
Chapter 4
A Few Other Interesting Chaotic Delay
Differential Equations

4.1 Introduction

One of the well known properties of DDEs is that their effective dimensions increase
with the delay time τ [1, 2], see Sect. 1.2.2. This allows one to select different
values (sufficiently large) for the delay time τ to generate high-dimensional chaotic
signals. Hence, in recent times DDEs have received increased attention in the non-
linear dynamics literature due to the possibility of generating more complex and
high-dimensional chaotic attractors and also because of the feasibility of their exper-
imental realization. Therefore, several chaotic time-delay systems and their variants
have been proposed during the past few years for generating and enhancing com-
plexity of chaotic behavior in various technological and engineering applications.
In this chapter, we will briefly review the dynamical properties of some of the most
important first order scalar nonlinear time-delay systems, that have been widely used
in the literature, exhibiting chaotic/hyperchaotic behaviors. In addition, we will also
present some of the interesting coupled (higher order) delay differential equations
in different areas of science and technology.

4.2 The Mackey-Glass System: A Typical Nonlinear DDE

In order to gain further insight and clear understanding of the general features of
the dynamics of nonlinear DDEs, in this section, we will consider another scalar
first order nonlinear DDE, namely the Mackey-Glass equation, which has been well
studied in the literature in connection with chaotic dynamics and applications. As
noted in the previous chapter, it is quite intricate to obtain even the stability criteria
for the fixed point solution of a scalar nonlinear DDE itself. Now we will consider
the Mackey-Glass system as another example to discuss the dynamics of nonlinear
DDEs. Other examples are discussed in the following sections.

4.2.1 Mackey-Glass Time-Delay System

The Mackey-Glass time-delay system [3, 4] has been a well studied nonlinear DDE
equation in the literature for its chaotic dynamics [1, 5–10]. It has received a central
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56 4 A Few Other Interesting Chaotic Delay Differential Equations

importance in recent studies on synchronization in view of its hyperchaotic behav-
ior [11–16]. Analog version of the Mackey-Glass system has also been realized
experimentally using electronic circuits [14–17]. The Mackey-Glass system, which
was originally deduced as a model for blood production in patients with leukemia,
can be represented by the first order nonlinear DDE

ẋ = −bx(t)+ ax(t − τ)

(1.0 + x(t − τ)c)
, (4.1)

where a, b and c are positive constants. Here, x(t) represents the concentration
of blood at time t (density of mature cells in bloodstreams), when it is produced,
x(t −τ) is the concentration when the “request” for more blood is made and τ is the
time-delay between the production of immature cells in the bone marrow and their
maturation for release in circulating bloodstreams. In patients with leukemia, the
time τ may become excessively large, and the concentration of blood will oscillate,
or if τ is even larger, the concentration can vary chaotically, as demonstrated by
Mackey and Glass [1, 3]. This model is often used as a prototype model in the liter-
ature for nonlinear delay systems exhibiting chaotic attractors and even hyperchaotic
attractors for large values of delay time.

4.2.2 Fixed Points and Linear Stability Analysis

A great deal of information can be obtained about the dynamical behavior of the
scalar first order Mackey-Glass DDE (4.1) by performing a linear stability analy-
sis [18] of equilibrium states. As pointed out in Chap. 3, the difficulty lies in obtain-
ing the conditions under which the real part of the eigenvalues of the linearized
equation for the given fixed point is less than zero from the resulting transcendental
characteristic equation.

The steady state or equilibrium state (fixed point) of the system (4.1) is one for
which x(t) = x(t−τ) = x(0) = x∗ ∀ t and as a consequence all the time derivatives
vanish identically. Hence substituting x(t) = x(t − τ) and ẋ = 0 in (4.1), it is easy
to see that Eq. (4.1) has two fixed points,

x = x∗ = 0, (4.2a)

x = x∗ =
(

a − b

b

) 1
c

. (4.2b)

Note that the second solution exists only for a > b (x is real). The stability
of the fixed points is determined by examining how a small perturbation about the
fixed point behaves in time for all t > 0. In particular, as pointed out in Chap. 3,
Sect. 3.2.1, to study the linear stability we assume that the perturbations about
the fixed point grows as ρ exp λt , where λ is in general a complex number to be
determined and ρ 
 1 is the amplitude of the perturbation, Then the characteristic
equation turns out to be
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λ = −b +
(

a(1 + x∗)− acx∗

(1 + x∗)2

)
exp(−λτ). (4.3)

Solving the above equation for λ for either of the fixed points x∗ = 0 or x∗ =( a−b
b

) 1
c gives the criterion for the stability of the corresponding fixed points. In the

following we analyze the stability of the above two fixed points given by Eqs. (4.2)
both in the absence and presence of time-delay τ .

4.2.3 Time-Delay τ = 0

Now, we will discuss the stability of the fixed points (4.2) in the absence of time-
delay, that is τ = 0.

(a) Fixed point x∗ = 0:
From Eq. (4.3), one finds the characteristic equation for the fixed point x = x∗
= 0 to be

λ+ b − a = 0, (4.4)

and the fixed point is stable for a < b.

(b) Fixed point x∗ = ( a−b
b

) 1
c :

The characteristic equation for the second fixed point x = x∗ = ( a−b
b

) 1
c can be

written as

λ+ b − b(1 − ac + bc) = 0, (4.5)

and the fixed point is stable if a > b.

Thus for a < b we have x = x∗ = 0 as the only locally stable fixed point. For

a > b the second fixed point, x∗ = ( a−b
b

) 1
c , is created while the first one, x∗ = 0,

becomes unstable. Obviously a = b is a bifurcation point.

4.2.4 Time-Delay τ > 0

In this section, we will make use of the approach advocated in Chaps. 2 and 3 in
order to (i) determine the parametric conditions due to which change in the stability
of a given fixed point occurs as specified by the transcendental equation, (ii) to
demarcate the asymptotically stable regions of the fixed points in the parameter
space of the system and (iii) to determine the conditions on the parameters under
which the given fixed point of the system is stable.
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4.2.4.1 Geometric Approach

Now let us apply the geometric approach proposed by McDonald [19] to determine
the stability from the general equation (4.3) as discussed in Sect. 2.3 of Chap. 2. As
pointed out earlier, a change in stability of a fixed point can occur only when a root
λ = α + iβ of Eq. (4.3) crosses the imaginary axis, that is, λ = iβ, where β is real,
is a solution of Eq. (4.3). In particular let us consider the transcendental equation

λ+ b − ae−λτ = 0, (4.6)

corresponding to the fixed x∗ = 0 for τ > 0. Now, if a substitution λ = iβ is made
in the above equation, then it takes the following form

b + iβ

a
= exp(− iβτ). (4.7)

If the steady state in question is stable in the absence of delay, that is for τ = 0,
an instability can occur for τ �= 0 only if there are some real β and τ for which the
Eq. (4.7) holds good. This can be determined by the simple geometric construction
discussed in Sect. 2.3 of Chap. 2.

Considering the right hand side of Eq. (4.7), we can easily see that it traces a
unit circle as shown in Fig. 4.1 and change in stability of the fixed point is indicated
by the intersection of the ratio curve, namely the left hand side of Eq. (4.7). This
is examined by changing the value of a in the Eq. (4.6), whose value determines
the stability of the fixed point x∗ = 0. As a typical example, for the values of the
parameters τ = 25.0, b = 0.1 and a = 0.09, it turns out that a < b and the ratio
curve (dotted line) does not intersect the unit circle as shown in the Fig. 4.1a. Thus
the fixed point x∗ = 0 remains stable. As the value of a is increased to a = 0.1
so that a = b, one finds the ratio curve (dotted line) just touches the unit circle
(Fig. 4.1b) indicating the boundary layer between the stability of the two fixed
points. For a = 0.11, when a > b, the ratio curve intersects the unit circle as
shown in Fig. 4.1c indicating the change in stability of the first fixed point x∗ = 0,
which becomes unstable for the latter value of a.

Similarly, using the above geometric construction, one can also determine the

stability of the second fixed point x∗ = ( a−b
b

) 1
c from its characteristic (transcen-

dental) equation

λ+ b − b(1 − ac + bc)e−λτ = 0, τ > 0. (4.8)

Again substituting λ = iβ and rewriting the above transcendental equation in the
form of Eq. (4.7), one can obtain equations corresponding to unit circle and ratio
curve as discussed above. As pointed out in the Sect. 4.2.3, a > b (which is the
condition for the instability of the first fixed point when τ = 0) is also the condition
for the second fixed point to become stable. Correspondingly, the results from the
geometric construction reveals that for τ > 0 also the second fixed point attains
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Fig. 4.1 Real and imaginary parts of Eq. (4.7) depicting the change in stability for τ = 25.0
(a) For b = 0.1, and a = 0.09, (b) For b = 0.1 and a = 0.1, and (c) For b = 0.1 and a = 0.11
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Fig. 4.2 Real and imaginary parts of the characteristic equation corresponding to the second fixed
point Eq. (4.2b) at λ = iβ depicting the change in stability for τ = 25.0 (a) For b = 0.1, and
a = 0.09, (b) For b = 0.1 and a = 0.1, and (c) For b = 0.1 and a = 0.11
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stability when a > b and this is indicated by the intersection of the ratio curve with
the unit circle as shown in Fig. 4.2. Here the values of the parameters a, b are kept
fixed as in Fig. 4.1 and the value of c = 10.

4.2.4.2 General Approach to Determine Stability

Using the general approach discussed in Sect. 2.4 of Chap. 2, we will demonstrate
the identification of stable regimes in the (a, τ ) parameter space of the fixed point
x∗ = 0 of the Mackey-Glass system (4.1).

Let λ = α+ iβ be a root of the transcendental equation (4.6), where α and β are
real. Substituting this into the Eq. (4.6) and equating real and imaginary parts, we
obtain equations for α and β as

α + b − ae−ατ cos(βτ) = 0, (4.9)

β + ae−ατ sin(βτ) = 0. (4.10)

Squaring and adding Eqs. (4.9) and (4.10), we get

β = β± = ±
√

a2 exp(−2ατ)− (b + α)2, (4.11)

and

α = −b − β

tan(βτ)
. (4.12)

Without loss of generality we choose the + sign in the above equation, as the eigen-
values occur in complex conjugate pairs. The change in stability occurs only when
the value of α crosses the imaginary axis, λ = iβ, β > 0, and hence the critical
stability curve is the one at which α takes the value α = 0. Now, we have

β|α=0 = ±
√

a2 − b2. (4.13)

From Eq. (4.9), it follows that

βτ = ± arccos

(
b

a

)
+ 2nπ, (4.14)

where n is any integer (0,±1,±2, · · · ). Consequently one can expect that the sta-
bility regions are confined between the set of two curves (for τ > 0),

τ1(n) = 2nπ + arccos
( b

a

)
√

a2 − b2
, n = 0, 1, 2, · · · (4.15a)

τ2(n) = 2nπ − arccos
( b

a

)
√

a2 − b2
. n = 1, 2, 3, · · · (4.15b)
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It is to be noted that from Eq. (4.6) when the time-delay τ = 0, λ = −b + a and
so the real part of λ, α < 0 for b > a. In order to identify those curves for τ > 0
which encompass the stable regions, the critical curves should be the ones on which
dλ
dτ > 0. From Eq. (4.6), we have

dλ

dτ
= −aλ exp(−λτ)

1 + aτ exp(−λτ), (4.16)

and hence

dα

dτ

∣∣∣∣
α=0

= β2

[1 + aτ cos(βτ)]2 + [aτ sin(βτ)]2
. (4.17)

Therefore

dα

dτ
> 0 on both τ1 and τ2. (4.18)

The above condition implies that there can be only one stable region (where
α < 0) between the τ = 0 line and the critical curve τ1(0) which is the closest to
the line τ = 0 as discussed in Sect. 2.4 and also in Sect. 3.2.1 for the piecewise
linear DDE. We note that the condition (4.18) prohibits the existence of any other
stable region (that is multistability region) because for a second stable region to
exist one requires dα

dτ < 0 on any one of the other curves (n > 0). But this never
occurs in this case. The numerical plot in Fig. 4.3 of the curves τ1(n) (solid curve for
n = 0, 1, 2) and τ2(n) (broken curve for n = 1, 2) reveals that the region between
τ = 0 and τ = τ1(0) is the only stable region (shaded region), where dα

dτ > 0 on
τ1, which passes from negative to positive values of α. Obviously the other curves
τ2(n) < τ < τ1(n) for n > 0 do not satisfy the required stability condition and
hence they are all associated with unstable regions.
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Fig. 4.3 Curves of Eqs. (4.15a) and (4.15b). The solid curves represent τ1 for n = 0,+1,+2 and
broken curves represent τ2 for n = +1,+2. The region enclosed between the line τ = 0 and the
curve τ = τ1(0) (shaded region) is the only stable island of the first fixed point x∗ = 0 where
dα
dτ > 0 on τ1(0)
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One can also perform similar stability analysis using the above approach to

identify the stable regimes of the second fixed point x∗ = ( a−b
b

) 1
c . Following the

procedure used for the fixed point x∗ = 0, we obtain the set of critical curves
corresponding to the characteristic equation (Eq. 4.8) of the second fixed point as

τ1(n) = 2nπ + arccos
( b

k

)
√

k2 − b2
, n = 0, 1, 2, · · · (4.19a)

τ2(n) = 2nπ − arccos
( b

k

)
√

k2 − b2
, n = 1, 2, 3, · · · (4.19b)

where k = b(1 − ac + bc), along with

dα

dτ

∣∣∣∣
α=0

= β2

[1 + kτ cos(βτ)]2 + [kτ sin(βτ)]2
> 0 on both τ1 and τ2. (4.19c)

With the same argument as in the previous case of first fixed point, we find that
there is only one stable island between the curves τ = 0 and τ1(0) as shown in
Fig. 4.4.

 0

 2

 4

 6

 8

 0  2  4  6  8

τ

a

Fig. 4.4 Curves of Eqs. (4.19a) and (4.19b). The solid curves represent τ1 for n = 0,+1,+2 and
broken curves represent τ2 for n = +1,+2. The region enclosed between the line τ = 0 and the

curve τ = τ1(0) (shaded region) is the only stable island of the second fixed point x∗ = ( a−b
b

) 1
c

where dα
dτ > 0 on τ1(0)

4.2.5 Numerical Simulation: Bifurcations and Chaos

In this section, we will briefly discuss the dynamics of the Mackey-Glass time-
delay system (4.1) as a function of the delay time τ using numerical simulation.
For this purpose, Eq. (4.1) is integrated using Runge-Kutta fourth order integra-
tion scheme for the aforesaid parameter values with constant initial condition in
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Fig. 4.5 Bifurcation diagram of the Mackey-Glass system (Eq. 4.1) for the parameter values a =
0.2, b = 0.1, c = 10 as a function of time-delay τ ∈ (10, 39)

the range (−τ, 0) leaving out sufficiently large transients (of the order 1 × 106).
For details on the effect of transients, see Chap. 3. Fixing the other parameters as
a = 0.2, b = 0.1 and c = 10, one finds that there is a stable fixed point for τ < 4.53
as we have discussed in the previous section. For 4.53 < τ < 13.3, numerical
simulations show that there is a stable limit cycle attractor. At τ = 13.3, the period
of this limit cycle doubles, initiating a period doubling bifurcation sequence (as
shown in Fig. 4.5) that reaches its accumulation point at τ = 16.8. For τ > 16.8
numerical simulations show chaotic attractors at most parameter values, with some
limit cycles interspersed in between.

To depict the qualitative nature of the attractors of the Mackey-Glass system, we
display a representative portion of the time series in Fig. 4.6 and the corresponding
(pseudo) phase plots in Fig. 4.7 by plotting x(t) against x(t − τ). It is to be noted
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Fig. 4.6 Time series plots of the Mackey-Glass system for the parameter values a = 0.2,
b = 0.1, c = 10 for different values of the delay time τ . (a) periodic time trajectory for τ = 14, (b)
chaotic trajectory at the “onset” for τ = 17, (c) chaotic time series for τ = 23 and (d) hyperchaotic
trajectory for the time-delay τ = 32
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Fig. 4.7 Phase plots obtained by plotting x(t) Vs x(t − τ) corresponding to the Fig. 4.6

that the choice of x(t − τ) as the second phase variable is arbitrary; x(t − t ′) can
be equivalently used, where t ′ is an arbitrary time-delay. A periodic time series is
shown in Fig. 4.6a for the delay time τ = 14 and its corresponding phase plot is
shown in Fig. 4.7a. Chaotic trajectory at the “onset” of chaos is shown in Fig. 4.6b
for the value of delay time τ = 17 along with its phase plot in Fig. 4.7b. Chaotic
time series for the value of delay time τ = 23 is shown in Fig. 4.6c with phase plot
for the same value of delay in Fig. 4.7c, whereas hyperchaotic trajectory and phase
plots are shown in Figs. 4.6d and 4.7d, respectively, for τ = 32.

It may be noted that the above plots (time series and phase plots) are adequate
to distinguish periodic behavior from chaotic behavior, but are inadequate to make
a sharp distinction between the properties of qualitatively different chaotic behavior
and this requires a computation of the corresponding Lyapunov exponents. The first
four maximal Lyapunov exponents for the same parameter values as above in the
range of delay time τ ∈ (14, 39) is shown in Fig. 4.8a. The Lyapunov exponents
are evaluated using the procedure suggested by J. D. Farmer [1], described briefly
in Sect. 1.2.2. It is clear from the Lyapunov exponents that while the attractors in
Fig. 4.7b, c are chaotic, the attractor of Fig. 4.7d is hyperchaotic. The Kaplan-
Yorke [1, 20] dimension of the Mackey-Glass system as a function of delay time
τ in the same range, obtained by using the formula given in Eq. (3.10), is shown in
Fig. 4.8b.

4.2.6 Experimental Realization Using Electronic Circuit

Analog and intrinsic electronic circuits have been employed to mimic the dynam-
ics of Mackey-Glass system [14–17]. Losson et al. [21] have made an attempt in
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1993 using analog devices to simulate a delay differential equation; however the
nonlinearity used is a piecewise constant model in contrast to the nonlinearity in
Mackey-Glass equation, which is a smooth hump shaped nonlinearity as shown in
the numerical simulation of the Mackey-Glass nonlinearity in Fig. 4.9a. An elec-
tronic analog of the Mackey-Glass system was designed by Namajunas et al. [17] in
1995 and since then this model has been used widely to explore the dynamical and
application aspects of the Mackey-Glass system [14–16, 22].
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Fig. 4.9 Nonlinearity of the Mackey-Glass system (4.1). (a) Plot of the function f (x) = 0.2x/(1+
x10) obtained by numerical simulation and (b) PSPICE simulation of Vin Vs Vout characteristics
of the nonlinear device (Fig. 4.10)
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4.2.6.1 Circuit Realization

The block diagram of electronic analog of the Mackey-Glass time-delay system
demonstrated in [17] is the same as in Fig. 3.9 shown in Chap. 3. A description of
this block diagram is already provided in Sect. 3.4 except for the nonlinearity N D
corresponding to the Mackey-Glass system.

A smooth single hump nonlinearity is produced by coupling two complementary
junction field-effect transistors (JFETs) [17]. The circuit diagram of nonlinearity
is shown in Fig. 4.10. The output voltage from the resistor r is amplified by an
operational amplifier (OA) to obtain a sufficient output signal. The output charac-
teristic obtained by PSPICE simulation is shown in Fig. 4.9b. The parameters of the
RC filter in Fig. 3.9 are chosen as R0 = 3 KOhm,C0 = 100 nF, and inductance,
capacitance and resistance of the delay unit (Fig. 3.10) as L = 4.7 mH,C = 10 nF
(while another possible combination of L and C used widely in the literature is
L = 9.5 mH,C = 525 nF) and R = 190 Ohm, respectively. Junction field-effect
transistors used in the nonlinear device (Fig. 4.10) are Q1 : 2N5457, Q2 : 2N5460
and r = 470 Ohm. The PSPICE simulation of the electronic circuit, Fig. 3.9, along
with the nonlinearity shown in Fig. 4.10 of the Mackey-Glass system, is shown in
Fig. 4.11, which is a quite typical attractor of the Mackey-Glass system (4.1).

Similar electronic circuits have also been considered by Dmitriyev et al. [23].
However they have used a standard delay unit with fixed delay of 64 µs, while RC
value is used as a control parameter.

OA

r

Q1

Q2

Fig. 4.10 Circuit diagram of the nonlinear device (ND) in Fig. 3.9

Fig. 4.11 Phase portrait of
the analog Mackey-Glass
electronic circuit, Fig. 3.9,
obtained by PSPICE
simulation of the circuit
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4.3 Other Interesting Scalar Chaotic Time-Delay Systems

Several simple scalar nonlinear delay systems described by autonomous delay dif-
ferential equations with suitable nonlinearity have been proposed in the literature
in recent times to represent physical and biological systems in view of their poten-
tial applications in true random bit generators, global optimization of networks and
secure communications, etc. In addition to the piecewise linear and the Mackey-
Glass time-delay systems discussed earlier, there are a number of other important
scalar chaotic time-delay systems which are being discussed in the literature in the
context of chaotic dynamics and chaos synchronization. In this section, we briefly
present details of some of them.

4.3.1 A Simple Chaotic Delay Differential Equation

In recent times several attempts have been made to identify simple models that are
capable of generating highly complex dynamics for various technological appli-
cations. As a consequence, a number of models of delay differential equations and
their variants have been proposed and demonstrated in the literature both experimen-
tally and theoretically [24–28] for generating multiple scroll chaotic/hyperchaotic
attractors .

In this connection, very recently a simple chaotic delay differential equa-
tion has been proposed by J.C. Sprott [26], which can exhibit multiple scroll
chaotic/hyperchaotic attractors even for low value of delay time, say τ ≈ 5. The
delay differential equation is of the form

ẋ = sin x(t − τ). (4.20)

Details of stability and bifurcation analysis, and various dynamical behaviors, have
been reported in [26]. A 6-scroll hyperchaotic attractor for the value of delay time
τ = 5.1 is depicted in Fig. 4.12, while the twelve-largest Lyapunov exponents and
the Kaplan-Yorke dimension defined as in Eq. (3.10) in the range of delay time
τ ∈ (0, 20) are shown in Fig. 4.13a, b, respectively.

4.3.2 Ikeda Time-Delay System

The Ikeda system was introduced to describe the dynamics of an optical bistable
resonator and it was shown that the transmitted light from a ring cavity containing a
nonlinear dielectric medium undergoes transition from a stationary state to periodic
and nonperiodic states, when the intensity of the incident light is increased. It has
also been shown that the nonperiodic state is characterized by a chaotic variation of
the light intensity and associated broadband noise in the power spectrum [29]. The
Ikeda system is well known for delay induced chaotic behavior [30–32] and it is
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Fig. 4.12 A 6-scroll
hyperchaotic attractor of the
simple delay differential
equation (4.20) for the value
of the delay time τ = 5.1
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Fig. 4.13 (a) Largest twelve Lyapunov exponents and (b) Kaplan-Yorke dimension of the simple
delay differential equation (4.20) in the range of delay time τ ∈ (0, 20)

also receiving focus on synchronization studies in recent times [33–36]. The model
is specified by the state equation

ẋ = −αx(t)− β sin x(t − τ), (4.21)

where α > 0 and β > 0 are the parameters and τ is the delay time. Physically
x(t) is the phase lag of the electric field across the resonator and thus may clearly
assume both positive and negative values, α is the relaxation coefficient, β is the
laser intensity injected into the system and τ is the round-trip time of the light in the
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Fig. 4.14 Chaotic attractor of
the Ikeda system (4.21) for
the values of the parameters
α = 1.0, β = 20 and τ = 2
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resonator. A typical hyperchaotic attractor of the Ikeda system is shown in Fig. 4.14
for the parameter values α = 1.0, β = 20 and τ = 2. This system also plays an
important role in electronics and physiological studies [33, 35, 37]. Dynamics and
associated complexity of the Ikeda model have been discussed in detail in [37]. In
particular the dynamics of Ikeda ring cavity laser is explained using an experimental
set up and its block diagram along with the emergence of chaos through period-
doubling cascade [30–32, 37]. The first eleven maximal Lyapunov exponents of
the Ikeda system for the parameters α = 1.0, β = 5 in the range of delay time
τ ∈ (2, 25) are shown in Fig. 4.15a and the corresponding Kaplan-Yorke Lyapunov
dimension (4.15b) is shown in Fig. 4.15b.

4.3.3 Scalar Time-Delay System with Polynomial Nonlinearity

Recently, Voss [38] introduced a scalar time-delay system with polynomial nonlin-
earity experimentally in an electronic circuit with the state equation

ẋ = −αx(t)− f (x(t − τ)), (4.22)

where

f (x(t − τ)) = −10.44x3
τ − 13.95x2

τ − 3.63xτ − 0.85, xτ = x(t − τ). (4.23)

The model has been studied both experimentally and numerically for its chaotic
dynamics [38] and real time anticipation of chaotic states has been demonstrated
using this circuit. The parameters are chosen such as to closely fit the parameters of
the electronic circuit described in [38]. It is also noted that the nonlinearity (4.23)
shows a single smooth hump and resembles that of the Mackey-Glass system. The
parameter values are fixed as α = 3.24 m/s and the delay time τ = 13.28 ms
for numerical simulation and for these values the system (4.22) exhibits chaotic
dynamics as shown in Fig. 4.16.
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Fig. 4.15 (a) Largest eleven Lyapunov exponents of Ikeda system (4.21) for the values of parame-
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Fig. 4.16 Chaotic attractor of
the system (4.22) for the
values of the parameters
α = 3.24 m/s and
τ = 13.28 ms
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4.3.4 Scalar Time-Delay System with Other Piecewise Linear
Nonlinearities

In addition to the odd piecewise linear delay differential equation discussed in the
previous chapter (Chap. 3), there are several other types of piecewise linear delay
differential equations which have been studied in the literature. A delay differen-
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tial equation with odd piecewise linear function with only three segments can be
defined as

ẋ = −ax(t)+ b f (x(t − τ)), (4.24)

where f (x) is a three segment odd piecewise function represented as

f (x) =
⎧⎨
⎩

d(x + 1)− c, x < −1
cx, −1 < x < 1

d(x − 1)+ c, x > 1,
(4.25)

System (4.24) and (4.25) has been analyzed in [24, 25] both experimentally and
theoretically for the parameter values c = 2.0 and d = −4.0. The only difference
between the three segment odd piecewise linear function and the five segment odd
piecewise linear function (2.19) is that nonlinearity does not saturate to zero at larger
values of |x |. It has been shown that this nonlinearity can generate not only mono-
scroll hyperchaotic oscillations but also more complex double-scroll hyperchaotic
oscillations for suitable values of delay times. Numerically simulated three segment
piecewise linear functional form is depicted in Fig. 4.17a. Mono- and double-scroll
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Fig. 4.17 Odd-symmetry nonvanishing three-segment nonlinear function f (x) given by Eq. (4.25)
(a) Numerical plot and (b) PSPICE simulation
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Fig. 4.18 Numerical phase portraits of the systems (4.24) for the values of the parameters a =
1.0, b = 1.0, c = 2.0 and d = −4.0 (a) Mono-scroll attractor for the value of the delay time
τ = 2.0 and (b) Double-scroll attractor for the value of the delay time τ = 8.0
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hyperchaotic attractors for the values of the parameters a = 1.0, b = 1.0 and the
delay times τ = 2.0 and τ = 8.0 are shown in Fig. 4.18a, b, respectively.

The same block diagram and the delay unit depicted in Figs. 3.9 and 3.10, respec-
tively, can be used to mimic the delay differential equation (4.24) along with the
three segment piecewise linear function, Eq. (4.25), by using the nonlinear device
(ND) [24, 25] shown in Fig. 4.19. The values of the resistances in the nonlinear
device are chosen as R1 = R2 = R3 = 1 KOhm and R4 = 3 KOhm. Diodes and
operational amplifiers in the nonlinear device are chosen as 1N4148 and L F356N ,
respectively. PSPICE simulation of the output characteristics of the nonlinear device
(ND) shown in Fig. 4.19 is depicted in Fig. 4.17b. Mono- and double-scroll hyper-
chaotic attractors of the circuit (Fig. 3.9) with the nonlinear device (Fig. 4.19) for
the corresponding values of the parameters [24, 25] are shown in Fig. 4.20a, b,
respectively. Ten largest Lyapunov exponents and the Kaplan-Yorke dimension of
the delay differential equation (4.24) with the three segment piecewise linear func-
tion in the range of τ ∈ (0, 10) for the above values of other parameters are shown
in Fig. 4.21.

Other piecewise linear models discussed in the literature include those models
where the function f (x) in Eq. (4.24) is of the form

−

+

−

+
OA1

OA2

R1 R2

R3 R4 R5 R6

x

F(x)

Fig. 4.19 Circuit diagram of the nonlinear device (ND) corresponding to the Eq. (4.25)
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Fig. 4.20 PSPICE simulation of the nonlinear circuit Fig. 4.19 for the corresponding values of the
circuit elements (a) Mono-scroll attractor and (b) Double-scroll attractor
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Fig. 4.21 (a) Largest twelve
Lyapunov exponents and (b)
Kaplan-Yorke dimension of
the piecewise linear delay
differential equation (4.24) in
the range of delay time
τ ∈ (0, 10)
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f (x) =
{

2x, x ≤ 1/2
2 − 2x, x > 1/2,

(4.26)

and

f (x) =
{

px(1 − x), |x | < 1
0, |x | ≥ 1.

(4.27)

These piecewise linear models have been well studied in [11, 21, 39] for their
chaotic dynamics and also on synchronization aspects. The chaotic attractor of the
system (4.24) with the functional form (4.26) is shown in Fig. 4.22a for the param-
eter values α = 0.2, β = 0.2 and τ = 25, while the chaotic attractor of the system
(4.24) with the piecewise linear function of the form (4.27) for the parameter values
a = 0.2, b = 0.2, p = 5 and τ = 25 is shown in Fig. 4.22b.

4.3.5 Another Form of Scalar Time-Delay System

Another form of scalar DDE which has also been used in the literature is

ẋ = −ax(t − τ)+ b f (x(t − τ)), (4.28)
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Fig. 4.22 Chaotic attractor of the system (4.24) with (a) functional form (4.26) for the values of
the parameters α = 0.2, β = 0.2 and τ = 25 and (b) piecewise linear function of the form (4.27)
for the parameter values a = 0.2, b = 0.2, p = 5 and τ = 25

where a and b are parameters. As a first example to this type of scalar DDE, we
will discuss the dynamical system proposed by Yalcin and Ozoguz [28] to generate
an n-scroll chaotic attractor. Nonlinearity of this model is based on a hard limiter
function and that the model can be easily generalized in a systematic way in order
to obtain an n-scroll attractor. The nonlinear function is given by

f (x) =
M∑

i=1

g(−2i+1)/2(x)+
N∑

i=1

g(2i−1)/2(x) (4.29)

and

gθ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x ≥ θ, θ > 0
0, x < θ, θ > 0
0, x ≥ θ, θ < 0
1, x < θ, θ < 0.

(4.30)

The nonlinearity (4.29) was used for the generalization of the so called Jerk cir-
cuit [40]. The set of equilibrium points for the nonlinearity (4.29) with a = b is

�eq = {−M,−M + 1, · · · , N − 1, N }. (4.31)

The scrolls are located around the equilibrium points. Therefore the number of
scrolls equals the number of equilibrium points. The number of scrolls generated
by the nonlinearity (4.29) is equal to M + N + 1. Chaotic attractors with three
(M = 1, N = 1), five (M = 2, N = 2), six (M = 1, N = 4) and nine
(M = 4, N = 4) scrolls for the system (4.28) with the nonlinearity (4.29) for the
values of the parameters a = 0.2, b = 0.2 and τ = 20 are shown in Fig. 4.23a–d,
respectively. The above dynamical system (4.28) along with the nonlinearity (4.29)
has also been demonstrated using electronic circuits by the same authors.
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Fig. 4.23 Chaotic attractors of the system (4.28) with nonlinear functional form (4.29) for the
values of the parameters a = 0.2, b = 0.2 and τ = 10. (a) Three-scroll chaotic attractor for
M = N = 1, (b) Five-scroll chaotic attractor for M = N = 2, (c) Six-scroll chaotic attractor for
M = 1, N = 4 and (d) Nine-scroll chaotic attractor for M = 4, N = 4

There are also other types of nonlinear functions used in the literature for the
delay differential equation (4.28) with [41]

f (x) = sgn(x), (4.32)

and

f (x) = tanh(10x). (4.33)

The chaotic attractors exhibited by the above nonlinearities for the values of the
parameters a = 0.2, b = 0.2 and τ = 10 are depicted in Fig. 4.24a, b, respectively.

Another interesting model with a cubic nonlinear function [26] is,

ẋ = x(t − τ)− x3(t − τ), (4.34)

for which chaos sets in from a limit cycle at τ ≈ 1.538. Similar dynamical behavior
is also obtained when the signs of both the terms in Eq (4.34) are exchanged. Note
that the right hand side of the above equation can be considered as a scaled version
of the first two terms in the Taylor series for sin(x(t − τ)).
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Fig. 4.25 Limit cycle
oscillation of the delayed
action oscillator (4.35) for the
value of the parameters
a = 0.7, b = 1 and delay
time τ = 2
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4.3.6 El Niño and the Delayed Action Oscillator

A natural atmospheric phenomenon that attracts regular public attention is the El
Niño event in the equatorial Pacific. El Niño is an excellent example of the inter-
action between the ocean and the atmosphere and their combined effect on climate.
This phenomenon is a disruption of the ocean-atmosphere system having important
consequences for weather around the globe. It results in a redistribution of rains
with flooding and droughts. Along the equator, the western Pacific has some of the
world’s warmest ocean water, while in the eastern Pacific, cool water dwells up,
carrying nutrients that support large fish populations. In every two to seven years,
strong westward blowing trade wind subsides and warm water slowly moves back
eastward across the Pacific, which interrupts the upwelling of cool and nutrient
rich water. As a consequence fish die and climatic changes affect many parts of
the world.

Historically, the term “El Niño” was used by the fisherman along the west coast
of Peru and Ecuador to refer to a warm southward flowing current that moderates
the low sea-surface temperature that typically appears around Christmas-time and
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therefore named as “El Niño” (the Little Boy or Christ Child in Spanish), which
lasts several months. In certain years this current is unusually strong, bringing heavy
rains and flooding inland, but also decimating fishing stocks, bird populations, and
the other water based wildlife in what would normally be an abundant part of the
Pacific.

Today, the term El Niño is most often used when describing a far large-scale
warming that can be observed across the whole of the Pacific Ocean by certain
characteristic climatic conditions. The effects of El Niño can also be seen globally.
Examples include spring rainfall levels in Central Europe, flooding in East Africa,
and the ferocity of the hurricane season in the Gulf of Mexico [42]. El Niño is just
one phase of the El Niño Southern Oscillation (ENSO) phenomenon, that is, an
irregular cycle of coupled ocean temperature and atmospheric pressure oscillations
across the whole equatorial Pacific.

El Niño Southern Oscillation phenomenon is a global event arising from large-
scale interaction between the ocean and the atmosphere. The Southern Oscillation
refers to oscillations in the surface pressure (atmospheric mass) between the south-
eastern tropical Pacific and the Australian-Indonesian regions. When the waters of
the eastern Pacific are abnormally warm (an El Niño) sea level pressure drops in
the eastern Pacific and rises in the west. The reduction in the pressure gradient is
accompanied by a weakening of the low-latitude easterly trades.

Usually, coupled atmosphere-ocean general circulation models combined with
large scale computing resources are needed to study and predict El Niño’s conse-
quences. Fortunately, a route toward qualitative and quantitative prediction based on
the delayed-action oscillator exists. Recent works on the mechanism of the ENSO
have led various simple delay oscillator models which have provided a quite satis-
factory explanation for the onset, termination, and cyclic nature of ENSO events,
see [43] and references therein. Very recently, a simple model described by a scalar
delay differential equation has been shown to mimic most of the observed dynam-
ics of ENSO phenomenon. It models the irregular fluctuations of the sea-surface
temperature, and incorporates the full coupled Navier-Stokes dynamics of an El
Niño event by a suitably chosen nonlinearity. The corresponding equation can be
represented as [42]

ẋ = kx − bx3 − ax(t − τ), (4.35)

where k, b, a and τ are constants. The first term on the right-hand side of Eq. (4.35)
represents a strong positive feedback within the ocean atmosphere system and the
second term is an unspecified nonlinear net damping term that is present to limit
the growth of unstable perturbations. The strength of the returning emerging signals
relative to that of the local nondelayed feedback is denoted by a.

The delayed oscillator (4.35), as it is, exhibits only limit cycle oscillations
(Fig. 4.25). The full model to include every aspect of El Niño event is represented
as

ẋ = kx − bx3 − ax(t − τ)+ y′ + β + R(t), (4.36)
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where y′(t) is the annual cycle which plays an important role in determining the
onset of El Niño, β corresponds to global warming which influences the periodicity
and amplitude of El Niño events, and R(t) is a stochastic term which influences the
irregularity of El Niño events. The full model (4.36) represented by the delayed-
action oscillator now mimics the observed richness and variance of the El Niño
Southern oscillations phenomenon. Thus the oscillator modeled by delayed feed-
back serves as an excellent model for observed physical phenomenon. Details of
stability analysis and its dynamics can be found in [42].

In addition to the above example of describing a natural phenomenon in terms of
delay differential equations/models, recent investigations have also shown that the
Neolithic transition (that is, transition from hunter-gatherer to agricultural economy)
in Europe has also been successfully described using a time-delay model, which
agrees quite well with the observations based on archaeological data. These data led
to the conclusion that European farming originated in the Near East, from where it
spread across Europe [44].

4.4 Coupled Chaotic Time-Delay Systems

As pointed out in the previous section, a large number of physical, biological,
chemical, ecological and economic systems, as well as fluctuations in agricultural
commodity prices, neural networks, etc., are successfully modeled by delay dif-
ferential equations, and thereby capturing many of the inherent complex dynamics
of the respective dynamical systems, cf. [4, 18, 21, 41, 45–60]. DDEs are often
found not only as scalar first order equations but also as coupled higher order equa-
tions. Some of the delay models of chemical, physiological and economic dynam-
ics, mathematical and genetic regulatory systems are represented as coupled higher
order DDEs [59, 60]. Rigorous mathematical treatment of such higher order DDEs
becomes much more complicated than the case of scalar DDEs and consequently
details of such coupled higher order systems are available only through numerical
analysis. In the following, we will discuss briefly about some of the important higher
order DDEs that have been widely studied in the current literature in the context of
chaotic dynamics and chaos synchronization.

4.4.1 Time-Delayed Chua’s Circuit

As an example of coupled higher order DDEs in electronic circuits, we present here
one of the important second order time-delay systems, namely, time-delayed Chua’s
circuit (TDCC) which has been realized experimentally using suitable electronic
circuit. This was introduced by Sharkovsky et al. [61] and it has been studied in
detail by many researchers [62–64]. In particular, the work of Sharkovsky et al.
showed that the dimension of state space is increased by substituting the lumped LC
resonator with an ideal (lossless) transmission line. TDCC has a constant voltage
generator E in series with the Chua’s diode as shown in Fig. 4.26 in order to break
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Fig. 4.26 Time-delayed
Chua’s circuit (TDCC)
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the symmetry in the original Chua’s diode v − i characteristic. The other elements
in the circuit are the lumped linear elements C and G = 1/R. The parameters of
the circuit are the round trip delay T and the characteristic impedance Z of the
transmission line. The line parameters relate to the line per-unit-length inductance
l and capacitance c, and they are related to the line length L as T = 2L√

lc and
Z = √

l/c. The circuit is represented by the coupled normalized equations of the
form

θ ẋ(t)+ λq(x(t)− E)+ q(λ0 − λq) = (1 − γ )(y − 0.5E), (4.37a)

y(t + 1) = γ y(t)− γ+1
2 x(t), (4.37b)

where λq = (1−γ 2)
2(γ−hq )

, q = −1, 0, 1, and θ, γ, h0, h1, h−1 are dimensionless
parameters corresponding to the experimental counterparts. Chaotic attractor of the
time-delayed Chua’s circuit (4.37) for the parameter values θ = 0.1616, γ =
−0.58156, h0 = 0.35828, h1 = h−1 = −4.9073 and E = 0.0 for the initial
conditions y(τ ) = 0, τ ∈ (0, 1) is shown in Fig. 4.27.

4.4.2 Semiconductor Lasers

A large number of systems in laser optics have been represented by coupled higher
order delay differential equations that are quite complicated than the systems pre-
sented in the above sections. Also a large number of papers have appeared in recent
times in studying chaos synchronization using laser systems [65–77] as models, in
view of the feasibility of experimental realization of high-dimensional chaos.

Now, we will describe a well studied single mode semiconductor laser with opti-
cal feedback in the context of chaotic dynamics and its synchronization. All optical
feedback in external cavity semiconductor lasers has been a subject of extensive
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Fig. 4.27 Chaotic attractor of
the time-delay Chua’s circuit
(TDCC) (4.37) for the
parameter values
θ = 0.1616, γ = −0.58156,
h0 = 0.35828, h1 = h−1 =
−4.9073 and E = 0.0 with
initial conditions
y(τ ) = 0, τ ∈ (0, 1)
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research during the past decade because of its importance in technical applications
such as optical data storage or optical fiber communications [78]. The rate equations
for the complex electric fields and the carrier densities in the lasers are the well
known Lang-Kobayashi equations [65–67, 71, 74, 75, 79] represented by

Ė = 1 + iα

2
[G(t)− 1/τp]E(t)+ γ E(t − τ) exp[−i(ωτ)], (4.38)

Ṅ = J/e − N (t)/τn − G(t)|E(t)|2, (4.39)

where E is the slowly varying complex field and N is the normalized carrier number.
The equations are written in the reference frame where the complex optical fields of
the lasers are given by E exp(iωt), where ω is the optical frequency of the solitary
laser [66]. The other parameters are as follows: τp is the photon lifetime, α is the
line width enhancement factor, G(t) = Gn(N − N0)/(1 + ε|E |2) is the optical
gain (where Gn is the differential gain, N0 is the carrier number at transparency,
ε is the gain saturation coefficient), ωτ is the phase accumulation after one round
trip in the external cavity, τ is the one round trip time of the external cavity, J
is the injection current, e is the electric charge, and τn is the carrier lifetime. The
model does not include multiple reflections in the external cavity, and therefore it
is valid for weak feedback levels. For suitable values of the above parameters the
laser is in the so-called coherence collapse regime, characterized by fast, chaotic
intensity fluctuations. Semiconductor lasers subject to delayed feedback generate
chaotic dynamics with intensity pulsations on subnanosecond time scales [78].

Chaos in semiconductor lasers arises in different ways: due to (periodic) mod-
ulation of the pump current [80], due to electro-optical feedback where the pump
current is modulated by the emitted light intensity [81, 82], or due to an external
cavity (optical feedback) [83]. Recently, optoelectronic chaos due to delayed feed-
back in optoelectronic circuits along with their possible applications has been dis-
cussed [84]. All these cases are described by DDEs that exhibit chaotic/hyperchaotic
behaviors for suitable values of the parameters. In the above we have provided state
equations for semiconductor laser with optical feedback as an example for the cou-
pled higher order DDEs in semiconductor laser systems. It is to be noted that the
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semiconductor laser with polarization-rotated optical feedback is described by a 3rd
order DDE containing state equations for two complex electric fields E1 and E2
with orthogonal polarizations, and a carrier density N [85].

4.4.3 Neural Networks

A class of delayed chaotic neural networks can be represented as the set of coupled
DDEs of the form

ẋ(t) = −Cx(t)+ A f [x(t)] + B f [x(t − τ)] , (4.40)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn is the state vector, the activa-
tion function f [x(t)] = ( f1 [x1(t)] , f2 [x2(t)] , · · · , fn [xn(t)])T denotes the man-
ner in which the neurons respond to each other. C is a positive diagonal matrix,
A = ai j , i, j = 1, 2, · · · , n is the feedback matrix, B = bi j represents the delayed
feedback matrix with a constant delay τ . The general class of delayed neural net-
works represented by the above Eq. (4.40) unifies several well known neural net-
works such as the Hopfield neural networks and cellular neural networks with delay.

The delayed neural networks (Eq. 4.40) corresponds to the Hopfield neural net-
works for the choice of activation function

f [x(t)] = tanh [x(t)] , (4.41)

and for the value of the matrices

C =
[

1 0
0 1

]
, A =

[
2.0 −0.1

−5.0 3.0

]
, B =

[−1.5 −0.1
−0.2 −2.5

]
.

The chaotic behavior of the delayed Hopfield neural network [86, 87] for the above
choice of the parameters and for the initial condition x0 = [0.1, 0.2]T is shown in
Fig. 4.28a. The above general class of delayed neural network represents delayed
cellular neural network for the activation function

f [x(t)] = 0.5 (|xi + 1| − |xi − 1|) , (4.42)

and for the value of the matrices

C =
[

1 0
0 1

]
, A =

[
1 + π/4 20

0.1 1 + π/4

]
, B =

[−√
2(π/4)1.3 −0.1

0.1 −√
2(π/4)1.3

]
.

The chaotic attractor of the above delayed cellular neural network for the choice of
initial condition x0 = [0.1,−0.1]T is shown in Fig. 4.28b.

In the above two sections, we have presented a brief review of some of the impor-
tant time-delay systems and, in particular, scalar first order time-delay systems with
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Fig. 4.28 Chaotic behavior of (a) Delayed Hopfield neural network and (b) delayed cellular neural
network

different functional forms for nonlinearity that are widely studied in the literature in
the context of chaotic dynamics and chaos synchronization. We have also discussed
briefly some of higher order DDEs in different areas. More examples of nonlinear
delay systems are given in Appendix D.
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