
Chapter 5
Implications of Delay Feedback: Amplitude
Death and Other Effects

5.1 Introduction

For a long time, in the study of coupled nonlinear oscillators, the role of delay has
often been neglected as unimportant. In many cases this approximation is physically
justified and in all the cases it simplifies the mathematics. However, in recent times
one has witnessed increased activities to investigate oscillator systems with delay
feedback and it has been proved that delay feedback is a veritable black box which
can give rise to several interesting and novel phenomena having wide applications,
and these cannot be observed in the absence of delay feedback. In this chapter, we
will discuss an important time-delay induced phenomenon, namely amplitude death,
which has been the center of attraction in recent research on coupled oscillators
with delay feedback. In addition, we will also point out some of the other important
time-delay induced phenomena observed in coupled oscillators.

5.2 Time-Delay Induced Amplitude Death

The phenomenon of suppression of oscillations (amplitude death, see Sec. 5.2.1.1
below for more details) was realized by Bar-Eli [1] in his modeling of chem-
ical oscillations and by Shiino and Frankowicz [2] when they considered the
effects on the amplitudes in a large number of coupled limit cycles. But a rigor-
ous and comprehensive study on the nature of amplitudes of two coupled oscil-
lators was made by Aronson et al. [3] followed by other elegant studies extend-
ing this to a large system [4–6]. However, the concept of amplitude death has
now become an active area of research due to the recent works of Ramana
Reddy et al. [7–10] on the effect of time-delay feedback in limit cycle oscilla-
tors. They have shown particularly that amplitude death can occur even with zero
frequency mismatch among the interacting limit cycle oscillators (identical oscil-
lators) in the presence of time-delay feedback. This is in contrast to the earlier
reports on amplitude death where such a state can occur only when there exists
a broad dispersion in the natural frequencies of the coupled oscillators and that
the coupling strength has to exceed a threshold value so that amplitude death
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cannot occur in a collection of identical limit cycle oscillators without delay. In
this section, we will discuss the theoretical and experimental investigations of
delay induced amplitude death phenomenon in single and two coupled limit cycle
oscillators.

5.2.1 Theoretical Study: Single Oscillator

In this section, we will demonstrate the theoretical analysis of existence of delay
induced amplitude death phenomenon in single and two coupled limit cycle oscil-
lators and its subsequent extension to N coupled limit cycle oscillators with global
and ring coupling configurations.

5.2.1.1 Single Limit Cycle Oscillator with Delay Feedback

Specifically, Ramana Reddy et al. [7–10] have considered a model equation, which
represents the dynamics of a single Hopf oscillator that is driven autonomously by
a time-delayed feedback term, given by

Ż(t) = (a + iω − |Z(t)|2)Z(t)− K Z(t − τ), (5.1)

where Z(t) = X + iY is a complex quantity, ω is the frequency of oscillation, a
is a real constant and τ > 0 is the time-delay of the autonomous feedback term.
In the absence of the feedback term (5.1) is often called the Stuart-Landau equa-
tion, which exhibits a stable limit cycle of amplitude

√
a with angular frequency

ω. In the absence of time-delay, Eq. (5.1) has a time-asymptotic periodic solution
given by Z(t) = √

a − K exp iωt for a > K . If a ≤ K , then the origin is the
only stable solution; that is, no oscillatory time-asymptotic solution is possible. At
a = K , the oscillator undergoes a supercritical Hopf bifurcation. Carrying out a
linear stability analysis for the above equation around the fixed point Z = Z∗ = 0,
one can straightforwardly obtain the characteristic equation

λ = a + iω − K e−λτ , τ > 0. (5.2)

For τ = 0, one can have λ = a + iω − K and hence the origin is stable for
K > a. So the critical curve is given in this case by K = a. When τ �= 0, Eq. (5.2)
remains a transcendental equation with infinite number of roots. Now, one has to
find conditions on K , ω and τ such that real parts of all the roots are negative for
stability of the fixed point Z∗. Substituting λ = α + iβ, where α and β are real, in
Eq. (5.2), one can obtain the real and imaginary parts as

α = a − K e−ατ cos(βτ), (5.3)

β = ω + K e−ατ sin(βτ). (5.4)
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Following the analysis in Sect. 2.4 in Chap. 2, one can obtain a set of critical
curves,

τ1(n, K ) = 2nπ + arccos
( a

K

)
ω + √

K 2 − a2
, n = 0,+1,+2, · · · (5.5a)

τ2(n, K ) = 2nπ − arccos
( a

K

)
ω − √

K 2 − a2
, n = +1,+2,+3, · · · (5.5b)

Also we get

dα

dτ

∣∣∣∣
α=0

= β(β − ω)

[1 − K τ cos(βτ)]2 + [K τ sin(βτ)]2
. (5.6)

Hence, from (5.4) and (5.6), one can easily see that

dα

dτ

∣∣∣∣
α=0

⎧⎪⎪⎨
⎪⎪⎩

> 0 on τ1,

> 0 on τ2 if K > f (ω),
= 0 on τ2 if K = f (ω),
< 0 on τ2 if K < f (ω),

(5.7)

where f (ω) = √
a2 + ω2. The above condition implies that there can be only one

stability region if K > f (ω). On the other hand, there is a possibility of multiple
stability regions if K < f (ω). The numerical plot in Fig. 5.1a of the curves τ1(n, K )
(represented by continuous curves) and τ2(n, K ) (represented by discrete curves)
reveals that the region between τ = 0 and τ = τ1(0, K ) is the only stable region
(indicated as the shaded region) possible for small values ofω. However, as the value
of ω is increased, so that the condition K <

√
a2 + ω2 is satisfied, the number of

stability regions also increases. These regions are specified by 0 ≤ τ < τ1(0, K )
and τ1(n, K ) < τ < τ2(n, K ), where the integer n > 0. In Fig. 5.1b the critical
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Fig. 5.1 Curves of Eq. (5.5a) and (5.5b). The solid curves represent τ1 for n = 0,+1,+2,+3 and
broken curves represent τ2 for n = +1,+2,+3. (a) The region enclosed between the line τ = 0
and the curve τ = τ1(0, K ) is the only amplitude death region for ω = 1. (b) The region enclosed
between the line τ = 0 and the curve τ = τ1(0, K ), and that between τ1(n, K ) and τ2(n, K ) for
n > 0 are the multiple amplitude death regions for ω = 30
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curves are plotted from Eqs. (5.5a) and (5.5b) for such a large value of ω, namely
ω = 30, and the multiple stability regions are represented by shaded regions
enclosed between the continuous curves, τ1(n, K ), and the discrete curves,
τ2(n, K ), for n > 0 in addition to that enclosed between the τ = 0 and τ = τ1(0, K )
curves. The above collective stability regions have been termed as amplitude death
regions or death islands in the (K − τ) space.

Note that the above analysis shows that when the parameters in (5.1) are such
that (i) K < a in the absence of delay (τ = 0), the system has a stable peri-
odic solution Z = √

a − K eiωt , and (ii) in the presence of delay (τ �= 0), with
K <

√
a2 + ω2, this solution becomes unstable, while the fixed point Z = 0

becomes stable. This phenomenon is nothing but the amplitude death of the periodic
oscillation.

5.2.1.2 Two Delay Coupled Limit Cycle Oscillators

The above analysis has also been extended to a system of two coupled limit cycle
oscillators with delay [7–10]. Here, we will briefly describe the existence of delay
induced death phenomenon in a set of two delay coupled limit cycle oscillators
represented by

Ż1(t) = (1 + iω − |Z1(t)|2)Z1(t)− K [Z2(t − τ)− Z1(t)] , (5.8a)

Ż2(t) = (1 + iω − |Z2(t)|2)Z2(t)− K [Z1(t − τ)− Z2(t)] . (5.8b)

The parameters are the same as discussed above for the case of a single limit cycle
oscillator with the delay feedback. Following a linear stability analysis, one can
obtain the characteristic equation associated with the equilibrium solution Z1 =
0 = Z2 for the above delay coupled limit oscillators, Eq. (5.8), as

λ = 1 − K + iω ± K e−λτ . (5.9)

After simple algebra, one can obtain a set of critical curves,

τ1(n, K ) =
2nπ + arccos

(
1 − 1

K

)
ω − √

2K − 1
, n = 0,+1,+2, · · · (5.10a)

τ2(n, K ) =
2nπ − arccos

(
1 − 1

K

)
ω + √

2K − 1
, n = +1,+2,+3, · · · (5.10b)

Also we get

dα

dτ

∣∣∣∣
α=0

= β(β − ω)

[1 ± K τ ]2 + [K τ sin(βτ)]2
. (5.11)
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Hence, as in the case of the single oscillator,

dα

dτ

∣∣∣∣
α=0

⎧⎪⎪⎨
⎪⎪⎩

< 0 on τ1 if K < f (ω),
> 0 on τ1 if K > f (ω),
= 0 on τ1 if K = f (ω),
> 0 on τ2

(5.12)

where f (ω) = √
1 + ω2. In analogy with the arguments as in the case of single

limit cycle oscillator with the delay feedback, there exists only a single death island
enclosed between the critical curves τ1(0, K ) and τ2(1, K ) for small values of ω.
However, for large values of ω, one can obtain the higher order islands as demon-
strated [7–10] above.

The results have also been extended to the case of a large assembly of delay
coupled limit cycle oscillators with global [7, 8, 10] and ring [11] coupling con-
figuration in order to show the general nature of amplitude death phenomenon.
The same authors have also provided experimental evidence for the existence of
delay induced death phenomenon in two delay coupled limit cycle oscillators using
electronic circuits, which will be discussed in detail in the next section.

5.2.2 Experimental Study

Experimental observation of time-delay induced amplitude death in two coupled
limit cycle oscillators has also been reported by Ramana Reddy et al. [9]. They
have provided experimental evidence for time-delay induced death islands and their
multiple connectedness as predicted by their theoretical studies in the parameter
space defined by the coupling strength, time-delay and frequency for the case of
two coupled identical limit cycle oscillators using a suitable electronic circuit.

A schematic representation of the system of two coupled electronic circuits that
are individually capable of exhibiting limit cycle oscillations is shown in Fig. 5.2.
Each individual oscillator circuit is a nonlinear LCR circuit, which may be consid-
ered as a variant of the well known Chua circuit. Each one of these circuits consists

-
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Fig. 5.2 The circuit diagram of two delay coupled nonlinear LC R circuits that are capable of
exhibiting limit cycle oscillations [9]
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of a capacitance C , an inductance L and a nonlinear resistive element RN that are
coupled through a digital delay line (DDL). The OP-AMPs are buffer amplifiers and
the coupling strength K = 1/(C RK ) is varied by changing the resistances RK that
couple the two oscillator circuits. The coupling is linear, resistive, and proportional
to the difference in the signal strengths of the two oscillators with a time-delay. Each
oscillator is capable of oscillating with a characteristic frequency ω = 1/

√
LC . The

authors have fixed the values of capacitances as C1 = C2 = 0.1 μF and the values
of the inductances L = L1 = L2 and the resistances R = RK 1 = RK 2 are varied

Fig. 5.3 Experimental results
of two delay coupled limit
cycle oscillators for different
values of delay times with
K = 1,000/s and ω = 837 s.
The top panel shows the
in-phase oscillations for
τ = 0.514 ms, the middle
panel shows amplitude death
for τ = 2 ms and the bottom
panel displays anti-phase
oscillations for τ = 4.428 ms.
This figure is adapted from
the work of Ramana Reddy
et al. [9]
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such that the frequencies ω = ω1 = ω2 and the coupling strengths K = K1 = K2
vary in the ranges of 100–1,000/s and 10–106/s, respectively.

The experimental results of the time evolution of the oscillator voltages as a
function of the delay parameter are shown in Fig. 5.3 for K = 1,000/s and ω =
837/s. In-phase oscillations of the coupled identical limit cycle oscillators are shown
in the top panel of Fig. 5.3 for τ = 0.514 ms. Quenching of oscillations, that is,
amplitude death is observed for τ = 2 ms as shown in the middle panel of Fig. 5.3
and anti-phase oscillations are observed for τ = 4.428 ms as depicted in the bottom
panel of Fig. 5.3. Thus the phenomenon of time-delay induced amplitude death
has been experimentally observed in coupled identical nonlinear LCR circuits with
delay feedback for suitable values of the experimental parameters.

Amplitude death has also been shown to occur in a dual-wavelength class-B laser
with modulated losses by Kuntsevich and Pisarchik [12], which is a nonautonomous
system since the losses in a channel are modulated by an external sinusoidal
force.

The phenomenon of amplitude death has also been reported experimentally [13]
in a pair of opto-thermal oscillators that are coupled by heat transfer. Existence
of amplitude death for stronger couplings and its relation to Hopf bifurcations of
the uncoupled and coupled systems have also been experimentally verified. The
authors of [13] have also complimented their experimental results with a theoretical
analysis of the corresponding model equations. However, the role of delay in the
death phenomenon in this experiment has not been clearly understood.

5.3 Amplitude Death with Distributed Delay in Coupled
Limit Cycle Oscillators

F.M. Atay [14] has shown that distributed delay increases the parameter regime
in which the phenomenon of amplitude death occurs. He has demonstrated that
distributed delay enlarges and merges death islands and the death region becomes
unbounded if the variance of the delay distribution is larger than a certain threshold.
Since most of the studies are concerned with constant or discrete delays, propagation
of information among the corresponding physical systems occurs only at fixed time
intervals while the dynamical systems themselves are evolving. In contrast, physical
systems in such situations can be better understood if the propagation delay from
one unit to the other is also evolving dynamically or uniformly distributed over an
interval. This approach is particularly significant in biological systems (in partic-
ular in neurobiology) where the system can be described by networks of coupled
dynamical units evolving in time, for instance as in the case of evolving networks.

Realizing the importance of time-delay in inducing amplitude death in identical
limit cycle oscillators, now we will discuss briefly the effects of distributed delay
on these systems. Atay has considered a system of two coupled limit cycle oscilla-
tors, each one of the form of Eq. (5.1), with a distributed delay coupling [14]. The
dynamical equation can be written as



92 5 Implications of Delay Feedback: Amplitude Death and Other Effects

Ż1(t) = (1 + iω − |Z1(t)|2)Z1(t)+ K

⎡
⎣

∞∫
0

f (τ ′)Z2(t − τ ′)dτ ′ − Z1(t)

⎤
⎦ ,
(5.13a)

Ż2(t) = (1 + iω − |Z2(t)|2)Z2(t)+ K

⎡
⎣

∞∫
0

f (τ ′)Z1(t − τ ′)dτ ′ − Z2(t)

⎤
⎦ ,

(5.13b)

where K is the coupling strength and f represents the distribution of delay time.
In particular, the distributed delay is considered to be uniformly distributed over the
interval τ ± δ, that is f (τ ) in the above Eq. (5.13) has been chosen as

f (τ ) =
{

1
2δ , |τ − τ ′| ≤ δ

0, else
(5.14)

Carrying out a linear stability analysis about the fixed point Z = 0 in Eq. (5.13), as
discussed in Sect. 2.4, and in the previous section, one can obtain the pair of stability
curves as

(1 − γ 2)K 2 − 2K + 1 = −(β − ω)2, (5.15)

tan(βτ) = β − ω

1 − K
, (5.16)

where

γ = γ (β, δ) =
{

sin(βδ)/(βδ), βδ �= 0
1, βδ = 0.

(5.17)

The stability regime confined by the above critical curves in the (τ, K ) parameter
space is again determined from the knowledge of Re(dλ/dτ) on the critical curves
as was done in the previous section. The stability regime in the (τ, K ) space for
the value of the parameter ω = 30 is shown in Fig. 5.4 for the above mentioned
uniformly distributed delay for various values of δ. For the value of δ = 0.0 the
distributed delay becomes a discrete delay and the corresponding stability regime
for this parameter value consists of three amplitude death islands, Fig. 5.4a, which
continuously deforms as the degree of distribution determined by the value of
the parameter δ increases as seen in Fig. 5.4b–d. The connected stability regimes
become unbounded in the direction of the delay time τ after certain threshold value
of δ, Fig. 5.4c, d.
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Fig. 5.4 Spread of amplitude death islands as the distribution of the delay increases. (a) δ = 0,
(b) δ = 0.007, (c) δ = 0.008 and (d) δ = 0.02. This figure is adapted from the work of F. M.
Atay [14]

5.4 Amplitude Death in Coupled Chaotic Oscillators

In the previous sections, we have discussed the phenomenon of amplitude death in a
single/coupled limit cycle oscillator driven autonomously by a time-delay feedback
and also in two coupled limit cycle oscillators with distributed delay. We also note
that this phenomenon has been shown to occur in a large ensemble of coupled limit
cycle oscillators with time-delay coupling [8, 10]. It has also been demonstrated
that this phenomenon is generic and that it can also occur in chaotic dynamical
systems with time-delay coupling, similar to the case of coupled limit cycles. As this
phenomenon is quite general, it occurs for identical as well as nonidentical coupled
chaotic systems. The existence of amplitude death with time-delay coupling has
been discussed in coupled Lorenz and Rössler chaotic oscillators by A. Prasad [15].

It has also been shown that the transition from chaos to amplitude death via
a limit cycle occurs in analogy with the same mechanism as that of the coupled
limit cycle oscillators [3, 7, 8], that is, a pair of complex conjugate eigenvalues
cross the imaginary axis from right to left and simultaneously the unstable fixed
point becomes stable, initiating the amplitude death at a Hopf bifurcation. However
there exist two distinct nature of transitions to the fixed point from the limit cycle
behavior, namely in-phase and out-of-phase transitions. The shift in the nature of
these distinct transitions occurs at a critical value of delay time τc at which the phase
relationship of the two oscillators changes from in-phase to out-of-phase oscillations
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Fig. 5.5 Phase space plots (left panel) and time series plots (right panel) of the coupled identical
Rössler oscillators (5.18). (a) and (b) at τ = 0.6, (c) and (d) at τ = 2.25, (e) and (f) at τ = 1.5
and (g) and (h) at τ = 2, respectively, see [15]

as a function of delay time τ . These distinct transitions were later realized as a phase
flip bifurcation [16] which is discussed below.

To be specific, consider a system of two delay coupled identical Rössler oscilla-
tors [15] represented by
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ẋi = −yi − zi , (5.18a)

ẏi = xi + ayi + ε(y j (t − τ)− yi ), (5.18b)

żi = b + zi (xi − c), i, j = 1, 2, i �= j, (5.18c)

where a = b = 0.1, c = 14, ε = 0.5 and the delay time τ is considered as the
control parameter. In the absence of coupling ε = 0, the individual systems (5.18)
evolve chaotically for the above values of the parameters. Dynamical behavior of the
coupled identical Rössler oscillators for various values of time-delay τ are shown in
Fig. 5.5. Limit cycle oscillations of both the coupled systems are shown in Fig. 5.5a
for the delay time τ = 0.6 and the corresponding time series plot is depicted in
Fig. 5.5b, where there is no phase difference between both the oscillators x1 and x2.
This implies that both the oscillators x1 and x2 are exhibiting in-phase oscillations.
Similar limit cycle oscillations and their time trajectory plots of both the coupled
oscillators are illustrated in Fig. 5.5c, d, respectively, for the value of delay time
τ = 2.25. In contrast to the previous case, it can be now noted from the time series
plot that the variables x1 and x2 exhibit out-of-phase oscillations. For the value of
delay time τ = 1.5, the coupled chaotic oscillators transit to their fixed point as
shown in Fig. 5.5e, f, where the oscillators are in in-phase state which can be seen
clearly in the inset of Fig. 5.5f. Transition to the fixed point of both the oscillators by
out-of-phase oscillations for the value of time-delay τ = 2 is depicted in Fig. 5.5g, h.
These distinct transitions from in-phase to out-of-phase oscillations can also be
identified from the phase-difference (Δφ) between the two oscillators defined as
Δφ = 〈|φ1(t)− φ2(t)|〉, where 〈·〉 denotes the time average while φ = arctan(y/x).
The phase-difference (Δφ) between the two oscillators as a function of the delay
time τ ∈ (0, 2.5) is shown in Fig. 5.6.

These distinct transitions to amplitude death via limit cycle oscillations and their
mechanism of transitions in coupled chaotic oscillators are generic in nature and that
they can also be demonstrated in coupled identical Lorenz oscillators, coupled non-
identical Rössler and Lorenz oscillators and also in mixed chaotic oscillators [15].

0

1

2

3

0 0.5 1 1.5 2 2.5 3

Δϕ

τ

Fig. 5.6 Phase difference Δθ = 〈|θ1(t)− θ2(t)|〉 (which before and after the transition are equal
to 0 and π ) between the oscillators, (5.18), as a function of delay time in the range τ ∈ (0, 3)
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5.5 Amplitude Death with Conjugate (Dissimilar) Coupling

Recently, it was shown that amplitude death can also occur by coupling through
conjugate (dissimilar) variables [17]. The scenario for the occurrence of amplitude
death in this case is quite different from our previous discussions in time-delay
coupled set of identical oscillators. In [17] it has been demonstrated that amplitude
death can occur in identical limit cycle oscillators, and even in identical chaotic
oscillators, with conjugate coupling without time-delay. It was realized that coupling
via conjugate variables provides time-delayed interaction in the sense that the other
variables of a dynamical system are reconstructed from a known time series using
a time-delay, a procedure in embedding. Indeed Takens’ embedding theorem [18]
asserts that the topological properties of the reconstructed system match those of the
true system for suitable choices of embedding dimension and time-delay. The simi-
larity between time-delayed variables and conjugate variables has been extensively
employed in the process of attractor reconstruction [19]. Hence, the analysis of [17]
asserts that some of the time-delay coupling effects can also be realized by means of
conjugate coupling and this reduces computing efforts enormously when arrays or
networks of oscillators are considered. It is also to be noted that it is easy to imple-
ment conjugate coupling in experiments when compared to time-delay feedback
or coupling. However, the conjugate coupling does not lead to the infinite dimen-
sionality of a dynamical system thereby leading to hyperchaotic attractors with large
number of positive Lyapunov exponents, a hallmark property of a dynamical system
with time-delay feedback or coupling.

Coupling conjugate (dissimilar) variables is natural in a variety of experimental
situations where subsystems are coupled by feeding the output of one into the other.
As an example for employing the conjugate coupling, recently Kim et al. [20] in
their experiments on coupled semiconductor laser systems used photon intensity
fluctuation from one laser to the other to modulate the injection current and vice
versa.

Consider, as an example, the Landau-Stuart oscillator specified by the equation
of motion

Ż(t) = (1 + iω − |Z(t)|2)Z(t), (5.19)

where ω is the frequency and Z(t) = x(t) + iy(t). Two such dynamical equations
coupled through conjugate (dissimilar) variables can be expressed in Cartesian coor-
dinates as

ẋi (t) = Pi xi − ωi yi , (5.20a)

ẏi (t) = Pi yi + ωi xi + εx j , (5.20b)

where Pi = 1 − |Zi |2, i, j = 1, 2, and j �= i, ε is the coupling strength and
ωi = ω = 2.0. The largest Lyapunov exponent of the coupled system (5.20) is
shown in Fig. 5.7 in the range of coupling strength ε ∈ (1, 3). For ε < 2, the largest
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Fig. 5.7 Largest Lyapunov exponent of the coupled Landau-Stuart oscillator (5.20) as a function
of the coupling strength in the range ε ∈ (1, 3)
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Fig. 5.8 Trajectories of the x components of the two oscillators (5.20). (a) Limit cycle behavior
for the coupling strength ε = 1.0, and (b) Monotonic decay to the fixed points for ε = 2.5

Lyapunov exponent is zero and the second largest one is negative (which is not
shown here), which is indicative of the limit cycle behavior as shown in Fig. 5.8a.
For ε > 2, transient trajectories decay monotonically to the fixed points as shown
in Fig. 5.8b for the value of the coupling strength ε = 2.5.
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Fig. 5.9 Largest three Lyapunov exponents of the coupled Lorenz systems (5.21) as a function of
the coupling strength in the range ε ∈ (0.2, 0.6)

It has also been shown that amplitude death occurs in coupled Lorenz oscillators
coupled through conjugate variables [17],

ẋi = 10(−yi − xi ), (5.21a)

ẏi = −xi zi + 28xi − yi + ε(x j − yi ), (5.21b)

żi = xi yi − 8

3
zi , i, j = 1, 2, i �= j. (5.21c)

The largest three Lyapunov exponents of the coupled Lorenz system is depicted in
Fig. 5.9 as a function of the coupling strength ε ∈ (0.2, 0.6). All the Lyapunov
exponents become negative for ε > 0.44, indicating the occurrence of amplitude
death in the coupled Lorenz system. Preceding the regime of amplitude death the
largest Lyapunov exponents show wild fluctuations due to the presence of coexisting
attractors, namely multistability, an impact of time-delay. Chaotic trajectories of
both the coupled Lorenz systems for the value of the coupling strength ε = 0.3 is
shown in Fig. 5.10a, while the dynamical behavior in the amplitude death regime is
plotted in Fig. 5.10b for the value of the coupling strength ε = 0.5.

5.6 Amplitude Death with Dynamic Coupling

In the above studies on amplitude death, the coupling signal is proportional to the
difference between the dissimilar or conjugate states of the two oscillators. The
proportionality factor is of a constant value and hence the couplings are consid-
ered static. It was observed that dynamic coupling, which has not only the propor-
tionality factor but also has its own dynamics, can induce amplitude death without
time-delay [21]. It is to be noted that RC-ladder coupling [22], a kind of dynamic
coupling, can be used as an approximation of RC wire delay connections in VLSI
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Fig. 5.10 Transient trajectories of the x components of the coupled Lorenz systems (5.21).
(a) Chaotic behavior for ε = 0.3 and (b) Monotonic decay to the fixed points for ε = 0.5

chips [23]. Consequently, dynamic coupling may also be used to produce some of
the time-delay effects in appropriate situations.

To illustrate the existence of amplitude death due to dynamic coupling, let us
consider the two identical limit cycle oscillators

ẋi = xi

(
1 − y2

i − x2
i

)
− ωyi + ui , (5.22a)

ẏi = yi

(
1 − y2

i − x2
i

)
− ωxi , i = 1, 2, (5.22b)

where the dynamic coupling involves an additional variable with a time evolution,

żi = −zi + x j , ui = ε(zi − xi ) i, j = 1, 2, i �= j, (5.23)

where ε is the coupling strength. The limit cycle oscillations of the coupled system
is shown in Fig. 5.11a in the absence of coupling, that is ε = 0. As the value of the
coupling strength is increased from zero for a fixed value of the natural frequency
ω = 4, oscillatory behavior is found to exist up to a certain threshold value of
the coupling strength, followed by a sudden quenching of oscillations above the
threshold value, leading to amplitude death of the oscillators. The full scenario is
shown as a bifurcation diagram in Fig. 5.12 as a function of the coupling strength
in the range ε ∈ (0, 12). Both the oscillators exhibit chaotic oscillations in the
range ε ∈ (0, 2.3) and amplitude death occurs in the range ε ∈ (2.3, 8.5), where
all the variables converge to the origin. The stable fixed point, which differs from
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Fig. 5.11 Behavior of the
system of coupled limit cycle
oscillators (5.22), (5.23). (a)
Limit cycle oscillations of the
two uncoupled systems in the
absence of coupling, (b)
Quenching of oscillations
(amplitude death) of the
coupled oscillators for the
value of the coupling strength
ε = 4.0 and (c) Both the limit
cycle oscillations and
quenching of oscillations
before and after the dynamic
coupling, respectively,
switched at t = 1500
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Fig. 5.12 Bifurcation
diagram of the coupled
limit-cycle oscillators (5.22),
(5.23) as a function of the
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the origin, appears for ε > 8.5. Figure 5.11b shows the limit cycle oscillations
being damped out to reach the fixed point for ε = 4.0, while Fig. 5.11c shows the
existence of the limit cycle oscillations and quenching of oscillations, respectively,
before and after the dynamic coupling is switched on at t = 1500. Quenching of
oscillations due to dynamic coupling can also be demonstrated in coupled identical
Rössler systems [21].

Recently, the phenomenon of amplitude death has also been reported in coupled
time-delay systems [24] with both delay and dynamic couplings. Stability condition
for the stabilization of the oscillatory behavior in coupled time-delay systems has
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also been derived and it is also shown that static connection never induces ampli-
tude death. These results have also been confirmed experimentally using electronic
circuits.

5.7 Time-Delay Induced Bifurcations

It has also been shown that phase flip bifurcation occurs in a general class of nonlin-
ear oscillators coupled through time-delay coupling [16]. Here, the relative phase
between the coupled oscillators changes abruptly from zero to π as a function of
the delay time for fixed values of the other system parameters and hence it is named
as a phase flip bifurcation, which is a general feature of the time-delay coupled
systems. This bifurcation phenomenon has a broad range of occurrence, that is,
it is observed for periodic as well as chaotic oscillators, for identical as well as
nonidentical coupled systems, and in a variety of dynamical systems [16].

For illustration, let us consider a pair of diffusively coupled Rössler oscillators
represented by Eqs. (5.18) with the same values of the parameters a, b and c as
used in the Sect. 5.4. They evolve chaotically as indicated in Sect. 5.4. The coupling
strength ε and delay time τ are chosen as control parameters. The phase difference
Δφ = 〈|φ1(t)−φ2(t)|〉, where 〈·〉 is the time average, is depicted in Fig. 5.13 in the
(ε, τ ) parameter space. From this figure it is evident that the relative phase between
both of the coupled systems is zero for a fixed value of the coupling strength ε up
to a certain threshold value of delay time τ and above this threshold value there is a
difference of π in the relative phase. As the phase flips from zero to π as a function
of the delay time, this phenomena is termed as phase flip bifurcation. The dynamics
of this phase flip bifurcation, namely transition from in-phase oscillations to out of
phase oscillations has been discussed in Sect. 5.4 (see Fig. 5.5) for both limit cycle
oscillations and chaotic oscillations.

It was also observed that Neimark-Sacker-type bifurcation [25] is prevalent in
delay coupled networks for larger values of delay times, which results in high-period
solutions followed by more complex behavior [26]. It was shown that the synchro-
nized solution of delay coupled logistic map exhibits such complex bifurcation

Fig. 5.13 Phase difference
Δφ in the (ε, τ ) plane
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scenario for finite values of connection delays whereas such bifurcation scenario
(Neimark-Sacker-type bifurcation) cannot arise in one-dimensional maps [26], a
clear implication of delay coupling. It has also been shown that a variety of rich
bifurcation structures can arise in the synchronized solution as a function of the
coupling strength for finite values of connection delays.

Bifurcations such as inverse, direct Hopf and fold limit cycle were observed in
time-delay coupled FitzHugh-Nagumo excitable systems [27]. It was also identified
that for an intermediate range of time lags, inverse sub-critical Hopf and fold limit
cycle bifurcations lead to the phenomenon of oscillator death [27]. Bifurcations in
two coupled excitable FitzHugh-Nagumo systems (N = 2) has been studied ana-
lytically, and it is also numerically confirmed that the same bifurcations are relevant
for N > 2 in the presence of delay coupling.

5.8 Some Other Effects of Delay Feedback

In the following, we will briefly point out the main features and the emergence of
other types of behaviors in delay coupled systems (delay feedback) which are not
possible in the absence of time-delay feedback.

1. The first systematic investigation of time-delayed coupling was done by Schuster
and Wagner [28] who studied two coupled phase oscillators and found multista-
bility of synchronized solutions.

2. A novel form of frequency depression was observed for small delays in the limit
cycle oscillators that interact via time-delayed diffusive coupling and for larger
delay metastable synchronized state was observed [29].

3. Bistability between synchronized and incoherent states have been observed in
Kuramoto oscillators coupled via time-delay coupling. Exact formulas for the
stability boundaries of the incoherent and synchronized state as a function of the
delay has been established [30].

4. Delay induced chaos has been demonstrated in catalytic surface reaction [31]. A
mathematical model has been proposed which explains the origin of chaos in this
reaction as being due to delays in the response of a population of reacting adsor-
bate islands globally coupled via the gas phase. The dynamical equations of this
model yields a sequence of period-doubling bifurcations resulting in chaos [31].

5. It has also been shown that delay coupling in networks enhances the synchroniz-
ability of networks and interestingly it leads to the emergence of a wide range
of new collective behavior (see [26, 32] and reference therein). On the other
hand, it has also been shown that connection delays can actually be conducive to
synchronization so that it is possible for delayed systems to synchronize whereas
the undelayed system does not [26].

6. Enhancement of neural synchrony, that is, the existence of stable synchronized
state even for a very low coupling strength for significant time-delay in the cou-
pling has also been demonstrated [33].



References 103

7. Time-delay feedback has also been demonstrated to be used for bifurcation con-
trol of nonlinear models of chaotic cardiac activity [34].

8. It has also been demonstrated that time-delay feedback can be used for suppress-
ing a pathological period-2 rhythm (cardiac alternans) in a atrioventricular nodal
conduction model [35].

9. In delay coupled fiber lasers, it was demonstrated that a reduction in dynami-
cal complexity occurs for short coupling delays while a logarithmic growth is
observed as the coupling delay is increased [36].
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