.2 t0 6.9.5 introduce dynamic fault trees, BDD, event trees, and Petri nets. Section
6.9.6 considers then basic aspects of numerical solutions and Section 6.9.7 reviews
some considerations to approximate expressions for large and complex systems.

6.9.1 Systems with Totally Independent Elements

Totally independent elements means (pp. 52, 224) that each element operates and, if
repairable, is repaired independently of any other element in the system considered.
Elements are boxes in a reliability block diagram (Example 2.1) and, for repairable
elements, total independence implies that each element has its own repair crew and
continues operation during the repair of a failed element. This does not imply that
the (physically) same element cannot appear more times in a reliability block dia-
gram (Example 2.3). The reliability function Rg(#) of nonrepairable (up to system
failure) systems with totally independent elements has been carefully investigated
in Chapter 2. As stated with Eq. (2.48), equations for Rgy(t) are also valid for the
point availability PAgy(t) of repairable systems, substituting PA;(t) to R;(¢).
This rule can be used to get an upper bound of PAgq(¢) for the case in which each
element does not have its own repair crew. However the reliability function for
repairable systems can not be computed using Boolean methods.

6.9.2 Static and Dynamic Fault Trees

A fault tree (FT) is a graphical representation of the conditions or other factors
causing or contributing to the occurrence of a defined undesirable event, referred as
top event [A2.5 (IEC 61025)]. In its original form, as introduced in Section 2.6 (p. 76),
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a fault tree contains only static gates (essentially AND and OR for coherent systems)
and is thus termed static fault tree. Such a fault tree can handle combinatorial
events, qualitatively (similar as for an FMEA, Section 2.6) or quantitatively (as with
Boolean functions, Section 2.3.4). However, as the top event is in general a failure
at system level, "0" is used for operating and "1" for failure. This is opposite to the
notation used in Sections 2.2 and 2.3 for reliability investigations based on the
reliability block diagram. With this notation OR gates represent in fault trees a
series structure and AND gates a parallel structure with active redundancy (Figs.
2.14, 6.40-6.42). In setting up a fault tree, a reliability block diagram can be useful.
However, fault trees can also easily consider external events. Figure 6.40 gives two
examples of reliability structures with corresponding static fault trees (see Table 2.1
and Example 6.30 for computations based on the reliability block diagram and
Section 6.9.3 for computations based on binary decision diagrams).

Static fault trees can be used to compute reliability and availability for the case
of totally independent elements (active redundancy and each element has its own
repair crew), see e.g. [A2.5 (IEC 61025)]. Reliability computation for the non-
repairable case (up to system failure) using fault tree analysis (FTA) leads to

1-Rg(n)=1- ﬁRi(t) or Rgo(n=1- ﬁ(l -Ry(1), (6.298)

i=1 i=1
for the series structure with independent elements, and to

YR AN —i 5 [ 7 =5 IS, \n-i

1-Rgo(2) = I—Z(iJR’(t)(l—R(t))” or Rso(t)=1—2(i](l—R(t)) R(@#)",
i=k i=k

(6.299)

for the k-out-of-n active redundancy with identical and independent elements
(Egs. (2.17) and (2.23), ﬁi(t) =1-Ry(t) = failure probability). For complex
structures, computation uses binary decision diagrams (based on the Shannon
decomposition of the fault tree structure function, see Section 6.9.3) or minimal path
or cut sets (Egs. (2.42), (2.44)), often supported by computer programs.

However, because of their basic structure, static fault trees can not handle states
or time dependencies (in particular standby redundancy or repair strategy). For
these cases, it is necessary to extend static fault trees, adding so called dynamic
gates to obtain dynamic fault trees. Important dynamic gates are [2.85, 6.38, A2.5
(IEC 61025)]:

* Priority AND gate (PAND), the output event (failure) occurs only if all input
events occur and in sequence from left to right.

* Sequence enforcing gate (SEQ), the output event occurs only if input events
occur in sequence from left to right and there are more than two input events.

» Spare gate (SPARE), the output event occurs if the number of spares is less
than required.
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Figure 6.40 a) Reliability block diagram and corresponding static fault tree for a 2-out-of-3 active
redundancy with switch element; b) Functional block diagram and corresponding static fault tree for
a redundant computer system [6.30]; Note: "0" holds for operating (up) and "1" for failure (down)

Further gates (choice gate, redundancy gate, warm spare gate)have been suggested,
e.g. in [6.38]. All above dynamic gates requires a Markov analysis, i.e., states
probabilities must be computed by a Markov approach (constant failures & repair
rates), yielding results used as occurrence probability for the basic event replacing
the corresponding dynamic gate. Use of dynamic gates in dynamic fault tree
analysis, with corresponding computer programs, has been carefully investigated,
e.g. in [2.85, 6.36, 6.38].

Fault tree analysis (FTA) is an established methodology for reliability and
availability analysis (emerging in the nineteen-sixties with investigations on
nuclear power plants). However, the necessity to use Markov approaches to
solve dynamic gates can limit its use in practical applications. Moreover, FTA has
the same limits as those of methods based on binary considerations (fault trees,
reliability block diagrams (RBD), binary decision diagrams (BDD), etc.). However,
reliability block diagrams and fault trees are valid support in generating transition
rates diagrams for Markov analysis. So once more, combination of investigation
tools is often a good way to solve difficult problems.
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6.9.3 Binary Decision Diagrams

A binary decision diagram (BDD) is a directed acyclic graph obtained by successive
Shannon decomposition (Eq. (2.38)) of a Boolean function. It applies in particular
to the structure functions developed in Section 2.3.4 for coherent systems, using
minimal path or cut sets. This allows for easy computation of the reliability function
Rgq (¢) for the nonrepairable case (Eqgs. (2.45), (2.47)) or point availability PAg (r)
for repairable totally independent elements (Eqgs. (2.45), (2.48)). Frequently, BDDs
are used to compute Rgq (r) or PAg (¢) for systems completely described by a fault
tree with corresponding fault tree structure function ¢pr C1,..C,). Opr G1sesGpy)
follows from a fault tree, see e.g. Figs. 6.41 & 6.42, or from the corresponding reli-
ability block diagram, considering "0" for operating (up) and "1" for failure (down).
In relation to fault trees, a BDD is constructed starting from the top event, i.e. from
O pr €1,---¢,), down to the sink boxes using the Shannon decomposition (Eq. (2.38))
of the fault tree structure function at the node considered. Each node refers to a vari-
able of ¢pr (;,...§,) and has 2 outgoing edges, 0-edge for operating and 1-edge for
failure. Input to a node can be one or more outgoing edges from other nodes. The
BDD terminates in 2 sink boxes labeled O for operating (up), 1 for failure (down).
Indication O or 1 and an arrow help to identify the outgoing edge. Figure 6.41 gives
two basic reliability block diagrams with corresponding fault trees, ¢ zr, and BDDs.
Also given are the reliability functions for the nonrepairable case R go(r)and Rgq(2):

To obtain Rg(t), one moves from the top of the BDD following all possible
paths down to the sink box "0", taking in a multiplicative way Ry(t) or
ﬁi(t) =1-R(t) according to the value 0 or 1 assumed by the variable (;
considered (similarly for ﬁso(t), for PA go(#) consider Eq. (2.48) or (2.45)).

Orr=Crty

a)

¢n=C|C2

(failure)

2

P
active (operating) (failure)
b RSO=RE|"'RE|RE2 Rso=Rg,Rg,=1-Rgq
) =Rp +Rg,~ Kz Rp,

Figure 6.41 Basic reliability block diagrams with corresponding fault trees, ¢z, and binary digital
diagrams ((; refers to E;; "0" for operating, "1" for failure; R;=R; (¢), R;(0)=1)
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Example 6.30

Give the reliability function Rgq(?) and the point availability PAg q (#) for the system of Fig.
6.40b, by assuming totally independent elements and using the reliability block diagram's method,
for simplicity with Rp, =Rp, =Rp, =Rp, =Rp, Ry =Ry =Ry, Rp=Rp=Rp, R,()=R,.
Solution

The reliability block diagram follows from
the functional block diagram of Fig. 6.40b
(Section 2.2.2), or from the corresponding
fault tree (Fig. 6.40b, considering "0" for
operating (up) and "1" for failure (down)).
As element M appears twice in the reliabi-
lity block diagram, computation of the reliability function make use of the key item method given
in Section 2.3.1, yielding

Rgy = Ry (2 [(2Ry - Ry)Rp1 - [(2Ry-R})IRp) IR, (6.300)
+ (1= Ry (2 [@Ry = Rp Ry Rp1 = [(2Ry - R3) Ry Rp1* IRy,

with R;=R;(t), and R;(0)=1. Following the assumed totally independence of the elements

(each of the 10 elements has its own repair crew), the point availability PA ¢ (¢) is also given by
Eq. (6.300) substituting R; with PA;(t) (PA;= AA; for steady-state or 7 — oo).

Figure 6.42 considers the basic structures given in Fig. 6.40. The reliability function
Rgq(?) for the nonrepairable case follows, for the structure of Fig. 6.42b, from

Rgo = Ry{Ry [Rp Ry +Rp Rp Ry +Rp Rp, Rp,Ry (Ry, +Rpy Ry )

+ Rp Rp, Ry, +Rpy Rp, )]

+ Ruty [Ry Ry, Rp (Rp +Rp, Ry YRy Ry Rp Rpy Rp Ry, (Rp, +Rpy Ry,
+ Ry Ry, Ry Ry (Rp, +Rpy Ry )+ Ry Ry, Rp (R +Rp Ry, )

Dy
+ RMlRMzRP2 (RD21+ RDZIR

i, (6.301)

)

)

Dy

with Rgo=Rgo(1), R;=R;(), R;=1 “Ri0. Setting RD“:.RDlZ:RDZl:RDn:RD,
Ry =Ry, =Ry » Rp=Rp,=Rp, one obtains Eq. (6.300). Similarly,

Ry =Ry + Ry{ Ry [(Rp Ry, Rp,+ Rp) (Rpy+ Ry, Rpy Ryy)]
+.R-M3[§M1—RM2+RM1RM2 (_EPI‘FRPlﬁD“—R‘D]Z)(-RpZ‘F sz—RDZl’R'DZZ)

+RMIEMZ(E[+RPI§D]lﬁplz)mmRMZ('R,,2+R,,2'RDZIED22)]}, (6.302)

which verify R 50 = 1—- Rgg. Assuming totally independent elements (Section 6.9.1),
Eq. (6.301) delivers PAg (z) by substituting R; with PA;(¢).

Evaluation of binary decision diagrams (and fault trees) is generally supported
by dedicated computer programs, see e. g.[2.32,2.36,2.37,6.63 (2009),6.66]. For hand
evaluation (e. g. for a great transparency), it is often more favorable to work directly
with the key item method introduced in Section 2.3.1 (as in Example 6.30).
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Figure 6.42 Reliability block diagrams with corresponding fault trees, ¢y, and binary digital

diagrams (BDDs) for the 2 structures of Fig. 6.40 (; refers to E;; "0" holds for operating and
"1" for failure; Rgo=Rgq (), Rgo (0)=1, R;=R; (), R;(0)=1)

To consider "1" for operating (up) and "0" for failure (down), as in Sections 2.2
and 2.3, it is sufficient to change AND with OR and R; with R;.
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6.9.4 Event Trees

Event trees can be used to support and extend effectiveness of failure modes and
effects analyses introduced in Section 2.6. Event tree analysis (ETA) is a bottom-up
(inductive) logic procedure combining advantages of FMEA/FMECA and FTA.
It applies, in particular, for risk analysis of large complex systems of any type with
interacting internal and external factors (technical, environmental, human).
The basic idea is to give an answer to the question what happens if a given ini-
tiating event occurs? The answer is given by investigating propagation of initiating
events, in particular efficacy of mitigations (barriers) introduced to limit effects of
the initiating event considered (column 8§ in Table 2.6). An initiating event can be a
fault or an external event (e. g. loss of power, fire, sabotage). A comprehensive list
of initiating events must be prepared at the begin of the analysis.

Figure 6.43 shows the basic structure of an event tree for the case of two coupled
systems (A and B), each with two mitigating factors (barriers) 3; for the initiating
event o considered. Each mitigation is successful with Pr{3;} and unsuccessful
(failure) with Pr{§;}=1- Pr{8;}. The probability for the outcome w in Fig. 6.43 is
computed following the path leading to w and is given by (Eq. (A6.12))

Pr{OJ} = Pr{(xﬁSAl mSAzthlnSBz} =Pl'{(X} PI{8A1 I (X} Pr{SAz I (OLmSAl)}

Pr{8p | (0n8a n842)) Pr{dpy | (andy nyn &g )} (6.303)

Computation of conditional probabilities can be laborious. Substituting A, to Pr{c},
Eq. (6.303) delivers the failure rate (occurrence frequency) of the outcoming event .

As for FMEA/FMECA & FTA, time evolution can not be easily considered in ETA.
An extension like for dynamic FT (Section 6.9.2) is possible. In particular, Pr{3;} can
be issued from the top event of an FT, allowing handling of common cause events.
A standard on event trees analysis is in preparation as IEC 62502 [A2.5].

Initiating event () System A System B Outcome
Mitigating factors | Mitigating factors
AL | Baz B1 | Om
success
SUCCESS ™ failure
success
failure o

success

Figure 6.43 Basic structure of an event tree

o p——
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6.9.5 Petri Nets

Petri nets (PN) were introduced 1962 [6.35, 6.6] to investigate in particular
synchronization, sequentiality, concurrency, and conflict in parallel working digital
systems. Several extensions have been at the origin of a large literature [6.1, 6.6, 6.8,
6.30, 6.39 (1999), 2.37]. Important for reliability investigations was the possibility to
create algorithmically the diagram of transition rates belonging to a given Petri net.
With this, investigation of time behavior on the basis of (time-homogeneous)
Markov processes was open (stochastic Petri nets). Extension to semi-Markov pro-
cess is straightforward [6.8], but less useful for reliability investigations (Sections
6.3 & 6.4). This section gives an introduction to Petri nets from a reliability analysis
point of view. A Petri net (PN) is a directed graph involving 3 kind of elements:

* Places R,...,F, (drawn as circles): A place P is an input to a transition 7; if
an arc exist from P, to 7; and is an oufput of a transition 7; and
input to a place F, if an arc exist from 7, to F;; places may con-
tain roken (black spots) and a PN with token is a marked PN.

* Transitions Ty,...,T,, (drawn as empty rectangles for timed transitions or bars
for immediate transitions): A transition can fire, taking one token
from each input place and putting one token in each output place.

* Directed arcs: An arc connects a place with a transition or vice versa and has
an arrowhead to indicate the direction; multiple arcs are possible
and indicate that by firing of the involved transition a
corresponding number of tokens is taken from the involved input
place (for input multiple arc) or put in the involved output place
(for output multiple arc); inhibitor arcs with a circle instead of
the arrowhead are also possible and indicate that for firing
condition no token must be contained in the corresponding place.

Firing rules for a transition are:

1. A transition is enabled (can fire) only if all places with an input arc to the
given transition contain at least one token (no token for inhibitor arcs).

2. Only one transition can fire at a given time; the selection occurs according to
the embedded Markov chain describing the stochastic behavior of the PN.

3. Firing of a transition can be immediate or occurs after a time interval T;; >0
(timed PN); T;;>0 is in general a random variable (stochastic PN) with
distribution function F;; (x) when firing occurs from transition 7; to place P;
(yielding a Markov process for Fj;(x) = 1-¢~*5", i.e. with transition rate

}\ijv or a semi-Markov process for Fi (x) arbitrary, with F;(0) = 0).

From rule 3, practically only Markov processes (i.e. constant failure and repair rates)

will occur in Petri nets for reliability applications (Section 6.4.2). Two further

concepts useful when dealing with Petri nets are those of marking and reachability:
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A marking M ={my,..,m,} gives the number m; of token in the place F; at a
given time point and defines thus the szate of the PN; M; is immediately
reachable from M; if M; can be obtained by firing a transition enabled by M;.

With M, as marking at time ¢t=0, M,...M; are all the (different) marking
reachable from M,; they define the PN states and give the reachability tree, from
which, the diagram of transition rates of the corresponding Markov model follows.
Figure 6.44 gives some examples of reliability structures with corresponding PN.

6.9.6 Numerical Reliability and Availability Computation

Investigation of large series - parallel structures or of complex systems (for which a
reliability block diagram does not exist) is in general time-consuming and can
become mathematically intractable. A large number of computer programs for
numerical solution of reliability and availability equations as well as for Monte
Carlo simulation have been developed. Such a numerical computation can be in
some cases the only way to get results. Section 6.9.6.1 discusses requirements for a
versatile program for the numerical solution of reliability and availability equations.
Section 6.9.6.2 gives basic considerations on Monte Carlo simulation and
introduces an approach useful for rare events. Although appealing, numerical
solutions can deliver only case-by-case solutions and can causes problems
(instabilities in the presence of sparse matrices, prohibitive run times for
Monte Carlo simulation of rare events or if confidence limits are required).
As a general rule, analytical solutions (Sections 6.2 - 6-6, 6.8) or approximate
expressions (Sections 6.7, 6.9.7) should be preferred whenever possible.

6.9.6.1 Numerical Computation of System's Reliability and Availability

Analytical solution of algebraic or differential / integral equations for reliability and
availability computation of large or complex systems can become time-consuming.
Software tools exist to solve this kind of problems. From such a software package
one generally expects high completeness, usability, robustness, integrity, and
portability (Table 5.4). The following is a comprehensive list of requirements:

General requirements:
1. Support interface with CAD/CAE and configuration management packages.

2. Provide a large component data bank with the possibility for manufacturer
and company-specific labeling, and storage of non application-specific data.

3. Support different failure rate models [2.21 - 2.30].

4. Have flexible output (regarding medium, sorting capability, weighting),
graphic interface, single & multi-user capability, high usability & integrity.

5. Be portable to different platforms.
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Figure 6.44 Top: Reliability block diagram (a), diagram of transition rates (c), Petri net (PN) (b),
and reachability tree (d) for a repairable 1-out-of-2 warm redundancy (two identical elements, const.
failure (A, )\,r) and repair (lu) rates, one repair (restoration) crew, Z, down state, Markov process)
Bottom: Reliability block diagram (a), diagram of transition rates (c), Petri net (b), and reachability
tree (d) for a repairable 1-out-of-2 active redundancy with two identical elements and switch in
series (constant failure (A, ) and repair (i, ) rates, one repair (restoration) crew, repair priority
on switch, no further failures at system down, Z, , Z5, Z, down states, Markov process)
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Specific for nonrepairable (up to system failure) systems:

1. Consider reliability block diagrams (RBD) of arbitrary complexity and with
a large number of elements (= 1,000) and levels (= 10); possibility for any
element to appear more than once in the RBD; automatic editing of series
and parallel models; powerful algorithms to handle complex structures;
constant or time dependent failure rate for each element; possibility to han-
dle as element macro-structures or items with more than one failure mode.

2. Easy editing of application-specific data, with user features such as:

* automatic computation of the ambient temperature at component level
with freely selectable temperature difference between elements,

* freely selectable duty cycle from the system level downwards,

* global change of environmental and quality factors, manual selection of
stress factors for tradeoff studies or risk assessment, manual introduction
of field data and of default values for component families or assemblies.

3. Allow reuse of elements with arbitrary complexity in a RBD (libraries).

Specific for repairable systems:

1. Consider elements with constant failure rate and constant or arbitrary repair
rate, i.e., handle Markov and (as far as possible) semi-regenerative processes.

2. Have automatic generation of the transition rates p; for Markov model and
of the involved semi Markov transition probabilities Q;; (x) for systems with
constant failure rates, one repair crew, and arbitrary repair rate (starting e. g.
from a given set of successful paths); automatic generation and solution of
the equations describing the system's behavior.

3. Allow different repair strategies (first-in first-out, one repair crew or other).

Use sophisticated algorithms for quick inversion of sparse matrices.

&~

5. Consider at least 20,000 states for the exact solution of the asymptotic &
steady-state availability PAg = AAg and mean time to system failure MTTF;.

6. Support investigations yielding approximate expressions (macro-structures,
totally independent elements, cutting states or other, see Section 6.7.1).

A scientific software package satisfying many of the above requirements has been
developed at the Reliability Lab. of the ETH [2.50]. Refinement of the requirements
is possible. For basic reliability computation, commercial programs are available
[2.51-2.60]. Specialized programs are e.g. in [2.6, 2.18, 2.59, 2.85, 6.23, 6.24, 6.43];
considerations on numerical methods for reliability evaluation are e.g. in [2.56].

6.9.6.2 Monte Carlo Simulations

The Monte Carlo technique is a numerical method based on a probabilistic
interpretation of quantities obtained from algorithmically generated random
variables. It was introduced 1949 by N. Metropolis and S. Ulman [6.31]. Since this
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time, a large amount of literature has been published, see e. g. [6.4, 6.13, 6.31, A7.18].
This section deals with some basic considerations on Monte Carlo simulation useful
for reliability analysis and gives an approach for the simulation of rare events which
avoids the difficulty of time truncation because of amplitude quantization of the
digital number used.

For reliability purposes, a Monte Carlo simulation can basically be used to
estimate a value (e. g. an unknown probability) or simulate (reproduce) the
stochastic process describing the behavior of a complex system. In this sense, a
Monte Carlo simulation is useful to achieve results, numerically verify an analytical
solution, get an idea of the possible time behavior of a complex system or determine
interaction among variables. Two main problems related to Monte Carlo simulation
are the generation of uniformly distributed random numbers in the interval (0,1) and
the transformation of these numbers in random variables with prescribed distribution
function. A congruential relation

Snr1=(ag,+b) mod m, (6.304)

where mod is used for modulo, is frequently used to generate pseudo-random
numbers (for simplicity, pseudo will be omitted in the following). Transformation
to an arbitrary distribution function F(x) is often performed with help of the inverse
function F 'l(x), see Example A6.18. The method of the inverse function is simple
but not necessarily good enough for critical applications.

A further question arising with Monte Carlo simulation is that of how many
repetitions 7 must be run to have an estimate of the unknown quantity within a
given interval + € at a given confidence level y. For the case of an event with
probability p and assuming »n sufficiently large as well as p or (1-p) not very small,
Eq. (A6.152) yields for p known

(l+v)/2 (1+y)/2

=(—E2)2p(1-p)  ie Ry =(——>)? for p=0.5, (6.305)
where 7.y, is the (+y)/2 quantile of the standard normal distribution;
for instance, 7(;,yy,=1.645 for y=0.9 and 1.96 for y=0.95 (Appendix A9.1).
For p totally unknown, the value p = 0.5 has to be taken. Knowing the number of
realizations k in n trials, Eq. (A8.43) can be used to find confidence limits for p.

To simulate (reproduce) a (time-homogeneous) Markov process, following

procedure is useful, starting by a transition in state Z; at the arbitrary time ¢ = 0:
1. Select the next state Z; to be visited by generating an event with probability
Pij i S S
=, jEi @ =0, p=2P5,  Xei=l, (6.306)
1 Jj=0, j#i Jj=0,j#i

according to the embedded Markov chain (for uniformly distributed random
numbers £ in (0,1) it holds that Pr{& < x} =x).
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Figure 6.45 Block diagram of the programmable generator for renewal processes

2. Find the stay time (sojourn time) in state Z; up to jump to the next state Z;
by generating a random variable with distribution function (Example A6.18)

Fij(x)=1-e7Pi¥, (6.307)
3. Jump to state Z; .

Extension to semi-Markov processes is easy [A7.2 (1974 & 1977)]. For semi regen-
erative processes, states visited during a cycle must be considered (e.g. Fig. A7.11).
The advantage of this procedure is that transition sequence and stay (sojourn) times
are generated with only a few random numbers. A disadvantage is that the stay
times are truncated because of the amplitude quantization of F; (x).

To avoid truncation problems, in particular when dealing with rare events distri-
buted on the time axis, an alternative approach implemented as hardware generator
for semi-Markov processes in [A7.2 (1974 & 1977)] can be used. To illustrate the
basic idea, Fig. 6.45 shows the structure of the generator for renewal processes. The
generator is driven by a clock At =Ax and consists of three main elements:

* a generator for (pseudo-) random numbers &; uniformly distributed in (0,1);
* a comparator, comparing at each clock the actual random number &; with A;
and giving an output pulse, marking a renewal point, for §;< A;;
« afunction generator creating A; and starting with A; at each renewal point.
It can be shown (A, =w; in [A7.2 (1974 & 1977)]) that for

Ay = (F(kAx) — F((k - DAx)) / (1 - F((k = 1)Ax)), k=1,2,.., (6.308)

the sequence of output pulses is a realization of an ordinary renewal process with
distribution function F(kAx) for times between successive renewal points. A, is the
failure rate of the arithmetic random variable with distribution function F(kAx).
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Generated random times are not truncated, since the last part of F(kAx) can be ap-
proximated by a geometric distribution () const., Eq. (A6.132)). A software reali-
zation of the generator of Fig 6.45 is easy, and hardware limitations can be avoided.

The homogeneous Poisson process (HPP), is a particular renewal process
(Appendix A7.2.5) and can thus be generated (reproduced) with the generator
given by Fig. 6.45; A, is constant, and the generated random time interval have
a geometric distribution. For a nonhomogeneous Poisson process (NHPP) with
mean value function M(t)=E[v(t)], generation can be based on the considera-
tions given on pp. 509- 510 (for fixed =T, generate k according to a Poisson
distribution with parameter M(#) (Eq. (A7.190)) and then k random variables
with density m(#)/M(T); the ordered values are the k occurrence times of the
NHPP on (0,7)).

6.9.7 Approximate Expressions for Large Complex Systems:
Basic Considerations

Approximate expressions for the reliability and availability of large series-parallel
structures, which elements Ej,E,,...,E, have constant failure and repair rates
Ajs Wi, i=1,.,n, have been developed in Section 6.7, in particular using macro-
structures (Table 6.10) or totally independent elements (Table 6.9). Thereby, based
on the results obtained for the repairable 1-out-of-2 redundancy (Eqgs. (6.88) & (6.94)
with A, =X), a series, parallel, or simple series - parallel structure is considered as a
one-item structure with constant failure and repair rates Ag, ug for calculations, and
integrated into further macro-structures bottom up to system level.

Expressions for small complex systems, for which a reliability block diagram
either does not exist or cannot be reduced to a series-parallel structure with
independent elements, have been carefully investigated in Sections 6.8.2-6.8.7,
assuming no further failures at system down and taking care of imperfect switching,
incomplete coverage, more than one failure mode, reconfiguration strategy (time
censored (phased-mission) or failure censored), and common cause failures.

Investigation methods and tools for large complex systems are still in progress.
Clustering of states (p. 227) is often possible by conserving exact results. Cutting
states with more than one failure (p. 227) is applicable, simplify investigations and
delivers approximate expressions for reliability and availability often sufficient-
ly good in practical applications (see, for instance, the numerical evaluations on
pp- 235, 265). State merging in Markov transition diagrams is conceivable, but
basically limited to the case in which transitions from a block of merged states to an
unmerged state have the same transition rates [6.40]. Also of limited applicability is
the exploitation of symmetries in Markov transition diagrams [6.32].
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A general procedure delivering often useful upper bounds for the mean time to
failure MTTFy, and the asymptotic & steady-state availability PAg=AAg at system
level can be (for coherent systems):

1. Assume totally independent elements (Section 6.9.1) Ejy,..., E,, with constant
failure rates A; and repair rates p;=p, i=1,.,n.

2. Compute PAg=AAg as per Eq. (2.48), i.e., substituting in the structure
function ¢(g;,...,{,,) given by Egs. (2.42) or (2.44),

PAgi =/ (Aj+p), i=l..n (6.309)
for &; (p. 59 bottom).
3. Compute MTTFg, from PAg = MTTF; | (MTTF; + MTTRs) (Eq. (A7.189))

PA
MTTFgy ~ ——5—, (6.310)
u(l-PAg)
i.e. by assuming
MTTRg = 1/p. (6.311)

On the basis of the results obtained for the 1-out-of-2 redundancy (Eqs. (6.88) and
(6.94) with A, =4),

—t/MTTFg

Rso(t) = e and PAS()(I) = PAS (6.312)

can often be assumed at system level. To give a touch for the above approxima-
tions, consider a k-out-of-n active redundancy. Comparison of results in Table 6.9
(or Eq. (6.148)) for totally independent elements (IE) and in Table 6.10 for macro-
structures (MS) with one repair crew and no further failures at system down, yields

MTTFs,,, | MTTFg,,, .~ (n=k)! (6.313)
and

(1-PAgq, )/ (1=PAgy )= PAgy [ PAgy =1/ (n-k+])!. (6.314)

Thus, for weak redundancy levels (small values of n-k), the assumption of totally
independent elements can yield acceptable upper bounds for the mean time to failure
MTTFy, and the asymptotic & steady-state availability PAg=AAg at system level.
However, exact evaluation of the validity of Egs. (6.310)- (6.312) can be performed
only on a case-by-case basis, and for very complex systems a dedicated computer
program or a Monte Carlo simulation remains often the only practicable way to get
results.
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